PASCAL-86 USER’S GUIDE

.|
Copyright © 1981, 1982, 1983, 1985 Intel Corporation

intet Corporation, 3065 Bowers Avenue, Santa Clara, Califorma 95051 Order Number: 121539-005

PASCAL-86 USER’S GUIDE

Order Number: 121539-005

Copyright © 1981, 1982, 1983, 1985 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA 95051

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

Intel retains the right to make changes to these specifications at any time, without notice. Contact your
local sales office to obtain the latest specifications before placing your order.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes
no responsibility for any errors that may appear in this document. Intel Corporation makes no commitment
to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, dupli-
cation or disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may only be used to identify Intel
products:

BITBUS im iSBC Plug-A-Bubble
COMMputer iMMX iSBX PROMPT
CREDIT Insite iSDM Promware
Data Pipeline intgl iSXM QueX

Genius intIBOS KEPROM QUEST

1 Intelevision Library Manager Ripplemode

% int ligent Identifier MCS RMX/80
12ICE intgligent Programming Megachassis RUPI

ICE Intellec MICROMAINFRAME Seamless

iCS Intellink MULTIBUS SOLO

iDBP iOSP MULTICHANNEL SYSTEM 2000
iDIS iPDS MULTIMODULE UPI

iLBX iRMX

Al479 / 685 / 7K / DD / KH

SOFTWARE

REV. REVISION HISTORY DATE | APPD.

-001 Original issue. 2/81

-002 | Corrected errors in original manual. 10/81

-003 Added information on WORD, LONGINT, 3/82
LONGREAL, and TEMPREAL data types, new
predefined functions, and segmentation controls.

-004 | Added information on virtual symbol table 9/83 C.C.
capacity, file 1/0, iRMX systems, and miscella-
neous corrections to text.

-005 Updated to include information on data objects 2/85 D.L.N.

>64K, conditional conditional compilation, and
1APX 186 support.

fii

PREFACE

This manual gives instructions for programming in Pascal-86 and for using the
Pascal-86 compiler to prepare programs for iAPX 86 and iAPX 88 microcomputer
systems. It is primarily a reference manual for use when you are writing or compiling
Pascal-86 programs; however, it also contains some introductory information to help
you familiarize yourself with Pascal-86 as you start to use it.

The manual assumes you are familiar with basic programming concepts, including
structured programming. However, it defines the language completely, assuming no
prior knowledge of Pascal.

Following the description of the language, this manual provides instructions for
compiling your Pascal programs, linking and locating the compiled code, and execut-
ing the final program. It explains how to interpret compiler output, including error
messages. These portions assume you are familiar with the console operation of your
development system.

Finally, the appendixes provide quick reference information, plus supplementary
instructions for interfacing Pascal-86 modules to modules in other languages and to
your own operating system software.

Manual Organization

Figure 0-1 illustrates the structure of this manual. As shown in the figure, it contains
four kinds of information:

» Introductory and general reference information, including installation instructions
¢ Language information, for use when you are programming in Pascal-86

e Operating instructions for the compiler and run-time support, including descrip-
tions of compiler controls

e Interfacing information you need if you supply some of your own systems software
in place of that supplied by Intel (e.g., a non-Intel operating system or your own
real arithmetic error handler), or if you are interfacing Pascal-86 modules to
modules written in other languages such as ASM86 or PL/M-86

If you are a manager evaluating Pascal-86 to determine whether it fits your needs,
you will find most of the information you need in Chapter 1, which is an overview of
the product. You might also skim through Appendixes A through F for a summary
of the language; note that the shaded portions of Appendixes D, E, and F describe
extensions to ISO standard Pascal (Draft Proposal 7185).

To get started with Pascal-86, first read this preface (How to Use this Manual) and
Chapter 1. (If you are familiar with assembly languages but not with high-level
languages, see section 1.2.1 for a discussion of the advantages of a high-level language
such as Pascal.) Then install the compiler using the instructions in Chapter 1, and
try compiling, linking, locating, and running sample program 1 at the end of
Chapter 1 to verify that the software operates correctly.

After that, if Pascal is a new language for you, study the sample programs in
Chapter 9 and run some of them following the instructions in that chapter. Finally,
skim through the manual from Chapter 2 to the end, and try writing and running a
few programs of your own. Once you have become familiar with Pascal-86, you will

Preface Pascal-86 User’s Guide

INTRODUCTORY AND GENERAL
REFERENCE INFORMATION. PASCAL-86 LANGUAGE INFORMATION

CHAPTER 1 INDEX CHAPTER 9 APPENDIX G
OVERVIEW SAMPLE CHARACTER SETS
PROGRAMS AND COLLATING
SEQUENCE
O GLOSSARY
CHAPTER 8 APPENDIX F
PREDEFINED PASCAL-86
PROCEDURES VOCABULARY
AND FUNCTIONS
CHAPTER 7 APPENDIX E
EXPRESSIONS AND SYNTAX DIAGRAMS
STATEMENTS
CHAPTER 6 APPENDIX D
PROCEDURES LANGUAGE SYNTAX
AND FUNCTIONS SUMMARY
OPERATING
INSTRUCTIONS CHAPTER § APPENDIX C INTERFACING INFORMATION
CONSTANTS, COMPILER CAPACITY
TYPES,
CHAPTER 14 AND VARIABLES APPENDIX M
RUN-TIME COMPILER INVOCATION
EXCEPTIONS AND ADDITIONAL
INFORMATION FOR
CHAPTER 4 APPENDIX B iRMX 86 USERS
PROGRAM HEADINGS, PROCESSOR-
CHAPTER 13 SEPARATE DEPENDENT
COMPILATION LANGUAGE APPENDIX L
FACILITIES, FEATURES
COMPILE-TIME AND LABEL OMP
ERRORS AND DECLARATIONS O R ON
WARNINGS
e INFORMATION FOR
CHAPTER 3 APPENDIX A SERIES Il USERS =
LANGUAGE DIFFERENCES
ELEMENTS BETWEEN PASCAL-86
CHAPTER 12 e o APPENDIX K
ER
VERSION: —
LINKING, LOCATING, PASCASLOF
AND EXECUTING RUN-TIME
ROGHAMG INTERFACE
CHAPTER 2
PROGRAM
STRUCTURE
CHAPTER 11 APPENDIX J
PILER OUTPUT LINKING
COMPILER O TO MODULES
WRITTEN IN
OTHER LANGUAGES
CHAPTER 10 i
COMPILER CONTROLS EXTENDED
SEGMENTATION
CONTROLS

APPENDIX H

RUN-TIME DATA
REPRESENTATIONS

Figure 0-1. Structure of This Manual 121539-24

Pascal-86 User’s Guide Preface

find this manual useful as a complete reference. For quick reference, see the
Pascal-86 Pocket Reference.

If you wish to transport existing Pascal programs to your iAPX 86 or iAPX 88 appli-
cation system, refer to Appendix A for a list of the differences between Pascal-86 and
other dialects of Pascal. This appendix indicates the areas of your programs that may
require modification. If your programs are written completely in standard Pascal as
defined by the ISO Draft Proposal, you need not modify them at all before you
recompile them with Pascal-86.

Once you have coded your programs, you are ready to compile, link, locate, and run
them. Refer to Chapter 10 for the use of compiler controls, and Chapter 11 for inter-
pretation of the output listing. Chapter 12 describes how to link, locate, and execute
your compiled programs. Chapters 13 and 14 help you interpret error messages you
may receive when compiling or running your programs. Note that Chapter 12 gives
only a brief outline of the linking and locating process and the associated error
messages; for details, refer to the iAPX 86, 88 Family Utilities User’'s Guide.

If you are coding some of your application software in another language such as
ASMB86 or PL/M-86, refer to Appendixes H and J for the information you need. If
you are interfacing to your own operating system or providing your own file/device
drivers, refer to Appendix K for instructions.

How to Use This Manual
Section Numbers

All chapters and appendixes are section-numbered for easy cross-referencing: for
instance, the heading number 5.3.2 denotes Chapter 5, section 3, subsection 2. When
the text of one section refers to another section, the reference is made by number, for
example, “‘as described in 7.1.3.” Figures, tables, and sample programs are also
numbered to aid in cross-referencing, for example, “in table 7-1," “see figure 9-5,”
“Sample Program 1 illustrates...”

Syntax Notation

This manual employs a notation similar to that used in Jensen and Wirth’s Pascal
User Manual and Report to define the syntax of the language precisely. The syntax
of the entire Pascal-86 language, in this notation, is given in Appendix D. For those
who prefer the syntax diagrams used in an appendix to the Pascal User Manual and
in a number of textbooks on Pascal, Appendix E provides the syntax of the language
in that form.

Notational Conventions

UPPERCASE Characters shown in uppercase must be entered in the order
shown. You may enter the characters in uppercase or
lowercase.

vii

Preface Pascal-86 User’s Guide

italic Italic indicates a meta symbol that may be replaced with an
item that fulfills the rules for that symbol. The actual symbol
may be any of the following:

directory-name Is that portion of a pathname that acts as a file locator by
identifying the device and/or directory containing the
filename.

filename Is a valid name for the part of a pathname that names a file.

pathname Is a valid designation for a file; in its entirety, it consists of a

directory and a filename.

pathnamef, Are generic labels placed on sample listings where one or more
pathname2, ... user-specified pathnames would actually be printed.
system-id Is a generic label placed on sample listings where an oper-

ating system-dependent name would actually be printed.

Vx.y Is a generic label placed on sample listings where the version
number of the product that produced the listing would
actually be printed.

[Brackets indicate optional arguments or parameters.

{ 1} One and only one of the enclosed entries must be selected
unless the field is also surrounded by brackets, in which case
it is optional.

{ }.. At least one of the enclosed items must be selected unless the
field is also surrounded by brackets, in which case it is
optional. The items may be used in any order unless other-
wise noted.

I The vertical bar separates options within brackets [] or
braces { }.

Ellipses indicate that the preceding argument or parameter
may be repeated.

-1 The preceding item may be repeated, but each repetition must
be separated by a comma.

punctuation Punctuation other than ellipses, braces, and brackets must be
entered as shown. For example, the punctuation shown in the
following command must be entered:

SUBMIT PLM86(C(PROGA,SRC,*9 SEPT 817)

In interactive examples, user input lines are printed in white
on black to differentiate them from system output.

<cr)d Indicates a carriage return.

Caution.

Pascal-86 User’s Guide Preface

Intel extensions to standard Pascal and descriptions of the
extensions are shaded in gray.

When two adjacent items must be concatenated, they appear with no space between
them. A blank space between two items indicates that the two items may be separated
by one or more logical-blanks. For example:

digits.digits [E [sign]digits]<cr >

specifies that the first set of digits, the . symbol, and the second set of digits must be
concatenated, with no blanks between them. Likewise, the E symbol, the sign if
included, and the third set of digits must be concatenated.

Alternative constructs are represented as vertically adjacent items separated by extra
vertical spacing and enclosed between curly braces that are taller than a single line
of type. When these braces appear, choose any one of the constructs enclosed between
the braces. For example:

digits

binary-digit [binary-digit]. . . B
octal-digit [octal-digit}. . . @
digit[hex-digit]. . . H

indicates that the construct described may have any one of the four forms listed
between the large braces.

Text enclosed between the character sequence (* and the sequence *), when these
symbols are in light, non-monospace type, is a prose definition of the given construct.
Such definitions are used when symbolic definitions would be more cumbersome. For
example:

(* any uppercase or lowercase letter of the alphabet *)

is used to avoid listing 52 separate characters vertically between braces.

The start of a new line in the notation does not mean you must start a new line at
that point in your program; however, you may do so for readability. For example,

when you use the construct:

F OR variable :=expression T0 expression
DO statement

you need not include a carriage return after the second expression, but in many
programs doing so makes the statement more readable.

TABLE OF CONTENTS

CONTENTS

CHAPTER 1 PAGE
OVERVIEW

1.1 Product Definitioncccooooiioiiiiee et ettt er et s et ean 1-1
1.2 The Pascal-86 Language 1-1
1.2.1 Using a High-Level Language 1-1
1.2.2 WHhY Pascal? ..ottt ettt et ettt s 1-2
1.2.3 Portabilityc.ococooiimiiiiiiiiicc e e e 1-3
1.2.4 Intel Extensions to Standard Pascalccccceiiiiiiniiiinicincececncenene 1-4
1.3 The Compiler and Run-Time Systemcccecvriviieniieinienneee e 1-4
1.3.1 Compiler FEAtUIESccoucoiviriiriiieniiectiiicnantcitriesene e caesser e st nne e seassassenases 1-4
1.3.2 Run-Time Support Librariescccocooveeemeeeeerremeeeecrmeerernnenns et ranee 1-4
1.4 Hardware and Software Environmentscccccooiiniiiniinoninecniecsneineennn 1-5
1.4.1 Program Development ENVIronmentcoccoceevvmeecerennicrnineresinseneosesncssssisennes 1-5
1.4.2 Run-Time Environment 1-5
1.5 Compiler Installation "ccccoeeivrvceirennericcnnrescecereenincnens 1-6
1.6 The Program Development Process 1-6
1.7 An Introductory Sample Program ...t 1-9
CHAPTER 2

PROGRAM STRUCTURE

2.1 Structure of a Standard Pascal Programccccoceeerveieenceiinecircesiee e 2-1
2.2 Separately Compiled Modules ..o, 2-5
CHAPTER 3

LANGUAGE ELEMENTS

3.1 Basic Alphabet 3-1
3.2 Logical Blanks 33
3.2.1 Comments 33
3.3 Tokens 34
3,301 TAENLIFIELS eoveieeieieceee ettt ettt ettt s s e e e ae e 3-4
3.3.2 IIEEZEIS eveeiiiieiiccee ettt sttt s et s e e e e sae s et s sre e e b e s e nae s 3-5
3.3.3 Real NUIMDEIS ..oviiiiiiiiiriecieeteiiire et st s seese st soeeees s e ssee bt e st et enenaan 3-5
3.3.4 LaDEIS oottt e s r st b e eaae 3-6
3.3.5 CRATacter SLIHNES ...oceeoiveerverrrieeerieetetrien ettt erestsseseea b es et saesesaeresessesemsane 3-6
CHAPTER 4

PROGRAM HEADINGS, SEPARATE COMPILATION FACILITIES,
AND LABEL DECLARATIONS

4.1 Details of Program StruCtUIEccccccoeromiieniiiininiiiieinecrtrecniie e s sresesneses e ssesnes 4-1
4.1.1 Parts of @ PTOBIAIMccooucoiiuiiiceeceieie et iee et sasn et e st ene st et ese b aeae et s 4-1
4.1.2 Program ODbjJects and SCOPEcoevvererrreirrciiienriieneinereesietieceesteseisiessesesssesasasns 4-4
4.2 Program Headings and Separate Compilation Facilitiesc.ccccreneiiieinecnicccnenes 4-7
4.2.1 Module HEAdINgcceovieirieicirieecieiete ettt ete e sttt s es e sra st ssaasseenaasntsssannes 4-7
4.2.2 Interface SPeCifiCationocccoiiiiiiiiici ettt ettt et 4-7
4.2.3 Program Headingc.ccocccoiiiieieiiiiiiience et sttt ee s eae et et eee e e nes 4-9
4.2.4 Private HEadiNgccooviioiieiiiiieeirtiee et esaeste e s tn v s te s s e seesaesbasae et etasnr e saantes 4-10
4.3 Label DeClarationcc..ccccoieieeeiirnecieerie e eteseeteieesteseresaetest et eme st e sre st esaenes 4-10

Xi

Table of Contents Pascal-86 User’s Guide

CHAPTER 5 PAGE
CONSTANTS, TYPES, AND VARIABLES

5.1 BasiC CONCEPLS ..cocemeiieuiieeciericrcririinietetete e tannsseserses et ssestasesasesestssessentannsesesbosessuesens

5.2 CORSLANLS ..oovvreieieieiiiiiteeiectesieeereeereesiesteeeeseetaesessessssesseesseesessssssassessesssarsssssenssessaseres

5.3 TYPES ceeietireeieeiee e tette et e ettt e et s bt et et s et st e e e st e aa s eane et e etnease s eennenene s

5.3.1 Simple TYPES woerceerrrrireneeceieieeee e

5.3.2 Structured TYPesccceoceveeerrrvenrinereeneene

5.3.3 Pointer Typesccccvevvevvrreerenne

5.3.4 Type Compatibility

5.4 Variables ...

5.4.1 Variable Declarations

5.4.2 Variable Denotations

CHAPTER 6

PROCEDURES AND FUNCTIONS

6.1 BasiC COMCEPLS c..ouvurreriiieeereit ettt ettt st st e esar et st eaesae e banestssnenesens 6-1
6.2 Procedure Declarations 6-1
6.3 Function Declarations 6-3
6.4 PATAIMELETSoeeiiiiieiiiiiiceieieeetreeeieeeeeeeeevete e e ete e e e eas e esssseeesneesesesensseeeeneesensesessrnnsennns 6-4
6.4.1 Parameter List Syntax 6-4
6.4.2 Value Paradmetersccccoevrieeeiiieciieecsee e cne e e e ae e te s eere e e e e e sesbeesseresernees 6-5
6.4.3 Variable PArameEterscccocvermiciiieirieiieeerieeiiisveeseeeesssrnsesssressesiesesssosssssssssssssesnes 6-5
6.4.4 BYTES ParameterSccccevcierrieimenrieeieenieesieeiessseesrressseessssssssssesssssesseessnssassessnenns 6-6
6.4.5 Procedural PArametersccooouiieeieeieeeieieeeee e ceeee e et esr e e er s e s snessaeensenns 6-7
6.4.6 Functional Parameterscooooeviiiiiieeeieiciceeeeeeee ettt e et e et seseaesseaeseneees 6-7
6.4.7 Parameter List Compatibilityc.cococermvimriririirienn ettt svesesens 6-8
6.5 The FORWARD DIr€Ctive ...ceooviiiiiieiieiicieie e eereereiseeene s s ressesnesssesesnsonee 6-8
CHAPTER 7

EXPRESSIONS AND STATEMENTS

Tl EXPIESSIONS .ccoeiiiiiiciictiieuiette ettt aeett st e st ete s e ot e e et sanasestes e te b esseasessasessassessasens 7-1
7.1.1 Expression Syntax ... 7-2
T.1.2 OPETANAS ettt ettt ettt e sttt smaee s b ee e e ne 7-3
7.1.3 Function DesiZNatorsc...c.cccooeiirieererieeie et seertee ettt teee e et e s sseaeenes 7-4
7.1.4 Arithmetic OPEratorsc.coovireeiniicniiiieec e ert ettt e ettt esee s 7-5
7.1.5 Boolean OPEratorsc.coccooceeoiieriienienmiiieienteeieeeeieee st e e steseaeeeseesssensessesesseesees 7-7
T.1.6 SEt OPETALOTS ..ooceiiieiiiieeeerereieeestesteesesstesrasresesteseesssstasearsnesesssensasnsereensasseessessenses 7-7
7.1.7 Relational OPEratorsccoccomeerercriririeineterein e rtsse s seseae e ensse st se e s beeesenees 7-8
7.1.8 Real ATItRMELIC .ooiiviiriierieiieetectee et et e e ree e ear s e s ermr e s e seeeasenenenens 7-10
7.2 STALEIMENLS ..eccviirerieeeiiiieeeeieeereteeteeeeestesetessaaeseaaesbessetesstaeessassaesssassssesasesssessnsanssessnes 7-12
7.2.1 AsSIZNMENt STALEIMENLS ..covveeriiriieiiiineeineneeeee et eeteeeereseessee e e eereesneasessesssenneneees 7-13
7.2.2 Procedure STAtEMENSccccoceriiveerieeeeeiererireriesieiesseseseeaseaeseessessssesseeesesenseesssessens 7-13
7.2.3 Compound STALEIMNENTSc.coueuerircririeireetiieeiteiet e eresteseeatetesesee et seneseeseeebesens 7-14
T.2.4 TF STATEIMENTS ..oooeeiiviiiiieeeceeeeeeeieceeeeeete e e e et e eeae s e e e eneeaseseeesneeesentassnsessnnneesereeas 7-14
7.2.5 CASE SEALEMENTS ..oovveieiirieeeriiie it cereenree e e e ersreeetessseesteareesssesesssossessnsesassarens 7-15
T.2.6 WHILE Statementscccoooiieiiiiiiiieiieieteeereere et e e eetnrrees e e baeeeesssarnneesennnns 7-16
7.2.7 REPEAT Statementsccccoveivveerieiiieevireeeneenreienseenreteeseeseessesesesassesnsesseensensensens 7-17
7.2.8 FOR StatemeENLS ..cccooovvieeieivvieieriereiereeeteeeteeeseeereeseeesessrseesseseseessneensssensssseesnssennnennes 7-17
7.2.9 WITH Statementscccecoieeieieiieiieeiteeecreerenrecereeseneesseeeseseseessesesseenseesesessesnnreness 7-19
7.2.10 GOTO StALEMENLSccviiivieeiieeiiireeeericiceeeerereceteeereeesstesseeereesseesseseseseneensseeennenans 7-21
CHAPTER 8

PREDEFINED PROCEDURES AND FUNCTIONS

8.1 Ordinal Functions 8-1
8.1.1 ORDcccccuenneee 8-2
8.1.2 LORD ..ottt te e b e st a et es e e s raeeab s e b e esa e e ene s eaneeabeenbarentesaes 8-2
8.1.3 WRDD ettt et et e e be e te e e ae et e eaeeeae ee e eaesantesensaenneennes 8-3
8.1.4 CHR 8-3
8.1.5 PRED ...ttt er et te et st e et a e ne e e b e sas e aeersenbessbentetann 8-3

Xii

Pascal-86 User’s Guide Table of Contents

PAGE
8.1.6 SUCKC ...ttt ettt tes et et e et e e st eee s easeseen et estanreas 8-4
8.1.7 Ordinal Type Transfer FUNCHONSccccooeviiiiiiriiccceee et 8-4
8.2 Predicates (Boolean FUNCHONS) ...oc.oooiiiiiiiiiiiiiiiceeece et 8-5
8.2.1 ODD 8-5
8.2.2 EOF 8-5
8.2.3 EOLN oottt ettt ae e e e et e e eaaaseas e aes e nnsentent e ene e neaee 8-5
8.3 Arithmetic Functions 8-6
8.3.1 ABS 8-6
8.3.2 SQR 8-6
8.3.3 SQRT 8-7
8.3.4 EXP 8-7
8.3.5 LN 8-7
8.3.6 SIN 8-8
8.3.7 COS 8-8
8.3.8 TAN 8-8
8.3.9 ARCSIN 8-9
8.3.10 ARCCOS ... 8-9
8.3.11 ARCTAN 8-10
8.4 Transfer Functions 8-10

8.4.1 TRUNC ... 8-10

8.4.2 LTRUNC 8-11
8.4.3 ROUND 8-11
8.4.4 LROUND 8-11
8.5 Dynamic Aliocation Procedures 8-12
8.5.1 NEW ettt s oa s s 8-12
8.5.2 DISPOSEcocceiiinireereccecinenes 8-12
8.6 Transfer Procedures 8-13
8.6.1 PACK ..ot 8-13
8.6.2 UNPACK 8-14
8.7 File and Text File Input and Output Procedures 8-14
8.7.1 RESET ..ottt s en e e 8-16
8.7.2 REWRITE ..ottt ettt aenee 8-17
8.7.3 GET ettt ettt e sttt 8-17
8.7.4 PUT ottt ettt e bt 8-18
8.7.5 READ 8-18
8.7.6 WRITE 8-20
8.7.7 READLN ...ttt ettt st et ettt ere s 8-23
8.7.8 WRITELN ..ottt st st e s senstas s an 8-24
8.7.9 PAGE 8-24
8.8 Port Input and Output Procedurescccoceeeirirveeeeeneniiniere e seceeceessesensesaens 8-25
8.8.1 INBYT 8-25
8.8.2 INWRD 8-25
8.8.3 OUTBYT ...ttt ettt s s b nsuebess s sbsnssnsns 8-26
8.8.4 OUTWRD ..ottt et et s eae bbb sons st en 8-26
8.9 Interrupt Control Procedures 8-27
8.9.1 SETINTERRUPTootiieiirtiietnteniertnt e steeteaenct s csete s s sees st sesees e e s et srenesnens 8-27
8.9.2 ENABLEINTERRUPTSccocoiiiiiitintnnicienerecte et see e esess st eacres e 8-28
8.9.3 DISABLEINTERRUPTS ... 8-28
8.9.4 CAUSEINTERRUPTocooiiitiiiriinienineitcetcneere sttt sttt sesseseseeeseeneseenne 8-28
8.10 BO87 ProCedurescccomeeueomecirenieriesienieeceenteesce st esie e st en ettt s et eme s e nanes 8-28
8.10.1 GET8087ERRORS 8-29
8.10.2 MASKBO8TERRORS ..ottt i seais 8-29
CHAPTER 9

SAMPLE PROGRAMS

9.1 Sample Program 1: Temperature COnversionccccoievcereenrercereineessenieenenes 9-1
9.2 Sample Programs 2A and 2B: Binary Tree Traversal 9-1
9.3 Sample Program 3: Quadratic ROOtsccccccceevviiincnne 9-9

Xiii

Table of Contents Pascal-86 User’s Guide

PAGE
9.4 Sample Program 4: Text EditOrccooiiiiiiiiiiiiencteeee e rteeieaere s 9-11
9.5 Sample Program 5: Interrupt Processingcc.occcoomevniinnninnnneeeccnesceeeene 9-13
9.6 Sample Program 6: Matrix Multiplicationoooiemiiiiianien e 9-15
9.7 Sample Program 7: Maze GaMEc.cccovevrrereririeniieeinirieereetssesienesesrsssesessosesses 9-16
9.8 Sample Program 8: List Processingccccocevieierivieiierieeeiiiceeeeee e 9-19
9.9 Sample Program 9: Character Input/Outputcooviiieniinnceieneeeeeeeeeeene 9-21
CHAPTER 10
COMPILER CONTROLS
10.1 Introduction to Compiler CONLIOIScc.cooimeieeeieieeeeieeeeee e 10-2
10.2 Using Controlscccceecenvvnierivnvvesierreernnnens 10-4
10.2.1 Listing Device or File Selection 10-4
10.2.2 Controlling Listing Format and Contentccocoeeveevevieeeieeieeeeeeeee e, 10-5
10.2.3 Source Selection and Processingcoccocoeeiveieieeeeieiiieeeee et 10-6
10.2.4 Conditional Compilationc..cocceeveeeeieminninineteire ettt 10-6
10.2.5 Object Content and Program Checkoutc...ccccoveierenrieninnenns 10-7
10.2.6 Program Optimization and Run-Time Environment 10-8
10.2.7 Use of Controls in Stages of Developmentcccocceeeeennne 10-8
10.3 Descriptions of Individual Controlseccecerimrerieneninenieiie e 10-9
10.3.1 CHECK/NOCHECK ..ottt tssessese e ssss st s s sasenes 10-10
10.3.2 CODE/NOCODE
10.3.3 COMPACT ..ottt ettt sas s st se s s senenas
10.3.4 COND/NOCONDcooviiriieeirecerteetsreeerse s st sess s sssss st sessse s ssanenas
10.3.5 DEBUG/NODEBUGccoecntiiiiieiirietereeescreseenseessesssesssesassessssssssssssssssnsssns
10.3.6 EJECT ..ottt ettt teas et et a s ae s et evesaesseessennsanesnens

10.3.7 ERRORPRINT/NOERRORPRINT
10.3.8 EXTENSIONS/NOEXTENSIONS
10.3.9 IF/ELSEIF/ELSE/ENDIFooovoiooooiioooooeoeoeooeee oo
LRI TR 101 5101)< o
10.3.11 INTERRUPTccoooooieooooeoeoooooeoeeeeeeeee oo
10.3.12 LARGE ...ooooooeoeooeooeoeoeoeoeoeeeeeoeeoeeeeeeeeeeeeeeeeeeeeee oo s eeeseeeeseeeesesveeseessesseseseseeseeee
ERI KT8 153 03 N (0) 5 13 KR
LORR TR (0] 0174 (o) 0 .1 J O
TR EI0): 1) Lo) [010): 1) <X s OO
LRI TI0) 4 8 1.1 74 OO
10.3.17 PRINT/NOPRINTooooomooommoooeomeoooeooseeeeoeeseeeeeeoee oo seeeeseeeesereene
TETRIS I8 Y <55 o 2] i (RO
10.3.19 SMALL ..ooooooooeoooeee oo eeeeeeeeeeoeoeeoeeee e eee oo
LTS 63: 93 1) I
10.3.21 SYMBOLSPACEoooiiiioioiooeeeeeeeeeeeeeeeee oo
LRI04 3 O
10.3.23 TYPE/NOTYPE.iiiiiioioooceeeeoeeeeeeeee oo eeooeeeeee oo eeeereereoe
10.3.24 XREF/NOXREFcccooooiiiimiiommorereeeeeeesoeeseeoesoeeeeeseeoes e eeeenesseseeen

CHAPTER 11

COMPILER OUTPUT

11.1 Program LiStINEoccooiiiiiieieie ettt e et et et e 11-1
11.1.1 Listing Preface ...ooocooioiiiiiiiiiieeiieete ettt siae st srrasen e san e 11-1
11.1.2 S0UTCE LISHING .eeoriiiiiiiiiiiecceciineeie ettt s et ebe s 11-2
11.1.3 Error MESSAZES ...cccooiiiiiiiiiiie et e as et e e e 11-3
11.1.4 Symbol and Identifier Cross-Reference Listingccocoviiiiinicnniiienncn, 11-5
11.1.5 Listing of Approximate Assembly Codeccccoviiiiiiiniiiicee e 11-6
11.1.6 Compilation SUMMATY ..c.occeerieiriiieieeieerie et e et ene e seeae e esens 11-7
11.2 Object Module
11.2.1 Code Section
11.2.2 ConStant SECTIONcccoeririiieiieieriintirerreseetete s cre et teree et saresee sbessee e b eseeeeensens 11-9

Xiv

Pascal-86 User’s Guide Table of Contents

PAGE
11.2.3 Data SECIOMccccueiiiuiereiiieeeetenteteneierertie e tree e e srsse e e s se e s ssasebesessassaneeesene 11-10
11.2.4 StaCk SECHOM ...c.oovveiuieieeieiierctre ettt et et te st s e e r et eae et se et et sesenseneas 11-10
11.2.5 Additional INfOrmationccccoccviiiiniiieieieereeere e ettt st 11-10
CHAPTER 12
LINKING, LOCATING, AND EXECUTING PROGRAMS
12,1 INEFOQUCHION ...coouiiimiiiiiieieiccntc st ettt et st bt en e s eaa e 12-1
12.2 Linking Object Modules ..ot 12-1
12.2.1 Use of LIBrariesc.coceevevenieenereeninerennieseieessaenns 12-2
12.2.2 Run-Time Support Libraries 12-2
12.2.3 Position-Independent and Load-Time Locatable Modulescccccoceeeieeenee. 12-3
12.2.4 Sample Link OPEerationscocccoeerrverrninnnineeeenieeeseseisisssessesessesssesessesnns 12-4
12.3 Locating PrOSramsccocccoveioiiiceieientee s sieeeesessiosesesesassassesessasessesennas 12-5
12.3.1 Locating the 8087 Emulator 12-6
12.4 Preconnecting Files ..ottt sttt 12-6
CHAPTER 13
COMPILE-TIME ERRORS AND WARNINGS
13.1 General FOrMAatc.ccooooiiiiiiiiioieictceeet ettt st s s 13-1
13.2 Invocation Line and Primary Control Errorscccceeoeeieenenieveniee e, 13-2
13.3 Compile-Time Errors and Warningsccccocoeoeoueeievieeieeiceeeeeeee e 13-3
CHAPTER 14
RUN-TIME EXCEPTIONS
14.1 Run-Time System EXCEPLIONS ...c..ccocririemririeiinrirccrieieeeeeircetrieeseesreneccee e sassasens 14-1
14.1.1 Input/Output EXCEPLIONSocoruiiiviiiiiiininicotncicrteicte et cteee st st s st es 14-1
14.1.2 Operating Environment and Heap EXCEptionscoceveeevieireerrinneneirenierenenenns 14-3
14.1.3 Integer Exceptions 14-3
14.1.4 Set EXCEPLIONS ...c.coeiuiiriirieiiiieiiteinec ettt tete ettt st se et emssanees e s st ssasnaseansans 14-3
14.1.5 Compiler Range and Check EIrorsccccceievimmminnenniesienniesee e seceeseeenenns 14-4
14.2 Floating-Point Function Exceptions and 8087 EXceptionsc.cccceveeveverirenceencne. 14-4
14.2.1 Floating-Point TOPICScccoiiiiiiiiiiiciiiinic et senneneereene 14-7
APPENDIX A
DIFFERENCES BETWEEN PASCAL-86 AND OTHER VERSIONS
OF PASCAL
A.1 Intel Extensions to Standard Pascal A-1

A.1.1 Major Extensions A-1
A.1.2 Minor Extensions A-1
A.2 Differences Between UCSD Pascal (Pascal-80) and Standard Pascal A-2
A.3 Areas Where Versions of Pascal Differcccovoiriiiniiiniiineceeee e A4
APPENDIX B

PROCESSOR-DEPENDENT LANGUAGE FEATURES

B.1 PQCLOSE, Closing Files in Pascalccccooeeieiieeieceeeceecce e B-1
B.2 Random ACCESS I/O ..ottt B-2
B.2.1 SETRANDOM B-2
B.2.2 SEEKREAD B-2
B.2.3 SEEKWRITE B-3
B.2.4 POSITION B-3
B.2.5 ENDPOSITION B-3
B.2.6 EMPTY ..ottt ettt ettt st st st e s et et be et e s aeennsaeneas B-3
APPENDIX C

COMPILER CAPACITY

Xv

Table of Contents Pascal-86 User’s Guide

APPENDIX D PAGE
LANGUAGE SYNTAX SUMMARY

D.1 Basic Alphabet and TOKENScccccoveiveiienneninreniineiieniece ettt sen e et D-2
D.2 Modularization and BIoCK Structurecccoooeoiiiiiiieiiiiceeeeeeeeee e e D-4
D.3 Constants, Types, and Variables ..o D-5
D.4 Procedures and FUNCLIONScc.oooouiiivieiiieinireecie e eeeee e cveeesreeare cvesnnaeesnasnsenes D-6

APPENDIX E
SYNTAX DIAGRAMS

APPENDIX F
PASCAL-86 VOCABULARY

APPENDIX G
CHARACTER SETS AND COLLATING SEQUENCE

APPENDIX H
RUN-TIME DATA REPRESENTATIONS

H.1 SimMPIE TYPES oottt ettt et b e sttt aea et et e e e e sneneain
H.2 Structured Types
H.2.1 Record Types
H.2.2 Array Types

H.2.3 SEt TYPES oottt ettt s teae sttt ettt e et e sae s s sensseseanessansensansnesensesens
H.2.4 File TYPES oot ettt s st e s
APPENDIX I

PASCAL-86 EXTENDED SEGMENTATION MODELS

L1 INEFOQUCHION viuveieiiiieicieresiteene et e st et ebe b st ete st besas eaestssessesasasassessasanssnann I-1
I.1.1 Extended Segmentationccecenu.. I-1
1.2 SUDSYSIEMS ..ooooviiieeeeeieriee et e ee e I-2
1.2.1 Open and Closed Subsystems I-3
1.2.2 The EXPOrts LISt ..cooouioiiiiiiiciteeeee ettt ettt et benans I-4
1.2.3 Placement of CONtIolscccoeiiimiriniimenieniiteirieee ettt st er v ebese e I-5
APPENDIX J

LINKING TO MODULES WRITTEN IN OTHER LANGUAGES

Jo1 INETOQUCHION ..ottt bt s eanaas J-1
J.2 1APX 86 MemOTy CONCEPLS ..cooveririreirieniirineeiienerenteeseeees ceeecneeesneseessssessessassensesnanas J-2
J.3 Segment Name CONVENTIONS .c.coccooverieireerrieuieinierteeeienieriesenteetesieseeeseeseesaeseeseeseeseneanas J-3
J.4 Calling SEQUENCE cooiiiiiiiiit ettt ettt J-3
JiA.1 Stack USAZE ...ooiiiiiieieie ettt ettt J-4
J.4.2 Register Usage J-6
J.4.3 Returned Valuesccccoeveviiinienneccnsiencnennene J-8
J.4.4 NEAR and FAR Procedures J-8
J.4.5 Example: Pascal-86 Calling an Assembly Language Subprogramc.ccccceeeeenn. J-8
J.5 Compatible Data TYPES ...ccccoereeriireeiririieietieeiteieeere et iete st ceesisbee st eeeressaeresesanas J-11
J.6 Coding the Main Module in Other Languagesccceoiiiiiieiiiiicieeceeneieeeee e J-11
APPENDIX K

RUN-TIME INTERFACE

K.1 Run-Time Interrupt ProCesSINEccccoeriririieiiirieeneereorinteeneeee et e e see e eseeeenas

K.1.1 Interrupt Procedure Preface and Epilogue

K.2 Pascal Run-Time Storage Managementcccccceoiriieniiiiieieceecce e

K.2.1 MemOry MAanagEISc.cccoveiimiriiiineetenmieennetenrenetesteteentsuesseasesessessessesieosassassensensanan
K.2.2 REENITANCY ..ottt et ettt et st e seesaene s e tenes
K.2.3 Replacing the Memory Manager

K.2.4 Memory Usage SUMMATYcoceceoeereemencrircnneeneneens

K.2.5 Allocate a New Memory BIOCKcccooviiiiiiiniiccencecec et

xvi

Pascal-86 User’s Guide Table of Contents

K.2.6 Free a Previously Allocated Memory Blockocooiiiiiiiiiiccee e,
K.3 Logical Record INtErfacec..ccccoeicoiiimiiiiiniceiieceeei et eee et ciee st st eneeneee
K.3.1 Setting Up the File/Device DeSCIIPIOrc...cccooieiiiiiiiieiiicii et
K.3.2 Connecting File/Device DIIVETScccccoiiiiiiimniiinennireieee ettt ceeeane
K.3.3 Initialize the Logical Record Systemcccccoieviriirninnienenne e nens
K.3.4 Return Physical File Name for Preconnectionc.cccooevvviiiieneececrinnie e
K.3.5 Exit from the Logical Record Systemcc.coccoiieiiiiiiiiiiiinineieccec e
K.3.6 Run-Time Exception Handlingc.cccooiioiiimiiiircccccie et
K.3.7 Linking Conventionscccceccervienennmianienicnicniennens

K.3.8 Interfacing to the Default Logical Record System

APPENDIX L

COMPILER INVOCATION AND ADDITIONAL INFORMATION

FOR SERIES III USERS

L.1 Compiler OPErationcccoccocimieririeririiitenistreeeetesesee et see e sesteeseaeseesbesaessentsesssseseeasene L-1
L.1.1 Invoking the Compiler L-1
L.1.2 Files Used by the Compiler .. L-2
L.1.3 Compiler MESSAZES ...cccovvruiiieirmirieeriiieieieietteet et seneeee st sae st eee s L-3
L.2 Linking, Locating, and Executing on the Series III L4
L.2.1 Sample Link OPerationscccoccoerieniieenirereiiiene ettt sieteieee st ereesiesaeas L-4
L.2.2 Sample Locate Operationsc.coceovvecuevcrnns L-5
L.2.3 Executing Programscccocoeeceenenieiiieernee. L-5
L.3 Series III-Specific Compiler Controls L-6
L.4 Interrupt Handling on the Series I1I L-6
L.5 Related PubliCatiOnsccooiiiiiiiiiiiii et ettt e e L-7

APPENDIX M

COMPILER INVOCATION AND ADDITIONAL INFORMATION
FOR iRMX™ 86 USERS

M.1 ComPiler OPErationcccoriiiieiiiciiie e e ieee st e et ertreeee e e e e st estassesvaeseeeneesee s saaneese
M.1.1 Invoking the COmPIlErcccoiiiiiiimiiiniiiiiie ettt
M.1.2 Files Used by the Compiler
M.1.3 COMPIlEr MESSAZES ..cveveruimeiuiericeieerireetiteie ettt se et e st sene

M.2 Linking, Locating, and Executing on the iIRMX™ 86 Systemccccoccevevinercennne M-4
M.2.1 Sample Link OPerationsc.ccccevercerieeeneieriineeneiineeserenterrereneeassessssesressssseres
M.2.2 Sample Locate OPerationsc..c.cccceveririricreerieenseniiesreeseientsieseessssesieesreessensenns
M.2.3 ExXecuting Programsccooccooiieiiiioiiiiiei ettt ettt st e e st ssaeesreeeeeeenns

M.3 Interrupt Handling in an iRMX™ 86 Environment
M.4 Calling iRMX™ 86 Primitives from a Pascal Program ...
M.5 Related PUDICALIONS ...ovoveoiiiiiiiieiiieieieie ettt et st e

GLOSSARY
INDEX

FIGURES

FIGURE TITLE PAGE
0-1 Structure of this Manual ...ttt et
1-1 Pascal-86 Program Development Process
1-2 Sample Program 1: Temperature Conversion
2-1 Sample Program 2A: Binary Tree Traversal in Standard Pascal 2-2
2-2 Sample Program 2B: Binary Tree Traversal Using Separately Compiled

MOAUIES .ttt ettt e ettt e b e eaenn 2-6
4-1 Parts of a Standard Pascal Program and Blockccccovvmeiiniiiiiiiineciceeenens 4-2

Xvii

Table of Contents Pascal-86 User’s Guide

FIGURE TITLE PAGE

4-2 Parts of a Pascal-86 Main Program Module 43
4-3 Parts of a Pascal-86 Non-Main Module 4-3
5-1 Data Types in Pascalcccoooiiiiiiiicecrceeeeee et s 5-4
7-1 Pascal-86 Real Data TyPesccccooviiiiniiiiiiiiiiicice e e 7-10
9-1 Sample Program 1: Temperature CONVErsionc.eeeevveeviereerveissiseesvesseseas 9-2
9-2 Sample Input Tree for Sample Programs 2A and 2Bc.ccooeiiiiiiiiiiciencinene 9-3
9-3 Sample Program 2A: Binary Tree Traversalcccccoocvivineionncccinnnninenneene 9-4
9-4A Sample Program 2B1: Binary Tree Traversal, Separately Compiled 9-6
9-4B Sample Program 2B2: Binary Tree Traversal, Separately Compiled 9-8
9-5 Sample Program 3: Quadratic Roots
9-6 Sample Program 4: Text Editorcooooiiiiiiiiiiee e
9-7 Sample Program 5: Interrupt Processing
9-8 Sample Program 6: Matrix Multiplication
9-9 Sample Program 7: Maze Game
9-10 Sample Program 8: List Processing
9-11 Sample Program 9: Character Input/Outputc.cooiiiinninnincneeee e 9-21
11-1 Sample Listing Preface ... 11-2
11-2 Sample Partial Source Listing ctetrrce et ee 11-3
11-3 Sample Cross-Reference Listingccccceevnoiniininiiiniiiineeeeceeeee e 11-6
11-4 Sample Listing of Approximate Assembly Code e 11-8
11-5 Sample Compilation SUMMATYccccoiiiiiiiiiiieeet e 11-9
H-1 Record (A) Containing a Record (AREC)ccoiiiiiiiieeeecie e, H-3
H-2 Actual Bit Positions within Memory Bytes ... H-3
H-3 The Memory Representation of a Large Array Whose Component Size

IS @ POWET Of TWO oo ettt st senre e H-5

H-4 The Memory Representation of a Large Array Whose Component Size
Is Not a Power of Two

H-5 Bits Assigned fOr @ Set ...ttt e
I-1 INCLUDE File Containing Subsystem Definitions and Interface
SPECIFICAION .o.viiiieieeieet ettt ettt et en e e e ceeens I-2
J-1 8086 and 8087 Stack Layouts When Subprogram Is Activated J-5
J-2 8086 Stack Layout during Subprogram Executioncccceevneiinncncncnnicne J-6
J-3 An ASM86 Subprogram Called from Pascal-86ccccovivceniniiiiincineeen, J-9
J-4 PL /M-86 Main Module Calling Pascal-86 Subprogramc.cccoceeveccennnn. J-12
J-5 Pascal-86 Subprogram Called from PL /M-86 Main Moduleccccccveeenen. J-13
K-1 8086 Stack Layout When Interrupt Procedure Gains Controlcccoceeeeee K-2
K-2 8086 Stack Layout after Interrupt Procedure Preface and before Procedure
PrOIOZUE ..o ettt e e st e K-3
K-3 8086 Stack Layout during Execution of Interrupt Procedure Body
K-4 Execution Paths for Pascal-86 Programsccocceeeiviiniinieeinncnnne

K-5 Table of Addresses for File/Device Drivers

TABLES

TABLE TITLE PAGE

7-1 ArIthmetic OPEratorso.cooiiiiiiiiinieiciie ettt eneae

7-2 Results of Mixed-Mode Arithmetic ...

7-3 Boolean OPeratorsc.cccocooeeveeiiieeeeeneneecesreereeee e

7-4 Set Operators

7-5 Relational Operators

10-1 Summary of Pascal-86 Compiler Controlsc..ccocccoiiiriiiiniciienicniencnicce e
10-2 Summary of the Effects of Controls on Other Controls

13-1 Severity Levels of Compiler Errorscccocceeimecvvncnnnnnn.

13-2 Error Numbers Corresponding to Compilation Phases

Xviii

Pascal-86 User’s Guide Table of Contents

TABLE TITLE PAGE
F-1 KEYWOIAS ..ottt et r s e ee s e e raer e etesseer s s s enaeene F-1
F-2 Special Symbols F-2
F-3 Directivescccoceeeeeeeicccvencenennens F-3
F-4 Predefined Program Parameters F-3
F-5 Predefined TYPEScccoiiiiriiireceeii ettt et s ee et st ne e baeeans F-3
F-6 Predefined Constants F-3
F-7 Predefined Functions F-4
F-8 Predefined Procedures F-4
G-1 Character Sets and Collating SequUENCecccoeveviniiiricrineeree e, G-1
H-1 Run-Time Storage Allocation of Simple Data Typesccocivererrcecneiinennnn, H-2
J-1 Summary of Pascal-86 Segment and Group Namescc.cccocvvirnvienincennnnnn. J-3
J-2 8086 Register Contents When Calling an External Subprogram J-7
J3 Summary of 8086 Register USAZEccoeiemirieirinrneeeeccecee et J-7
J-4 Registers Used to Return Simple Valuescoccoeovnieieiiinieicceeeeeee, J-8
J-5 Data Types Compatible with Pascal-86 Data TYpPesccccovvvceremrccceeniiennnens J-11

xix

CHAPTER 1
OVERVIEW

This chapter introduces Pascal-86 and explains how it fits into the process of devel-
oping software for your iAPX 86 or iAPX 88 application system.

1.1 Product Definition

Pascal-86 is a high-level language designed for programming the iAPX 86, 88 family
of microprocessors. It is a superset of standard Pascal as defined in the ANSI/
IEEE770X3.97-1983 and includes additional features useful in microprocessor
applications.

The Pascal-86 compiler translates your Pascal-86 source programs into relocatable
object modules, which you can then link to other such modules, coded in Pascal or in
other iAPX 86, 88 languages. The compiler provides listing output, error messages,
and a number of compiler controls to aid in program development and debugging.

With the compiler comes a set of relocatable object libraries to be linked in with your
own code; these libraries provide complete run-time support, including input/output
and an optional interface to the Intel 8087 Numeric Data Processor to optimize
arithmetic operations. After linking your own modules together with these Intel-
supplied library modules, you can locate your final linked program to run on an Intel-
lec development system, or in RAM, PROM, or ROM in your own iAPX 86 or iAPX
88 microcomputer system.

To perform the steps following compilation, use the 8086-based iAPX 86, 88 Family
software development utilities — LINKS86, L.IB86, LOC86, CREF86, and OH86.
You debug your programs using the DEBUG-86 applications debugger, PSCOPE
(the interactive symbolic debugger), or the ICE-86A or ICE-88 In-Circuit Emulator.
For firmware systems, you then use the Universal PROM Programmer (UPP) with
its Universal PROM Mapper (UPM) software to transfer your programs to PROM.

1.2 The Pascal-86 Language
1.2.1 Using a High-Level Language

High-level languages (Pascal in particular) more closely model the human thought
process than do lower-level languages, such as assembly language. They therefore are
easier and faster to write, since one less translation step is required from concept to
code. High-level language programs are also more likely to be correct, since there is
less occasion to introduce error.

Programs in a high-level language are easier to read and understand, and thus easier
to modify. As a result, you can develop high-level language programs in a much
shorter period of time, and these programs are easier to maintain throughout the life
of the product. Thus high-level languages result in lower costs for both development
and maintenance of programs.

In addition, programs in a high-level language, particularly a standardized language
like Pascal, are easily transferred from one processor to another. Programs that can
be transferred between processors without modification are said to be portable.

1-1

Overview Pascal-86 User’s Guide

As you might expect, these advantages have a price: the resulting translated machine
programs normally require more memory space and may run more slowly. For this
reason, after the initial software design is complete, you may wish to re-code your
most time-critical and space-critical routines in assembly language.

If Pascal-86 is your first high-level language, you probably want to know how
programming in a high-level language differs from assembly-language programming.
When you use a high-level language:

* You do not need to know the instruction set of the processor you are using.

* You need not be concerned with the details of the target processor, such as regis-
ter allocation or assigning the proper number of bytes for each data item—the
compiler takes care of these things automatically.

* You use keywords and phrases that are closer to natural English.

* You can combine many operations (including arithmetic, Boolean, and set opera-
tions) into expressions; thus you can perform a whole sequence of operations with
one statement.

* You can use data types and data structures that are closer to your actual problem;
for instance, in Pascal you can program in terms of Boolean variables, charac-
ters, arrays, and files rather than bytes and words.

The introductory example at the end of this chapter (section 1.7) illustrates these
points. Compare this Pascal program with an assembly-language program you might
write to solve the same problem.

Coding programs in a high-level language involves thinking at a different level than
coding in assembly language. This level is closer to the level of thinking you use when
you are planning your overall system design.

1.2.2 Why Pascal?

Many high-level programming languages are available today; some of them have been
around far longer than Pascal. So once you have decided to use a high-level language,
your next questions may be: How does Pascal differ from other high-level languages?
What advantages does it have? When is it the right language to use?

Here are some of the characteristics of Pascal:

« It has a block structure similar to that of PL/M, plus control constructs that
aid—in fact, encourage and enforce—structured programming.

» It includes facilities for such data structures as multi-dimensional arrays, records,
sets, files, and pointer-based dynamic variables, and also allows you to define
new data types related to your problem, e.g., weekday, patientrecord.

¢ It is a strongly typed language—that is, the compiler does extensive data type
compatibility checking and range checking to help you detect logic errors in your
programs at compile time.

« It includes run-time support for sequential file I /O and floating-point arithmetic.

e Its data structuring facilities and control statements are designed in a logically
consistent way. Thus Pascal is a particularly good language for expressing
algorithms, and has been used for this purpose in many textbooks.

* Its control constructs make program correctness relatively easy to verify.

» It is a standard language used on many computers, so Pascal programs are
portable.

1-2

Pascal-86 User’s Guide Overview

For iAPX 86 and 88 systems, Intel offers Pascal, PL/M, and FORTRAN. Your
choice among these should depend on your implementation. Pascal-86, with its run-
time 1/0 support, data-structuring facilities, user-defined types, and special-purpose
built-in procedures and functions, is a higher-level language than PL/M-86, and is
therefore better suited to applications programming. Pascal-86 also provides more
extensive type checking than either PL/M-86 or FORTRAN-86, thus reducing
program debugging time. Because Pascal is a standard language, programs in Pascal
are portable — they can be used on a number of different processors. On the other
hand, PL/M-86 allows you to program at a level closer to your microprocessor
hardware, making it generally more suitable for systems programming, while
FORTRAN-86 has a rich set of arithmetic operations which make it best suited to
scientific and numerical applications.

The philosophy behind the Pascal and PL/M languages is fundamentally different.
Pascal’s strong typing and other language features impose a strict discipline on you,
the programmer, to enforce good structured programming practice and help you detect
errors in your programs. Certain programming practices that make errors hard to
find — such as defining one data type on top of another — are forbidden in Pascal.
PL/M, on the other hand, was designed for programmers (generally systems
programmers) who need such features and are willing to take the risk and extra
debugging time required by programs that use them.

What about the differences between Pascal and older, better-established languages
like BASIC and COBOL Pascal has many more features than BASIC; and thanks
to more consistent standardization, it is also more portable. It is a more general-
purpose language than COBOL, which is tailored for business data processing. In
addition, Pascal differs from these other languages in its strong typing and block
structure.

Pascal was designed in 1973 by Niklaus Wirth, who had two main objectives: to
produce a language suitable for teaching programming concepts, and to design that
language so that its implementations on existing computers could be reliable and
efficient. Wirth found the more traditional languages (including FORTRAN,
COBOL, and PL/I) unsuitable for teaching: their features and constructs often cannot
be explained logically, making them more difficult to learn.

Even more important, he was convinced that the language in which a programmer
learns to program profoundly influences his thinking, and therefore his programming
style and his reasoning in problem solving. He concluded that teaching programming
using a logically constructed language can lead to better programmers and better
programs.

Pascal’s principles of structuring and form of expressions were patterned after those
of Algol 60. However, other constructs were changed from Algol to accommodate
Pascal’s additional data structuring facilities. Record and file structures more useful
for solving commercial-type problems were added to Pascal.

1.2.3 Portability

As mentioned earlier, Pascal-86 conforms to standard Pascal as defined in the ISO
Draft Proposal. This means that you can take Pascal programs written for other
processors, compile them using Pascal-86, and run them on an iAPX 86 or iAPX 88
microcomputer system, provided you use only standard features. The same programs
can run on iAPX 86 systems and iAPX 88 systems without change.

1-3

Overview Pascal-86 User’s Guide

You can write complete programs in Pascal-86 without using any Intel extensions to
standard Pascal, thus keeping your programs completely portable. In this manual,
the descriptions of Intel extensions are shaded in gray to distinguish them from stan-
dard features. You can also use a compiler option (the NOEXTENSIONS control)
to direct the compiler to print out warning messages wherever such extensions appear
in your program.

1.2.4 intel Extensions to Standard Pascal

If you are concerned with the ease of programming for your microprocessor applica-
tions, you will probably want to use the language extensions and compiler controls
that tailor Pascal-86 to the iAPX 86, 88 environment. These include 32-bit arithme-
tic, language constructs for building separately compiled modules, and builtin proce-
dures for port input/output and interrupt control.

Separately compiled modules allow you to divide a program into smaller, more
manageable parts, and to locate different parts of your program in memory of differ-
ent types or in different hardware locations. Port input/output provides fast data
transfer by means of direct communication with microprocessor ports. The interrupt
control procedures allow you to write Pascal routines to handle interrupts in your
system.

1.3 The Compiler and Run-Time System
1.3.1 Compiler Features

The Pascal-86 compiler includes a number of features to make programming and
debugging easier. Compiler controls allow you to specify the form and content of
your source code, object code, and output listing.

Controls are provided to copy (INCLUDE) source code from other files in
addition to the main source file, to output type and debug information in the
object file for use by LINK86 and the ICE-86A and ICE-88 emulators, and to specify
interrupt procedures tailored to your hardware. The compiler also provides the
NOEXTENSIONS control to flag extensions to standard Pascal, an optional cross-
reference listing, and a control to aid in program checkout and debugging.

1.3.2 Run-Time Support Libraries

The run-time support libraries, provided in relocatable object code form to be linked
to your compiled object program, allow you to run your program in a number of
environments. You simply choose the run-time libraries that match the hardware/
software configuration you are using.

These libraries provide all I/O support needed to run your programs. You may also
choose to have floating-point arithmetic operations performed using either floating-
point software routines on your 8086 or 8088 processor, or the on-chip capabilities of
an 8087 Numeric Data Processor for higher performance; in either case, all required
arithmetic and interface software is included in the run-time libraries. In addition,
the modular structure of these libraries allows you to substitute your own file/device
drivers.

Pascal-86 User’s Guide Overview

1.4 Hardware and Software Environments
1.4.1 Program Development Environment

To run the compiler, you must have the following hardware and software:

e Intellec Series III development system and resident operating system (see
Appendix L).

* 86/300 Microcomputer System (see Appendix M).

¢ Custom iAPX 86 or iAPX 88 Microcomputer System that includes an iRMX
86-based resident operating system (see Appendix M).

e Four double-density diskette drives or a hard disk unit is recommended. (Note
that for hard disk users, initial installation of the compiler requires a single- or
double-density diskette drive, since the product is delivered in diskette form;
thereafter, hard disk alone is sufficient.)

A system with a diskette or hard disk unit and a printer is also recommended for
producing hard-copy output listings. This system may be separate from the one used
to compile programs.

To link and relocate programs after you have compiled them, and to prepare them
for loading (or PROM programming) and execution, you need the following 8086-
based software:

« LINKS6
« LIB86

« LOCS86

« CREF86
« OHS86

Instructions for using these utility programs are given in the iAPX 86, 88 Family
Utilities User’s Guide, Order Number 121616.

Depending on your development environment and your final run-time environment,
you may also wish to use the following hardware and software:

* The DEBUG-86 applications debugger
» The PSCOPE symbolic debugger
¢ The ICE-86A or ICE-88 In-Circuit Emulator

 The SDK-86 System Design Kit, optionally with the SDK-C86 Software and
Cable Interface

* The iSBC 957A Intellec-iSBC 86/12A Interface and Execution Package

* The Universal PROM Programmer (UPP) with the Universal PROM Mapper
(UPM) software

1.4.2 Run-Time Environment

Your compiled, linked, and located program code may run in either of the following
environments:

e A Series 111 development system with its ISIS-II based resident operating system

* An iSBC 86-based system with an iSBC 86-based single board computer or a
custom-designed iAPX86 or iIAPX88 microcomputer system.

Overview Pascal-86 User’s Guide

In the latter case (an environment without Intel operating system support), you will
need to provide your own operating system support for the run-time libraries. Appen-
dix K gives instructions for writing your own file/device drivers and the software
interface required by the run-time libraries.

In the iRMX 86-based software run-time environment, the Universal Development
System Interface layer must be configured into iRMX 86 in order to run
PASCAL-86 programs.

You may increase the speed of floating-point arithmetic operations in your programs
by including an 8087 Numeric Data Processor in your system. Detailed specifications
are provided in the iAPX 86,88 User’s Manual, Order Number 210201-001.

1.5 Compiler Installation

The Pascal-86 software package includes this manual (the Pascal-86 User’s Guide),
the Pascal-86 Pocket Reference, Order Number 121541, supplementary literature
including a customer letter and Problem Report forms, and one double- and two single-
density program diskettes. The diskettes contain the following files:

PASC86.86 E8087 PROG4.SRC
P86RNO.LIB E8087.L1IB PROGS.SRC
P86RNI1.LIB 8087.LIB PROG6.SRC
P86RN2.LIB 87NULL.LIB PROG7.SRC
P86RN3.LIB PROG1.SRC PROG8.SRC
RTNULL.LIB PROG2A.SRC PROG9.SRC
DCONg87.LIB PRG2B1.SRC DATA2
CELS87.LIB PRG2B2.SRC DATA3
EHS87.LIB PROG3.SRC DATAA4

The file named PASC86.86 contains the Pascal-86 compiler. The files PS6RNO.LIB,
P86RN1.LIB, P86RN2.LIB, PS6RN3.LIB, RTNULL.LIB, DCON87.LIB,
CEL87.L1B, EH87.LIB, E8087, E8087.LIB, 8087.LIB, and 87NULL.LIB are the
run-time support libraries and modules. (Detailed descriptions of the 8087 libraries
are located in the 8087 Support Library Reference Manual Order Number 121725.)
PROG1.SRC, PROG2A.SRC, PRG2B1.SRC, PRG2B2.SRC, PROG3.SRC,
PROG4.SRC, PROGS5.SRC, PROG6.SRC, PROG7.SRC, PROGS8.SRC, and
PROGY.SRC are the source code for the sample programs in Chapters 1, 2, and 9.
DATAZ2, DATA3, and DATAA4 are the data files for the sample programs.

NOTE
In the iRMX 86 environment the “.86” extension is dropped.
Once you have your compile-time environment configured as described in section

1.4.1, copy the compiler and run-time library files from the release diskette to the
single- or double-density diskette or hard disk you are using on your system.

The sample programs provided on the release diskette may be used for demonstration
and checkout in your development environment. Operating instructions for these
programs are given in Chapter 9.

1.6 The Program Development Process

The Pascal-86 compiler and run-time libraries are part of an integrated set of tools
that make up the total iAPX 86 or iAPX 88 development solution for your micro-
computer system. Figure 1-1 shows how you use these tools to develop programs. The
shaded boxes represent Intel products.

1-6

Pascal-86 User’s Guide Overview

OTHER
RELOCATABLE
OBJECT -_—
MODULES |- 2 —I
—l I
' |
|
RELOCATABLE I I ABSOLUTE
PASCAL-86
OBJECT OBJECT
SOURCE MODULE I I CODE
(IS SR |
LIBRARIES
LEGEND
INTEL DEVELOPMENT TOOLS
AND OTHER PRODUCTS
USER-CODED SOFTWARE
CUSTOM-
DESIGNED
USER
SYSTEM
Figure 1-1. Pascal-86 Program Development Process 121539-69

1-7

Overview Pascal-86 User’s Guide

The steps in the software development process are as follows:

1. Define the problem completely.

2. Outline the proposed solution in terms of hardware plus software. Once this step
is done, you may begin designing your hardware.

3. Design the software for your system. This important step may consist of several
sub-steps, including breaking down the task into modules, choosing the program-
ming language, and selecting the algorithms to be used.

. Code your programs and prepare them for translation using a text editor.
. Translate your Pascal program code using the Pascal-86 compiler.
. Using the text editor, correct any compile-time errors; then recompile.

. Using 8086-based LINK86 (and LOCS86 if needed), link the resulting relocata-
ble object module to the necessary run-time libraries supplied with Pascal-86,
and locate your object code. The use of LINK86 and LOCS86 depends on your
application; for detailed instructions, see the iAPX 86, 88 Family Utilities User’s
Guide.

8. You can then run your programs and debug them, with the aid of run-time error
messages and diagnostic output generated by the compiler’s program checkout
control. Your execution vehicle for debugging can be an operating system with
the DEBUG-86 or PSCOPE applications debugger and an ICE-86A or ICE-88
In-Circuit Emulator, or RAM on an SDK-86 System Design Kit or iSBC
86/12A Single Board Computer with resident monitor.

~N N b

9. Translate and debug your other system modules, including those coded in other
languages. Once you have performed the desired amount of testing on your
individual modules, you can link them together and locate them using 8086-based
LINKS86 and LOC86.

10. Test and debug your software in your chosen debugging environment (see
step 8).

11. Produce a final debugged object module and transfer it to your run-time environ-
ment. How you do this depends on the nature of that environment and the tools
you are using.

e Ifitis a Series III, use the Series IIl RUN command to load and run your
program.

e Ifitis RAM on an SDK-86 kit or an iSBC 86 Single Board Computer system,
use OHS86 to obtain a hexadecimal object code file. Then, if you have been
developing your programs on a Series III, use an appropriate tool for
downloading them into your execution board (the ICE-86A or ICE-88 In-
Circuit Emulator, the SDK-C86 Software and Cable Interface, or the iSBC
957 Interface and Execution Package).

+ If it is ROM on an SDK-86 kit, iSBC Single Board Computer system, or
your own custom-designed hardware, use the Universal PROM Programmer
(UPP) with its Universal PROM Mapper (UPM) software to transfer your
program to PROM.

Note that you can do your hardware development in parallel with software develop-
ment, and that you can take intermediate hardware/software integration steps if you
are using the ICE-86A or ICE-88 In-Circuit Emulator.

For instructions on the use of other Intel products discussed in this section, refer to
the manuals listed in your specific operating-system appendix.

Pascal-86 User’s Guide Overview

1.7 An Introductory Sample Program

Figure 1-2 is a Pascal-86 program that converts Fahrenheit temperatures to Celsius
as you enter them from the console. The source code for this program is provided on
the release diskette as the file named PROG1.SRC. This section explains, step by
step, how to compile, link, and run the program on your development system.

NOTE

This introductory sample program is intentionally an extremely simple one.
Larger sample programs appear in Chapters 2 and 9.

The interactive computer dialogue in this section consists of commands you enter,
which are immediately echoed on the console display, and text displayed by the
operating system, the Pascal-86 compiler, and other Intel-supplied programs. The
text you enter is shown in reverse type (white on a black background), and the text
displayed by the Intel programs is shown in normal black type. The notation <cr»
stands for the RETURN key on the console keyboard. Note that the operating system
prompt (indicating that it is ready to accept a command) and, for some systems, the
name of the loader (e.g., RUN on the Series III) are not included—see your specific
operating-system appendix for details. The two-asterisk prompt indicating the begin-
ning of a continuation line is given here.

To prepare this sample program for execution on your operating system, make a copy
of the file PROGI.SRC. (If this were your own program, you would first type it in
using a text editor.) You can invoke the compiler using the command:

frun pascBb :fS:progf.src
The compiler responds on the console with a sign-on message:

system-id Pascal-86, VX.y
Copyright 1981, 1982, 1983 Intel Corporation

where
system-id is the name of your operating system.
x.y is the version number of the compiler.

As the compiler processes the program, a trace of the various compilation phases is
displayed below the sign-on message. For this example, the final completed trace line
is:

PARSECO), ANALYZECO), NOXREF, OBJECT
This is followed by the console sign-off message:

Compilation of FAHRENHEITTOCELSIUS Completed, 0 Errors Detected.
End of Pascal-86 Compilation.

Next, link the resulting object program with the necessary run-time libraries. To do
this, enter the following command:

Overview Pascal-86 User’s Guide
system—id Pascal-86, Vx.y
Source File: PROG1.SRC
Object File: PROG1.08J
Controls Specified: <none>.
STMT LINE NESTING SOURCE TEXT: PROG1T.SRC
(* This program converts Fahrenheit temperatures to Celsius. It
prompts the user to enter a Fahrenheit temperature, either real or
integer, on the console. The program computes and displays the equivalent
Celsius temperature on the console until the user has no more input. x)
1 6 ¢ D program FahrenheitToCelsius{(Input,Output)’
2 8 0 0O var CelsiusTemp,FahrenheitTemp : real;
3 9 0 © QuitChar : char’
4 11 0 0 begin
4 13 0 1 repeat
4 1S 0 2 writeln; writeln;
[17 0 2 write(“Fahrenheit temperature is: “)/;
7 19 0 2 readln(FahrenheitTemp)’
8 21 0 2 CelsiusTemp := ((FahrenheitTemp = 32.0) > (5.0 / 9.0));
9 23 0 2 write(“Celsius temperature is: ; writeln(CelsiusTemp:5:1);
11 25 0 2 writeln;
12 27 C 2 write(“Another temperature input? :°);
13 29 0 2 read(QuitChar), writeln,
15 31 0 2 until not (QuitChar in CL°Y’,"y" 1)
16 33 0 2 end. (* FahrenheitToCelsius =)
Summary Information:
PROCEDURE OFFSET CODE SIZE DATA SIZE STACK SIZE
FAHRENHEITTOCELSIUS 0070H 01614 3530 0019H 250 0O0QEH 140
-CONST IN CODE- 007DH 1250
TJotal 01DEH 478D O0019H 250 0042H 66D

33 Lines Read.
0 Errors Detected.

Dictionary Summary:

48KB Memory Available.

6KB Memory Used (12%).

0KB Disk Space Used.

2KB out of 16KB Static Spac

e Used (12%).

Figure 1-2. Sample Program 1: Temperature Conversion

Pascal-86 User’s Guide Overview

LINKS86 displays the sign-on message:

system-id 8086 LINKER, Vxy

then links your program, returning control to the operating system when it finishes.
To run the program, first give the command:

The program displays the message:

Fahrenheit temperature is:

Type in a temperature in Fahrenheit degrees. If you mis-type, you may edit the line
using the RUBOUT key. Then strike the RETURN key.

The program calculates the Celsius temperature and displays the output:
Celsius temperature is: n

where

n is the Celsius equivalent of the temperature you typed in.
Finally, the program skips a line and displays:
Another temperature input?
Type Y or y if you want to do another calculation. This causes the program to skip a
space and display the starting message again, allowing you to type in another temper-

ature. You may do this as many times as you wish.

When you wish to stop, answer the final query with any character other than Y or y,
and the program will skip a line and return control to the operating system.

CHAPTER 2
PROGRAM STRUCTURE

Before we begin defining the specific rules for coding declarations, statements, and
other language constructs in Pascal-86, let us look at the overall structure of a Pascal-
86 program. This chapter provides a frame of reference for the six chapters that
follow it (Chapters 3 through 8), which fill in the details of the language.

The features of Pascal are extremely interdependent. For this reason, this manual
will sometimes need to refer to terms or concepts, such as statements, variables, and
types, before it has defined or discussed them. If Pascal is a new language for you
and you are reading this manual for the first time, you do not need to understand
every concept thoroughly the first time you encounter it. Concepts that are mentioned
briefly will be explained more fully in subsequent chapters.

Even if you are familiar with the block structure of standard Pascal, you should read
this chapter before you start programming. It introduces the concept of a separately
compiled module—an Intel extension to standard Pascal—and shows how the module
construct fits in with standard Pascal program structure.

2.1 Structure of a Standard Pascal Program

Pascal is a block-structured language. Programs in such a language are composed of
sections (called blocks) that perform logically related functions and may be nested
inside one another. PL/M, PL/I, and Algol are also block-structured languages;
FORTRAN, BASIC, COBOL, and most assembly languages are not. Block struc-
ture in a programming language has several advantages:

e It permits you to concentrate on one part of a program at a time, isolating that
part from the rest of the program.

e It results in programs whose logical structure is easy to read and understand.

» It allows the compiler to impose certain rules and checks over the scope of varia-
bles and the flow of control in a program, enabling you to discover and correct
many types of logical errors at compile time.

Figure 2-1 illustrates the structure of a Pascal program. (Section 9.2 gives a more
detailed explanation of the sample program in figure 2-1.)

A block in Pascal consists of the following three parts:

1. Definitions and declarations
2. Procedure and function declarations
3. Statements

The first part defines data items—constants, types, and variables—and labels used
within the block. Definitions introduce items that have meaning only at compile time,
and declarations introduce items that have meaning at run time as well. Procedure
declarations and function declarations define subprograms, which are blocks nested,
or contained, within the block in question. Statements specify the actions to be
performed by the block. Of the three parts, only the statement part is required in
every block.

Program Structure

2-2

Pascal-86 User’s Guide

(¥ Tnls program builds a binary tree of characters from
user input data and prints out the nodes of a tree in
infix, prefix, and postfix notation. An input line con-

sists

of the character, its position in the tree, and the

position of its two children; each item is separated from
the next by a blank.

Variables -
MaxNumNodes -~ maximum number of nodes in a tree
Bne -~ index cf the root
NodeCharagter - constitutes 2 node in the tree
NodeIndex - position of node in the tree
ExpressionTree - binary tree which is created
DatafFile - file which holds user data *)

const

type

var

BLOCK t (PROGRAM BLOCK)
program TreeTraversal(Input,Output); «———— PROGRAMHEADING

MaxNumNodes = 20;
One = 1;

CONSTANT DEFINITIONS

Subscr = 0..MaxNumNodes; «——————— TYPE DEFINITIONS
Node = record

Symbol : char;

Left : Subscr;

Right : Subscr

end;
Tree = array[Subscr] of node;
NodeCharacter : char; VARIABLE DECLARATIONS

NodeIndex : integer;
ExpressionTree : Tree;
DataFile : text;

BLOCK 2 (PROCEDURE DECLARATION)

(% —=mecccccccccc e cme—- P e L L P

procedure BuildTree’ (* build tree from user input »)
var FindRoot : boolean/ VARIABLE DECLARATION

BLOCK 6 (PROCEDURE DECLARATION) PROCEDURE HEADING
procedure AddNode, (* add a2 node to the tree *)

begin

end; (* AddNode p)

write(NodeCharacter : 3, NodeIndex: 3):

with ExpressionTreelNodeIndex] do begin
Symbol:=NodeCharacter’
read(DataFile,Left); writel(lLeft : 3);
read(DataFile,Right); write(Right : 3); %{QﬁEMENT
readln(DataFile)’;
writeln
end

ands

bagin
FindRoot := false;
writeln(INPUT IS:"); writeln’
AddNode?
repesat

read(DataFile,NodeCharacter,NodeIndex)’
if NodeIndax = 1 then FindRoot := true
else AddNode

STATEMENT
PART

until (FindRoot) or (eof(DataFile))’;
writeln

(* BuildTrae »)

end;

begin
with ExpressionTree(NodeIndex] do

BLOCK 3 (PROCEDURE DECLARATION)

-------------- e S P PP PP e R T T

procedure Infix{(NodeIndex : Subscr); (* write out the

tree in infix notation *) «— ———— PROCEDURE HEADING

if Left <> 0 then begin
write(°(* : 1)7
Infix(Left):
write{Symbhol : 2); g}%%EMENT
Infix(Right)’;
write (") @ 1)
end (* if *)

else write(Symbol : 2)

(* Infix =)

Figure 2-1. Sample Program 2A: Binary Tree Traversal in Standard Pascal

Pascal-86 User’s Guide

Program Structure

BLOCK 1 (PROGRAM BLOCK) (CONTINUED)

BLOCK 4 (PROCEDURE DECLARATION)
(* =—w—m—ee—- ER T e L T mm—————- &)

procedure Prefix(NodeIndex : Subscr); (* write out the
tree in prefix notation %) «—————— PROCEDURE HEADING

begin
with ExpressionTreelNodeIndex] do
if Left <> 0 then begin
write(Symbol : 2)7;
Prefix(Left); EXQ;EMENT
Prefix(Right)
end (*# if #)
else write(Symbol : 2)
end; (* Prefix =)

BLOCK 5§ (PROCEDURE DECLARATION)

I e e 2)

procedure Postfix(NodeIndex : Subscr); (* write out the
tree in postfix notation *) <« PROCEDURE HEADING
begin
with ExpressionTreel[NodeIndex] do
if Left <> 0 then begin
Postfix(Left),;
Postfix(Right); SARTEMENT
write(Symbol : 2)
end (*x if »)
else write(Symbol : 2)
end;, (* Postfix =)

(ﬁ - - - - —— - - - - ’)
(* The main program reads in user data and displays the
tree in Infix, Prefix, and Postfix notation. *)
begin (* TreeTraversal =*) \
reset(CataFile, " :F1:DATA27);
writeln; writeln’; writeln;
read(DataFile,NodeCharacter,Nodelndex)’
while not eof(DataFile) do begin
BuildTree:
writeln; writeln("INFIX:)’
Infix(0One)’; STATEMENT
writeln; writeln(*PREFIX:"); PART
Prefix(0ne);
writeln; writeln(*PDSTFIX:")’;
Postfix{Qne);
writeln; writeln
end;
writeln; writeln
end. (* TreeTraversal *) ¥,

Figure 2-1. Sample Program 2A: Binary Tree Traversal in Standard Pascal
(Cont’d.)

Program Structure

2-4

The program block is the outer-level block in a program. The procedure and function
declarations contained within the program block are also blocks. In standard Pascal,
procedure and function blocks cannot stand alone; however, they may contain all
three parts of a block, including other procedure and function declarations.

Figure 2-1 consists of a program block containing four second-level procedure decla-

- rations, marked BLOCK 2, BLOCK 3, BLOCK 4, and BLOCK 5. BLOCK 2 itself

contains another procedure declaration, marked BLOCK 6. Thus the structure is
hierarchical.

This block structure encourages top-down development and stepwise-refinement
techniques of program design. The nesting level of a procedure or function may
correspond to the level of that operation in a stepwise breakdown of the problem. For
example, for the tree traversal program of figure 2-1, the programmer first divided
the task into four main parts: build tree from user input, write out tree in infix notation,
write out tree in prefix notation, and write out tree in postfix notation. The program
may perform each of these tasks more than once. Next, within the “build tree from
user input” task, he identified a sub-task: add a node to the tree. Larger programs
may include many more levels of nesting.

The program block defines the main program, with which execution starts when you
run the program. During execution, the outer statement part of the program block
may make calls to subprogram blocks (procedures and functions) contained within
the program block. Thus, the statement part specifies the order in which the program
performs the sub-tasks.

Procedures and functions are similar structurally, but differ in how they are invoked
and in their purpose. A procedure is invoked via a procedure statement (similar to a
“call” in some other languages). A function is invoked by giving its name and a list
of arguments in an expression within a statement. The function returns a value to the
calling program; this value replaces the function name and argument list in the
expression. Thus procedures often perform actions that change many values, but the
primary purpose of a function is to return a single value.

For example, the following function returns the absolute value of the argument corre-
sponding to x:

function abs (x:reald): real;

const zero = 0.0;
begin
if x>=zero then abs := x
else abs := -x
end

A reentrant procedure or function is one that can be invoked again before the first
invocation is finished. This may occur, for example, if an interrupt occurs while the
procedure is executing. In Pascal, all procedures and functions are automatically
reentrant, as long as they do not change any global variables (defined in 4.1.2). Thus
you do not need to make any special provisions for a procedure which may be inter-
rupted during its execution, and subsequently invoked to process the interrupt.

Another important capability of Pascal is recursion. A recursive procedure or function
is one that calls itself—either directly or indirectly. For instance, if procedure A
contains a call to procedure A, it is (directly) recursive. If A calls B and B calls A,
the two procedures are both indirectly (mutually) recursive. If A calls B, B calls C,
C calls D, and D calls A, all four procedures are indirectly (mutually) recursive. A
recursive procedure or function is frequently a natural way to express an algorithm.
In figure 2-1, the procedures Infix, Prefix, and Postfix (BLOCK 3, BLOCK 4, and
BLOCK 5) are directly recursive.

Pascal-86 User’s Guide

Pascal-86 User’s Guide Program Structure

Certain useful procedures and functions are included as part of the Pascal-86 language.
These include arithmetic and conversion functions, ordinal and Boolean functions,
input/output procedures, procedures for allocating dynamic variables, and proce-
dures and functions to communicate directly with microprocessor hardware. Some of
these are from standard Pascal; others are Intel extensions. You need not declare
these predefined procedures and predefined functions in your program; simply invoke
them, using procedure statements or expressions, when needed. The program of figure
2-1 calls the predefined procedures read, readin, write, and writeln.

2-5

Program Structure

Pascal-86 User’s Guide

MODULE 1 (MAIN, OR PROGRAM, MODULE)

BLOCK 1 (PROGRAM BLOCK)

(* This program builds a2 binary tree of characters from
user input data and prints out the nodes of a tree in
infix, prefix, and postfix notation. An input line con-
sists of the character, its position in the tree, and the
position of its two children; each item is separated from
the next by a blank. =)

program 8inaryTreeMain(Input,Output);, «———— PROGRAMHEADING
CONSTANT DEFINITION
VARIABLE DECLARATION

const QOne = 1;

var DataFile : text’?

BLOCK2(PROCEDUREDECLARAﬂON)

(% ==——=—-cee-cccmmeemeemme———————————— cmmmmemecm——————t)
procedure BuildTree; - PROCEDURE HEADING
var FindRoot : boolean; VARIABLE DECLARATION

BLOCKawnOCEDUREDECLARAﬂON)
procedure AddNode;

begin

write(NodeCharacter : 3, Nodelndex: 3)’;

with ExpressionTreel(NedeIndex] do begin
Symbol:=NodeCharacter;
read(DataFile,Left); write(Left : 3);
read(DataFile,Right); write(Right : 3);
readln(DataFile)’
writeln
end

(* AddNode =)

1PROCEDURE HEADING

STATEMENT
PART

end;

begin
FindRoot := false’
writeln(INPUT IS:“);
AddNode’
repeat
read(DataFile,NodeCharacter,Nodelndex)/
if NodelIndex = 1 then FindRoot := true
else AddNode
until (FindRoot) or (eof(DataFile))’;
writeln
end;(* BuildTree *)

writeln;

STATEMENT
PART

(% ====m e ettt ————————)
(* The main program reads in user data and displays the
tre2 in Infix, Prefix, and Postfix notation. *)
begjin (* 3inaryTreeMain *) \
reset(DataFile, " :F1:DATA2°);

writeln; writeln’; writeln’
read(lataFile,NodeCharacter,Nodelndex);
while not eof(DataFile) do begin
BuildTree;
writeln; writeln(INFIX:")/
Infix(One)’
sriteln; writeln(“PREFIX:")/
Prefix(Zne);
writeln; writeln("POSTFIX:");
Postfix(Jne),;
writeln; writeln
end;
writeln; writeln
(* 3inaryTreeMain =)

STATEMENT
 PART

end.

Figure 2-2. Sample Program 2B: Binary Tree Traversal Using Separately

Compiled Modules

2-6

Pascal-86 User’s Guide Program Structure

MODULE 2 (NON-MAIN MODULE)

BLOCK 4 (PROCEDURE DECLARATION)

(t --------- S A T A S W D A e D D DL |
procedure Infix(NodeIndex : Subscr); (* write out the
tree in infix notation #*) e————— PROCEDURE HEADING
begin
with ExpressionTreelNodelIndex] do
if Left <> 0 then begin
write((" : 1)
Infix(Left),
write(Symbol : 2)7; STATEMENT
Infix(Right); PART
write(”)® 1)
end (* if =)
else write(Symbol : 2)
end; (* Infix *)

BLOCK 5 (PROCEDURE DECLARATION)
(I T —— . *)

procedure Prefix(NodeIndex : Subscr); (* write out the
tree in prefix notation *) «————— PROCEDURE HEADING

begin
with ExpressionTreelNodeIndex] do
if Left <> 0 then begin
write(Symbol : 2);
Prefix(Left)’ g}a‘EMENT
Prefix(Right)
end (*x if *)
else write(Symbol : 2)
end; (* Prefix *)

BLOCK 6 (PROCEDURE DECLARATION)

[ettt —mmeemmeeeee= #)

procedure Postfix(NodeIndex : Subscr); (* write out the
tree in postfix notation *) «——— PROCEDURE HEADING
begin
with ExpressionTreelNodeIndex] do
if Left <> 0 then begin
Postfix(Left)/; ———
Postfix(Right):
write(Symbol : 2) PART
end (*x if =)
else write(Symbol : 2)
and; (x Postfix *).

Figure 2-2. Sample Program 2B: Binary Tree Traversal Using Separately
Compiled Modules (Cont’d.)

CHAPTER 3
LANGUAGE ELEMENTS

Chapter 2 presented the overall structure of a Pascal-86 program. This chapter, and
the chapters following it through Chapter 8, define the details of the Pascal-86
language.

