

INSTRUCTION SET

The address of the destination is determined by the contents of the destination register,
not by the explicit operand of the STOS instruction. This operand is used only to vali­
'date ES segment addressability and to determine the data type. Load the correct index
value into the destination register before executing the STOS instruction.

After the transfer is �m�~�d�~�,� the DI register is automatically updated. If the DF flag is 0
(the CLD instruction was executed), the DI register is incremented; if the DF flag is 1
(the STD instruction was executed), the DI register is decremented. The DI register is
incremented or decremented by 1 if a byte is stored, by 2 if a word is stored, or by 4 if a
doubleword is stored.

The STOSB, STOSW, and STOSD instructions are synonyms for the byte, word, and
doubleword STOS instructions, that do not require an operand. They are simpler to use,
but provide no type or segment checking.

The STOS instruction can be preceded by the REP prefix for a block fill of CX or ECX
bytes, words, or doublewords. Refer to the REP instruction for further details.,

Flags Affected

None

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3

26-274

INSTRUCTION SET

STR - Store Task Register

Opcode

OF 00/1

Operation

Instruction

STR r/m16

rim ~ task register;

Description

Clocks

2/3

Description

Store task register to EA word

The contents of the task register are copied to the two-byte register or memory location
indicated by the effective address operand.

The STR instruction is used only in operating system software. It is not used in applica­
tion programs.

Flags Affected

None

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment;#GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3

Real Address Mode Exceptions

Interrupt 6; the STR instruction is not recognized in Real Address Mode

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode

Notes

The operand-size attribute has no effect on this instruction.

26-275

INSTRUCTION SET

SUB -Integer Subtraction

Opcode

2C ib
2D iw
2D id
80 /5 ib
81 /5 iw
81 /5 id
83 /5 ib
83 /5 ib
28 /r
29 /r
29 /r
2A /r
2B /r
2B /r

Operation

Instruction Clocks

SUB AL,immB 1
SUB AX,imm16 1
SUB EAX,imm32 1
SUB r/mB,immB 1/3
SUB r/m16,imm16 1/3
SUB r/m32,imm32 1/3
SUB r/m16,immB 1/3
SUB r/m32,immB 1/3
SUB r/mB,rB 1/3
SUB r/m16,r16 1/3
SUB r/m32,r32 1/3
SUB rB,r/mB 1/2
SUB r16,r/m16 1/2
SUB r32,r/m32 1/2

IF SRC is a byte and DEST is a word or dword
THEN DEST = DEST - SignExtend(SRC);
ELSE DEST ~ DEST - SRC;
FI;

Description

Description

Subtract immediate byte from AL
Subtract immediate word from AX
Subtract immediate dword from EAX
Subtract immediate byte from r/m byte
Subtract immediate word from r/m word
Subtract immediate dword from r/m dword
Subtract sign-extended immediate byte from r/m word
Subtract sign-extended immediate byte from r/m dword
Subtract byte register from r/m byte
Subtract word register from r/m word
Subtract dword register from r/m dword
Subtract byte register from r/m byte
Subtract word register from r/m word
Subtract dword register from r/m dword

The SUB instruction subtracts the second operand (SRC) from the first operand
(DEST). The first operand is assigned the result of the subtraction, and the flags are set
accordingly.

When an immediate byte value is subtracted from a word operand, the immediate value
is first sign-extended to the size of the destination operand.

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH

26-276

INSTRUCTION SET

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3

26-277

(

INSTRUCTION SET

TEST - Logical Compare

Opcode Instruction , ·Clocks

A8 ib TEST AL,immB 1
A9 iw TEST AX,imm16 1
A9 id TEST EAX,imm32 1
F6 /0 ib TEST rlmB,immB 1/2
F7 /0 iw TEST rlm16,imm16 1/2
F7 /0 id TEST rlm32,imm32 1/2
84 /r TEST rlmB,rB 1/2
85 /r TEST rlm16,r16 1/2
85 /r TEST rlm32,r32 1/2

Operation

DEST : = LeftSRC AND RightSRC;
CF~O;

OF~O;

Description

Description

AND immediate byte with AL
AND immediate word with AX
AND immediate dword with EAX
AND immediate byte with rIm byte
AND immediate word with rIm word
AND immediate dword with rIm dword
AND byte register with rIm byte
AND word register with rIm word
AND dword register with rIm dword

The TEST instruction computes the bit-wise logical AND of its two operands. Each bit
of the result is 1 if both of the corresponding bits of the operands are 1; otherwise, each
bit is O. The result of the operation is discarded and only the flags are modified.

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the
result

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #AC for unaligned memory reference if the current privilege level is 3

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3

26-278

INSTRUCTION SET

VERR, VERW - Verify a Segment for Reading or Writing

Opcode Instruction

OF 00/4 VERR r/m16
OF 00 /5 VERW rim 16

Operation

Clocks

11/11
11/11

IF segment with selector at (rim) is accessible
with current protection level
AND ((segment is readable for VERR) OR

(segment is writable for VERW))
THEN ZF +- 1;
ELSE ZF +- 0;
FI;

Description

Description

Set ZF = 1 if segment can be read, selector in r/m16
Set ZF= 1 if segment can be written, selector in r/m16

The two-byte register or memory operand of the VERR and VERW instructions con­
tains the value of a selector. The VERR and VER W instructions determine whether the
segment denoted by the selector is reachable from the current privilege level and
whether the segment is readable (VERR) or writable (VERW). If the segment is acces­
sible, the ZF flag is set; if the segment is not accessible, the ZF flag is cleared. To set the
ZF flag, the following conditions must be met:

• The selector must denote a descriptor within the bounds of the table (GDT or LDT);
the selector must be "defined."

• The selector must denote the descriptor of a code or data segment (not that of a task
state segment, LDT, or a gate).

• For the VERR instruction, the segment must be readable. For the VER W instruc­
tion, the segment must be a writable data segment.

• If the code segment is readable and conforming, the descriptor privilege level (DPL)
can be any value for the VERR instruction. Otherwise, the DPL must be greater than
or equal to (have less or the same privilege as) both the current privilege level and the
selector's RPL.

The validation performed is the same as if the segment were loaded into the DS, ES, FS,
or GS register, and the indicated access (read or write) were performed. The ZF flag
receives the result of the validation. The selector's value cannot result in a protection
exception, enabling the software to anticipate possible segment access problems.

Flags Affected

The ZF flag is set if the segment is accessible, cleared if it is not

26-279

INSTRUCTION SET

Protected Mode Exceptions

Faults generated by illegal addressing of the memory operand that contains the selector;
the selector is not loaded into any segment register, and no faults attributable to the
selector operand are generated

#OP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or OS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #AC for unaligned memory reference if the current privilege level is 3

Real Address Mode Exceptions

Interrupt 6; the VERR and VER W instructions are not recognized in· Real Address
Mode . .

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; # AC for unaligned memory reference if the
current privilege level is 3

26-280

INSTRUCTION SET

WAIT-Wait
Opcode

98

Description

Instruction

WAIT

Clocks

1-3

Description

Causes processor to check for numeric
exceptions.

WAIT causes the processor to check for pending unmasked numeric exceptions before
proceding.

Flags Affected

None

Protected Mode Exceptions

NM if both MP and TS in CRO are set

Real Address Mode Exceptions

Interrupt 7 if both MP and TS in CRO are set

Virtual 8086 Mode Exceptions

NM if both MP and TS in CRO are set

Notes

Coding WAIT after an ESC instruction ensures that any unmasked floating-point excep­
tions the instruction may cause are handled before the processor has a chance to modify
the instruction's results.

FWAIT is an alternate mnemonic for WAIT.

Information about when to use WAIT (FW AIT) is given in Chapter 18, in the section on
"Concurrent Processing."

26-281

INSTRUCTION SET

WBINVD - Write-Back and Invalidate Cache

Opcode

OF 09

Operation

Instruction

WBINVD

FLUSH INTERNAL CACHE

Clocks

5

SIGNAL EXTERNAL CACHE TO WRITE-BACK
SIGNAL EXTERNAL CACHE TO FLUSH

Description

Description

Write-Back and Invalidate Entire Cache

The internal cache is flushed, and a special-function bus cycle is issued which indicates
that external cache should write-back its contents to main memory. Another special­
function bus cycle follows, directing the external cache to flush itself.

Flags Affected

None

Protected Mode Exceptions

None

Real Address Mode Exceptions

None

Virtual 8086 Mode Exceptions

None

Notes

This instruction is implementation-dependent; its function may be implemented differ-
ently on future Intel processors. .

It is the responsibility of hardware to respond to the external cache write-back and flush
indications.

This instruction is not supported on 386 processors. See Section 3.11 for information on
using this instruction compatible with 386 processors. See Section 12.2 on disabling the
cache.

26-282

INSTRUCTION SET

XADD - Exchange and Add

Opcode

OF CO/r

OF C1/r

OF C1/r

Operation

Instruction

XADD rlmB,rB

XADD rlm16,r16

XADD rlm32,r32

TEMP ~ DEST
DEST ~ TEMP + SRC
SRC ~TEMP

Description

Clocks

3/4

3/4

3/4

Description

Exchange byte register' and rim byte; load sum
into rim byte. ,
Exchange word register and rIm word; load sum
into rIm word.
Exchange dword register and rIm dword; load
sum into rIm dword.

The XADD instruction loads DEST into SRC, and then loads the sum of DEST and the
original value of SRC into DEST.

Flags Affected

The CF, PF, AF, SF, ZF, and OF flags are affected as if an ADD instruction had been
executed.

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #NM if either EM or TS in CRO is
set; #AC for unaligned memory reference if the current privilege level is 3

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside the effective address space from
o to OFFFFH

Virtual 8086 Mode Exceptions

Same exceptions as in real-address mode; #PF(fault code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3

26-283

INSTRUCTION SET

Notes

This instruction can be used with a LOCK prefix. The 386 DX microprocessor does not
implement this instruction. If this instruction is used, you should provide an equivalent
code that runs on a 386 DX processor as well. See Section 3.11 for detecting an i486
processor at runtime.'

26-284

INSTRUCTION SET

XCHG - Exchange Register/Memory with Register

Opcode

90+ r
90+ r
90+ r
90+ r
86/r
86 /r
87 /r
87/r
87/r
87/r

Operation

Instruction

XCHG AX,r16
XCHG r16,AX
XCHG EAX,r32
XCHG r32,EAX
XCHG r/mB,rB
XCHG rB,r/mB
XCHG r/m16,r16
XCHG r16,r/m16
XCHG r/m32,r32
XCHG r32,r/m32

temp ~ DEST
DEST ~ SRC
SRC ~ temp

Description

Clocks

3
3
3
3
3/5
3/5
3/5
3/5
3/5
3/5

Description

Exchange word register with AX
Exchange word register with AX
Exchange dword register with EAX
Exchange dword register with EAX
Exchange byte register with EA byte
Exchange byte register with EA byte
Exchange word register with EA word
Exchange word register with EA word
Exchange dword register with EA dword
Exchange dword register with EA dword

The XCHG instruction exchanges two operands. The operands can be in either order. If
a memory operand is involved, the LOCK# signal is asserted for the duration of the
exchange, regardless of the presence or absence of the LOCK prefix or of the value of
the IOPL.

Flags Affected

None

Protected Mode Exceptions

#GP(O) if either operand is in a nonwritable segment; #GP(O) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal
address in the SS segment; #PF(fault-code) for a page fault; #AC for unaligned mem­
ory reference if the current privilege level is 3

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3

26-285

INSTRUCTION SET

XLA T /X LA T8 - Table Look-up Translation

Opcode

07
07

Operation

Instruction

XLAT rnB
XLATB

IF AddressSize = 16
THEN

AL ~ (8X + ZeroExtend(AL))
ELSE (* AddressSize = 32 *)

Clocks

4
4

AL ~ (E8X + ZeroExtend (AL));
FI;

Description

Description

Set AL to memory byte OS:[(E)BX + unsigned ALl
Set AL to memory byte OS:[(E)BX + unsigned AL)

The XLAT instruction changes the AL register from the table index to the table entry.
The AL register should be the unsigned index into a table addressed by the DS:BX
register pair (for an address-size attribute of 16 bits) or the DS:EBX register pair (for an
address-size attribute of 32 bits).

The operand to the XLAT instruction allows for the possibility of a segment override.
The XLAT instruction uses the contents of the BX register even if they differ from the
offset of the operand. The offset of the operand should have been moved into the BX or
EBX register with a previous instruction.

The no-operand form, the XLATB instruction, can be used if the BX or EBX table will
always reside in the DS segment. .

Flags Affected

None

Protected Mode Exceptions

#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(O) for an illegal address in the SS segment; #PF(fault-code) for a page
fault; #AC for unaligned memory reference if the current privilege level is 3

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH

26-286

INSTRUCTION SET

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3

26-287

INSTRUCTION SET

XOR - Logical Exclusive OR

Opcode

34 ib
35 iw
35 id
80 /6 ib
81 /6 iw
81 /6 id
83 /6 ib
83 /6 ib
30 /r
31 /r
31 /r
32 /r
33 /r
33 /r

Operation

Instruction . Clocks

XOR AL,immB 1
XOR AX,imm 16 1
XOR EAX,imm32 1
XOR rlmB,immB 1/3
XOR rlm16,imm16 1/3
XOR rlm32,imm32 1/3
XOR rlm16,immB 1/3
XOR rlm32,immB 1/3
XOR rlmB,rB 1/3
XOR rlm16,r16 1/3
XOR rlm32,r32 1/3
XOR rB,rlmB 1/2
XOR r16,rlm16 1/2
XOR r32,rlm32 1/2

DEST ~ LeftSRC XOR RightSRC
CF~O

OF~O

Description

Description

Exclusive-OR immediate byte to AL
Exclusive-OR immediate word to AX
Exclusive-OR immediate dword to EAX
Exclusive-OR immediate byte to rim byte
Exclusive-OR immediate word to rim word
Exclusive-OR immediate dword to rim dword
XOR sign-extended immediate byte with rim word
XOR sign-extended immediate byte with rim dword
Exclusive-OR byte register to rim byte
Exclusive-OR word register to rim word
Exclusive-OR dword register to rim dword
Exclusive-OR byte register to rim byte
Exclusive-OR word register to rim word
Exclusive-OR dword register to rim dword

The XOR instruction computes the exclusive OR of the two operands. Each bit of the
result is 1 if the corresponding bits of the operands are different; each bit is 0 if the
corresponding bits are the same. The answer replaces the first operand.

Flags Affected

The CF and OF flags are cleared; the SF, ZF, and PF flags are set according to the
result; the AF flag is undefined

Protected Mode Exceptions

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in
the SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference
if the current privilege level is 3

Real Address Mode Exceptions

Interrupt 13 if any part of the operand would lie outside of the effective address space
from 0 to OFFFFH

26-288

INSTRUCTION SET

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference if the current privilege level is 3

26-289

Appendices

Opcode Map A

APPENDIX A
OPCODE MAP

The opcode tables that follow aid in interpreting i486™ processor object code. Use the
high-order four bits of the opcode as an index to a row of the opcode table; use the
low-order four bits as an index to a column of the table. If the opcode is OFH, refer to
the two-byte opcode table and use the second byte of the opcode to index the rows and
columns of that table.

A.1 KEY TO ABBREVIATIONS

Operands are identified by a two-character code of the form Zz. The first character, an
uppercase letter, specifies the addressing method; the second character, a lowercase
letter, specifies the type of operand. .

A.2 CODES FOR ADDRESSING METHOD

A Direct address; the instruction has no modR/M byte; the address of the operand is
encoded in the instruction; no base register, index register, or scaling factor can be
applied; e.g., far JMP (EA).

C The reg field of the modR/M byte selects a control register; e.g., MOV (OF20,
OF22). .

D The reg field of the modR/M byte selects a debug register; e.g., MOV (DF21,OF23).

E A modR/M byte follows the opcode and speCifies the operand. The operand is
either a general register or a memory address. If it is a memory address, the ad­
dress is computed from a segment register and any of the following values: a base
register, an index register, a scaling factor, a displacement.

F Flags Register.

G The reg field of the modR/M byte selects a general register; e.g., ADD (00).

I Immediate data. The value of the operand is encoded in subsequent bytes of the
instruction ..

J The instruction contains a relative offset to be added to the instruction pointer
register; e.g., JMP short, LOOP.

M The modR/M byte may refer only to memory; e.g., BOUND, LES, LDS, LSS, LFS,
LGS.

o The instruction has no modR/M byte; the offset of the operand is coded as a word
or double word (depending on address size attribute) in the instruction. No base
register, index register, or scaling factor can be applied; e.g., MOV (AD-A3).

A-1

OPCODE MAP

R The mod field of the modR/M byte may refer only to a general register; e.g., MOV
(OF20-0F24, OF26).

S The reg field of the modR/M byte selects a segment register;. e.g., MOV (8C,8E).

T The reg field of the modR/M byte selects a test register; e.g., MOV (OF24,OF26).

X Memory addressed by the DS:SI register pair; e.g., MOVS, COMPS, OUTS,
LODS, SCAS.

Y Memory addressed by the ES:DI register pair; e.g., MOVS, CMPS, INS, STOS.

A.3 CODES FOR OPERAND TYPE

a Two one-word operands in memory or two double-word operands in memory, de­
pending on operand size attribute (used only by BOUND).

b Byte (regardless of operand size attribute)

c Byte or word, depending on operand size attribute.

d Double word (regardless of operand size attribute) ,

p Thirty-two bit or 48-bit pointer, depending on operand size attribute.

s Six-byte pseudo-descriptor

v Word or double word, depending on operand size attribute.

w Word (regardless of operand size attribute)

A.4 REGISTER CODES

When an operand is a specific register encoded in the, opcode, the register is identified
by its name; e.g., AX, CL, or ESt The name of the register indicates whether the
register is 32-, 16-, or 8-bits wide. A register identifier of the form eXX is used when the
width of the register depends on the operand size attribute; for example, eAX indicates
that the AX register is used when the operand size attribute is 16 and the EAX register
is used when the operand size attribute is 32.

A-2

OPCODE MAP

[THIS PAGE INTENTIONALLY LEFT BLANK]

A-3

OPCODEMAP

One-Byte Opcode Map

o 2 3 4 5 6 7

o
ADD PUSH POP

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv ES ES

AOC PUSH POP
Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv SS SS

AND SEG OAA
Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv =ES 2

XOR SEG AAA
Eb,Gb EV,Gv Gb,Eb Gb,Ev AL,lb eAX,lv =SS 3

4
INC general register

eAX eCX eOX eBX eSP eBP eSI eOI

5
PUSH general register

eAX eCX eOX eBX eSP eBP eSI eOI

PUSHA POPA BOUND ARPL SEG SEG Operand Address
GV,Ma EW,Rw =FS =GS Size Size 6

7
Short-displacement jump on condition (Jb)

JO JNO JB JNB JZ JNZ JBE JNBE

Immediate Grpl MOVB Grpl .. TEST XCHG

Eb,lb EV,lv AL,imm8 EV,lb Eb,Gb EV,Gv Eb,Gb EV,Gv
8

9 NOP
XCHG word or double-word register with eAX

eCX eOX eBX eSP eBP eSI eOI

MOV MOVSB MOVSW/O CMPSB CMPSW/O
AL,Ob eAX,Ov Ob,AL OV,eAX Xb,Yb XV,Yv Xb,Yb XV,Yv A

B
MOV immediate byte into byte register

AL CL OL BL AH CH OH BH

Shift Grp2 RET near LES LOS MOV

Eb,lb EV,lb Iw GV,Mp GV,Mp Eb,lb EV,lv
C

o Shift Grp2
AAM AAO XLAT

Eb,1 EV,1 Eb,CL EV,CL

LOOPNE LOOPE LOOP JCXZ IN OUT
Jb Jb Jb Jb AI,lb eAX,lb Ib,AL Ib,eAX

E

LOCK REPNE REP HLT CMC
Unary Grp3

REPE Eb Ev
F

A-4

OPCODE MAP

One-Byte Opcode Map

8 9 A B C o E F

o
OR PUSH 2-byte

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv CS escape

SBB PUSH POP
Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv OS OS

SUB SEG
=CS DAS

Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv
2

CMP SEG AAS
Eb,Gb EV,Gv Gb,Eb GV,Ev AL,lb eAX,lv =DS 3

4
DEC general register

eAX eCX eDX eBX eSP eBP eSI eDI

5
POP into general register

eAX eCX eDX eBX eSP eBP eSI eDI

PUSH IMUL PUSH IMUL INSB INSW/D OUTSB OUTSW/D
Iv GvEvlv Ib GvEvlb Yb,DX YV,DX DX,Xb DX,Xv 6

7
Short-displacement jump on condition (Jb)

JS JNS JP JNP JL JNL JLE JNLE

MOV MOV LEA MOV POP
Eb,Gb EV,Gv Gb,Eb GV,Ev Ew,Sw GV,M SW,Ew Ev 8

CBW CWO CALL WAIT PUSHF POPF SAHF LAHF Ap Fv Fv 9

TEST STOSB STOSW/D LODSB LODSW/D SCASB SCASW/D
AL,lb eAX,lv Yb,AL YV,eAX AL,Xb eAX,Xv AL,Xb eAX,Xv A

B
MOV immediate word or double into word or double register

eAX eCX eDX eBX eSP eBP eSI eDI

ENTER RET far INT INT LEAVE INTO IRET IW,iB Iw 3 Ib C

o ESC (Escape to coprocessor instruction set)

CALL JMP IN OUT
Jv JV AP Jb AL,DX eAX,DX DX,AL DX,eAX

E

CLC STC CLI STI CLD STD INC/DEC INC/DEC
~ Grp4 GrpS F

A-S

OPCODE MAP

Two-Byte Opcode Map (first byte is OFH)

o 2 3 4 5 6 7

o Grp6 Grp7 LAR lSl ClTS GV,Ew GV,Ew

MOV MOV MOV MOV MOV MOV
Cd,Rd Dd,Rd Rd,Cd Rd,Dd Td,Rd Rd,Td 2

3

4

5

6

7

8
long-displacement jump on condition (Jv)

JO JNO JB JNB JZ JNZ JBE JNBE

9
Byte Set on condition (Eb)

SETa SETNO SETB SETNB SETZ SETNZ SETBE SETNBE

PUSH pop BT SHlD SHlD CMPXCHG CMPXCHG
FS . FS EV,Gv EvGvlb EvGvCl Eb,Gb EV,Gv A

lSS BTR lFS .lGS MOVZX

Mp . EV,Gv Mp Mp GV,Eb GV,Ew
B

XADD XADD
Eb,Gb EV,Gv C

o

E

F

A-6

OPCODE MAP

Two-Byte Opcode Map (fIrst byte Is OFH)

8 9 . A B C D E F

o INVD WBINVD

2

3

4

5

6

7

8
Long-displacement jump on condition (Jv)

JS JNS JP JNP JL JNL JLE JNLE

9 SETS SETNS SETP SETNP SETL . SETNL SETLE SETNLE

PUSH POP BTS SHRD SHRD IMUL
GS GS EV,Gv EvGvlb EvGvCL GV,Ev A

Grp-8 BTC BSF BSR MOVSX
EV,lb EV,Gv GV,Ev GV,Ev GV,Eb GV,Ew

B

BSWAP BSWAP BSWAP BSWAP BSWAP BSWAP BSWAP BSWAP
EAX ECX EDX EBX ESP EBP ESI EDI C

D

E

F

A-7

OPCODE MAP

Opcodes determined by bits 5,4,3 of modR/M byte:

mod nnn RIM

000 001 010 011 . 100 101 110 111

ADD OR ADC SBB AND SUB XOR CMP

2 ROL ROR RCL RCR SHL SHR SHL SAR

TEST TEST NOT NEG MUL IMUL DIV IDIV
Ib/lv Ib/lv AUeAX AUeAX AUeAX AUeAX 3

INC DEC
Eb Eb 4

INC IDEC CALL CALL JMP JMP PUSH
Ev Ev Ev eP Ev Ep Ev 5

Opcodes determined by bits 5,4,3 of modR/M byte:

mod nnn RIM

000 001 010 011 100 101 110 111

6 SLDT STR LLDT LTR VERR VERW
Ew Ew Ew Ew Ew Ew

SGDT SIDT LGDT LlDT SMSW LMSW
Ms Ms Ms Ms Ew Ew 7

a BT BTS BTR BTC

A-a

Flag Cross-Reference B

APPENDIX B
FLAG CROSS·REFERENCE

8.1 KEY TO CODES

T instruction tests flag
M instruction modifies flag (either sets or resets depending on operands)
o instruction resets flag
1 instruction sets flag

instruction's effect on flag is undefined
R instruction restores prior value of flag
blank instruction does not affect flag

Instruction OF SF ZF AF PF CF TF IF OF NT RF

AM - - - TM - M
AAD - M M - M -
AAM - M M - M -
AAS - - - TM - M
ADC M M M M M TM
ADD M M M M M M
AND 0 M M - M 0
ARPl M
BOUND
BSF/BSR - - M - - -
BSWAP
BT /BTS/BTR/BTC - - - - - M
CAll
CBW
ClC 0
ClD 0
CLI 0
ClTS
CMC M
CMP M M M M M M
CMPS M M M M M M T
CMPXCHG M M M M M M
CWO
DAA - M M TM M TM
DAS - M ·M TM M TM
DEC M M M M M
DIV - - - - - -
ENTER
ESC
HlT
IDIV - - - - - -
IMUl M - - - - M
IN
INC M M M M M
INS T
INT 0 0
INTO T 0 0
INVD
INVlPG

B-1

FLAG CROSS-REFERENCE

Instruction OF .SF ZF AF PF CF TF IF OF NT RF

IRET R R R R R R R R R T
Jcond T T T T T
JCXZ
JMP
LAHF

:

LAR M
LDS/LES/LSS/LFS/LGS
LEA
LEAVE
LGDT/LiDT/LLDT/LMSW
LOCK
LODS T
LOOP
LOOPE/LOOPNE T
LSL M ..

LTR
MOV
MOVcontrol, debug - - - - - -
MOVS T
MOVSX/MOVZX
MUL M - - - -' M
NEG M M. M ·M M M
NOP
NOT.
OR 0 M M: M 0
OUT
OUTS T
POP/POPA
POPF R R R R R R R R R R
PUSH/PUSHNPUSHF
RCURCR 1 M TM
RCURCR count - TM
REP/REPE/REPNE
RET
ROUROR 1 M M
ROUROR count - M
SAHF R R R R R
SAUSAR/SHUSHR 1 M M M - M M
SAUSAR/SHUSHR count - M M - M M
SBB M M M M. M TM
SCAS M M M ,M M M T
SET cond ' T T T T T
SGDT/SIDT/SLDT/SMSW
SHLD/SHRD . - M M - ·M M
STC. 1
STD 1
STI 1

.,

STOS , T
STR
SUB M M M M M M
TEST 0 M M - M 0
VERRNERRW ·M
WAIT
WBINVD
XADD M M M M M M
XCHG
XLAT
XOR 0 M M - M 0

B-2

Status Flag Summary C

APPENDIX C
STATUS FLAG SUMMARY

C.1 . STATUS FLAGS' FUNCTIONS

Bit Name I Function

0 CF Carry Flag - Set on high-order bit carry or borrow; cleared otherwise.

2 PF Parity Flag - Set if low-order eight bits of result contain an even number
of 1 bits; cleared <;>therwise.

4 AF " Adjust Flag - Set on carry from or borrow to the low order four bits of
AL; cleared otherwise. Used for decimal arithmetic.

6 ZF Zero Flag - Set if result is zero; cleared otherwise.

7 SF Sign Flag - Set equal to high-order bit of result (0 is positive, 1 if
negative).

,

11 OF Overflow Flag - Set if result is too large a positive number or too small a
negative number (excluding sign-bit) to fit in destination operand;
cleared otherwise.

C.2 KEY TO CODES

T instruction tests flag

M instruction modifies flag
(either sets or resets depending on operands)

o instruction resets flag

instruction's effect on flag is undefined

blank instruction does not affect flag

Instruction OF SF ZF AF PF CF

AM - - - TM - M
AAS - - - TM - M

AAD - M M - M -
AAM - M M - M -

DAA - M M TM M TM
DAS - M M TM M TM

ADC M M M M M TM
ADD M M M M M M
XADD M M M M M M
SBB M M M M M TM
SUB M M M M M M

C-1

STATUS FLAG SUMMARY

Instruction OF SF ZF . AF PF CF

CMP M M M M M M
CMPS M M M M M M
CMPXCHG M M M M M M
SCAS M M M M M M
NEG M M M M M M

DEC M M M M M
INC M M M M M

IMUL M - - - - M
MUL M - - - - M

RCURCR 1 M TM
RCURCR coLint - TM
ROUROR 1 M M
ROUROR count - M
SAUSAR/SHUSHR 1 M M M - M M
SAUSAR/SHUSHR count - M M - M M

SHLD/SHRD - M M - M M
BSF/BSR - - M - - -
BT /BTS/BTR/BTC - - - - - M

AND 0 M M - M 0
OR 0 M M - M 0
TEST 0 M M - M 0
XOR 0 M M - M 0

C-2

Condition Codes o

APPENDIX D
CONDITION CODES

Note: The terms "above" and "below" refer to the relation between two unsigned values
(neither the SF flag nor the OF flag is tested). The terms "greater" and "less" refer to
the relation between two signed values (the SF and OF flags are tested).

0.1 DEFINITION OF CONDITIONS

(For conditional instructions Jcond, and SETcond)

Mnemonic Meaning
Instruction

Condition Tested
Subcode

0 Overflow 0000 OF = 1

NO No overflow 0001 OF = 0

B Below
0010 CF = 1

NAE Neither above nor equal

NB Not below
0011 CF = 0

AE Above or equal

E Equal
0100 ZF = 1

Z Zero

NE Not equal
0101 ZF = 0

NZ Not zero

BE Below or equal
0110 (CF or ZF) = 1

NA Not above

NBE Neither below nor equal
0111 (CF or ZF) = 0

A Above

S Sign 1000 SF = 1

NS No sign 1001 SF = 0

P Parity
1010 PF = 1

PE Parity even

NP No parity
1011 PF = 0

PO Parity odd

L Less
1100 (SF xor OF) = 1

NGE Neither greater nor equal

NL Not less
1101 (SF xor OF) = 0

GE Greater or equal

LE Less or equal
1110 ((SF xor OF) or ZF) = 1

NG Not greater

NLE Neither less nor equal
1111 ((SF xor OF) or ZF) = 0

G Greater

0-1

Instruction Format and
Timing

E

APPENDIX E
INSTRUCTION FORMAT AND TIMING

This appendix is an excerpt from the i486™ Processor Data Sheet.

E-1

INSTRUCTION FORMAT AND TIMING

10.1 i486TM Microprocessor
Instruction E~coding and Clock
Count Summary

To calculate elapsed time for an instruction, multiply
the instruction clock count, as listed in Tables 10.1
through 10.3 by the processor clock period (e.g.,
40 ns for a 25 MHz 486 microprocessor).

For more detailed information on the encodings of
instructions, refer to Section 10.2 Instruction Encod­
ings. Section 10.2 explains the general structure of
instruction encodings, and defines exactly the en­
codings of all fields contained within the instruction.

INSTRUCTION CLOCK COUNT ASSUMPTIONS

The 486 microprocessor instruction clock count ta­
bles give clock counts assuming data and instruction
accesses hit in the cache. A separate penalty col­
umn defines clocks to add if a data access misses in
the cache. The combined instruction and data cache
hit rate is over 90%.

A cache miss will force the 486 microprocessor to
run an external bus cycle. The 486 microprocessor
32-bit burst bus is defined as r- b -w.

Where:

r = The number of clocks in the first cycle of a
burst read or the number of clocks per data
cycle in a non-burst read.

b = The number of clocks for the second and sub­
sequent cycles in a burst read.

w = The number of clocks for a write.

