

a ®
lntel PROGRAMMING NUMERIC APPLICATIONS

PROPER ERROR SYNCHRONIZATION

Error Synchronization relies on the WAIT instructions required by instruction and data synchroniza-
tion and the BUSY and ERROR signals of the 80287. When an unmasked error occurs in the 80287,
it asserts the ERROR signal, signalling to the CPU that a numeric error has occurred. The next time
the CPU encounters an error-checking ESC or WAIT instruction, the CPU acknowledges the ERROR
signal by trapping automatically to Interrupt #16, the Processor Extension Error vector. If the follow-
ing ESC or WAIT instruction is properly placed, the CPU will not yet have disturbed any information
vital to recovery from the error.

2-50 122164-001

System-Level
Numeric Programming

CHAPTER 3
SYSTEM-LEVEL NUMERIC PROGRAMMING

System programming for iAPX 286/20 systems requires a more detailed understanding of the 80287
NPX than does application programming. Such things as emulation, initialization, exception handling,
and data and error synchronization are all the responsibility of the systems programmer. These topics
are covered in detail in the sections that follow.

iAPX 286/20 ARCHITECTURE

On a software level, the 80287 NPX appears as an extension of the 80286 CPU. On the hardware
level, however, the mechanisms by which the 80286 and 80287 interact are a bit more complex. This
section describes how the 80287 NPX and 80286 CPU interact and points out features of this inter-
action that are of interest to systems programmers.

Processor Extension Data Channel

All transfers of operands between the 80287 and system memory are performed by the 80286’s internal
Processor Extension Data Channel. This independent, DMA-like data channel permits all operand
transfers of the 80287 to come under the supervision of the 80286 memory-management and protection
mechanisms. The operation of this data channel is completely transparent to software.

Because the 80286 actually performs all transfers between the 80287 and memory, no additional bus
drivers, controllers, or other components are necessary to interface the 80287 NPX to the local bus.
Any memory accessible to the 80286 CPU is accessible by the 80287. The Processor Extension Data
Channel is described in more detail in Chapter Six of the iAPX 286 Hardware Reference Manual.

Real-Address Mode and Protected Virtual-Address Mode

Like the 80286 CPU, the 80287 NPX can operate in both Real-Address mode and in Protected mode.
Following a hardware RESET, the 80287 is initially activated in Real-Address mode. A single, privi-
leged instruction (FSETPM) is necessary to set the 80287 into Protected mode.

As an extension to the 80286 CPU, the 80287 can access any memory location accessible by the task
currently executing on the 80286. When operating in Protected mode, all memory references by the
80287 are automatically verified by the 80286’s memory management and protection mechanisms as
for any other memory references by the currently-executing task. Protection violations associated with
NPX instructions automatically cause the 80286 to trap to an appropriate exception handler.

To the programmer, these two 80287 operating modes differ only in the manner in which the NPX
instruction and data pointers are represented in memory following an FSAVE or FSTENYV instruction.
When the 80287 operates in Protected mode, its NPX instruction and data pointers are each repre-
sented in memory as a 16-bit segment selector and a 16-bit offset. When the 80287 operates in Real-
Address mode, these same instruction and data pointers are represented simply as the 20-bit physical
addresses of the operands in question (see figure 1-7 in Chapter One).

3-1 122164-001

Inte|® SYSTEM-LEVEL NUMERIC PROGRAMMING

Dedicated and Reserved 1/0 Locations

The 80287 NPX does not require that any memory addresses be set aside for special purposes. The
80287 does make use of I/O port addresses in the range 00F8H through 00FFH, although these I/O
operations are completely transparent to the iAPX 286 software. iAPX 286 programs must not refer-
ence these reserved I/O addresses directly.

To prevent any accidental misuse or other tampering with numeric instructions in the 80287, the 80286’s
I/O Privilege Level (IOPL) should be used in multiuser reprogrammable environments to restrict
application program access to the I/O address space and so guarantee the integrity of 80287 compu-
tations. Chapter Eight of the iAPX 286 Operating System Writer’s Guide contains more details regard-
ing the use of the I/O Privilege Level.

PROCESSOR INITIALIZATION AND CONTROL

One of the principal responsibilities of systems software is the initialization, monitoring, and control of
the hardware and software resources of the system, including the 80287 NPX. In this section, issues
related to system initialization and control are described, including recognition of the NPX, emulation
of the 80287 NPX in software if the hardware is not available, and the handling of exceptions that
may occur during the execution of the 80287.

System Initialization
During initialization of an iAPX 286 system, systems software must

» Recognize the presence or absence of the NPX
o Set flags in the 80286 MSW to reflect the state of the numeric environment

If an 80287 NPX is present in the system, the NPX must be

¢ Initialized
¢ Switched into Protected mode (if desired)

All of these activities can be quickly and easily performed as part of the overall system initialization.

Recognizing the 80287 NPX

During initialization, the 80286 is easily programmed to recognize the presence of the 80287 NPX.
Figure 3-1 shows an example of such a recognition routine.

In the example, the 80286 assumes that the 80287 is present and executes an FNINIT instruction.
Following the FNINIT instruction, the 80286 attempts to read the NPX status word. If the 80287
NPX is present, the lower eight bits of this word (the exception flags) will be all zeros. If an 80287 is
not present, these data lines will have been floating. The i4APX 286 Hardware Reference Manual
describes how to design the 80287 socket to ensure that at least one of these lower eight data lines
floats high in the absence of the 80287.

3-2 122164-001

Intel® SYSTEM-LEVEL NUMERIC PROGRAMMING

; initialization routine to detect an 80287 Numeric Processor
FND_287: FNINIT; s initialize Numeric Processor
FSTSW AX ;7 retrieve 80287 status word
0R AL, AL ; test low-byte--80287 exception flags
; if all zero, then 80287 present and
; properly initialized
; if not all zero, then 80287 absent
JZ 60T_287 ; branch if 80287 present
SMSHW AX 3 No Numeric Processor--
OR 04H ; set EM bit in machine status word
LMSHW AX ; to enable software emulation of 80287
JMP CONTINUE
GOT_287: SMSHW A X ; Numeric Processor present
OR 02H ; set MP bit in machine status word
LMSW AX ; to permit normal 80287 operation
CONTINUE: ; and off we go

Figure 3-1. Software Routine to Recognize the 80287

Configuring the Numerics Environment

Once the 80286 CPU has determined the presence or absence of the 80287 NPX, the 80286 must set
either the MP or the EM bit in its own machine status word accordingly. The initialization routine can
either

e Set the MP bit in the 80286 MSW to allow numeric instructions to be executed directly by the
80287 NPX component

o Set the EM bit in the 80286 MSW to permit software emulation of the 80287 numeric instructions

The Math Present (MP) flag of the 80286 machine status word indicates to the CPU whether an 80287
NPX is physically available in the system. The MP flag controls the function of the WAIT instruction.
‘When executing a WAIT instruction, the 80286 tests only the Task Switched (TS) bit if MP is set; if
it finds TS set under these conditions, the CPU traps to exception #7.

The Emulation Mode (EM) bit of the 80286 machine status word indicates to the CPU whether NPX
functions are to be emulated. If the CPU finds EM set when it executes an ESC instruction, program
control is automatically trapped to exception #7, giving the exception handler the opportunity to emulate
the functions of an 80287. The 80286 EM flag can be changed only by using the LMSW (load machine
status word) instruction (legal only at privilege level 0) and examined with the aid of the SMSW (store
machine status word) instruction (legal at any privilege level).

The EM bit also controls the function of the WAIT instruction. If the CPU finds EM set while execut-
ing a WAIT, the CPU does not check the ERROR pin for an error indication.

For correct 80286 operation, the EM bit must never be set concurrently with MP. The EM and MP
bits of the 80286 are described in more detail in the iAPX 286 Operating System Writer’s Guide.
More information on software emulation for the 80287 NPX is described in the “80287 Emulation”
section later in this chapter.

3-3 122164-001

H ®
Intel SYSTEM-LEVEL NUMERIC PROGRAMMING

Initializing the 80287

Initializing the 80287 NPX simply means placing the NPX in a known state unaffected by any activity
performed earlier. The example software routine to recognize the 80287 (table 3-1) performed this
initialization using a single FNINIT instruction. This instruction causes the NPX to be initialized in
the same way as that caused by the hardware RESET signal to the 80287. All the error masks are set,
all registers are tagged empty, the ST is set to zero, and default rounding, precision, and infinity
controls are set. Table 3-1 shows the state of the 80287 NPX following initialization.

Following a hardware RESET signal, such as after initial power-up, the 80287 is initialized in Real-
Address mode. Once the 80287 has been switched to Protected mode (using the FSETPM instruction),
only another hardware RESET can switch the 80287 back to Real-Address mode. The FNINIT
instruction does not switch the operating state of the 80287.

80287 Emulation

If it is determined that no 80287 NPX is available in the system, systems software may decide to
emulate ESC instructions in software. This emulation is easily supported by the 80286 hardware, because
the 80286 can be configured to trap to a software emulation routine whenever it encounters an ESC
instruction in its instruction stream.

As described previously, whenever the 80286 CPU encounters an ESC instruction, and its MP and
EM status bits are set appropriately (MP=0, EM=1), the 80286 will automatically trap to interrupt
#7, the Processor Extension Not Available exception. The return link stored on the stack points to the
first byte of the ESC instruction, including the prefix byte(s), if any. The exception handler can use
this return link to examine the ESC instruction and proceed to emulate the numeric instruction in
software.

The emulator must step the return pointer so that, upon return from the exception handler, execution
can resume at the first instruction following the ESC instruction.

Table 3-1. NPX Processor State Following Initialization

Field Value Interpretation
Control Word
Infinity Control 0 Projective
Rounding Control 00 Round to nearest
Precision Control 11 64 bits
Interrupt-Enable Mask 1 Interrupts disabled
Exception Masks 111111 All exceptions masked
Status Word
Busy) 0 Not busy
Condition Code 272?77 (Indeterminate)
Stack . Top 000 . Empty stack
Interrupt Request 0 No interrupt
Exception Flags 000000 No exceptions
Tag Word
Tags 11 Empty
Registers N.C. Not changed
Exception Pointers
Instruction Code N.C. Not changed
Instruction Address N.C. Not changed
Operand Address N.C. Not changed

3-4 122164-001

Inte|® SYSTEM-LEVEL NUMERIC PROGRAMMING

To an application program, execution on an iAPX 286/10 system with 80287 emulation is almost
indistinguishable from execution on an iAPX 286/20 system, except for the difference in execution
speeds.

There are several important considerations when using emulation on an iAPX 286/10 system:

e When operating in Protected-Address mode, numeric applications using the emulator must be
executed in execute-readable code segments. Numeric software cannot be emulated if it is executed
in execute-only code segments. This is because the emulator must be able to examine the particular
numeric instruction that caused the Emulation trap.

e Only privileged tasks can place the 80286 in emulation mode. The instructions necessary to place
the 80286 in Emulation mode are privileged instructions, and are not typically accessible to an
application.

An emulator package (E80287) that runs on iAPX 286/10 systems is available from Intel in the 8086
Software Toolbox, Order Number 122203. This emulation package operates in both Real and Protected
mode, providing a complete functional equivalent for the 80287 emulated in software.

When using the E80287 emulator, writers of numeric exception handlers should be aware of one slight
difference between the emulated 80287 and the 80287 hardware:

e On the 80287 hardware, exception handlers are invoked by the 80286 at the first WAIT or ESC
instruction following the instruction causing the exception. The return link, stored on the 80286
stack, points to this second WAIT or ESC instruction where execution will resume following a
return from the exception handler.

¢ Using the E80287 emulator, numeric exception handlers are invoked from within the emulator itself.
The return link stored on the stack when the exception handler is invoked will therefore point back
to the E80287 emulator, rather than to the program code actually being executed (emulated). An
IRET return from the exception handler returns to the emulator, which then returns immediately
to the emulated program. This added layer of indirection should not cause confusion, however,
because the instruction causing the exception can always be identified from the 80287’s instruction
and data pointers.

Handling Numeric Processing Exceptions

Once the iAPX 286/20 system has been initialized and normal execution of applications has been
commenced, the 80287 NPX may occasionally require attention in order to recover from numeric
processing errors. This section provides details for writing software exception handlers for numeric
exceptions. Numeric processing exceptions have already been introduced in previous sections of this
manual.

As discussed previously, the 80287 NPX can take one of two actions when it recognizes a numeric
exception:

e If the exception is masked, the NPX will automatically perform its own masked exception response,
correcting the exception condition according to fixed rules, and then continuing with its instruction
execution.

 If the exception is unmasked, the NPX signals the exception to the 80286 CPU using the ERROR
status line between the two processors. Each time the 80286 encounters an ESC or WAIT instruc-
tion in its instruction stream, the CPU checks the condition of this ERROR status line. f ERROR
is active, the CPU automatically traps to Interrupt vector #16, the Processor Extension Error trap.

3-5 122164-001

Il'ltel® SYSTEM-LEVEL NUMERIC PROGRAMMING

Interrupt vector #16 typically points to a software exception handler, which may or may not be a part
of systems software. This exception handler takes the form of an iAPX 286 interrupt procedure.

When handling numeric errors, the CPU has two responsibilities:

* The CPU must not disturb the numeric context when an error is detected.
* The CPU must clear the error and attempt recovery from the error.

Although the manner in which programmers may treat these responsibilities varies from one imple-
mentation to the next, most exception handlers will include these basic steps:

» Store the NPX environment (control, status, and tag words, operand and instruction pointers) as it
existed at the time of the exception.

» Clear the exception bits in the status word.

* Enable interrupts on the CPU.

+ Identify the exception by examining the status and control words in the save environment.
» Take some system-dependent action to rectify the exception.

+ Return to the interrupted program and resume normal execution.

It should be noted that the NPX exception pointers contained in the stored NPX environment will take
different forms, depending on whether the NPX is operating in Real-Address mode or in Protected
mode. The earlier discussion of Real versus Protected mode details how this information is presented
in each of the two operating modes.

Simultaneous Exception Response

In cases where multiple exceptions arise simultaneously, the 80287 signals one exception according to
the precedence sequence shown in table 3-2. This means, for example, that zero divided by zero will
result in an invalid operation, and not a zero divide exception.

Exception Recovery Examples

Recovery routines for NPX exceptions can take a variety of forms. They can change the arithmetic
and programming rules of the NPX. These changes may redefine the default fix-up for an error, change
the appearance of the NPX to the programmer, or change how arithmetic is defined on the NPX.

A change to an error response might be to automatically normalize all denormals loaded from memory.

A change in appearance might be extending the register stack into memory to provide an “infinite”
number of numeric registers. The arithmetic of the NPX can be changed to automatically extend the

Table 3-2. Precedence of NPX Exceptions

Signaled First: Denormalized operand (if unmasked)
Invalid operation
Zero divide
Denormalized (if masked)
Over/Underflow

Signaled Last: Precision

3-6 122164-001

. ®
Intel SYSTEM-LEVEL NUMERIC PROGRAMMING

precision and range of variables when exceeded. All these functions can be implemented on the NPX
via numeric errors and associated recovery routines in a manner transparent to the application
programmer.

Some other possible system-dependent actions, mentioned previously, may include:

¢ Incrementing an exception counter for later display or printing

¢ Printing or displaying diagnostic information (e.g., the 80287 environment and registers)
e Aborting further execution

« Storing a diagnostic value (a NaN) in the result and continuing with the computation

Notice that an exception may or may not constitute an error, depending on the implementation. Once
the exception handler corrects the error condition causing the exception, the floating-point instruction
that caused the exception can be restarted, if appropriate. This cannot be accomplished using the
IRET instruction, however, because the trap occurs at the ESC or WAIT instruction following the
offending ESC instruction. The exception handler must obtain from the NPX the address of the
offending instruction in the task that initiated it, make a copy of it, execute the copy in the context of
the offending task, and then return via IRET to the current CPU instruction stream.

In order to correct the condition causing the numeric exception, exception handlers must recognize the
precise state of the NPX at the time the exception handler was invoked, and be able to reconstruct the
state of the NPX when the exception initially occurred. To reconstruct the state of the NPX, program-
mers must understand when, during the execution of an NPX instruction, exceptions are actually
recognized.

Invalid operation, zero divide, and denormalized exceptions are detected before an operation begins,
whereas overflow, underflow, and precision exceptions are not raised until a true result has been
computed. When a before exception is detected, the NPX register stack and memory have not yet been
updated, and appear as if the offending instructions has not been executed.

When an after exception is detected, the register stack and memory appear as if the instruction has
run to completion; i.e., they may be updated. (However, in a store or store-and-pop operation, unmasked
over/underflow is handled like a before exception; memory is not updated and the stack is not popped.)
The programming examples contained in Chapter Four include an outline of several exception handlers
to process numeric exceptions for the 80287.

3-7 122164-001

Numeric
Programming Examples

.

CHAPTER 4
NUMERIC PROGRAMMING EXAMPLES

The following sections contain examples of numeric programs for the 80287 NPX written in ASM286.
These examples are intended to illustrate some of the techniques for programming the iAPX 286/20
computing system for numeric applications.

CONDITIONAL BRANCHING EXAMPLES

As discussed in Chapter Two, several numeric instructions post their results to the condition code bits
of the 80287 status word. Although there are many ways to implement conditional branching following
a comparison, the basic approach is as follows:

¢ Execute the comparison.

¢ Store the status word. (80287 allows storing status directly into AX register.)
¢ Inspect the condition code bits.

e Jump on the result.

Figure 4-1 is a code fragment that illustrates how two memory-resident long real numbers might be
compared (similar code could be used with the FTST instruction). The numbers are called A and B,
and the comparison is A to B.

The comparison itself requires loading A onto the top of the 80287 register stack and then comparing
it to B, while popping the stack with the same instruction. The status word is then written into the
80286 AX register.

A and B have four possible orderings, and bits C3, C2, and CO of the condition code indicate which
ordering holds. These bits are positioned in the upper byte of the NPX status word so as to correspond
to the CPU’s zero, parity, and carry flags (ZF, PF, and CF), when the byte is written into the flags.
The code fragment sets ZF, PF, and CF of the CPU status word to the values of C3, C2, and CO of
the NPX status word, and then uses the CPU conditional jump instructions to test the flags. The
resulting code is extremely compact, requiring only seven instructions.

The FXAM instruction updates all four condition code bits. Figure 4-2 shows how a jump table can be
used to determine the characteristics of the value examined. The jump table (FXAM_TBL) is initial-
ized to contain the 16-bit displacement of 16 labels, one for each possible condition code setting. Note
that four of the table entries contain the same value, because four condition code settings correspond
to “empty.”

The program fragment performs the FXAM and stores the status word. It then manipulates the condi-
tion code bits to finally produce a number in register BX that equals the condition code times 2. This
involves zeroing the unused bits in the byte that contains the code, shifting C3 to the right so that it is
adjacent to C2, and then shifting the code to multiply it by 2. The resulting value is used as an index
that selects one of the displacements from FXAM_TBL (the multiplication of the condition code is
required because of the 2-byte length of each value in FXAM_TBL). The unconditional JMP instruc-
tion effectively vectors through the jump table to the labelled routine that contains code (not shown in
the example) to process each possible result of the FXAM instruction.

4-1 122164-001

nte|® NUMERIC PROGRAMMING EXAMPLES

B Da ?
FLD A ; LOAD A ONTO TOP OF 287 STACK
FCOMP B y COMPARE A:B, POP A
FSTSW AX ; STORE RESULT TO CPU AX REGISTER
3 CPU AX REGISTER CONTAINS CONDITION CODES (RESULTS OF
;+ COMPARE)
H LOAD CONDITION CODES INTO CPU FLAGS
SAHF
; USE CONDITIONAL JUMPS TO DETERMINE ORDERING OF A TO
7 B
3
JP A_B_UNORDERED 7 TEST C2 (PF)
JB A_LESS 7 TEST CO0 (CF)
JE A_EQUAL 7 TEST €3 (ZF)
A_GREATER: 3 CO (CF) = 0, C3 (ZF) = 0
A_EQUAL: 3 CO0 (CF) = 0, C3 (2F) = 1
A_LESS: ; CO0 C(CF) = 1, €3 (ZF) = 0
= 1

A_B_UNORDERED: ; €2 C(PF)

Figure 4-1. Conditional Branching for Compares

; JUMP TABLE FOR EXAMINE ROUTINE

i
FXAM_TBL DW POS_UNNORM, POS_NAN, NEG_UNNORM, NEG_NAN,

& POS_NORM, POS_INFINITY, NEG_NORM,
& NEG_INFINITY, POS_ZERO, EMPTY, NEG_ZERGD,

& EMPTY, POS_DENORM, EMPTY, NEG_DENORM, EMPTY

3 EXAMINE ST AND STORE RESULT C(CONDITION CODES)
FXAM
FSTSW AX

Figure 4-2. Conditional Branching for FXAM

4-2

122164-001

ntel

NUMERIC PROGRAMMING EXAMPLES

.
1

; CALCULATE OFFSET INTO JUMP TABLE

mav
Mmaov
AND
AND
SHR
SAL

OR

.
1

BH, 0 ;7 CLEAR UPPER HALF OF BX,

BL,AH s LOAD CONDITION CODE INTO BL

BL,00000111B ; CLEAR ALL BITS EXCEPT C2-CO

AH,01000000B ; CLEAR ALL BITS EXCEPT C3

AH, 2 3 SHIFT C3 TWO PLACES RIGHT

BX, 1 3 SHIFT C2-C0 1 PLACE LEFT (MULTIPLY
H BY 2)

BL,AH H DROP C3 BACK IN ADJACENT TO C2

C000XXXX0)

3 JUMP TO THE ROUTINE “ADDRESSED’ BY CONDITION CODE

JMP

1

FXAM_TBLI[BX]

; HERE ARE THE JUMP TARGETS, ONE TO HANDLE

.
1

POS_UNNORM:
PGS_NAN:.
NEG_UNNDéM:
NEG_NAN:.

POS_NORM:

POS_INFINITY:

NEG_NORM:

NEG_INFINITY:

PUS_ZERD;
EMPTY: .
NEG_ZERD;
PUS_DENDéM:

NEG_DENORM:

EACH POSSIBLE RESULT OF FXAM

Figure 4-2. Conditional Branching for FXAM (Cont’d.)

EXCEPTION HANDLING EXAMPLES

There are many approaches to writing exception handlers. One useful technique is to consider the
exception handler procedure as consisting of “prologue,” “body,” and “epilogue” sections of code. (For
compatibility with the 80287 emulators, this procedure should be invoked by interrupt pointer (vector)

number 16.)

4-3 122164-001

lnte|® NUMERIC PROGRAMMING EXAMPLES

At the beginning of the prologue, CPU interrupts have been disabled. The prologue performs all
functions that must be protected from possible interruption by higher-priority sources. Typically, this
will involve saving CPU registers and transferring diagnostic information from the 80287 to memory.
When the critical processing has been completed, the prologue may enable CPU interrupts to allow
higher-priority interrupt handlers to preempt the exception handler.

The exception handler body examines the diagnostic information and makes a response that is neces-
sarily application-dependent. This response may range from halting execution, to displaying a message,
to attempting to repair the problem and proceed with normal execution.

The epilogue essentially reverses the actions of the prologue, restoring the CPU and the NPX so that
normal execution can be resumed. The epilogue must not load an unmasked exception flag into the
80287 or another exception will be requested immediately.

Figure 4-3 through 4-5 show the ASM286 coding of three skeleton exception handlers. They show how
prologues and epilogues can be written for various situations, but provide comments indicating only
where the application-dependent exception handling body should be placed.

Figure 4-3 and 4-4 are very similar; their only substantial difference is their choice of instructions to
save and restore the 80287. The tradeoff here is between the increased diagnostic information provided
by FNSAVE and the faster execution of FNSTENYV. For applications that are sensitive to interrupt
latency or that do not need to examine register contents, FNSTENYV reduces the duration of the “criti-
cal region,” during which the CPU will not recognize another interrupt request (unless it is a nonmask-
able interrupt).

After the exception handler body, the epilogues prepare the CPU and the NPX to resume execution
from the point of interruption (i.e., the instruction following the one that generated the unmasked
exception). Notice that the exception flags in the memory image that is loaded into the 80287 are
cleared to zero prior to reloading (in fact, in these examples, the entire status word image is cleared).

The examples in figures 4-3 and 4-4 assume that the exception handler itself will not cause an unmasked
exception. Where this is a possibility, the general approach shown in figure 4-5 can be employed. The
basic technique is to save the full 80287 state and then to load a new control word in the prologue.
Note that considerable care should be taken when designing an exception handler of this type to prevent
the handler from being reentered endlessly.

SAVE_ALL PROC
; SAVE CPU REGISTERS, ALLOCATE STACK SPACE
; FOR 80287 STATE IMAGE

PUSH BP
mav BP,SP
SUB SP,94

; SAVE FULL 80287 STATE, WAIT FOR COMPLETION,
; ENABLE CPU INTERRUPTS

FNSAVE [BP-94]

FWATIT

STI

; APPLICATION-DEPENDENT EXCEPTION HANDLING
; CODE GOES HERE

Figure 4-3. Full-State Exception Handler

4-4 122164-001

®
nte| NUMERIC PROGRAMMING EXAMPLES

CLEAR EXCEPTION FLAGS IN STATUS WORD
RESTORE MODIFIED STATE
IMAGE
mav BYTE PTR [(BP-921, 0H
FRSTOR [BP-94]
DE-ALLOCATE STACK SPACE, RESTORE CPU REGISTERS

MoV SP,BP
POP BP

: RETURN TO INTERRUPTED CALCULATION
IRET

SAVE_ALL ENDP

Figure 4-3. Full-State Exception Handler (Cont’d.)