Rules governing the coding of programs are of two types: syntax rules and semantic
rules. The syntax of a programming language is the set of rules defining what
sequences of symbols make up acceptable programs in the language. The semantics
of a language is the set of rules for determining, given a syntactically acceptable
program, what that program means—that is, what actions it will cause the processor
to take. It is possible for a program to be syntactically correct but semantically
meaningless.

In this manual, the syntax of each part of a program is generally defined using the
syntax notation described in the preface (How To Use This Manual). In cases where
such symbolic definitions would be cumbersome, the syntax is presented in prose.
Most of these cases occur in this chapter.

Along with the syntax definition of each language construct, the accompanying
semantic rules are given in prose. The syntax and the semantic rules are generally
followed by one or more examples of the language construct being defined.

The syntax of the entire Pascal-86 language, in syntax notation, is given in
Appendix D. For those who prefer the syntax diagrams used in an appendix to the
Pascal User Manual and Report by Kathleen Jensen and Nicklaus Wirth, and in a
number of textbooks on Pascal, Appendix E provides the syntax of the language in
that form.

This chapter defines the symbols that make up the building blocks, or “words,” of a
program. These elements, such as digits, blanks, keywords, identifiers, and special
punctuation symbols, make up the larger “sentences” of the language as defined in
the chapters that follow.

3.1 Basic Alphabet

The basic building blocks of a Pascal-86 program are:

» The upper-case and lower-case letters
e The digits O through 9
e The following keywords (word symbols):

AND FOR TO
ARRAY FUNCTIQON TYPE
BEGIN GOTO UNTIL
CASE IF 5 VAR
CONST IN PROCEDURE WHILE
DIV LABEL PROGRAM WITH
DO

DOWNTO RECORD

ELSE REPEAT

END NOT SET

FILE 0OF THEN

3-1

Language Elements

3-2

¢ The following punctuation symbols:

+ plus sign] right bracket
— minus sign { left brace

* star } right brace

/ slash ;= assignment symbol
= equal sign . period, or dot
<> “not equal” symbol , comma

< “less than™ symbol : semicolon

> “greater than” symbol : colon

<<= “less than or equal to” symbol ’ apostrophe
>= “greater than or equal to” symbol 1t up-arrow

(left parenthesis . ellipsis

) right parenthesis _ underscore

[left bracket @ “‘at” sign

The keywords are reserved words; that is, you cannot use them as identifiers. A
complete list of key words appears in Appendix F. In the syntax notation and in the
syntax diagrams, keywords are written in all capital letters. However, you need not
capitalize them in your programs.

In keywords and identifiers, a lower-case letter is equivalent to its upper-case
counterpart, unless the letter is within a literal character string as defined in 3.3.5.
For example:

BEGIN begin Begin
are all the same Pascal-86 keyword. Likewise:
TIMEQUT timeout TimeOut

are all the same identifier.

The use of most of the keywords and punctuation symbols is defined in Chapters 2,
4, 5, 6, and 7. However, here are a few notes about two of the punctuation symbols.

First, a period, or dot (.), marks the end of every compilation (main program module
or non-main module).

Second, the semicolon (;) serves as a separator between phrases of the language in a
program. This differs from the way the semicolon is used in some other high-level
languages, including PL/M and PL/1. In these other languages the semicolon is a
statement terminator; that is, it marks the end of every statement. In Pascal, there is
no such terminator. To illustrate the distinction, notice that in a PL/1 program, every
statement in a BEGIN block ends with a semicolon:

BEGIN;
TEMP = A;
A = B;
B = TEMP;
END;

Pascal-86 User’s Guide

Pascal-86 User’s Guide Language Elements

whereas in a Pascal compound statement, the semicolon appears only between the
component statements:

BEGIN
TEM 1= Ay
A := B;
B = TEMP
END

and the punctuation after END depends upon the context.

Note that in the IF statement defined in 7.2.4, the ELSE clause (if included) is a
part of the statement, so you may not precede the ELSE clause with a semicolon.
The syntax notation and examples in Chapters 4, 5, 6, and 7 make clear when you
need to use the semicolon separator.

3.2 Logical Blanks

Declarations, statements, and other constructs in Pascal are in free format; in other
words, they are separated from one another by appropriate punctuation or blanks
rather than by their positions in the input line. Thus you may extend a declaration or
statement over several input lines and indent it for maximum readability and under-
standability by inserting carriage returns and blanks. Continuation line markers (such
as those used in FORTRAN programs) are not needed in Pascal.

Logical blanks are blank characters or blank substitutes that may separate symbols
in a Pascal-86 program. The entities that can substitute for a blank are the carriage
return character (CR), the line feed character (LF),

comment. The following rules govern the use of logical blanks:

1. Wherever a logical blank is permissible, a sequence of logical blanks is
permissible.

2. If a symbol ends in a letter or digit, and the symbol immediately following it
begins with a letter or digit, at least one logical blank is required to separate
them.

3. Embedded logical blanks are not permitted within a keyword, punctuation symbol,
identifier, integer, or real number. If such embedded logical blanks do appear,
the separated parts become two distinct symbols.

4. One or more logical blanks are permitted, but not required, between any pair of
symbols not fitting the cases covered in rules 2 and 3.

3.2.1 Comments

A comment in Pascal is a sequence of characters enclosed between a left and a right
comment bracketing symbol (and including those symbols). The compiler ignores
comments in translating your source program into object code (except that it treats
them as logical blanks), but it copies all comments verbatim into the print file along
with the rest of your source program. Thus they provide a means for you to insert
explanations into your program.

The left comment bracketing symbols are { and (*. The right comment bracketing
symbols are } and %). Either right bracketing symbol may match either left brack-
eting symbol.

Language Elements Pascal-86 User’s Guide

Because the carriage return and line feed are part of the ASCII character set,
comments are not limited to a single line. The following are all legal Pascal-86
comments:

{this is a comment}
(*x this is also a comment %)

(xthis is
a comment,
too}

3.3 Tokens

From section 3.2, it follows that a Pascal-86 source program compilation consists of
a sequence of symbols called tokens, or entities indivisible by logical blanks, which
may be separated from each other by logical blanks. A token in Pascal is a keyword
or punctuation symbol as defined in 3.1, an identifier, an integer, a real number, or
a string.

3.3.1 Identifiers

Identifiers in a Pascal program are names used to denote modules, procedures,
functions, constants, types, variables, parameters, and field designators. An identifier
is a sequence of letter nd/or digits, of which the first must be a letter.
An identifier may be up to 255 characters long. All characters are significant in
distinguishing between identifiers.

For example, the following are all legal identifiers:
DirectorySearch COLOR pi CARS54

You define identifiers in module and program headings, procedure and function
declarations, constant definitions, type definitions, and variable declarations. In
addition, certain predefined identifiers are part of the Pascal-86 language. These stand
for predefined procedures and functions, predefined constants, and predefined types
that you may use without defining them explicitly. Examples of predefined identifiers
are INTEGER, REAL, MAXINT, ABS, READLN, and TEXT. Appendix F gives
a complete list.

The association of an identifier with the object it represents must be unique within
the scope of the definition or declaration. (Section 4.1.2 discusses scope.) For instance,
if you define the identifier INCREMENT as the constant 1.0 in the outer level of a
given procedure, you cannot later declare INCREMENT a REAL variable in the
outer level of the same procedure.

The Pascal-86 keywords listed in section 3.1 are reserved words, i.e., you may not use
them as identifiers. However, the directive FORWARD and the predefined identi-
fiers are not reserved words, so you may use these names. If you use a predefined
identifier in a declaration or definition, the effect is to redefine that identifier for the
scope of your declaration or definition; thus the predefined meaning is not available
within that scope. However, you can declare or define FORWARD as an identifier
and also use it in its Pascal-defined meaning as a directive as described in 6.5—the
context determines which meaning is intended. The scope of a predefined identifier
is the entire compilation less any block where it is redefined.

34

Pascal-86 User’s Guide Language Elements

3.3.2 Integers

A literal integer is the textual representation of a decimal,
integer. It is therefore a sequence of decimal digits; &8

A signed integer denotes a value of an integer type as defined in 5.3.1, preceded by
an optional plus or minus sign. The integer part cannot contain embedded logical
blanks, but logical blanks are permitted between the sign and the integer part. An
unsigned integer denotes an integer value that is not preceded by a plus or minus
sign.

The following examples are all legal signed integers. Note that the four signed integers
in the top row all represent the same value.

3.3.3 Real Numbers

A literal real number is the textual representation of a decimal number that includes
a fractional part—that is, one or more digits to the right of the decimal point—or a
decimal scale factor, or both. A signed real number is a real number preceded by an
optional plus or a minus sign. Thus a real number has one of these two forms:

[sign]digits . digits| E [sign]digits]
[sign]digitsE [sign]digits

where
sign is a plus or a minus sign.
digits is a sequence of one or more decimal digits.

As the syntax shows, if a real number contains a decimal point, it must have at least
one digit on each side of the decimal point; for example, —1. and .5 are not legal real
numbers.

A real number denotes a constant value of a real type as defined in 5.3.1. It is inter-
preted as a floating-point number in scientific notation, where the E symbol means

The following are all legal signed real numbers:

0.1 87.35E+ 0.456E+308
bE=3 1E4932 +9.231E-1023
-1.0

3-5

Language Elements

3-6

~must he in the range 0 to9999 mcluswe

3.3.4 Labels

A label is a sequence of decimal digits that marks a statement so that a GOTO
statement may refer to it. It looks the same as a decimal integer, and is distinguished
from other labels by its integral value. (For instance, the labels 5 and 005 are the
same label and cannot be used in the sameblock) In standardPascal label values

A label is distinguished from an integer constant by its context. If a sequence of digits
appears in a label declaration, in a GOTO statement, or in the label position at the
beginning of a statement, it is interpreted as a label; otherwise, it is considered an
integer constant.

3.3.5 Character Strings

A literal string is a sequence of one or more characters enclosed by apostrophes.
Strings consisting of a single enclosed character denote constants of the predefined
type CHAR (5.2.1). Strings consisting of n enclosed characters (n>1) denote
constants of the type PACKED ARRAY [1..n] OF CHAR (5.2.2). |

Strings may contain any of the printable characters in the ASCII character set;
however, an apostrophe within a string must appear twice. The printable characters
are all the characters with code values from 20H to 7FH inclusive, as defined in
Appendix G.

The following are all legal strings. The first three are of type CHAR; the last two
are of type PACKED ARRAY [1..16] OF CHAR.

1. A’

2 v
3 NN

4. “OVERFLOW ERROR 5’
5

‘This is’
‘'a string’

Pascal-86 User’s Guide

CHAPTER 4
PROGRAM HEADINGS, SEPARATE COMPILATION
FACILITIES, AND LABEL DECLARATIONS

Using the basic building blocks defined in Chapter 3, which you can think of as
“words,” you write headings, definitions, declarations, statements, and the other larger
constructs, or “sentences,” of the Pascal-86 language. This chapter defines the syntax
and semantics of the “sentences” appearing at the beginning of a program, module,
or block, before the data definitions: program headings, separate compilation facili-
ties (module headings, interface specifications, and private headings), and label
declarations.

Before describing these constructs, this chapter provides necessary information on
program structure, filling in details not covered in Chapter 2.

4.1 Details of Program Structure
4.1.1 Parts of a Program

Figure 4-1 shows the parts of a standard Pascal program and of a block, in the order
in which they must appear.

The program heading gives the module a name. The program heading may also include
a program parameter list, which is a list of files used for input and output in the
program.

The label declaration defines statement labels used in the statement part. The constant
definitions, type definitions, and variable declarations define the data items used. The
procedure and function declarations are blocks that define sub-programs, and may
themselves include embedded blocks.

The statement part is a compound statement, which consists of one or more embed-
ded statements enclosed between the keywords BEGIN and END. These embedded
statements specify the actions to be performed when the block is invoked during
execution. The statement part at the outer level contains the statements that are
invoked by the operating system to start execution of the program.

The block shown in figure 4-1 is a basic Pascal block. Program blocks and procedure
and function blocks consist of the basic block preceded by an appropriate heading
and—for a program block—followed by a period.

For an example of program structure, refer to figure 2-1. Note that there are no label
declarations (none are needed, since no statements are labeled and there are no GOTO
statements). Also note the block nesting in the procedure and function declarations.
A block is always recognizable by its statement part; the other parts may be absent.

4-1

Headings and Label Declarations Pascal-86 User’s Guide

PROGRAM

PROGRAM HEADING

BLOCK

LABEL DECLARATION

CONSTANT DEFINITIONS

TYPE DEFINITIONS

VARIABLE DECLARATIONS

PROCEDURE AND FUNCTION
DECLARATIONS
(MAY INCLUDE EMBEDDED BLOCKS)

STATEMENT PART
(COMPOUND STATEMENT)

. (PERIOD)

Figure 4-1. Parts of a Standard Pascal Program and Block 121539-30

4-2

Pascal-86 User’s Guide Headings and Label Declarations

MAIN PROGRAM MODULE

PROGRAM HEADING

BLOCK

LABEL DECLARATION

CONSTANT DEFINITIONS

TYPE DEFINITIONS

VARIABLE DECLARATIONS

PROCEDURE AND FUNCTION
DECLARATIONS
(MAY INCLUDE EMBEDDED BLOCKS)

STATEMENT PART
(COMPOUND STATEMENT)

. (PERIOD)

Figure 4-2. Parts of a Pascal-86 Main Program Module 121539-31

Figure 4-3. Parts of a Pascal-86 Non-Main Module 121539-32

43

Headings and Label Declarations Pascal-86 User’s Guide

In syntax notation, a main program module has the following form:

orading ;
block

and the syntax of a block is:

[label-decl]

[CONST constant-defn ; [constant-defn ;]...]
[TYPE type-defn ; [type-defn ;]...]

[VAR variable-decl ; [variable-decl ;]...]
[proc-or-func ;1. ..

statement-part

In the syntax definitions, interface-spec stands for an interface specification; defn and
decl stand for definition and declaration, respectively, and proc-or-func denotes either
a procedure declaration or a function declaration. The notation for the latter indicates
that procedure declarations and function declarations can be intermixed.

Section 4.2 of this chapter defines module headings, interface specifications, program
headings, private headings, and label declarations. Chapter 5 discusses data defini-
tions and declarations (constant definitions, type definitions, and variable declara-
tions). Chapter 6 covers procedure and function declarations, and Chapter 7 defines
the statements that can appear in the statement part.

4.1.2 Program Objects and Scope
Objects in a Pascal program include modules, programs, functions, procedures,

parameters, constants, types, variables, fields, and labels. You choose appropriate
names as symbols for these objects; for instance, the programmer used the name

Pascal-86 User’s Guide Headings and Label Declarations

TreeTraversal for the program of figure 2-1, and likewise chose descriptive names for
the constants, types, and variables in the program. Identifiers in Pascal can be as
long as a line of text (255 characters), so you can choose names that make your
programs easy to understand.

A definition or declaration introduces an object and associates it with, or binds it to,
a symbol. This symbol must be an identifier (for most objects) or a decimal integer
constant (for a label). The scope of a definition or declaration is the part of the source
program over which that association holds. Generally, a scope is a block, statement,
parameter list, field designator, or other language construct, excluding any enclosed
constructs that set up another scope for the same symbol.

Local and Global Objects

Objects declared or defined at the outer level of a program block, and thus usable by
all subprograms, are global objects. Object declared or defined within a procedure or
function are /ocal objects, said to be local to that procedure or function. When several
programmers are working on a large program, each programmer is concerned only
with the global objects, such as global variables shared by all parts of the program,

and with the local obJects in the procedures he is wrmng Not

The tree traversal program, for example, defines two constants and three types, and
declares four variables and four procedures, at its outer level. These are all global
objects. The constants are MaxNumNodes and One; the types, Subscr, Node, and
Tree; the variables, NodeCharacter, NodeIndex, ExpressionTree, and DataFile; the
procedures, BuildTree, Infix, Prefix, and Postfix. The scope of these declarations and
definitions is the entire program, excluding the one-line program heading.

On the other hand, the local variable FindRoot is declared within the procedure
BuildTree, so its scope is only the procedure BuildTree. This scope includes the state-
ment part of BuildTree plus the contained procedure AddNode, but does not include
any of the other procedures or the outer-level statement part. If the program had also
declared a variable named FindRoot at its outer level, two variables with that name
would exist. The scope of the inner FindRoot variable would remain the same, and
the scope of the outer FindRoot would be the entire program except for the scope of
the inner FindRoot. If another procedure, such as Infix, had declared a variable named
FindRoot, the scope of that variable would be its containing procedure, so there would
be no conflict with the other variables of the same name.

Thus if several programmers are working on a large program, they need not care
whether they use some of the same names for local variables. All the programmers
need to agree upon are the names of global objects.

4-5

Headings and Label Declarations Pascal-86 User’s Guide

Only global data exist during the entire execution of a Pascal program; data local to
a subprogram are created automatically each time the subprogram is invoked, and
disappear when execution returns from the subprogram. This rule enforces program
clarity, since the programmer must declare all permanent data in one place in the
program—at the outer level. As a side effect, the release of local storage saves memory
space.

A program must open files explicitly using the predefined procedure RESET or
REWRITE. However, the run-time system closes files automatically at the end of
the program.

Defining Identifiers

The program objects represented by predefined identifiers (discussed in 3.3.1) are
assumed to be declared or defined at the outer level of every program or module. If
you define one of these identifiers for your own purposes, your own declaration or
definition, within its own scope only, overrides the predefinition. Thus you need not
be concerned with such name conflicts unless you wish to use the predefined items.
Also, you may easily replace most predefined procedures, functions, or other objects
with your own versions.

All labels and identifiers you use in a program, except predefined identifiers, must be
declared or defined for the parts of the program in which you use them. For instance,
if a procedure in your program uses the identifiers X and Y as variables in a calcu-
lation, you must declare them either within that procedure, within a containing
procedure, or at the outer level of the program. This rule helps eliminate invisible
side effects in programs, and allows the compiler to perform type and range checking
to detect errors.

Parameters

A parameter list is a list of identifiers in the heading of a program, procedure, or
function. These identifiers denote objects through which the program, procedure, or
function communicates with its environment. Parameters define explicitly the nature
of the interface between the program or subprogram and its environment. They also
allow the compiler to check for certain kinds of programming errors.

In the tree traversal program, the procedures BuildTree and AddNode have no
parameters. The procedures Infix, Prefix, and Postfix each have one parameter:
Nodelndex, of type Subscr.

In a program heading, the parameters denote objects that exist outside the program—
that s, files used for input and output. For example, the tree traversal program names
the standard files INPUT and OUTPUT as program parameters.

In a procedure or function heading, the parameters likewise refer to objects in the
environment outside the procedure or function. However, these parameters match up
with corresponding identifiers in an argument list in the statement or expression that
invokes the procedure or function. Because of this matching, the objects inside the
procedure or function do not need to have the same names as the corresponding objects
outside. This naming independence is useful when you need to perform the same
operation on several different variables in a program.

Pascal-86 User’s Guide Headings and Label Declarations

For instance, if you have written a matrix multiplication procedure with the heading:

procedure MatrixMult (Matrix!, Matrix2: MatrixType;
VAR OutMatrix: MatrixType)d;

and you need to multiply the three matrix pairs A X B, C X D, and E X F (all six
matrices, plus the result matrices X, Y, and Z, being of type MatrixType, defined as:

type MatrixType = array [1..10,1..10] of REAL;
you could perform the multiplications with the statements:

MatrixMultCA,B,X);
MatrixMult(C,D,Y);
MatrixMult(E,F,2);

4.2 Program Headings and Separate
Compilation Facilities

This section gives the syntax and semantics of the parts of a program that establish
its identity as a program and its division into separately compiled modules. These
parts include the module heading, the interface specification, the program heading,
and the private heading.

4-7

Headings and Label Declarations

Pascal-86 User’s Guide

48

Pascal-86 User’s Guide Headings and Label Declarations

4.2.3 Program Heading

The program heading gives a name to a main program module and introduces the
private section of that module. The syntax of a program-heading is:

PROGRAM identifier [(prog-parameter-list)]

4-9

Headings and Label Declarations Pascal-86 User’s Guide

where

identifier is the name given to the main program module. It must match
the name given in the module heading, if there is one.

prog-parameter-list is a list of program parameters, separated by commas, that
are names of external objects used by the program. These
names should be the names of file variables; objects of any
other type cause the compiler to generate a warning.

Pascal predefines the standard program parameters INPUT and OUTPUT, which
are text file variables as defined in 5.3.2 and 8.7. If no file argument is given in calls
to the predefined procedures and functions READ, READLN, GET, EOF, and
EOLN, they assume the file INPUT. Likewise, the procedures WRITE, WRITELN,
PUT, and PAGE assume the file OUTPUT.

You must not declare these files as variables in your program, but you must list them
as program parameters if you use them in your program. The appearance of these
files as program parameters causes them to be declared implicitly in the program
block, and the initializing statements RESET (INPUT) and REWRITE (OUTPUT)
are automatically generated if required.

4.3 Label Declaration

A label declaration specifies the integers you use to label statements in the statement
part of a block. The syntax of a label declaration is:

LABEL label [, label]. .. ;

where

label is an integer label as described in 3.3.4.
An example is:

LABEL 20, 40, 110

4-10

Pascal-86 User’s Guide Headings and Label Deciarations

Each label listed in the declaration must appear in the label position of exactly one
statement in the statement part. The scope of a label declaration is the block in which
the declaration occurs.

Within the scope of the declaration, integers are interpreted as references to a label
only when they appear in GOTO statements and in the label position of a statement.
In all other cases, they are interpreted as signed integers.

You need labels and label declarations only when you use GOTO statements in your
program. It is considered good programming practice either to avoid using GOTO
statements altogether, or to use them only when there is a very good reason for doing
so (such as program clarity).

4-11

CHAPTER 5
CONSTANTS, TYPES, AND VARIABLES

An algorithm or computer program consists of two parts: a description of the data,
and a description of the actions to be performed on it. To describe the data in a
Pascal program, you write declarations and definitions; to describe the actions, you
write statements. This chapter describes how to define your data—using constants,
types, and variables—and denote it in statements. Chapter 7 describes how to write
Pascal statements and the expressions within them.

5.1 Basic Concepts

Constants are data items whose values cannot change during execution of a program;
variables are data items whose values can change, and which the program processes.
Every constant and variable in a Pascal program has a type.

The type is a central concept in Pascal. A fype denotes a set of values which a data
item can assume; any definition, declaration, or program operation that requires the
data item to assume a value not in that set causes an error. Examples of data types
used in other programming languages are INTEGER and REAL,; these are also types
in Pascal. However, Pascal offers a richer variety of data types than most other
languages, and even allows you to define your own.

The type of a variable may be either directly described in the variable declaration,
or referenced by a type identifier. In the latter case, the identifier must first be
described by a type definition. The compatibility of variables is based primarily on
the types associated with them.

Variables in Pascal can be generated statically, automatically, or dynamically. Global
variables (those declared at the outer level of a module) are szatic; that is, they exist
for the entire program run. Variables that you declare explicitly within a procedure
or function are automatic; that is, they are generated at run time in accordance with
the structure of the program. For example, if you have declared a certain variable
local to a procedure in your program, one instance of that variable is created whenever
the procedure is called, and that instance of the variable is destroyed upon return
from that invocation. When you declare a static or automatic variable in your program
you give the variable a name, by which you can reference it in the statements of your
program, and a type. The block level at which you place that declaration in the
program determines the scope of the variable, and thus determines when it is created
and destroyed.

For example, in the program of figure 2-1, the global (static) variables NodeCharacter,
Nodelndex, ExpressionTree, and DataFile exist for the entire program run. In contrast,
an instance of the local (automatic) variable FindRoot is created each time the
BuildTree procedure is called, and this instance of the variable disappears when control
returns from the invocation of the procedure.

Dynamic variables, on the other hand, are generated by statements within your
program, without regard to program structure. You do not declare them explicitly.
You create dynamic variables using the predefined procedure NEW, and destroy them
using the procedure DISPOSE. Whenever you call NEW to create a dynamic varia-
ble, it assigns a value to a variable of a pointer type, which you can then use to
reference the dynamic variable. Although a dynamic variable is not declared, it still
has a type, which is determined by the type you declared for the pointer variable.

5-1

Constants, Types, and Variables Pascal-86 User’s Guide

Dynamic variables are useful in creating complex data structures, such as linked lists
and trees, that must change in form or size as the program runs.

The values of Pascal variables are initially undefined, so you must explicitly initialize
all variables in your program. This rule forces you to make clear exactly what initial
values you are assuming.

You may represent constants either literally, by their values (e.g., 3.14159, string,
TRUE), or by symbolic names (e.g., PI). In the latter case, you must define the name
and value of each constant in a constant definition. (The type of the constant is implied
by its value.)

The passing of data to procedures and functions by means of parameters is subject
to special rules. Parameters are objects that differ from the types, constants, and
variables described in this chapter. As is true for constants and variables, every
parameter has a type. Parameters are discussed in detail in Chapter 6.

The remainder of this chapter first discusses constant definitions and the various kinds
of data types available in Pascal-86, giving the syntax and semantic rules for defining
them and examples of their use with static variables. Following this, the discussion
turns to pointer types and dynamic variables. The final sections of the chapter define
the form of variable declarations and denotations.

The major headings in the remainder of this chapter (Constants, Types, and Varia-
bles) correspond to the order in which you define or declare these objects in your
programs. Standard Pascal requires that you define or declare each object before you
use it in another definition or declaration. (In a pointer type definition, however, you
may make a forward reference to the base type of the pointer.) Pascal-86 does not
make this requirement.

5.2 Constants

As mentioned earlier, constants are data items whose values cannot change during
execution of a program. You may represent constants either literally (as integers, real
numbers, or character strings as defined in Chapter 3) or as named constants.

To use a named constant, you must first define it in a constant definition, which
introduces an identifier as a synonym for a constant value (or for another named
constant). Then you may use the constant identifier freely in place of its literal value
in expressions and in any other places where a constant of its type is permitted.

The constant definitions in a Pascal block or non-main module appear in a list follow-
ing the keyword CONST, between the label declarations and the type definitions, as
indicated in 4.1.1. The syntax of a constant definition (constant-defn) is as follows:

identifier = constant

where
identifier is unique.
constant is an integer (3.3.2), a real number (3.3.3), a character string
(3.3.5), a constant identifier, or a numeric constant
identifier.

The constant identifier may have been defined either in a constant definition or in
the definition of an enumerated type (5.3.1). The type of the constant identifier is
the type of the given constant.

Pascal-86 User’s Guide Constants, Types, and Variables

Note that a real constant (3.3.3) is always represented in TEMPREAL precision, as
defined in 5.3.1. (See Appendix H for the internal format of TEMPREAL numbers.)

In Pascal-86, you may make indexed references to individual characters in a named
string constant as if it were an array variable (5.4.2).

The following are all legal constant definitions (to be preceded by the keyword
CONST and separated by a semicolon if there are several, as indicated in 4.1.1):

ScalefFactor = 12
Gamma = 0.577216
EulersConstant = Gamma
filler = ‘®®®3iy

Named constants allow you to write programs that are more meaningfu! and easier
to modify. For instance, if you use a constant scaling factor of 12 in a number of
places in your program, you can first define the identifier ScaleFactor as the value
12 as shown in the first example above; then write ScaleFactor, rather than 12, every-
where in the program that the scale factor is needed. Someone reading the program
can tell at once, from the name, what the constant means. If you later wish to change
the value of the scale factor, you need make only one change in the program—just
change the constant definition.

5.3 Types

Pascal is a strongly typed language. This means that every data item has a type, and
that you must follow strict rules in the use of types in definitions, declarations, and
expressions. The compatibility of variables depends primarily on the type associated
with them; violation of a type compatibility rule causes an error. Strong typing enables
the compiler to do extensive type and range checking, so that you can catch many
program errors earlier in the development process—at compile time rather than at
run time. Types in Pascal also allow you to phrase your program in meaningful
terms—terms related to the problem you are solving.

Figure 5-1 shows the relationship between the various kinds of types in Pascal-86.
Simple types, called scalar types in standard Pascal, are types whose variables have
a single value. Structured types are types whose variables are made up of a number
of single values; these structured types are built up from simple types. Pointer types
are types whose variables you use to access dynamic variables in your program.

The type definitions in a Pascal block or non-main module appear in a list, separated
by semi-colons, following the keyword TYPE, as defined in 4.1.1.

A type definition associates a name (identifier) with a set of values. The syntax of a
type-defn is:

identifier = type-spec

where
identifier is unique—that is, it is not defined for any other purpose in
that block.
type-spec a type specification which identifies a set of values, has a form

that depends on the type being defined. The scope of a type
definition is the block in which the definition falls, excluding
the parameter list associated with the block.

5-3

Constants, Types, and Variables Pascal-86 User’s Guide

DATATYPES

SIMPLE

(SCALAR) STRUCTURED POINTER
////////jisit:\\\\\\\\\ REAL ARRAY RECORD SET FILE

PREDEFINED ENUMERATED SUBRANGE
Figure 5-1. Data Types in Pascal 121539-33
TYPE counter = INTEGER;

color = (red, yellow, blue, green, orange, violet);
colour = color;y
shade = color;
primarycolor = red .. blue;

Score = 1..100;

alfa = PACKED ARRAY [1..80] OF CHAR;

complex = RECORD re,im: REAL END;

person = RECORD name, firstname: alfaj;
age: integer;
married: Boolean;
father, child, sibling: tperson;
END;

alphabet = SET OF CHAR;

characters = FILE OF CHAR;

manuscript = TEXT;

Link = tcomplex;

In the examples just given, the type counter is the same as the predefined simple type
INTEGER. The types color, colour, and shade are enumerated types. Type alfa is an
array type; complex and person are record types; alphabet is a set type; and charac-
ters and manuscript are file types. (TEXT is a predefined file type.) Type Link is a
pointer type

As shown in these examples, you may define a type T2 in terms of another type T1.
In such cases, in standard Pascal you must always define T1 before using it to define
T2. (The Pascal-86 compiler, however, does not check for this violation.) You may
not use a recursive type definition—that is, define a type in terms of itself—except
in a pointer type specification nested within a structured type specification, as shown
in the type definition for person. When T is used as a type-spec you may define T
anywhere within the type definition part of that block or the type definition part of
an enclosing block.

5-4

Pascal-86 User’s Guide Constants, Types, and Variables

5.3.1 Simple Types

A constant, variable, or parameter of a simple type consists of a single value. The
type specifies the set of values to which that value must belong. For instance, the
predefined type INTEGER includes all integers that lie within the representable
integer range (in Pascal-86, —32767 through +32767). Thus 5, —20000, and 999
are acceptable values for INTEGER variables, but —40000, 3.6, and blue are not.

The set of values denoted by a simple type always has an order, so that one may
compare two values of the same type and determine whether the first is greater than,
equal to, or less than the second.

A simple type is either an ordinal type or a real type.

Ordinal Types

An ordinal type is a simple type whose values can be assigned sequence numbers—

that is, mapped onto the set of whole numbers. All types denoting a finite set of

values, such as (red, yellow, blue) or (FALSE, TRUE), are ordinal, since you can

count the values. The predefined Pascal-86 types INTEGER, WORD, and
are also ordinal.

The predcfined functions ORD,

CHR, PRED, and SUCC operatc on
the mapping between ordinal types and the whole numbers. ORD, LORD, and WRD
take an expressmn of ordinal type and return a value of type INTEGER LON(
[IRD, respectively. CHR takes an integer expression and returns the corrc-
spondmg value of type CHAR (defined in the next section). PRED and SUCC take
an expression of ordinal type and return the value of the type that precedes or succeeds
it, respectively, in the ordering. Complete descriptions of these functions are given
in 8.1.

Predefined Ordinal Types. Three ordinal types are predefined in standard Pascal.
These types are denoted, respcctlvely, by the type 1dent1ﬁers lNTEGER BOOLEAN

The type definition for a predefined ordinal type is specified at the outermost level of
the program. You operate on values of a predefined ordinal type by using operators
such as addition, comparison, and the Boolean AND, and by invoking predefined
procedures and functions.

INTEGER is an ordinal type whose values are a subset of the whole numbers. In
Pascal-86, these values are two bytes long and lie in the range —32767 through
+32767. INTEGER values are denoted by signed integers (3.3.2) whose values fall
within the defined subset. The predefined constant MAXINT specifies the upper
bound of the INTEGER range. (In Pascal-86, MAXINT has a value of 32767.)

35

Constants, Types, and Variables Pascal-86 User’s Guide

BOOLEAN is an ordinal type whose values are the truth values denoted by the
predefined identifiers TRUE and FALSE, where FALSE precedes TRUE. Boolean
operators are defined on values of type BOOLEAN, and the results of relational
operators are always of type BOOLEAN.

CHAR is an ordinal type whose values are a defined set of characters. In Pascal-86,
this set is the ASCII character set. They are denoted by the characters themselves
enclosed within apostrophe:

e of type ways con of a single character; apostrophe-
enclosed character strings of more than one character are of type PACKED ARRAY
[1..n] OF CHAR, as discussed in 5.3.2.

The ordering properties of the character values are defined by the ordering properties
(ordinal values) of the characters in the character set. In other words, the relationship
between character values cl and c2 is the same as the relationship between ORD(c1)
and ORD(c2), as defined in 8.1.1. In all Pascal implementations, the following
relations hold:

e The subset of character values representing the digits O to 9 is ordered numeri-
cally and is contiguous.

e The subset of character values representing the upper-case letters A to Z, if
available, is ordered alphabetically, but is not necessarily contiguous.

e The subset of character values representing the lower-case letters a to z, if avail-
able, is ordered alphabetically, but is not necessarily contiguous.

Appendix G gives the ordering of the character set defined for Pascal-86 (the ASCII
set).

Enumerated Types. An enumerated type is an ordinal type you define yourself by
specifying a list of items; for instance, a list of colors. These items, represented by
identifiers, are the set of values that variables of the enumerated type can assume.
For instance, if you define a type called primarycolor consisting of red, yellow, and
blue, and then define a variable of that type called wallcolor, the only permissible
values for wallcolor would be red, yellow, and blue.

The ordering of the values of an enumerated type is determined by the order in which
the identifiers are named in the type-spec, which has the syntax:

(identifier [, identifier]. ..)

All the identifiers in the list are unique—that is, none appears in the list more than
once, and none is defined for any other purpose in that block. Naming these identi-
fiers in the enumerated type-spec automatically defines them as constants of that

type.

Pascal-86 User’s Guide Constants, Types, and Variables

Examples of enumerated type-specs:

(red, yellow, blue, green, orange, violet)
(club, diamond, heart, spade)

(Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday)

Enumerated types allow you to call the items you are dealing with by meaningful
names, instead of having to use objects of a more general type (such as integers or
Boolean variables) to represent them. Enumerated types can be extremely helpful to
you in writing readable, understandable programs.

Also note that the built-in ordering in enumerated types allows you to compare values
and variables of these types. For instance, if you define a type SUIT using the second
type specification given above, a variable of type SUIT whose value is spade will be
greater than a variable whose value is club.

The Pascal-86 predefined type AT87EXCEPTIONS, discussed in 8.10, is an
enumerated type.

Subrange Types. A subrange type is a type you define as a subrange of an ordinal
type, called the host type. A subrange type denotes a consecutive subset of the values
of a previously defined type, such as the integers 1 through 100, the integers —10
through + 10, or the days Monday through Friday. To specify a subrange type, you
must identify the smallest and the largest value in the subrange. A subrange type-
spec has the syntax:

ordinal-constant . . ordinal-constant

where the two ordinal-constants are constants of the host type. The first constant
specifies the lower bound of the subrange, and the second, the upper bound. The
subrange is a closed interval—that is, the bounds are included. The first constant
must not be greater than the second constant.

A variable of a subrange type possesses all the properties of a variable of the host
type, with the restriction that its value must lie within the specified range.

Examples of valid subrange type-specs:

1..100
-10..+10
Monda .Frid

The third example assumes that an enumerated type including the constants Monday
and Friday has already been defined—for instance, the third example in the preced-
ing section.

Examples of invalid subrange type-specs:

5-7

Constants, Types, and Variables Pascal-86 User’s Guide

In the first example, the subrange bounds are of incompatible types. The second
example has the lower bound greater than the higher bound.

Subrange types allow you to specify bounds on the values in your program when the
problem so dictates. The compiler can then perform range checking to help detect
errors. If the bounds are exceeded during a program run, an error will be reported if
you compiled your program using the CHECK control (10.4.1). Note that you cannot
specify bounds for real numbers, since real types are not ordinal.

Real Types

A real type is a simple type that represents a real (floating-point) number. There are
many real numbers (limited only by the discreteness of internal computer represen-
tations) whose values fall between two given real numbers. Hence, it is impossible to
assign meaningful integral sequence numbers to the real numbers. Certain operations
that can be performed on variables of ordinal types are invalid when applled to varia-
bles of a real type. These include the ordinal functions ORD »
PRED, and SUCC, which are described in 8.1.

Pascal-86 predefines three real types: REAL,
type-spec for these types are the identifiers REAL, LONG TEMPI ,
respectively. You operate on values of a real type by usmgoperators such as addition
and comparison, and by invoking predefined procedures and functions.

REAL is a real type whose values are a subset of the real numbers. In Pascal-86,
REAL values are single-precision floating-point numbers, which are always four bytes
long and have 24 bits of precision. (Appendix H gives the range of REAL values.)
Values of type REAL are denoted by real numbers (3.3.3) whose values fall within
the defined subset.

5.3.2 Structured Types

Variables of a structured type are collections of values. A structured type is charac-
terized by the types of its components and by its structuring method. Subject to certain
rules and restrictions, component types of a structured type may themselves be struc-
tured, resulting in a structured type with several levels of structuring. For instance,
you might declare an array of records, each of which contains another array.

There are four structuring methods, or type constructors, in Pascal: ARRAY,
RECORD, SET, and FILE. A structured type-spec has one of the following forms:

[PACKED] array-type
[PACKED] record-type
[PACKED] set-type

5-8

Pascal-86 User’s Guide Constants, Types, and Variables

[PACKED] file-type
identifier

where

array-type, are as defined in the following sections.
record-type,

set-type,

file-type,

identifier is the name of a previously defined structured type.

The PACKED Prefix

By prefixing a structured type specification with the keyword PACKED, you direct
the compiler to economize storage for variables of the specified type. Such packing
will be done even at the price of some loss in efficiency of access, and even if this
may increase the size of the compiled code needed to access components of the struc-
ture. Thus, your decision whether to use packed or unpacked structures will depend
on which is more important to you: saving data space, or saving code space and
increasing speed of access to structure elements. The internal representation of packed
structures may differ from compiler to compiler.

If a type has several levels of structuring, an occurrence of the PACKED prefix affects
only the level of the structured type whose definition it precedes. If a component is
itself structured, the component’s representation is packed only if the PACKED prefix
occurs in the definition of the component type as well.

The predefined procedures PACK and UNPACK convert the format of unpacked
array variables to packed, and vice versa. These procedures are described in 8.6.

Array Types

An array type is a structured type consisting of a fixed number of items, or compo-
nents, that are all of the same type (called the component type). For instance, you
might define an array of 100 integers. A component of an array is designated by an
array selector, or index, which is a value belonging to the index type. The index type,
which must be an ordinal type, is usually a programmer-defined scalar type or a
subrange of the type INTEGER. Given a value of the index type, an array selector
yields a value of the component type. The time needed for a selection does not depend
on the value of the index; thus an array is a random-access structure.

The array-type specification defines the component type and the index type. Its syntax
is:

ARRAY [index-type [, index-type]... 1 OF component-type
where
index-type is the type specification of an ordinal type.

component-type is any type specification.
Examples of one-dimensional array-type specifications:
ARRAY [1..100] OFf REAL

ARRAY [Boolean] OF color
ARRAY [Monday..Friday] OF AppointmentSchedule

5-9

Constants, Types, and Variables Pascal-86 User’s Guide

If the component type of an array type is also an array type, resulting in an array of
two or more dimensions, you may use an abbreviated form of definition. In this form,
the index type of the component and the index type of the array are enclosed within
the same set of square brackets. For example:

10]

ARRAY [Boolean] OF ARRAY [1..
O0F ARRAY [size] OF SEON

is equivalent to:

ARRAY [Boolean, 1..10, size] OF

and:

PACKED ARRAY [1..10] OF PACKED ARRAY [1..8] OF Boolean
is equivalent to:

PACKED ARRAY [1..10, 1..8] OF Boolean

The term string type is a generic term for any type defined to be:

PACKED ARRAY [1..n] OF CHAR

where
n is an integer constant between 1 and MAXLONGINT.

In program statements, you refer to a component of an array variable by giving the
variable’s denotation (the name of the array variable, if it is not itself a component)
followed by an index expression enclosed in brackets. This index expression must be
assignment-compatible with the index type of the array type, as defined in 5.3.4.
Section 5.4.2 gives syntactic details and examples.

Record Types

A record type is a structured type consisting of a fixed number of components, possi-
bly of different types. For instance, a record might consist of a person’s name (a
character string), height (an integer), and weight (an integer). Records in Pascal are
similar to structures in ASM86 and in PL/M.

Components of a record, called fields, are selected by means of unique identifiers,
called field identifiers, which are defined in the record type specification. As with
arrays, the time needed to access a selected component does not depend on the selec-
tor, so a record is a random-access structure.

A record type may be specified as consisting of several variants. The presence of
variants implies that different variables, although of the same record type, may assume
structures that differ in a certain manner. The difference may consist of a different
number and different types of components. For example, one variant of a record type
might consist of a person’s name, height, weight, and year of birth; another variant
might consist of the person’s name, height, weight, sex, and place of birth.

The variant which is assumed by the current value of a record variable may be
indicated by a component field which is common to all variants and is called the tag

5-10

Pascal-86 User’s Guide Constants, Types, and Variables

field. Usually, the part common to all variants will consist of several components,
including the tag field.

The syntax of a record-type specification is:
RECORD

[field-list[;]]

END

where field-list is either:

field-id [, field-id]. .. : type-spec]|;

field-id [, field-id]. .. : type-spec]. ..

or:

[field-id [, field-id]. .. : type-spec]|;

field-id [, field-id]. .. : type-spec]. .. ;]

CASE [field-id :]tagtype-id OF

case-const[, case-const]. .. : C [field-list[;]]) [;
case-const[, case-const]. .. : C [field-list[;]])]...

In this syntax, each field-id (field identifier) is a unique identifier, distinct from all
other field-id’s at the same level in the record specification. The type-spec for each
record component can be any type-spec defined in the program, including another
record type specification. The portion of the syntax between the keywords CASE and
OF is called a tag: the tagtype-id is the identifier of any ordinal type
; ach case-const is a unique ordinal constant of a type that is compatible
with the tag type. The set of case constant values need not equal the set of values in
the tag type.

The occurrence of an identifier as a field-id is a definition of the identifier as a field
identifier, which is the name of a component of a record. The scope of this definition
is as follows:

e All field designators that contain a record variable whose type is the record type
in which the field-id occurs, plus

e The statement of each WITH statement that specifies a record variable whose
type is the record type in which the field-id occurs

To refer to a component of a record variable in program statements, you use a field
designator. A field designator consists of the record variable’s denotation (the name
of the record variable, if it is not itself a component), followed by the field identifier
of the component. Section 5.4.2 gives syntactic details and examples.

The WITH statement, described in 7.2.9, allows you to use a shorter notation in
referring to components of a record variable: in the statement embedded inside the
WITH statement, you need only name the individual field identifiers rather than the
full field designators.

Examples of record-type specifications for simple (non-variant) record types:

RECORD day: 1..31z
month: 1o l:
year: integer;

END

Constants, Types, and Variables

RECORD node: PACKED ARRAY [1..20] OF CHAR;
leftbranch, rightbranch: tTreeElement;
END

In the first example, the field identifiers are day, month, and year; in the second, they
are node, leftbranch, and rightbranch. If you declare a record variable of the first
type and call it TODAYSDATE, for example, you refer to the fields of that variable
using the field designators TODAYSDATE. DAY, TODAYSDATE.MONTH, and
TODAYSDATE.YEAR.

The second form of the field-list in the syntax denotes a variant record type. The
variant part begins with the keyword CASE. Note that this form of the syntax is
defined recursively, since it contains a field-list. The variant part provides for the
specification of a tag type with an optional tag field (field-id). If present, the tag field
contains a value indicating which variant is assumed by the record variable at a given
time. An error occurs if you make a reference to a field of a variant other than the
current variant; however, the Pascal-86 compiler does not detect this error.

Each variant is introduced by one or more constants. All the case constants are distinct
and are of an ordinal t i

For a record with a tag field, a change of variant occurs only when your program
assigns to the tag field a value associated with a different variant. At that moment,
fields associated with the previous variant cease to exist, and those associated with
the new variant come into existence with undefined values.

For a variant record without a tag field, a change of variant occurs when your program
performs an assignment to a field that is associated with a new variant. Again, fields
associated with the previous variant cease to exist, and those associated with the new
variant come into existence with undefined values.

Examples of record-type specifications with variants:
RECORD x, y: real;

area: real;
CASE s: shape OF

triangle: (side: real;
inclination, angletl, angle2:
angle);
rectangle: (sidel1, side2: real;
skew, angle3: angle);
circle: (diameter: real);

END

RECORD title: alfa;
CASE p: pubtype OF
book: (author, publisher: alfa;
copyrightdate: integer);
album: (label: alfa;
recordingdate: integer;
CASE recordingtype OF

popular: artist: alfa;

classical: (orchestra: alfa;
conductor: alfa)d;

spoken: (narrator: alfa;

Pascal-86 User’s Guide

humorous: Boolean));

END

Pascal-86 User’s Guide Constants, Types, and Variables

Set Types

A set type is a structured type consisting of a collection of objects. Examples are the
set of alphanumeric characters, the set of positive integers less than or equal to 100,
and the set of ingredients (out of a finite number of possible ingredients) called for
in a recipe. Pascal defines a number of operators—such as union, intersection, and
inclusion—on set-type operands. These are described in 7.1.6 and 7.1.7.

In Pascal, all members of a set must be f th same t
must be any ordinal type €k (‘

e, called the base type, which

A set type specification, or set-type in the syntax, defines all the values that are possi-
ble members of a set of that type. In mathematical terms, it defines the power set, or
collection of all subsets, of the base type (recall that a type is itself a set, that is, a
collection of permissible values). Its syntax is:

SET O0F ordinal-type

where
ordinal-type is the base type. It may be the name of a predefined or

or the type speci-
e. Restrictions on
set elements in Pascal-86 are given in Appendix C.

Examples of set-type specifications are:

SET OF 1..1000

SET OF CHAR

SET OF color (* color = (red, yellow, blue, green,
orange, violet) *)

The value of an object of a set type is denoted by listing all its members within
brackets, separated by commas. The elements listed in brackets, which may themselves

pty
[X..Y] denotes the set of all values of the base type within the closed interval from
X to Y. For instance, [1..100] denotes the set of all integers from 1 to 100. (Note the
analogy, in both syntax and meaning, to a subrange type.) If X is greater than Y (in
ordinal value), then [X..Y] denotes the empty set.

For example, the following are all permissible values for a variable of the set type
SET OF color defined above:

[red .. blue] [red, blue] [blue]
[yellow, blue, red] [blue, red] []
[red..blue, orange]

Since a set is a collection of values in which order does not matter, the first two sets
in the first column are equivalent; likewise, the two sets in the second column are
equivalent.

Constants, Types, and Variables Pascal-86 User’s Guide

File Types

File types in Pascal allow variables to correspond to physical files, such as disk files,
in the world outside the program. Thus they are the means by which a Pascal program
obtains input and output data.

You specify the files your program uses as parameters in the program heading at the
beginning of your main program block. Within your Pascal program, your file type
definitions and variable declarations are independent of the nature of the physical
files with which they are associated. You specify the logrcal file/ physwal fxle assoc1-
atron by usmg the flle preconnectlon feature descrlbed m 12 4 : na

A Pascal program views a physical file as a variable of a file type, which is structured
like a magnetic tape. A file type consists of a sequence of components, like blocks on
a tape, that are all of the same type. The number of components, called the length of
the file, is not fixed, so your program can add or delete components as it runs. You
do this by appending components, one by one, to the end of the file. Only one compo-
nent of a file is accessible at any time, and you can change the currently accessible
component only by moving sequentially through the file. Thus a file is a sequential-
access structure.

A file with zero components is called empty.
The syntax of a file-type specification is:
FILE OF type-spec

The type-spec can be any type-spec defined in this chapter, except a file type or a
type that contains a file.

Examples of file-type specifications (given the sample type definitions in 5.3):

FILE OF CHAR
FILE OF person
FILE OF 1..10
FILE OF color

A file variable can be a text file or a non-text file. Text files are of the predefined
file type TEXT, which has components of type CHAR and is substructured into lines
terminated by a special sequence of characters called the line marker. In the
Pascal-86 logical record system (K.3), the line marker is the ASCII two-character

» ucncecarrra e return and line fee 86 nt '

& . acters. The predefmcd program param-
eters INPUT and OUTPUT are text flles Non-text files are any files not declared
to be of type TEXT.

Pascal-86 User’s Guide Constants, Types, and Variables

You can open a file for reading or writing, read or write one file component (one
character for a text file), read or write a sequence of file components, and check for
the end of an input file. On text files, you may also read a sequence of characters
from a line and skip to the next line, write a line, check for the end of the current
line, and write a form feed indicator to start a new page of printed output. You
perform all these operations by using the predefined file procedures described in 8.7.
Note that the nature of your physical file may impose restrictions; for instance, you
cannot read from a file connected to a line printer or write to a file connected to a
console keyboard.

In standard Pascal there is no procedure for closing a file. Files are closed automati-
cally when execution returns from the program block. The procedure for closing a
file in Pascal-86 is outlined in Appendix B.

Whenever you declare a file variable F with components of type T, this also causes
the implicit declaration of a variable of type T, denoted by F 1 or F@. The prede-
fined file input and output procedures fill, empty, and test this variable, called the
buffer variable of the file. As long as the value of the buffer variable is defined, you
may use it in expressions just as you would any other variable of type T. The syntax
of the buffer variable is, as already suggested:

file-variable t or file-variable @

where

file-variable is the name of a file variable. (The 4 and @ are
interchangeable.)

Sections 8.7, 8.2.2, and 8.2.3 give a fuller explanation of file input and output opera-
tions, and the sample programs in Chapter 9 illustrate these operations.

5.3.3 Pointer Types

A pointer type is a special type that represents an address—i.e., points to an area of
storage. You use pointer types to allocate, access, and deallocate dynamic variables.

You generate dynamic variables within your program as you need them, rather than
declaring them explicitly within a block. Dynamic variables are useful in creating
complex data structures, such as linked lists and trees, that must change in size and
form as the program runs.

The type-spec for a pointer type has the syntax:
t type-id or @ type-id

where
type-id is the identifier of a type (this may be another pointer type).

A pointer type thus consists of an unbounded set of values pointing to variables of
the same type—the type specified in the syntax just given. (The * and @ are inter-
changeable.)

You create a dynamic variable by calling the predefined procedure NEW with a
pointer variable as an argument. NEW allocates a variable of that pointer’s base
type, and also assigns a value to the pointer so that it points to the newly allocated
dynamic variable. The storage for dynamic variables is taken from a special pool of
memory called the heap, which is provided through the Pascal run-time system. You
cannot use the heap except as described here, by means of NEW, referenced varia-
bles, and DISPOSE.

Constants, Types, and Variables Pascal-86 User’s Guide

Once you have allocated a dynamic variable, you access it as a referenced variable
by referring to the associated pointer variable with the syntax:

pointer-id t* or pointer-id @

which is referred to as dereferencing the pointer, and is interpreted to mean “‘the
variable pointed to by pointer-id,” where pointer-id is the name of a pointer variable.
(The 1 and @ are interchangeable.) For example, if P is declared as a variable of
type 1 T, then P denotes that pointer variable and its value, whereas P 1+ denotes the
dynamic variable of type T that is referenced by pointer P.

When you have finished using a dynamic variable, you may de-allocate it by calling
the procedure DISPOSE. This causes the variable to become undefined and frees its
storage on the heap for other dynamic variables.

Because of the special purpose of pointer types, no operations are defined on objects
of this type except assignment and test for equality; that is, you can assign the value
of one pointer variable to another or compare two pointer values, as long as they are
both pointers to the same type.

Two pointer variables have the same type only if they are declared as follows:
VAR TI,J: *INTEGER;
or:

TYPE INTEGER_-PTR = +INTEGER;
VAR I: INTEGER_PTR;
J: INTEGER_PTR;

Because each type specification defines a new and different type (5.3.4), when I and
J are defined as:

VAR I: +INTEGER;
J: tINTEGER;

they have different, and incompatible, types.

If two pointers are equal, the dynamic variables that they point to always occupy the
same storage space. However, the internal representation of a pointer value is not
defined by the language, so you should not attempt to work with it directly in your
program.

The pointer value NIL belongs to every pointer type; it points to no object at all. You
may assign the value NIL to a pointer to indicate, for instance, the end of a linked
list.

Because pointer variables may also occur as components of structured variables which
are themselves dynamically generated, the use of pointers permits you to represent
any finite graph.

It is best to take special care in the use of dynamic variables in your programs.
Programs using dynamic variables are more prone to logic errors than those using
only static variables, and are generally more difficult to debug.

Sample Program 8 in Chapter 9 illustrates the use of dynamic variables.

5-16

Pascal-86 User’s Guide Constants, Types, and Variables

5.3.4 Type Compatibility

This section gives the rules you must follow to make the types of your program objects
consistent. It defines two terms used in many other sections of this manual-—compat-
ible and assignment-compatible. As a foundation for these definitions, it first defines
real, integer, and string types.

Two types may be said to be compatible, whereas an expression may be said to be
assignment-compatible with a type. Assignment compatibility is the more important
concept to remember when you are writing programs. The compatibility of types is
the basis for defining assignment compatibility.

Section 6.4.7 defines the compatibility of parameter lists.

With one exception, each instance of a type specification in a Pascal program defines
a unique type. The one exception is the type specification that consists of a single
identifier, which serves only to refer to a type object that has already been defined
and does not generate a new one. For example, given:

TYPE color = (red, yellow, blue, green,
orange, violet);
colour = color;

the identifiers color and colour are synonymous names for the same type.

With few exceptions, you can combine data objects in computations only if they have
the same type. This section defines terms used in later sections of this manual to
describe those objects of different types that can be combined in given types of
computations.

A type is an mteger type if it is the same as any one of the predefined types INTEGER,
; L or is a valid subrange of these types.

_type if it is the same as one of the predefined types REAL,

A type is a string type if it is defined to be:

PACKED ARRAY [1..n] OF CHAR

where
n is an integer constant between 1 and MAXLONGINT.

Two types are compatible if any one of the following is true:
¢ They are the same type.
e One is a subrange of the other, or both are subranges of the same type.

e They are set types having compatible base types, and are either both packed or
both unpacked.

e They are string types with the same number of components.

Constants, Types, and Variables Pascal-86 User’s Guide

For example, given the following type definitions:

TYPE inttypel = INTEGER;
inttype2 = 1..10;
inttype3 11..20;

colortypel (red, yellow, blue, green, orange,
violet, brown, black);
colortype2 = (red..blue);

colortype3 (brown..black);

settypel = SET OF colortypei;
settype2 = SET OF colortype?2;
settype3 = SET OF colortype3;
card ARRAY [1..80] DF CHAR;

line ARRAY [1..80] OF CHAR;
alfa = PACKED ARRAY [1..80] OF CHAR;
beta = PACKED ARRAY [1..80] OF CHAR;

person = RECORD name, firstname: alfa;
: age: integer;
married: Boolean;
father, child, sibling: tperson;
END;

then inttypel, inttype2, and inttype3 are compatible; colortypel, colortype2, and
colortype3 are compatible; and settypel, settype2, and settype3 are compatible. The
identifiers card and line denote different and incompatible types. On the other hand,
alfa and beta denote different but compatible types, because they are string types.
Note also that the types of the father, child, and sibling fields of a person record are
not compatible with person pointers outside of person records, because the pointer
type specification has not been named.

An expression E of type T2 is assignment-compatible with type T1 if any of the
following statements are true:

e TI1 and T2 are the same type, which is neither a file type nor a structured type
that contains a file type in any of its substructures.

e Tl is areal type and T2 is an integer or real type, and the value of expression E
is within the range specified by T1.

* T1 and T2 are compatible ordinal types, and the value of expression E is within
the range specified by the type T1.

e TI1 and T2 are compatible set types, and all the members of the set given by set
expression E are within the range specified by the base type of T1.

e T1 and T2 are compatible string types.
e Tlisof type PACKED ARRAY [1...1] of CHAR, and T2 is a CHAR TYPE.

At any place where the rule of assignment compatibility applies, any one of the
following situations causes an error:

+ TI1 and T2 are compatible ordinal types, and the value of expression E is not
within the range specified by T1.

* TI1 and T2 are compatible set types, and any member of set expression E is not
within the range specified by the base type of set type T1.

e« TI1 is a real type and T2 is any real or integer type, and the value of expression
E is outside the range specified by T2.

Pascal-86 User’s Guide Constants, Types, and Variables

For example, given the following type definitions:
TYPE inttypel = INTEGER;
realtypetl = REAL;

colortype! = (red, yellow, blue, green, orange,
violet, brown, black);

colortype2 = (red..blue);

colortype3 = (brown..black);

colourtypel = colortypet;

settypel = SET OF colortypel;
settype2 = SET OF colortype2;
settype3 = SET OF colortype3;

Then expressions of type colortypel are assignment-compatible with type colourtypel,
and vice versa. Expressions of inttypel are assignment-compatible with realtypel, but
expressions of realtypel are not compatible with expressions of inttypel. Expressions
of colortype2 and colortype3 are assignment-compatible with colortypel and
colourtypel, but expressions of colortype2 are never assignment-compatible with
colortype3, nor are expressions of colortype3 assignment-compatible with colortype2
(the two types are compatible, but their expression values cannot fall within the same
subrange). Also, expressions of settype2 and settype3 are always assignment-compat-
ible with settypel.

5.4 Variables

5.4.1 Variable Declarations

Variables are items of data whose values can change, and which the program manip-
ulates. You must declare each variable in your Pascal program by means of a varia-
ble declaration, which assigns it a name and a type. The variable declarations in a

Pascal block or non-main module appear in a list, separated by semicolons, following
the keyword VAR (2.5.2).

The syntax of a variable declaration (variable-decl) is:
identifier [, identifier]. .. : type-spec;

where each identifier is unique, and type-spec is as defined in 5.3. The variable decla-
ration defines all the identifiers in the list to be distinct variables of the given type.
The scope of a variable declaration is the block in which the declaration occurs.

Assuming your program includes the sample type definitions given in 5.3, the follow-
ing are all legal variable declarations:

VAR x,y: REAL;
u :

minus, times);

5-19

Constants, Types, and Variables Pascal-86 User’s Guide

ARRAY [0..63] OF REAL;

ARRAY [color, BOOLEAN] OF complex;
color;

f: FILE OF CHAR;

huel,hue2: SET 0OF color;

pl,p2: tperson;

(o T = o+]
s ee ee

5.4.2 Variable Denotations

When you use variables in expressions and statements in your program, you may
designate an entire variable, a component of a structured variable, or a referenced
variable.

Entire Variables
An entire variable is denoted by its identifier. Thus its syntax is simply:
identifier

For instance, if you declared a REAL variable x as in 5.4.1, you would use the identi-
fier x to stand for the variable in expressions and statements.

Components of Array Variables

A component of an array variable is denoted by an indexed variable, which is the
array variable’s denotation followed by an index expression enclosed in brackets. If
the array variable is itself a component of an array variable, you may use an abbre-
viated form in which both index expressions are enclosed in the same set of brackets.

Thus the syntax of an indexed variable is:
array-variable [expression [, expression]. . . |

where array-variable is the denotation of an array variable, and each expression is an
index expression of any ordinal type. The index expressions need not have the same
type as the corresponding index type of the array, though the two must be assign-
ment-compatible (5.3.4).

Assuming that your program makes the sample variable declarations given in 5.4.1,
the following are all legal denotations of components of array variables:

a [12]
a [i+]]

b [red]
b [red] [true]
b [red,true]

Note that a[i+j] is permissible only if the value of i+j is within the range 0 through

dimensional array that is itse
a component of the two-dimensional array b. The last two denotations, which are
equivalent, stand for a single scalar component.

5-20

Pascal-86 User’s Guide Constants, Types, and Variables

Components of Record Variables

A component of a record variable is denoted by a field designator, which consists of
the record variable’s denotation followed by a dot, followed by the field identifier of
the component. The syntax of a field designator, therefore, is:

record-variable . field-id

where
record-variable is the denotation of a record variable.
field-id is the field identifier of the component.

Assuming the sample type definitions given in 5.3 and the sample variable declara-
tions in 5.4.1, the following are examples of field designators:

u.re
b fred,TRUE].im
p2t.size

Inside a WITH statement, you may use a shorter form—the field identifier only—to
denote a record component, as described in 7.2.9.

Components of File Variables

At any time, only one component of a file variable may be referenced; the position of
the file determines which component. This component is called the current file
component, and is denoted by the buffer variable of the file. The syntax of a buffer
variable is:

file-variable t or file-variable @

where

file-variable is the denotation of the file variable. (The 4 and @ are inter-
changeable.)

Hence, every declaration of a file variable F with components of type T implies the
additional declaration of a variable of type T, denoted by F + or F@. For instance,
assuming the sample variable declarations in section 5.4.1, the buffer variable f ¢
exists and is of type CHAR. You use the buffer variable to append components to
the file during generation and to access the file during inspection. To change the
position of a file, you use the file input and output procedures described in 8.7.

An error occurs if you alter the position of a file F while the buffer variable F ¢ is
either an argument to a variable parameter or an element of the record variable list
of an active WITH statement. However, the Pascal-86 compiler does not detect this
€error.

Referenced Variables

A dynamic variable you allocate using the predefined procedure NEW (8.5.1) exists
until you deallocate it with the predefined procedure DISPOSE (8.5.2). Once you
have allocated a dynamic variable, you access it as a referenced variable by referring
to the associated pointer variable, with the syntax:

pointer-variable t or file variable @

5-21

Constants, Types, and Variables Pascal-86 User’s Guide

which is interpreted to mean “the variable pointed to by pointer-variable,” where
pointer-variable is the denotation of a pointer variable. (The 1t and @ are inter-
changeable.) For example, if P is declared a variable of type 1 T, then P denotes that
pointer variable and its pointer value, whereas P ¢+ denotes the variable of type T
that is referenced by pointer P.

An error occurs if the pointer value is NIL (pointing to no value) or undefined at the
time you use it to reference a dynamic variable.

Assuming the sample type definitions given in 5.3 and the sample variable declara-
tions in 5.4.1, the following examples of referenced variables are valid:

pitt.father
pit.sibling@.child

5-22

CHAPTER 6
PROCEDURES AND FUNCTIONS

6.1 Basic Concepts

Procedures and functions are subprograms that are contained within your main
program and that may be nested within one another. They are callable from your
main program, from containing procedures and functions, and from themselves. You
activate a procedure (that is, invoke it or transfer control to its statement part) by
using a procedure statement. You activate a function by referencing it in an expres-
sion within any statement.

A procedure or function declaration consists of a heading and either a block or the
directive FORWARD. The heading consists of an identifier, by which the procedure
or function is referenced, and a list of parameters.

The block consists of a compound statement which may contain embedded state-
ments. The block also may include a set of constant definitions, type definitions,
variable declarations, and additional procedure and function declarations. The state-
ment part of the block specifies the actions to be performed when the procedure or
function is invoked.

As described in 4.1.2, the constants, types, variables, procedures, and functions defined
or declared in the block can be referenced only within the procedure or function
itself, and are therefore called local to the procedure. Their identifiers refer to them
only within the program text that constitutes the procedure or function declaration,
which is called the scope of the local declarations and definitions. Since you may
declare procedures and functions local to other procedures and functions, scope may
be nested. Entities that you declare at the outer level of a module, i.e., not local to
any procedure or function, are called global.

A procedure or function has a fixed number of parameters, each denoted within the
procedure by an identifier. These parameters denote program objects through which
the procedure or function communicates with its environment. When you invoke the
procedure or function, you must indicate an actual quantity, or argument, to corre-
spond to each parameter.

You declare functions analogously to procedures; the only difference is that a function
yields a result, which you must specify in the function declaration. You may therefore
use functions as operands in expressions. In order to eliminate side effects, you should
avoid making assignments to non-local variables and variable parameters within
functions.

6.2 Procedure Declarations

A procedure declaration associates an identifier with a part of a program so that you
may activate it via procedure statements, as described in 7.2.2. Its syntax is:

PROCEDURE identifier{C parameter-list)] ;
block

or:

PROCEDURE identifier[C parameter-list)] ;
FORWARD

Procedures and Functions

6-2

The identifier in the procedure heading, which must be unique, is the name you use
in a procedure statement to invoke the procedure. The syntax of a parameter-list is
given in 6.4.1, and the syntax of a block is specified in 2.1. For an explanation of the
second form of the procedure declaration, using the FORWARD directive, see 6.5.

The scope of the declaration of a procedure identifier is the block in which the proce-
dure declaration occurs.

When you use the procedure identifier in a procedure statement within the proce-
dure’s block, you cause the procedure to be executed recursively.

The following are examples of procedure declarations:

procedure Product(var ProdMatrix : Matrices;
OneMatrix,TwoMatrix : Matrices);

var I, J, K, Result : integer;

begin

for I := 1 to MatrixSize do
for J 1= 1 to MatrixSize do
begin
Result := 0;
for K := 1 to MatrixSize do

Result := Result + OneMatrix[I,K] * TwoMatrix[K,J];

ProdMatrix[l,J] := Result
end
end; (* Product *)

procedure BuildTree;
var FindRoot : Boolean;

procedure AddNode; (* add a node to the tree *)
begin
write(NodeCharacter : 3, Nodelndex : 3);
with ExpressionTree[Nodelndex] do
begin
Symbol := NodeCharacter;
Read(DataFile,Left); write(Left : 3);
read(DataFile,Right); write(Right : 3);
writeln
end
end; (* AddNode *)

begin
FindRoot := false;
writelnC*INPUT 1S:°); writeln;
AddNode;
repeat

readln(DataFile);
read(DataFile,NodeCharacter,Nodelndex);
if Nodelndex = 1 then FindRoot := true
else AddNode
until FindRoot or eof(DataFile)d;
writeln
end; (* BuildTree *)

The first procedure, which multiplies two matrices, has three parameters, all of type
Matrices. The type Matrices, an array of integers, must be defined in the enclosing
block. (Section 9.6 gives the complete program.) The second procedure, BuildTree,
builds a binary tree. This procedure contains an embedded procedure, AddNode.

Pascal-86 User’s Guide

Pascal-86 User’s Guide Procedures and Functions

Neither procedure has any parameters. (Section 9.2 gives the complete program, which
was first introduced in Chapter 2.)

6.3 Function Declarations

A function declaration designates a part of a program that computes a value. You
activate a function by referencing it by name in function designators in expressions
in your program, as described in 7.1.3. Its syntax is:

FUNCTION identifier{(parameter-list)] : type-id ;
block

or:

FUNCTION identifier[(parameter-list)] : type-id ;
FORWARD

The identifier in the function heading, which must be unique, is the name used in an
expression to invoke the function. The type-id specifies the type of the result returned
by the function; this result type must be a scalar or pointer type. The syntax of a
parameter-list is given in 6.4.1, and the syntax of a block is specified in 2.1. Section
6.5 gives an explanation of the second form of the function declaration, using the
FORWARD directive.

The scope of the declaration of a function identifier is the block in which the function
declaration occurs.

Within the statement part of the block in a function declaration, there must be at
least one assignment statement that assigns a value to the function identifier. The
result of the function is the last value so assigned. If no assignment occurs, the value
of the function is undefined. The function identifier serves within the function block
as a structured variable identifier, which may be used in denotations for the compo-
nents of the result.

Inside the function’s block you may reference the result variable only on the lefthand
side of an assignment statement. All other occurrences of the function identifier within
its function block cause the function to be executed recursively.

The following are examples of function declarations:

FUNCTION SqrtCx: REAL): REAL;
CONST eps = 0.0001;

VAR x0, x1: REAL;

BEGIN (* Newton’s Method *)

x1 1= x3
REPEAT

x0 := x1;

x1 := (x0+x/x0)*0.65;

UNTIL abs(x1-x0) < eps*xl;
Sqrt := x0;

END

6-3

Procedures and Functions

64

FUNCTION RtolICx: LONGREAL; i: INTEGER) : LONGREAL; (*

VAR z: LONGREAL;
BEGIN
z = 1
WHILE i » 0 DO BEGIN
IF 0ODDC(Ci) THEN 2z := z%*x;
i := i DIV 2;
x := SQR(x);
END;
Rtol := z; (*z = x*%*j *)

END

The first function computes the square root of a real number using Newton’s Method.
The single parameter and the returned value are of type REAL. The second function
computes xi.

6.4 Parameters

The parameters given in the parameter list in a procedure or function heading are
objects providing communication between the procedure or function and its environ-
ment. There are four kinds of parameters: value parameters, variable parameters,
procedural parameters, and functional parameters. Value parameters are evaluated
once, at invocation time, and the procedure or function can use the value but cannot
change the argument. The arguments for value parameters may be expressions.
Arguments for variable parameters must be variables, and the procedure or function
may change their values. For procedural and functional parameters, the argument is
a procedure or function identifier.

6.4.1 Parameter List Syntax

The syntax of a parameter-list is:

parameters [; parameters]. . .

where parameters has one of the following forms:
identifier [, identifier]. .. : type-id

VAR identifier [, identifier]. .. : type-id

PROCEDURE identifier

[C parameter-list)]

FUNCTION identifier [C parameter-list)] : type-id

Each identifier in the syntax of parameters must be unique. In the first two forms of
parameters, type-id may denote any type. In the last form, type-id must denote a
simple type.

In a parameter list, a parameters group written without an initial special symbol (the
first form shown) specifies that the constituent identifiers denote value parameters.
Variable, procedural, and functional parameters are specified by a prefix of VAR,
PROCEDURE, or FUNCTION, respectively.

I

Pascal-86 User’s Guide

>y=0

)

Pascal-86 User’s Guide Procedures and Functions

When an identifier appears in a parameters specification for a value or variable
parameter, it is defined as a parameter identifier within the parameter-list immedi-
ately containing it, and also as a variable identifier for the corresponding procedure
or function block, if any.

When an identifier appears in a parameters specification for a procedural parameter,
it is defined as a parameter identifier within the parameter-list immediately contain-
ing it, and also as a procedure identifier for the corresponding procedure or function
block, if any.

When an identifier appears in a parameters specification for a functional parameter,
it is defined as a parameter identifier within the parameter-list immediately contain-
ing it, and also as a function identifier for the corresponding procedure or function
block, if any.

NOTE

If the parameter-list is within a procedural or functional parameter specifi-
cation, there is no corresponding procedure or function block.

The following are examples of parameter lists:
VAR f: TEXT
x: REAL; i: INTEGER

FUNCTION f(x: REAL): REAL;
a,b: REAL;
VAR z: REAL

6.4.2 Value Parameters

The argument corresponding to a value parameter is evaluated once, at the time the
procedure or function is invoked; the procedure or function can use the value but
cannot change the argument. The argument may be any expression of the proper

type.

The parameter represents a local variable within the procedure or function. At
invocation, when the argument is evaluated, this value is assigned to the local variable
before the procedure or function is executed. Thus a value parameter serves as an
input to the procedure or function, but not as an output.

The argument must be assignment-compatible with the type of the parameter, as
described in 5.3.4; thus you may not use file-type value parameters. Arge

6.4.3 Variable Parameters

The argument corresponding to a variable parameter may be changed within the
procedure or function. The argument to a variable parameter must be a variable
(which may be a component of a structured variable), and the parameter represents
this variable during the execution of the block. Any operation involving the parame-
ter is performed directly on the argument variable. Thus a variable parameter serves
as both an input to, and an output from, the procedure or function.

6-5

Procedures and Functions Pascal-86 User’s Guide

6-6

The argument and the parameter must be of the same type as defined in 5.3.4. If the
selection of the argument variable involves indexing an array or referencing a dynamic
variable (dereferencing a pointer), these actions are performed before the activation
of the block.

The argument to a variable parameter may not be a component of a packed structure
or array.

Pascal-86 User’s Guide Procedures and Functions

6.4.5 Procedural Parameters

A procedural parameter allows you to write a procedure or function that itself invokes
a variety of different procedures.

The argument corresponding to a procedural parameter is a procedure identifier, and
the parameter denotes the argument procedure during the entire activation of the
block. If the argument procedure, upon its activation through the parameter identi-
fier, accesses any non-local object, the object accessed is the one that was accessible
to the procedure when its procedure identifier was passed as a procedure argument.

The predefined procedures described in Chapter 8 cannot be used as procedural
parameters. Interrupt procedures, discussed in 10.4.9, also cannot be used as proce-
dural parameters.

The argument and parameter procedures must have compatible parameter lists, as
defined in 6.4.7.

Procedural parameters are analogous to functional parameters, which are described
in the next section. An example of a routine using a functional parameter appears at
the end of that section.

6.4.6 Functional Parameters

A functional parameter allows you to write a procedure or function that itself invokes
a variety of different functions.

The argument corresponding to a functional parameter is a function identifier, and
the parameter denotes that argument function during the entire activation of the
block. If the argument function, upon its activation through the parameter identifier,
accesses any non-local object, the object accessed is the one that was accessible to the
function when its function identifier was passed as a function argument.

The predefined functions described in Chapter 8 cannot be used as functional
parameters.

The argument function and the parameter function must have compatible parameter
lists (6.4.7) and the same result type.

For example, the following procedure computes the integral of a given function
between limits A and B, using the trapezoidal rule with eight intervals:

PROCEDURE integrate C(FUNCTION fCX:REAL): REAL;
a,b,: REAL;
VAR integral: REAL);

CONST n = 8;

VAR w, sum: REAL;
i: INTEGER;

BEGIN

6-7

Procedures and Functions Pascal-86 User’s Guide

w := (b-a)/n;
sum := (f(ad)+f(b))/2;
FOR i:=1 TO n-1 DO
sum := sum + f(a+i*w);
integral := sumtw
END

To invoke this procedure to integrate sin(x) (given a user-written sine function called
“sine’”) between the limits -pi/2 and pi/2, you would use the procedure statement:

integrate(sine,-pi/2,pi/2,int)

In the resulting invocation of integrate, wherever f occurs sine will be substituted for
f, and the sine function will be called.

6.4.7 Parameter List Compatibility

Two parameter lists are compatible if they contain the same number of parameters
and if the parameters in corresponding positions match. Two parameters match if
one of the following is true:

e They are both value parameters of the same type.
e They are both variable parameters of the same type.

e They are both procedural parameters with compatible parameter lists.
e They are both functional parameters with compatible parameter lists and the
same result type.

6.5 The FORWARD Directive

In standard Pascal, you must declare each procedure or function before you reference
it in other parts of your program. When two or more procedures or functions are
mutually recursive (e.g., A calls B and B calls A), declaration before reference is
impossible to do with a single declaration for each procedure or function; so standard
Pascal provides the forward declaration, which uses the FORWARD directive.

In the syntax for procedure and function declarations, you may use the directive
FORWARD in place of the procedure or function block. FORWARD indicates that
the block associated with the preceding heading appears later in the program text.
Subsequently, when you introduce the associated block, you must precede it with a
procedure or function heading having the same name as the forwarding declaration;
but here, you may omit the parameter list and the return type (for a function). (In
standard Pascal, you must omit them.) The forward declaration and the body decla-
ration (the declaration containing the block) are local to the same containing block
or module (their scope is that containing block or module), and together they consti-
tute the declaration of the procedure or function identifier.

A procedure or function identifier is considered to be declared as soon as it is given
in a precedure or function heading. Hence, a directly recursive procedure or function—
one that calls itself within its statement part—does not need a forward declaration.

The following sample program fragment shows a forward declaration and its corre-
sponding body declaration later in the program. Note that in this particular example
the procedure shows only simple recursion, so the forward declaration is not really

Pascal-86 User’s Guide Procedures and Functions

needed, but this simple example (examples of indirect recursion are more complex)
illustrates the syntax.

FUNCTION G6CDC(m,n: INTEGER): INTEGER;
FORWARD;

FUNCTION max(A: arrayofreals): REAL;
(* arrayofreals is defined in the enclosing block *)
VAR m: REAL; i: INTEGER;
BEGIN
x = Al1}];
FOR i1:=2 TO n DO IF x<A[i] THEN x:=A[i];
max := X3
END;

FUNCTION GCD; (* no parameter list needed here *)
BEGIN
IF n=0 THEN GCD:=m
ELSE GCD:=6CD(n,m MOD n)
END;

To make your programs easier to follow, especially when doing top-down program-
ming, you may find it useful to give FORWARD declarations for all your procedures
and functions. Once you have done this, you can place the body declarations after
the forward declarations in any order you wish.

FORWARD is not a reserved word, so you may use it as an identifier in your program.
Unlike predefined identifiers, however, FORWARD does not lose its original meaning
as a directive when you define or declare it as an identifier. In such a case, each time
FORWARD appears, the context determines which of the two meanings (directive
or identifier) applies.

NOTE

The Pascal-86 compiler does not check for non-standard forward references,
so the FORWARD directive is not required in Pascal-86 programs. However,
you should use it if you wish your programs to be portable.

6-9

CHAPTER 7
EXPRESSIONS AND STATEMENTS

Statements in Pascal describe the actions to be performed on the data in your
programs. Statements may include expressions, which denote rules for generating
new values by applying operators to operands. The expressions are evaluated during
program execution as required by the statements that contain them.

7.1 Expressions

Expressions are combinations of operands—variables and constants of scalar or set
types—and operators that use the operands to compute new values. An expression
may include one or more matched pairs of parentheses which serve to group operands
and operators as desired. You use function designators (references to functions) in
the same way as operands; thus you may use functions, as well as operators, to operate
on values. An error is caused if any variable or function you use as an operand in an
expression has an undefined value at the time the expression is evaluated. You will
probably use expressions most often in assignment statements (7.2.1), which assign a
newly computed value to a variable or a component of a variable.

Pascal provides four kinds of operators:

e The arithmetic operators: addition, subtraction, negation, multiplication, division,
INTEGER, ¥

s

« The Boolean operators: negation (NOT), disjunction (O
(AND). Results are of type BOOLEAN.

» The set operators: union, intersection, and set difference. Result types are sets
based on ordinal types.

e i

R), and conjunction

e The relational operators: equality, inequality, ordering, set membership, and set
inclusion. Results are of type BOOLEAN.

No operators producing new arrays, records, or files are defined. You assign new
values to these by changing their scalar components individually. In addition, you
may transfer the values of entire structures among variables associated with the same
explicit type definition.

The relative precedence of operators determines which ones are applied first when an
expression is evaluated during program execution. Operators are of four levels of
precedence. From highest to lowest, they are

1. The negation operator (NOT)

2. The multiplying operators: multiplication or set intersection (*), division (/),
division with truncation (DIV), remainder (MOD), and conjunction (AND)

3. The adding operators: addition, unary identity, or set union (+); subtraction,
unary negation, or set difference (—); and disjunction (OR)

4. The relational operators: equality (=), inequality (<< >), less than (<), greater
than (>), less than or equal to or set inclusion (<), greater than or equal to or
set inclusion (=), and set membership (IN)

When an expression is evaluated upon execution of the statement that contains it,
operators of highest precedence are applied first.

7-1

Expressions and Statements Pascal-86 User’s Guide

The order in which the operands of a binary operator are evaluated (if they are
subexpressions or function designators, or involve indexing an array or dereferencing
a pointer) is undefined, so you should make no assumptions about this order. If the
order of evaluation of subexpressions is important, put them in separate statements.

7.1.1 Expression Syntax

An expression may be composed of subexpressions called simple expressions, terms,
and factors. Syntactically, factors are combined via multiplying operators to form
terms; terms are combined via adding operators to form simple expressions; simple
expressions are combined via relational operators to form expressions.

By definition, simple expressions, terms, and factors are always expressions, too. Thus
a variable identifier is an expression; so is a constant.

The syntax of an expression is:
simple-expression [relational-op simple-expression]

where
relational-op is a relational operator.
simple-expression is a simple expression with the syntax:

[sign] term [adding-op term]...

Here, sign is a plus or minus sign used as a unary operator, adding-op is an adding
operator, and term is given by:

factor [muitiplying-op factor]...

where
multiplying-op is a multiplying operator as defined in 7.1.
factor is any one of the following:

an entire variable, structured variable component, or refer-
enced variable (5.4.2)

a named constant (5.2)

a literal integer (3.3.2)

a literal real number (3.3.3)

a literal string (3.3.5)

a function designator (7.1.3)

NIL (5.3.3)

(expression)

NOT factor

[element [, element]...] where elementis given by
expression] . . expression]

The last item in the list of forms for factor represents a set, and each element stands
for one or more set members. If two expressions joined by ellipses are given, the
element represents all the elements within the given subrange of the base type of the
set.

Pascal-86 User’s Guide

The following are some examples of factors, terms, simple expressions, and expressions.
Factors:

b4
15

(x+y+2z)
abs(x+y)
[red,c,green]
[1,5,10..19,23]

NOT p
Terms:
xty
i/7C1-1)
p AND gq

(x <= y) AND (y > 2)

Simple expressions:

Xty

-x

huetl + hue?
P*je

Expressions:

x = 1.5

p <= q

i ¢ j) = €5 » k)
¢ IN huet

Note that all the examples of factors, terms, and simple expressions are also
expressions.

7.1.2 Operands

As defined in the syntax for an expression, an operand may be an entire variable,
structured variable component, referenced variable, constant, literal value (integer,
real number, or string), the pointer value NIL, or a sequence of set elements enclosed
in brackets. It may also be a function designator, which itself directs an operation to
be performed.

Note that some operations are defined only for certain operand types or forms. Also
note that certain type conversions occur automatically when expressions are evalu-
ated at run time.

Automatic Conversions from Subrange Type to Host Type

Any operand whose type is S, where S is a subrange of T, is treated as if it were of
type T. Similarly, any operand whose type is SET OF S is treated as if it were of
type SET OF T. Consequently, expressions of subrange types and set expressions
based on a subrange type can never occur. Even an expression consisting of a single
operand of type S is itself of type T, and an expression consisting of a single operand
of type SET OF S is itself of type SET OF T.

Expressions and Statements

Expressions and Statements Pascal-86 User’s Guide

Set Expressions

An expression (factor) consisting of a list of elements enclosed between square brack-
ets represents a set, and is called a set constructor. The expressions that form the
elements of a set constructor must be compatible with the base type of the set.

A left bracket immediately followed by a right bracket [] denotes the empty set,
which contains no elements and belongs to every set type. The set [x..y] denotes the
set of all values of the base type in the closed interval from x to y. If x is greater than
y, then [x..y] denotes the empty set. An error occurs if the value of an expression
that is a member of a set is outside the limits set by the compiler. In Pascal-86, the
ordinal values of set members must be one of the integer types in the range — 32767
through +32767.