The fastest bus the 486 microprocessor can support
is 2 -1 - 2 assuming 0 wait states. The clock counts
in the cache miss penalty column assume a 2 -1 - 2
bus. For slower busses add r-2 clocks to the cache
miss penalty for the first dword accessed. Other fac­
tors also affect instruction clock counts.

Instruction Clock Count Assumptions

1. The external bus is available for reads or writes at
all times. Else add clocks to reads until the bus is
available.

2. Accesses are aligned. Add three clocks to each
misaligned access.

3. Cache fills complete before subsequent accesses
to the same line. If a read misses the cache dur­
ing a cache fill due to a previous read or pre-fetch,
the read must wait for the cache fill to complete. If
a read or write accesses a cache line still being
filled, it must wait for the fill to complete.

4. If an effective address is calculated, the base
register is not the destination register of the pre­
ceding instruction. If the base register is the des­
tination register of the preceding instruction add
1 to the clock counts shown. Back-to-back
PUSH and POP instructions are not affected by
this rule.

5. An effective address calculation uses one base
register and does not use an index register.
However, if the effective address calculation
uses an index register, 1 clock may be added to
the clock count shown.

6. The target of a jump is in the cache. If not, add r
clocks for accessing the destination instruction
of a jump. If the destination instruction is not
completely contained in the first dword read, add
a maximum of 3b clocks. If the destination in­
struction is not completely contained in the first
16 byte burst, add a maximum of another r+ 3b
clocks.

7. If no write buffer delay, w clocks are added only
in the case in which all write buffers are full. Typi­
cally, this case rarely occurs.

8. Displacement and immediate not used together.
If displacement and immediate used together, 1
clock may be added to the clock count shown.

9. No invalidate cycles. Add a delay of 1 clock for
each invalidate cycle if the invalidate cycle con­
tends for the internal cache/external bus when
the 486 CPU needs to use it.

10. Page translation hits in TLB. A TLB miss will add
13, 21 or 28 clocks to the instruction depending
on whether the Accessed and/or Dirty bit in nei­
ther, one or both of the page entries needs to be
set in memory. This assumes that neither page
entry is in the data cache and a page fault does
not occur on the address translation.

11. No exceptions are detected during instruction
execution. Refer to Interrupt Clock Counts Table
for extra clocks if an interrupt is detected.

12. Instructions that read multiple consecutive data
items (i.e. task switch, paPA, etc.) and miss the
cache are assumed to start the first access on a
16-byte boundary. If not, an extra cache line fill
may be necessary which may add up to (r+ 3b)
clocks to the cache miss penalty.

E-2

INSTRUCTION FORMAT AND TIMING

Table 10.1.1486TM Microprocessor Integer Clock Count Summary

INSTRUCTION FORMAT Cac:heHlt Penalty If Noles
Cacl1eMI5s

INTEGER OPERATIONS

MOY = Move:

reg110reg2 1000100W 111 re!p reg21 1

reg2toreg1 1000101w 111 reg1 re92 1 1

memory to reg 1000101w 1 mod re~ rim 1 1 2

reg to memory 1000100w 1 mod reg rim 1 1

Immediate to reg 1100011 w 111000 reg 1 immediate data 1

or 1011w re!! 1 Immediate data 1

immediate to Memory 1100011w 1 mod 00 0 rim 1 displacement
immediate

1

Memory to Accumulator 1010000w 1 fun displacement 1 2

Accumulator to Memory 1010001w I full displacemenf 1

MOYSXlMOYZX ~ MovewUIl SlgnlZero Extension

reg2toreg1 1 00001111 1 1011 z11 w 111 reg1 reg21 3

memory to reg 1 00001111 1 1011 z11 w 1 mod re!! rim 1 3 2

z Instruction

0 MOVZX
1 MOV5X

PUSH = Push

reg 1 111 1 1111 111 110 re!!! 4

or 101010 reg 1 1

memory 1 1111 1111 1 mod 110 rIm I 4 1 1

immediate 1 01101050 !lmmediate data 1

PUSHA = Push All I 01100000 I 11

POP=- Pop

reg I 10001111 111 000 re!!! 4 1

or 101011 re!!1 1 2

memory 1 10001111 1 mod 000 rIm! 5 2 1

POPA = Pop All I 01100001 I 9 7115 16/32

XCHG = ExChange

reg1 with reg2 I 1000011w 111 reg1 re92! 3 2

Accumulator with reg 110010 regl 3 2

Memory with reg 1 1000011w 1 mod re!:! rim I 5 2

NOP = NoOperaUon I 10010000 I 1

LEA .. Load EA to Register I 10001101 1 mod reg rim I
no Index register 1
with Index register 2

E-3

INSTRUCTiON FORMAT AND TIMING

Table 10.1. i486TM Microprocessor Integer Clock Count Summary (Continued)

INSTRUCTION FORMAT Cache Hit Penalty If Notes
Cache Miss

INTEGER OPERATIONS (Continued)

Instrucllon TTl

ADD = Add 000

ADC = Add with Carry 010
AND = Logical AND 100

OR = Logical OR 001
SUB = Subtract 101
SBB = Subtract with Borrow 011
XOR = Logical Exclusive OR 110

reg 1 loreg2 I OOTTTOOw 11 reg1 reg21 1

reg2 to reg 1 I OOTTTOlw 11 regl reg21 1

memory to register I OOTTTOlw mod reg rim I 2 2

register to memory I OOTTTOOw mod reg rIm I 3 6/2 u/L

immediate to register I 100000sw 11 TTT reg I Immediate register .1

immediate to accumulator I OOTT T lOw I immediat~data 1

immediate 10 memory I 100000sw I mod TTT rim I immediate data 3 6/2 U/L

Instrucllon TTl

INC = Increment 000
DEC = Decrement 001

reg I l111111w 111 TTT regl 1

or 101 TTT regl 1

memory I lllllllw 1 mod TTT rim I 3 6/2 U/L

Instrucllon TTl

NOT = Logical Complement 010
NEG = Negate 011

reg I 1111011w 111 TTT reg I 1

memory I 1111011w ImodTTT rim I 3 6/2 U/L

CMP - Compare

reg 1 with reg2 I 0011100w 11 regl reg21 1

reg2 with regl I 0011101 w 11 regl reg21 1

memory with register I 0011100w mod reg rim I 2 2

register with memory I 0011101 w mod reg rim I 2 2

immediate with register I 100000sw 11 111 reg I immediate data 1

immediate with aec. I 0011110w immediate data 1

Immediate with memory I 100000sw mod 111 rim I Immediate data 2 2

TEST = Logical Compare

reg 1 and reg2 I 1000010w 11 regl reg21 1

memory and register I 1000010w mod reg rim I 2 2

Immediate and register I 1111011w 11 000 reg I Immediate data 1

Immediate and acc. I 1010100w Immediate data 1

immediate and memory I 1111011w mod 000 rIm I Immediate data 2 2

E-4

INSTRUCTION FORMAT AND TIMING

Table 10.1.1486TM Microprocessor Integer Clock Count Summary (Continued)

INSTRUCTION FORMAT Cache Hit Penalty If Notes
Cache Miss

INTEGER OPERATIONS (Continued)

MUL = Multiply (unsigned)

ace. with register I 1111011w 111 100 reg 1

Muiliplier-Byte 13/18 MN/MX,3

Word 13/26 MN/MX,3
Oword 13/42 MN/MX,3

ace. with memory I 1111011w I mod 100 rIm 1

Multiplier-Byte 13/18 1 MN/MX,3
Word 13/26 1 MN/MX,3
Oword 13/42 1 MN/MX,3

IMUL ... Integer MulUply (signed)

ace. with register I 1111011w 111 101 reg 1

Muillplier-Byte 13/18 MN/MX,3
Word 13/26 MN/MX,3
Oword 13/42 MN/MX,3

ace. with memory I 1111011w I mod 101 rIm 1

Multiplier-Byte 13/18 MN/MX,3
Word 13/26 MN/MX,3
Oword 13/42 MN/MX,3

reg1 with reg2 I 00001111 I 10101111 111 reg1 reg21

Multiplier-Byte 13/18 MN/MX,3
Word 13/26 MN/MX,3
Oword 13/42 MN/MX,3

register wlth memory I 00001111 I 10101111 I mod reI! rIm 1

Multiplier-Byte 13/18 1 MN/MX,3
Word 13/26 1 MN/MX,3
Oword 13/42 1 MN/MX,3

reg1 with Imm. to reg2 I 011010s1 111 reg1 reg21 immediate data

Multiplier-Byte 13/18 MN/MX,3
Word 13/26 MN/MX,3
Oword 13/42 MN/MX,3

memo with Imm. to reg. I 01101051 I mod reg rIm 1 Immediate data

Multiplier-Byte 13/18 2 MN/MX,3
Word 13/26 2 MN/MX,3
Oword 13/42 2 MN/MX,3

DIY = DlYlde(unsigned)

ace. by register I 1111011w 111 110 reg 1

Divisor-Byte 16
Word 24
Oword 40

ace. by memory I 1111011w I mod 110 rIm 1

Divisor -Byte 16
Word 24
Oword 40

IDlY = Integer Divide (signed)

ace. by register I 1111011 w 111 111 regl

Divisor -Byte 19
Word 27
Oword 43

E-5

INSTRUCTION FORMAT AND TIMING

Table 10.1.1486™ Microprocessor Integer Clock Count Summary (Continued)

INSTRUCTION FORMAT CacheHlt
Penalty If

Notes
Cache Miss

INTEGER OPERATIONS (Conlinued)

ace. by memory I 1111011w 1 mod 111 rIm 1

Divisor -Byt e 20

Word 28

Dword 44

CBW = Convert Byte to Word I 10011000 I 3

CWO = Convert Word to Dword I 10011001 I 3

Instruction TTT

ROL = Rotate Left 000
ROR = Rotate Right 001

RCL = Rotate through Carry Lelt 010
RCR = Rotate through Carry Right 011
SHUSAL = ShHt Logicai/Ari1hmelicLelt 100

SHR = ShHt Logical Right 101

SAR = Shilt Arithmetic Right 111

Not Through Carry (ROL, ROR, SAL, SAR, SH L, and SHR)

regby1 I 1101000w 11 TTT reg 1 3

memory by 1 I 1101000w mod TTT rIm 1 4 6

regbyCL I 1101001w 11 TTT reg 1 3

memorybyCL I 1101001w mod TTT rIm 1 4 6

reg by immediate count I 1100000w 11 TTT reg 1 immediate 8-bit data 2

mem by immediate count I 1100000w mod TTT rim 1 immediale6-bltdala 4 6

Through Carry (RCL and RCR)

regby1 I 1101000w 111 TTT re\11 3

memory by 1 I 1101000w mod TTT rim 1 4 6

regbyCL I 1101001w 11 TTT regl 8/30 MN/MX,4

memorybyCL I 1101001w mod TTT rim 1 9/31 MN/MX,5

reg by immediate count I 1100000w 11 TTT reg 1 immediate 8-bi1 data 8/30 MN/MX,4

mem by immediate count I 1100000w mod TTT rIm Ilmmediate8-bitdata 9/31 MN/MX,5

Instruction TTT

SHLD = ShHt Lelt Double 100
SHRD = Shitt Ri\1ht Double 101

register with Immediate 00001111 10TTT100 111 reg2 reg1 Ilmm 8-bit data 2

memory by Immediate 00001111 10TTT100 I mod reg rIm 1 imm 8-bit data 3 6

register by CL 00001111 10TTT101 111 reg2 reg11 3

memorybyCL 00001111 10TTT101 I mod re\! rIm 1 4 5

BSWAP = Byte Swap 00001111 11001 reg 1 1

XADD = Exchange and Add

reg1,reg2 I 00001111 1110000 Ow 111 reg2 reg11 3

memory, reg I 00001111 11100000w I mod reg rim 1 4 6/2 U/L

CMPXCHG = Compare and Exchange

reg1,Ieg2 I 00001111 11011000w 111 re\!2 reg11 6

memory,reg I 00001111 11011000w 1 mod reg rIm 1 7/10 2 6

E-6

INSTRUCTION FORMAT AND TIMING

Table 10.1.1486TM Microprocessor Integer Clock Count Summary (Continued)

INSTRUCTION FORMAT CaeheHlt Penalty If Notes
CaeheMls!

CONTROL TRANSFER (within segment)

NOTE: Times are jump taken/not taken

Jeee = Jump on eee

8-blt displacement I 0111 t" n I 8-bltdlsp. 1 3/1 TINT. 23

lull displacement I 00001111 I 1000lltn 1 lull displacement 3/1 T/NT.23

NOTE: Times are jump taken/not taken

SETeecc = Set Byte on ecce (TImes are ecce trueltalse)

reg I 00001111 I 100111tn 111 000 regl 4/3

memory I 00001111 I 1001tttn I mod 000 r/ml 3/4

Mnemonic
Condition tUn

eeee

0 OverflOW 0000
NO No Overflow 0001
BINAE BelowlNot Above or Equal 0010
NB/AE Not Below/Above or Equal 0011
E/Z Equal/Zero 0100
NEINZ Not EquailNot Zero 0101
BEINA Below or Equal/Not Above 0110
NBE/A Not Below or Equal/Above 0111
S Sign 1000

NS Not Sign 1001
PIPE Parily/Par~y Even 1010
NP/PO Not parity/Par~y Odd 1011
UNGE Less ThanlNot Greater or Equal 1100
NUGE Not Less Than/Greata' or Equal 1101
LEING Loss Than or Equal/Greater Than 1110
NLE/G Not Less Than or Equal/Greater Than 1111

LOOP ~ LOOP CX Times 11100010 8-bItdISP. 1 716 UNL.23

LOOPZ/LOOPE = Loop with 11100001 8-blt dlsp. I 9/6 UNL.23
Zero/Equal

LOOPNZ/LOOPNE = Loopwhlle 11100000 8-bltdlsp. 1 9/6 UNL.23
Not Zero

JCXZ = Jump on CX Zero 11100011 8-bil dlsp. 1 8/5 TINT. 23

JECXZ = Jump on ECX Zero 11100011 8-blt disp. I 8/5 TINT. 23

(Address Size Prefix Differentiates JCXZ lor JECXZ)

JMP = Unconditional Jump (within segment)

Short I 11101011 I 8-bit disp. 1 3 7.23

Direct I 11101001 I full displacement 3 7.23

Register Indirect I 11111111 111 100 reg 1 5 7.23

Memory Indirect I 11111111 I mod 100 rIm I 5 5 7

CALL ~ Call (within segment)

Direct I 11101000 I full displacement 3 7.23

Register Indirect I 11111111 111 010 reg 1 5 7.23

Memory Indirect I 11111111 I mod 010 rIm 1 5 5 7

RET = Return from CALL (within segment)

I 11000011 I 5 5

Adding Immediate to SP I 11000010 I 16-bit disp. I 5 5

E-7

INSTRUCTION FORMAT AND TIMING

Table 1 O.1.1486TM Microprocessor Integer Clock Count Summary (Continued)

INSTRUCTION FORMAT Cache Hit
penalty If

Notes
Cache MIss

CONTROL TRANSFER (within segment) (Continued)

ENTER = Enter Procedure I 11001000 116-b~ disp., 8-bitlev~
Level = 0 14
Level = 1 17
Level(L) > 1 17+3L 8

LEA VE = Leave Procedure I 11001001 I 5 1

MULTIPLE-SEGMENT INSTRUCTIONS

MOY = Move

reg. to segment reg. I 10001110 111 sre!i13 regl 3/9 0/3 RV/P, 9

memory to segment reg. I 10001110 I mod sreg3 rIm I 3/9 2/5 RV/P,9

segment reg. to reg. I 10001100 111 sreg3 reg I 3

segment reg. to memory I 10001100 I mod sreg3 rIm I 3

PUSH = Push

segment reg. I 00 0 sreg21 1 0 I 3
(ES, CS, SS, or OS)

segment reg. (FS or GS) I 00001111 110 sreg3000 I 3

POP = Pop

segment reg. 00 0 sreg21 1 1 3/9 2/5 RV/P, 9
(ES, SS, or OS)

segment reg. (FS or GS) 00001111 10 sreg30 0 1 I 3/9 2/5 RV/P,9

LOS = Load Pointer to OS 11000101 mod reg rIm I 6/12 7110 RV/P,9

LES = Load Pointer to ES 11000100 mod reg rIm I 6/12 7110 RV/P,9

LFS =;= Load Pointer to FS 00001111 10110100 I mod reg rIm I 6/12 7/10 RV/P,9

LGS = Load Pointer to GS 00001111 10110101 I mod reg rIm I 6/12 7/10 RV/P,9

LSS = Load Pointer to SS 00001111 10110010 I mod reg rIm I 6/12 7110 RV/P,9

CALL = Call

Direct intersegmenl I 10011010 I unsigned lull ollset, selector 18 2 R,7,22

to same level 20 3 P,9
thru Gate to same level 35 6 P,9
to inner level, no parameters 69 17 P,9
10 inner level, x parameter (d) words 77+4X 17+n P,11,9
toTSS' 37+TS 3 P,10,9
thruTask Gate 38+TS 3 P,10,9

Indirect intersegment I 11111111 I mod 011 rIm I 17 8 R,7

to same level 20 10 P,9
thru Gate to same level 35 13 P,9
to inner level, no parameters 69 24 P,9
10 inner level, x parameter (d) words 77+4X 24+n P,11,9
toTSS 37+TS 10 P,10,9
thruTask Gate 38+TS 10 P,10,9

RET = Return from CALL

intersegmenl I 11001011 I 13 8 R,7

to same level 17 9 P,9
10 outer level 35 12 P,9

intersegmenl adding I 11001010 I 16-bitdisp. I
imm.toSP

14 8 R,7
to same level 18 9 P,9
to outer level 36 12 P,9

E-8

INSTRUCTION FORMAT AND TIMING

Table 10.1.1486™ Microprocessor Integer Clock Count Summary (Continued)

INSTRUCTION FORMAT CacheHII
Penalty If

Notes
Cache Miss

MULTIPLE-SEGMENT INSTRUCTIONS (Continued)

JMP = Uncondillonal Jump

Direct intersegment I 11101010 I unsigned lull ollset, selector 17 ,2 R, 7, 22

to same level 19 3 P,9

thru Call Gate to same level 32 6 P,9

thruTSS 42+TS 3 P, 10, 9

thruTask Gate 43+TS 3 P, 10, 9

Indirect Intersogment I 11111111 I mod 101 rIm I 13 9 R,7,9

to same level 18 10 P,9

thru Call Gate to same level 31 13 P,9

thruTSS 41+TS 10 P,10,9

thruTask Gate 42+TS 10 P, 10,9

BIT MANIPULATION

BT = Test bit

register, immediate I 0000 1111 I 10111010 111 100 reg I imm. 8-bit data 3

memory, immediate I 00001111 I 101110 1 a I mod 100 rIm I imm. 8-bit data 3 1

regl,reg2 ' I 0000 1111 1101000 11 111 reg2 'regll 3

memory, reg I 00001111 I 10100011 I mod reg rIm I 8 2

Instrucllon TIT

BTS = Test Bit and Set 101
BTR = Test Bit and Reset 110
BTC = TeS1 Bit and Compliment 111

regiS1er, immediate
I I 00001111 I 10111010 111 TTT reg I imm. a-bit data 6

memory, immediate I 00001111 I 10111010 I mod TTT rIm I imm.a·bitdata a 210 u/L

regl, reg2 100001111 I 10TTTOll 111 reg2 reg 1 I 6

memory, reg I 0000 1111 I 10TTTOll I mod reg rIm I 13 3/1 u/L

BSF = Scan BII Forward

regl,reg2 I 00001111 I 10111100 111 reg2 regll 6/42 MN/MX,12

memory, reg I 00001111 I 10111100 I mod reg rIm I 7143 2 MN/MX,13

BSR = Scan Bit Reverse

regl,reg2 I 00001111 I 10111101 111 reg2 regll 61103 MN/MX,14

memory, reg I 00001111 I 10111101 I mod reg rIm I 71104 1 MN/MX, 15

STRING INSTRUCTIONS

CMPS = Compare Byte Word I 1010011w I a 6 16

LODS = Load Byte/Word I 1010110w I 5 2

to AUAX/EAX

MOVS = Move Byte/Word I 1010010w I 7 2 16

SeAS = Scan BytelWord I 1010111w I 6 2

STOS = Store Byte/Word I 1010101w I 5

IromAUAX/EX

XLAT = Translate String I 11010111 I 4 2

E-9

INSTRUCTION FORMAT AND TIMING

Table 10.1. i486TM Microprocessor Integer Clock Count Summary (Continued)

INSTRUCTION FORMAT Cache Hit Penalty If Notes
Cache Miss

REPEATED STRING INSTRUCTIONS

Repealed by Counl in CX or ECX (C = Count in CX or ECX)

REPE CMPS = Compare SIring I 11110011 I 1010011w I
(Find Non-Malch)
C=O 5
C>O 7+7c 16,17

REPNE CMPS = Compare SIring I 11110010 I 1010011w I
(Find Malch)
C=O 5
C>O 7+7c 16,17

REP LODS = Load String I 11110010 I 1010110w I
C=O 5
C>O 7+4c 16,18

REP MOVS = Move SIring I 11110010 I 1010010w I
C=O 5
C= 1 13 1 16
C>1 12+3c 16,19

REPE SCAS = Scan String I 11110011 I 1010111w I
(Find Non-AUAX/EAX)
C=O 5
C>O 7+50 20

REPNESCAS = Scan String I 11110010 I 1010111w I
(Find AU AX/EAX)
c=O 5
C>O 7+50 20

REP STOS = Slore SIring I 11110010 I 1010101w I
C=O 5
C>O 7+4c

FLAG CONTROL

CLC = Clear Carry Flag I 11111000 2

STC = Set Carry Flag I 11111001 2

CMC = Complement Carry Flag I 11110101 2

CLD = Clear Direction Flag I 11111100 2

STD = Set Direction Flag I 11111101 2

CLI = Clear Interrupt I 11111010 5
Enable Flag

STI = Set Interrupt I 11111011 I 5
Enable Flag

LAHF = Load AH Into Flag I 10011111 I 3

SAHF = Store AH Into Flags I 10011110 I 2

PUSHF = Push Flags I 10011100 I 4/3 AVIP

POPF = Pop Flags I 10011101 I 9/6 AVIP

DECIMAL ARITHMETIC

AAA = ASCII Adjust for Add I 00110111 I 3

AAS = ASCII Adjust for I 00111111 I 3

Subtract

AAM = ASCII Adjust tor I 11010100 I 00001010 I 15

MUltiply

E-10

INSTRUCTION FORMAT AND TIMING

Table 10.1. i486TM Microprocessor Integer Clock Count Summary (Continued)

INSTRUCTION FORMAT CacheHIt
Penalty If Notes

Cache Miss

DECIMAL ARITHMETIC (Continued)

AAD = ASCII Adjust for I 11010101 I 00001010 I 14

Divide

DAA = Decimal Adjustfor Add I 00100111 I 2

DAS = Decimal Adjust for Subtract I 00101111 I 2

PROCESSOR CONTROL INSTRUCTIONS

HLT = Halt I 11110100 I 4

MOV = MoveTo and From Control/DebuglTest Registers

CRO from register I 00001111 I 00100010 111 000 reg 1 17 2

CR2/CR3 from register I 00001111 00100010 1,1 ee e reg 1 4

Reg from CRO-3 I 00001111 00100000 111 cce reg I 4

ORO-3 from register 1 00001111 00100011 11 ccc re91 10

OR6-7 from regiS1er I 00001111 00100011 11 ccc reg 1 10

Register from OR6-7 I 00001111 00100001 11 ece re91 9

Register from ORO-3 I 00001111 00100001 11 eee reg I 9

TR3 from register I 00001111 00100110 11 011 re91 4

TR4-71rom regiS1er I 00001111 00100110 11 cee reg 1 4

Register from TR3 I 00001111 00100100 11 011 r091 3

Rogisterfrom TR4-7 I 00001111 00100100 11 cee regl 4

CLTS = Clear Task Switched Flag I 00001111 00000110 7 2

INVD = Invalidate Data Cache I 00001111 00001000 4

WBINVD = Write-Back and Invalidate I 00001111 00001001 I 5
Data Cache

INVLPG = InvalldateTLB Entry

INVLPG memory I 00001111 I 00000001 I mod 111 rIm I 12/11 H/NH

PREFIXBYTES

Address Size Prenx I 01100111 I 1

LOCK = Bus Lock Prenx I 11110000 I 1

Operand Size Prenx I 01100110 I 1

Segment Override Prenx

CS: 00101110 I 1

OS: 00111110 I 1

ES: 00100110 I 1

FS: 01100100 I 1

GS: 01100101 I 1

SS: I 00110110 I 1

E-11

INSTRUCTION FORMAT AND TIMING

Table 10.1.1486TM Microprocessor Integer Clock Count Summary (Continued)

INSTRUCTION FORMAT CacheHlt
Penalty If Notes

Cache Miss

PROTECTION CONTROL

ARPL = Adjust Requested Privilege Level

From register I 01100011 111 re21 re22 1 9

From memory I 01100011 I mod reg rIm 1 9

LAR = Load Access Rights

From register I 00001111 I 00000010 111 re21 re22 1 11 3

From memory I 00001111 I 00000010 I mod reH rIm 1 11 5

LGDT = Load Global Descriptor

Table register I 00001111 I 00000001 I mod 010 rIm 1 12 5

LIDT = Load Interrupt Descriptor

Table register I 00001111 I 00000001 I mod 011 rIm I 12 5

LLDT = Load Local Descriptor

Table register from reg. I 00001111 I 00000000 111 010 reg 1 11 3

Table register from memo I 00001111 I 00000000 I mod 010 rIm I 11 6

LMSW = Load Machine Status Word

From regiSler I 00001111 I 00000001 111 110 reg 1 13

From memory I 00001111 I 00000001 I mod 110 rIm I 13 1

LSL = Load Segment Umlt

From regiSlcr I 00001111 I 00000011 111 regl reg21 10 3

From memory I 00001111 I 00000011 I mod reg rIm 1 10 6

L TR = Load Task Register

From RegiSler I 00001111 I 00000000 111 001 reg 1 20

From Memory I 00001111 I 00000000 I mod 001 rIm 1 20

SGDT = Store Global Descriptor Table

I 00001111 1 00000001 I mod 000 rIm 1 10

SIDT = Store Interrupt Descriptor Table

I 00001111 I 00000001 I mod 001 rIm 1 10

SLDT = Store Local Descriptor Table

ToregiSler I 00001111 I 00000000 111 000 reg 1 2

To memory I 00001111 I 00000000 I mod 000 rIm 1 3

SMSW = Store Machine Status Word

ToreglSler I 00001111 I 00000001 111 100 reg\ 2

To memory I 00001111 I 00000001 I mod 100 rIm 1 3

STR = Store Task Register

ToregiSler I 00001111 I 00000000 111 001 reg 1 2

To memory I 00001111 I 00000000 I mod 001 rIm 1 3

VERR = Verify Read Access

Register I 00001111 I 00000000 111 100 rIm 1 11 3

Memory I 00001111 I 00000000 Imod 100 rIm 1 11 7

VERW = Verify Write Access

To register I 00001111 I 00000000 111 101 regl 11 3

To memory I 00001111 I 00000000 I mod 101 rIm 1 11 7

E-12

INSTRUCTION FORMAT AND TIMING

Table 10.1.1486TM Microprocessor Integer Clock Count Summary (Continued)

INSTRUCTION FORMAT Cache Hit
penalty If

Notes Cache Miss

INTERRUPT INSTRUCTIONS

INT n = Interrupt Type n I 11001101 I type I INT+4/0 AV/P,21

INT 3 = Interrupt Type 3 I 11001100 I INT+O 21

INTO = Interrupt 41f I 11001110 I
Overftow Flag Set
Taken INT+2 21
Not Taken 3 21

BOUND = Interrupt 51f Detect I 01100010 I mod reg rIm I
Value Out Range

II in range 7 7 21

" oul 01 range INT+24 7 21

IRET = Interrupt Return I 11001111 I
Real ModeNirtuai Mode 15 8

Protected Mode
To same level 20 11 9

To OU1er level 36 19 9

Tonestedlask(EFLAG5.NT = 1) T5+32 4 9,10

External Interrupt INT+11 21

NMI = Non-Maskable Interrupt INT+3 21

page Fault INT+24 21

VM86 ExcepUons
eLI INT+8 21

5TI INTH 21

INTn INT+9

PUSHF INT+9 21

POPF INT+8 21

IRET INT+9

IN

RxedPort INT+50. 21

Variable Port INT+51 21

OUT

RxedPort INT+50 21

Variable Port INT+51 21
INS INT+50 21

OUTS INT+50 21
REP INS INT+51 21

REPOUTS INT+51 21

Task Switch Clock Counts Table

Method
Value forTS

Cache Hit Miss Penalty

VM/486CPU/286 TSS To 486 CPU TSS 162 55
VM/486 CPU/286 TSS To 286 TSS 143 31
VM/486 CPU/286 TSS To VM TSS 140 37

E-13

INSTRUCTION FORMAT AND TIMING

Interrupt Clock Counts Table

Method

Real Mode

Protected Mode
Interrupt/Trap gate, same level
Interrupt/Trap gate, different level
Task Gate

Virtual Mode
Interrupt/Trap gate, different level
Task gate

Abbreviations
16/32
U/L
MN/MX
LlNL·
RV/P
R
P
T/NT
H/NH

NOTES:

Definition
16/32 bit modes
unlocked/locked
minimum/maximum
loop/no loop
real and virtual mode/protected mode
real mode
protected mode
taken/not taken
hit/no hit

Cache Hit

26

44
71

37 + TS

82
37 + TS

Value for INT

Miss Penalty

2

6
17
3

17
3

1. Assuming that the operand address and stack address fall in different cache sets.
2. Always locked, no cache hit case.
3. Clocks = 10 + max(log2(lml),n)

m = multiplier value (min clocks for m =0)
n = 3/5 for ±m

4. Clocks = {quotient(countloperand length»)·7 + 9
= 8 if count ~ operand length (8/16/32)

5. Clocks = {quotient(countloperand length»·7 + 9
= 9 if count ~ operand length (8/16/32)

6. Equal/not equal cases (penalty is the same regardless of lock).

Notes

9
9

9,10

10

7. Assuming that addresses for memory read (for indirection), stack push/pop, and branch fall in different cache sets.
8. Penalty for cache miss: add 6 clocks for every 16 bytes copied to new stack frame.
9. Add 11 clocks for each unaccessed descriptor load.
10. Refer to task switch clock counts table for value of TS.
11. Add 4 extra clocks to the cache miss penalty for each 16 bytes.
For notes 12-13: (b == 0-3, non-zero byte number);

(i = 0-1, non-zero nibble number);
(n = 0-3, non bit number in nibble);

12. Clocks = 8+4 (b+1) + 30+1) + 3(n+1)
= 6 if second operand = 0

13. Clocks = 9+4(b+1) + 3(i+1) + 3(n+1)
= 7 if second operand = 0

For notes 14-15: (n = bit position 0-31)
14. Clocks = 7 + 3(32 - n)

6 if second operand = 0
15. Clocks = 8 + 3(32-n)

7 if second operand = 0
16. Assuming that the two string addresses fall in different cache sets.
17. Cache miss penalty: add 6 clocks for every 16 bytes compared. Entire penalty on first compare.
18. Cache miss penalty: add 2 clocks for every 16 bytes of data. Entire penalty on first load.
19. Cache miss penalty: add 4 clocks for every 16 bytes moved.

(1 clock for the first operation and 3 for the second)
20. Cache miss penalty: add 4 clocks for every 16 bytes scanned.

(2 clocks each for first and second operations)
21. Refer to interrupt clock counts table for value of INT
22. Clock count includes one clock for using both displacement and immediate.
23. Refer to assumption 6 in the case of a cache miss.