1
1

1

1

SAVE_ENVIRONMENT PROC

SAVE CPU REGISTERS, ALLOCATE STACK SPACE
FOR 80287 ENVIRONMENT

PUSH BP
Mov BP,SP
SUB SP,14

SAVE ENVIRONMENT, WAIT FOR COMPLETION,
ENABLE CPU INTERRUPTS

FNSTENV [BP-141

FWAIT

STI1

APPLICATION EXCEPTION-HANDLING CODE GOES HERE

CLEAR EXCEPTION FLAGS IN STATUS WORD
RESTORE MODIFIED
ENVIRONMENT IMAGE
Mmov BYTE PTR [BP-121, OH
FLDENV [BP-14]
DE-ALLOCATE STACK SPACE, RESTORE CPU REGISTERS
mav SP,BP
POP BP

RETURN TO INTERRUPTED CALCULATION
IRET

SAVE_ENVIRONMENT ENDP

Figure 4-4. Reduced-Latency Exception Handler

4-5

122164-001

nte|° NUMERIC PROGRAMMING EXAMPLES

LOCAL_CONTROL DW ? ;3 ASSUME INITIALIZED

REENTRANT PROC

SAVE CPU REGISTERS, ALLOCATE STACK SPACE FOR
80287 STATE IMAGE

PUSH BP
mov BP,SP
SUB SP,94

SAVE STATE, LOAD NEW CONTROL WORD,
FOR COMPLETION, ENABLE CPU INTERRUPTS
FNSAVE [BP-94]
FLDCHW LOCAL_CONTROL
STI

APPLICATION EXCEPTION HANDLING CODE GOES HERE.
AN UNMASKED EXCEPTION GENERATED HERE WILL
CAUSE THE EXCEPTION HANDLER TO BE REENTERED.
IF LOCAL STORAGE IS NEEDED, IT MUST BE
ALLOCATED ON THE CPU STACK.

CLEAR EXCEPTION FLAGS IN STATUS WORD

RESTORE MODIFIED STATE IMAGE
Mmav BYTE PTR [BP-921, 0H
FRSTOR [BP-94]

DE-ALLOCATE STACK SPACE, RESTORE CPU REGISTERS
maov SP,BP

POP BP

;7 RETURN TO POINT OF INTERRUPTION
IRET
REENTRANT ENDP

Figure 4-5. Reentrant Exception Handler

122164-001

|nte|® NUMERIC PROGRAMMING EXAMPLES

FLOATING-POINT TO ASCIll CONVERSION EXAMPLES

Numeric programs must typically format their results at some point for presentation and inspection by
the program user. In many cases, numeric results are formatted as ASCII strings for printing or display.
This example shows how floating-point values can be converted to decimal ASCII character strings.
The function shown in figure 4-6 can be invoked from PL/M-286, Pascal-286, FORTRAN-286, or
ASM286 routines.

Shortness, speed, and accuracy were chosen rather than providing the maximum number of significant
digits possible. An attempt is made to keep integers in their own domain to avoid unnecessary conver-
sion errors.

Using the extended precision real number format, this routine achieves a worst case accuracy of three
units in the 16th decimal position for a noninteger value or integers greater than 10'®. This is double
precision accuracy. With values having decimal exponents less than 100 in magnitude, the accuracy is
one unit in the 17th decimal position.

Higher precision can be achieved with greater care in programming, larger program size, and lower
performance.

iAPX286 MACRO ASSEMBLER 80287 Floating-Point to 18-Digit ASCII Conversion 10:12:38 09/25/83 PAGE 1

SERIES-111 iAPX28& MACRO ASSEMBLER X108 ASSEMBLY OF MODULE FLOATING_TO_ASCII
OBJECT MODULE PLACED IN :F3:FPASC. OBJ
ASSEMBLER INVOKED BY: ASM286. 86 :F3: FPASC. AP2

LoC OBJY LINE SOURCE
1 +1 $title("B0287 Floating-Point to 18-Digit ASCII Conversion")
2
3 name floating_to_ascii
4
S public floating_to_ascii
& extrn get_power_10:near, tos_status: near
7 i
] i This subroutine will convert the floating point number in tne
9 i top of the BO2B7 stack to an ASCII string and separate power of 10
10 i scaling value (in binary). The maximum width of the ASCII string
11 i formed is controlled by a parameter which must be > 1. Unnormal values,
12 i denormal values, and psuedo zeroes will be correctly converted.
13 i A returned value will indicate how many binary bits of
14 i precision were lost in an unnormal or denormal value. The magnitude
15 i (in terms of binary power) of a psuvedo zero will also be indicated.
16 i Integers less than 10##18 in magnitude are accurately converted if the
17 i destination ASCII string field is wide enough to hold all the
18 i digits. Otherwise the value is converted to scientific notation.
19 i
20 i The status of the conversion is identified by the return value,
21 i it can be:
22 i
23 i 0 conversion complete, string_size is defined
24 i 1 invalid arguments
25 i 2 exact integer conversion, string_size is defined
26 i 3 indefinite
27 i 4 + NAN (Not A Number)
28 i 5 = NAN
29 i & + Infinity
30 i 7 = Infinity
31 i 8 psuedo zero found., string_size is defined
32 i
33 i The PLM/28&6 calling convention is:
34 i
35 i floating_to_ascii:
36 i procedure (number,denormal_ptr,string_ptr.size_ptr, field_size,
37 i power_ptr) word external,
as i declare (denormal_ptr,string_ptr,power_ptr,size_ptr) pointer;
39 i declare field_size word, string_size based size_ptr word:
40 i declare number real;
a1 i declare denormal integer based denmormal_ptr:
42 i declare power integer based power_ptr;
43 i end floating_to_ascii;
44 i
45 i The floating point value is expected to be on the top of the NPX
46 i stack. This subroutine expects 3 free entries on the NPX stack and
a7 i will pop the passed value off when done. The generated ASCII string
48 i will have a leading character either ‘-’ or ‘+’ indicating the sign
49 i of the value. The ASCII decimal digits will immediately follow.
50 i The numeric value of the ASCII string is (ASCII STRING.)#10#*POUER.

Figure 4-6. Floating-Point to ASCIl Conversion Routine

4-7 122164-001

NUMERIC PROGRAMMING EXAMPLES

iAPX286 MACRO ASSEMBLER 80287 Floating-Point to 18-Digit ASCII Conversion 10:12:38 09/25/83 PAGE 2
Loc 0BJ LINE SOURCE
51 i If the given number was zero, the ASCII string will contain a sign
52 i and a single zero chacter. The value string_size indicates the total
53 i length of the ASCII string including the sign character. String(0) will
54 i always hold the sign. It is possible for string_size to be less than
55 i field_size. This occurs for zeroes or integer values. A psuedo zero
Se i will return a special return code. The denormal count will indicate
57 i the power of two originally associated with the value. The power of
58 i ten and ASCII string will be as if the value was an ordinary zero.
59 i
60 i This subroutine is accurate up to a maximum of 18 decimal digits for
61 i integers. Integer values will have a decimal power of zero associated
62 i with them. For non integers, the result will be accurate to within 2
&3 i decimal digits of the 16th decimal place (double precision). The
64 i exponentiate instruction is also used for scaling the value into the
&5 i range acceptable for the BCD data type. The rounding mode in effect
&6 i on entry to the subroutine is used for the conversion.
67 i
&8 i The following registers are not transparent:
&9 i
70 i ax bx cx dx si di flags
71 i
72 +1 $eject
73 i
74 i Define the stack layout.
75 i
0000C1 76 bp_save equ word ptr C[bpl
0002L1 77 es_save equ bp_save + size bp_save
0004c€1 78 return_ptr equ es_save + size es_save
0006L1 79 power_ptr equ return_ptr + size return_ptr
00081 80 field_size equ power_ptr + size power_ptr
000AL) 81 size_ptr equ field _size + size field_size
[oleloTol b} a2 string_ptr equ size_ptr + size size_ptr
OO00EL] 83 denormal _ptr equ string_ptr + size string_ptr
84
85 parms_size equ size power_ptr + size field_size + size size_ptr +
oooa 86 & size string ptr + size denormal_ptr
87 i
es i Define constants used
89 i
0012 90 BCD_DIGITS equ 18 ; Number of digits in bcd_value
0002 91 WORD_SIZE equ
000A 92 BCD_SIZE equ 10
0001 93 MINUS equ 1 i Define return values
0004 94 NAN equ 4 i The exact values chosen here are
0006 95 INFINITY equ 3 i important. They must correspond to
0003 96 INDEFINITE equ 3 i the possible return values and be in
0008 97 PSUEDO_ZERO equ 8 i the same numeric order as tested by
-0002 98 INVALID equ -2 i the program.
~0004 99 ZERO equ -4
-0006 100 DENORMAL equ -6
-0008 101 UNNORMAL equ -8
0000 102 NORMAL equ o
0002 103 EXACT equ 2
104 i
105 i Define layout of temporary storage area.
106 i
-0002C1 107 status equ word ptr [bp-WORD_SIZE]
~0004r1] 108 power_two equ status - WORD_SIZE
=0006L1 109 ten equ power_two - WORD_SIZE
-0010C3 110 ve equ tbyte ptr power_ten - BCD_SIZE
-0010C1 111 bcd_byte equ byte ptr bcd_value
-0010C1 112 fraction equ bcd_value
113
114 local_size equ size status + size power_two + size power_ten
0010 115 & + size bcd_value
116
— 117 stack stackseg (local_size+6) ; Allocate stack space for locals
118 +1 Seject
— 119 code segment er public
120 extrn power_table: quord
121 i
122 i Constants used by this function.
123 i
124 even ; Optimize for 16 bits
0000 0AOO 125 const10 dw 10 ; Adjustment value for too big BCD
126 i
127 i Convert the C3,C2,C1,CO encoding from tos_status into meaningful bit
128 i flags and values.
129 i
0002 F8 130 status_table db UNNORMAL, NAN, UNNORMAL + MINUS, NAN + MINUS,
0003 04
0004 F9
0005 05
0006 00 131 L3 NORMAL, INFINITY, NORMAL + MINUS, INFINITY + MINUS,
0007 06
0008 01
0009 07
000A FC 132 & ZERD, INVALID, ZERO + MINUS, INVALID.
000B FE
000C FD
000D FE
O00E FA 133 & DENORMAL, INVALID, DENORMAL + MINUS, INVALID
000F FE
0010 FB
0011 FE

Figure 4-6. Floating-Point to ASCIlI Conversion Routine (Cont’d.)

4-8 122164-001

NUMERIC PROGRAMMING EXAMPLES

iAPX286 MACRO ASSEMBLER

Loc

o012

0020

0023

0023
0025

0029

002B

OBJ

EB0000 E
BD8

2E8AB70200 R

3CFE

7528

€20A00

DDD8
EBO2

BOFE

ce
07
€20A00

DB7EFO
ABO1
9B
74F3

BBOOCO
2B5EF&
OB5EF4
OBSEF2

OBS5EFO
75E2

BOO3
EBDE

004B

004B 06
004C €8100000

0050
0053
005&

B8B4EO8
B83F702
7CCF

0058 49
0059 83FF12
005C 7603
005E B91200
0061

0061
0063

3C06
7DBE

0065
0067

3C04
7DCS

BOFAFA
732C

80287 Floating-Point to 18-Digit ASCII Conversion

SOURCE

floating_to_ascii proc

found_infinity:

call
mov
mav
cmp
Jne

ST(0) is empty!

ret

tos_status
bx,ax
al,status_ta
al, INVALID
not_empty

parms_size

blelbx]

10:12:38 0v9/25/83 PAGE

Look at status of ST(0)
Get descriptor from table

Look for empty ST(0)

Return the status value.

Remove infinity from stack and exit.

Fstp
Jmp

st(0)

short exit_proc

String space is too small!

small_string:

mov

exit_proc:

fstp fraction
test al, MINUS
fwait
Jz exit_proc
moyv bx., OCOOOH
sub bx,word ptr fraction+bt
or bx,word ptr fraction+4
or bx,word ptr fraction+2
or bx,word ptr fraction
Jnz exit_proc
mov al, INDEFINITE
Jmp exit_proc
i addressibility.
not_empty:
push es
enter local_size, O
mov. cx, field_size
cmp cx, 2
Jl small_string
dec c€x
cmp cx, BCD_DIGITS
Jbe size_ok
mov. ¢x, BCD_DIGITS
size_ok:
cmp al, INFINITY
Jge found_infinity
cmp al, NAN
Joe NAN_or_indefinite

leave
pop
Tet

al, INVALID

es
parms_size

8T(0) is NAN or indefinite.
at the fraction field to separate indefinite from an ordinary NAN.

NAN_or_indefinite:

i

OK to leave fstp running

Return invalid code.

Restore stack

Store the value in memory and look

Remove value from stack for examination
Look at sign bit

Insure store is done

Can‘t be indefinite if positive

Match against upper 1& bits of fraction
Compare bits 63-48

Bits 32-47 must be zero

Bits 31-16 must be zero

Bits 15-0 must be zero

Set return value for indefinite value

Allocate stack space for local variables and establish parameter

Set default return values and

fabs

mov
xor
mov
mov
mov
mov
cmp
Jae

cmp
Jae

dx,ax

ax, ax
di,denormal_ptr
word ptr [dil,ax
bx, power_ptr
word ptr [bx], ax
dl, ZERO
Teal_zero

d1, DENORMAL
found_denormal

Bave working register
Format stack

Check for enough string space

Adjust for sign character
See if string is too large for BCD

Else set maximum string size

Look for infinity
Return status value for + or - inf.

Look for NAN or INDEFINITE

check that the number is normalized.

Use positive value only

sign bit in al has true sign of value
Save return value for later

0 constant

denormal count

Form
Zero
Zero power of ten value

Test
Skip

for zero
power code if value is zero

Look for a denormal value
Handle it specially

Figure 4-6. Floating-Point to ASCII Conversion Routine (Cont’d.)

4-9

122164-001

NUMERIC PROGRAMMING EXAMPLES

iAPX286 MACRO ASSEMBLER 80287 Floating-Point to 18-Digit ASCII Conversion 10:12:38 09/25/83 PAGE 4
LOC O0OBJ LINE SOURCE
0083 D9F4 228 fxtract i Separate exponent from significand
0085 BOFAF8 229 cmp d1, UNNORMAL i Test for unnormal value
o088 7240 230 b normal_value
231
008A BOEAF8 232 sub d1, UNNORMAL-NORMAL i Return normal status with correct sign
233 i
234 i Normalize the fraction, adjust the power of two in ST(1) and set
235 i the denormal count value. .
236 i
237 i Assert: O <= 8T(0) < 1.0
238 i
008D D9ESB 239 f1d1 i Load constant to normalize fraction
240
008F 241 normalize_fraction:
242
008F DCC1 243 fadd st(1), st ;5 Set integer bit in fraction
0091 DEE? 244 fsub i Form normalized fraction in ST(0)
0093 D9F4 245 fxtract i Power of two field will be negative
246 i of denormal count
0095 DICY 247 fxch i Put denormal count in ST(O0)
0097 DF15 248 fist word ptr [dil i Put negative of denormal count in memory
0099 DEC2 249 faddp st(2), st i Form correct power of two in st(1)
250 i OK to use word ptr [dil now
00%B F71D 251 neg word ptr [dild i Form positive demormal count
009D 7528 252 Jnz not_psuedo_zero
253 i
254 i A psuedo zero will appear as an unnormal number. When attempting
255 i to normalize it, the resultant fraction field will be zero. Performing
256 i an fxtract on zero will yield a zero exponent value.
257 i
009F DCT 258 fxch i Put power of two value in st(0)
00A1 DF1D 259 fistp word ptr [dil i Set denormal count to power of two value
260 i Word ptr [dil is not used by convert
261 i integer, OK to leave running
00AGZ BOEAF8 262 sub d1, NORMAL-PSUEDO_ZERD i Set return value saving the sign bit
00A6 EFA400 263 Jmp convert_integer i Put zero value into memory
264 i
265 i The number is a real zero, set the return value and setup for
266 i conversion to BCD
267 i
00A9 268 real_zero
269
00A9 BOEAFC 270 sub d1, ZERD-NORMAL ; Convert status to normal value
00AC E99E00 271 Jmp convert_integer i Treat the zero as an integer
272 i
273 i The number is a denormal. FXTRACT will not work correctly in this
274 i case. To correctly separate the exponent and fraction, add & fixed
275 i constant to the exponent to guarantee the result is not a denormal.
276 i
00AF 277 found_denormal:
278
00AF D9EB 279 fld1 i Prepare to bump exponent
00B1 D9C? 280 fxch
OOB3 D9FB 281 fprem ; Force denormal to smallest representable
282 i extended real format exponent
OOBS D9F4 283 fxtract i This will work correctly now
284 i
285 i The power of the original denormal value has been safely isolated.
286 i Check if the fraction value is an unnormal.
287 i
00B7 D9ES 288 fxam i See if the fraction is an unnormal
OOB? 9BDFEQ 289 fstsw ax ; Save BO287 status in CPU AX reg for later
O0BC D9C? 290 fxch 5 Put exponent in ST(0)
OOBE D9CA 291 fxch st(2) i Put 1.0 into ST(0), exponent in ST(2)
00CO BOEAFA 292 sub d 1, DENORMAL-NORMAL ; Return normal status with correct sign
00C3 A90044 293 test ax, 4400H i Bee if C3=C2=0 impling unnormal or NAN
00Cs 74C7 294 Jz normalize_ fraction i Jump if fraction is an unnormal
295
00C8 DDD8 296 fstp st(0) ;i Remove unnecessary 1.0 from st(0)
297 i
298 i Calculate the decimal magnitude associated with this number to
299 i within one order. This error will always be inevitable due to
300 i rounding and lost precision. As a result, we will deliberately fail
301 i to consider the LDG10 of the fraction value in calculating the order.
302 i Since the fraction will always be 1 <= F < 2, its LOG10 will not change
303 i the basic accuracy of the function. To get the decimal order of magnitude,
304 i simply multiply the power of two by LOG10(2) and truncate the result to
305 i an integer. N
306 H
00CA 307 normal _value:
00CA 308 not_psuvedo_zero:
309
OO0CA DB7EFO 310 fstp fraction ; Save the fraction field for later use
00CD DFS&FC 311 fist power_two i Save power of two
00DO D9EC 312 fldlg2 i Get LOG1O(2)
313 ; Power_two is now safe to use
00D2 DEC? 314 fmul i Form LOG10(of exponent of number)
00D4 DFSEFA 315 fistp power_ten i Any rounding mode will work here
316 i
317 i Check if the magnitude of the number rules out treating it as
318 i an integer.
a19 i
320 i CX has the maximum number of decimal digits allowed.
321 i

4-10 122164-001

NUMERIC PROGRAMMING EXAMPLES

1APX286 MACRO ASSEMBLER 80287 Floating~Point to 18-Digit ASCII Conversion 10:12:38 09/25/83 PAGE 5
LoC 0By LINE SOURCE
00D7 9B 322 fwait i Wait for power_ten to be valid
00D8 BB46FA 323 mov ax, power_ten ; Get power of ten of value
OODB 2BC1 324 sub ax:cx i Form scaling factor necessary in ax
00DD 7722 325 Ja adjust_result ; Jump if number will not fit
326 i
327 i The number is between 1 and 10##(field_size).
328 i Test if it is an integer
329 i
OODF DF46FC 330 fild power_two ; Restore original number
OOE2 BBF2 331 mov si,dx i Save return value
OOE4 BOEAFE 332 sub d1, NORMAL-EXACT i Convert to exact return value
OOE7 DB&EFO 333 f£1d fraction
O0EA D9FD 334 fscale i Form full value, this is safe here
00EC DDD1 335 fst st(1) i Copy value for compare
OOEE D9FC 336 frndint i Test if its an integer
00FO D8D9 337 fcomp ; Compare values
00F2 9BDD7EFE 338 fstsw status i Save status
00F6 F744FE0040 339 test status, 4000H i €3=1 implies it was an integer
OOFB 7550 340 Jnz convert_integer
341
OOFD DDD8 342 fstp st(0) i Remove non integer value
OOFF 8BD& 343 mov dx,si i Restore original rTeturn value
344 i
345 i Scale the number to within the range allowed by the BCD format.
346 i The scaling operation should produce a number within one decimal order
347 i of magnitude of the largest decimal number representable within the
348 i given string width.
349 i
350 i The scaling power of ten value is in ax.
351 i
0101 352 adjust_result:
353
0101 8907 354 mov word ptr [bxl, ax ; Set initial power of ten return value
0103 F7D8 355 neg ax i Subtract one for each order of
356 i magnitude the value is scaled by
0105 EB0000 E 357 call get_power_10 ; Scaling factor is returned as exponent
358 i and fraction
0108 DB&EFO 359 £1d fraction i Get fraction
010B DEC? 360 fmul i Combine fractions
010D BBF1 361 mov si,cx i Form power of ten of the maximum
010F DIiE6 362 shl si, 1 i BCD value to fit in the string
0111 DIE& 363 shl 51,1 i Index in si
0113 DIE6& 364 shl si, 1
0115 DF4&FC 365 fild power_two i Combine powers of two
0118 DEC2 366 faddp st(2), st
011A D9FD 367 fscale ;i Form full value, exponent was safe
011C DDD9 368 fstp st(1) ; Remove exponent
369
370 Test the adjusted value against a table of exact powers of ten.
371 The combined errors of the magnitude estimate and power function can
372 result in a value one order of magnitude too small or too large to fit

373 i correctly in the BCD field. To handle this problem, pretest the

374 adjusted value, if it is too small or large, then adjust it by ten and
375 adyust the power of ten value.
376
O11E a77 test_power:
378
011E 2EDC940800 E 379 fcom power_tablelsil+type power_table; Compare against exact power
380 i entry Use the next entry since cx
a8t i has been decremented by one
0123 9BDFEOQ 382 fetsw ax i No wait is necessary
0126 A90041 383 test ax, 4100H i If €3 = CO = O then too big
0129 750C 384 nz test_for_small
385
012B 2EDE360000 R 386 fidiv constl0 i Else adjust value
0130 BOE2FD 387 and dl, not EXACT i Remove exact flag
0133 FFO7 388 inc word ptr L[bx1 ; Adjust power of ten value
0135 EB14 389 Jmp short in_range ; Convert the value to a BCD integer
390
0137 391 test_for_small:
392
0137 2EDC?40000 E 393 fcom power_tablelsil ;i Test relative size
013C 9BDFEO 394 fstsw ax i No wait is necessary
013F A%0001 395 test ax, 100H i If CO = O then st(0) >= lower bound
0142 7407 396 Jz in_range i Convert the value to a BCD integer
397
0144 2EDEOEOOOO R 398 fimul const10 i Adjust value into range
0149 FFOF 399 dec word ptr [bx] i Adjust power of ten value
400
014B 401 in_range:
402
0148 D9FC 403 frndint i Form integer value
404 i
405 i Assert: O <= TOS <= 999, 999,999, 999, 299, 999
406 i The TOS number will be exactly representable in 18 digit BCD format.
407 i
014D 408 convert_integer:
409
014D DF76F0 410 fbstp bcd_value i Store as BCD format number
411 i
412 i While the store BCD runs, setup registers for the conversion to
413 i ASCII.
414 H
0150 BEO8SOO 415 mov si, BCD_SI1ZE-2 ; Initial BCD index value

Figure 4-6. Floating-Point to ASCII Conversion Routine (Cont’d.)

4-11 122164-001

NUMERIC PROGRAMMING EXAMPLES

iAPX286 MACRO ASSEMBLER

0183
0185
0186
0187

0189

0189
o18C
018E

0190

0190
o192
0193
0195
0197

0198

0198
0179A
019B
019C
019D

019F

019F
01A2
01A4
01A6

ASSEMBLY COMPLETE,

0OBJY

BI040F
BBO100
B8B7EOC
8cp8
BECO
FC
BO2B
F&c201
7402

BO2D

AA
BOE2FE
9B

BAL2FO
B8AC4
D2E8
22C5
7516

BO30
AA
43
EB16

BAL2FO
B8AC4
D2ES8

0430
AA
BACS
22C¢s
43

0420

43
4E
7EA

BB7E0A
891D
8BC2
E9B0FE

LINE

504

NO WARNINGS,

SOURCE

80287 Floating-Point to 18-Digit ASCII Conversion

mov cx, Of04h i
mov bx, 1 i
mov di, string_ptr i
mov ax, i
mov es, ax

cld i
mov al, "+/ i
test d1l, MINUS i
Jz positive_result

mov al, '=*

"
o+
o
n
o

dl,not MINUS

+
€
o
-
o

Register usage:

10:12:38 09/25/83 PAGE &

Set shift count and mask

Set initial size of ASCII field for sign

Get address of start of ASCII string
Copy ds to es

Set autoincrement mode
Clear sign field
Look for negative value

Bump string pointer past sign
Turn off sign bit
Wait for fbstp to finish

ah: BCD byte value in use

al: ASCII character value

dx: Return value

ch: BCD mask = Ofh

cl: BCD shift count = 4

bx: ASCII string field width
si: BCD field index

di: ASCII string field pointer
ds,es: ASCII string segment base

Remove leading zeroes

kip_leading_zeroes:

mov ah,bcd_bytelsil i
mov al, ah i
shr al,cl i
and al,ch i
Jnz enter_odd i
mov al, ah i
and al,ch 3
ynz enter_even ;
dec si ;
Jns skip_leading_zeroes

The significand was all zeroes.

mov al, ‘0’ i
stosb

inc bx i
Jmp short exit_with_value

Now expand the BCD string into

digit_loop:

mov ah,bcd_bytelsil i

mov al, ah

shr al,cl i
enter_odd:

add al, ‘0’ i

stosb i

mov al,ah i

and al,ch

inc bx ;
enter_even:

add al, '0’ i

stosb i

inc bx ;

dec si i

Jns digit_loop

Conversion complete. Set the s

exit_with_value:

mov di,size_ptr

mov. word ptr [dil,bx

mov ax,dx i

Jmp exit_proc
floating_to_ascii endp
code ends

end

NO ERRORS

from the number.