For example, given the following-type definitions:

TYPE color = (red, yellow, blue, green,
orange, violet);

then the following are all permissible set expressions of type SET of color:
[red..blue] [red, blue] [blue]

[yellow, blue, red] [blue, red] []
[red..blue, orange]

Since a set is a collection of values in which order does not matter, the first two set
expressions in the first column are equivalent; likewise, the two set expressions in the
second column are equivalent.

7.1.3 Function Designators

A function designator specifies the activation of the function denoted by the function
identifier. You use a function designator in an expression as if it were an operand.

7-4

Pascal-86 User’s Guide Expressions and Statements

When the expression is evaluated, the function is activated and the result is computed
and substituted in the expression.

A function designator may contain a list of arguments to be substituted in place of
their corresponding parameters in the function declaration. The correspondence is
established by the order of the items in the lists of arguments and parameters, respec-
tively; the first argument matches the first parameter, and so on. The number of
arguments must equal the number of parameters.

The order in which the arguments are evaluated and associated with their parameters
may vary, so you should make no assumptions about this order.

The syntax of a function designator is:
functin-id [(argument [, argument]...)]

where function-id is a function identifier, and each argument is either an expression
or a procedure or function identifier.

Examples:
Sum(Ca, 100)
GCD(147, k)
ABS(x-y)

EOFCT)
ORD(blue)

7.1.4 Arithmetic Operators
Table 7-1 summarizes the binary and unary arithmetic operators.

The symbols +, —, and * also denote operations on sets, which are defined in 7.1.6.

Subexpressions of INTEGER, ypes can be operands of the
same expression. The minimum result type for each operation is determined accord-
ing to table 7-2.

Arithmetic operations are performed on two integer values according to the following
rules:

e If both operands are of the same predefined type, the result is of that type

7-5

Expressions and Statements

Table 7-1. Arithmetic Operators

Binary
Symbol Operation Type of Operands’ Type of Result’ Pr:?:::'e‘:r'ce
+ addition integer or real . 3
= subtraction integer or real 3
* multiplication integer or real _integer or 2
/ division integer or real
DIV division with integer integer
truncation
MOD remainder integer integer 2
Unary
Symbol Operation Type of Operand’ Type of Result’ Pr:?::lle?\::e
- . identity integer or real ;:1- o 3
- negation integer or real inteier or 3

*As used here, an integer type is one of the predefined types |NGER,
g i one of the predefined types REAL, R

Table 7-2. Result Types of Mixed-Mode Arithmetic

INTEGER

__INTEGER ‘ INEER

NOTE: Constants in the range 0 to 32767, and ordinal variable:
in the range 0 to 32767 are typed as either INTEGER,

type of the other operand). If both operands lie in this r

If your Pascal-86 program attempts an operation that would yield a value outside the
range of the indicated result type, a run-time exception condition is caused. Section
14.2 discusses run-time arithmetic exceptions.

For nonzero values of j, i DIV j is equivalent to TRUNC(i/j) as defined in 8.4.1; for
j=0, i DIV j causes an error. The operation i MOD j is illegal if j is zero or negative;
otherwise the result is (i-(K*j)) for all K such that 0<i MOD j <j. Note that the
comparison i MOD j = i-(i DIV j)*j holds only if i = 0.

Pascal-86 User’s Guide

Pascal-86 User’s Guide Expressions and Statements

Arithmetic on real types in Pascal-86 follows additional special rules, as described
in 7.1.8,

7.1.5 Boolean Operators

Table 7-3 summarizes the Boolean operators in Pascal. These operate on BOOLEAN
values and return BOOLEAN results.

The result of a logical OR is TRUE if one or both operands are TRUE, and FALSE
otherwise. The result of a logical AND is TRUE if both operands are TRUE, and
FALSE otherwise. The result of logical negation (NOT) is TRUE if the operand is
FALSE, and FALSE if the operand is TRUE.

The values of some Boolean expressions (e.g.,, SWITCHI OR ODD(N) when
SWITCHI1 =TRUE) can be determined by partial evaluation. The language does not
define whether such expressions will be evaluated partially or completely.

7.1.6 Set Operators

Table 7-4 summarizes the set operators in Pascal. These operate on sets and return
set results.

The union, or sum, of two sets A and B is the set of all items that are members of A,
members of B, or both. The intersection, or product, of two sets A and B is the set of
all items that are both members of A and members of B. The difference between set

Table 7-3. Boolean Operators

Binary
- Level of
Symbol Operation Type of Operands Type of Result Precedence
OR logical OR BOOLEAN BOOLEAN
AND logical AND BOOLEAN BOOLEAN 2
Unary
. Level of
Symbol Operation Type of Operand Type of Result Precedence
NOT logical negation BOOLEAN BOOLEAN 1
Table 7-4. Set Operators
Binary
. Level of
Symbol Operation Type of Operands Type of Result Precedence
+ set union any set type T T 3
- set difference any settype T T
* set intersection any set type T T 2

7-7

Expressions and Statements

B and set A, also called the relative complement of A with respect to B and written
B-A, is the set containing all items that are members of B but not members of A.

For example, if sets A and B have the following members:

A [red, orange, yellow, green, blue, violet]
B [red, blue, yellow, brown, black]

then the following relational expressions hold:

A+B = B+A

A*B = B*A

A+B = [red, orange, yellow, green, blue, violet,
brown, black]

A*B = [red, yellow, blue]

A-B = [orange, green, violet]

B-A = [brown, black]

7.1.7 Relational Operators

Table 7-5 summarizes the relational operators in Pascal. These test relations between
two operands and return BOOLEAN results.

The operands represented by the symbols =, <>, <, >, <, and = are either of

compatible types, or else one operand is of a real type and the other is of an integer
type.

Table 7-5. Relational Operators

Pascal-86 User’s Guide

Binary
. Level of
Symbol Operation Type of Operands Type of Result Precedence
= equality / any set, simple, BOOLEAN 4
equivalence string, or pointer
type
<> inequality / any set, simple, BOOLEAN 4
inequivalence string, or pointer
type
< less than any simple or BOOLEAN 4
string type
> greater than any simpie or BOOLEAN 4
string type
=< less than or any set, simple or BOOLEAN 4
equal to / logical string type
implication / set
inclusion
(contained in)
= greater than or any set, simple or BOOLEAN 4
equal to / logical string type
implication / set
inclusion
(contains)
IN set membership right operand: BOOLEAN 4
STE OF T; left
operand: any type
compatible with T

Pascal-86 User’s Guide Expressions and Statements

Except when applied to sets, the operators < and = mean less than or equal to and
greater than or equal to, respectively. If P and Q are BOOLEAN operands, then
P=<Q means P implies Q, and P=Q means Q implies P (since FALSE < TRUE).

For instance, if A, B, and C are integers and P and Q are BOOLEAN variables such
that A=1, B=3, C=9, P=FALSE, and Q=TRUE, then the following relational
expressions hold:

(A+B)<C = TRUE
(P¢=Q) = TRUE
(P=Q@) = FALSE
((C¢A)=Q) = FALSE

When you use the relational operators =, <>, <, >, <, and = to compare operands
of string type (i.e., PACKED ARRAY [1..n] OF CHAR), the results are determined
by the lexicographical ordering of the character set; in Pascal-86, this character set
is the ASCII collating sequence as given in Appendix G. Thus, if R, S, and T are
strings of type PACKED ARRAY [1..10] OF CHAR and:

R = ‘and ’
S = ‘band .
T = ‘an o
then:

((T¢<R) and (R¢S)) = TRUE
S¢<>»T = TRUE

S»T = TRUE

S»=T = TRUE

R<T = FALSE

If A and B are set operands, A=B means A is equivalent to B (i.e., has exactly the
same members), and A<<>B means A is not equivalent to B. A<B means A is
included in B, and A=B means B is included in A.

The IN operator returns TRUE if the value of the operand is a member of the set;
otherwise, it returns FALSE. If the right operand is a set of an integer type, the left
operand may be an INTEGER, | ype whose value lies in the
range — 32767 through +32767. If the left operand is outside this range, an excep-
tion occurs.

For example, assume that A, B, and C are sets such that:

A = [red, orange, yellow, green, blue, violet]
B = [red, blue, yellow, brown, black]
C := [orange, green, violet]

then the following relational expressions hold:

(A=B) = FALSE

(A¢»B) = TRUE
(C¢=A) = TRUE
(A>»=C) = TRUE

(violet IN A) = TRUE
(black IN A) = FALSE
(black IN (A+B)) = TRUE

Expressions and Statements Pascal-86 User’s Guide

7.1.8 Real Arithmetic

Real arithmetic in Pascal-86 conforms to the IEEE proposed standard for floating-
point arithmetic. All run-time real arithmetic is performed on an 8087 Numeric Data
Processor or by the 8087 software emulator provided as part of the Pascal-86 run-
time system. Whether the 8087 processor or the 8087 emulator performs the compu-
tations is determined at link time, and depends upon which run-time libraries you
link in (see Chapter 12). The results are independent of which one you select. Unless
you wish to do specialized error handling, you need not be concerned with the 8087
processor or the 8087 emulator when writing Pascal programs.

This section presents the information you normally need to write Pascal-86 programs
using real arithmetic. For further information you may need to determine the cause
of real arithmetic errors, see 14.6 and 14.7. Complete information on the function-
ality and use of the 8087 processor and emulator is provided in the iAPX 86,88 User’s
Manual.

The discussion of real arithmetic is in this section and in 14.6 and 14.7 applies to the
operations of real addition, subtraction, multiplication, and division, the predefined
arithmetic and transfer functions (8.3, 8.4), and assignmments, input, and output
involving real types.

Representation of Real Numbers

A real value v is represented in a binary floating-point format consisting of a sign bit
s, a biased exponent e, and a significand S such that v=(—1)>S-2¢ (see figure 7-1).
The significand is always a non-negative value less than two. In Pascal-86, three

TYPE TEMPREAL

SIGN
BIT EXPONENT SIGNIFICAND
SHC14 v inentannnan L T Se3
1 15BITS 64 BITS
BIT
TYPE LONGREAL
SIGN
BIT EXPONENT SIGNIFICAND
SHe10.ceveannncens L 1 Ss2
1 11 BITS 52 BITS*
BIT
TYPE REAL
SIGN
8IT EXPONENT SIGNIFICAND
sle7.een L L S23
NN e
1 8BITS 23 BITS*

BIT

*Sp, the leading significand bit, is implicit for type REAL. Its value is always 1 unless the exponent is all
zeros, in which case Sq is also 0.

Figure 7-1. Pascal-86 Real Data Types 121539-34

Pascal-86 User’s Guide Expressions and Statements

7-11

Expressions and Statements Pascal-86 User’s Guide

7.2 Statements

Statements denote algorithmic actions, and are said to be executable. A statement
may be prefixed by a label (followed by a colon), which can be referenced by GOTO
statements (7.2.10). The following is an example of a labeled statement:

100: C := SAQRTCSAQRCA)+SQARCB))

Statements in Pascal can be classified as simple statements and structured state-
ments. A simple statement contains no other statements; a structured statement
contains embedded statements. Simple statements may be assignment statements,
procedure statements, GOTO statements, or empty statements. Structured state-
ments may be compound statements, [F statements, CASE statements, WHILE
statements, REPEAT statements, FOR statements, or WITH statements.

An empty statement consists of no symbols and performs no action; unless it is labeled,
it does not result in any compiled code. Empty statements may be useful as place-
holders during top-down development and debugging.

Also, the existence of the empty statement means that if you inadvertently insert a
semicolon between two statements where one is not needed (i.e., after the last state-
ment in a sequence of statements), your program will still compile and run correctly.

Statements may also be classified according to function, as listed below:

¢ Computing new values: assignment statement

* Procedure invocation: procedure statement

¢ Statement grouping: compound statement

¢ Conditional execution: IF and CASE statements

» Repetitive execution (looping): WHILE, REPEAT, and FOR statements

» Identification of record names in references to record types: WITH statement
¢ Unconditional branching: GOTO statement

Pascal-86 User’s Guide Expressions and Statements

The following sections describe the various Pascal statements in the order just given.

7.2.1 Assignment Statements

The assignment statement replaces the current value of a variable by a new value
specified as an expression. Its syntax is:

variable := expression

where
variable is an entire variable, a component of a structured variable, or
a referenced variable.
expression must be assignment-compatible (5.3.4) with the type of the
variable.

Note that variable may be of any type, including an array or record. Thus you may
use a single assignment statement to transfer all the values of an array or record
variable to another array or record variable, provided the types of the two variables
are assignment-compatible.

If the selection of the variable involves the indexing of an array or the dereferencing

of a pointer, then whether these actions precede or follow the evaluation of the
expression is undefined.

Examples:

X i y"Z

p := C(1<¢=1) AND (ic¢100)
i = SQRCk) - €Ci * j)
hue [blue,SUCC(c)]

7.2.2 Procedure Statements

A procedure statement specifies execution of the procedure denoted by the procedure
identifier. The procedure statement may contain a list of arguments to be substituted
in place of the corresponding parameters in the procedure declaration. The corre-
spondence is established by the order of the items in the lists of arguments and
parameters, respectively; the first argument matches the first parameter, and so on.
The number of arguments must equal the number of parameters.

The order in which the arguments are evaluated and associated with their parameters
is undefined, so you should make no assumptions about this order.

The syntax of a procedure statement is:
identifier [C argument [, argument]...)]

where identifier is a procedure identifier, and each argument is either an expression or
a procedure or function identifier.

Expressions and Statements Pascal-86 User’s Guide

Examples:

BuildTree
Product(a,n,m)
Bisect(fct,-1.0,+1.0,x)

7.2.3 Compound Statements

A compound statement specifies that its component statements are to be executed in
the sequence in which they appear. Thus a compound statement groups several state-
ments into a single statement. The keywords BEGIN and END act as statement
brackets.

The syntax of a compound statement is:
BEGIN statement [; statement].. END

where
each statement is any statement described in this chapter.

You must always use a compound statement as the statement part of every block in
your program. In other words, you must group the statements in each block into a
single compound statement enclosed within BEGIN and END brackets.

Examples:
BEGIN z:=x; x:=y; y:=z END

BEGIN
RESETC(f);
REWRITE(g);
WHILE NOT EOFCf) DO
BEGIN
g :=ft; PUTCg); GETC(F)
END
END

7.2.4 IF Statements

A conditional statement (IF or CASE statement) selects for execution one of its
component statements. The IF statement includes a Boolean expression, which it
evaluates to determine whether to execute the first, or the optional second, compo-
nent statement.

The syntax of the IF statement is:
I1F expression THEN statement [ELSE statement]

The expression following the IF must be of type BOOLEAN; each statement may be
any statement.

Pascal-86 User’s Guide Expressions and Statements

NOTE
No semicolon is permitted between the first statement and the keyword ELSE.

If the Boolean expression has the value TRUE, the statement following the keyword
THEN is executed. If the Boolean expression is FALSE, the action depends on the
existence of the ELSE clause. If the ELSE clause is present, the statement following
the keyword ELSE is executed; otherwise, an empty statement is executed (no action
is performed).

The construct:
IF el THEN IF e2 THEN s?7 ELSE s2
is equivalent to:

IF el THEN
BEGIN
IF e2 THEN s7 ELSE s2
END

In other words, the ELSE belongs to the most recent IF. To associate an ELSE with
the first IF, you can enclose the second IF in a compound statement:

IF el THEN
BEGIN
IF e2 THEN sf1
END
ELSE s2

Examples:

IF x¢1.5 THEN z:=x+y ELSE z:=1.5
IF p1<>NIL THEN ptl:=pi1t.father

7.2.5 CASE Statements

The CASE statement specifies the execution of one of a list of component statements,
based on the value of an expression that serves as a selector. Each statement is prefixed
by one or more constants, called case constants; the statement executed is the one
whose case constant is equal to the current value of the selector.

If none of the case constants is equal to the value of the selector,

an error 1s caused.

The syntax of the CASE statement is:

CASE expression OF
[case-const [, case-const]... : statement ;]..
case-const [, case-const]... : statement [;]

END

Expressions and Statements Pascal-86 User’s Guide

where expression must be of an ordinal type, each case-const must be distinct and
of an ordinal type compatible with the expression, and each statement may be any
Pascal statement. Restrictions on case constants in Pascal-86 are given in Appendix
C.

In the following examples, i is a variable of an integer type, x is a REAL variable,
and operator is a variable of an enumerated type that may have the value plus, minus,

or times:

CASE operator OF i OF
plus: X 1T X+ty; x :+ = TRUNC(Cx);
minus: X 1= XxX-y; ROUND(x)
times: x 1= xty;

END END

7.2.6 WHILE Statements

The repetitive statements (WHILE, REPEAT, and FOR) execute their component
statements repeatedly. The WHILE statement executes its component statement
repeatedly as long as a given condition remains satisfied. Each time through the loop,
the condition is tested before the statement is executed. Thus the WHILE statement
is most useful when the loop is not performed at all in some circumstances.

The syntax of the WHILE statement is:

WHILE expression D0 statement

where
expression must be a BOOLEAN expression.
statement may be any statement. Since only a single statement is

allowed, you may wish to use a compound statement here.

The statement is repeatedly executed while, prior to each execution, the value of the
BOOLEAN expression is TRUE. If its value is FALSE at the beginning, the state-
ment is never executed at all.

The statement:

WHILE b DO s

is equivalent to:

IF b THEN BEGIN
S;

WHILE b DO s
END

Pascal-86 User’s Guide Expressions and Statements

Examples:

WHILE switch=TRUE DGO
BEGIN
sampleCinput);
IF ABSCinput)>toler THEN fixup;
IF operatorstop THEN switch=FALSE;
END

WHILE NOT eof DO

BEGIN

read(number);

sum := sum+number;
END

7.2.7 REPEAT Statements

The REPEAT statement executes its component statements until the given condition
is satisfied. Each time through the loop, the condition is tested after the statement is
executed. This means that one iteration of the loop is always performed.

The syntax of the REPEAT statement is:

REPEAT statement [; statement]... UNT 1L expression

where each statement may be any statement and expression must be a BOOLEAN
expression.

The statement sequence between the symbols REPEAT and UNTIL is executed
repeatedly until the Boolean expression is TRUE after some execution of the sequence.

The statement:
REPEAT s UNTIL b

is equivalent to:

BEGIN s;
WHILE NOT b DO s;
END
Examples:
REPEAT & := i MOD j;
i = 33
j o=k
UNTIL j=0

REPEAT PROCESSCft); GETC(f) UNTIL EQFCF)

7.2.8 FOR Statements

The FOR statement executes its component statement repeatedly while a given finite
progression of values is assigned to a variable, which is called the control variable of
the FOR statement. The FOR statement is useful when the number of iterations is
known at the time of the first iteration.

Expressions and Statements Pascal-86 User’s Guide

The syntax of the FOR statement is:

FOR variable := expression T0 expression D0 statement
or:
FOR variable := expression DOWNTO expression DO statement

where variable is a local variable of an ordinal type, and the two expressions are
assignment-compatible with this type. The statement may be any Pascal statement;
since only one is permitted, you may wish to use a compound statement.

The control variable serves as a counter. The progression of values assigned to the
control variable starts with the value of the first expression and ends with the value
of the second expression. If the TO form of the statement is used, the values in the
ordinal type of the control variable are stepped through in order; if the DOWNTO
form is used, the values are stepped through in reverse order. On each iteration, the
appropriate value is first assigned to the control variable, and then the statement is
executed. If the starting value is greater than the ending value for the TO form, or if
the starting value is less than the ending value for the DOWNTO form, the state-
ment will never be executed.

An error is caused if the control variable is altered by the repeated statement or by
any statement activated by the repeated statement. However, the compiler does not
check for such alterations occurring in a procedure or function invoked from within
the FOR loop. After a FOR statement is executed, the value of the control variable
is defined only if the FOR statement is terminated by a GOTO statement leading
out of it, in which case the control variable has the value it had at the time of the
GOTO.

Apart from the restrictions just given, the FOR statement of the form:
FOR v := e TO e2 DO s

is equivalent to the statement sequence:

BEGIN
temp1l := eil;
temp2 := e2;
IF temp1 <= temp2 THEN BEGIN
v := templ;
S3
WHILE v <> temp2 BEGIN
v 1= SUCCC(Cv);
S3
END
END
END

Similarly, a FOR statement of the form:
FOR v := e! DOWNTO e2 DO s

is equivalent to the statement sequence:

BEGIN
tempt1 := ef;
temp2 := e2;

IF tempi1 >= temp2 THEN BEGIN

Pascal-86 User’s Guide Expressions and Statements

v := tempi;

WHILE v <> temp2 DO BEGIN
v := PRED(v);

END

In both cases, templ and temp2 are auxiliary variables, of the host type of the varia-
ble v, that do not occur elsewhere in the program.

Examples of FOR statements:

FOR i:= 2 T0 63 DO
IF a[i] > max THEN max:=a[i]

FOR i:=1 TO n DO
FOR j:=1 TO n DO BEGIN
x = 0
FOR k:=1 TO0 n DO
x = x + mifi, k] * m2{k, jl;
mii,j] = «x
END

FOR c:=blue DOWNTO red DO display(c)

7.2.9 WITH Statements

The WITH statement allows you to access the components of a record variable as if
they were simple variables. Inside the WITH statement, including its component
statement, all the field identifiers of the given record variables are defined as variable
identifiers. Thus the WITH statement effectively extends the scope of the field
identifiers of the records listed, so that they may be accessed as simply and efficiently
as local variables.

The syntax of the WITH statement is:
WITH variable [, variable]... D0 statement
where each variable must be a variable of a record type, and statement may be any
Pascal statement. Since only one statement is permitted, you may wish to use a
compound statement here.
The statement:
WITH v, v2, v3, ..., vn DO s
is equivalent to:
WITH v1 DO
WITH v2 DO
WITH v3 DD
WITH vn DO s

The record variables vl through vn may be embedded inside each other (representing
records within records) or completely separate.

Expressions and Statements Pascal-86 User’s Guide

If the selection of a variable in the list following the keyword WITH involves the
indexing of an array or the dereferencing of a pointer, then these actions are executed
before the component statement is executed.

To illustrate the WITH statement, let us assume that the following type definitions
and variable declarations are given:

TYPE date = RECORD day: 1..31;
month: 1..12;
year: integer;
END;
name = RECORD lastname:
PACKED ARRAY [1..20] DOF CHAR;
firstname:
PACKED ARRAY [1..20] OF CHAR;
middleinit: CHAR;
END;
studentrec = RECORD studentname: name;

birthdate: date;
END;
VAR currentrec: studentrec;
todaysdate: date;

Then the WITH statement:

WITH currentrec, studentname, birthdate DO

BEGIN
lastname := ‘Smith ‘s,
firstname := ‘Susan ‘s
middleinit := ‘K’
day := 28;
month :=5;
year := 1948;

END

is equivalent to:

currentrec.studentname.lastname

1

:= ‘smith ;
currentrec.studentname.firstname

:= ‘Susan ‘s
currentrec.studentname.middleinit := ‘K’
currentrec.birthdate.day := 28;
currentrec.birthdate.month := 5;
currentrec.birthdate.year := 1948;

Likewise,the WITH statement:

WITH todaysdate DO
IF month=12 THEN BEGIN
month := 1; year := year+1;
END
ELSE month := month+1

7-20

Pascal-86 User’s Guide Expressions and Statements

is equivalent to:

IF todaysdate.month 12 THEN BEGIN

todaysdate.month := 1;
todaysdate.year := todaysdate.year+1;
END

ELSE todaysdate.month := todaysdate.month+1

7.2.10 GOTO Statements

The GOTO statement, a simple statement, specifies that further processing is to
continue at some other part of the program, namely, at the statement marked by the
given label. The GOTO statement is presented last in this chapter because it is
considered good programming practice to avoid GOTO statements whenever possible.
Eliminating all or most GOTO statements improves the clarity and reliability of your
programs.

The syntax of the GOTO statement is:
GOTD label

where
label is a statement label.

The label must have been declared in a label declaration (4.2) whose scope includes
the block in which the GOTO falls, and it must appear in the label field of some
statement within its declared scope.

The following restrictions apply to the placement of GOTO statements:

« A GOTO statement leading to the label that prefixes a statement S causes an
error unless the GOTO statement is activated either by S or by a statement in
the statement sequence (list of statements separated by semicolons) to which S
immediately belongs. In other words, jumps into subordinate statements are not
permitted.

¢« A GOTO statement may not refer to a case constant within a CASE statement.

« To avoid unreachable statements, a GOTO statement must be the last statement
in a statement sequence (list of statements separated by semicolons), or else it
must be followed by a labeled statement.

¢« A GOTO statement leading out of a procedure causes the termination of the
procedure containing the GOTO and all procedures activated by the procedure
containing the label. If more than one activation of the target procedure exists,
the activation selected is the one containing the variables that are accessible at
the GOTO statement. This is usually the most recent activation of the procedure.

Examples of GOTO statements:

GOTO 3500
60TO 1

7-21

CHAPTER 8
PREDEFINED PROCEDURES
AND FUNCTIONS

This chapter defines the predefined, or built-in, procedures and functions in Pascal-
86. You may invoke these from any part of a program—the procedures by means of
procedure statements, the functions by means of function designators within
expressions.

You may also redefine any of these procedures or functions within your program by
declaring your own routines with the same names. Within the scope of an explicit
procedure or function declaration, this declaration overrides the predefined procedure
or function.

The following kinds of predefined procedures and functions are provided in
Pascal-86:

e Functions that operate on values of ordinal type

e Predicates or Boolean functions

e Arithmetic functions operating on integer or real values

e Transfer functions that perform numeric conversions on real values
e Procedures for allocation of dynamic variables

e Data transfer procedures for packing and unpacking of arrays

e Procedures for handling files and text files

For each predefined procedure and function, this chapter gives a definition of what
it does, the syntax of the procedure statement or function designator to invoke it,
other pertinent discussion, and examples. In the syntax, optional blanks within the
parameter lists have been omitted for readability.

NOTE

The predefined procedures and functions cannot be passed as arguments to
procedural or functional parameters.

An expression i

eger type if it is the same as one of the predefined types
INTEGER,! C

or is a valid subrange of these types (5.3.1). An
is the same as one of the predefined types REAL,

8.1 Ordinal Functions

The predefined ordinal functions—ORD, CHR, PRED, and SUCC—
all operate on a single value of an ordinal type and return values of an ordinal type.

8-1

Predefined Procedures and Functions

8.1.1 ORD

The function ORD takes an expression of an ordinal type and returns a result of type
INTEGER. Its calling syntax is:

O0RD (ord-expr)

where
ord-expr is an expression of an ordinal type.

The result depends on the type of the argument x:
» If x is an INTEGER type, ORD(x) returns the value unchanged.

o If x is a CHAR-compatible type, ORD(x) returns the INTEGER value of the
character’s ordinal position in the character set. (In Pascal-86, this is the ASCII
character set as defined in Appendix G).

« If x is any other ordinal type, ORD(x) returns the ordinal number determined
by mapping host-type values onto consecutive non-negative INTEGER values,
starting at zero. (Thus, ORD(FALSE) yields 0, and ORD(TRUE) yields 1.)

For example, given the type definition:

TYPE primarycolor = (red, yellow, blue);

then:

ORDC’A")

ORD(red)
ORD(blue) = 2

ORD(5) = 5§
= 65 (* 41H *)
= 0

Pascal-86 User’s Guide

Pascal-86 User’s Guide Predefined Procedures and Functions

8.1.4 CHR

The function CHR takes an expression of an integer type and returns the
corresponding CHAR value according to the character collating sequence defined in
Appendix G. If a corresponding character value does not exist, an error occurs.

Its calling syntax is:

CHR Cint-expr)

where
int-expr is an expression of an integer type.

For any CHAR value, CHR(ORD(x)), where x is of type CHAR, always yields x.
For example, in Pascal-86:

CHR(C25H) = %'

CHR(38H) = ’8"

CHR(99) = ‘¢’ (* B63H *)

8.1.5 PRED

The function PRED takes an expression of an ordinal type and returns the value of
the same type whose ordinal number is one less than that of the value of the expres-

sion, if such a value exists. In other words, it returns the predecessor of the argument
in the ordinal type sequence.

8-3

Predefined Procedures and Functions

84

Its calling syntax is:
PRED (ord-expr)

where

ord-expr is an expression of an ordinal type.
If no predecessor value exists, an error occurs.

For example, given the type definition:

TYPE primarycolor = (red, yellow, blue);

then:

PRED(blue) = yellow
PRED(yellow) = red
PRED(red) causes an error
PREDCTRUE) = FALSE

8.1.6 SUCC

Pascal-86 User’s Guide

The function SUCC takes an expression of an ordinal type and returns the value of
the same type whose ordinal number is one greater than that of the value of the
expression, if such a value exists. In other words, it returns the successor of the

argument in the ordinal type sequence.
Its calling syntax is:
SUCC (ord-expr)

where

ord-expr is an expression of an ordinal type.
If no successor value exists, an error occurs.
For example, given the type definition:
TYPE primarycolor = (red, yellow, blue);
then:

SUCC(red) = yellow
SUCCCyellow) = blue
SUCC(blue) causes an error

SUCCCFALSE) = TRUE

Pascal-86 User’s Guide Predefined Procedures and Functions

8.2 Predicates (Boolean Functions)
The predefined functions ODD, EOF, and EOLN all take a single argument and
return a value of type BOOLEAN.

8.2.1 ODD

The function ODD takes an expression of an integer type and returns TRUE if it is
odd, FALSE otherwise. Its calling syntax is:

0DD (int-expr)

where

int-expr is an expression of an integer type.
For example:
0DDC(CD) FALSE

6DD(7) TRUE
6DD(300) = FALSE

8.2.2 EOF

The function EOF takes a file argument; it returns TRUE if the associated buffer
variable is positioned at the end of the file, FALSE otherwise. Its calling syntax is:

EOF [(file-var)]

where

file-var is a variable of a file type.
If the file-var argument is omitted, the standard file INPUT is assumed.
If the file is not open, EOF is undefined, and a call to EOF causes an error.
EOF is useful as an exit condition in loops, for example:

WHILE NOT EOFCf) DO BEGIN

g := f+; PUTC(g); GETC(F)
END
8.2.3 EOLN

The function EOLN takes a text file argument; it returns TRUE if the associated
buffer variable is positioned at the end of a line in the text file, FALSE otherwise.
Its calling syntax is:

EOLN [Ctexfile-var)}

where

textfile-var is a variable of a text file type.

If the textfile-var argument is omitted, the standard file INPUT is assumed.

Predefined Procedures and Functions Pascal-86 User’s Guide

If the file is not open, EOLN is undefined, and a call to EOLN causes an error.
Like EOF, EOLN is useful as a loop exit condition, for example:

WHILE NOT EOLN DO BEGIN
READ(number);
sum := sum + number;
END

8.3 Arithmetic Functions

For the following arithmetic functions, the operands and the returned result are of
an integer or real type. An error occurs if the result value lies outside the range of
the indicated res e. The ari i ions include ABS, SQR, SQRT, EXP,
LN, SIN, COS, 2 nd ARCTAN.

8.3.1 ABS

The function ABS computes the absolute value of an integer or real argument. The
result type is the same as the argument type.

Its calling syntax is:
ABS Carith-expr)

where
arith-expr is an expression of an integer or real type.

For example:

ABS(-5) = 5§
ABS(3.777) = 3.777
ABSC0) = 0

8.3.2 SQR

The function SQR computes the square of an integer or real argument. The result
type is the same as the argument type.

Its calling syntax is:
SQR Carith-expr)

where
arith-expr is an expression of an integer or real type.

For example:
SQR(-5) = 25

SQRC1.2)
SQRC0.0)

Pascal-86 User’s Guide Predefined Procedures and Functions

8.3.3 SQRT

The function SQRT computes the square root of a non-negative integer or real
argument. The argument is converted to [EEMPREAE format before computation,
and the result is always TEMPREAL.

Its calling syntax is:
SQRT Carith-expr)

where

arith-expr is an expression of an integer or real type.
An error occurs if arith-expr is negative.

For example:

SQRT(C25) = 5.0
SQRT(C1.44) = 1.2

8.3.4 EXP

The function EXP takes an integer or real argument x and computes the base of
natural logarithms raised to the power x—that is, ex. The argument is converted to
format before computation, and the result is alway

Its calling syntax is:
EXP Carith-expr)

where

arith-expr is an expression of an integer or real type.
For example:
EXPCO) = 1.0

EXPC1) = 2.7183 (* approximately *)
EXPC-1.0) = 0.367879 (* approximately *)

8.3.5 LN

The function LN computes the natural loganthm of a positive (greater than zero)
integer or real argument. The argument is converted to! ’REAL format before
computation, and the result is always | 'RE.

Its calling syntax is:
LN Carith-expr)

where

arith-expr is an expression of an integer or real type.

An error occurs if arith-expr is not greater than zero.

817

Predefined Procedures and Functions Pascal-86 User’s Guide

For example:

LNC1) = 0.0
LNC2.7183) = 1.0 (* approximately *)
LNCO0.367879) = -1.0 (* approximately *)

8.3.6 SIN

The function SIN computes the sine of an mteger or real argument x, where x is in
radians. The argument is converted to TEN L format before computation, and
the result is always TE -

Its calling syntax is:
SIN Carith-expr)

where
arith-expr is an expression of an integer or real type.

For example:

SINCO) = 0.0

SIN(C3.1416) = 0.0 (* approximately *)
SINC1.5708) = 1.0 (* approximately *)
SINC-1.0) = -0.84147 (* approximately *)

8.3.7 COS

The function COS computes the cosine of an integer or real argument x, where x is
in radians. The argument is converted to ormat before computation,
and the result is always’

Its calling syntax is:
CO0S Carith-expr)

where
arith-expr is an expression of an integer or real type.

For example:

cosco) = 1.0

C0S(3.1416) = -1.0 (* approximately *)
c0S(1.5708) = 0.0 (* approximately *)
C0S(-1.0) = 0.54030 (* approximately *)

Pascal-86 User’s Guide

Predefined Procedures and Functions

Predefined Procedures and Functions Pascal-86 User’s Guide

8.3.11 ARCTAN

The function ARCTAN computes the prmmpal value, in radians, of the arctangent
of an integer or real argument. The argument is convcrtcd to TEMPREAL format
before computation, and the result is always TI

Its calling syntax is:
ARCTAN C(arith-expr)

where
arith-expr is an expression of an integer or real type.

For example:

ARCTANCO) = 0.0
ARCTANC1) = 0.7854 (* approximately *)
ARCTAN(C-1.5574) = -1.0 (* approximately *)

8.4 Transfer Functions

The transfer functions TRUNC, LTRUM ?if ROUND, and
numeric conversions. They take a smgle argument of a real type.

perform

8.4.1 TRUNC

The function TRUNC takes a real expression and returns an INTEGER result that
is the integer part of the real argument. The absolute value of the result is never
greater than the absolute value of the argument. An invalid error occurs if the result
would be outside the range of INTEGER values.

The calling syntax is:
TRUNC (real-expr)

where
real-expr is an expression of a real type.

For example:

TRUNCC(C3.7) = 3
TRUNCC(C-3.7) = -3

Pascal-86 User’s Guide Predefined Procedures and Functions

8.4.3 ROUND

The function ROUND takes a real expression and returns an INTEGER result that
is the value of the real argument rounded to the nearest integer. If the argument x is
non-negative, then ROUND(x) is equivalent to TRUNC(x+0.5); otherwise, it is equal
to TRUNC(x—0.5). An invalid error occurs if the result is outside the range of
INTEGER values.

The calling syntax is:
ROUND C(real-expr)

where

real-expr is an expression of a real type.
For example:

ROUND(3.2) = 3
ROUNDC-3.7) = -4

8-11

Predefined Procedures and Functions Pascal-86 User’s Guide

8.5 Dynamic Allocation Procedures

The predefined procedures NEW and DISPOSE allocate and deallocate dynamic
variables. Each takes a pointer argument and may also, for variant record types, take
one or more tag values as arguments.

8.5.1 NEW
The procedure NEW allocates a new dynamic variable. Its calling syntax is:
NEW (pointer [, case-const]...)

where
pointer is a pointer variable with base type T.

If one or more case-const arguments are present, T must be a record type with
variants, and the case-const values correspond to consecutive tags of the type T, listed
in the order of the matching tags in the type definition.

NEW allocates a new variable v of type T and assigns the pointer to v to pointer.

If case-const arguments are present, the allocated variable must be of a record type
with variants. The allocated variable will have nested variants that correspond to the
specified case-consts, in order of increased nesting of the variant parts. Any variant
not specified must be at a deeper level of nesting than that of the last case-const. An
error occurs if your program changes any variant part of the allocated variable to
another variant. The Pascal-86 compiler does not detect this error.

In standard Pascal, an error is caused if an entire referenced variable created by a
call to NEW with tag arguments is used as an operand in an expression, or as the
variable on the left side of an assignment statement, or as an argument. (Such a
variable does not possess the full properties—i.e., all fields—of variables of its declared
record type.) However, you may reference individual components of such variables.
Pascal-86 does not check for this error.

Sample program 8 in Chapter 9 illustrates the use of NEW.

8.5.2 DISPOSE

The procedure DISPOSE releases the storage allocated to a dynamic variable. Its
calling syntax is:

DISPOSE (pointer [, case-const]...)

where pointer is a pointer variable with base type T, and the case-const values are
tags of T as for NEW.

DISPOSE indicates that storage occupied by the variable pointer ¢ is no longer
needed. All pointer values that referenced this variable become undefined.

Pascal-86 User’s Guide Predefined Procedures and Functions

If you used case-const arguments in the call to NEW that allocated the variable, you
must use at least as many case-const arguments in the call to DISPOSE.

An error is caused if the value of the pointer parameter is NIL or undefined, or if
the pointer parameter refers to a variable that is currently a variable parameter or
an element of the record variable list of an active WITH statement. Pascal-86 does
not check for this error.

8.6 Transfer Procedures

The transfer procedures PACK and UNPACK provide efficient packing and unpack-
ing of array data.

8.6.1 PACK

The procedure PACK assigns, to all elements of a packed array, corresponding
elements of an unpacked array. Its calling syntax is:

PACK C(unpacked-array, ord-expr, packed-array)

where
unpacked-array is the unpacked array variable.
packed-array is the packed array variable.

ord-expr is an expression compatible with the index type of the
unpacked array.

The two array variables must have assignment-compatible component types. Further-
more, the number of components in packed-array must be less than or equal to the
number of components in unpacked-array.

Let the variables a and z be declared by:

a: ARRAY [m..n] OF T
2: PACKED ARRAY Ju..v] OF T

where the following relations hold:

ORDCn) -ORD(m) >= ORD(v)-ORD(Cu)
ORD(m) <= ORD(i) <= (ORD(n)-ORD(v)+QORD(u))

Then the statement:
PACKCa,i,2)
means:
k 1= i
FOR j:=u TO v DO BEGIN
2[§] := a[k];
k := SUCCC(Ck);
END

where j and k denote auxiliary variables of appropriate type not occurring elsewhere
in the program.

Predefined Procedures and Functions Pascal-86 User’s Guide

Note that PACK is defined for one-dimensional arrays only. To pack multidimen-
sional arrays (arrays within arrays), you must use a loop.

8.6.2 UNPACK

The procedure UNPACK assigns, to all elements of an unpacked array, correspond-
ing elements of a packed array. Its calling syntax is:

UNPACK (packed-array, unpacked-array , ord-expr)

where
packed-array is the packed array variable.
unpacked-array is the unpacked array variable.
ord-expr is an expression compatible with the index type of the packed
array.

The two array variables must have assignment-compatible component types. Further-
more, the number of components in packed-array must be less than or equal to the
number of components in unpacked-array.

Let the variables a and z be declared by:

a: ARRAY [m..n] OF T
z: PACKED ARRAY [u..v] OF T

where the following relations hold:

ORDC(n)-0RDCm) >= ORDCv)-ORDCu)
ORDC(m) <= ORD(i) <= C(ORD(n)-ORD(Cv)I+ORDC(Cu))

Then the statement:

UNPACK(z,a,1i)

means:

k 1= i

FOR j:=u TO v DO BEGIN
alk] := z[jls
k += SUCCCk);
END

where j and k denote auxiliary variables of appropriate type not occurring elsewhere
in the program.

Note that UNPACK is defined for one-dimensional arrays only. To unpack multidi-
mensional arrays (arrays within arrays), you must use a loop.

8.7 File and Text File Input and Output Procedures

You can perform the following input and output operations on files, which are varia-
bles of file types as defined in 5.3.2.

* Open a file for input (RESET) or output (REWRITE)
*« Read (GET) or write (PUT) one file component

8-14

Pascal-86 User’s Guide Predefined Procedures and Functions

* Read (READ) or write (WRITE) a sequence of file components, with automatic
conversion of numbers from or to type CHAR if the file is a text file

« For text files, read a sequence of characters from a line and skip to the next line
(READLN)

+ For text files, write a line (WRITELN)

» For text files, write a form feed character to start a new page of printed output
(PAGE)

e Check for the end of the file (EOF)
o For text files, check for the end of the current line (EOLN)

This section defines the procedures RESET, REWRITE, GET, PUT, READ,
WRITE, READLN, WRITELN, and PAGE. Sections 8.2.2 and 8.2.3 define the
Boolean functions EOF and EOLN.

In standard Pascal there is no procedure for closing a file. Files are closed automati-
cally when execution returns from the program block. In Pascal-86, files may be
closed with a procedure from the Run-Time Library. See Appendix B.

The predefined procedures RESET and REWRITE correspond to rewinding a tape
and preparing to read from it or write to it, respectively. The procedures GET and
PUT perform reading and writing, respectively, of a single file component, and also
advance the position of the file. The procedures READ and WRITE transfer a
sequence of file components. The predefined function EOF checks for the end of the
file.

RESET positions an input file at its beginning in preparation for reading from it, and
also transfers information from the first component of the file into the buffer varia-
ble; your program may then copy the value of the buffer variable into a program
variable. GET advances the current file position to the next component, then assigns
it. READ copies the buffer variable into a program variable you specify as a param-
eter, then performs a GET to fetch the next file component, repeating until the list
of variables is exhausted.

REWRITE positions an output file at its beginning, in preparation for writing; it also
destroys any existing information in the file. To write a new component to the file,
you first assign the desired value to the file’s buffer variable, then call PUT. The call
to PUT appends the value of the buffer variable to the file, then causes the buffer
variable’s value to become undefined. WRITE copies into the buffer variable the
value of an expression you specify as a parameter, then performs a PUT operation,
repeating until the list of variables is exhausted.

You must use RESET before reading from, and REWRITE before writing to, any
file except the predefined files INPUT and OUTPUT. In addition, you may not follow
a write operation (PUT, WRITE, or WRITELN) by a read (GET, READ, or
READLN), or a read by a write; so if you are using the same file for both input and
output, you must rewind it with REWRITE, write to it, rewind it with RESET, then
read from it, and so on.

In standard Pascal, an error is caused if you alter the position of a file while the
buffer variable F 4 is either an argument to a variable parameter or an element of
the record variable list of an active WITH statement or both. However, the
Pascal-86 compiler does not check for this non-standard usage.

With non-text files declared as FILE OF CHAR, the procedures GET and READ
read in the characters, one at a time, just as they appear in the file. With text files,
however, GET, READ, and READLN interpret end-of-line markers as single blanks
and ignore form feed characters.

Predefined Procedures and Functions

The action of the standard Pascal input buffering scheme, as described in the preced-
ing explanation of RESET, GET, and READ, is to read ahead in the file so that
input may be overlapped with computations for efficiency. However, this scheme is
not appropriate for interactive programs, since it may allow a program to query the
terminal for input before the terminal has prompted the user for that input. For this
reason, the Pascal-86 run-time system uses an alternative scheme, called lazy input,
for files declared as type TEXT or FILE OF CHAR (but not PACKED FILE OF
CHAR, for which the run-time system uses the standard buffering scheme).

Under lazy input, a “buffer full” flag associated with the file controls the filling of
the buffer variable. RESET and GET always clear the flag to indicate that new data
is needed. Whenever the buffer variable is referenced, the flag is tested, and if it is
cleared, the buffer variable is filled from the file (e.g., the terminal). After the buffer
variable has been filled, the “buffer full” flag is set, so that subsequent references to
the buffer variable (without intervening calls to GET) will not initiate another read
from the file. Invocations of EOF and EOLN make sure the buffer is full before
testing for end of file or end of line.

Note that the calling sequences of READ, WRITE, READLN, and WRITELN differ
from those of other predefined and user-defined procedures and functions in Pascal.
Each of these procedures takes a variable number of parameters, and the types of the
parameters are not predetermined by the procedure.

8.7.1 RESET

The procedure RESET opens a file for input. It positions the file at its beginning in
preparation for reading from it, and also transfers information from the first compo-
nent of the file into the buffer variable. Your program may then copy the value of
the buffer variable into a program variable. You must use RESET before using GET,
READ, or READLN to read from any file except the predefined file INPUT.

Its calling syntax is:

RESET (file-var,

RESET resets the current file position at its beginning. If the specified file f is not
empty, RESET assigns the buffer variable f 4+ to the value of the first component of
f, and causes EOF(f) to become FALSE. If f is empty or does not exist, f + becomes
undefined, and EOF(f) becomes TRUE.

he physical file last associated with the file variable is
assumed. e first reference to a file variable has no physical file associated with it
(either by preconnection or by a string-expr parameter to RESET or REWRITE), a
default physical file is assigned to it. If the file variable is a program parameter
specified in the program heading, the default physical file name is the same as the

Pascal-86 User’s Guide

Pascal-86 User’s Guide Predefined Procedures and Functions

file variable name. If the file variable is not a program parameter, the run-time system
creates an empty temporary file, which will be deleted at the end of the program.

Sample programs 2A, 2B, 3, and 4 in Chapter 9 give examples of the use of RESET.

8.7.2 REWRITE

The procedure REWRITE opens a file for output. It positions a file at its beginning
in preparation for writing to it and also destroys any existing information in the file.
You must use REWRITE before using PUT, WRITE, or WRITELN to write to any
file except the predefined file OUTPUT.

Its calling syntax is:

REWRITE (file-var

where file-var is the name of a file variable

REWRITE positions the specified file f such that a new file may be generated, causes
EOF to become TRUE, and causes the buffer variable f 1 to become undefined.

he physical file last associated with the file variable is
assumed. If the first reference to a file variable has no physical file associated with it
(either by preconnection or by a string-expr parameter to RESET or REWRITE), a
default physical file is assigned to it. If the file variable is a program parameter
specified in the program heading, the default physical file name is the same as the
file variable name. If the file variable is not a program parameter, the run-time system
creates a temporary file, which will be deleted at the end of the program.

If the file already exists, REWRITE will delete it and create an empty new file. In
essence, it will erase the contents of the file.

Sample program 3 in Chapter 9 gives an example of the use of REWRITE.

8.7.3 GET

The procedure GET advances the current file position to the next component, then
assigns the value of this component to the associated buffer variable, allowing your
program to copy it.

Its calling syntax is:

GET [(file-var)]

where
file-var is the name of a file variable.

Predefined Procedures and Functions Pascal-86 User’s Guide

If a file variable is not specified, the predefined text file INPUT is used.

If the predicate EOF(f) is FALSE prior to the execution of GET(f), then GET
advances the current file position to the next component and assigns the value of this
component to the buffer variable f4. If no next component exists, then EOF(f)
becomes TRUE, and the value of f + becomes undefined. If EOF(f) is TRUE prior
to execution, an error occurs.

When GET is applied to a file f, an error occurs if f is undefined. An error also occurs
if the file is set for output rather than input; that is, if REWRITEC(f) has been called
since the last call to RESET(f).

Sample program 3 in Chapter 9 gives an example of the use of GET.

8.7.4 PUT

The procedure PUT appends the value of the buffer variable to the specified file,
then causes the value of the buffer variable to become undefined.

Its calling syntax is:
PUT [(file-var)]

where

file-var is the name of a file variable.
If a file variable is not specified, the predefined text file OUTPUT is used.
If the predicate EOF(f) is TRUE prior to the execution of PUT(f), then PUT appends
the buffer variable f 4 to the file f, EOF(f) remains TRUE, and the value of f1
becomes undefined. If EOF(f) is FALSE prior to execution, an error occurs.
When PUT is applied to a file f, an error occurs if f is undefined. An error also occurs
if the file is set for input rather than output; that is, if RESET(f) has been called
since the last call to REWRITEC(f).

Sample program 3 in Chapter 9 gives an example of the use of PUT.

8.7.5 READ

The READ procedure copies the file buffer variable into a program variable you
specify as an argument, then performs a GET to fetch the next file component,
repeating until the list of variables is exhausted. The file must be a text file; READ
automatically converts the input from type CHAR to the appropriate variable type(s).
Its calling syntax is:

READ ([file-var, Jvariable[, variable]...)

where
file-var is the name of a file variable.

If file-var is omitted, the predefined text file INPUT is assumed. Each variable

parameter may be an entire variable, a component of a structured variable (indexed
variable, field designator, or buffer variable) or a referenced variable.

8-18

Pascal-86 User’s Guide Predefined Procedures and Functions

When READ is applied to a file f, an error occurs if f is undefined. An error also
occurs if the file is set for output rather than input; that is, if REWRITE(f) has been
called since the last call to RESET(f).

Sample programs 2A, 2B, 4, 6, 7, and 8 in Chapter 9 give examples of the use of
READ.

Each variable must be of a character, integer, or real type, or a valid subrange of
these types as defined in 5.3.1.

The statement:

READCf,v1,..vn)

is equivalent to:

BEGIN READCf,v1); .. ; READCf,vn) END

Character Variables. If vis a variable of type CHAR or a subrange of CHAR, then:
READCTF,v)

is equivalent to:

BEGIN v:=ft; GETCf) END

Integer Variables. If v is a variable of type INTEGER,
a valid subrange of these types, then:

READCS,v)

reads from file f a sequence of characters that form a decimal integer; that is, a
sequence of decimal digits. The value of the integer, which must be assignment-
compatible with the type of v, is assigned to v. Preceding spaces and end-of-line
markers are skipped. Reading ceases as soon as the buffer variable f + contains a
character that does not form part of the integer. If the first character read is not a
legal decimal digit or a minus sign followed by a legal decimal digit, an error occurs.

NOTE

READ will not skip characters other than a space, carriage return, or line
feed. In particular, the comma (,) is not skipped and will cause an error if
used as a delimiter.

Real Variables. If v is a variable of type REAL,
then:

READCf,v)

reads from file f a sequence of characters that represent a real number.

8-19

Predefined Procedures and Functions Pascal-86 User’s Guide

The value of the real number is assigned to v. Preceding spaces and end-of-line markers
are skipped. Reading ceases as soon as the buffer variable f 4 contains a character
that does not form part of the real number. If the sequence of characters read does
not form a legal real number, an error occurs.

NOTE
You cannot apply READ to nontext files. You must use GET().

8.7.6 WRITE

The WRITE procedure copies into the file buffer variable the value of an expression
you specify as an argument, then performs a PUT, repeating until the list of arguments
is exhausted. The file must be a text file; WRITE automatically converts all arguments
to type CHAR before writing them.

Its calling syntax is:
WRITE ([file-var, |write-pararm(, write-param]...)

where
write-param is of the form:
expression [: total-width-expn [: frac-digits-expn]]

The file-var is the name of file variable. If the file-var is omitted, the predefined text
file OUTPUT is assumed. Each expression is an expression whose value will be written
to the file f; it may be of a character, integer, real, Boolean, or string type. The items
total-width-expn and frac-digits-expn are expressions of an integer type; their values
must be greater than or equal to 1, or an error occurs.

8-20

Pascal-86 User’s Guide Predefined Procedures and Functions

The statement:

WRITECf,p1,...,pn)

(where pl,...,pn are write-params) is equivalent to:

BEGIN WRITECf,p1); ... 5 WRITECf,pn) END

When WRITE is applied to a file f, an error occurs if fis undefined. An error also
occurs if the file is set for input rather than output; that is, if RESET(f) has been
called since the last call to REWRITE(f).

Sample programs 1, 2A, 2B, 3, 4, 6, and 7 in Chapter 9 give examples of the use of
WRITE.

WRITE for Text Files

In each write-param in the calling syntax, expression is the value to be written, and
total-width-expn and frac-digits-expn are the field width parameters. The value of total-
width-expn is the total number of characters to be written, unless expression requires
more than total-width-expn characters to represent it; in this case, the number of
characters written will be the smallest number necessary to represent expression. If
total-width-expn is omitted, a default total width value is assumed. In Pascal-86, this
default value is 1 for character, integer, real, and Boolean expressions, and n for
string expressions (the number of characters specified for the string type).

The field width parameter frac-digits-expn may be used only when expression is of a
real type. Its presence specifies output in fixed-point representation, and its absence
specifies floating-point representation. For details, see the discussion of real output
later in this section.

Character Expressions. If the expression to be written is of type CHAR, the value
written is right-adjusted in an output field of the specified width, and any remaining
positions to the left are filled with blanks.

Integer Expressions. If the expression to be written is of type INTEGER, WORD,
or LONGINT, the decimal representation of its value will be written, preceded by a
minus sign if the number is negative. The representation of zero is a single zero digit.
If the specified total width of the output field is large enough to contain the decimal
representation (and the minus sign if the number is negative), the value written is
right-adjusted in an output field of the specified width, and any remaining positions
to the left are filled with blanks. Otherwise, the value is written using an output field
of as many characters as needed.

Real Expressions. If the expression to be written is an expression of a real type, a
decimal representation of the value, rounded to the specified number of significant
digits or decimal places, is written. If frac-digits-expn is given, the number is written
in fixed-point representation; otherwise, it is written in floating-point representation.

arithmetic may produce negat
: leduon e

ive zeros, positive and

11

8-21

Predefined Procedures and Functions Pascal-86 User’s Guide

Floating-Point Representation. If a real expression is to be written and frac-digits-
expn is not given, the value of the expression is written in floating-point representation.

This is a decimal representation in scientific notation form, with one digit to the left
of the decimal point, truncated to fit the actual width of the output field. If the value
of total-width-expn is greater than or equal to 10, the actual width of the output field
is as specified by total-width-expn; otherwise, the actual width is 10.

The floating-point representation has the following form:
1. The sign of the r¢al value (— or blank)

2. The most significant digit of the scientific notation representation (0 if the value
is zero)

3. The decimal point (.)

The next f significant digits of the scientific notation representation, where f =
actual width - 9 (all zeros if the value is zero)

5. A capital E
6. The sign of the exponent (— or +)
7. The exponent in four digits, with leading zeros if necessary

Note that making total-width-expn larger will only increase the number of significant
digits written out. If you desire padding blanks, your program must write them out
explicitly.

Fixed-Point Representation. If a real expression is to be written and frac-digits-expn
is given, the value of the expression is written in fixed-point representation.

Like the floating-point representation, this is a decimal representation. The number
of digits to the left of the decimal point (7) is the number of digits needed to represent
the integer part of the value, and the number of digits to the right of the decimal
point (f) is specified in frac-digits-expn. If the specified length of the significand is
less than or equal to 18 digits, the number will be rounded to fit the output field.
Otherwise, the number will be truncated to 18 significant digits, adding trailing zeros
if needed.

The minimum number of characters written (m) is thus (i+f+1) for a positive or
zero value, or (i+f+2) for a negative value. If the value of total-width-expn is greater
than or equal to m, the output value is right-adjusted in an output field of the speci-
fied width, and any remaining positions to the left are filled with blanks. Otherwise,
the value is written in an output field of width m.

NOTE

The fixed-point equivalent of a real expression may have over 4000 decimal
places. For this reason, your program should check the ranges of real values
before printing them out in fixed-point form.

Following the leading blanks if any, the fixed-point representation has the following
form:

1. A minus sign (—) if the value is negative
2. The first i digits of the value

3. The decimal point (.)

4. The next fdigits of the value

String Expressions. If the expression to be written is of a string type, the value of
the string will be written as a sequence of characters. If the specified width of the

8-22

Pascal-86 User’s Guide Predefined Procedures and Functions

output field is greater than or equal to the length of the string, the string is rightad-
justed in an output field of the specified width, and any remaining positions to the
left are filled with blanks. Otherwise, the string is truncated on the right to the widths
of the output field before it is written.

NOTE
You must use PUT(f) for writing nontext files.

8.7.7 READLN

The READLN procedure is applicable only to text files. It performs the same
functions as READ, but after it has read in all the specified data, it moves the position
of the file to just past the end of the current line. Unless this is the end-of-file position,
READLN thus positions the file at the start of the next line, skipping over the last
part of the line just read. You may call READLN without specifying any variables.
In this case, it simply moves the position of the file.

Its calling syntax may be any one of the following:

READLN ([textfile-var, variable| , variable]...)

READLN (text-file)

READLN

where

textfile-var is the name of a text file variable.

If textfile-var is not present, the predefined text file INPUT is assumed. Each variable
parameter may be an entire variable, a component of a structured variable (indexed
variable, field designator, or buffer variable) or a referenced variable. Furthermore,
each variable must be of a character, integer, or real type, or a valild subrange of
these types as defined in 5.3.1.

The statement:

READLNCf,v1,.., vn)

is equivalent to:

BEGIN READ(f,vi,..,vn); READLNCFf) END

where:

READLNCF)

is equivalent to:

BEGIN WHILE NOT EOLNCf) DO GETC(f); GETC(f) END

When READLN is applied to a text file f, an error occurs if fis undefined. An error
also occurs if the file is set for output rather than input; that is, if REWRITE(f) has
been called since the last call to RESET(f).

Sample programs 1, 2A, 2B, 4, 6, 7, and 8 in Chapter 9 give examples of the use of
READLN.

8-23

Predefined Procedures and Functions Pascal-86 User’s Guide

8.7.8 WRITELN

The WRITELN procedure is applicable only to text files. It performs the same
functions as WRITE, but after it has written all the specified data, it writes an end-
of-line marker (in the Pascal-86 logical record system, an ASCII carriage return
followed by a line feed), thus terminating the current line. You may call WRITELN
without specifying any variables; in this case, it simply writes an end-of-line marker
(producing a skipped line on printed output).

Its calling syntax may be any one of the following:

WRITELN ([textfile-var, Jwrite-param| , write-param]...)
WRITELN (textfile-var)
WRITELN

where
write-param is of the form:
expression [: total-width-expn [: trac-digits-expn]]

The textfile-var is the name of a text file variable. If textfile-var is not present, the
predefined text file OUTPUT is assumed. Each expression is an expression whose
value is to be written to the file f; this expression may be of a character, integer, real,
Boolean, or string type. The items total-width-expn and frac-digits-expn are expres-
sions of type INTEGER. Their values must be greater than or equal to 1, or an error
occurs. The total-width-expn and frac-digits-expn parts are explained further in the
section on WRITE for text files.

The statement:

WRITELNCf,p1,..,pn)

is equivalent to:

BEGIN WRITECFf,p1,..,pnd; WRITELNCFf) END

When WRITELN is applied to a text file f; an error occurs if f is undefined. An
error also occurs if the file is set for input rather than output; that is, if RESET(f)

has been called since the last call to REWRITEC(S).

In standard Pascal, WRITELN is the only means for writing the line marker. In
Pascal-86, WRITEing CR followed by LF has the same effect.

Sample programs 1, 2A, 2B, 3, 4, 6 ,7, and 8 in Chapter 9 give examples of the use
of WRITELN.

8.7.9 PAGE

The procedure PAGE is applicable only to text files. It writes a form feed character
(in Pascal-86, ASCII OCH) to the file. This causes a page eject in the file when it is
printed, so that subsequent output to the file will be on a new page. If the last character
sequence written before the call to PAGE was not an end-of-line marker (CR followed
by LF for Pascal-86), PAGE performs an implicit WRITELN to the file.

Its calling syntax is:

PAGE [(Ctextfile-var)]

8-24

Pascal-86 User’s Guide Predefined Procedures and Functions

where

textfile-var is a text file variable.
If textfile-var is omitted, the predefined text file variable OUTPUT is assumed.

When PAGE is applied to a text file f, an error occurs if f'is undefined. An error also
occurs if the file is set for input rather than output; that is, if RESET(f) has been
called since the last call to REWRITE(().

For example:

PAGE(edittext)

causes a page eject in the file edittext.

8-25

Predefined Procedures and Functions Pascal-86 User’s Guide

8-26

Pascal-86 User’s Guide Predefined Procedures and Functions

8-27

Predefined Procedures and Functions Pascal-86 User’s Guide

8-28

Pascal-86 User’s Guide Predefined Procedures and Functions

8-29

CHAPTER 9
SAMPLE PROGRAMS

This chapter includes nine sample programs illustrating important features of the
Pascal language. Two of these have already been introduced in Chapters 1 and 2.

Source code for all these programs is provided on the release diskette, so that you
may run them yourself. For examples of linking, locating and executing programs,
see Chapter 12.

9.1 Sample Program 1: Temperature Conversion

The program in figure 9-1, introduced in Chapter 1, converts Fahrenheit degrees to
Celsius as you enter them from the console.

When you run this program, it first displays the message:
Fahrenheit temperature is:

Type in a temperature in Fahrenheit degrees. If you mistype, you may edit the line
using the RUBOUT key. Then type RETURN.

The program calculates the Celsius temperature and displays the output:
Celsius temperature is: n

where

n is the Celsius equivalent of the temperature you typed in.
Finally, the program skips a space and displays:
Another temperature input?

Type Y or y if you want to do another calculation. This causes the program to skip a
line and display the starting message again, allowing you to type in another temper-
ature. You may do this as many times as you wish.

When you wish to stop, answer the final query with any character other than Y or y,
and the program will skip a line and return control to the operating system. This
program must be linked to the run-time support libraries (P86RNO.LIB,
P86RN1.LIB, P86RN2.LIB, P86RN3.LIB), the appropriate 8087 libraries (either
8087.LIB or E8087.LIB and E8087), and any interface libraries required by your
operating system.

9.2 Sample Programs 2A and 2B: Binary Tree Traversal

These programs, introduced in Chapter 2, build a binary tree and print out the nodes
of the tree in three notations: infix, prefix, and postfix. These notations represent the
three methods of tree traversal—inorder, preorder, and postorder, respectively—used
in most computer programs that deal with trees. Such a tree may represent, for
example, an arithmetic expression to be interpreted by a parsing program, with the
nodes being symbols or tokens. Here, for simplicity, each node is a single character.

9-1

Sample Programs

Pascal-86 User’s Guide

system—id Pascal-86, Vx.y

Source File: :F5:PROG?T.SRC
Object File: :F5:PR0G1.084
Controls Specified: <none>.

STMT LINE NESTING SOURCE TEXT:

:FS:PROGT.SRL

(x This program converts Fahrenheit temperatures to Celsius. It

grompts the user to enter & Fahrenheit temperature.,
on the console.

integer.,

either rezl or

The prcgram computes and displays the equivalent

Celsius temperzture on the console until the user has no more input. *)

progrem FazhrenheitTolelsius(Input,Output)’

2 8§ 0 O var CelsiusTempsFzhrenheitTemp : real;
3 g 0 C QuitChar : char;
4 M 0 C begin
4 13 0 1 repeat
4 15 0 2 writeln; uriteln;
6 17 0 2 write(“Fanrenreit temperature is: °);
7 19 0 2 readln(FahrenneitTemp)’
8 21 0 2 CelsiusTemp := ((FahrenheitTemp = 32.0) *» (5.C / 9.0));
9 23 0 2 write(“Celsius temperature is: “); writeln{CelsiusTemp:5:1);
1 25 0 2 writeln;
12 27 0 2 write(“Anctner temperature input? :7);
13 29 0 2 read(QuitChar), writeln;
15 3 0 2 until not (QuitCher in [°Y°,"y"])
16 33 0 2 end., (* FahrenheitToCelsius *)
Summary Information:
PROCEDURE OFFSET CCCE SIzE DATA SIZE STACK SIZE
FAHRENHEITTOCELSIUS 207CH C181Hd 352C 00019H 250 000¢EH 140
=CONST IN COCE- ca7oH 125¢C
Total 01DEH 4780 Q00019H 250 0C42H 66D

33 Lines Read.
0 Errors Cetected.

Oictionary Summary:

230K8
6KS
0K3
3ka

Memory Available.
Memory Used (2%).
Cisk Spece Used.

out of 16K8 Static Space Used (13%).

Figure 9-1. Sample Program 1: Temperature Conversion

9-2

Pascal-86 User’s Guide Sample Programs

The input is in the form of a series of lines, each representing a node by means of
four items separated by blanks. The first item in the input line is the character at
that node. The second is a sequence number identifying the node; the program uses
this number as an index into an array of records representing the tree. The third and
fourth items are the sequence numbers of the left-hand and right-hand nodes, respec-
tively, that are connected below the given node. A zero means there is no node
connected below the given node at that (left-hand or right-hand) position. For example:

O DO NT 1 M x +
WO NODUI & WM —
cooMo Mo AN
oo PWo No Ul Ww

This input represents the tree in figure 9-2.

The three methods of tree traversal are all defined recursively. The starting point
(the first root) is at the top of the tree. For the three methods, the steps at each level
of recursion are as follows:

Traverse the left sub-tree.
Visit the root.
Traverse the right sub-tree.

Inorder traversal:

whN=

Visit the rodt.
Traverse the left sub-tree.
Traverse the right sub-tree.

Preorder traversal:

W=

Traverse the left sub-tree.
Traverse the right sub-tree.
Visit the root.

Postorder traversal:

W

Figure 9-2. Sample Input Tree for Sample Programs 2A and 2B 121539-35

9-3

Sample Programs

Thus, the output produced from the sample input is as follows:

INFIX:

(ccc A/ B)Y - C) * D) + E)
PREFIX:

+ * -/ ABCTDE

POSTFIX:

A B/ C - D+« E +

Pascal-86 User’s Guide

These programs show the use of nested structures—in this case, an array of records.
The procedures infix, prefix, and postfix are all directly recursive, reflecting the

recursive definitions of the three methods of tree traversal.

Sample program 2A (figure 9-3) is a standard Pascal version of the tree traversal
program. Sample program 2B (figure 9-4) is the source program divided into two
separately compiled modules, using the separate compilation facilities of Pascal-86.
The programs must be linked to the run-time support libraries (P86RNO.LIB,
P86RNI1.LIB, P86RN2.LIB, P86RN3.LIB), 87NULL.LIB, and any interface

libraries required by your operating system.

syst

Sour
ObJje
Cont

STMT

w

~N O W

10
L
12

13
1¢

em=-id Pascel=-854, Vx.y

ce File: :F5:PROGZALSRC
ct File: :F5:PROGZA.CBY
rols Specified: <none>.
LINE NESTING SOURCE TEXT: :F5:PROG2A.SRC
(* This procram builas 2 binary tree of characters from
Lser input data and prints out the nodes of a tree in
infix, prefix, ana pcestfix notation, An input line con-
sists of the charccter, its positicn in the tree, and the
cosition of its tuo children; each item is separated from
the next by & blank.
Variables -
MaxNumNodes = maxiwum number c¢f nodes in a tree
Cne = index of the root
Nocelraracter = ccnstitutes a node in the tree
NedelIndex = position of node in the tree
cxpressicenTree = binary tree which is created
CataFile = file uwubich holds user data *)
1¢ & 23 crogrem TreeTraversal(lnput,Cutput);
18 0 C const MexNumhodes = 20’
19 0 O Cne = 17
21 0 3 tyoe Subscr = C,.MaxNumNodes’
22 0 O Nede = reccrd
23 3 1 Symbol char;
2¢ 0 1 Left Subscr;
25 0 1 Right : Subscr
end,
27 0 O Tree = arrzy(Subscr] of node;
29 0 O ver Nocelheracter char;
30 ¢ © Nocdelndex integer;
31 0 G ZxpressionTree Trees
32 0 0 CetaFile text;
[A Dl el il bl L L b Ll b e Dl et D Lot l)
35 0 92 procedure SuildTraes (* build tree from user input *)
36 1 O var FindRoot boclean;

Figure 9-3. Sample Program 2A: Binary Tree Traversal

Pascal-86 User’s Guide Sample Programs

15 38 1 0 procedure Aachode; (* add a node to the trees *)
16 36 2 0 begin
16 40 2 1 write(NodeClharacter : 3, Nodelndex: 3);
17 41 2 1 with ExpressionTreelNodelndex] do begin
18 42 2 2 Symbel:=Ncdelharacter’
19 43 2 2 read(DataFile,Left),; write(Left : 3),
21 b4 2 2 read(LatzsFile,Richt); write(Right : 3);
23 45 2 2 readin(DeataFile)’
24 46 2 2 writeln
end
25 48 2 1 end; (*x AddNoge *)
26 S0 1 ¢ tagin
26 51 1 1 findRcot := fealse’
27 52 1 1 writeln(INPUT IS:°); wrifeln;
29 53 1 1 AddNcaes
30 54 1 1 repeat
30 55 1 2 read(DataFile,NodeCharacter,Nodelndex)’
31 56 1 2 if NodeIndex = 1 then FindRoot := true
32 57 1 2 else AddNcde
33 58 1 2 until (FindRoot) cr (eof(DataFile))’
35 5¢ 1 1 writeln
end; (* BuildTree *)
(% =====-= R il B et *)
36 63 0 O crocedure Infix(NodeIndex : Subscr); (* write out the
- tree in infix notation =)
37 65 1 0 begin
37 66 1 1 with ExpressionTree(NodeIndex] do
38 67 1 1 if Left <> 0 then begin
39 68 1 2 write((" : 1);
40 69 1 2 Infix(Left),
41 70 1 2 write{(Symbol : 2);
42 71 1 2 Infix(Righrt);
43 72 1 2 write(’)” : 1)
end (* if x)
44 74 1 1 else write(Symbol : 2)
45 75 1 1 end; (x Infix *)
(% === e m e m e eeeee mmmeememmec e)
46 78 0 0 procedure Prefix{(Nodelndex : Subscrl); (*x write out the
tree in prefix notation *)
47 80 1 O begin
4 81 1 1 tith ExpressicnTree(NodeIndex] do
48 82 1 1 if Left <> 0 than begin
49 83 1 2 urite(Symbol : 2);
50 84 1 2 Prefix(Left);
51 85 1 2 Prefix {Right)
end (x if *)
52 87 1 1 else write(Symbol : 2)
53 88 1 1 and; (* Prefix =)
(% ===--coommen B R EE L PP PR PP RN e D]
Sé 91 0 0 procedure Postfix(Nodelndex : Subscr);, (* write out the
tree in postfix notation =)
55 93 1 Q0 tegin
55 94 1 1 with ExpressicnTreeiNodeIndex] do
56 95 1 1 if Left <> 0 then begin
57 96 1 2 Pestfix(teft);
58 97 1 2 Postfix{Right)’
59 98 1 2 write{(Symbel : 2)
end (x if *)
60 10C 1 1 2lse write(Symbol : 2)
61 101 1 1 end; (* Postfix *)

[R R R el ikl R e D L *)
(x The main preogram reads in user data and displays the
tree in Infix, Prefix, and Postfix notation. *)

Figure 9-3. Sample Program 2A: Binary Tree Traversal (Cont’d .)

9-5

Sample Programs

Pascal-86 User’s Guide

62 107 0 0
62 108 0 1
63 109 0 1
66 11C 0 1
67 111 0 1
68 112 G 2
6% 113 0 2
71 114 0 2
72 115 0 2
74 116 0 2
75 117 0 2
77 118 0 2
78 119 0 2
79 120 3 2
31 121 90 1
82 122 0 1

Summary Information:

PROCEDURE
BUILGTREE
ADDNODE

INFIX

PREFIX

POSTFIX
TREETRAVERSAL
-CONST IN COCE-

Total

122 Lines Read.
Q0 Errors Catectea.

Dictionary Summary:

tegin (* TreeTraversesl x)
reset(Detafile, " :F1:30ATA27))
writ2ln/, writeln; writeln,
read(fatafFile,NodaCharacter,Nodelnde
while nct eof(lateFile) do begin

3uilaTree’

writeln; writeln(INFIX:)}
Infix(0One),;

writeln; writeln(’PREFIX:7);
Prefix{(0One)’;

writeln; writeln(POSTFIX:),
Pestfix(Cne);

writeln; writeln

end;

writelin; uwriteln

end. (* TreeTraversal x)
CFFSET CODE SIZE GATA SIZE
00eeH CO74K 116C
0034H Q02AEH 1740
015¢H4 QC9¢&H 152¢C
015eH GO6FH 1110
025CH CO05%H 111¢C
c2CcCH Q178H 279C 0n0SAR 500
OC34H 52C
C447H 10950 2C0SAH %09

230

KB

6K8

e

KB

Memory Available.
Memory Used (2%).
Cisk Space Used.

3k8B

Figure 9-3. Sample Program 2A: Binary Tree Traversal (Cont’d.)

out of 16KE Stetic Space Used (18%).

x);

STACK

0C10H
0010H
000EH
000¢EH
CCOEH
0C0EH

0C8CH

SIZE

160
16D
140
14D
140
140

1400

Source File:
Object File:
Controls Specified:

STMT LINE NESTING

1 1T 0 90
2 2 0 0
3 3 0 0
4 & 0 0
5 5 0 ¢
6 6 0 ¢
7 7 0 0
8 g ¢ 0
9 10 0 0
9 LRV I |
10 12 0 1
1" 13 0 1
12 15 0 0
13 17 0 0
14 1 0 3@
15 19 0 0

16 28 0 O

:€5:PRG281.SRC
:F5:PRGcB1.0RY
<none>.

SOURCE TEXT: :FS:PRG281,SRC

rcdule SinaryTreeMainr,

cublic osinraryTrzeCutput;
procecure Infix(Nodelndex : Subscr)’
grocecdure Prefix(Noaelndex : Subscr)

procedure Postfix(NodeIndex : Subscr
cublic BinaryTreeMain,
const MaxNumNedes = 20,
type Subscr = O..MaxNumNodes/
Necde = reccrd
Syrbol : char;
Left : Subscr;
Right : Subscr
end’;
Tree = arrayl(Subsecr] of Node’s

Ncdelharacter : char,
NodeIndex : integer;
ExpressionTree : Tree,

(» This program builds a
user input date
infix, prefix, and postfix notation.
sists of the charscter, its
position of its two children;
the next by & blank. =)

grogram %inaryTreeMain(Input,Output)’;

’

);

position in the tree,
each item is separated from

binary tree of characters from
and prints out the nodes of a tree in
An input line con-

and the

Figure 9-4A. Sample Program 2B1: Binary Tree Traversal, Separately Compiled

9-6

Pascal-86 User’s Guide

Sample Programs

17 3¢ 0 0 const One = 1;
13 32 0 € var CataFile texts
[E LR L L ke L R DL L Py et L LY *)
19 35 30 0 procedure 2uiluTree’ (* puild tree from user input *)
20 36 1 0 var FindRoot : beccleans
21 38 1 0 procedure AddNode’ (* add a node to the tree *)
22 39 2 0 begin
22 40 2 1 wurite(NodeCharacter 3, NodeIndex: 3);
23 41 ¢ 1 with ExpressionTreelNodeIndax] do begin
24 42 2 2 Symbecl:=NodaCharacter;
25 43 2 2 read(LataFile,Left); write(Left : 3)’;
27 46 2 2 read(CataFile,Right); write(Right : 3);
29 45 2 2 readln(Datafile)’;
30 46 2 2 writeln
end
31 48 2 1 end; (* AddNode *)
32 5¢ 1 O bagin
32 51 1 1 FindRoot := false;
33 52 1 1 writeln(INPUT IS:7); writeln;
35 53 1 1 AcddNodes
3¢ 54 1 1 repaat
36 55 1 2 read(JdataFile,Nodelharacter,NodeIndex);
37 s¢ 1 2 if Ncdelndex = M1 then FindRoot := true
38 52 1 2 else AddNode
39 58 1 2 until (FindRoct) cor (eof(DataFilel);
41 5¢ 1 1 writeln
end/; (x BuildTree =)
[AR el b el i D bl bl Dl b bt ittt bl bl *)
(* The main program reads in user data and displays the
tree in Infixs, Prefix, and Postfix notation. *)
42 66 0 G becin (* BinzryTreeMain x)
42 67 0 1 reset(CataFile, :F1;DATA2");
43 68 0 1 writeln, writeln, writeln/s
46 69 0 1 read(ldataFile,NQgdeCharacter,Nodelndex)’
47 7 0 1 while not 20f(DatsF1le) do begin
48 T2 2 3uildTrees
49 72 0 2 writeln; writeln(INFIX:)/
51 73 0 2 Infix{(Cne)’
52 74 0 2 writeln; writeln(PREFIX:");
54 755 0 2 Prefix(Gne);
55 76 0 2 writeln, writeln(POSTFIX:)/
57 77 0 2 Postfix(Cne);
58 78 0 2 writeln; uwriteln
59 79 0 2 end;
61 g0 0 1 writeln; writeln
62 g1 0 1 end., (*x BinaryTreeMain #)
Summary Information:
PROCEDURE OFFSET C0be SIZt CATA SIZE STACK SIIE
BUILDTREE 00E2H CO74H 116C 0010H 160
ADDNODE 00340 C0ASH 1740 0C10H 160
BINARYTREEMAIN 015¢H 2181H 385C (00GSAr 900 0OQ0O0EH 140
-CONST IN CODE= CJ334H 52C
Total C207H 7270 0GQ5AH 9CD 0062H 98D

81 Lines Read.
Q Errors Detected.

Dictionary Summary:

230K8
6K8
0k3
3KB

Memcry Available.
Memory Used (2%).
Cisk Space Used.
out of 16KB Static Space Used (18%).

Figure 9-4A. Sample Program 2B1: Binary Tree Traversal, Separately Compiled (Cont’d.)

9-7

Sample Programs

Pascal-86 User’s Guide

system—-id Pascel-3£, Vxa.y

Source File: :%5:
Object File: :F75:
Controls Specaifie

STMT LINE NESTING

1 10 a
2 2 0 0
3 3 0 G
4 4 o0 0
5 5 g 0
6 6 0 2
7 7 0 2
3 $ 0 0
$ 16 0 0
9 11 3
10 12 0 1
11 13 0 1
12 15 ¢ 0
13 17 20 0
14 18 C O
15 1% 0 ¢
16 21 0 9
17 24 3 0
18 26 1 0
18 27 1 1
19 28 1 1
200 29 1 2
21 30 01 2
22 31 1 2
23 32 1 2
24 33 1 2
25 35 1 1
26 36 1 1
27 39 5 0
28 41 1 0
28 42 1 1
29 43 1 1
30 44 1 2
31 45 1 2
32 46 1 2
33 48 1 1
3 49 1 1

35 52 0 0

PRG252.SRC
PRG282.03J
d: <none>.

SCURCE TEXT: :F5:PRG28B2.SRC

rodule 3ineryTreeldutout:
rublic 3inaryTreeCutput’

procedure Infix(NcdeIndex : Subser);
crocedure Prefix{(Ncaeindex : Subscr);

procecdure Postfix(Nodelndex :
public SiparyTreeMain;
const MaxNumNcdes = 207

typs Subscr = 0..MaxNumNodes’
Nede = record
Symbol : char;
Laft : Subscr’
Right : Subscr
end;

Tree = errayl[Subscrl of Nodes

var NodeCharzcter : char;
NedelIndex : integer,
ExpressicnTree : Treae;

erivate SinaryTreelutput’

G E A Ll il Ll Ll Lt bl L LA Lt Ll Al *)
crocedure Infix(NcdeIndex : Subscr); (* write out the
tree in irfix notation *)
tegin
uith ZxpressicnTreelNodelndaxl
1f Left <> J then begin
write("(7 = 1)
Infix(Left);
write{Symkbecl : 2),
Infix(Right),
write(”)” 1)
end (= 1f =)
else write(Symbcl : 2)
end; (* Infix =)
[L et B L Lt L LD L L DLy S *)
procedure Prefix(Nodelnaex : Subscr); (* urite ocut the
trz2e in prefix notation <)
Eeszin
with ZxpressionTreelNodelndex]
if Left <> 0 then becin
write(Symboli : 2)7
Prefix(Left),
Prefix(Right)
end (x 1f *)
eise write(Syrbol : 2)
end; (* Prefix =)
[E LR L LD L L LRl bl bt —————- *)

procedure Postfix(Nodelndex : Subscr);

tree in postfix notation x)

write out the

Figure 9-4B. Sample Program 2B2: Binary Tree Traversal, Separately Compiled

Pascal-86 User’s Guide Sample Programs

36 s4¢ 1 O Begin
36 55 1 1 witn ExprescionTreelNodelIndexl do
37 s¢ 1. 1 if Left <> 0 then beginr
38 57 1 2 Postfix(lLeft),
39 58 1 2 Postfix(Right)’
40 5¢ 1t 2 write(Symbel : 2)
end (* 1f =*)
41 61 1 1 else write(3ymbol : 2)
42 62 1 1 and; (* Pestfix *)

43 63 0 O

Summary Information:

PROCEDURE CFFSET CCDE SIZE DATA SIZE STACK SIZE
INFIX 000CH COC1H 193¢C 0010H 160
PREFIX 00C1H COC8FH 143C 0C10H 160
POSTFIX 215CH CO8CH 143C 0C10H 160
-CONST IN COCE- COO0CH ocC

Total C13CH 476C OCCOOH CD 0C30H 480

63 Lines Read.
0 Errors Cetected.

Dictionary Summary:
230KB Memory Available.
£KB Memory Used (2%).

CKB Cisk Space Used.
2KB out of 16KB Static Space Used (1Z%).

Figure 9-4B. Sample Program 2B2: Binary Tree Traversal, Separately Compiled (Cont’d.)

9.3 Sample Program 3: Quadratic Roots

The program of figure 9-5 computes the non-complex roots of a series of quadratic
equations of the form

y=ax’+bx+c

The program takes the quadratic coefficients a, b, and c from the file data, and outputs
the roots to the file quad. When the roots to an equation have an imaginary part, the
ptogram does not compute the roots, but writes a message to the file RESULT on
device :F1:.

This program illustrates the use of REAL and TEMPREAL numbers, a non-text file,
and file input and output via GET and PUT.

Note that this program, like any other that performs input of numeric values using
GET rather than READ, cannot directly handle console input. This is because console
I/0 is in the form of text files (i.e., files of CHAR values organized into lines), and
GET does no type conversions. The program assumes that the file data is aiready in
the correct (REAL) format.

This program must be linked to CEL87.LIB, the run-time support libraries
(P86RNO.LIB, P86RN1.LIB, P86RN2.LIB, P86RN3.LIB), the appropriate 8087
libraries (either 8087.LIB, or E8087.LIB and E8087), and any interface libraries
required by your operating system.

9-9

Sample Programs Pascal-86 User’s Guide

system-id Pascal-86, Vxa.y

Source File: :F5:PROG3.SRC
Object File: :F5:PR0G3.C2Y
Controls Specifiad: <none>.