E-14

INSTRUCTION FORMAT AND TIMING

Table 10.2.1486TM Microprocessor 1/0 Instructions Clock Count Summary

Real Protected Protected Virtuailltl INSTRUCTION FORMAT
Mode

Mode Mode
Mode Notes

(CPL-S:IOPL) (CPL>IOPL)

I/O INSTRUCTIONS

IN = Input from:

Fixed Port 1111001 Ow I port number I 14 9 29 27

Variable Port 1111011 Ow I 14 8 28 27

OUT - Output to:

FIxed Port 11110011 w port number I 16 11 31 29

VarlabloPort 11110111 w 16 10 30 29

INS - InputByte/Word 10110110W 17 10 32 30
from DXPort

OUTS" OutputByte/Word 10110111W 17 10 32 30 1
to DX Port

rEPINS-In ... S 111110010 011011 Ow I 16+8c 10+80 30+80 29+80 2

REP OUTS .. Output String 111110010 011 0111w I 17+50 11+50 31+50 30+50 3

NOTES:
1. Two clock cache miss penalty in all cases.
2. c = count in CX or ECX.
3. Cache miss penalty in all modes: Add 2 clocks for every 16 bytes. Entire penalty on second operation.

E-15

INSTRUCTION FORMAT AND TIMING

,Table 10.3.1486TM Microprocessor Floating Point Clock Count Summary

Cache Hit
Concurrent

Penalty If
Execution

INSTRUCTION FORMAT Avg(Lower Cache Miss. Avg(Lower Notes
Range ••• Range •••

Upper Range) Upper Range)

DATA TRANSFER

FLD = Real Load to ST(O)

32-1>11 memory , 111011 0011 m~ 000 rIm 1 lH-I>/disp. I 3 2

64-1>11 memory 111011 1011 mod 000 rIm 1 lH-I>/disp. I 3 3

80-1>11 memory 111 011 0111 mod 101 rIm 1 s-l-l>/disp. I 6 4

ST(i) 111 011 001111000 STO) I 4

FILD = Integer Load to ST(O)

16-1>11 memory 111011 1111 mod 000 rIm 1 lH-I>/disp. I 14.5(13-16) 2 4

32-1>11 memory 111011 0111mod 000 rIm 1 lH-I>/disp. I 11.5(9-12) 2 4(2-4)

64-1>11 memory 111 011 1111mod 101 rIm 1 lH-I>/disp. I 16.8(10-18) 3 7.8(2-8)

FBLD = BCD Load to ST(O) 1110'11 111 1 mod 100 rIm 1 lH-I>/disp. I 75(70-103) 4 7.7(2-8)

FST = Store Real from ST(O)

32-1>il memory 111011 0011 mod 010 rIm 1 lH-I>/disp. I 7 1

64-1>11 memory 111011 1 01 1 mod 010 rIm 1 s-l-l>/disp. I 8 2

ST(i} 111 011 101111010 ST(i} I 3

FSTP '" Store Real from ST(O) and Pop

32-1>11 memory 111011 0111 mod 011 rIm 1 lH-I>/disp. I 7 1

64-1>11 memory 111011 1011 mod 011 rIm 1 ~-b/dlsp. I 8 2

80-1>11 memory 111011 011 1 mod 111 rIm 1 lH-b/disp. I 6

ST(I} 111011 101111001 ST(OI 3

FIST = Store Integer from ST(O)

16-b11 memory 111011 1111 mod 010 rIm 1 lH-b/disp. I 33.4(29-34)

32-1>11 memory 111011 011 1 mod 010 rIm 1 lH-b/disp. I 32.4(28-34)

FISTP = Store Integer from ST(O) and POP

16-1>11 memory 11011 111 1 mod 011 rIm 1 s-l-b/disp. I 33.4(29-34)

32-1>11 memory 11011 011 1 mod 011 rIm 1 ~-b/disp. I 33.4(29-34)

64-b11 memory 11011 1111 mod 111 rIm 1 s-I-b/disp. I 33.4(29-34)

FBSTP - Store BCD from 11011 1111 mod 110 rIm 1 ~-b/disp. I 175(172-176)
ST(O) and Pop

FXCH .. ExchangeST(O) and ST(I} 11011 001111001 ST(OI 4

COMPARISON INSTRUCTIONS

FCOM = Compare ST(O) with Real

32-1>11 memory 111011 0001 mod 010 rIm I s-l-b/disp. I 4 2 1

64-1>11 memory 111011 1001 mod 010 rIm 1 lH-I>/disp. I 4 3 1

ST(i) 111011 000111010 ST(OI 4 1

FCOMP .. Compare ST(O) with Real and POP

32-1>11 memory 111011 000 I mod 011 rIm 1 lH-I>/disp. I 4 2 1

64-bl1memory 111011 1001 mod 011 rIm 1 lH-I>/disp. I 4 3 1

ST(i) 111011 000111011 ST(OI 4 1

E-16

INSTRUCTION FORMAT AND TIMING

Table 10.3.1486TM Microprocessor Floating Point Clock Count Summary (Continued)

Cache Hit Concurrent

Penalty If
Execution

INSTRUCTION FORMAT Avg(Lower Cache Miss Avg (Lower Noles
Range ••• Range •••

Upper Range) Upper Range)

COMPARISON INSTRUCTIONS (Continued)

FCOMPP = Compare ST(O) with 111011 110 111 01 10011 5 1
ST(I) and POP TWice

FICO .. = Compare ST(O) with Inleger

16-bil memory 111011 110 I mod 010 rIm I s-I-b/disp. I 18(16-20) 2 1

32-bil memory 111011 a 1 a I mod 010 rIm I s-l-b/disp. I 16.5(15-17) 2 1

FICOMP = Compare ST(O) with Inleger

16-bil memory 111011 110 I mod all rlml s-l-b/disp. I 18(16-20) 2 1

32-bil memory 111011 010 mod all rIm I s-l-b/disp. I 16.5(15-17) 2 1

FTST = Compare ST(O) with 0.0 111011 001 1110 01001 4 1

Fuca .. = Unordered compare 111011 101 11100 ST(OI 4 1
ST(O) with ST(I)

FUCOMP = Unordered compare 111011 101 11101 ST(ol 4 1
ST(O)wllh ST(I) and Pop

FUCOMPP = Unordered compare 111011 101 11101 10011 5 1
ST(O) with ST(I) and Pop Twice

FXAM = Examine ST(O) 111011 00111110 01011 8

CONSTANTS

FlOZ = Load + 0.0 Inlo ST(O) 111011 00111110 11101 4

FlO1 = Load + 1.0 Inlo ST(O) 111011 00111110 10001 4

FlOPI = Load W" Inlo ST(O) 111011 00111110 10111 8 2

FlOL2T = Load log2C10) Inlo ST(O) 111011 00111110 10011 8 2

FlOL2E = Load log2Ce) Into ST{O) 111011 00111110 10101 8 2

FlOLG2 = Load 10910(2) Inlo ST(O) 111011 00111110 1100 I 8 2

FlOLN2 = Load loge(2) Inlo ST(O) 111011 00111110 11011 8 2

ARITHMETIC

FADD = Add Real with ST{O)

ST(O) - ST(O) + 32-bil memory 111011 000 I mod 000 rIm I s-l-b/disp. I 10(8-20) 2 7(5-17)

ST(O) - ST(O) + 64-bil memory 111011 100lmod 000 rIm I s-I-b/disp. I 10(8-20) 3 7(5-17)

ST(d) - ST(O) + ST(O 111011 doolll000 ST(ol 10(8-20) 7(5-17)

FADDP = Add real with ST(O) and 111011 110 111 000 ST(ill 10(8-20) 7(5-17)
Pop (ST(I) - ST(O) + ST(I))

FSUB = Subtract real from ST{O)

ST(O) - ST(O) - 32-bil memory 111011 000 I mod 100 rIm I s-I-b/disp. I 10(8-20) 2 7{5-17)

ST(O) - ST(O) - 64-bil memory 111011 100lmod 100 rIm I s-I-b/disp. I 10(8-20) 3 7(5-17)

ST(d) - ST(O) - STro 111011 dOO 11110 1 ST(i) I 10(8-20) 7(5-17)

FSUBP = Subtract real from ST{O) 111011 110 11110 1 ST(ill 10{8-20) 7(5-17)
and Pop (ST(I) - ST(O) - ST{I»

E-17

INSTRUCTION FORMAT AND TIMING

Table'10 3 i486TM Microprocessor Floating Point Clock Count Summary (Continued) ..
Cache Hit

Concurrent
Execution

Penalty If
INSTRUCTION FORMAT Avg(Lower Cache Miss Avg(Lower Notes

Range ••• Range •••
Upper Range) Upper Range)

AR ITH METIC (Continued)

FSUBR = Subtractreal reversed (Subtract ST(O) from real)

ST(O) - 32·bit memory - ST(O) 111011 000 I mod 101 rIm I s-i-b/disp. I 10(8-20) 2 7(5-17)

ST(O) - 64-bit memory - ST(O) 111011 100 I mod 101 rIm I s-i-b/disp. I 10(8-20) 3 7(5-17)

ST(d) - ST(O - ST(O) 111011 doollll00 ST(O I 10(8-20) 7(5-17)

FSUBRP = Subtract real reversed 111 011 110111100 ST(OI 10(8-20) 7(5-17)
and Pop (ST(I) - ST(I) - ST(O))

FMUL = MulUplyreal with ST(O)

ST(O) - ST(O) x 32-bit memory 111 011 000 I mod 001 rIm I s-i-b/disp. I 11 2 8

ST(O) - ST(O) x 64-bit memory 111011 100 I mod 001 rIm I s.J-b/disp. I 14 3 11

ST(d) - ST(O) X ST(O 111011 dooll1001 ST(O I 16 13

FMULP = Multiply ST(O) with ST(I) 111011 110111001 ST(O I 16 13
and Pop (ST(I) - ST(O) X ST(I))

FDIV = DlvldeST(O) by Real

ST(O) - ST(0)/32-bit memory 111011 000 I mod 110 rIm I s.J-b/disp. I 73 2 70 3

ST(O) - ST(0)/64-bit memory 111011 100 I mod 100 rIm I s+b/disp. I 73 3 70 3

ST(d) - ST(O)/ST(i) 111011 dOO 111111 ST(O I 73 70 3

FDIVP = Divide ST(O) by ST(I) and 111011 110111111 ST(O I 73 70 3
Pop (ST(I) - ST(O)/ST(I»

FDIVR = Divide real reversed (Real/ST(O))

ST(O) - 32-bit memory/ST(O) 111011 000 I mod 111 rIm I s-i-b/disp. I 73 2 70 3

ST(O) - 64-bit memory/ST(O) 111011 100lmod 111 rIm I s-i-b/disp. I 73 3 70 3

ST(d) - ST(O/ST(O) 111011 dOO 111110 ST(Q I 73 70 3

FDIVRP = Divide real reversed and 111011 110111110 ST(Q I 73 70 3
Pop (ST(I) - ST(I)/ST(O»

FIADD = Add Integer to ST(O)

ST(O) - ST(O) + 16-bit memory 111011 110 I mod 000 rIm I s-i-b/disp. I 24(20-35) '2 7(5-17)

ST(O) - ST(O) + 32-bit memory 111011 010 I mod 000 rIm I s-i-b/disp. I 22.5(19-32) 2 7(5-17)

FISUB = Subtract Integer from ST(O)

ST(O) - ST(O) - 16-bit memory 111011 110 I mod 100' rIm I s.J-b/disp. I 24(20-35) 2 7(5-17)

ST(O) - ST(O) - 32-bit memory 111011 010 I mod 100 rIm I s-i-b/disp. I 22.5(19-32) 2 7(5-17)

FISUBR = Integer Subtract Reversed

ST(O) - 16-bit memory - ST(O) 111011 110 I mod 101 .r/m I s-i-b/disp. I 24(20-35) 2 7(5-17)

ST(O) - 32-bit memory - ST(O) 111011 010 I mod 101 rIm I s.J-b/disp. I 22.5(19-32) 2 7(5-17)

FIMUL = Multiply Integer with ST(O)

ST(O) - ST(O) X 16-bit memory 111011 110lmod 001 rIm I s-i-b/disp. I 25(23-27) 2 8

ST(O) - ST(O) X 32-bit memory 111011 ololmod 001 rIm I s.J-b/disp. I 23.5(22-24) 2 8

FIDIV = Integer Divide

ST(O) - ST(0)/16-blt memory 111011 110lmod 110 rIm I s-i-b/dlsp. I 87(85-89) 2 70 3

ST(O) - ST(0)/32-blt memory 111011 0101 mod 110 rIm I s-i-b/dlsp. I 85.5(84-86) 2 70 3

E-18

INSTRUCTION FORMAT AND TIMING

Table 10.3.1486™ Microprocessor Floating Point Clock Count Summary (Continued)

Cache Hit
Concurrent
Execution

Penalty If
INSTRUCTION FORMAT Avg(Lower Cache Miss Avg(Lower Notes

Range ••• Range •••
Upper Range) Upper Range)

ARITHMETIC (Continued)

FIDIVR = Integer Divide Reversed

ST(O) -16-bit memory/ST(O) 111011 11 olmod 111 r/ml s-i-b/disp. I 87(85-89) 2 70 3

ST(O) - 32-bit memory/ST(O) 111011 010 I mod 111 rIm I s-l-b/disp. I 85.5(84-86) 2 70 3

FSQRT = Square Root 111011 00111111 10101 85.5(83-87) 70

FSCALE = Scale ST(O) by ST(l) 111011 00111111 11011 31(30-32) 2

FXTRACT .. Extract components 111011 OOdllll 01001 19(16-20) 4(2-4)

ofST(O)

FPREM = Partial Reminder 111011 00111111 10001 84(70-138) 2(2-8)

FPREM 1 = ParUal Reminder (IEEE) 111011 00111111 01011 94.5(72-167) 5.5(2-18)

FRNDINT = Round ST(O) to Integer 111011 00111111 11001 29.1(21-30) 7.4(2-8)

FABS = Absolute value of ST(O) 111011 00111110 00011 3

FCHS = Change sign of ST(O) 111011 00111110 0000 I 6

TRANSCENDENTAL

FCOS = COsine of ST(O) 111011 00111111 11111 241(193-279) 2 6,7

FPTAN = ParUal tangent of ST(O) 111011 00111111 00101 244(200-273) 70 6,7

FPATAN = Partial arctangent 111011 00111111 00111 289(218-303) 5(2-17) 6

FSIN = Sine of ST(O) 111011 00111111 11101 241 (193-279) 2 6,7

FSINCOS = Sine and COsine of ST(O) 111011 00t/1111 1011 I 291 (243-329) 2 6,7

F2XM 1 = 2ST(O) - 1 111011 00111111 0000 I 242(140-279) 2 6

fYL2X = ST(l) x log2CST(O)) 111011 OOt/llll 00011 311(196-329) 13 6

FYL2XPl = ST(1) X log2CST(O) + 1.0) 111 01 1 00111111 10011 313(171-326) 13 6

PROCESSOR CONTROL

FINIT = InlUallzeFPU 111011 01111110 0011 I 17 4

FSTSW AX = Store status word 111011 11111110 0000 I 3 5
IntoAX

FSTSW = Store status word 111011 1011 mod 111 r/ml s-l-b/disp. I 3 5
Into memory

FLDCW = Load control word 111011 0011 mod 101 rIm I s-l-b/disp. I 4 2

FSTCW = Store control word 111011 0011 mod 111 rIm I s-l-b/disp. I 3 5

FCLEX = Clear excepUons 111011 01111110 00101 7 4

FSTENV = Store environment 111011 0011 mod 110 rIm I s-l-b/disp. I
Real and Virtual modes 16-bit Address 67 4
Real and Virtual modes 32-bit Address 67 4
Protected mode 16-bit Address 56 4
Protected mode 32-bit Address 56 4

FLDENV .. Load environment 111011 0011 mod 100 rIm I s-l-b/disp. I
Real and Virtual modes 16-bit Address 44 2
Real and Virtual modes 32-bit Address 44 2
Protected mode 16-b1t Address 34 2
Protected mode 32-bit Address 34 2

E-19

INSTRUCTION FORMAT AND TIMING

Table 10 3 i486TM Microprocessor Floating Point Clock Count Summary (Continued) ..
Concurrent

Cache Hit
Execution

Penalty If
INSTRUCTION FORMAT Avg(Lower Cache Miss Avg(Lower Notes

Range ••• Range •••
Upper Range) Upper Range)

PROCESSOR CONTROL (Conlinued)

FSA VE = Save state 111011 1011 mod 110 rIm 1 ~-b/disp. I
Real and Virtual modes 16-bit Address 154 4
Real and Vir1ual modes 32-bit Address 154 4
Protected mode 16-bit Address 143 4
Protected mode 32-bit Address 143 4

FRSTOR = Restore state 111 011 1011 mod 100 rIm 1 s~-bl I
Real and Virtual modes 16-bit Address 131 23
Real and Virtual modes 32-bit Address 131 27
Protected mode 16-bit Address 120 23
Protected mode 32-bit Address 120 27

FINCSTP = Increment Stack Pointer 111011 00111111 01111 3

FDECSTP = Decrement Stack Pointer 11 1 01 1 00111111 01101 3

FFREE = Free ST(I) 111011 101111000 ST(QI 3

FNOP = No operations 111011 00111101 00001 3

WArr = Walt until FPUready I 10011011 I
(Minimum/Maximum) 1/3

NOTES:
1. If operand is 0 clock counts = 27.
2. If operand is 0 clock counts = 28. .. .
3.lf CW.PC indicates 24 bit preCision then subtract 38 clocks.

If CW.PC indicates 53 bit precision then subtract 11 clocks.. .
4. If there is a numeric error pending from a previous instruction add 17 clocks ..
5.1f there is a numeric error pending from a previous instruction add 18 cloCks.. .
6. The INT pin is polled several times while this instruction is executing to assure short Interrupt latency.
7.lf ABS(operand) is greater than 1T'14 then add n clocks. Where n= (operand/(1T'14». .

encodings of the mod rIm byte indicate a second
10.2 Instruction Encoding addressing byte, the scale-index-base byte, follows

the mod rIm byte to fully specify the addressing
10.2.1 OVERVIEW mode.

All instruction encodings are subsets of the general
instruction format shown in Figure 10.1. Instructions
consist of one or two primary opcode bytes, possibly
an address specifier consisting of the "mod rIm"
byte and "scaled index" byte, a displacement if re­
quired, and an immediate data field if required.

Within the primary opcode or opcodes, smaller en­
coding fields may be defined. These fields vary ac­
cording to the class of operation. The fields define
such information as direction of the operation, size
of the displacements, register encoding, or sign ex­
tension.

Almost all instructions referring to an operand in
memory have an addressing mode byte following
the primary opcode byte(s). This byte, the mod rIm
byte, specifies the address mode to be used. Certain

Addre~sing modes can include a displacement i~­
mediately following the mod rIm byte, or scaled In­
dex byte. If a displacement is present, the possible
sizes are 8, 16 or 32 bits.

If the instruction specifies an immediate .operand,
the immediate operand follows any disp.'acement
bytes. The immediate operand; if specified, is always
the last field of the instruction.

Figure 10.1 illustrates several of the fields !hat can·
appear in an instruction, such as the mod .flel~ and
the rIm field, but the Figure does not show all fields.
Several smaller fields also appear in certain instruc­
tions, sometimes within the opcode bytes them­
selves. Table 10.4 is a complete list of all fields ap­
pearing in the 486 Microprocessor instructi~n set.
Further ahead, following Table 10.4, are detailed ta­
bles for each field.

E-20

INSTRUCTION FORMAT AND TIMING

ITT T T T T TTl T T T T T T TTl mod T T T rim I ss index base Id32116181 none data32 I 16 181 none

! o 7 01~\.76 5} 2 0 I\. I \.)
V T T

opcode "mod rim" "s·i·b" address immediate
(one or two bytes) , byte byte

I
displacement data

(T represents an v (4, 2, 1 bytes (4,2, 1 bytes
opcode bit.) register and address or none) or none)

mode specifier

Figure 10.1. General Instruction Format

Table 10.4. Fields within 1486TM Microprocessor Instructions

Field Name Description Number of Bits

w Specifies if Data is Byte or Full Size (Full Size is either 16 or. 32 Bits 1
d Specifies Direction of Data Operation 1
s Specifies if an Immediate Data Field Must be Sign· Extended 1
reg General Register Specifier 3
mod rIm Address Mode Specifier (Effective Address can be'a General Register) 2 for mod;

3 for rim
ss Scale Factor for Scaled Index Address Mode 2
index General Register to be used as Index Register 3
base General Register to be used as Base Register 3
sreg2 Segment Register Specifier for CS, SS, DS, ES 2
sreg3 Segment Register Specifier for CS, SS, DS, ES, FS, GS 3
tttn For Conditional Instructions, Specifies a Condition Asserted

or a Condition Negated

NOTE:
Tables 10.1-10.3 show encoding of individual instructions.

10.2.2 32-BIT EXTENSIONS OF THE
INSTRUCTION SET

With the 486 Microprocessor, the 8086/801861
80286 instruction set is extended in two orthogonal
directions: 32·bit forms of all 16·bit instructions are
added to support the 32·bit data types, and 32·bit
addressing modes are made available for all instruc­
tions referencing memory. This orthogonal instruc­
tion set extension is accomplished having a Default
(D) bit in the code segment descriptor, and by hav­
ing 2 prefixes to the instruction set.

Whether the instruction defaults to operations of 16
bits or 32 bits depends on the setting of the D bit in
the code segment descriptor, which gives the de­
fault length (either 32 bits or 16 bits) for both oper­
ands and effective addresses when executing that
code segment. In the Real Address Mode or Virtual
8086 Mode, no code segment descriptors are used,
but a D value of 0 is assumed internally by the 486

E·21

4

Microprocessor when operating in those modes (for
16·bit default sizes compatible with the 80861
80186/80286).

Two prefixes, the Operand Size Prefix and the Effec­
tive Address Size Prefix, allow overriding individually
the Default selection of operand size and effective
address size. These prefixes may precede any op·
code bytes and affect only the instruction they pre·
cede. If necessary, one or both of the prefixes may
be placed before the opcode bytes. The presence of
the Operand Size Prefix and the Effective Address
Prefix will toggle the operand size or the effective
address size, respectively, to the value "opposite"
from the Default setting. For example, if the default
operand size is for 32·bit data operations, then pres­
ence of the Operand Size Prefix toggles the instruc·
tion to 16·bit data operation. As another example, if
the default effective address size is 16 bits, pres­
ence of the Effective Address Size prefix toggles the
instruction to use 32·bit effective address computa·
tions.

INSTRUCTION FORMAT AND TIMING

These 32-bit extensions are available in all 486 Mi­
croprocessor modes, including the, Real Address
Mode or the Virtual 8086 Mode. In these modes the
default is always 16 bits, so prefixes are needed to
specify 32-bit operands or addresses. For instruc­
tions with more than one prefix, the .order of prefixes
is unimportant

Unless specified otherwise, instructions with 8-bit
and 16-bit operands do not affect the contents of
the high-order bits of the extended registers.

10.2.3 ENCODING OF INTEGER
INSTRUCTION FIELDS,

Within: the instruction are several fields indicating.
register selection, addressing mode and so on. The
exact encodings of these fields are defined immedi­
ately ahead.

10.2.3.1 En~odlng of Operand Length (w) Field

For any given instruction performing a data opera­
tion, the instruction is executing as a 32-bit operation
or a 16-bit operation. Within the constraints of the
operation size, the w field encodes the operand size
as either one byte or the full operation size, as
shown in the table below.

Operand Size Operand Size
wFleld During 16-BIt During 32-Blt

Data Operations Data OperatIons

0 8 Bits 8 Bits
1 16 Bits 32 Bits

10.2.3.2 Encoding of the General
RegIster (reg) Field

The general register is specified by the reg field,
which may appear in the primary opcode bytes, or as
the reg field of the "mod rim" byte, or as the rim
field of the "mod rim" byte. '

E-22

Encoding of reg Field When w Field
is not Present In Instruction

RegIster Selected Register Selected
reg Field During 16-Blt During 32~Blt

Data Operations Data Operations

000 AX EAX
001 CX ECX
010 OX ,EOX
011, BX EBX
100 SP ESP
101 BP EBP
110 SI ESI
111 01 EOI

Encoding of reg Field When w Field
Is Present In Instruction

Register Specified by reg Field
During i6-Blt Data Operations:

Function of w Field
reg

(when w = 0) (when w = 1)

000 AL AX
001 CL . CX
010 OL OX
011 BL BX
100 AH SP
101 CH BP
110 OH SI
111. ' BH 01

RegIster Specified by reg Field
During 32-8it Data Operations

Function of w Field
reg

(when w = 0) (when w = 1)

- 000 AL EAX
001 ' CL ECX
010 OL EOX
011 BL EBX
100 AH ESP
101 CH EBP
110 , OH ESI
111 BH EOI

INSTRUCTION FORMAT AND TIMING

10.2.3.3 Encoding of the Segment
Register (sreg) Field

The sreg field in certain instructions is a 2-bit field
allowing one of the four 80286 segment registers to
be specified. The sreg field in other instructions is a
3-bit field, allowing the 486 Microprocessor FS and
GS segment registers to be specified.

2·Bit sreg2 Field

2·Bit
Segment

sreg2 Field
Register
Selected

00 ES
01 CS
10 SS
11 DS

3·Bit sreg3 Field

3·Blt
Segment

sreg3 Field
Register
Selected

000 ES
001 CS
010 SS
011 DS
100 FS
101 . GS
110 do not use
111 do not use

10.2.3.4 Encoding of Address Mode

Except for special instructions, such as PUSH or
POP, where the addressing mode is pre-determned,
the addressing mode for the current instruction is
specified by addressing bytes following the primary
opcode. The primary addressing byte is the "mod
rIm" byte, and a second byte of addressing informa­
tion, the "s-i-b" (scale-index-base) byte, can be
specified.

The s-i-b byte (scale-index-base byte) is specified
when using 32-bit addressing mode and the "mod
rIm" byte has rIm = 100 and mod = 00, 01 or 10.
When the sib byte is present, the 32-bit addressing

, mode is a function of the mod, ss, index, and base
fields.

The primary addressing byte, the "mod rIm" byte,
also contains three bits (shown as TTT in Figure
10.1) sometimes used as an extension of the pri­
mary opcode. The three bits, however, may also be
used as a register field (reg).

When calculating an effective address, either 16-bit
addressing or 32-bit addressing is used. 16-bit ad­
dressing uses 16-bit address components to calcu­
late the effective address while 32-bit addressing
uses 32-bit address components to calculate the ef­
fective address. When 16-bit addressing is used, the
"mod rIm" byte is interpreted as a 16-bit addressing
mode specifier. When 32-bit addressing is used, the

. "mod rIm" byte is interpreted as a 32-bit addressing
mode specifier.

E-23

Tables on the following three pages define all en­
codings of all 16-bit addressing modes and 32-bit
addressing modes.

INSTRUCTION FORMAT AND TIMING

Encoding of 16·blt Address Mode with "mod rIm" Byte

mod rIm Effective Address mod rIm Effective Address

00000 OS:[BX+SI] 10000 OS:[BX+SI+d16]
00001 OS:[BX+ 01] 10001 OS:[BX+01+d16]
00010 SS:[BP+SI] 10010 SS:[BP+ SI+ d16]
00011 SS:[BP+ 01] 10011 SS:[BP+ 01+ d16]
00100 OS:[SI] 10100 OS:[SI+d16]
00101 OS:[OI] 10101 OS:[01+d16]
00110 OS:d16 10110 SS:[BP+d16]
00111 OS:[BX] 10111 OS:[BX + d16]

01000 OS:[BX+SI+d8] 11000 register-see below
01001 OS: [BX + 01 + d8] 11 001 register-see below
01010 SS:[BP+ SI+ dB] 11 010 register-see below
01 011 SS:[BP+ OI+dB] 11 011 register-see below
01 100 OS:[SI+ d8] 11 100 register-see below
01101 OS:[01+d8] 11101 . register-see below
01110 SS:[BP+d8] 11110 register-see below
01111 OS:[BX+d8] 11 111 register-see below

Register Specified by rIm Register Specified by rIm
During 16·Bit Data Operations During 32·Bit Data Operations

mod rIm Function of w Field
mod rIm Function of w Field

(whenw=O) (whcm w = 1) . (when w=O) (when w = 1)

11000 AL AX 11000 AL EAX
11 001 CL CX 11 001 CL ECX
11 010 OL OX 11010 OL EOX
11 011 BL BX 11 011 BL EBX
11 100 AH SP 11100 AH ESP
11101 CH BP 11101 CH EBP
11110 OH SI 11110 OH ESt
11 111 BH 01 11111 BH EOI

E-24

INSTRUCTION FORMAT AND TIMING

Encoding of 32·bit Address Mode with "mod rIm" byte (no. "s·l·b" byte present):

mod rIm Effective Address mod rim Effective Address

00000 OS:[EAX] 10000 OS:[EAX+ d32]
00001 OS:[ECX] 10001 DS: [ECX + d32]
00010 OS:[EOX] 10010 OS:[EOX+d32]
00011 OS:[EBX] 10011 OS:[EBX+ d32]
00100 s-i-b is present 10100 s-i-b is present
00101 OS:d32 10101 SS:[EBP+ d32]
00110 OS:[ESI] 10110 DS:[ESI+ d32]
00111 DS:[EDI] 10111 DS:[EDI+ d32]

01000 DS:[EAX+ d8] . 11 000 register-see below
01001 DS:[ECX+ d8] 11 001 register-see below
01010 OS:[EOX+d8] 11 010 register-see below
01 011 OS:[EBX+ d8] 11 011 register-see below
01100 s-i-b is present 11100 register-see below
01101 SS:[EBP+ d8] 11 101 register-see below
01110 DS:[ESI+ d8] 11110 register-see below
01 111 DS:[EDI+ d8] 11 111 register-see below

Register Specified by reg or rIm Register Specified by reg or rIm
during 16-8it Data Operations: during 32-8it Data Operations:

mod rIm Function of w field
mod rIm FUnction of w field

(when w=O) (when w= 1) (when w=O) (when w= 1)

11 000 AL AX 11 000 AL EAX
11 001 CL CX 11 001 CL ECX
11 010 DL OX 11 010 OL EOX
11 011 BL BX 11 011 BL EBX
11100 AH SP 11 100 AH ESP
11101 CH BP 11 101 CH EBP
11 110 OH SI 11 110 OH ESI
11 111 BH 01 11 111 BH EOI

E-25

INSTRUCTION FORMAT AND TIMING

Encoding of 32·blt Address Mode ("mod rIm" byte and "s·l·b" byte present):

mod base Effective Address

00000 OS: [EAX + (scaled index)]
00001 OS: [ECX + (scaled index)]
00010 OS:[EOX + (scaled index)]
00011 OS: [EBX + (scaled index)]
00100 SS:[ESP+ (scaled index)]
00101 OS: [d32 + (scaled index)]
00110 OS:[ESI+ (scaled index)]
00111 OS: [EOI + (scaled index)]

01000 OS: [EAX + (scaled index) + d8]
01001 OS: [ECX + (scaled index) + d8]
01010 OS:[EOX+ (scaled index) + d8]
01 011 OS:[EBX+ (scaled index) + d8]
01100 SS: [ESP+ (scaled index) + d8]
01101 SS:[EBP+ (scaled index)+d8]
01110 OS:[ESI+ (scaled index) + d8]
01111 OS: [EOI + (scaled index) + d8]

10000 OS: [EAX + (scaled index) + d32]
10001 OS: [ECX + (scaled index) + d32]
10010 OS: [EOX + (scaled index) + d32]
10011 OS: [EBX -+ (scaled index) + d32]
10100 SS:[ESP+ (scaled index) + d32]
10101 SS:[EBP+ (scaled index)+d32]
10110 OS:[ESI+ (scaled index)+ d32]
10111 OS: [EOI + (scaled index) + d32]

NOTE:
Mod field in "mod rIm" byte; ss, index, base fields in
"s-i-b" byte.