Get BCD byte
Copy value

Get high order digit

Set zero flag

Exit loop if leading non zero found
Get BCD byte again

Get low order digit

Exit loop if non zero digit found

Decrement BCD index

Set initial zero

Bump string length

digit per byte values 0-9

Get BCD byte

Get high order digit

Convert to ASCII
Put digit into ASCII string area
Get low order digit

Bump field size counter

Convert to ASCII

Put digit into ASCII area
Bump field size counter
Go to next BCD byte

tring size and remainder.

Set return value

Figure 4-6. Floating-Point to ASCII Conversion Routine (Cont’d.)

122164-001

NUMERIC PROGRAMMING EXAMPLES

iAPX286 MACRO ASSEMBLER

Loc

0000
0008
0010
0018
0020
0028
0030
0038
0040
0048
0050
0058
0060
0068

0070

0078
0080
0088

0090

00AC

00AC
O0AE
00B2
00B5
00B8
00BC
0OBF
o0oc2
00CS

oocs
00CA
00cC
OOCE

0OBJY

000000000000F0
3F
00000000000024
40
0000000000059
40
0000000000408F
20
000000000088C3
40
00000000006AFS
0000000080842E
1
00000000D01263
0000000084D797
4
0000000065CDCD
a1
000000205FA002
a2
000000ES764837
a2
000000A2941A6D
a2
000040ES7C30A2

42
0000901EC4BCDé

00003426F 56BOC

00B0E03779C341

00AODB85573476
3

00CB4E&L76DC1AB
43

3D1200
770F

53

8BD8
C1E303
2EDD870000
SB

D9F4
c3

D9E?
€8040000
B946FE
DE4EFE
9BDI7EFC
BB446FC
25FFF3
0D0004
B746FC

DYES8
DYEO
D9C1
DYSEFC

Calculate the value of 10%*ax

,_
-
z
m

VDN U E W -

22

23

24

25

+
-

12:11: 08 09/25/83 PAGE

SOURCE

$title("Calculate the value of 10%*ax")

i

i This subroutine will calculate the value of 10%xax.

i For values of O <= ax < 19, the result will exact.

i All BO2B6 registers are transparent and the value is returned on
i the TOS as two numbers, exponent in ST(1) and fraction in ST(O0).
i The exponent value can be larger than the largest exponent of an
i extended real format number. Three stack entries are used.

name get_power_10

public get_power_10,power_table
stack stackseg B8
code segment er public

i Use exact values from 1.0 to lel8

even i Optimize 16 bit access
power_table dq 1.0, tel, 1e2, 1e3
dq le4, 1e5, 1e6, 1e7
dq 1e8, 1e%, 1e10, 1eil
dq le12, 1e13, 1e14, 1e15
dq lelé, 1e17, 1e18
get_power_10 proc
cmp ax, 18 i Test for 0 <= ax < 19
Ja out_of_range
push bx i Get working index register
mov. bx.ax i Form table index
shl bx,3
£1d power_tableCbx] ; Get exact value
pop bx i Restore register value
fxtract i Separate power and fraction
ret i OK to leave fxtract running

Calculate the value using the exponentiate instruction.
The following relations are used:
10##x = 2#%#(10g2(10)#x)

i if st(1) = I and st(0) = 2##F then fscale produces 2#*(I+F)
o

2##(1+F) 2wl % 2%#F
ut_of_range:
fldlat TOS = LOG2(10)
enter 4,0 Format stack
mov Cbp—-21, ax Save power of 10 value

TOS: X = LOG2(10)%P = LOG2(10%*P)
Get current control word

fimul word ptr [bp-21
fstcw word ptr [bp-4)]

mov ax,word ptr [bp-4] Get control word, no wait necessary
and ax,not OCOOH Mask off current rounding field
or ax, 0400H Set round to negative infinity
xchg ax,word ptr [bp-4] Put new control word in memory
old control word is in ax
f1d1 Set TOS = -1.0
fchs
fld st(1) i Copy power value in base two

Set new control word value

fldcw word ptr C[bp-43

Figure 4-6. Floating-Point to ASCII Conversion Routine (Cont’d.)

4-13 122164-001

|nte|® NUMERIC PROGRAMMING EXAMPLES

iAPX286 MACRO ASSEMBLER Calculate the value of 10%%ax 12:11:08 09/25/83 PAGE 2
LOC OBy LINE SOURCE
00D1 D9FC &2 frndint i TOS = I: —inf < I <= X, I is an integer

00D3 89464FC &3 mov word ptr [bp-41,ax ; Restore original rounding control
00D6 DISEFC 64 fldcw word ptr [bp-4]
00D? DPCA 65 fxch st(2) ; TOS = X, ST(1) = -1.0, ST(2) = I
OODB DBE2 66 fsub st st(2) i TOS,F = X-I: 0 <=T058 < 1.0
00DD BB44FE &7 mov ax, [bp-21 i Restore power of ten
00EO D9FD &8 fscale i TOS = F/2: 0 <=T0S < 0.5
0OE2 D9FO 69 f2xml i TOS = 2##(F/2) - 1.0
00E4 C9 70 leave i Restore stack
OO0ES DEE1 71 fsubr i Form 2#%(F/2)
O0E7 DCC8 72 fmul st, st(0) i Form 2##F
00E? C3 73 ret i OK to leave fmul Tunning
74
75 get_power_10 endp
76
——— 77 code ends
78 end

ASSEMBLY COMPLETE, NO WARNINGS, NO ERRORS

iAPX286 MACRO ASSEMBLER Determine TOS register contents 12:12:13 09/25/83 PAGE 1

SERIES-III iAPX286 MACRO ASSEMBLER X108 ASSEMBLY OF MODULE TOS_STATUS
OBJECT MODULE PLACED IN :F3: TOSST. 0BJ
ASSEMBLER INVOKED BY: ASM286.86 :F3: TOSST. AP2

LOC OBJ LINE SOURCE
1 +1 stitle("Determine TOS register contents")
2 i
3 i This subroutine will return a value from 0-15 in AX corresponding
4 i to the contents of 80287 TOS. All registers are transparent and no
S5 i errors are possible. The return value corresponds to ¢3,c2,cl,cO
6 i of FXAM instruction.
7 i
8 name tos_status
9
10 public tos_status
11
== 12 stack stackseg & i Allocate space on the stack
13
—— 14 code segment er public
15
0000 16 tos_status proc
17
0000 DYES 18 fxam i Get register contents status
0002 9BDFEO 19 fstsw ax i Get status
0005 BAC4 20 mov al,ah 3 Put bit 10-B into bits 2-0
0007 250740 21 and ax, 4007h i Mask out bits c3,c2,cl,cO
000A COECO3 22 shr ah, 3 i Put bit c3 into bit 11
000D OAC4 23 or al,ah i Put ¢3 into bit 3
000F B400 24 mov ah, 0 i Clear return value
0011 C3 25 Tet
26
27 tos_status endp
28
—— 29 code ends
30 end

ASSEMBLY COMPLETE, NO WARNINGS, NO ERRORS

Figure 4-6. Floating-Point to ASCII Conversion Routine (Cont’d.)

Function Partitioning

Three separate modules implement the conversion. Most of the work of the conversion is done in the
module FLOATING_TO_ASCII. The other modules are provided separately, because they have a
more general use. One of them, GET_POWER_10, is also used by the ASCII to floating-point conver-
sion routine. The other small module, TOS_STATUS, will identify what, if anything, is in the top of
the numeric register stack.

4-14 122164-001

Inte'® NUMERIC PROGRAMMING EXAMPLES

Exception Considerations

Care is taken inside the function to avoid generating exceptions. Any possible numeric value will be
accepted. The only exceptions possible would occur if insufficient space exists on the numeric register
stack.

The value passed in the numeric stack is checked for existence, type (NaN or infinity), and status
(unnormal, denormal, zero, sign). The string size is tested for a minimum and maximum value. If the
top of the register stack is empty, or the string size is too small, the function will return with an error
code.

Overflow and underflow is avoided inside the function for very large or very small numbers.

Special Instructions

The functions demonstrate the operation of several numeric instructions, different data types, and
precision control. Shown are instructions for automatic conversion to BCD, calculating the value of 10
raised to an integer value, establishing and maintaining concurrency, data synchronization, and use of
directed rounding on the NPX.

Without the extended precision data type and built-in exponential function, the double precision accuracy
of this function could not be attained with the size and speed of the shown example.

The function relies on the numeric BCD data type for conversion from binary floating-point to decimal.
It is not difficult to unpack the BCD digits into separate ASCII decimal digits. The major work involves
scaling the floating-point value to the comparatively limited range of BCD values. To print a 9-digit
result requires accurately scaling the given value to an integer between 10* and 10°. For example, the
number +0.123456789 requires a scaling factor of 10° to produce the value +123456789.0, which
can be stored in 9 BCD digits. The scale factor must be an exact power of 10 to avoid to changing any
of the printed digit values.

These routines should exactly convert all values exactly representable in decimal in the field size given.
Integer values that fit in the given string size will not be scaled, but directly stored into the BCD form.
Noninteger values exactly representable in decimal within the string size limits will also be exactly
converted. For example, 0.125 is exactly representable in binary or decimal. To convert this floating-
point value to decimal, the scaling factor will be 1000, resulting in 125. When scaling a value, the
function must keep track of where the decimal point lies in the final decimal value.

Description of Operation

Converting a floating-point number to decimal ASCII takes three major steps: identifying the magni-
tude of the number, scaling it for the BCD data type, and converting the BCD data type to a decimal
ASCII string.

Identifying the magnitude of the result requires finding the value X such that the number is repre-
sented by 1¥10%, where 1.0 <= I < 10.0. Scaling the number requires multiplying it by a scaling
factor 105, so that the result is an integer requiring no more decimal digits than provided for in the
ASCII string.

Once scaled, the numeric rounding modes and BCD conversion put the number in a form easy to
convert to decimal ASCII by host software.

4-15 122164-001

Inte|® NUMERIC PROGRAMMING EXAMPLES

Implementing each of these three steps requires attention to detail. To begin with, not all floating-point
values have a numeric meaning. Values such as infinity, indefinite, or Not a Number (NaN) may be
encountered by the conversion routine. The conversion routine should recognize these values and identify
them uniquely.

Special cases of numeric values also exist. Denormals, unnormals, and pseudo zero all have a numeric
value but should be recognized, because all of them indicate that precision was lost during some earlier
calculations.

Once it has been determined that the number has a numeric value, and it is normalized setting appro-
priate unnormal flags, the value must be scaled to the BCD range.

Scaling the Value

To scale the number, its magnitude must be determined. It is sufficient to calculate the magnitude to
an accuracy of 1 unit, or within a factor of 10 of the given value. After scaling the number, a check
will be made to see if the result falls in the range expected. If not, the result can be adjusted one
decimal order of magnitude up or down. The adjustment test after the scaling is necessary due to
inevitable inaccuracies in the scaling value.

Because the magnitude estimate need only be close, a fast technique is used. The magnitude is estimated
by multiplying the power of 2, the unbiased floating-point exponent, associated with the number by
log,02. Rounding the result to an integer will produce an estimate of sufficient accuracy. Ignoring the
fraction value can introduce a maximum error of 0.32 in the result.

Using the magnitude of the value and size of the number string, the scaling factor can be calculated.
Calculating the scaling factor is the most inaccurate operation of the conversion process. The relation
10¥=2**(X*log,10) is used for this function. The exponentiate instruction (F2XM1) will be used.

Due to restrictions on the range of values allowed by the F2XM1 instruction, the power of 2 value will
be split into integer and fraction components. The relation 2**(I + F) = 2**] * 2**F allows using
the FSCALE instruction to recombine the 2**F value, calculated through F2XM1, and the 2**I part.

INACCURACY IN SCALING

The inaccuracy of these operations arises because of the trailing zeros placed into the fraction value
when stripping off the integer valued bits. For each integer valued bit in the power of 2 value separated
from the fraction bits, one bit of precision is lost in the fraction field due to the zero fill occurring in
the least significant bits.

Up to 14 bits may be lost in the fraction because the largest allowed floating point exponent value is
2M4—1.

AVOIDING UNDERFLOW AND OVERFLOW

The fraction and exponent fields of the number are separated to avoid underflow and overflow in
calculating the scaling values. For example, to scale 1074 to 10® requires a scaling factor of 10%,
which cannot be represented by the NPX.

By separating the exponent and fraction, the scaling operation involves adding the exponents separate

from multiplying the fractions. The exponent arithmetic will involve small integers, all easily repre-
sented by the NPX.

4-16 122164-001

. ®
Intel NUMERIC PROGRAMMING EXAMPLES

FINAL ADJUSTMENTS

It is possible that the power function (Get_Power_10) could produce a scaling value such that it forms
a scaled result larger than the ASCII field could allow. For example, scaling 9.9999999999999999 X
10%°° by 1.00000000000000010 X 107433 would produce 1.00000000000000009 X 10'*. The scale
factor is within the accuracy of the NPX and the result is within the conversion accuracy, but it cannot
be represented in BCD format. This is why there is a post-scaling test on the magnitude of the result.
The result can be multiplied or divided by 10, depending on whether the result was too small or too
large, respectively.

Output Format

For maximum flexibility in output formats, the position of the decimal point is indicated by a binary
integer called the power value. If the power value is zero, then the decimal point is assumed to be at
the right of the rightmost digit. Power values greater than zero indicate how many trailing zeros are
not shown. For each unit below zero, move the decimal point to the left in the string.

The last step of the conversion is storing the result in BCD and indicating where the decimal point lies.
The BCD string is then unpacked into ASCII decimal characters. The ASCII sign is set corresponding
to the sign of the original value.

TRIGONOMETRIC CALCULATION EXAMPLES

The 80287 instruction set does not provide a complete set of trigonometric functions that can be used
directly in calculations. Rather, the basic building blocks for implementing trigonometric functions are
provided by the FPTAN and FPREM instructions. The example in figure 4-7 shows how three trigon-
ometric functions (sine, cosine, and tangent) can be implementing using the 80287. All three functions
accept a valid angle argument between —2% and +2%. These functions may be called from
PL/M-286, Pascal-286, FORTRAN-286, or ASM286 routines.

These trigonometric functions use the partial tangent instruction together with trigonometric identities
to calculate the result. They are accurate to within 16 units of the low 4 bits of an extended precision
value. The functions are coded for speed and small size, with tradeoffs available for greater accuracy.

FPTAN and FPREM

These trigonometric functions use the FPTAN instruction of the NPX. FPTAN requires that the angle
argument be between 0 and w/4 radians, O to 45 degrees. The FPREM instruction is used to reduce
the argument down to this range. The low three quotient bits set by FPREM identify which octant the
original angle was in.

One FPREM instruction iteration can reduce angles of 10'® radians or less in magnitude to w/4! Larger

values can be reduced, but the meaning of the result is questionable, because any errors in the least
significant bits of that value represent changes of 45 degrees or more in the reduced angle.

4-17 122164-001

|l‘|‘|.'e|® NUMERIC PROGRAMMING EXAMPLES

Cosine Uses Sine Code

To save code space, the cosine function uses most of the sine function code. The relation sin (IAl+
m/2) = cos(A) is used to convert the cosine argument into a sine argument. Adding /2 to the angle
is performed by adding 010, to the FPREM quotient bits identifying the argument’s octant.

It would be very inaccurate to add w/2 to the cosine argument if it was very much different from
/2.

Depending on which octant the argument falls in, a different relation will be used in the sine and
tangent functions. The program listings show which relations are used.

For the tangent function, the ratio produced by FPTAN will be directly evaluated. The sine function
will use either a sine or cosine relation depending on which octant the angle fell into. On exit, these
functions will normally leave a divide instruction in progress to maintain concurrency.

If the input angles are of a restricted range, such as from 0 to 45 degrees, then considerable optimiza-
tion is possible since full angle reduction and octant identification is not necessary.

All three functions begin by looking at the value given to them. Not a Number (NaN), infinity, or
empty registers must be specially treated. Unnormals need to be converted to normal values before the
FPTAN instruction will work correctly. Denormals will be converted to very small unnormals that do

work correctly for the FPTAN instruction. The sign of the angle is saved to control the sign of the
result.

Within the functions, close attention was paid to maintain concurrent execution of the 80287 and host.
The concurrent execution will effectively hide the execution time of the decision logic used in the
program.

iAPX286 MACRO ASSEMBLER 80287 Trignometric Functions 10:13: 51 09/25/83 PAGE 1

SERIES-II1 iAPX286 MACRO ASSEMBLER X108 ASSEMBLY OF MODULE TRIG_FUNCTIONS
OBJECT MODULE PLACED IN :F3:TRIG. OBJY
ASSEMBLER INVOKED BY: ASM286.86 :F3: TRIG. AP2

LOC OBY LINE SOURCE
1 +1 $title("80287 Trignometric Functions")
2
3 name trig_functions
4 public sine,cosine, tangent
5

—— & stack stackseg b i Reserve local space
7

* 8 sw_287 record resi:1,cond3:1, top:3,cond2:1,condl: i, cond0: 1,

? & Tes2:
10

—— 11 code segment er public
12 i
13 i Define local constants.
14 i
15 even

0000 35C26821A2DAOF 16 pi_gquarter dt SFFEC90FDAA22168C235R i P1/4

CYFEIF
000A O000COFF 17 indefinite dd OFFCOO000R i Indefinite special value

18 +1 seject

Figure 4-7. Calculating Trigonometric Functions

4-18 122164-001

NUMERIC PROGRAMMING EXAMPLES

iAPX286 MACRO ASSEMBLER

Lac

000E

000E
0010

0012

0027
0029

0028
002D

[x):N]

DDD?
7501

EBO0901
EB2F

D9ES

9BDFEO
2EDB2E0000 R
B101

9E

7263

DICT
7A1C

DDD?
75E4

80287 Trignometric Functions 10:13:51 09/25/83 PAGE
LINE SOURCE
19 i
20 i This subroutine calculates the sine or cosine of the angle, given in
21 i radians. The angle is in ST(0), the returned value will be in ST(O).
22 i The result is accurate to within 7 units of the least significant three
a3 i bits of the NPX extended real format. The PLM/B6 definition is:
24 i
25 i sine: procedure (angle) real external;
26 i declare angle real;
27 i end sinei
28 i
29 i cosine: procedure (angle) real external;
30 i declare angle real;
31 i end cosine;
32 i
33 i Three stack registers are.required. The result of the function is
34 i defined as follows for the following arguments:
35 i
36 I angle result
37 i
38 i valid or unnormal less than 2##62 in magnitude correct value
39 i zero 0 or 1
40 i denormal correct denormal
41 i valid or unnormal greater than 2##62 indefinite
42 i infinity indefinite
43 i NAN NAN
44 i empty empty
45 +1 s$egect
46 i
47 i This function is based on the NPX fptan instruction. The fptan
48 i instruction will only work with an angle of from O to PI/4. With this
49 i instruction, the sine or cosine of angles from O to PI/4 can be accurately
50 i calculated. The technique used by this routine can calculate a general
51 i sine or cosine by using one of four possible operations:
52 i
53 i Let R = langle mod PI1/4}
54 i S = -1 or 1, according to the sign of the angle
55 i
56 i 1) sin(R) 2) cos(R) 3) sin(PI/4-R) 4) cos(PI/4-R)
57 i
58 i The choice of the relation and the sign of the result follows the
59 i decision table shown below based on the octant the angle falls in:
60 i
61 i octant sine cosine
62 i
63 i] S#*1 2
64 i 1 Sx4 3
65 i 2 S#2 —1%1
bb6 i 3 S#3 —1%4
67 i 4 —S#1 —1%2
68 i 5 -S#4 -1%3
69 i & ~-S#2 1
70 P 7 -5#3 4
71 i
72 +1 S$eject
73 i
74 i Angle to sine function is a zero or unnormal.
7% i
76 sine_zero_unnormal:
77
78 fstp st(1) i Remove P1/4
79 Jnz enter_sine_normalize i Jump if angle is unnormal
80 i
81 i Angle is a zero.
82 i
83 ret
84 i
85 i Angle is an unnormal
86 i
87 enter_sine_normalize:
a8
89 call normalize_value
90 Jmp short enter_sine
91
92 cosine proc i Entry point to cosine
93
94 fxam i Look at the value
95 fstsw ax i Store status value
96 fld pi_quarter i Setup for angle reduce
97 mov c i Signal cosine function
98 sahf ; IF = €3, PF = €2, CF = CO
99 Je funny_parameter i Jump if parameter is
100 ; empty, NAN, or infinity
101 i
102 i Angle is unnormal, normal, zero, denormal.
103 i
104 fxch i st{0) = angle, st(1) = PI/4
105 Jpe enter_sine i Jump if normal or denormal
106 i
107 i Angle is an unnormal or zero.
108 i
109 fstp st(1) i Remove P1/4
110 Jnz enter_sine_normalize
111 i
112 i Angle is a zero cos(0) = 1.0

Figure 4-7. Calculating Trigonometric Functions (Cont’d.)

4-19 122164-001

NUMERIC PROGRAMMING EXAMPLES

iAPX286 MACRD ASSEMBLER

0034

0034
0036
0039

003E 9

003F

0041
0043
0045

0047
0047

0049 9

004A

004D
004E
0051

0053

0055
0057

0059
005¢C

00SF
0062
0064
0066

0068

0068
006B

006D
006F

0071

0071
0073
0074
0077
0078
007A
007D

0BJ

DDDB
D9ES
c3

DYES

9BDFEQ

2EDB2EO000 R
E

7249

D9CY
B100
7BC7

D9F8

3
9BDFEOQ

93
F6C704
7544

D9E1

0AC?
740F

BOE4FD
BOCFB0O

B80C740
BOOO
DODO
32F8

F6C702
7404

DEE?
EBOE

D9E4
91
9BDFEO
91
DDD9

F&C540
7514

80287 Trignometric Functions 10:13: 51 09/25/83 PAGE
LINE SOURCE
113 i
114 fstp st(0) i Remove O
115 £1d1 i Return 1
116 Tet
117 i
118 i All work is done as a sine function. By adding PI/2 to the angle
119 i a cosine is converted to a sine. OFf course the angle addition is not
120 i done to the argument but rather to the program logic control values.
121 i
122 sine: i Entry point for sine function
123
124 fxam i Look at the parameter
125 fstsw ax i Look at fxam status
126 fld pi_quarter i Get PI/4 value
127 sahf i CF = CO, PF = C2, ZF = C3
128 Jc funny_parameter i Jump if empty, NAN, or infinity
129 i
130 i Angle is unnormal, normal, zero, or denormal.
131 i
132 fxch i ST(1) = PI/4, st(0) angle
133 mov cl, 0 Signal sine
134 Jpo sine_zero_unnormal i Jump if zero or unnormal
135 i
136 i 8T(0) is either a normal or denormal value. Both will work.
137 i Use the fprem instruction to accurately reduce the range of the given
138 i angle to within O and PI/4 in magnitude. If fprem cannot reduce the
139 i angle in one shot, the angle is too big to be meaningful, > 2##&2
140 i radians. Any roundoff error in the calculation of the angle given
141 i could completely change the result of this function. It is safest to
142 i call this very rare case an error.
143 i
144 enter_sine:
145 fprem i Reduce angle
146 i Note that fprem will force a
147 i denormal to a very small unnormal
148 ; Fptan of a very small unnormal
149 i will be the same very small
150 i unnormal, which is correct.
151 xchg ax,bx i Save old status in BX
152 fstsw ax i Check if reduction was complete
153 i Quotient in C0,C3,C1
154 xchg ax,bx i Put new status in bx
155 test bh, high(mask cond2) i sin(2#N#PI+x) = sin(x)
156 Jnz angle_too_big
157 i
158 i Set sign flags and test for which eighth of the revolution the
159 ' angle fell into
160 i
161 i Assert: -PI/4 < st(0) < PI/4
162 i
163 fabs i Force the argument positive
164 i condl bit in bx holds the sign
165 or cl,cl i Test for sine or cosine function
166 Jz sine_select i Jump if sine function
167 i
168 i This is a cosine function. Ignore the original sign of the angle
169 i and add a quarter revolution to the octant id from the fprem instruction.
170 i costA) = sin(A+PI/2) and cos(!A!) = cos(A)
171 i
172 and ah,not high(mask cond1l) i Turn off sign of argument
173 or bh, BOH i Prepare to add 010 to CO,C3,C1
174 status value in ax
175 Set busy bit so carry out from
176 add bh,high(mask cond3) ; €3 will go into the carry flag
177 mov al, i Extract carry flag
178 rel al,t i Put carry flag in low bit
179 xor bh,al i Add carry to CO not changing
180 i C1 flag
181 i
182 i See if the argument should be reversed, depending on the octant in
183 i which the argument fell during fprem.
184 i
185 sine_select:
186
187 test bh.high(mask condl) i Reverse angle if C1 =1
188 Jz no_sine_reverse
189 i
190 i Angle was in octants 1,3,5,7.
191 i
192 fsub i Invert sense of rotation
l?i Jmp short do_sine_fptan i 0 < arg <= PI/4
19: i
195 i Angle was in octants 0,2,4,6.
::: i Test for a zero argument since fptan will not work if st(0) = O
198 no_sine_reverse:
199
200 ftst i Test for zero angle
201 xchg ax,cx
202 fstsw ax i cond3 =1 if st(0) =0
203 xchg ax,cx
204 fstp st(1) i Remove PI/4
205 test ch,high(mask cond3) i If C3=1, argument is zero
206 Jnz sine_argument_zero

Figure 4-7. Calculating Trigonometric Functions (Cont’d.)

