

PROGRAMMING NUMERIC APPLICATIONS

occurs, the NPX stops further execution of the numeric instruction and signals this event to the
CPU. On the next occurrence of an ESC or WAIT instruction, the CPU traps to a software excep­
tion handler. Some ESC instructions do not check for errors. These are the nonwaited forms FNINIT,
FNSTENV, FNSA VE, FNSTSW, FNSTCW, and FNCLEX.

When the NPX signals an unmasked exception condition, it is requesting help. The fact that the error
was unmasked indicates that further numeric program execution under the arithmetic and program­
ming rules of the NPX is unreasonable.

If concurrent execution is allowed, the state of the CPU when it recognizes the exception is undefined.
The CPU may have changed many of its internal registers and be executing a totally different program
by the time the exception occurs. To handle this situation, the NPX has special registers updated at
the start of each numeric instruction to describe the state of the numeric program when the failed
instruction was attempted.

Error synchronization ensures that the NPX is in a well-defined state after an unmasked numeric error
occurs. Without a well-defined state, it would be impossible for exception recovery routines to figure
out why the numeric error occurred, or to recover successfully from the error.

INCORRECT ERROR SYNCHRONIZATION

An example of how some instructions written without error synchronization will work initially, but fail
when moved into a new environment is shown in figure 2-12.

In figure 2-12, three instructions are shown to load an integer, calculate its square root, then increment
the integer. The NPX interface and synchronous execution of the NPX emulator will allow this program
to execute correctly when no errors occur on the FILD instruction.

This situation changes if the 80287 numeric register stack is extended to memory. To extend the NPX
stack to memory, the invalid error is unmasked. A push to a full register or pop from an empty register
will cause an invalid error. The recovery routine for the error must recognize this situation, fix up the
stack, then perform the original operation.

The recovery routine will not work correctly in the first example shown in the figure. The problem is
that the value of COUNT is incremented before the NPX can signal the exception to the CPU. Because
COUNT is incremented before the exception handler is invoked, the recovery routine will load an
incorrect value of COUNT, causing the program to fail or behave unreliably.

F I L D
INC
F 5 Q R T

F I L D
FSQRT

INC

COUNT
COUNT
COUNT

CO U N T

COUNT

INCORRECT ERROR SYNCHRONIZATION
NPX instruction
CPU instruction alters operand
subsequent NPX instruction -- error from

previous NPX instruction detected here

PROPER ERROR SYNCHRONIZATION
NPX instruction
subsequent NPX instruction -- error from

previous NPX instruction detected here
CPU instruction alters operand

Figure 2-12. Error Synchronization Examples

2-49 122164-001

PROGRAMMING NUMERIC APPLICATIONS

PROPER ERROR SYNCHRONIZATION

Error Synchronization relies on the WAIT instructions required by instruction and data synchroniza­
tion and the BUSY and ERROR signals of the 80287. When an unmasked error occurs in the 80287,
it asserts the ERROR signal, signalling to the CPU that a numeric error has occurred. The next time
the CPU encounters an error-checking ESC or WAIT instruction, the CPU acknowledges the ERROR
signal by trapping automatically to Interrupt #16, the Processor Extension Error vector. If the follow­
ing ESC or WAIT instruction is properly placed, the CPU will not yet have disturbed any information
vital to recovery from the error.

2-50 122164-001

System-Level 3
Numeric Programming

CHAPTER 3
SYSTEM-LEVEL NUMERIC PROGRAMMING

System programming for iAPX 286/20 systems requires a more detailed understanding of the 80287
NPX than does application programming. Such things as emulation, initialization, exception handling,
and data and error synchronization are all the responsibility of the systems programmer. These topics
are covered in detail in the sections that follow.

iAPX 286/20 ARCHITECTURE

On a software level, the 80287 NPX appears as an extension of the 80286 CPU. On the hardware
level, however, the mechanisms by which the 80286 and 80287 interact are a bit more complex. This
section describes how the 80287 NPX and 80286 CPU interact and points out features of this inter­
action that are of interest to systems programmers.

Processor Extension Data Channel

All transfers of operands between the 80287 and system memory are performed by the 80286's internal
Processor Extension Data Channel. This independent, DMA-like data channel permits all operand
transfers of the 80287 to come under the supervision of the 80286 memory-management and protection
mechanisms. The operation of this data channel is completely transparent to software.

Because the 80286 actually performs all transfers between the 80287 and memory, no additional bus
drivers, controllers, or other components are necessary to interface the 80287 NPX to the local bus.
Any memory accessible to the 80286 CPU is accessible by the 80287. The Processor Extension Data
Channel is described in more detail in Chapter Six of the iAPX 286 Hardware Reference Manual.

Real-Address Mode and Protected Virtual-Address Mode

Like the 80286 CPU, the 80287 NPX can operate in both Real-Address mode and in Protected mode.
Following a hardware RESET, the 80287 is initially activated in Real-Address mode. A single, privi­
leged instruction (FSETPM) is necessary to set the 80287 into Protected mode.

As an extension to the 80286 CPU, the 80287 can access any memory location accessible by the task
currently executing on the 80286. When operating in Protected mode, all memory references by the
80287 are automatically verified by the 80286's memory management and protection mechanisms as
for any other memory references by the currently-executing task. Protection violations associated with
NPX instructions automatically cause the 80286 to trap to an appropriate exception handler.

To the programmer, these two 80287 operating modes differ only in the manner in which the NPX
instruction and data pointers are represented in memory following an FSA VE or FSTENV instruction.
When the 80287 operates in Protected mode, its NPX instruction and data pointers are each repre­
sented in memory as a 16-bit segment selector and a 16-bit offset. When the 80287 operates in Real­
Address mode, these same instruction and data pointers are represented simply as the 20-bit physical
addresses of the operands in question (see figure 1-7 in Chapter One).

3-1 122164-001

SYSTEM-LEVEL NUMERIC PROGRAMMING

Dedicated and Reserved 1/0 Locations

The 80287 NPX does not require that any memory addresses be set aside for special purposes. The
80287 does make use of I/0 port addresses in the range 00F8H through OOFFH, although these I/0
operations are completely transparent to the iAPX 286 software. iAPX 286 programs must not refer­
ence these reserved I/0 addresses directly.

To prevent any accidental misuse or other tampering with numeric instructions in the 80287, the 80286's
I/0 Privilege Level (IOPL) should be used in multiuser reprogrammable environments to restrict
application program access to the I/O address space and so guarantee the integrity of 80287 compu­
tations. Chapter Eight of the iAPX 286 Operating System Writer's Guide contains more details regard­
ing the use of the I/0 Privilege Level.

PROCESSOR INITIALIZATION AND CONTROL

One of the principal responsibilities of systems software is the initialization, monitoring, and control of
the hardware and software resources of the system, including the 80287 NPX. In this section, issues
related to system initialization and control are described, including recognition of the NPX, emulation
of the 80287 NPX in software if the hardware is not available, and the handling of exceptions that
may occur during the execution of the 80287.

System Initialization

During initialization of an iAPX 286 system, systems software must

• Recognize the presence or absence of the NPX

• Set flags in the 80286 MSW to reflect the state of the numeric environment

If an 80287 NPX is present in the system, the NPX must be

• Initialized

• Switched into Protected mode (if desired)

All of these activities can be quickly and easily performed as part of the overall system initialization.

Recognizing the 80287 NPX

During initialization, the 80286 is easily programmed to recognize the presence of the 80287 NPX.
Figure 3-1 shows an example of such a recognition routine.

In the example, the 80286 assumes that the 80287 is present and executes an FNINIT instruction.
Following the FNINIT instruction, the 80286 attempts to read the NPX status word. If the 80287
NPX is present, the lower eight bits of this word (the exception flags) will be all zeros. If an 80287 is
not present, these data lines will have been floating. The iAPX 286 Hardware Reference Manual
describes how to design the 80287 socket to ensure that at least one of these lower eight data lines
floats high in the absence of the 80287.

3-2 122164-001

"1m _I® I 1'eI SYSTEM-LEVEL NUMERIC PROGRAMMING

; initialization routine to detect an 80287 Numeric Processor

FND 287: FNINIT;
FSTSW AX
OR AL,AL

JZ GOT 287

SMSW AX
ORO 4 H
LMSW AX
JMP CONTINUE

GOT 287: SMSW AX
ORO 2 H
LMSW AX

CONTINUE:

initialize Numeric Processor
retrieve 80287 status word
test low-byte--80287 exception flags
if all zero, then 80287 present and
properly initialized
if not all zero, then 80287 absent.
branch if 80287 present

No Numeric Processor--
set EM bit in machine status word
to enable software emulation of 80287

Humeric Processor present
set MP bit in machine status word
to permit normal 80287 operation

and off we go ...

Figure 3-1. Software Routine to Recognize the 80287

Configuring the Numerics Environment

Once the 80286 CPU has determined the presence or absence of the 80287 NPX, the 80286 must set
either the MP or the EM bit in its own machine status word accordingly. The initialization routine can
either

Set the MP bit in the 80286 MSW to allow numeric instructions to be executed directly by the
80287 NPX component

Set the EM bit in the 80286 MSW to permit software emulation of the 80287 numeric instructions

The Math Present (MP) flag of the 80286 machine status word indicates to the CPU whether an 80287
NPX is physically available in the system. The MP flag controls the function of the WAIT instruction.
When executing a WAIT instruction, the 80286 tests only the Task Switched (TS) bit if MP is set; if
it finds TS set under these conditions, the CPU traps to exception #7.

The Emulation Mode (EM) bit of the 80286 machine status word indicates to the CPU whether NPX
functions are to be emulated. If the CPU finds EM set when it executes an ESC instruction, program
control is automatically trapped to exception #7, giving the exception handler the opportunity to emulate
the functions of an 80287. The 80286 EM flag can be changed only by using the LMSW (load machine
status word) instruction (legal only at privilege level 0) and examined with the aid of the SMSW (store
machine status word) instruction (legal at any privilege level).

The EM bit also controls the function of the WAIT instruction. If the CPU finds EM set while execut­
ing a WAIT, the CPU does not check the ERROR pin for an error indication.

For correct 80286 operation, the EM bit must never be set concurrently with MP. The EM and MP
bits of the 80286 are described in more detail in the iAPX 286 Operating System Writer's Guide.
More information on software emulation for the 80287 NPX is described in the "80287 Emulation"
section later in this chapter.

3-3 122164-001

SYSTEM-LEVEL NUMERIC PROGRAMMING

Initializing the 80287

Initializing the 80287 NPX simply means placing the NPX in a known state unaffected by any activity
performed earlier. The example software routine to recognize the 80287 (table 3-1) performed this
initialization using a single FNINIT instruction. This instruction causes the NPX to be initialized in
the same way as that caused by the hardware RESET signal to the 80287. All the error masks are set,
all registers are tagged empty, the ST is set to zero, and default rounding, precision, and infinity
controls are set. Table 3-1 shows the state of the 80287 NPX following initialization.

Following a hardware RESET signal, such as after initial power-up, the 80287 is initialized in Real­
Address mode. Once the 80287 has been switched to Protected mode (using the FSETPM instruction),
only another hardware RESET can switch the 80287 back to Real-Address mode. The FNINIT
instruction does not switch the operating state of the 80287.

80287 Emulation

If it is determined that no 80287 NPX is available in the system, systems software may decide to
emulate ESC instructions in software. This emulation is easily supported by the 80286 hardware, because
the 80286 can be configured to trap to a software emulation routine whenever it encounters an ESC
instruction in its instruction stream.

As described previously, whenever the 80286 CPU encounters an ESC instruction, and its MP and
EM status bits are set appropriately (MP=O, EM= 1), the 80286 will automatically trap to interrupt
#7, the Processor Extension Not Available exception. The return link stored on the stack points to the
first byte of the ESC instruction, including the prefix byte(s), if any. The exception handler can use
this return link to examine the ESC instruction and proceed to emulate the numeric instruction in
software.

The emulator must step the return pointer so that, upon return from the exception handler, execution
can resume at the first instruction following the ESC instruction.

Table 3-1. NPX Processor State Following Initialization

Field Value Interpretation

Control Word
Infinity Control 0 Projective
Rounding Control 00 Round to nearest
Precision Control 11 64 bits
Interrupt-Enable Mask 1 Interrupts disabled
Exception Masks 111111 All exceptions masked

Status Word
Busy 0 Not busy
Condition Code ???? (Indeterminate)
Stack Top 000 Empty stack
Interrupt Request 0 No interrupt
Exception Flags 000000 No exceptions

Tag Word
Tags 11 Empty

Registers N.C. Not changed

Exception Pointers
Instruction Code N.C. Not changed
Instruction Address N.C. Not changed
Operand Address N.C. Not changed

3-4 122164-001

SYSTEM-LEVEL NUMERIC PROGRAMMING

To an application program, execution on an iAPX 286/10 system with 80287 emulation is almost
indistinguishable from execution on an iAPX 286/20 system, except for the difference in execution
speeds.

There are several important considerations when using emulation on an iAPX 286/10 system:

When operating in Protected-Address mode, numeric applications using the emulator must be
executed in execute-readable code segments. Numeric software cannot be emulated if it is executed
in execute-only code segments. This is because the emulator must be able to examine the particular
numeric instruction that caused the Emulation trap.

Only privileged tasks can place the 80286 in emulation mode. The instructions necessary to place
the 80286 in Emulation mode are privileged instructions, and are not typically accessible to an
application.

An emulator package (E80287) that runs on iAPX 286/10 systems is available from Intel in the 8086
Software Toolbox, Order Number 122203. This emulation package operates in both Real and Protected
mode, providing a complete functional equivalent for the 80287 emulated in software.

When using the E80287 emulator, writers of numeric exception handlers should be aware of one slight
difference between the emulated 80287 and the 80287 hardware:

On the 80287 hardware, exception handlers are invoked by the 80286 at the first WAIT or ESC
instruction following the instruction causing the exception. The return link, stored on the 80286
stack, points to this second WAIT or ESC instruction where execution will resume following a
return from the exception handler.