STMT LINE NESTING SOURCE TEXT: :F35:PROG3.SRC

(= This program computes the non-complex roots of a quadratic equation
ctf the ferm a2x**xZ2 + b*x + c. It performs I/0 to @ binary file, but
displeys the inout ccefficients and outputs roots in 2 readable form

cn the console. If the roots are imaginary., the program prints an
appropriate messace.

Variahbles:
leroConst = real constant used to check for imaginary roots
InputCoef = real input file which holds the input coefficients
QuadResult = real output file which holds the quadratic results
AVar,BVar,LVar = real ccefficients

TempVar = resl value for temporary storage *)

1 15 0 0 crogram Quadratic(Output);

2 17 0 © const ZercConst = 0.C/

3 19 49 0 var InputCoef,QuadResult : file of real;

4 26 0 O AVer,BVar,CVar : real;

5 21 0 0 TempVar : TEMPREAL;

6 23 0 QO bagin

é 25 O reset{InputCoef, :F1:0ATA3"); (* position input file at beginning »)
7 26 0 1 rewrite(QuacResult, :FT1:RESULT) (* initialize output file *)

8 28 0 1 while not ECF(InputCoef) do bagin

9 36 0 2 AVar := InputCoef”*; cet(InputCoef); (» get *)

11 31 0 2 3var := Inputloef*; get(InputCoef); (x coefficients x)
13 32 0 2 CVar := Inputloef”; get(InputCoef), (* from input file =*)

15 33 ¢ 2 urite(“Input coefficients are: “,AVar,8Var,(Var); (* echo inputs *)
16 34 3 2 writeln; write(“Rcots are: °);

18 35 0 2 TempVar := (8Var * BVar) = (4 * AVar * (CVar); (* compute discriminant =*)
19 36 0 2 if TempVar >= lerolonst then begin

20 37 0 3 TempVer := sart{TempVar),
21 38 0 3 QuaaResultr := (=BVar + TempVar) / (2 * AvVar);

22 39 0 3 write(QuaogResult*); put(QuadResult),

24 «C 0 3 GuadResult” = =(BVar + TempVar) / (2 » AVar);

25 41 0 3 writeln(QuadResult?); put{QuadResult)

26 42 0 3 end (* cf if =)

27 43 0 2 alse writeln{(” 1imaginary®); (* print to default ocutput file *)

29 45 0 2 end; (* of while *)

31 47 0 1 writeln

end,(* Quadrztic =*)

Summary Information:

PROCEDURE CFFSET C0Cce £Izt DATA S1IZE STACK SIZE
QUADRATIC 0051H C26CH 608C JCC32H 50D OOJ0EH 140
-CONST IN CODE- 0051H g10

Total C281H ¢€89C 00032k 50C 0042H 660

49 Lines Read.
0 Errors Detected.

Dictionary Summary:
230KB Memory Available.
6KB Memory Used (2%).

OKB Cisk Space Used.
3KB out of 16K3 Static Space Used (18%).

Figure 9-5. Sample Program 3: Quadratic Roots

9-10

Pascal-86 User’s Guide Sample Programs

9.4 Sample Program 4: Text Editor

The program of figure 9-6 is a simple text editor. It reads a preconnected file of
characters and echoes the input to the OUTPUT file, recognizing the following control
characters and performing the indicated actions:

() Ignore all enclosed characters.

* Start new output line.

/ Exchange preceding and following characters.
+ Delete preceding character.

The control characters themselves do not appear in the output. In addition, the
program counts the number of occurrences of each capital letter in the input and
prints out the result following the text output.

Note that the input file is a text file; therefore, carriage returns and line feeds are
read as blanks. The output file (the standard file OUTPUT) is, of course, a text file.

This program illustrates the use of arrays, sets, Boolean variables and preconnection,
as well as file input and output. Execute this program with the invocation line:

PROG4CCHARINPUT=DATA4)CCcr>
This program must be linked to the run-time support libraries (P86RNO.LIB,

P86RNI1.LIB, P86RN2.LIB, P86RN3.LIB), 87NULL.LIB, and any interface
libraries required by your operating system.

system=-id Pascal-86, Vx.y

Source File: :F5:PROG4.SRC
Object File: :F5:PROG4.OBY
Controls Specified: <none>,

STMT LINE NESTING SCURCE TEXT: :F5:PROG4.SRC

(* This simple text editor program reads a preconnected file of characters,
interprets certain control characters, and echoes the input to the default
CLTPUT file. It zlso reports the number of times each capital lettar occurs.

The program recogrizes the following control characters:
(3 ignore all enclosea characters
* start & neuw output line
/ exchange preceding and following characters
+ delete preceding character

Variables -
LParen, RParen, Asterisk, Slash, Plus = control character constants
Ch = character varianle to hold input character
Templh = temporary character variable used for output character
CharlIrgut - input file of characters which is preconnected
Newline = npoolean variable to determine when 3 new line is needed
Capitalletter = cheracter set of capitol letters of the alphabet
CapCount - 1integcer array to hcld the count of each letter
gEdit - set of 2diting control characters *)

1 21 0 90 crrogram TextEdit(CharInput,Cutput)’
23

24
25

const LParen ‘(’; Rparen = ")}
., .

Siash = */°;

(= 00 2 \¥]
oo
oo

b

w

-+

®

3

%

]
L)
LT

*

~

Figure 9-6. Sample Program 4: Text Editor

Sample Programs

Pascal-86 User’s Guide

7 27 0 G ver Ch,TempCh : char;

8 26 0 O Charinput : text;

9 29 0 © Newline : bkoolean’
10 30 0 O Capitaltetter : set of "A°..°1°;
1 31 0 O CapCount : arrayl“A’..72°] of integer;
12 32 0 O £dit : set of Lparen..Slash;

tegin
Cepitalletter := ["A°..°2°37
Edit s= [°(C7, 7+, *" ;

i apCountlChl := O

-

~

w

o
OOO0OO0OOo
Amaaan

(* perform initizlization =)

CapCountlChl + 1,

(* action for control characters x)
(* ignore embedded text =*)
RParens

(* flag a new line *)

(* perform character exchznge *)

(* assign output character for next loop *)

(* write out last character =)

15 37 for Ch = “A° to “1I° d
17 38 reset(CharInput)’
18 39 Templh := “x°;
19 41 G 1 while not eof(lherlnput) do begin
290 42 0 2 read(CharInput,Ch), (* input a charzcter x)
21 43 0 2 if [Ch] * CapitallLetter <> [] then CapCount{Ch]
23 44 0 2 if {Ch] = Eda1t <> [] then
24 45 0 2 case Ch of
25 4¢ 0 3 LParen : begin
25 47 G 4 repeat read(Charlnput,Ch) until Ch
27 48 0 4 read(CharInput,Ch)
end;
29 5 0 3 Asterisk : Newline := true;s
30 ST 0 3 Plus : read(CharInput,TempCh); (* delete preceding character =*)
31 5¢ 9 3 Slash : begin
31 53 0 & Cr := TempCh’
32 54 0 4 read(CharInput,TempCh);
33 55 0 4 end
34 5S¢ 0 3 end; (* case *)
36 57 0 2 if [TempCrl * Edit = [J then urite(TempCh),
38 58 0 2 if Newline then begin
39 S9 0 3 writeln;
40 60 0 3 NewlLine := false
end; (x if x)
42 62 0 2 TempgCh := Ch
end; (* while *)
L4 65 0 1 writeln(TempCh);, writeln;
4o 66 O3 1 for Ch := “A° to “L° do write(Ch : 3,CapCountlCn]
48 67 0 1 writeln

end. (* TextEdit =*)

Summary Information:

PROCEDURE CFFSET CCDE SIE DATA SIZE STaCk SIZE

TEXTEDIT 00111 C28FH 703D J00S54H 84D OCQEH 140
-CONST IN COCE- C011h 170

Total J2CCH 720C QOCQ54H 840 0042+ 660

68 Lines Read.
0 Errors fetected.

Dictionary Summary:
230KB Memory Available.
6KB Memory ULsed (2%).

OKB Cisk Spece Used.
4KB out of 16K3 Static Space Used (25%).

Figure 9-6. Sample Program 4: Text Editor (Cont’d.)

Pascal-86 User’s Guide Sample Programs

9.5 Sample Program 5: Interrupt Processing

The program of figure 9-7, designed to run on an iSBC 86/12A system rather than
on a development system, initializes the 8253 interval timer on the iSBC 86/12A
board to interrupt the host processor every 10 milliseconds. This program illustrates
the use of Pascal-86 predefined procedures for port input/output (INBYT and
OUTBYT) and interrupt control (SETINTERRUPT and CAUSEINTERRUPT).
It also shows how to bypass Pascal’s type checking using variant records, and how to
manipulate bits using sets.

Since this program is designed to run in a bare machine (non-operating system)
environment, it need only be linked with the run-time support libraries
RTNULL,LIB,P86RN1.LIB (in that order) and 87NULL.LIB.

system=-id Pascal=86, Vx.y

Source File: :F5:PROGS.SRC
Object File: :F5:PROG5.08Y
Controls Specified: <none>.

STMT LINE NESTING SOURCE TEXT: :F5:PROGS5.SRC

(x This program uses an 8253 interval timer on an iSBC 86/12A
board to interrupt the host processor every 10 milliseconds.
It assumes the 86/12A poard is set up as a standard Series-III board
is set ug, with:
- counter 0 of the on-board 8253 free, and its interrupt strapped
to level 2 of the on-board 8259A.
- The on-board 825%A initialized as on the Series-III, with its
8 interrupts mapped in from 56 to 63.
*)

1 11 0 0 program IntervalTimer,

(* 8253 Port zddress definitions. *)

2 14 0 O const CountControlPort = OD6H;
3 15 0 0 CountRegl = ODOH’
4 16 0 0 InitializeReg0 = 030H;
(* B259a Port address and control word definitions. *)
5 19 0 0O IMaskRegFort = 0C2H;
[} 20 0 O IControlPort = OCOH/
7 21 0 0 Endoflnterrupt = Q20K
(» Define a set of interrupts to use to mask the 8259A interrupt mask =*)
(x The 8259A assigns interrupt levels from right to left in its control
register, the same order that Pascal-86 assigns bits to set elements.
*)
8 28 0 O type Intievels = (I0, I1, 12, 13, 14, 15, 16, 17);
9 29 0 O IntSet = Set of IntlLevels’
10 31 0 O var CountCounts : LONGINT; (*x Extend timer here. Holds count of
10 msec. intervals recieved. *)
(€ Rl R R e D L B e e L LD D DL LD L ————)
11 36 0 0 procedure Resetlount;
(* This procedure loads the counter value with 12300
so that the counter will count down for exactly 10
milliseconds. (The iSBC 86/124 clock rate is 1.23MHz.) =)
(* Use a variant record to map two bytes *“on top of” a word.
Note that the louw byte precedes the high byte. *)
12 42 1 0 var Count : RECORD CASE BOOLEAN OF
13 43 1 1 true:(FullWord: WORD);
14 46 11 false:(Low, High: 0..255)
ENC/

Figure 9-7. Sample Program 5: Interrupt Processing

Sample Programs

Pascal-86 User’s Guide

15
15
16
17

18

19
20

20
21

22

23
24

25

26
26
27

28
29

30
30
3
32
33
34

Summary Information:

47
48
49
50

54

59
61

63
64

70

75
77

81

86
87
88

91
92

95
96
97
98
99
100

PROCEDURE
RESETCOUNT

INITIALIZECHIP
SERVICEINTERRUPT
INTERVALTIMER

- —_

-

-

000000

“—aa0

- -

- e = O

=CONST -IN CODE-

Total

100 Lines Read.

0 Errors Detected.
Dictionary Summary:

230k8
6KB
0KkB
2KB

begin .
Count.FullWord := 12300, (* 10 milliseconds & 1.23 Mhz x)
CUTBYT(CountRegl,Count.tow);
CUTBYT(CountRegD,Count.High)
end; (* ResetCount =*)

(€ Rl bl e Dl b DR et b D Db Ll bR Rl Dl b Ll L L LT bl A b 2 L)

gprocedure InitializeChip’ (* Initialize the 8253 by setting the control
word to select counter 0, read/load low-order byte then high-order
byte, interrugt on a terminal count, and accept count in binary.
{control word = 30HA) ResetCount is called to load the counter.*)

var IMask : IntSet;

tegin
(+ Initislize Counter 0. *)
OUTBYT(CountlontrolPort,InitializeReg()’,
RESETCOUNT;

(* Now, enable the interrupt level corresponding to timer 0.
On the Series-III board, it is mapped at interrupt level 2
on the 825%A, uwhich maps to the 8086 level 58. *)

INBYT(IMaskRegPort, IMask),
(* The expression IMask - [I2] yields a set of interrupts with
12 removed. Tris turns off the bit corresponding to interrupt
level 2 on the 8259, which is our timer.
(Turning the bit off in the mask register enables the interrupt) «)
OUTBYT(IMaskRegPort, IMask - [I2])’

end; (* InitializeChip =)

S$INTERRUPT(ServicelInterrupt)

procedure Servicelnterrupt; (* This procedure services interrupt 58 when that
interrupt cccurs. To make the
program more useful, add code to take action before starting the
next interval. *)

begin
ResetCount’
CountCounts := CountCounts + 1.

(x Must clear the interrupt on the 8259A. *)
OUTBYT(IControlPort, Endoflnterrupt)’
end; (x Servicelnterrupt »)

[R it L L L T E L B R e D e P ereccccc e ——— —em——k)
begin

SETINTERRUPT(58,Servicelnterrupt);

CountCounts := 07

InitializeChip/

while true do
end., (* IntervalTimer =*)

OFFSET CODE SIZE DATA SIZE STACK SIZE
0000H 001AH 26C 0006H 60
001an 002CH 320 0008H 8D
003aH 0038H 560 0026H 380
00724 003BH 590 00004H 4D 000aAH 100

¢oocH 0o
COADH 1730 0000&4H 40 Q072H 1140

Memory Available.
Memory Used (2%).
Disk Space Used.
out of 16KB Static Space Used (12%).

Figure 9-7. Sample Program 5: Interrupt Processing (Cont’d.)

Pascal-86 User’s Guide

Sample Programs

9.6 Sample Program 6: Matrix Multiplication

The program of figure 9-8 reads in pairs of eight-by-eight two-dimensional matrices
of integers from the file INPUT, computes the product, and writes the output to the
file OUTPUT. It illustrates the use of multi-dimensional arrays, value and variable
parameters, array arguments, and text file input and output.

The algorithm used in this program was chosen for its simplicity. It may not be
mathematically optimal.

This program must be linked to the run-time support libraries (P86RNO.LIB,
P86RN1.LIB, P86RN2.LIB, P86RN3.LIB), 87NULL.LIB, and any interface
libraries required by your operating system.

system-1d

Pascal-36,

Source File:
Object File:

Controls Specified:

STMT LINE
1 1M1
2 13
3 15
4 17
5 18
6 23
7 24
8 25
8 26
9 27

10 28
12 29
14 31
15 32
16 37
17 38
18 39
18 &0
21 41
22 42
24 @3
26 45
27 46

NESTING

a ¢
o o
o 0
3 0
o o
o 0
10
17 0
101
1 1
12
12
11
11
o 0
10
10
11
101
12
12
1 1
101

Vx ey

:F5:PROGELSKRC
:F5:PROGe.02Y
<ncne>.

SGURCE TEXT: :F5:PROGE.SRC

(* This program reacs in p&irs of two-dimensional sguare matrices of
intecers from the defsult 1input file, computes the product, and writes
the results tc the default output file.

veriskbles:
MatrixSize = number of rous or columns (all matrices are sguare)
InputMatrixOne, InputMatrixTwec = integer input matrices
CutputMatrix - integer output matrix
QuitChar = character variable tc guery the user to quit *)

crocram MatrixMult(Input,Qutout)’
const MatrixSize = &;
type Matrices = srrayl(1..MatrixSize,1..MatrixSizel of LONGINT?

var InputMatrixCne, InputMatrixTwo, OQutputMatrix : Matrices’;
JuitChar : char,

(% ===ce—mcccereeccc et e r e m e e e e e et m——— -
Prompts user to enter a matrix and reads it in by columns/rouws *)

procedure ReadMatrix{(var InMatrix : Matrices)’;
var I,J : integer;
begin
writeln("INPUT AN 3X8 MATRIX:"),
for I := 1 to MatrixSize do begin
fer J := 1 to MatrixSize do read(InMatrix(1,413);
rezdln
end; (» for +)
writeln; writeln
end; (* ReadMatrix *)

[R T ettt L DL L L L L DL L L
writes out a matrix by columns/rouws *)

proceaure WriteMatrix{(OutMatrix : Matrices)’
var I,J : integer;,
begin
writeln; writeln(MATRIX PRODUCT IS:"); writeln;
for I := 1 to MectrixSize do begin
for J := 1 to MatrixSize do write(OQutMatrix[I,J] : 4);
wuriteln
end; (* for x)
writeln; writeln
end; (x driteMatrix =*)

T T e T T P
Multiplies two input matrices *)

Figure 9-8. Sample Program 6: Matrix Multiplication

9-15

Sample Programs Pascal-86 User’s Guide

28 51 0 0 procedure Product{var ProdMatrix : Matrices’,
28 52 1 0 CneMatrix,TwoMatrix : Matrices);
29 53 1 C var I, J, K : integer;
30 56 1 O Result : LONGINT;
31 55 1 € begin
31 56 1 1 for I := 1 to MatrixSize dc
32 57 1 1 for J := 1 to MatrixSizes do begin
33 58 1 2 Result := 0/
34 59 1 2 for K 1= 1 to MatrixSize do
35 60 1 2 Result := Result + COneMatrix[I,K] * TwoMatrix(X,J1;
36 61 1 2 ProdMatrix{I,J3 := Result
2nd (*x for x)

37 63 1 1 end; (* Product *)

(*k mmm e e et e e e e e e e e e e e - - *)
38 66 0 O begin (* MultMatrix »)
38 67 & 1 repest
38 68 0 2 ReadMatrix(InputMatrix0One); (* input first matrix *)
39 69 0 2 ReadMatrix(InputMatrixTuwo), (* input second matrix *)
40 70 0 2 Product(CutputMatrixsInputMatrixOne,InputMatrixTuwo); (* multigly them =*)
41 77 0 2 WwriteMatrix(QutputMatrix); (* output the resulting matrix x)
42 72 3 2 write (TANCTHER MATRIX? ‘)7 (* query for another matrix *)
43 73 0 2 read{(JuitChar); writeln
44 74 0 2 until not (QuitCrer in [°Y .,y ")
45 7S 0 2 end, (* MyltMatrix =)

Summary Information:

PROCEDURE CFFSET CODE S1ZE DATA SIZE STACK SIZE
READMATRIX 0044k CC85SH 1330 001aH 26D
WRITEMATRIX 00CsH CCo%H 1533 001an 26D
PRODUCT 0142H COA7H 1670 JC1EH 300
MATRIXMULT 02054 C11CH 2720 3C311K 7850 020¢6H 518D
-CONST IN CODZ~- COLLH 682

Total C319H 7930 00311H 7850 028CH 652D

75 Lines Read.
Q Errors Detected.

Dictionary Summary:
23CK8 Memory Availcble.
6KB Memory Usea (2%).

0K8 Disk Space Usea.
4KB out of 16K3 Static Space Used (25%).

Figure 9-8. Sample Program 6: Matrix Multiplication (Cont’d.)

9.7 Sample Program 7: Maze Game

The program of figure 9-9 finds a path through a maze and writes out the solution.
The maze is a 7 by 7 square consisting of passageways (represented by dots) and
walls (represented by W’s). For example:

o WLUW
WL WU
WL UWL
R
oMWW,
oW HL
R

Pascal-86 User’s Guide Sample Programs

The starting point is always the top left corner, and the exit is the bottom right corner.
Movement through the maze can be vertical or horizontal, but not diagonal. If a path
through the maze exists, the program prints out a square matrix in which up-arrow
+ symbols represent the path, X’s represent points visited that are not part of the
path, dots represent passageway points that were not visited, and W’s represent walls.
For example, the output corresponding to the sample input above is:

X X WL W
tRHW X W W W
WX X W .
U S S R N N
S O
S D I
A

If there is no possible path through the maze, the program writes out a message in
place of the solution. You must input the maze configuration without any blanks.
Blanks are added to the output for readability.

The procedure findpath, which does the work of finding a way through the maze, is
directly recursive—that is, it calls itself. This program must be linked to the run-time
support libraries (P86RNO.LIB, P86RN1.LIB, P86RN2.LIB, P86RN3.LIB),
87NULL.LIB, and any interface libraries required by your operating system.

syster—1d

Pascal=86, Vx.y

Source File:
Object File:
Controls Specifigd: <ncne>.

:F5:PROG745RC
:FS:PROG7.08.

STMT LINE NESTING SCURCE TEXT: :F3:PROG7.SRC

-

V0N W W

1
12

13
14
15
15
17
18
20

21

1M
12
13
14
15
1€
17
18

20
21
22

25
26
27
28
29
30
31

33

o0oo O0CO0O0OO0OCOOO o

[N N =)

(* This maze game program first prompts the user to enter a seven—by-seven
rezes where a “,° indicates a path and a ‘W’ represents a wall. The program
then determines whether or not there is 2 way out by beginning in the upper
left-hand corner and trying to exit a2t the lower right-hand ccrner. The
crogram marks with “X°s the trail which actually leads out, if any. If there
1s no way out of the maze, the program displays an appropriate messace. Other-
wise it displays the final meze and prompts the user to enter another maze. *)

o

crogram AMazeGame(Input,OQutput)’

Q censt TJop = 1) (* constant to mark the smallest row number *)
o] Bottom = 7, (* constant to mark the largest row number =)
o] Left = 1, (* constant to mark the smallest column number x)
o] Right = 7; (* constent to mark the largest column number *)
o] Path = *,"; (* constant to mark a path input by user =*)
o] Trail = *~°; (* constant to mark the trail the program took =)
o] Mark = “x°; (* constznt to mark the path which was travelled =*)
0 Size = 73 (* number of columns or rows in the mzze *)
0 var Maze : arreyll1..S51ize,1..5izel of chars (* array to hold maze x)
Q WeyCut : Dbcoleans (* flag to indicate a way out #*)
a InputChar : cher; (* prompt user to play again *)

(G R R R i e bk *)
o] procedure ReadMzze; (* procadure to input the user’s maze *)
0 var I, 4 : 1..S5ize;
o] begin
1 writeln(*INPUT A MAZE:"); uriteln;
1 for I := 1 to Size do begin
2 for J 2= 1 to Size do read(MazelI,J]);
2 reesdln

end (* for *)

1 end; (*x ReadMaze =)

Figure 9-9. Sample Program 7: Maze Game

Sample Programs

Pascal-86 User’s Guide

22
23
24
24
26
27
29

30

31
32
32

33
34
35
36
37
38
39
40
41
¥4
43
44

46

48
49

50
50
50
51
52
53
54
55
57

59
61

62

36
37
38
39
43
41
42

s

58
59
6C

62
63
c4
65
66
[-X4

69
7C
71
72
73
74
75

77
78

86
87
88
89
gC
91
92
93
94

9¢
97

99

J NN

-0

U U QS s ¥

[dN =} OCOoOODOOQOoO

Q

.

WWNNND RN = O

NN =000

-

NANNNNNONNN NN NN S =00

=y

AVIN)

n

prccedure WriteMaze;
var I, 4 : 1..%1ze/
begin
writeln(PATH THRQUGH MAZE IS:"); uwriteln;
fcr I:= 1 tc Size do begin
for J 1= 1 to Size do write(MazelI,Jl : 2)7
uriteln
end (*x for =*)
end; (* wWriteMaze =)

(* procedure to ocutput the maze *)

(* Recursive procedure to find a path through the maze. This procedure
centinues to call itself until either the way out has been found or it has
deterrinad there is no way ocut. The algorithm begins at the upper right-hand
corner of the maze and tries to move tc the lower léft-hand corner, marking
the path it has traveled with an X. The algorithm first tries to move

right, then down, then left, then up. If there is a way out, the procedure
Tarks the trail with up-arrow symbols as the recursion levels decrease.

Row = parzmeter to indicate row number
Column = perameter to indicate column number *)

procedure FindPzth(Row, Column : integer),
begin
if (Row = B8¢ttom) and (Column = Right)
then WayOut = true
else begin
MazelRcws,Columnl 1= Mark’
if Column <> Right then
if MazelRow,Column + 1] = Path then
FindPath(Row,Cclumn + 1), (* move right if possible *)
if (not WayCut) and (Row <> Bottom) then
1f Mazel[Row + 1,Column] = Path then

FinaPath(Row + 1,Column); (* move down if possible *)
if (not WayCut) and (Cclumn <> Left) then
if Maze[RowsColumn = 11 = Patnh then
FindPatn(Rcw,Column = 1); (* move left if possible *)

if (not WayCut) and (Row <> Top) then
if Mazel[Row = 1,Column] = Path then
FindPath{Row - 1,Column) (* move up if possible *)
end; (* else =)
if WayCut tnen MazelRouw,lolumn] := Trail
end; (* FindPath x)

(* The main program 1nputs a maze, initially assumes there is no way out, then
czlls the recursive procedure FindPath to find a way out if there is one. If
there is no way out, the program prints a message; otherwise, it prints the
final meze. *)

begin (* AMzzelGame *)
repeat
ReedMaze;
WayOut := false;
FindPath(ToprLeft);
if Wwaylut then writeMaze

else begin (* 1f no way out, print message *)
writeln; writeln(“NO PATH THROUGH MAZE FOUND.")’
writeln

end; (*x =2lse *)
wsriteln; writeln(”ANOTHER MAZE? (Y or N)7);
readln(InputChar)
urtil not (IngutCrar in ["y","Y 1)
end. (* AMazeGame *)

Figure 9-9. Sample Program 7: Maze Game (Cont’d.)

9-18

Pascal-86 User’s Guide

9.8 Sample Program 8: List Processing

The program of figure 9-10 builds a list of first names in alphabetical order as they
are input. It reads in each name and inserts the name in an alphabetical linked list.
It illustrates the use of dynamic variables and pointers to form a linked list.

This kind of data structure is an alternative to non-dynamic data structures like the
array of records used for the tree in sample programs 2A and 2B. (Sample programs
2A and 2B could also have been implemented using dynamic variables.)

This program must be linked to the run-time support libraries (P86RNO.LIB,
P86RNI1.LIB, P86RN2.LIB, P86RN3.LIB), 87NULL.LIB, and any interface
libraries required by your operating system.

Sample Programs

system=id

Pascal-86, Vx.y

Source File:
Object File:
Controls Specified: <none>.

:F5:PROG8.SRC
:F5:PROG8.0OBY

STMT LINE NESTING SOURCE TEXT: :F5:PROG&.SRC

n

[« AV RV, 3 V]

=200V~

- -

13
14

15
15
16
17
18
19
20

10
12

14
15
16
17
18

21
22
23
24
25

28

40
41

43
44
45
46
47
48
49

o

oCcooco

OO0 0Oo

-

- e e e

(* This program reads in names of up to 20 characters and builds
an alphabetical list.

veriables =
Head = pointer to mark the head of the list

Name = character array to hold a name in the list
Responselhar - used to ask user for more input *)

0 prcgram SortlList(Input,OQutput)’

o] const NamelLength = 20,

a type ListElement = packed array[1..Namelengthl of char’

o] ListPtr = “ListRecord;

0 tistRecord = record

1 Person : ListElement;

1 Next : ListPtr

end; (*record=)

ol var Heed : ListPtr’

0 Name : Listflement;

o] ResponseChar : char;

0 NameBuffer : arrayll..Namelength] of char;

o] TempPtr : ListPtr;

[R e] *)

0 procedure InsertName(Name : ListElement); (x Procedure to enter names to the
list. It add names to the front of the list unless they are
alphabetically greater. It scans the list, setting SwitchOrder
when the correct location is found and adding the name in that
locaticn,

Variables =
Pcinter = primary pointer used in setting up linked list
SwitchPointer - temporary pointer used when switching list order
NewPointer= pointer to point to new name being inserted
SwitchOrder - noolean flag to indicate order needs switching *)

0 var Pointer,SwitchPointer,NewPointer : ListPtr;

0 SwitchOrder : booclean;

Q begin

1 SwitchQOrder := true:

1 Pointer := Head’

1 while (SwitchOrder) and (Pointer <> nil) do

1 if Neme < Pointer*.Person then SwitchOrder := false

1 else begir

2 SwitchPointer := Pointer;

Figure 9-10. Sample Program 8: List Processing

9-19

Sample Programs

Pascal-86 User’s Guide

21

23
24
25
26
27
28

29
30

31
31
33
34
36
37

38

39
39
40
41
42

43

44

45
46
46
47
48
49
50
52

50

52
53
54
55
56
57

61
62

64
65
66
67
68
69

73

75
76
77
78
79

81

84
85
86
87
88
89

~
v

91
92
93

P

——m—mceeeay)

1 2 Pointer := Pointer“.Next
end; (* else *)

1 1 new(NewPointer);
11 NewPcinter*.Perscn := Name’
1 1 NewPointer®.Next := Pointer;
1 1 if Pointer = read then Head := NewPointer
1 1 else SwitchPcinter®.Next := NewPointer
11 end; (x InsertName =)

(G R e e - - -——— - - ———)
0 0 Frocedure ReadName(var Name : ListElement)’
1 Q var i : integer;
1 0 tegin
1 1 for i 1= 1 tc NamelLength do NameBuffer[il
101 for i := 1 to Namelength do
1 1 if not ecln then read(NameB8uffer(il),
11 pack(NameBuffer,1,Name);
11 readln

end;(* ReadName =*)

('-—-- ------------------- i
0 0 procedure WriteName, (* output a linked list *)

begin

TempPtr := Heced,

while TempPtr <> nil do begin
writeln(TempPtr2A.Person);
TempPtr TerpPtr”.Next
end (* whlie =*)
end; (* WriteName =*)

[SNy
NN -

-
jury

tegin (* SortList *)
Head := nil;
writeln(‘Begin inputting names °);
reveat
ReadName(Name)’
InsertName(Name);
urite(“Mere names? °);
readln(ResponseChar);
until (ResponseChar in ["n’,°N‘1);
WriteName
end.(* SortlList =*)

OO0 QCOOO
S NN 2D a0

Summary Information:

PROCEDURE CFFSET CCDE SIZE OATA sSIZE
INSERTNAME 002FH QO0B8H 1840

READNAME GCE7H CO61H 970

WRITENAME 0148H 004CH 770

SORTLIST 01$SH COFFH 255C 00C0&41H 650
-CONST IN COCE- CC2FH 470

Total C254H ¢6C0 00041H 650

95 Lines Read.
0 Errors Cetected.

Dictionary Sumrmary:

230K8

6KB
0KB8
3KB

Memory Available.
Memory Used (2%).
Cisk Space Used.

out of 16KB Static Space Used (18%).

STACK
0016H
0014H
COO0EH
0016+

0C82H

SIZe
220
200
140
220

1300

(* input & name %)

’

Figure 9-10. Sample Program 8: List Processing (Cont’d.)

9-20

Pascal-86 User’s Guide Sample Programs

9.9 Sample Program 9: Character Input/Output

The program of figure 9-11 echoes characters that are entered at the console. It illus-
trates the use of FILE OF CHAR and lazy 1/O to read characters one at a time
from the console (instead of using line-edited TEXT files).

This program must be linked to the run-time support libraries (P86RNO.LIB,
P86RN1.LIB, P86RN2.LIB, P86RN3.LIB), 87NULL.LIB, and any interface
libraries required by your operating system.

system-id Pascal-86, Vx.y

Source File: :FS5:PROGY.SRC
Object File: :FS:PROG9.0BJ
Controls Specified: <none>.

STMT LINE NESTING SOURCE TEXT: :F5:PROG9.SRC

(* Illustrate the use of a FILE OF CHAR to obtain character at 3 time
input from the console (instead of line-editing).

Note that TEXT files are line-edited, so that INPUT, the "standard”
input file, since it is a TEXT file, will use line—editing for input. x)

(* Using Pascal I/0 tc interact with a console device is a little
tricky... Pascal-26 has taken the approach of Lazy I/0, as outlined
in chapter 8 of the mznual (see discussion of RESET) *)

1 10 0 ¢ FROGRAM ECHO(INCHAR, CUTPUT),
(x FILE OF CHAR is NOT line-edited: the run-time system

uses the DQESPECIAL routine to indicate that transparent
input is desired. (TEXT files use line-edited input). *)

2 15 0 O VAR INCHAR: FILE OF CHAR;
3 16 0 0 CH: CHAR;
4 18 0 O BEGIN
(* RESET and GET are defined to read in a character to the buffer
(before tne prompt is written)., But, Lazy I/0 delays the actual
read until the buffer varizble C(INCHAR*) is referenced in the
midale of the loop. *)
4 26 0 1 RESET(INCHAR, “:CI:");
5 25 0 1 REPEAT
5 26 0 2 WRITEC'TYPE A (HKAR: 7).,
(* Be sure to copy the character from the input buffer
("Filled" by RESET and GET) before doing another GET. %)
é 29 0 2 CH := INCHAR";
7 30 0 2 GET(INCHAR); (* WON’T actually do a READ until INCHAR” is referenced
the next time around the loop. *)
8 32 0 2 WRITELN(YOU TYPED A: “, CH)’
9 33 0 2 UNTIL CH = ° “2
11 34 0 1 END.
Summary Information:
PROCEDURE OFFSET CODE SIIE DATA SIZE STACK SIZE
ECHO 002CH OOCFH 2C70 00011H 170 O00DEH 14D
-CONST IN COCE- ggacH 440
Total COF3BH 251C 00011H 17D 0042H 66D

34 Lines Read.
0 Errors Cetected.

Dictionary Summary:
230KB Memory Avallable.
6KB Memory Used (2%).

0k8 Disk Space Used.
2KB out of 16K3 Static Space Usea (12%).

Figure 9-11. Sample Program 9: Character Input/Output

9-21

CHAPTER 10
COMPILER CONTROLS

You control the operation of the Pascal-86 compiler by using compiler controls that
allow you to specify options such as inhibiting extension warning messages or gener-
ating debug records. All controls have default values preset to their common uses.

By default, the Pascal-86 compiler will produce two files: source.OBJ for the object
module with type records, and source.l.ST for the source listing including error
messages, where source is the filename (without extension) of the Pascal source file.
If the NOEXTENSIONS control is active, the compiler will also issue warning
messages when it detects an Intel extension to standard Pascal, and copy all errors
and warnings to the console.

If you do not want to change these default values, you can safely skip this chapter. If
you need to change any control defaults, you should read the following sections and
refer to individual controls in section 10.3. A summary of these controls is provided
in table 10-1.

Table 10-1. Summary of Pascal-86 Compiler Controls

Control Abbreviation Default Action

CHECK/NOCHECK CH/NOCH NOCHECK Check for arithmetic overflows,
stack overflow, and out-of-range
assignments and subscripts
during compilation and run time.

CODE/NOCODE CO/NOCO NOCODE Allow or prevent listing of approx-
imate assembly code.

COND/NOCOND None COND Determine whether text skipped
during compilation will appear in
the listing.

*DEBUG/NODEBUG DB/NODB NODEBUG Genrate debug records in the
object modute.

EJECT EJ paging is automatic Forces the start of a new page of
printed output.

*ERRORPRINT/ EP/NOEP ERRORPRINT(:CO:) Write all compiler-generated error

NOERRORPRINT messages to the specified file.

*ERRORPRINT(file)

*EXTENSIONS/ ET/NOET EXTENSIONS Allow Intel extensions to standard

NOEXTENSIONS Pascal, or (NOEXTENSIONS)
issue a warning whenever the
source code contains any exten-
sions to standard Pascal.

IF/ELSEIF/ELSE/ENDIF None not applicable Enable the actual conditional
compilation capability by testing
for conditions that are based on
the value of switches.

INCLUDE(file) iC not applicable Includes other source files as input
to the compiler.

INTERRUPT(proc[=n][,...]) IT not applicable Designates procedures as inter-
rupt procedures, and generates
interrupt vector.

LARGE/COMPACT/SMALL LA/CP/SM LARGE Determine the memory address-
ing techniques of a module being
compilation.

LIST/NOLIST LI/NOLI LIST Allow or prevent listing of source
lines.

Compiler Controls Pascal-86 User’s Guide

Table 10-1. Summary of Pascal-86 Compiler Controls (Cont’d.)

Control Abbreviation Default Action

*OBJECT][(file)]/ OJ/NOOJ OBJECT(source.OBJ) | Specify a filename for the object

NOOBJECT module, or prevent the creation of
an object module.

*OPTIMIZE(n) oT OPTIMIZE(1) Governs the level of optimization
performed when generating object
code.

*PRINT{(file)]/NOPRINT PR/NOPR PRINT(source.LST) Allow or prevent printed output, or

select device or file to receive
printed output.

RESET/SET None RESET Control the value of switches. SET
establishes a value; RESET
restores the value to 0.

SUBTITLE(subtitle’) ST no subtitle Put a subtitie on each page of
printed output, and causes a page
eject.

*SYMBOLSPACE(n) SS SS(16) Sets the maximum amount of

memory available for the compi-
ler's internal table.

*TITLE(title’) TT module name in Puts a title on each page of printed
source code output.
*TYPE/NOTYPE TY/NOTY TYPE Include or omit type records in
object module.
*XREF/NOXREF XR/NOXR NOXREF Allow or prevent a cross-refer-
ence listing of source program
identifiers.

*Primary control (all others are general).

10.1 Introduction to Compiler Controls

You can specify a control in the command line used to invoke the compiler, or in
control lines that appear as part of the source file. In your specific host-system appen-
dix, you will find information on the command line used to invoke the compiler.

When you specify a control in the invocation command line, the control remains active
unless another control overrides it. A discussion of the types of controls and the rules
governing them follows; specific cases of controls overriding other controls are
discussed in 10.2. These cases are summarized in table 10-2.

To override the controls specified in the invocation line, controls must appear in the
source file itself. For example, if the invocation line specified only the NOLIST control
(all others being set to their default values), then the control to override NOLIST is
its opposite form: LIST. It would appear in the source file as follows:

$LIST

A control line is a source line starting with a dollar sign ($) in the leftmost column.
In this example, the compiler will now list the source program lines until the next
occurrence, if any, of NOLIST. (All controls are described in 10.3.)

You use control lines to selectively control the compilation of sections of your source
file. For example, you might want to suppress the listing of sections of your program
or cause page ejects to start listings on new pages. Whenever the compiler sees a
dollar sign (8$) in the leftmost column of a source line, it assumes that the line is a
control line, even if the dollar sign is embedded within a comment.

10-2

Pascal-86 User’s Guide Compiler Controls

There are two types of controls: primary and general. Primary controls must occur
either in the invocation command line or in a control line that precedes the first
noncontrol line of the source file. You specify primary controls in the invocation line
or put an initial set of primary control lines before the first source program line. You
use primary controls as “global” controls that must be set before any compiling begins.
These controls cannot be changed during compilation.

General controls may occur either in the invocation command line or in a control line
located anywhere in the source file. These controls may be changed during compila-
tion. General controls can override each other, but they cannot override primary
controls. General control lines in the source file are considered Intel extensions to
standard Pascal that cause warning messages if the NOEXTENSIONS control is
active.

All controls have default values that are active unless you explicitly specify their
opposite values. In typical compilations, you might not specify any controls and employ
only the default values.

If the compiler detects an error caused by a primary control in the invocation line or
in the initial set of primary control lines in the source file, it stops compiling and
issues an error message to the console. If the compiler detects an error in general
control lines (after the first set of primary control lines), it reports the error in the
same manner as other compiler errors. Chapter 13 provides a discussion of all compiler
€Iror messages.

Table 10-2. Summary of the Effects of Controls on Other Controls

Control Control(s) Control(s) that Control(s) that
Used Affected or Affect It Override It
Overridden by It
CHECK NOCHECK *OBJECT *NOOBJECT
NOCHECK
CODE NOCODE *PRINT(file) NOCODE
*OBJECT *NOPRINT
COMPACT SMALL, LARGE *NOOBJECT
COND NO COND NOLIST
*NOPRINT
*DEBUG *NODEBUG *OBJECT(file) *NODEBUG
*NOOBJECT
*EJECT *TITLE(title’) *PRINT(file) *NOPRINT
SUBTITLE(subtitle’) NOLIST

*ERRORPRINT(file)}

*NOERRORPRINT

*ERRORPRINT(:CO:)
*NOERRORPRINT

*ERRORPRINT(file)

*NOERRORPRINT

*ERRORPRINT(file)

“NOPRINT
“NOEXTENSIONS *EXTENSIONS *ERRORPRINT(file) *EXTENSIONS
*NOERRORPRINT
*PRINT(file)
INCLUDE(file)
INTERRUPT(proc |....]) “NOOBJECT
LARGE SMALL, COMPACT *NOOBJECT
NOLIST LIST *PRINT(file) LisT
SUBTITLE(subtitie') *NOPRINT
EJECT
*OBJECT(file) *OBJECT(source.OBJ) *NOOBJECT

INTERRUPT(proc....])
*DEBUG
“TYPE

10-3

Compiler Controls

10-4

Table 10-2. Summary of the Effects of Controls on Other Controls (Cont’d.)

Pascal-86 User’s Guide

Control Control(s) Control(s) that Control(s) that
Used Affected or Affect It Override It
Overridden by It
*NOOBJECT *OBJECT(file) *OBJECT(file)
INTERRUPT(proc[....])
*DEBUG
*TYPE
CHECK
CODE
*OPTIMIZE(n) *NOOBJECT
*PRINT(file) CODE *NOPRINT
*“NOEXTENSIONS
NOLIST
EJECT
TITLE(title’)
SUBTITLE(subtitle’)
PRINT(source.LST)
*NOPRINT *PRINT(file) *PRINT(file)
*PRINT(source.LST) *PRINT(source.LST)
CODE
EJECT
*NOERRORPRINT
*NOEXTENSIONS
NOLIST
TITLE(title’)
SUBTITLE(subtitle’)
XREF
SMALL COMPACT, LARGE *NOOBJECT
SUBTITLE(subtitle’) NOLIST *NOPRINT
EJECT
PRINT(file)
*SYMBOLSPACE(n)
*“TITLE(title') NOLIST *NOPRINT
PRINT(file)
*TYPE *NOTYPE *OBJECT(file) *NOOBJECT
*NOTYPE
*XREF *NOXREF *PRINT(file) *NOXREF
*NOPRINT

*Primary control (all others are general).

10.2 Using Controls

Controls to the compiler govern the format, processing, and content of both the input
source file(s) and the output file(s). Certain controls in their default forms override
other controls that are explicitly stated. This section describes the use of controls
according to the areas they govern, and suggests which controls should be used during
specific stages of program development.

In the following sections, an asterisk (*) denotes a primary control (or control pair).
All other controls are general controls.
10.2.1 Listing Device or File Selection

The following controls govern the selection of the device or file to receive compiler
listings and error/warning messages:

*PRINT[(file)]/NOPRINT
*ERRORPRINT[(file)]/NDERRORPRINT

Pascal-86 User’s Guide Compiler Controls

Use the PRINT control to select the device or file to receive all printed output. Under
NOPRINT, only error messages will be output to either the console or the ERROR-
PRINT file, which you select with the ERRORPRINT control.

The NOPRINT control overrides all of the listing format controls described in 10.2.2,
since it governs all printed output. You can, however, select a different file or device
to receive error messages. Even if the NOPRINT control is active, error messages
will always appear somewhere—either in a different file specified in an ERROR-
PRINT control, or at the console if the ERRORPRINT control is not specified (or
if NOERRORPRINT is specified).

To generate a listing that includes error messages and the complete (or partial) source
listing (as governed by format controls discussed below), use the PRINT control to
specify the listing file, or allow the default PRINT control to send the listing to
source.LST. If you select an ERRORPRINT file, error messages will appear twice:
once in the ERRORPRINT file, and once in the listing file governed by the PRINT
control.

10.2.2 Controlling Listing Format and Content

If PRINT is active, the following controls govern the format and content of printed
output. The default value of a control pair is listed first:

NOCODE/CODE

EJECT
*EXTENSIONS/NOEXTENSIONS
LIST/NOLIST
SUBTITLECsubtitle’)
*TITLEC ‘title)
*NOXREF/XREF

COND/NOCOND

The default values allow listing of the source program without the approximate
assembly code listing (NOCODE), without the identifier cross-reference (NOXREF),
and without any extension warning messages (EXTENSIONS).

These default values assume the general case. If you need the approximate assembly
code listing of portions of the source file, use the CODE control. If you need to
suppress certain portions of the source listing, use NOLIST. Note that the NOLIST
control does not override the CODE control.

Under the default EXTENSIONS, extension warning messages are not issued (i.e.,
Intel extensions to standard Pascal are accepted without any warnings). If you specify
NOEXTENSIONS, extension warning messages will occur if the compiler detects
an Intel extension to standard Pascal. These warnings are directed to the file governed
by PRINT and ERRORPRINT, and they do not stop the compilation process.
Deviations that are not supported by Pascal-86 generate real errors. Control lines in
the source file (after the initial set of primary controls) are considered Intel exten-
sions to standard Pascal; under NOEXTENSIONS, they cause extension warnings.

The XREF control directs the compiler to produce a symbol and identifier cross-
reference, as described in 11.1.5 and in 10.3. NOXREF (the default) suppresses this
action, and NOPRINT overrides XREF.

Although paging is automatic (every 60 lines), you can force a page eject on any line
by using the EJECT control. An EJECT in a control line is ignored if the control line
occurs in an area governed by the NOLIST control. TITLE and SUBTITLE controls
specify titles and subtitles in the listing. If NOLIST is in effect, the subtitle specified

10-5

Compiler Controls Pascal-86 User’s Guide

is saved until listing resumes with the LIST control. All of these controls are ignored
if NOPRINT is active.

Conditional compilation allows two listing options: COND and NOCOND. COND
specifies that any skipped source code will be listed (without statement or level
numbers) and NOCOND specifies that skipped text will not be listed.

10.2.3 Source Selection and Processing

The following controls govern the selection and processing of source files. The default
value of each pair is listed first.

*EXTENSIONS/NOEXTENSIONS
INCLUDE Cfile)

Pascal-86 allows only one primary source file, but other source files may be included
in the compilation by specifying them in INCLUDE controls. For instance, you can
save the PUBLIC sections common to several modules in a separate source file, and
you can INCLUDE this file whenever the PUBLIC sections it contains are needed
by the modules being compiled.

The INCLUDE control must be the rightmost (last) control on a source control line.
The compiler issues a nonfatal error message when controls are placed to the right of
the INCLUDE control.

The EXTENSIONS control (default value) allows Intel extensions to standard Pascal
to pass through compilation without generating warning messages. NOEXTEN-
SIONS directs the compiler to check for these extensions and to issue warnings. Use
NOEXTENSIONS for programs that you want to conform to standard Pascal.

10.2.4 Conditional Compilation

The following controls pertain to conditional compilation, a process that allows the
compiler to skip selected sections of the source file if specified conditions are not met.
Likewise, conditional compilation can be used to select various compiler controls by
testing specified conditions in the source code. The default value of each control pair
is listed first.

IF/ELSEIF/ELSE/ENDIF
RESET/SET
COND/NOCOND

IF, ELSEIF, ELSE, and ENDIF are general controls that enable the actual condi-
tional compilation process. An IF control and an ENDIF control delimit an IF
element. An IF element has several different forms; the most complete form includes
one or more ELSEIFs, followed by an optional ELSE. The operands in an IF element
are not type-checked; they must be either a byte constant or predefined in a RESET/
SET control.

RESET and SET are general controls that determine the value of various switch
assignments that can be used in a limited way to form conditions. These conditions
are then tested by the IF and ELSEIF controls to determine the value of the least
significant bit. Based on the results of this test, the compiler determines which sections
of code should be compiled. The value of the switch assignment may be any whole
number constant from 0 to 255. SET establishes the value; RESET restores the value
to 0.

10-6

Pascal-86 User’s Guide Compiler Controls

COND/NOCOND determines whether text skipped during conditional compilation
will appear in the listing. The COND control specifies that any skipped text will be
listed (without statement or level numbers). A COND control cannot override a
NOLIST or LIST control. Also note that a COND control is not processed if it is in
a portion of skipped text. The NOCOND control specifies that skipped text will not
be listed.

Conditional compilation has many useful applications. For example, conditional
compilation can be used when porting a program to different architectures, or when
a program contains several features that are not required for each implementation.
Rather than writing a separate program for each case, you can write one program
that uses conditional compilation to select the necessary sections of code for each
application.

10.2.5 Object Content and Program Checkout

The following controls govern the selection and content of the object module, and
implement program checking. The default value of a control pair is listed first.

*0BJECT(file) /NOOBJECT
*NODEBUG/DEBUG
*TYPE/NOTYPE
NOCHECK/CHECK

The OBJECT control selects a file to receive the object module. The default file has
the same root name as the source file, with the extension OBJ (i.e., if PROGI1.SRC
is the source file, PROG1.OBJ becomes the object file). NOOBJECT prevents the
generation of an object module and directs the compiler to perform only a quick
syntax and semantic check of the source file. It also inhibits the execution of the
OBIJECT phase, overriding CODE and CHECK.

The DEBUG control generates debug records in the object module that are used by
symbolic debuggers such as PSCOPE, DEBUG-86, and the ICE-86 emulator. The
default value NODEBUG suppresses the generation of debug records. NOOBJECT
overrides DEBUG. The DEBUG control generates debug records and does not affect
any program checkout features.

The TYPE control (default value) generates type records in the object module that
are used for type checking by the linker. TYPE is the default, because type checking
is one of the advantages of using Pascal. Type records provide the mechanism for
enforcing type compatibility between separately-compiled modules. TYPE informa-
tion is also used by PSCOPE to display or modify memory variables. The NOTYPE
control suppresses the generation of type records. NOOBJECT overrides TYPE.

The CHECK control directs the compiler to check for out-of-range assignments, out-
of-bounds array subscripts, stack overflow, and integer overflow. If possible, viola-
tions are checked at compile time, but some run-time checking may be required.
NOCHECK suppresses all checking activity. NOOBJECT overrides the compile-time
checking performed by CHECK.

10-7

Compiler Controls Pascal-86 User’s Guide

10.2.6 Program Optimization and Run-Time Environment

The following controls optimize code and memory size requirements and affect the
run-time environment of a particular program. The default value of the control is
listed first.

*OPTIMIZE(N)
LARGE/COMPACT/SMALL
INTERRUPT Cproc[=n]L,...]?

The OPTIMIZE control allows you to specify the level of optimization you want the
compiler to perform when it generates object code. Two optimization levels are
provided: OPTIMIZE(1) (the default), and OPTIMIZE(0). OPTIMIZE(0) performs
more limited optimization and is recommended when debugging programs with
PSCOPE or DEBUG-86.

The LARGE, COMPACT, and SMALL controls determine the memory addressing
techniques of a given object module. If you are unsure of the memory requirements
of your program, LARGE (the default) is recommended because it directs the compi-
ler to make no special assumptions. You can improve code efficiency by using the
smallest control possible, given your program’s specific run-time memory require-
ments. Note that every module in a program must be compiled with the same control.
(Appendix I outlines extensions to these controls.)

The INTERRUPT control enables you to compile specific procedures as interrupt
procedures. Dynamic interrupt number assignments (set by the SETINTERRUPT
procedure) within the source program override the assignments made in the INTER-
RUPT control. If an interrupt occurs during run time, and is associated by number
with an interrupt procedure, the interrupt procedure gains control. (Interrupt handling
is described in detail in Appendix K.)

10.2.7 Use of Controls in Stages of Development

When you are compiling a program for the first time, use the default control settings
with the following exceptions:

e Use CHECK, OPTIMIZE(0), and DEBUG for program checkout; then use
PSCOPE, DEBUG-86, or ICE-86A for symbolic program debugging.

e Use XREF to generate a symbol and identifier cross-reference to aid your debug-
ging and maintenance efforts.

Definitions of PUBLIC procedures and functions (needed for an interface specifica-
tion that is common to several modules) can be maintained in a separate file and
included with the source file by using the INCLUDE control. (For information on
interface specifications, see 4.2.3.)

For quick compiling and error reporting, you can maximize compile speed by using
default settings for all but one control; use NOPRINT to supress printed output.
(Errors will be reported at the console, or use ERRORPRINT to redirect errors to a
file.)

When preparing programs to test with the ICE-86A or ICE-88 emulator, use the
CODE control during compilation to list the pseudo-assembly instructions and
addresses. The CODE control can help you recode certain portions in assembly
language.

10-8

Pascal-86 User’s Guide Compiler Controls

Use the NOLIST control to save time by not listing portions of the source code that
are already debugged. To make your listing more readable, use EJECT, TITLE, and
SUBTITLE. You can direct the final listing to a specific output file using the PRINT
control, and direct the final object module to a specific output file using the OBJECT
control.

To enforce compatibility with the Pascal standard, use the NOEXTENSIONS control
early in program development to generate warning messages whenever the compiler
encounters an Intel extension to standard Pascal. You can also use the CODE control
to help recode non-standard areas in assembly language.

10.3 Descriptions of Individual Controls

NOTE

Sample invocation lines for most compiler controls are provided on a foldout
page in your specific operating-system appendix.

10-9

Compiler Controls

10-10

Pascal-86 User’s Guide

10.3.1 CHECK/NOCHECK

Checks for invalid references, overflow, and out-of-range assignments and subscripts
during compilation or at run time.

Syntax

CHECK
NOCHECK

Abbreviation

CH/NOCH

Default

NOCHECK

Type

General

Description

The CHECK control provides a way to check for certain violations during compila-
tion and at run time. The compiled code checks for the following:

Array subscripts out of bounds
Stack overflow
Overflow in integer computations

Out-of-range assignments

Example

$CHECK

In the above control line, the CHECK (abbreviated CH) control causes the subse-
quent code to implement checking.

NOTE

Violations detected at run-time cause the execution of an error handler.
Overflow in integer computations generates an Interrupt 4, which in turn
invokes the trap handler in effect at the time of the interrupt. Appendix K
provides information about run-time support and interrupts.

Pascal-86 User’s Guide Compiler Controls

10.3.2 CODE/NOCODE

Allows or prevents the listing of approximate assembly code.

Syntax

CODE
NOCODE

Abbreviation

cas/NoCD

Default

NOCODE

Type

General

Description

The CODE control directs the compiler to produce a listing of the approximate
assembly code for the generated object code (in a form that resembles 8086 assembly
language). This listing occurs only for portions of the source code where the CODE
control is active—it stops when a NOCODE is encountered. No code listing is gener-
ated if the NOOBJECT control is active. The approximate assembly code listing is
appended to the source listing in the listing file created by the PRINT control (see
PRINT/NOPRINT).

The NOCODE control prevents the listing of the approximate assembly code. The
default control setting (if you specify neither control) is NOCODE.

Example
$CODE

The CODE control in this control line lists the approximate assembly code for the
object code and appends the listing to the source listing.

$NOCODE
The NOCODE control in this control line turns off the action of the CODE control.

NOTE

The CODE control cannot create printed output if the NOPRINT control is
in effect. Section 11.1.5 gives a sample listing of approximate assembly code.

10-11

Compiler Controls Pascal-86 User’s Guide

10.3.3 COMPACT

Spe(;ifies memory addressing techiniques of a program under compilation.

Syntax

1. COMPACTJ[C(-CONST IN DATA-)]
(-CONST IN CODE-)

2. COMPACT ([subsystem-idi[submodellE XPORTS public-list{; EXPORTS public list]...)

- . . ; HAS module-list
3 COMPACT <subsystem-/d [submodel] HAS module-list [{ . EXPORTS public-list '])

Abbreviation

cP

Default

LARGE (see 10.3.12)

Type

General

Description

The COMPACT control directs the compiler to perform certain memory addressing
optimizations that help reduce the amount of code produced. If you do not need to
optimize your code size, or if you are not sure that your program meets the
COMPACT memory restrictions, simply use the default LARGE control. (For more
advanced methods of memory optimization, see Appendix I.)

This section discusses the COMPACT control in its simplest form (see (1) above).
The syntax in (2) and (3) applies only to the extended controls, which are discussed
in Appendix I. Also see Appendix I for placement of these controls.

Modules compiled with the COMPACT control have four sections: code, constant,
data, and stack (see 11.2). When these modules are linked, similar sections from each
module are combined to form segments. A COMPACT program has three segments:
code, data, and stack.

In the default COMPACT case (—CONST IN DATA —), the code sections from
all modules are allocated space in one segment, which is addressed relative to the CS
register. All constant and data sections (excluding dynamic variables) are combined
in a second segment, which is addressed relative to the DS register. The stack,
containing parameters and local variables, is addressed relative to SS.

If (—CONST IN CODE—) is specified, the code and constant sections from all the
modules are allocated space within one segment, which is addressed relative to the
CS register. The data sections (excluding dynamic variables) are combined in a second

segment, which is addressed relative to the DS register. The stack is addressed relative
to SS.

10-12

Pascal-86 User’s Guide Compiler Controls

The maximum size, each, of the code segment (including constants if —CONST IN
CODE—), the data segment (including constants if —CONST IN DATA-—), and
the stack segment, is 64K.

Dynamic variables are allocated on the heap, which is outside of the three segments
discussed above, and are addressed with 32-bit pointers. The maximum storage for
dynamic variables is one megabyte.

References to any location require only a 16-bit offset, using these segment addresses.

Since the code, data, and stack segments are fully defined by the time the program
is loaded, the addresses in the CS, DS, and SS registers are never changed.

10-13

Compiler Controls Pascal-86 User’s Guide

10.3.4 COND/NOCOND

These controls determine whether text skipped during compilation will appear in the
listing.

Syntax

COND
NOCOND

Abbreviation

none

Default

COND

Type

General

Description

The COND control specifies that any skipped text will be listed (without statement
numbers or level numbers). Note that a COND control cannot override a NOLIST
or NOPRINT control. Also note that a COND control is not processed if it is in a
portion of skipped text.

The NOCOND control specifies that skipped text will not be listed. However, controls

that delimit the skipped text are listed, indicating that text has been skipped. Again,
note that a NOCOND control is not processed if it is in a portion of skipped text.

10-14

Pascal-86 User’s Guide Compiler Controls

10.3.5 DEBUG/NODEBUG

Generates debug records in the object module.

Syntax

DEBUG
NODEBUG

Abbreviation

DB/NODB

Default

NODEBUG

Type

Primary

Description

The DEBUG control generates debug records which contain the name and relative
address of each symbol whose address or stack frame offset is known by the compiler,
and the statement number and relative address of each source statement. The DEBUG
control generates debug records in the object module--it does not imply the CHECK
control checkout features.

The default setting, NODEBUG, prevents the generation of these records.

Example
$DEBUG
The DEBUG control in this control line generates debug records in the object module.

NOTE
The DEBUG control is ignored if the NOOBJECT control is in effect.

10-15

Compiler Controls

10-16

10.3.6 EJECT

Forces the start of a new page of printed output.

Syntax

EJECT

Abbreviation

EJ

Default

paging is automatic

Type

General

Description

Pascal-86 User’s Guide

The EJECT control terminates the printing of the current page and starts a new
page. The control line containing the EJECT control is the last line printed on the

old page.

If you do not use the EJECT control, a page eject will occur automatically after every

60 lines.

Example

$SEJECT

The EJECT control in this control line forces the start of a new page, after this

control line is printed.

NOTE

The EJECT control is ignored if the NOLIST or NOPRINT controls are in

effect.

Pascal-86 User’s Guide Compiler Controls

10.3.7 ERRORPRINT/NOERRORPRINT

Copies all compiler-generated error messages to the specified file.

Syntax

ERRORPRINT[(file)]
NOERRORPRINT

Abbreviation

EP/NDEP

Default

ERRORPRINTC(C:CO:)

Type

Primary

Description

The ERRORPRINT control with the optional file argument directs all compile-time
error messages to both the file specified and the listing file (file specified in a PRINT
control, or source.LLST by default), if the listing file is not suppressed by NOPRINT.
If the listing file is suppressed by the NOPRINT control, errors appear only in the
file specified. You must supply a legal pathname for file or an error will occur.

The ERRORPRINT control without the file argument (i.e., the default setting
ERRORPRINT) directs all compile-time error messages to the console (:CO:) and
the listing file, if the listing file is not suppressed by NOPRINT. In other words, the
default argument for file tn an ERRORPRINT control is :CO: for the console.

The NOERRORPRINT control directs all compile-time error messages to the listing
file only, i.e., the file specified in a PRINT control; or source.LST, the default listing
file (see the PRINT control). If the listing file is suppressed by NOPRINT, the
NOERRORPRINT control is ignored, and all compile-time error messages appear
at the console.

If the maximum number of open files allowed by the system is allocated, and the
ERRORPRINT control specifies a disk file, then the compiler will close the
ERRORPRINT file. If an additional file needs to be opened, and this occurs, the
ERRORPRINT disk file will no longer be updated and a message will be printed on
the last line of that file. NOERRORPRINT is then in effect for the duration of the
compiler.

10-17

Compiler Controls Pascal-86 User’s Guide

10-18

Example
$NOERRORPRINT

The NOERRORPRINT control in this control line sends error messages to the listing
file only, or to the console if the listing file is suppressed by NOPRINT.

NOTE

Even if you use NOERRORPRINT and NOPRINT, error messages still
appear at the console. Without NOPRINT, NOERRORPRINT sends error
messages only to the listing file.

Pascal-86 User’s Guide Compiler Controls

10.3.8 EXTENSIONS/NOEXTENSIONS

Allows Intel extensions to standard Pascal, or issues an extension warning whenever
the source program contains any nonstandard Pascal feature.

Syntax

EXTENSIONS
NOEXTENSIONS

Abbreviation

ET/NOET

Default

EXTENSIONS

Type

Primary

Description

The NOEXTENSIONS control directs the compiler to check for any Pascal-86
features in the source program that are Intel extensions to standard Pascal as defined
in the ANSI/IEEE770X3.97-1983. Whenever the compiler finds such a feature, it
issues an extension warning message as an error message, but it continues to compile
the program and produce the object module. The compiler also issues an extension
warning for any control line that occurs after the initial set of primary controls.

The EXTENSIONS control allows legitimate Intel extensions to be processed without
warning messages. These controls do not adversely affect the compilation.

Example
SNOEXTENSIONS

The NOEXTENSIONS control in this control line causes extension warnings to occur
for any Intel extension to standard Pascal.
NOTE

Extension warning messages are treated as compile-time error messages, and
are sent to the appropriate file or to the console depending on the setting of
the ERRORPRINT and NOPRINT controls (sce ERRORPRINT).

10-19

Compiler Controls Pascal-86 User’s Guide

10.3.9 IF/ELSEIF/ELSE/ENDIF

These controls allow the actual conditional compilation capability. They cannot be
used to invoke the compiler. Each control must be placed on a separate control line,
as explained in 10.1.

Syntax
1. The simplest form of an IF element is as follows:

$ IF condition<cr)>
text
$ ENDIF

where

condition<cry is a limited form of Pascal expression in which the only
operators allowed are OR, NOT, AND, <, <, =, =,
<>, and >. The only operands allowed are switches
and whole number constants from 0 to 255. If the switch
does not appear in a previously defined SET control, a
value of false(0) is assumed. Parenthesized subexpres-
sions are allowed. In these restrictions, condition is
evaluated as defined by standard Pascal. Note that

condition must be followed by a carriage return.

text is text that is processed normally by the compiler if the
least significant bit of the value of condition is a 1, and
is text that is skipped if the least significant bit is a O.
text may contain a combination of source and compiler
controls. Note that when the compiler skips text, compi-
ler controls in that portion are not processed.

2. The second form of an IF element contains an ELSE element:

$ I F condition
text1

$ ELSE

text2

$ ENDIF

In this construction, text? is processed normally if the least significant bit of the
value of condition is a 1, and text2 is skipped. If the bit is a 0, text2 is processed
normally and text? is skipped.

An IF element may contain only one ELSE element.

3. The most general form of IF element allows one or more optional ELSEIF
elements before the ELSE element:

$ IF conditiont

text1

$ ELSEIF condition2
text2

$ ELSEIF condition3
text3

$ ELSEIF condition
textn-1

10-20

Pascal-86 User’s Guide Compiler Controls

$ELSE
textn
$SENDIF

ELSEIF and ELSE elements are optional.

The conditions in an IF element are tested sequentially. As soon as a condition
yields a value with 1 as its least significant bit, the corresponding text is processed
normally. All other text referenced in the IF element is skipped. If none of the
conditions yield a least significant bit of 1, text in the ELSE element is processed
normally and all other text in the IF element is skipped.

Abbreviation

none

Default

not applicable

Type

General

Description

The IF/ELSEIF/ELSE/ENDIF controls enable conditional compilation by testing
for conditions based on the value of switches. An IF control and an ENDIF control
delimit an IF element. An IF element has several different forms; the most complete
form includes one or more ELSEIFs, followed by an.optional ELSE. These operands
are not type-checked, and they must be either a byte constant or predefined in a
RESET/SET control.

Primary controls may not be used in conditional compilation blocks.

Example

$IF S1
traceMsgl1(TRUE, newval);
valctri=valctr + 1;

$ELSEIF S2
TraceMsg2(TRUE, newval, oldval);
Abort;

$ELSE
link(newval)

$ENDIF

Here, S1 and S2 are switches that control printing of information for the program-
mer’s use. To print both newval and cldval at run-time, set S2 when the compiler is
invoked.

PASC86 pathname SET (S52)

10-21

Compiler Controls Pascal-86 User’s Guide

10.3.10 INCLUDE

Includes other source files as input to the compiler.

Syntax

INCLUDE (file)

Abbreviation

IC

Default

no included files

Type

General

Description

When the compiler encounters the INCLUDE control in the source file, it reads from
the other source file named by file, until it reaches the end of the file. Then the
compiler resumes reading the source lines that follow the INCLUDE control line in
the original source file.

Example
S$INCLUDEC(CPUBLIC.SRC)
Read source lines from the file PUBLIC.SRC.

NOTE

The INCLUDE control must be the rightmost control in a control line (or
the only control in that line).

The included file may itself contain INCLUDE controis, but the nesting of
included files cannot exceed five (five included files).

The compiler always forces an end-of-line after reading from an included
file.

Your file must be a valid pathname, or an error will occur.

10-22

Pascal-86 User’s Guide Compiler Controls

10.3.11 INTERRUPT

Designates procedures as interrupt procedures, and generates the interrupt vector.

Syntax

INTERRUPT (procedure[= number][, procedure[= number]]..)

Abbreviation

IT

Default

no interrupt procedures

Type

General

Description

The INTERRUPT control allows you to specify procedures to be compiled as 8086
interrupt procedures, and to generate an interrupt vector.

The procedure you supply is the identifier for the procedure to be compiled as an
interrupt procedure. You can optionally specify an equal sign and a number for each
procedure, and you can specify multiple procedure, as well as multiple INTER-
RUPT controls. The number is the number of the interrupt to be associated with the
specified procedure; this number must be in the range 0 to 255, or an error will occur.
You can only specify one procedure for each number.

When you include number, the compiler creates an interrupt vector consisting of a
4-byte entry for the interrupt procedure. For interrupt number n, the entry for the
interrupt procedure is located at absolute memory location n times four.

Examples
$INTERRUPTCINT1=1, INT2=2, INT3=3)

This control line specifies procedure INT1 as an interrupt procedure for interrupt 1,
at location 4; INT2 for interrupt 2, at location 8; and INT3 for interrupt 3, at
location 12.

NOTE

The procedure specified must appear at the outer level of nesting (i.e., nested
only in the program block), without any parameters. The procedure may not
be passed as a procedural parameter.

After the program is loaded, a procedure is executed whenever the 8086
interrupt associated with the procedure occurs. Section K.l provides more
information about run-time interrupt processing, and section 8.9 describes
the predefined interrupt control procedures.

10-23

Compiler Controls Pascal-86 User’s Guide

If you use the SETINTERRUPT procedure within your program, at run
time the SETINTERRUPT procedure’s interrupt number assignment will
take precedence and override the INTERRUPT control assignment. The

SETINTERRUPT procedure is described in 8.9.1.

10-24

Pascal-86 User’s Guide Compiler Controls

10.3.12 LARGE

Specifies memory addressing techniques of a program under compilation.

Syntax

1. LARGE J[C-CONST IN CODE-)]
(-CONST IN DATA-)

2. LARGE ([subsystem-id][submodellEXPORTS public-list[; EXPORTS public-list]...)

.) i HAS module-list
3. LARGE (subsystem—/d [submodel] HAS module-list [{ . EXPORTS public-list }] >

Abbreviation

LA

Default

LARGE

Type

General

Description

The LARGE control provides the simplest form of memory addressing. Unlike
SMALL and COMPACT (10.3.3 and 10.3.19), it does not put strict limits on the
amount of code, constant, data, and stack space available within a program. It also
does not optimize a program’s storage space and the data references between program
modules. If this optimization is required, see 10.3.3 and 10.3.19. (For more advanced
methods of program optimization, see Appendix I.)

This section discusses the LARGE control in its simplest form (see (1) above). The
syntax in (2) and (3) applies only to the extended controls, which are discussed in
Appendix 1. Also see Appendix I for placement of these controls.

Modules compiled with the LARGE control have four sections: code, constant, data,
and stack (see 11.2). In the default LARGE case (—CONST IN CODE—), the
code and constant sections from each module are not combined; they make up their
own segment. Consequently, the maximum size of the code segment for each module
is 64K, making the total storage available for all code segments in the program greater
than 64K.

The data sections (excluding dynamic variables) from each module are also not
combined, and make up their own segments. These segments include the constant
sections if (—CONST IN DATA—) is specified. A module that requires more than
64K for data storage may be placed in more than one data segment.

At any moment during program execution, one code segment and one data segment
are “current.” These segments are paired so that the current code and data segments
are always from the same module. During program execution, the segment addresses

10-25

Compiler Controls Pascal-86 User’s Guide

for the current code and data segments are kept in the CS and DS registers, respec-
tively. They are updated whenever a public procedure is activated, as new code and
data segments may have to be loaded to access public information.

The stack sections from all modules, containing parameters and local variables, are
combined in one segment, which is addressed relative to the SS register. The maximum
size of the stack is 64K.

Dynamic variables are allocated on the heap and are addressed with 32-bit pointers.
The maximum storage for dynamic variables is one megabyte.

10-26

Pascal-86 User’s Guide Compiler Controls

10.3.13 LIST/NOLIST

Allows or prevents the listing of source lines.

Syntax

LIST
NOLIST

Abbreviation

LI/NOL!I

Default

LIST

Type

General

Description

The LIST control directs the compiler to resume (or begin) listing the program with
the next source line read. The NOLIST control directs the compiler to stop listing
the program until the next occurrence, if any, of a LIST control. If you specify neither,
the compiler will continue to create a listing of the program (the default is LIST).

Example
$LIST
This control line starts the listing of source lines with the next line read.

NOTE

When you specify neither, or when LIST is in effect, all lines from the source
file (or from an included file), including control lines, are listed. When
NOLIST is in effect, only source lines associated with error messages are
listed.

Note that the LIST control cannot create a listing if the NOPRINT control
is in effect.

The NOLIST control does not override the CODE control.

10-27

Compiler Controls Pascal-86 User’s Guide

10.3.14 MOD86/MOD 186

MOD86 and MODI186 are primarily controls that direct the compiler to generate
optimized code for the 8086 and 80186 processors, respectively.

Syntax

MOD86
mMoD186

Abbreviation

none

Default

MoD86

Type

Primary

Description

MODS86 specifies that the object module includes instructions for execution on the
8086 processor.

The MOD186 control allows the compiler to generate an extended set of instructions
in the object module for use on the 80186 processor.

10-28

Pascal-86 User’s Guide Compiler Controls

10.3.15 OBJECT/NOOBJECT

Specifies a filename for the object module, or prevents the creation of an object
module.

Syntax

OBJECT[(file)]
NOOBJECT

Abbreviation

0B/NOOUJ

Default

0BJECT (source.0BJ)

Type

Primary

Description

The OBJECT control directs the compiler to produce an object module. You can
optionally specify a file for this object module by providing a legal pathname (filename
with optional device specifier) for file.

If you do not specify a file, or if you do not use the OBJECT control, the compiler
will still produce the object module and direct it to the same disk or device as the

source file, using the filename source.OBJ (where source is the root name of the
source file).

The NOOBJECT control prevents the creation of an object module, and directs the
compiler to perform only a quick syntax and semantic check of the source file. It also

inhibits the execution of the OBJECT phase, overriding the CODE and CHECK
controls.

Example
$O0BJECTC(TEMP.O0BJ)
This control line directs the compiler to put the object module in the file TEMP.OBJ.

NOTE
Section 11.2 provides details on the object module sections.

10-29

Compiler Controls Pascal-86 User’s Guide

10.3.16 OPTIMIZE

Governs the level of optimization performed in generating object code.

Syntax

OPTIMIZECD)
OPTIMIZEC1)

Abbreviation

0T

Default

DPTIMIZEC1)

Type

Primary

Description

The OPTIMIZE(0) control directs the compiler to turn off object code optimization
between program lines. This limited optimization is required for programs being
debugged under PSCOPE (the high-level language debugger) and is recommended
when using DEBUG-86.

The OPTIMIZE(1) control directs the compiler to perform code optimizations both
within and between program statements.

Example
$0TCO0)

The OPTIMIZE(O) (abbreviated OT(0)) control in this control line turns off code
optimization between program statements.

NOTE

The OPTIMIZE control will not produce code if the NOOBJECT control is
active.

10-30

Pascal-86 User’s Guide Compiler Controls

10.3.17 PRINT/NOPRINT

Allows or prevents printed output, or selects the device or file to receive printed output.

Syntax

PRINT[Cfile)]
NOPRINT

Abbreviation

PR/NOPR

Default

PRINT(source.LST)

Type

Primary

Description

The PRINT control directs the compiler to produce printed output (listings), and the
NOPRINT control stops the compiler from producing printed output. If you specify
neither, the compiler will produce listings and put them in a file that has the same
name as the source input file, but with an LST extension. This new LST file will be
created on the same device used for the source file. For example, if your source file
is named SOURCE and you use neither control, or use only the simple PRINT control
(the default), the compiler will create the listing as SOURCE.LST.

If you specify a PRINT control with a file in parentheses, the compiler will put the
listings in the file or device named by file, which must be a legal pathname for a file
or device.

Example
$PRINT(C:LP:)
This control line sends printed output to the line printer.

NOTE

If you specify the NOPRINT control, the compiler will not produce listings—
even if you specify other controls such as LIST or CODE. When the
NOPRINT control is in effect, the compiler will not produce any printed
output except error messages.

10-31

Compiler Controls Pascal-86 User’s Guide

10.3.18 RESET/SET

RESET and SET control the value of switches. These values are used as test condi-
tions during conditional compilation.

Syntax

The RESET control sets the value of each switch to false (0), and has the following
form:

RESET (switch list)

where

switch list contains one or more switch names that have already been
used in SET controls.

Abbreviation

none

Default

RESET (0)

Type

General

Syntax
The simplest form of the SET control is as follows:
SET (switch assignment list)

where

switch assignment list ~ consists of one or more switch assignments separated by
commas.

A switch assignment has the following form:
switch
or

switch = value

10-32

Pascal-86 User’s Guide Compiler Controls

where
switch is a name formed according to standard Pascal rules for
declaring identifiers. Note that a switch name applies
only at the compiler level; therefore, you may declare
an identifier of the same name in the program.
value is a whole number constant ranging from 0 to 255. This
value is assigned to the switch. If the value and the equal
sign (=) are omitted from the switch assignment, the
default value true (OFFH) is assigned to the switch.
Example

This example of a SET control line sets the switch TEST to true (OFFH) and the
switch ITERATION to 3. Declaring switches is optional.

$SETC(TEST, ITERATION = 3)

10-33

Compiler Controls Pascal-86 User’s Guide

10.3.19 SMALL

Specifies the memory addressing techniques of the program under compilation.

Syntax

I. SMALL {[(-CUNST IN DATA-)]
(-CONST IN CODE-)

2. SMALL ([subsystem-id][submodel/]EXPORTS public-list[; EXPORTS public-list]...)

. . s HAS module-list
3. SMALL bsystem- - !
(su system-id [submodel] HAS module-list [{, EXPORTS public-list }])

Abbreviation

SM

Default

LARGE (see 10.3.12)

Type

General

Description

The SMALL control directs the compiler to perform certain memory addressing
optimizations that help reduce the amount of code produced. If you do not need to
optimize your code size, or if you are not sure that your program meets the SMALL
memory restrictions, simply use the default LARGE control. (For more advanced
methods of program optimization, see Appendix 1.)

This section discusses the SMALL control in its simplest form (see (1) above). The
syntax in (2) and (3) applies only to the extended controls, which are discussed in
Appendix I. Also see Appendix I for placement of these controls.

Modules compiled with the SMALL control have four sections, code, constant, data,
and stack (see 11.2). When these modules are linked, similar sections from each
module are combined to form two segments. A SMALL module has two segments:
code and data.

In the default SMALL case (—CONST IN DATA), the code sections from all
the modules are allocated space within one segment, which is addressed relative to
the CS register. All constant, data, and stack sections, as well as the heap, are
combined in a second segment. This second segment is addressed relative to the DS
register, with an identical copy in the SS register.

If (—CONST IN CODE—) is specified, the code and constant sections from all the
modules are allocated space in one segment, which is addressed relative to the CS
register. The data and stack sections are combined in a second segment. This segment
is addressed relative to the DS register, with an identical copy in the SS register.

10-34

Pascal-86 User’s Guide Compiler Controls

References to any location require only a 16-bit offset, using these segment addresses.
In either case, (—CONST IN DATA—) or (—CONST IN CODE—), the maximum
size of each segment is 64K. Since the two segments are fully defined by the time the
program is loaded, the addresses in the CS, DS, and SS registers are never updated.

Dynamic variables are allocated on the heap. Note that SMALL (—CONST IN
DATA—) uses a different heap mechanism than SMALL (—CONST IN
CODE—), COMPACT, and LARGE. Since this SMALL heap is stored with the
constant, data, and stack sections, dynamic variables are addressed with only 16-bit
pointers. SMALL (—CONST IN CODE—) uses the same heap mechanism as
COMPACT and LARGE; consequently, 32-bit pointers are required.

10-35

Compiler Controls Pascal-86 User’s Guide

10.3.20 SUBTITLE

Puts a subtitle on each page of printed output.

Syntax

SUBTITLE ('subtitle’)

Abbreviation

ST

Default

no subtitle

Type

General

Description

The SUBTITLE control prints a subtitle on every page of printed output. To specify
a subtitle, supply a sequence of printable ASCII characters (a string) for subtitle,
enclosed within apostrophes.

The subtitle is placed on the subtitle line of each page of listed output, and is truncated
on the right if necessary. The maximum length allowed for subtitle is 55 characters.

When a SUBTITLE control appears before the first non-control line in the source
file, it puts the subtitle on the first page and on all subsequent pages until another
SUBTITLE control appears. A subsequent SUBTITLE control causes a page eject,

and the new subtitle is put on the next page and on all subsequent pages until another
SUBTITLE control appears.

Examples
$SUBTITLEC’INPUT ROUTINE")
(source lines)

$SUBTITLEC’OUTPUT ROUTINE’)

NOTE

If the NOLIST control is in effect, the subtitle is saved and appears again as
a subtitle when the listing resumes.

10-36

Pascal-86 User’s Guide Compiler Controls

10.3.21 SYMBOLSPACE

Specifies the amount of memory allocated for the static symbol area.

Syntax

SYMBOLSPACE(m)

Abbreviation

SS(m

Default

SYMBOLSPACEC(16)

Type

Primary

Description

The SYMBOLSPACE control specifies the amount of memory (in kilobytes) that is
allocated for the compiler’s static (or ‘internal’) symbol table. Values for n can range
from 5 to 64, but a warning will be issued if the request exceeds the amount of avail-
able memory.

Note that this is not a measure of the total amount of memory to be used by the
compiler. In systems with up to 192K (128K for the system plus a maximum of 64K
for the static symbol table), increasing the value of n will decrease the amount of
memory available for the dynamic symbol table. Adding more memory to the system
will not increase the allocation for the static symbol table, but will be used to keep
the dynamic symbol table from spilling to disk.

The static symbol area cannot spill to disk (only the dynamic table has this capabil-
ity). If the static table runs out of memory, an error message will be generated and
compilation will be aborted. The dictionary summary at the end of the listing will
help determine how to adjust the SS(n) for your particular program if necessary.

10-37

Compiler Controls Pascal-86 User’s Guide

10.3.22 TITLE

Prints a title on each page of printed output.

Syntax

TITLEC “title’)

Abbreviation

TT

Default

no title

Type

Primary

Description
The TITLE control prints a title on every page of printed output. To specify a title,
supply a sequence of printable ASCII characters (a string) for title, enclosed within
apostrophes.

The title is placed on the title line of each page of listed output, truncated on the right
if necessary. The maximum length allowed for title is 55 characters.

Example

$STITLEC'TEST PROGRAM 4°)

10-38

Pascal-86 User’s Guide Compiler Controls

10.3.23 TYPE/NOTYPE

Includes type records in the object module.

Syntax

TYPE
NOTYPE

Abbreviation

TY/NOTY

Default

TYPE

Type

Primary

Description

The TYPE control directs the compiler to include type records in the object module.
These records describe attributes of symbols used in the source program, and they
are used later for type checking by the linker. Type records provide a mechanism for
enforcing type compatibility between separately compiled modules.

The NOTYPE control prevents the inclusion of type records in the object module.

Examples

$STYPE

This control line directs the compiler to include type records in the object module.
$NOTY

The NOTY control in this control line directs the compiler to not include type records
in TEMP.OBJ.

10-39

Compiler Controls Pascal-86 User’s Guide

10.3.24 XREF/NOXREF

Allows or prevents a cross-reference listing of source program identifiers.

Syntax

XREF
NOXREF

Abbreviation

XR/NOXR

Default

NOXREF

Type

Primary

Description

The XREF control directs the compiler to produce a cross-reference listing of all
identifiers and labels in the source program. The compiler prints an entry for each
Pascal constant, type, variable, parameter, procedure, function, or label that occurs
in the source program, in alphabetical order. The listing is appended to the listing
file created by the PRINT control (see PRINT/NOPRINT).

The NOXREF control prevents this cross-reference listing. The default setting is
NOXREF.

Example

$XREF

The XREF control in this control line produces a cross-reference listing of all identi-
fiers, and appends the listing to the output file specified by the PRINT control (or
its default listing file, SOURCE.LST).

NOTE

Section 11.1.4 provides an example of a cross-reference listing.

1040

CHAPTER 11
COMPILER OUTPUT

During the compilation process, the compiler produces a listing of the source program,
and also an object module. The controls affecting the listing file and object file are
described in Chapter 10. This chapter outlines the contents of both files.