5S Scale Factor

00 x1
01 x2
10 x4
11 x8

Index Index Register

000 EAX
001 ECX
010 EOX
011 EBX
100 no index reg*"
101 EBP
110 ESI
111 EOI

"IMPORTANT NOTE:
When index field is 100, indicating "no index register," then
55 field MUST equal 00. If index is 100 and 5S does not
equal 00, the effective address is undefined.

E-26

INSTRUCTION FORMAT AND TIMING

10.2.3.5 Encoding of Operation
Direction (d) Field

In many two-operand instructions the d field is pres­
ent to indicate which operand is considered the
source and which is the destination.

d Direction of Operation

0 Register/Memory <- - Register
"reg" Field Indicates Source Operand;
"mod r/m" or "mod ss index base" Indicates
Destination Operand

1 Register <- - Register/Memory
"reg" Field Indicates Destination Operand;
"mod r/m" or "mod ss index base" Indicates
Source Operand

10.2.3.6 Encoding of Sign-Extend (s) Field

The s field occurs primarily to instructions with im­
mediate data fields. The s field has an effect only if
the size of the immediate data is 8 bits and is being
placed in a 16-bit or 32-bit destination.

Effect on
s Immediate

Data8

0 None

1 Sign-Extend Data8 to Fill
16-Bit or 32-Bit Destination

10.2.3.7 Encoding of Conditional
Test (tUn) Field

Effect on
Immediate
Data 16/32

None

None

For the conditional instructions (conditional jumps
and set on condition), tun is encoded with n indicat­
ing to use the condition (n = 0) or its negation (n = 1),
and ttt giving the condition to test.

E-2?

Mnemonic Condition

0 Overflow
NO No Overflow
BINAE Below/Not Above or Equal
NB/AE Not Below/Above or Equal
E/Z Equal/Zero
NE/NZ Not Equal/Not Zero
BEINA Below or EquallNot Above
NBE/A Not Below or Eq uall Above
S Sign
NS Not Sign
PIPE Parity/Parity Even
NP/PO Not Parity/Parity Odd
LlNGE Less Than/Not Greater or Equal
NLIGE Not Less Than/Greater or Equal
LEING Less Than or Equal/Greater Than
NLE/G Not Less or Equal/Greater Than

10.2.3.8 Encoding of Control or Debug
or Test Register (eee) Field

tUn

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

For the loading and storing of the Control, Debug
and Test registers.

When Interpreted as Control Register Field

eee Code Reg Name

000 CRO
010 CR2
011 CR3

Do not use any other encoding

When Interpreted as Debug Register Field

eee Code Reg Name

000 DRO
001 DR1
010 DR2
011 DR3
110 DR6
111 DR?

Do not use any other encoding

When Interpreted as Test Register Field

eee Code Reg Name

011 TR3
100 TR4
101 TR5
110 TR6
111 TR?

Do not use any other encoding

INSTRUCTION FORMAT AND TIMING

Instruction

l'

2

3

4

5

11011

11011

11011

11011

11011

15-11

First Byte

OPA

MF

d P

0 0

0 1

10 9

1

OPA

OPA

1

1

8

10.2.4 ENCODING OF FLOATING POINT
INSTRUCTION FIELDS

mod

mod

1

1

1

7

Instructions for the FPU assume one of the five
forms shown in the following table. In all cases, in­
structions are at least two bytes long and begin with
the bit pattern 11011 B.

OP = Instruction opcode, possible split into two
fields OPA and OPB .

MF = Memory Format
00-32-bit real
01-32-bit integer
1 0-54-bit real
11-16-bit integer

P = Pop
O-Do not pop stack
1-Pop stack after operation

d = Destination
O-Destination is ST(O)
1-Destination is ST(i)

1

1

1

6

Optional

Second Byte Fields

1 I OPB rIm s-i-b.

OPB rIm s-i-b

OPB ST(i)

1 1 OP

1 I OP

5 4 3 2 1 0

R XOR d = O-Destination (op) Source
R XOR d = 1-Source (op) Destination

ST(i) = Register stack element i
000 = Stack top
001 = Second stack element

•
•
•

111 = Eighth stack element

I disp

I' disp

mod (Mode field) and rIm (Register/Memory specifi­
er) have the same interpretation as the correspond­
ing fields of the integer instructions.

s-i-b (Scale Index Base) byte and disp (displace­
ment) are optionally present in instructions that have
mod and rIm fields. Their presence depends on the
values of mod and rIm, as for integer instructions.

E-28

Numeric Exception Summary F

APPENDIX F
NUMERIC EXCEPTION SUMMARY·

The following table lists the instruction mnemonics in alphabetical order. For each mne­
monic, it summarizes the exceptions that the instruction· may cause. When writing nu­
meric programs that may be used in an environment that employs numerics exception
handlers, assembly-language programmers should be aware of the possible exceptions
for each instruction in order to determine the need for exception synchronization.
Chapter 18 explains the need for exception synchronization.

Mnemonic Instruction IS I 0 Z 0 U P

F2XM1 2X-1 Y ,Y Y Y Y
FABS Absolute value Y
FADD(P) Add real Y Y Y Y Y Y
FBLD BCD load Y
FBSTP BCD store and pop Y Y Y
FCHS Change sign Y
FCLEX Clear exceptions
FCOM(P)(P) Compare real Y Y Y
FCOS Cosine Y Y Y Y Y
FDECSTP Decrement stack pointer
FDIV(R)(P) Divide real Y Y Y Y Y Y Y
FFREE Free register
FIADD Integer add Y Y Y Y Y Y
FICOM(P) Integer compare Y Y Y
FIDIV Integer divide Y Y Y Y Y Y
FIDIVR Integer divide reversed Y Y Y Y Y Y Y
FILD Integer load Y
FIMUL Integer multiply Y Y Y Y Y Y
FINCSTP Increment stack pointer
FINIT Initialize processor
FIST(P) Integer store Y Y Y
FISUB(R) Integer subtract Y Y Y Y Y Y
FLD extended or stack Load real Y
FLD single or double Load real Y Y Y
FLD1 Load + 1.0 Y
FLDCW Load Control word Y Y Y Y Y Y Y
FLDENV Load environment Y Y Y Y Y Y Y
FLDL2E Load log2e Y
FLDL2T Load log21 0 Y
FLDLG2 Load log102 Y
FLDLN2 Load 10ge2 Y
FLDPI Load 'IT Y
FLDZ Load + 0.0 Y
FMUL(P) Multiply real Y Y Y Y Y Y
FNOP No operation
FPATAN Partial arctangent Y Y Y Y Y
FPREM Partial remainder Y Y Y Y
FPREM1 IEEE partial remainder Y Y Y Y
FPTAN Partial tangent Y Y Y Y Y
FRNDINT Round to integer Y Y Y Y
FRSTOR Restore state Y Y Y Y Y Y Y
FSAVE Save state
FSCALE Scale Y Y Y Y Y Y

F-1

NUMERIC EXCEPTION SUMMARY

Mnemonic Instruction IS I 0 Z 0 U P

FSIN Sine Y Y Y Y Y
FSINCOS Sine and cosine Y Y Y Y Y
FSQRT Square root Y Y Y Y
FST(P) stack or Store real Y
extended
FST(P) single or double Store real Y Y Y Y Y Y
FSTCW Store control word
FSTENV Store environment
FSTSW (AX) Store status word
FSUB(R)(P) Subtract real Y Y Y Y Y Y
FTST Test Y Y Y
FUCOM (P) (P) Unordered compare real Y Y Y
FWAIT CPU Wait
FXAM Examine
FXCH Exchange registers Y
FXTRACT Extract Y Y Y Y
FYL2X Y·log2X Y Y Y Y Y Y Y
FYL2XP1 y. log2(X + 1) Y Y Y Y Y

IS - Invalid operand due to stack overflow/underflow
I - Invalid operand due to other cause
o - Denormal operand
Z - Zero-divide
o - Overflow
U - Underflow
P - Inexact result (precision)

F-2

Code Optimization G

APPENDIX G
CODE OPTIMIZATION

The i486 ™ processor is binary-compatible with the 386 ™ OX and SX processors. Only
three new application-level instructions have been added, which are useful in special
situations. Any existing 8086/8088, 80286 and 386 processor applications will be able to
execute on the i486 processor immediately without any modification or recompilation.
Any compiler that currently generates code for the 386 processor family will also gener­
ate code that will run on the i486 processor without any m'odifications.

However, there are certain code-optimization techniques which will make applications
execute faster on the i486 processor with only minor or no change to their performance
on the 386 OX or SX processor, except possibly for code size differences. These tech­
niques have to do with instruction sequence selection and instruction scheduling to take
advantage of the internal pipelined execution units of the i486 processor and the large
on-chip cache.

G.1 ADDRESSING MODES

Like the 386 processors, the i486 processor needs an additional clock cycle to generate
an effective address when an index register is used. Therefore, if only one indexing
component is used (i.e., not both a base register and an index register), and scaling is not
necessary, then it is faster to use the register as a base rather than an index. For
example:

mov eax, [esil
mov eax, [esi*l

use esi as base
use esi as index, 1 clock penalty

If both base and index are used, or if scale indexing is necessary, then it is faster to use
the combined addressing mode, even though it will take an additional clock cycle to
execute.

When a register is used as the base component, an additional clock cycle is used if that
register is the destination of the immediately preceding instruction (assuming all instruc­
tions are already in the prefetch queue). So to get the best performance, the two instruc­
tions should be separated by at least one other instruction. For example:

add esi, eax
mov eax, [esil

esi is destination register
esi is base, 1 clock penalty

There are other hidden or implicit usages of destination and base registers, primarily the
stack pointer register ESP. The ESP register is the implicit base of all PUSH/POP/RET
instructions and it is the implicit destination for the CALL/ENTER/LEA VE/RET/
PUSH/POP instruction. Therefore a LEAVE instruction followed immediately by a
RET instruction will use one additional clock. But if the LEAVE and RET are rear­
ranged so that they are separated by another instruction, then no such penalty is en­
tailed. (See other recommendations regarding the LEAVE instruction.)

G-1

CODE OPTIMIZATION

It is not necessary to separate back-to-back PUSH/POP instructions. The i486 processor
will allow this sequence without incurring an additional clock.

All ~uch instruction rearrangements of the instructions will not affect the performance of
386 processors.

The i486 processor will also take an additional clock to execute an instruction that has
both an immediate data field and a memory offset field. For example:

mov dword p~r foo, 1234h
mov dword ptr baz, 1234h
mov [ebp-2"" 1 , 1234h

both immediate and memory offset

When it is necessary to use constants, it would still be more efficient to use immediate
data instead of loading the constant into a register first. But if the same immediate data
is used more than once, then it would be faster to load the constant in a register and
then use the register multiple times. This optimization will not affect the performance of
386 processors. The followirig sequence is faster than the one above, if all instructions
are in the prefetch queue, and because the instructions are shorter, it will actually make
it easier to prefetch:

mov eax, 1234h
mov dword ptr foo, eax
mov dword ptr baz, eax
mov [ebp-2""l, eax

G.2 PREFETCH UNIT

The i486 processor prefetch unit will access the on-chip cache to fill the prefetch queue
whenever the cache is idle, and there is enough room in the queue for another cache line
(16 bytes). If the prefetch queue becomes empty, it can take up to three additional
clocks to start the next instruction. The prefetch queue is 32 bytes in size (2 cache lines).

Because data accesses always have priority over prefetch requests, keeping the cache
busy with data access can lock out the prefetch unit.

Therefore it is important to arrange the instructions so that the memory bus is not used
continuously by a series of memory reference instructioris. The instructions should be
rearranged so that there is a non-memory referencing instruction (such as a register/

G-2

CODE OPTIMIZATION

register instruction) at least two clocks before the prefetch queue becomes exhausted.
This will allow the prefetch unit to transfer a cache line into the queue. For example:

Instruction Length

mov mem, 1234567h 10 bytes

mov mem, 1234567h 10 bytes

mov mem, 1234567h 10 bytes

mov mem, 1234567h 10 bytes

mov mem, 1234567h 10 bytes

add reg, reg 2 bytes

If the prefetch queue started out full, then by the third MOV instruction, there is
enough room for another cache line in the queue, but because the memory bus is con­
tinuously being used, there is no time for the transfer from the cache to the prefetch
queue. If a non-memory instruction is not inserted before or after the third MOV in­
struction, the queue will be exhausted by the fourth MOV instruction. In this case, the
instructions should be rearranged so the ADD instruction is before or after the third
MOV instruction, to allow the cache to transfer another instruction line to the prefetch
unit.

No such rearrangements of the instructions will affect the performance of the 386 DX
processor.

G.3 CACHE AND CODE ALIGNMENT

On the 386 DX processor, the destination of any JUMP/CALL/RET instructions should
be aligned on a O-mod-4 address, this helps the instruction prefetch unit in filling the
prefetch queue as quickly as possible, since fetches are done 4-bytes at a time on aligned
boundaries. On the i486 processor, because of the on-chip cache, any instruction fetch
will fetch 16 bytes to fill a cache line. Therefore better performance can be obtained by
aligning JUMP/CALL/RET destinations at O-mod-16 addresses.

However, aligning at O-mod-16 will cause the code to grow bigger, and the tradeoff
between execution speed and code size is important.

Therefore, it is recommended that only the function entry address (i.e., destination of
CALL instructions) be aligned on a O-mod-16 address; while all labels (i.e., destination
of JUMP instructions) will continue to be aligned on O-mod-4 addresses.

On the i486 processor, it takes up to five additional clocks to start execution of an
instruction if it is split across two 16-byte cache lines. For example, if a CALL instruction
ends at address OxOOOOOOOE and the next instruction is a multiple-byte instruction, then

G-3

CODE OPTIMIZATION

upon return from the CALL, the processor must take five additional clocks to fill the
prefetch queue if the target instruction is not already in the cache. Even if the target
instruction is already in the cache, it will take an additional 2 clocks to transfer it into
the prefetch unit. .

So if the compiler knows the alignment of the destination, then it will be faster to insert
a filler instruction so that the multiple-byte instruction starts on an aligned address. This
can be done either by rearranging the instructions or actually inserting a Nap
instruction.

Such instruction alignments will also improve the performance on the 386 processors.

G.4 NOP INSTRUCTIONS

Sometimes programs need filler between instructions to align them. On the 386 and i486
processors, there is a one-byte Nap instruction which is really an exchange EAX with
EAX.

Other lengths can be executed in a single clock. The table below lists some.

1-byte inc reg will modify register and flags
2-bytes mov reg, reg true NOP
3-bytes lea reg, 0[regJ true NOP, use 8-bit displacement
5-bytes mov eax, 0 will modify eax register
5-bytes add eax, 0 will modify flags
b-bytes lea reg, 0[eaxJ true NOP, use 32-bit displacement

Additionally, many of the 386/i486 processor instructions have several forms and lengths,
using different-sized immediate data or different-sized memory offsets. Also some in­
structions have shorter forms if the destination register is EAX/AX/AL.

Not all instructions with different forms will execute in the same clocks. An example
where different forms will execute in different clocks is the PUSH/POP REG instruc­
tions, if they are coded in the one-byte form, they will execute in one clock, but if coded
in the 2-byte form, they will execute in 4 clocks.

The Nap replacement instructions will also execute faster than the XCHG instruction
on 386 processors. Using different forms of the same instruction will not affect perfor­
mance on the 386 processor.

G-4

CODE OPTIMIZATION

G.S INTEGER INSTRUCTIONS

The i486 processor can execute most of the frequently-used instructions (such as register
load/store, register ALU operations, etc.) in one clock. However, unlike the 386 proces­
sor, some of the memory operations now take more clocks than the corresponding reg­
ister instructions. For example, the PUSH MEM instruction:

Instruction 386'" OX CPU Clocks 1486 ™ CPU Clocks

mov reg, mem 4 1

push reg 2 1

push mem 5 4

So for the i486 processor, loading a value from memory into a register first and then
pushing that register will result in a net saving of 2 clocks; but for the 386 DX processor,
the same instruction sequence will result in a net loss of one clock. However, in order to
load the value into a register on the i486 processor, an empty register must be found; if
the action of loading the value will destroy a value in a register that may be re-used later,
then the saving may be negated by the loss of the re-usable value.

Another example is the LEAVE instruction:

Instruction 386 ™ OX CPU Clocks 1486™ CPU Clocks

mov esp, ebp 2 1

pop ebp 4 1 + 1 (esp. penalty)

leave 4 5

Again, for the i486 processor, doing the MOV/POP sequence will result in a net saving
of 2 clocks over the LEAVE instruction; while on the 386 DX processor, the LEAVE
instruction is both faster and shorter. However, because the first MOV instruction uses
ESP as the destination register, and the POP instruction also implicitly uses the ESP
register as a base (as mentioned above), this sequence will result in a one clock penalty
unless the two instructions are separated by another instruction. If it is possible to rear­
range the instructions so the MOV/POP instructions are separated by a useful instruc­
tion, then the net savings over a LEAVE instruction is 3 clocks on the i486 processor.

Because the i486 processor can operate with operands in registers faster than out of
memory Gust like most other architectures), it is important to have good register alloca­
tion and value tracking optimizations in any compiler. On the other hand, there is no

G-5

CODE OPTIMIZATION

savings in loading up every value before using it, as in a RISe architecture. The i486
processor can perform reg, mem type ALU operations as fast as load/op/store sequences.
For example, for the assignment

meml = meml + mem2

the following instruction sequences could be used, with varying total clock counts on the
386 DX and SX processor, but identical clock counts on the i486 processor:

Instruction 386 ™ OX CPU Clocks 1486™CPU Clocks

mov eax, mem1 4 1

mov ebx, mem2 4 1

add eax, ebx 2 1

mov mem1, eax 2 1

mov eax, mem1 4 1

add eax, mem2 6 2

mov mem 1, eax 2 1

moveax, mem1 4 1

add mem2, eax 7 3

The MOVZX is another example where the i486 processor can execute faster using
simple instructions, if the destination is a register that is also byte addressable. For
example, loading a byte value:

Instruction 386™ ox CPU Clocks i486™ CPU Clocks

movzx eax, mem 1 6 3 + 1 (OFh prefix)

xor eax, eax 2 1

movb ai, mem1 4 1

So for the i486 processor, clearing the register first and then loading the byte value may
result in a net saving of two clocks (depending on whether the prefix decode clock can be
overlapped with the previous instruction, see Section 0.8 on Prefix opcodes), while there
is no difference in performance on the 386 DX processor.

G.6 CONDITION CODES

In some high level languages, it is sometimes necessary to convert the result of a boolean
condition (e.g., equality, greater-than or less-than, etc.) into a true or false (i.e., 0/1)
value. The 386 and i486 processors normally maintain the results of comparisons in the
flags register, so in order to convert the result of a comparison into a true/false value, it
is necessary to convert the flags settings into an integer value.

G-6

CODE OPTIMIZATION

The 386 and i486 processors have a set of SETcc instructions which will do such conver-:­
sions, however, the SETcc instructions take 3 or 4 clocks to execute on the i486 proces­
sor depending on whether the condition being tested for is true or false. Specifically
while comparing unsigned vatues for greater-than or less-than, there is an optional se­
quence to use. For example, if "x" and "y" are both unsigned values, and "x" is loaded
into register eax and "y" is loaded in register ecx, then the code for "(x < y)" could be
generated in several ways:

Instruction 386™ OX CPU Clocks 1486 ™ CPU Clocks

cmp eax, ecx 2 1
mov eax,O 2 1
jnb L1 7+m/3 3/1
mov eax,1 2 1
L1 :
cmp eax, ecx 2 1
setb al 4/5 4/3
movsx eax, al 3 3
cmp eax, ecx 2 1
sbb eax, eax 2 1
neg eax 2 1

So using the SBB instruction to capture the flags setting of an unsigned compare gives
the fastest performance, without breaking the prefetch pipeline because there are no
jumps involved. Note that although this is specific for the "(x < y)" condition, it is
possible to transform other tests to this form by either negating the condition or by
exchanging the operands. '

Such condition code instruction replacements will also improve the performance on the
386 cPUs.

G.7 STRING INSTRUCTIONS

Like the 386 DX processor, the i486 processor executes string instructions slower than
the load/store instructions. For example, the tODS instruction:

Instruction 386™ OX CPU Clocks i486 ™ CPU Clocks

mov eax, [esi] 4 1

add esi, 4 2 1

lads 5 4

The LODS instruction does more than the individual MOY instruction, it also updates
the ESI register. However, if it is not necessary to have the register updated, then the
MOY instruction will result in a net saving of 3 clocks on both the 386 DX and the i486
processors. The minor tradeoff is that the LODS instruction is shorter than the MOY
instruction.

G-7

CODE OPTIMIZATION

Also in a non-REPeated usage, individual MOV instructions will always be faster than
the string MOVS instruction. And even in a REPeated loop, if the loop is small enough,
it will be faster to use individual load/store instructions than to set up for a REPeated
MOVS. The tradeoff again is speed vs. code space, with the REP MOVS loop being
shorter but slower. However, as discussed above, a long sequence of load/store instruc­
tions will prevent the prefetch unit from filling the prefetch queue and slow the proces­
sor, so the recommendation is not to move more than 16 bytes with load/store
instructions before a· non-memory instruction to allow the prefetch unit to access the
cache. .

Similar optimizations can also be made for the STOS and other string instructions. Such
string instruction replacements will also improve the performance on the 386 processor.

G.8 FLOATING-POINT INSTRUCTIONS

As with the 386 processor/387 math coprocessor combination, the floating point unit of
the processor is a separate execution unit and it operates in parallel with the integer
unit, even though they are physically, on the same chip. Therefore any instruction se­
quence that allows the two independent units to execute in parallel will be faster.

Floating point instructions should not be placed one immediately after another. The
instructions should be rearranged so that two floating point instructions are separated by
other non-floating point instructions so the two units can execute in parallel. Pay partic­
ular attention to the clock courits of the floating point instruction, so sufficient number
of integer instructions could be executed without causing the floating point unit to wait
before the next floating point instruction is issued. Such rearrangements of the instruc­
tions will also improve the performance on the 386 processor/387 math coprocessor,
however, the clock counts used by the processor is much lower than the clock counts
used by the 387 math coprocessor for the same floating point instructions.

As a reminder, any simple arrangements or movement of floating point values should not
be done via the floating point unit, but rather through the integer unit with integer
instructions. Also FWAIT's are never required around simple floating point instructions.

G.g PREFIX OPCODES

On either processor, all prefix opcodes, including OFh, segment override, operand size/
addressing, bus-lock, repeat, etc. require an additional clock to decode. This clock can be
overlapped with the execution of the previous instruction if it takes more than one clock
to execute.

Therefore it will be faster to expand 16-bit operands to a full 32-bits and then operate on
the 32-bit value instead of using the 66h prefix to operate on 16-bit operands.

If prefix opcodes must be used, try to rearrange the instructions so that the instruction
with the prefix is after an instruction that takes multiple clocks to execute.

G-B

CODE OPTIMIZATION

An additional reason for not using 16-bit operands is that if the destination of one
instruction is a 16-bit register, and the immediately following instruction uses that regis­
ter as a 32-bit operand, then there is a one clock penalty. Again, the two instructions
should be separated by another instruction to avoid the penalty.

G.10 OVERLAPPED CLOCKS

As mentioned above, there are several situations where an instruction will take an extra
clock to execute, but some of these extra clock penalties can overlap with one another.
So an instruction that uses multiple features mentioned above will not necessarily have a
total penalty that is the sum of the individual penalties.

In particular, the following combinations will overlap:

• Having an index register and an immediate field with a memory offset field will only
cost a one clock penalty.

• Having a prefix opcode and using the result register of the previous instruction as a
base will only cost a one clock penalty.

• Having a prefix opcode after a multi-clock instruction will not cost any additional
clock penalty.

G.11 MISCELLANEOUS USAGE GUIDELINES

The instruction set of the 386 processors was designed with certain programming prac­
tices in mind. Many of these practices remain relevant in assembly-language program­
ming for the i486 processor, and may be of interest in compiler design as well. '

• Use the EAX register when possible. Many instructions are one byte shorter when
the EAX register is· used, such as loads and stores to memory when absolute ad­
dresses are used, transfers to other registers using the XCHG instruction, and oper­
ations using immediate operands.

• Use the D-data segment when possible. Instructions which deal with the D-space are
one byte shorter than instructions which use the other data segments, because of the
lack of a segment-override prefix.

• Emphasize short one-, two-, and three-byte instructions. Because instructions for the
i486 processor begin and end on byte boundaries, it has been possible to provide
many instruction encodings which are more compact than those for processors with
word-aligned instruction sets. An instruction in a word-aligned instruction set must be
either two or four bytes long (or longer). Byte alignment reduces code size and in­
creases execution speed.

• Access 16-bit data with the MOVSX and MOVZX instructions. These instructions
sign-extend and zero-extend word operands to doubleword length. This eliminates the
need for an extra instruction to initialize the high word.

• For faster interrupt response, use the NMI interrupt when possible.

G-9

CODE OPTIMIZATION

• In place of using an ENTER instruction at lexical level 0, use a code sequence like:

PUSH EBP
·MOV EBP, ESP

SUB ESP, BYTE_COUNT

This executes in seven clock cycles, rather than ten.

The following techniques may be applied as optimizations to enhance the speed of a
system after its basic functions havebeen implemented:

• The jump instructions come in two forms: one form has an eight-bit immediate for
relative jumps in the range from 128 bytes back to 127 bytes forward, the other form
has a full 32-bit displacement. Many assemblers use the long form in situations where
the short form can be used. When it is clear that the short form may be used, explic­
itly specify the destination operand as being byte length. This tells the assembler to
use the short form. If the assembler does not support this function, it will generate an
error. Note that some assemblers perform this optimization automatically.

• Use the ESP register to reference the stack in the deepest level of subroutines. Don't
bother setting up the EBP register and stack frame.

• For fastest task switching, perform task switching in ·software. This allows a smaller
processor state to be saved and restored. See Chapter 7 for a discussion of

. multitasking.

• Use the LEA instruction for adding registers together. When a base register and
index register are used with the LEA instruction, the destination is loaded with their
sum. The contents of the index register may be scaled by 2, 4, or 8.

• Use the LEA instruction for adding a constant to a register. When a base register and
a displacement are used with the LEA instruction, the destination is loaded with their
sum. The LEA instruction can be used with a base register, index register, scale
factor, and displacement.

• Use integer move instructions to transfer floating-point data.

• Use the form of the RET instruction which takes an immediate value for byte-count,
rather than an ADD ESP instruction. It saves one clock cycle and three bytes on
every subroutine call .

.• . When several references are made to a variable addressed with a displacement, load
the displacement into a register.

• The PUSH and POP instructions, when used with an operand in memory, take two
. more clock cycles to execute than an equivalent two-instruction sequence which

moves the operand through a general register before pushing it on the stack.

• The LOOP instruction takes two more clock cycles to execute than the equivalent
decrement and conditional jump instructions.

• The JECXZ instruction takes one more clock cycle to execute than the equivalent
compare and conditional jump instructions.

G-10

Glossary

GLOSSARY

Abort - An exception which is completely unrecoverable, such as stack exception during
an attempt to invoke an exception handler.

Address - See Logical Address, Linear Address, and Physical Address.

Address Space-The range of memory locations which may be accessed by an address.

Address-Size Prefix - An instruction prefix which selects the size of address offsets. Off­
sets may be 16- or 32-bit. The default address size is specified by the D bit in the code
segment for the instruction. Use of the address-size prefix selects the non-default size.

Address Translation - The process of mapping addresses from one address space to
another. Segmentation and paging both perform address translation.

Base Address - The address of the beginning of a data structure, such as a segment,
descriptor table, page,. or page table.

Base Register - A register used for addressing an operand relative to an address held in
the register.

Base - (1) A term used in logarithms and exponentials. In both contexts, it is a number
that is being raised to a power. The two equations (y = log base b of x) and (by = x) are
the same. (2) A number that defines the representation being used for a string of digits.
Base 2 is the binary representation; base 10 is the decimal representation; base 16 is the
hexadecimal representation. In each case, the base is the factor of increased significance
for each succeeding digit (working up from the bottom). (3) See Base Address.

BCD - Binary Coded 'Decimal; a format for representing numbers in base 10. One byte is
used for each digit of the number, with bit positions 0 to 3 specifying the value for the
digit. The auxiliary carry flag isused to perform BCD arithmetic. The FPU supports a
packed form of BCD, in which 18 digits and a sign bit are contained in an 80-bit
operand.

Bias - A constant that is added to the true exponent of a real number to obtain the
exponent field of that number's floating-point representation in the FPU. To obtain the
true exponent, you must subtract the bias from the given exponent. For example, the
single real format has a bias of 127 whenever the given exponent is nonzero. If the 8-bit
exponent field contains 10000011 (binary), which is 131 (decimal), the true exponent is
131-127, or + 4. Also known as an excess representation, in this case excess -127.

Biased Exponent-The exponent as it appears in a floating-point representation of a
number. The biased exponent is interpreted as an unsigned, positive number. In the
above example, 131 is the biased exponent.

Glossary-1

GLOSSARY

Binary Coded Decimal- A method of storing numbers that retains a base 10 represen­
tation. Each decimal digit occupies 4 full bits (one hexdecimal digit). The hexadecimal
values A through F (1010 to 1111) are not used. The i486™ processor supports a packed
decimal format that consists of 9 bytes of binary coded decimal (18 decimal digits) and
one sign byte.

Binary Point-An entity just like a decimal point, except that it exists in floating-point
binary numbers. Each binary digit to the right of the binary point is multiplied by an
increasing negative power of two.

Bit Field - A sequence of up to 32 bits which may start at any bit position of any byte
address. The i486 processor has instructions for efficient operations on bit fields.

Bit String- A sequence of up to 232 -1 bits which may start at any bit position of any
byte address. The i486 processor has instructions for efficient operations on bit strings.

Breakpoint-An aid to program debugging in which the programmer specifies forms of
memory access which generate exceptions. The exceptions invoke debugging software.
The i486 processor supports software and hardware breakpoints. A software breakpoint
is an instruction inserted into the program being debugged. When the INT 3 instruction
is executed, a breakpoint occurs. A hardware breakpoint is set up by programming the
debugging registers. The contents of the debugging registers specify the address, size,
and type of reference for as many as four breakpoints. Unlike software breakpoints,
hardware breakpoints can be applied to data.

Byte-An 8-bit quantity of memory; the smallest unit of memory referenced by an
address.

C3-CO - The four "condition code" bits of the FPU status word. These bits are set to
certain values by the compare, test, examine, and remainder functions of the FPU.

Cache-A small, fast memory which holds the active parts of a larger, slower memory/

Cache Flush - An operation which marks all cache lines as invalid. The i486 processor
has instructions for flushing internal and external caches.

Cache Line - The smallest unit of storage which can be allocated in a cache. The inter­
nal cache of the i486 processor has a line size of 128 bits.

Cache Line Fill- An operation which loads an entire cache line using mUltiple read
cycles to main memory.

Cache Miss - A request for access to memory which requires actually reading main
memory.

Call Gate - A gate descriptor for invoking a procedure with a CALL or JUMP
instruction.

Glossary-2

GLOSSARY

Characteristic-A term used for some non-Intel® computers, meaning the exponent
field of a floating-point number.

Chop - In the FPU, to set one or more low-order bits of a real number to zero, yielding
the nearest representable number in the direction of zero.

Code Segment-An address space which contains instructions; an executable segment.
An instruction-fetch cycle must address a code segment. The type of information held in
a segment is specified in its segment descriptor.