Using the E80287 emulator, numeric exception handlers are invoked from within the emulator itself.
The return link stored on the stack when the exception handler is invoked will therefore point back
to the E80287 emulator, rather than to the program code actually being executed (emulated). An
IRET return from the exception handler returns to the emulator, which then returns immediately
to the emulated program. This added layer of indirection should not cause confusion, however,
because the instruction causing the exception can always be identified from the 80287's instruction
and data pointers.

Handling Numeric Processing Exceptions

Once the iAPX 286/20 system has been initialized and normal execution of applications has been
commenced, the 80287 NPX may occasionally require attention in order to recover from numeric
processing errors. This section provides details for writing software exception handlers for numeric
exceptions. Numeric processing exceptions have already been introduced in previous sections of this
manual.

As discussed previously, the 80287 NPX can take one of two actions when it recognizes a numeric
exception:

If the exception is masked, the NPX will automatically perform its own masked exception response,
correcting the exception condition according to fixed rules, and then continuing with its instruction
execution.

If the exception is unmasked, the NPX signals the exception to the 80286 CPU using the ERROR
status line between the two processors. Each time the 80286 encounters an ESC or WAIT instruc­
tion in its instruction stream, the CPU checks the condition of this ERROR status line. If ERROR
is active, the CPU automatically traps to Interrupt vector #16, the Processor Extension Error trap.

3-5 122164-001

SYSTEM-LEVEL NUMERIC PROGRAMMING

Interrupt vector #16 typically points to a software exception handler, which mayor may not be a part
of systems software. This exception handler takes the form of an iAPX 286 interrupt procedure.

When handling numeric errors, the CPU has two responsibilities:

The CPU must not disturb the numeric context when an error is detected.

The CPU must clear the error and attempt recovery from the error.

Although the manner in which programmers may treat these responsibilities varies from one imple­
mentation to the next, most exception handlers will include these basic steps:

Store the NPX environment (control, status, and tag words, operand and instruction pointers) as it
existed at the time of the exception.

Clear the exception bits in the status word.

Enable interrupts on the CPU.

Identify the exception by examining the status and control words in the save environment.

Take some system-dependent action to rectify the exception.

Return to the interrupted program and resume normal execution.

It should be noted that the NPX exception pointers contained in the stored NPX environment will take
different forms, depending on whether the NPX is operating in Real-Address mode or in Protected
mode. The earlier discussion of Real versus Protected mode details how this information is presented
in each of the two operating modes.

Simultaneous Exception Response

In cases where multiple exceptions arise simultaneously, the 80287 signals one exception according to
the precedence sequence shown in table 3-2. This means, for example, that zero divided by zero will
result in an invalid operation, and not a zero divide exception.

Exception Recovery Examples

Recovery routines for NPX exceptions can take a variety of forms. They can change the arithmetic
and programming rules of the NPX. These changes may redefine the default fix-up for an error, change
the appearance of the NPX to the programmer, or change how arithmetic is defined on the NPX.

A change to an error response might be to automatically normalize all denormals loaded from memory.
A change in appearance might be extending the register stack into memory to provide an "infinite"
number of numeric registers. The arithmetic of the NPX can be changed to automatically extend the

Table 3-2. Precedence of NPX Exceptions

Signaled First: Denormalized operand (if unmasked)
Invalid operation
Zero divide
Denormalized (if masked)
Over/Underflow

Signaled Last: Precision

3-6 122164-001

SYSTEM-LEVEL NUMERIC PROGRAMMING

precision and range of variables when exceeded. All these functions can be implemented on the NPX
via numeric errors and associated recovery routines in a manner transparent to the application
programmer.

Some other possible system-dependent actions, mentioned previously, may include:

Incrementing an exception counter for later display or printing

Printing or displaying diagnostic information (e.g., the 80287 environment and registers)

Aborting further execution

Storing a diagnostic value (a NaN) in the result and continuing with the computation

Notice that an exception mayor may not constitute an error, depending on the implementation. Once
the exception handler corrects the error condition causing the exception, the floating-point instruction
that caused the exception can be restarted, if appropriate. This cannot be accomplished using the
IRET instruction, however, because the trap occurs at the ESC or WAIT instruction following the
offending ESC instruction. The exception handler must obtain from the NPX the address of the
offending instruction in the task that initiated it, make a copy of it, execute the copy in the context of
the offending task, and then return via IRET to the current CPU instruction stream.

In order to correct the condition causing the numeric exception, exception handlers must recognize the
precise state of the NPX at the time the exception handler was invoked, and be able to reconstruct the
state of the NPX when the exception initially occurred. To reconstruct the state of the NPX, program­
mers must understand when, during the execution of an NPX instruction, exceptions are actually
recognized.

Invalid operation, zero divide, and denormalized exceptions are detected before an operation begins,
whereas overflow, underflow, and precision exceptions are not raised until a true result has been
computed. When a before exception is detected, the NPX register stack and memory have not yet been
updated, and appear as if the offending instructions has not been executed.

When an after exception is detected, the register stack and memory appear as if the instruction has
run to completion; i.e., they may be updated. (However, in a store or store-and-pop operation, unmasked
over /underflow is handled like a before exception; memory is not updated and the stack is not popped.)
The programming examples contained in Chapter Four include an outline of several exception handlers
to process numeric exceptions for the 80287.

3-7 122164-001

Numeric 4
Programming Examples

CHAPTER 4
NUMERIC PROGRAMMING EXAMPLES

The following sections contain examples of numeric programs for the 80287 NPX written in ASM286.
These examples are intended to illustrate some of the techniques for programming the iAPX 286/20
computing system for numeric applications.

CONDITIONAL BRANCHING EXAMPLES

As discussed in Chapter Two, several numeric instructions post their results to the condition code bits
of the 80287 status word. Although there are many ways to implement conditional branching following
a comparison, the basic approach is as follows:

• Execute the comparison.

• Store the status word. (80287 allows storing status directly into AX register.)

Inspect the condition code bits.

• Jump on the result.

Figure 4-1 is a code fragment that illustrates how two memory-resident long real numbers might be
compared (similar code could be used with the FTST instruction). The numbers are called A and B,
and the comparison is A to B.

The comparison itself requires loading A onto the top of the 80287 register stack and then comparing
it to B, while popping the stack with the same instruction. The status word is then written into the
80286 AX register.

A and B have four possible orderings, and bits C3, C2, and CO of the condition code indicate which
ordering holds. These bits are positioned in the upper byte of the NPX status word so as to correspond
to the CPU's zero, parity, and carry flags (ZF, PF, and CF), when the byte is written into the flags.
The code fragment sets ZF, PF, and CF of the CPU status word to the values of C3, C2, and CO of
the NPX status word, and then uses the CPU conditional jump instructions to test the flags. The
resulting code is extremely compact, requiring only seven instructions.

The FXAM instruction updates all four condition code bits. Figure 4-2 shows how a jump table can be
used to determine the characteristics of the value examined. The jump table (FXAM_TBL) is initial­
ized to contain the 16-bit displacement of 16 labels, one for each possible condition code setting. Note
that four of the table entries contain the same value, because four condition code settings correspond
to "empty."

The program fragment performs the FXAM and stores the status word. It then manipulates the condi­
tion code bits to finally produce a number in register BX that equals the condition code times 2. This
involves zeroing the unused bits in the byte that contains the code, shifting C3 to the right so that it is
adjacent to C2, and then shifting the code to multiply it by 2. The resulting value is used as an index
that selects one of the displacements from FXAM_TBL (the multiplication of the condition code is
required because of the 2-byte length of each value in FXAM_TBL). The unconditional JMP instruc­
tion effectively vectors through the jump table to the labelled routine that contains code (not shown in
the example) to process each possible result of the FXAM instruction.

4-1 122164-001

inter

A
B

DQ
DQ

FLD
FCOMP
FSTSW

A
B
A X

NUMERIC PROGRAMMING EXAMPLES

LOAD A ONTO TOP OF 287 STACK
COMPARE A:B, POP A
STORE RESULT TO CPU AX REGISTER

i CPU AX REGISTER CONTAINS CONDITION CODES (RESULTS OF
i COMPARE>

LOAD CONDITION CODES INTO CPU FLAGS
SA H F
i
i USE CONDITIONAL JUMPS TO DETERMINE ORDERING OF A TO
i B

JP
JB
JE

LB_UNORDERED
A_LESS
A EQUAL

TE S T C2 (P F)
TE S T CO (C F)
TE S T C3 (ZF)

A_GREATER: CO (C F) o , C3 (ZF) . 0

CO (C F) . o , C3 (Z F>

A LESS: CO (CF> 1,C3(ZF)-O

C2 (PF>

Figure 4-1. Conditional Branching for Compares

JUMP TABLE FOR EXAMINE ROUTINE

FXAM_TBL DW POS_UNNORM, POS_NAN, NEG_UNNORM, NEG_NAN,
& POS_NORM, POS_INFINITY, NEG_NORM,
& NEG_INFINITY, POS_ZERO, EMPTY, NEG_ZERO,
& EMPTY, POS_DENORM, EMPTY, NEG_DENORM, EMPTY

EXAMINE ST AND STORE RESULT (CONDITION CODES)
FXAM
FSTSW AX

Figure 4-2. Conditional Branching for FXAM

4-2 122164-001

NUMERIC PROGRAMMING EXAMPLES

CALCULATE OFFSET INTO JUMP TABLE
MOV BH,O ; CLEAR UPPER HALF OF BX,
MOV BL,AH ; LOAD CONDITION CODE INTO BL
AND BL,00000111B ; CLEAR ALL BITS EXCEPT C2-CO
AND AH,01000000B ; CLEAR ALL BITS EXCEPT C3
SHR AH,2 SHIFT C3 TWO PLACES RIGHT
SAL BX,1 SHIFT C2-CO 1 PLACE LEFT (MULTIPLY

BY 2)
DR BL,AH DROP C3 BACK IN ADJACENT TO C2

(OOOXXXXO)

JUMP TO THE ROUTINE 'ADDRESSED' BY CONDITION CODE
JMP FXAM_TBLIBXl

POS UNNORM:

POS NAN:

NEG UNNORM:

HERE ARE THE JUMP TARGETS, ONE TO HANDLE
EACH POSSIBLE RESULT OF FXAM

POS INFINITY:

NEG NORM:

POS ZERO:

EMPTY:

I'lEG ZERO:

POS DENORM:

NEG DENORM:

Figure 4-2. Conditional Branching for FXAM (Cont'd.)

EXCEPTION HANDLING EXAMPLES

There are many approaches to writing exception handlers. One useful technique is to consider the
exception handler procedure as consisting of "prologue," "body," and "epilogue" sections of code. (For
compatibility with the 80287 emulators, this procedure should be invoked by interrupt pointer (vector)
number 16.)

4-3 122164-001

NUMERIC PROGRAMMING EXAMPLES

At the beginning of the prologue, CPU interrupts have been disabled. The prologue performs all
functions that must be protected from possible interruption by higher-priority sources. Typically, this
will involve saving CPU registers and transferring diagnostic information from the 80287 to memory.
When the critical processing has been completed, the prologue may enable CPU interrupts to allow
higher-priority interrupt handlers to preempt the exception handler.

The exception handler body examines the diagnostic information and makes a response that is neces­
sarily application-dependent. This response may range from halting execution, to displaying a message,
to attempting to repair the problem and proceed with normal execution.

The epilogue essentially reverses the actions of the prologue, restoring the CPU and the NPX so that
normal execution can be resumed. The epilogue must not load an unmasked exception flag into the
80287 or another exception will be requested immediately.

Figure 4-3 through 4-5 show the ASM286 coding of three skeleton exception handlers. They show how
prologues and epilogues can be written for various situations, but provide comments indicating only
where the application-dependent exception handling body should be placed.

Figure 4-3 and 4-4 are very similar; their only substantial difference is their choice of instructions to
save and restore the 80287. The tradeoff here is between the increased diagnostic information provided
by FNSA VE and the faster execution of FNSTENV. For applications that are sensitive to interrupt
latency or that do not need to examine register contents, FNSTENV reduces the duration of the "criti­
cal region," during which the CPU will not recognize another interrupt request (unless it is a nonmask­
able interrupt).

After the exception handler body, the epilogues prepare the CPU and the NPX to resume execution
from the point of interruption (i.e., the instruction following the one that generated the unmasked
exception). Notice that the exception flags in the memory image that is loaded into the 80287 are
cleared to zero prior to reloading (in fact, in these examples, the entire status word image is cleared).

The examples in figures 4-3 and 4-4 assume that the exception handler itself will not cause an unmasked
exception. Where this is a possibility, the general approach shown in figure 4-5 can be employed. The
basic technique is to save the full 80287 state and then to load a new control word in the prologue.
Note that considerable care should be taken when designing an exception handler of this type to prevent
the handler from being reentered endlessly.

SAVE ALL PRO C

SAVE CPU REGISTERS, ALLOCATE STACK SPACE
FOR 80287 STATE IMAGE

PUSH BP
MOV BP,SP
SUB SP,94

SAVE FULL 80287 STATE, WAIT FOR COMPLETION,
ENABLE CPU INTERRUPTS

FNSAVE [BP-941
F WA I T
S T I

APPLICATION-DEPENDENT EXCEPTION HANDLING
CODE GOES HERE

Figure 4-3. Full-State Exception Handler

4-4 122164-001

NUMERIC PROGRAMMING EXAMPLES

CLEAR EXCEPTION FLAGS IN
RESTORE MODIFIED STATE
I MAG E

STATUS WORD

MOV
FRSTOR

DE-ALLOCATE
MOV

BYTE PTR IBP-921, OH
IBP-941
STACK SPACE, RESTORE CPU REGISTERS
S P , B P

POP B P

RETURN TO INTERRUPTED CALCULATION
IRE T

SAVE ALL ENDP

Figure 4-3. Full-State Exception Handler (Cont'd.)