11.1 Program Listing

Unless the NOPRINT control (described in 10.3.16) is active, the listing file is either
the file specified in a PRINT control, or the default listing file (source.LST, where
source is the name, without extension, of the source program file).

The listing file starts with a “sign-on” preface, then proceeds with the source listing,
including any semantic error messages. If the XREF primary control is active, a
symbol and identifier cross-reference listing is appended to the source listing. If the
CODE control is active, the program listing also includes a listing of the approximate
assembly code for the source code. The program listing always ends with a compila-
tion summary.

Certain sections of the listing may not appear, depending on which controls are active.
If NOPRINT is active, error messages are the only listing output produced. The
error messages appear in the file specified in an ERRORPRINT control, or on the
console if NOERRORPRINT or the default is in effect. You can use the NOLIST
general control to isolate certain sections of the source code and not list them.

By default, the COND control is active, specifying that any source code skipped during
conditional compilation will appéar in the listing (without statement numbers or level
numbers). A source listing produced while the NOCOND control is in effect does
not provide a listing of the skipped source code. However, the controls that delimit
the skipped source code are listed, indicating that code has been skipped.

Paging occurs automatically during the source, cross-reference, and assembly code
listing, but you can force a page eject in the source listing by using the EJECT control.
Each page holds 60 lines, with 120 characters per line.

Each page of the listing file has a numbered page header which identifies the compi-
ler, the module and procedure being compiled, the date of the compilation, and
(optionally) a title and subtitle you can provide with the TITLE and SUBTITLE
controls.

In the listing, the procedure and module names in the page header are truncated to
24 characters, and the title and subtitle are truncated to 55 characters. If the proce-
dure nesting exceeds 16 levels, the name that appears in the page header is the proce-
dure at level 16.

11.1.1 Listing Preface

On the first page of the listing, below the header, the compiler prints a summary of
the invocation line used to invoke the compiler, and the names of the source file and
object file. If you specified the NOOBJECT control, no name is supplied for the
object file.

Compiler Output Pascal-86 User’s Guide

Next to the heading “Controls Specified”, the compiler lists the controls you speci-
fied in the invocation line. Figure 11-1 shows a sample listing preface.

Source File: PROG1.SRC
Object File: PROG1.0BJ
Controls Specified: <none).

Figure 11-1. Sample Listing Preface

11.1.2 Source Listing

The section following the preface includes the source listing of the module being
compiled, any errors detected during compilation, and an optional cross-reference
listing of source program identifiers and symbols. Following the cross-reference listing
is an optional listing of approximate assembly code. The source listing is described
here, and the other descriptions follow.

The source listing contains a line-for-line copy of the source file, with some additional
information. Figure 11-2 shows a sample partial source listing.

The leftmost column (under the heading STMT) contains the number of the first
statement in the line. The compiler increments the statement number at every instance
of a semicolon not contained within a parameter list, and every instance of a DO,
THEN, ELSE, OTHERWISE, UNTIL, and an OF used in a CASE statement. The
next column (under LINE) contains the ordinal position of the line in its source file.
The next three columns (under NESTING) contain various measures of the nesting
level (depth) of the first statement on the line. A source listing statement is not the
same as a statement as defined in Chapter 7, since headings, declarations, and defini-
tions have statement numbers in the source listing.

The first of these NESTING columns measures the procedure nesting depth of the
first statement on the line. Statements and declarations at the module level are at
level O.

The second NESTING column measures the “block” nesting depth of the statement
(BEGIN...END, REPEAT..UNTIL, and CASE..OF...END delimit Pascal “blocks”
of statement nesting). This indicator always measures the depth for the first state-
ment on the source line listed.

In the third NESTING column, any source lines included through use of the
INCLUDE control (described in 10.3.8) are marked with “=n"", where n is the nesting
depth of the included line (n cannot be greater than 5).

If a source line 1s too long to fit on one listing line, it is continued on subsequent lines
and preceded by a dash (—).

Except for the carriage return (CR), line feed (LF), and horizontal tab (HT), all
nonprinting characters in the source are printed as #nn#, where nn is their
hexadecimal value (see Appendix G). CR and LF are printed verbatim; HT sets tab
stops every four columns.

Pascal-86 User’s Guide

Compiler OQutput

STMT LINE NESTING SOURCE TEXT: PROG1.SRL
(x This program converts Fahrenheit temperatures to Celsius. It

[¢2]

1
12
13
15

16

25

27

29

31

prompts the user to enter a Fahrenheit temperature, either real
integer, on the conscle. The program computes and displays the

or
equivalent

Celsius temperature on the console until the us2r has no more input. *)

0 0 program Fahrenh2itTolelsius{(Input,Jutput);

o0 © var CelsiusTemp,FanrenheitTemp : real;

2 9 QuitChar : char;

J 0 begin

J 1 repeat

0 2 writeln, writeln/

0 2 write(’Fahrenheit temperature 1s: “),

0 2 readln(FahrenheitTemp)

o 2 CelsiusTemp := ((FahrenheitTemp = 32.0) * (5.0 /7 9.C));
2 2 write('Celsius temperature is: °); writeln(CelsiusTemp:5:1);
0 2 writeln;

0 2 write(Another temperature input? :°);

3 2 read(QuitChar); writeln;

Qg 2 until not (JuitChar in [°Y’,"y"])

J 2 end. (* FahrenheitToCelsius =)

Summary Information:

PROCEDURE OFFSET CODE SIZE DATA SIZE STACK SIZE
FAHRENHEITTOCELSIUS 00704 OC161H 3530 D019H 250 0J00¢&H 140
—-CONST IN CODE- J070H 1250

Total 013¢%H 4780 0G19H 250 0042+ 660

33 Lines Read.
0 Errors Detected.

Dictionary Summary:

48K8

6K 8
0KB
2K8

Memory Available.

Memory Used (12%).

Disk Space Used.

out of 16K8 Static Space Used (12%).

Figure 11-2. Sample Partial Source Listing

11.1.3 Error Messages

If the compiler finds any errors during compilation, it reports the errors in the listing
file, and also in the ERRORPRINT file if one was selected. If NOPRINT is active,
the errors appear only in the ERRORPRINT file, or on the console if no ERROR-
PRINT file was selected.

Compiler Qutput Pascal-86 User’s Guide

With the exception of syntactic and lexical messages, each message appears on a line
by itself in the following form:

***rseverityn[1N stmt (file,line)]}: message

The number n is a unique number for each message; all compiler error messages are
described in Chapter 13. Stmt is the number of the statement, file is the name of the
source module that contained the error, and Jine is the source line number. Stmt, file,
and Jine do not appear in some error messages.

There are several levels of severity:

« EXTENSION messages, generated only when the NOEXTENSIONS control is
active, show where your program deviates from. standard Pascal. Compilation
continues, since Pascal-86 supports these features.

* WARNING messages show areas of questionable quality in your programming
style, but they do not stop compilation. Syntactic and lexical errors also fall into
this category.

« ERROR messages show severe errors that prevent the generation of an object
module.

e LIMIT EXCEEDED messages indicate that the compiler cannot generate an
object module, and may not even continue with compilation.

e FATAL ERROR messages indicate anomalies in the compiler itself, or in the
environment, that make it impossible to proceed with the compilation.

These severity levels are discussed in more detail in Chapter 13.

Syntactic and lexical error messages which fall in the WARNING category are
reported and corrected as follows:

***UARNING, input: "error"
***yas repaired to ‘'repair"

The error is the sequence of tokens read from the source input, and the repair is the
sequence accepted by the parser or scanner. An unprintable illegal character appears
in hexadecimal notation enclosed by pound (#) signs (e.g., #03# for the CNTL-C key
combination).

Scanner and parser error messages are always interleaved with the source listing,
with each message appearing under the line or line segment that generated the error.

The following are examples of error messages as they would appear in the listing file:
If the source input line is:
[F X=0\VIF Y=1 THEN X:=X+1;

then the message generated in the listing file would be:

224 112 3 2 IF X=0\

*** WARNING, input: "IF X = 0 \ "
*** was repaired to "IF X = 0 "

225 112 3 2 IF Y=1

Pascal-86 User’s Guide Compiler Output

*** WARNING, input: "IF Y = 1
***yas repaired to "THEN IF Y = 1 "
226 112 3 2 THEN X:=X+1;

11.1.4 Symbol and Identifier Cross-Reference Listing

If you specify the XREF control, the compiler will generate a symbol and identifier
cross-reference listing and append it to the source listing.

The compiler prints an entry for each constant, type, variable, parameter, procedure,
function, and label that appears in the source program. They appear in alphabetical
order by name, where name is the identifier or label number used in the source
program.

The Pascal built-in procedures and functions that are implemented in-line or by calls
to non-standard procedures are not listed. These include: ABS, CAUSEINTER-
RUPT, DISABLEINTERRUPTS, DISPOSE, ENABLEINTERRUPTS,
EOF, EOLN, GET, GETS8087ERRORS, INBYT, INWRD, LORD,
MASK8087ERRORS, NEW, ODD, ORD, OUTBYT, OUTWRD, PACK, PAGE,
PRED, PUT, READ, READLN, RESET, REWRITE, SETINTERRUPT, SQR,
SQRT, SUCC, UNPACK, WRD, WRITE, WRITELN.

Record field names do not appear in this listing, and are only referred to by the
record variable used to access the record field.

Each entry consists of the following information:

name offset length [?] scope type kind 1N nabor AT stmt:
READ readref; WRITE writeref

where

name is the source identifier or label number for the entity. If this
name is followed by an up-arrow (1), the entity is a dynamic
variable.

offset is the entity’s hexadecimal offset (only supplied for PUBLIC
and local entities of any kind except LABEL, PROCE-
DURE, FUNCTION, TYPE, or INTEGER CONSTANT).
For CONSTANT, it is the offset of the constant from the
start of the constant segment. For other kinds, it is the offset
of the entity from the start of the data segment (if nabor is
the name of the module) or stack frame (if nabor is the name
of a procedure or function).

length is the number of bytes of storage occupied by the entity.

scope is PUBLIC, EXTERNAL, or nothing (to indicate a local
entity).

type is the TYPE type-defn as it appears in the source program
(user-defined type identifiers are used wherever applicable);
however, record types are denoted only by RECORD. This
field is omitted if the entity’s kind is LABEL, PROCE-
DURE, or PROCEDURAL PARAMETER.

kind is LABEL, CONSTANT, TYPE, VARIABLE, PROCE-
DURE, FUNCTION, PARAMETER, VARIABLE
PARAMETER, PROCEDURAL PARAMETER,
FUNCTIONAL PARAMETER, MODULE, or
PROGRAM PARAMETER.

Compiler Output Pascal-86 User’s Guide

nabor is the entity’s “neighborhood”: the name of the module,
procedure, or function that contains the entity (includes the
name of the subsystem containing the entity, if appropriate).

stmt is the number of the statement where the entity is defined.
readref are two lists of statement numbers: one for read references to
writeref the entity, and one for write references.

A question mark (?) will appear to the left of a symbol’s attribute listing (see figure
11-3) if there are no references to that symbol in the compilation.

Figure 11-3 shows a sample cross-reference listing.

11.1.5 Listing of Approximate Assembly Code

If the CODE general control is active (and NOPRINT and NOOBJECT are not
active), the compiler lists the approximate assembly language code that is equivalent
to the object code produced. This listing occurs after the cross-reference listing and
appears in six columns of information:

¢ Location counter (in hexadecimal notation)

e Resultant binary code (in hexadecimal notation)
+ Label field

* Opcode mnemonic

¢ Symbolic arguments

e Comment field

Cross—Reference Listing

Name Offset Length Attributes and References

ADDNODE. . . . procedure .in BUILODTREZ at 15; read: 29 33,

SO0OLEAN. . . . 1 primitive types rezad: 14.

BUILDTREE. . . procedure in TREETRAVERSAL at 13; read: 68.

CHAR o« o o o . 1 primitive type; read: 5 9.

DATAFILE . . . 12n 8. TEXT variable in TREETRAVERSAL at 12/ write: 19 21 23 30 62 66; read: 34 67.

EXPRESSIONTREE 1AH 63 TREE variable in TREETRAVERSAL at 117 write: 18 19 21; read: 17 20 22 37 38 40 41
42 45 47 48 49 50 51 53 55 56 57 58 59 61.

FALSE. o« o = « 1 predefined BOOLEAN constant;, read: 26.

FINDROOT . . . FFFDH 1 B800LEAN variable in BUILDTREEZ at 14; write: 26 32; read: 34.

INFIX. &« o o & procedure in TREETRAVERSAL at 36, read: 40 42 71.

INTEGER. . . 2 primitive type; read: 10.

MAXNUMNODES. . 2 INTEGER constant in TREETRAVERSAL at 2/ read: 4.

NODE v o o o 3 record type in TREETRAVERSAL at 5; read: 8.

NODECHARACTER. 59H 1 CHAR variable in TREETRAVERSAL at 9; write: 30 66 read: 16 13,

NODEINDEX. .« . 4H 1 SUBSCR parameter in INFIX at 36; read: 37.

NCJOEINDEX. . . 4H 1 SU3BSCR parameter in POSTFIX at 547 read: 55.

NODEINDEX. . 4H 1 SUBSCR parameter in PREFIX at 46, read: 47.

NODEINDEX. + 10H 2 INTEGER variable in TREETRAVERSAL at 1C; write: 30 6%; read: 16 17 31,

ONE. . & « & & 2 INTEGER constant in TREETRAVERSAL at 37 read: 71 74 77.

OUTPUT « & & o« OH 8 predefined TEXT variable; read: 16 20 22 24 27 28 35 39 41 43 45 49 53 59 61 63
64 65 69 70 72 73 75 76 78 79 81 32.

POSTFIX. o & & procedure in TREETRAVERSAL at 54; read: 57 58 77.

PREFIX « « o+ procedure in TREETRAVERSAL at 46, read: SO 51 74.

SUBSCR « & .« & 1 0 .. 20 type in TREETRAVERSAL at 4; read: 6 7 8 36 46 S4.

TEXT & o o & « 8 primitive type; read: 12.

TREE & « o o 63 arrayl SUBSCR] of NODE type in TREETRAVERSAL at 87 read: 11.

TRUE + « .« o o 1 predefined B300LSAN constant; read: 32.

Figure 11-3. Sample Cross-Reference Listing

Pascal-86 User’s Guide Compiler OQutput

Not all of these columns will appear on every line of the approximate assembly code
listing. Compiler-generated labels are preceded by (?). The code generated from each
source statement will be headed by a comment line bearing the statement number of
that source statement. Figure 11-4 shows a sample listing of approximate assembly
code.

11.1.6 Compilation Summary

The compilation summary appears at the end of the listing, and provides the follow-
ing information for each procedure, function, and module:

e The offset, in hexadecimal, of the entity’s entry point in the code section
¢ The size, in hexadecimal and decimal, of the code section

e The size, in hexadecimal and decimal, of the constant section

e The size, in hexadecimal and decimal, of the data section

e The size, in hexadecimal and decimal, of the stack section

The summary also lists the percentage of free memory used by the compilations, the
number of source lines read and included with the INCLUDE control, and the number
of errors detected. Figure 11-5 shows a sample compilation summary.

The summary also lists the number of source lines read and included with the
INCLUDE control, and the numbers of errors detected. The dictionary summary
provides information about how memory is utilized. Memory Available represents
how much system memory is available to the dynamic symbol table. Memory Used
states how much of that memory is actually used. Disk Space Used indicates the
amount of disk storage used for the symbol table. Static Space Used gives how much
memory is used by internal tables against how much is allocated. This last number is
determined by the SYMBOLSPACE control. Figure 11-5 shows a sample compila-
tion summary.

11.2 Object Module

The result of a successful compilation is a file containing a relocatable object module.
You link this file with the Pascal run-time libraries and other relocatable files (as
described in Chapter 12) to produce a single file that is executable.

From the source file and any included files, the compiler produces one object file that
contains one object module as the result of the compilation. This object module
contains sections as described below, which are unique to each module.

The object module has the following sections:

¢ Code Section

e Constant Section

¢ Data Section

e Stack Section

These sections can be combined in various ways into “memory segments” for execu-

tion, depending on the control used when compiling the program: SMALL (10.3.18),
COMPACT (10.3.3), or LARGE (10.3.12).

Compiler Output

Pascal-86 User’s Guide

00690
ool
8003
2004

2007

@v0C
B80BF

8011
6pl4
2016
0018
9919

091A
060218
081D
BO1E

8921
0823

0025

0028
802A

862D
082F
0931
2034

8936
9038
0939

55
8BEC
55
83ECP2

C746FCBC30

8A46FC
E6DP

BA46FD
E6DO
8BES
5D

c3

55
8BEC
55
83EC02

BO38
E6D6

E8BD8FF

E4C2
8846FD

BRB4
F6D@
2246FD
E6C2

8BES
c3

H

H

Assembly Listing of Generated Object Code

STATEMENT § 1

STATEMENT § 11

RESETCOUNT
PROC NEAR
PUSH BP
MoV BP,SP
PUSH BP
SuB SP,2H

H

H

STATEMENT # 15
MOV

STATEMENT # 16

COUNT{BP],308CH

MoV AL,COUNT [BP] |
our 9DPH
; STATEMENT # 17
MoV AL,COUNT [BP+1H]}
our 8DOH
MOV sp,BP
POP BP
RET
RESETCOUNT
ENDP
; STATEMENT $ 18
INITIALIZECHIP
PROC NEAR
PUSH BP
MOV BP,SP
PUSH BP
SUB SP, 2H
; STATEMENT # 20
MoV AL, 30H
ouT 9D6H
; STATEMENT § 21
CALL RESETCOUNT
; STATEMENT § 22
IN 8C2H
MoV IMASK{BP] ,AL

~

STATEMENT # 23

MOV
NOT
AND
ouT

STATEMENT $ 24
MOV

POP
RET

INITIALIZECHIP

i

ENDP

STATEMENT # 25

AL,4H

AL

AL, IMASK(BP]
BOC2H

Sp,BP
BP

Figure 11-4. Sample Listing of Approximate Assembly Code

In addition, there may be special records generated through your use of the DEBUG
and/or TYPE controls, and public and external entities. These records are discussed
after the following descriptions of object module sections.

11.2.1 Code Section

This section contains the object code generated by the source program. If the object
module is a main module, the code section also contains a “main module prologue™
generated by the compiler. This “prologue” precedes the code compiled from the

Pascal-86 User’s Guide Compiler Output

Summary Information:

PROCEDURE OFFSET CODE SIE OATA SIZt STACK SIZ¢<
BUILDTREE 00E1H 0374H 116D 001CH 160
ADDNODE 0034n QJADH 173D CC10H 160
INFIX 0155H 020924 152D COOoEH 140
PREFIX O1E0H J36FH 111C G00seH 140
POSTFIX 025CH 0OC5FH 1110 000cH 14D
TREETRAVERSAL J2C8H 0178H 3790 JCSaH 900 00StH 140
-CONST IN CODE- 0034H 520

Total 0446H 1094D 00SAH 932 GCOSCH 140D

122 Lines Read.
Q0 Errors Detected.

Cictionary Summary:
48KB Memory Available.
6K3 Memory dsed (12%).

0KB Disk Space Used.
3KkB out of 16K3 Static Space Used (18%).

Figure 11-5. Sample Compilation Summary

source program, and contains the code to set up the CPU for program execution by
initializing various registers and enabling interrupts. Information about logical files
used in the module is stored in the code section.

If either the SMALL or COMPACT control is used, the code sections from all
modules are combined and allocated space in one logical segment. (Logical segments
are described in 12.1.)

If the LARGE control is used (the default), the code section for each module forms
a complete logical segment that is unique for each module.

11.2.2 Constant Section

The constant section contains all memory-resident constants, both literal constants
and those defined with the keyword CONST.

If either the SMALL or COMPACT (—CONST IN CODE—) control is used, the
constant sections from all modules are combined in the same logical segment as the
code sections. If (—CONST IN DATA-—) is specified, these constant sections are
combined in the same logical segment as the data sections (11.2.3). (Logical segments
are described in 12.1.)

If the LARGE (—CONST IN CODE—-) control is used (the default), the constant
section for each module is combined with the code section to form a complete logical
segment that is unique for each module. If (—CONST IN DATA—) is specified,
the constant section is combined with the data section to form a complete logical
segment that is unique for each module.

Compiler Output Pascal-86 User’s Guide

11.2.3 Data Section

The data section contains all global variables at level 0 (above the level of proce-
dures). All variables at level 1 or deeper (below the level of procedures) are stored in
the stack section.

If either the SMALL or COMPACT control is used, the data sections from all
modules are combined and allocated space in one logical segment. (Logical segments
are described in 12.1.)

If the LARGE control is used (the default), the data section for each module forms
one or more complete logical segments that are unique for each module.

11.2.4 Stack Section

The stack section contains all parameters, all variables at level 1 or deeper (below
the level of procedures), and is used to store temporary information. The exact size
of the stack required by each module is estimated by the compiler as the sum of the
STACK sections for each procedure in the module. You can override this computa-
tion and explicitly state the stack requirement during the location process.

If the SMALL control is used, the stack sections from all modules are combined with
the data sections and allocated space in one logical segment. (Logical segments are
described in 12.1.)

If the COMPACT or LARGE control is used, the stack sections from all modules
are combined and allocated space in one logical segment.

NOTE

Since Pascal’s procedures are by definition reentrant, you must be careful to
allocate a stack section large enough to accommodate all possible storage
required by multiple incarnations of such procedures. The stack size can be
explicitly specified during the location process, and you can find stack size
information in the compilation summary.

If a run-time stack overflow exception occurs, you may not have allocated enough
stack space for using sets. The maximum size for a set is (/V/8) + 6 bytes where n
is the number of set members. The number of sets on the stack is a function of the
complexity of the set expressions in your program. To increase stack size, use the
SEGSIZE control of LINK86. For example, if you are using sets of type 1..1000, NV
= 1000 and the maximum size is (1000/8) +6 or 134 bytes. Since two sets are
usually maintained on the stack to implement set operations, the total space you should
add is 268 bytes.

11.2.5 Additional Information

The compiler generates special records to hold rype information if you specify the
TYPE control. These type records are used by the linker and/or various debuggers
to check for consistency between separately compiled modules, and you should make
use of them if you want type checking to occur.

The compiler generates special debug records if you specify the DEBUG control.
These records define local symbols and line numbers, which may be used later for
symbolic debugging.

11-10

Pascal-86 User’s Guide Compiler Output

For each procedure and data structure appearing in a PUBLIC section of the module
being compiled, the compiler generates PUBLIC name definition records. If the
module being compiled is a main program module (see 2.2), a PUBLIC name defini-
tion is generated for the main program entry point. For each procedure and data
structure that appears in another module but is referenced by the module currently
being compiled, the compiler generates an external name definition record. These
external name definition records are also generated for library routines referred to by
the module currently being compiled. These records provide information to the linker,
as described in Chapter 12.

11-11

CHAPTER 12
LINKING, LOCATING, AND
EXECUTING PROGRAMS

12.1 Introduction

An important feature of Pascal-86 is the ability to compile separate object modules
that are parts of a whole program. The iAPX 86 utilities provide a way to link these
modules with modules from run-time support libraries (and modules translated from
other languages) to form the whole program.

The result of a single compilation is an object module, but it does not have to contain
a complete program. In fact, to perform file input/output, set and packed data
manipulation, real arithmetic, and dynamic memory management (NEW and
DISPOSE), your object module has to refer to other modules included in run-time
support libraries, which are listed in 12.2.2.

In many cases, you will want to write portions of a Pascal program and execute and
debug them separately. You might also want to code portions of a program in another
language, translate those portions separately, and link all portions to produce the
final program.

To execute Pascal programs, you have to link the object modules that are needed,
and locate them in memory (bind them to memory addresses).

The operating system provides 8086-based utilities that allow you to link modules
together, locate them in memory, and load them for execution. The linker (LINK86)
links object modules and outputs a module to be located before loading, or located
by the loader. The locater (LOC86) assigns absolute addresses to modules to locate
them in actual memory. The loader loads and executes the final program. In addition,
the LIB86 utility is provided to create and maintain your own library files of compiled
(or translated) object modules.

The 8086 resident linker and locater are described in detail in the iAPX 86, 88 Family
Utilities User’s Guide, which also gives an overview of 8086/8088 memory address-
ing techniques; definitions of segments, classes, and groups; discussions of segment,
class, and group combining; and descriptions of how the locater binds segments to
addresses. The iAPX 86, 88 Family Utilities User’s Guide also describes the mechan-
ics of loading and executing, the maintenance of program libraries using the 8086-
resident library utility (LIB86), the object code-to-hexadecimal conversion utility
(OH86), and intermodule cross-reference (CREF86).

The following sections briefly describe the process of linking and locating Pascal-86
programs and using run-time libraries.

12.2 Linking Object Modules

You use the linker to link groups of logical segments in the order you choose, resolve
all references to modules linked together, and prepare the final linked program for
the locating operation.

The 8086-based linker (LINK86) will link separately compiled Pascal modules with
other Pascal-86 modules, modules translated from other high-level languages like
PL/M-86, and modules translated by ASM86 and the 8089 Macro Assembler.

12-1

Linking, Locating, and Executing Programs Pascal-86 User’s Guide

To satisfy a module that contains external references to other modules, the linker
uses the information compiled from the module’s interface specification to find another
module that contains a public symbol to match the external reference.

The linker produces a single output module. It combines logical segments with the
same name, combines groups with the same name. The linker also selects modules
from specified libraries to resolve external references, and optionally purges public
symbol, local symbol, line number, and comment definitions from the output module.
Throughout the process, the linker generates a link map and error messages for
abnormal conditions.

The linker combines logical segments in the order in which they are encountered in
the input modules, and on the complete logical segment name (the logical segment
name and class name). The output module consists of ene or more logical segments
in the order in which unique segment names were encountered in the input modules.
When a non-unique segment name (a name previously read) is encountered, the linker
combines the logical segment with the segment previously read. The only way that
you can change this sequence is to change the names of the logical segments, or
change the order in which modules are specified in the linker’s command line.

12.2.1 Use of Libraries

Libraries are files containing object modules that are created and maintained by the
library utility, LIB86. These object modules contain public procedures that are refer-
enced by many programs, i.e., they are common to most programs. You use them to
build your programs by referring to them as external procedures in your programs,
and linking them to your programs.

The linker treats library files in a special manner. When you specify input modules
to the linker, the linker keeps track of all external references. Then, when you specify
a library file as input to the linker, the linker searches the library for modules that
satisfy these unresolved external references. This means that libraries should be
specified to the linker after the input modules that contain external references. If a
module in a library has an external reference, the linker searches the library again to
try to satisfy the reference. The process continues until all external references are
satisfied, or until the linker cannot find any more public symbols to satisfy an external
reference

The library utility is described in detail in the iAPX 86, 88 Family Utilities User’s
Guide.

12.2.2 Run-Time Support Libraries

Intel supplies libraries to provide run-time support for Pascal-86 modules that perform
file input/output, set and packed data manipulation, arithmetic functions, real arith-
metic, and dynamic memory (heap) management. The run-time support is divided
into separate libraries so that only the code required for your application is linked in.
You do not have to maintain these libraries using LIB86, since they are supplied as
libraries.

For example, you would link in the library 8087.LIB if you are using the 8087
Numeric Data Processor for real arithmetic. If you are using the 8087 emulator, you
would link in the library E8087.LIB and the module E8087 instead. If you are not
performing any real arithmetic, you would link in the library 87NULL.LIB instead.

12-2

Pascal-86 User’s Guide Linking, Locating, and Executing Programs

The run-time libraries supplied are as follows. They should be linked in the order
listed.

» P86RNO.LIB and P86RN1.LIB are both required for all run-time support.

e P86RN2.LIB and P86RN3.LIB are the required logical record system libraries.
If you intend to provide the interface (logical record interface) to your own record
system, see K.3.7. If you are not providing run-time support and are not using
any predefined Pascal input/output, or dynamic memory functions, you must
link in RTNULL.LIB to resolve external references.

e CELR87.LIB is required to support the following built-in functions: EXP, LN,
SIN, COS, TAN, ARCSIN, ARCCOS, ARCTAN, TRUNC, ROUND,
LTRUNC, and LROUND.

 EHS87.LIB is required to implement IEEE standard math features that the 8087
does not support. These include the normalized mode of arithmetic and nontrap-
ping NaN support.

+ 8087.LIB is required to support real arithmetic with the 8087 Numeric Data
Processor. If you are using the 8087 emulator, use E8087.LIB and the module
E8087 instead. If you are not performing real arithmetic, you must link in
87NULL.LIB to resolve external references.

e LARGE.LIB is required to execute Pascal-86 programs in the Series 111 environ-
ment; it supplies the UDI interface. If your program will run in an environment
other than the Series 111, you need to link in the UDI interface for your operating
system. You do not need LARGE.LIB if you linked in RTNULL.LIB (for no
run-time support), unless you supplied your own run-time support libraries that
rely on the Series III operating system.

Reentrancy

All of the Pascal-86 run-time system is reentrant except for PS6RINO.LIB. A copy of
this library must be linked into each task, though all of the other libraries can be
shared between tasks. Each task must be initiated by one “main program” or its
equivalent (see Appendix J) which will initialize the task’s copy of the shared routines.
For details on how to use the run-time libraries in a multitasking environment, see
the Run-Time Support Manual for iAPX 86,88 Applications, Order Number 121776.

12.2.3 Position-Independent and Load-Time Locatable Modules

The Pascal-86 compiler attempts to produce position-independent code (PIC modules)
for non-main modules that do not use any file input/output, packed data structures,
NEW and DISPOSE to allocate and de-allocate heap space, real arithmetic, proce-
dural parameters, or set operators. Position-independent modules can be located by
the loader, then executed.

Any modules that use any of these features, and all main modules, have to employ
4-byte long pointers that address other modules. Hence, they are not position-
independent, since their pointers need to know the base address of the memory segment
that holds the other object module segments.

In certain stages of program development, you may want to produce modules that
can be loaded anywhere in memory by the loader. Use the linker with the BIND
control, as described in the iAPX 86, 88 Family Utilities User’s Guide, to produce a
program that can be located at load time by the loader.

A position-independent module cannot refer to another segment base, but /oad-time

locatable modules can refer to segment bases in order to access other segments. A
load-time locatable module is called an LTL module. You can create LTL modules

12-3

Linking, Locating, and Executing Programs Pascal-86 User’s Guide

using the BIND control with LINK86 to produce an output module that can be located
by the loader. In this case, the loader decides where to load the linked LTL modules,
resolves all references to segment bases, loads the program, initializes all segment
registers, and executes the program in the iAPX 86 environment.

Consult the iAPX 86. 88 Family Utilities User's Guide for details on position-
independent (PIC) and load-time locatable (LTL) modules.

12.2.4 Sample Link Operations

The following examples show how to execute Pascal-86 programs in different
environments. Note that the operating system prompt (and loader, if applicable) are
not included in these invocations (see your specific operating-system appendix).

1. Toexecute a Pascal-86 program in a full-featured operating system environment,
you should link in all of the Pascal-86 run-time support libraries. If your appli-
cation also requires support for floating-point arithmetic, you must link in the
appropriate numerics libraries. For example, using the 8087 emulator, the link
sequence would be:

&

PBGRNO.LIB, P8GRN1.,LIB, P86RN2.LIB,
re 3.LIB, ¢ L1B, EB087.L1B, E8087, & <cr>
M sy s fen- ! YPROCG.86 BIND <cro

<crd

MYPROG.0BJ, P8BRNO.LIB, PBORN1.LIB, P86RN2.LIB,

L1 &
AR PGERN3 . LIB, CEL87.LIB, 8087.L1B, & <cr>
* *

<crd

system-i1b to MYPROG.86 BIND <cr>

where

system-lib is any interface library that may be required by your
operating system (e.g., LARGE.LIB for the Series III).

Both of these configurations fully support all of the features of Pascal-86. By
using the BIND option with LINKS86, the output file is ready to be executed,
assuming that your operating system has an LTL loader.

If your programs require floating-point support and you want to implement such
IEEE standard math features as normalized arithmetic and non-trapping NaN
support, you need to link in the 8087 exception handler EH87.LIB. For example,
using the 8087 chip, your link command would be:

PBERNT.LIB, P8BBERN2.LIB,
8087.LIB, &

& <Ccrd

<cr

2. To execute your Pascal-86 program in a bare machine (or minimal operating
system) environment, you only need to link in the run-time libraries PS6RNO.LIB
and PS6RNI1.LIB. If your program requires numerics support and you are using
the 8087 chip, your link command would be:

LINK86 MYPROG.ODBJ, P8BRNO.LIB,
8087.LIB TO MYPROG.LNK

P86RN1T.LIB, RTNULL.LIB, & <cr>

<cr

In this example, sets and 32-bit arithmetic operations are fully supported. Pascal
input/output (e.g. READ, WRITE) and memory management (NEW and
DISPOSE) are not supported; if used, LINK86.86 will generate an
UNRESOLVED EXTERNALS warning. To support NEW and DISPOSE in

12-4

Pascal-86 User’s Guide Linking, Locating, and Executing Programs

this environment, see the Run-Time Support Manual for iAPX 86,88
Applications.

If you link in numerics support and an 8087 exception occurs, RTNULL.LIB
will simply execute an HLT instruction. Since there are no external references
between RTNULL.LIB and EH87.LIB, the exception handler will never be called.
Consequently, it should not be included in the link sequence.

Note that the BIND option was not used, since in this environment your programs
would probably be located and burned into ROM, or loaded with a simple absolute
loader.

12.3 Locating Programs

The linker produces a single output module. This module can either be located by the
8086-based locater (LOCS86) or, if the BIND control was used when linking the
program, it can be loaded by the operating system’s loader, then executed. The
program must be located with LOCS86 if it will be burned into ROM or loaded through
ICE-86A.

The 8086-based locater (LOC86) binds locatable logical segments to absolute
addresses. The locater creates an absolute output module from a single input module,
generates a memory map that summarizes the results of address binding, generates a
symbol table that shows the addresses of certain symbols, detects any errors that arise
in the locating process, and filters locating information and compiler-generated
debugging information.

The input module to the locater is usually the output module from the linker, but it
could also be the direct result of a single compilation. The absolute output module is
the program you can load and execute.

The locater assigns a physical address to each logical segment. You can direct the
locater to place logical segments, classes of logical segments, or groups of logical
segments in specific memory locations. The locater resolves logical addresses to
physical addresses so that the same segment register can refer to more than one logical
segment, if those logical segments are combined in a group. For an overview of 8086
memory addressing techniques, see the iAPX 86, 88 Utilities User’s Guide.

You can collect logical segments into groups that fit into 64K. You can also use a
class name to refer to logical segments that have the same attribute (e.g., all CODE
segments, where the class name is CODE). The segment, group, and class names
assigned by the Pascal-86 compiler depend on the segmentation model used, as
described in Appendix J.

You can specify any or all addresses for the various logical segments, or specify none
at all. The locater applies a default ordering and addressing assignment algorithm to
those logical segments not mentioned in the LOCS86 invocation line. The logical
segments are ordered and assigned addresses in this sequence:

» The classes and logical segments mentioned in the ORDER control

» The classes and logical segments mentioned in the ADDRESSES control
» The logical segments that already have absolute addresses

+ The class name of each logical segment

e The overlay name of each logical segment

» The parent group of an LTL module (if any)

e The order of logical segments in the input module

12-5

Linking, Locating, and Executing Programs Pascal-86 User’s Guide

The locating process is described in detail in the iAPX 86, 88 Family Utilities User’s
Guide.

12.3.1 Locating the 8087 Emulator

The 8087 emulator object code is divided into classes: AQMCODE (the read-only
portion) and AQMDATA (the read-write portion), and STACK. If you are using the
8087 emulator, you may want to locate these classes separately using LOC86, in
order to locate the read-only portion (AQMCODE) in ROM and the read-write
portion (AQMDATA) in RAM. Do this with the CLASSES subcontrol of the
ADDRESSES control for LOC86.

If you are locating the 8087 emulator separately from your program, the interrupt
vectors that your program uses must be initialized to point to the proper routines in
the emulator. The INITFP routine, called as part of the main program prologue, will
initialize these vectors if it knows the E8087 addresses. If the main program is located
at the same time as the emulator, these addresses are readily available. Otherwise,
use the PUBLICSONLY input control of LINK86 to obtain the located addresses of
the emulator.

The emulator assumes that there are 180 bytes available on the stack for its use,
which can be allocated using the SEGSIZE control of LOC86. The emulator also
reserves interrupts 20 through 31.

12.4 Preconnecting Files

You can assign physical file names to file variables that are used as program param-
eters by using a mechanism known as file preconnection. A file variable is a program
parameter if its identifier appears in a PROGRAM statement. You preconnect files
at run time on the command line used to invoke your program.

Pascal-86 offers two ways to associate file variables with physical files: (1) a second
parameter to REWRITE and RESET (an Intel extension to Pascal), used in a
program to explicitly state the physical file name, and (2) the preconnection mecha-
nism (standard to Pascal) used when you execute the compiled program. The first
way takes precedence: if you supply a second parameter to REWRITE or RESET,
any preconnection for that file variable is ignored. The second parameter to
REWRITE and RESET is described in 8.7.1 and 8.7.2.

Default file names are provided for all file variables. If the file variable is a program
parameter, you can override the default name by using the preconnection mechanism.
You cannot preconnect physical files to other file variables, even if the other file
variables are not specified in a second parameter to REWRITE or RESET. Tempo-
rary files are created by the host system for such file variables, and the temporary
files are deleted when the program terminates.

To use the file preconnection mechanism, specify the file names on the program’s
invocation line.

The file preconnection format takes the form:

(identifier = pathname , ...])

12-6

Pascal-86 User’s Guide Linking, Locating, and Executing Programs

where
identifier is the file variable used as a program parameter.
pathname is a legal pathname for a physical file.

You do not have to specify or preconnect the physical devices :CO: and :CI: for the
standard files INPUT and OUTPUT.

12-7

CHAPTER 13
COMPILE-TIME ERRORS AND WARNINGS

This chapter describes all of the error and warning messages produced by the compiler.
Compiler messages are coded by number and are listed in this chapter in numeric
order by their code numbers so that you can easily look up any message you received.

In addition to compile-time and run-time error messages (see Chapter 14), you may
encounter other error messages during program development—errors during the
linkage and location processes, and other operating system error conditions. Consult
the iAPX 86,88 Utilities User’s Guide for information on linkage and location errors
and errors that occur while using the utilities.

13.1 General Format

Most of the errors and warnings reported by the compiler appear in the listing file
governed by the PRINT control, and on the device or in the file governed by the
ERRORPRINT control (which sends them to the console by default). If you use the
NOPRINT control, the messages appear at the console only, or at a file specified in
an ERRORPRINT control. If you specify NOERRORPRINT, errors and warnings
are reported in the file governed by the PRINT control, or at the console if you
specified NOPRINT.

Errors in the invocation line and in the first set of primary control lines are the only
errors that are not governed by the PRINT or ERRORPRINT controls. These errors
appear at the console immediately, if they occur.

The following two sections describe the invocation line errors and compile-time errors
that are detected by the compiler. All errors and warnings reported by the compiler
take the following form:

*** severity n IN stmt (file, LINE line): text

where

severity is either EXTENSION, WARNING, ERROR, LIMIT
EXCEEDED, or FATAL ERROR.

n is the error number described below.

stmt is the statement number of the Pascal source statement where
the error occurred.

file is the name of a source file.

line is the ordinal position of the source line in the source file
where the erring statement resides.

text is the text of the message, as described below.

The error number n is a four-digit number where each digit is meaningful. The
leftmost digit (thousandths’ digit) indicates the severity of the message. Table 13-1
shows the corresponding severity for each leftmost digit of n.

The second leftmost digit (hundreds’ digit) of the error number n identifies the phase
of compilation in which the error occurred. Table 13-2 shows the corresponding phases.

13-1

Errors and Warnings Pascal-86 User’s Guide

Table 13-1. Severity Levels of Compiler Errors

Leftmost . .
Digit Severity Meaning
1or2 EXTENSION The compiler detects a violation of the ANSI/

IEEE770X3.97-1983. These messages occur only if
the NOEXTENSIONS control is used.

3oré4 WARNING The compiler detects a bad situation, but the problem
will not affect the validity of the generated code.

S5or6 ERROR The compiler detects a definite violation that invali-
dates the generated code.

7 LIMIT A capacity limit of the compiler has been exceeded.
Although compilation continues, the object code is not
valid.

8 LIMIT A capacity limit of the compiler has been exceeded,
and compilation is aborted.

9 FATAL The compiler detects an unexpected condition in the

supporting environment. Compilation is aborted.

Table 13-2. Error Numbers Corresponding to Compilation Phases

Second
Leftmost Phase of Compilation
Digit
0 Invocation Line and First Set of Primary Controls
1or2 Scanner
3 Parser
4 (not used)
5 Semanticist
6 Cross-Referencer
7 (not used)
8 Code Generator
9 Object Module Generator

13.2 Invocation Line and Primary Control Errors

The following error messages are also listed in numeric order in section 13.3, but are
repeated here for quick referencing, since they will most likely occur immediately
after you invoke the compiler.

FATAL ERROR 9000: I/0 error on filename: system information
The compiler cannot find or open filename. Compilation is aborted and control is
returned to the operating system. Check to see if the file exists.

FATAL ERROR 9001: Unable to open INCLUDE file

filename: system information

The INCLUDE file is not present, or is already open. Combination is aborted, and
control is returned to the operating system.

13-2

Pascal-86 User’s Guide Errors and Warnings

FATAL ERROR 9002: 1/0 error on filename: system information

The compiler cannot find or open filename. Compilation is aborted and control is
returned to the operating system. Check to see if the file exists.

FATAL ERROR 9005: Input file missing or syntax
error in invocation line.

FATAL ERRORS 9006 to 9017: 1/0 error on compiler
work file: systeminformation

The compiler cannot open one or more of the eight files for some reason. Check to
see if the files are assigned to another disk drive besides the designated work file
drive, or if the proper disk is not in the designated work file drive. Use the WORK
command to change the designated work file drive. If the error persists, contact your
supplier. Compilation is aborted, and control is returned to the operating system.

FATAL ERROR 90xx: Compiler error in root.

Unexpected condition; contact your supplier. Compilation is aborted. (xx represents
a particular number useful only to your supplier.)

FATAL ERROR 9201: Unknown control, control, in
invocation group.

The “invocation group” includes the invocation line and the initial set of primary
control lines in the source file. Compilation is aborted.

13.3 Compile-Time Errors and Warnings

FATAL ERROR messages and LIMIT messages over 8000 indicate that compila-
tion was aborted. In all other cases, compilation will continue; however, ERROR
messages indicate that an object-module was not generated. In ERROR messages,
the compiler performs a corrective action that will enable it to continue compiling
and looking for errors. One common action is to “neutralize” a type specification, so
that subsequent references to the incorrect type do not cause more type incompati-
bility errors or undefined symbol errors. Objects whose type have been “neutralized”
are called neutral objects.

When an EXTENSION or WARNING message occurs, the generated object code
is valid as object code, but it might not be valid for the intended use of your program.
When an ERROR or LIMIT message occurs, compilation may continue, but the
object code is not generated. FATAL ERROR messages indicate that the compila-
tion is aborted. In any case, if compilation is aborted, control is returned to the
operating system.

EXTENSION 1201: Non-decimal integer constant, const.
The constant expression is not a decimal integer. Octal, binary, and hexadecimal
integers are not permitted in standard Pascal. Compilation continues.

EXTENSION 1204: Non-standard compiler control.

This message will occur only if the compiler encounters a general control line. The
initial set of primary control lines will not cause this message. Compiler controls are
not part of standard Pascal. Compilation continues.

EXTENSION 1206: Non-standard underscore in
identifier Jjdentifier.

Standard Pascal does not allow underscores in identifiers.

Errors and Warnings Pascal-86 User’s Guide

EXTENSION 1232: Non-standard LONGINT constant, string.
Standard Pascal requires that integer constants be in the range —32767 to +32767.

EXTENSION 1500: Non-standard interface
specification.

Intel’s Pascal-86 allows separate compilation units for a single program, each of which
starts with an interface specification. Standard Pascal only supports a single compi-
lation unit, which must start with a program heading.

EXTENSION 1502: Label too large.

To conform to the Pascal standard, labels must be in the range 0 to 9999. Intel’s
Pascal-86 does not have this restriction.

EXTENSION 1504: Non-standard concatenation of
string constants,.

Intel’s Pascal-86 allows concatenation of string constants. Standard Pascal does not
support this feature.

EXTENSION 1508: Case constants in variant record do
not map onto range of tag type.

Standard Pascal requires that the set of case constant values in a variant record must
equal the set of values in the tag type. Intel’s Pascal-86 does not have this restriction.

EXTENSION 1514: Non-standard signature on forwarded
definition,.

Intel’s Pascal-86 allows a parameter list (and result type) specification to appear in
a procedure or function declaration that has been previously declared to be
FORWARD. Standard Pascal does not support this feature.

EXTENSION 1516: Use of non-standard predefined
symbol, symbol.

The symbol is a predefined constant, type, procedure, or function offered only in
Pascal-86, not in standard Pascal. The symbols defined in Pascal-86 (that would cause
this message) are TAN, ARCSIN, ARCCOS, INBYT, OUTBYT, INWRD,
OUTWRD, GET8087ERRORS, MASKS8087ERRORS, ATS87ERRORS,
ATS87EXCEPTIONS, AT87PRCN, AT87UNDR, AT870VER, AT87ZDIV,
AT87DENR, AT87NVLD, AT87MASK, AT87RSVD, CR, LF, ENABLEINTER-
RUPTS, DISABLEINTERRUPTS, CAUSEINTERRUPT, SETINTERRUPT,

" LONGINT, MAXLONGINT, LTRUNC, LROUND, LORD, WORD, WRD,
MAXWORD, TEMPREAL, LONGREAL, and BYTES.

EXTENSION 1517: Non-standard invocation of identifier.

This is caused by the Intel extension to standard Pascal that allows you to specify a
second argument to REWRITE and RESET. Standard Pascal allows only one
argument.

EXTENSION 1518: Non-standard indexed reference to
component of a string constant.

Intel’s Pascal-86 allows indexed references to components of a string constant.
Standard Pascal does not support this feature.

134

Pascal-86 User’s Guide Errors and Warnings

EXTENSION 1520: Non-standard OTHERWISE clause in
CASE statement.

Intel’s Pascal-86 allows OTHERWISE clauses, which are not included in standard
Pascal.

EXTENSION 1522: Character appears where string is
expected.

Intel’s Pascal-86 allows you to use a single-character constant wherever a string is
permitted; i.e., a single-character constant can be interpreted as a PACKED ARRAY
{1..1] OF CHAR. Standard Pascal does not allow a single-character constant where
a string is permitted.

EXTENSION 1524: Factored procedural- or functional-
parameter list,

In a parameter declaration, standard Pascal permits only one identifier to follow the
PROCEDURE or FUNCTION word-symbol. Intel’s Pascal-86 allows a list of
identifiers.

EXTENSION 1525: Integer argument n of builtin identifier
should be real.

Standard Pascal requires that the arguments to TRUNC and ROUND be of a real
type.

EXTENSIGN 1534: Extended definition and
compatability of strings.

Pascal-86 extends string type to include PACKED or UNPACKED arrays of type
CHAR with a lower bound of O or 1.

EXTENSION 1535: Argument n of identifer is a member of

a packed structure.

Pascal-86 will pass arguments that are components of a packed array of type CHAR.
WARNING 3102: Illegal character, "char" in control
line.

The compiler found a character that is not permitted in an identifier while looking
for a control name. The character is ignored, and compilation continues.

WARNING 3103: Premature end of control line.

The compiler found an end-of-line before finding a closing parenthesis of a control
argument list. The control is not processed, and compilation continues.

WARNING 3104: Controls follow an INCLUDE control on
the same line.

The INCLUDE control terminates the processing of the control line it is on. Any
control that follows INCLUDE on the same control line is ignored, and compilation
continues.

WARNING 3105: Control token, contro/, too long.

The characters scanned are discarded and scanning continues. WARNING 3201 will
probably also occur.

WARNING 3106: Syntax error in control control; control
will be ignored.

The control control is ignored, and compilation continues.

13-5

Errors and Warnings Pascal-86 User’s Guide

WARNING 3107: Syntax error at ‘<token>’; rest of
control line has been ignored.

A syntax error was caused by the string of characters in < token > .

WARNING 3108: Constant n is greater than
MAXLONGINT. MAXLONGINT is used.

The value specified falls outside the range of integer values. MAXLONGINT
(+2147483647) is substituted, and compilation continues.

WARNING 3120: Domestic symbol identifier of subsystem
identifier is declared public FOR module identifier, which is
not a member of that subsystem.

The named symbol has not been exported from its subsystem, but its FOR clause
includes a module that is not in this subsystem.

WARNING 3201: Unknown control, control.

The unknown control is ignored, and scanning continues.

WARNING 3202: Primary control, control, illegally
specified outside invocation group.

You can specify primary controls only in the invocation line, or in the initial set of
primary control lines (known as the “invocation group”). The control is ignored, and
compilation continues.

WARNING 3206: Required parameter string missing
from control control.

A TITLE or SUBTITLE control was specified without the title or subtitle. The control
is ignored, and compilation continues.

WARNING 3208: Invalid SYMBOLSPACE parameter,
default value used.

A valid parameter for the SYMBOLSPACE control ranges from 5 to 64.

WARNING 3209: Insufficient memory for SYMBOLSPACE
allocation, maximum used.

The request for SYMBOLSPACE allocation is larger than the memory available;
the maximum amount available is being used.

WARNING 3501 : identifier does not match identifier on
MODULE statement.

The name in the PROGRAM or PRIVATE statement does not match the name in
the MODULE statement. The compiler assumes the PROGRAM or PRIVATE name
to be the correct one, and compiles the module using that name.

WARNING 350S5: Label /abel has been defined but not
declared.

This warning occurs when a label that was not declared in a LABEL statement appears
on a statement. The compiler assumes a declaration occurred and continues compiling,
and the object code generated contains this repair, but the repair might not be what
you intended for your program.

13-6

Pascal-86 User’s Guide Errors and Warnings

WARNING 3507: Label /abel has been declared but not
defined.

This warning occurs when a label was declared in a LABEL statement but never used
to label a statement in the block. The compiler ignores the label and continues
compiling.

WARNING 3554: Multiple FORWARD declarations for
identifier .

Multiple FORWARD declarations occurred for the same identifier. All FORWARD
declarations after the first one are ignored, and compilation continues.

WARNING 3556: Definition and FORWARD declaration
for identifier do not match.

This occurs if the parameter list or result value specified in a FORWARD definition
does not agree with the corresponding parameter list or result type specification in
the FORWARD declaration. The compiler chooses the specification in the
FORWARD declaration, and continues compiling.

WARNING 3558: Multiple declarations for label /abel.

The compiler found more than one declaration for /abel. The compiler uses the first
declaration, ignores the others, and continues compiling.

WARNING 3576: Program parameter pname has not been
declared a file.

Program parameters may be defined only as files within the program block. The
explicit declaration stands, but the program parameter cannot be used as a file.
Compilation continues with this repair, but the generated object code might not be
what you intended for your program.

WARNING 3578: Argument n of name is a nested
function or proceduré.

Pascal-86 does not allow the argument to a BYTES parameter to be a nested proce-
dure or function. If this procedure or function is invoked, all “up-level” references
will be incorrect.

WARNING 3579: In argument n to FAR procedure or
function name, attempt to pass a NEAR procedure as a
BYTES argument.

WARNING 3580: Variant part of record is segmented.
It is unwise to declare part of a variant record to be greater than 64K. The data

representation is not contiguous.

WARNING 3601: Insufficient memory to complete
Cross-Reference.

WARNING 3902: Identifier, identifier, has been truncated
t o identifier .

Program and module identifiers may not exceed 31 characters. Public identifiers may
not exceed 40 characters. (If the Debug control is active, local symbols are also
truncated to 40 characters.)

WARNING 3906: Insufficient memory to generate type
information for identifier.

A type record for the null type is generated for the specified identifier.

13-7

Errors and Warnings Pascal-86 User’s Guide

13-8

WARNING 3907: Overflow occurred when real constant
n was converted to binary. Infinity is used.

The value specified exceeds the largest representable real number. Infinity is substi-
tuted and compilation continues.

WARNING 3908: Underflow occurred when real constant
n was converted to binary. Zero is used.

The value specified is lower than the smallest representable real number. Zero is
substituted and compilation continues.

WARNING 3909: Rounding occurred when real constant
n was converted to binary.

ERROR S112: Multiple definitions for identifier
subsystem.

Each subsystem name must be unique. The segmentation control is ignored, and
compilation continues.

ERROR S5114: Module identifier of identifier subsystem is also
claimed by identifier subsystem.

The named module appears in the HAS list for two or more segmentation controls.
The module will remain in its originally specified subsystem.

ERROR S5115: Symbol identifier exported from identifier
subsystem is also claimed by identifier subsystem.

The named symbol appears in the EXPORTS list for two or more subsystem defini-
tions. The symbol will remain in its originally specified subsystem.

ERROR- 5116: Symbol identifier, exported from identifier
subsystem, is actually declared in module identifier.

The named symbol appears in the EXPORTS list for the named subsystem, but is
declared in a module belonging to another subsystem.

ERROR 5117: Predefined files, INPUT and OUTPUT,
exported from different subsystems.

The predefined files INPUT and OUTPUT can only be exported from the subsystem
containing the main module of the program.

ERROR 5118: A HAS list is not permitted with an
open subsystem.

ERROR 5122: The open subsystem identifier has been
created; No more allowed.

The definition of the open subsystem must be the last segmentation control in the
source program. The appearance of a segmentation control after a PUBLIC section
not named in any HAS clause can cause this message.

ERROR 5123: The open subsystem identifier was created
for the module identifiery; No more allowed.

ERROR 5203: Interrupt number, n, not in range
0..255. Using 0.

The interrupt number associated with an interrupt procedure in an INTERRUPT
control is not in the proper range (O to 255). The compiler uses a zero for the inter-
rupt number, and compilation continues.

Pascal-86 User’s Guide Errors and Warnings

ERROR 5310: <ID>», a compiler-generated identifier,
used to repair source.

Because < ID > was inserted by the error repair mechanism, an object module cannot
be generated.

ERROR 5311: Nested IFs are not allowed.

ERROR 5312: Misplaced ELSEIF or ELSE control.

An ELSE or ELSEIF control must be specified in control line format—a dollar sign
($) in the left margin, followed by one or more controls, each separated by one or
more blanks. Because ELSE and ELSEIF are generated controls, they may appear
either in the command invocation line or on a control line located anywhere in the
source code. Only one ELSE element may be included in an IF element.

ERROR 5313: Misplaced ENDIF control.

An ENDIF control must be specified in control line format—a dollar sign ($) in the
left margin, followed by one or more controls, each separated by one or more blanks.
Because ENDIF is a general control, it may appear either in the command invocation
line or on a control line located anywhere in the source code.

ERROR 531t4: Conditional control expression
overflow.

ERROR 5315: Conditional control expression
underflow.

ERROR 5316: Syntax error in identifier or number:
token .

The expression following IF in an IF element must be one of these oeprators: OR,
NOT, AND, <, <, =, >, =, and < >. The only operands allowed are switches
and whole number constants from 0 to 255; otherwise, the incorrect identifier appears
as token.

ERROR 5317: Number, number, must be in range 0 to
256S5.

ERROR S5500: Multiple declarations for identifier.

Multiple declarations were found for identifier. The compiler chooses the first decla-
ration in the block. The extra declarations appear in the cross-reference listing showing
no references to the object. The compiler continues compiling, but does not generate
an object module.

ERROR 5502: Duplicate field name, identifier, in record
definition.

The compiler adds the field to the record, but without a field name. The compiler
continues compiling, but does not generate an object module.

ERROR 5504: Illegal circular definition of identifier.

A type or constant was defined using a bad recursive structure in which no pointers
are used. For example, X=ARRAY[1..10] OF X, or Y=Z7; Z=ARRAY[1..10] OF
SET OF Y. The compiler supplies a neutral type and continues compiling, but does
not generate an object module.

Errors and Warnings Pascal-86 User’s Guide

ERROR 5506 : identifier has not been declared.

All identifiers must be declared. The compiler substitutes a neutral object for the
illegal reference and continues compiling, but does not generate an object module.

ERROR S5510: Jdentifier is not a constant as required.

An identifier on the right-hand side of a constant definition must denote a constant.
The compiler supplies a neutral constant and continues compiling, but does not
generate an object module.

ERROR 5511: ijdentifier is not a numeric constant as
required.

The identifier following a + or — sign in a constant definition must denote a numeric
constant. The compiler substitutes a one for identifier and continues compiling, but
does not generate an object module.

ERROR 5515: In the subrange specification
constl.const2, the constants are not compatible.

The subrange bounds const? and const2 are of different or incompatible types. The
compiler nullifies the subrange specification and continues compiling, but it does not
generate an object module.

ERROR 5517: The bounds of the subrange
specification constl..const2 are out of order.

The lower bound of the subrange is greater than the upper bound. The compiler
nullifies the subrange specification and continues compiling, but it does not generate
an object module.

ERROR 5519: The constant identifier is not legal in a
subrange specification.

Pascal-86 requires that the endpoints of a subrange type be of an ordinal type. The
compiler supplies a neutral type and continues compiling, but it does not generate an
object module.

ERROR S5530: identifier is not a type as required.

The specified context requires a type identifier. The compiler supplies a neutral type
and continues compiling, but it does not generate an object module.

ERROR 5534: Base type of set is not acceptable.

Pascal-86 requires that the base type of a set be of any ordinal type except WORD
or LONGINT. The compiler supplies a neutral type and continues compiling, but it
does not generate an object module.

ERROR 5535: Index type identifier is not acceptable.

Pascal-86 requires that the index type of an array specification be of an ordinal type.
The compiler supplies a neutral type and continues compiling, but it does not gener-
ate an object module.

ERROR 5536: Tag type identifier is not acceptable.

Pascal-86 requires that the tag type of a variant record be of any ordinal type except
LONGINT. The compiler supplies a neutral type and continues compiling, but it
does not generate an object module.

13-10

Pascal-86 User’s Guide Errors and Warnings

ERROR 5537: symbol is a duplicate case constant in a
variant record specification.

The case constant symbol is invalid, because it is a duplicate of another constant in
the same record. The variant is incorporated into the record, but it is not associated
with a case constant. The compiler continues compiling, but does not generate an
object module.

ERRDOR 5538: Case constant symbo/l is incompatible with
tag type.
The case constant symbol is invalid. The variant is incorporated into the record, but

it is not associated with a case constant. Compilation continues, but an object module
is not generated.

ERROR 5540: File type has a component that is or
contains a file.

Pascal does not allow a component of a file to contain an imbedded file. The imbedded
file is neutralized and compilation continues, but an object module is not generated.

ERROR 5542: The function result type identifier is not a
scalar type.

ERROR S5544: The implicit variable associated with
function identifier is never assigned a value in the
body of the function.

ERROR 5547: Argument n of identifier is not addressable.

VAR arguments passed to SMALL procedures must be defined in SMALL sub-
systems, or must be obtained by dereferencing a SMALL pointer.

ERROR 5552: No definition for identifier appears after
FORWARD declaration.

The identifier was declared as a FORWARD procedure, but a subsequent definition
of identifier did not appear in the block, or the definition preceded the FORWARD
declaration. The compiler continues compiling, but does not generate an object module.

ERROR 5560: Target of GOTO Jabel is undefined.

The label referred to in the GOTO statement is not defined anywhere within an
enclosing block. The compiler deletes the GOTO statement and continues compiling,
but it does not generate an object module.

ERROR 5561: Target of GOTO Jabel is inaccessible.

The label referred to in the GOTO statement is defined, but it is located on a state-
ment at a nesting level that is deeper than the nesting of the GOTO, or otherwise
incompatible with the nesting of the GOTO. The compiler deletes the GOTO state-
ment and continues compiling, but it does not generate an object module.

ERROR S§562: Invalid call to function identifier in a
procedure statement.

A function name was used by mistake in a procedure statement. The compiler ignores
the procedure statement and continues compiling, but it does not generate an object
module.

ERROR 5564: Variable expected in this context.

The left side of an assignment statement or an argument passed as a VAR parameter
is not a variable, as required. The compiler ignores the statement, neutralizes its type,
and continues compiling, but it does not generate an object module.

13-11

Errors and Warnings Pascal-86 User’s Guide

ERRDOR 5566: Right side of assignment statement is
not compatible with left side.

The compiler ignores the assignment statement and continues compiling, but it does
not generate an object module.

ERROR 5567: Illegal assignment to a variable that
is or contains a file.

ERROR 5568: IF expression is not of type Boolean.

The expression following IF in an IF statement must be of type Boolean.
The compiler ignores the expression and continues compiling, but it does not generate
an object module.

ERROR 5570: CASE expression is not of an ordinal
type.

The expression following CASE in a CASE statement must be of an ordinal type.
The compiler ignores the expression, neutralizes the index type, and continues
compiling, but it does not generate an object module.

ERROR 5574: Program parameter name has not been
declared.

A program parameter was used as a file variable, but it was not declared. Program
parameters other than INPUT and OUTPUT must be declared in the program block
if they are to be used as file variables within the program. If the program tries another
reference to it, another error will occur. Compilation continues, but no object code is
generated.

ERROR 5576: Argument n of identifier is not memory
resident,

The indicated argument cannot be passed as a VAR BYTES parameter. This error
occurs when passing ordinal constants and string constants of length one.

ERROR 5577: WHILE expression is not of type
Boolean.

The expression following WHILE in a WHILE statement must be of type Boolean.
The compiler ignores the expression and continues compiling, but it does not generate
an object module.

ERRDOR 5578: UNTIL expression is not of type
Boolean.

The expression following UNTIL in an UNTIL statement must be of type Boolean.
The compiler ignores the expression and continues compiling, but it does not generate
an object module.

ERROR 5580: FOR loop index, identifier, is not a
variable as required.

The index of a FOR loop must be a variable. The compiler ignores the reference,
neutralizes its type, and continues compiling, but it does not generate an object module.

ERROR 5581: In argument n to procedure or function
name, attempt to pass a procedure, variable, or
memory-resident constant as a BYTES argument to a
non-local procedure of a SMALL subsystem,

13-12

Pascal-86 User’s Guide Errors and Warnings

ERROR 5582: FOR loop index, identifier, is a global
variable.

The index of a FOR loop must be defined in the immediately enclosing block. The
compiler ignores the reference, neutralizes its type, and continues compiling, but it
does not generate an object module.

ERROR 5584: The type of FOR loop index, identfier, is
not acceptable.

Pascal-86 requires that a FOR-loop index be of an ordinal type. The compiler ignores
the reference, neutralizes its type, and continues compiling, but does not generate an
object module.

ERROR 5585: The initial-value expression of the FOR
loop is incompatible with the type of the index
variable.

The type of the index variable prevails, and the initial-value expression is ignored.
The compiler continues compiling, but does not generate an object module.

ERROR 5586: The final-value expression of the FOR
loop is incompatible with the type of the index
variable.

The type of the index variable prevails, and the final-value expression is ignored. The
compiler continues compiling, but it does not generate an object module.

ERROR 5587: Illegal reference to FOR loop index
identifier .

This occurs when a FOR loop index appears on the left side of an assignment state-
ment, as the variable argument in a function or procedure call, as the index of a
nested FOR loop, or as the argument to READ or READLN. The compiler supplies
a neutral object for identifier in this reference and continues compiling, but it does
not generate an object module.

ERROR 5588: identifier is not a valid data reference in
a WITH statement.

A variable used in a WITH statement must be a variable of a record type. The
compiler ignores the reference and continues compiling, but it does not generate an
object module.

ERROR 5592: The type of case constant, symbo/, is not
acceptable.

Pascal-86 requires that case constants be of any ordinal type except LONGINT. The
case constant is ignored, but the statements of the case are analyzed as compilation
continues. An object module is not generated.

ERROR 5594: symbol is a duplicate case constant.
Although the extra case constant is ignored, the CASE statements are analyzed and

compilation continues. An object module is not generated.

ERROR 5595: Case constant, identifier, is incompatible
with the CASE expression.

ERROR 5596: The variable identfier.. is not a record as
required by the WITH statement.

A variable used in a WITH statement must be a variable of a record type. The variable
denotation beginning with identifier... does not denote such a variable. The reference
is ignored and compilation continues, but an object module is not generated.

13-13

Errors and Warnings Pascal-86 User’s Guide

13-14

ERROR 6501: Compiler error in Semantic Analyzer
n, m).

Contact your supplier. (n and m are compiler debug information.)

ERROR 6502: Base type of set is not in the range of
integers.

ERROR 6510: The type of the index expression does
not match the index type of the variable identifier...

The variable denotation beginning with identifier... denotes an array. The compiler
ignores the index expression and selects an arbitrary component of the array. The
compiler continues compiling, but it does not generate an object module.

ERROR 6512: The indexed variable identifier.. is not an
array.

The variable denotation beginning with identifier... is subscripted, but it does not denote
an array. The compiler supplies a neutral object and continues compiling, but it does
not generate an object module.

ERROR 6514: identifier is not a field of the designated
record.

The compiler supplies a neutral object for identifier and continues compiling, but it
does not generate an object module.

ERROR 6516: The dereferenced variable identifier.. is not
a pointer.

The variable denotation beginning with identifier... contains the up-arrow (t) opera-
tor, but it does not denote a pointer. The compiler supplies a neutral object and
continues compiling, but it does not generate an object module.

ERROR 6518: The qualified variable identfier.. is not a
record.

The variable denoted by identifier... is qualified with a field designator, but the varia-
ble is not a record. The compiler supplies a neutral object and continues compiling,
but it does not generate an object module.

ERROR 6520: identifier cannot be referenced in an
expression.

The identifier is not a constant, variable, or function, and therefore it cannot be referred
to in an expression. The compiler supplies a neutral object and continues compiling,
but it does not generate an object module.

ERROR ©6533: Function reference identifier references the
return value.

ERROR €6540: For the operator symbol, type of operand
is incompatible with operator.

A wrong type of operand was used. The compiler supplies a neutral object for the
operator and continues compiling, but it does not generate an object module.
ERROR 6541: The operands of operator symbol are
incompatible with each other.

The compiler supplies a neutral result for the operation and continues compiling, but
it does not generate an object module.

Pascal-86 User’s Guide Errors and Warnings

ERROR ©6542: Illegal call to procedure identifier in
expression.

A procedure name was used by mistake in an expression. The compiler supplies a
neutral object for the call and continues compiling, but it does not generate an object
module.

ERROR 6544: Argument list in call to identifier is too
short.

The compiler supplies a neutral object for the call and continues compiling, but it
does not generate an object module.

ERROR 6545: Near symbol symbol, a set expression
element is not an ordinal value.

The compiler deletes the element and continues compiling, but it does not generate
an object module.

ERROR 6546: Near symbol symbol, type of set
expression element is incompatible with expressions
that follow it.

The compiler deletes the incompatible element, and continues compiling, but it does
not generate an object module.

ERROR 6548: Argument list in call to identifier is too
long.

The compiler supplies a neutral object for the call and continues compiling, but it
does not generate an object module.

ERROR 6550: Argument. n of identifier is not the same
type as the corresponding VAR parameter.

The nth parameter of identifier is a VAR parameter. The compiler supplies a neutral
object for the nth argument in the call to identifier and continues compiling, but it
does not generate an object module.

ERROR 6552: Argument n of identifer is not assignment-
compatible with the corresponding value parameter.

The nth parameter of identifier is a value parameter. The compiler supplies a neutral
object for the nth argument in the call to identifier and continues compiling, but it
does not generate an object module.

ERROR ©555: Argument n of identifier is not a function
or procedure.

The nth parameter of identifier is a functional or procedural parameter. The compiler
supplies a neutral object for the nth argument in the call to identifier and continues
compiling, but it does not generate an object module.

ERROR &6556: The parameter list of argument n of
identifier does not match the parameter list of the
corresponding procedural parameter.

The nth parameter of identifier is a procedural or functional parameter. The compiler
supplies a neutral object for the nth argument in the call to identifier.and continues
compiling, but it does not generate an object module.

13-15

Errors and Warnings Pascal-86 User’s Guide

ERROR ©6557: identifier is not eligible as an interrupt
procedure.

To be allowed as an interrupt procedure, identifier cannot have any parameters, and
it must be defined at level one. The compiler ignores the definition and continues
compiling, but it does not generate an object module.

ERROR 6558: Second parameter of SETINTERRUPT is not
an interrupt procedure.

The second parameter for the SETINTERRUPT procedure must be an interrupt
procedure. The compiler ignores the statement and continues compiling, but it does
not generate an object module.

ERROR €6559: Argument n of identifer is an interrupt
procedure, which cannot be a procedural argument.

ERROR 6560: identifier is not a procedure as required.

The context requires that identifier be a procedure. The compiler deletes the state-
ment and continues compiling, but it does not generate an object module.

ERROR 6561: Attempt to reassign interrupt number n
to interrupt procedure identifier.

Pascal does not allow the same interrupt number to be assigned to more than one
interrupt procedure.

ERROR 6562: Argument identifier is a predefined routine;
it cannot be a procedural argument.

Pascal-86 does not allow you to pass predefined routines as arguments to user-defined
routines. The compiler supplies a neutral object for identifier and continues compiling,
but it does not generate an object module.

ERROR ©6564: Argument n of identifer must be a variable.

An expression was used as an argument for a VAR parameter where a variable must
be used. The compiler supplies a neutral object for the argument and continues
compiling, but it does not generate an object module.

ERROR ©565: Argument n of identifier cannot be a member
of a packed structure.

Components of packed structures cannot be passed as VAR arguments. The compiler
supplies a neutral object for the argument and continues compiling, but it does not
generate an object module.

ERROR 6566: Argument n of identifier is an invalid
argument specification.

The argument notation e:e or e:e:e can be used only in the predefined procedures
WRITE and WRITELN. The compiler ignores the extra notation and continues
compiling, but it does not generate an object module.

ERROR ©6567: Format of argument n of identifier is
invalid for non-real argument.

The argument notation e:e:e can be used only for REAL type arguments to the prede-
fined procedures WRITE or WRITELN. The compiler ignores the notation and
continues compiling, but it does not generate an object module.

13-16

Pascal-86 User’s Guide Errors and Warnings

ERROR 6568: The field width specifier in argument n
of identifier must be an integer value.

The identifier is either WRITE or WRITELN.

ERROR 6570: Standard file filename, implied by call to
predefined I1/0 routine, has not been defined.

In a call to EOF, EOLN, READ, WRITE, READLN, WRITELN, or PAGE, a file
parameter was omitted, implying one of the standard files INPUT or OUTPUT;
however, neither standard file appeared as a program parameter. This error can occur
only in a main module. The compiler assumes that INPUT and OUTPUT are program
parameters if they are referenced in a non-main module. The compiler assumes that
the call implies one of the standard files and continues compiling, but it does not
generate an object module.

ERROR ©6572: Argument n of identifier is not a Text file
as required.

The file argument to READ, WRITE, READLN, WRITELN, EOLN, and PAGE
must be a text file. The compiler continues compiling, but it does not generate an
object module.

ERROR 6580: Argument n of identifier is not a constant.

The forms of NEW and DISPOSE for variant records must have constant values for
variant selectors. The compiler deletes the statement and continues compiling, but it
does not generate an object module.

ERROR 6582: Argument n of identifier is incompatible
with the tag type of the variant record to which it
corresponds.

The nth argument of either NEW or DISPOSE is incompatible. The compiler deletes
the statement and continues compiling, but it does not generate an object module.

ERROR 6583: Argument n of identifier is not an array.

The nth argument in a call to PACK or UNPACK is not an array as required. The
compiler deletes the statement and continues compiling, but it does not generate an
object module.

ERROR 6584: The array argumentis of identifier are
incompatible.

The array arguments for the PACK and UNPACK procedures are described in section
8.6. The compiler deletes the statement and continues compiling, but it does not
generate an object module.

ERROR 6586: The index argument of identifier is
incompatible with the index type of the arrays.

The identifier is either PACK or UNPACK.

ERROR 6588: Argument n of identifier is incompatible
with the component type of the file.

In a call to READ, WRITE, READLN, or WRITELN, an argument is not compat-
ible with the component type of the file. For example, in “READ(f,c)”, this error
would occur if “c” is incompatible with “f 4. The compiler deletes the statement
and continues compiling, but it does not generate an object module.

13-17

Errors and Warnings Pascal-86 User’s Guide

13-18

ERROR 6589: Argument n of PACK or UNPACK is not an
array.

ERROR 6801: Integer overflow exception detected at
compile-time.

ERROR ©6802: Range check exception detected at
compile-time.

LIMIT EXCEEDED 7301: At most 10 switches allowed
for conditional compilation.

LIMIT EXCEEDED 7501: The definition of identifier
requests more than 65535 bytes.

A data structure cannot have more than 65535 bytes. Offsets generated for the data
structure are invalid. The compiler continues compiling, but it does not generate an
object module.

LIMIT EXCEEDED 7502: The definition of symbol
requests more than 65535 bits.

A packed data structure cannot have more than 65535 bits (8192 bytes). Offsets
generated for the data structure are invalid. The compiler continues compiling, but it
does not generate an object module.

LIMIT EXCEEDED 7503: The definition of the set
requests more than 32767 elements.

Sets cannot have more than 32767 elements. Offsets generated for the data structure
are invalid. The compiler continues compiling, but it does not generate an object
module.

LIMIT EXCEEDED 7504: The range of values spanned by
the constants of a CASE statement has more than
1009 values.

The CASE statement jump table cannot have more than 1009 entries. The compiler
ignores the extra entries and continues compiling, but it does not generate an object
module.

LIMIT EXCEEDED 7505: The data segment of .identifier
exceeds 65535 bytes.

LIMIT EXCEEDED 7507: The size of the dyramic area
requested exceeds 65535 bytes.

LIMIT EXCEEDED 7508: Local variables cannot be
segmented.

LIMIT EXCEEDED 7509: Segmented data is only allowed
in the LARGE model.

LIMIT EXCEEDED 7510: Segmented data cannot be
passed as value parameters.

LIMIT EXCEEDED 7511: File variables cannot be
seqgmented.

LIMIT EXCEEDED 7512: Too many extra segments
required.

Pascal-86 User’s Guide Errors and Warnings

LIMIT EXCEEDED 7513: Dynamic variables may not
contain nested segmented data.

LIMIT EXCEEDED 7514: Allocation of segmented arrays
is only allowed in the LARGE model.

LIMIT EXCEEDED: 7901: Too much debug information.
FATAL ERROR 8201: Maximum INCLUDE nesting level (5)
exceeded.

When including a file that also includes a file, etc., you can include only up to a total
of five files. Compilation is aborted.

FATAL ERROR 8301 to 8303: Parse stack/buffer limit
exceeded.

You may be able to avoid a stack overflow by reducing the nesting of procedures and
shortening the length of statement lists. Compilation is aborted.

LIMIT EXCEEDED 8501: Semantic analyzer stack/buffer
overflow.

You may be able to avoid a stack overflow by reducing the nesting of procedures.
Compilation is aborted.

LIMIT EXCEEDED 8503: Memory exhausted after n

bytes.

The storage required during semantic analysis is exhausted, and compilation is aborted.
Use the Symbol Space control to increase allocated memory. You may be able to
avoid this overflow by shortening the length of statement lists.

LIMIT EXCEEDED 8801: Expression too complex.

Expressions cannot have more than 50 operands, and expression nesting is also limited.
Rewrite the expression to reduce its complexity. Compilation is aborted. Adding more
memory or increasing the Symbol Space parameter may help.

LIMIT EXCEEDED 8802: type segment of module exceeds
65535 bytes.

The type of the segment is either CODE or STACK. Compilation is aborted.
LIMIT EXCEEDED 8803: Compiler generated label table
overflow.

There are too many flow control statements (IF-THEN, WHILE, CASE, etc.) in the
current procedure. Break the procedure into smaller procedures.

LIMIT EXCEEDED 8901: Object module too complex.

LIMIT EXCEEDED 8902: identifier segment of module
exceeds 65535 bytes.

FATAL ERROR 9000: I/D error on filename: system information

The compiler cannot find or open filename. Compilation is aborted and control is
returned to the operating system. Check to see if the file exists.

13-19

Errors and Warnings

FATAL ERROR
filename:

Pascal-86 User’s Guide

9001: Unable to open INCLUDE file

system information

The INCLUDE file is not present, or is already open. Compilation is aborted, and
control is returned to the operating system.

FATAL ERROR

9002: I/0 error on filename: system information

The compiler cannot find or open filename. Compilation is aborted and control is
returned to the operating system. Check to see if the file exists.

FATAL ERROR
error in

FATAL ERRORS 9006
system information

work file:

9005: Input file missing or syntax
invocation line.
to 9017: 1/0 error on compiler

The compiler cannot open one or more of the eight workfiles for some reason. Check
to see if the files are assigned to another disk drive besides the designated workfile
drive, or if the proper disk is not in the designated workfile drive. Use the WORK
command to change the designated workfile drive. If the error persists, contact your
supplier. Compilation is aborted, and control is returned to the operating system.

FATAL ERROR

90xx: Compiler error in Root.

Unexpected condition; contact your supplier. Compilation is aborted. (xx represents
a particular number useful only to your supplier.)

FATAL ERRDOR

enough memory.

FATAL- ERROR
enough disk

FATAL ERROR
object.

FATAL ERRDOR
information

FATAL ERROR
invocation

9020: Compiler error in U.D.S.M.: Not
9021: Compiler error in U.D.S.M.: Not
space.

9022: Compiler error in U.D.S.M.: Bad
9023: U.D.S.M. System error: system
9201: Unknown control, control, in
group.

The “invocation group” includes the invocation line and the initial set of primary
control lines in the source file. Compilation is aborted.

FATAL ERROR

FATAL ERROR

Compilation is aborted. Contact your supplier.

FATAL ERROR

9202: Missing ENDIF control.
92xx: Compiler error in scanner.
93xx: Compiler error in parser.

Compilation is aborted. Contact your supplier.

FATAL ERROR
Analyzer

(n,

9501: Semantic

m).

Compiler error in

Compilation is aborted. Contact your supplier. (n and m are compiler debug

information.)

13-20

Pascal-86 User’s Guide Errors and Warnings

FATAL ERROR 9589: Compiler error in Semantic
Analyzer (n).

Compilation is aborted. Contact your supplier. (n is compiler debug information.)
FATAL ERROR 95xx: Compiler error in Semantic
Analyzer.

Compilation is aborted. Contact your supplier.

FATAL ERROR 96xx: Compiler error in Cross-Reference
Generator.

Compilation is aborted. Contact your supplier.

FATAL ERROR 98xx: Compiler error in Code Generator.

Compilation is aborted. Contact your supplier.

FATAL ERROR 99xx: Compiler error in Object Module
Generator.

Compilation is aborted. Contact your supplier.

FATAL ERROR 9902: Compiler error in DObject Module
Generator (n).

FATAL ERROR 9904: Compiler-generated label address
error.

13-21

CHAPTER 14
RUN-TIME EXCEPTIONS

This chapter describes all of the run-time exceptions (errors) that are handled by the
run-time software unique to Pascal-86.

Run-time messages are coded by number and are listed in this chapter in numeric
order by their code numbers so that you can easily look up any message you received.

A masked floating-point run-time error can occur without stopping the program. When
a run-time error other than a masked floating-point error occurs, the default
Pascal-86 run-time system stops running the program, prints a run-time exception
message, and returns control to the operating system.

There are three types of run-time exceptions: non-floating-point run-time exceptions
(14.1), floating-point function exceptions (14.2), and floating-point 8087 exceptions
(14.2).

14.1 Run-Time System Exceptions

There are several types of non-floating-point run-time exceptions: 1/0, operating
environment, and range exceptions, to name a few.

Run-time system exception messages take the following form:

**+* RUN-TIME type EXCEPTION: code
**+ NEAR LOCATION hhhhH : hhhhH
#++ JOB ABORTED.

The type of the run-time exception can be one of the following types:

PASCAL I/0

1/0

OPERATING ENVIRONMENT
INTEGER ZERD DIVIDE
INTEGER OVERFLOMW
RANGE

CHECK

PASCAL SET

For each type, the code is the hexadecimal exception code number for each message.
(If no type is given, refer to the exception conditions for your specific operating
system.) The hexadecimal locations hhhhH:hhhhH are the values in CS:IP after control
returns from the run-time system to the program. Each message is described in the
subsequent sections by type and by code number.

14.1.1 Input/Output Exceptions

RUN-TIME PASCAL 1/0 EXCEPTION: 1101H

An attempt to open a file was not successful. The file may not exist.

RUN-TIME PASCAL 1/0 EXCEPTION: 1102H

The first format specifier was negative or zero, but not positive as required.

14-1

Run-Time Exceptions Pascal-86 User’s Guide

PASCAL I/0 EXCEPTION: 1103H

The second format specifier was negative or zero, but not positive as required.

RUN-TIME PASCAL I/0 EXCEPTION: 1104H

An input operation was attempted on a file opened for output.

RUN-TIME PASCAL I1/0 EXCEPTION: 1105H

An output operation was attempted on a file opened for input.

RUN-TIME PASCAL I/0 EXCEPTION: 1106H
The record number on a SEEKREAD or SEEKWRITE is negative.

RUN-TIME PASCAL I/0 EXCEPTION: 1108H
Attempt to open a text file for random 1/0.

RUN-TIME PASCAL 1/0 EXCEPTION: 1109H

A Random I/O operation was attempted on a non-random file.

RUN-TIME PASCAL I/0 EXCEPTION: 110AH
The ENDPOSITION function was called with an empty file.

RUN-TIME PASCAL I/0 EXCEPTION: 110BH
A SEEKWRITE was attempted beyond the end of the file.

RUN-TIME PASCAL I/0 EXCEPTION: 1110H
SETRANDOM was called with a file that already was opened.

RUN-TIME /0 EXCEPTION: 9102H

The end of a file was encountered when illegal.

RUN-TIME [/0 EXCEPTION: 9103H

The integer field on input does not conform to the Pascal signed decimal integer
syntax. ’

RUN-TIME [/0 EXCEPTION: 9104H

The floating-point field on input does not conform to the Pascal run-time signed
number syntax.

RUN-TIME /0 EXCEPTION: 9105H

The integer field on text file input defined a signed integer which could not fit into
the INTEGER range (—32767 to +32767).

RUN-TIME [/0 EXCEPTION: 9106H

The integer field on text file input defined a signed integer that could not fit into the
LONGINT range (—2,147,483,647 to +2,147,483,647).

RUN-TIME I/0 EXCEPTION: 9107H

The floating-point field on text file input defined a signed number that was too large
(overflow) to fit into the TEMPREAL range (—2'63%¢ to 216384),

14-2

Pascal-86 User’s Guide Run-Time Exceptions

RUN-TIME 1/0 EXCEPTION: 9108H

The floating point field on text file input defined a signed number that was too small
(underflow) to fit into the TEMPREAL range (—27163%3 to 2716383,

RUN-TIME I1/0 EXCEPTION: 9109H

The integer field or text file output defined a signed integer that could not fit into
the BYTE range (—127 to +127).