Condition Code - The four bits of the FPU status word that indicates the results of the
compare, test, examine, and remainder functions of the FPU.

Conforming Segment-A code segment which executes with the RPL of the segment
selector or the CPL of the calling program, whichever is less privileged.

Context Switch - See Task Switch.

Control Word-A 16-bit FPU register that the user can set, to determine the modes of
computation the FPU will use and the exception interrupts that will be enabled.

Coprocessor- An extension to the base architecture and instruction set of a processor.
The 38TM numerics coprocessor is used to add floating-point arithmetic instructions and
registers to the 386 ™ processor. Coprocessors allow present-day systems to enjoy the
architectural enhancements which will be available in future processor chips.

CPL - See Current Privilege Level.

CPU - Central Processor Unit. See Processor.

Current Privilege Level (CPL) - The privilege level of the program which is executing.
Normally, the privilege level is loaded· from a code segment descriptor. It is loaded into
the CS segment register, where it is visible to software as the two lowest bits of the
register. When execution is transferred to a conforming code segment, the privilege level
does not change. In this case, the CPL may be different from the privilege level specified
in the descriptor (DPL).

Data Segment-An address space which contains data. As many as four data segments
may be in use without reloading the segment registers. The type of information held in a
segment is specified in its segment descriptor.

Data Structure - An area of memory defined for a particular use by hardware or soft­
ware, such as a page table or task state segment (TSS).

Debug Registers - A set of registers used to specify as many as four hardware break­
points. Unlike breakpoint instructions, which only can be used for code breakpoints, the
debug registers can specify breakpoints in either code or data.

Glossary-3

GLOSSARY

Denormal-A special form of floating-point number. On the FPU, a denormal is defined
as a number that has a biased exponent of zero. By providing a significand with leading
zeros, the range of possible negative exponents can be extended by the number of bits in
the significand. Each leading zero is a bit of lost accuracy, so the extended exponent
range is obtained by reducing significance.

Descriptor Privilege Level (DPL) - The privilege level applied to a segment. The DPL is
a field in the segment descriptor.

Descriptor Table - An array of segment descriptors. There are two kinds of descriptor
tables: the Global Descriptor Table (GDT) and an arbitrary number of Local Descriptor
Tables (LDTs).

Device Driver-A procedure or task used to manage a peripheral device, such as a disk
drive.

Displacement-A constant used in calculating effective addresses. A displacement mod­
ifies the address independently of any scaled indexing. A displacement often is used to
access operands which have a fixed relation to some other address, such as a field of a
record in an array.

Double Extended - IEEE Std 754 term for the FPU's extended format, with more expo­
nent and significand bits than the double format and an explicit integer bit in the
significand.

Double Format-A floating-point format supported by the FPU that consists of a sign,
an II-bit biased exponent, an implicit integer bit, and a 52-bit significand, a total of 64
explicit bits.

Doubleword-A 32-bit quantity of memory. Thei486 processor allows 32-bit double­
words to begin at any byte address, but a performance penalty is taken when a double­
word crosses the boundary between two doublewords in physical memory.

DPL-See Descriptor Privilege Level.

Effective Address - The address produced from addressing-mode calculations. A base
register, scaled index, and displacement may be used in the calculations.

Environment - The 14 or 28 (depending on addressing mode) bytes of FPU registers
affected by the FSTENV and FLDENV instructions. It encompasses the entire state of
the FPU, except for the 8 registers of the FPU stack. Included are the control word,
status word, tag word, and the instruction, opcode, and operand information provided by
interrupts.

ESC Instruction - An instruction encoding used for coprocessor instructions.

Glossary-4

GLOSSARY

Exception - A forced call to a procedure or a task which is generated when the processor
fails to interpret an instruction or when an INT n instruction is executed. Causes of
exceptions include division by zero, stack overflow, undefined opcodes, and memory­
protection violations. Exceptions are faults, traps, aborts, and software-initiated
interrupts.

Exception Pointers - In the FPU, the indication used by exception handlers to identify
the cause of an exception. This data consists of a pointer to the most recently executed
ESC instruction and a pointer to the memory operand of this instruction, if it had a
memory operand of this instruction, if it had a memory operand. An exception handler
can use the FSTENV and FSA VE instructions to access these pointers.

Expand-Down Segment-A type of data segment in which the meaning of the segment
limit is reversed. All other segments accept legal offsets from the base address to the
base address plus the segment limit. An expand-down segment accepts legal addresses in
two ranges: from 0 to one byte below the base address, and from one byte past the
segment limit to the top of the address space.

Exponent - (1) Any number that indicates the power to which another number is raised.
(2) The field of a floating-point number that indicates the magnitude of the number.
This would fall under the above more general definition (I), except that a bias some­
times needs to be subtracted to obtain the correct power.

Extended Format- The FPU's implementation of the double extended format of IEEE
Std 754. Extended format is the main floating-point format used by the FPU. It consists
of a sign, a IS-bit biased exponent, and a significand with an explicit integer bit and 63
fractional-part bits.

External Cache - A cache memory provided outside of the processor chip. External
caches can be added to any kind of processor which has external main memory. The i486
processor has instructions and page-table entry bits which are used to control external
caches from software.

Far Pointer-A reference to memory which includes both a segment selector and an
offset. Used to access memory when the segment selector has not been loaded into the
processor, for example when making a procedure call from one segment to another.

Fault - An exception which is reported at the instruction boundary immediately before
the instruction which generated the exception. When a fault is generated, enough of the
state of the processor is restored to permit another attempt to execute the instruction
which generated the fault. The fault handler is called with a return address which points
to the faulting instruction, rather than the instruction which follows the faulting instruc­
tion. After the handler fixes the source of the exception, such as a segment or page
which is not present in memory, the program is restarted.

Flat Model- A memory organization in which all segments are mapped to the same
range of linear addresses. This organization removes segmentation from the environ­
ment of application programs to the greatest degree possible.

Glossary-5

GLOSSARY

Floating-Point Operand-A representation for a number expressed as a base,a sign, a
significand, and a signed exponent. The value of the number is' the signed product of its
significand and the base raised to the power of the exponent. Floating-point representa­
tions are more versatile than integer representations in two ways. First, they include
fractions. Second, their exponent parts allow a much wider range of magnitude than
possible with fixed-length integer representations.

Floating-Point Unit (FPU) - The part of the i486 processor which contains the floating­
point registers and performs the operations required by floating-point instructions.

FPU - See Floating-Point Unit.

Flush - See Cache Flush.

Gate Descriptor-A segment descriptor which can be the destination of a call or jump. A
gate descriptor can be used to invoke a procedure or task in another privilege level.
There are four types of gate descriptors: call gates, trap gates, interrupt gates, and task
gates.

GDT - See Global Descriptor Table.

Global Descriptor Table (GDT) - An array of segment descriptors for all programs in a
system. There is only one GDT in a system.

Gradual Underflow-A method of handling the floating-point underflow error condition
that minimizes the loss of accuracy in the result. If there is a denormal number that
represents the correct result, the denormal is returned. Thus, digits are lost only to the
extent of denormalization. Most computers return zero when underflow occurs, losing all
signficant digits.

Handler-A procedure or task which is called as a result of an exception or interrupt.

Hit - See Cache Hit.

IDT - See Interrupt Descriptor Table.

IEEE Standard 754 - A set of formats and operations which apply to floating-point num­
bers. The formats cover 32-, 64-, and 80-bit operand sizes. The standard was developed
by the Institute for Electrical and Electronics Engineeers (IEEE). The FPU supports all
operand sizes covered by the standard.

Immediate Operand - Data encoded in an instruction.

Implicit Integer Bit - A part of the significand in the single real and double real floating­
point formats that is not explicitly given. In these formats, the entire given significand is
considered to be the right of the binary point. A single implicit integer bit to the left of
the binary point is always one, except in one case. When the exponent is the minimum
(biased exponent is zero), the implicit integer bit is zero.

Glossary-6

GLOSSARY

Indefinite - A special value that is returned by floating-point functions when the inputs
are such that no other sensible answer is possible. For each floating-point format these
exits one quiet NaN that is designated as the indefinite value. For binary integer formats,
the negative number furthest from zero is often considered the indefinite value. For the
FPU packed decimal format, the indefinite value contains all 1 's in the sign byte and the
uppermost digits byte.

Index-A number used to access a table. An index is scaled (multiplied by shifting left)
to account for the size of the operand. The scaled index is added to the base address of
the table to get the address of the table entry.

Inexact - IEEE Std 754 term for the FPU's precision exception.

Infinity - A floating-point result that has greater magnitude than any integer or any real
number. It is often useful to consider infinity as another number, subject to special rules
of arithmetic. All three Intel floating-point formats provide representations for + infinity
and - infinity.

Initialization - The process of setting up the programming environment following reset.
The processor begins execution in real-address mode. A few processor registers have
defined states following reset, which permit execution to begin. Initial states of the seg­
ment registers allow memory to be accessed, even though no segment selectors have
been loaded. The DR7 register (debug control register) is clear, so no breakpoint will
occur during initialization. The real mode program can set up data structures such as
descriptor tables and page tables, then transfer execution to a program running in pro­
tected mode.

Instruction Prefetch - Reading instructions into the processor from sequentially higher
addresses in advance of execution; a. technique for overlapping the execution of
instructions.

Instruction Restart - An ability to make a second attempt to execute an instruction
which generates an exception. Instruction restart is necessary for supporting virtual
memory. When an application makes reference to a segment or page which is not
present in memory, the application must be suspended in a way which allows restarting
after the operating system has brought the segment or page into physical memory. In­
struction restart restores et:lough of the processor state to allow the exception handler to
be called with a return address pointing to the instruction which generated the excep­
tion, rather than the instruction following it.

Integer- A number (positive, negative, or zero) that is finite and has no fractional part.
Integer can also mean the computer representation for such a number: a sequence of
data bytes interpreted in a standard way. It is perfectly reasonable for integers to be
represented in a floating-point format; this is what the FPU does whenever an integer is
pushed onto the FPU stack.

Glossary-7

GLOSSARY

Integer Bit - A part of the significand in floating-point formats. In these formats, the
integer bit is the only part of the significand considered to be to the left of the binary
point. The integer bit, is always one, except in one case: when the exponent is the mini­
mum (biased exponent is zero), the integer bit is zero. In the extended format the
integer bit is explicit; in the single format and double format the, integer bit is implicit;
i.e., is not actually stored in memory.

Internal Cache - A cache memory on the processor chip. The i486 processor has 8K
bytes of internal cache memory. '

Interrupt-A forced transfer of program control caused by a hardware signal or execu­
tion of the INT n instruction. Interrupt handlers called by software are processed like
exceptions.

Interrupt Descriptor Table (IDT) - An array of gate descriptors for invoking the han­
dlers associated with exceptions and interrupts. ,A handler may be invoked by a task gate,
interrupt gate, or trap gate.

Interrupt Gate - A gate descriptor used to invoke an interrupt handler. An interrupt
gate is different from a trap gate only in its effect on the IF flag. An interrupt gate clears
the flag (disables interrupts) for the duration of the handler.

Invalid- Unallocated. Invalid cache lines do not cause cache hits. Valid cache lines have
been loaded with data and may cause cache hits.

Invalid Operation - The exception condition for the FPU that covers all cases not cov­
ered by other exceptions. Included are FPU stack .overflow and underflow, NaN inputs,
illegal infinite inputs, out-of-range inputs, and inputs in unsupported formats.

Label- An identifier used to name places in the source code of a program, so that
statements can refer to those places. Places named by labels include procedure entry
points, beginning of blocks of data, and base addresses for descriptor tables.

LDT - See Local Descriptor Table.

Linear Address - A 32-bit address into a large, unsegmented address space. If paging is
enabled, it translates the linear address into a physical address. If paging is not en'abled,
the linear address is used as the physical address.

Local Descriptor Table (LDT) - An array of segment descriptors for one program. Each
program may have its own LDT, a program may share its LDT with another program, or
a program may have no LDT, in which case, it uses the global descriptor table (GDT).

Locked Instructions - Instructions which read and write a destination in memory without
allowing other devices to become bus masters between the read cycle and the write cycle.
This mechanism is necessary for supporting reliable communications among multiproces­
sors. The mechanism is invoked using the LOCK instruction prefix. Only certain instruc­
tions may be locked, and only when they have destination operands in memory (other
uses of the LOCK prefix generate an invalid-opcode exception).

Glossary-8

GLOSSARY

Logical Address - The number used by application programs to reference virtual mem­
ory. This number consists of two parts: a segment selector (16 bits) and an offset
(32 bits). The segment selector is used to specify an independent, protected address
space (segment). The offset is used as an address within that segment. Segmentation
translates the logical address into a linear address.

Long Integer- An integer format supported by the FPU that consists of a 64-bit two's
complement quantity.

Long Real- An older term for the FPU's 64-bit double format.

Main Memory-The large memory, external to the processor, used for holding most
instruction code and data. Generally built from cost-effective DRAM memory chips.
May be used with the internal cache of the processor and an optional external cache.

Mantissa-A term used with some non-Intel computers for the significand of a floating­
point number.

Masked-A term that can apply to each of the six FPU exceptions I, D, A, 0 U, P. An
exception is masked if a corresponding bit in the FPU control word is set to one. If an
exception is masked, the FPU will not generate an interrupt when the exception condi­
tion occurs; it will instead provide its own exception recovery.

Memory Management-Support for simplified models of memory; a process consisting
of address translation and protection checks. There are two forms of memory manage­
ment, segmentation and paging. Segmentation provides protected, independent address
spaces (segments). Paging provides access to data structures larger than the available
memory space by keeping them partly in memory and partly on disk.

Microprocessor - See Processor.

Miss - See Cache Miss.

Mode-(l) One of the FPU status word fields "rounding control" and "precision con­
trol" which programs can set, sense, save, and restore to control the execution of subse­
quent arithmetic operations. (2) See Real-Address Mode, Protected Mode, Virtual-8086
Mode, Supervisor'Mode, User Mode. .

ModRlM Byte - A byte following an instruction opcode which is used to specify instruc­
tion operands.

MPU -Micro-Processor Unit. See Processor.

Multiprocessing- Using more than one processor in a system. The i486 processor sup­
ports two kinds of mUltiprocessing: coprocessors, which are special-purpose
performance-enhancing extensions to the architecture and instruction set, and multiple
general-purpose processors, such as additional i486 processors.

Glossary-9

GLOSSARY

Multisegmented Model- A memory organization in which different segments are
mapped to different ranges of linear addresses. This organization uses segmentation to
protect. data structures from damage caused by program errors. For example, the stack
can be kept from growing into memory occupied by instruction code.

Multitasking- Timesharing a processor among several programs, executing some num­
ber of instructions from each. The i486 processor has instructions and data structures
which support multitasking.

NaN -An abbreviation for "Not a Number"; a floating-point quantity that does not
represent any numeric or infinite quantity. NaN's should be returned by functions that
encounter serious errors. If created during a sequence of calculations, they are transmit­
ted to the final answer and can contain information about where the error occurred.

Near Pointer-A reference to memory without a segment selector; an offset. Used to
access memory when the segment selector has already been loaded into the processor,
for example when one procedure calls another within the same segment. .

Normal- The representation of a number in a floating-point format in which the signif­
icand has an integer bit one (either explicit or implicit).

Normalize - Convert a denormal floating-point representation of a number to a normal
represen ta tion.

Offset - A 16- or 32-bit number which specifies a memory location relative to the base
address of a segment. A program's code segment descriptor specifies whether 16- or
32-bit offsets are the default. An address-size prefix specifies use of the non-default size.

Operand - Data in a register or in memory which an instruction reads or writes (or
both).

Operand-Size Prefix - An instruction prefix which selects the sizes of integer operands.
Operands may be 8- and 16-bit, or they may be 8- and 32-bit. The default operand size is
specified by the D bit in the descriptor for the code segment which contains the instruc­
tion. Use of the operand-size prefix selects the non-default size.

Overflow-A floating-point exception condition in which the correct answer is finite, but
has magnitude too great to be represented in the destination format. This kind of over~
flow (also called numeric overflow) is not to be confused with stack overflow.

Packed BCD - Packed Binary Coded Decimal; a format for representing numbers in
base 10. One byte is used for each two digits of the number, with bit positions 0 to 3
specifying the value for the less significant digit and bit positions 4 to 7 specifying the
value for the more significant digit. Packed BCD is one of the data types supported by
the FPU.

Packed Decimal-An integer format supported by the FPU. A packed decimal number
is a 10-byte quantity, with nine bytes of 18 binary coded decimal digits and one byte for
the sign.

Glossary-10

GLOSSARY

Page Directory - The first-level page table. The paging hardware of the i486 processor
uses two levels of page tables, where the physical address produced by the first-level
page table is the base address of the second-level page table. The use of two levels allows
the second-level tables to be paged to disk.

Page Directory Base Register (PDBR) - A processor register which holds the base ad­
dress of the page directory; same as the CR3 register. Because the contents of the PDBR
register are loaded from the task state segment (TSS) during a task switch, each task can
have its own page directory, so each can have a different mapping of virtual pages to
physical pages.

Page-A 4K-byte block of neighboring memory locations; the unit of memory used by
paging hardware.

Page Table - A table which maps part of a linear address to a physical address. The
paging hardware of the i486 processor uses two levels of page tables, where the physical
address produced by the first-level page table is the base address of the second-level
page table. The use of two levels allows the second-level tables to be paged to disk.

Page Table Entry - A 32-bit data structure in memory used for paging. It includes the
physical address for a page and the page's protection information. It is set up by oper­
ating system software and accessed by paging hardware.

Paging - A form of memory management used to simulate a large, unsegmented address
space using a small, fragmented address space and some disk storage. Paging provides
access to data structures larger than the available memory space by keeping them partly
in memory and partly on disk.

PDBR - See Page Directory Base Register.

Physical Address - The address which appears on the local bus. The i486 processor has a
32-bit physical address, which may be used to address as much as 4 gigabytes of memory.

Physical Memory- The address space on the local bus; the hardware implementation of
memory. Memory is addressed as 8-bit bytes, but it is implemented as 32-bit double­
words which start at addresses which are multiples of four (addresses which are clear in
their two least significant bits). The i486 processor may have up to 4 gigabytes of physical
memory.

Precision - The effective number of bits in the significand of the floating-point represen­
tation of a number.

Precision Control- An option, programmed through the FPU control word, that allows
all FPU arithmetic to be performed with reduced precision. Because no speed advantage
results from this option, its only use is for strict compatibility with IEEE Std 754 and
with other computer systems.

Glossary-11

GLOSSARY

Precision Exception - An FPU exception condition that results when a calculation does
not return an exact answer. This exception is usually masked and ignored; it is used only
in extremely critical applications, when the user must know if the results are exact. The
precision exceptions is called inexact in IEEE Std 754.

Privilege Level- A protection parameter applied to segments and segment selectors.
There are four privilege levels, ranging from 0 (most privileged) to 3 (least privileged).
Level 0 is used for critical system software, such as the operating system. Level 3 is used
for application programs. Some system software, such as device drivers, may be put in
intermediate levels 1 and 2.

Processor- The part of a computer system which executes instructions; also called mi­
croprocessor, CPU, or MPU.

Protected Mode - An execution mode in which the full 32-bit architecture of the proces­
sor is available.

Protection - A mechanism which can be used to protect the operating system and appli­
cations from programming errors in applications. Protection can be used to define the
address spaces accessible to a program, the kind of memory references which may be
made to those address spaces, and the privilege level required for access. Any violation
of these protections generates a general-protection exception. Protection can be applied
to segments or pages.

Pseudo-Descriptor- A 48-bit memory operand accessed when a descriptor table base
register is loaded or stored.

Pseudozero - One of a set of special values of the extended real format. The set consists
of numbers with a zero significand and an exponent that is neither all zeros nor all ones.
Pseudozeros are not created by the FPU but are handled correctly when encountered as
operands.

Quadword - A 64-bit operand. The CDQ instruction can be used to convert a double­
word to a quadword. A quadword held in the EDX and EAX registers may be the
dividend used with a doubleword divisor.

Quiet NaN -A floating-point NaN in which the most significant bit of the fractional part
of the significand is one. By convention, these NaN's can undergo certain operations
without causing an exception.

Re-entrant - Allowing a program to call itself; recursive. For certain kinds of problems,
such as operations performed on hierarchical data structures, procedures which call
themselves are simple and efficient solutions. On the i486 processor, procedures may be
re-entrant, however tasks are not. A task may not call itself because it has only one task
state segment (TSS) for storing the processor state. Procedures store the processor state
on the stack, so they may be re-entrant to an arbitrary number of levels.

Glossary-12

GLOSSARY

Real-Address Mode-An execution mode which provides an emulation of the architec­
ture of an 8086 processor; also called "real mode." In this mode the i486 processor
appears as a fast 8086 processor. The architectural extensions for protection and multi­
tasking are not available in this mode. Following reset initialization, the i486 processor
begins execution in real mode.

Real- Any finite value (negative, positive, or zero) that can be represented by a (pos­
sibly infinite) decimal expansion. Reals can be represented as the points of a line
marked off like a ruler. The term can also refer to a floating-point number that repre­
sents a real value.

Requested Privilege Level (RPL) - The privilege level applied to a segment selector. If
the RPL is less privileged than the current privilege level (CPL), access to a segment
takes place at the RPL level. This keeps privileged software from being used by an
application to interfere with the operating system or other applications. For example, a
privileged program which loads memory from disk should not be permitted to overwrite
the operating system as a result of a call from an application: With RPL, the attempt to
access the memory space of the operating system takes place with the privleges of the
application.

Reset - See Initialization.

RPL - See Requested Privilege Level.

Segment-An independent, protected address space. A program may have as many as
16,383 segments, each of which can be up to 4 gigabytes in size.

Segment Descriptor- A 64-bit data structure in memory used for segmentation. It in­
cludes the base address for a segment, its size (limit), its type, and protection informa­
tion. It is set up by operating system software and accessed by segmentation hardware.

Segment-Override Prefix-An instruction prefix which overrides the default segment
selection. There are six segment-override prefixes, one each for the CS, SS, DS, ES, FS,
and OS segments.

Segment Selector-A 16-bit number used to specify an address space (segment). Bit
position 3 to 15 are used as an index into a descriptor table. Bit position 2 specifies
whether the global descriptor table (ODT) or local descriptor table (LDT) is used. Bit
positions 0 and 1 are the requested privilege level (RPL), which may lower the priority of
access, as an additional protection check.

Segmentation - A form of memory management used to provide multiple independent,
protected address spaces. Segmentation aids program debugging by reporting program­
ming errors when they first occur, rather than when their effects become apparent.
Segmentation makes programs provided to the end-user more reliable by limiting the
damage which can be caused by undetected errors. Segmentation increases the address
space available to. a program by providing up to 16,383 segments, each of which can be
up to 4 gigabytes in size.

Glossary-13

GLOSSARY

Set-Associative - A form of cache organization in which the location of a data block in
main memory constrains, but does not completely determine, its location in the cache.
Set-associative organization is a compromise between direct-mapped organization, in
which data from a given address in main memory has only one possible cache location,
and fully-associative organization, in which data from anywhere in main memory can be
put anywhere in the cache. An "n-way set-associative" cache allows data from a given
address in main memory to be cached in any of n locations. Both the Translation Looka­
side Buffer (TLB) and the integral cache of the i486 processor have a four-way set­
associative organization.

Short Integer-An integer format supported by the FPU that consists of a 32-bit two's
complement quantity. Short integer is not the shortest FPU integer format-the 16-bit
word integer is.

Short Real- An older term for the FPU's 32-bit single format.

SIB Byte - A byte following an instruction opcode and modR/M bytes which is used to
specify a scale factor, index, and base register.

Sign Extension - Conversion of data to a larger format, where empty bit positions are
filled with the value of the sign. This form of conversion preserves the value of signed
integers. See Zero Extension.

Signaling NaN -A floating-point NaN that causes an invalid-operation exception when­
ever it enters into a calculation or comparison, even an unordered comparison.

Significand - The part of a floating-point number that consists of the most significant
nonzero bits of the number, if the number were written out in an unlimited binary
format. The significand is composed of an integer bit and a fraction. The integer bit is
implicit in the single format and double format. The significand is considered to have a
binary point after the integer bit; the binary point is then moved according to the value
of the exponent.

Single Extended - A floating-point format, required by the IEEE'Std 754, that provides
greater precision than single; it also provides an explicit integer bit in the significand.
The FPU's extended format meets the single extended requirement as well as the double
extended requirement.

Single Format-A floating-point format supported by the FPU, which consists of a sign,
an 8-bit biased exponent, an implicit integer bit, and a 23-bit significand - a total of 32
explicit bits.

Stack Fault - A special case of the invalid-operation exception which is indicated by a
one in the SF bit of the status word. This condition usually results from stack underflow
or overflow in the FPU.

Stack Frame -The space used on the stack by a procedure. The stack frame includes
parameters, return addresses, saved registers, temporary storage, and any other stack
space the procedure uses. .

Glossary-14

GLOSSARY

Stack Segment-A data segment which is used to hold a stack. A stack segment may be
expand-down, which allows the segment to be resized toward lower address. The type of
information held in a segment is specified in its segment descriptor.

Status Word-A 16-bit FPU register that can be manually set, but which is usually
controlled by side effects to FPU instructions. It contains condition codes, the FPU stack
pointer, busy and interrupt bits, and exception flags.

String - A sequence of bytes, word, or doublewords which may start at any byte address
in memory. The i486 processor has instructions for efficient operations on strings.

Supervisor Mode - The privilege level applied to operating system pages. Paging only
recognizes two privilege levels: supervisor mode and user mode. A program executing
from a segment at privilege level 0, 1, 2 is in supervisor mode.

Table - An array of records in memory having equal size.

Tag Word-A 16-bit FPU register that it automatically maintained by the FPU. For each
space in the FPU stack, it tells if the space is occupied by a number; if so, it gives
information about what kind of number.

Tag Word-A 16-bit FPU register that it automatically maintained by the FPU. For each
space in the FPU stack, it tells if the space is occupied by a number; if so, it gives
information about what kind of number.

Tag - The part of a cache line which holds the address information used to determine if
a memory operation is a hit or a miss on that cache line.

Task Register- A register which holds a segment selector for the current task. The
selector references a task state segment (TSS). Like the segment registers, the TR reg­
ister has a visible part and an invisible part. The visible part holds the segment selector,
and the invisible part holds information cached from the segment descriptor for the TSS.

Task State Segment (TSS) - A segment used to store the processor state during a task
switch. If a separate I/O address space is used, the TSS holds permission bits which
control access to the I/O space. Operating systems may define additional structures
which exist in the TSS.

Task Switch-A transfer of execution between tasks; a context switch. Unlike the proce­
dure calls, which save only the contents of the general registers, a task switch saves most
of the processor state. For example, the registers used for address translation are re­
loaded, so that each task can have a different logical-to-physical address mapping.

Task-A program running, or waiting to run, in a multitasking system.

Temporary Real- An older term for the FPU's 80-bit extended format.

Tiny-Of or pertaining to a floating-point number that is so close to zero that its expo­
nent is smaller than smallest exponent that can be represented in the destination format.

Glossary-15

GLOSSARY

TLB - See Translation Lookaside Buffer.

Top - The three-bit field of the status word that indicates which FPU register is, the
current top of stack.

Transcendental- One of a class of functions for which polynomial formulas are always
appropriate, never exact for more than isolated values. The FPU supports trigonometric,
exponential, and logarithmic functions; all are transcendental.

Translation Lookaside ButTer (TLB) - The on-chip cache for page table entries. In typ­
ical systems, about 99% of the references to page table entries can be satisfied by infor-
mation in the TLB. '

Trap - An exception which is reported at the instruction boundary immediately follow­
ing the instruction which generated the exception.

Trap Gate - A gate descriptor used to invoke an exception handler. A trap gate is dif­
ferent from an interrupt gate only in its effect on the IF flag. Unlike an interrupt gate,
which clears the flag (disables interrupts) for the duration of the handler, a trap gate
leaves the flag unchanged.

TSS - See Task State Segment.

Two's Complement - A method of representing integers. If the uppermost bit is zero, the
number is considered positive, with the value given by the rest of the bit~. If the ~pper­
most bit is one, the number is negative, with the value obtained by subtracting (2b1t

count)

from all the given bits. For example, the 8-bit number 11111100 is -4, obtained by
subtracting 28 from 252. ' , '

, .

Unbiased Exponen~-The true value that tells how far and in which direction to move
the binary point of the significand of a floating-point number. For example, if a single­
format exponent is 131, we subtract the Bias 127 to obtain the unbiased exponent + 4.
Thus, the real number being represented is the significand with the binary point shifted
4 bits to the right. '

Underflow-An exception condition in which the correct answer is nonzero, but has a
magnitude too small to be represented as a normal number in the destination floating­
point format. IEEE Std 754 specifies that an attempt be made to represent the number
as a denormal. This de normalization may result in a loss of significant bits from .the
significand. This kind of underflow (also called numeric overflow) is not be confused
with stack overflow.

Unmasked-A term that can apply to each of the six FPU exceptions: I, D, Z, 0, U, P.
An exception is unmasked if a corresponding bit in the FPU control word is set to zero.
If an exception is unmasked, the FPU will generate an interrupt whent he exception
condition occurs. You can provide an interrupt routine that customizes your exception
recovery.

Glossary-16

GLOSSARY

Unnormal- An extended real representation in which the explicit integer bit of the
significand is zero and the exponent is nonzero. Unnormal values are not supported by
the FPU. This includes several formats that are recognized by the 8087 and 287 copro­
cessors; they cause the invalid-operation exception when encountered as operands.

Unsupported Format-Any number representation that is not recognized by the FPU.
This includes several formats that are recognized by the 8087 and 287 coprocessors;
namely: pseudo-NaN, pseudoinfinity, and unnormal. .

USE16-An assembly language directive for specifying 16-bit code and data segments.

USE32-An assembly language directive for specifying 32-bit code and data segments.

User Mode - The privilege level applied to application pages. Paging only recognizes two
privilege levels: supervisor mode and user mode. A program executing from a segment at
privilege level 3 is in user mode.

V86 Mode - See Virtu a 1-8086 Mode.

Valid-Allocated. Valid cache lines have been loaded with data and may cause cache
hits. Invalid cache lines do not cause cache hits.

Vector-A number used to identify the source of an exception or interrupt. A vector is
used to index into the IDT table for a gate descriptor. The gate descriptor is used to call
the handler for the exception or interrupt.

Virtual Memory- The memory model for application programs; a simplified organiza­
tion for memory supported by memory management hardware and operating system
software. On the i486 processor, virtual memory is supported by segmentation and pag­
ing. Segmentation is a mechanism for providing mUltiple independent, protected address
spaces. Paging is a mechanism for providing access to data structures larger than physical
memory by keeping them partly in memory and partly on disk.

Virtual-8086 Mode - An execution mode which provides an emulation of the architec­
ture of an 8086 processor. Unlike real-address mode, virtual-8086 mode is compatible
with multitasking; a protected mode operating system may be used to run a mix of
protected mode and virtual-8086 mode tasks.

Word - A 16-bit quantity of memory. The i486 processor allows 16-bit words to begin at
any byte address, but a performance penalty is taken when a word crosses the boundary
between two doublewords in physical memory.

Word Integer-An integer format supported by the i486 processor that consists of a
16-bit two's complement quantity.

Write-Back-A form of caching in which memory writes load only the cache memory.
Data propagates to main memory when a write-back operation is invoked.

Glossary-17

GLOSSARY

Write-Through - A form of caching in which memory writes load both the cache memory
and main memory.

Zero Divide - An exception condition in which floating-point inputs are finite, but the
correct answer, even with an unlimited exponent, has infinite magnitude.

Zero Extension - Conversion of data to a larger format, where empty bit positions are
filled with zero. This form of conversion preserves the value of unsigned integers. See
Sign Extension.