SAVE_ENVIRONMENT PROC

SAVE CPU REGISTERS, ALLOCATE STACK SPACE
FOR 80287 ENVIRONMENT

PUSH BP

MOV BP,SP
SUB SP,14

SAVE ENVIRONMENT, WAIT FOR COMPLETION,
ENABLE CPU INTERRUPTS

FNSTENV IBP-141
F W A I T
S T I

APPLICATION EXCEPTION-HANDLING CODE GOES HERE

CLEAR EXCEPTION FLAGS IN STATUS WORD
RESTORE MODIFIED
ENVIRONMENT IMAGE

MOV BYTE PTR IBP-12I, OH
FLDENV IBP-141

DE-ALLOCATE STACK SPACE, RESTORE CPU REGISTERS
MOV SP,BP
POP BP

RETURN TO INTERRUPTED CALCULATION
IRE T

SAVE_ENVIRONMENT ENDP

Figure 4-4. Reduced-Latency Exception Handler

4-5 122164-001

inter NUMERIC PROGRAMMING EXAMPLES

ASSUME INITIALIZED

REENTRANT PROC

SAVE CPU REGISTERS, ALLOCATE STACK SPACE FOR
80287 STATE IMAGE

PUSH BP

MOV BP,SP
SUB SP,94

SAVE STATE, LOAD NEW CONTROL WORD,
FOR COMPLETION, ENABLE CPU INTERRUPTS

FNSAVE IBP-941
FLDCW LOCAL CONTROL
S T I

APPLICATION EXCEPTION HANDLING CODE GOES HERE.
AN UNMASKED EXCEPTION GENERATED HERE WILL
CAUSE THE EXCEPTION HANDLER TO BE REENTERED.
IF LOCAL STORAGE IS NEEDED, IT MUST BE
ALLOCATED ON THE CPU STACK.

CLEAR EXCEPTION FLAGS IN STATUS WORD
RESTORE MODIFIED STATE IMAGE

MOV BYTE PTR IBP-921, OH
FRSTOR IBP-941

DE-ALLOCATE STACK SPACE, RESTORE CPU REGISTERS
MOV SP,BP

POP BP
RETURN TO POINT OF INTERRUPTION

IRE T
REENTRANT ENDP

Figure 4-5. Reentrant Exception Handler

4-6 122164-001

NUMERIC PROGRAMMING EXAMPLES

FLOATING-POINT TO ASCII CONVERSION EXAMPLES

Numeric programs must typically format their results at some point for presentation and inspection by
the program user. In many cases, numeric results are formatted as ASCII strings for printing or display.
This example shows how floating-point values can be converted to decimal ASCII character strings.
The function shown in figure 4-6 can be invoked from PL/M-286, Pascal-286, FORTRAN-286, or
ASM286 routines.

Shortness, speed, and accuracy were chosen rather than providing the maximum number of significant
digits possible. An attempt is made to keep integers in their own domain to avoid unnecessary conver­
sion errors.

Using the extended precision real number format, this routine achieves a worst case accuracy of three
units in the 16th decimal position for a noninteger value or integers greater than 10". This is double
precision accuracy. With values having decimal exponents less than 100 in magnitude, the accuracy is
one unit in the 17th decimal position.

Higher precision can be achieved with greater care in programming, larger program size, and lower
performance.

iAPX286 MACRO ASSEMBLER 80287 Floating-Point to IS-Digit ASCII Conversion 10: 12: 36 09/25/83 PAGE

SERIES-III iAPX286 MACRO ASSEMBLER XI0B ASSEMBLY OF MODULE FLOATING_TO_ASCII
OB.JECT MODULE PLACED IN : F3: FPASC. DB
ASSEMBLER INVOKED BY: A8M286.86: F3: FPASC. AP2

LOC DB') LINE SOURCE

1 +1 $title("80287 Floating-Point to IS-Digit ASCII Conversion")
2
3 floatin9_to_ascii
4
5 public floatinQ_to_OIscii
6 extrn Qet...J)ower _10: near, tos_status: n('ar
7
8 This subroutine will convert the floating point numbel' in tne
9 top of the 80287 stack to an ASCII string and separate power of 10

10 scaling value (in binary). The maximum width or the ASCII string
11 formed is controlled b~ a parameter which must be :> 1. Unnormal values.
12 denormal values. and psuedo zeroes will be correctl~ converted.
13 A returned value will indicate how man~ binary bits of
14 preCision were lost in an unnormal or denormal value. The magnitude
15 (in terms Or binary power) Or a psuedo zero will also be indicated.
16 Integers less than 10**18 in magnitude are accurately converted if the
17 destination ASCII string field is lIIide enough to hold all the
18 digits. Otherwise the value is converted to scientific notation. ,.
20 The status of the conversion is identified b~ the return value.
21 it can be:
22
23 conversion complete, string_size is. defined
24 inval id argumeryts
25 exact integer conversion, string_size is defined
26 indefinite
27 ... NAN (Not A Number)
28 - NAN
29 + Infinity
30 - Infinitv
31 psuedo zero found. string_size is defined
32
33 The PLM/286 calling convention is:
34
35 floating_to_ascii:
36 proc edure (numb er. d enorma 1 J tr. s tr i ngJ tr. s i z e_ptr. fie lo_si z e,
37 powerJtr) word external;
38 declare (denormal_ptr. string_ptr. power Jh'. size....JItr) pointer;
39 decla1'e field_Size word, string_size based size_pt1' 1II01'd;
40 declare number real;
41 deela1'e denormal integer based denormal_ptri
42 declare power integer based power_ptri
43 end floating_to_asciii
44
45 The floating point value is expected to be on the top of the NPX
46 stack. This subroutine expects 3 f1'ee entries on the NPX stack and
47 will pop the passed value off when done. The generated ASCII string
48 will have a leading cha1'acte1' @ithe1' '-' or '+' indicating the sign
49 of th@ value. Ttle ASCII decimal digih will immediately follow.
50 The nume1'ic value of the ASCII string is (ASCII STRINQ.)*10**POWER.

Figure 4-6. Floating-Point to ASCII Conversion Routine

4-7 122164-001

iAPX286 MACRO ,ASSEMBLER

lOC DB..}

OOOO[]
0002[]
0004[]
0006U
OOOS[)
OOOA[]
oooee]
OOOE[]

COOA

0012
0002
COCA
0001
0004
0006
0003
0008

-0002
-0004
-0006
-0008

0000
0002

-OQ02[]
-0004[]
-OOOO[]
-OOIO[]
-OOIOC]
-OOtO[]

0010

0000 CACO

0002 Fe
0003 04
0004 F9
0005 05
0006 00
0007 06
0008 01
0009 07
OOCA Fe
0008 FE
DOOC FD
OOOD FE
OOOE FA
OOOF FE
0010 FB
0011 FE

NUMERIC PROGRAMMING EXAMPLES

80287 Floating-Point to IS-Digit ASCII Conv.-rsion 10: 12: 38 09/25/83 PAGE

LINE

51
52
53
54
55
56
57
58
59
60
61
62
63
6.
65
6.
67
68
.9
70
71
72 +1
73
7.
75
76
77
78
79
80
81
82
83
8.
85
8.
87
88
89
90
91
92
93
94
95
9.
97
98
99

100
101
102
103
104
105
10.
107
108
109
110
111
112
113
114
115
11.
117
118 +1
119
120
121
122
123
124
12.
12.
127
128
129
130

131

132

133

SOURCE

If! the give" number was 'ero, the ASCII string lIIill contain a sign
and a single zero chaeter The Villul' string_slze indicates the total
length of! the ASCII string including the sign character. String(O) will
.llIIa",5 hold the sign. It is possible for strin9_siz~ to b~ less than
field_size. This occurs for zeroes 01' integer values. A psu~do zero
lIIill return a special return code. The denormal cDunt will indicate
the pOliler of two originally associated with the value. The power of
ten and ASCII string will be as if the value was an ordinary zero.

This subroutine is accurate up to a maximum of 18 decimal digits for
integers. Integer values will have a decimal power of zero associated
with them. For non intelll"rS, the result will be accurste to within 2
decimal digits of the 16th decimal place (doubll~ pr.cision). The
exponentiate instruction is also used for scaling the value into the
range acceptable for the BCD data type. The rounding mode in effect
on entry to the subroutine is used for the conversion.

The following registers are not transparent:

ax bx ex dx si di flags

Define the stack layout.

bp_save
es_save
return _ptr
power _ptr
-Field_size
size_ptr
strin9_ptr
denormal _ptr

parms_ si ze

•

equ
equ
equ
equ
equ
equ
equ
equ

equ

word ptr [bp]
bp_save + size bp_ssve
£os_save + size es_save
return_ptr + size retul'nJltr
powerJltr + size powerJltl'
field_size + size field_size
size_ptl' + size size_ptr
stringJltr + size stl'ing_ptl'

size power_ptr + size field_size + size size_ph' +
size stl'ingJltr + size denormalJltr

Define constants used

BCD_DIGITS
WORD_SIZE
BCD_SIZE
MINUS
NAN
INFINITY
INDEFINITE
PSUEDO_ZERQ
INVALID
ZERO
DENORMAL
UNNORMAL
NORMAL
EXACT

equ
equ
equ
equ
equ
equ
equ
oqu
equ
equ
equ
equ
equ
equ

18
2
10
1
4

•
3
8
-2
-4 -.
-8
o
2

Number of digits in bcd_value

Define return values
The exact values chosen here are
important. The" must correspond to
the possible return values and be in
the same numeric order as tested by
the program.

Define layout of temporary storage area.

status
power _two
power_ten
bcd_value
bcd_byte
fraction

stac k
'eJect
code

const10

eClu
equ
equ
equ
equ
equ

equ

lIIord ptr Cbp-WORD_SlZEl
status - WORD_SIZE
pOlller _two - WORD_SIZE
tbyte ptr power_ten - BCD_SIZE
byte ptr bcd_value
bcd_value

size status + size power_two + size pOlller_ten
+ size bcd_value

stackseg (local_size+6) ; Allocate stack space for IDeals

segment er pub 1 ic
extrn power_table: Clolllord

Constants used by this function.

even
d. 10

j Optimize for 16 bits
i AdJustment value for too big BCD

Convert the C3,C2,C1.CO encoding from tos_status into meaningful bit
.plags and values.

db UNNORMAL, NAN, UNNORMAL + MINUS. NAN + MINUS.

NORMAL, INFINITY, NORMAL + MINUS, INFINITY + MINUS.

ZERO. INVALID, ZERO + MINUS, INVALID,

DENORMAL, INVALID, DENORMAL + MINUS, INVALID

Figure 4-6. Floating-Point to ASCII Conversion Routine (Cont'd.)

4-8 122164-001

iAPX286 MACRO ASSEMBLER

LOC DB,)

0012

0012 E80000
0015 8BD8
0017 2EBA870200
001C 3eFE
DOlE 752B

0020 C20AOO

0023

0023 DODe
0025 EB02

0027

0027 BOFE

0029

0029 C9
002A 07
0028 C20AOO

002E

002E DB7EFO
0031 A801
0033 9B
0034 74F3

0036 B800eo
0039 2B5EF6
003C OE5EF4
D03F OB5EF2
0042 DE5EFO
0045 75E2

0047 B003
0049 EBDE

0040

004B 06
004C C B 1 00000

0050 BB4EOB
0053 8af902
0056 7CCF

0058 49
0059 B3F912
aose 7603

005E B91200

0061

0061 3C06
0063 ?DBE

0065 3C04
0067 7DCS

0069 09E1

0068 BDDO

0060 33CO
a06F 8B7EOE
0072 8905
0074 885E06
0077 8907
0079 80FAFC
007C 732B

007E BOFAFA
0081 732C

NUMERIC PROGRAMMING EXAMPLES

80287 Floating-Point to lS-Digit ASCII Conversion 10: 12: 38 O~/25/83 PAGE

LINE

134
135
136
137
138
13q
140
141
142
143
144
145
146
147
148
14q
150
151
152
153
154
155
156
157
158
15q
160
161
162
163
164
165
166
167
168
16q
170
171
172
17"
174
175
176
177
178
17q
180
181
182
183
184
185
186
187
188
18q
190
191
lq2
193
lq4
195
196
197
198
lq9
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

217
218
219
220
221
222
223
224
225
226
227

SOURCE

call

'm,
Jn,

tos_status
b x, a ~
ill. status tablerbx]
0111. INVALID
not_empty

Look at status of ST(O)
Get descriptor from table

Look for empty ST(O)

ST(O) is empty! Return the status value

cot

Remove infinity from stack and exit

fstp st (0) ; OK to leave fstp runnlng
Jmp short exit_proc

String space is too small! Return invalid code

a 1. INVALID

e~it_proc

leave j Restore stac k
pop es
ret parms_slze

ST(O) is NAN or indefinite. Store the value in memory and look
at the fraction field to Separate indefinite from an ordinary NAN.

fstp fraction
test al, MINUS
fwait

mav
,ub

Jn,

b x. OCOOOH
bx. word ptr fraction+6
bx. word ptr fraction+4
bx. word ptr fraction+2
bx, word ptr fraction
edt_proc

a 1. INDEFINITE
Jmp exit_proc

Remove value from stack for examination
Look at sign bit
Insure store is done
Can't be indefinite if positive

Match against upper 16 bits of fraction
Compare bits 63-48
Bits 32-47 must be zero
Bits 31-16 must be zero
Bits 15-0 must be zero

Set return value for indefinite value

Allocate stack space for local variables and establish parameter
addressibility

push
enter 10cal_size,O

cx, field_size
cmp c l(. 2
Jl small_string

dec cx
cmp c x. BCD_DIGITS
Jbe size_ok

,m,
J9'

,m,

a1. INFINITY
found_infinity

al. NAN

Save working register
Format stac k

Check for enough string space

Adjust for sign character
See if string is too large for BCD

Else set maximum st-r-ing si~e

Look for infinity
Return status value for + or - inf.

Look for NAN or INDEFINITE

Set default return values and check that the number is normalized.

f'abs

,m,
J.'
,m,
J.'

dx. ax

ax. ax
di. denormalJtr
word ptr [di]. ax
bx, power _ptr
ward ptr [bx]. ax
dl. ZERO
real_zero

d I. DENORMAL
found_denormal

Use positive value only
sign bit in 0111 has true si!ln of value
Save return value for later

Form 0 constant
Zero denormal count

Zero power of ten value

Test for zero
Skip power code if value

Look for a denormal value
Handle it specially

Figure 4-6. Floating-Point to ASCII Conversion Routine (Cont'd.)