14.1.2 Operating Environment and Heap Exceptions

RUN-TIME OPERATING ENVIRONMENT EXCEPTION: 1300H

Programs that use floating-point functions must be linked to the run-time library
CELS87.LIB. If your program is linked to EH87.LIB but not to CEL87.LIB, this
exception will be reported when the first floating-point function is accessed.

RUN-TIME OPERATING ENVIRONMENT EXCEPTION: 1501H

Invalid file preconnection syntax on the program’s command line.

RUN-TIME HEAP EXCEPTION: 1151H

The pointer passed to the DISPOSE function had an illegal value. An illegal value
occurs if the pointer was not initialized, was assigned a NIL value, was already
DISPOSEd, or was not returned by NEW.

RUN-TIME HEAP EXCEPTION: 1152H

There is insufficient free memory available to fill the request.

RUN-TIME HEAP EXCEPTION: 1153H
The SMALL heap size returned by TQGETSMALLHEAP is less than 16 bytes.

14.1.3 Integer Exceptions

RUN-TIME INTEGER ZERO DIVIDE EXCEPTION: 8000H

There was an attempt to divide by zero.

RUN-TIME INTEGER OVERFLOW EXCEPTION: 8001H

A signed integer overflow occurred.

14.1.4 Set Exceptions

RUN-TIME PASCAL SET EXCEPTION: 1131H

A set on the stack could not be represented in memory. Sets cannot have more than
32767 elements.

RUN-TIME PASCAL SET EXCEPTION: 1132H

The stack overflowed on a set operation. Either the set is too big or the set operation
is too complex.

RUN-TIME PASCAL SET EXCEPTION: 1133H

A set with a size of zero was used in a set function.

14-3

Run-Time Exceptions Pascal-86 User’s Guide

RUN-TIME PASCAL SET EXCEPTION: 1134H

An attempt was made to add an invalid member to a set. All set elements must be
compatible with the base type of the set.

RUN-TIME PASCAL SET EXCEPTION: 1135H

The result of a union operation was too large.

14.1.5 Compiler Range and Check Errors
RUN-TIME RANGE EXCEPTION: 8006H

RUN-TIME CHECK EXCEPTION: 8017H

The program was compiled with the CHECK control. At run time, the compiled code
checks for out-of-range assignments, out-of-range array subscripts, stack and integer
overflow, and invalid pointer references. These conditions acknowledge extra checks
the compiler generated in-line. The run-time check exception may also occur when
the appropriate 8087 interface library was omitted from the program link list.

14.2 Floating-Point Function Exceptions and 8087
Exceptions

Two kinds of real (floating-point) exceptions may occur: those resulting from the
execution of predefined floating-point functions, and those resulting directly from
floating-point arithmetic operations performed by the 8087 Numeric Data Processor
or its emulator.

Floating-point function exception messages take the following form:

*** RUN-TIME FLOATING-POINT function EXCEPTION status
*** NEAR LOCATION hhhhhH
+ JOB ABORTED.

The function can be one of the following:

EXP

LN

SIN
cos
TAN
ARCSIN
ARCCOS
ARCTAN
TRUNC
ROUND
INT
NINT

The status is the hexadecimal value of the 8087 STATUS register, and the location
hhhhh is the 20-bit physical address of the location of the exception. The 8087
STATUS values are described in the iAPX 86,88 User's Manual. General floating-
point exceptions are discussed in the next section.

14-4

Pascal-86 User’s Guide Run-Time Exceptions

Floating-point 8087 exception messages take the following form:

**+ RUN-TIME 8087 EXCEPTION status
**#*+ INSTR OPCODE op

*** MEMOP ADDRESS hhhhhH

*++ NEAR LOCATION hhhhhH

#++ JOB ABORTED.

The status is the hexadecimal value in the 8087 STATUS register. The op is the
hexadecimal value of the 8087 instruction opcode register. The hhhhhH is a
hexadecimal 20-bit physical address. The 8087 registers are described in the iAPX
86,88 User’s Manual.

As discussed in 7.1.8, there are six possible real arithmetic error, or exception, condi-
tions: invalid operation, denormalized operand, zero divide, overflow, underflow, and
precision.

This section first discusses the meaning of the six types of exceptions, what conditions
may cause them, and the actions performed by the chip or emulator when the excep-
tions occur with the corresponding exception mask bits set; i.e., with the exceptions
masked (The iAPX 86,88 User's Manual discusses the unmasked case.)

Following this are explanations of rounding, denormalized and unnormalized numbers,
unnormalized arithmetic, and infinity arithmetic. These discussions should suffice for
Pascal-86 users. However, if you are also writing modules in other languages to inter-
face with the 8087 chip or emulator, you may wish to see the i4APX 86,88 User’s
Manual for a fuller explanation of some topics.

NOTE

Pascal-86 presets certain 8087 modes (explained in the iAPX 86,88 User's
Manual) to the following recommended settings:

» The infinity arithmetic mode is Projective.
e The rounding mode is Round-to-Nearest.
¢ The precision mode for intermediate results is 64 bits.

 All 8087 exception conditions are masked except Invalid Operation,
which is unmasked.

e The 8087 interrupt enable mask bit is zero (interrupt enabled).

You cannot change the infinity arithmetic, rounding, or precision mode
settings from a Pascal-86 program. You may, however, change the exception
mask bits or the interrupt enable mask bit using the MASK8087ERRORS
procedure (8.10.2). The following discussions assume that you have not
changed any of these settings. If you use any of the functions, SIN, COS,
TAN, ARCSIN, ARCTAN, EXP, LN, ROUND, or LROUND, you cannot
unmask the precision error. The precision exception bit in the 8087 STATUS
word becomes undefined upon return from these functions.

The exception descriptions here refer to some topics not yet discussed, such as denor-
malized numbers, unnormalized numbers, rounding, and infinity arithmetic. For
explanations of these items, see 14.2.1.

Invalid Operation

An invalid operation exception occurs when either an operand is invalid for the speci-
fied operation, or the operation itself is invalid. This exception generally indicates a
program error; so even if you mask all other exceptions, it is recommended that you

14-5

Run-Time Exceptions Pascal-86 User’s Guide

leave Invalid Operation unmasked. An Invalid Operation exception is signalled when
any one of the following conditions occurs:

¢ One or more of the operands is a trapping NaN.

¢ One or more of the operands in the computation sequence was unnormalized or
denormalized, and the result cannot be guaranteed, because significant informa-
tion was lost. (Not all operations on unnormalized or denormalized numbers result
in loss of significant information; those that do not will not signal Invalid Opera-
tion.)

e Any of the following operations is attempted: infinity +infinity,
infinity —infinity, 0.0*infinity, infinity*0.0, infinity/infinity, 0.0/0.0, valid
number/unnormalized number, valid number/denormalized number, or 0.0/
pseudo-zero (a special representation, described in the i4APX 86,88 User’s

Manual).

e« In TRUNC or ROUND, the operand is too large to fit into the INTEGER
format.

¢« In LTRUNC or LROUND, the operand is too large to fit into the LONGINT
format.

« In comparisons via any of the relational operators <, <, >, or =, infinity is
compared to some value other than infinity.

The following are specific cases that cause invalid operation exceptions:

e SQRT (x) where x is a negative number, denormal number, unnormal number,
or * infinity (in projective mode).

e SIN (x), COS (x), TAN (x) where x is * infinity, or [x=2-¢* and unnormal

¢ ARCSIN (x), ARCCOS (x) where x is = infinity, =279 and unnormal, or
bd>1

e« ARCTAN (x) where XI=2"¢ and unnormal.
¢ EXP(x) where x is * infinity (in projective mode) or x=27%% and unnormal.

e LN(x) where x is a negative number, a denormal number (and the Denormalized
Exception mask, AT87DENR, is set), = infinity (in projective mode), or li=2-¢3
and unnormal.

If the Invalid Operation exception is masked, the result (if a real result is expected)
is a NaN. For a comparison, the result is unordered.

Denormalized Operand

This exception arises when one or more of the operands is a denormalized number.
This could occur if you used uninitialized data or if a masked underflow exception
occurred in a previous operation. If this exception is masked, correct unnormalized
arithmetic is performed, as described in 14.2.1.

Zero Divide
In a division operation, if the divisor is a normal zero and the dividend is a finite

nonzero number, then the Zero Divide exception occurs. If this exception is masked,
the result is infinity. LN(0) and TAN of PI/2 also cause zero divide exceptions.

Overflow
If a rounded result is finite but its exponent is too large to represent in the REAL

format, the Overflow exception occurs. If this exception is masked, an overflow yields
infinity, and the Precision exception also occurs.

14-6

Pascal-86 User’s Guide Run-Time Exceptions

Underflow

The Underflow exception occurs when either of the following conditions arises:

* A rounded result has too small an exponent to be represented in the REAL format
without normalizing.

¢ An intermediate product or quotient, where neither operand is a normal zero, is
indistinguishable from a normal zero. (This cannot occur with normalized
operands.)

If the Underflow exception is masked, the result is a correctly rounded denormalized
number or zero.

Precision

If the correctly rounded result of an operation is not the same as the unrounded value,
the Precision exception occurs. If this exception is masked, no special action is
performed; the correctly rounded result is delivered.

14.2.1 Floating-Point Topics

The following section explains topics mentioned in the exception discussions just given.
If you are using Pascal-86 only, this section should provide the background you need.
If you are changing the 8087 modes preset for Pascal-86, see the iAPX 86,88 User’s
Manual.

Rounding

In Pascal-86, all implicit rounding is done in Round-to-Nearest mode. In this mode,
the operand is rounded to the nearest representable value, or to the nearest even
number in case of a tie. The rounding mode determines the sign assigned to zero: if
x is finite, then x-x=x+(—x)=-+0 in Round-to-Nearest mode. However,
x+x=x—(—x) always has the same sign as x even when x is zero.

Normalized, Denormalized, and Unnormalized Numbers

In a normal zero, the exponent is zero and all significant bits are zero. A value is
normalized if it is a normal zero, or if the leading bit of the significand is one and
the exponent is greater than zero. A denormalized number is one that has a zero
exponent and a zero explicit or implicit leading bit, but is not a normal zero. An
unnormalized number is one that has an exponent greater than zero and a zero explicit
leading bit (the term unnormalized applies only to numbers in the TEMPREAL
format).

Note that the 8087 does not perform normalized arithmetic; to implement the IEEE
Standard normalized mode of arithmetic, you must link in the EH87.LIB support
library (see 12.2.2) and unmask the D exception. If the library is linked in but the D
exception stays masked, normalized arithmetic will not be implemented.

When all operands have been normalized, the operations are performed as if the
precision were infinite, before rounding occurs as described in the previous section.
The following section describes the result if one or more of the operands are not
normalized. If one operand is a NaN, the result, if any, is that NaN; and if more
than one operand is a NaN, the result, if any, is the NaN that is largest in magnitude.

14-7

Run-Time Exceptions Pascal-86 User’s Guide

Unnormalized Arithmetic

Due to the nature of computer arithmetic on very large or very small numbers, there
are some cases in which information will be lost. The 8087 processor and its emulator
are designed to preserve as much information as possible from a computation, even
when all of the information cannot be saved. Unnormalized arithmetic performed by
Pascal-86 programs serves this purpose. When unnormalized numbers appear during
a computation sequence and generate more unnormalized numbers rather than disap-
pearing immediately, their presence indicates that some information has been lost
(that is, greater precision could not be guaranteed), but their values still give some
information about the computational results.

The following rules apply when at least one operand is not normalized, provided the
Invalid Operation exception does not occur. They specify when normalization is to
occur and the resulting exponent value if normalization does not occur. Rounding
and the handling of overflow and underflow are performed after the assignments
shown below. Such rounding and overflow/underflow handling may modify the results.
In the following, x and y are real expressions, and expon(x) refers to the exponent
of x.

Assignment (z:=x): expon(z)=expon(x).

Add/subtract (zz=xzy): Let m=max(expon(x),expon(y)). If at least one of the
operands having exponent m is normalized, then z is normalized
before rounding. Otherwise expon(z)=m.

Multiply (z:=x*y): expon(z)=expon(x)+expon(y).

Divide (z:=x/y): expon(z)=expon(x)—expon(y)—1 when y is normal-
ized and nonzero.

Integer part (z:=the temporary real value obtained by applying the Round-to-
Nearest rule to x): if expon(x) is so large that x must already be
an integer regardless of its significand bits, then z is identically x.
Otherwise, z is normalized.

Comparison Comparisons are made as if both operands had been normalized
first.

Infinity Arithmetic

The representation of infinity is a temporary real value that behaves like an infinite
value in real computations. In the infinity arithmetic mode used in Pascal-86 (Projec-
tive mode), +infinity= —infinity.

The sign bit of the product or quotient of two real numbers is the exclusive OR of
the operands’ sign bits, even when the operand is zero or infinity.

14-8

APPENDIX A
DIFFERENCES BETWEEN PASCAL-86
AND OTHER VERSIONS OF PASCAL

Pascal-86 conforms to the ANSI/IEEE770X3.97-1983. However, it may differ
slightly from other Pascal dialects you have been using. The various Pascal imple-
mentations in use differ primarily where weaknesses in Pascal have been discovered;
the Intel extensions that are part of Pascal-86 are examples of attempts to make up
for these weaknesses. Implementations also differ where there is ambiguity in Jensen
and Wirth’s Pascal User Manual and Report.

This appendix provides information about such differences in order to help you use
existing Pascal programs, originally written for other systems, in your iAPX 86 and
iAPX 88 microcomputer applications. This information indicates what parts of your
programs need to be modified before you compile, link, locate, and run them as Pascal-
86 programs. The first part of this appendix also lists the extra Pascal-86 features
(extensions) you may use to improve your programs.

NOTE

The Pascal-80 User’s Guide and some other publications refer to the Pascal
of Jensen and Wirth’s Pascal User Manual and Report as “standard Pascal.”
This is true because until the recent standardization effort, Jensen and Wirth
Pascal was the de facto standard. In the manual you-are reading, “standard
Pascal” refers to the ISO Draft Proposal.

A.1 Intel Extensions to Standard Pascal

This section lists features in Pascal-86 that are not part of standard Pascal as speci-
fied in the ANSI/TEEE770X3.97-1983. Following each listed feature is a reference
to the chapter or section of this manual where the feature is described.

Most of these extensions are flagged by the compiler when the NOEXTENSIONS
control (10.3.7) is active. However, those marked by an asterisk * are not flagged
under NOEXTENSIONS.

A.1.1 Major Extensions

» Separate compilation facilities, including module headings, interface specifica-
tions, and headings (4.2.2,4.2.3, 4.2.4)

e The predefined types WORD, LONGINT, LONGREAL, and TEMPREAL
(5.3.1) and the built-in functions LORD, WRD, LTRUNC, and LROUND (8.1,
8.4)

e The port input and output procedures INBYT, INWRD, OUTBYT, and
OUTWRD (8.8)

o The interrupt control procedures SETINTERRUPT, ENABLEINTERRUPTS,
DISABLEINTERRUPTS, and CAUSEINTERRUPT (8.9)
A.1.2 Minor Extensions

» Interpretation of the tab character as a logical blank (3.2)*
» Octal-, binary-, and hexadecimal-based integer constants (3.3.2)

Differences Between Pascal-86 and Other Versions of Pascal Pascal-86 User’s Guide

« Real constants outside the range of REAL values (3.3.3)*
» Labels larger than 9999 (3.3.4)
» String constants continued across input record (input line) boundaries (3.3.5)

* Single-character constants used as type PACKED ARRAY [1..1] OF CHAR
(3.3.5,5.3.2)

» Indexed references to components of a string constant (5.2)

e Use of an identifier, including a procedure or function identifier, before it is
defined (5.3, 6.5)*

e The predefined CHAR constants CR (carriage return) and LF (line feed) (5.3.1,
5.3.2)

¢ Ina variant record, case constants that do not map onto the range of the tag type
(5.3.2)

¢ Factored procedural and functional parameter lists; that is, more than one identi-
fier following the PROCEDURE or FUNCTION keyword in the parameter list
syntax (6.4.1)

e Variable parameters of the predefined type BYTES (6.4.4)

e Specification of a parameter list (and result type, for a function) in the heading
of a procedure or function previously declared to be FORWARD (6.5)

e Ordinal Type Transfer Functions (with extended types) (Chapter 7 and 8).

e Support of the proposed IEEE standard for floating-point arithmetic (7.1.8, 14.6,
14.7)*

e OTHERWISE clause in CASE statement (7.2.5)
e The arithmetic functions TAN, ARCSIN, and ARCCOS (8.3)

» Second argument to RESET and REWRITE, to designate a physical file (8.7.1,
8.7.2)

» File preconnection facility (8.7.1, 8.7.2, 12.4.1)*
e More lenient format for real number input to READ and READLN (8.7.6)*

¢ READ and READLN input of plus infinity, minus infinity, and the indefinite
NaN (8.7.6)*

« WRITE and WRITELN output of plus infinity, minus infinity, and NaN’s
(8.7.6)*

e The 8087 procedures GET8087ERRORS and MASK8087ERRORS (8.10)

e The predefined types ATS7ERRORS and AT87EXCEPTIONS and the prede-
* fined constants AT87NVLD, AT87DENR, AT87ZDIV, AT870VER,
AT87UNDR, AT87PRCN, AT87RSVD, and AT87MASK (8.10)

e All compiler controls in the source text (Chapter 10) (Only general controls will
be flagged under NOEXTENSIONS; the initial set of control lines may be
considered the logical extension of the compiler invocation line, and therefore not
part of the Pascal program per se.)

A.2 Differences Between UCSD Pascal (Pascal-80) and
Standard Pascal

UCSD Pascal is a commonly used Pascal dialect; Intel’s interpreted Pascal-80
language is an implementation of UCSD Pascal. UCSD Pascal differs from
Pascal-86 in a number of ways, most of them are differences between UCSD Pascal

Pascal-86 User’s Guide Differences Between Pascal-86 and Other Versions of Pascal

and standard Pascal. The following list explains the features that differ. The section
number reference following each description of a Pascal-86 feature denotes the section
of this manual which gives further information.

« In UCSD Pascal, the comment bracket symbol { must match the bracket symbol
}, and (* must match *). In Pascal-86, the matching of comment brackets follows
standard Pascal: either left bracket symbol matches either right bracket symbol.
(3.2.1)

« In UCSD Pascal, program parameters are ignored; INPUT, OUTPUT, and
KEYBOARD are always defined and opened. In Pascal-86, program parameters
are implemented according to standard Pascal, with the addition of the precon-
nection facility. (4.2.1, 5.3.2)

» UCSD Pascal provides a dynamic string data type and several string manipula-
tion procedures that operate on this type. In Pascal-86, strings are implemented
according to standard Pascal; that is, as fixed-length packed arrays of characters.
(5.3.2)

¢ In UCSD Pascal, the maximum size of a set is 255 words, or 4080 elements. In
Pascal-86, the maximum size of a set is 32767 elements. (5.3.2)

» UCSD Pascal provides an INTERACTIVE file type for console input and output.
Pascal-86 treats TEXT and FILE OF CHAR file types as interactive files. (5.3.2,
8.7)

e UCSD Pascal provides untyped files for device-dependent input and output.
Pascal-86 provides typed files only, per standard Pascal. (5.3.2, 8.7)

e In UCSD Pascal, equality comparison between similar records and arrays is
permitted. In Pascal-86, per standard Pascal, such comparisons are not permitted.
(5.3.4)

e UCSD Pascal does not support procedural and functional parameters. Pascal-86
does support them, in accordance with standard Pascal. (6.4)

« If the case value on execution of a CASE statement does not match any of the
case constants given, UCSD Pascal will not register an error. Pascal-86 does
register an error unless an OTHERWISE clause (which may be empty) is present.
(7.2.5)

« UCSD Pascal does not permit out-of-block GOTO statements. Pascal-86 does
permit them, in accordance with the rules of standard Pascal. (7.2.10)

e UCSD Pascal provides an EXIT statement for exiting prematurely from a proce-
dure or function. Pascal-86, in accordance with standard Pascal, does not provide
such a statement.

e UCSD Pascal supports the built-in procedures MARK and RELEASE in place
of DISPOSE, for deallocation of memory allotted to dynamic variables.Pascal-
86 supports DISPOSE in accordance with standard Pascal. (8.5.2)

« UCSD Pascal does not support the built-in procedures PACK and UNPACK.
Pascal-86 supports PACK and UNPACK in accordance with standard Pascal.
(8.6)

« UCSD Pascal supports random access to files by means of the SEEK procedure
and a position parameter to READ and WRITE. Pascal-86 supports sequential
files only, in accordance with standard Pascal. (8.7)

« In UCSD Pascal, lazy 1/0 is used for operations on INTERACTIVE files. In
Pascal-86, lazy 1/0 is used for operations on files of type TEXT and unpacked
FILE OF CHAR. (8.7)

e In UCSD Pascal, all compiler controls within the source program are enclosed
within comment brackets. In Pascal-86, controls are not enclosed within comment
brackets, but appear on control lines beginning with a dollar sign in the leftmost
column. (10)

Differences Between Pascal-86 and Other Versions of Pascal Pascal-86 User’s Guide

Both UCSD Pascal and Pascal-86 extend RESET and REWRITE to take a second
parameter, which supplies the external name for a pre-existing file. (8.7)

A.3 Areas Where Versions of Pascal Differ

Separate Compilation. Standard Pascal assumes a monolithic compilation structure,
which is untenable on microcomputers and many minicomputers. A common exten-
sion is to permit an external procedure to be defined via an EXTERN directive. This
directive may be used to communicate with separately compiled Pascal procedures or
with modules written in other languages. Pascal-86 uses an interface specification, so
that the definition of data and procedures is physically written down in only one
place. Elaborate systems for creating the appropriate block structure environment to
recompile a single Pascal procedure have also been devised.

Treatment of Program Parameters. The Report does not clearly state the exact
function of program parameters, so naturally there is disagreement on this subject.
Some compilers ignore program parameters entirely, whereas others rely on the
program parameters as the sole link to the program environment.

Strings. Character strings are another weak point in the Pascal language. The UCSD
Pascal STRING type, which is similar to a string in PL/I, is the most popular method
of extension. Some purists insist that strings should be incorporated into the language
as a file type. More elaborate implementations are usually avoided because of their
overhead.

Size of Sets. The range of values in all data types varies from implementation to
implementation, but the size of sets is usually the most restrictive. You can usually
expect that SET OF CHAR will be supported; however, there are some notable cases
in which it is not supported.

Type Compatibility. The rules for type compatibility are not rigorously defined by
the Report or by the User Manual. Pascal-86, following the ISO Standard, enforces
the strictest set of rules possible.

Procedural and Functional Parameters. Procedural and functional parameters are
expensive to implement, and therefore are often omitted. Compilers also vary
concerning which of the predefined functions and procedures, if any, may be passed
as arguments.

Out-of-Block GOTO’s. Out-of-block GOTO’s are expensive to implement and seldom
used, so they are frequently not supported.

MARK and RELEASE vs. DISPOSE. MARK and RELEASE are much easier to
implement than DISPOSE, and so are favored by the smaller implementations for
microcomputers and minicomputers.

Dynamic Association of Logical Files with Physical Files. The Pascal-86 extension
to RESET and REWRITE is the most popular method for dynamic association of
file variables with physical files.

Interactive I/O. The read-ahead feature of standard Pascal files does not work well
with interactive devices—the console operator gets a prompt for input before the
program can write instructions on how to answer the prompt. The favored solution to
this problem is to use lazy input, which defers the action of a GET until the buffer
variable is actually interrogated. UCSD Pascal uses lazy input only on files of the
special INTERACTIVE type. In CDC implementations, extra syntax in the program

Pascal-86 User’s Guide Differences Between Pascal-86 and Other Versions of Pascal

heading identifies those files that are to be accessed using lazy input. Pascal-86 uses
lazy input on all files declared as TEXT or FILE OF CHAR.

Compiler Controls. Since there is no mention of compiler controls in the Report, the
User Manual, or the ISO Standard, it is not surprising that compilers vary both in
the variety of controls offered and the method of specifying the controls. You should
plan on changing all controls when you transport your Pascal programs to a new
compiler.

APPENDIX B
PROCESSOR-DEPENDENT
LANGUAGE FEATURES

The following Pascal-86 language features are provided especially for use in iAPX
86,88 microprocessor applications. After each listed feature is a reference to the
chapter or section of this manual where the feature is described.

e Double (LONGREAL) and extended (TEMPREAL) precision for floating-
point numbers, and extended precision for all real-type expressions and interme-
diate results (5.3.1, 7.1.4, 7.1.8)

e The Denormalized Operand exception in real arithmetic (7.1.8)

¢ The port input and output procedures INBYT, INWRD, OUTBYT, and
OUTWRD (8.8)

e The interrupt control procedures SETINTERRUPT, ENABLEINTERRUPTS,
DISABLEINTERRUPTS, and CAUSEINTERRUPT (8.9)

+ The 8087 procedures GET8087ERRORS and MASK8087ERRORS (8.10)

e The predefined types ATS7TERRORS and AT87EXCEPTIONS and the prede-
fined constants AT87NVLD, AT87DENR, AT87ZDIV, AT87OVER,
AT87UNDR, AT87PRCN, AT87RSVD, and AT87MASK (8.10)

« PQCLOSE describes a method for closing files in Pascal, Appendix B.
« RANDOM ACCESS 1/0 permits access to any file in Pascal, Appendix B.

B.1 PQCLOSE, Closing Files in Pascal

Standard Pascal does not provide a method to close a file. On systems such as Series
II1, which limit the number of files that may be open at one time, this might pose a
problem. If you encounter a problem, the run-time system for Pascal provides a

procedure to close a file.

To avoid deleting a file, read this entire section before executing PQCLOSE.

The PQCLOSE procedure is not a predefined procedure in Pascal; it must be declared
in the interface specification of the module. The declaration should be as follows:

PUBLIC PQCLOSE;
PROCEDURE PQCLOSECVAR F : <filetype>) ;

where
< file type> is the type of file you choose to close.

If you have more than one type of file that you choose to close in the same module,
use the following declaration:

PUBLIC PQCLOSE;
PROCEDURE PQCLOSECVAR F : BYTES);

Files that have not been declared in the program heading or do not have a physical
file name specified on the RESET or REWRITE are considered temporary files and
will be deleted automatically either when closed or at program termination.

Processor-Dependent Language Features Pascal-86 User’s Guide

B.2 Random Access I/0

The six procedures and functions described in this section allow a Pascal program to
access any record in a file without explicitly reading all records before the desired
record is accessed. It is also possible to update a record without affecting any of the
other records in the file.

The procedures (SETRANDOM, SEEKREAD, SEEKWRITE) and the functions
(POSITION, ENDPOSITION, and EMPTY) that implement random I/O in Pascal
are applicable to any file type except TEXT. To use the random access feature, you
must declare the procedures SETRANDOM, SEEKREAD, SEEKWRITE,
POSITION, ENDPOSITION, and EMPTY in the interface section of your program.

All of the procedures and functions use the standard Pascal calling sequence.

B.2.1 SETRANDOM
Call this procedure before the RESET or REWRITE on the file.

The purpose of SETRANDOM is to inform the run-time system that the file will be
accessed randomly. As a result, subsequent RESET or REWRITE on the file will
open the file for update rather than read-only or write-only mode.

After the RESET or REWRITE is performed, the file will be positioned at record
number 0.

Procedure SETRANDOMC(varrandomfile:BYTES) ;

where
random file is a Pascal file variable.

An exception will occur if a RESET or REWRITE already has been performed on
the file unless it has been closed by PQCLOSE. Also, an exception will occur when
the RESET or REWRITE is performed when the file is of type TEXT.

B.2.2 SEEKREAD

This procedure moves the current file pointer to the specified record in the file and
sets the file mode to allow an input operation. The file’s buffer variable is not changed.
If the specified record number is beyond the end of the file, then the file will be
positioned at the end, and the end of file flag will be set to true. The first record in a
file is record number O.

Procedure SEEKREAD(var random-file:BYTES ;
rec-num: LONGINT);

where
random-file is a file that has been opened for random access.
rec-num is a non-negative LONGINT value that specifies the record

at which the file is to be positioned.

An exception occurs if rec-num is negative or if the file has not been opened for
random access.

B-2

Pascal-86 User’s Guide Processor-Dependent Language Features

B.2.3 SEEKWRITE

This procedure moves the current file pointer to the specified record in the file and
sets the file mode to allow an output operation. The file’s buffer variable is not
changed. If the specified record number is beyond the end of the file, an exception
will occur.

Procedure SEEKWRITEC(var random-file: BYTES
rec-num: LONGINT);

where
random-file is a file that has been opened for random access.
rec-num is a non-negative LONGINT value that specifies the record

at which the file is to be positioned.

An exception will occur if rec-num is negative or if the file has not been opened for
random access.

B.2.4 POSITION
This function returns the record number at which the file is currently positioned.
FUNCTION POSITIONCvar random-file: BYTES)LONGINT;

where

random-file is a file that has been opened for random access.

An exception will occur if the file is not opened for random access.

B.2.5 ENDPOSITION
This function returns the record number of the last record in the file.
FUNCTION ENDPOSITIONCvar random-file: BYTE) : LONGINT

where

random-file is a file that has been opened for random access.
An exception will occur if the file is not opened for random access or if the file is
empty.
B.2.6 EMPTY

This function returns TRUE if a random access file contains no records, FALSE
otherwise.

FUNCTION EMPTY(var random-file) : BOOLEAN;

where

random-file is a Pascal file variable that has been opened for random
access.

An exception will occur if the file is not opened for random access.

APPENDIX C
COMPILER CAPACITY

Proponents of structured programming recommend making modules and program
objects small so they are easier to understand and manage. Nevertheless, the
Pascal-86 compiler can translate modules of considerable size, as indicated below.
Following each listed item is a reference to the chapter or section of this manual
where that language feature is described.

An array that requires more than 65535 bytes of memory for data storage will
be placed in more than one data segment. All other types of variables must fit
into a single memory segment (65535 bytes) (4.2, 5.1, Appendix H).

A constant or module may occupy up to 65535 bytes (4.2, 5.1, Appendix H).

Program, module, and subsystem identifiers can be up to 31 characters long. All
other PUBLIC identifiers can be up to 40 chardcters long (4.2).

An index type for an array is an ordinal type whose values are a subset of the set
of whole numbers. In Pascal-86 these values are four bytes long and lie within
the range from —2,147,483,647 to +2,147,483,647.

The number of characters in a string is limited only by memory size (5.3.2).

A set may have a maximum of 32767 elements, and the ordinal values of set
members must lie within the INTEGER range (5.3.2).

An expression may have up to 100 operands (7.1).

The ordinal value of a case constant in a CASE statement must be in the range
from —32767 to 65535. Also, in any CASE statement, the difference between
the largest and the smallest case constants must be less than 1009 (7.2.5).

A string specifying a physical file must be in a form acceptable to the run-time
operating system, and it can be up to 45 characters long (8.7.1, 8.7.2, 10.3.7,
10.3.10, 10.3.14, 10.3.15).

The amount of memory designated for internal tables ranges from 5K to 64K
(10.3.20).

The total space occupied by the run-time stack may be up to 65535 bytes
(Appendixes J and K).

The dictionary summary provided in the listing will help to determine how the
compiler is allocating memory for symbols in the system. In a 128K system, for

example, the static symbol space is about 4K and more than about 90 symbols’

will cause the dynamic symbol table to spill to disk. In a 192K system, the static
symbol space is 16K and the dynamic symbol table will spill after about 600
symbols.

APPENDIX D
LANGUAGE SYNTAX SUMMARY

This appendix presents the syntax of the Pascal-86 language, using the notation that
appears in the text.

In this notation, the following conventions apply:

Keywords, letter symbols, and punctuation symbols that you use verbatim in your
programs—the terminal symbols of the language—are represented in monospace
type, in which every character has the same width, just as it does in output media
such as CRT console displays and printouts. All letters in terminal symbols are
shown in upper case in the notation; however, you may use either upper case or
lower case for these symbols in your programs. For example:

E FOR PROCEDURE
(TO TYPE
1= DO ARRAY

are all terminal symbols.

Terms standing for language elements or constructs that are defined elsewhere
in this notation—in other words, nonterminal symbols—are represented in itali-
cized lower-case letters in non-monospace type, in which the width of a character
varies. For example:

digits variable
sign expression
binary-digit staterment

are all nonterminal symbols.

When two adjacent items must be concatenated, they appear with no space
between them. A blank space between two items indicates that the two items may
be separated by one or more logical-blanks. For example:

digits . digits [E [sign |digits |

specifies that the first set of digits, the . symbol, and the second set of digits must
be concatenated, with no blanks between them. Likewise, the E symbol, the sign
if included, and the third set of digits must be concatenated.

Optional constructs are enclosed in square brackets set in light type, or in square
brackets that are taller than a single line. (Square bracket symbols that are part
of the Pascal-86 language are set in monospace type, a heavier type face, and are
never taller than a single line of type.) For example, in the construct represented
by:

digits . digits [E[sign]digits]

the first and second sets of digits and the . symbol are required, and the entire
part following the second set of digits is optional. If this optional part is included,
the sign may still be omitted.

Optional constructs that can be repeated a number of times are marked by a
three-dot ellipsis following the closing square bracket. For example:

binary-digit [binary-digit]. . . B

stands for a concatenated sequence of one or more binary-digits followed immedi-
ately by a B symbol.

Language Syntax Summary Pascal-86 User’s Guide

* Alternative constructs are represented as vertically adjacent items separated by

extra vertical spacing and enclosed between curly braces that are taller than a
single line of type. When these braces appear, choose any one of the constructs
enclosed between the braces. For example:

digits

binary-digit [binary-digit]. . . B
octal-digit[octal-digit]. . . Q
digit[hex-digit]. . . H

indicates that the construct described may have any one of the four forms listed
between the large braces.

* Text enclosed between the character sequence (* and the sequence *), when these

symbols are in light, non-monospace type, is a prose definition of the given
construct. Such definitions are used when symbolic definitions would be more
cumbersome. For example:

(* any uppercase or lowercase letter of the alphabet *)
is used to avoid listing 52 separate characters vertically between braces.

e The start of a new line in the notation does not mean you must start a new line

at that point in your program; however, you may do so for readability. For
example, when you use the construct:

FOR variable := expression T0 expression
D0 statement

you need not include a carriage return after the second expression, but in many
programs doing so makes the statement more readable.

The gray-shaded portions of the notation denote features that are Intel extensions to
standard Pascal.

D.1 Basic Alphabet and Tokens

letter (* any uppercase or lowercase letter of the alphabet *)
digit (* any single decimal digit *)
word-symbol (* any one of the following: AND ARRAY BEGIN

CASE CONST DIV DO DOWNTO ELSE END
FILE FOR FUNCTION 60TO IF IN LABEL

i L NOT OF OR
\TE PROCEDURE PROGRAM
RECORD REPEAT SET THEN TO

TYPE UNTIL VAR WHILE WITH *)

special-symbol (* any one of the following: + - * / = <> ¢ » <=
= C)Y [4y 2= 0, s L0 N e
input token

logical-blank

Pascal-86 User’s Guide

token

logical-blank

comment

non-closure

identifier

signed-integer

sign

integer

digits

Language Syntax Summary

(* any one of the following: identifier, integer, real-number,
string, special-symbol *)

(* any one of the following: blank character, carriage return
character, line feed character, ¥ab'éharaeter, comment *)

(% *)
[non-closure]...
}

(* any character except (1) a Zright brace, or (2) a star
that is immediately followed by a right parenthesis *)

letter
letter —

digit
[sign]integer

(* either a plus or a minus sign *)
p g

digit[digit]...

signed-real-number

real-number

label

string

character

[sign] real-number

digits . digits [E[sign]digits]
digitsk [sign]digits

digits

_ ‘ character aracter]..’ R

(* any single printable ASCII character other than
an apostrophe, carriage return, or line feed *)

Language Syntax Summary Pascal-86 User’s Guide

D.2 Modularization and Block Structure

compilation { main-module

main-module

program-heading PROGRAM identifier [(prog-parameter-list)]

block [label-decl]
[CONST constant-defn ; [constant-defn ;]...]
[TYPE type-defn ; [type-defn ;]...]
[VAR variable-decl ; [variable-decl ;]...]
[proc-or-func ;1]...
statement-part

label-decl LABEL Jabel [, labell... ;
proc-or-func procedure-decl
function-decl

prochdg-or-funchdg procedure-heading
function-heading

statement-part compound-statement

D-4

Pascal-86 User’s Guide Language Syntax Summary

D.3 Constants, Types, and Variables
constant-defn identifier = constant

constant string
signed-integer
signed-real-number
constant-id
sign numeric-constant-id

constant-id (* an identifier that stands for any constant *)

numeric-constant-id (* an identifier that stands for a signed-integer or a signed-
real-number *)

type-defn identifier = type-spec

type-spec (type-id)
enumerated-type
subrange-type
J pointer-type
[PACKED] array-type
[PACKED] record-type
[PACKED] set-type
l [PACKED] file-type)

type-id (* an identifier that stands for a type *)
enumerated-type (identifier [, identifier]...)
subrange-type ordinal-constant . . ordinal-constant
ordinal-constant (* a constant of an ordinal-type *)
ordinal-type (enumerated-type

subrange-type

(* a type-id that stands for an enumerated-type, a
L subrange-type, or one of the predefined types INTEGER,
BOOLEAN, or CHAR *)

pointer-type t type-id or @ type-id

array-type ARRAY [index-type [, index-type]...] OF
component-type

index-type ordinal-type

component-type type-spec

record-type RECORD
[field-list [5]]
END

Language Syntax Summary

field-list

field-id
tagtype-id
case-const
set-type
file-type
variable-decl

variable

entire-variable
indexed-variable
field-designator
buffer-variable
referenced-variable
array-variable
record-variable
file-variable

pointer-variable

field-id [, field-id]... type-spec [;
field-id [, field-id]... type-spec]...
[field-id [, field-id]... type-spec [
field-id [, field-id]... type-spec]...]

CASE [field-id :1 tagtype-id OF
case-const [, case-const]...
case-const [, case-const]...
identifier
(* a type-id that stands for an ordinal-type *)
ordinal-constant
SET OF ordinal-type
FILE OF type-spec
identifier]...

identifier [, type-spec

entire-variable
indexed-variable
field-designator
buffer-variable
referenced-variable

(* an identifier that stands for a variable *)
array-variable [expression [, expression]...]
record-variable field-id
file-variable * or file-variable @
pointer-id * or pointer-id @

(* a variable of an array type *)
(* a variable of a record type *)

(* a variable of a file type *)

(* a variable of a pointer type *)

D.4 Procedures and Functions

procedure-decl!

procedure-heading

procedure-heading ;
block

procedure-heading ;
FORWARD

PROCEDURE identifier [(parameter-list)]

C [field-list [;]1]) [;
¢ [field-list [51])]...)

Pascal-86 User’s Guide

Pascal-86 User’s Guide

function-decl

function-heading
parameter-list

parameters

Language Syntax Summary

(function-heading ;)
block

4 FUNCTION identifier ;
block

Ve

function-heading
\ FORWARD /

FUNCTION identifier [C parameter-list)] type-id ;

parameters [; parameters]...

identifier [, identifier]... type-id

VAR identifier [, identifier]. type-id

PROCEDURE identifier |
[€ parameter-list)]

FUNCTION identifier
[¢ parameter-list)]

type-id

D.5 Expressions and Statements

expression
simple-expression
term

factor

relational-op
adding-op
multiplying-op
function-designator

argument

simple-expression |[relational-op simple-expression)
[sign] term [adding-op term]...
factor [multiplying-op factor]...

(variable \
constant-id

integer

real-number

string

S function-designator ;
NIL

(expression)

NOT factor

[element [, element]..]

(* any one of the following:

"
~
v
~
v
~

n
v

"

IN %)
(* any one of the following: + - 0OR *)

(* any one of the following: * / DIV MOD AND *)
function-id [(argument [, argument]...)]

expression |[: expression [: expression]]
procedure-id

Language Syntax Summary

function-id
procedure-id
element
string-constant-id

statement

assignment-statement
procedure-statement
compound-statement
IF-statement

CASE-statement

WHILE-statement

REPEAT-statement

FOR-statement

WITH-statement

GOTO-statement

Pascal-86 User’s Guide

(* an identifier that stands for a function *)

(* an identifier that stands for a procedure *)
expression [.. expression]

(* an identifier that stands for a string constant *)

((* null, or empty, statement *) i
assignment-statement
procedure-statement
compound-statement
IF-statement

[label :] ﬁ CASE-statement >
WHILE-statement
REPEAT-statement
FOR-statement

WITH-statement

\ GOTO-statement)

variable : = expression
procedure-id [(argument [, argument]...)]
BEGIN statement [; statement]... END

IF expression THEN statement [ELSE statement]

CASE expression OF)
[case-const [, case-const]... : statement ;]...
case-const [, case-const]... : statement [;]
END

WHILE expression DO statement

REPEAT statement [; statement]... UNTIL
expression
FOR variable := expression T0 expression

D0 statement

FOR variable := expression DOWNTO expression
DO statement

WITH variable [, variable]... DO statement

GOTO Jabel

APPENDIX E
SYNTAX DIAGRAMS

This appendix presents the syntax of the Pascal-86 language in the form of syntax
diagrams, as used in an appendix to Jensen and Wirth’s Pascal User Manual and in
a number of textbooks on Pascal.

In these diagrams, every path you can follow, going in the direction of the arrows,
represents a syntactically correct construct in Pascal-86. Keywords, letter symbols,
and punctuation symbols that you use verbatim in your programs—the terminal
symbols of the language—are enclosed in circles or ovals. Terms standing for language
constructs that are defined in their own syntax diagrams—in other words, nonter-
minal symbols—are enclosed in rectangular boxes.

The gray-shaded portions of the diagrams denote features that are Intel extensions
to standard Pascal.

>
——| letter l I (s

identifier 121539-1

> digitL
. —

unsigned integer

121539-2

] [O——CGD |

unsigned real number 1215393

Syntax Diagrams Pascal-86 User’s Guide

. -

—> ¢ d integer
| g ger 1

\——4 constant identifier —I_p

N\ ‘E igned real b —II—)

O——Caaee)

unsigned constant —

/_’[constant identifier 1 Y £

H unsigned imegeril >

\—bl unsigned real ber]L A !

O—C=)—1-0

constant 121539-5

I typeidentifier }

simple type 121539-20

E-2

Pascal-86 User’s Guide

Syntax Diagrams

> simoretvoe }

N

PACKED

ARRAY

fet .
l pletype | y
\- 'l Y >= type identifier } ,

—) - g BEZI g
k 7“ SET } :“ OF 'i ! imple type I—‘
D o
field fist
type 121530-6
)
o/
')
4 /- l
\ 7| identifier] Vm > type l >
| S | S —_)
[)
= 1-0-t-
é) D O"\
field list 1215397

Syntax Diagrams Pascal-86 User’s Guide

variable identifier H ~ \

| riewidgentitier }-*’-—»O-» @—)

L>O———>r field identirier | .

—~O -
g,@} _J
_ —
variable —
- | idned. 1 -
—| g I 0 =
k Arll variable lF 5
I procedure identifier
qfunc!ion identifier @-—L—E
oy N
L) P
u
5 -) /

N~ > @—>l factor lL J

&—» expression , expression

factor 121539-9

E—4

Pascal-86 User’s Guide Syntax Diagrams

e N

cP DR

factor <
term 121539-10
I term L e
am—— v
term -
simple expression 121539-11

.

inibleexoiassion: |k s
ple exp I 1 Y -

expression 121539-12
e
O l identifier ©—> type identifie r-)\\f
N (e O)

{ parameter list l—/

identifier

?—A type identifier

parameter list

parameter list 121539-13

Syntax Diagrams Pascal-86 User’s Guide

unsigned integer

I variable L {:-) l L
| ol S| —/ | Sk |

function identifier

Y o VI
S— _ | o
procedure identifier i)
[
- :
T
1

identifier

{ y
\—(azsln } (eno) /

(

% expression }————(TNENH statement }—-——(ELSE)—-[} /
cus)—»{ }—.@ I constant l—

1

%REPEM statement unTij—»(=

© o T o © S R O\ == 1-@- =} 1
—/

WITH variable o A

G0TO H unsigned integer ll _—

(1 1

statement 121539-14

Pascal-86 User’s Guide Syntax Diagrams

FORWARD

directive 121538-21

. | ioned int 1
—_— LABEL 1 g ger |

C

identifier

identifier

VAR identifier

~

~

~

PROCEDURE H identifier H parameter list l /
H identifier l— ->l parameter list M type identifier J

A

FUNCTION
_ ,
block 12153915

Syntax Diagrams Pascal-86 User’s Guide

——(_ ProGRAM)-—-[identifier }—» dentifier O—»

program 121539-16

Pascal-86 User’s Guide Syntax Diagrams

Syntax Diagrams Pascal-86 User’s Guide

E-10

APPENDIX F
PASCAL-86 VOCABULARY

Tables F-1 through F-8 summarize all keywords, special punctuation symbols, direc-
tives, and predefined identifiers in Pascal-86, giving a brief definition or classification
of each. The gray-shaded portions describe features that are Intel extensions.

Table F-1. Keywords

Keyword Meaning
AND Boolean operator
ARRAY Type constructor
BEGIN Start of compound statement
CASE Start of CASE statement or record variant
CONST Start of constant definition
DIV Arithmetic operator
DO Part of WHILE, FOR, or WITH statement
DOWNTO Part of FOR statement, decrementing form
ELSE Part of IF statement
END End of record type specification, compound statement, or CASE statement
FILE Type constructor
FOR Start of FOR statement, ¢

| tion for separate compil:

FUNCTION Start of functionn declaration
GOTO Start of GOTO statement
IF Start of IF statement
IN Relational operator (for sets)

Start of label declaration
Arithmetic operator
Null value for pointer variable
Boolean operator

Part of array type specification, record variant, or CASE statement
Boolean operator

PACKED Optional prefix to structured type specification

PROCEDURE Start of procedure declaration
PROGRAM Start of program heading
RECORD Type constructor

REPEAT Start of REPEAT statement
SET Type constructor

THEN Part of IF statement

TO Part of FOR statement, incrementing form
TYPE Start of type definition

UNTIL Part of REPEAT statement
VAR Start of variable declaration
WHILE Start of WHILE statement
WITH Start of WITH statement

F-1

Pascal-86 Vocabulary

Pascal-86 User’s Guide

Table F-2. Special Symbols

Symbol

Description

Meaning

+

[

AV oA

v

b

plus sign
minus sign
star

slash
equal sign

“not equal” symbol

“less than” symbol

“‘greater than’’ symbol

“less than or equal to”" symbol
“‘greater than or equal to”’ symbol
left parenthesis

right parenthesis

left bracket
right bracket

left brace

right brace
assignment symbol
period, or dot

comma
semicolon

colon

apostrophe

up-arrow
“at” sign
ellipsis

underscore

arithmetic or set operator, or sign part of numeric
constant

arithmetic or set operator, or sign part of numeric
constant

arithmetic or set operator, or part of comment
bracketing symbol

arithmetic operator

relational operator, or part of constant or type
definition

relational operator
relational operator
relational operator
relational operator
relational operator

bracketing symbol for expression factor, enumer-
ated type specification, case constant list, param-
eter list, argument list, or program parameter list;
or part of comment bracketing symbol

bracketing symbol for expression factor, enumer-
ated type specification, case constant list, param-
eter list, argument list, or program parameter list;
or part of comment bracketing symbol

bracketing symbol in array type specification,
indexed variable, or set expression

bracketing symbol in array type specification,
indexed variable, or set expression

comment bracketing symbol
comment bracketing symbol
part of assignment statement or FOR statement

end of compilation, part of field designator, or
decimal point in signed real number

separator for small syntactic units in a sequence,
such as labels or identifiers

separator for large syntactic units in a sequence,
such as declarations, definitions, and statements

part of variable declaration, record, type specifi-
cation, function declaration, functional parameter,
parameter list, labeled statement, or CASE state-
ment

bracketing symbol for literal string

part of pointer type specification, referenced
variable, or buffer variable

part of pointer type specification, referenced
variable, or buffer variable

part of subrange type specification, or part of
element in set expression

part of an identifier

F-2

Pascal-86 User’s Guide Pascal-86 Vocabulary

Table F-3. Directives

Directive Meaning

FORWARD designates that the body of the named procedure or function is
given later in this compilation

Table F-4. Predefined Program Parameters

Identifier Meaning
INPUT standard input file; of type TEXT
OUTPUT standard output file; of type TEXT

Table F-5. Predefined Types

Identifier Meaning
BOOLEAN Simple ordinal type
CHAR o Simple ordinal type
INTEGER Simple ordinal type
REAL imple real type
TEXT FILE OF CHAR with line markers

Table F-6. Predefined Constants

Identifier Meaning
FALSE) Boolean constant)
MAXINT . Maximum legal INTEGER value (32767 in Pascal-86)

oolean constant

F-3

Pascal-86 Vocabulary

F-4

Table F-7. Predefined Functions

- Parameter Returned "
Identifier List- Value Operation
ABS (arith-expr) integer or real returns absolute value of argument

ARCTAN (arith-expr) real returns arctangent of argument

CHR (int-expr) CHAR returns corresponding character value
COoS (arith-expr) real returns cosine of argument

EOF [(file-var)] BOOLEAN checks for end of file

EOLN [(textfile-var)] BOOLEAN checks for end of line

EXP (arith-expr) real returns eX, where x is argument

LN (arith-expr) real returns natural logarithm of argument

ODD (int-expr) BOOLEAN checks whether argument is odd

ORD (ord-expr) INTEGER returns ordinal number of argument

PRED (ord-expr) ordinal returns preceding value in sequence

ROUND (real-expr) INTEGER returns rounded value of argument

SIN (arith-expr) real returns sine of argument

SQR (arith-expr) integer or real returns square of argument

SQRT (arith-expr) real returns square root of argument
ordinal returns next value in sequence

(ord-expr)

ger pén of argumen

*For readability, optional blanks have been omitted from the syntax.

Table F-8. Predefined Procedures

Identifier Parameter List’ Operation

DISPOSE

(pointer{,tag]...)

PACK (unpacked-array, ord-expr, packs an array

packed-array)
PAGE [(textfile-var)] causes page eject in text file
output

Pascal-86 User’s Guide

Pascal-86 User’s Guide Pascal-86 Vocabulary

Table F-8. Predefined Procedures (Cont’d.)

Identifier Parameter List® Operation
PUT [(file-var)] outputs one file component
READ ([file-var,]variable inputs one or more file compo-
[,variable]...) nents to variables
READLN ([textfile-var,]variable inputs zero or more text file

[,variable]...) or (textfile- components to variables and
var) skips to next line

RESET (file-var
REWRITE (file-var|

) prepares a file for reading

) prepares a file for writing omitted
from the syntax.

UNPACK (packed-array, unpacks an array
unpacked-array,ord-expr)
WRITE ([file-var,)write-param outputs one or more file compo-
[,write-param]...) nents from variables
WRITELN ([textfile-var,]write-param outputs zero or more text file
[,write-param)]...) or components from variables and
(textfile-var) or starts new line
none

*For readability, optional blanks have been omitted from the syntax.

F-5

APPENDIX G
CHARACTER SETS AND
COLLATING SEQUENCE

ASCIl HEX PASCAL-86 ASCII HEX PASCAL-86
CHARACTER CHARACTER? CHARACTER CHARACTER?
NUL 00 no @ 40 yes
SOH 01 no A 41 yes
STX 02 no B 42 yes
ETX 03 no C 43 yes
EOT 04 no D 44 yes
ENQ 05 no E 45 yes
ACK 06 no F 46 yes
BEL 07 no G 47 yes
BS 08 no H 48 yes
HT 09 no | 49 yes
LF 0A no J 4A yes
vT 0B no K 4B yes
FF oc no L 4C yes
CR 0D no M 4D yes
SO OE no N 4E yes
Si OF no (o] 4F yes
DLE 10 no P 50 yes
DCI 1 no Q 51 yes
DC2 12 no R 52 yes
DC3 13 no S 53 yes
DC4 14 no T 54 yes
NAK 15 no U 55 yes
SYN 16 no \ 56 yes
ETB 17 no w 57 yes
CAN 18 no X 58 yes
EM 19 no Y 59 yes
SUB 1A no z 5A yes
ESC 1B no [5B yes
FS iC no \ 5C no
GS 1D no] 5D yes
RS 1E no A1) 5E yes
us 1F no — 5F yes
space 20 yes N 60 no
! 21 no a 61 yes
" 22 no b 62 yes
23 no c 63 yes
$ 24 no d 64 yes
% 25 no e 65 yes
& 26 no f 66 yes
’ 27 yes g 67 yes
(28 yes h 68 yes
) 29 yes i 69 yes
* 2A yes i 6A yes
+ 2B yes k 6B yes
, 2C yes | 6C yes
- 2D yes m 6D yes
. 2E yes n 6E yes
/ 2F yes o 6F yes
0 30 yes p 70 yes
1 31 yes q 71 yes
2 32 yes r 72 yes
3 33 yes s 73 yes
4 34 yes t 74 yes
5 35 yes u 75 yes
6 36 yes v 76 yes
7 37 yes w 77 yes
8 38 yes X 78 yes
9 39 yes y 79 yes
: 3A yes z 7A yes
; 3B yes { 7B yes
< 3C yes | 7C no
= 3D yes } 7D yes
> 3E yes ~ 7E no
? 3F no DEL 7F no

APPENDIX H
RUN-TIME DATA REPRESENTATIONS

The Pascal-86 compiler determines the amount of storage needed at run-time for
each data type, and the run-time support software allocates the storage when you
execute the Pascal program. This appendix details the amount of storage allocated
for each data type, and the method used to assign storage to these types and locate
them in memory. You need this information if you intend to pass data as arguments
to procedures written in other languages. See Appendix J for more information about
communicating to modules written in other languages.

H.1 Simple Types

Table H-1 summarizes the storage allocated at run-time for each simple type. The
figure under the BITS heading is the minimum number of bits needed to store values
of the corresponding data type. The figure under the BYTES heading is the number
of bytes allocated to store values of the corresponding data type. You only need to
know the number of bytes for each data type in order to match a Pascal-86 data type
with the appropriate data type in another Intel language.

In all of these discussions, a byte is eight bits, and a word is two consecutive bytes
(16 bits). The byte with the higher memory address contains the eight most signifi-
cant bits of a word, and the byte with the lower memory address contains the eight
least significant bits. The significant bits of a value are right-justified in the bytes the
value occupies. For all simple types, the run-time support software assigns the most
significant bits of their binary representations to the highest bit positions. For real
values, the run-time support software assigns the fractional part to the lowest bit
positions (to the bytes with the lowest addresses), and the exponent part to the highest
bit positions.

NOTE

All real arithmetic in Pascal-86 is performed in 80-bit TEMPREAL
(extended precision) format, which is used both internally and as a prede-
fined data type. Calculated values are converted to REAL or LONGREAL
precision only upon assignment to such a variable. REAL values are in the
intervals (—2'2¢, —2-127) (0,0), and (27'?7, 2'28), LONGREAL values are
in the intervals (—2'02, —2-1023) ((,0), and (27'023, 2102¢) TEMPREAL
values are in the intervals (—216384 —2-16383) ((,0), and (2716383, 216384) For
further information on the interval formats for real values, see 7.1.8.

Decimal approximations for the powers of two are:

2777 is approximately 5.877471754 X 10~%
2'28 is approximately 3.412823668 X 10
271023 ig approximately 1.11253693 X 107308
21024 is approximately 1.797693131 X 103
2716383 ig approximately 1.168105158 X 104932
216384 jg approximately 1.189731472 X 10432

Run-Time Data Representations Pascal-86 User’s Guide

Table H-1. Run-Time Storage Allocation of Simple Data Types

Data Type Bits Bytes
BOOLEAN 1 1
CHAR(M) 8 1
INTEGER® 16 2

REAL®)

Pointer 32 4
Subrange (n..m)©) subbit subbyte
Enumerated (n elements)(10) enumbit enumbyte

NOTES:
“

Values of type CHAR are eight-bit ASCII codes stored in eight bits (one byte). In Pascal programs,
you can express the characters carriage return (ASCII 13) and line feed (ASCII 10) as the prede-
fined constants CR and LF, respectively. All other characters can be expressed by enclosing
the character in single quotes (ASCII 39). CHR is defined in the range 0 to 255.

Values of type INTEGER are in the range —32767 to +32767.
Values of type LONGINT are in the range —2147483647 to +2147483647.

Values of type LONGREAL are in the intervals (—21024, —2-1023) (0, 0), and (21024, 21023) to
53 bits of precision.

Values of type REAL are in the intervals (—2128, —2-127) (0, 0), and (2127, 2128) to 24 bits of
precision.

Values of type TEMPREAL are in the intervals (—216384 —2-16383) (0, 0), and (2~ 16383 216384)
to 64 bits of precision.

(2

(3

(4

(5

(6

(7

Values of type WORD are in the range 0 to 65535.

If the SMALL(—CONST IN DATA—) model of segmentation is used (10.3.18) pointers are only
16 bits long (2 bytes).

)

(9

The value of subbit and subbyte can be calculated as follows:

If the subrange n..m is in the range 0..255, subbit is equal to eight bits and subbyte is equal to
one byte; otherwise, subbit is equal to 16 bits, and subbyte is equal to two bytes.

(10 The value of enumbit and enumbyte can be calculated as follows:

For an enumeration of n elements, enumbit is equal to the smallest positive integer greater than
or equal to the base-two logarithm of n, and enumbyte is equal to the smallest positive integer
greater than or equal to (enumbit/8).

H.2 Structured Types

All structures are byte-aligned and occupy an integral number of bytes; i.e., each
field of a structure starts at a bit position that is evenly divisible by eight and occupies
a multiple of eight bits (bit positions are numbered from zero).

H.2.1 Record Types

The run-time support software assigns storage to record types in two steps: first the
fields are assigned to a string of bits, and then the bit string is assigned to bytes in
memory.

The fields of a record are assigned storage in the order in which they are defined in
the record. The first field occupies the lowest address. Each field is byte-aligned and
occupies an integral number of bytes.

Pascal-86 User’s Guide Run-Time Data Representations

Structured fields are aligned on the next available bit position that is evenly divisible
by eight (byte-aligned), and they occupy an integral number of bytes (multiples of
eight bits).

A structured type field can itself contain simple type and structured type fields, just
as a record can contain records. If such a structure contains structured type or simple
type fields, the structure is aligned to satisfy the byte-aligned requirement of its
components.

The following figures illustrate the storage allocation scheme, which has two parts:
first the fields are assigned to a long bit string, then the bit string is assigned to bytes
of memory (shown in figure H-2).

TYPE A = RECORD

A1 : 0..7;

AREC : RECORD (*fields are byte-aligned?®)
A2 : INTEGER
A3 + INTEGER
END;

A4 : 0..7

END;

Figure H-1 shows the first step of this storage allocation scheme: assigning the fields
to bytes in a long bit string.

00000000 00111111 11112222 22222233 33333333 44444444
01234567 89012345 67890123 45678901 23456789 01234567

1Al A2 1 A3 A4
+ + + + + + + .
Figure H-1. Record (A) Containing a Record (AREC) 121539-36

Storage for type A is allocated in this fashion (“+” denotes a byte boundary).

The second and last step is the assignment of the bit string to actual bytes, as shown
in figure H-2. Within each byte, the more significant bits (higher bit positions) are
actually on the Jeft side, contrary to the bit numbering in figure H-1. Figure H-2
shows the actual bit positions of the fields defined in figure H-1 as they are assigned
to bytes in memory.

00000000 11111100 22221111 33222222 33333333 44444444
76543210 54321098 32109876 10987654 98765432 76543210

At A2] A3 1 A4
+ + + + + + +
Figure H-2. Actual Bit Positions within Memory Bytes 121539-37

H.2.2 Array Types

Since an array can contain arrays, the components of the innermost nested array are
allocated first; that is, storage is allocated in row-major order, with the rightmost
index expression varying the fastest. For example, a two-dimensional array of rows
and columns can be simulated in Pascal-86 by providing an array of rows, where each

Run-Time Data Representations Pascal-86 User’s Guide

row is an array of columns. The array of columns (selected by the rightmost index
expression in a pair of index expressions) is allocated first.

The first component is assigned the lowest address. Each component is byte-aligned
and occupies an integral number of bytes.

Using ASM86 to Reference an Element in a Pascal-86 Large Array

As mentioned in section 10.3.12, the data sections of certain modules may be placed
in more than one data segment. In particular, arrays that require more than 64K
bytes of data storage are placed in more than one data segment. These data struc-
tures are called large arrays.

This section describes the process whereby a large array is mapped onto memory
segments. In addition, this section provides two examples that illustrate the mapping
of large arrays, along with assembly source code that allows you to access a single
element in each of these arrays.

Large arrays are mapped onto memory segments based on two static attributes of the
structure: the component size and the component number. The component size of a
large array is the number of bytes per individual component on the array. The
component number is the total number of components on the array. The Pascal-86
compiler uses these numbers to map the elements of a large array onto a given number
of segments. The first n segments are full; i.e., the number of elements they contain
is a power of two. The final segment contains the remainder.

The algorithms presented in this section perform more efficiently when the compo-

¥ nent size of a large array is a power of two. This stems from a balance between the
time needed to access an element in a large array and efficient memory usage. You
may want to pad your data structure with unused bytes to construct a large array
with a component size that is a power of two, thereby improving access time.

This section presents two examples in which a component in a large array is accessed.
The first example presents a static array whose component size is a power of two; the
second example presents a dynamically allocated array whose component size is not
a power of two.

To partition the elements of a large array, the Pascal-86 compiler must first deter-
mine the total number of elements to place in a full segment. (A full segment is one
whose component number is a power of two.) The following equation determines the
number of elements in a full segment:

LgNumc = Floor (Log base 2 (65536/Components Size))
(65536 represents the maximum number of bytes in a given segment.)

Based on the results of this calculation, the compiler can partition elements into
memory segments by calculating the number of bytes in a full segment and the number
of bytes in the final segment of a large array. Another calculation that can be
performed results in the number of full scgments in a large array. Note that the
Pascal-86 compiler performs these calculations; the equations are included here only
to make the examples easier to understand.

These calculations are as follows:
1. Equation to calculate the number of bytes in a full segment:
Size of a full segment = 2teNume * Component Size

Pascal-86 User’s Guide Run-Time Data Representations

2. Equation to calculate the number of bytes in the last segment of a large array:
(REM Component Number) * Component Size

zl,g\ ume

3. Equation to calculate the number of full segments in a large array:
Number of Full Segments = MOD Component Number

2[,g\‘umc

The following paragraphs present an example of the memory representation of a large
array whose component size is a power of two. -

Consider the large array representation for the following Pascal-86 program fragment:

Public ThisModule;
For SomeOtherModule
Var LargeArray: array[1..100000] of integer;

The number of elements in this array is 100,000 and the type is integer. Each integer
in this 100,000-element array requires 2 bytes of storage; therefore, the total number
of bytes needed to represent this array is 200,000.

Based on the equations presented above, this large array is represented in memory as
three segments of 65536 bytes each and a final segment of 3392 bytes, as indicated
in figure H-3.

1

—>I 64K BYTES J :

SELECTOR 1 32768

32769

—>| 64K BYTES] :

SELECTOR 2 55536

65537

SELECTOR 3 ———»I 64K BYTES l :

98304
___________ -

SELECTOR 4 98305

———————-—-—»l 3392 BYTES J :

100000

Figure H-3. The Memory Representation of a Large Array Whose
Component Size Is a Power of Two 121539-45

The following section of source code (written in ASM86) allows you to access a single
clement in this static large array:

; assume normalized index expr in DX:AX

SAL AX, 1 i Mult by Component Size (2 bytes)
RCL DX, 1
H DX contains offset into selector table
H AX contains offset into segment

Mov DI,DX ;i Copy table index into index reg
SHL DI, 1 ;i Each selector is 2 bytes, so (* 2)
MoV ES,SelectorTableDisp [DI |

i ES contains correct selector for this element

Run-Time Data Representations Pascal-86 User’s Guide

maov DI, AX ; Copy seg offset into index reg
MoV CX,ES: [DI]

; CX contains the integer array element

The following paragraphs present an example of the memory presentation of a large
array whose component size is not a power of two.

Consider the Pascal-86 representation for the following dynamically allocated large
array whose component size is not a power of two:

Type
ThreeByte =
record
fieldt! : 0..10;
field2 : integer
end;
DynamiclLargeArray = array [1..40000] of ThreeByte;
Pntr = tDynamiclLargeArray;
Var

DynLAPtr : Pntr;
begin :

New(D;nLAPtr);

Dispo;e(DynLAPtr);
Here, the component size is three and the component number is 40,000. Based on the
equations presented above, this large array is allocated to memory segments as two

segments of 49152 bytes each and one remaining segment of 21696 bytes, as indicated
in figure H-4.

1
DynLAPtr 4}-—; _—>l 49152 BYTES I :
I SELECTOR 1 16384

SELECTOR 2 - E 49152 BYTES l

16385

32768

SELECTOR 3 | 32769
21696 BYTES l :
40000

Figure H-4. The Memory Representation of a Large Array Whose
Component Size Is Not a Power of Two 121539-46

The following section of source code (written in ASM86) makes it possible to access
a single element in this large data array:

; assume normalized index expr DX:AX
; assume EA is in ES:BX
Mov CXx,14 ; LgNumC, used as shift count

MoV SI,AX ; save low 16 bits of index expr
; compute selector table offset

; first divide the index expr
; by 2**LgNumC

Pascal-86 User’s Guide Run-Time Data Representations

DIVIDELOOP : SHR DX, 1 ; 32 bit division
RCR AX, 1
LooP DIVIDELODP

MoV DI,AX i copy MOD into index reg
SHL DI, 1 ; each selector is 2 bytes, so (* 2)
Maov ES,ES:[BX + DI]
;7 ES contains correct selector for this element
; compute the offset into the seg

AND SI,0011111111111111B ; const is 2**LgNunmC

Mov AX,3 ; constant is Component Size
MUL S1 ; component size * offset portion
MoV SI,AX ;i copy offset into index reg

; ES: [SI] is ADDRESS of selected array element

Mov CL,ES: [SI] ; CL is arr[DX:AX].field1

H.2.3 Set Types

Sets may have at most 32767 elements, and the ordinal value of each member must
lie in the range of integers.

The run-time support software stores a set such that the set element whose ordinal
value is zero, modulo eight, is assigned to the least significant bit of the first byte
(bit 0). The smallest set element in the base type of the set is also assigned to the
first byte. Figure H-5 shows a sample assignment.

VAR ITEMS: SET OF 3..10;

ITEMS := [3,5,7,9];

Storage for ITEMS is allocated in this fashion.

76543210 76543210

: +—+
110101 +++ 1 «~+x+0101¢

+ +

Figure H-5. Bits Assigned for a Set 121539-38

The asterisk (*) denotes an unassigned bit and the plus sign (+) denotes a byte
boundary.

Run-Time Data Representations Pascal-86 User’s Guide

H.2.4 File Types

A file variable occupies six bytes in its data area in addition to the space occupied by
the buffer variable (which is allocated according to the rules for its type). Two of the
six bytes hold the file’s connection number, and the other four ars used as a pointer
to a structure in the constant area of the file variable’s defining procedure.

The structure in the defining procedure’s constant area consists of the name of the
file variable, preceded by a byte holding the length of the name. The most significant
bit of the length byte is set if the file is a program parameter.

Each component of a file starts on a byte boundary and occupies an integral number
of bytes.

APPENDIX |
PASCAL-86 EXTENDED
SEGMENTATION MODELS

1.1 Introduction

Program segmentation is a technique used to optimize the object code produced by
the compiler and to allow easier, more efficient memory addressing.

The simplest way to compile Pascal-86 code is to use the segmentation controls
(LARGE, COMPACT, and SMALL) outlined in Chapter 10. However, to take full
advantage of the segmented iAPX 86 architecture and to simplify the development
of very large programs, Pascal-86 provides extended segmentation facilities. This
appendix discusses the segmentation control options available to you.

Each compilation produces an object module made up of several sections (see 11.2).
At link time, the sections from separately compiled modules are combined into
segments depending on compiler-generated attributes and your input to the link
program. Once combined into a segment, all constituent sections can be addressed
from the same 8086 segment register. The compiler uses this segment addressability
to improve the code produced for data references and procedure calls. This is the
primary purpose of the segmentation controls—to tell the compiler how separately
compiled code and data will be located in memory.

Most Pascal-86 programmers need not be concerned about memory addressing
techniques on the iAPX 86, as the SMALL, COMPACT, and LARGE controls
automatically handle the mechanics of program segmentation. If needed, a descrip-
tion of iAPX 86 memory concepts is given in Appendix J.

By making the variety of segmentation schemes open to you virtually unlimited, these
controls can reduce the storage required for pointers and the code required to refer-
ence external variables and procedures.

1.1.1 Extended Segmentation

The segmentation controls adopted by Pascal-86 are a simple extension of the
SMALL, COMPACT, and LARGE controls originally supported by PL /M-86. Using
these simple controls, you can create a large program where each module is compiled
with the same segmentation control, or you can use the extended controls to partition
‘your program into a number of loosely-coupled subsystems.

A subsystem is a collection of tightly coupled, logically related modules that obey
the same model of segmentation. A program is made up of one or more subsystems.
(If you use only the simple controls to compile your program modules, then your
program consists of one subsystem.) The subsystems within a program can use differ-
ent segmentation models if appropriate. Within a subsystem, calls and data refer-
ences are long or short depending on the segmentation model selected for the
subsystem. Between subsystems, all calls are long and most data references require
32-bit pointers.

Optimized code is obtained by breaking LARGE programs (greater than 64K of
code, data, or both) into COMPACT or SMALL subsystems having less than 64K
each of code and data. References between modules in the same subsystem can then
use more efficient 16-bit addresses. (Only references outside a subsystem need to use
the full 32-bit address.) Use of these extensions also allows easier access to the one-
megabyte address space.

I-1

Pascal-86 Extended Segmentation Models Pascal-86 User’s Guide

1.2 Subsystems

By carefully constructing subsystems, you can minimize references to outside resources
(code and data) and, in return, receive highly optimized code for all internal resource
references. This section describes how to create subsystems using the extended
segmentation controls.

Note that all modules in your program should be compiled with the same set of
subsystem definitions, so that the compiler makes consistent assumptions about the
location of externals. This can be done by putting the subsystem definitions and the
interface specification into one INCLUDE file and inserting it in every compilation.
(See figure I-1 for a sample INCLUDE file.) If inconsistent subsystem definitions
are used when compiling modules, LINK86 will generate an error.

There is one segmentation control for each subsystem in a Pascal program. It takes
the form:

HAS module-list

$ model [[subsystem-id][submodel] HAS module-list ;
5 EXPORTS public-list

where
model specifies the model of segmentation that the subsystem
will follow (SMALL, COMPACT, and LARGE are
allowed, but LARGE subsystems will not provide optim-
ized code). All modules in the subsystem must be
compiled with the same model of segmentation.
subsystem-id specifies a unique name for each subsystem, and can be

up to 31 characters long.

$SMALL (SmallHeap -CONST IN DATA- HAS WithSmallHeap;
$ EXPORTS TinyPtr;
$ EXPORTS WithSmallHeapNewlLargeRec, NewLargeNumber;
$ EXPORTS WithSmallHeapGenerateTwo)
PUBLIC withSmallHeap;
FOR WithLargeHeap, Evaluator;
TYPE TinyPtr = TINTEGER;
FOR WithLargeHeap;
FUNCTION WithSmallHeapNewLargeRec (vall, val2 : integer) : LargeRecPtr;

FUNCTION NewLargeNumber (val : integer) : LargePtr;
FOR Evaluator;
PROCEDURE WwithSmallHeapGenerateTwo (FUNCTION ¢ (recl, rec2 : LargeRecPtr) : BOOLEAN;

vall, val2 : INTEGER);

SLARGE (LargeHeap -CONST IN CODE- HAS WithLargeHeap, Evaluator;
$ EXPORTS LargePtr;
EXPORTS LargeRecPtr, LargeRec;
EXPORTS WithLargeHeapNewLargeRec, NewTinyNumber;
EXPORTS WithLargeHeapGenerateTwo;
EXPORTS compar)
PUBLIC WithLargeHeap;
FOR withSmallHeap, Evaluator;
TYPE LargePtr = “INTEGER;
LargeRecPtr = “LargeRec;
LargeRec = RECORD
TinyVal : TinyPtr;
LargeVal : LargePtr
END;
FOR WithSmallHeap;
FUNCTION WithLargeHeapNewLargeRec (VAR vall, val2 : integer) : LargeRecPtr;
FUNCTION NewTinyNumber (val : integer) : TinyPtr;
FOR Evaluator;
PROCEDURE WithLargeHeapGenerateTwo (FUNCTION ¢ (recl, rec2 : LargeRecPtr) : BOOLEAN;
vall, val2 : INTEGER);

ww w0

PUBLIC Evaluator;
FOR WithSmallHeap, WithLargeHeap;
FUNCTION compar (recl, rec2 : LargeRecPtr) : BOOLEAN;

Figure I-1. INCLUDE File Containing Subsystem Definitions and Interface
Specification

I-2

Pascal-86 User’s Guide Pascal-86 Extended Segmentation Models

submodel specifies the placement of constants. It can be either:
-CONST IN CODE-
(for burning into ROM—default case for LARGE)
-CONST IN DATA-

(for efficient access to constants in programs that are
loaded into RAM-—default case for SMALL and
COMPACT)

HAS module-list specifies all the modules that make up the subsystem.
Each identifier in the module-list is the name of a module,
which can be up to 31 characters long.

EXPORTS public-list lists the labels, procedures, and variables exported by this
subsystem. Any object not named in an EXPORTS list
will be local to its subsystem and not accessible from
outside the subsystem. Each identifier in this list is the
name of a public object, which can be up to 40 charac-
ters long.

Within a program, the subsystem name must be distinct from all module names,
since they share the same name space. The names used to declare public objects must
also be unique. Identifiers used to define subsystems and modules, however, may also
be used to declare public objects.

In most applications of the subsystem controls, the HAS and EXPORTS lists will
have several dozen entries apiece. To accommodate lists of this length, a subsystem
control may be continued over more than one control line. (The continuation lines
must be contiguous, and each must begin with a $ in the first column). Also, note
that any number of HAS and EXPORTS lists may appear in a control, in any order,
allowing you to format your subsystem specification so it can be easily read and
maintained.

Consider the following subsystem definition:

$COMPACT(Room -CONST IN CODE- HAS Chair, Door, Window)d;
$COMPACT(Diner HAS Booths, Waitress, Jukebox ;

$ EXPORTS Lunches);
$LARGE(Allocate EXPORTS CodeSize, DataSize,
$ MemSize, FreeSpace);

This sample program contains three subsystems: Room, Diner, and Allocate. Room
and Diner use the COMPACT model of segmentation, while Allocate uses the
LARGE model. Constants are stored with the code in Room and Allocate. The Room
subsystem, containing the modules Chair, Door, and Window, is apparently the main
program, since it exports no objects. Allocate supplies four objects: CodeSize,
DataSize, MemSize, and FreeSpace.

.2.1 Open and Closed Subsystems

The subsystems that make up your Pascal-86 program may be either open or closed.
The subsystem definition for an open subsystem does not list the modules that it
contains; it does not have a name. Modules can be added to this subsystem at any
time without changing the subsystem definition. Each program may have only one
open subsystem.

The subsystem definition for a closed subsystem does contain a HAS list, which
specifies all modules in the subsystem. It also contains a subsystem-id as a name.

Pascal-86 Extended Segmentation Models Pascal-86 User’s Guide

In an open subsystem, only the submodel and EXPORTS modifiers are permitted.
By omitting the subsystem name, you automatically create an open subsystem that
contains all modules not claimed in another subsystem’s HAS list. (Note that use of
the simple segmentation controls also creates an open subsystem.)

One advantage of using an open subsystem is that it simplifies dealing with a SMALL
program whose code has grown too large. When your program exhausts its 64K code
size, take a subset of your modules and put them into a closed subsystem, leaving the
rest of the modules in the open subsystem.

For example, assume that your original program contained the modules ATTACH,
OPEN, CLOSE, ERRORS, ALLOCATE, and FREE, which were all compiled with
the simple control:

$SMALL

If you factor out the modules ALLOCATE and FREE from the original program,
creating SUBSYS], its subsystem definition would be:

$SMALL (SUBSYS1 HAS ALLOCATE, FREE)

Now, suppose that the modules remaining in the closed subsystem reference entry
points AllocBuff and FreeBuff in SUBSYBS1. These must be exported from
SUBSYSI as follows:

$SMALL (SUBSYS1 HAS ALLOCATE, FREE;
$ EXPORTS AllocBuff, FreeBuff)

or:

$SMALL (SUBSYS1 HAS ALLOCATE:; EXPORTS AllocBuff;
$ HAS FREE; EXPORTS FreeBuff)

The second form illustrates how multiple HAS and EXPORTS lists can be used to
document the items exported from each module. It also illustrates the use of a contin-
uation line.

Likewise, if a routine in SUBSYS1 references the procedure FatalError in the module
ERRORS, the definition of the open subsystem would then be:

$SMALL C(EXPORTS FatalError)

No data structures need to be changed, since data reference values can still be 16
bits. All procedures will still use the short call and return mechanism, except for
AllocBuff, FreeBuff, and FatalError.

.2.2 The Exports List

A symbol included in a subsystem’s EXPORTS list should be defined in the PUBLIC
section of one of the modules in that subsystem. It is called an exported symbol, and
may be referenced by modules in other subsystems. A public symbol defined within
a subsystem, but not listed in its EXPORTS list, is called a domestic symbol. It may
be referenced only by modules within the same subsystem.

A procedure should be-exported only if it must be referenced outside the defining

subsystem, since accessing exported procedures will generally require more code and
more time than is normally required for domestic procedures.

-4

Pascal-86 User’s Guide Pascal-86 Extended Segmentation Models

Exported procedures have the following characteristics:

e They use the long form of call and return.

* They save and restore the caller’s DS register upon entry and exit.
« They reload DS with their associated data segment upon entry.

» They accept VAR parameters using long or short addresses according to the
segmentation model they were compiled with.

Public Symbols and the FOR-clause. As explained in 4.2.2, the FOR-clause defines
the scope of public symbols in the interface specification. For domestic symbols, this
scope may not extend beyond the defining subsystem. Hence, the FOR-clause for
domestic symbols may name as recipients only modules that belong to the subsystem
containing the symbol definitions. (Symbols not restricted by a FOR-clause can be
accessed by all modules; consequently, only exported symbols should appear in an
unrestricted definition list.) The FOR-clause for exported symbols may name any
module in the program as a recipient.

1.2.3 Placement of Controls

The segmentation controls have special restrictions associated with their placement.
These rules are as follows:

* Only the definition of the open subsystem (with no EXPORTS list) can be placed
on the invocation line; definitions of all other subsystems must occur inside the
source program.

e The subsystem definitions must appear before any PUBLIC section that is
included in the subsystem.

o The definition of the open subsystem (if present) must be the last segmentation
control specified.

The subsystem definitions for your entire program can be included in the compilation
of each module using the INCLUDE control. The compiler will extract the infor-
mation it needs to correctly and efficiently compile each module’s intra- and inter-
subsystem references.

Figure I-1 gives a sample INCLUDE file containing the segmentation controls and
interface specifications for two subsystems, SmallHeap and LargeHeap.

Progamming Restrictions

Variable parameters of a procedure or function defined in a SMALL(—CONST IN
DATA—) subsystem have restrictions on the objects that can be passed as
arguments. They must be either variables defined in a SMALL subsystem, dynamic
variables whose pointer types were defined in SMALL(—CONST IN DATA—)
subsystems, or variable parameters to a procedure defined in a SMALL (—CONST
IN DATA—)subsystem.

Variable parameters of a procedure or function in a SMALL(CONST IN
DATA—)subsystem use short addresses. Corresponding arguments must be varia-
bles in a SMALL(—CONST IN DATA—) subsystem or referenced through a
16-bit pointer (type defined in SMALL (—CONST IN DATA—) subsystem).

Any other invalid mixing of the short and long pointers will be prohibited by the
strong typing mechanism in Pascal.

I-5

APPENDIX J
LINKING TO MODULES WRITTEN
IN OTHER LANGUAGES

This appendix describes the calling conventions used by iAPX 86,88 family languages.
These calling conventions are standardized so that a main module written in
Pascal-86 can freely call procedures, subroutines, and subprograms in other modules
written in other iAPX 86,88 family languages. (For information on coding main
program modules in other iAPX 86 languages, such as FORTRAN-86 or PL/M-86,
see J.6.)

As a Pascal-86 programmer calling Pascal-86 procedures and functions from
Pascal-86, you do not need the information in this appendix. You need to know infor-
mation about parameters and arguments as described in Chapter 6.

As a Pascal-86 programmer calling FORTRAN-86 subprograms from Pascal-86, you
must know the FORTRAN-86 data types that match Pascal-86 data types, and the
order and number of arguments to supply for the FORTRAN-86 parameters. A table
of the corresponding data types is provided at the end of this appendix (J.5). Note
that FORTRAN uses call by reference for all parameters, which corresponds to VAR
parameters in Pascal. (FORTRAN-86 programs conform to the LARGE model of
segmentation.)

As a Pascal-86 programmer calling PL/M-86 procedures from Pascal-86, you must
read the special note in J.4.1 (Stack Usage). You must also know the PL/M-86 data
types that match Pascal-86 data types, and the order and number of arguments to
supply for the PL/M-86 parameters. A table of the corresponding types is provided
at the end of this appendix.

As a Pascal-86 programmer calling ASM86 subroutines or linking to the data in
8086 Macro Assembly Language programs from Pascal-86, you need to know the
calling conventions of stack and register usage described in this appendix. You also
need to know the corresponding data types listed at the end of this appendix in order
to write a subroutine that can pick up the data your Pascal-86 program passes to it.
Refer to the ASM86 Macro Assembler Operating Instructions for more information
about linking to ASM86 programs and for examples of linking such programs to
PL/M-86 programs. (Since Pascal-86 and PL/M-86 use the same calling conven-
tions, these examples also apply when linking ASM86 programs with Pascal-86
programs.)

As a Pascal-86 programmer, PL/M-86 programmer, or macro assembly language
programmer, you also need to know how to link modules properly, as described in
Chapter 12 and in the iAPX 86,88 Family Utilities User’s Guide.