4-20

122164-001

NUMERIC PROGRAMMING EXAMPLES

iAPX286 MACRO ASSEMBLER 80287 Trignometric Functions 10:13:51 09/25/83 PAGE 4
LoC OBJY LINE SOURCE
207 i
208 i Assert: 0 < st(0) <= PI/4
209 H
007F 210 do_sine_fptan:
211
007F D9F2 :ig fptan i TAN ST(0) = ST(1)/ST(0) = Y/X
0081 214 after_sine_fptan:
215
0081 F&C742 216 test bh,high(mask cond3 + mask condl); Look at octant angle fell into
0084 7B1A 217 spo X_numerator i Calculate cosine for octants
218 i 1,256
219 i
220 i Calculate the sine of the argument.
221 i sin(A) = tan(A)/sqrt(l+tan(A)*#2) if tan(A) = Y/X then
222 i Sin(A) = Y/sqri(X#X + Y#Y)
223 i
0086 D9C1 224 fld st(1) i Copy Y value
0088 EB1A 225 Jmp short finish_sine i Put Y value in numerator
226 i
gg; i The top of the stack is either NAN, infinity, or empty
008A 229 funny_parameter:
230
008A DDDB 231 fstp st (0) i Remove P1/4
008C 7404 2:’;’)z return_empty i Return empty if no parm
23
008E 7BOZ 234 Jpo return_NAN i Jump if st(0) is NAN
235 i
236 i st(0) is infinity. Return an indefinite value.
237 i
0090 D9F8 238 fprem i S8T(1) can be anything
239
o072 240 return_NAN:
0092 241 Teturn_empty:
242
0092 €3 243 Tet i Ok to leave fprem running
244 i
245 i Simulate fptan with st(0) = O
246 i
0093 247 sine_argument_zero:
248
0093 DYE8 249 fld1 i Bimulate tan(0)
0095 EBEA 250 Jmp after_sine_fptan i Return the zero value
251 i
252 i The angle was too large. Remove the modulus and dividend from the
253 i stack and return an indefinite result.
254 i
0097 255 angle_too_big:
256
0097 DED? 257 fcompp i Pop two values from the stack
0099 2ED?060A00 R 258 £1d indefinite i Return indefinite
009E 9B 259 fwait i Wait for load to finish
009F C3 260 Tet
261 i
262 i Calculate the cosine of the argument.
263 i cos(A) = 1/sqri(i+tan(A)*x2) if tan(A) = Y/X then
264 i cos(A) = X/sqrt(X#X + Y#Y)
265 i
00A0 266 X_numerator:
267
00AO D9CO 268 f1ld st(0) i Copy X value
00A2 D9CA 269 fxch st(2) i Put X in numerator
270
00A4 271 finish_sine:
272
00A4 DCCB 273 fmul st 5t (0) i Form X#X + Y#Y
00A& D9C? 274 fxch
00A8 DCC8 a7s fmul st st(0)
OO0AA DEC1! 276 fadd i st(0) X#X + Y#Y
O0AC D9FA 277 fsqrt i st(0) = sqri(XsX + Y#Y)
ara
279
280 i Form the sign of the result. The two conditions are the Ci flag from
281 i FXAM in bh and the CO flag from fprem in ah.
282 i
00AE BOE701 283 and bh,high(mask cond0) i Look at the fprem CO flag
00B1 B0OEA402 284 and ah, high(mask condl) i Look at the fxam C1 flag
00B4 OAFC 285 or bh,ah i Even number of flags cancel
00B6 7A02 286 Jpe positive_sine i Two negatives make a positive
287
00B8 DYPEC 288 fchs i Force result negative
289
00BA 290 positive_sine:
291 B
00BA DEF9 292 fdiv i Form final result
80BC €3 ggg ret i Ok to leave #div Tunning]
295 cosine endp
296 +1 seject .
297 i
298 i This function will calculate the tangent of an angle.
299 i The angle, in radians is passed in ST(0), the tangent is returned
300 i in 8T(0). The tangent is calculated to an accuracy of 4 units in the

Figure 4-7. Calculating Trigonometric Functions (Cont’d.)

4-21 122164-001

NUMERIC PROGRAMMING EXAMPLES

iAPX286 MACRO ASSEMBLER

LoCc 0OBv

OOCE
00CE

00D0
00D1

00D4

00DS5
oopg

00oDA

00DC
OODF

00E1
O0E3

O0ES

O0ES
00E7

DYES

9BDFEO

2EDB2EC000 R
E

72¢0

DIC?
7A17

D9F8

93
FBDFEO

93

F6C704
758D

DRE1

F6C702
740E

DEE?
EB18

DDD?
7405

80287 Trignometric Functions . 10:13: 51 09/25/83 PAGE 5
LINE SOURCE
301 i least three significant bits of an extended real format number. The
302 i PLM/B6 calling format is:
303 i
304 tangent: procedure (angle) real external:
305 i declare angle real;
306 i end tangent;
307 i
308 Two stack registers are used. The result of the tangent function is
309 i defined for the following cases:
310 i
311 i angle result
3z i
313 3 valid or unnormal < 2#%62 in magnitude correct valuve
314 i 0
315 i denormal correct denormal
316 i valid or unnormal > 2##42 in magnitude. indefinite
a7z i NAN NAN
318 i infinity indefinite
319 i empty empty
320
321 The tangent instruction uses the fptan instruction. Four possible
322 i relations are used:
323 i
324 i Let R = langle MOD PI/4!
325 i 8 = -1 or 1 depending on the sign of the angle
326 i
327 i 1) tan(R) 2) tan(PI/4-R) 3) 1/tan(R) 4) 1/tan(PI1/4-R)
328 i
329 The following table is used to decide which relation to use depending
330 H on in which octant the angle fell.
331 i
332 i octant relatiaon
333 i
334 i o S#1
335 i 1 sS4
336 : 2 -5#3)
337 i 3 -8#2
338 i 4 =139
339 i 5 S*4
340 i &6 ~5%3
341 i 7 ~Su2
342 i
343 tangent proc
344
345 fxam i Look at the parameter
346 fstsw ax i Get fxam status
347 £ld pi_quarter i Get PI/4
348 sahf 3 CF = €0, PF = C2, ZF = C3
349 Je funny_parameter /
350 i |
351 i Angle is unnormal, normal, zero, or denormal.
352 i
353 fxch i st(0) = angle, st(1) = PI/4
354 Jpe tan_zero_unnormal
355 i
356 i Angle is either an normal or denormal.
357 i Reduce the angle to the range ~PI/4 < result < PI/4.
358 i If fprem cannot perform this operation in ome try, the magnitude of the
359 i angle must be > 2##62. Such an angle is so large that any rounding
360 i errors could make a very large difference in the reduced angle.
361 i It is safest to call this very rare case an error.
362 i
363 tan_normal:
364
365 fprem i Quotient in CO0,C3,C1
366 i Convert denormals into unnormals
367 xchg ax/bx
368 fstsw ax i Quotient identifies octant
369 ; original angle fell into
370 xchg ax:bx
371 test bh.high(mask cond2) i Test for complete reduction
372 Jnz angle_too_big i Exit if angle was too big
373 i
374 i See if the angle must be reversed.
375 i
376 i Assert: -PI/4 < st(0) < P1/4
377 i
378 fabs i 0 <= st(0) < PI/4
379 i €3 in bx has the sign flag
380 test bh,high{mask condl) i must be Teversed
381 Jz no_tan_reverse
382 i
383 i Angle fell in octants 1,3,5,7. Reverse it, subtract it from PI/4.
384 i
385 fsub i Reverse angle
386 Jmp short do_tangent
387 i
388 i Angle is either zero or an unnormal.
389 i
390 tan_zero_unnormal:
391)
392 fstp st(1) / i Remove PI/4
393 Jz tan_angle_zero
394 i
395 i Angle is an unnormal.

Figure 4-7. Calculating Trfgondmetric Functions (Cont’d.) '

4-22 122164-001

NUMERIC PROGRAMMING EXAMPLES

iAPX286 MACRD ASSEMBLER 80287 Trignometric Functions 10:13: 51 09/25/83 PAGE 6
Loc oBJ LINE SOURCE
396 i
0DOE9 EB3300 397 call normalize_value
OOEC EBEC 398 Jmp tan_normal
399
OOEE 400 tan_angle_zero
401
OOEE C3 402 Tet
403 i
404 i Angle fell in octants 0,2,4,6 Test for st(0) = 0, fptan won’t work
405 i
OO0EF 406 no_tan_reverse
407
OOEF D9E4 408 ftst i Test for zero angle
O00F1 91 409 xchg ax,cx
00F2 9BDFEQ 410 fstsw ax i €3 =1 if st(0) =0
00F5 91 411 xchg ax,cx
00F&6 DDD? 412 fstp st(1) i Remove PI1/4
OOF8 F&6CS540 413 test ch,high(mask cond3)
OOFB 7515 414 Jnz tan_zero
415
00FD 416 do_tangent:
417
00FD D9F2 418 fptan i tan ST(0) = ST(1)/ST(0)
419
OOFF 420 after_tangent:
421 i
422 i Decide on the order of the operands and their sign for the divide
423 5 operation while the fptan instruction is working.
424 i
OOFF B8AC7 425 mov al, bh i Cet a copy of fprem C3 flag
0101 254002 426 and ax,mask condl + high(mask cond3); Examine fprem C3 flag and
a27 i FXAM C1 flag
0104 F6C742 428 test bh,high(mask condl + mask cond3); Use reverse divide if in
429 i octants 1,2,5,6

0107 7BOD 430 Jpo reverse_divide i Note! parity works on low
431 ; 8 bits only!
432
Angle was in octants 0,3,4,7

»
W
(5]

434 Test for the sign of the result. Two negatives cancel.
435
0109 0AC4 a36 or al, ah
0108 7A02 437 e positive_divide
438
010D D9EO 439 fchs ; Force result negative
440
010F 441 positive_divide:
442
O10F DEF9 243 fdiv ; Form result
o111 €3 444 ret i Dk to leave fdiv running
245
o112 446 tan_zero:
147
0112 D9ES 448 £1d1 i Force 1/0 = tan(P1/2)
0114 EBE9 349 Jmp after_tangent
450 ;
451 I Angle was in octants 1,2, 5, 6.
452 i Set the correct sign of the result.
453 i
o116 454 reverse_divide
455
0116 OAC4 256 or al, ah
0118 7A02 457 ipe positive_r_divide
458
011A D9EO 459 fchs i Force result negative
460
o11c 261 positive_r_divide:
462
011C DEF1 263 Fdive i Form veciprocal of result
O11E C3 264 ret i Ok to leave fdiv Tunning
465
266 tangent endp
467 '
268 I This function will normalize the value in st(0).
269 i Then PI/4 is placed into st(1).
470 i
011F 471 normalize_value:
472
O11F D9E1 473 fabs i Force value positive
0121 D9F4 474 Fxtract i 0 <= st(0) < 1
0123 D9EB 475 £1d1 i Get normalize bit
0125 DCC1 476 fadd st(1), st i Normalize fraction
0127 DEE? 477 £sub i Restore original value
0129 D9FD 478 fscale i Form original normalized value
0128 DDD? 479 £stp st(1) ; Remove scale factor
012D 2EDB2EO00O R 480 £1d pi_quarter i Get PI1/4
0132 D9CT 481 fxch
0134 €3 482 ret
483
-—— 484 code ends
485 end
ASSEMBLY COMPLETE, NO WARNINGS, NO ERRORS

Figure 4-7. Calculating Trigonometric Functions (Cont’d.)

4-23 122164-001

Appendix
Machine Instruction
Encoding And Decoding

APPENDIX A

MACHINE INSTRUCTION ENCODING AND DECODING

Machine instructions for the 80287 come in one of five different forms as shown in table A-1. In all
cases, the instructions are at least two bytes long and begin with the bit pattern 11011B, which identi-
fies the ESCAPE class of instructions. Instructions that reference memory operands are encoded much
like similar CPU instructions, because all of the CPU memory-addressing modes may be used with

ESCAPE instructions.

Note that several of the processor control instructions (see table 2-11 in Chapter Two) may be preceded
by an assembler-generated CPU WAIT instruction (encoding: 10011011B) if they are programmed
using the WAIT form of their mnemonics. The ASM286 assembler inserts a WAIT instruction only
before these specific processor control instructions—all of the numeric instructions are automatically
synchronized by the 80286 CPU and an explicit WAIT instruction, though allowed, is not necessary.

Table A-1. 80287 Instruction Encoding

Lower-Addressed Byte

Higher-Addressed Byte

0, 1, or 2 bytes

U 1 0o 1 1] OP-A 1 MOD 1 OP-B R/M DISPLACEMENT
@ 11 1 0 1 1 |[FORMAT| OP-AMOD OP-B R/M DISPLACEMENT
1
@11 1 o 1 1{R|P O;-A1 1 OP-B REG
@ 11 1 0o 1 1]0]07]1 1 1 1 oP
® 11 1 0o 1 110] 1 1 1 1 1 OoP
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1
NOTES:

MMemory transfers, including applicable processor control instructions; 0, 1, or 2 displacement bytes may

follow.

@Memory arithmetic and comparison instructions; 0, 1, or 2 displacement bytes may follow.

@Stack arithmetic and comparison instructions.

“Constant, transcendental, some arithmetic instructions.

®Processor control instructions that do not reference memory.
OP, OP-A, OP-B: Instruction opcode, possibly split into two fields.

MOD: Same as 80286 CPU mode field.

R/M: Same as 80286 CPU register/memory field.
FORMAT: Defines memory operand

00 = short real

01 = short integer

10
11

R: 0 = return result to stack top

long real

word integer

1 = return result to other register

P: 0 = do not pop stack
1 = pop stack after operation

A-1

122164-001

.

MACHINE INSTRUCTION ENCODING AND DECODING

REG: register stack element

000 = stack top

001 = next on stack
010 = third stack element, etc.

Table A-2 lists all 80287 machine instructions in binary sequence. This table may be used to “disassem-
ble” instructions in unformatted memory dumps or instructions monitored from the data bus. Users
writing exception handlers may also find this information useful to identify the offending instruction.

Table A-2. Machine Instruction Decoding Guide

1st Byte .
2nd Byte Bytes 3, 4 ASM286 Instruction

Hex Binary Format
D8 1101 1000 MODO00 O0R/M (disp-lo),(disp-hi) FADD short-real
D8 1101 1000 MOD00 1R/M (disp-lo),(disp-hi) FMUL short-real
D8 1101 1000 MODO01 OR/M (disp-lo),(disp-hi) FCOM short-real
D8 1101 1000 MODO01 1R/M (disp-lo),(disp-hi) FCOMP short-real
D8 1101 1000 MOD10 OR/M (disp-lo),(disp-hi) FSUB short-real
D8 1101 1000 MOD10 1R/M (disp-lo),(disp-hi) FSUBR short-real
D8 1101 1000 MOD11 OR/M (disp-lo),(disp-hi) FDIV short-real
D8 1101 1000 MOD11 1R/M (disp-lo),(disp-hi) FDIVR short-real
D8 1101 1000 1100 OREG FADD ST,ST(i)
D8 1101 1000 1100 1REG FMUL ST,ST()
D8 1101 1000 1101 OREG FCOM ST(i)
D8 1101 1000 1101 1REG FCOMP ST(i)
D8 1101 1000 1110 OREG FSuB ST,ST(i)
D8 1101 1000 1110 1REG FSUBR ST,ST()
D8 1101 1000 1111 OREG FDIV ST,ST()
D8 1101 1000 1111 1REG FDIVR ST,ST(i)
D9 1101 1001 MODO00 OR/M (disp-lo),(disp-hi) FLD short-real
D9 1101 1001 MODO00 1R/M reserved
D9 1101 1001 MODO1 OR/M (disp-lo),(disp-hi) FST short-real
D9 1101 1001 MODO01 1R/M (disp-lo),(disp-hi) FSTP short-real
D9 1101 1001 MOD10 OR/M (disp-lo),(disp-hi) FLDENV 14-bytes
D9 1101 1001 MOD10 1R/M (disp-lo),(disp-hi) FLDCW 2-bytes
D9 1101 1001 MOD11 OR/M (disp-lo),(disp-hi) FSTENV 14-bytes
D9 1101 1001 MOD11 1R/M (disp-lo),(disp-hi) FSTCW 2-bytes
D9 1101 1001 1100 OREG FLD ST(i)
D9 1101 1001 1100 1REG FXCH ST(i)
D9 1101 1001 1101 0000 FNOP
D9 1101 1001 1101 0001 reserved
D9 1101 1001 1101 001- reserved
D9 1101 1001 1101 01-- reserved
D9 1101 1001 1101 1REG *(1)
D9 1101 1001 1110 0000 FCHS
D9 1101 1001 1110 0001 FABS
D9 1101 1001 1110 001- reserved
D9 1101 1001 1110 0100 FTST
D9 1101 1001 1110 0101 FXAM
D9 1101 1001 1110 011- reserved
D9 1101 1001 1110 1000 FLD1
D9 1101 1001 1110 1001 FLDL2T
D9 1101 1001 1110 1010 FLDL2E
D9 1101 1001 1110 1011 FLDPI
D9 1101 1001 1110 1100 FLDLG2

122164-001

intel

MACHINE INSTRUCTION ENCODING AND DECODING

Table A-2. Machine Instruction Decoding Guide (Cont’d.)

1t Byte ASM286 Instructi
2nd Byte Bytes 3, 4 nstruction
Hex Binary Y Y Format
D9 1101 1001 1110 1101 FLDLN2
D9 1101 1001 1110 1110 FLDZ
D9 1101 1001 1110 1111 reserved
D9 1101 1001 1111 0000 F2XM1
D9 1101 1001 1111 0001 FYL2X
D9 1101 1001 1111 0010 FPTAN
D9 1101 1001 1111 0011 FPATAN
D9 1101 1001 1111 0100. FXTRACT
D9 1101 1001 1111 0101 reserved
D9 1101 1001 1111 0110 FDECSTP
D9 1101 1001 1111 0111 FINCSTP
D9 1101 1001 1111 1000 FPREM
D9 1101 1001 1111 1001 FYL2XP1
D9 1101 1001 1111 1010 FSQRT
D9 1101 1001 1111 1011 reserved
D9 1101 1001 1111 1100 FRNDINT
D9 1101 1001 1111 1101 FSCALE
D9 1101 1001 1111 111- reserved
DA 1101 1010 MODO00 OR/M (disp-lo),(disp-hi) FIADD short-integer
DA 1101 1010 MODO00 1R/M (disp-lo),(disp-hi) FIMUL short-integer
DA 1101 1010 MODO01 OR/M (disp-lo),(disp-hi) FICOM short-integer
DA 1101 1010 MODO01 1R/M (disp-lo),(disp-hi) FICOMP short-integer
DA 1101 1010 MOD10 OR/M (disp-lo),(disp-hi) FISUB short-integer
DA 1101 1010 MOD10 1R/M (disp-lo),(disp-hi) FISUBR short-integer
DA 1101 1010 MOD11 OR/M (disp-lo),(disp-hi) FIDIV short-integer
DA 1101 1010 MOD11 1R/M (disp-lo),(disp-hi) FIDIVR short-integer
DA 1101 1010 11-- —--- reserved
DB 1101 1011 MODO00 OR/M (disp-lo),(disp-hi) FILD short-integer
DB 1101 1011 MODO00 1R/M (disp-lo),(disp-hi) reserved
DB 1101 1011 MODO01 OR/M (disp-lo),(disp-hi) FIST short-integer
DB 1101 1011 MODO01 1R/M (disp-lo),(disp-hi) FISTP short-integer
DB 1101 1011 MOD10 OR/M (disp-lo),(disp-hi) reserved
DB 1101 1011 MOD10 1R/M (disp-lo),(disp-hi) FLD temp-real
DB 1101 1011 MOD11 OR/M (disp-lo),(disp-hi) reserved
DB 1101 1011 MOD11 1R/M (disp-lo),(disp-hi) FSTP temp-real
DB 1101 1011 110- -—-- reserved
DB 1101 1011 1110 0000 reserved (8087 FENI)
DB 1101 1011 1110 0001 reserved (8087 FDISI)
DB 1101 1011 1110 0010 FCLEX
DB 1101 1011 1110 0011 FINIT
DB 1101 1011 1110 0100 FSETPM
DB 1101 1011 1110 1--- reserved
DB 1101 1011 1111 ——-- reserved
DC 1101 1100 MODO00 OR/M (disp-lo),(disp-hi) FADD long-real
DC 1101 1100 MODO00 1R/M (disp-lo),(disp-hi) FMUL long-real
DC 1101 1100 MODO01 OR/M (disp-lo),(disp-hi) FCOM long-real
DC 1101 1100 MODO01 1R/M (disp-lo),(disp-hi) FCOMP long-real
DC 1101 1100 MOD10 OR/M (disp-lo),(disp-hi) FSUB long-real
DC 1101 1100 MOD10 1R/M (disp-lo),(disp-hi) FSUBR long-real
DC 1101 1100 MOD11 OR/M (disp-lo),(disp-hi) FDIV long-real
DC 1101 1100 MOD11 1R/M (disp-lo),(disp-hi) FDIVR long-real
DC 1101 1100 1100 OREG FADD ST(i),ST
DC 1101 1100 1100 1REG FMUL ST(i),ST
DC 1101 1100 1101 OREG *(2)

A-3

122164-001

intel”

MACHINE INSTRUCTION ENCODING AND DECODING

Table A-2. Machine Instruction Decoding Guide (Cont’d.)

1st Byte ASM286 Instructi
2nd Byte Bytes 3, 4 nstruction

Hex Binary y y Format
DC 1101 1100 1101 1REG *3)
DC 1101 1100 1110 OREG FSUB ST(i),ST
DC 1101 1100 1110 1REG FSUBR ST(i),ST
DC 1101 1100 1111 OREG FDIV ST(i),ST
DC 1101 1100 1111 1REG FDIVR ST(i),ST
DD 1101 1101 MOD00 OR/M (disp-lo),(disp-hi) FLD long-real
DD 1101 1101 MODO00 1R/M reserved
DD 1101 1101 MODO01 OR/M (disp-lo),(disp-hi) FST long-real
DD 1101 1101 MODO01 1R/M (disp-lo),(disp-hi) FSTP long-real
DD 1101 1101 MOD10 OR/M (disp-lo),(disp-hi) FRSTOR 94-bytes
DD 1101 1101 MOD10 1R/M (disp-lo),(disp-hi) reserved
DD 1101 1101 MOD11 OR/M (disp-lo),(disp-hi) FSAVE 94-bytes
DD 1101 1101 MOD11 1R/M (disp-lo),(disp-hi) FSTSW 2-bytes
DD 1101 1101 1100 OREG FFREE ST(j)
DD 1101 1101 1100 1REG *(4)
DD 1101 1101 1101 OREG FST ST(i)
DD 1101 1101 1101 1REG FSTP ST(i)
DD 1101 1101 111- ———- reserved
DE 1101 1110 MOD00 OR/M (disp-lo),(disp-hi) FIADD word-integer
DE 1101 1110 MOD00 1R/M (disp-lo),(disp-hi) FIMUL word-integer
DE 1101 1110 MODO01 OR/M (disp-lo),(disp-hi) FICOM word-integer
DE 1101 1110 MODO01 1R/M (disp-lo),(disp-hi) FICOMP word-integer
DE 1101 1110 MOD10 OR/M (disp-lo),(disp-hi) FISUB word-integer
DE 1101 1110 MOD10 1R/M (disp-lo),(disp-hi) FISUBR word-integer
DE 1101 1110 MOD11 OR/M (disp-lo),(disp-hi) FIDIV word-integer
DE 1101 1110 MOD11 1R/M (disp-lo),(disp-hi) FIDIVR word-integer
DE 1101 1110 1100 OREG FADDP ST(i),ST
DE 1101 1110 1100 1REG FMULP ST(i),ST
DE 1101 1110 1101 0--- *(5)
DE 1101 1110 1101 1000 reserved
DE 1101 1110 1101 1001 FCOMPP
DE 1101 1110 1101 101- reserved
DE 1101 1110 1101 11-- reserved
DE 1101 1110 1110 OREG FSUBP ST(i),ST
DE 1101 1110 1110 1REG FSUBRP ST(i),ST
DE 1101 1110 1111 OREG FDIVP ST(i),ST
DE 1101 1110 1111 1REG FDIVRP ST(i),ST
DF 1101 1111 MODO00 OR/M (disp-lo),(disp-hi) FILD word-integer
DF 1101 1111 MOD00 1R/M (disp-lo),(disp-hi) reserved
DF 1101 1111 MODO01 OR/M (disp-lo),(disp-hi) FIST word-integer
DF 1101 1111 MODO01 1R/M (disp-lo),(disp-hi) FISTP word-integer
DF 1101 1111 MOD10 OR/M (disp-lo),(disp-hi) FBLD packed-decimal
DF 1101 1111 MOD10 1R/M (disp-lo),(disp-hi) FILD long-integer
DF 1101 1111 MOD11 OR/M (disp-lo),(disp-hi) FBSTP packed-decimal
DF 1101 1111 MOD11 1R/M (disp-lo),(disp-hi) FISTP long-integer
DF 1101 1111 1100 OREG *(6)
DF 1101 1111 1100 1REG *(7)
DF 1101 1111 1101 OREG *(8)
DF 1101 1111 1101 1REG *9)
DF 1101 1111 1110 000 FSTSW AX
DF 1101 1111 1111 XXX reserved

A-4

122164-001

s ®
mtel MACHINE INSTRUCTION ENCODING AND DECODING

NOTE:

* The marked encodings are not generated by the language translators. If, however, the 80287 encounters
one of these encodings in the instruction stream, it will execute it as follows:

(1) FSTP ST(i)

(2) FCOM ST(j)

(3) FCOMP ST(i)

(4) FXCH ST(j)

(5) FCOMP ST(i)

(6) FFREE ST(i) and pop stack
(7) FXCH ST(j)

(8) FSTP ST(i)

(9) FSTP ST(i)

A-5 122164-001

Appendix B
Compatibility Between
The 80287 NPX And The 8087

APPENDIX B
COMPATIBILITY BETWEEN
THE 80287 NPX AND THE 8087

The iAPX 286/20 operating in Real-Address mode will execute iAPX 86/20 programs without major
modification. However, because of differences in the handling of numeric exceptions by the 80287
NPX and the 8087 NPX, exception-handling routines may need to be changed.