4-9 122164-001

iAPX286 MACRO ASSEMBLE.R

LOC OB,;

0083 D9F4
0085 80FAF8
0088 7240

008A 80EAF8

0080 D9E8

ooaF

DoaF DCC 1
0091 DEE9
0093 D9F4

0095 09C9
0097 DF1S
0099 DEC2

0090 F71D
0090 7526

009F 09C9
OOAI DFID

00A3 80EAF8
00A6 E9A400

00A9

00A9 90EAFC
OOAC E99EOQ

DOAF

DOAF D9E8
DOBI 09C9
0093 D9F8

00B5 D9F4

00D7 D9E5
00D9 9BDFEO
DOne 09C9
DOBE D9CA
ODCO eOEAFA
00C3 A90044
00C6 74C7

ooce DODe

OOCA
DOCA

OOCA DB7EFO
OOCD DF56FC
0000 D9EC

0002 DEC9
00D4 DFSEFA

NUMERIC PROGRAMMING EXAMPLES

80287 Floating-Point to 18-Digit ASCII l;onversion 10; 12: 38 09/25/83 PAGE

LINE

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

SOURCE

t'xtract
cmp d I. UNNORMAL
Jb normal_value

sub dl, UNNORMAL-NORMAL

Normalize the fraction,
the denormal count value.

Assert 0 <= STeO) < 1 0

fldl

separate exponent from significand
Test for unnormal value

Return normal status with correct SIgn

adJust the power of two in. ST(l) and set

, Load constant to normalize fraction

normal i z e_frac: tion:

real

fadd st (1), st
fsub
fxtrac:t

fxch
-Fist word ptr Cdi]
faddp st(2), st

neg word ptr Cd iJ
Jnz not_psuedo_zero

Set integer bit in fraction
Form normalized fraction in ST(O)
Power of two field will be negative
of denormal count
Put denormal count in ST(O)
Put negative of denormal count in memory
Form correct power of two in st(1)
OK to use word ptr (diJ now
Form pasitlve denormal count

A psuedo zero wi 11 appear as an unnormal number When attempting
to normalize it, the resultant fraction field will be zero. Performlng
an fxtract on zero will yield a zero exponent valuE'.

heh
fistp word ptr Cdi]

sub d L NORMAL-PSUEDO_ZERO
Jmp convert_integer

Put power of two value in st(O)
Set denormal count to power of two value
Word ptr Cdi] is not used by convert
integer, OK to leave running
Set return value saving thl;' sign bit
Put zero value into memory

The number is a real zero, set the return value and setup for
to BCD

'"' Jmp

d I, ZERO-NORMAL
convert_integer

; Convert status to normal value
Treat the zero as an integer

The number is a denormal. FXTRACT will not work correctll,l in this
case. To correctly separate the exponent and ft'action, add a fixed
c:onstant to the exponent to guat'antee the result is not a denormal.

fldl
fxc:h
fprem

fxtrac:t

Prepare to bump exponent

Force denormal to smallest representable
extended real format exponent
This will work correctly

The power of the original denormal value has been safely isolated.
Check if the fraction value is unnormal.

fxam
fstsw
fxch
hch st(2)
sub d l, DENORMAL-NORMAL
test ax. 4400H
JZ normalize_frac:tion

f5tp st(O)

See if the fraction is an unnormal
Save 80287 status in CPU AX reg for later

J Put exponent in ST(Ol
Put 1. 0 into ST(O). exponent in sn2)
Return normal status with correct sign
See if C3=C2=O impling unnormal or NAN
,Jump if fraction is an unnormal

Remove unnecessary 1. 0 from st(Ol

Calculate the decimal magnitude associated with this number to
within one order. This error will always be inevitable due to
rounding and lost precision. As a result, we will deliberately fail
to c:onsider the LOGlO of the frac:tion value in c:alculating the order.
Since the fraction will always be 1 (= F < 2, its LOGlO will not change
the basic ac:curac:y of the function. To get the decimal order of magnitude.
simply multiply the power of two by LOG10(2) and truncate the result to
an integer.

normal_value:
not_p sued o_z ero:

fstp fraction
fist power _two
fldlg2

fmul
fistp power_ten

Save the fraction field for later
Save power 0 f two
Get LOGIO(2)

I power_two is now safe to use
Form LOG10(of exponent of number)
Any rounding mode will work here

Chec:k if the magnitude of the number rules out treating it as
intE!ger

CX has the maximum number of decimal digits allowed.

Figure 4-6. Floating-Point to ASCII Conversion Routine (Cont'd.)

4-10 122164-001

iAPX286 MACRO ASSEMBLER

LOC OBJ

0007 913
0008 BB46FA
00013 2BC 1
DODD 7722

COOF DF46FC
OOE2 BBF2
00E4 BOEAFE
00E7 OB6EFO
OOEA D9FD
OOEC 0001
OOEE D9FC
COFO 0809
OOF2 9BDD7EFE
OOF6 F746FE0040
QOFB 7550

OOFD 0008
DOFF 8ED6

0101

0101 8907
0103 F70B

0105 E80000

0108 DB6EFO
01013 DEC9
0100 88Ft
OIOF 01E6
0111 01E6
0113 01E6
0115 DF46FC
0118 DEC2
OIIA D9FD
OIIC DDD9

011E

011 E 2EDC94·0BOO

0123 9BDFEO
0126 A9Q041
0129 ?SOC

o 12B 2EOE360000
0130 80E2FD
0133 FF07
0135 EB14

0137

0137 2EDC940000
013C 9BDFEO
013F A90001
0142 7407

0144 2EOEOEOOOO
0149 FFOF

014B

01413 D9FC

0140

014D DF76FO

0150 8E0800

NUMERIC PROGRAMMING EXAMPLES

80287 Floating-Point to IS-Digit ASCII Conversion 10' 12: 38 09/25/83 PAGE

LINE

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
37;
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

SOURCE

fwai t
mev a~, power _ten
sub a x, (: x
Ja adJust_rl::'sult

Wait ,for power_ten to be valid
Get power of ten of value
Form scaling factor necessary
Jump if number will not fit

The number is between 1 and 10**(field_site)
Test if it is an integer

f i 1 d
mov
"b

'" fs(:al e
"t
frnd i nt
fcomp
fstsw
test
In,

fstp

power two
s), dx-
d L NORMAL-EXACT
fraction

st (1)

status
status,4000H
c Dnvert _integer

st (0)

dx,si

Restore original number
Save return value
Convert to exact return value

Form full value, this is safe here
Copy value for compare
Test if its an integer
Compare values
Save status
C3=1 implies it was an integer

Remove non integer value
Restore original return value

Scale the number to within the range allowed by the BCD format.
The s(:aling operation should produce a number within one decimal order
of magnitude of the largest decimal number representable within the
given string width.

The scaling power of ten value is in ax

word p tr [bx], ax
n'9

call get_power _10

'" fraction
fmul
mov s 1, C x
'h 1 s i, 1
'h 1 s 1, 1
'h 1 s i, 1
f'ild power _ two
fad dp st(2),st
fsral e
fstp st (1)

Set initial power of ten return value
Subtract one for each order of
magnitude the value is s(:aled by
Scaling fa(:tor i!i returned as exponent
and fraction
Get fraction
Combine fractions
Form power of ten of the maximum
BCD value to fit in the string
Ind e x in s i

Combine powers of two

Form full value, exponent was safe
Remove exponent

Test the adJusted value against a table of exact powers of ten
The combined errors of the magnitude estimate and power function can
result in a value one order of magnitude too small or too large to fit
correctly in the BCD field To handle this problem. pretest the
adJusted value, it' it is too small or large, then adJust it by ten and
adjust the pOwer' of ten value

fcom

fstsw
test
In,

fidiv
and

Jmp

power _tab 1 e [5 i J+ty P e

a,
ax,4100H
test_for small

constl0
d I, not EXACT
word ptr Cbx]
short in_range

fcom power tableCsi]
fstsw ax
test ax,lOOH
JZ in_range

fimul const10
dec word ptr Cbx]

frnd i nt

power_table; Compare against exact power
entry Use the next entry since
has been decremented by one
No wait is necessary
If C3 "" CO = 0 then too big

Else adJust value
Remove exact flag
AdJust power of ten value
Convert the value to a BCD integer

Test relative sile
No wait is necessary
If CO = 0 then st(O))= lower bound
Convert the value to a BCD integer

AdJust value into range
AdJust power of ten value

; Form integer value

Assert 0 (= TOS <= 999.999,999,999,999.999
The TOS number will be exactly representable in 18 digit BCD format

Store as BCD format number

While the store BCD runs, setup registers for the conversion to
ASCII

s1, BCD_SIZE-2 Initial BCD index value

Figure 4-6. Floating-Point to ASCII ConverSion Routine (Cont'd.)

4-11 122164-001

iAPX286 MACRO ASSEMBLER

LOC OBJ

0153 B9Q40F
0156 BBOIOO
0159 SE7EOC
Dl5C eCDS
015E BEeo
0160 Fe
0161 B02B
0163 F6C201
0166 7402

0168 B020

Ol6A

OlbA AA
0168 80E2FE
016E 9B

016F

016F SA62FO
0172 BAC4
0174 D2E8
0176 22C5
0178 7516

Ol7A BAC4
017e 22C5
017E 7518

01BO 4E
01Bl 79EC

0183 B030
0185 AA
0186 43
0187 EB16

0189

0189 8A62FO
alBC 8AC4
018E D2E8

0190

0190 0430
0192 AA
0193 8AC4
0195 22C5
0197 43

0198

0198 0430
019A AA
01913 43
019C 4E
019D 79EA

019F

019F BB7EOA
OlA2 8910
OlA4 8BC2
OlA6 E980FE

NUMERIC PROGRAMMING EXAMPLES

80287 Floating-Point to IS-Digit ASCII Conversion 10: 12: 38 09/25/83 PAGE

LINE

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
47.
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

SOURCE

enter

enter -

moy
old

cx.Of04h
bx.l
di.string_ptr
ax. ds

mov al, '+'
test dl, MINUS
JZ positive_T'esult

aI, '-'

stosb
and dl. not MINUS
fwait

Register usage'

Remove leading

ah. bcd _byteCsiJ
moy al. ah
,hr at. cl
and al. ch
Jn, enter _odd

moy al. ah
and aL ch
Jn, enter - even

de, "

ah'
0011:

d,
,h
cl:

Set shift count and mask
Set initial size of ASCII field foT' sign
Get address of' start of ASCII string
Copy ds to es

Set auto increment mode
I Clear sign field

Look for negative value

Bump string painter past sign
Turn off sign bit
Wai t foT' fbstp to finish

BCD byte value in use
ASCII character value
Return value
BCD mask '" Ofh
BCD shift count"" 4

bx ASCII string field width
SI BCD field index
di ASCII string -Field painter
ds. es: ASCII string segment base

from the number

Get BCD byte
Copy value
Get high oT'der digit
Set zero flag
Exit loop if leading non zero found

Get BCD byte again
Get low order digit
Exit loop if non zero digit found

Decrement BCD index
Jn, sk ip_Iead ing_z eroes

The significand wa, ."
moY a" '0 ' Set initial
stosb
inc b, Bump string length
Jm, short exit _with_value

Now expand the BCD string into digit pel' byte values 0-9

ah, bcd_byteCsiJ
moy 0011. ah
'he al. cl

odd

add 0011, '0'
stosb
moy a1, ah
and al. ch
inc b,

even:

add a}, '0'
stosb
inc b,
de, ,\
Jn, d 19 1 t_lOIJP

Conversion complete

di,size_ptr
word ptr Cdi], bx
ax, dx

Jmp exitJroc

G.t BCD byte

G.t high oT'der diQlt

Convert to ASCII
Put digit into ASCI I strlng
Get low order digit

Bump field size counteT'

Convert to ASCI I
Put dlglt into ASCII area
Bump field sIze counter
Go to next BCD bljte

Set the string si ze and remainder.

i Set return value

floating_to_ascii endp
code ends

end

ASSEMBLY COMPLETE, NO WARNINGS. NO ERRORS

Figure 4-6. Floating-Point to ASCII Conversion Routine (Cont'd.)

4-12 122164-001

i AP X286 MACRO ASSEMBLER

LOC OB.J

0000 aOOQDQOOOOOOFO
3F

0008 00000000000024
40

0010 00000000000059
40

0018 0000000000408F
40

0020 000000000088C 3
40

0028 00000000006AF8
40

0030 ooOOa00080B42E
41

0038 00000000001263
41

0040 00000000840797
41

0048 0000000065CDCD
41

0050 000000205FA002
42

0058 OOOOOOE8764837
42

0060 OOOOOOA2941 A60
42

0068 OOOQ40E59C30A2
42

0070 OOOQ901EC4BCD6
42

0078 a0003426F56BOC
43

0080 aOBOE03779C341
43

0088 aOAOD885573476
43

0090 OOCB4E676DCIAB
43

0098

0098 301200
0098 770F

0090 53
009E 8808
eOAD CIE3D3
aDA3 2EDDB70000
OOAa 58
OQA9 D9F4
DOAD C3

DOAC

OOAC D9E9
aOAE C 8040000
0032 8946FE
OOB5 DE4EFE
0088 9BD97EFC
DOBe BB46FC
DOBF 25FFF3
OOC2 OD0004
OOCS 8746FC

DOCS D9EB
aOCA D9EO
Doce D9Cl
DOCE D96EFC

NUMERIC PROGRAMMING EXAMPLES

Calculate the value of 10**ax 12: 11: 08 09J;!5/83 PAGE

LINE SOURCE

1 +1 $title("Calculate the value of 10**ax")
2
3 This subroutine liJill calculate the value of 10**ax.
4 For values of 0 <= ax -(19, the result liJill exact
5 All 80286 registers are transparent and the value is r-etur-ned on
6 the TOS as tliJO number-s, exponent in ST(1) and fraction in ST(O)
7 The exponent value can be larger than the largest exponent of an
8 extended real format number-. Three stack entril!'s are used.
9

10 get_power-_10
11
12 public get_poliJer-_l0. power-_table
13
14
15
16
17
18

" 20
21

22

23

24

25

26
27
28
29
30
31
32
33
34
35
36
37
38
3.
40
41
42
43
44
45
46
47
48
4.
50
51
52
53
54
55
56
57
58
59
60
61

stack stackseg 8

code segment £or public

Use exact values fr-om 1. 0 to le18.