J.1 Introduction

Since Pascal-86 allows you to write and compile separate Pascal-86 modules that can
be linked together at a later time, you can solve a big problem with a solution composed
of separately-tested modules that are linked together after they are internally bug-
free. Not all modules have to be in Pascal-86—you can choose the appropriate
language for each module. (Information on coding the main module in other languages
is given in J.6.) Be sure to link the modules properly with LINK86, the 8086-based
linker (to satisfy references to externals). Since the iIAPX 86,88 family languages
follow the same calling sequence (described in the following section), control will pass
to a called module correctly. However, the called module might not be able to deal
intelligently with the data passed to it, because languages treat some data structures
differently.

J-1

Linking to Modules Written in Other Languages Pascal-86 User’s Guide

NOTE

The term procedure is used in Pascal and in PL/M, subprogram in
FORTRAN, and subroutine in assembly language. In this appendix, subpro-
gram denotes any entity written in any iAPX 86,88 language that can call a
Pascal-86 procedure or function or be called from a Pascal-86 module.

The interface specification of a Pascal-86 module contains that module’s public section
and the public sections of other modules that communicate with the Pascal-86 module.
Public sections are explained in Chapter 4. You have to define the public objects
which the other modules refer to, and the external objects that can be referred to by
the Pascal-86 module. These objects include the names of external procedures and
functions that can be called from the module, and public procedures and functions in
the module that can be called from other modules.

By specifying arguments in a reference to an external subprogram (procedure,
function, or subroutine), you pass data to the external subprogram. The number of
arguments and the order in which you specify them must match the number and
order of the corresponding parameters in the external subprogram’s declaration (see
6.1).

All arguments for parameters are passed on the 8086 stack or the 8087 register stack
in the order that they are specified. Functions that return values return a simple-type
value (except real values) in a register, or a real value on the top of the 8087 register
stack. Pascal-86 functions do not return structured values.

There are two methods of passing arguments to other subprograms: call by value and
call by reference. The first method, call by value, passes the actual value of the
argument to the subprogram. The second method, call by reference, passes the address
of the argument to the subprogram. The called subprogram uses the address to find
the data structure associated with the argument. In both cases, the called subprogram
must know the structure of the data.

Pascal-86 passes arguments to variable parameters by reference, and arguments to
value parameters by value.

J.2 iAPX 86 Memory Concepts

The allocation and arrangement of run-time program memory (via relocation and
linkage) depend on the size control (SMALL, COMPACT, or LARGE) that you
specified when compiling your program modules. These controls also influence how
locations are referenced in the compiled program, leading to certain program size
restrictions.

Each compilation produces an object module containing several sections, for example,
code, data, and stack (see 11.2). At link time, sections from separate modules can be
combined into segments, depending on compiler-generated attributes and user input
to the link program. Once they are combined into a segment, all the sections can be
addressed without reloading an iIAPX 86 segment register.

iAPX 86 memory space has an extent of one megabyte, but the 16-bit word length
of the 8086 can only address 64K locations. A complete physical address requires 20
bits. Therefore, two separate words (a segment address and an offset) are used in a
special way to form this 20-bit address, as follows:

e A segment is defined as a portion of the 8086’s one megabyte address space,
consisting of up to 64K bytes of contiguous memory and beginning at a 16-byte

Pascal-86 User’s Guide Linking to Modules Written in Other Languages

boundary. Thus, the hexadecimal representation of the 20-bit address for the
beginning of every segment ends in 0, for example, 00000H, 00010H,...12340H.,....
This definition permits a 16-bit word to represent any segment starting address
since the extra four bits not included are always 0. A 16-bit word used in this
way is called a segment address. Four CPU registers (CS, DS, SS, and ES) are
used to hold segment addresses.

* The second word used to form the full 20-bit address identifies a specific location
within the segment, starting at the segment address. This 16-bit quantity is called
the offset.

To form a 20-bit address, the iAPX 86 CPU shifts a segment address left four bits
and adds an offset.

J.3 Segment Name Conventions

Table J-1 summarizes the segmentation of a subsystem under the possible models of
segmentation by giving the name of the segment and group where each type of
program section is stored for each model of segmentation.

J.4 Calling Sequence

The calling sequence for each subprogram activation (procedure reference, CALL,
or function reference) places the arguments for the subprogram parameters on the
8086 stack or 8087 register stack and then activates the subprogram with a CALL
instruction. You can see an approximate assembly codc listing of this sequence by

Table J-1. Summary of Pascal-86 Segment and Group Names

Data Data Data .
Model SubModel Code Static Heap Memory Constants | Pointers
SMALL IN DATA sCODE sDATA MEMORY | MEMORY | sCONST 16 bits

sCGROUP | DGROUP |DGROUP | DGROUP | DGROUP

SMALL IN CODE |sCODE sDATA dynamic | MEMORY | sCODE 32 bits

sCGROUP | DGROUP DGROUP | sCGROUP
COMPACT |IN DATA |sCODE sDATA dynamic | MEMORY | sSCONST |32 bits

sCGROUP | sDGROUP —_ sDGROUP
COMPACT |IN CODE |sCODE sDATA dynamic | MEMORY | sCODE 32 bits

sCGROUP [sDGROUP _ sCGROUP

LARGE IN DATA | mCODE mDATA dynamic | MEMORY | mDATA 32 bits

LARGE IN CODE | mCODE mDATA dynamic | MEMORY | mCODE 32 bits

NOTES:

sCGROUP denotes a group name composed of the subsystem name and _CGROUP
sDGROUP denotes a group name composed of the subsystem name and _DGROUP
sCODE denotes a segment name composed of the subsystem name and _CODE
sDATA denotes a segment name composed of the subsystem name and _DATA
mCODE denotes a segment name composed of the module name and _CODE
mDATA denotes a segment name composed of the module name and _DATA

J3

Linking to Modules Written in Other Languages Pascal-86 User’s Guide

compiling with the CODE control a Pascal-86 module that contains a reference to an
external procedure or function.

J.4.1 Stack Usage

The arguments are placed on the 8086 stack or the 8087 register stack in left-to-right
order. Since the stack grows from higher locations to lower locations, the first
argument occupies the highest position on the stack.

In a list of arguments for value parameters, the leftmost seven real argument values
(if any) are passed on the 8087 register stack, with each argument value occupying
one 80-bit register. If there are more than seven real argument values, the rest (after
the leftmost seven) are passed on the 8086 stack.

Three 8086 stack words are required to hold arguments for functional and procedural
parameters. The first two words hold a four-byte address of the code, and the third
word holds a two-byte static link to the environment of the code.

NOTE

In PL/M-86, arguments for procedural parameters have no static link to the
environment of the code, only a four-byte address of the code. There are two
restrictions on the use of procedural or functional arguments passed between
Pascal-86 and PL/M-86 subprograms:

1. The PL/M-86 subprogram must declare a dummy WORD parameter
immediately after the procedural or functional parameter, in order to
accommodate the stack space occupied by the static link to the environ-
ment of the code.

2. You can only pass outermost procedures and functions (those not nested
within other procedures .or functions) between PL/M-86 and Pascal-86
subprograms.

When an assembly language program calls a Pascal-86 procedure or function, the
assembly language program must first push the arguments onto the stack. For
example, suppose an assembly language program is calling the Pascal-86 procedure
PROCI, which is declared in the PUBLIC section of the Pascal-86 module as follows:

PR.UCEDURE proct1C(PARM1,PARM2,PARM3:INTEGER;
REALPARM1,REALPARM2:REAL);

The assembly language program must push the argument for PARMI first, the
argument for PARM2 second, and the argument for PARM3 third, onto the 8086
stack, and push the arguments for REALPARMI and REALPARM2 onto the 8087
register stack since they are REAL parameters. (The seven leftmost real arguments
in an argument list are passed on the 8087 register stack.)

When a Pascal-86 program calls an assembly language subprogram, the program
must use a reference to the name of the assembly language subprogram, and supply
an argument list in a left-to-right order that corresponds to the first-to-last order of
parameters expected by the assembly language subprogram.

Figure J-1 shows the state of the 8086 and 8087 stacks after a call is made to the
Pascal-86 procedure PROCI1. The stack layouts would be the same if a Pascal-86
procedure called an assembly language subprogram which expected the parameters
PARMI1, PARM2, REALPARMI1, PARM3, and REALPARM2 in that order.

Pascal-86 User’s Guide

8086 STACK

(The + symbol d abyteb dary; each stack slot holds one word.)
BITS 15 + 0
-« STACK MARKER (CONTENTS OF REGISTER BP)
HIGH ADDRESSES PARM1
PARM2 EACH ARGUMENT OCCUPIES AT LEAST ONE WORD
PARM3
RETURN RETURN SEGMENTADDRESS AND OFFSET OCCUPIES
TWO WORDS
LOW ADDRESSES ADDRESS

- STACK POINTER (CONTENTS OF REGISTER SP)

8087 REGISTER STACK

(Each of the eight regi s in the 8087 register stack is 80 bits wide.)

BITS 79 0

<& ST(STFIELD IN THE 8087 STATUS WORD)
REALPARM2

REALPARM1

see

Figure J-1. 8086 and 8087 Stack Layouts When Subprogram
Is Activated 121539-39

Each 8086 stack slot holds one word. Single-byte arguments are pushed onto the
8086 stack as words. Single-byte arguments are not sign-extended when pushed onto
the 8086 stack (the high-order byte is undefined). Arguments for functional and
procedural parameters occupy three 8086 stack words: the first two for the four-byte
address of the code, and the third for a two-byte static link to the environment of the
code.

Each REAL argument occupies one 8087 stack register. There are only eight regis-
ters in the 8087 stack; therefore, if more than-seven REAL arguments are passed in
one call, the leftmost (first) seven are passed on the 8087 stack, and the rest are
passed on the 8086 stack. :

For other arguments to value parameters, space on the 8086 stack is allocated
according to their type. For example, records, arrays, and sets will usually require
more than two bytes; see Appendix H for run-time data representations. Arguments
may take up to 65535 bytes; consequently, any data structure can be passed by value
on the stack.

A function (or PL/M-86 typed procedure) that returns a simple value returns the
value in a register as described in the next section. A real value is returned on the
8087 register stack; the real value occupies the top 8087 stack register.

A Pascal-86 program that calls an assembly language subprogram expects the stack
to look the same after the subprogram returns as it looked before the subprogram
was called; that is, before arguments were pushed onto the stack. A called assembly
language subprogram can restore the stack to its former condition by using the RET
n instruction, where # is the number of bytes occupied by the arguments passed to it.

Linking to Modules Written in Other Languages

J-5

Linking to Modules Written in Other Languages Pascal-86 User’s Guide

An assembly language program can expect the stack, upon return from a Pascal-86
subprogram, to no longer contain the arguments it pushed, because the Pascal-86
subprogram’s object code adjusts the Stack Pointer (contents of the SP register).

Figure J-2 shows the 8086 stack layout during the execution of a called subprogram.

J.4.2 Register Usage

When an external subprogram is called, the register contents are as shown in
table J-2.

In addition, the 8087 register stack contains the first seven REAL arguments passed
by the calling program. The 8087 status word is unknown and need not be saved, and
the 8087 mode word must be saved on entry and restored before exit, if it is changed
in the called subprogram.

If an assembly language subprogram expects to be called by a Pascal-86 program,
and the subprogram alters the segment registers DS or SS, the subprogram must save
the contents of these registers upon entry and restore them prior to returning to the
Pascal-86 program.

8086 STACK
BITS 15 + 0
HIGHER ADDRESSES :
¢
1ST ARGUMENT i

LAST ARGUMENT

SEGMENT (RETURN
OFFSET ADDRESS)

OLD DATA SEGMENT IF REG. DS WAS CHANGED

|
|
OLD STACK MARKER | | —

< CURRENT STACK MARKER (CONTENTS OF
LOCAL DISPLAY REGISTER BP)
} IF USED BY SUBPROGRAM
NEW STACK MARKER
LOCAL VARIABLES
TEMPORARY STORAGE|
. -« CURRENT STACK POINTER (CONTENTS OF

. | REGISTER SP)

Figure J-2. 8086 Stack Layout during Subprogram Execution 121539-40

Pascal-86 User’s Guide Linking to Modules Written in Other Languages

Table J-2. 8086 Register Contents When Calling an External Subprogram

Register Contents
AX Unknown; need not be saved.
BX Unknown; need not be saved.
CX Unknown; need not be saved.
DX Unknown; need not be saved.
BP Calling program’s stack marker.
SP Top of stack pointer.
Si Unknown; need not be saved.
DI Unknown; need not be saved.
DS Calling program’s data segment (static link).
CSs Called program’s code segment.
SS Calling program’s stack segment.
ES Unknown, need not be saved.

Pascal-86 uses the BP register to address the stack. A called assembly language
subprogram must save the contents of the BP register upon entry, and restore its
contents before returning control to the Pascal-86 program, if the called subprogram
uses the BP register. Before returning, the called subprogram must also adjust the
SP register to remove all parameters from the 8086 stack.

The registers AX, BX, CX, DX, SI, DI, and ES do not need to be preserved. A called
assembly language subprogram can freely use these registers. If the called subpro-
gram returns values, they are returned in the registers described in the next section.

An assembly language program calling a Pascal-86 subprogram cannot expect the
contents of the 8086 general-purpose registers, except BP and SP, to be preserved. If
they are needed, they must be saved prior to calling the Pascal-86 subprogram.

Table J-3 summarizes the use of registers.

Table J-3. Summary of 8086 Register Usage

Register Must Preserve Usage

AX no Return BYTE (AL), WORD, and
INTEGER values.

BX no Return POINTER offset.

CX no —

DX no —_

SP yes* Stack pointer.

BP yes Stack marker.

Sl no —

DI no —

FLAGS no —

CSs no Called subprogram’s code segment.

DS yes Caller's data segment.

SS yes Caller’s stack segment.

ES no Return POINTER segment address.

*SP must be adjusted so that all arguments are removed from the stack upon return.

Linking to Modules Written in Other Languages Pascal-86 User’s Guide

J.4.3 Returned Values

Pascal-86 functions, PL/M-86 typed procedures, and other called subprograms that
return a value to the calling program use the registers to hold simple data types.
REAL values are returned on the 8087 register stack.

Table J-4 shows the registers used to return values.

Table J-4. Registers Used to Return Simple Values

Register PL/M-86 Type Fortran-86 Type Pascal-86 Type
8086:
AL BYTE INTEGER*1 CHAR, BOOLEAN, unsigned
LOGICAL" subrange, or enumeration
stored in 8 bits.
AX INTEGER, INTEGER*2 INTEGER, WORD, subrange, or
WORD, or LOGICAL*2 enumeration stored in 16 bits.
SELECTOR
DX:AX DWORD INTEGER*4 LONGINT
LOGICAL*4
ES(segment) POINTER (all Pointer (all models except
BX(offset) models except SMALL(—CONST IN DATA—))
SMALL RAM)
BX(offset only) POINTER Pointer (SMALL (—CONST IN
{SMALL RAM) DATA—) model)
8087:
ST REAL REAL REAL, LONGREAL,
TEMPREAL

J.4.4 NEAR and FAR Procedures

To call a Pascal-86 subprogram from assembly language, your ASM86 procedure
must declare the Pascal procedure to be either NEAR or FAR. The choice depends
on the segmentation model used to compile the module containing the Pascal-86
subprogram, and whether or not the subprogram is exported from its subsystem.

To call an assembly language subprogram from Pascal-86, you must provide a Pascal
definition of the external procedure in one of the PUBLIC sections in the interface
specification.

Use the following chart to determine the appropriate attribute for the ASM&6

subprogram.
Model Exported Domestic
SMALL FAR NEAR
COMPACT FAR NEAR
LARGE FAR FAR

J.4.5 Example: Pascal-86 Calling an Assembly Language
Subprogram

The following simple example shows a partial Pascal-86 program calling an ASM86
subprogram SUBPRG, as shown in figure J-3. This example assumes that the default
segmentation model LARGE is used. For examples using the other models, see the
ASM86 Macro Assembler Operating Instructions.

Pascal-86 User’s Guide Linking to Modules Written in Other Languages

system—id 8086/87/88/186 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE EXMPL
OBJECT MODULE PLACED IN EXMPL.OBJ
ASSEMBLER INVOKED BY: ASM86.86 EXMPL.ASM

LoC 08J LINE SOURCE
1 NAME EXMPL
2 ;
3 ; This program demonstrates procedure linkage to PASCAL-86,
4 ; focusing on the parameter passing conventions.
5 ;
6 ; This procedure takes five arguments for five parameters:
7 7 a byte, a words, an integer, an integer variable and
8 ; an integer function.
9 ; They are pushed onto the stack in that order.
10 ; They must be popped at exit (with the RET instruction).
11 ;
12 ;7 The prologue code saves B8P, and points B8P to the
13 ; structure defined below. After the prologue executes,
14 ; the stack looks like this:
15 ’
16 ; high memory
17 ;7 mmmmmee—ceme—e--
18 ; | PARM1 }] ====> argument A
19 e L
20 ; | PARM2 | ===<> argument 8
21 ;. mmemmmmemmeme———
22 ; | PARM3 | ===-> argument C
23 ;. mmememmeme—me—e-
24 ; | (segment) 1}
25 ;5 mem==- PARML ====~~ }====> argument D
26 ; | (offset) |}
27 ;. mmmmemem——ee-—eee
23 ; | {(segment) 1}
29 ;. mmmm- PARMS ==w=== b
30 ; | (offset) [}===-> argument FUNC
31 ;s mm—— PARMS====== >
32 ; }(environment) |}
33 ; mmeeeessesewe—--
34 ; | (segment) i
S ; -Return Address-
36 H | (offset) |
37 ;. mm=—— e m—————
38 ; | old DS |
39 ;. mmmemssseces———-e } saved 1in prologue
40 ; | old BP |
41 ;. mmmmsmssmm——e———— <=-=--SP, BP point to here
42 ; low memory
43 ;
44 s/ The reguired STRUCTURE definition is:
45 ;
———- 46 DSA STRUC
47
00a0 48 OLD_B8P OW . ; Prologue code saves B8P here
0002 49 OLD_DS OW ? ; Prologue code saves DS here
0004 50 RETURN DD ? ; Double word for FAR procedures
0008 51 ENVIRON OW ? ; PARM5 static link to environment
0204 52 CODEPTR DD ? ; Pointer to code of PARM5 function
Q00¢€ S3 PARMS oD ? ; Pointer to variable
3012 54 PARM3 oW ? ; A PASCAL-86 integer value
0014 55 PARM?2 W . ; A PASCAL=-86 enumeration in 16 bits
0316 56 PARM1 D8 ? ; but is stored on stack in one word.,
0017 57 XXX o8 ? ; with the high order byte undefined
58
—-———- 59 DSA ENDS
60
61 s Inside the subprogram, value arguments are accessed simply by
62 ; using a STRUCTURE reference, with BP as the base, and the
63 ; appropriate field name as the qualifier, example: [B3PJ.PARM3.
64 ;
65 ; NOTE: The STRUCTURE fields for the arguments are declared in
66 ; reverse order in which they were pushed, due to the fact
67 ; the 8086 stack grows towards low memory.
68 ;
69 7 The saved value of BP and the return address must be declared
70 s in the structure, since these two items are pushed between the
71 ; arguments and the spot pointed to by BP.
72 ;

Figure J-3. An ASM86 Subprogram Called from Pascal-86

Linking to Modules Written in Other Languages Pascal-86 User’s Guide

—-——- 73 SUBPRG_DATA SEGMENT ; not combinable
0000 77 74 A_LOCAL D3 ? s local variables go nere
-——- 75 SUBPRG_DATA ENDS
76
———- 77 SUBPRG_LOCDE SEGMENT ; not combinable
78 ;
79 ; SUBPRG does nothing but call the function PARMS5 and access
32 ; the first four arguments. The prologue code saves BP, and
21 ; then copies SP to 8P, allowing the value arguments to be
32 ; picked up conveniently with the BP register.
83 ;
34 PUBLIC SUBPRG
0020 85 SUBPRG PROC FAR
2000 1¢& 36 PUSH CS ; prologue codes preserve DS
33021 B8~=-- R 87 MOV AX,SUBPRG_DATA ; address local data segment
83 ASSUME CS:SUBPRG_CODE, DS:SU3BPRG_DATA
0004 55 89 PUSH 8P ; preserve B8P for PASCAL=-86
0005 8BEC 90 MOV 3pP,SP
91
92 ; call the function argument PARMS
3307 55 93 PUSH 3P ; save BP across call
0008 83FS5 P4 MOV SI,B8P
000A 8B6EDS 35 MOV BP,{BPJ.ENVIRON ; establish static link
200D 36FF5C0A 96 CALL $S:[SIJ.CODEPTR ; indirect call to parms
0011 SO 37 popP BP
98
0012 8A4ETS 99 MOV CL,(3PI.PARMT ; PARMT1 is at BP+22
J015 8BS614 133 MOV DX,[BPJ.PARM2 ; PARM2 is at BP+20
0018 884612 11 MOV AX,(BPJ.PARM3 ; PARM3 is at BP+18
0018 C45EQE 102 LES BX,[(BPJ.PARMS ; ptr to PARM4 is at 8P+14
0C1E 268807 103 MOV AX,ES:IBX] ; access PARMG
104
0021 50D 105 POP 3p
0022 1F 106 pOP 0s
J023 CA1000 107 RET 146 ; return and POP 16 parameter bytes
108
109 SUBPRG ENDP
——— 110 SUBPRG_CODE ENDS
1T END

ASSEMBLY COMPLETE, NO ERRORS FOUND

Figure J-3. An ASM86 Subprogram Called from Pascal-86 (Cont’d.)

The interface specification for the Pascal-86 program must contain a reference to the
external procedure SUBPRG:

PUBLIC SEPARATEMOD;

PROCEDURE SUBPRG(bval:CHAR;
wval:objects;
ival : INTEGER

VAR ivar:INTEGER;
FUNCTION ff: INTEGER);

The value parameters for SUBPRG are BVAL (one byte), WVAL (one word) of type
“objects” (“‘objects” is defined elsewhere as an enumeration of greater than 256 but
less than 32768 elements), and IVAL of type INTEGER. In addition, SUBPRG has
a variable parameter IVAR of type INTEGER, and a functional parameter FF of
type INTEGER. Assume that the Pascal-86 program assigns values to variables, and
uses those variables and a function reference as arguments (A, B, C, D, and FUNC)
in the statement that calls SUBPRG:

SUBPRG(CA,B,C,D,FUNC); (* Call SUBPRG with A,B,C,D,FUNC *)

The arguments A, B, and C are passed using call by value to satisfy the parameters
BVAL, WVAL, and IVAL. The arguments D and FUNC are passed using call by
reference to satisfy the parameters IVAR and FF. The assembly language subpro-
gram SUBPRG picks up the values of A, B, and C, the reference to D, and the address
and static link to FUNC, by using an ASM86 structure to describe the stack, as
shown in figure J-3.

Pascal-86 User’s Guide Linking to Modules Written in Other Languages

J.5 Compatible Data Types
Table J-5 presents the compatible PL/M-86, ASM86, and FORTRAN-86 data types

for each Pascal-86 type. For run-time data representations of Pascal-86 types, see
Appendix H.

Table J-5. Data Types Compatible with Pascal-86 Data Types

Pascal-86 Data Type PL/M-86 ASM86 Fortran-86
CHAR, enumeration, unsigned | BYTE DB none
subrange, or set stored in 8
bits
BOOLEAN BYTE DB LOGICAL*1
INTEGER or subrange stored | INTEGER DW INTEGER*2
in 16 bits
WORD, enumeration, or set| WORD DW none
stored in 16 bits, or subrange
0..64K-1
LONGINT none none INTEGER*4
Pointer (all models except POINTER (all models except |DD none
SMALL(—CONST IN SMALL(—CONST IN
DATA—)) DATA—))
Pointer (SMALL(—CONST IN [POINTER(SMALL (—CONST |DW none
DATA—) model) IN DATA—) model) or WORD
REAL REAL DD REAL
LONGREAL none DQ REAL*8 or
DOUBLE PRECISION
TEMPREAL none DT TEMPREAL
ARRAY(m..n) of same base| ARRAY none ARRAY**
type
RECORD of fields of match-{ STRUCTURE STRUC none
ing type
PROCEDURE (argument| *PROCEDURE (argument|PROC (no|SUBROUTINE
definitions must match) definitions must match) argument [(argument definitions
definitions) | must match)
FUNCTION (argument defini-| *PROCEDURE (argument|none FUNCTION (argument
tions and return types must|definitions and return types definitions and return
match) must match) types must match)

* See note, J.4.1 (Stack Usage).
** Note that multi-dimensional arrays in Fortran-86 have their dimensions reversed reiative to Pascal-

86 arrays.

J.6 Coding the Main Module in Other Languages

Pascal-86 performs I/0 and floating-point initialization right in the main module.
Consequently, when combining PASCAL modules with modules written in other
languages, it is expected that the main module is written in Pascal. However, you
may want to code the main module in another language. If ycu code it in PL/M-86
or ASM86, you must follow all five steps given below. If you want to code the main
module in FORTRAN-86, you need only perform steps 2, 3, and 4.

1. [Initialize the Universal Transput System (UTS). To do this, the main module
must call two parameterless external procedures, INITFP (or INIT87) and
TQ_001. These perform floating-point and 1/O initialization, respectively. (Note
that INITFP unmasks the invalid exception, while INIT87 masks it.)

Linking to Modules Written in Other Languages

Allocate file variables for the predefined text files INPUT and OUTPUT, if
necessary. All other files to be used in the Pascal portions of your system should
be declared in the PUBLIC section of one of the Pascal modules. To allocate file
variables for the INPUT and OUTPUT files, use the names PQ_INPUT and
PQ_OUTPUT, respectively. Include declarations of these file variables in the
PUBLIC section of one of your Pascal modules, as follows:

PUBLIC PASCMOD;
VAR PQ_INPUT, PQ_QUTPUT: TEXT;

Initialize global Pascal files. To do this, the main module must set the first six
bytes of each file variable to zero.

Call a Pascal program that resets (opens) PQ_INPUT and PQ_OUTPUT to
specific files and devices. To open these files, use the Pascal-86 built-in routines
RESET and REWRITE. (RESET and REWRITE must be called from a routine
coded in Pascal, since they do not follow the standard calling sequence).

RESET (PA_INPUT, ‘:CI:’);
REWRITE (PQ.OUTPUT, *:C0:');

After the Pascal program has ended, call TQ_999, another parameterless exter-
nal procedure, which performs 1/0 close-down.

Figure J-4 is an example of a main module coded in PL/M-86; Figure J-5 is a sample
Pascal-86 subroutine called from the main module. Note that LINK86 generates
three “type mismatch’ warnings that may be ignored.

$LARGE
main:do;

declare realfile(6) byte external
declare (pq-input, pg-output)(6)
declare i integer;

declare y real;

writeit: procedure(x) external;
declare x real;

end writeit;

H
byte external;

initfp: procedure external;
end initfp;

tq-001: procedure external;
end tq-001;

1q-999: procedure external;
end t1q-999;

do;
do i = 0 to 53
realfile(i) = 0;
pPg-inputCi) = 0;
pq-output(i) = 0;
end;
call initfp;
call tq-001;
= 10.5;
call writeitCy);
call tq.999;
end;

end main;

Figure J-4. PL/M-86 Main Module Calling Pascal-86 Subprogram

Pascal-86 User’s Guide

Pascal-86 User’s Guide Linking to Modules Written in Other Languages

module ProcWithlIO;

public ProcWithlO;
var PQ_INPUT, PAQ_OUTPUT: text;
RealFile: text;
procedure Writeit(x:real);
private ProcWithIO;

procedure Writeit(x:real)d;

begin
reset(PQ_INPUT, ‘:CIl:’);
rewrite(PQ_OUTPUT, “:C0:');
rewrite(RealFile, ‘echo’);
writeln(*PARAMETER PASSED IS ', x:8:4);
write(*INPUT ANOTHER REAL NUMBER’);
readln(x);
writeln(*THE NUMBER YOU ENTERED I1S’, x:8:4);
writeln(RealFile, x:8:4)

end;

Figure J-5. Pascal-86 Subprogram Called from PL/M-86 Main Module

APPENDIX K
RUN-TIME INTERFACE

This appendix describes the run-time system that supports Pascal-86 programs, and
shows how to interface an operating environment to the run-time system in order to
execute Pascal-86 programs. Depending on the operating system you are using, you
may be able to disregard this information. See your specific host-system appendix for
details.

The first section describes run-time interrupt handling and provides background
information. You can use this information to supply your own interrupt handlers.
(See your specific host-system appendix for information on real arithmetic interrupt
handling.)

The second section describes Pascal-86 run-time storage management. This includes
a discussion of the heap mechanism for SMALL programs (see 10.3.18). You can
use this information to supply your own memory managers.

The third section describes the logical record interface, which is a set of procedure
names and calling conventions that provide an interface between the Pascal-86 run-
time support software and an operating system. You can provide your own proce-
dures using these names and calling conventions in order to hook your own operating
system or operating environment to this interface, and thereby use the Pascal-86 run-
time software along with Pascal-86 programs in your own operating environment.

A more detailed discussion of the run-time support system can be found in the iAPX
86,88 Run-Time Support Manual.

K.1 Run-Time Interrupt Processing

You need to read this section only if you intend to provide your own interrupt handlers
and/or override the default handlers.

There are two interrupt pins on the 8086 processor: the “non-maskable interrupt™ pin
(NMI) and the “maskable interrupt” pin (INTR). The “non-maskable interrupt”
cannot be ignored by the processor, whereas the “‘maskable interrupt” can be enabled
or disabled.

Each “maskable interrupt” has an interrupt number that designates the type of inter-
rupt. For example, interrupt number 4 tells the processor that an interrupt of type 4
(integer overflow) is occurring, and the processor looks for the procedure associated
with interrupt number 4 in order to execute the procedure to handle the interrupt.

Interrupt numbers range from O to 255. Interrupt number 0 is reserved for integer
divide-by-zero errors. Interrupt numbers | through 3 are reserved for single stepping,
“non-maskable interrupts,” and the INT instruction, respectively. Interrupt number
4 is reserved for integer overflow, and integer number 5 is reserved for compiler range
checks. The run-time system uses interrupts 16 through 31. Interrupt number 16 is
reserved for real arithmetic exceptions, and interrupt number 17 is reserved for stack
overflow and case out-of-range checks.

You can use other interrupt numbers for your own procedures. If you intend to override
the default procedures provided for the above interrupt numbers, you must use the
above interrupt numbers for those procedures.

Run-Time Interface Pascal-86 User’s Guide

An interrupt occurs when the CPU receives a signal on its “maskable interrupt” pin
from some peripheral device. The CPU responds, however, only if interrupts are
enabled. The “main program prologue” (code inserted by the compiler at the begin-
ning of the main program) does not alter the state of interrupts. (This differs from
the PL/M-86 Compiler.) In other words, when you execute a Pascal program, the
interrupts are in the same state as they were before execution.

If interrupts are enabled, the following actions take place:

1. The CPU issues an “acknowledge interrupt” signal and waits for the interrupting
device to send an interrupt number.

2. The CPU flag registers are placed on the stack (occupying two bytes of stack
storage).

3. Interrupts are disabled by clearing the IF flag.
4. Single stepping is disabled by clearing the TF flag.

5. The CPU activates the interrupt procedure corresponding to the interrupt number
sent by the interrupting device.

You can specify Pascal-86 procedures as interrupt procedures by using the INTER-
RUPT control (10.3.11). Using the INTERRUPT control or the SETINTERRUPT
built-in procedure (8.9.1), you can assign an interrupt number to each interrupt
procedure. These interrupt numbers form an interrupt vector, which is an absolutely-
located array of entries beginning at location 0. Thus, the nth entry is at location 4
times n, and contains the address of the interrupt procedure associated with interrupt
number z. Each entry is a four-byte value containing a segment address and an offset
(i.e., a long pointer).

The CPU uses the interrupt vector entry to make a long indirect call to activate the
appropriate procedure. At this point, the current code segment address (CS register
contents) and instruction offset (IP register contents) are saved on the stack.

An interrupt procedure can also be activated by a procedure statement. If you intend
to use a procedure statement in a module to activate an external interrupt procedure
in another module, you must use the INTERRUPT control in the PUBLIC decla-
rations of the external interrupt procedure (in the interface specifications of both
modules); otherwise, an error will occur during the linking process (LINK86). A
procedure statement will activate the interrupt procedure as if an interrupt occurred,
and the interrupt status will be altered as if an interrupt occurred.

If an interrupt procedure terminates normally (other than by a GOTO statement),
the interrupt mechanism and registers are reset to the condition that existed prior to
the activation of the procedure.

Figure K-1 shows the stack layout at the point where the procedure is activated.

higher
locations Flag reg. contents } 2byles
[- 4
xw Present regardless of
3 = return segment address I program size
=2
©wo return offset
© -¢—e Stack pointer
lower
locations

Figure K-1. 8086 Stack Layout When Interrupt Procedure
Gains Control 121539-41

Pascal-86 User’s Guide

Run-Time Interface

K.1.1 Interrupt Procedure Preface and Epilogue

At the beginning of each interrupt procedure, before the usual procedure prologue
inserted by the compiler, the compiler inserts an interrupt procedure preface that
performs the following actions:

1.

e A o o

Push the ES register contents onto the stack.
Push the DS register contents onto the stack.

Push the AX register contents onto the stack.
Push the CX register contents onto the stack.
Push the DX register contents onto the stack.
Push the BX register contents onto the stack.

Push the SI register contents onto the stack.
Push the DI register contents onto the stack.

Load the DS register with a new data segment address taken from the current
code segment (i.e., the segment containing the interrupt procedure).

Figure K-2 shows the stack layout at the point where the procedure prologue starts.

Figure K-3 shows the stack layout after the procedure prologue is executed and the
code compiled from the interrupt procedure body starts executing.

When the interrupt procedure body finishes, the interrupt procedure epilogue contin-
ues with the following steps:

10.
11.
12.
13.
14.

Pop the stack into the DI register.
Pop the stack into the SI register.
Pop the stack into the BX register.
Pop the stack into the DX register.
Pop the stack into the CX register.

higher Flag reg. contents }

return segment address l

return offset

ES reg. contents
DS reg. contents
AX reg. contents
CXreg. contents
DX reg. contents
BX reg. contents
Slreg. contents

D! reg. contents

STACK COUNTER

lower
locations

2 bytes

Present regardless of
program size

CPU status information

-a—e Stack pointer

Figure K-2. 8086 Stack Layout after Interrupt Procedure Preface and

before Procedure Prologue

121539-42

Run-Time Interface

Pascal-86 User’s Guide

FLAG REG.CONTENTS

RETURN SEGMENT ADDRESS

RETURN OFFSET

OLD ES REG. CONTENTS

OLD DS REG. CONTENTS

OLD AX REG. CONTENTS

OLD CX REG. CONTENTS

OLD DX REG. CONTENTS

OLD BXREG. CONTENTS

OLD SI REG. CONTENTS

OLD DI REG. CONTENTS

OLD STACK MARKER (BP REG.)

DISPLAY (1)

LOCAL VARIABLES

-
.
.

THIS SPACE MAY BE USED
DURING PROCEDURE EXECUTION
-

.

.

2BYTES

-« SP AT ENTRY

SPWILL CHANGE DURING
PROCEDURE EXECUT!ON

-«BP
CURRENT BP VALUE

SP AFTER INTERRUPT

~* PROCEDURE PROLOGUE

Figure K-3. 8086 Stack Layout during Execution of

Interrupt Procedure Body

121539-43

15.
16.
17.
18.

Pop the stack into the AX register.
Pop the stack into the DS register.
Pop the stack into the ES register.

Execute an IRET instruction to return from the interrupt procedure. This restores
the IP, CS, and flag register contents from the stack.

At this point the stack is restored to the state it was in before the interrupt occurred,
and processing continues normally.

The INTERRUPT compiler control gives you the opportunity to associate an inter-
rupt number with an interrupt procedure during compile time. You can also declare
procedures as interrupt procedures without associating them to interrupt numbers,

and create the interrupt vector at a later time, to be linked to the program.

Similarly, you could have a library of interrupt procedures that are not yet associated
with an interrupt vector. Any program could then have any of these procedures linked
in, with a separately created interrupt vector.

NOTE

An interrupt procedure that uses any of the built-in functions EXP, LN,
SIN, COS, TAN, ARCSIN, ARCCOS, ARCTAN, TRUNC, ROUND,
LTRUNC, or LROUND (functions in the CEL87.LIB run-time library)
must allocate 50 bytes of 8086 stack space (200 bytes if the 8087 emulator
is used) for each level of recursion. The 8087 chip or emulator cannot be
accessed from both a Pascal interrupt procedure and a concurrent Pascal
program unless the interrupt procedure saves the status of the 8087.

Pascal-86 User’s Guide Run-Time Interface

K.2 Pascal Run-Time Storage Management

Pascal run-time storage management, required by the predefined procedures NEW
and DISPOSE, is provided by two memory management systems. The Pascal compi-
ler automatically determines which system to use, depending on what model of
segmentation the program is compiled under. Programs compiled with the SMALL
control (with —CONST IN DATA-—) use 16-bit pointers and require that the storage
allocated be in DGROUP. All other models use 32- bit pointers and have no restric-
tion on what segment or group they point to. Both systems may be used in the same
program if it contains both SMALL and non-SMALL subsystems.

K.2.1 Memory Managers
The SMALL Model

The SMALL memory manager allocates storage from an area called the heap (by
default, the entire MEMORY segment in DGROUP). If your program uses the NEW
procedure, the memory manager will create this segment with a size of 4096 bytes.
You may adjust the size of MEMORY at link time by using the LINK86 controls
MEMPOOL or SEGSIZE. For example, using SEGSIZE(MEMORY(+0,
OFFFFH)), the MEMORY segment will expand to fill DGROUP, whose maximum
size is 64K. You can reduce the size of MEMORY below 4096 bytes, but LINK86
will generate a warning.

The memory manager determines the size of MEMORY from the size of DGROUP,
which it gets by calling the UDI primitive DQGETSIZE. This is possible because
the relocatable loader uses DQALLOCATE to get the storage for segments and
groups. However, to use the SMALL memory manager with an absolute program
(one located with LOCS86), you must indicate the size of the heap to the memory
manager. If you fail to do so, an exception occurs.

You may override the default location and/or the size of the SMALL heap by
providing your own version of the Logical Record System routine TQGETSMALL-
HEAP. The memory manager calls this routine the first time an allocation request is
made to determine the location and size of the SMALL heap.

The TQGETSMALLHEAP primitive is called as a procedure and does not return a
value, hence it cannot be a typed procedure. It receives three VAR WORD arguments
that are assigned the following values: the offset in DGROUP of the start of the
heap, the size of the heap (in bytes), and an exception code if it occurs. (The run-
time system does not require non-zero exception codes.)

The following is a sample PL/M-86 procedure heading for TQGETSMALLHEAP:

TQGETSMALLHEAP: PROCEDURECOFFSET_PTR,
SIZE_PTR,
EXCEPTION_PTR) PUBLIC;
DECLARE COFFSET_POINTER POINTER,
SIZE_PTR POINTER,
EXCEPTION_PTR POINTER;
END TQGETSMALLHEAP;

The heap returned by TQGETSMALLHEAP must be entirely within DGROUP,
and must be at least 16 bytes long.

Refer to the Run-Time Support Manual for iAPX 86,88 Applications for more
information on the SMALL heap.

Run-Time Interface Pascal-86 User’s Guide

The LARGE Model

The LARGE memory manager is used for all subsystems that are not SMALL with
(—CONST IN DATA—). This memory manager gets storage from the operating
system by using the LRS routine TQALLOCATE. Memory is requested from the
operating system in 1024-byte “pages.” All requests for 251 bytes or less are satisfied
from these pages. If no page contains a large enough block of free storage, another
page is requested from the operating system. When all of the storage in a page has
been released by the Pascal program, the page is returned to the operating system
through the LRS procedure TQFREE. Requests for more than 251 bytes are passed
directly to TQALLOCATE.

K.2.2 Reentrancy

The LARGE model is designed so that it can be used in a multi-tasking environment.
All of the non-reentrant code in the memory manager is in the run-time library
P86RNO.LIB. Each task must contain its own copy of these library routines; simply
link P86RNO.LIB to each task before they are linked together. If the individual tasks
are not linked with the PURGE option before being linked together, LINK86 will
generate warnings about duplicate publics. Refer to the Run-Time Support Manual
for iAPX 86,88 Applications, Order Number 121776, to determine how each task
interacts with its heap. The routines in PSORN1.LIB, P86RN2.LIB, and PS6RN3.LIB
are reentrant and may be shared among concurrently executing tasks.

The SMALL memory manager is not reentrant, since all SMALL subsystems in a
job share the same heap in the MEMORY segment of DGROUP. If you want more
than one task to use the SMALL memory manager, you can supply your own version
of TQGETSMALLHEAP that returns a different heap area to each task. You could
also provide a synchronized Pascal program, ensuring that no two SMALL model
tasks are executing a call to a NEW or DISPOSE procedure at the same time.

K.2.3 Replacing the Memory Manager

For some applications, such as interfacing to certain operating system routines, it is
necessary for a pointer to have an offset part of 0. This type of pointer may be trans-
lated to a two-byte SELECTOR (as in PL/M and RMX-86). Note that routines
using pointers this way must be written in assembly language or PL /M, since Pascal.
does not support tokens. You can also generate pointers with an offset of zero using
the NEW procedure. Replace the normal memory manager with routines that pass
all allocation and release requests directly to the UDI routines DQALLOCATE and
DQFREE (or to the LRS routines TQALLOCATE and TQFREE). The Pascal
compiler generates code to call the following routines for the LARGE memory

manager:
NEW

Entry point: PQ_310 (FAR)

Parameters: AX —size of area to allocate

Returns: ES:BX —pointer to area allocated
DISPOSE

Entry point: PG_320 (FAR)

Parameters: Stack1:Stack2 —pointer to area to dispose

AX —size of area

Stack2 is the WORD on top of the stack, and Stackl is the second WORD from the
top. The routines you write to replace the normal memory manager need to be linked

K-6

Pascal-86 User’s Guide Run-Time Interface

in before the first Pascal library P86RNO.LIB. This method cannot be used for
SMALL programs, since the allocated storage must be in DGROUP.
K.2.4 Memory Usage Summary

The following values help determine the actual amount of memory that will be used
by the program:

SMALL Memory Manager:

Overhead (per allocation)— 2 bytes (If necessary, another byte is used to make
the length of the allocated storage block

even.)
Global overhead — 6 bytes
Minimum allocation —- 6 bytes (without padding)

LARGE Memory Manager (request < 251 bytes):
Overhead (per allocation) 2 bytes (If necessary, another byte is used to make
the length of the allocated storage block

even.)
Minimum allocation — 6 bytes (without padding)
Size of page requested
from operating system — 1024 bytes
Overhead (per page) — 6 bytes

LARGE Memory Manager (request > 251 bytes):
Allocation requests are made to the operating system.

The run-time system initialization routine (TQ-001) allocates an eighteen-byte data
area for run-time system use.

The Pascal I/O system also dynamically requests storage from the operating system.
When a file is opened, a 48-byte file descriptor is allocated by the LRS procedure
TQFILEDESCRIPTOR. The default TQFILEDESCRIPTOR uses DQALLO-
CATE to allocate this storage. A file is opened when the first RESET or REWRITE
is performed on it (including the implicit RESET and REWRITE performed on the
files INPUT and OUTPUT).

The default LRS also uses DQALLOCATE to allocate a 1054-byte buffer for each
disk file that is opened. This buffer is returned to the operating system when the file
is closed.

The Pascal I/O system also allocates an 86-byte line buffer when a REWRITE is
performed on a file of type TEXT or FILE OF CHAR. This buffer is allocated above
the level of the LRS by using the LRS routine TQALLOCATE; its purpose is to
improve the efficiency of output to a console. The buffer is released using TQFREE
when a RESET is performed on the file or when the file is closed. The I/O system
will not buffer the output to files of type TEXT or FILE OF CHAR if TQALLO-
CATE returns a non-zero exception code. This allows you to write your own LRS
without providing TQALLOCATE, yet still be able to use these files.

K.2.5 Allocate a New Memory Block

The run-time system calls this LRS allocation primitive whenever a Pascal-86 program
uses the NEW procedure for dynamic memory allocation (to obtain memory blocks
from the heap). The run-time system sends two argument values to this primitive: a
WORD containing- the number of contiguous bytes to be allocated, and a POINTER

Run-Time Interface Pascal-86 User’s Guide

to a location where this primitive should return a status WORD containing an excep-
tion condition (if an exception occurs). There are no exception codes required by the
run-time system.

The procedure you supply for this primitive must return the address of the first
segment boundary of the memory block allocated for use by the Pascal-86 program.

The following is a sample PL/M-86 typed procedure heading for the TQALLO-
CATE primitive:

TAALLOCATE: PROCEDURECSIZE,STATUS_PTR) SELECTOR PUBLIC;
DECLARE SIZE WORD;
DECLARE STATUS_PTR POINTER;
DECLARE MEM_SEL SELECTOR;

RETURN MEM_SEL;
END TQALLOCATE;

The argument sent to the SIZE word parameter contains the number of contiguous
bytes of memory that the Pascal-86 program wants to obtain from the heap. The
argument sent to the STATUS_PTR pointer parameter is the location where the
TQALLOCATE procedure should return a status WORD with an exception code if
an exception occurs (an exception code is not required). In addition, the TQALLO-
CATE procedure must return MEM_SEL, a SELECTOR containing the address of
the first segment boundary of the obtained block of memory.

Your TQALLOCATE primitive can allocate memory with a byte granularity of
sixteen, since the run-time system has a memory manager to manage large blocks.

K.2.6 Free a Previously Allocated Memory Block

The run-time system calls this LRS primitive to free the block of memory obtained
by the TQALLOCATE primitive described in the previous section. When a
Pascal-86 program uses the DISPOSE procedure to dispose of the memory obtained
from the heap, the run-time system calls this TQFREE primitive to return the memory
to the heap.

The TQFREE primitive is called as a procedure, and it does not return a value (hence
it cannot be a typed procedure). The primitive receives a SELECTOR argument
containing the address of the first segment boundary of a memory block obtained via
the TQALLOCATE primitive described in the previous section. The primitive also
receives a pointer to a location where the primitive should place a status WORD with
an exception code if an exception occurs (no exception codes are required for the run-
time system).

The following is a sample PL/M-86 procedure heading for the TQFREE primitive:

TQFREE: PROCEDURECMEM_SEL, STATUS_PTR) PUBLIC;
DECLARE MEM_SEL SELECTOR;
DECLARE STATUS_PTR POINTER;

END TQFREE;

Pascal-86 User’s Guide Run-Time Interface

K.3 Logical Record Interface

Intel provides a logical record interface that allows you to hook an operating environ-
ment or application-dependent device drivers to the run-time support system for
Pascal-86.

The diagram in figure K-4 shows typical execution paths for Pascal-86 programs.
The default path uses the interface libraries to the Series I1I operating system. If you
intend to use this path, you do not need the information in this appendix.

Another path shows a deviation at level (2), where you can interface your own logical
record system to the logical record interface. Your logical record system would be a
collection of primitives, file drivers, and/or device drivers, or an interface library to
your own operating system.

You can also use Intel’s logical record system at level (2) and hook your own operat-
ing system to it at level (3), as shown. To hook your own operating system to Intel’s
logical record system and run-time system, you have to supply primitives that have
the same names as the primitives used to interface the Series III operating system
with the Pascal-86 run-time system and logical record system. A list of the names
appears at the end of this appendix.

Real arithmetic support (via the 8087 or emulator) is not depicted in this diagram,
but you must use either the 8087 processor and its library (8087.LIB), the emulator
and its library (E8087, E8087.LIB), or 87NULL.LIB for floating-point programs, as
described in Chapter 12.

(0}

USER'S COMPILED
OBJECT FILE

(1)

RUN-TIME SUPPORT SOFTWARE
LIBRARIES P86RNO.LIB AND
P86RN1.LIB

LOGICAL RECORD INTERFACE

@ [1

RUN-TIME SYSTEM LIBRARIES USER-SUPPLIED SOFTWARE
(LOGICAL RECORD SYSTEM) LIBRARIES FOR USER'S
PBGRN2.LIB AND P86RN3.LIB / LOGICAL RECORD SYSTEM

Q) USER-SUPPLIED
DEVICE DRIVERS
(APPLICATION-
DEPENDENT)
INTERFACE LIBRARY USER’S
LARGE LIB. AND OPERATING
OPERATING SYSTEM SYSTEM

Figure K-4. Execution Paths for Pascal-86 Programs 121539-44

Run-Time Interface Pascal-86 User’s Guide

The Pascal-86 run-time support system at level (1) in figure K-4 considers a file to
be a series of logical records. A logical record contains exactly one object of a non-
text file, or one line of a text file.

A user-defined logical record system that interfaces to the run-time system at level
(2) in figure K-4 must be able to store a logical record in a physical record on a
storage medium (such as a disk), and must be able to delimit such records. The run-
time system uses the logical record interface primitives to call the user-defined logical
record system, which formats logical file records onto physical media either explicitly
through a set of device drivers, or implicitly through a set of file drivers and an
operating system.

The logical record interface consists of a set of calling sequences to primitives; you
substitute your own procedures or functions using the names of these primitives, which
in turn use your logical record system routines. The primitives can be written in
PL/M-86 (conforming to the LARGE model of segmentation), Pascal-86, or ASM&6.
The run-time system requires that some of these primitives return a status word to
indicate a status or exception condition, which directs the functionality of the run-
time system.

If you code your logical record system in Pascal-86, in some cases you will have to
supply your own operating system primitives to provide the run-time support for your
logical record system (since the supplied run-time system relies on the default logical
record system, or your logical record system). If you code them in PL/M-86 or in
ASMS86, you won’t need run-time support for your logical record system; therefore,
we show sample procedure headings in P1L./M-86.

The following descriptions show sample PL/M-86 procedure headings, with param-
eter lists for each procedure you should supply. You use these parameters to pick up
arguments sent to these primitives from the run-time system. In Pascal-86, these
primitives must be functions in order to return a status value; in PL/M-86, they must
be typed procedures.

These parameters are described in terms of PL/M-86 data types. For a table of
Pascal-86 data types and their corresponding PL/M-86 types, see Appendix J of this
manual. Appendix J also describes the universal calling sequence used by Pascal-86
and other iAPX 86,88 family languages, so that modules written in one of these
languages can easily call modules written in another.

The logical record system you supply must handle file input/output, file preconnec-
tion, exception conditions, and memory (heap) allocation. You can, however, use Intel’s
logical record system (default primitives) found in library P§6RN2.LIB, and still
provide your own device drivers by supplying your own TQDEVICE primitive (K.3.2),
as long as you link in your TQDEVICE primitive and device drivers before linking
in the PB6RN2.LIB library (in order to override default external references).

The logical record system you supply must set up two data structures: a file/device
descriptor used by both the run-time system and your logical record system to hold
status information about each file or device (one descriptor for each file or device),
and a file/device driver table defined by your logical record system that provides the
addresses of your file/device driver routines. The PSB6RNO.LIB and P86RN1.LIB
libraries do not perform any buffering. Depending on your execution environment,
you may want to implement buffering in your logical record system to improve execu-
tion speed.

After writing your logical record system primitives, you must follow the linking
conventions described in K.3.7 to link them to your Pascal-86 program modules.

K-10

Pascal-86 User’s Guide Run-Time Interface

K.3.1 Setting Up the File/Device Descriptor

The run-time system calls the TQFILEDESCRIPTOR primitive after a file precon-
nection, or before a call to open a file if there is no file preconnection, to set up a
block of memory (called a file/device descriptor) used to store attributes of a file or
device. This block of memory is reserved for the file or device attributes until the file
is closed. After the file is closed, the file/device descriptor block is used again by the
run-time system for other files. Replace this primitive only if you are not using a
UDI operating system.

The file/device descriptor must be 48 bytes, and must start on a segment boundary
(i.e., it must begin at a location that is a multiple of 16 bytes). The initial (least
significant) 16 bytes of the file descriptor are for your file attributes—the run-time
system does not disturb this area if you are also providing your own device drivers
(discussed in the next section). The run-time system uses the last (most significant)
32 bytes to contain file management information.

The run-time system expects the TQFILEDESCRIPTOR primitive to have one
parameter and to return one value, and it must be declared to be public. The
TQFILEDESCRIPTOR primitive returns a status WORD value that holds an
exception condition code if an exception occurs, but none are required by the run-
time system (the exception codes required for the other primitives are listed in K.3.6).
The run-time system calls TQFILEDESCRIPTOR in an assignment statement:

STATUS=TQFILEDESCRIPTORCFDSEGPTR)

The following is a sample PL/M-86 typed procedure heading for the TQFILEDES-
CRIPTOR primitive:

TQFILEDESCRIPTOR: PROCEDURECFD_SEG_PTR) WORD PUBLIC;
DECLARECFD_SEG_PTR) POINTER;

END TQFILEDESCRIPTOR;

The primitive receives an argument for the POINTER parameter FD_SEG_PTR,
which contains the address for a SELECTOR that contains the selector of the file
descriptor. This selector word is sent as an argument to the parameter FD_SEL used
in every device driver.

Since TQFILEDESCRIPTOR is a PL/M-86 typed procedure, it must use a
RETURN to return the WORD status value. If you intend to code it in Pascal-86 as
a function, the function must assign the status value to the name of the function
(TQFILEDESCRIPTOR).

K.3.2 Connecting File/Device Drivers

Routines that actually transfer data and communicate with external files or devices
are called file/device drivers. The run-time system provides two default drivers in
P86RN2.LIB and P86RN3.LIB: one for text files, and one for non-text files. The
run-time system assumes that ten actions can be performed for each file: opening the
file, closing the file, reading, writing, moving forward, marking the end of a record,
rewinding, seeking, marking the end of a file, and getting information about a file.

K-11

Run-Time Interface

The Logical Record System (LRS) interface has been modified to accommodate
random I/O. If you have written your own LRS interfaces, and if you plan to use the
random access 1/O capability, you will be affected by this change. (If you use the
random access feature and Intel libraries, you will be able to use this I/O capability
immediately.)

The random access features will use two UDI primitives, DQFILEINFO and
DQSEEK, which previously were not used by Pascal-86. Thus, if you have written
your own UDI interface but did not implement all the UDI primitives, you must add
these before using random access 1/0.

Two new entries have been added to the device driver table: file information and an
entry reserved for future use. The new device driver table is shown in figure K-5.

You can replace or supplement these drivers with your own drivers that communicate
with your operating environment by formatting your driver routines to correspond to
the calling sequence and parameter lists that the run-time system expects to find.
The run-time system uses the default drivers unless you explicitly create your own
TQDEVICE primitive as part of your logical record system. If you supply your own
TQDEVICE, you can associate a file with your own set of drivers. To supply your
own TQDEVICE primitive, use the name TQDEVICE, declare it to be public, and
follow the module linking conventions described in K.3.7.

Before opening any file, the run-time system calls TQDEVICE and sends arguments
for three parameters: a POINTER to the physical filename, a BYTE containing the
length of the filename, and a POINTER to the base of a table containing the addresses
of the drivers. TQDEVICE must return a WORD status value containing a zero if it

TABLE OF DRIVERS
RESERVED HIGHER LOCATIONS
FILE INFORMATION
END FILE
RESERVED
REWIND A FILE
MARK RECORD END
MOVE FORWARD

SEEK
(used only for random i/0
WRITE A BLOCK
READ A BLOCK
CLOSE A FILE LOWER LOCATIONS
OPEN A FILE BASE ADDRESS OF FILE/DEVICE DRIVERS

Figure K-5. Table of Addresses for File/Device Drivers 121539-26

Pascal-86 User’s Guide

Pascal-86 User’s Guide Run-Time Interface

is successful, or an exception code if an exception occurs. The following is a sample
PL/M-86 typed procedure heading for the TQDEVICE primitive:

TADEVICE: PROCEDURE(CNAME_PTR,
NAME_LENGTH,
DRIVER_TABLE_PTR) WORD PUBLIC;:
DECLARE DRIVER_BASE BASED
DRIVER_TABLE_PTR POINTER;
/* Assign the new table base to
DRIVER_.BASE to override the
default assignment */
DECLARE (NAME_PTR,DRIVER_TABLE.PTR) POINTER;
DECLARE NAME_LENGTH BYTE;

END TQDEVICE;

If you wish to provide device drivers for some but not all files, your TQDEVICE
primitive should examine the filename by using the pointer NAME_PTR (and the
length byte NAME_LENGTH) to find the filename. For files that need your new
set of device drivers, your primitive would alter the value pointed to by DRIVER-
_TABLE_PTR, in order to use the new base address of your table of driver addresses
(as described below). For files that need the default device drivers supplied for the
Intel Series 111 operating system, your primitive would not alter the value pointed to
by DRIVER_TABLE_PTR, and the base address for the default table would be used.

To supply your own set of device drivers, you must write the drivers and place the
address of each driver in a file/device driver table, as shown in figure K-5. Each
driver is described following this table. Your version of TQDEVICE would use the
base address of this table (the address of the driver to open a file) as the value pointed
to by DRIVER_TABLE_PTR for any file that needs this table of drivers. You can
easily create alternatives in your TQDEVICE for certain files that need different
kinds of drivers.

Since the run-time system calls these drivers by using the addresses in this table, the
drivers themselves do not have to have special names. These drivers are described
below.

Open a File

Before the run-time system performs any input/output, it calls a driver to open a file
by using the address in the file/device driver table shown in figure K-5. To open a
file, the file must be already rewound; i.e., the “file pointer”” must be pointing to the
beginning of the file. The following is a sample PL/M-86 typed procedure heading
for the OPEN_FILE driver:

OPEN_FILE: PROCEDURECFD_SEL, NAME.PTR,
NAME_LENGTH, ATTRIBUTE,
REC_LENGTH) WORD PUBLIC;
DECLARE (FD_SEL, ATTRIBUTE, REC_LENGTH)
SELECTOR;
DECLARE NAME_PTR POINTER;
DECLARE NAME_LENGTH BYTE;

END OPEN_FILE;

K-13

Run-Time Interface Pascal-86 User’s Guide

This driver must be a typed procedure that returns a WORD value containing either
an exception code if an exception occurs, or zero if the open action is successful. The
run-time system obtains the arguments for the NAME_PTR pointer and the
NAME_LENGTH byte from either the Pascal-86 program (the object module) or
the TQGETPRECON primitive (described in K.3.4). If the argument for
NAME_LENGTH equals zero, the driver should assume that it is a scratch file to
be deleted after the close file operation.

The argument for the FD_SEL selector parameter comes from the
TQFILEDESCRIPTOR primitive described in K.3.1. The argument for the
REC_LENGTH word parameter is the record length to be associated with the file,
supplied by the Pascal-86 program (the object module); a value of zero indicates that
the record length is variable, as in a text file.

The argument for the ATTRIBUTE word parameter contains information and file
attributes that your OPEN_FILE driver can use or ignore, depending on whether the
information and attributes are relevant for the device you are associating with the
file. The bits of this WORD are defined as follows:

Bits 0, 1—reserved, set to 00.

Bit 2—reserved, set to 0.

Bit 3—form of file:
O—non-text file. The file will contain binary data, not character data.

1-—text file. The file will contain character data. The run-time system will not
perform run-time checks on input or output.

Bit 4—reserved.
Bit 5—reserved, set to 0.

Bit 6—interactive file:
0—not interactive file.

1—possibly interactive file. The device should be treated as an interactive console
(indicating a file of type CHAR).

Bit 7—reserved, set to 0.

Bits 8 and 9—mode of file:
0—destructive write only. The file can only be written to (as after a REWRITE).
0Ol—read only. The file can only be read (as after a RESET).

10—reserved

11—update. The file can be written to.

The remaining bits are reserved.

Close a File

The run-time system calls this driver to close a file by using the address provided in
the file/device driver table shown in figure K-5. The run-time system reuses the file/
device descriptor for the next open file operation; that is, it will avoid calling the
TQFILEDESCRIPTOR primitive. This driver returns a status WORD with an

K-14

Pascal-86 User’s Guide Run-Time Interface

exception code if an exception condition occurs (none are required by the run-time
system).

The following is a sample PL/M-86 typed procedure heading for the CLOSE_FILE
driver:

CLOSE_FILE: PROCEDURE(CFD_SEL, DISPOSE) WORD PUBLIC;
DECLARE FD_SEL SELECTOR;
DECLARE DISPOSE BYTE;

END CLOSE_FILE;

The argument for the FD_SEL selector parameter is the same as the argument in
the OPEN_FILE driver, described in the previous section. The argument for the
DISPOSE byte parameter can be ignored by this driver.

Read a Block from a File

The run-time system calls this driver to read a block of data from a file. This driver
must return a status WORD containing an exception code if the end of a record or
the end of the file condition is reached. These codes are listed in K.3.6. The following
is a sample PL/M-86 typed procedure heading for the READ_BLOCK driver:

READ_BLOCK: PROCEDURECFD_SEL, BUFFER,
COUNT, ACTUAL_PTR) WORD PUBLIC;
DECLARE (FD_SEL, COUNT) SELECTOR;
DECLARE (BUFFER,ACTUAL_PTR) POINTER;

END READ_BLOCK;

The argument for FD_SEL comes from the TQFILEDESCRIPTOR primitive
described in K.3.1. The other arguments are sent from the run-time system. The
argument for the BUFFER pointer parameter is the base address of an area where
this driver must store the block of data read. The argument for the COUNT word
parameter is the length in bytes of the data item to be read. The driver should store
the actual number of bytes read in the WORD addressed by ACTUAL_PTR.

For files that have fixed-length records, the run-time system never tries to read more
bytes than the fixed number defined for the record. However, this read block driver
must be able to recognize the end of a record, and be able to position the “file pointer”
to the beginning of the next record for each read operation. This record delimiter
might be the carriage return/line feed (CR /LF) combination (for text files) or a gap
between records on a tape drive.

Write a Block to a File

The run-time system calls this driver to write blocks of data to a file. The run-time
system calls this driver by using the address found in the file/device driver table
shown in figure K-5. There might be more than one call to this driver to write an
entire record, and this driver must handle any buffering. After calling this driver, the
run-time system calls the “mark end of record” driver to mark the end of a record,
even if the records are fixed in length.

K-15

Run-Time Interface Pascal-86 User’s Guide

The following is a sample PL/M-86 typed procedure heading for the
WRITE_BLOCK driver:

WRITE_BLOCK: PROCEDURECFD_SEL, BUFFER,
COUNT) WORD PUBLIC;
DECLARE (COUNT) WORD;
DECLARE (FB_SEL) SELECTOR;
DECLARE BUFFER POINTER;

END WRITE_BLOCK;

This driver returns a status WORD that contains the exception code of an exception
condition if one occurs (none are required by the run-time system). The argument
for the FD_SEL selector parameter comes from the TQFILEDESCRIPTOR primi-
tive described in K.3.1. This driver uses the argument for the BUFFER pointer
parameter as an address to find the data to be written, and it uses the argument for
the COUNT word parameter as the length of the data block to be written.

Seek In A File

This routine is called for files opened for direct access to position the file pointer
before a read or write operation. The run-time system calls this routine by using the
address found in the table in figure K-5. The following is a sample PL/M-86 typed
procedure heading for the SEEK driver.

SEEK: PROCEDURE (FD, MODE, HIGHSOFFSET, LOWSOFFSET) WORD
PUBLIC REENTRANT;
DECLARE FD SELECTOR,
MODE BYTE,
LOWSOFFSET WORD,
HIGH$SOFFSET WORD;

END SEEK;

where
FD identifies the file descriptor for the file to be affected.

LOWSOFFSET together form a four-byte (DWORD) unsigned integer (here

HIGHSOFFSET called offset) that represents either a position in the file or
the number of bytes to move the file position pointer, depend-
ing on the setting of mode.

MODE indicates the type of seek required. The values of mode are
defined as:

0 — Seek to the record number specified in offset.
Note that the first record of a file is record number 1.

1 — Move file pointer back by offset bytes within current
record.

2 — Set file pointer to offset within current record.

3 — Move file pointer forward by offset bytes within current
record.

4 — Move file pointer to end of file.

K-16

Pascal-86 User’s Guide Run-Time Interface

This is a typed procedure (function). The value of the procedure is a WORD that
indicates the result of calling this procedure. The required exception code is ESOK
and the RTNULL version will cause processing to halt. Modes 1 through 4 are not
currently supported or required.

Move Forward to the End of the Record

The run-time system calls this driver to skip to the end of the record and prepare the
file for the next sequential access. The run-time systém uses the address in the file/
device driver table shown in figure K-5 to call this driver. This driver is called whenever
the processing of a record has finished, even if the record was only partially read.

The following is a sample PL/M-86 typed procedure heading for the MOVE_
FORWARD driver:

MOVE_FORWARD: PROCEDURECFD_.SEL) WORD PUBLIC;
DECLARE FD_SEL SELECTOR;

END MOVE_FORWARD;

The argument for the FD_SEL selector parameter comes from the TQFILEDES-
CRIPTOR primitive described in K.3.1. This driver must return a WORD contain-
ing a zero for a successful move operation, or the exception code for an end of file if
that condition occurs. The exception codes are listed in K.3.6.

Mark the End of a Record

The run-time system calls this driver every time output to a particular record is
completed. Your driver should mark the file as appropriate for the device associated
with the file. For a file with fixed-length records, the driver may either increment the
record pointer or pad the rest of the record with a distinguishable character. A call
to this driver implies that the program has terminated output to the record, and that
the rest of the record is either undefined or defined by this driver.

The following is a sample PL/M-86 typed procedure heading for the END_RE-
CORD driver:

END_RECORD: PROCEDURECFD_SEL) WORD PUBLIC;
DECLARE FD_SEL SELECTOR;

END END_RECORD;

The argument for the FD_SEL selector parameter comes from the TQFILEDES-
CRIPTOR primitive described in K.3.1. This driver returns a status WORD that
contains the exception code of an exception condition if one occurs (none are required
by the run-time system).

Rewind a File

The run-time system calls this driver to rewind a file, and the driver rewinds by moving
the “file pointer” to the beginning of the file. Nothing occurs for devices that cannot
rewind. The driver returns a status WORD that contains the exception code of an

K-17

Run-Time Interface

K-18

exception condition if one occurs (none are required by the run-time system.) The
following is a sample PL/M-86 typed procedure heading for the REWIND driver:

REWIND: PROCEDURECFD_SEL,MODE) WORD PUBLIC;
DECLARE FD.SEL SELECTOR;
DECLARE MODE BYTE;

END REWIND;

The argument for the FD_SEL selector parameter comes from the TQFILEDES-
CRIPTOR primitive described in K.3.1. The argument for the MODE byte param-
eter is the value specified in bits 8 and 9 of the ATTRIBUTE word parameter for
the OPEN_FILE driver. When the file is rewound, the MODE byte defines subse-
quent access rights to the file.

Mark the End of a File

The run-time system calls this driver to mark the current position of the file pointer
as the end of the file. The following is a sample PL./M-86 typed procedure heading
for the ENDFILE driver.

ENDFILE: PROCEDURE (FD) WORD PUBLIC REENTRANT;
DECLARE FD SELECTOR;

END ENDFILE;

This driver returns a status WORD that contains the exception code of an exception
condition if one occurs (none are required by the run-time system). The argument
for the FD parameter is the file descriptor for the file to be affected. If data is beyond
the location indicated by the current file pointer, that data is truncated.

Get File Information

The run-time system may obtain information about a file by using the address provided
in the file/device driver table shown in figure K-5. Following is a sample PL/M-86
typed procedure heading for the FILE_INFORMATION driver.

FILE_INFORMATION: PROCEDURE (FD, FILE_INFO_P) WORD;
DECLARE FD SELECTOR;
DECLARE FILE_INFO_P POINTER;

END FILE_INFORMATION;

Pascal-86 User’s Guide

Pascal-86 User’s Guide Run-Time Interface

where FD identifies the file descriptor for the file to be affected and FILE_INFO_P
is a POINTER to an area of memory with the following format:

DECLARE FILE_INFO_.STRUCTURE (
CURR_POS DWORD,
FILE_LEN DWORD,
RESERVED (2) WORD);

CURR_POS is the record number at which the file is currently positioned,
FILE_LEN is the record number of the last record in the file, and RESERVED is a
two-word field that is reserved for future use.

K.3.3 Initialize the Logical Record System

The run-time system calls this initialization primitive before calling any primitive in
the logical record system. You supply your own initialization primitive to initialize
your logical record system, initialize any devices or tables you need for your logical
record system, initialize the preconnection table of logical files connected to physical
files, and provide your own semaphore mechanisms so that the run-time system can
protect critical regions of code. In short, the run-time system calls this primitive to
allow you to provide whatever special mechanisms you need to operate the run-time
system in your environment. Do not replace Intel’s default initialization primitive
unless you are supplying your own logical record system.

The following is a sample PL/M-86 typed procedure heading for the TQINITIAL-
IZE primitive:

TAINITIALIZE: PROCEDURECLRI_DATA_PTR) WORD PUBLIC;
DECLARE LRI_DATA_PTR POINTER;

END TAQINITIALIZE;

The argument sent for the LRI_DATA_PTR pointer parameter is the address of a
location where this primitive must store a WORD. This WORD must contain the
root address of a linked list of logical and physical file names which make up your
preconnection table. This WORD will be used as an argument to a parameter of the
TQGETPRECON primitive described in the next section. This primitive also returns
a status WORD that may contain an exception code if an exception occurs (the run-
time system does not require an exception code).

K.3.4 Return Physical File Name for Preconnection

The run-time system calls this primitive to obtain the physical file name to be associ-
ated with a Pascal-86 logical name by means of a file preconnection specification on
the command line that executes a Pascal-86 program. (See 12.4 for a description of
preconnecting files on the execution command line.)

This primitive must return a BYTE value for the length of the physical file name,
and it must store a-pointer to the physical file name at a location specified by an

K-19

Run-Time Interface

K-20

argument to the primitive. The following is a sample PL/M-86 typed procedure
heading for the TQGETPRECON primitive:

TAGETPRECON: PROCEDURECUNIT,L_FILENAME_PTR,

L_FILENAME_LENGTH,
P_FILENAME_PTR,
PRECON_ROOT) BYTE PUBLIC;

DECLARE C(UNIT,L_FILENAME_LENGTH)
BYTE;

DECLARE (L_FILENAME_PTR,
P_.FILENAME_PTR) POINTER;

DECLARE PRECON_ROOT WORD;

DECLARE P_FILENAME_LENGTH BYTE;

RETURN P_FILENAME_LENGTH;
END TQGETPRECGON;

The argument sent for the UNIT byte parameter has no use in Pascal run-time
preconnection. The argument sent for the L_FILENAME_PTR pointer parameter
is the address of the location where tlie logical file name is stored. The argument sent
for the L_FILENAME_LENGTH byte parameter is the length (in bytes) of the
logical file name. Your primitive must use the pointer in L_FILENAME_PTR and
the length in L_ FILENAME_LENGTH to pick up the logical file name.

The argument sent for the P_FILENAME_PTR pointer parameter is the address of
the location where your primitive must store a pointer to the physical file name to be
associated with the logical file name. The physical file name’s length is the return
value of the function, so that the run-time system can pick up the physical file name.
If your primitive returns a zero as the physical file name’s length, then the run-time
system will assume that a match for the logical file name was not found in the
preconnection linked list. The root of the preconnection linked list is sent for the
PRECON_ROOT word parameter—this argument comes from the initialization
primitive (TQINITIALIZE) described in the previous section.

K.3.5 Exit from the Logical Record System

The run-time system calls this primitive to terminate the logical record system. You
can supply your own primitive to perform any routine measures you need to close
down your logical record system. The TQEXIT primitive must not return a value
(hence it cannot be a typed procedure).

The following is a sample PL/M-86 procedure heading for the TQEXIT primitive:

TAEXIT: PROCEDURECTERMINATION_TYPE) PUBLIC;
DECLARE TERMINATION_TYPE WORD;

END TQEXIT;

The run-time system sends either a zero or a one as an argument for the TERMI-
NATION_TYPE word parameter. A zero means a normal termination, and a one
means a termination as a result of an exception condition.

The run-time system uses a normal call to this primitive, and the primitive must not
return.

Pascal-86 User’s Guide

Pascal-86 User’s Guide Run-Time Interface

K.3.6 Run-Time Exception Handling

The run-time system expects the operating environment (your operating system or
the device driver system) to provide the address of the exception handling procedure.
The run-time system calls this exception handler using this address.

To provide this address, you can implement two primitives in your logical record
system: TQSETERH to establish the current exception handler, and TQGETERH
to provide the address of the current exception handler to the run-time system.

The following is a sample PL/M-86 procedure heading for the TQSETERH
primitive:

TQSETERH: PROCEDURE (PROC_ADDR) PUBLIC;
DECLARE PROC_ADDR POINTER;

END TASETERH;

The TQSETERH primitive must allocate a storage area to store the address of the
current exception handler. The TQGETERH primitive must return a POINTER in
the location specified by the run-time system so that the run-time system can call the
current exception handler. The following is a sample PL/M-86 procedure heading
for the TQGETERH primitive:

TGGETERH: PROCEDURE (PROC_ADDR_PTR) PUBLIC;
DECLARE PROC_ADDR_PTR POINTER;
DECLARE PROC_ADDR BASED PROC_ADDR_PTR POINTER;

END TAQGETERH;

The following exception condition is in operating environment exception returned by
the default logical record system or your system to the run-time system:

Exception Code Meaning

1501H Command line preconnection facility has detected an invalid
preconnection syntax.

The run-time system expects to receive the following status codes from some of the
primitives and drivers in the default logical record system or your system:

Status Code Meaning

15FFH A read was attempted but the “file pointer”” pointed to the
end of the file.

15FEH A read was attempted past the end of a record.

The exception code range 1520H to 15FFH is reserved for exceptions you can define
for your logical record system.

K-21

Run-Time Interface Pascal-86 User’s Guide

K.3.7 Linking Conventions

To link your own set of logical record system primitives with the required library
modules and Pascal-86 modules, specify on the linker’s command line your logical
record system module after specifying the other modules, so that references to the
logical record system primitives that are in the run-time system libraries will be
satisfied.

In addition, you must link in the null library RTNULL.LIB to resolve run-time system
references to the default primitives you are not using. If, however, you are using some
of the default primitives found in the default libraries PS6RN2.LIB and/or
P86RN3.LIB, and you link in these default libraries, then you do not need
RTNULL.LIB.

If you are using the default libraries PRB6RN2.LIB and P86RN3.LIB (the default
logical record system), yet you wish to supply some device driver primitives to override
the default primitives, then link in your device driver primitives (and your version of
the TQDEVICE primitive described in K.3.2) before linking in the default libraries
P86RN2.LIB and P86RN3.LIB.

For more examples of linking modules and for more information about the linking
and locating process, see Chapter 12 or your specific operating-system appendix.

K.3.8 Interfacing to the Default Logical Record System

To use Intel’s logical record system (the libraries PS6RN2.LIB and P86RN3.LIB)
with your own operating system (other than an Intel operating system), you have to
provide primitives with the same names as the following primitives, and link your set
of primitives in place of the LARGE.LIB library used for the Series I1I. The names
are:

DQSALLOCATE

DQSFREE

DQSGETS$SIZE
DQSTRAPSEXCEPTION
DQ$SGET$EXCEPTIONSHANDLER
DQSEXIT

DQS$SDELETE

DQSATTACH

DQSOPEN

DQS$SCREATE

DQSCLOSE

DQ$DETACH

DQSREAD

DQSWRITE

DQSSPECIAL

DQSSEEK

DQSTRUNCATE
DQSGET$CONNECTIONSSTATUS
DQSGETSARGUMENT
DQSFILESINFO

For details on the Intel versions of these primitives, see the Intellec Series 111 Micro-
computer Development System Programmer’s Reference Manual, Order Number
121618.

K-22

APPENDIX L
COMPILER INVOCATION AND ADDITIONAL
INFORMATION FOR SERIES lll USERS

This appendix contains information that is specific to the Intellec Series III Micro-
computer Development System. It covers the following areas:

+ Compiler invocation and file usage

» Sample link, locate, and execute operations

» Examples of compiler control invocation lines
» Interrupt handling on the Series I11

* Related publications

L.1 Compiler Operation

The Pascal-86 compiler is a program that translates your Pascal instructions into
object code modules that can be linked and located for execution.

You create a Pascal program by typing instructions into a file using the CREDIT
text editor, and submitting the file to the Pascal-86 compiler. The file you submit is
called a source file, and the file containing the compiled program is called an object
file. (The content of the object file is also known as object code.) In Pascal-86 you
can compile parts of a program, and each separate compilation is known as an object
module.

The following discussions assume that you have a Series III system up and running,
and that you have a suitable copy of the Pascal-86 compiler. Chapter 1 of this manual
leads you through a complete program development sequence using a sample Pascal
program supplied with the compiler. Details on the operating system environment are
provided in the Intellec Series III Microcomputer Development System Console
Operating Instructions, Order Number 121609.

L.1.1 Invoking the Compiler

You invoke the Pascal-86 compiler by using the RUN command. The RUN command
is used to load and execute any program specifically in the 8086 environment for the
Series I1I system. The following is a sample compiler invocation:

gRUN PASC86 PROG1.SRC XREF<cr>»

The name PASCS86 is the name of the compiler as supplied, without the extension
(i.e., the full name is PASC86.86, but you don’t supply the .86 extension in the
invocation line). PROG1.SRC is the name of the source file that contains the Pascal
instructions. XREF is a primary control which tells the compiler to generate a cross-
reference listing of source program identifiers (XREF is described in 10.3.23). The
XREF control, like all other compiler controls, is optional for the invocation line.

The above example assumes that the compiler and the source program PROG1.SRC
reside on drive 0 (:FO0:). If PROG1.SRC is on drive 1, the invocation line is:

JRUN PASC86 :F1:PROG!T.SRC XREF<cr>»

Compiler Invocation and Additional Information for Series III Users Pascal-86 User’s Guide

The invocation line takes this general form:

RUN [:Fa:lpasc8e [:Fdlsource|[controls]

where

RUN is the name of the command to execute the compiler.

‘Fa: specifies which drive PASC86.86 and/or source resides on,
if not on drive 0. The source file does not have to be on the
same drive as the compiler.

PASC86 is the name you use for the compiler PASC86.86.

source is the name of the source file containing the Pascal program.

controls are optional primary or general compiler controls described
in Chapter 10. You can have many controls in the invocation
line with a space between each control, and you can extend
the invocation line by using the ampersand (&) as a contin-
uation character to replace a space.

«cr> stands for use of the RETURN key on the keyboard.

The following are some examples:

MRUN :F1:PASC86 :F1:MYPROG PRINTC:LP:) TITLECYTEST 247)<¢cr>

In this example, both PASC86.86 and MYPROG are on drive 1. PRINT and TITLE
are compiler controls.

MRUN PASC86 :F1:KLUDGE.SRC NOPRINT<Ccr»

In this example, PASC86.86 is on drive 0, but KLUDGE.SRC, the source program,
is on drive 1. NOPRINT is a compiler control that prevents all printed output (except
error messages) usually generated by the compiler.

NOTE

The RUN command assigns the extension 86 to any filename you specify
without an extension. You must specify the filename’s extension if it is not
86. If you specify a filename that has no extension, specify a period (.) after
the name in the RUN invocation line. For example, if you rename PASC86.86
to COMPIL, include a period after the name COMPIL (i.e., COMPIL.)
when you invoke it using RUN. If you choose a new name with a new exten-
sion, specify both the new name and the new extension on the RUN invoca-
tion line.

L.1.2 Files Used by the Compiler

Input Files

You supply the Pascal source program name for source in the invocation line (see
the previous section). You can also include other source files by using the INCLUDE
control, as described in 10.3. These files must be standard ISIS-II disk files contain-
ing the text of Pascal instructions.

Pascal-86 User’s Guide

Output Files

By default, the compiler produces two output files, unless you use specific controls to
suppress or redirect them: the /isting file and the object file. Also by default, error
messages appear at your console and in the listing file.

The listing file (sometimes called the PRINT file) contains a listing of the source
program, plus any other printed output generated by the compiler as specified by the
listing selection controls described in Chapter 10. The object file (sometimes called
the object code file or object module) contains the actual code in object module format,
which can eventually be executed (after you use the linking and locating facilities
described in Chapter 13). These files are described in more detail in Chapter 12.

The listing file and the object file have the same name as the source file, except that
the listing file has the extension LST, and the object file has the extension OBJ. The
files are created if they do not exist, or overwritten if they do exist, and they appear
on the same drive as the source file. You can optionally change the names and/or
drives for the listing and object files by using the PRINT and OBJECT controls,
respectively (described in 10.3).

For example, if you invoke the compiler using the line:

MRUN PASC86 :F1:MYPROG<cr>

the compiler creates (or overwrites) the file MYPROG.LST on drive 1 to contain the
listing, and the file MYPROG.OBJ on drive 1 to contain the object module.

You can optionally direct certain sections of printed output to files other than the
default listing file described above. In addition to using the PRINT control to specify
another file as the listing file, you can specify a different file to receive error messages
by using the ERRORPRINT control. Section 10.3 gives details on the use of these
controls.

Work Files

The compiler creates and uses work files during its operation, and deletes them at
the completion of compilation. These files are designated :WORK: files and they
cannot conflict with your files.

The Series 111 operating system provides a mechanism to select the drive where work
files can be temporarily stored. The default drive is drive 1 (:F1:), but you can select
another drive using the RUN WORK command, as in this example:

BRUN WORK ::FO0:<¢cr>

This example selects drive O as the drive to hold work files.

L.1.3 Compiler Messages

When you invoke the compiler, it displays the sign-on message:

Series-II]l Pascal-86, Vxy
Copyright 1981, 1983, 1984 Intel Corporation

Compiler Invocation and Additional Information for Series III Users

L-3

Compiler Invocation and Additional Information for Series IIT Users Pascal-86 User’s Guide

where
X is the version number of the compiler.
y is the change number within the version.

As the compilation proceeds through its phases, the compiler displays messages that
trace the compilation. As each phase starts, the name of the phase is displayed; when
the phase terminates, the numeric parameter (if any) and comma are added. The
name of the phase is prefixed by NO if the phase was not executed. The name of
each phase (except for PARSE and ANALYZE) is the same as the control name
that defines the phase.

These messages take the form:
PARSECn), ANALYZECn), [NO]XREF, [NOJOBJECT

where

n is the number of errors detected during execution of that
particular phase.

The output files controlled by the PRINT and ERRORPRINT controls may be
directed to the console (:CO:), in which case the compilation trace messages are
interrupted with END clauses to show when a phase ends.

When a compilation is finished, the compiler terminates with the message:

Compilation of module verdict, n Errors[s] Detected.
End of Pascal-86 Compilation.

where
module is the name of the source module,
verdict is either ABORTED or COMPLETED, and
n is the total number of errors detected during the compilation.