This appendix summarizes the differences between the 80287 NPX and the 8087 NPX, and provides
details showing how iAPX 86/20 programs can be ported to the iAPX 286/20.

1.

The NPX signals exceptions through a dedicated ERROR line to the 80286. The NPX error
signal does not pass through an interrupt controller (the 8087 INT signal does). Therefore, any
interrupt-controller-oriented instructions in numeric exception handlers for the iAPX 86/20 should
be deleted.

The 8087 instructions FENI/FNENI and FDISI/FNDISI perform no useful function in the 80287.
If the 80287 encounters one of these opcodes in its instruction stream, the instruction will effec-
tively be ignored—none of the 80287 internal states will be updated. While iAPX 86/20 code
containing these instructions may be executed on the iAPX 286/20, it is unlikely that the excep-
tion-handling routines containing these instructions will be completely portable to the 80287.

Interrupt vector 16 must point to the numeric exception handling routine.

4. The ESC instruction address saved in the 80287 includes any leading prefixes before the ESC

opcode. The corresponding address saved in the 8087 does not include leading prefixes.

In Protected-Address mode, the format of the 80287’s saved instruction and address pointers is
different than for the 8087. The instruction opcode is not saved in Protected mode—exception
handlers will have to retrieve the opcode from memory if needed.

Interrupt 7 will occur in the 80286 when executing ESC instructions with either TS (task switched)
or EM (emulation) of the 80286 MSW set (TS=1 or EM=1). If TS is set, then a WAIT instruc-
tion will also cause interrupt 7. An exception handler should be included in iAPX 286/20 code to
handle these situations.

Interrupt 9 will occur if the second or subsequent words of a floating-point operand fall outside a
segment’s size. Interrupt 13 will occur if the starting address of a numeric operand falls outside a
segment’s size. An exception handler should be included in iAPX 286/20 code to report these
programming errors.

Except for the processor control instructions, all of the 80287 numeric instructions are automati-
cally synchronized by the 80286 CPU—the 80286 automatically tests the BUSY line from the
80287 to ensure that the 80287 has completed its previous instruction before executing the next
ESC instruction. No explicit WAIT instructions are required to assure this synchronization. For
the 8087 used with iAPX 86 and iAPX 88 processors, explicit WAITs are required before each
numeric instruction to ensure synchronization. Although iAPX 86/20 programs having explicit
WALIT instructions will execute perfectly on the iAPX 286/20 without reassembly, these WAIT
instructions are unnecessary.

. Since the 80287 does not require WAIT instructions before each numeric instruction, the ASM286

assembler does not automatically generate these WAIT instructions. The ASM86 assembler,
however, automatically precedes every ESC instruction with a WAIT instruction. Although numeric
routines generated using the ASM86 assembler will generally execute correctly on the iAPX 286/
20, reassembly using ASM286 may result in a more compact code image.

The processor control instructions for the 80287 may be coded using either a WAIT or No-WAIT
form of mnemonic. The WAIT forms of these instructions cause ASM286 to precede the ESC
instruction with a CPU WAIT instruction, in the identical manner as does ASM86.

B-1 122164-001

intal

COMPATIBILITY BETWEEN THE 80287 NPX AND THE 8087

10.

A recommended way to detect the presence of an 80287 in an iAPX 286 system (or an 8087 in an
iAPX 86 system) is shown below. It assumes that the sytem hardware causes the data bus to be
high if no 80287 is present to drive the data lines during the FSTSW (Store 80287 Status Word)

instruction.
FND_287: FNINIT
FSTSTHW
Mov
OR
J2Z

STAT

AX,STAT
AL, AL
60T_287

H No 80287 Present

SMSHW
OR

LMSW

JMP

.
1

AX
AX,0004H

AX

CONTINUE

H 80287 is5 present in

GOT_287: SMSHW
OR
LMSW

3

H Continue .

CONTINUE:

AX
AX,0002H
AX

.
1

.
1

.
1

initialize numeric processor.
store status word into location
STAT.

Zero Flag reflects result of OR.
Z2ero in AL means 80287 is
present.

set EM bit in Machine Status
Word.

to enable software emulation of
287.

system

set MP bit in Machine Status Word
to permit normal 80287 operation

and off we go

An 80286/80287 design must place a pullup resistor on one of the low eight data bus bits of the
80286 to be sure it is read as a high when no 80287 is present.

B-2 122164-001

Appendix
Implementing The
IEEE P754 Standard

APPENDIX C
IMPLEMENTING THE IEEE P754 STANDARD

The iAPX 286/20 computing system, containing the 80287 NPX and standard support library software,
provides an implementation of the IEEE “A Proposed Standard for Binary Floating-Point Arithmetic,”
Draft 10.0, Task P754, of December 2, 1982. The 80287 Support Library, described in 80287 Support
Library Reference Manual, Order Number 122129, is an example of such a support library.

This appendix describes the relationship between the 80287 NPX and the IEEE Standard. Where the
Standard has options, Intel’s choices in implementing the 80287 are described. Where portions of the
Standard are implemented through software, this appendix indicates which modules of the 80287
Support Library implement the Standard. Where special software in addition to the Support Library
may be required by your application, this appendix indicates how to write this software.

This appendix contains many terms with precise technical meanings, specified in the 754 Standard.
Where these terms are used, they have been capitalized to emphasize the precision of their meanings.
The Glossary provides the definitions for all capitalized phrases in this appendix.

OPTIONS IMPLEMENTED IN THE 80287

The 80287 SHORT_REAL and LONG_REAL formats conform precisely to the Standard’s Single
and Double Floating-Point Numbers, respectively. The 80287 TEMP_REAL format is the same as the
Standard’s Double Extended format. The Standard allows a choice of Bias in representing the exponent;
the 80287 uses the Bias 16383 decimal.

For the Double Extended format, the Standard contains an option for the meaning of the minimum
exponent combined with a nonzero significand. The Bias for this special case can be either 16383, as
in all the other cases, or 16382, making the smallest exponent equivalent to the second-smallest exponent.
The 80287 uses the Bias 16382 for this case. This allows the 80287 to distinguish between Denormal
numbers (integer part is zero, fraction is nonzero, Biased exponent is 0) and Unnormal numbers of the
same value (same as the denormal except the Biased Exponent is 1).

The Standard allows flexibility in specifying which NaNs are trapping and which are nontrapping. The
EH287.LIB module of the 80287 Support Library provides a software implementation of nontrapping
NaNs, and defines one distinction between trapping and nontrapping NaNs: If the most significant bit
of the fractional part of a NaN is 1, the NaN is nontrapping. If it is 0, the NaN is trapping.

When a masked Invalid Operation error involves two NaN inputs, the Standard allows flexibility in
choosing which NaN is output. The 80287 selects the NaN whose absolute value is greatest.

AREAS OF THE STANDARD IMPLEMENTED IN SOFTWARE

There are five areas of the Standard that are not implemented directly in the 80287 hardware; these
areas are instead implemented in software as part of the 80287 Support Library.

1. The Standard requires that a Normalizing Mode be provided, in which any nonnormal operands
to functions are automatically normalized before the function is performed. The NPX provides a
“Denormal operand” exception for this case, allowing the exception handler the opportunity to
perform the normalization specified by the Standard. The Denormal operand exception handler

C-1 122164-001

ntel® IMPLEMENTING THE IEEE P754 STANDARD

provided by EH287.LIB implements the Standard’s Normalizing Mode completely for Single- and
Double-precision arguments. Normalizing mode for Double Extended operands is implemented in
EH287.LIB with one non-Standard feature, discussed in the next section.

The Standard specifies that in comparing two operands whose relationship is “unordered,” the
equality test yield an answer of FALSE, with no errors or exceptions. The 80287 FCOM and
FTST instructions themselves issue an Invalid Operation exception in this case. The error handler
EH287.LIB filters out this Invalid Operation error using the following convention: Whenever an
FCOM or FTST instruction is followed by a MOV AX,AX instruction (8BCO Hex), and neither
argument is a trapping NaN, the error handler will assume that a Standard equality comparison
was intended, and return the correct answer with the Invalid Operation exception flag erased.
Note that the Invalid Operation exception must be unmasked for this action to occur.

The Standard requires that two kinds of NaN’s be provided: trapping and nontrapping. Nontrap-
ping NaNs will not cause further Invalid Operation errors when they occur as operands to calcu-
lations. The NPX hardware directly supports only trapping NaN’s; the EH287.LIB software
implements nontrapping NaNs by returning the correct answer with the Invalid Operation excep-
tion flag erased. Note that the Invalid Operation exception must be unmasked for this action to
occur.

The Standard requires that all functions that convert real numbers to integer formats automati-
cally normalize the inputs if necessary. The integer conversion functions contained in CEL287.LIB
fully meet the Standard in this respect; the 80287 FIST instruction alone does not perform this
normalization.

The Standard specifies the remainder function which is provided by mqerRMD in CEL287.LIB.
The 80287 FPREM instruction returns answers within a different range.

ADDITIONAL SOFTWARE TO MEET THE STANDARD

There are two cases in which additional software is required in conjunction with the 80287 Support
Library in order to meet the standard. The 80287 Support Library does not provide this software in
the interest of saving space and because the vast majority of applications will never encounter these
cases.

1.

When the Invalid Operation exception is masked, Nontrapping NaNs are not implemented fully.
Likewise, the Standard’s equality test for “unordered” operands is not implemented when the
Invalid Operation exception is masked. Programmers can simulate the Standard notion of a masked
Invalid Operation exception by unmasking the 80287 Invalid Operation exception, and providing
an Invalid Operation exception handler that supports nontrapping NaNs and the equality test, but
otherwise acts just as if the Invalid Operation exception were masked. The 80287 Support Library
Reference Manual contains examples for programming this handler in both ASM286 and
PL/M-286.

In Normalizing Mode, Denormal operands in the TEMP_REAL format are converted to 0 by
EH287.LIB, giving sharp Underflow to 0. The Standard specifies that the operation be performed
on the real numbers represented by the denormals, giving gradual underflow. To correctly perform
such arithmetic while in Normalizing Mode, programmers would have to normalize the operands
into a format identical to TEMP_REAL except for two extra exponent bits, then perform the
operation on those numbers. Thus, software must be written to handle the 17-bit exponent explicitly.

In designing the EH287.LIB, it was felt that it would be a disadvantage to most users to increase the
size of the Normalizing routine by the amount necessary to provide this expanded arithmetic. Because
the TEMP_REAL exponent field is so much larger than the LONG_REAL exponent field, it is
extremely unlikely that TEMP_REAL underflow will be encountered in most applications.

c-2 122164-001

Intel® IMPLEMENTING THE IEEE P754 STANDARD

If meeting the Standard is a more important criterion for your application than the choice between
Normalizing and warning modes, then you can select warning mode (Denormal operand exceptions
masked), which fully meets the Standard.

If you do wish to implement the Normalization of denormal operands in TEMP_REAL format using
extra exponent bits, the list below indicates some useful pointers about handling Denormal operand
exceptions:

1.

TEMP_REAL numbers are considered Denormal by the NPX whenever the Biased Exponent is
0 (minimum exponent). This is true even if the explicit integer bit of the significand is 1. Such
numbers can occur as the result of Underflow.

The 80287 FLD instruction can cause a Denormal Operand error if a number is being loaded
from memory. It will not cause this exception if the number is being loaded from elsewhere in the
80287 stack.

The 80287 FCOM and FTST instructions will cause a Denormal Operand exception for unnormal
operands as well as for denormal operands.

In cases where both the Denormal Operand and Invalid Operation exceptions occur, you will want
to know which is signalled first. When a comparison instruction operates between a nonexistent
stack element and a denormal number in 80286 memory, the D and I exceptions are issued simul-
taneously In all other situations, a Denormal Operand exception takes precedence over a nonstack
Invalid operation exception, while a stack Invalid Operation exception takes precedence over a
Denormal Operand exception.

Cc-3 122164-001

Appendix D
80287 80-Bit HMOS
Numeric Processor Extension

|nte| ADVANCE INFORMATION

80287
80-Bit HMOS
NUMERIC PROCESSOR EXTENSION
80287-3

8 High Performance 80-Bit Internal ® Protected Mode Operation Completely
Architecture Conforms to the iAPX 286 Memory

= Implements Proposed IEEE Floating man:ge_ment and Protection
Point Standard 754 echanisms

® Expands iAPX 286/10 Datatypes to = Directly Extends iAPX 286/10 Instruction
Include 32-, 64-, 80-Bit Floating Point, Set to Trigonometric, Logarithmic,
32-, 64-Bit Integers and 18-Digit BCD Exponential and Arithmetic Instructions
Operands for All Datatypes

= Object Code Compatible with 8087 m 8x80-Bit, Individually Addressable,

m Built-in Exception Handling Numeric Register Stack

m Operates in Both Real and Protected m Available in EXPRESS—Standard
Mode iAPX 286 Systems Temperature Range

The Intel® 80287 is a high performance numerics processor extension that extends the iAPX 286/10
architecture with floating point, extended integer and BCD data types. The iAPX 286/20 computing system
(80286 with 80287) fully conforms to the proposed IEEE Floating Point Standard. Using a numerics
oriented architecture, the 80287 adds over fifty mnemonics to the iAPX 286/20 instruction set, making the
iAPX 286/20 a complete solution for high performance numeric processing. The 80287 is implemented in
N-channel, depletion load, silicon gate technology (HMOS) and packaged in a 40-pin ceramic package.
The iAPX 286/20 is object code compatible with the iAPX 86/20 and iAPX 88/20.

UL
s1]4 40 [READY
s0(]2 397 ckm
BUS INTERFACE UNIT NUMERIC EXECUTION UNIT COD/INYA[: 3 % :] HLDA
I__ _____ T e — —— — — NC.[] 4 37 [0 cLk2se
| . r scnon | D15(}5 36 [PEACK
| | v e 357 Reser
EXPONENT P I D'3E 7 3‘ jups‘
| [Fonrmorwono | | p12[]s 33 [0 Nps2
STATUS WORD
I | s | | Vec s 320 cx
| | ¢ —1t I Vss [J10 80287 31[3J cmo1
neumstruction [wicocoot ARITHMETIC on C " 30f] vss
| 4 I voouE | 010 (]12 2911 cmpo
0415 {0818 I " " | Ne. (13 28] NPWR
| ot i
I) | os]1s 26 [ERROR
i «———L‘—‘ j | o7 16 25[7 BUSY
! | 4 ¥ 06 [(J17 24]7 PeREQ
; | ; o | 05 18 23[1 oo
N 15 4
| p ” | 04]19 221 o1
| I y| [mrestmene 7 | 0320 210 p2
status] 2
I CONTROL ; ‘:' I
A00RESS unit | o
L _ _ 1 = wmets = _J NOTE:

N.C. PINS MUST NOT BE CONNECTED.

Figure 1. 80287 Block Diagram Figure 2. 80287 Pin Configuration

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit
Patent Licenses are Implied. OCTOBER 1983

© INTEL CORPQRATION. 1983. ORDER NUMBER: 210920-002

D-1 122164-001

ntel’ 80287 ADVANGE INFORMATION

Table 1. 80287 Pin Description

Symbols Type Name and Function

CLK | Clock input: this clock provides the basic timing for internal 80287 opera-
tions. Special MOS level inputs are required. The 82284 or 8284A CLK
outputs are compatible to this input.

CKM | Clock Mode signal: indicates whether CLK input is to be divided by 3 or
used directly. A HIGH input will cause CLK to be used directly. This input
may be connected to V¢ or Vgg as appropriate. This input must be either
HIGH or LOW 20 CLK cycles before RESET goes LOW.

RESET | System Reset: causes the 80287 to immediately terminate its present ac-
tivity and enter a dormant state. RESET is required to be HIGH for more than
4 80287 CLK cycles. For proper initialization the HIGH-LOW transition must
occur no sooner than 50 us after Voo and CLK meet their D.C. and A.C.
specifications.

D15-DO 110 Data: 16-bit bidirectional data bus. Inputs to these pins may be applied
asynchronous to the 80287 clock.

BUSY (0] Busy status: asserted by the 80287 to indicate that it is currently executing
a command.

ERROR (0] Error status: reflects the ES bit of the status word. This signal indicates

that an unmasked error condition exists.

PEREQ (o} Processor Extension Data Channel operand transfer request: a HIGH on
this output indicates that the 80287 is ready to transfer data. PEREQ will be
disabled upon assertion of PEACK or upon actual data transfer, whichever
occurs first, if no more transfers are required.

PEACK | Processor Extension Data Channel operand transfer ACKnowledge: ack-
nowledges that the request signal (PEREQ) has been recognized. Will
cause the request (PEREQ) to be withdrawn in case there are no more
transfers required. PEACK may be asynchronous to the 80287 clock.

NPRD | Numeric Processor Read: Enables transfer of data from the 80287. This
input may be asynchronous to the 80287 clock.

NPWR | Numeric Processor Write: Enables transfer of data to the 80287. This input
may be asynchronous to the 80287 clock.

NPS1, NPS2 | Numeric Processor Selects: indicate the CPU is performing an ESCAPE instruc-
tion. Concurrent assertion of these signals (i.e., NPST is LOW and NPS2 is
HIGH) enables the 80287 to perform floating point instructions. No data trans-
fers involving the 80287 will occur unless the device is selected via these
lines. These inputs may be asynchronous to the 80287 clock.

CMD1, CMDO | Command lines: These, along with select inputs, allow the CPU to direct the
operation of the 80287.
These inputs may be asynchronous to the 80287 clock.

D-2 122164-001

ntel

80287

ADVANGE INFORMATION

Table 1. 80287 Pin Description (cont.)

Symbols Type Name and Function

CLK286 | CPU Clock: This input provides a sampling edge for the 80287 inputs ST, S0,
COD/INTA, READY, and HLDA. It must be connected to the 80286 CLK input.

S1,50 | Status: These inputs must be connected to the corresponding 80286 pins.

COD/INTA

HLDA | Hold Acknowledge: This input informs the 80287 when the 80286 controls
the local bus. It must be connected to the 80286 HLDA output.

READY | Ready: The end of abus cycle is signaled by this input. It must be connected
to the 80286 READY input.

Vss | System ground, both pins must be connected to ground.

Vee | +5V supply

FUNCTIONAL DESCRIPTION

The 80287 Numeric Processor Extension (NPX)
provides arithmetic instructions for a variety of
numeric data types in iAPX 286/20 systems. It also
executes numerous built-in transcendental func-
tions (e.g., tangent and log functions). The 80287
executes instructions in parallel with a 80286. It

effectively extends the register and instruction set
of an iAPX 286/10 system for existing iAPX 286
datatypes and adds several new data types as well.
Figure 3 presents the program visible register
model of the iAPX 286/20. Essentially, the 80287
can be treated as an additional resource or an
extension to the iAPX 286/10 that can be used as a
single unified system, the iAPX 286/20.

80287
80286 | STACK: TAG FIELD
15 FILE: 0 79 78 64 63 0 1 0
AX ' R1 | SIGN EXPONENT SIGNIFICAND
BX ‘ R2
cx : R3
DX | e
St RS
DI : Ré
BP | R7
sP I R8
15 l"'o" ? 15 0
P ' CONTROL REGISTER
FLAGS I STATUS REGISTER
L _ TAG WORD
—_———-
cs 15 9 | |- INSTRUCTIONPOINTER]
DS !
| |- DATAPOINTER —
ES |
ss |
Figure 3. iAPX 286/20 Architecture
D-3 122164-001

ntel

80287

ADVANCE INFORMATION

The 80287 has two operating modes similar to the
two modes of the 80286. When reset, 80287 is in
the real address mode. It can be placed in the
protected virtual address mode by executing the
SETPM ESC instruction. The 80287 cannot be
switched back to the real address mode except by
reset. In the real address mode, the iAPX 286/20 is
completely software compatible with iAPX 86/20,
88/20.

Once in protected mode, all references to memory
for numerics data or status information, obey the
iAPX 286 memory management and protection
rules-giving a fully protected extension of the
80286 CPU. In the protected mode, iAPX 286/20
numerics software is also completely compatible
with iAPX 86/20 and iAPX 88/20.

SYSTEM CONFIGURATION

As a processor extension to an 80286, the 80287
can be connected to the CPU as shown in Figure 4.
The data channel control signals (PEREQ,
PEACK), the BUSY signal and the NPRD, NPWR
signals, allow the NPX to receive instructions and
data from the CPU. When in the protected mode, all
information received by the NPX is validated by the
80286 memory management and protection unit.
Once started, the 80287 can process in parallel
with and independent of the host CPU. When the
NPX detects an error or exception, it will indicate
this to the CPU by asserting the ERROR signal.

The NPX uses the processor extension request and
acknowledge pins of the 80286 CPU to implement
data transfers with memory under the protection
model of the CPU. The full virtual and physical
address space of the 80286 is available. Data for
the 80287 in memory is addressed and represented
in the same manner as for an 8087.

The 80287 can operate either directly from the CPU
clock or with a dedicated clock. For operation with
the CPU clock (CKM=0), the 80287 works at one-
third the frequency of the system clock (i.e., for an
8 MHz 80286, the 16 MHz system clock is divided
aown to 5.3 MHz). The 80287 provides a capability
to internally divide the CPU clock by three to pro-
duce the required internal clock (33% duty cycle).
To use a higher performance 80287 (8 MHz), an
8284A clock driver and appropriate crystal may be
used to directly drive the 80287 with a 1/3 duty
cycle clock on the CLK input (CKM=1).

HARDWARE INTERFACE

Communication of instructions and data operands
between the 80286 and 80287 is handled by the
CMDO, CMD1, NPST, NPS2, NPRD, and NPWR sig-
nals. I/0 port addresses 00F8H, 00FAH, and 00FCH
are used by the 80286 for this communication. When
any of these addresses are used, the NPST input
must be LOW and NPS2 input HIGH. The TORC and
TOWC outputs of the 82288 identify /0 space trans-
fers (see Figure 4). CMDO should be connected to
latched 80286 A1 and CMD1 should be connected to
latched 80286 A2. The 51, 50, COD/INTAREADY,
HLDA, and CLK pins of the 80286 are connected to
the same named pins on the 80287.

1/0 ports O0F8H to OOFFH are reserved for the
80286/80287 interface. To guarantee correct oper-
ation of the 80287, programs must not perform any
I/0 operations to these ports.

The PEREQ, PEACK, BUSY, and ERROR signals of
the 80287 are connected to the same-named 80286
input. The data pins of the 80287 should be directly
connected to the 80286 data bus. Note that all bus
drivers connected to the 80286 local bus must be
inhibited when the 80286 reads from the 80287.
The use of COD/INTA and M/IO in the decoder
prevents INTA bus cycles from disabling the data
transceivers.

PROGRAMMING INTERFACE

Table 2 lists the seven data types the 80287 sup-
ports and presents the format for each type. These
values are stored in memory with the least signifi-
cant digits at the lowest memory address. Pro-
grams retrieve these values by generating the
lowest address. All values should start at even
addresses for maximum system performance.

Internally the 80287 holds all numbers in the tem-
porary real format. Load instructions automati-
cally convert operands represented in memory as
16-, 32-, or 64-bit integers, 32- or 64-bit floating
point number or 18-digit packed BCD numbers
into temporary real format. Store instructions per-
form the reverse type conversion.

80287 computations use the processor’s register
stack. These eight 80-bit registers provide the
equivalent capacity of 40 16-bit registers. The
80287 register set can be accessed as a stack, with

D-4 122164-001

ntel’ 80287 ADVANGE INFORMATION
Vee
ij 20 KQ
<
RESET Vee .
READY
e AD
O | s2284 cLK = 20K, > 20Ko
- S
_ ADDRESS
S0 |4 =
| 2 3252 Zl% q|=
Ay5-Ag
RESET
READY READY
CLK CLK
s1 S1 80286
S0 S0 Dys5-Do
Mo M/i0
ERROR PEREQ
82288 | BUSY PEACK —] l
COD/INTA HLDA A2 A1 AO E1
5 8205
DEN £ &
_ I |
DT/R DD D
___ _ALE CLK
jOWC __iORC | Q Q Q
COD/INTA_HLDA [
RESET PEACK
READY PEREQ
CLK286
st D45-Do DATA
S0 80287
NPRD NPS2
NPWR NPS1
1 {ERROR CMD1
L{BUSY cMmDo
CLK _CKM
/
/
Vee ——d

Figure 4. iAPX 286/20 System Configuration

D-5

122164-001

intel

80287

ADVANGE INFORMATION

Table 2. 80287 Datatype Representation in Memory

Dat Most Significant Byte HIGHEST ADDRESSED BYTE
E ata Range Precision
ormats 7 0|7 0(7 0[7 o|7 0|7 0|7 0|7 0|7 0|7 O
Word Integer 10* 16 Bits E ggvnv?ésmmsm)
15 0
Short Integer | 10° 32 Bits |° MAGNITUDE] CoMPLEMENT)
31 0
Long Integer 10'® 64 Bits SJ MAGNITUDE Jgng?ésmmzun
63 0
MAGNITUDE
Packed BCD 10'8 18 Digits s| X Id.;ld.bld‘s‘dmld,“d‘gld”ldmldgld31d7IdﬁldsldLLdjldzld\ldol
79 72 0
Short Real | 103 | 24Bits |[o] chiiiRr | siowrican
31 23R _ N 0
Long Real 101308 53 Bits Sr E)?l!‘AOSr\IEEDNT I SIGNIFICAND I
63 528 _ L 0
Temporary Real | 1074932 64 Bits sl e ASED I’,‘l SIGNIFICAND J
79 64 630 0

NOTES:

(1) S =Sign bit (0 = positive, 1 = negative)

(2) d, =Decimal digit (two per byte)

(3) X =Bits have no significance; 8087 ignores when load-
ing, zeros when storing.

(4) 4 =Position of implicit binary point

(5) I=Integer bit of significand; stored in temporary real,
implicit in short and long real

instructions operating on the top one or two stack
elements, or as a fixed register set, with instruc-
tions operating on explicitly designated registers.