; Optimize 16 bit accesa
power _table

even
d. 1.0, let. 1e2, 1£'3

d. le4, le5, le6, 1£07

d. le8. le9. 1el0, le11

d. 1e12, 1£013, 1e14, le15

d. le16, 1017, lel8

cmp ax,18
Ja out_of _range

push b x
mov bx. ax
shl bx,3
fld power _table[bxl
pop bx
fxtract
rot

Test for 0 <= ax < 19

Get working index r-egister
For-m table index

Get exact value
Restore register value
Separate power- and fraction
OJ.(, to leave fxtr-act running

Calculate the value using the exponentiate instr-uction.
The folloliJing relations al'e used:

10**x "" 2**(10g2(10)*x)
2**(I+F) "" 2**1 * 2**F
if st(l) :: I and st(O) = 2**F then fscale pl'oduces 2**(l+F)

fld12t
entel' 4.0
mov Cbp-2], ax
fimul liJord ptr Cbp-2J
fstcw word ptr [bp-41
mov ax, liJord ptr [bp-4J
and ax, not OCOOH
or ax.0400H
xchg ax, liJord ptr [bp-41

fldl
fchs
fld st(l)
fldcw word ptr (bp-4]

TOS == LOG2(10)
Format stac k
Save pOliJel' of 10 value
TOS. X = LOG2(10)*P :: LOG2(10**P)
Get current control word
Get control 1iJ0l'd. no liJait nec£Ossar",
Mask off current rounding field
Set round to negative infinitlJ
Put neliJ control word in memory
old control word is in ax
Set TOS "" -1. 0

Copy pOliJer value in base two
Set new control word value

Figure 4-6. Floating-Point to ASCII Conversion Routine (Cont'd.)

4-13 122164-001

NUMERIC PROGRAMMING EXAMPLES

iAPX286 MACRO ASSEMBLER Calculate the value of 10**ax 12: 11; 08 09/25/83 PAGE

Lac aB" LINE SOURCE

QODl D9FC 62 frndint
0003 8946FC 63 .'v word ,tr [bp-4], ax

TOS = I: -inf < I (= X, I is an integer
Restore original rounding control

00D6 D96EFC 6. f!ldcw
0009 D9CA 65 fKch
OODa DBE2 66 fsub
OODD 8B46FE 67 .'v
OOEO D9FD 68 f~cale

OOE2 D9FO 6' f2l1'ml
OOE4 C9 70 leave
OOES DEEl 71 f~ubr
OOE7 DCC8 72 fmul

OOE9 C3 73 ret
7.
7. get_poWl!'r _ 10
76
77 code
78

ASSEMBL Y COMPLETE. NO WARNINGS, NO ERRORS

word ph
st(2)
st.st(2)
all'. [bp-2J

st.st(O)

endp

ends
end

tbp-4J
TOS"" X. STel) = -1.0. ST(2) "" I
TOS, F = X-I: 0 (= TOS < L 0
Restore pOlder of ten
TOS = F/2: 0 <= TOS < 0.5
TOS .:= 2*.(F/2) - 1. 0
Restore stat k

J Form 2**(F/2)
Form 2**F
OK to leave fmu 1 l'unn i ng

iAPX'286 MACRO ASSEMBLER Determine TOS register t:ontents 12: 12: 13 09/25/83 PAGE

SERIES-III iAPX286 MACRO ASSEMBLER X1QB ASSEMBLY OF MODULE TOS STATUS
OBJECT MODULE PLACED IN : F3: TOSST. OB') -
ASSEMBLER INVOKED BY: A8M286.86: F3: TOSST. AP2

LOC aBJ

0000

0000 D9E5
0002 9BDFEO
0005 8AC4
0007 250740
OOOA COEC03
0000 OAC4
OOOF B400
0011 C3

LINE SOURCE

1 +1 $title("Determine TOS register contents")
2
3

•
5
6
7
8

• 10
11
12
13
I.
15
16
17
18
I.
20
21
22
23
2.
25
26
27
28
2'
30

stack

code

code

This subroutine will return a value from 0-15 in AX corresponding
to the contents 01' 80287 TOS. All registers are transparent and no
errors srE! possible The T'eturn value corresponds to c3. ,2. c1. cO
of! FXAM instruction.

public

fll'am
fstsw .,v
and
,hr

.,v
ret

stackseg 6

segment er public

proc

.,
011. ah
ax.4007h
ah.3
011. ah
ah.O

endp

ends
end

Allocate space on the stack

Get register contents status
Get status
Put bit 10-8 into bits 2-0
Mask out bits c3, c2, cl. cO
Put bit c3 into bit 11
Put c3 into bit 3
Clear return value

ASSEMBLY COMPLETE. NO WARNINGS, NO ERRORS

Figure 4-6. Floating-Point to ASCII Conversion Routine (Cont'd.)

Function Partitioning

Three separate modules implement the conversion. Most of the work of the conversion is done in the
module FLOATlNG_TO_ASCII. The other modules are provided separately, because they have a
more general use. One of them, GET_POWER_IO, is also used by the ASCII to floating-point conver­
sion routine. The other small module, TOS_ST A TUS, will identify what, if anything, is in the top of
the numeric register stack.

4-14 122164-001

inter NUMERIC PROGRAMMING EXAMPLES

Exception Considerations

Care is taken inside the function to avoid generating exceptions. Any possible numeric value will be
accepted. The only exceptions possible would occur if insufficient space exists on the numeric register
stack.

The value passed in the numeric stack is checked for existence, type (NaN or infinity), and status
(unnormal, denormal, zero, sign). The string size is tested for a minimum and maximum value. If the
top of the register stack is empty, or the string size is too small, the function will return with an error
code.

Overflow and underflow is avoided inside the function for very large or very small numbers.

Special Instructions

The functions demonstrate the operation of several numeric instructions, different data types, and
precision control. Shown are instructions for automatic conversion to BCD, calculating the value of 10
raised to an integer value, establishing and maintaining concurrency, data synchronization, and use of
directed rounding on the NPX.

Without the extended precision data type and built-in exponential function, the double precision accuracy
of this function could not be attained with the size and speed of the shown example.

The function relies on the numeric BCD data type for conversion from binary floating-point to decimal.
It is not difficult to unpack the BCD digits into separate ASCII decimal digits. The major work involves
scaling the floating-point value to the comparatively limited range of BCD values. To print a 9-digit
result requires accurately scaling the given value to an integer between 108 and 109 • For example, the
number +0.123456789 requires a scaling factor of 109 to produce the value +123456789.0, which
can be stored in 9 BCD digits. The scale factor must be an exact power of 10 to avoid to changing any
of the printed digit values.

These routines should exactly convert all values exactly representable in decimal in the field size given.
Integer values that fit in the given string size will not be scaled, but directly stored into the BCD form.
Noninteger values exactly representable in decimal within the string size limits will also be exactly
converted. For example, 0.125 is exactly representable in binary or decimal. To convert this floating­
point value to decimal, the scaling factor will be 1000, resulting in 125. When scaling a value, the
function must keep track of where the decimal point lies in the final decimal value.

Description of Operation

Converting a floating-point number to decimal ASCII takes three major steps: identifying the magni­
tude of the number, scaling it for the BCD data type, and converting the BCD data type to a decimal
ASCII string.

Identifying the magnitude of the result requires finding the value X such that the number is repre­
sented by I*10x , where 1.0 <= I < 10.0. Scaling the number requires multiplying it by a scaling
factor lOS, so that the result is an integer requiring no more decimal digits than provided for in the
ASCII string.

Once scaled, the numeric rounding modes and BCD conversion put the number in a form easy to
convert to decimal ASCII by host software.

4-15 122164-001

inter NUMERIC PROGRAMMING EXAMPLES

Implementing each of these three steps requires attention to detail. To begin with, not all floating-point
values have a numeric meaning. Values such as infinity, indefinite, or Not a Number (NaN) may be
encountered by the conversion routine. The conversion routine should recognize these values and identify
them uniquely.

Special cases of numeric values also exist. Denormals, unnormals, and pseudo zero all have a numeric
value but should be recognized, because all of them indicate that precision was lost during some earlier
calculations. .

Once it has been determined that the number has a numeric value, and it is normalized setting appro­
priate unnormal flags, the value must be scaled to the BCD range.

Scaling the Value

To scale the number, its magnitude must be determined. It is sufficient to calculate the magnitude to
an accuracy of I unit, or within a factor of 10 of the given value. After scaling the number, a check
will be made to see if the result falls in the range expected. If not, the result can be adjusted one
decimal order of magnitude up or down. The adjustment test after the scaling is necessary due to
inevitable inaccuracies in the scaling value.

Because the magnitude estimate need only be close, a fast technique is used. The magnitude is estimated
by multiplying the power of 2, the unbiased floating-point exponent, associated with the number by
loglO2. Rounding the result to an integer will produce an estimate of sufficient accuracy. Ignoring the
fraction value can introduce a maximum error of 0.32 in the result.

Using the magnitude of the value and size of the number string, the scaling factor can be calculated.
Calculating the scaling factor is the most inaccurate operation of the conversion process. The relation
IOx=2**(X*log,lO) is used for this function. The exponentiate instruction (F2XMI) will be used.

Due to restrictions on the range of values allowed by the F2XMl instruction, the power of 2 value will
be split into integer and fraction components. The relation 2**(1 + F) = 2**1 * 2**F allows using
the FSCALE instruction to recombine the 2**F value, calculated through F2XMl, and the 2**1 part.

INACCURACY IN SCALING

The inaccuracy of these operations arises because of the trailing zeros placed into the fraction value
when stripping off the integer valued bits. For each integer valued bit in the power of 2 value separated
from the fraction bits, one bit of precision is lost in the fraction field due to the zero fill occurring in
the least significant bits.

Up to 14 bits may be lost in the fraction because the largest allowed floating point exponent value is
2'4-1.

AVOIDING UNDERFLOW AND OVERFLOW

The fraction and exponent fields of the number are separated to avoid underflow and overflow in
calculating the scaling values. For example, to scale 10-4932 to 10' requires a scaling factor of 10495°,
which cannot be represented by the NPX.

By separating the exponent and fraction, the scaling operation involves adding the exponents separate
from multiplying the fractions. The exponent arithmetic will involve small integers, all easily repre­
sented by the NPX.

4-16 122164-001

NUMERIC PROGRAMMING EXAMPLES

FINAL ADJUSTMENTS

It is possible that the power function (GeLPoweclO) could produce a scaling value such that it forms
a scaled result larger than the ASCII field could allow. For example, scaling 9.9999999999999999 X
104900 by 1.00000000000000010 X lQ-m3 would produce 1.00000000000000009 X 10 1'. The scale
factor is within the accuracy of the NPX and the result is within the conversion accuracy, but it cannot
be represented in BCD format. This is why there is a post-scaling test on the magnitude of the result.
The result can be multiplied or divided by 10, depending on whether the result was too small or too
large, respectively.

Output Format

For maximum flexibility in output formats, the position of the decimal point is indicated by a binary
integer called the power value. If the power value is zero, then the decimal point is assumed to be at
the right of the rightmost digit. Power values greater than zero indicate how many trailing zeros are
not shown. For each unit below zero, move the decimal point to the left in the string.

The last step of the conversion is storing the result in BCD and indicating where the decimal point lies.
The BCD string is then unpacked into ASCII decimal characters. The ASCII sign is set corresponding
to the sign of the original value.

TRIGONOMETRIC CALCULATION EXAMPLES

The 80287 instruction set does not provide a complete set of trigonometric functions that can be used
directly in calculations. Rather, the basic building blocks for implementing trigonometric functions are
provided by the FPT AN and FPREM instructions. The example in figure 4-7 shows how three trigon­
ometric functions (sine, cosine, and tangent) can be implementing using the 80287. All three functions
accept a valid angle argument between - 262 and + 262. These functions may be called from
PL/M-286, Pascal-286, FORTRAN-286, or ASM286 routines.

These trigonometric functions use the partial tangent instruction together with trigonometric identities
to calculate the result. They are accurate to within 16 units of the low 4 bits of an extended precision
value. The functions are coded for speed and small size, with tradeoffs available for greater accuracy.

FPT AN and FPREM

These trigonometric functions use the FPT AN instruction of the NPX. FPT AN requires that the angle
argument be between 0 and 7r /4 radians, 0 to 45 degrees. The FPREM instruction is used to reduce
the argument down to this range. The low three quotient bits set by FPREM identify which octant the
original angle was in.

One FPREM instruction iteration can reduce angles of 10 18 radians or less in magnitude to 7r / 4! Larger
values can be reduced, but the meaning of the result is questionable, because any errors in the least
significant bits of that value represent changes of 45 degrees or more in the reduced angle.

4-17 122164-001

inter NUMERIC PROGRAMMING EXAMPLES

Cosine Uses Sine Code

To save code space, the cosine function uses most of the sine function code. The relation sin (I A I +
7f' /2) = cos (A) is used to convert the cosine argument into a sine argument. Adding 7f' /2 to the angle
is performed by adding 0102 to the FPREM quotient bits identifying the argument's octant.

It would be very inaccurate to add 7f' /2 to the cosine argument if it was very much different from
7f'/2.

Depending on which octant the argument falls in, a different relation will be used in the sine and
tangent functions. The program listings show which relations are used.

For the tangent function, the ratio produced by FPTAN will be directly evaluated. The sine function
will use either a sine or cosine relation depending on which octant the angle fell into. On exit, these
functions will normally leave a divide instruction in progress to maintain concurrency.

If the input angles are of a restricted range, such as from 0 to 45 degrees, then considerable optimiza­
tion is possible since full angle reduction and octant identification is not necessary.

All three functions begin by looking at the value given to them. Not a Number (NaN), infinity, or
empty registers must be specially treated. Unnormals need to be converted to normal values before the
FPTAN instruction will work correctly. Denormals will be converted to very small unnormals that do
work correctly for the FPTAN instruction. The sign of the angle is saved to control the sign of the
result.