Glossary-18

Index

INDEX

AAA (ASCII adjust AL after addition),
flag cross-reference, B-1
instruction description, 3-10
instruction format and timing, E-lO
instruction specification, 26-18
one-byte opcode map, A-4
status flag summary, C-l

AAD (ASCII adjust AX before division),·
flag cross-reference, B-1
instruction description, 3-11
instruction format and timing, E-ll
instruction specification, 26-19
one-byte opcode map, A-4
status flag summary, C-l

AAM (ASCII adjust AX after multiplication),
flag cross-reference, B-1
instruction description, 3-11
instruction format and timing, E-lO
instruction specification, 26-20
one-byte opcode map, A-4
status flag summary, C-l

AAS (ASCII adjust AL after subtraction),
flag cross-reference, B-1
instruction description, 3-11
instruction format and timing, E-lO
instruction specification, 26-21
one-byte opcode map, A-4, A-5
status flag summary, C-l

aborts,
exception conditions, 9-13
exception description, 9-2
exception processor-detected, 9-1

absolute address, and JMP instruction, 3-24
AC flag (alignment check mode - bit 18),

system flag description, 4-2
accessed bit,

page table entries, 5-21
segment register loading, 3-39

ADC (add integers with carry),
flag cross-reference, B-1
instruction description, 3-7
instruction specifIcation, 26-22
modR/M byte opcodes, A-8
one-byte opcode map, A-4
status flag summary, C-l

ADD (add integers),
flag cross-reference, B-1
instruction description, 3-7 .
instruction specifIcation, 26-24
modR/M byte opcodes, A-8
one-byte opcode map, A-4
status flag summary, C-l

address-size prefix, instruction format, 2-16
addressable domain, restrictions to, 6-23
addressing-mode,

FPU architecture, 19-1
instruction specifier, 2-16

AF (auxiliary carry flag), status flag, 2-14
AH (8-bit general register),

and AAA instruction, 3-10
and AAD instruction, 3-11
and AAM instruction, 3-11
and AAS instruction, 3-11
register description, 2-8

AHOLD input, and self test, 10-1
AL (8-bit general re~ister),

and AAA instructIOn, 3-10
and AAD instruction, 3-11
and AAM instruction, 3-11
and AAS instruction, 3-11
and binary arithmetic instructions, 3-6
and CBW instruction, 3-6
and CMPXCHG instruction, 3-43
and DAA instruction, 3-10
and DIV instruction, 3-9
and immediate operands, 2-18
and LODS instruction, 3-30
and MOV instruction, 3-2
and MUL instruction, 3-8
and SCAS instruction, 3-29
and STOS instruction, 3-30
and XLATB instruction, 3-42
register description, 2-8

alignment,
and LOCK prefix, 13-2
and pseudo-locking, 13-3
of data type addresses, 2-4

alignment-check exception,
and AC flag, 4-2
and i486 processor, 2-24

alignment-check fault, Interrupt 17 (alignment
check), 9-23

AM bit (alignment mask-bit 18), system
control flag, 4-7

ANaN indefinite, and stack exception, 16-20
AND (logical and),

flag cross-reference, B-1
instruction description, 3-12
instruction specifIcation, 26-26
modR/M byte opcodes, A-8
one-byte opcode map, A-4
status flag summary, C-2

architecture, i486 Floating Point Unit (FPU),
15-1

arithmetic instructions,
and EFLAGS register, 2-13
and immediate operands, 2-18
and nonarithmentic instructions, 16-2

ARPL (adjust RPL field of selector),
flag cross-reference, B-1
instruction format and timing, E-12
instruction specification, 26-27
one-byte opcode map, A-4
pointer integrity, 6-22

Index-1

INDEX

ASM386/486 assembler,
and FPU numeric applications, 18-4
and FPU register addressing modes, 15-1
and i486 Floating Point Unit (FPU), 14-6

automatic exception handling, numeric
exceptions, 16-18

automatic locking, and LOCK#, 13-3
A VL field, I/O addressing, 8-1
AX (16-bit general register),

and CMPXCHG instruction, 3-43
and CWD instruction, 3-4
and CWDE instruction, 3-6
and DIV instruction, 3-9
and MUL instruction, 3-8
and SCAS instruction, 3-29
and STOS instruction, 3-30
register description, 2-8

B bit, and Intel 8087 compatibility, 15-2
base,

effective-address computation, 2-22
segment descriptors, 5-10

base address, .
and effective address, 2-21
and segment descriptor, 2-2
and segment descriptors, 5-10
and segmented address space, 2-3

BCD (binary coded decimal), data type, 2-6
benign exceptions, and Interrupt 8 (double

fault), 9-16
BH (8-bit general register), register description,

2-8
bidirectional port, and input/output, 8-1
binary arithmetic instructions, and application

programming, 3-6 '
binary integers, FPU data type, 15-11 .
bit block,transfer, and double-shift instructions,

3-19
bit field, data type, 2-6
bit string, data type, 2-6
BL (8-bit general register), register description,

2-8
block I/O instructions,

INS (input string from port), 8-5
OUTS (output string from port), 8-6

block-structured language,
instructions, 3-30
lexical level, 3-32

Boolean expressions, and byte-set-on-condition
instructions, 3-22

BOUND (check array index against bounds),
flag cross-reference, B-1
general description, 3-27
instruction format and timing,' E-13
instruction specification, 26-29
one-byte opcode map, A-4

bounds-check exception, and i486 processor,
2-23 .

bounds-check fault, Interrupt 5 (bounds check),
9-15

BP (16-bit general register), register
description, 2-8

breakpoint exception,
debugging support, 11-1
and i486 processor, 2-23

breakpoint mstruction, debugging support, 11-1
breakpoint trap, Interrupt 3 (breakpoint

instruction), 9-14, 11-9
breakpoints, and debug registers, 4-8, 11-5 .
BSF (bit scan forward),

flag cross-reference, B-1
instruction description, 3-12
instruction format and timing, E-9
instruction specification, 26-31
status flag summary, C-2
two-byte opcode map, A-7

BSR (bit scan reverse) ..
flag cross-reference, B-1
instruction description, 3-12
instruction format and timing, E-9
instruction specification, 26-33
status flag summary, C-2
two-byte opcode map, A-7

BSW AP (byte swap),
flag cross-reference, B-1
instruction description, 3-43
instruction format and timing, E-6
instruction specification, 26-35
two-byte opcode map, A-7

BT (bit test),
flag cross-reference, B-1
instruction description, 3-12
instruction format and timing, E-9
instruction specification, 26-36
modR/M byte opcodes, A.;8
status flag summary, C-3
two-byte opcode map, A-6

BTC (bit test and complement),
flag cross-reference, B-1
instruction description, 3-12 '
instruction specification, 26-38
status flag summary, C-3
two-byte opcode map, A-7

BTR (bit test and reset),
flag cross-reference, B-1
instruction description,· 3-12
instruction specification, 26-40
modR/M byte opcodes, A-8
status flag summary, C-3
two-byte opcode map, A-6

BTS (bit test and set),
flag cross-reference, B-1
instruction description, 3-12
instruction specifIcation, 26-42
modR/M byte opcodes, A-8
status flag summary, C-3
two-byte opcode map, A-7

bus masters,
and LOCK prefix, 13-2
and processor communication, 13-1

Index-2

INDEX

busy bit,
and re-entrant task switching, 7-12
and TSS descriptor, 7-3

BX (16-bit general register), register
description, 2-8

byte, data type, 2-3

C programs, and FPU numeric applications,
18-1

C-386/486, and FPU numeric applications, 18-1
cache,

associative memories and tag, 12-1
consistency and multiprocessing systems,

13-1
consistency and mUltiprocessor systems, 12-1
control bits and page table entries, 5-22
disabling bits and internal cache, 12-2
external cache, 12-1
hit and associative memory tag, 12-1
initialization testing, 10-10
internal cache, 12-1
line fill and cache lines, 12-2
lines and internal cache, 12-1
miss and associative memory tag, 12-1
structure, 10-10
test operations, 10-13
test registers, 10-12

cache management,
instructions (system programming), 4-9
INVD (invalIdate cache), 12-3
PCD bits (page-level cache disable), 12-4
WBINVD (write-back and invalidate cache),

12-3
caching,

and I/O data, 8-4
and pae;e-Ievel management, 12-3
and wnte-back, 12-2
and write-through, 12-2
enable and initialize, 10-4

CALL (call procedure),
flag cross-reference, B-1
e;eneral description, 3-24
Instruction format and timing, E-7, E-8
instruction specification, 26-44
modR/M byte opcodes, A-8
one-byte opcode map, A-4, A-5

call gates, and control transfers, 6-11
carry flag instructions, and CF flag, 3-37
CBW (convert byte to word),

flag cross-reference, B-1
instruction description, 3-6
instruction format and timing, E-6
instruction specification, 26-51
one-byte opcode map, A-4, A-5

CD bit (cache disable - bit 30), system control
flag, 4-6

CDQ (convert doubleword to quadword),
instruction description, 3-4
instruction specification, 26-64

CF (carry flag), status flag, 2-14

CF flag,
and binary arithmetic instructions, 3-6
and carry flag instructions, 3-37
and DEC instruction, 3-6
and INC instruction, 3-6

CH (8-bit general register), register description,
2-8

CL (8-bit general register),
and shift instructions, 3-13
register description, 2-8

CLC (clear carry flag),
flag cross-reference, B-1
instruction format and timing, E-lO
instruction specification, 26-52
one-byte opcode map, A-5

CLD (clear direction flag),
flag cross-reference, B-1
instruction format and timing, E-lO
instruction specification, 26-53
one-byte opcode map, A-5

CLI (clear interrupt-enable flag),
and INTR interrupts, 9-3
flag cross-reference, B-1
instruction format and timing, E-lO
instruction specification, 26-54
one-byte opcode map, A-5
sensitive instructions, 8-6

CLTS (clear task-switched flag in CRO),
flag cross-reference, B-1
instruction format and timing, E-ll
instruction specification, 26-55
privileged instruction, 6-19
two-byte opcode map, A-6

CMC (complement carry flag),
flag cross-reference, B-1
instruction format and timing, E-lO
instruction specification, 26-56
one-byte opcode map, A-4

CMP (compare two operands),
flag cross-reference, B-1
instruction description, 3-8
instruction format and timing, E-4
instruction specification, 26-57
modR/M byte opcodes, A-8
one-byte opcode map, A-4, A-5
status flag summary, C-2

CMPS (compare strings),
flag cross-reference, B-1
instruction description, 3-29
instruction format and timing, E-9
instruction specification, 26-59
status flag summary, C-2

CMPSB (compare bytes),
instruction specification, 26-59
one-byte opcode map, A-4

CMPSD (compare doublewords),
instruction specification, 26-59
one-byte opcode map, A-4

CMPSW (compare words),
instruction specification, 26-59

Index-3

INDEX

one-byte opcode map, A-4
CMPXCHO (compare and exchange),

flag cross-reference, B-1
instruction description, 3-43
instruction format and timing, E-6
instruction specification, 26-62
status flag summary, C-2
two-byte opcode map, A-6

code segments,
and CS register, 2-11
and data access, 6-8
and segment descriptors, 5-13

comparison instructions, floating-point
instructions, 17-4

compatibility,
i486 Floating Point Unit (FPU), 14-1
initialization, 10-1
Intel 386/387 DX processor differences, 25-1
Intel 80286/80287 processor differences, 25-2
Intel 8086/8087 processor differences, 25-10

concurrent processing, IU and FPU, 18-12
condition codes, and EFLAOS register, 2-13
conditional branching example, numeric

programming, 20-1
conforming segment, and control transfer

restrictions, 6-9 ,
constant instructions, floating-point

instructions, 17-6
contributory exceptions, and Interrupt 8

(double fault), 9-16
control instructions, floating-point

instructions, 17-6
control registers, of i486 processor, 2-8
control transfers,

and call gates, 6-11
and gate descriptors, 6-11
instructions and application programming,

3-23
restrictions to, 6-9

coprocessor-not-availableexception, and EM
control flag, 4-7

coprocessor-segment overrun abort, Interrupt 9
(Intel reserved), 9-17

copy-on-write strategy, and user-mode write
protect, 6-24

CPL (current privilege level),
and control transfer restrictions, 6-9
and CS segment register, 6-6
and data access restrictions, 6-7

CRO (system control register),
and AC flag, 4-2
and paging, 2-2, 5-2
and PO bit, 5-18
register description, 4-5

CR1 (system control register), register descrip-
tion 4-5 .

CR2 (sy~tem control register), register descrip­
tion, 4-5

CR3 (system control register),
and page frame address, 5-18

and page-directory register (PDBR), 4-6
register description, 4-5

CS (segment register),
and code segment, 2-11
and CPL (current privilege level), 6-6
and far control transfer instructions, 3-40
register description, 2-10

CWD (convert word to doubleword),
flag cross-reference, B-1
instruction description, 3-4
instruction format and timing, E-6
instruction specification, 26-64
one-byte opcode map, A-4, A-5 '

CWDE (convert word to doubleword
extended),

instruction description, 3-6
instruction specification, 26-51

CX (16-bit general register), register descrip­
tion, 2-8

D bit, segment descriptors, 5-12
DAA (decimal adjust AL after addition),

flag cross-reference, B-1
instruction description, 3-10
instruction format and timing, E-11
instruction specification, 26-65
one-byte opcode map, A-4
status flag summary, C-1

DAS (decimal adjust AL after subtraction),
flag cross-reference, B-1 '
instruction description, 3-10
instruction format and timing, E-11
instruction specification, 26-66
one-byte opcode map, A-4, A-5
status flag summary, C-1

data access,
code segments shared data, 6-8
restrictions to, 6-7

data bus, and doubleword transfers, 2-6
data movement instructions,

and application programming, 3-1
and LOCK prefix, 13-2

data segment,
and DS register, 2-11
and ES register, 2-11
and FS register, 2-11
and OS register, 2-11
and segment descriptor, 5-13
descriptor and writable bit, 6-3

data transfer instructions,' floating-point
instructions, 17-2

data type,
BCD, 2-6
bit field, 2-6
bit string, 2-6
byte, 2-3
doubleword, 2-4
far pointer, 2-6
floating-point, 2-6
integer, 2-6

Index-4

INDEX

near pointer, 2-6
ordinal, 2-6
packed BCD, 2-6
string, 2-6
word,2-3

data type encoding, and unsupported formats,
16-13

data types and formats, i486 Floating Point
Processor (FPU), 15-9

data-breakpoint trap, Interrupt 1 (debug excep­
tions), 9-14, 11-6

debug address registers (DRO-DR3),
debugging support, 11-1
for breakpoint linear address, 11-2

debug control register (DR7),
debugging support, 11-1
for breakpoint memory access, 11-2

debug exception,
and i486 processor, 2-23
and RF flag, 4-3, 9-4
and TF flag, 4-3

debug interrupt vector, debugging support, 11-1
debug status register (DR6),

conditions sampled, 11-4
debugging support, 11-1

debugging,
i486 processor facilities, 11-1
instructions for system programming, 4-9

DEC (decrement by one),
and CF flag, 3-6
flag cross-reference, B-1
instruction description, 3-8
instruction specification, 26-67
modR/M byte opcodes, A-8
one-byte opcode map, A-4, A-5
status flag summary, C-2

decimal arithmetic instructions, and application
programming, 3-10

decimal integers, FPU data type, 15-12
default segment, assignment of, 2-19
defining data, ASM386/486, 18-4
demand-paged virtual memory, and paging, 5-2
denormal real numbers, FPU data formats,

16-1
denormal-operand exception,

denormal operand, 16-22
numeric exceptions, 16-17
pseudodenormal numbers, 16-13

descriptor table addressing, instructions
(system programming), 4-9

descriptor table base registers,
GDTR register, 5-16
IDTR register, 5-16
segment descriptors, 5-16

descriptor validation,
VERR (verify for read), 6-21
VERW (verify for. write), 6-21

destination operand,
for binary arithmentic instructions, 3-6
for floating-point instructions, 17-1

for two-operand instructions, 2-17
device drivers, and privilege levels, 6-6
device-not-available fault,

and i486 processor, 2-23
Interrupt 7 (device not available), 9-15

DF (direction flag),
direction flag control instructions, 3-37
EFLAGS register, 2-13

DH (8-bit general register), register descrip­
tIOn, 2-8

DI (16-bit general register), register descrip­
tion, 2-8

direct load instructions,' and segment registers,
5-7

directed rounding, FPU rounding control,
15-16

direction flag control instructions, and DF flag,
3-37

dirty bits, and page table entries, 5-21
displacement,

effective address, 2-21
instruction format, 2-16

display, stack frame pointer set, 3-30
DIV (unsigned divide),

flag cross-reference, B-1 .
general description and flags, 3-9
instruction format and timing, E-5
instruction specification, 26-68
modR/M byte opcodes, A-8

divide-by-zero, numeric exceptions, 16-17
divide-error exception, and i486 processor, 2-23
divide-error fault, Interrupt 0 (dIvide error),

9-14
division by zero, and zero-divide exception,

16-21
DL (8-bit general register), register description,

2-8
double real, numeric data type, 14-6
double-shift instructions,

and bit block transfer, 3-19
and string insertion/extraction, 3-19

doubleword,
data type, 2-4
databus transfers; 2-6

DPL (descriptor privilege level),
and control transfer restrictions, 6-9
and data access restrictions, 6-7
and segment descriptors, 6-6
and segment privilege level, 5-14

DS (segment register),
and application program, 2-12
and data segment, 2-11
register description, 2-10

DX (16-bit general register),
and CWD instruction, 3-4
register description, 2-8

dynamic storage, and ENTER instruction, 3-30

E bit (expansion direction bit), and segment
descriptor, 6-4

Index-5

INDEX

EAX (32-bit general register),
and binary arithmetic instructions, 3-6
and CDO instruction, 3-4
and CMPXCHG instruction, 3-43
and CWDE instruction, 3-6
and DIV instruction, 3-9
and immediate operands, 2-18
and IMUL instruction, 3-8
and LODS instruction, 3-30
and MOV instruction, 3-2
and MUL instruction, 3-8
and PUSHA instruction, 3-3
and SCAS instruction, 3-29
and STOS instruction, 3-30
register description, 2-8

EBP (32-bit general register),
and ENTER instruction, 3-31
and LEAVE instruction, 3-35
and PUSHA instruction, 3-3
register description, 2-8

EBX (32-bit general register),
and LEA instruction, 3-41
and PUSHA instruction, 3-3
and XLA TB instruction, 3-42
register description, 2-8

ECX (32-bit general register),
and JECXZ instruction, 3-26
and loop instructions, 3-25
and LOOPE instruction, 3-26
and LOOPNE instruction, 3-26
and LOOPNZ instruction, 3-26
and LOOPZ instruction, 3-26
and MOVS instruction, 3-29
and PUSHA instruction, 3-3
and three-operand instructions, 2-18
register description, 2-8

EDI (32-bit general register),
and LEA instruction,· 3-41
and MOVS instruction, 3-29
and PUSHA instruction, 3-3
and STOS instruction, 3-30
for string destination operand, 3-29
register description, 2-8

EDX (32-bit general register),
and CDO instruction, 3-4
and IMUL instruction, 3-8
and PUSHA instruction, 3-3
register description, 2-8

effective address, components of, 2-21
EFLAGS register,

AC flag (alignment check mode-bit 18),4-2
and arithmetic instructions, 2-13
and condition codes, 2-13
and conditional transfer instructions, 3-24
and DF (direction flag), 2-13
and flag control instructions, 3-35
and I/O protection, 8-6
and IRET instruction, 3-24
and mode bits, 2-13
and string instructions, 2-13

and system programming, 4-2
as register operand, 2-19
IF flag (interrupt-enable flag - bit 9), 4-3
IOPL flag (I/O privilege level- bits 12

and 13),4-3
NT flag (nested task-bit 14),4-3
RF flag (resume flag-bit 16),4-3
TF flag (trap flag - bit 8), 4-3
VM flag (virtual-8086 mode - bit 17), 4-3

EIP register,
and CALL instruction, 3-24
and conditional jump instructions, 3-25
and current code segment, 2-14
and instruction prefetching, 2-15
and RET instruction, 3-24

EM bit (emulate coprocessor), numerics
environment configuration, 19- 2

EM (emulation - bit 2), system control flag, 4-7
ENTER (make stack frame for procedure),

flag cross-reference, B-1
~eneral description, 3-30
Instruction format and timing, E-8
instruction specification, 26-70
one-byte opcode map, A-5

ERROR#, and NE control flag, 4-7
error codes,

and exception handler, 9-13
summary of, 9-24

ES register,
and application program, 2-12
and data segment, 2-11
segment register, 2-10

ESCAPE instructions, and i486 Floating Point
Unit (FPU), 14-5

ESI (32-bit general register),
and LEA instruction, 3-41
and LODS instruction, 3-30
and MOVS instruction, 3-29
and PUSHA instruction, 3-3
for string source operand, 3-29
register description, 2-8

ESP (32-bit general register),
and ENTER instruction, 3-31
and LEAVE instruction, 3-35
and POP instruction, 3-3
and POP A instruction, 3-4
and PUSH instruction, 3-2
and PUSHA instruction, 3-3
and RET instruction, 3-24
register description, 2-8

ET (extension type - bit 4), system control flag,
4-7

exact arithmetic, and i486 Floating Point Unit
(FPU), 14-4

exception handling example, numeric
programming, 20-1

exception vector, identifying number, 9-1
exceptions,

alignment-check exception, 2-24
and instruction prefetching, 2-15

Index-6

INDEX

and instruction restart, 9-2
and page mapping, 2-2
and task switching, 7-1
and trap gates, 6-11 .
bounds-check exception, 2-23
breakpoint exception, 2-23
conditions causing, 9-13
debug exception, 2-23
description of, 2-23
device-not-available exception, 2-23
divide-error exception, 2-23
for basic programming model, 2-23
FPU simultaneous response, 19-4
in real-address mode, 22-2, 22-5
overflow exception, 2-23
processing priority, 9-5, 16-26
processor-detected, 9-1
programmed software interrupts, 9-1
summary of, 9-24
synchronization, 18-13, 18-14

executable-segment descriptor, readable bit,
6-3

explicit operand,
description of, 2-17
in memory, 2-19

extended format, and i486 Floating Point Unit
(FPU),14-6

extended real, numeric data type, 3-38, 14-6
external bus, and I/O instruction execution, 8-1
external cache,

i486 processor, 12-1
and write-back cache, 12-2
and write-through cache, 12-2

F2XMl (computer 2x-l),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-72
numeric exception summary, F-l

FABS (absolute value),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-74
numeric exception summary, F-l

FADD (add),
condition code interpretation, 15-4
instruction format and timing, E-17
instruction specification, 26-75
numeric exception summary,. F-l

FADDP (add),
instruction format and timing, E-17
instruction specification, 26-75
numeric exception summary, F-l

Far CALL, general description., 3-40
far form, RET (return from procedure), 6-17
far pointer, data type, 2-6
Far RET, general description, 3-40
far transfer, and uncondItional transfer instruc­

tions, 3-23
faults,

exception conditions, 9-13
exception description, 9-2
processor-detected exception, 9-1

FBLD (load binary coded decimal),
condition code interpretation, 15-4
instruction format and timing, E-16
instruction specification, 26-77
numeric exception summary, F-l

FBSTP (store binary coded decimal and pop),
conditIOn code interpretation, 15-4
instruction format and timing, E-16
instruction specification, 26-79
numeric exception summary, F-l

FCHS (change sign),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-80
numeric exception summary, F-l

FCLEX (clear exceptions),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-81
numeric exception summary, F-l

FCOM (compare real),
condition code interpretation, 15-4
instruction format and timing, E-16
instruction specification, 26-82
numeric exception summary, F-l

FCOMP (compare real),
condition code interpretation, 15-4
instruction format and timing, E-16 .
instruction specification, 26-82
numeric exception summary,.F-l

FCOMPP (compare real),
condition code interpretation, 15-4
instruction format and timing, E-17
instruction specification, 26-82
numeric exception summary, F-l

FCOS (cosine),
condition code interpretation, 15-4 .
instruction format and timing, E~ 19
instruction specification, 26-84
numeric exception summary, F-l

FDECSTP (decrement stack-top pointer),
instruction format and timing, E-20
instruction specification, 26-86
numeric exception summary, F-l

FDIV (divide),
condItion code interpretation, 15-4
instruction format and timing, E-18
instruction specification, 26-87
numeric exception-summary, F-l

FDIVP (divide),
instruction format and timing, E-18
instruction specification, 26-87
numeric exception summary, F-l

FDIVPR (reverse divide),
instruction format and timing, E-18
instruction specification, 26-89
numeric exception summary, F-l

Index-7

FDIVR (reverse divide),
condition code interpretation, 15-4
instruction format and timing, E-18
instruction specification, 26-89
numeric exception summary, F-1

FERR#,
and NE control flag, 4-7
and software exception handling, 16-19

FFREE (free floating-point register),
instruction format and timing, E-20
instruction specification, 26-91
numeric exception summary, F-1

FIADD (add),
instruction format and timing, E-18
instruction specification, 26-75
numeric exception summary, F-1

FICOM (compare integer),
condition code interpretation, 15-4
instruction format and timing, E-17
instruction specification, 26-92
numeric exception summary, F-1

FICOMP (compare integer),
condition code interpretation, 15-4
instruction format and timing, E-17
instruction specification, 26-92
numeric exception summary, F-1

FIDIV (divide),
instruction format and timing, E-18
instruction specification, 26-87
numeric exception summary, F-1

FIDIVR (reverse divide),
instructlon format and timing, E-19
instruction specification, 26-89
numeric exception summary, F-1

FILD (load integer),
condition code interpretation, 15-4
instruction format and timing, E-16
instruction specification, 26-94
numeric exception summary, F-1

FIMUL (multiply),
instruction format and timing, E-18
instruction specification, 26-109
numeric exception summary, F-1

FINCSTP (increment stack-top pointer),
condition code interpretation, 15-4
instruction format and timing, E-20
instruction specification, 26-96
numeric exception summary, F-1

FINIT (initialize floating-point unit),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-97
numeric exception summary, F-1

FIST (store integer),
condition code interpretation, 15-4
instruction format and timing, E-16
instruction specification, 26-99
numeric exception summary, F-1

FISTP (store integer),
instruction format 'and timing, E-16

INDEX

instruction specification, 26-99
numeric exception summary, F-1

FISUB (subtract),
instruction format and timing, E-18
instruction specification, 26-138
numeric exception summary, F-1

FISUBR (reverse subtract),
instruction format and timing, E-18
instruction specification, 26-140
numeric exception summary, F-1

flag control instructions, and application
programming, 3-35

flat address space, memory organization model,
2-2, 2-3

flat model,
and segmentation, 5-3
segment/page translation, 5-23

flat model mitialization, segmentation, 10-5
FLD1 (load constant),

instruction format and timing, E-17
instruction specification, 26-103
numeric exception summary, F-1

FLD (local real),
condition code interpretation, 15-4
instruction format and timing, E-16

, instruction specification, 26-101
numeric exception summary, F-1

FLDCW (load control word),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-105
numeric exception summary, F-1

FLDENV (load FPU environment),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-107
numeric exception summary, F-1

FLDL2E (load constant),
instruction format and timing, E-17
instruction specification, 26-103
numeric exception summary, F-1 .

FLDL2T (load constant),
instruction format and timing, E-17
instruction specification, 26-103
numeric exception summary, F-1

FLDLG2 (load constant),
instruction format and timing, E-17
instruction specification, 26-103
numeric exception summary, F-1

FLDLN2 (load constant),
instruction format and timing, E-17
instruction specification; 26-103
numeric exception summary, F-1

FLDPI (load constant),
instruction format and timing, E-17·
instruction specification, 26-103
numeric exception summary, F-1

FLDZ (load constant),
instruction format and timing, E-17
instruction specification, 26-103

Index-8

INDEX

numeric exception summary, F-l
floating-point, data type, 2-6
floating-point instructIOns,

comparison instructions, 17-4
constant instructions, 17-6
control instructions, 17-6
data transfer instructions, 17-2
destination operands, 17-1
nontranscendental instructions, 17-2
source operands, 17-1
transcendental instructions, 17-4

floating-point numerics, instructions (system
programming), 4-9

floatmg-point to ASCII conversion example,
numeric programming, 20-7

floating-point-error fault, Interrupt 16
(floating-point error), 9-23

FMUL (multiply),
condition code interpretation, 15-4
instruction format and timing, E-18
instruction specification, 26-109
numeric exception summary, F-l

FMULP (multiply),
instruction format and timing, E-18
instruction specification, 26-109
numeric exception summary, F-l

FNCLEX (clear exceptions), instruction
specification, 26-81

FNINIT (initialize floating point unit), and
FPU initialization, 19-2

FNINIT (initialize floating-point unit), instruc­
tion specification, 26-97

FNOP (no operation),
instruction format and timing, E-20
instruction specification, 26-111
numeric exception summary, F-l

FNSA VE (store FPU state), instruction
specification, 26-123

FNSTCW (store control word), instruction
specification, 26-133

FNSTENV (store FPU environment), instruc­
tion specification, 26-134

FNSTSW (store status word), instruction
specification, 26-136

forking, See copy-on-write strategy
FPATAN (partial arctangent),

condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-112
numeric exception summary, F-l

FPREMI (partial remainder),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-116
numeric exception summary, F-l

FPREM (partial remainder),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-114
numeric exception summary, F-l

FPTAN (partial tangent),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-118
numeric exception summary, F-1

FPU control word, and numerical exception
masking, 15-5

FPU data formats,
and other entities, 16-1
and special numeric values, 16-1

FPU data type,
binary integers, 15-11
decimal integers, 15-12
real numbers, 15-12

FPU register addressing modes, and
ASM386/486 assembler, 15-1

FPU register stack, and numeric registers, 15-1
FPU status word, and Integer Unit, 15-2
FPU tag word, and numeric registers, 15-6
FRNDINT (round to integer),

condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-120
numeric exception summary, F-l

FRSTOR (restore FPU state),
condition code interpretation, 15-4
instruction format and timing, E-20
instruction specification, 26-121
numeric exception summary, F-l

FS register,
and application program, 2-12
and data segment, 2-11
segment register, 2-10

FSA VE (store FPU state),
condition code interpretation, 15-4
instruction format and timing, E-20
instruction specification, 26-123

FSCALE (scale),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-125
numeric exception summary, F-l

FSIN (sine),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-126
numeric exception summary, F-2

FSINCOS (sine and cosine),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-128
numeric exception summary, F-2

FSQRT (square root),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-130
numeric exc~tion summary, F-2

FST (store real,
condition co e interpretation, 15-4
instruction format and timing, E-16

Index-9

instruction specification, 26-131
numeric exception summary, F-2

FSTCW (store control word),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-133
numeric exception summary, F-2

FSTENV (store FPU environment),
condition code interpretation, 15-4
instruction format and timing; E-19
instruction specification, 26-134
numeric exception summary, F-2

FSTP (store real),
condition code interpretation, 15-4
instruction format and timing, E-16
instruction specification, 26-131
numeric exception summary, F-2

FSTSW (store status word),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-136
numeric exception summary, F-2

FSUB (subtract),
condition code interpretation, 15-4
instruction format and timing, E-17
instruction specification, 26-138
numeric exception summary, F-2

FSUBP (subtract),
instruction format and timing, E-17
instruction specification, 26-138
numeric exception summary, F-2

FSUBPR (reverse subtract),
instruction format and timing, E-18
instruction specification, 26-140
numeric exception summary, F-2

FSUBR (reverse subtract),
condition code interpretation, 15-4
instruction format and timing, E-18
instruction specification, 26-140
numeric exception summary, F-2

FTST (test),
condition code interpretation, 15-4
instruction format and timing, E-17
instruction specification, 26-142
numeric exception summary, F-2

FUCOM (unordered compare real),
condition code interpretation, 15-4
instruction format and timing, E-17
instruction specification, 26-144
numeric exception summary, F-2

FUCOMP (unordered compare real),
condition code interpretation, 15-4
instruction format and timing, E-17
instruction specification, 26-144
numeric exception summary, F-2 .