Table 6 lists the 80287’s instructions by class. No
special programming tools are necessary to use
the 80287 since all new instructions and data types
are directly supported by the iAPX 286 assembler

D-6

(6) Exponent Bias (normalized values):
Short Real: 127 (7FH)
Long Real: 1023 (3FFH)
Temporary Real: 16383 (3FFFH)

(7) Packed BCD: (-1)S(D,7. ..Dg)

(8) Real: (—1)5@5®4S)(Fy Fy..)

and appropriate high level languages. All iAPX
86/88 development tools which support the 8087
can also be used to develop software for the iAPX
286/20 in real address mode.

Table 3 gives the execution times of some typical
numeric instructions.

122164-001 "

intel’

80287

ADVANGCE INFORMATION

Table 3. Execution Time for Selected 80287 Instructions

Approximate Execution
Time (us)
Floating Point Instruction 80287
(5 MHz Operation)

Add/Subtract 14/18
Multiply (single precision) 19
Multiply (extended precision) 27
Divide 39
Compare 9
Load (double precision) 10
Store (doqble precision) 21
Square Root 36
Tangent 90
Exponentiation 100

SOFTWARE INTERFACE

The iAPX 286/20 is programmed as a single pro-
cessor. All communication between the 80286 and
the 80287 is transparent to software. The CPU au-
tomatically controls the 80287 whenever a numeric
instruction is executed. All memory addressing
modes, physical memory, and virtual memory of
the CPU are available for use by the NPX.

Since the NPX operates in parallel with the CPU,
any errors detécted by the NPX may be reported
after the CPU has executed the ESCAPE instruc-
tion which caused it. To allow identification of the
failing numeric instruction, the NPX contains two
pointer registers which identify the address of the
failing numeric instruction and the numeric
memory operand if appropriate for the instruction
encountering this error.

INTERRUPT DESCRIPTION

Several interrupts of the iAPX 286 are used to
report exceptional conditions while executing
numeric programs in either real or protected
mode. The interrupts and their functions are
shown in Table 4.

PROCESSOR ARCHITECTURE

As shown in Figure 1, the NPX is internally divided
into two processing elements, the bus interface
unit (BIU) and the numeric execution unit (NEU).
The NEU executes all numeric instructions, while
the BIU receives and decodes instructions, re-
quests operand transfers to and from memory and
executes processor control instructions. The two
units are able to operate independently of one
another allowing the BIU to maintain asynchro-
nous communication with the CPU while the NEU
is busy processing a numeric instruction.

BUS INTERFACE UNIT

The BIU decodes the ESC instruction executed by the
CPU. If the ESC code defines a math instruction, the
BIU transmits the formatted instruction to the NEU. If
the ESC code defines an administrative instruction,
the BIU executes it independently of the NEU. The
parallel operation of the NPX with the CPU is normally
transparant to the user. The BIU generates the BUSY
and éRRGR signals for 80826/80287 processor syn-
chronization and error notification, respectively.

The 80287 executes a single numeric instruction at
a time. When executing most ESC instructions, the

D-7 122164-001

ntel

80287 ADVANCE INFORMATION

Table 4. 80286 Interrupt Vectors Reserved for NPX

Interrupt Number

Interrupt Function

7

An ESC instruction was encountered when EM or TS of the 80286 MSW was set.
EM=1 indicates that software emulation of the instruction is required. When TS is
set, either an ESC or WAIT instruction will cause interrupt 7. This indicates that the
current NPX context may not belong to the current task.

The second or subsequent words of a numeric operand in memory exceeded a
segment’s limit. This interrupt occurs after executing an ESC instruction. The saved
return address will not point at the numeric instruction causing this interrupt. After
processing the addressing error, the iAPX 286 program can be restarted at the
return address with IRET. The address of the failing numeric instruction and
numeric operand are saved in the 80287. An interrupt handler for this interruptmust
execute FNINIT before any other ESC or WAIT instruction.

13

The starting address of a numeric operand is not in the segment’s limit. The return
address will point at the ESC instruction,including prefixes, causing this error. The
80287 has not executed this-instruction. The instruction and data address in 80287
refer to a previous, correctly executed, instruction.

16

The previous numeric instruction caused an unmasked numeric error. The address
of the faulty numeric instruction or numeric data operand is stored in the 80287.
Only ESC or WAIT instructions can cause this interrupt. The 80286 return address
will point at a WAIT or ESC instruction, including prefixes, which may be restarted

after clearing the error condition in the NPX.

80286 tests the BUSY pin and waits until the 80287
indicates that it is not busy before initiating the com-
mand. Once initiated, the 80286 continues program
execution while the 80287 executes the ESC instruc-
tion. In iAPX 86/20 systems, this synchronization is
achieved by placing a WAIT instruction before an ESC
instruction. For most ESC instructions, the iAPX 286/20
does not require a WAIT instruction before the ESC
opcode. However, the iAPX 286/20 will operate cor-
rectly with these WAIT instructions. In all cases, a WAIT
or ESC instruction should be inserted after any 80287
store to memory (except FSTSW and FSTCW) or load
from memory (except FLDENV or FRSTOR) before the
80286 reads or changes the value to be sure the
numeric value has already been written or read by
the NPX.

Data transfers between memory and the 80287,
when needed, are controlled by the PEREQ
PEACK, NPRD, NPWR, NPS1, NPS2 signals. The
80286 does the actual data transfer with memory
through its processor extension data channel.
Numeric data transfers with memory performed by
the 80286 use the same timing as any other bus

D-8

cycle. Control signals for the 80287 are generated
by the 80826 as shown in Figure 4, and meet the
timing requirements shown in the AC require-
ments section.

NUMERIC EXECUTION UNIT

The NEU executes all instructions that involve the
register stack; these include arithmetic, logical, tran-
scendental, constant and data transfer instructions.
The data path in the NEU is 84 bits wide (68 signifi-
cand bits, 15 exponent bits and a sign bit) which
allows internal operand transfers to be performed at
very high speeds.

When the NEU begins executing an instruction, it
activates the BIU BUSY signal. This signal is used
in conjunction with the CPU WAIT instruction or
automatically with most of the ESC instructions to
synchronize both processors.

REGISTER SET

The 80287 register set is shown in Figure 5. Each of
the eight data registers in the 80287’s register stack

122164-001

ntel’ 80287 ADVANGE INFORMATION

DATA FIELD
79 78 64 63

TAG FIELD
0 1 0

SIGN EXPONENT

SIGNIFICAND

CONTROL REGISTER

STATUS REGISTER

TAG WORD

— INSTRUCTION POINTER —

— DATAPOINTER —

Figure 5. 80287 Register Set

is 80 bits wide and is divided into “fields” corre-
sponding to the NPX's temporary real data type.

At a given point in time the ST field in the status
word identifies the current top-of-stack register. A
“push” operation decrements ST by 1 and loads a
value into the new top register. A “‘pop’’ operation
stores the value from the current top register and
then increments ST by 1. Like 80286 stacks in
memory, the 80287 register stack grows ‘‘down”
toward lower-addressed registers.

Instructions may address the data registers either
implicitly or explicitly. Many instructions operate on
the register at the Stack Top. These instructions
implicitly address the register pointed by the ST.
Other instructions allow the programmer to explic-
itly specify the register which is to be used. This
explicit register addressing is also ‘“‘top-relative.”

Bits 14-12ofthe status word pointstothe 80287 regis-
ter that is the current top-of-stack (ST) as described
above. Figure 6 shows the six error flags in bits
5-0 of the status word. Bits 5-0 are set to indicate
that the NEU has detected an exception while
executing an instruction. The section on exception
handling explains how they are set and used.

The instructions FSTSW, FSTSW AX, FSTENV, and
FSAVE which store the status word are executed
exclusively by the BIU and do not set the busy bit
themselves or require the Busy bit be cleared in
order to be executed.

The four numeric condition code bits (Cy-C3) are
similar to the flags in a CPU: instructions that perform
arithmetic operations update these bits to reflect the
outcome of NPX operations. The effect of these
instructions on the condition code bits is summarized
in Tables 5a and 5b.

Bits 14-12 of the status word point tothe 80287 regis-
ter that is the current top-of-stack (ST) as described
above. Figure 6 shows the six error flags in bits 5-0
of the status word. Bits 5-0 are set to indicate that
the NEU has detected an exception while executing
an instruction. The section on exception handling
explains how they are set and used.

Bit 7 is the error summary status bit. This bit is set if
any unmasked exception bit is set and cleared other-
wise. If this bit is set, the ERROR signal is asserted.

D-9 122164-001

g

80287

ADVANCE INFORMATION

15

0

8|c| st |c]c |co]es| x [re[uefoe|ze[oe] e

EXCEPTION FLAGS (1 = EXCEPTION HAS OCCURRED)

INVALID OPERATION*
DENORMALIZED OPERAND*
ZERO DIVIDE*

OVERFLOW*

UNDERFLOW*
PRECISION*

(RESERVED)
ERROR SUMMARY STATUS(1)

CONDITION CODE(2)

STACK TOP POINTER(3)
NEU BUSY

(3) ST VALUES
000 = REGISTER 0 IS TOP OF STACK
001 = REGISTER 1 IS TOP OF STACK

111 = REGISTER 7 IS TOP OF STACK

‘FOR DEFINITIONS, SEE THE SECTION ON EXCEPTION HANDLING

(1) ES IS SET IF ANY UNMASKED EXCEPTION BIT IS SET, CLEARED OTHERWISE.
(2) SEE TABLE 1-4 FOR CONDITION CODE INTERPRETATION.

Figure 6. 80287 Status Word

TAG WORD

The tag word marks the content of each register as
shown in Figure 7. The principal function of the tag
word is to optimize the NPX's performance. The eight
two-bit tags in the tag word can be used, however, to
interpret the contents of 80287 registers.

INSTRUCTION AND DATA POINTERS

The instruction and data pointers (See Figures 8a
and 8b) are provided for user-written error hand-
lers. Whenever the 80287 executes a new instruc-
tion, the BIU saves the instruction address, the
operand address (if present) and the instruction
opcode. 80287 instructions can store this data into
memory.

The instruction and data pointers appear in one of
two formats depending on the operating mode of
the 80287. In real mode, these values are the 20-bit
physical address and 11-bit opcode formatted like
the 8087. In protected mode, these values are the
32-bit virtual addresses used by the program

which executed an ESC instruction. The same
FLDENV/FSTENV/FSAVE/FRSTOR instructions as
those of the 8087 are used to transfer these values
between the 80287 registers and memory.

The saved instruction address in the 80287 will
point at any prefixes which preceded the instruc-
tion. This is different than in the 8087 which only
pointed at the ESCAPE instruction opcode.

CONTROL WORD

The NPX provides several processing options
which are selected by loading a word from memory
into the control word. Figure 9 shows the format
and encoding of fields in the control word.

The low order byte of this control word configures
the 80287 error and exception masking. Bits 5-0 of
the control word contain individual masks for each
of the six exceptions that the 80287 recognizes.
The high order byte of the control word configures
the 80287 operating mode including precision,

122164-001

ntel

80287

ADVANGE INFORMATION

Table 5a. Condition Code Interpretation

lns"l'r;:e"on Cs C Cq Co Interpretation
Compare, Test 0 0 X 0 ST > Source or 0 (FTST)
0 0 X 1 ST < Source or 0 (FTST)
1 0 X 0 ST = Source or 0 (FTST)
1 1 X 1 ST is not comparable
Remainder Qq 0 Qo Qo Complete reduction with
three low bits of quotient
(See Table 5b)
U 1 U U Incomplete Reduction
Examine 0 0 0 0 Valid, positive unnormalized
0 0 0 1 Invalid, positive, exponent =0
0 0 1 0 Valid, negative, unnormalized
0 0 1 1 Invalid, negative, exponent =0
0 1 0 0 Valid, positive, normalized
0 1 0 1 Infinity, positive
0 1 1 0 Valid, negative, normalized
0 1 1 1 Infinity, negative
1 0 0 0 Zero, positive
1 0 0 1 Empty
1 0 1 0 Zero, negative
1 0 1 1 Empty
1 1 0 0 Invalid, positive, exponent = 0
1 1 0 1 Empty
1 1 1 0 Invalid, negative, exponent = 0
1 1 1 1 Empty
NOTES:

1. ST = Top of stack

2. X = value is not affected by instruction

3. U = value is undefined following instruction
4. Qpn = Quotient bit n

Table 5b. Condition Code Interpretation after
FPREM Instruction As a Function of
Dividend Value

Dividend Range Q| Q1| Q
Dividend < 2 * Modulus C3 | Ci| Qo
Dividend < 4 * Modulus C3 | Q1| Q
Dividend = 4 * Modulus Q| Q| Q

NOTE:
1. Previous value of indicated bit, not affected by FPREM
instruction execution.

D-11

rounding, and infinity control. The precision con-
trol bits (bits 9-8) can be used to set the 80287
internal operating precision at less than the
default of temporary real (80-bit) precision. This
can be useful in providing compatibility with the
early generation arithmetic processors of smaller
precision than the 80287. The rounding control
bits (bits 11-10) provide for directed rounding and
true chop as well as the unbiased round to nearest
even mode specified in the IEEE standard. Control
over closure of the number space at infinity is also
provided (either affine closure: = «, or projective
closure: =, is treated as unsigned, may be
specified).

122164-001

ntel’ 80287 ADVANGE INFORMATION
15 0
TAG (7) TAG (6) TAG (5) TAG (4) TAG (3) TAG (2) TAG (1) TAG (0)
TAG VALUES:
NOTE: The index i of tag(i) is not top-relative. A program g? = ‘z”éuﬁlg
typically uses the “top” field of Status Word to deter- 10 = INVALID or INFINITY
mine which tag(i) field refers to logical top of stack. 11 = EMPTY

Figure 7. 80287 Tag Word

MEMORY OFFSET
15 0
CONTROL WORD +0
STATUS WORD +2
TAG WORD +4
IP OFFSET +6
CS SELECTOR +8
DATA OPERAND OFFSET +10
DATA OPERAND SELECTOR +12

Figure 8a. Protected Mode 80287 Instruction and Data Pointer Image in Memory

EXCEPTION HANDLING

The 80287 detects six different exception conditions
that can occur during instruction execution. Any or
all exceptions will cause the assertion of external
ERROR signal and ES bit of the Status Word if the
appropriate exception masks are not set.

The exceptions that the 80287 detects and the ‘default’
procedures that will be carried out if the exception is
masked, are as follows:

Invalid Operation: Stack overflow, stack underflow,
indeterminate form (0/0, co, — oo, etc) or the use of a
Non-Number (NAN) as an operand. An exponent value
of all ones and non-zero significand is reserved to
identify NANs. If this exception is masked, the 80287
default response is to generate a specific NAN called

INDEFINITE, or to propogate already existing NANs
as the calculation result.

Overflow: The result is too large in magnitude to
fit the specified format. The 80287 will generate an
encoding for infinity if this éxception is masked.

Zero Divisor: The divisor is zero while the divi-
dend is a non-infinite, non-zero number. Again, the
80287 will generate an encoding for infinity if this
exception is masked.

Underflow: The result is non-zero but too small in
magnitude to fit in the specified format. If this
exception is masked the 82087 will denormalize
(shift right) the fraction until the exponent is in
range. The process is called gradual underflow.

122164-001

nte|® 80287 ADVANGE INFORMATION
MEMORY
OFFSET
15 0
CONTROL WORD +0
STATUS WORD +2
TAG WORD +4
INSTRUCTION POINTER (15-0) +6
INSTRUCTION 0 INSTRUCTION 8
POINTER (19-16) OPCODE (10-0) +
DATA POINTER (15-0) +10
DATA POINTER
(19-16) 0 +12
15 12 11 0

Figure 8b. Real Mode 80287 Instruction and Data Pointer Image in Memory

ﬁ X xl lcl RC [PC I Xl X I"""IU""]°M]ZM]WJ";[i

"'PRECISION CONTROL ‘®)ROUNDING CONTROL
00 = 24 BITS (SHORT REAL) 00 = ROUND TO NEAREST OR EVEN
01 = RESERVED 01 = ROUND DOWN (TOWARD -)
10 =53 BITS (LONG REAL) 10 = ROUND UP (TOWARD + =)
11=64 BITS (TEMP REAL) 11 = CHOP (TRUNCATE TOWARD ZERO)

EXCEPTION MASKS (1=EXCEPTION IS MASKED)

INVALID OPERATION
DENORMALIZED OPERAND
ZERO DIVIDE
OVERFLOW
UNDERFLOW
PRECISION
(RESERVED)
(RESERVED)
PRECISION CONTROL "
ROUNDING CONTROL?
INFINITY CONTROL (0 = PROJECTIVE, 1 = AFFINE)
(RESERVED)

Figure 9. 80287 Control

Word

122164-001

ntel

80287

ADVANCE INFORMATION

Denormalized Operand: At least one of the
operands is denormalized; it has the smallest ex-
ponent but a non-zero significand. Normal pro-
cessing continues if this exception is masked off.

Inexact Result: The true result is not exactly repre-
sentable in the specified format, the result is rounded
according to the rounding mode, and this flag is set.
If this exception is masked, processing will simply
continue.

If the error is not masked, the corresponding error
bit and the error status bit (ES) in the control word
will be set, and the ERROR output signal will be
asserted. If the CPU attempts to execute another
ESC or WAIT instruction, exception 7 will occur.

The error condition must be resolved via an inter-
rupt service routine. The 80287 saves the address
of the floating point instruction causing the error
as well as the address of the lowest memory loca-
tion of any memory operand required by that
instruction.

iAPX 86/20 COMPATIBILITY:

iAPX 286/20 supports portability of iAPX 86/20
programs when it is in the real address mode.
However, because of differences in the numeric
error handing techniques, error handling routines
may need to be changed. The differences between
an iAPX 286/20 and iAPX 86/20 are:

1. The NPX error signal does not pass through an
interrupt controller (8087 INT signal does).

Therefore, any interrupt controller oriented in-
structions for the iAPX 86/20 may have to be
deleted.

2. Interrupt vector 16 must point at the numeric
error handler routine.

3. The saved floating point instruction address in
the 80287 includes any leading prefixes before
the ESCAPE opcode. The corresponding saved
address of the 8087 does not include leading
prefixes.

4. In protected mode, the format of the saved in-
struction and operand pointers is different than
for the 8087. The instruction opcode is not
saved—it must be read from memory if needed.

5. Interrupt 7 will occur when executing ESC in-
structions with either TS or EM of MSW=1.1f TS
of MSW=1 then WAIT will also cause interrupt
7. Aninterrupt handler should be added to han-
dle this situation.

6. Interrupt 9 will occur if the second or subse-
quent words of a floating point operand fall
outside a segment’s size. Interrupt 13 will occur
if the starting address of a numeric operand
falls outside a segment’s size. An interrupt
handler should be added to report these pro-
gramming errors.

In the protected mode, iAPX 86/20 application

code can be directly ported via recompilation if the
286 memory protection rules are not violated.

122164-001

ntel

80287

ADVANCE INFORMATION

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias .. 0°C to 70°C
Storage Temperature —65°C to +150°C
Voltage on Any Pin with

Respectto Ground -1.0to +7V
Power Dissipation 3.0 Watt

*NOTICE: Stresses above those listed under Ab-
solute Maximum Ratings may cause permanent
damage to the device. This is a stress rating only
and functional operation of the device at these or
any other conditions above those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS T, = 0°C to 70°C, V¢ = 5V, +/-5%

5 MHz
Symbol Parameter -3 Min -3 max Unit Test Conditions
Vi Input LOW Voltage -5 .8 Vv
Vi Input HIGH Voltage 2.0 Ve +.5 \Y
Vi Clock Input LOW Voltage
CKM=1: -5 .8 \
CKM=0: -5 .6 \
Vine Clock Input HIGH Voltage
CKM = 1: 2.0 Voo + 1 v
CKM=0: 3.8 Vee +1 \'
VoL Output LOW Voltage 45 v loo =3.0 mA
Vou Output HIGH Voltage 24 Y lon = -400 pA
I Input Leakage Current +10 wA OV =V = Ve
lLo Output Leakage Current +10 uA A5V < Vour = Ve
lec Power Supply Current 475 mA
Cin Input Capacitance 10 pF Fc=1MHz
Co Input/Output Capacitance 20 pF Fc=1MHz
(DO-D15)
Ceik CLK Capacitance 12 pF Fc=1MHz

122164-001

ntel

80287

ADVANCE INFORMATION

A.C. CHARACTERISTICS (To=0°C to 70°C, V¢ + 5V,=/-5%)

TIMING REQUIREMENTS
A.C. timings are referenced to 0.8V and 2.0V points on signals uniess otherwise noted.
5 MHz
Symbol Parameter -3 Min -3 max Unit Test Conditions
T CLK Period
ot CKM =1: 200 500 ns
CKM =0: 62.5 250 ns
T CLK LOW Time
ouen CKM = 1: 118 . ns | At0.8v
CKM=0: 15 230 ns At 0.6V
T CLK HIGH Time
eret CKM=1: 69 . ns | At20v
CKM=0: 20 235 ns At 3.8V
Tchichz | CLK Rise Time 10 ns 1.0V to3.5V if CKM =1.
TorocL: | CLK Fall Time 10 ns 3.5Vto 1.0Vif CKM=1.
TovwH Data Setup to NPWR Inactive 75 ns
TwHDX Data Hold from NPWR Inactive 30 ns
Twiwhs
TRLRH NPWR, NPRD Active Time 95 ns At 0.8V
TavRL Command Valid to NPWR or
TAVWL NPRD Active 0 ns
TMHRL Minimum Delay from PEREQ
Active to NPRD Active 130 ns
TkiLkH PEACK Active Time 85 ns At 0.8V
TKHKL PEACK Inactive Time 250 ns At 2.0V
TKHCH PEACK Inactive to prﬁ, m
Inactive 50 ns
TeHKL NPWR, NPRD Inactive to PEACK
Active -30 ns
Twhax, | Command Hold from NPWR,
ThHAX NPRD Inactive 30 ns
Tieet PEACK Active Setup to NPWR,
NPRD Active 50 ns
TocioL CLK286 Period 62.5 ns
T2CLCH CLK286 LOW Time 15 ns At 0.8V
TocHeL CLK286 HIGH Time 20 ns At 2.0V
Tosvel | SO. ST Setup Time to CLK286 225 ns
Tocish | SO, ST Hold Time from CLK286 0 ns

D-16

122164-001

|ntel® 80287 ADVANGE INFORMATION
A.C. CHARACTERISTICS, continued
TIMING REQUIREMENTS
5 MHz
Symbol Parameter -3 Min -3 max Unit Test Conditions
Tever COD/INTA Setup Time to CLK286 0 ns
TeleH COD/INTAHold TimefromCLK286 | 0 ns
TrveL READY Setup Time to CLK286 38.5 ns
TCLRH READY Hold Time from CLK286 25 ns
Thvel HLDA Setup Time to CLK286 0 ns
TeLnH HLDA Hold Time from CLK286 0 ns
Tvel NPWR, NPRD to CLK Setup Time | 70 ns NOTE 1
Teun NPWR, NPRD from CLK Hold Time | 45 ns NOTE 1
TrsoL RESET to CLK Setup Time 20 ns NOTE 1
Tclrs RESET from CLK Hold Time 20 ns NOTE 1
A.C. CHARACTERISTICS,
TIMING RESPONSES
5 MHz
Symbol Parameter -3 Min -3 max Unit Test Conditions
ThHQZ NPRD Inactive to Data Float 375 ns NOTE 2
TrLqv NPRD Active to Data Valid 60 ns NOTE 3
TieH ERROR Active to BUSY Inactive 100 . ns NOTE 4
Twey | NPWR Active to BUSY Active 100 ns | NOTE5S
Tkime PEACK Active to PEREQ Inactive 127 ns NOTE 6
Temol Command Inactive Time
Write-to-Write 95 ns At 2.0V
Read-to-Read 250 ns At 2.0V
Write-to-Read 105 ns At 2.0V
Read-to-Write 95 ns At 2.0V
Taugn | Data Hold from NPRD Inactive 5 ns NOTE 7
NOTES
1. Thisis an asynchronous input. This specification is given for testing purposes only, to assure recognition at a specific CLK edge.
2. Float condition occurs when output current is less than I 5 on DO-D15.
3. D0-D15 loading: CL = 100pF.
4. BUSY loading: CL = 100pF.
5. BUSY loading: CL = 100pF.
6. On'last data transfer of numeric instruction.
7. DO-D15 loading: CL = 100pF.

D-17

122164-001

intgl’

80287

ADVANCE INFORMATION

WAVEFORMS (cont.)
DATA TRANSFER TIMING (INITIATED BY 80286)
- N
CMDO CMD1
NPST,NPS2)Z VALID E(
X 7
| <——TRLRH——»{€¢—————TRHAX——
NPRD
TAVRL\ DATA
« T« TRHQZ—>| TRANSFER
—»| TRLQV |=— <«—TRHQH—»| FROM
80287
Do-D i DATA OUT |
U=e15 — N\ \ \ VALID
TAVWL
— TWLWH—— TWHAX >
NPWR \ /
N DATA
TOVWH | TWHDX TRANSFER
TO
s m 80287
Do-Ds, DATA MAY CHANGE DATA IN DATA MAY CHANGE
. VALID .
—»| TWLBN |=—
BUSY g
~

DATA CHANNELTIMING (INITIATED BY 80287)
-
MDO, =
ey X
i
0
o TAVWL TRHAX
TAvRL | > TwHax |
NPRD-NPWR \
K
<— TMHRL - TCLML >
PEREQ X
TKLCL—| |
- TKLML > —»| TKHCH |<— |<—TKHKL—>
))
PEACK h X / B
- 2 __.
-~ TKLKH————— >

122164-001

intel’ 80287 ADVANCE INFORMATION
WAVEFORMS (cont)
ERROR OUTPUT TIMING
BUSY
TILBH
ERROR
80286 STATUS TIMING
- Ts >| Te
|«——T2CLCL —
T2CLCH|w— T2CHCL
TCLSH—™ |<:-'rsv0|.-> TCLSH [=-TSVCL->
51-50
I
<TCIVCL> TCLCIH—> |=—
COD/INTA % VALID JW
TRVCL: [-— TRVCL—>| -
- TCLRH > |=TCLRH
TCLHH—»] |=— TCLHH—>
<-THVCL-> NOTE 2 |<»—THVCL->‘
NOTE 1
HLDA
D
f 1¢ |
NOTES:

1. This input transition occurs before Tg.
2. This input transition occurs after T¢.

122164-001

|ntel® 80287

WAVEFORMS

ADVANCE INFORMATION

(Reset, NPWR, NPRD are inputs asynchronous to CLK. Timing requirements on this page
are given for testing purposes only, to assure recognition at a specific CLK edge.)