Within the functions, close attention was paid to maintain concurrent execution of the 80287 and host.
The concurrent execution will effectively hide the execution time of the decision logic used in the
program.

iAPX286 MACRO ASSEMBLER 80287 TrignometT'ic Functions 10: 13: 51 09/25/83 PAGE

SERIES-III iAPX286 MACRO ASSEMBLER Xl08 ASSEMBLV OF MODULE TRIG_FUNCTIONS
OBJECT MODULE PLACED IN : F3: TRIG. DB")
ASSEMBLER INVO~ED BY: ASM286.86: F3: TRIG. AP2

LOC DB,) LINE

1 +1
2
3

• 5
6
7

SOURCE

$title("B0287 Trignometric Functions")

name tri9_-Functions
public sine. cosine. tangent

stack stackseg j Reser e local space

B sw_287 record res1: 1. cond3: 1. top: 3, cond2: 1. tend1: 1. condO: 1.

0000 35C26821A2DAOF
C9FE3F

OOOA OOOOCOFF

9
10
11
12
13
I.
15 ,.
17
18 +1

&I 1'e52: 8

code segment aT' public

indefinite
$eJect

Define local constants.

even
dt 3FFEC90FDAA2216SC235R

d d OFFCOOOOOR

PI/4

Indefinite special value

Figure 4-7. Calculating Trigonometric Functions

4-18 122164-001

iAPX286 MACRO ASSEMBLER

LOC OBJ

CODE

DODE 0009
0010 7501

0012 C3

0013

0013 E80901
0016 E82F

0018

0018 09E5
001A 9BDFEO
0010 2EOB2EOOOO
0022 13101
0024 9E
0025 7263

0027 D9C9
0029 7A1C

0028 DDD9
002D 75E4

NUMERIC PROGRAMMING EXAMPLES

80287 T1' i gnometr i c Func t ions 10; 13: 51 09125/83 PAGE

LINE

19
20
21
22
23
24
25
26
27
28
2.
30
31
32
33
34
35
36
37
38
3.
40
41
42
43
44
45 +1
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
6.
70
71

SOURCE

72 +1 $I!Ject

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112

This subroutine calculates the sine or cosine of the angle. given in
radians. The angle is in ST(O), the returned value will be in 5T(0)'
The result is accurate to within 7 units of the least significant three
bits of the NPX extended real format, The PLM/86 definition is

sine: procedure (angled real external;
d£'clare angle real!
end sine;

procedure (angle) real external;
declare angle ,. •• 1;

end cosine;

Three staclc registers are rl'quired. The result of the function is
defined follows foT' the following arguments:

angle result

valid unnormal less than 2**62 in magnitude correct value
D or 1 zero

denormal
val id or unnormal
inf i ni t\j

greater than 2**62
correct denormal
indefinite
indef'inite

NAN NAN
empty empty

This function is based on the NPX f'ptan instruction. The f'ptan
instruction will only work with an angle of' f'rom 0 to PI/4. With this
instruction. the sine or cosine of' angles f'rom 0 to PI/4 can be accuratell:!
calculated. The technillue used by this routine can calculate a general
Slne or COSlne b\j using one 0-1' four possible operations:

Let R = iangle mod PI/4:
S = -lor 1. according to the sign of the angle

1) sin (R) 2) cos(R) 3) sin(PI/4-R) 4) cos(PI/4-R)

The choice of' the relation and the sign of' the result follow~ the
decision table shown below based on the octant the angle falls in:

oc tant cosine

S*l
S*.
5*2 -1*1
S*3 -1*4

-6*1 -1*2
-8*4 -1*3
-5*2 1
-6*3 4

Angle to sine f'unction is a zero or unnormal.

fstp st(l)
Jnz enter _sine_normal ize

Angle

r.t

Angle unnormal.

call normalize_value
Jmp short enter_sine

proc

fxam
f'stsw ax
fld pi_quarter
mov c1. 1
sahf
JC funn\j_parameter

Angle " unnorrnal. normal.

f'xch

". enter - sine

Angle " an unnormal

fstp st (1)

In, enter _sine_normal i ze

Angle i. a lero cos (0) = 10

Remove PI/4
Jump if angle is unnormal

Entr\j point to cosine

Look at the value
Store status value
Setup for ang Ie reduce
Signal cosine f'unction
ZF "" C3, PF = C2, CF = CO
,Jump if' parameter is
empt\j. NAN. or infinit\j

denormal.

; st(O) = angle. st(1) =: PI/4
; ,Jump if normal or denormal

; Remove PI/4

Figure 4·7. Calculating TrigonometriC Functions (Cont'd.)

4-19 122164-001

iAPX286 MACRO ASSEMBLER

LOC DB,,)

002F ODDS
0031 D9E8
0033 C3

0034

0034 D9E5
0036 9BDFEO
0039 2EDB2EOOOO
D03E 9E
D03F 7249

0041 D9C9
0043 BI00
0045 7BC7

0047
0047 D9FB

0049 93
004A 9BDFEO

0040 93
004E F6C704
0051 7544

0053 D9El

0055 DAe9
0057 740F

0059 80E4FD
DOSe BoeFBD

D05F 80C740
0062 BODO
0064 DODO
0066 32FB

0068

0068 F6C702
006B 7404

0060 DEE9
006F EBDE

0071

0071 D9E4
0073 91
0074 9BDFEO
0077 91
0078 DDD9
007A F6C540
0070 7514

NUMERIC PROGRAMMING EXAMPLES

80287 Trignometric Functions 10: 13: 51 09/25/83 PAGE

LINE

113

"' 115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
13'
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
IS'
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
17.
175
176
177
178
17'
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
20'
203
204
205
206

SOURCE

fstp
fldl
rot

I Remove 0
Return 1

All work is done as a sine function. By adding PI/2 to the angle
iii co&ine is converted to a sine. Of' course the angle addition is not
done to the argument but r~ther to the program logic control values.

fxam
fstsw a.
fld pi_ttuarter
sahf

Angle is unnormal. normal,

Ixeh
cl. 0

Entry point for sine function

Look at the parameter
Look at f)ljjlm status
Get PI/4 value

J CF = CO. PF = C2. ZF = C3
-.Jump if empty. NAN. or infinity

denormal.

, 5T(U = Pl/04, st(O) angle
J Signal sine
J -.Jump if zero or unnormal

ST{O) is either II normal 01' denormal value. Both will work.
Use the fprem instruction to accurately reduce the range of the given
angle to within ° and PI/4 in magnitude. If fprem cannot reduce the
angle in one shot, the angle is too big to be meaningful, > 2**62
radians. Any roundoff errol' in the calculation of the angle given
could completely change the result of this function. It is safest to
call this very rare case an error.

enter_sine:
fprem Reduce angle

xchg ax, b x
fstsw ax

xchg ax. bx
test bh, high(mask cond2)
Jnz angle_too_big

Note that fprem will force a
denormal to a very small unnormal
Fptan of III very small unnormal
will be the same very small
unnormal, which is correct.
Save old status in BX
Check if reduction was complete
Quotient in CO, C3, Cl
Put new status in bx
sin(2*N*PI+x) '" sin(x)

Set sign flags and test for which eighth of the revolution the
angle fell into.

Assert: -PI/4 (st(O) (PI/4

fab 5

or
J'

c 1. c I
sine_select

Force the argument positive
condl bit in bx holds the sign
Test for sine or cosine fUnction
-.Jump if sine function

This is a cosine function. Ignore the original sign of the angle
and add a quarter revolution to the octant id from the fprem instruction.
coslA) = sin(A+PI/2) and cos(iAi) "" cos (A)

and

add
mov
rd

alhnot high(mask ccndl)
bh, BOH

bh,high(mask eond3)

al, °
aL 1
bh, a 1

Turn off sign of argument
Prepare to add 010 to CO, C3, Cl
status value in ax
Set busy bit sO carry out from
C3 will go into the carry flag
Extract carry flag
Put carry flag in low bit
Add carry to CO not changing
Cl flag

See if the argument should be l'eversed, depending
which the argument fell during fprem.

the octant in

_select:

test bh, high(mask condl>

Angle was in octants 1.3,5,7.

fsub
Jm,

Angle Ulas in octants 0,2,4,6.

; Reverse angle if Cl '" 1

Invert sense of rotation
o < arg <= PI/4

Test for a zero argument since Tptan will not work if st(O) "" 0

o_s i ne_rever 5e:

ftst Test for lero angle
xehg ax, cx
Tf>tsw ax cond3'" 1 if st<O) "" 0
xchg
fstp st(l) Remove PII4
test ch, high(mask cond3) j If C3"'1, argument is zero
Jnz sine_argument_tero

Figure 4-7. Calculating Trigonometric Functions (Cont'd.)

4-20 122164-001

iAPX286 MACRO ASSEMBLER

LOC QBJ

007F

007F D9F2

0081

0081 F6C742
0084 70lA

0086 09Cl
008S E81A

OOSA

OOSA ODDS
Dose 7404

008E 7B02

0090 09F8

0092 C3

0093

0093 09E8
0095 EBEA

0097

0097 CED9
0099 2ED9060AQQ
009E 98
009F C3

DOAa

DOAD D9CO
OOA2 D9CA

OOA4

OOM ccce
OOA6 D9C9
OOAa ccce
OOAA DEC 1
OOAC D9FA

OOAE 80E701
OOBI 80E402
0084 DAFe
OOB6 7A02

00B8 D9EO

DOD A

OOSA DEF9
DODC C3

NUMERIC PROGRAMMING EXAMPLES

80287 Trignometric Functions 10: 13: 51 09/25/83 PAGE

LINE

207
208
20.
210
211
212
213
214
215
216
217
218
21'
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
24'
250
251
252
253
254
255
256
257
258
25.
260
261
262
263
264
265
266
267
268
26'
270
271
272
273
274
27S
276
277
278
27.
280
281
282
283
284
285
286
287
288
289
2.0
291
2'2
293
294
2'5
296 +1

2'7
2.8

2.'
300

SOURCE

Assert: 0 .: st(O) <:= PI/4

fptan ; TAN 5nO) = ST<1>/ST(O) ".. V/X

test bh,highCmask cond3'" mask tendi); Look at octant angle fell into
Jpo X_numerator Calculate cosine for octants

1,2,5,6

Calculate the sine of the argument
sin(Al "" tan(Al/sllrt(1+tan(A)**2)
sin(Al '" Y/sqrt(X*X + Y*Y)

'1 d
Jmp

st (1)
short finish_sine

if tan (A) "" Y/X then

; Copy Y value
, Put Y value in numerator

The top of the stack is either NAN, infinity, or empty

funnYJarameter:

fstp st (0) Remove PI/4
J z return_empty Return empty if no parm

JPo return_NAN .Jump if st(O) is NAN

st(O) is infinity. Return an indefinite value

fprem ; STll1 can be anything

return_NAN:
return_emp ty:

ret ; Ok to leave fprem running

Simulate fptan with st(Q) '" Q

5 i ne_argument_z ero

fl d 1 ; Simulate tan (0)

Jmp after _sine_fptan ; Return the zero value

The angle was too laT'ge Remove the modulus and dividend from the
stack and T'eturn an indefinite result.

fcompp
fld indefinite
fwait
ret

Calculate the cosine of the argument

Pop two values from the stOIC k
RetuT'n indefinite
Wait for load to finish

costA) = I/sqT't(1+tan(A)**2) if tan(A) = Y/X then
cos (A) '" X/sqT't(X*X -+- y*y)

X _numeT'atoT':

firdsh -

fld st(O) Copy X value
fxch st(2) Put X in numeT'atoT'

sine·

fmul st, st(O)
fu:h
fmul st. st (0)

fadd stlQ) = X*X -+- Y*Y
fsqrt st(Ol "" sqrt(X*X + Y*Y)

Form the sign of the result. The two conditions aT'e the Ci flag from
FXAM in bh and the CO flag from fprem in ah

Jpe

fc hs

bh,high(mask condO)
ah, high(mask cond1)
bh, ah
positive_sine

Look at the fp"l'em CO flag
Look at the fxam Cl flag
Evan numbl!T' of flags cancel
Two negatives make a positive

Force T'esult negative

pOSItive_sine

cosine
$eJect

fdiv

ret

endp

Form final result

Ok to leave fdiv running

This function will calculate the tangent of an angle
Ttl-e angle, in radians is passed in ST(O), the tangent is retuT'ned
in 5T(0). The tangent is calculated to an accuracy of 4 units in the.

Figure 4-7. Calculating Trigonometric Functions (Cont'd.)

4-21 122164-001

inter

iAPX286 MACRO ASSEMBLER

LOC DB,)

ooeD

OOBO D9E5
DoaF 9BDFEO
OOC2 2EDB2f;:OOOO
DOC? 9E
DOCS 72CO

aOCA D9C9
Doce 7Ai7

DOCE

DOCE D9FB

0000 93
0001 90DFEO

0004 93
0005 F6C?04
0008 7580

DODA 09E1

DODe F6C702
DOOF 740E

OOEl DEE9
00E3 EB 18

00E5

00E5 DOD9
OOE7 7405

NUMERIC PROGRAMMING EXAMPLES

80287 Trignometric Functions 10: 13: 51 09/25/83 PAGE

LINE

301
302
303
304
305
30.
307
308
30'
310
311
312
313
314
31S
31.
317
318
31.
320
321
322
323
324
325
32.
327
328
32.
330
331
332
333
334
335
33.
337
338
33.
340
341
342
343
344
345
34.
347
348
34.
350
351
352
353
354
355
35.
357
358
35.
3.0
3.,
3.2
3.3
3.4
3.5
3 ••
3.7
3.8
3.'
370
371
372
373
374
375
37.
377
37B
37.
380
381
382
383
38.
3B5
386
387
3B8
38.
3'0
3"
3.2
3'3
3"
3'5

SOURCE

least three significant bits of an extended real format number. The
PLM/B6 calling format is:

tangent: procl!odure (angle) T'eal external;
declare angle reali
end tangent;

Two stack registers are used. The result of the tangent function is
defined faT' the following cases:

angle result

valid 01' unnormal < 2**62 in magnitudll'
o
dlPnormal
valid Dr unnormal)- 2**62 in magnitude
NAN
infinity
empty

correct value
o
cor'l'ect denormal
ind&finite
NAN
indefinite
IPmptli

The tangent inlitruction
relations are used:

the fptan instruction. Four possible

LlPt R "" langle MOD PI/41
S "" -1 or 1 depending the sign of the angle

1) tan(R) 2) tan(PI/4-R> 3> l/tan(R) 4) l/tan(PI/4-R)

The following table is used to decide which relation to use dlPpending
on in IIIhich octant the angle fell.

octant relation

0 S*1
1 S*4
2 -9*3
3 -9*2
4 S*1
S S*4

• -9*3
7 -9*2

tanglPnt proc

fxam
fstsw
fl'
sahf
J'

AngllP

fxch
J"

.,
pl_lluarter

funnYJarameter

;. unnormal, normaL

tan _zero_ unnormal

Look at the parameter
Get flam status
Get PII4
CF :;; CO, PF "" C2, ZF:;; C3

denormal.