FUCOMPP (unordered compare real),
condition code interpretatIOn, 15-4
instruction format and timing, E-17
instruction specification, 26-144
numeric exception summary, F-2

INDEX

FWAIT (wait),
instruction specification, 26-146
numeric exception summary, F-2

FXAM (examine real),
condition code interpretation, 15-4
instruction format and timing, E-17
instruction specification, 26-147
numeric exception summary, F-2

FXCH (exchange register contents),
condition code interpretation, 15-4
instruction specification, 26-149
numeric exception summary,. F-2

FXTRACT (extract exponent and significand),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-151
numeric exception summary, F-2

FYL2X (compute y x log2x),
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, ·26-153
numeric exception summary, F-2

FYL2XP1 (compute y x log2 (x + 1»,
condition code interpretation, 15-4
instruction format and timing, E-19
instruction specification, 26-155
numeric exception summary, F-2

G bit (granularity bit), and segment descriptor,
6-4

gate descriptors, and control transfers
protection, 6-11

GDTR (global descriptor table register),
descriptor table base registers, 5-16
register description, 4-4 '

general registers,
and IMUL instruction, 3-8
and POPA instruction, 3-4
and PUSHA instruction, 3-3
as register operand, 2-19
of i486 processor, 2-8

general-detect fault, Interrupt 1 (debug
exceptions), 9-14, 11-8

general-protection exception,
and multi-segment model, 5-5
and privilege levels, 6-5
and protected flat model, 5-4

global descriptor table (GDT),
segment descriptor tables, 5-15
segment translation, 5-5

gradual underflow, and denormal values, 16-4
granularity bit,

and TSS descriptor, 7-4
segment descriptors, 5-10

GS register,
and application program, 2-12
and data segment, 2-11
segment register, 2-10

handler, for exceptions and interrupts, 9-1

Index-10

high word, for doubleword data type, 2-4
high-level languages, and FPU numeric

applications, 18-1
HLT (halt),

flag cross-reference, B-1
instruction format and timing, E-11
instruction specification, 26-157
instructions (system programming), 4-11
one-byte opcode map, A-4
privileged Instruction, 6-19

i486 Floating Point Processor (FPU),
applications, 14-4
architecture, 15-1
concurrent processing, 18-12
data types and formats, 15-9
history of, 14-1
i486 processor, 14-1
infinity operands, 16-8
initialization, 19-2
Intel 387 DX emulation, 19-3
NaN (not-a-number) operands, 16-8
number system, 15-9
numerics environment configuration, 19-2
performance, 14-1
precision control, 15-16
programming interface, 14-5
rounding control, 15-15
system programming, 19-1
zero operands, 16-6

i486 Integer Unit (IU),
concurrent processing, 18-12
operation with FPU, 14-2

i486 processor,
control re~isters, 2-8, 4-5
debug registers, 4-8
debugging facilities, 11-1
external cache, 12-1
features, 1-1 gate descriptors, 6-11
~eneral registers, 2-8
1486 Floating Point Processor (FPU), 14-1
I/O instructions, 8-4
initialization, 10-1
input/output, 8-1
internal cache, 12-1
memory-management registers, 4-4
mixing 16~bit and 32 bit code, 24-1
multitasking mechanism, 7-1
operating modes, 1-2
operating status, 2-13
real-address mode, 22-1
segment registers, 2-8
status registers, 2-8
system flags, 4-2
system instructions, 4-9
system registers, 4-1
task linking, 7-11
task switching, 7-7
test registers, 4-8
virtual-8086 mode, 23-1

INDEX

I/O address space,
and 10PL flag, 4-3
and physical memory, 8-2
i486 processor, 8-1

I/O instructions,
and i486 processor, 8-4
and I/O privilege level, 8-6

I/O operations, and sensitive instructions, 6-19
I/O permission bit map, and TSS (task state

segment),8-7
I/O port, for operand selection, 2-17
I/O privilege level,

and I/O instruction access, 8-6
and 10PL flag, 4-3

IDEC (decrement by one), modR/M byte
opcodes, A-8

IDIV (signed divide),
flag cross-reference, B-1
instruction description, 3-10
instruction format and timing, E-5
instruction specification, 26-158
modR/M byte opcodes, A-8

IDT (interrupt descriptor table),
exception/interrupt vectors, 9-5
interrupt gates, 9-7
LIDT (load IDT register), 9-7
task gates, 9-7
trap gates, 9-7
types of, 9-7

IDTR (interrupt descriptor table register),
descriptor table base registers, 5-16
register description, 4-5

IEEE Standard 754, and unsupported formats,
16-13

IEEE Standard 854,
and i486 Floating Point Processor (FPU),

14-1
and invalid arithmetic operation, 16-21
and standard underflow/overflow exception

handler, 16-27
IF flag (interrupt-enable flag - bit 9),

mask INTR interru{lts, 9-3
system flag descriptIOn, .4-3

IGNNE#,
and NE control flag, 4-7
and software exception handling, 16-20

immediate operand, instruction format, 2-16
implicit operand, description of, 2-17
implied load instructions, and segment

registers, 5-7
IMUL (signed multiply),

flag cross-reference, B-1
~eneral description and flags, 3-8
Instruction format and timing, E-5
instruction specification, 26-160
modR/M byte opcodes, A-8
one-byte opcode map, A-5
status flag summary, C-2
two-byte opcode map, A-7

IN (input from port),

Index-11

INDEX

flag cross-reference, B-1
instruction format and timing, E-15
instruction specification, 26-162
one-byte opcode map, A-4, A-5
register I/O instructions, 8-5
sensitive instructions, 8-6

INC (increment by one),
and CF flag, 3-6 '
flag cross-reference, B-1
instruction description, 3-7
instruction specification, 26-164
modR/M byte opcodes, A-8
one-byte opcode map, A-4, A-5
status flag summary, C-2

inconsistent stack pointer,. and page fault, 9-23
indefinite value, and numeric data type, 16-12
index component,

and segment selectors, 5-9
for effective address, 2-21

inexact exception,
and inexact (precision), 16-26
and underflow exception, 16-26

inexact result (precision),
and inexact exception, 16-26
numeric exceptions, 16-18

infinity operands, and i486 Floating Point
Processor (FPU), 16-8

initialization,
and i486 processor, 10-1
i486 Floating Point Processor (FPU), 19-2

inner protection rings, and stack switching, 6-15
input port, and input/output, 8-1
input/output,

and i486 processor, 8-1
instructions (system programming), 4-9

INS (input from port to string),
block I/O instructions, 8-5
flag cross-reference, B-1
instruction format and timing, E-15
instruction specification, 26-165
sensitive instructions, 8-6

INSB (input from port to string),
instruction specification, 26-165
one-byte opcode map, A-4, A-5

INSD (input from port to string),
instruction specification, 26-165
one-byte opcode map, A-4, A-5

instruction,
and default segment selection, 2-19
and operand selection, 2-17
first initialization execution, 10-4

instruction address breakpoint fault, Interrupt
1 (debug exceptions), 9-14

instruction format, '
addressing-mode specifier, 2-16
and opcode, 2-16
and prefix, 2-16
and register specifier, 2-16
displacement, 2-16
for basic programming model, 2-15

immediate operand, 2-16
SIB (scale, index, base) byte, 2-16

instruction prefetching,
and EIP register, 2-15
and exception generation, 2-15
and parity checking, 2-15
and PLOCK#, 13-1
and pseudo-locking, 13-4

instruction restart,
and exceptions, 9-2
and interrupts, 9-2
and paging, 5-2 ' ':' ,

instruction-breakpoint fault, Interrupt 1 (debug
exceptions), 11-6

instructions, in real-address mode, 22-2
instructions (application programming),
, binary arithmetic instructions, 3-6

block-structured language instructions, 3-30
control transfer instructions, 3-23
data movement instructions, 3-1
data registers, 2-12' . ' .'
decimal arithmetic instructions, 3-10,
flag control instructions,.3-35
logical instructions, 3-11 ' .
miscellaneous instructions, 3-41
numeric instructions, 3-38
segment register instructions, 3-39
string operations, 3-27

instructions (operating system),
privileged mstructions, 6-19
sensitive instructions, 6-19

instructions (system programming),
cache management~ 4-9
debugging, 4-9
descriptor table addressing, 4-10
floating-pont numerics,4-9
HL T instruction, 4-11
input and output, 4-9
interrupt control, 4-9
LOCK instruction, 4-11
multitasking,4-1O ;
pointer parameter verification, .4-9
system control, 4-9

INSW (input from port to string), '
instructIOn specification, 26-165
one-byte opcode map, A-4, A-5

INT (call to mterruptprocedure),
flag cross-reference, B-1 .
for interrupt generation, 2-24,
general description, 3-26
instruction format and timing, E-13
instruction specification, 26-167
one-byte opcode map, A-5

integer, data type description, 2-6
integer instructions, overview of, 3-1 ",
Integer Unit, and FPU status word, 15-2
Intel 386 DX processor, "

and data breakpoint matching; 11-4
and Interrupt 9 (Intel reserved); 9-17
and MP control flag, 4-7

Index-12

INDEX

processor differences, 21-4
real-address mode, 22-1

Intel 386 OX processor programs, and i486
processor, 21-1

Intel 387 OX coprocessor,
and ET control flag, 4-7
emulation and i486 Floating Point Processor

(FPU),19-3
Intel 80186 processor, real-address mode, 22-1
Intel 80188 processor, real-address mode, 22-1
Intel 80286 processor,

LMSW instruction, 4-11
MP control flag, 4-7
processor differences, 21-2
programs and i486 processor, 21-1
protected mode, 21-1 .
real-address mode, 22-1
running tasks, 21-2
segment descriptors, 21-1
SMSW instruction, 4-11
TSS compatibility, 7-2

Intel 8086 processor,
real-address mode, 22-1
virtual-8086 mode, 4-3

Intel 8087 processor, compatibility and B bit,
15-2

Intel 8088 processor; real-address mode, 22-1
Intel 8259A Programmable Interrupt

Controller, and interrupt vector, 9-1
Intel 860 processor, alignment-check exception,

4-2
internal cache,

and cache lines, 12-2
and write-through cache, 12-2
i486 processor, 12-1
operation of, 12-2
self-modifying code, 12-3

Interrupt 0 (divide error), divide-error fault,
9-14

Interrupt 10 (invalid TSS), invalis-TSS fault,
9-17

Interrupt 11 (segment not present), segment­
not-present fault, 9-18

Interrupt 12 (stack exception), stack fault, 9-19
Interrupt 13 (general protection), protection

violations, 9-20
Interrupt 14 (page fault), page fault, 9-21
Interrupt 16 (floating-point error), floating­

pOInt-error fault, 9-23
Interrupt 17 (alignment check), alignment­

check fault, 9-23
Interrupt 1 (debug exceptions),

data address breakpOInt trap, 9-14
data-breakpoint trap, 11-6
general detect fault, 9-14
general-detect fault, 11-8
instruction address breakpoint fault, 9-14
instruction-breakpoint fault, 11-6
single-step trap, 9-14, 11-8
task-switch breakpoint trap, 9-14

task-switch trap, 11-8
Interrupt 3 (breakpoint), breakpoint trap,

9-14, 11-9
Interrupt 4 (overflow), overflow trap, 9-15
Interrupt 5 (bounds check), bounds-check fault,

9-15
Interrupt 6 (invalid opcode), invalid-opcode

fault, 9-15
Interrupt 7 (device not available), device-not-

available fault, 9-15 .
Interrupt 8 (double fault), multiple faults, 9-16
Interrupt 9 (Intel reserved), coprocessor­

segment overrun abort, 9-17
interrupt acknowledge, automatic locking, 13-3
interrupt control, instructions (system program-

ming),4-9 .
interrupt gates,

and Interrupts, 6-11
lOT descriptors, 9-7

interrupt procedures, .
and Interrupt tasks, 9-7
and stack, 9-9
flag usage, 9-11
protection, 9-11
returning from, 9-9 .

interrupt requests (INTR interrupts), and IF
flag, 4-3

interrupt tasks,
and Interrupt procedures, 9-7
and task gate, 9-11

interrupt vector,
identifying number, 9-1
software initialization, 10-3

interrupts,
and Instruction restart, 9-2
and interrupt gates, 6~11
and task switching, 7-1
description, 2-23
enable/disable, 9-3 .
for basic programming model, 2-23
in real-address mode, 22-2
maskable source, 9-1
processing priorities, 9-5 .
unmaskable source, 9-1
with INT instruction, 2-24

INTO (interrupt on overflow),
flag cross-reference, B-1
~eneral description, 3-26
Instruction' format and timing, E-13
instruction specification, 26-167
one-byte opcode map, A-5 ;

INTR interrupts, and IF flag, 9-3 "
invalid arithmetic operation, and IEEE

Standard, 16-21, 854 '
invalid operation, .' ,

and numeric exceptions, '16-20
numeric exceptions, 16-17

invalid-opcode fault, Interrupt 6 (invalid
opcode), 9-15

invalid-operation exception,

Index-13

and NaN (not-a-number) operands, 16-10
and QNaN real indefinite, 16-11

invalid-TSS fault, Interrupt 10 (invalid TSS),
9-17

INVD (invalidate cache),
cache management instructions, 12-3
flag cross-reference, B-1
instruction format and timing, E-11
instruction specification, 26-172
two-byte opcode map, A-7

INVLPG (invalidate TLB entry),
flag cross-reference, B-1
instruction format and timing, E-11
instruction specification, 26-173

INDEX

two-byte opcode map, A-6
JNBE,

one-byte opcode map, A-4
two-byte opcode map, A-6

JNL,
one-byte opcode map, A-5
two-byte opcode map, A-7

JNLE,
one-byte opcode map, A-5
two-byte opcode map, A-7

JNO,
one-byte opcode map, A-4
two-byte opcode map, A-6

JNP,
IOPL flag (I/O privilege level- bits 12 and 13),

description, 4-3
one-byte opcode map, A-4, A-5
two-byte opcode map, A-7

JNS, system flag
IRET (interrupt return),

flag cross-reference, B-2
general description, 3-24
instruction format and timing, E-13
instruction specification, 26-174
one-byte opcode map, A-5

IRETD (interrupt return), instruction
speCIfication, 26-174 '

JB, two-byte opcode map, A-6 .
Jb (short-displacement jump on condition),

one-byte opcode map, A-4, A-5
JBE,

one-byte opcode map, A-4
two-byte opcode map, A-6

Jcc Uump if condition is met),
flag cross-reference, B-2
instruction format and timing, E-7
instruction specification, 26-179 .
status flags, 3-7

JCXZ,
flag cross-reference, B-2
instruction format and timing, E-7
one-byte opcode map, A-4

JECXZ Uump if ECX zero),
~eneral description, 3-26
Instruction format and timing, E-7

JL,
one-byte opcode map, A-4, A-5
two-byte opcode map, A-7

JLE,
one-byte opcode map, A-4,A-5
two-byte opcode map, A-7

JLNE, one-byte opcode map, A-4
JMP Uump), '

flag cross-reference, B-2
instruction description, 3-23
instruction format and timing, E-7, E-9
instruction specification, 26-183
modR/M byte opcodes, A-8
one-byte opcode map, A-5

JNB,
one-byte opcode map,A-4

one-byte opcode map, A-4, A-5
two-byte opcode map, A-7

JNZ,
one-byte opcode map, A-4
two-byte opcode map, A-6

JO,
one-byte opcode map, A-4
two-byte opcode map, A-6

JP,
one-byte opcode map, A-4, A-5
two-byte opcode map, A-7

JS,
one-byte opcode map, A-4, A-5
two-byte opcode map, A-7

JV,
one-byte opcode map, A-5.
two-byte opcode map, A-6, A-7

JZ,
one-byte opcode map, A-4
two-byte opcode map, A-6

KEN#, and PCD bit (page-level cache disable),
12-4

LAHF (load flags into AH),
flag cross-reference, B-2
instruction description, 3-37
instruction format and timing, E-lO
instruction specification, 26-188
one-byte opcode map, A-5

LAR (load access rights byte),
flag cross-reference, B-2
instruction format and timing, E-12
instruction specification, 26-189
pointer validation instructions, 6-20
two-byte opcode map, A-6

LDS (load pointer using DS),
flag cross-reference, B-2
general description, 3-40
instruction format and timing, E-8
instruction specification, 26-196
one-byte opcode map, A-4

LDT switching, and task switching, 7-1

Index-14

INDEX

LDTR (local descriptor table register), register
description, 4-4

LEA (load effective address),
flag cross-reference, B-2
general description, 3-41
Instruction format and timing, E-3
instruction specification, 26-191
one-byte opcode map, A-4, A-5

LEAVE (high level procedure exit),
flag cross-reference, B-2
general description, 3-35
Instruction format and timing, E-8
instruction specification, 26-193
one-byte opcode map, A-5

LEN bits, and debug breakpoints, 11-5
LES (load pointer using ES),

flag cross-reference, B-2
general description, 3-40
instruction format and timing, E-8
instruction specification, 26-196
one-byte opcode map, A-4

lexical level,
and block-structured languages, 3-32
and ENTER instruction, 3-30

LFS (load pointer using FS),
flag cross-reference, B-2
general description, 3-40
Instruction format and timing, E-8
instruction specification, 26-196
two-byte opcode map, A-6

LGDT (load global/IDTR),
flag cross-reference, B-2
instruction format and timing, E-12
instruction specification, 26-194
modR/M byte opcodes, A-8
privileged instruction, 6-19

LGS (load pointer using GS),
flag cross-reference, B-2
general description, 3-41
Instruction format and timing, E-8
instruction specification, 26-196
two-byte opcode map, A-6

LIDT (load IDT register),
and IDT (interrupt descriptor table), 9-7
flag cross-reference, B-2
instruction format and timing, E-12
instruction specification, 26-194
modR/M byte opcodes, A-8
privileged instruction, 6-19

limit, and segment descriptors, 5-10
limit checking, segment descriptors, 6-4
linear address,

and logical address, 2-1
and page translation, 5-17, 5-18
and physical space mapping, 7-13
and segment translation, 5-5
and segmentation, 2-2, 5-2 _
and task address mapping, 7-13

LLDT (load LDTR),
flag cross-reference, B-2

instruction format and timing, E-12
instruction specification, 26-199
modR/M byte opcodes, A-8
privileged instruction, 6-19

LMSW (load machine status word),
flag cross-reference, B-2
instruction format and timing, E-12
instruction specification, 26-201
Intel 80286 processor, 4-11
modR/M byte opcodes, A-8
privileged instruction, 6-19

local descriptor table (LDT),
segment descriptor tables, 5-15
segment translation, 5-5

LOCK#,
and automatic locking, 13-3
and critical memory operations, 13-1
and LOCK instruction, 4-11
and LOCK prefix, 13-2

LOCK (assert LOCK# prefix),
and CMPXCHG instruction, 3-43
and XADD instruction, 3-43
and XCHG instruction, 3-2
flag cross-reference, B-2
instruction specification, 26-202
one-byte opcode map, A-4

LOCK instruction,
and LOCK#, 4-11
instructions (system programming), 4-11

LOCK prefix, and LOCK#, 13-2
locked bus cycles, and mUltiprocessing, 13-1
LODS (load string operand),

flag cross-reference, B-2
general description, 3-30
instruction format and timing, E-9
instruction specification, 26-204

LODSB (load string operand),
instrucion specificatIOn, 26-204
one-byte opcode map, A-4, A-5

LODSD (load string operand),
instrucion specification, 26-204
one-byte opcode map, A-4, A-5

LODSW (load string operand),
instruction specification, 26-204
one-byte opcode map, A-4, A-5

logical address,
and segment translation, 2-2, 5-5
and segmentation, 5-2
task address mapping, 7-14
use of, 2-1

logical instructions, and application
programming, 3-11

long integer, numeric data type, 3-38, 14-6
LOOP (loop control with CX counter),

flag cross-reference, B-2
general description, 3-25
instruction format and timing, E-7
instruction specification, 26-206
one-byte opcode map, A-4

LOOPE (loop while equal),

Index-15

INDEX

flag cross-reference, B-2
general description, 3-26
instruction format and timing, E-7
one-byte opcode map, A-4

LOOPNE (loop while not equal),
flag cross-reference, B-2
general description, 3-26
instruction format and timing; E-7
one-byte opcode map, A-4

LOOPNZ (loop while not zero),
general description, 3-26
instruction format and timing, E-7

LOOPZ (loop while zero),
general description, 3-26
instruction format and timing, E-7

low word, for doubleword data type, 2-4
LSL (load segment limit),

flag cross-reference, B-2
instruction format and timing, E-12
instruction specification, 26-208
pointer validation instructions, 6-20
two-byte opcode map, A-6

LSS (load pointer using SS),
flag cross-reference, B-2
general description, 3-41
instruction format and timing, E-8
instruction specification, 26-196
two-byte opcode map, A-6

LTR (load task register),
and task register description, 7-6
flag· cross-reference, B-2
instruction format and timing, E-12
instruction specification, 26-210
modR/M byte opcodes, A-8
privileged instruction, 6-19

M/IO#,
and I/O address space, 8-2
and I/O instructions, 8-4

maskable interrupts, and vector assignment,
9-1

memory,
access types, 2-10
for operand selection, 2-17
model choice, 2-2
model description, 2-1

memory management,
and page translation, 5-17
and paging, 2-1, 5-1
and segment registers, 5-6
and segmentation, 2-L 5-1
and segments, 2-1
description of, 2~ 1

memory operand offset, and modR/M byte,
2-19 '

memory reference types, and segment registers,
5-7

memory-management registers,
and system programming, 4-4
GDTR (global descriptor table register), 4-4

IDTR (interrupt descriptor table register),
4-5

LDTR (local descriptor table register), 4-4
TR (task register), 4-5

memory-mapped I/O, and physical memory, 8-3
miscellaneous instructions, and application

programming, 3-41
mixing 16-bit and 32-bit code, i486 processor,

24-1
mode bits, and EFLAGS register, 2-13
modR/M byte,

and effective-address computation, 2-20
for memory operand offset, 2-19

MOV (move data), ,.
and default segment selection, 2-19
flag cross-reference, B-2
instruction description, 3-1
instruction format and timing, E-3, E-8, E-11
instruction specification, 26-211, 26-213
mask exceptions and interrupts, 9-4
one-byte opcode map, A-4, A .. 5
two-byte opcode map, A-6

MOV to/from eRO (move to control register 0),
privileged instruction, 6-19

MOV to/from DRn (move to debug register n),
privileged instruction, 6-19

MOV to/from TRn (move to test register n),
privileged instruction, 6- 19

MOVB (move data), one-byte opcode map, A-4
MOVS (move data from string to string),

flag cross-reference, B-2
general description, 3-29
instruction format and timing, E-9
instruction specification, 26-215

MOVSB (move data from string to string),
instructIon specification, 26-215
one-byte opcodemap, A-4 .

MOVSD (move data from string to string),
instruction specification, 26-215
one-byte opcode map, A-4

MOVSW (move data from string to string),
instruction specification, 26-215
one-byte opcode map, A-4

MOVSX (move with sign extension),
flag cross-reference, B-2
general description, 3-6
instruction format and timing, E-3
instruction specification, 26-217
two-byte opcode map, A-7

MOVZX (move with zero extension),
flag cross-reference, B-2
general description, 3-6
instruction format and timing, E-3
instruction specification, 26-218
two-byte opcode map, A-6

MP bit (monitor coprocessor), numerics
environment configuration, 19-2

MP (math present-bit 1), system control flag,
4-7

MUL (unsigned multiply),

Index-16

INDEX

flag cross-reference, B-2
~eneral description and flags, 3-8
mstruction format and timing, E-4
instruction specification, 26-219
modR/M byte opcodes, A-8
status flag summary, C-2

multi-segment model,
and general-protection exception, 5-5
and segmentation, 5-4

multi-segment model initialization, segmenta­
tion, 10-5

multiple faults, Interrupt 8 (double fault), 9-16
multiprocessor systems,

and cache consistency, 12-1
and cache consistency, 13-1
and processor communication, 13-1

multitasking,
and i486 processor, 7-1
and task mitialization, 10-6
instructions (system programming), 4-10
segment-level protection, ,6-1

NaN (not-a-number) operands,
and i486 Floating Point Processor (FPU),

16-8
and invalid-operation exception, 16-10

NE bit (numeric exception),
numerics environment configuration, 19-2
system control flag, 4-7

near form, RET (return from procedure), 6-17
near pointer, data type, 2-6
near transfer, and unconditional transfer

instructions, 3-23
NEG (two's complement negation),

flag cross-reference, B-2
instruction description, 3-8
instruction specification, 26-221
modR/M byte opcodes, A-8
status flag summary, C-2

NMI interrupt,
and assigned vector, 9-1
and protected mode initialization, 10-4
and software initialization, 10-3
mask further NMI interrupts, 9-3

no-wait, control instructions, 17-8
non transcendental instructions, floating-point

instructions, 17-2
NOP (no operation),

flag cross-reference, B-2
instruction description, 3-41
instruction format and timing, E-6
instruction specification, 26-222'

NOT (one's complement negation),
flag cross-reference, B-2
instruction description, 3-11
instruction specifIcation, 26-223
modR/M byte opcodes, A-8

NT flag (nested task-bit 14), system flag
description, 4-3

null error code, and exception handler, 9-13

number system, i486 Floating Point Processor
(FPU),15-9

numeric data pointers, and exception handlers,
15-7

numeric data type,
and indefinite value, 16-12
double real, 14-6
encoding of, 16-12
extended real, 14-6
long integer, 14-6
packed decimal, 14-6
short integer, 14-6
single real, 14-6
word integer, 14-6

numeric data types, i486 Floating Point
Processor (FPU), 14-6

numeric exceptions,
denormalized operand, 16-17
divide-by-zero, 16-17
handling of, 16-18, 19-3
inexact result (precision), 16-18
invalid operation, 16-17
numeric overflow, 16-17
numeric underflow, 16-18

numeric instruction pointers, and exception
handlers, 15-7

numeric instructions,
and application programming, 3-38
i486 Floating Point Processor (FPU), 14-7

numeric libraries, and, FPU numeric
applications, 18-1

numeric overflow,
and overflow exception, 16-23
numeric exceptions, 16-17

numeric programming,
ASM386/486 examples, 20-1
conditional branching example, 20-1
exception handling example, 20-1
floating-point to ASCII conversion example,

20-7
trigonometric calculation, 20-7

numeric underflow,
and underflow exception, 16-25
numeric exceptions, 16-18

numerical exception masking, and FPU control
word,15-5

numerical registers, i486 Floating Point
Processor (FPU), 15-1

numerics environment configuration,
i486 Floating Point Processor (FPU), 19-2

NW (not write-through - bit 29), system control
flag, 4-6

O/U# bit, stack exception, 16-20
OF flag, and binary arithmetic instructions, 3-6
OF (overflow flag), status flag, 2-14 .
offset,

for memory operand, 2-19
for segmented address space, 2-3

opcode, and instruction format, 2-16

Index-17

INDEX

operand selection, for basic programming
model,2-17

operand size, of instruction prefix, 2-16
operand size prefix, instruction format, 2-16
operating modes, of i486 processor, 1-2
operating status, i486 processor, 2-13
OR (logical inclusive or),

flag cross-reference, B-2
instruction description, 3-12
instruction specification, 26-224
modR/M byte opcodes, A-8
one-byte opcode map, A-4, A-5
status flag summary, C-2

ordinal, data type, 2-6
OUT (output to port),

flag cross-reference, B-2
instruction format and timing, E-15
instruction specification, 26-226
one-byte opcode map, A-4, A-5
register I/O instructions, 8-5
sensitive instructions, 8-6

output port, and input/output, 8-1
OUTS (output string); sensitive instructions,

8-6
OUTS (output string to port),

block I/O instructions, 8-6
flag cross-reference, B-2
instruction format and timing, E-15
instruction specification, 26-228

OUTSB (output string to port),
instruction specification, 26-228
one-byte opcode map, A-4, A-5

OUTSD (output string to port),
instruction specification, 26-228
one-byte opcode map, A-4, A-5

OUTSW (output string to port),
instruction specification, 26-228
one-byte opcode map, A-4, A-5

overflow exception,
and i486 processor, 2-23
and numeric overflow, 16-23

overflow trap, Interrupt 4 (overflow), 9-15

packed BCD, data type, 2-6
packed decimal, numeric data type, 14-6
page, combining protection with segment, 6-25
page directory, and page translation, 5-17
page directory register (PDBR),

and CR3, 4-6
and CR3 register, 5-18

page directory update, automatic locking,
13-3

page fault,
and Interrupt 8 (double fault), 9-16
and page table entries, 5-20
and page translation, 5-17
during task switching, 9-22
Interrupt 14 (page fault), 9-21
page frame address,
with inconsistent stack pointer, 9-23

page level management, caching, 12-3
page protection, overriding, 6-24 .
page table update, automatic locking, 13-3
page tables,

and combined protection, 6-24
and page translation, 5-17, 5-18, 5-20
and protection parameters, 6-23

page translation,
and memory management, 5-17
and physical address, 5-17
and segment translation, 5-23
linear address, 5-17

paging,
and I/O address space, 8-1'
and linear address space, 2-2
and memory management, 2-1, 5-1
and page-level protection, 6-22
and PG bit, 5-18
demand-paged virtual memory, 5-2
description, 5-2
exception handling, 2-24
initialization, 10-6

parity checking, and instruction pre fetching,
2-15

PCD bit (page-level cache disable),
cache control, 5-22
cache management bits, 12-4
system control flag, 4-6

PE (protection enable - bit 0),
and protected mode initialization, 10-4
system control flag, 4-8

PF (parity flag), status flag, 2-14
PG (paging-bit 31),

system control flag, 4-6
to enable paging, 5-18

physical address, description, 2-1 '
and linear address, 2-1
and page translation, 5-17
and PG bit, 5-18
and segmentation, 5-2

physical memory,
and I/O address space, 8-2
and memory-mapped I/O, 8-3
description, 2-1

PL/M-386/486, and FPU numeric applications,
18-2

PLOCK#,
and instruction prefetching, 13-1
and pseudo-locking, 13-3

PMUL, one-byte opcode map, A-4
pointer integrity, .

and ARPL (adjust requested privilege level),
6-22

and RPL (requested privilege level), 6-22
pointer parameter verification, instructions

(system programming), 4- 9
pointer validation instructions,

and protection, 6-20
LAR (load access rights), 6-20
LSL (load segment limit), 6-20

Index-18

INDEX

POP (pop word from stack),
flag cross-reference, B-2
~eneral description, 3-3
Instruction format and timing, E-3, E-8
instruction specification, 26-231
mask exceptIOns and interrupts, 9-4
one-byte opcode map, A-4, A-5
two-byte opcode map, A-6, A-7

POPA (pop all general registers),
flag cross-reference, B-2
~eneral description, 3-4
Instruction format and timing, E-3
instruction specification, 26-234
one-byte opcode map, A-4

POPAD (pop all general registers), instruction
specification, 26-234

POPF (pop stack into flags),
flag cross-reference, B-2
instruction description, 3-38
instruction format and timing, E-lO
instruction specification, 26-236
one-byte opcode map, A-4, A-5

POPFD (pop stack into flags), instruction
specification, 26-236

position-independent code, and segmentation,
5-1 .

power-up,
and RESET signal, 10-1
and self test, 10-1

precision control, i486 Floating Point Processor
(FPU), 15-16

prefix, and instruction format, 2-16
present bit,

and page table entries, 5-20
and TSS descriptor, 7-4

privilege levels, segment descriptors, 6-5
privileged instruction,

CLTS (clear task-switched flag), 6-19
HLT (halt processor), 6-19
LGDT (load GDT register), 6-19
LIDT (load IDT register), 6-19
LLDT (load LDT register), 6-19
LMSW (load machine status word), 6-19
LTR (load task register), 6-19
MOV to/from eRO (move to control register

0), 6-19
MOV to/from DRn (move to debug register

n), 6-19
MOV to/from TRn (move to test register n),

6-19
procedure return, and gate descriptors, 6-17
process synchronization, and XCHG

instruction, 3-2
processor communication, and multiprocessing

systems, 13-1
processor detection code, to distinguish

processors, 22-11
processor state,

after reset, 10-1
and TSS (task state segment), 7-2

programmed exceptions, software interrupts,
9-1

protected flat model, and segmentation, 5-4
protected mode,

i486 operating mode, 1-2
initialization switching, 10-4
Intel 80286 processor, 21-1
software initialization, 10-5

protection,
and control transfer restrictions, 6-9
and data access restrictions, 6-7
and gate descriptors, 6-11
and input/output, 8-6
and pointer validation instructions, 6-20
and segment descriptors, 6-2
page-level protection, 6-22
segment-level protection, 6-1

protection mechanism,
and IOPL flag, 4-3
and memory organization model, 2-2
and privilege levels, 6-5
and read-only acces, 6-24
read/write access, 6-24

protection parameters, and page-table entries,
6-23

protection violations, Interrupt 13 (general
protection), 9-20

pseudo-locking,
and instruction pre fetching, 13-4
and multiprocessing, 13-1
and PLOCK#, 13-3

pseudodenormal numbers,
and i486 processor, 16-13
denormal exception, 16-13

PUSH (push operand onto stack),
flag cross-reference, B-2
instruction description, 3-2
instruction format and timing, E-3, E-8
instruction specification, 26-237
modR/M byte opcodes, A-8
one-byte opcode map, A-4, A-5
two-byte opcode map, A-6, A-7

PUSHA (push all general registers),
flag cross-reference, B-2
~eneral description, 3-3
Instruction format and timing, E-3
instruction specification, 26-239
one-byte opcode map, A-4

PUSHAD (push all general registers),
instruction specification, 26-239

PUSHF (push flags onto stack),
flag cross-reference, B-2
instruction description, 3-38
instruction format and timing, E-lO
instruction specification, 26-241
one-byte opcode map, A-4, A-5

PUSHFD (push flags onto stack), instruction
specification, 26-241

PWT bit (page-level write-through),
cache control, 5-22

Index-19

INDEX

cache management bits, 12-4
system control flag, 4-6

QNaN real indefinite, .
and invalid operation exception, 16-11
and quiet NaN (not-a-number), 16-11

quadwords, description, 3-4
quiet NaN (not-a-number), and QNaN real

indefinite, 16-11

RCL (rotate through carry left),
flag cross-reference, B-2
instruction description, 3-16
instruction specifIcation, 26-242
modR/M byte opcodes, A-8
status flag summary, C-2

RCR (rotate through carry right),
flag cross-reference, B-2
instruction description, 3-16
instruction specifIcation, 26-242
modR/M byte opcodes, A-8
status flag summary, C-2

re-entrant code, and tasks, 7-3
re-entrant procedure, description, 7-1
re-entrant task switching, and busy bit, 7-12
read access, and accessed bit, 5-21
read-only access, and protection mechanism,

6-24
read/write access, protection mechanism, 6-24
read/write bit, and page table entries, 5-22
readable bit, executable-segment descriptor,

6-3
real numbers, FPU data type, 15-12
real-address mode,

address translation, 22-1
entering and leaving, 22-4
i486 operating mode, 1-2
i486 processor, 22-1
Intel 386 DX processor, 22-1
Intel 386 DX processor differences, 22-9
Intel 80186 processor, 22-1
Intel 80188 processor, 22-1
Intel 80286 processor, 22-1
Intel 80286 processor differences, 22-9
Intel 8086 processor, 22-1
Intel 8086 processor differences, 22-5
Intel 8088 processor, 22-1
software initialization, 10-2 .
switch to protected mode, 22-4

records and structure declaratives,
ASM386/486, 18-4

register I/O instructions,
IN (input from port), 8-5
OUT (output from port), 8-5

register specifier, instruction format, 2-16
registers,

and real-address mode, 22-2
for application programming, 2-8
for operand selection, 2-17
for system programming, 4-1

relative address, and JMP instruction, 3-23
REP INS, instruction format and timing, E-15
REP LODS, instruction format and timing,

E-10
REP MOYS, instruction format and timing,

E-lO
REP OUTS, instruction format and timing,

E-15
REP prefix, and MOYS instruction, 3-29
REP (repeat),

instruction description, 3-28
instruction specifIcation, 26-245 .
one-byte opcode map, A-4 . .