CLK, RESET TIMING (CKM = 1)
| ‘1)1 | (I)z dl1 (1)2

CLK \

(IF CKM = 1)

Teun —>-le—> < Tiver

RESET

CLK, NPRD, NPWR TIMING (CKM = 1)

CLK \
(IFCKM =1)
. - <—T|v0|.

oo AL L/

CLK, RESET TIMING (CKM = 0)

PHASE INDETERMINATE
CLK

(IF CKM =0)

|«— Teum

R, " AN

NOTE: Reset must meet timing shown to guarantee known phase of internal —

3 circuit.

CLK, NPRD, NFWR TIMING (CKM = 0)
®,)

~N

CLK
(IF CKM = 0)

A NN l///}‘

D-20 122164-001

®
"te| 80287 ADVANGCE INFORMATION

Table 6. 80287 Extensions to the 80286 Instruction Set

Optional Clock Count Range
8,16 Bit 32 Bit | 32Bit | 64 Bit 16 Bit

Data Transfer Displacement Real | Integer | Real | Integer
FLD = LOAD ! MF = 00 01 10 1
Integer/Real Memory to ST©) | ESCAPE MF 1 | MOD 0 0 0 RM| TDisPT | 38-56 52-60 40-60 46-54
Long Integer Memory to ST(0) | ESCAPE 1 1 1 l MOD 1 0 1 RM| __ DISP_ | 60-68
Temporary Real Memory to ESCAPE 01 1] MOD 1 0 1 RM T -DI§P_ _‘, 53-65
ST(0) e 2T _
BCD Memory to ST(0) [;SCAPE 111 L MOD 1 0 0 RM DIspP : 290-310
ST(i) to ST(0) [ESCAPE 00 1 [11 0 0 0 ST(i) ! 17-22
FsT - STORE
ST(0) to Integer/Real Memory [ESCAPE MF 1 L MOD 0 1 0 RM] DISP : 84-90 82-92 96-104 80-90
ST(0) to ST(i) |7ESCAPE 1.0 1 [11 0 1 0 ST() l 15-22
FSTP = STORE AND POP I
ST(0) to Integer/Real Memory rESCAPE MF 1 L MOD 0 1 1 RM] DISP : 86-92 84-94 98-106 82-92
ST(0) to Long Integer Memory l ESCAPE 1 1 1 l MOD 1 1 1 RM] DISP : 94-105
ST(0) to Temporary Real I ESCAPE 0 1 1] MOD 1 1 1 RM] DISP : 52-58
mMmemory - T T TTrTmes
ST(0) to BCD Memory l ESCAPE 1 1 1 l MOD 1 1 0 RM [DISP | 520-540
ST(0) to ST(i) [ESCAPE 101] 11 0 1 1 ST() ! 17-24
FXCH = Exchange ST(i) and ‘ ESCAPE 0 0 1 1 11 0 0 1 ST() I 10-15
ST(0)
Comparison
FCOM = Compare
Integer/Real Memory to ST(0) [ESCAF’E MF 0) MOD 0 1 0O RM] DISP : 60-70 78-91 65-75 72-86
ST(i) to ST (0) I:ESCAPE 000 l 11 0 t 0 ST 40-50
FCOMP = Compare and Pop
Integer/Real Memory to ST(0) [ESCAPE MF 0 1 MOD 0 t 1 RM . _D_I§E'_) _: 63-73 80-93 67-77 74-88
ST(i) to ST(0) [escaPE 0 0 0 [1 1 0 1 1 sTH) 45-52
FCOMPP = Compare ST(1) to [ESCAPE 1 1 0 L 11 011001 45-55
ST(0) and Pop Twice
FTST = Test ST(0) { ESCAPE 0 0 1 l 11100100 | 38-48
FXAM = Examine ST(0) | ESCAPE 0 0 1 I 11100101 J 12-23

Mnemonics © Intel 1982,

D-21 122164-001

ntel’ 80287 ADVANGE INFORMATION

Table 6. 80287 Extensions to the 80286 Instruction Set (cont.)

Optional Clock Count Range
8,16 Bit 32Bit | 32Bit | 64Bit | 16Bit
Constants Displ t | Real | integ Real | Integer
FMF = 00 01 10 "

FLDZ = LOAD + 0.0into ST(0) | ESCAPE 0 0 1]1 1101110] 11-17
FLD1 - LOAD + 1.0intoST(0) | ESCAPE 0 0 1 [1 1 1 01 00 0 | 15-21
FLDPI = LOAD = into ST(0) ESCAPE 00 1 I1 1 101011 | 16-22
FLDL2T = LOAD logz 10into | ESCAPE 0 0 1 |11 1 0100 1 | ’ 16-22
ST(0)
FLDL2E — LOAD logz einto | ESCAPE 0 0 1 [1 1 101 01 0 | 15-21
ST(0)
FLDLG2 = LOAD logqg 2 into
ST(0) |ESCAPE001'1 1101100 | 18-24
FLDLN2 = LOAD loge2 into [ESCAPE 00 1 l1 1101101] 17-23
ST(0)
Arithmetic
FADD = Addition
Integer/Real Memory with ST(0) ’ ESCAPE MF 0 | MOD 0 0 0 RM I DISP | 90-120 108-143 95-125 102-137
ST(i) and ST(0) |ESCAPE d PO | 11 .00 0 ST() } 70-100 (Note 1)
FSUB = Subtraction
Integer/Real Memory with ST(0) [ESCAPE MF 0 [MOD 1 0 R RM | DISP | 90-120 108-143 95-125 102-137
ST(i) and ST(0) IESCAPE d PO I 1110R RM | 70-100 (Note 1)
FMUL = Multiplication
Integer/Real Memory with ST(0)] ESCAPE MF 0 [MOD 0 0 1 RM ! DISP ! 110-125 130-144 112-168 124-138
ST(i) and ST(0) [EScAPE ¢ PO [11 00 1 AM | 90-145 (Note 1)
FDIV = Division —eimm
Integer/Real Memory with ST(0) | ESCAPE MF 0 [Moo 11 R RM J DISP | 215-225 230-243 220-230 224-238
ST(i) and ST(0) | ESCAPE @ P 0 [1 111 R AM | 193-203 (Note 1)
FSQRT = Square Root of ST(0) |ESCAPE 00 1] 11111010] 180-186
FSCALE = Scale ST(0) by ST(1) rESCAPE 00 1 [11111101 [32-38
FPREM = Partial Remainder of i ESCAPE 0 0 1 | 11 111000 l 15-190
ST(0) +ST(1)
FRNDINT = Round ST(O)to | ESCAPE 0 0 1 [1 1 11110 0 | 16-50
Integer
NOTE:

1. If P=1 then add 5 clocks.

D-22 122164-001

nte|® 80287 ADVANCE INFORMATION

Table 6. 80287 Extensions to the 80286 Instruction Set (cont.)

Optional Clock Count Range
8,16 Bit
Displacement

FXTRACT = Extract |ESCAPE 00 1 11 1110100 | 27-55
Components of St(0)
FABS = Absolute Value of ESCAPE 00 1] t1 10000 1J 10-17
ST(0)
FCHS = Change Sign of ST(0) [ESCAPE 00 1 [1110000 641 10-17
Transcendental
FPTAN = Partial Tangent of [ESCAPE 00 1 [1 11100 1 o—l 30-540
ST(0)
FPATAN = Partial Arctangent ’ESCAPE 001 |11 110011] 250-800
of ST(0) ~ST(1)
Faxm1 = 25T 4 LESCAPE 00 1 l 11110000 310-630
FYL2X = ST(1)* Logp |ESCAPE 00 1—[1 1 11000 17 900-1100
1ST(0)}
FYL2XP1 = ST(1)* Logs IjSCAPE 00 1 [11111001 l 700-1000
(ST(0) +11
Processor Control
FINIT = Initialize NPX |Emwso11 1110001 1‘ 2-8
FSETPM = Enter Protected IESCAPE o1 1 l 11 10010 0] 2-8
Mode
FSTSW AX = Store Control ESCAPE 111 I 11 100000 I 10-16
Word
FLDCW = Load Control Word 1ESCAPE 00 1 l MOD 1 0 1 RM l DISP | 7-14
FSTCW = Store ControlWord | ESCAPE 0 0 1 | MOD 1 1 1 AM | DISP | 12-18
FSTSW = Store Status Word ESCAPE 10 1 l MOD 1 1 1 RM] DIsP | 12-18
FCLEX = Clear Exceptions | ESCAPE 0 1 1—[1 1 10001 07 2-8
FSTENV - Store Environment | ESCAPE 00 1 [MOD 1 1 0 RM | DIsP | 40-50
FLDENV = Load Environment | ESCAPE 0 0 1 [MoD 10 0 AM] pisp ! 35-45
FSAVE = Save State LESCAPE 1 01| MOD 1 10 RM —] DisP | 205-215
FRSTOR = Restore State [Escae 1 0 1 [moD 1 00 AM | Disp | 205-215
FINCSTP = Increment Stack
Pointer ESCAPE 00 1] 1111011 17 6-12
FDECSTP - Decrement Stack | ESCAPE 0 0 1 [1 1 1.1 0 1 1 0 | 6-12
Pointer

D-23

122164-001

ntel” 80287 ADVANGE INFORMATION

Table 6. 80287 Extensions to the 80286 Instruction Set (cont.)

Clock Count Range
FFREE = Free ST(j) | ESCAPE 1 0 1 | 11 00 0 ST(i)] 9-16
FNOP = No Operation [EscaPE 0 0 111 01000 0] 10-16
NOTES:

1.

if mod=00 then DISP=0", disp-low and disp-high are absent
if mod=01 then DISP=disp-low sign-extended to 16-bits, disp-high is absent
if mod=10 then DISP=disp-high; disp-low

if mod=11 then r/m is treated as an ST(i) field

. if Y/m=000 then EA=(BX) + (SI) +DISP

if /m=001 then EA=(BX) + (DI) +DISP

if /m=010 then EA=(BP) + (SI) +DISP

if /m=011 then EA=(BP) + (DI) +DISP

if /m=100 then EA=(SI) + DISP

if ’/m=101 then EA=(DI) + DISP

if /m=110 then EA=(BP) + DISP

if y/m=111 then EA=(BX) + DISP

*except if mod=000 and r/m=110 then EA =disp-high; disp-low.

. MF= Memory Format

00—32-bit Real
01-—32-bit Integer
10—64-bit Real
11—16-bit Integer

. ST(0)= Current stack top

ST(i) ith register below stack top
. d= Destination
0—Destination is ST(0)
1—Destination is ST(i)

P= Pop
0—No pop
1—Pop ST(0)
R= Reverse: When d=1 reverse the sense of R

0—Destination (op) Source
1—Source (op) Destination

For FSQRT: -0 < ST(0) < +
For FSCALE: —2"% < s7(1) < +2'% and ST(1) integer
For F2XM1: 0<ST(0)<2
For FYL2X: 0 < ST(0) <=
—2 < ST(1) < + o
For FYL2XP1: 0 < IST(O)I < (2 -V2)/2
- < 8T(1) <o
For FPTAN: 0 < ST(0) <n/4
For FPATAN: 0 = ST(0) < ST(1) < +

. ESCAPE bit pattern is 11011.

D-24 122164-001

Glossary Of 80287 And
Floating-Point Terminology

GLOSSARY OF 80287
AND FLOATING-POINT TERMINOLOGY

This glossary defines many terms that have precise technical meanings as specified in the IEEE 754
Standard. Where these terms are used, they have been capitalized to emphasize the precision of their
meanings. In reading these definitions, you may therefore interpret any capitalized terms or phrases as
cross-references.

Affine Mode: a state of the 80287, selected in the 80287 Control Word, in which infinities are treated
as having a sign. Thus, the values +INFINITY and —INFINITY are considered different; they can
be compared with finite numbers and with each other.

Base: (1) a term used in logarithms and exponentials. In both contexts, it is a number that is being
raised to a power. The two equations (y = log base b of x) and (b* = x) are the same.

Base: (2) a number that defines the representation being used for a string of digits. Base 2 is the binary
representation; Base 10 is the decimal representation; Base 16 is the hexadecimal representation. In
each case, the Base is the factor of increased significance for each succeeding digit (working up from
the bottom).

Bias: the difference between the unsigned Integer that appears in the Exponent field of a Floating-
Point Number and the true Exponent that it represents. To obtain the true Exponent, you must subtract
the Bias from the given Exponent. For example, the Short Real format has a Bias of 127 whenever the
given Exponent is nonzero. If the 8-bit Exponent field contains 10000011, which is 131, the true
Exponent is 131—127, or +4.

Biased Exponent: the Exponent as it appears in a Floating-Point Number, interpreted as an unsigned,
positive number. In the above example, 131 is the Biased Exponent.

Binary Coded Decimal: a method of storing numbers that retains a base 10 representation. Each decimal
digit occupies 4 full bits (one hexadecimal digit). The hex values A through F (1010 through 1111)
are not used. The 80287 supports a Packed Decimal format that consists of 9 bytes of Binary Coded
Decimal (18 decimal digits) and one sign byte.

Binary Point: an entity just like a decimal point, except that it exists in binary numbers. Each binary
digit to the right of the Binary Point is multiplied by an increasing negative power of two.

C3—CO0: the four “condition code” bits of the 80287 Status Word. These bits are set to certain values
by the compare, test, examine, and remainder functions of the 80287.

Characteristic: a term used for some non-Intel computers, meaning the Exponent field of a Floating-
Point Number.

Chop: to set the fractional part of a real number to zero, yielding the nearest integer in the direction
of zero.

Control Word: a 16-bit 80287 register that the user can set, to determine the modes of computation
the 80287 will use, and the error interrupts that will be enabled.

Denormal: a special form of Floating-Point Number, produced when an Underflow occurs. On the

80287, a Denormal is defined as a number with a Biased Exponent that is zero. By providing a Signi-
ficand with leading zeros, the range of possible negative Exponents can be extended by the number of

Glossary-1 122164-001

Intel GLOSSARY OF 80287 AND FLOATING-POINT TERMINOLOGY

bits in the Significand. Each leading zero is a bit of lost accuracy, so the extended Exponent range is
obtained by reducing significance.

Double Extended: the Standard’s term for the 80287 Temporary Real format, with more Exponent
and Significand bits than the Double (Long Real) format, and an explicit Integer bit in the Significand.

Double Floating Point Number: the Standard’s term for the 80287’s 64-bit Long Real format.

Environment: the 14 bytes of 80287 registers affected by the FSTENYV and FLDENYV instructions. It
encompasses the entire state of the 80287, except for the 8 Temporary Real numbers of the 80287
stack. Included are the Control Word, Status Word, Tag Word, and the instruction, opcode and operand
information provided by interrupts. \

\

Exponent: (1) any power that is raised by an exponential function. For example, the operand to the
function mqerEXP is an Exponent. The Integer operand to mqerYI2 is an Exponent.

Exception: any of the six error conditions (I, D, O, U, Z, P) signalled by the 80287.

Exponent: (2) the field of a Floating-Point Number that indicates the magnitude of the number. This
would fall under the above more general definition (1), except that a Bias sometimes needs to be
subtracted to obtain the correct power.

Floating-Point Number: a sequence of data bytes that, when interpreted in a standardized way, repre-
sents a Real number. Floating-Point Numbers are more versatile than Integer representations in two
ways. First, they include fractions. Second, their Exponent parts allow a much wider range of magni-
tude than possible with fixed-length Integer representations.

Gradual Underflow: a method of handling the Underflow error condition that minimizes the loss of
accuracy in the result. If there is a Denormal number that represents the correct result, that Denormal
is returned. Thus, digits are lost only to the extent of denormalization. Most computers return zero
when Underflow occurs, losing all significant digits.

Implicit Integer Bit: a part of the Significand in the Short Real-and Long Real formats that is not
explicitly given. In these formats, the entire given Significand is considered to be to the right of the
Binary Point. A single Implicit Integer Bit to the left of the Binary Point is always 1, except in one
case. When the Exponent is the minimum (Biased Exponent is 0), the Implicit Integer Bit is 0.

Indefinite: a special value that is returned by functions when the inputs are such that no other sensible
answer is possible. For each Floating-Point format there exists one Nontrapping NaN that is designated
as the Indefinite value. For binary Integer formats, the negative number furthest from zero is often
considered the Indefinite value. For the 80287 Packed Decimal format, the Indefinite value contains
all I’s in the sign byte and the uppermost digits byte.

Infinity: a value that has greater magnitude than any Integer or any Real number. The existence of
Infinity is subject to heated philosophical debate. However, it is often useful to consider Infinity as
another number, subject to special rules of arithmetic. All three Intel Floating-Point formats provide
representations for +INFINITY and —INFINITY. They support two ways of dealing with Infinity:
Projective (unsigned) and Affine (signed).

Integer: a number (positive, negative, or zero) that is finite and has no fractional part. Integer can also
mean the computer representation for such a number: a sequence of data bytes, interpreted in a stand-
ard way. It is perfectly reasonable for: Integers to be represented in a Floating-Point format; thls is
what the 80287 does whenever an Integer is pushed onto the 80287 stack.

Glossary-2 - 122164-001

lnté GLOSSARY OF 80287 AND FLOATING-POINT TERMINOLOGY

Invalid Operation: the error condition for the 80287 that covers all cases not covered by other errors.
Included are 80287 stack overflow and underflow, NaN inputs, illegal infinite inputs, out-of-range
inputs, and illegal unnormal inputs.

Long Integer: an Integer format supported by the 80287 that consists of a 64-bit Two’s Complement
quantity.

Long Real: a Floating-Point Format supported by the 80287 that consists of a sign, an 11-bit Biased
Exponent, an Implicit Integer Bit, and a 52-bit Significand—a total of 64 explicit bits.

Mantissa: a term used for some non-Intel computers, meaning the Significand of a Floating-Point
Number.

Masked: a term that applies to each of the six 80287 Exceptions I,D,Z,0,U,P. An exception is Masked
if a corresponding bit in the 80287 Control Word is set to 1. If an exception is Masked, the 80287 will
not generate an interrupt when the error condition occurs; it will instead provide its own error recovery.

NaN: an abbreviation for Not a Number; a Floating-Point quantity that does not represent any numeric
or infinite quantity. NaNs should be returned by functions that encounter serious errors. If created
during a sequence of calculations, they are transmitted to the final answer and can contain information
about where the error occurred.

Nontrapping NaN: a NaN in which the most significant bit of the fractional part of the Significand is
1. By convention, these NaNs can undergo certain operations without visible error. Nontrapping NaNs
are implemented for the 80287 via the software in EH87.LIB.

Normal: the representation of a number in a Floating-Point format in which the Significand has an
Integer bit 1 (either explicit or Implicit).

Normalizing Mode: a state in which nonnormal inputs are automatically converted to normal inputs
whenever they are used in arithmetic. Normalizing Mode is implemented for the 80287 via the software
in EH87.LIB.

NPX: Numeric Processor Extension. This is the 80287.

Overflow: an error condition in which the correct answer is finite, but has magnitude too great to be
represented in the destination format.

Packed Decimal: an Integer format supported by the 80287. A Packed Decimal number is a 10-byte
quantity, with nine bytes of 18 Binary Coded Decimal digits, and one byte for the sign.

Pop: to remove from a stack the last item that was placed on the stack.

Precision Control: an option, programmed through the 80287 Control Word, that allows all 80287
arithmetic to be performed with reduced precision. Because no speed advantage results from this option,
its only use is for strict compatibility with the IEEE Standard, and with other computer systems.
Precision Exception: an 80287 error condition that results when a calculation does not return an exact
answer. This exception is usually Masked and ignored; it is used only in extremely critical applications,
when the user must know if the results are exact.

Projective Mode: a state of the 80287, selected in the 80287 Control Word, in which infinities are
treated as not having a sign. Thus the values +INFINITY and —INFINITY are considered the same.

Glossary-3 122164-001

Inté GLOSSARY OF 80287 AND FLOATING-POINT TERMINOLOGY

Certain operations, such as comparison to finite numbers, are illegal in Projective Mode but legal in
Affine Mode. Thus Projective Mode gives you a greater degree of error control over infinite inputs.

Pseudo Zero: a special value of the Temporary Real format. It is a number with a zero significand
and an Exponent that is neither all zeros or all ones. Pseudo zeros can come about as the result of
multiplication of two Unnormal numbers; but they are very rare.

Real: any finite value (negative, positive, or zero) that can be represented by a decimal expansion. The
fractional part of the decimal expansion can contain an infinite number of digits. Reals can be repre-
sented as the points of a line marked off like a ruler. The term Real can also refer to a Floating-Point
Number that represents a Real value.

Short Integer: an Integer format supported by the 80287 that consists of a 32-bit Two’s Complement
quantity. Short Integer is not the shortest 80287 Integer format—the 16-bit Word Integer is.

Short Real: a Floating-Point Format supported by the 80287, which consists of a sign, an 8-bit Biased
Exponent, an Implicit Integer Bit, and a 23-bit Significand—a total of 32 explicit bits.

Significand: the part of a Floating-Point Number that consists of the most significant nonzero bits of
the number, if the number were written out in an unlimited binary format. The Significand alone is
considered to have a Binary Point after the first (possibly Implicit) bit; the Binary Point is then moved
according to the value of the Exponent.

Single Extended: a Floating-Point format, required by the Standard, that provides greater precision
than Single; it also provides an explicit Integer Significand bit. The 80287’s Temporary Real format
meets the Single Extended requirement as well as the Double Extended requirement.

Single Floating-Point Number: the Standard’s term for the 80287’s 32-bit Short Real format.

Standard: “a Proposed Standard for Binary Floating-Point Arithmetic,” Draft 10.0 of IEEE Task P754,
December 2, 1982.

Status Word: A 16-bit 80287 register that can be manually set, but which is usually controlled by side
effects to 80287 instructions. It contains condition codes, the 80287 stack pointer, busy and interrupt
bits, and error flags.

Tag Word: a 16-bit 80287 register that is automatically maintained by the 80287. For each space in
the 80287 stack, it tells if the space is occupied by a number; if so, it gives information about what
kind of number.

Temporary Real: the main Floating-Point Format used by the 80287. It consists of a sign, a 15-bit
Biased Exponent, and a Significand with an explicit Integer bit and 63 fractional-part bits.

Transcendental: one of a class of functions for which polynomial formulas are always approxima_lte,
never exact for more than isolated values. The 80287 supports trigonometric, exponential, and logarith-
mic functions; all are Transcendental.

Trapping NaN: a NaN that causes an I error whenever it enters into a calculation or comparison, even
a nonordered comparison.

Two’s Complement: a method of representing Integers. If the uppermost bit is 0, the number is consid-
ered positive, with the value given by the rest of the bits. If the uppermost bit is 1, the number is
negative, with the value obtained by subtracting (2°! <) from all the given bits. For example, the
8-bit number 11111100 is —4, obtained by subtracting 2® from 252.

Glossary-4 122164-001

Intel GLOSSARY OF 80287 AND FLOATING-POINT TERMINOLOGY

Unbiased Exponent: the true value that tells how far and in which direction to move the Binary Point
of the Significand of a Floating-Point Number. For example, if a Short Real Exponent is 131, we
subtract the Bias 127 to obtain the Unbiased Exponent +4. Thus, the Real number being represented
is the Significand with the Binary Point shifted 4 bits to the right.

Underflow: an error condition in which the correct answer is nonzero, but has a magnitude too small
to be represented as a Normal number in the destination Floating-Point format. The Standard specifies
that an attempt be made to represent the number as a Denormal.

Unmasked: a term that applies to each of the six 80287 Exceptions: 1,D,Z,0,U,P. An exception is
Unmasked if a corresponding bit in the 80287 Control Word is set to 0. If an exception is Unmasked,
the 80287 will generate an interrupt when the error condition occurs. You can provide an interrupt
routine that customizes your error recovery.

Unnormal: a Temporary Real representation in which the explicit Integer bit of the Significand is
zero, and the exponent is nonzero. We consider Unnormal numbers distinct from Denormal numbers.

Word Integer: an Integer format supported by both the 80286 and the 80287 that consists of a 16-bit
Two’s Complement quantity.

Zero divide: an error condition in which the inputs are finite, but the correct answer, even with an
unlimited exponent, has infinite magnitude.