; st(O) "" angle, sHl) "" PI/4

Angle is either an normal or denormal.
RE'duce the angle to tile range -PII4 -(result -(PI/4.
If fprem cannot perform this operation in one try, the magnitude of the
angle must be > 2**62. Such an angle is so large that any rounding
errors could make a very large differencE' in the reduced angle.
It is safest to call this very rare case an E'r1'or.

fprem

xchg ax, bx
fstsw ax

xchg ax, bx
test bh, high(mask cond2)
Jnz angle_too_big

SeE' if thE' angle must be reversE'd.

Assert: -PI/4 -(st(O) -(PIl4

Quotient in CO, C3, Cl
Convert d&normals into unnormals

Quotient identifies octant
original angle fell into

Test for complete reduction
Exit if! angle was too big

fabs a <= st<O) -(PII4

test
J'

bil, high (mask tond1)
no_tan_reversE'

C3 in bx has the sign flag
must be revE'rsed

Angle fell in octants 1.3,5,7. Reverse it, subtract it from PI/4.

fsub

J.'
Angle is either zero or an unnormal.

fstp st(1)

Angle i9 an unnormal

RevE'rse ang IE'

; Remove PI/4

Figure 4-7. Calculating Trigonometric Functions (Cont'd.)

4-22 122164-001

i AP X286 MACRO ASSEMBLER

LOC OBJ

OOE9 E83300
QOEe EBEO

QGEE

QGEE C3

OOEF

COEF 09E4
OOFt 91
OOF2 9BDFEO
OOFS 91
OOFb 0009
OOFS F6C:540
OOFB 7515

COFO

OOFO D9F2

DOFF

COFF BAC?
0101 254002

0104 F6C742

0107 7BOD

0109 OAC4
010B 7A02

0100 09EO

OlOF

OIOF DEF9
0111 C3

0112

0112 09E8
0114 EBE'?

0116

0116 OAC4
0118 7A02

GIlA 09EO

QllC

Olie DEF1
011E C3

a11F

011F 09E1
0121 D9F4
0123 09E8
0125 Dec 1
0127 DEE9
0129 D9FD
0128 0009
0120 2E082EOOOO
0132 09C9
0134 C3

NUMERIC PROGRAMMING EXAMPLES

90287 Trignometrit Functions 10: 13: 51 09/25/83 PAGE

LINE

396
397
398
399
400
401
402
403
404
405
406

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

SOURCE

call
Jmp

normalize_value
t<iln_norma 1

Angle fell 1n octants 0,2,4,6 Test for st(Q) '" 0, fptan won't work

tan reverse

f'tst
xc hg
fstsw
xchg
fstp
test
In,

fp tan

ax, ex
st (1)

ch,high(mask cond3)
tan_zero

Test for zero ang Ie

C3 '" 1 if st(O) '" 0

Remove PI/4

i tan 5T(0) '" 9T(1)/5T(0)

after _tangent:

Decide on the order of the operands and their sign for the divide
operation while the fptan instruction is working

mov aI, bh Get a copy of fprem C3 flag
and ax, mask cond! + high(mask cond3); Examine fprem C3 flag and

FXAM Cl flag
test bh,high(mask condl + mask cond3); Use reverse divide if

octants 1,2,5,6
Jpo reverse_divide Note~ parity works low

8 bits only!

Angle was in octants 0.3.4,7
Test for the sign of the result Two negatives cancel.

al. ah
Jpe positive_divide

fchs ; Force result negative

p os i t i ve _d i v ide·

fd iv
ret

TId!
Jmp after _tangent

Angle was in octants 1. 2, 5, 6
Set the correct sign of the result

al, ah
Jpe positive_r _divide

Form result
Ok to leave fd iv running

; Force 1/0 = tan(PI/2)

fchs ; Force result negative

fd ivr
ret

Form reciprol:al of result
Ok to leave fdiv running

tangent endp

This function will normalize the value in st(O)
Then PI/4 is placed into st(1)

nor-malize_value

fab s
fxtract
TId 1

fadd
·hub
fscal e
fstp
fld
fxch
ret

cod e ends
end

st(1),st

st (1)

pi_quarter

Force value positive
o <:= stCO) <: 1
Get normalize bit
Normalize fraction
Restore original value
Form original normalized
Remove scale factor
Get PI/4

value

ASSEMBLY COMPLETE, NO WflIRNINGS, NO ERRORS

Figure 4-7. Calculating Trigonometric Functions (Cont'd.)

4-23 122164-001

Append~ A
Machine Instruction
Encoding And Decoding

APPENDIX A
MACHINE INSTRUCTION ENCODING AND DECODING

Machine instructions for the 80287 come in one of five different forms as shown in table A-I. In all
cases, the instructions are at least two bytes long and begin with the bit pattern 1101 1B, which identi­
fies the ESCAPE class of instructions. Instructions that reference memory operands are encoded much
like similar CPU instructions, because all of the CPU memory-addressing modes may be used with
ESCAPE instructions.

Note that several of the processor control instructions (see table 2-11 in Chapter Two) may be preceded
by an assembler-generated CPU WAIT instruction (encoding: 10011011B) if they are programmed
using the WAIT form of their mnemonics. The ASM286 assembler inserts a WAIT instruction only
before these specific processor control instructions-all of the numeric instructions are automatically
synchronized by the 80286 CPU and an explicit WAIT instruction, though allowed, is not necessary.

Table A-1. 80287 Instruction Encoding

Lower-Addressed Byte Higher-Addressed Byte 0, 1, or 2 bytes

(1) 1 1 0 1 1 OP-A 1 MOD 1 OP-B R/M DISPLACEMENT

(2) 1 1 0 1 1 FORMAT OP-AMOD OP-B R/M DISPLACEMENT

(3) 1 1 0 1 1 R P OP-A 1 1 OP-B REG

(4) 1 1 0 1 1 0 0 1 1 1 1 OP

(5) 1 1 0 1 1 0 1 1 1 1 1 OP

7 6 5 4 3 2 o 7 6 5 4 3 2 o

NOTES:

(1)Memory transfers, including applicable processor control instructions; 0, 1, or 2 displacement bytes may
follow.

(2)Memory arithmetic and comparison instructions; 0, 1, or 2 displacement bytes may follow.

(3)Stack arithmetic and comparison instructions.

(4)Constant, transcendental, some arithmetic instructions.

(5)Processor control instructions that do not reference memory.

OP, OP-A, OP-B: Instruction opcode, possibly split into two fields.

MOD: Same as 80286 CPU mode field.

R/M: Same as 80286 CPU register/memory field.

FORMAT: Defines memory operand
00 = short real
01 = short integer
10 = long real
11 = word integer

R: 0 = return result to stack top
1 = return result to other register

P: 0 = do not pop stack
1 = pop stack after operation

A-1 122164-001

MACHINE INSTRUCTION ENCODING AND DECODING

REG: register stack element
000 = stack top
001 = next on stack
010 = third stack element, etc.

Table A-2 lists all 80287 machine instructions in binary sequence. This table may be used to "disassem­
ble" instructions in unformatted memory dumps or instructions monitored from the data bus. Users
writing exception handlers may also find this information useful to identify the offending instruction.

Table A-2. Machine Instruction Decoding Guide

1st Byte

2nd Byte Bytes 3, 4
ASM286 Instruction

Hex Binary Format

08 1101 1000 MOOOO OR/M (disp-Io),(disp-hi) FAOO short-real
08 1101 1000 MOOOO 1R/M (disp-Io),(disp-hi) FMUL short-real
08 1101 1000 M0001 OR/M (disp-Io),(disp-hi) FCOM short-real
08 1101 1000 M0001 1R/M (disp-Io),(disp-hi) FCOMP short-real
08 1101 1000 M0010 OR/M (disp-Io),(disp-hi) FSUB short-real
08 1101 1000 M0010 1RjM (disp-Io),(disp-hi) FSUBR short-real
08 1101 1000 M0011 OR/M (disp-Io),(disp-hi) FDIV short-real
08 1101 1000 M0011 1R/M (disp-Io),(disp-hi) FOIVR short-real
08 1101 1000 1100 OREG FAOO ST,ST(i)
08 1101 1000 1100 1REG FMUL ST,ST(i)
08 1101 1000 1101 OREG FCOM ST(i)
08 1101 1000 1101 1REG FCOMP ST(i)
08 1101 1000 1110 OREG FSUB ST,ST(i)
08 1101 1000 1110 1REG FSUBR ST,ST(i)
08 1101 1000 1111 OREG FOIV ST,ST(i)
08 1101 1000 1111 1REG FDIVR ST,ST(i)
09 1101 1001 MOOOO OR/M (disp-Io),(disp-hi) FLO short-real
09 1101 1001 MOOOO 1R/M reserved
09 1101 1001 M0001 OR/M (disp-Io),(disp-hi) FST short-real
09 1101 1001 M0001 1R/M (disp-Io),(disp-hi) FSTP short-real
09 1101 1001 M0010 OR/M (disp-Io),(disp-hi) FLDENV 14-bytes
09 1101 1001 M0010 1R/M (disp-Io),(disp-hi) FLOCW 2-bytes
09 1101 1001 M0011 OR/M (disp-Io),(disp-hi) FSTENV 14-bytes
09 1101 1001 M0011 1R/M (disp-Io),(disp-hi) FSTCW 2-bytes
09 1101 1001 1100 OREG FLO ST(i)
09 1101 1001 1100 1REG FXCH ST(i)
09 1101 1001 1101 0000 FNOP
09 1101 1001 1101 0001 reserved
09 1101 1001 1101 001- reserved
09 1101 1001 1101 01-- reserved
09 1101 1001 1101 1REG *(1)
09 1101 1001 1110 0000 FCHS
09 1101 1001 1110 0001 FABS
09 1101 1001 1110 001- reserved
09 1101 1001 1110 0100 FTST
09 1101 1001 1110 0101 FXAM
09 1101 1001 1110 011- reserved
09 1101 1001 1110 1000 FL01
09 1101 1001 1110 1001 FLOL2T
09 1101 1001 1110 1010 FLOL2E
09 1101 1001 1110 1011 FLOPI
09 1101 1001 1110 1100 FLOLG2

A-2 122164-001

MACHINE INSTRUCTION ENCODING AND DECODING

Table A-2. Machine Instruction Decoding Guide (Cont'd.)

1st Byte

2nd Byte Bytes 3, 4
ASM286 Instruction

Hex Binary Format

D9 1101 1001 1110 1101 FLDLN2
D9 1101 1001 1110 1110 FLDZ
D9 1101 1001 1110 1111 reserved
D9 1101 1001 1111 0000 F2XM1
D9 1101 1001 1111 0001 FYL2X
D9 1101 1001 1111 0010 FPTAN
D9 1101 1001 1111 0011 FPATAN
D9 1101 1001 1111 0100. FXTRACT
D9 1101 1001 1111 0101 reserved
D9 1101 1001 1111 0110 FDECSTP
D9 1101 1001 1111 0111 FINCSTP
D9 1101 1001 1111 1000 FPREM
D9 1101 1001 1111 1001 FYL2XP1
D9 1101 1001 1111 1010 FSQRT
D9 1101 1001 1111 1011 reserved
D9 1101 1001 1111 1100 FRNDINT
D9 1101 1001 1111 1101 FSCALE
D9 1101 1001 1111 111- reserved
DA 1101 1010 MODOO ORjM (disp-Io),(disp-hi) FIADD short-integer
DA 1101 1010 MODOO 1RjM (disp-Io),(disp-hi) FIMUL short-integer
DA 1101 1010 MOD01 ORjM (disp-Io),(disp-hi) FICOM short-integer
DA 1101 1010 MOD01 1RjM (disp-Io),(disp-hi) FICOMP short-integer
DA 1101 1010 MOD10 ORjM (disp-Io),(disp-hi) FISUB short-integer
DA 1101 1010 MOD10 1RjM (disp-Io),(disp-hi) FISUBR short-integer
DA 1101 1010 MOD11 ORjM (disp-Io),(disp-hi) FIDIV short-integer
DA 1101 1010 MOD11 1RjM (disp-Io),(disp-hi) FIDIVR short-integer
DA 1101 1010 11-- ---- reserved
DB 1101 1011 MODOO ORjM (disp-Io),(disp-hi) FILD short-integer
DB 1101 1011 MODOO 1RjM (disp-Io),(disp-hi) reserved
DB 1101 1011 MOD01 ORjM (disp-Io),(disp-hi) FIST short-integer
DB 1101 1011 MOD01 1RjM (disp-Io),(disp-hi) FISTP short-integer
DB 1101 1011 MOD10 ORjM (disp-Io),(disp-hi) reserved
DB 1101 1011 MOD10 1RjM (disp-Io),(disp-hi) FLD temp-real
DB 1101 1011 MOD11 ORjM (disp-Io),(disp-hi) reserved
DB 1101 1011 MOD11 1RjM (disp-Io),(disp-hi) FSTP temp-real
DB 1101 1011 110- ---- reserved
DB 1101 1011 1110 0000 reserved (8087 FEN I)
DB 1101 1011 1110 0001 reserved (8087 FDISI)
DB 1101 1011 1110 0010 FCLEX
DB 1101 1011 1110 0011 FINIT
DB 1101 1011 1110 0100 FSETPM
DB 1101 1011 1110 1--- reserved
DB 1101 1011 1111 ---- reserved
DC 1101 1100 MODOO ORjM (disp-Io),(disp-hi) FADD long-real
DC 1101 1100 MODOO 1RjM (disp-Io),(disp-hi) FMUL long-real
DC 1101 1100 MOD01 ORjM (disp-Io),(disp-hi) FCOM long-real
DC 1101 1100 MOD01 1RjM (disp-Io),(disp-hi) FCOMP long-real
DC 1101 1100 MOD10 ORjM (disp-Io),(disp-hi) FSUB long-real
DC 1101 1100 MOD10 1RjM (disp-Io),(disp-hi) FSUBR long-real
DC 1101 1100 MOD11 ORjM (disp-Io),(disp-hi) FDIV long-real
DC 1101 1100 MOD11 1RjM (disp-Io),(disp-hi) FDIVR long-real
DC 1101 1100 1100 OREG FADD ST(i),ST
DC 1101 1100 1100 1REG FMUL ST(i),ST
DC 1101 1100 1101 OREG *(2)

A-3 122164-001

MACHINE INSTRUCTION ENCODING AND DECODING

Table A·2. Machine Instruction Decoding Guide (Cont'd.)