REP STOS, Instruction format and timing,
E-lO

REPE CMPS, instruction format and timing,
E-lO

REPE (repeat while equal),
instruction description, 3-28
instruction specifIcation, 26-245
one-byte opcode map, A-4

REPE SCAS, instruction format and timing,
E-lO

repeat, instruction prefix, 2-16
repeat prefix, instruction format, 2-16
REPNE CMPS (compare strings), instruction

format and timing, E-lO
REPNE (repeat while not equal),

instruction description, 3-28
instruction specifIcation, 26-245
one-byte opcode map, A-4

REPNE SCAS, instruction format and timing,
E-lO

REPNZ (repeat while not zero),
instruction description, 3-28
instruction specifIcation, 26-245

REPZ (repeat while zero),
instruction description, 3-28
instruction specification, 26-245

requester privilege level, segment selectors, 5-9
reset, and processor state, 10-1
reset initialization, and RESET signal, 10-1
RESET signal, and reset initialization, 10-1
RET (return from procedure), .

far form description, 6-17
general description, 3-24
instruction format and timing, E-7, E-8
instruction specification, 26-248
near form description, 6-17
one-byte opcode map, A-4, A-5

RFflag (resume flag),
debugging support, 11-1
mask debug faults, 9-4
system flag description, 4-3

robot arm kinemetics, example, 20-23
ROL (rotate left),

flag cross-reference, B-2
instruction description, 3-16
instruction specification, 26-242
modR/M byte opcodes, A-8

Index-20

INDEX

status flag summary, C-2
ROR (rotate right),

flag cross-reference, B-2
instruction description, 3-16
instruction specification, 26-242
modR/M byte opcodes, A-8
status flag summary, C-2

round-off errors, and i486 Floating Point
Processor (FPU), 14-4

rounding control, i486 Floating Point Processor
(FPU), 15-15

RPL (requested privilege level),
and data access restrictions, 6-7
and pointer integrity, 6-22
and segment selectors, 6-6 .

S bit, segment descriptors, 5-12
SAHF (store AH into flags),

instruction description, 3-37
instruction format and timing, E-lO
instruction specification, 26-252
one-byte opcode map, A-4, A-5

SAL (shift arithmetic left),
instruction description, 3-13
instruction specification, 26-253
status flag summary, C-2

SAR (shift arithmetic right),
instruction description, 3-14
instruction specification, 26-253
modR/M byte opcodes, A-8
status flag summary, C-2

SBB (integer subtraction with borrow),
flag cross-reference, B-2
instruction description, 3-7
instruction specification, 26-256
modR/M byte opcodes, A-8
one-byte opcode map, A-4, A-5
status flag summary, C-l

SCAS (compare string data),
flag cross-reference, B-2
instruction format and timing, E-9
instruction specification, 26-258
status flag summary, C-2

SCAS (scan string data), instruction
description, 3-29

SCASB (compare string data),
instruction specification, 26-258
one-byte opcode map, A-4, A-5

SCASD (compare string data),
instruction specification, 26-258
one-byte opcode map, A-4, A-5

SCASW (scan string data),
instruction specification, 26-258
one-byte opcode map, A-4, A-5

segment, description, 5-1
segment descriptors,

and base, 5-10
and flat model, 5-3
and granularity bit, 5-10
and Intel 80286 processor; 21-1

and limit, 5-10
and logical address translation, 2-2
and protection, 6-2
and S bit, 5-12
and segment selectors, 5-10, 5-8
and segment translation, 5-5
and segment-present bit, 5-14
and type, 5-12
and type field, 5-13
automatic locking, 13-3
code segments, 5-13
D bit, 5-12
data segments, 5-13
descriptor table base registers, 5-16 .
DPL (descriptor privilege level), 5-14, 6-6
segment descriptor tables, 5-15

segment level protection,
and PE control flag, 4-8
segmentation, 6-1

segment limits, and protected flat model, 5-4
segment override prefix, instruction format,

2-16 .
segment privilege level, DPL (descriptor

privilege level), 5-14
segment register instructions, and application

programming, 3-39
segment registers,

and segment selectors, 2-10
and segment translation, 5-6
as register operand, 2-19
of i486 processor, 2-8

segment selectors,
and index, 5-9
and requester privilege level, 5-9
and RPL (requested privilege level), 6-6
and segment descriptors, 5-10
and segment registers, 2-10
and segment translation, 5-8
and table indicator bit, 5-9
for segmented address space, 2-3

segment translation,
and page translation, 5-23
and segment selectors, 5-8
and segmentation, 5-5

segment-not-present fault, Interrupt 11
(segment not present), 9-18

segment-present bit, segment descriptors, 5-14
segmentation,

and combined protection with page, 6-25
and default assignment, 2-19
and default selection, 2-20
and exceptions handling, 2-24
and explicit memory operands, 2-19
and flat model, 5-3
and flat model initialization, 10-5
and I/O address space, 8-1
and instruction prefix override, 2-16'
and linear address, 5-2
and logical address, 5-2
and memory management, 2-1, 5-1

Index-21

INDEX

and memory organization model, 2-2, 2-3
and model selection, 5-3
and multi-segment model, 5-4
and multi-segmented model initialization,

10-5
and override prefix for segment selection,

2-19, 2-20
and physical address, 5-2
and position-independent code, 5-1
and protected flat model, 5-4
and segment translation, 5-5
and segment-level protection, 6-1

self test, and power-up, 10-1
self-modifying code, internal cache, 12-3
semaphores,

and CMPXCHG instruction, 3-43
and LOCK prefix, 13-2
and XCHG instruction, 3-2

sensitive instructions,
and I/O operations, 6-19
CLI (clear interrupt-enable flag), 8-6
IN (input), 8-6
INS (input string), 8-6 .
OUT (output), 8-6
OUTS (output string), 8-6
STI (set interrupt-enable flag), 8-6

SETB, two-byte opcode map, A-6
SETBE, two-byte opcode map, A-6
SETcc (byte set on condition),

and status flags, 3-7
flag cross-reference, B-2
general description, 3-22
instruction format and timing, E-7
instruction specification, 26-260

SETL, two-byte opcode map, A-7
SETLE, two-byte opcode map, A-7
SETNB, two-byte opcode map, A-6
SETNBE, two-byte opcode map, A-6
SETNL, two-byte opcode map, A-7
SETNLE, two-byte opcode map, A-7
SETNO, two-byte opcode map, A-6
SETNP, two-byte opcode map, A-7
SETNS, two-byte opcode map, A-7
SETNZ, two-byte opcode map, A-6
SETO, two-byte opcode map, A-6
SETP, two-byte opcode map, A-7
SETS, two-byte opcode map, A-7
SETZ, two-byte opcode map, A-6
SF flag, and binary arithmetic instructions, 3-6
SF (sign flag), status flag, 2-14
SGDT (store global/lDTR),

flag cross-reference, B-2
instruction format and timing, E-12
instruction specification, 26-262
modR/M byte opcodes, A-8

sharing data, using 16-bit and 32-bit
environments, 24-3

SHL (shift left), .
instruction description, 3-13
instruction specification, 26-253

modR/M byte opcodes, A-8
SHLD (shift left double precision),

flag cross-reference, B-2
instruction description, 3-16
instruction specification, 26-264
status flag summary, C-2
two-byte opcode map, A~6

short integer, numeric data type, 14-6
SHR (shift right),

instruction description, 3-13
instruction specification, 26-253
modR/M byte opcodes, A-8

SHRD (shift right double precision),
flag cross-reference, B-2
instruction description, 3-16
instruction specification, 26-266
status flag summary, C-2
two-byte opcode map, A-7

SIB (scale/index/base byte), instruction format,
2-16 .

SIDT (store global/lDTR),
flag cross-reference, B-2
instruction format and timing, E-12
instruction specification, 26-262
modR/M byte opcodes, A-8

sign extension, description, 3-4
single real, numeric data type, 14-6
single-step trap, Interrupt 1 (debug exceptions),

9-14, 11-8
size limit, and segment descriptor, 2-2
SLDT (store LDTR),

flag cross-reference, B-2
instruction format and timing, E-12
instruction specification, 26-268
modRiM byte opcodes, A-8

SMSW instruction, and Intel 80286 processor,
4-11

SMSW (store machine status word),
flag cross-reference, B-2
instruction format and timing, E-12
instruction specification, 26-269
modR/M byte opcodes, A-8

software exception handling, numeric
exceptions, 16-18

software initialization,
and real-address mode, 10-2
in protected mode, 10-5 ,

software interrupts, programmed exceptions,
9-1

source operands,
floating-point instructions, 17-1
for binary arithmentic instructions, 3-6
for two-operand instructions, 2-17

spawning, See copy-on-write strategy
special numeric values, FPU data formats, 16-1
SS register,

and stack segment, 2-11
segment register, 2-10

stack, and interrupt procedures, 9-9
stack exception, numeric exceptions, 16-20

Index-22

INDEX

stack fault, Interrupt 12 (stack exception), 9-19
stack frame, description of, 3-30
stack frame pointer set, display, 3-30
stack operatIons, and default segment selection,

2-19
stack overflow, stack exception, 16-20
Stack Pointer (ESP) Register, description of,

2-12
stack segment, and SS register, 2-11
Stack Segment (SS) Register, description of,

2-12
stack switching, and gate descriptors, 6-13
stack underflow, stack excep.tion, 16-20
Stack-Frame Base Pointer (EBP) Register,

description of, 2-13
standard underflow/overflow. exception

handler, and IEEE Standard, 16-27
status flags,

and lcc instruction, 3-7
and SETcc instruction, 3-7

status registers, of i486 processor, 2-8
STC (set carry flag),

flag cross-reference, B-2
instruction format and timing, E-lO
instruction specification, 26-270
one-byte opcode map, A-5

STD (set direction flag),
flag cross-reference, B-2
instruction format and timing, E-lO
instruction specification, 26-271
one-byte opcode map, A-5

STI (set interrupt flag),
flag cross-reference, B-2
instruction format and timing, E-lO
instruction specification, 26-272
one-byte opcode map, A-5

STI (set interrupt-enable flag),
and INTR interrupts, 9-3
sensitive instructions, 8-6

STOS (store string data),
flag cross-reference, B-2
general description, 3-30
instruction format and timing, E-9
instruction specification, 26-273

STOSB (store strin~ data),
instruction specifIcation, 26-273
one-byte opcode map, A-4, A-5

STOSD (store string data),
instruction specification, 26-273
one-byte opcode map, A-4, A-5

STOSW (store string data),
instruction specification, 26-273
one-byte opcode map, A-4, A-5

STR (store task register),
and task register description, 7-6
flag cross-reference, B-2
instruction format and timing, E-12
instruction specification, 26-275
modR/M byte opcodes, A-8

string, data type, 2-6

strin~ insertion/extraction, and double-shift
Instructions, 3-19

string instructions, and EFLAGS register, 2-13
string operations,

and application programming, 3-27
and default segment selection, 2-19

SUB (integer subtract),
flag cross-reference, B-2
instruction specification, 26-276
modR/M byte opcodes, A-8
one-byte opcode map, A-4, A-5
status flag summary, C-l

SUB (subtract integers), instruction
description, 3-7

supervisor level, and addressable domain
restriction, 6-23

synchronization, exceptions, 18-13, 18-14
system control, instructions (system

programming), 4-9
system control flag,

AM (alignment mask-bit 18),4-7
CD (cache disable - bit 30), 4-6
EM (emulation - bit 2), 4-7
ET (extension type-bit 4),4-7
MP (math present-bit 1),4-7
NE (numeric error-bit 5), 4-7
PCD (page-level cache disable-CR3 bit 4),

4-6
PE (protection enable - bit 0), 4-8
PG (paging-bit 31), 4-6
PWT (page-level writes transparent - CR3

bit 3), 4-6
TS (task switched-bit3), 4-7
WP (write protect-bit 16),4-7

system control flags, and CRO register, 4-5
system flags, and system programming, 4-2
system programming, and i486 Floating Point

Processor (FPU), 19-1
system tables,

and protected mode initialization, 10-4
and software initialization, 10-3

T bit (trap bit of TSS),
and BT bit, 11-4
and debugging support, 11-1

table indicator bit, segment selectors, 5-9
tag, and cache associative memories, 12-1
task, description, 7-1
task address mapping, logical to physical space,

7-14
task address space, descripion, 7-13
task creation, See copy-an-write strategy
task gate descriptor, and protected task

reference, 7-6
task gates,

and IDT descriptors, 9-7
and task switching, 6-11, 7-1

task linking,
and i486 processor, 7-11
and TSS (task state segment), 7-11

Index-23

INDEX

modification of, 7-13
task state segment,

and stack switching, 6-15
and TSS descriptor, 7-2
description, 7-1
descriptors and task switching, 7-1

task switching,
and exceptions, 7-1
and i486 processor, 7-7
and interrupts, 7-1
and LDT switching, 7-1
and page fault, 9-22
and task gates, 6-11, 7-1
and task state segment descriptors, 7-1

task-switch breakpoint trap, Interrupt 1 (debug
exceptions), 9-14

task-switch trap, Interrupt 1 (debug
exceptions), 11-8

tasks,
and NT flag, 4-3
and re-entrant code, 7-3
initialization, 10-6

TEST (logical compare),
flag cross-reference, B-2
instruction description, 3-23
instruction format and timing, E-4
instruction specification, 26-278
modR/M byte opcodes, A-8
one-byte opcode map, A-4, A-5
status flag summary, C-2

test registers, and translation lookaside buffer
(TLB),4-8

TF flag (trap flag),
debugging support, 11-1
system flag description, 4-3

three-operand instructions,
and ECX register, 2-18
description of, 2-18

TLB (translation lookaside buffer),
initialization testing, 10-6
structure of, 10-7
test operations, 10-10
test registers, 10-8

top-of-stack (TOS),
and ESP register, 2-12
and PUSH instruction, 3-2

TR4 (test status register), cache test register,
10-13

TR6 (test command register), TLB test
register, 10-8

TR7 (test data register), TLB test register, 10-9
TR (task register),

and current TSS, 7-4
register description, 4-5

transcendental instructions, floating-point
instructions, 17-4

transferring control, in 16-bit and 32-bit
environments, 24-3

translation lookaside buffer (TLB),
and page translation, 5-18, 5-22

and test registers, 4-8
trap gates,

and exceptions, 6-11
and IDT descriptors, 9-7

traps,
exception conditions, 9-13
exception description, 9-2
exception processor-detected, 9-1

trigonometric calculation, numeric
programming, 20-7

TS (task switched- bit3), system control' flag,
4-7

TSS Busy bit, automatic locking, 13-3
TSS (task state segment),

and I/O rermission bit map, 8-7
and Inte 80286 processor compatibility, 7-2
and processor state information, 7-2
and task linking, 7-11

two-operand instructions, description of, 2-17
type, segment descriptors, 5-12
type checking,

and protection mechanism, 6-24
segment descriptors, 6-3

type field, segment descriptors, 5-13

underflow exception,
and denormal values, 16-3
and inexact exception, 16-26
and numeric underflow, 16-25

unordered, comparison instructions, 17-4
unsegmented model, creation of, 2-10
unsupported formats, and data type encoding,

16-13
user level, and addressable domain restriction,

6-23
user mode (privilege level 3), and alignment­

check exception, 4-2
user mode write protect, and copy-on-write

strategy, 6-24
user/supervisor bit, and page table entries, 5-22

vector, exception/interrupt identification, 9-1
VERR (verify segment for read),

descriptor validation, 6-21
flag cross-reference, B-2
instruction format and timing, E-12
instruction specification, 26-279
modR/M byte opcodes, A-8

VERW (verify segment for write),
descriptor validation, 6-21
flag cross-reference, B-2
instruction format and timing, E-12
instruction specification, 26-279
modR/M byte opcodes, A-8

virtual memory,
and memory model, 2-1
description, 5-14

virtual-8086 mode,
address translation, 23-2
and VM flag, 4-3

Index-24

INDEX

bus lock, 23-14
entering and leaving, 23-5
i486 operating mode, 1-2
i486 processor, 23-1
I/O rrotection, 8-6
Inte 386 DX processor differences, 23-15
Intel 80286 processor differences, 23-13
Intel 8086 processor differences, 23-10
Intel 8086 processor programs, 23-1
paging tasks, 23-4
registers and instructions, 23-1
task protection, 23-5
task structure, 23-3
virtual I/O, 23-9

VM flag (virtual-8086 mode - bit 17), system
flag description, 4-3

wait, control instructions, 17-8
WAIT (wait),

flag cross-reference, B-2
instruction format and timing, E-20
instruction specification, 26-281
one-byte opcode map, A-4, A-5

WBINVD (write-back and invalidate cache),
cache management instructions, 12-3
flag cross-reference, B-2
instruction format and timing, E-11
instruction specification, 26-282
two-byte opcode map, A-7

word, data type, 2-3
word integer, numeric data type, 14-6
WP (write protect-bit 16), system control flag,

4-7
writable bit, and data-segment descriptor, 6-3
write access,

and accessed bit, 5-21
and dirty bit, 5-21

write protection, and user-mode pages, 6-24
write-back, and caching, 12-2
write-through,

and caching, 12-2
and external cache, 12-2
and internal cache, 12-2

XADD (exchange and add),
flag cross-reference, B-2
instruction description, 3-43
instruction format and timing, E-6
instruction specification, 26-283
status flag summary, C-1
two-byte opcode map, A-6

XCHG (exchange),
automatic locking, 13-3
flag cross-reference, B-2
instruction description, 3-2
instruction format and timing, E-3
instruction specification, 26-285
one-byte opcode map, A-4

XLAT (table look-up translation),
flag cross-reference, B-2
instruction format and timing, E-9
instruction specification, 26-286
one-byte opcode map, A-4

XLATB (table look-up translation),
instruction description, 3-42
instruction specification, 26-286

XOR (logical exclusive or),
flag cross-reference, B-2
instruction description, 3-12
instruction specification, 26-288
modR/M byte opcodes, A-8
one-byte opcode map, A-4
status flag summary, C-2

zero operands, and i486 Floating Point
Processor (FPU), 16-6

zero-divide exception, and division by zero,
16-21

ZF flag, and binary arithmetic instructions, 3-6
ZF (zero flag), status flag, 2-14

Index-25

intel'
AlABAMA

tlntel Corp.
5015 Bradford Dr., #2
Huntsville 35805
Tel: (205) 830-4010
FAX: (205) 837-2640

ARIZONA

tlntel Corp.
11225 N. 28th Or.
Suite 0-214
Phoenix 85029
Tel: (602) 869-4980
FAX: (602) 869-4294

~nlt~~ 1f.r~i Dorado Place
Suite 301
Tucson 85715
Tel: (602) 299-6815
FAX: (602) 296-8234

CALIFORNIA

tlntel Corp.
21515 Vanowen Slreet
Suite 116
Canoga Park 91303
Tel: (818) 704-8500
FAX: (818) 340-1144

tlntel Corp.
2250 E. Imperial Highway
Suite 218

f~I~(~~~)d~~~O
FAX: (213) 640-7133

Intel Corp.
1510 Arden Way
Suite 101
Sacramento 95815
Tel: (916) 920-8096
FAX: (916) 920-8253

tlntel Corp.
9665 Chesapeake Or.
Suite 325
San Diego 95123
Tel: (619) 292-8086
FAX: (619) 292-0628

tlntel Corp."
400 N. Tustin Avenue
Suite 450
Santa Ana 92705
Tel: (714) 835-9642
TWX: 910-595-1114
FAX: (714) 541-9157

tlntel Corp."
San Tomas 4
2700 San Tomas Expressway
2nd Floor
Santa Clara 95051
Tel: (408) 986-8086
TWX: 910-338-0255
FAX: (408) 727-2620

COLORADO

Intel Corp.
4445 Northpark Drive
Suite 100
Colorado Springs 80907
Tel: (719) 594-6622
FAX: (303) 594-0720

tlntel Corp."
650 S. Cherry SI.
Suite 915
Denver 80222
Tel: (303) 321-8086
TWX: 910-931-2289
FAX: (303) 322-8670

tSales and Service Office
"Field Application location

DOMESTIC SALES
CONNECTICUT MASSACHUSETTS

~~~e~!;,o~a"rm Corporate Park 
tlntel Corp." 
Westford Corp. Center 

83 Wooster Heights Rd. 3 Carlisle Road 
Danbury 06810 2nd Floor 
Tel: (203) 748-3130 Westford 01886 
FAX: (203) 794-0339 Tel: (508) 692-3222 

TWX: 710-343-6333 
FLORIDA FAX: (508) 692-7867 

~~I ~.':.f"6th Way 
MICHIGAN 

Suite 100 tlntel Corp. 
FI. Lauderdale 33309 7071 Orchard Lake Road 
Tel: (305) 771-0600 Suite 100 
TWX: 510-956-9407 West Bloomfield 48322 
FAX: (305) 772-8193 Tel: (313) 851-8096 

tlntel Corp. 
FAX: (313) 851-8770 

5850 T.G. lee Blvd. MINNESOTA 
Suite 340 

tlntel Corp. Orlando 32822 
Tel: (407) 240-8000 3500 W. 80th SI. 
FAX: (407) 240-8097 Suite 360 

Intel Corp. W~frn~n2~t~~~~~ 
11300 4th Street North TWX: 910-576-2867 
Suite 170 FAX: (612) 831-6497 
SI. Petersburg 33716 
Tel: (813) 577-2413 MISSOURI 
FAX: (813) 578-1607 

!~J31 ~~~~. City Expressway 
GEORGIA Suite 131 
Intel Corp. f:I~~3~~ ~r.;~90 20 Technology Parkway, N.W. 
Suite 150 FAX: (314) 291-4341 
Norcross 30092 
Tel: (404) 449-0541 NEW JERSEY 
FAX: (404) 605-9762 tlntel Corp." 

Parkway 109 Office Center 
ILLINOIS 328 Newman Springs Road 

tlntel Corp." Red Bank 07701 

300 N. Martingale Road Tel: (201) 747·2233 
Suite 400 FAX: (201) 747-0983 

Schaumburg 60173 tlntel Corp. 
Tel: (312) 605-8031 280 Corporate Center 
FAX: (312) 706-9762 75 Uvingston Avenue 

First Floor 
INDIANA Roseland 07068 

tlntel Corp. 
Tel: (201) 740-0111 
FAX: (201) 740-0626 

8777 Purdue Road 
Suite 125 NEW YORK 
Indianapolis 46268 

Intel Corp." Tel: (317) 875-0623 
FAX: (317) 875-8938 ~~~p~~~~~~6s Office Park 

IOWA Tel: (716) 425-2750 
TWX: 510-253-7391 

Intel Corp. FAX: (716) 223-2561 
1930 SI. Andrews Drive N.E. 

tlntel Corp." 2nd Floor 
Cedar Rapids 52402 2950 Expressway Dr., South 
Tel: (319) 393-1294 Suite 130 

Islandia 11722 

KANSAS Tel: (516) 231-3300 
TWX: 510-227-6236 

tlntel Corp. FAX: (516) 348-7939 

~::51~g,d~I~~. 0 ~~~~~r~~siness Center Overland Park 66210 
Tel: (913) 345-2727 Bldg. 300, Route 9 

Fishkill 12524 FAX: (913) 345-2076 Tel: (914) 897-3860 

MARYLAND 
FAX: (914) 897-3125 

tlntel Corp." 
NORTH CAROLINA 

10010 Junction Or. tlntel Corp. 
Suite 200 5800 Executive Center Dr. 
Annapolis Junction 20701 Suite 105 
Tel: (301) 206-2860 Charlotte 28212 
FAX: ~301l206-3677 Tel: (704) 568-8966 

301 206-3678 FAX: (704) 535-2236 

OFFICES 
Intel Corp. tlntel Corp." 
5540 Centerview Or. 7322 S.W. Freeway 
Suite 215 Suite 1490 
Raleigh 27606 Houston 77074 
Tel: (919) 851-9537 ~VJ;~~~t~: FAX: (919) 851-8974 

FAX: (713) 988-3660 
OHIO UTAH 
tlntel Corp." 
3401 Park Center Drive 

tlntel Corp. 
428 East 6400 South 

Suite 220 Suite 104 
Dayton 45414 Murray 84107 
Tel: (513) 890-5350 Tel: (801) 263-8051 
TWX: 810-450-2528 FAX: (801) 268-1457 
FAX: (513) 890-8658 

VIRGINIA 

~~i~ c~~re'~ce Park Or. tlntel Corp. 

Suite 100 1504 Santa Rosa Road 
Suite 108 Beachwood 44122 Richmond 23288 

~\2J~bj~:~~~ Tel: (804) 282-5668 

FAX: (804) 282-0673 FAX: (216) 464-2270 

WASHINGTON 
OKLAHOMA tlntel Corp. 

:m~~ 1f.
r
gi-oadWay 

155 108th Avenue N.E. 
Suite 386 

Suite 115 Bellevue 98004 

Oklahoma City 73162 Tel: (206) 453-8086 
TWX: 910-443-3002 Tel: (405) 848-8086 FAX: (206) 451-9556 FAX: (405) 840-9819 

~nJ:1 ~o~Ullan Road 
OREGON Suite 102 
tlntel Corp. Spokane 99206 
15254 N.W. Greenbrier Parkway Tel: (509) 928-8086 
Building B FAX: (509) 928-9467 
Beaverton 97005 WISCONSIN Tel: (503) 645-8051 
TWX: 910-467-8741 Intel Corp. 
FAX: (503) 645-8181 330 S. Executive Or. 

Suite 102 

PENNSYLVANIA Brookfield 53005 
Tel: (414) 784-8087 

tlntel Corp." FAX: (414) 796-2115 
455 Pennsylvania Avenue 
Suite 230 CANADA 
Fort Washington 19034 
Tel: (215) 641-1000 BRITISH COLUMBIA 
TWX: 510-661-2077 
FAX: (215) 641-0785 Intel Semiconductor of 

Canada, Ltd. 
tlntel Corp." 4585 Canada Way 
400 Penn Center Blvd. Suite 202 
Suite 610 Burnaby V5G 416 
Pittsburgh 15235 Tel: (604) 298-0387 
Tel: (412) 823-4970 FAX: (604) 298-8234 
FAX: (412) 829-7578 ONTARIO 

tlntel Semiconductor of 
PUERTO RICO Canada, Ltd. 

tlntel Corp. 2650 Queensview Drive 
Suite 250 South Industrial Park 
Ottawa K2B 8H6 P.O. Box 910 Tel: (613) 829-9714 Las Piedras 00671 

Tel: (809) 733-8616 FAX: (613) 820-5936 

tlntel Semiconductor of 

TEXAS Canada, Ltd. 
190 Attwell Drive 
Suite 500 Intel Corp. 

8911 Capital of Texas Hwy. Rexdale M9W 6H8 
Austin 78759 Tel: (416) 675-2105 
Tel: (512) 794-8086 FAX: (416) 675-2438 
FAX: (512) 338-9335 QUEBEC 

tlntel Corp." Intel Semiconductor of 
12000 Ford Road Canada, Ltd. 
Suite 400 620 SI. Jean Boulevard 
Dallas 75234 POinte Claire H9R 3K2 
Tel: (214) 241-8087 
FAX: (214) 484-1180 

Tel: (514) 694-9130 
FAX: 514-694-0064 