Glossary-5 122164-001

INDEX

Address Modes, 2-39, 2-40, 3-1

Architecture, 1-8, 3-1, 3-2, D-1, D-7

Arithmetic Instructions, 2-4 through 2-9,
D-22, D-23

ASM 286, 2-38 through 2-45

Automatic Exception Handling, 1-36

Binary Integers, 1-15

Comparison Instructions, 2-9, 2-10, 2-11

Compatibility of 80287 and 8087, 2-1,
Appendix B, D-14

Computation Fundamentals, 1-13

Concurrent (80286 and 80287) Processing,
2-45 through 2-50

Condition Codes Interpretation, 1-9, 1-10,
1-11, D-11

Constant Instructions, 2-13, 2-14, D-22

Control Word, 1-11, 1-12, D-10, D-13

Data Synchronization, 2-46, 2-47, 2-48
Data Transfer Instructions, 2-2, 2-3, 2-4,
D-21
Data Types and Formats,
Binary Integers, 1-15
Decimal Integers, 1-15
Encoding of Data Type, 1-28 through 1-32
Infinity Control, 1-19
Precision Control, 1-18, 1-35
Real Numbers, 1-15, 1-16, 1-17
Rounding Control, 1-18
Decimal Integers, 1-15
Denormalization, 1-20
Denormalized Operand, 1-33, 1-35
Denormals, 1-19, 1-20, 1-21
Destination Operands, 2-2

EM (Emulation Mode) Bit in 80286, 3-3
Emulation of 80287, 2-45, 3-4, 3-5
Encoding of Data Types, 1-28 through 1-32
Error Synchronization, 2-48, 2-49, 2-50

Exception Handling, Numeric Processing,
3-5, 3-6, 3-7, D-12
Exceptions, Numeric, 1-32 through 1-37
Automatic Exception Handling, 1-36
Handling Numeric Errors, 1-33
Inexact Result, 1-33
Invalid Operation, 1-32
Masked Response, 1-33, 1-34, 1-35
Numeric Overflow and Underflow, 1-33,
1-35
Software Exception Handling, 1-36, 1-37
Zero Divisor, 1-32, 1-35, D-10
Exponent Field, 1-15

F2XM1 (Exponentiation), 1-2, 2-12, 2-35,
D-23, D-24

FADD (Add Real), 1-2, 2-2, 2-5, 2-6, 2-22,
D-22

FADDP (Add Real and POP), 2-5, 2-6, 2-22,
D-22

FABS (Absolute Value), 2-5, 2-9, 2-22, D-23

FBLD (Packed Decimal-—BCD—Load), 2-2,
2-4, 2-22

FBSTP (Packed Decimal—BCD-—Store and
Pop), 2-2, 2-4, 2-3

FCHS (Change Signs), 2-5, 2-9, 2-23, D-23

FCLEX/FNCLEX (Clear Exceptions), 2-14,
2-16, 2-32, D-23

FCOM (Compare Real), 2-10, 2-23, D-21

FCOMP (Compare Real and Pop), 2-10,
2-23, D-21

FCOMPP (Compare Real and Pop Twice),
2-10, 2-24, D-21

FDECSTP (Decrement Stack Pointer), 2-14,
2-19, 2-24, D-23

FDISI/FNDISI, 2-15, B-1

FDIV (Divide Real), 2-5, 2-7, 2-24, D-22

FDIV DWORD PTR (Division, Single
Precision), 1-2

FDIVP (Divide Real and Pop), 2-5, 2-7, 2-24

FDIVR (Divide Real Reversed), 2-5, 2-7,
2-24

Index-1

INDEX

FDIVRP (Divide Real Reversed and Pop),
2-5, 2-7, 2-25

FENI/FNENI, 2-15, B-1

FFREE (Free Register), 2-14, 2-19, 2-25,
D-23 ‘

FIADD (Integer Add), 2-5, 2-6, 2-25

FICOM (Integer Compare), 2-10, 2-25

FICOMP (Integer Compare and Pop), 2-10,
2-25 '

FIDIV (Integer Divide), 2-5, 2-7, 2-26

FIDIVR (Integer Divide Reversed), 2-5, 2-7,
2-26

FILD (Integer Load), 2-2, 2-3, 2-26

FIMUL (Integer Multiply), 2-5, 2-7, 2-26,
D-22 '

FINCSTP (Increment Stack Pointer), 2-14,
2-19, 2-26, D-23

FINIT/FNINIT (Initialize Processor), 2-14,
2-15, 2-27, 2-37, D-23

FIST (Integer Store), 1-34, 1-35, 2-2, 2-3,
2-27

FISTP (Integer Store and Pop), 2-2, 2-4,
2-27

FISUB (Integer Subtract), 2-5, 2-6, 2-27

FISUBR (Integer Subtract Reversed), 2-5,
2-6, 2-27

FLD (Load Real), 1-35, 2-3, 2-28, D-21

FLDI (Load One), 2-13, 2-29, D-22

FLDCW (Load Control Word), 2-14, 2-15,
2-28, 2-37, D-23

FLDENYV (Load Environment), 1-36, 2-14,
2-19, 2-25, D-23

FLDLZE (Load Log Base 2 of €), 2-13,
2-14, 2-29, D-22

FLDL2T (Load Log Base 2 of 10), 2-13,
2-14, 2-29, D-22

FLDLG?2 (Load Log Base3 10 of 2), 2-13,
2-14, 2-28, D-22

FLDLN2 (Load Log Base € of 2), 2-13,
2-14, 2-28, D-22

FLDPI (Load PI), 2-13, 2-14, 2-25, D-22

FLDZ (Load Zero), 2-13, 2-29, D-22

Floating Point, 1-15, 1-20

FMUL (Multiply Real), 2-5, 2-7, 2-30

FMULP (Multiply Real and Pop), 2-5,

2-7,
2-30 :

FNOP (No Operation), 2-14, 2-19, 2-30,
D-23

FPATAN (Partial Arctangant), 1-2, 2-12,
2-30, D-23, D-24

FPREM (Partial Remainder), 1-34, 2-5, 2-7,
2-8, 2-30, 4-17, D-22

FPTAN (Partial Tangent), 2-12, 2-31, 4-17,
D-23, D-24

FRNDINT (Round to Integer), 1-23, 2-5,
2-9, 2-35, D-23

FRSTOR (Restore State), 2-14, 2-17, 2-31,
2-37, D-23

FSAVE, FNSAVE (Save State), 2-14, 2-17,
2-31, 2-37, D-23

FSCALE (Scale), 2-5, 2-7, 2-32, D-22

FSETPM (Set Protected Mode), 2-14, 2-15,
2-32, D-23

FSQRT (Square Root), 1-34, 2-1, 2-5, 2-7,
2-32, D-22

FST (Store. Real), 1-34, 1-35, 2-2, 2-3, 2-32,
D-21

FSTCW /FNSTCW (Store Control Word),
2-14, 2-16, 2-32, D-23

FSTENV/FNSTENV (Store Environment),
2-14, 2-18, 2-32, D-23

FSTP (Store Real and Pop), 1-34, 1-35, 2-2,
2-3, 2-33, D-21

FSTSW /FNSTSW (Store Status Word),
2-9, 2-14, 2-16, 2-33, 2-37, D-23

FSTSW AX, FNSTSW AX (Store Status
Word in AX), 2-14, 2-16, 2-33, D-23

FSUB (Subtract Real), 2-5, 2-6, 2-33, D-22

FSUBP (Subtract Real and Pop), 2-5, 2-6,
2-34

FSUBR (Subtract Real Reversed), 2-5, 2-6,
2-34

FSUBRP (Subtract Real Reversed and Pop),
2-5, 2-6, 2-34 -

FTST (Test), 2-10, 2-11, 2-34, D-21

FWAIT (CPU Wait), 2-14, 2-19, 2-34

FXAM (Examine), 1-2, 1-23, 2-10, 2-11,
2-35, 4-2, 4-3, D-21

FXCH (Exchange Registers), 2-2, 2-3, 2-35,
D-21

FXTRACT (Extract Exponent and
Significand), 2-5, 2-9, 2-35, D-23

Index-2

INDEX

FYL2X (Logarithm—of x), 1-2, 2-13, 2-35,
D-23, D-24

FYL2XP1 (Logarithm—of x+1), 2-13, 2-35,
D-23, D-24

GETSREALSERROR (Store, then Clear,
Exception Flags), 2-37

Handling Numeric Errors, 1-33
Hardware Interface, 1-6, D-4

I/0 Locations (Dedicated and Reserved),
3-2

IEEE P754 Standard, Implementation,
Appendix C

Indefinite, 1-27

Inexact Result, 1-33

Infinity, 1-25

Infinity Control, 1-19

INITSREALSMATHSUNIT (Initialize
Processor Procedure), 2-37

Initialization and Control, 3-2 through 3-7

Instruction Coding and Decoding, A-1

Instruction Execution Times, 2-20, 2-21

Instruction Length, 2-22 through 2-36

Integer Bit, 1-16, 1-17, 1-20

Introduction to Numeric Processor 80287,
1-1, Appendix D

Invalid Operation, 1-32

Long Integer Format, 1-16
Long Real Format, 1-16

Machine Instruction Encoding and

Decoding, Appendix A
Masked Response, 1-33, 1-34, 1-35
MP (Math Present) Flag, 3-3

NaN (Not a Number), 1-25, 1-26, 1-27

NO-WAIT FORM, 2-14

Nonnormal Real Numbers, 1-20

Number System, 1-13, 1-14, 1-15

Numeric Operands, 2-1

Numeric Overflow and Underflow, 1-33,
1-35

Numeric Processor Overview, 1-1

Output Format, 4-17
Overflow, 1-20, 1-33, 4-16, D-12

Packed Decimal Notation, 1-15, 1-16
Precision Control, 1-18, 1-35
PLM-286, 2-41, 2-42
Pointers (INstruction/Data), 1-12, D-10
Processor Control Instructions, 2-14 through
2-19, D-23, D-24
Programming Examples (Chapter 4),
Conditional Branching, 4-1, 4-2
Exception Handling, 4-3 through 4-6
Floating Point to ASCII Conversion, 4-7
through 4-16
Function Partitioning, 4-14
Special Instructions, 4-15
Programming Interface, 1-5, D-4
Pseudo zeros and zeros, 1-23, 1-24

Real Number Range, 1-14

Real Numbers, 1-15, 1-16, 1-17

Recognizing the Presence of 80287, 3-2, 3-33

Register Stack, 1-8, 1-9

RESTORESREALSSTATUS (Restore
Processor State), 2-37

Rounding Control, 1-18

SAVESREALS$STATUS (Save Processor
State), 2-37

Scaling, 4-16

SETSREAL$MODE (Set Exception Masks,
Ronding Precision, and Infinity

Controls),
2-37

Short Integer Format, 1-16

Short Real Format, 1-16

Significand, 1-15

Software Exception Handling, 1-36, 1-37

Source Operands, 2-2

Status Word, 1-9, 1-10, 1-11

Tag Word 1-12, D-10

Temporary Real Format, 1-16

Transcendental Instructions, 2-11, 2-12, D-23

Trigonometric Calculation Examples, 4-17
through 4-23

Index-3

INDEX

Underflow, 1-20, 1-33, 4-16, D-12 Word Integer Format, 1-16
Unnormals, 1-20, 1-22, 1-23
Upgradability, 1-4

Zero Divisor, 1-32, 1-35, D-10
WAIT Form, 2-14 Zeros, 1-23, 1-24

Index-4

ALABAMA
intel Corp,

5015 Bradford Drive
Suite 2

Huntsville 35805
Tel: (205) 830-4010

ARIZONA

IntelCorp.

11225 N. 28(h Drive
Suite 214D

Phoenix 85029

Tel: (602) 869-4980

CALIFORNIA

Intel O

220 £ Pimperial Highway
uite

&) Segundo. 90245

Tel: (213) 640-6040

Intel Corp.

1010 Hurley Way
uite 300
Sacramento 95825
Tel: (916) 929-4078

Intel Corp.

4350 Execuhve Drive
Suite

San Dlego 92111
(619) 452-5880

Intel Corp.

2000 East 4ih Street
Suite 100
Santa_Ana 9.

Tel: (714& 835-9642
TWX: 910-595-1114
Intel Corp.*

1350 Shorebird Way
Mt View 94043

Tel: (415& 968 8086

910 -338- 0255

Intel Corp.*
5530 Corbln Avenue

Trsant
T e 706-0303
TWX: 910-495-2045

COLORADO

Intel C
4445 Norlhpark Drive
Suite 100
Colorado_Springs_80907
Tel: (303) 594-6622

Intel Cory
650 S. Chervy Street
Suite 720

ver 80222
Tel: (303) 321-8086
TWX: 910-931-2289

CONNECTICUT

Intel Cory
35 Padanaram Road

Danbury 06810
Tel: (203) 792-8366
TWX: 710-456-1199

EMC Corp.
222 Summer Street
Stamford 06901

Tel: (203) 327-2934

FLORIDA

el Gorp,
festmonte Drive

Sire s

Altamonte Springs 32714

Tel: (305) 869-5588

Intel Corp.

1500 N.W. 62nd Street
Suite 104

Ft. Leuderdale 33309
Tel: (305) 771-0600
TWX: 510-956-9407

DOMESTIC SALES OFFICES

GEORGIA
Intel Corp
3280 ng\te Parkway

Norcross
S ion 460541

ILLINOIS

intel Corp.*
2550 GuN Road

Beling: Meadows 60008
Tel: (312) 9817200
TWX: 910-651-5681

INDIANA

Intel Corp.
9100 Purdue Road
Suite 400
Indianapolis 46268
Tel: (317) 875-0623

lowa

Intel Cor

St. Andrews Building

1930 St Andrews Drive N.E.
Cedar Rapids 52402

Tel: (319) 393-5510
KANSAS

Intel
8400 W 110t Street

O evland Park 66210
Tel: (913) 642-8080

LOUISIANA

Industrial Digital Systems Corp.

Tel: (504) 899-1654
MARYLAND

Intel_ Corp.*
7257 Parkway Drive
Hanover 21

Tel: (301) 796-7500
TWX: 710-862-1944

Intel Corp.

7833 Walker Drlve
Greenbelt 2077¢

Tel: (301) 441-1020

MASSACHUSETTS

27 Indusmal Avenue
Chelmsford

Tel: (617) 256 800
TWX: 710-343-6333

EMC Corp.
385 Ellol Seet
Tel (617) 244 4740

MICHIGAN

Intel Cory

1om o Orchard Lake Road
uite

Wos, Bioomield 48033

Tel: (313) 851-8096

MINNESOTA

Intel Corp.
3500 W. 80th Street
Suite 360

Bloomington 5543

Tel: (612) 8356722
TWX: 910-576-2867

MISSOURI

A203 Earlh City Expressway
S uite 131

arth
T @) 551600

NEW JERSEY
inelCorp.*
Raritan Plaza Il

7
Tel: (201) 226-3000
TWX: 710-480-6238

NEW MEXICO

Intel Corp.
8500 Menual Boulevard N.E.
Suite B 295

Albuquerque 87112

Tel: (505) 292-8086

NEW YORK

Intel Corp.
300 Vanderblll Motor Parkway
Haunp uge 11788
(516) 231-3300
TWX 510-227-6236

Intel Corp.

80 Washington Street

Po ghke sie 12601
(914) 473-2303

TWX 510-248-0060

Intel Corp.*
211 White Spruce Boulevard
Rochester 1462:

Tel: (716) 4241050

TWX: 510-253-7391

T-Squared
6443 Rldm s Rcad

Tel: (315) 463 8592
TWX: 710-541-0654

T-Squared

7353 Pitisford
Victor Road

Victor

Tel: (716) 9249101
TWX: 510-254-8542

NORTH CAROLINA

Intel Corp.
2306 W ‘Meadowview Road

uite
Greensboro 27407
Tel: (919) 294-1541

OHIO

Intel Corp.*
6500 Poe Avenue
Dayton 45414
Tel: (513) 890-5350
TWX: 810-450-2528

Intel Corp.*

Chagrin-Brainard Bldg., No. 300
8001 Chagrin Boulevard
Cleveland 44122

Tel: (216) 464-2736

TWX: 810-427-9298

OKLAHOMA

Intel - Corp.
a1e7 s, Pavard Avenue

Suit
Tuls 7413

Tel: (918) 749-8688
OREGON

In(el Corp.

SW Beaverton
gl"sdale Highway
Beave ton 97005

(503) 641-8086
TW)(: 910-467-8741
PENNSYLVANIA
Intel Corp.*

510 Pennsylvania Avenue
19034
TWX: 510-661- 2077

Intel Corp.
400 Penn’ Cenler Boulevard

Suite 610
Plllsburgh 15235
Tel: (412) 823-4970

PENNSYLVANIA (Cont'd)

Q.ED. Electronics

139 Terwood Road
Willow Grove 19090
Tel: (215) 657-5600

TEXAS

Intel Corp.*

12300 Ford Road

Suite 380

Dallas 75234

Tel: (214) 241-8087
TWX: 910-860-5617

Intel Corp.*

7322 SW. Freeway
Suite 14

Houston

Tel: (7‘3) 988 8086
TWX: 910-881-2490

Industrial Digital Systems Corp.
5925 Sovereign

Suite 120

Houston 7703

Tel: (713)9869421

Intel

05 & Raderson Lane
Suite 314

Austin 787

Tel: (512) a.3628

UTAH

Intel
5201 Green Street

e 290
Sa ke oy sazs
Tel: (B01) 263-8051

VIRGINIA

Intel Corp.

1603 Sanla Rosa Road
Suite 109

Richmond

Tel: (804) 282 5668

WASHINGTON

Intel Cory
10 IIO(I’\ "Avenue NE.

Suite

Bellevue 004

Tel: (206) 453 8086
TWX: 910-443-3002

Intel Corp.
408 N. Mullan Road
uite

Spo n
Tel: (509) 92&8086
WISCONSIN
Intel Corp.
50 N. Sunnyslope Road
Chancellory Park
Brcokheld 53005

: (414) 784-9060

CANADA
ONTARIO

Intel Semiconductor ol Canada, Ltd.
Suite 202, Bell Mews
W;

K2H 8R2
Tel: (613) 829-9714
TELEX: 053-4115

Intel Semiconductor of Canada, Ltd.
190 Attwell Drive

To e 765106
TELEX: 06983574

QUEBEC

Intel Semiconductor of Canada, Ltd.
gBGﬂ Cote Vertu Rd.

uite

St. Laure enl H4R 1v4

Tel: (514) 334-0560

TELEX: 05-824172

*Field Application Location

BELGIUM

el Oorpara(lon SA.

Rue d;; Moulin a Papier 51
B ‘16 russels

Tel: (02)661 07 "

TELEX:

DENMARK

Intel Denmark A/S*

TELEX: 19567
FINLAND

intel Finland OY
Hameenh 103

- 00550 Helsinki 55
Tel 0/716 955
TELEX: 123 332

FRANCE

IntelCorporation, S.ARL.*
5 Place de la Balance

Sl 223

94528 Rungis Cedex
Tel: (01) 687 22 21
TELEX: 270475

EUROPEAN SALES OFFICES

FRANCE (Cont'd)
intel_Corporation, S.ARL.

Immeuble
4 Quai des Etroits
69005 Lyon

(7) 842 40 89

TELEX 305153
WEST GERMANY
Intel Semlcor|2duc(or GmbH*

Tel:_(89) 5
TELEX: 05-; 23177 INTL D

Intel Semlconduc\or GmbH*

Tel: _(6121) 70 08 74
TELEX: 04186183 INTW D

Intel Semlconduclor GmbH
Brueckstrasse

7012 Fellbach

Stutigart

Tel: (711)

TELEX: 7254826 INTS D

IntelSemiconductor GmbH*

Hohenzollern Strasse 5*
Hanno e

Tel (511) 40

TELEX: 923625 INTH D

ISRAEL

Intel Semiconductor Ltd.*
P.O. Box 1659

aifa

Tel: 4/524 261

TELEX: 46511

ITALY

Intel Corporation ltalia Spa®
Milanofiori, Palazzo E
20094 Assago (M)Iano)
Tel: (02) 8

TELEX: 315183 INTMIL
NETHERLANDS

Intel Semnconduclord Nederland B.V.*

=
2
]
g
2
&
g

Rotter
Tel 00), 21 23 7
TELE)(

NORWAY

intel Norway A/S
P.O. Box 92
Hvamveien 4
N-2013

Skietten

Tel(@) 742 420
TELEX:" 18018

SPAIN

Intel Iberia
Calle Zurbaran 28

Mad
Tel: (34) 1410 40 04
TELEX: 46880

SWEDEN

Intel Sweden AB.*
Box 20092
Archimedesvagen 5
$-16120 Bromma
Tel: (08) 98 53 85
TELEX: 12261

SWITZERLAND

IntelSemiconductor A.G.*
Talackerstrasse 17

8152 Glatbrugg. posifach
CH-8065

Tel: (01) 829 29
TELEX: 57989 ICH CH

UNITED KINGDOM

Imel Corporaion (UK) Lig.*
5 Hospital Street
Naniwich, Cheshire WS SRE
Tek (027) €20

TELEX: 36620

Intel Covporallon (UK) Ld.*
Piy 6]
indon, Wiltshire SN3 1RJ

Swi
Tel: (0793) 488 388
TELEX: 444447 INT SWN

*Field Application Loc

EUROPEAN DISTRIBUTORS/REPRESENTATIVES

AUSTRIA

Bacher Eleklronlsche Geraete GmbH
Rotemuehigasse 2

TELEX: 11532 BASAT A
BELGIUM

Ineico Belglum
Ave. des Croix de Guerre 94
B1120 Brussels

Tel: (02) 216 01 60
TELEX: 254

DENMARK

iTT Muanomponenl A/S
Naverlan

DK -2600 Gloskrup

Tel: (02) 45 66 45
TX: 33355

FINLAND

Oy Fintronic AB
Mellaonkam 24 A

Helsinki 2
Tel:_(0) 6
TR 1887234 Foon s

FRANCE

Generim

ZA. de Counaboeul

Avenue de la Baltique
9194.’:})Lesso Ulis Cedex B.P.88
TELEX: F691700

Jermyn S.A.

16 Avenue Jean-Jaures
600 Choisy-Le-Roi

Tel: (1) 853 12 00

TELEX: 260967

Melrolugie

a Tour d' Asnieres
4 Avenue Laurent Cely
92606-Asnieres
Tel: (1) 790 62 40
TELEX: 611-448

Tekelec Airtronic

Cite des Bruyeres

Rue Carle Vemel BP. 2
92310 Sewr

Tel: (1) 8575 35
TELEX: 204552

WEST GERMANY

Electronic 2000 Vertriebs A.G.
Neumarkter Strasse 75
D-8000 Munich 80

Tel: (89) 43 40 61
TELEX 522561 EIEC D
Jermyn GmbH
Postfach 1180

Celdis Enalechmk Systems GmbH
Gutenbergstrasse 4

2359 Henstedt-| Ulzbuvg

Tel: (04193) 4026

TELEX: 2180260

Metrologie GmbH
Hansastrasse 15
8000 Munich 21
Tel: (89) 7 30 84
TELEX: D 5213189

Proelectron Veﬂnebs GmbH
lax

Planck § 1-3
6072 Drenelch bel Frankfurt
Tel: (6103) 3.
TELEX: 417983
IRELAND

Micro Marketing
Glenageary Office Park
Glenag ry

Co.
Tel (1) 5 62 s
TELEX: 31584

ISRAEL

Eastronics Lid.
11_Rozanis_Street
P.O. Box 39300
Tel Aviv 61390
(3) 47 51 51
T saeos

ITALY

Eledra 38 S.PA.
Viale Elvezia, 18
| 20154 Milano
Tel: (2) 34 97 51
TELEX: 332332

Intesi

Milanofiori Pal. E/5
20090 Assago
Milano

Tel: (02) 82470
TELEX: 311351

NETHERLANDS

Koning & Hanman
Kogerwert

2544 EN's vaennage
Tel: 31 (70) 210.101
TELEX: 31528

NORWAY

Nordisk Eleerumc (Norge) A/S
Postoffice Box 122

Smedsvingen 4

1364 Hvalstad

Tel:_(2) 846 210

TELEX: 17546

PORTUGAL

Ditram

Componentes E Electronica LDA
Av. Miguel Bombarda, 133
P1000 sto

Tel: (19) 5

TELEX: 14132 Brleks«P

SPAIN

Interface

Ronda San Pedro 22, 3 Piso
Barcelona 10

Tel (34] 33 01 78 51

ITT SESA

Miguel Angel 21, 6 Piso
Madrid 1

Tel: (34) 14 1954 00
TELEX: 27481

SWEDEN

AB GostaBackstrom

ox

Als?memerga'an 22

$-f0221" Stockhoim 12
(8) 541°080

T8 oss

Nordisk Electronik AB
Box 27301
Sandhamnsgatan 71
$-10254 Stockholm

Tel: (8) 635 040
TELEX: 10547

S
ar levagen
Box s{gg N
S-161 26 Bromma
Tel: (8) 98 08 20
TELEX: 11941

SWITZERLAND
Industrade AG

Tel: (01) 363 23
TELEX: 56788 INDEL CH

UNITED KINGDOM
Bytech_Ltd.

U¥|‘|| 57

London Road
Earley, Reading
Berkshire

Tel: (0734) 61031
TELEX: 848215

Comuay, Microsystems. L.
Market Street

U beacinai Beriahire
Tel: 44 (344) 55333
TELEX: 847201

Jermyn lnduslnes

Veslry sa
evenoaks,

Tel (0732) 450144

TELEX: 95142

M.EDL.

East Lane Road
North Wemble
Middlesex HA PP
Tel (1) 90470 93 07
TELEX: 28817

Rapid Recall, Ltd.

Rapid House/Denmark St
High Wycombe

Berks, England HP11 2ER
Tel: (049 26 271
TELEX: 837931

YUGOSLAVIA
R. BMicraelsmronics Enterprises
0)
Calllornla 95150

San
Tel: 408/9 8-800
TELEX: 278- 559

H.
P.O.

% |

- Intel Corporation
|n 3065 Bowers Avenue
: Santa Clara, CA 95051

Intel International (U.K.) Ltd.
Piper’s Way ! '
Swindon, SN3 1R]

Wiltshire, England

Intel Japan K.K.
5-6 Tokodai Toyosato-machi
Tsukuba-gun, Ibaraki-ken 300-26

Japan
»
{ i
e
% {
3 | TR
% \
Al }; Y
: 4 h
~ .
§ ot g T
: \
i \\ 1_,,
N ey
T L
v ¢ %
‘\ 1 t.3: ‘t
i R,
" Nk
\
< Y
{
!
e
//—'
e N
N S Printed in U.S.A./C-587/0984/30K/RRD LD
R Microprocessors