L.2 Linking, Locating, and Executing on the Series Il
L.2.1 Sample Link Operations

The following link operation takes two object modules, MYMOD1.0OBJ and
MYMOD2.0BJ, links them together, then links in the Pascal run-time libraries to
form the output module MYPROG.86. To extend the LINK86 command to the next
line without transmitting the command, type the ampersand (&) character before
the RETURN key, and continue typing the command on the next line (do not type
the ampersand character between letters of a file name). The continued line will start
with two asterisks (**):

MRUN LINK86 MYMOD1.0BJ, MYMOD2.0BJ, P86RNO.LIB, &<cr>
MMPS6RNT.LIB, P86RN2.LIB, P8GRN3.LIB, 87NULL.LIB, &<cr>
WM ARGE.LIB TO MYPROG.86 BIND «<cr>»

The linker first reads MYMOD1.0BJ and MYMOD2.0BJ for external references
and resolves those references between them. Then, the linker attempts to resolve any
more external references in the modules by looking at the public symbols in the
libraries P86RNO.LIB, P86RN1.LIB, P86RN2.LIB, P86RN3.LIB, 87NULL.LIB,
and LARGE.LIB. Use of 87ZNULL.LIB implies that the modules do not perform real

Pascal-86 User’s Guide Compiler Invocation and Additional Information for Series III Users

arithmetic. The final output module is MYPROG.86, which can then be loaded and
executed on the Series II1.

If the modules MYMOD1.0BJ and MYMOD2.0BJ do perform real arithmetic, then
they must be linked with either the 8087 Numeric Data Processor or the 8087
Emulator. If you are using the emulator, the LINK86 command would be:

MqRUN LINK8G6 MYMOD?1.0BJ, MYMOD2.0BJ, P86RNO.LIB, &<cr>
WP 8C6RN1.LIB, P86RN2.LIB, P86RN3.LIB, CEL87.LIB, &<cr>

MM c087, E8087.L1B, LARGE.LIB TO MYPROG.86 BIND <cro>»

The inclusion of CEL87.LIB, E8087, and E8087.LIB provides support for real arith-
metic using the software emulator. This link sequence fully supports all of the features
of Pascal-86.

L.2.2 Sample Locate Operations

The following is a sample locate operation using the default settings for controls:

JRUN LOC86 SAMPL1T.LNK<cr>

This sample locate operation binds the logical segments of SAMPLI.LNK to addresses
beginning at 00200H (H is for hexadecimal), the default. The output module is called
SAMPLI1 (the root name of the input module without the LNK extension). Unless
you specify a TO clause, the output module (the absolutely located program) will
always have the same root name as the input module.

The following is a sample locate operation using the ORDER and ADDRESSES
controls:

MRUN LOC86 SAMPL2.LNK &<cr»
MMORDER(CCLASSES(CODE ,STACK,DATA)) &<cro>
WA DDRESSES(CLASSESCCODEC20000H) ,STACKC(C4FO0O0O0HI))<cr>

In the invocation line, you can use the ampersand character (&) to continue a long
line without executing it.

This sample locate operation collected together the logical segments by class names
in the order specified in the ORDER control. The locater then assigned addresses as
specified in the ADDRESSES control to the logical segments collected into the CODE
and STACK classes. The DATA class received its address assignment from the default
algorithm.

L.2.3 Executing Programs

The output module from the locater can be loaded and executed in the 8086 environ-
ment by using the Series III RUN command. Position-independent (PIC) and
loadtime locatable (LTL) modules produced by LINK86 with the BIND option can
also be loaded and executed by the RUN command. These modules could also be
used as input to the DEBUG-86 debugger or a similar debugging tool.

To run correctly, a program must be complete, i.e., it must contain all modules neces-
sary to run. For example, in order to run in the Series III 8086 environment with
run-time support, a program must contain modules from the run-time support librar-
ies described in 12.2.2. To run in a foreign environment, you must supply your own
run-time support and follow the guidelines in Appendix K.

Compiler Invocation and Additional Information for Series III Users Pascal-86 User’s Guide

To run a complete program in the Series III 8086 environment, simply use the RUN
command. In the example below, both the RUN program and the SAMPLI program
are on drive 0. To refer to any program on a different drive, specify the drive number
d in the format :Fd:.

MRUN SAMPL1.<cr>

Note that in the example, SAMPLI1 appears with a period at the end. This period
tells the RUN command not to look for an .86 extension. If the program were named
“SAMPL1.86", you would not put a period at the end:

MRUN SAMPL1<cr)>

If your program’s name has an extension other than .86, you must specify the exten-
sion with the name. If its name has an .86 extension, you need not specify it. If its
name has no extension, you must specify the final period.

NOTE

If you use the BIND option with LINK86 on a module that is ready to be
processed by the RUN loader, and you do not specify its name in a TO
clause, the linker will use the root name (and device) of the first file specified
as input, but will not append the LNK extension.

L.3 Series llI-Specific Compiler Controls

This appendix includes a fold-out page for system-specific examples of most of the
Pascal-86 compiler controls. This page is designed to be opened out and used in
conjunction with the corresponding text in 10.3.

L.4 Interrupt Handling on the Series lll

The Intellec Series III maps the seven Multibus interrupt lines (INTO through INT7)
onto interrupt vector entries numbered 56 through 63; therefore, your application
may not use these for software interrupts. Interrupt vector entries available for user
software include 64 through 183. Refer to the Intellec Series III Microcomputer
Development System Programmer’s Reference Manual, Order Number 121618 for
details.

8087 Support

You may incorporate an 8087 Numeric Data Processor in your Series III by install-
ing the iSBC 337 Multimodule Numeric Data Processor. Refer to the iSBC 337
Multimodule Numeric Data Processor Hardware Reference Manual for more infor-
mation.

NOTE

The Series IT1I Operating System is designed for use by a single operator and
supports neither reentrancy nor multitasking.

Pascal-86 User’s Guide Compiler Invocation and Additional Information for Series III Users

L.5 Related Publications

Below is a list of other Intel publications you are likely to need in order to use
Pascal-86. Most of them describe related Intel products. The manual order number
for each publication is given immediately following the title.

e Pascal-86 Pocket Reference, 121541
A companion to this manual, providing summary information for quick reference.
» A Guide to the Intellec Series 111 Microcomputer Development System, 121632

A guide to the use of the Series III and associated tools as a total development
solution for your iAPX 86 and iAPX 88 microcomputer applications. This tutorial
manual takes you through hands-on sessions with the Series III operating system,
the CREDIT text editor, the Pascal-86 compiler, the iAPX 86, 88 Family Utili-
ties, the DEBUG-86 applications debugger, and the ICE-86A In-Circuit
Emulator.

o Intellec Series 111 Microcomputer Development System Product Overview,
121575

A summary description of the set of manuals that describe the Intellec Series 111
development system and its supporting hardware and software. This brief manual
includes a description of each manual related to the Series I11, plus a glossary of
terms used in the manuals.

o Intellec Series 111 Microcomputer Development System Console Operating
Instructions, 121609
» Intellec Series III Microcomputer Development System Pocket Reference, 121610

Instructions for using the console features of the Series III, including the
DEBUG-86 applications debugger. The Console Operating Instructions provides
complete instructions, and the Pocket Reference gives a summary of this
information.

o Intellec Series III Microcomputer Development System Programmer’s Refer-
ence Manual, 121618

Instructions for calling system routines from user programs for both micro-
processor environments, MCS-80/85 and iAPX 86, in the Series I11.

o ISIS-II CREDIT CRT-Based Text Editor User's Guide, 9800902
o CREDIT CRT-Based Text Editor Pocket Reference, 9800903

Instructions for using CREDIT, the CRT-based text editor supplied with the
Series III. The User's Guide provides complete operating instructions, and the
Pocket Reference summarizes this information for quick reference.

s [APX 86,88 Family Utilities User's Guide, 121616
e [APX 86,88 Family Utilities Pocket Reference, 121669

Instructions for using the 8086-based utility programs LINK86, LIB86, LOCS6,
CREF86, and OH86 in 8086-based development environments to prepare
compiled or assembled programs for execution. The User’s Guide provides
complete operating instructions, and the Pocker Reference summarizes this
information for quick reference.

o ASMB86 Language Reference Manual, 121703
o ASM86 Macro Assembler Operating Instructions, 121628
o ASMS86 Macro Assembler Pocket Reference, 121674

Instructions for using ASM86 in 8086-based development environments. The
Language Reference Manual gives a complete description of the assembly
language; the Operating Instructions gives complete instructions for operating
the assembler; and the Pocket Reference provides summary information for quick
reference. You need these publications if you are coding some of your routines
in assembly language.

Compiler Invocation and Additional Information for Series III Users Pascal-86 User’s Guide

PL/M-86 User’s Guide, 121636
PL/M-86 Pocket Reference, 121662
Fortran-86 User’s Guide, 121570
Fortran-86 Pocket Reference, 121571

Instructions for using the PL/M-86 and Fortran-86 languages and compilers in
iAPX 86-based development environments. The User’s Guide gives a complete
description of the language and compiler (or translator), and the Pocket Refer-
ence provides summary information for quick reference. You need these publi-
cations if you are coding some of your programs in PL/M-86 or Fortran-86.

e PSCOPE High-Level Program Debugger User’s Guide, 121790

Instructions for using PSCOPE, the symbolic debugger for high-level language
programs. The User’s Guide provides complete operating instructions.

ICE-86 A In-Circuit Emulator Operating Instructions for ISIS-II Users, 9800714
ICE-86A Pocket Reference, 9800838

ICE-88 In-Circuit Emulator Operating Instructions for ISIS-I1I Users, 9800949
ICE-88 Pocket Reference, 9800950

Instructions for using the ICE-86A and ICE-88 In-Circuit Emulators for
hardware and software development. The Operating Instructions manuals give
complete user descriptions of the In-Circuit Emulators, and the Pocket Refer-
ence guides provide summary information for quick reference. You need the
corresponding publications if you are using the ICE-86A or ICE-88 emulator.

e TheiAPX 86,88 User's Manual, 210201-001

This manual contains general reference information, application notes, and data
sheets describing the 8086, 8087, 8088, and 8089 microprocessors and their use.
Extensive discussions of hardware and development software (including PL /M-
86, assembly language, LINK86, and LOC86), plus numerous examples of system
designs and programs, are included.

e 8087 Support Library Reference Manual, 121725

This manual contains specific information on the 8087 support libraries that are
available. It includes full descriptions of the DCON87.LIB, CEL87.LIB, and
EH87.LIB, as well as a discussion of the IEEE math standard.

e Run-Time Support Manual for iAPX 86,88 Applications, 121776

This manual describes in detail the run-time interface needed to run programs
on the 1APX 86,88 family of microprocessors. It includes a description of the
run-time libraries required by high-level language compilers, the concepts behind
Intel’s various operating system environments, the specifications for Intel’s
Universal Development Interface (UDI), and the definition of the Logical Record
Interface (LRI).

L-8

Pascal-86 User’s Guide

Comments

Causes subsequent code to implement checking in
PROG1.SRC

Lists the approximate assembly code for the object
code and appends the listing to the source listing in
drive 1

Generates debug records in the object module
PROG.OBJ compiled from the source file PROG.SRC

Sends error messages to the file specified in the
pathname argument SAMPLE.ERR on drive 1

Causes extension warnings to occur for any Intel
extension to standard Pascal in the file PROG.SRC

Specifies procedures INTERRUPTA and INTER-
RUPTB as interrupt procedures, but does not gener-
ate the interrupt vector for the entry points

Prevents the listing of source lines in the object file
SOURCE.OBJ until a LIST control is encountered

Prevents the creation of an object module from
PROG3.SRC

Sends printed output to the file LIST2 on drive 1

Causes the subtitle ‘MODULE ONE’ to appear on
every page until another subtitle control (if any)
appears in PROG1.SRC

Causes the title ‘EUCLIDS GCD PROGRAM’ to
appear on every page

Directs the compiler not to include type records in
the file TEMP.OBJ on drive 1

Produces a cross-reference listing of all identifiers in
the file SOURCE.SRC and appends the listing to the
default listing file SOURCE.LST on drive 1

Control

CHECK/NOCHECK

CODE/NOCODE

DEBUG/NODEBUG

ERRORPRINT /NOERRORPRINT

EXTENSIONS/NOEXTENSIONS

INTERRUPT

LIST/NOLIST

OBJECT/NOOBJECT

PRINT/NOPRINT

SUBTITLE

TITLE

TYPE/NOTYPE

XREF/NOXREF

Compiler Invocation and Additional Information for Series III Users

Examples

MRUN PAS286 PROG?1.SRC CHECK <cr>»
MRUN PAS286 :f1:SO0URCE.SRC CODE «<cr>

RRUN PAS286 PROG.SRC DB «<cro

aRUN PAS286 SAMPLE.SRC <cr>

EPC:F1:5SAMPLE.ERR)

w@RUN PAS286 PROG.SRC NOET «<cr»

QRUN PAS286 PROG1.SRC

ITCINTERRUPTA INTERRUPTB)I«<cr»

RRUN PAS286 :F1:SOURCE.SRC NOLIST <cr>
wRUN PAS286 PROG3.SRC NOOJ«<ccr»

MRUN PAS286 :F1:SOURCE.SRC PRINTC:F1:LIST2)<cr>

gRUN PAS286 PROG1.SRC SUBTITLEC'MODULE ONE')<ccrv

jRUN PAS286 EUCLID.SRC TTC*EUCLIDS GCD PROGRAM’) «<cr>

gRUN PAS286 :F1:TEMP.,SRC NOTY <cr>

MRUN PAS286 :F1:SOURCE.SRC XREF «<cr>

L-9/L-10

APPENDIX M
COMPILER INVOCATION AND ADDITIONAL
INFORMATION FOR iRMX™ 86 USERS

This appendix contains information that is specific to the iRMX 86 Operating System.
It covers the following areas:

e System requirements

e Compiler invocation and file usage

= Examples of compiler control invocation lines

« Examples of system-dependent floating-point library linkage
¢ Calling iRMX 86 primitives

e Related publications

M.1 Compiler Operation

The Pascal-86 compiler is a program that translates your Pascal instructions into
object code modules that can be linked and located for execution.

You create a Pascal program by typing instructions into a file using a text editor
(such as EDIT) and submitting the file to the Pascal-86 compiler. The file you submit
is called a source file and the file containing the compiled program is called an object
file. (The content of the object file is also known as object code.) In Pascal-86 you
can compile parts of a program; each separate compilation is known as an object
module.

The following discussions assume that you have a suitable copy of the Pascal-86
compiler and an iRMX 86 application system on which the compiler can run. To run
the compiler on an iRMX 86 based system, you must have the following hardware
and software:

e The iRMX 86 Universal Development System Interface (and other iRMX 86
layers necessary to support the Universal Development System Interface).

* At least one mass storage device. The installation of the compiler always requires
a single or double density diskette drive, since the product is delivered in diskette
form.

e Enough memory to run the compiler (above and beyond that required for the
Operating System). The memory requirement varies for different releases of the
compiler, but the code, static data, and dynamic memory requirment is around
150K.

Chapter 1 of this manual leads you through a complete program development sequence
using a sample Pascal program. Details of the Operating System environment are
provided in the iRMX 86 Release 5 Operator’s Manual.

M.1.1 Invoking the Compiler

The compiler is supplied on an iRMX 86 format diskette. It may be desirable to copy
the compiler to another disk or to one of the directories that the Operating System
automatically searches when commands are entered. The compiler consists of a single
file: PASCS6.

Compiler Invocation and Additional Information for iRMX™ 86 Users Pascal-86 User’s Guide

You can invoke the Pascal-86 Compiler from the system console using the standard
command format described in the iRMX 86 Release 5 Operator’'s Manual. You can
specify continuation lines by using the ampersand (&) as a continuation character.
The ampersand can appear any place there is a space or other delimiter.

The invocation command has the general form:

-[directory]JPAS (86 sourcepath [controls]<c r»

where

directory is that portion of the pathname that identifies the device and
directories which contain the file PASC86. If you omit the
directory portion of the pathname, the Operating System
automatically searches several directories for the file
PASCB86. The directories searched and the order of the search
are iRMX 86 configuration parameters.

sourcepath is the pathname of the file containing Pascal-86 source code.
Refer to the iRMX 86 Release 5 Operator's Manual for more
information about pathnames.

controls is the optional primary or general compiler controls described
in Chapter 10. You can specify many controls in an invoca-
tion line if you separate them with spaces (the ampersand
(&) creates a continuation line and also separates controls).

<cr) indicates a carriage return.
The following are some examples:
-:FD0:PASC86 :WDO:DIR1/MYPROBG.SRC PRINTC:LP:) TITLEC*TEST 24')<cr>

In this example, the compiler resides on device :FDO:. The compiler is directed to
compile the source module :WDO:DIR1/MYPROG.SRC, send the output listing to
:LP:, and place “TEST 24” in the header on each page of the listing.

-PASC86 :F1:PROG1.SOURCE NOPRINT<¢cr>

In this example, the compiler resides in a directory that the Operating System
automatically searches; thus, it does not require a device or directory name. The
compiler is directed to compile the source module :F1:PROGL1.SOURCE. This file
resides on the device with the logical name :F1: and has the name PROG.SOURCE.
NOPRINT is a compiler control that suppresses all printed output (except error
messages) usually generated by the compiler.

M.1.2 Files Used by the Compiler

Input Files

You supply the Pascal source program name for sourcepath in the invocation line
(see the previous section). You can also include other source files by using the
INCLUDE control, as described in section 10.3 of this manual. These files must be
standard iRMX 86 named files containing the text of Pascal instructions.

Pascal-86 User’s Guide Compiler Invocation and Additional Information for iRMX™ 86 Users

Output Files

By default, the compiler produces two output files (unless you use specific controls to
suppress or redirect them): the listing file and the object file. Also by default, error
messages appear at your console and in the listing file.

The listing file (called the PRINT file) contains a listing of the source program, plus
any other printed output generated by the compiler as specified by the listing selec-
tion controls described in Chapter 10. The object file (sometimes called the object
code file or object module) contains the actual code in object module format, which
can eventually be executed (after you use the linking and locatiing facilities in
Chapter 12). These files are described in more detail in Chapter 11.

The listing file and the object file have the same name as the source file, except that
the last pathname component of the listing file has the extension LST and the last
pathname component of the object file has the extension OBJ. The compiler creates
the files if they do not exist and overwrites them if they do exist. You can optionally
change the pathnames for the listing and object files by using the PRINT and
OBIJECT controls, respectively (described in section 10.3).

For example, if you invoke the compiler using the command line:
-PASC86 :PROG:MYPROG.SRC«¢cr»>

the compiler creates (or overwrites) the file MYPROG.LST in directory :PROG: to
contain the listing, and it creates (or overwrites) the file MYPROG.OBJ in directory
:PROG: to contain the object modules.

You can optionally direct certain sections of printed output to files other than the
default listing file described previously. In addition to using the PRINT control to
specify another file as the listing file, you can specify a different file to receive error
messages by using the ERRORPRINT control. Section 10.3 gives details on the use
of these controls.

Work Files

The compiler creates and uses work files during its operation which are deleted at
the completion of the compilation. All of these files are created in the directory with
logical name :WORK:. You should not place your own files in this directory if their
names conflict with the compiler’s work files. You can set the location of the :WORK:
directory during system configuration.

M.1.3 Compiler Messages

When you invoke the compiler, it displays the sign-on message:

iRMX 86 Pascal-86, Vxy
Copyright 1981, 1983, 1984 Intel Corporation

where
X is the version number of the compiler and
y is the change number within the version.

As the compilation proceeds through its phases, the compiler displays messages that
trace the compilation. As each phase starts, the name of the phase is displayed; when
the phase terminates, the numeric parameter (if any) and commas are added. The

Compiler Invocation and Additional Information for iRMX™ 86 Users Pascal-86 User’s Guide

name of the phase is prefixed by NO if the phase was not executed. The name of
each phase (except for PARSE and ANALYZE) is the same as the control name
that defines the phase.

These messages take the form:
PARSEC(n), ANALYZECn), [NO]XREF, [NO]JOBJECT

where

n is the numer of errors detected during execution of that
particular phase.

The output files controlled by the PRINT and ERRORPRINT controls may be
directed to the console (:CO:), in which case the cempilation trace messages are
interrupted with END clauses to show when a phase ends.

When a compilation is finished, the compiler terminates with the message:

Compilation of moduleverdict, n Errors[s] Detected.
End of Pascal-86 Compilation.

where
module is the name of the source modulp,
verdict is either ABORTED or COMPLETED, and
n is the total number of errors detected during compilation.

M.2 Linking, Locating, and Executing on the iRMX™ 86
System

This section shows some examples of linking, locating, and executing Pascal-86
programs in an iRMX 86 environment. When reading this section, keep in mind the
following information:

e In order to run a Pascal-86 program in an iRMX 86 environment, you must link
it to the iRMX 86 universal development interface (UDI) library called
LARGE.LIB.

e The 8087 emulator is not supported for use in an iRMX 86 environment. If you
plan to use real arithmetic, you must include the 8087 Numeric Processor Exten-
sion in your system and you must link your programs to the libraries 8087.LIB
and EH87.LIB.

M.2.1 Sample Link Operations

The following link operation takes two object modules, MYMODI1.0OBJ and
MYMOD2.0BJ, links them together, and then links in the Pascal run-time libraries
to form the output modules MYPROG. To extend the LINK86 command to the next
line without transmitting the command, type the ampersand (&) character before
the carriage return, and continue typing the command on the next line (do not type
the ampersand character between characters of a pathname). The continued line will
start with two asterisks (**):

-LINK86 MYMOD1.0BJ, MYMOD2.0BJ, P86RNO.LIB, &<cr>
**P86RN1.LIB, P86RN2.LIB, P86RN3.LIB, 87NULL.LIB, &<cr>
**LARGE.LIB TO MYPROG BIND MEMPOOLC+4000H) &<cr>
**SEGSIZECSTACK(+400H))

M4

Pascal-86 User’s Guide Compiler Invocation and Additional Information for iRMX™ 86 Users

The linker first reads MYMOD1.0OBJ and MYMOD2.0OBJ for external references
and resolves those references between them. Then, the linker attempts to resolve any
more external references in the modules by looking at the public symbols in the
libraries PBORNO.LIB, PB6RNI1.LIB, P86RN2.LIB, P86RN3.LIB, 87NULL.LIB
and LARGE.LIB. Use of 87NULL.LIB implies that the modules do not perform real
arithmetic. The final output module is MYPROG, which can then be loaded and
executed on an iRMX 86 system.

If the modules MYMOD1.0BJ and MYMOD2.0OBJ perform real arithmetic, you
must link them with the 8087 Numeric Processor Extension library (8087.LIB), the
library that implements IEEE standarized math features (EH87.LIB), and the library
that implements the real built-in functions (CEL867.LIB). This LINK86 command
18:

-LINK86 MYMOD1.0BJ, MYMOD2.0BJ, POBG6RNO.LIB, &<cr>
**P86RN1.LIB, P8B86RN2.LIB, P86RN3.LIB, CEL87.LIB, &<cr>
**8087.LIB, LARGE.LIB TO MYPROG BIND MEMPOOL(C+4000H) &<cr>
**SEGSIZE(CSTACKC(+400H))

M.2.2 Sample Locate Operations

The following is a sample locate operation using the ORDER and ADDRESSES
controls:

-L0C86 SAMPLE2.LNK &<cr>
**0RDERCCLASSES(CODE, STACK, DATA)) &<ccr>
**ADDRESSESC(CLASSESCCODEC2000H), STACK(4FO0O0H)))<¢cr>

In the invocation link, you can use the ampersand character (&) to continue a long
line without executing it.

This sample locate operation collects together the logical segments by class names in
the order specified in the ORDER control. The locator then assigns addresses as
specified in the ADDRESSES control to the logical segments collected into the CODE
and STACK classes. The DATA class receives its address assignment from the default
algorithm.

If you are locating your program for eventual execution in an iRMX 86 environment,
ensure that the addresses you assign to the program do not conflict with the memory
reserved for the operating system and your application tasks. Also, ensure that you
do not assign your program to memory locations that the Operating System normally
assigns as dynamic memory. If you assign absolute addresses to your program, you
must reserve those memory locations during iRMX 86 configuration.

M.2.3 Executing Programs

If you have used LINK86 BIND control to produce position-independent code (PIC)
and load-time-locatable (LTL) modules, you can load and execute these modules in
an iRMX 86 environment by entering their pathnames at the system console. Output
from LLOC86 can also be loaded and executed in the same manner, as long as you
adhere to the restrictions outlined in the previous section.

To run correctly, a program must be complete; that is, it must contain all modules
necessary to run. For example, in order to run in an iRMx 86 environment with run-
time support, a program must contain modules from the run-time support libraries
described in section 12.2.2. To run in a foreign environment, you must supply your
own run-time support and follow the guidelines in Appendix K.

Compiler Invocation and Additional Information for iRMX™ 86 Users Pascal-86 User’s Guide

To run a complete program in an iRMX 86 environment, simply enter the pathname
of the program. In the example that follows, the program SAMPL]1 resides in one of
the directories that the Operating System automatically searches. The directories
searched and the order of search are iRMX 86 configuration parameters. To refer to
a program in a different directory, specify the complete pathname of the program.

-SAMPL1<cr>

M.3 Interrupt Handling in an iRMX™ 86 Environment

Section 8.9 describes several procedures that aid in interrupt processing. Because the
iRMX 86 Operating System implements its own form of interrupt processing (refer
to the iRMX 86 Nucleus Reference Manual), Pascal-86 programs that run in an
iRMX 86 environment must not use these Pascal-86 interrupt control procedures.

M.4 Calling iRMX™ 86 Primitives from a Pascal Program

The operating system primitives provided by the various layers of iRMX 86 are avail-
able to the Pascal-86 programmer. In order to call an iRMX 86 primitive from a
Pascal-86 program, you must follow the instructions for calling a PL/M-86 program
from Pascal as described in Appendix J of this manual.

Calling iRMX 86 primitives also requires you to link to the interface libraries associ-
ated with the operating system primitives which your application program calls. The
names of these interface libraries and order of linkage are described in the iRM X 86
Configuration Guide.

M.5 Related Publications

This section lists other Intel publications you might need in addition to this one. The
manual order number for each publication immediately follows the title. The
paragraph following each title describes the manual.

e Pascal-86 Pocket Reference, 121541
A companion to this manual, providing summary information for quick reference.
e Introduction to the iRMX 86 Operating System, 9803124

A general introduction to the iRMX 86 Operating System. This manual discusses
the features of the Operating System and introduces some of the terminology. It
also lists and describes each of the manuals in the iRMX 86 manual set.

* [RMX 86 Release 5 Operator’'s Manaul, 172764
e IRMX 86 Disk Verification Utility Reference Manual, 144133

Instructions for entering commands at an iRMX 86 terminal. The operator’s
manual describes file-naming conventions and provides a complete description of
all commands available with the Operating System. The disk verification utility
manual describes an interactive utility which examines and restores iIRMX 86
volumes.

* [RMX 86 Human Interface Reference Manual, 9803202
* [RMX 86 Nucleus Reference Manual, 9803122
* IRMX 86 Release 5 Basic 1/0 System Reference Manual, 172766

Pascal-86 User’s Guide Compiler Invocation and Additional Information for iRMX™ 86 Users

e IRMX 86 Release 5 Extended I/O System Reference Manual, 172767
e IRMX 86 Loader Reference Manual, 143318

Instructions for invoking system calls from user programs.

e [iRMX 86 Programming Techniques, 142982
* Guide to Writing Device Drivers for the iRMX 86 and iRMX 88 I/O Systems,
142926

Additional information about the Operating System.
e EDIT Reference Manual, 143587

Instructions for using EDIT, the text editor available for use on the iRMX 86
Operating System.

e [APX 86,88 Family Utilities User's Guide, 121616
e [APX 86,88 Family Utilities Pocket Reference, 121669

Instructions for using the utility programs LINK&86, LIB86, LOC86, CREF86,
and OHS86 in iAPX 86-based environments to prepare compiled or assembled
programs for execution. The user’s guide provides complete operating instruc-
tions and the pocket reference summarizes the information for quick reference.

o AMSS86 Language Reference Manual, 121703

o ASM8E6 Macro Assembler Operating Instructions for 8086-Based Systems,
121628

o ASMS86 Macro Assembler Pocket Reference, 121674

Instructions for using ASM86 in iAPX 86-based development environments. The
language reference manual gives a complete description of the assembly language.
The operating instructions manual gives complete instructions for operating the
assembler. The pocket reference provides summary information for quick refer-
ence. You need these publications if you are coding some of your routines in
assembly language.

PL/M-86 User's Guide, 121636
PL/M-86 Pocket Reference, 121622
FORTRAN-86 User's Guide, 121570
FORTRAN-86 Pocket Reference, 121571

Instructions for using the PL/M-86 and FORTRAN-86 languages and compi-
lers in iAPX 86-based development environments. The user’s guide gives a
complete description of the language and compiler, and the pocket reference
provides summary information for quick reference. You need these publications
if you are coding some of your programs in PL/M-86 or FORTRAN-86

e The iAPX 86,88 User’s Manual, 210201

This manual contains general reference information, application notes, and data
sheets describing the 8086, 8087, 8088, and 8089 microprocessors and their use.
Extensive discussions of hardware and development software (including PL /M-
86, assembly language, LINK86, and LOC86), plus numerous examples of system
designs and programs, are included.

» 8087 Support Library Reference Manual, 121725

This manual contains specific information on the 8087 support libraries that are
available. It includes full descriptions of the DCONS87.LIB, CEL87.LIB, and
EH87.LIB, as well as a discussion of the IEEE math standard.

e Run-Time Support Manual for iAPX 86,88 Applications, 121776

This manual describes in detail the run-time interface needed to run programs
on the iAPX 86,88 family of microprocessors. It includes a description of the
run-time libraries required by high-level language compilers, the concepts behind
Intel’s various operating system environments, the specifications for Intel’s
Universal Development Interface (UDI), and the definition of the Logical Record
Interface (LRI).

GLOSSARY

This glossary defines terms used in the text of this manual. Some of these terms
pertain to the Pascal language, some to the compiler, and some to the processor or
system environment in which you develop or run programs. For further information
concerning a term defined here, refer to the section(s) of this manual that are cited
in parentheses after the definition.

argument: a variable, expression, procedure, or function, specified in a procedure or
function invocation, that communicates information to that procedure or function. It
matches one of the parameters of the invoked procedure or function. (4.1.2, 6.1)

argument list: a list of arguments given in a function designator or a procedure state-
ment. (4.1.2, 7.1.3, 7.2.2)

array: a variable of an array type. (5.3.2)

array type: a structured type consisting of a fixed number of components, or elements,
that are all of the same type. (5.3.2)

assignment-compatible: said of an expression and a type if the value of that expres-
sion can be assigned to a variable of that type. (5.3.4)

automatic: said of variables that are created and destroyed in accordance with the
structure of a program. In Pascal, these are all variables that are declared explicitly
within a procedure or function. (5.1)

base address: in an iAPX 86 or iAPX 88 microcomputer system, the 16-bit portion
of an address that determines the location of the segment being addressed. (12.3.2)

base type: the type of the components, or elements, of a set type; this must be an
ordinal type. (5.3.2)

block: 1. when used in discussing the Pascal language, a section of a source program
that includes declarations, definitions, and statements; performs a particular function;

and may have other blocks nested within it (or be nested within another block).
(2.1) 2. when used in the source listing output from the Pascal-86 compiler, a
BEGIN...END, REPEAT..UNTIL, or CASE...OF... END statement group, which
may have other such statement groups nested within it. (11.1.2)

block-structured language: a programming language in which the programs are
composed of blocks. (2.1)

buffer variable: the implicitly declared variable associated with a file variable and
used to hold its current file component. (5.3.2, 5.4.2)

call by reference: communication of an argument to a subprogram (procedure or
function in Pascal) by passing the address of the argument. In Pascal-86, this method
is used with arguments to variable parameters. (J.1)

call by value: communication of an argument to a subprogram (procedure or function
in Pascal) by passing the actual value of the argument. In Pascal-86, this method is
used with arguments to value parameters. (J.1)

Glossary—1

Glossary Pascal-86 User’s Guide

commient: a sequence of characters, enclosed between a left and a right comment
bracketing symbol and including those symbols, which supplies documentation infor-
mation not to be translated by the compiler. (3.2.1)

compatible: said of two types that may be combined in expressions, or of two param-
eter lists whose parameter types match. (5.3.4, 6.4.7)

compiler: the program that translates your Pascal instructions into object code ready
to be linked and located. (11)

component type: the type of the components, or elements, of an array type. (5.3.2)

conditional compilation: process whereby the compiler skips selected portions of the
source file if specified conditions are not met.

conditional statement: a statement that selects for execution one of its component
statements; in Pascal, an IF or CASE statement. (7.2.4)

constant: a data item that cannot change during program execution. It may be a
literal constant (e.g., a signed integer or a literal string) or a named constant referred
to by an identifier. (5.1, 5.2)

control: an instruction to the compiler, given either in the compiler invocation line or
in a control line within the source text. (10)

control line: a line, within the text of a source program, that starts with a dollar sign
in the leftmost column, and contains compiler controls rather than constructs that
are part of the Pascal program. (10.1)

current file component: the onc component of a file variable that is accessible at a
given time. (5.3.2, 5.4.2)

declaration: a program construct that introduces an object having meaning at run
time, such as a variable, procedure, function, or label. (2.1, 5)

default value: the input parameter value or control value that is assumed by a program
(such as a compiler) if no value is explicitly given. (10.1)

definition: a program construct that introduces an object having meaning at compile
time, such as a constant or a type. (2.1, 5)

denormalized: said of a real value if it has a zero exponent and a zero explicit or
implicit leading bit, but is not a normal zero. (14.7)

dereferencing a pointer: accessing a dynamic variable by referring to its associated
pointer variable. (5.3.3)

directive: a word symbol that has a special meaning, but which can also be defined
as an identifier in.programs. In Pascal-86, only one directive (FORWARD) is defined.
(6.5, F)

driver: a routine that transfers data or performs other communication with an exter-
nal device. (K.2.1)

dynamic: said of variables that are generated at run time by statements within a
program, rather than being declared explicitly. (5.1, 5.3.3)

Glossary-2

Pascal-86 User’s Guide Glossary

dynamic symbol table: the compiler’s dictionary. Information about all the symbols
is recorded here. It is dynamic because it can grow from main memory to mass storage.
(10.3.20)

empty set: the set (object of a set type) that contains no elements. (5.3.2)
empty statement: a statement that contains no symbols and performs no action. (7.2)

entire variable: a complete variable of a given type, rather than a component of a
structured variable. (5.4.2)

enumerated type: a simple, ordinal type that defines an ordered set of values by listing
the identifiers that denote these values. (5.3.1)

error: 1. in the Pascal-86 compiler output listing, a mistake in the source program
that is severe enough to prevent generation of an object module. (11.1.3, 13.1) 2. a
run-time condition that may cause the output of a program to be wrong, due to a
logical mistake in the source program or due to invalid input. (14.1)

exception: a run-time condition that may cause the output of a program to be wrong,
due to a logical mistake in the source program or due to invalid input; also called a
run-time error. The use of the term “exception” implies that in some cases, a routine
can be called to handle the situation, and then processing can continue normally.
(14.1)

executable: said of the parts of a program that cause the processor to perform actions
at run-time. In Pascal, statements are executable, whereas definitions and declara-
tions are not. (7.2)

exponent: in the internal representation of a real value, the part that designates (in
binary) the base-2 exponent of the number. (7.1.8, H.1)

expression: a language construct, used in statements, which is evaluated at
run-time. (7.1)

extension: a language feature not present in the corresponding standard language; in
this manual, a feature in Pascal-86 that is not part of the Draft Proposed Standard
Pascal (ISO/DP 7185). (1.2.4, 11.1.3)

external: said of a procedure or function that is referenced in the module being
compiled, but is declared in another module. (4.2.3)

fatal error: an anomaly in the compiler or compile-time environment that makes it
impossible to proceed with the compilation. (11.1.3, 13.1)

field: a component, or element, of a record type. (5.3.2)

field designator: the construct used to reference a component, or field, of a record
variable. (5.3.2, 5.4.2)

field identifier: the identifier by which a field of a record is referenced. (5.3.2)

file: 1. a variable of a file type (5.3.2). 2. a collection of information on a physical
input or output device. (5.3.2, J.2)

file descriptor: a run-time data structure containing the attributes of a physical file;
one exists for every file that is preconnected or open. (K.2.1)

Glossary—3

Glossary Pascal-86 User’s Guide

file type: a structured type consisting of a sequence of components that are variable
in number, are all of the same type, and are accessed sequentially. (5.3.2)

floating-point number: see real number.

function: a subprogram, or subordinate block, that returns a value and that is invoked
by using its function designator in an expression. (2.1, 6)

function designator: a language construct, used as an operand in an expression, that
invokes a function. It consists of the function name, followed by a parameter list if
needed. (7.1.3)

functional parameter: a function that is used as a parameter of a procedure or another
function. (6.4.6)

general control: a control that may appear either in the invocation line or in a control
line anywhere in the source program text, and that may be changed later in the source
program. (10.1)

global: said of program objects that are declared or defined at the outer level of a
program block or a module. (4.1.2, 6.1)

group: in an IAPX 86 or iAPX 88 microcomputer system, a collection of logical
segments that must be located within a 64K-byte range; that is, within a memory
segment. (12.3.2)

heap: a pool of memory, provided through the Pascal-86 run-time system, from which
storage for dynamic variables is taken. (5.3.3)

host type: the ordinal type on which a subrange type is based. (5.3.1)

identifier: a sequence of letters or digits, beginning with a letter, that denotes a
module, procedure, function, constant, type, variable, parameter, or field designator.
(3.3.1)

INCLUDE file: a separate file of source code that is inserted, or included, in the
source input to the compiler by means of an INCLUDE control in the source text.
(10.2, 10.3)

index type: the type of the array selector, or index, used to reference an element of
an array; it must be an ordinal type. (5.3.2)

indexed variable: the construct used to reference a component of an array variable.
(5.3.2,5.4.2)

integer (literal integer): a sequence of digits, optionally terminated by a numberbase
symbol (B, b, Q, q, H, or h), that represents a decimal, binary, octal, or hexadecimal
integer. (3.3.2)

integer type: an ordinal type that represents a subrange of the whole numbers. (5.3.1,
5.3.4)

interface specification: the part of a module that follows the module heading and
defines the interface between that module and other modules. This interface consists
of the objects in other modules that may be referenced by this module, and the objects
in this module that may be referenced by other modules. (4.2.3)

Glossary—4

Pascal-86 User’s Guide Glossary

interrupt: a signal, sent when an external event occurs, that causes a microprocessor
CPU to stop what it is doing, perform a special routine to handle the interrupt, and
then resume the interrupted processing where it left off. (8.9.1, 10.3, K.1)

interrupt procedure: a procedure that is called when an interrupt occurs, to handle
that interrupt. (8.9.1, 10.3, K.1)

interrupt vector: an array of absolutely-located entries, starting at memory location
0, that are reserved for the addresses of interrupt procedures, one for each interrupt
number. (10.3, K.1)

invocation line: the line of text used to invoke the compiler. (system-dependent
appendix)

keyword: a word symbol that has a special meaning ‘and cannot be defined as an
identifier in programs. (3.1, F)

label: a sequence of decimal digits (decimal integer) used to mark a statement so
that a GOTO statement may refer to it. (3.3.4)

lazy input: an input buffering scheme whereby the run-time system fills the buffer
variable for an input file only after it ensures that new data has been requested. This
scheme differs from the standard Pascal buffering method, which involves reading
ahead in the file to allow overlapping of input with computations. Lazy input is neces-
sary for interactive programs, to ensure that a program does not query the terminal
for input until it has prompted the user for that input. (8.7)

library: a file that contains object modules and is created and maintained by a library
utility such as LIB86. (12.2.1)

line marker: the implementation-defined character or character sequence that
indicates the end of a line in a text file. In Pascal-86, this is an ASCII carriage return
followed by an ASCII line feed. (5.3.2)

link: to combine together several compiled or assembled object modules to prepare
them for locating and execution. (12.1, 12.2)

listing file: the file containing printed output produced by the compiler. (system
dependent appendix)

literal integer: see integer.

literal real number: see real number.

literal string: see string.

load-time locatable (LTL) code: object code that can be located at load time using
the RUN loader, and that may refer to segment base addresses to access other
segments in memory. Position-independent code (PIC) is always load-time locatable,

but load-time locatable code is not always position-independent. (12.3.3)

local: said of program objects that are declared or defined within a subordinate block
in a program, rather than at the outer level. (4.1.2, 6.1)

locate: to bind the code in linked object modules to memory addresses so that it may
be executed. (12.1, 12.3)

logical blank: a blank or blank substitute that may separate symbols in a program.
(3.2)

Glossary-35

Glossary Pascal-86 User’s Guide

logical record: a unit of data containing exactly one component of a non-text file, or
one line of a text file. This is the unit of data that is processed by the Pascal-86 run-
time system. (K.2)

logical record interface: the software interface between the Pascal-86 run-time support
libraries and the operating system. (K.2)

logical segment: a piece of an object module that is acted on by the programs that
link and locate the object module. (12.1)

LTL: see load-time locatable (LTL) code.
main program module: see program module.
memory segment: see segment.

module: a separately compiled program unit. In Pascal-86, it may include a module
heading and interface specification; global declarations for labels, data, procedures,
and functions; and/or a main program block. (2.2, 4, I)

module heading: a program construct that begins a module and identifies it by name.
(4.2.2)

named constant: a constant that has been associated with an identifier by defining it
in a constant definition. (5.2)

NaN: in real (floating-point) number representation, one of several bit patterns that
are not actual numbers. (NaN stands for ““Not a Number.”) The presence of NaNs
in a computation generally indicates a real arithmetic exception condition. (7.1.8)

nested: contained; said of a procedure or function block that lies within an enclosing
procedure or function block, of a statement block (BEGIN...END, REPEAT...
UNTIL, or CASE...OF...END) that lies within another statement block, and of an
INCLUDE control invoked because of a file brought in by a previously invoked
INCLUDE control. (2.1, 11.1.2)

neutral object: in a Pascal-86 program being compiled, an object whose type has
been “‘neutralized” by the compiler because of a program error. This object is treated
as compatible with any type, so that subsequent references to an incorrect type speci-
fication do not cause additional errors to be reported. (13.3)

non-main module: a module other than the program module, that is, a module that
does not contain the main program. (4.1.1)

nonterminal symbol: in the syntax notation or other specification of a programming
language, a term (such as identifier or expression) standing for a language element
or construct that must be filled in by the programmer. (Preface, page viii)

normal zero: the real value whose exponent is of minimum value and whose signifi-
cand is all zeros. (14.7)

normalized: said of a real value if it is a normal zero or if its leading significand bit
is one and the exponent is greater than zero. (14.7)

object: one of the following user-defined or predefined entities in a Pascal program:
module, procedure, function, constant, type, variable, parameter, field designator, or
label. (3.3.1) '

Glossary—6

Pascal-86 User’s Guide Glossary

object code: program code that has been processed by an assembler or compiler, and
that may have been processed further by a linking and/or a locating program. (system-
dependent appendix)

object file: a file containing compiled object code. (system-dependent appendix)

object module: the compiled code output by one separately compiled Pascal source
module. (system-dependent appendix)

offset: in an iAPX 86 or iIAPX 88 microcomputer system, the 16-bit portion of the
address that gives the position of the addressed location within the segment specified
by the base address. (12.3.2)

operand: an item, such as a variable or constant of some type, that can be evaluated
and is combined with other such items in an expression by means of operators. (7.1)

operator: a language element specifying an operation to be performed on one or two
operands in an expression. (7.1)

ordinal type: a simple type whose values can be mapped onto a subset of the nonne-
gative integers. (5.3.1)

parameter: a program object, named in a program, procedure, or function heading,
that provides communication between the program, procedure, or function and its
environment. In the case of a procedure or function, the parameter is matched by an
argument in the statement that invokes the procedure or function. (4.1.2, 6.4)

parameter list: a list of parameter identifiers given in the heading of a program,
procedure, or function. (4.1.2, 4.2.1, 6.4.1)

physical record: a unit of data occupying one division of a physical 1/0O device; for
instance, a block on a disk. (K.2)

PIC: see position-independent code.

pointer type: a type whose variables are used to reference dynamic variables. (5.1,
5.3,5.3.3)

portable: said of programs that can be transported from one processor to another
without modification. (1.2.3)

position-independent (PIC) code: object code that can be located at load time using
the RUN loader, and that does not refer to segment base addresses in order to access
other segments in memory. Position-independent code is always load-time locatable
(LTL), but load-time locatable code is not always position-independent. (12.3.3)

precedence: the rule determining in what order the operators in an expression are to
be applied when the expression is evaluated. (7.1)

preconnection: the association of a physical file with a logical file (file variable) before
a program is run; that is, at invocation time. (12.4.1)

predefined: said of a program object— such as a program parameter, type, constant,
procedure, or function—whose definition or declaration is part of the Pascal-86
language, so it need not be defined or declared in programs. Also said of an identifier
that stands for such an object. (3.3.1)

primary control: a control that must appear either in the invocation line or in a control
line preceding the first non-control line in the source program text, and that serves

Glossary—7

Glossary Pascal-86 User’s Guide

as a global control affecting the entire compilation. (10.1) Compare with general
control.

private: said of a program object that may be referenced only by the module in which
it occurs; also said of a symbol (identifier or label) that stands for such an object.
(4.2.3)

private heading: in a non-main module, the heading that begins the private section
of a module and gives the module a name. (2.5, 4.2.4)

private section: the part of a module in which private objects—objects which only
that module may reference—are defined. (4.2.3)

procedure: a subprogram, or subordinate block, that is invoked by a procedure state-
ment. (2.1, 6)

procedural parameter: a procedure that is used as a parameter of a function or another
procedure. (6.4.5)

program block: the block that defines the main program, with which execution will
start when the program is run. (2.1, 4.1.1)

program heading: in a program module, the heading that begins the program block
and gives the program module a name. (2.5, 4.2.1)

program module: the module that contains the main program, with which execution
will start when the program is run. (2.2, 4.1.1)

program parameter: a paramcter, defined in a program heading, that denotes an input
or output file to be used by the program. (4.1.2, 4.2.1)

public: said of a program object that other designated modules may freely reference;
also said of a symbol (identifier or label) standing for such an object. (4.2.3)

public section: a part of a module in which public objects are defined. (4.2.3)
real number (literal real number): a sequence of digits and symbols representing a
decimal number that includes a fractional part. It specifies a significand (integral

part) and either an exponent, a sequence of fraction digits, or both. (3.3.3)

real type: a simple, non-ordinal type that represents a real, or floating-point, number.
(5.3.1, 5.3.4)

record: 1. a variable of a record type. (5.3.2) 2. see logical record. 3. see physical
record.

record type: a structured type consisting of a fixed number of components (fields),
possibly of different types, that are referenced by means of identifiers. (5.3.2)

record variant: one of several different structures, or sets of fields, that data items of
a record type may assume. (5.3.2)

recursive: said of a procedure or function that calls itself, either directly or indirectly.

(2.1)

reentrant: said of a procedure or function that can be interrupted, then called again
from an interrupt handler or another task before the first invocation is finished. (2.1)

Glossary—8

Pascal-86 User’s Guide Glossary

referenced variable: the construct used to reference a dynamic variable by means of
its associated pointer variable. (5.3.3, 5.4.2)

repetitive statement: a statement that specifies that its component statements are to
be executed repeatedly; in Pascal, a WHILE, REPEAT, or FOR statement. (7.2.6)

scalar type: see simple type.

scope: of a definition or declaration, the portion of the source program over which
the stated symbol-object association holds. (4.1.2, 6.1)

segment: in an iAPX 86 or iAPX 88 microcomputer system, an area of memory that
starts at a 16-byte boundary, consists of up to 64K contiguous bytes, and can be
addressed without changing the base register used. (12.3.2)

semantics: the set of rules for determining, given a syntactically acceptable program
in a given language, what that program means—that is, what actions it will cause the
processor to take. (3)

set: a variable of a set type. (5.3.2)

set constructor; an expression, consisting of a list of elements enclosed between square
brackets, which represents a set. (7.1.2)

set type: a structured type whose values represent a collection of objects of an ordinal
type. (5.3.2)

sign bit: in the internal representation of a real value, the bit that indicates the sign
of the number. (7.1.8, H.1)

signed integer: an integer (literal integer) preceded by an optional plus or a minus
sign. (3.3.2)

signed real number: a real number (literal real number) preceded by an optional plus
or a minus sign. (3.3.3)

significand: in the internal representation of a real value, the part that designates (in
binary) the significant bits of the number. (7.1.8, H.1)

simple statement: a statement, such as an assignment statement or a procedure state-
ment, that contains no other statements. (7.2)

simple type: a type whose variables have a single value; also called scalar type. (5.3,
5.3.1)

source code: code written in a programming language such as Pascal. (system-
dependent appendix)

source file: a file containing source code. (system-dependent appendix)

statement: 1. when used in discussions of the Pascal language, a program construct
that defines an action to be performed by the program. (2.1, 2.5, 7.2) 2. when used
in the source listing output from the Pascal-86 compiler, a construct delimited by a
semicolon not within a parameter list or beginning with DO, THEN, ELSE,
OTHERWISE, UNTIL, or the OF in a CASE statement. (11.1.2)

static: said of variables that exist for the entire run of a program. In Pascal-86, only
global variables are static. (5.1)

Glossary-9

Glossary Pascal-86 User’s Guide

static symbol area: memory used by the compiler for context information necessary
because of block structure. (10.3.20)

string: a sequence of one or more characters enclosed by apostrophes, representing a
value of type CHAR (if a single character) or of type PACKED ARRAY [1..n] OF
CHAR, where 7 is greater than 1 and is equal to the number of enclosed characters.
(3.3.5)

string type: a structured type defined as PACKED ARRAY [1..n] OF CHAR, where
n is a positive integer. (5.3.2, 5.3.4)

strongly typed: said of a programming language, such as Pascal, in which every data
item must have a type, and in which strict type compatibility rules must be
followed. (5.3)

structured statement: a statement, such as a compound statement or a REPEAT
statement, that contains one or more embedded statements. (7.2)

structured type: a type whose variables are made up of a number of single values;
such a type is built up from simple types. (5.3, 5.3.2)

subrange type: a simple, ordinal type defined as a subrange of an ordinal type. (5.3.1)

syntax: the set of rules defining what sequences of symbols make up acceptable
programs in a given programming language. (3)

tag field: in a record containing record variants, a field, common to all variants, which
identifies the variant assumed at a given time. (5.3.2)

terminal symbol: in the syntax notation or other specification of a programming
language, a symbol (such as a keyword, letter symbol, or punctuation symbol) that is
to be used verbatim in programs. (Preface, page vii)

text file: a file type that has components of type CHAR and is subdivided into lines
by means of implementation-defined line markers. (5.3.2)

token: a program symbol, such as a keyword, punctuation symbol, identifier, or literal
string, that is divisible from other such symbols by one or more logical blanks. (3.3)

type: a program object denoting a set of values which a data item can assume. Every
constant, variable, parameter, and expression in Pascal has a type. (5.1, 5.3)

type constructor: a keyword specifying a structuring method for a structured type.
There are four type constructors in Pascal: ARRAY, RECORD, SET, and FILE.
(5.3.2)

unnormalized: said of a real value in the temporary real format if its exponent is
greater than zero and its explicit leading bit is zero. (14.7)

value parameter: in a procedure or function declaration, a parameter whose argument
is evaluated once, when the procedure or function is invoked, and is not changed by
the procedure or function. Its argument may be any expression of the proper
type. (6.4.2)

variable: a data item whose values can change during program execution, and which
the program processes. It is referred to by an identifier. (5.1, 5.4)

Glossary—10

Pascal-86 User’s Guide ' Glossary

variable parameter: in a procedure or function declaration, a parameter whose
argument may be changed by the procedure or function. Its argument must be a
variable. (6.4.3)

variant: see record variant.

variant record: a record type with record variants. (5.3.2)

warning: in the output from the compiler, a message indicating an anomaly in
programming style that may point to a problem, but that will not affect the validity

of the compiled object code. A warning is less serious than an error. (11.1.3, 13.1)

workfile: a temporary file created by a program (such as a compiler) for its own
internal use and deleted when the program finishes. (system-dependent appendix)

Glossary—11

INDEX

ABS, 8-6
adding operators, 7-1
addition, 7-5
allocating dynamic variables, 8-12
AND, 7-7
approximate assembly code listing, 10-11, 11-6
ARCCOS, 8-9
ARCSIN, 89
ARCTAN, 8-10
argument list, 4-6, 6-1, 7-5, 7-13
arguments, 4-6, 6-1, 7-5, 7-13
arithmetic
errors, 14-1, 14-2
floating-point, 7-10
functions, 8-5
mixed-mode, 7-6
operators, 7-5
real, 7-10
array
large, Appendix H
types, 5-9
variables, 5-9, 5-19
ASCII character set, Appendix G
ASM86 Macro Assembly Language
communicating with modules in, Appendix J
example subroutine, Appendix J
assembly language
code listing, 10-11, 11-6
communicating with modules in, Appendix J
Pascal compared to, 1-1
assignment compatibility, 5-17 thru 5-19
assignment statements, 7-13
AT87DENR, 8-28
AT87ERRORS, 8-29
AT87EXCEPTIONS, 8-28
AT87MASK, 8-29
AT87NVLD, 8-29
AT870OVER, 8-28
AT87PRCN, 8-28
AT87RSVD, 8-28
AT87UNDR, 8-28
AT87ZDIV, 8-28
automatic type conversions, 7-3, 7-6
automatic variables, 5-1

base type, 5-13
binary tree traversal program, 2-2, 2-6, 9-3
blanks, 3-3
block, 2-1
block-structured language, 2-1
Boolean
functions, 8-5
operators, 7-7
BOOLEAN, 5-6, Appendix H

buffer variable, 5-14, 5-21

built-in functions, Chapter 8, Appendix F
built-in procedures, Chapter 8, Appendix F
BYTES parameters, 6-6

call

to function, 7-4

to procedure, 7-13
call by reference (variable parameter), 6-5
call by value (value parameter), 6-5
carriage return character, 5-6, 11-2
case constants

in CASE statement, 7-15

in record type specification, 5-10
CASE statements, 7-15
CAUSEINTERRUPT, 8-28
CHAR, 5-6, Appendix H
character

input/output program, 9-21

sets, 5-6, Appendix G

strings, literal, 3-6

strings, as arrays, 5-10
check exceptions, 14-4
CHECK control, 10-10
CHR, 8-2
closing files, 4-5, 5-14, B-1
code listing

approximate assembly language, 10-11, 11-6

Pascal-86 source, 10-23, 11-2
code segment (section) of object module, 11-6, 11-8, 12-1
CODE control, 10-11
collating sequence, 5-6, Appendix G
command line, 10-2, 12-4, Appendix L
comments, 3-3
COMPACT control, 10-12, Appendix 1
compatibility

assignment, 5-17 thru 5-19

of parameter lists, 6-4

of types, 5-17 thru 5-19
compilation, conditional, 10-6, 10-20 thru 10-22
compilation summary, 11-6
compile-time errors and warnings, 13-3
compiler

capacity, Appendix C

controls, Chapter 10

features, summary of, 1-1, 1-4

installation, 1-6

operating instructions, Appendix L

output, 11-1

symbol table, 10-2, 10-37, 10-39
component type, 5-9
components

of arrays, 5-9, 5-20

of files, 5-14, 5-21

Index—1

Index Pascal-86 User’s Guide

of records, 5-10, 5-21 summary table, 10-1
of sets, 5-13, 74 SYMBOLSPACE, 10-37
compound statements, 7-14 TITLE, 10-38
COND control, 10-14 TYPE, 10-39
conditional compilation, 10-6, 10-20 thru 10-22 use of, 10-8
conditional statements, 7-14 XREF, 10-40
conjunction (AND), 7-7 conversion
constant definitions, 4-1, 4-4, 5-2 of temperatures, sample program, 1-9, 9-1
constant segment (section) of object module, 11-8, 11-9 of numbers, functions for, 8-6
constants, 5-1 of types, automatic, 7-3, 7-6
integer, 3-5 COS, 8-8
literal, 3-4, 5-2 CR, 5-6, 11-2
named, 5-2 cross-reference listing, 10-40, 11-4
predefined, Appendix F current file component, 5-21
real, 3-5
string, 3-6

data
constants, 3-4 thru 3-6, 5-1, 5-2
declarations, 2-1, 4-4, 5-19
definitions, 2-1, 4-4, 5-18

control lines, 10-2
control variable, in FOR statement, 7-17
controls, 10-1

CHECK, 10-10 representations, Appendix H
CODE, 10-11 segment (section) of object module, 11-6, 11-8, 12-1
COMPACT, 10-12, Appendix 1 types, 5-3 thru 5-19
COND, 10-14 variables, 5-1, 5-19
DEBUG, 10-15 deallocating dynamic variables, 8-12
EJECT, 10-16 DEBUG control, 10-15
ERRORPRINT, 10-17 DEBUG-86 applications debugger, 1-8
EXTENSIONS, 10-19 debugging, 1-8
for listing device/file selection, 10-4 declarations, 2-1
for listing format and content, 10-5 function, 6-1, 6-3
for object content and program checkout, 10-7 label, 4-10
for program optimization and run-time procedure, 6-1

environment, 10-8 variable, 5-19
for source selection and processing, 10-6 default values for controls, 10-1, 10-2
general, 10-1 definitions, 2-1
IF/ELSEIF/ELSE/ENDIF, 10-20, 10-21 constant, 5-2
INCLUDE, 10-22 type, 5-3
INTERRUPT, 10-23 denormalized numbers, 14-7
LARGE, 10-25, Appendix I denormalized operand exception, 14-6
LIST, 10-27 denotations of variables, 5-20
MOD86/MOD186, 10-28 dereferencing a pointer, 5-16
NOCHECK, 10-10 descriptions of Pascal language, 1-2
NOCODE, 10-11 development environment, 1-5
NOCOND, 10-14 development process, 1-6
NODEBUG, 10-15 development system, Intellec, 1-5
NOERRORPRINT, 10-17 device drivers, Appendix K
NOEXTENSIONS, 10-19 difference, set, 7-7
NOLIST, 10-27 differences between versions of Pascal, Appendix A
NOOBIJECT, 10-29 directive, FORWARD, 6-8
NOPRINT, 10-31 DISABLEINTERRUPTS, 8-28
NOTYPE, 10-39 disjunction (OR), 7-7
NOXREF, 10-40 DISPOSE, 8-12, Appendix K
OBJECT, 10-29 DIV, 7-6
OPTIMIZE, 10-30 division
primary, 10-1 integer, 7-5
PRINT, 10-31 real, 7-5
RESET, 10-32 drivers for I/O devices, Appendix K
SET, 10-32 dynamic
SMALL, 10-34, Appendix I allocation procedures, 8-12
SUBTITLE, 10-36 variables, 5-1, 5-15, 5-21

Index—2

Pascal-86 User’s Guide

effects of controls on other controls, 10-3
EJECT control, 10-16
EMPTY, Appendix B
cmpty set, 5-13, 7-4
empty statement, 7-12
ENABLEINTERRUPTS, 8-28
end of file, 8-5
end of line, 8-5
ENDPOSITION, Appendix B
entire variables, 5-20
enumerated types, 5-6
environment
program development, 1-5
run-time, 1-5
EOF, 8-5
EOLN, 8-5
equality operator, 7-8
equivalence operator, 7-8
ERRORPRINT control, 10-17
error handlers, for floating-point arithmetic, 7-11,
Appendix L
error mask, 8087, 7-12, 8-28
error messages, 11-3, Chapter 13
error numbers, significance of, 13-1
errors,
compile-time, 13-3
in invocation line, 13-2
in primary controls, 13-2
operating environment, 14-3
run-time, 14-1
examples
assembly language subroutine called from Pascal-86,
Appendix J
binary tree traversal program, 2-2, 2-6, 9-3
character input/output program, 9-15
compiler output, 11-2, 11-3, 11-6, 11-7
interrupt processing program, 9-13
list processing program, 9-19
matrix multiplication program, 9-15
maze game program, 9-16
quadratic roots progam, 9-9
temperature conversion program, 1-9, 9-1
text editor program, 9-11
exceptions, Chapter 14
check, . 14-4
floating-point function, 14-4
floating-point 8087, 14-4
input/output, 14-1
integer, 14-3
operating environment and heap, 14-3
range, 14-4
set, 14-3
executable, 7-12
executing programs, Appendix L
EXP, 8-7
exponent, 7-10
exponentiation, 8-7
exports list, Appendix 1
expressions, 7-1

Index

evaluation of, 7-1, 7-2

simple, 7-2

syntax, 7-2
extended precision format, 7-4, 7-10, 7-11, Appendix H
extensions to standard Pascal, 1-3, 10-19, Appendix A

messages noting, 11-2, 13-1, 13-2, 14-1
EXTENSIONS control, 10-19
external

program objects, in interface specification, 2-5, 4-4, 4-7,

11-8
references, resolving, 12-1 thru 12-5

factors, 7-2
Fahrenheit to Celsius conversion program, 1-9, 9-1
FALSE, 5-6
fatal errors, 11-4, 13-1 thru 13-3, 13-18 thru 13-20
field
designators, 5-11, 5-21
identifiers, 5-10
list, 5-11
of record, 5-10
field, tag, 5-11
file
types, 5-14
variables, 5-13, 5-21
file/device description, Appendix K
files
closing of, 4-5, 5-14
input to, 8-14 thru 8-16, 8-18, 8-23
length of, 5-14
non-text, 5-14, 8-13, 8-14
on Pascal-86 release diskettes, 1-6
opening of, 4-5, 5-14, 8-13 thru 8-15
output from, 8-14, 8-20, 8-24
physical, 5-14, 12-6, Appendix K
preconnection of, 12-6
text, 5-14, 8-14 thru 8-25
floating-point
arithmetic, 7-10, 12-2, 14-7
exceptions, function, 14-4
exceptions, 8087, 12-4
number representations, 7-10
FOR clause in interface specification, 4-8
FOR statements, 7-17
FORWARD directive, 6-8
freeing dynamic variables, 8-12
function
declarations, 2-1, 6-3, 6-4
designators, 7-4
heading, 6-3
references, 7-4
functional parameters, 6-7
functions, 6-1
predefined, 2-5, 8-1, Appendix F

general controls, 10-1, 10-2
GET, 8-17
GETB8087ERRORS, 8-29
global objects, 4-5

Index-3

Index

GOTO statements, 4-11, 7-21
greater than, 7-8

greater than or equal to, 7-8
group, 12-1, 12-5

heap, 5-15, 8-12

heap exceptions, 14-3
high-level languages, 1-1
horizontal tab character, 11-2
host type, 5-7

how to use this manual, v
HT, 11-2

iAPX 86, memory concepts, Appendix J
iAPX 86,88 processor family, 1-1
utilities, 1-6, 12-1
iAPX support, 10-29
ICE-86A emulator, 1-7, 1-8
ICE-88 emulator, 1-7, 1-8
identifiers
defining, 4-6
form of, 3-4
predefined, Appendix F
IF statements, 7-14

IF/ELSEIF/ELSE/ENDIF control, 10-20, 10-21

implication, logical, 7-7, 7-8
implicit leading bit, 7-11
IN, 7-8
INBYT, 8-25
INCLUDE control, 10-23
INCLUDE files, 10-6, 10-22, Appendix L
inclusion, set, 7-7
index type, of array, 5-9
indexed variables, 5-20
inequality operator, 7-8
inequivalence operator, 7-8
infinity arithmetic, 14-8
infix notation program, 9-3
input
file, 8-14
port, 8-25
text file, 8-14 thru 8-25
input files to compiler, Appendix L
input/output exceptions, 14-1
INPUT, 4-6, 4-7, 5-14, 8-14, 8-15, 8-23
installing the compiler, 1-6
integer
arithmetic exceptions, 14-3
constants, 3-5
part, 8-9
signed, 3-5
type, 5-16
INTEGER, 5-5, Appendix H
integers, literal, 3-5
Intellec Series I1I system, 1-5, 1-8
interface specification, 2-5, 4-2, 4-7

internal representations of data, Appendix H

interrupt
control procedures, §-27

Index—4

Pascal-86 User’s Guide

handling, for real arithmetic errors, 7-11, Appendix L
handling, general, 8-27, 10-24, Appendix K
procedures, 10-8, 10-24, Appendix K
processing, Appendix K
sample program, 9-13
vector, Appendix K
INTERRUPT control, 10-23
intersection, set, 7-7
invalid operation exception, floating-point, 14-5
inverse trigonometric functions, 8-8 thru 8-10
invocation line, 12-4, Appendix L
errors, 13-2
INWRD, 8-25
iSBC 86/12A system, 1-7, 1-8
I/0 device drivers, Appendix K
iRMX, Appendix M

keywords, 3-1, Appendix F

labels, 3-6, 4-10, 7-20
declarations of, 4-10
language elements, 3-1
large array, Appendix H
LARGE control, 10-25, Appendix I
lazy input, 8-13, 8-14
length of file, 5-14
less than, 7-8
less than or equal to, 7-8
lexical elements, 3-1
LF, 5-6, 11-2
libraries, 1-6, 1-7, 12-2
run-time support, 1-6, 1-7, 12-2
LIB86, 1-7, 12-2
limit exceeded errors, 11-14, 13-1 thru 13-3, 13-17 thru
13-19
line feed character, 5-6, 11-2
line marker, 5-14
linking, 1-5, 1-8, 12-1, 12-4
LINKS86, 1-7, 1-8, 12-1, 12-4
LIST control, 10-27
list processing, 5-13
sample program, 9-21
listing file, 11-1
or device, selection and processing,
controls for, 10-4
listing format and content, controls for, 10-5
listing preface, 11-1
literal integers, 3-5
literal real numbers, 3-5
literal strings, 3-6
LN, 8-7
load-time locatable code, 12-3, 12-4
local objects, 4-5
locating, 1-7, 1-8, 12-5, Appendix L
LOCS86, 1-7, 1-8, 12-5
logarithm, natural, 8-7
logical blanks, 3-3
logical implication, 7-7, 7-8

Pascal-86 User’s Guide

logical record

interface, Appendix K

system, Appendix K
logical segments, 11-6, 11-8, 12-1
LONGINT, 5-5, Appendix H
LONGREAL, 5-8, 7-11, Appendix H
loop control statements, 7-16
LORD, 8-2
lower-case letters, 3-2
LROUND, 8-11
LTL, 12-3
LTRUNC, 8-11

main program module, 2-5, 4-1 thru 4-4
coded in other languages, Appendix J
MASKB8087ERRORS, 8-29
matrix multiplication program, 9-15
MAXINT, 5-5, Appendix F
MAXLONGINT, 5-5, Appendix F
MAXWORD, 5-5, Appendix F
maze game program, 9-17
membership, set
denotation members, 5-13, 7-2, 7-4
operator, 7-8
memory
allocation, on heap, 5-15, 8-11, Appendix K
managers, Appendix K
representation of data types, Appendix H
messages, 11-2, Chapter 13
error, 13-1 thru 13-3, 13-8 thru 13-17
extension, 13-3 thru 13-5
fatal error, 13-1 thru 13-3, 13-18 thru 13-20
limit exceeded, 13-1 thru 13-3, 13-18, 13-19
sign-on, Appendix L
trace, Appendix L
warning, 13-1 thru 13-3, 13-5 thru 13-8
microcomputer development system, 1-5, 1-7
mixed-mode arithmetic, 7-6
MOD, 7-6
MOD86/MOD186, 10-28
module heading, 4-7
modules
in other languages, Appendix J
linking together, 12-1
main program, 2-5, 4-1 thru 4-4
non-main, 2-5, 4-1 thru 4-4
multiplication, 7-5
multiplying operators, 7-1

named constants, 5-2
NaN, 7-11, 14-6, 14-7
negation
arithmetic, 7-5
logical, 7-7
nesting
of blocks, 2-1, 2-4, 4-2
of INCLUDE files, 10-23, 11-2
of procedures and functions, 2-4, 4-2, 11-2
of statement “blocks,” 11-2

Index

neutral objects, 13-3
NEW, 8-12, Appendix K
next value, 8-4
NIL, 5-16
NOCHECK control, 10-10
NOCODE control, 10-11
NOCOND control, 10-14
NODEBUG control, 10-15
NOERRORPRINT control, 10-17
NOEXTENSIONS control, 10-19
NOLIST control, 10-27
non-main module, 2-5, 4-1 thru 4-4
non-text files, 5-14, 8-14, 8-15
nonterminal symbols, vii, Appendix D
NOOBJECT control, 10-29
NOPRINT control, 10-31
normal zero, 14-7
normalized numbers, 14-7
NOT, 7-7
notation
for computer dialogue, vii
for extensions to standard Pascal, vii
for language syntax, vii, Appendix D
NOTYPE control, 10-39
NOXREEF control, 10-40
number conversion
automatic, in expression evaluation, 7-6
built-in functions for, 8-4
Numeric Data Processor, 8087, 1-1, 1-6, 7-10, 12-2, 14-4

objects, program, 4-4

neutral, 13-3
object code, 12-1, 12-2

content, controls for, 10-7
object file, 11-1, 11-8
object module, 11-8, 12-1, 12-2
OBJECT control, 10-29
ODD, 8-5
offsets

of entry points, 11-5
OHS86, 1-7, 1-8
open and closed subsystems, Appendix I
opening files, 4-5, 5-14, 8-13 thru 8-16
operands, 7-1, 7-3
operating environment exceptions, 14-2
operating instructions, Appendix L
operating system

Intellec Series 111, 1-5

user-supplied, Appendix K
operators, 7-1, 7-5 thru 7-9

adding, 7-1

addition, 7-5

AND, 7-7

arithmetic, 7-5

Boolean, 7-7

conjunction (AND), 7-7

difference, set, 7-7

disjunction (OR), 7-7

DIV, 7-5

division, integer, 7-5

Index-5

Index

division, real, 7-5
equality, 7-8
equivalence, 7-8
greater than, 7-8
greater than or equal to, 7-8
implication, logical, 7-7, 7-8
IN, 7-9
inclusion, set, 7-7
inequality, 7-8
inequivalence, 7-8
intersection, set, 7-7
less than, 7-8
less than or equal to, 7-8
membership, set, 7-8
MOD, 7-6
multiplication, 7-5
multiplying, 7-1
negation, arithmetic, 7-5
negation, logical, 7-7
NOT, 7-7
OR, 7-7
ordering, 7-9
precedence of, 7-1
relational, 7-8
relative complement, for sets, 7-7
remainder, 7-6
set, 7-7
subtraction, 7-5
unary identity, 7-5
unary negation, 7-5, 7-6
union, set, 7-7
OPTIMIZE control, 10-30
OR, 7-7
ORD, 8-1
order of parts of a program, 4-1 thru 4-4
ordering operators, 7-8
ordinal
functions, 8-1
types, 5-5
organization of this manual, v
OTHERWISE, 7-15
OUTBYT, 8-26
output
file, 8-14
port, 8-25, 8-26
text file, 8-14, 8-15, 8-16 thru 8-25
output files from compiler, 11-1, Appendix L
OUTPUT, 4-6, 4-9, 5-14, 8-15, 8-20, 8-24
OUTWRD, 8-26
overflow exception
floating-point, 14-6
integer, 14-3
overview of Pascal-86, 1-1

PACK, 8-13

PACKED prefix, 5-9

PAGE, 8-24

paging of output listing, 10-16, 11-1

Index—6

Pascal-86 User’s Guide

parameter lists, 4-6, 6-4
compatibility of, 6-7
parameters, 4-6, 6-1, 6-4, 7-4, 7-12
BYTES, 6-6
functional, 6-7
procedural, 6-7
program, 4-6, 4-10
value, 6-5
variable, 6-6
parentheses, in expressions, 7-2
parts of a program, 4-1 thru 4-4
period, at end of program, 3-2
physical files, 5-14, 12-6, Appendix K
physical records, Appendix K
PIC, 12-3
PL/M-86
communicating with modules in, Appendix J
Pascal-86 compared to, 1-2, 1-3
pointer
dereferencing, 5-16
types, 5-15
variables, 5-15
port input, 8-25, 8-26
port output, 8-25, 8-26
portability, 1-3-
POSITION, Appendix B
position-independent code, 12-3
postfix notation program, 9-3
PQCLOSE, Appendix B
precedence of operators, 7-1
preceding value, 8-3
precision, 7-11, 14-6
exception, floating-point, 14-5
preconnection of files, 12-6
PRED, 8-3
predefined
constants, Appendix F
functions, 2-5, 8-1, Appendix F
identifiers, Appendix F
procedures, 2-5, 8-1, Appendix F
program parameters, Appendix F
types, Appendix F
predicates, 8-5
prefix notation program, 9-3
preparing a file
for input, 8-14
for output, 8-14
primary controls, 10-1, 10-2
errors in, 13-2
PRINT control, 10-31
private
heading, 4-10
objects, 4-5
section, 4-5
procedure
call, 7-13
declarations, 2-1, 6-1
heading, 6-1, 6-2
statements, 7-13

Pascal-86 User’s Guide

procedures, 6-1

8087, 8-28

predefined, 2-5, 8-1, Appendix F
procedural parameters, 6-7
processor-dependent language features, Appendix B
program

block, 2-4, 4-2

checkout, controls for, 10-8

development environment, 1-5

development process, 1-6

examples, 1-9, 2-2, 2-6, 9-1

execution, Appendix L

heading, 4-9

listing, 11-1

module, 2-5, 4-1 thru 4-4

parameters, 4-6, 4-9

parts of, 4-1 thru 4-4

segmentation, Appendix I

structure, 2-1, 4-1
public

objects, 4-5

section, 4-5

symbols, in compiler output, 11-5
publications, related

Intel, Appendix L, Appendix M
punctuation symbols, 3-2, Appendix F
PUT, 8-18

quadratic roots program, 9-10

RANDOM ACCESS 1/0, Appendix B
range exceptions, 14-4
READ, 8-18
READLN, 8-23
real
arithmetic, 7-10, 12-2, 14-7
arithmetic exception, 14-4
constants, 3-5
number representation, 7-10
numbers, signed, 3-5
types, 5-8, 5-17
REAL, 5-8, 7-10, Appendix H
recipients clause in interface specification, 4-7
record
types, 5-10
variables, 5-10, 5-21
variants, 5-10
records, physical, Appendix K
recursion, 2-4
reentrancy, 2-4
referenced variables, 5-21
relational operators, 7-8
relative complement, for sets, 7-7
remainder, 7-6
REPEAT statements, 7-17
repetitive statements, 7-16
reserved words, 3-1, Appendix F
RESET, 8-15, Appendix B
RESET control, 10-32

Index

resolving external references, 12-2 thru 12-5
result type, of function, 6-3
RETURN key on console, notation for, vii
REWRITE, 8-15, Appendix B
ROUND, 8-11
rounding, floating-point, 14-7
RUN command, Appendix L
running Pascal-86 programs, Appendix L
run-time
data representations, Appendix H
environment, 1-5
errors, 14-1
interface, Appendix K
storage management, Appendix K
support libraries, 12-2
system, 1-4, 14-1, Appendix K

sample assembly language subroutine called from Pascal,
Appendix J
sample compiler output, 11-2, 11-3, 11-6, 11-7
sample programs
binary tree traversal, 2-2, 2-6, 9-3 thru 9-9
character input/output, 9-21
interrupt processing, 9-13
list processing, 9-19
matrix multiplication, 9-15
maze game, 9-17
quadratic roots, 9-10
temperature conversion, 1-10, 9-2
text editor, 9-11
scalar types, 5-3, 5-4
scope, 4-4
SDK-86 kit, 1-7, 1-8
section numbers, in manual, vii
sections
of object module, 12-6
of program, private and public, 4-5
SEEKREAD, Appendix B
SEEKWRITE, Appendix B
segmentation, of program, Appendix |
segments, logical, 11-6, 11-8, 12-1
naming conventions, Appendix J
semantics, 3-1
semicolon, 3-2
separate compilation, 2-5, 4-7
set
constructors, 7-4
empty, 5-13, 7-4
exceptions, 14-3
operators, 7-7
types, 5-13
variables, 5-13
set 8087 error mask, 8-29
SET control, 10-32
SETINTERRUPT, 8-27
SETRANDOM, Appendix B
severity levels, of errors, 13-1, 13-2
sign bit, 7-10, 7-11
signed integer, 3-5

Index-7

Index

signed real number, 3-5
significand, 7-10, 7-11
simple

expressions, 7-2

statements, 7-12

types, 5-5
SIN, 8-8
SMALL control, 10-34, Appendix 1
source

code, Appendix L

files, Appendix L

program listing, 11-1, 11-2

selection and processing, controls for, 10-6
special symbols, 3-2, Appendix F
SQR, 86
SQRT, 8-7
stack segment (section) of object module, 11-8, 11-9, 12-2
standard Pascal, 1-1, 1-4, Appendix A
statements, 7-12

assignment, 7-13

CASE, 7-15

compound, 7-14

conditional, 7-14

empty, 7-12

executable, 7-12

FOR, 7-17

GOTO, 4-11, 7-21

IF, 7-14

in compiler output, 11-2

loop control, 7-16

procedure, 7-13

REPEAT, 7-17
repetitive, 7-16
separator between, 3-2
simple, 7-12
structured, 7-12
terminator for, 3-2

WHILE, 7-16
WITH, 7-19
static variables, 5-1
stepwise refinement, 2-4
storage management, run-time, Appendix K
string
constants, 3-6
types, 5-10, 5-17
strings, literal, 3-6
strongly typed language, 1-2, 5-3
structured statements, 7-12
structured types, 5-8
subrange types, 5-7
subsystems, 2-5, Appendix I
open and closed, Appendix 1

SUBTITLE control, 10-36
subtraction, 7-5

SUCC, 8-4
symbol and cross-reference listing, 10-40, 11-4

SYMBOLSPACE control, 10-37, 11-8

Index-—8

Pascal-86 User’s Guide

syntax, 3-1
diagrams, Appendix E
notation, vii, Appendix D

tab character, 3-3
tag field, 5-10, 5-12
tags, in variant record, 5-10
TAN, 8-8
temperature conversion program, 1-10, 9-2
temporary real format, 7-4, 7-10, 7-11, Appendix H
TEMPREAL, 5-8, 7-10, Appendix H
terms, 7-2
terminal symbols, viii, Appendix D
text editor sample program, 9-11
text files, 5-14, 8-14 thru 8-25
TEXT, 5-14, Appendix B
tokens, 3-4
top-down development, 2-4
TITLE control, 10-38
trace messages from compiler, Appendix L
transcendental functions, 8-6 thru 8-10
transfer functions, 8-10
transfer procedures, 8-13
tree traversal program, 2-2, 2-6, 9-3 thru 9-9
trigonometric functions, 8-6 thru 8-10
TRUE, 5-6
TRUNC, 8-10
TYPE control, 10-39
type
constructors, 5-9
definitions, 5-4
specifications, 5-4
types, 5-1, 5-3
array, 5-9
base, 5-13
compatibility of, 5-17 thru 5-19
component, 5-9
conversion of, 7-3, 7-6, 8-10
enumerated, 5-6
file, 5-14
host, 5-7
index, 5-9
integer, 5-16
ordinal, 5-5
pointer, 5-15
predefined, Appendix F
real, 5-8, 5-17
record, 5-10
result, of function, 6-3
scalar, 5-3, 5-4
set, 5-13
simple, 5-5
string, 5-10, 5-17
structured, 5-8
subrange, 5-7

unary operators
identity, 7-5
negation, 7-5, 7-6, 7-7

Pascal-86 User’s Guide

underflow exception, floating-point, 14-6
union, set, 7-7

Universal PROM Mapper (UPM), 1-7, 1-8
Universal PROM Programmer (UPP), 1-7, 1-8
unnormalized numbers, 14-7

UNPACK, 8-14

unresolved external references, 12-2 thru 12-4
uppercase letters, 3-2

value parameters, 6-5
variable
declarations, 4-1, 4-3, 5-19
parameters, 6-6
variables, 5-1
buffer, 5-14, 5-21, 8-15
control, in FOR statements, 7-17
denotations of, 5-20
entire, 5-20
indexed, 5-20
referenced, 5-21
variant records, 5-10
variants, of a record, 5-10
versions of Pascal, differences between, Appendix A

Index

vocabulary
of this manual, Glossary
of the Pascal-86 language, 3-1, Appendix F

warnings, 11-2, 13-1 thru 13-3
WHILE statements, 7-16
WITH statements, 7-19
WORD, 5-5, Appendix H
work files, Appendix L
WRD, 8-3

WRITE, 8-20

WRITELN, 8-24

XREF control, 10-40

zero divide exception
floating-point, 14-4, 14-6
integer, 14-3

8087
emulator, 1-1, 1-6, 7-9, 12-2, 12-4, 12-6, 14-4, 14-7
Numeric Data Processor, 1-1, 1-6, 7-10, 12-2, 12-4, 14-4,
14-7
procedures, 8-28

Index—9

] Pascal-86 User’'s Guide
|M 121539-005

REQUEST FOR READER’S COMMENTS

Intel’s Technical Publications Departments attempt to provide publications that meet the needs of all Intel product
users. This form lets you participate directly in the publication process. Your comments will help us correct and
improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this publi-
cation. If you have any comments on the product that this publication describes, please contact your Intel represen-
tative. If you wish to order publications, contact the Intel Literature Department (see page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for improvement.

3. s this the right type of publication for your needs? Is it at the right level? What other types of publications are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating)

NAME DATE

TITLE

COMPANY NAME /DEPARTMENT

ADDRESS

ciy STATE 21P CODE B
(COUNTRY)

Piease check hare it you tequire a wiitten teply [

WE’D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsibie person. All
comments and suggestions become the property of intel Corporation.

| " ” | NO POSTAGE

NECESSARY
IF MAILED
INU.S.A.

BUSINESS REPLY MAIL

FIRSTCLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation

Attn: Technical Publications M/S 6-2000
3065 Bowers Avenue

Santa Clara, CA 95051

[] I |®
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	C-01
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	F-01
	F-02
	F-03
	F-04
	F-05
	G-01
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	I-01
	I-02
	I-03
	I-04
	I-05
	J-01
	J-02
	J-03
	J-04
	J-05
	J-06
	J-07
	J-08
	J-09
	J-10
	J-11
	J-12
	J-13
	K-01
	K-02
	K-03
	K-04
	K-05
	K-06
	K-07
	K-08
	K-09
	K-10
	K-11
	K-12
	K-13
	K-14
	K-15
	K-16
	K-17
	K-18
	K-19
	K-20
	K-21
	K-22
	L-01
	L-02
	L-03
	L-04
	L-05
	L-06
	L-07
	L-08
	L-09
	M-01
	M-02
	M-03
	M-04
	M-05
	M-06
	M-07
	glossary-01
	glossary-02
	glossary-03
	glossary-04
	glossary-05
	glossary-06
	glossary-07
	glossary-08
	glossary-09
	glossary-10
	glossary-11
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	replyA
	replyB
	xBack