1st Byte

2nd Byte Bytes 3, 4 ASM286 Instruction

Hex Binary Format

DC 1101 1100 1101 lREG *(3)
DC 1101 1100 1110 OREG FSUB ST(i),ST
DC 1101 1100 1110 lREG FSUBR ST(i),ST
DC 1101 1100 1111 OREG FDIV ST(i),ST
DC 1101 1100 1111 1REG FDIVR ST(i),ST
DO 1101 1101 MODOO OR/M (disp-Io),(disp-hi) FLO long-real
DO 1101 1101 MODOO lR/M reserved
DO 1101 1101 MODOl OR/M (disp-Io),(disp-hi) FST long-real
DO 1101 1101 MODOl lR/M (disp-Io),(disp-hi) FSTP long-real
DO 1101 1101 MOD10 OR/M (disp·lo),(disp-hi) FRSTOR 94-bytes
DO 1101 1101 MOD10 lR/M (disp-Io),(disp-hi) reserved
DO 1101 1101 MOD11 OR/M (disp·lo),(disp-hi) FSAVE 94-bytes
DO 1101 1101 MODll lR/M (disp-Io),(disp-hi) FSTSW 2-bytes
DO 1101 1101 1100 OREG FFREE ST(i)
DO 1101 1101 1100 lREG *(4)
DO 1101 1101 1101 OREG FST ST(i)
DO 1101 1101 1101 lREG FSTP ST(i)
DO 1101 1101 111- ---- reserved
DE 1101 1110 MODOO OR/M (disp-Io),(disp-hi) FIADD word-integer
DE 1101 1110 MODOO lR/M (disp-Io),(disp-hi) FIMUL word-integer
DE 1101 1110 MODOl OR/M (disp-Io),(disp-hi) FICOM word-integer
DE 1101 1110 MODOl lR/M (disp-Io),(disp-hi) FICOMP word-integer
DE 1101 1110 MOD10 OR/M (disp-Io),(disp-hi) FISUB word-integer
DE 1101 1110 MOD10 lR/M (disp-Io),(disp-hi) FISUBR word-integer
DE 1101 1110 MODll OR/M (disp-Io),(disp-hi) FIDIV word-integer
DE 1101 1110 MODll lR/M (disp-Io),(disp-hi) FIDIVR word-integer
DE 1101 1110 1100 OREG FADDP ST(i),ST
DE 1101 1110 1100 lREG FMULP ST(i),ST
DE 1101 1110 1101 0--- *(5)
DE 1101 1110 1101 1000 reserved
DE 1101 1110 1101 1001 FCOMPP
DE 1101 1110 1101 101- reserved
DE 1101 1110 1101 11-- reserved
DE 1101 1110 1110 OREG FSUBP ST(i),ST
DE 1101 1110 1110 lREG FSUBRP ST(i),ST
DE 1101 1110 1111 OREG FDIVP ST(i),ST
DE 1101 1110 1111 lREG FDIVRP ST(i),ST
OF 1101 1111 MODOO OR/M (disp-Io),(disp-hi) FILD word-integer
OF 1101 1111 MODOO lR/M (disp-Io),(disp-hi) reserved
OF 1101 1111 MODOl OR/M (disp-Io),(disp-hi) FIST word-integer
OF 1101 1111 MODOl lR/M (disp-Io),(disp-hi) FISTP word-integer
OF 1101 1111 MOD10 OR/M (disp-Io),(disp-hi) FBLD packed-decimal
OF 1101 1111 MOD10 lR/M (disp-Io),(disp-hi) FILD long-integer
OF 1101 1111 MODll OR/M (disp-Io),(disp-hi) FBSTP packed-decimal
OF 1101 1111 MODll lR/M (disp-Io),(disp-hi) FISTP long-integer
OF 1101 1111 1100 OREG *(6)
OF 1101 1111 1100 lREG *(7)
OF 1101 1111 1101 OREG *(8)
OF 1101 1111 1101 lREG *(9)
OF 1101 1111 1110 000 FSTSWAX
OF 1101 1111 1111 XXX reserved

A-4 122164-001

MACHINE INSTRUCTION ENCODING AND DECODING

NOTE:

• The marked encodings are not generated by the language translators. If, however, the 80287 encounters
one of these encodings in the instruction stream, it will execute it as follows:

(1) FSTP ST(i)

(2) FCOM ST(i)

(3) FCOMP ST(i)

(4) FXCH ST(i)

(5) FCOMP ST(i)

(6) FFREE ST(i) and pop stack

(7) FXCH ST(i)

(8) FSTP ST(i)

(9) FSTP ST(i)

A-5 122164-001

Appendix B
Compatibility Between
The 80287 NPX And The 8087

APPENDIX B
COMPATIBILITY BETWEEN

THE 80287 NPX AND THE 8087

The iAPX 286/20 operating in Real-Address mode will execute iAPX 86/20 programs without major
modification. However, because of differences in the handling of numeric exceptions by the 80287
NPX and the 8087 NPX, exception-handling routines may need to be changed.

This appendix summarizes the differences between the 80287 NPX and the 8087 NPX, and provides
details showing how iAPX 86/20 programs can be ported to the iAPX 286/20.

1. The NPX signals exceptions through a dedicated ERROR line to the 80286. The NPX error
signal does not pass through an interrupt controller (the 8087 INT signal does). Therefore, any
interrupt-controller-oriented instructions in numeric exception handlers for the iAPX 86/20 should
be deleted.

2. The 8087 instructions FENI/FNENI and FDlSI/FNDlSI perform no useful function in the 80287.
If the 80287 encounters one of these opcodes in its instruction stream, the instruction will effec­
tively be ignored-none of the 80287 internal states will be updated. While iAPX 86/20 code
containing these instructions may be executed on the iAPX 286/20, it is unlikely that the excep­
tion-handling routines containing these instructions will be completely portable to the 80287.

3. Interrupt vector 16 must point to the numeric exception handling routine.

4. The ESC instruction address saved in the 80287 includes any leading prefixes before the ESC
opcode. The corresponding address saved in the 8087 does not include leading prefixes.

5. In Protected-Address mode, the format of the 80287's saved instruction and address pointers is
different than for the 8087. The instruction opcode is not saved in Protected mode-exception
handlers will have to retrieve the opcode from memory if needed.

6. Interrupt 7 will occur in the 80286 when executing ESC instructions with either TS (task switched)
or EM (emulation) of the 80286 MSW set (TS = 1 or EM = 1). If TS is set, then aWAIT instruc­
tion will also cause interrupt 7. An exception handler should be included in iAPX 286/20 code to
handle these situations.

7. Interrupt 9 will occur if the second or subsequent words of a floating-point operand fall outside a
segment's size. Interrupt 13 will occur if the starting address of a numeric operand falls outside a
segment's size. An exception handler should be included in iAPX 286/20 code to report these
programming errors.

8. Except for the processor control instructions, all of the 80287 numeric instructions are automati­
cally synchronized by the 80286 CPU-the 80286 automatically tests the BUSY line from the
80287 to ensure that the 80287 has completed its previous instruction before executing the next
ESC instruction. No explicit WAIT instructions are required to assure this synchronization. For
the 8087 used with iAPX 86 and iAPX 88 processors, explicit WAITs are required before each
numeric instruction to ensure synchronization. Although iAPX 86/20 programs having explicit
WAIT instructions will execute perfectly on the iAPX 286/20 without reassembly, these WAIT
instructions are unnecessary.

9. Since the 80287 does not require WAIT instructions before each numeric instruction, the ASM286
assembler does not automatically generate these WAIT instructions. The ASM86 assembler,
however, automatically precedes every ESC instruction with aWAIT instruction. Although numeric
routines generated using the ASM86 assembler will generally execute correctly on the iAPX 286/
20, reassembly using ASM286 may result in a more compact code image.

The processor control instructions for the 80287 may be coded using either a WAIT or No-WAIT
form of mnemonic. The WAIT forms of these instructions cause ASM286 to precede the ESC
instruction with a CPU WAIT instruction, in the identical manner as does ASM86.

8-1 122164·001

COMPATIBILITY BETWEEN THE 80287 NPX AND THE 8087

10. A recommended way to detect the presence of an 80287 in an iAPX 286 system (or an 8087 in an
iAPX 86 system) is shown below. It assumes that the sytem hardware causes the data bus to be
high if no 80287 is present to drive the data lines during the FSTSW (Store 80287 Status Word)
instruction.

F N D 287: F N I NIT
FSTSTW STAT

MoV AX,STAT
OR A L , A L
JZ GOT 287

No 80287 Present

SMSW A X
OR AX,0004H

LMSW A X

JMP CONTINUE

initialize numeric processor.
store status word into location
STAT.

Zero Flag reflects result of OR.
Zero in AL means 80287 is
present.

set EM bit in Machine Status
Word.
to enable software emulation of
287.

80287 is present in system

GOT 287: SMSW
OR
LMSW

Continue

A X
AX,0002H
A X

set MP bit in Machine Status Word
to permit normal 80287 operation

CONTINUE: j and off we go

An 80286/80287 design must place a pullup resistor on one of the low eight data bus bits of the
80286 to be sure it is read as a high when no 80287 is present.

8-2 122164-001

Appendix C
Implementing The
IEEE P754 Standard

APPENDIX C
IMPLEMENTING THE IEEE P7 54 STANDARD

The iAPX 286/20 computing system, containing the 80287 NPX and standard support library software,
provides an implementation of the IEEE "A Proposed Standard for Binary Floating-Point Arithmetic,"
Draft 10.0, Task P754, of December 2, 1982. The 80287 Support Library, described in 80287 Support
Library Reference Manual, Order Number 122129, is an example of such a support library.

This appendix describes the relationship between the 80287 NPX and the IEEE Standard. Where the
Standard has options, Intel's choices in implementing the 80287 are described. Where portions of the
Standard are implemented through software, this appendix indicates which modules of the 80287
Support Library implement the Standard. Where special software in addition to the Support Library
may be required by your application, this appendix indicates how to write this software.

This appendix contains many terms with precise technical meanings, specified in the 754 Standard.
Where these terms are used, they have been capitalized to emphasize the precision of their meanings.
The Glossary provides the definitions for all capitalized phrases in this appendix.

OPTIONS IMPLEMENTED IN THE 80287

The 80287 SHORT_REAL and LONG_REAL formats conform precisely to the Standard's Single
and Double Floating-Point Numbers, respectively. The 80287 TEMP_REAL format is the same as the
Standard's Double Extended format. The Standard allows a choice of Bias in representing the exponent;
the 80287 uses the Bias 16383 decimal.

For the Double Extended format, the Standard contains an option for the meaning of the minimum
exponent combined with a nonzero significand. The Bias for this special case can be either 16383, as
in all the other cases, or 16382, making the smallest exponent equivalent to the second-smallest exponent.
The 80287 uses the Bias 16382 for this case. This allows the 80287 to distinguish between Denormal
numbers (integer part is zero, fraction is nonzero, Biased exponent is 0) and Unnormal numbers of the
same value (same as the denormal except the Biased Exponent is 1).

The Standard allows flexibility in specifying which NaNs are trapping and which are nontrapping. The
EH287.LIB module of the 80287 Support Library provides a software implementation of nontrapping
NaNs, and defines one distinction between trapping and nontrapping NaNs: If the most significant bit
of the fractional part of a NaN is 1, the NaN is nontrapping. If it is 0, the NaN is trapping.

When a masked Invalid Operation error involves two NaN inputs, the Standard allows flexibility in
choosing which NaN is output. The 80287 selects the NaN whose absolute value is greatest.

AREAS OF THE STANDARD IMPLEMENTED IN SOFTWARE

There are five areas of the Standard that are not implemented directly.in the 80287 hardware; these
areas are instead implemented in software as part of the 80287 Support Library.

1. The Standard requires that a Normalizing Mode be provided, in which any nonnormal operands
to functions are automatically normalized before the function is performed. The NPX provides a
"Denormal operand" exception for this case, allowing the exception handler the opportunity to
perform the normalization specified by the Standard. The Denormal operand exception handler

C-1 122164-001

inter IMPLEMENTING THE IEEE P754 STANDARD

provided by EH287.LIB implements the Standard's Normalizing Mode completely for Single- and
Double-precision arguments. Normalizing mode for Double Extended operands is implemented in
EH287.LIB with one non-Standard feature, discussed in the next section.

2. The Standard specifies that in comparing two operands whose relationship is "unordered," the
equality test yield an answer of FALSE, with no errors or exceptions. The 80287 FCOM and
FTST instructions themselves issue an Invalid Operation exception in this case. The error handler
EH287.LIB filters out this Invalid Operation error using the following convention: Whenever an
FCOM or FTST instruction is followed by a MOV AX,AX instruction (8BCO Hex), and neither
argument is a trapping NaN, the error handler will assume that a Standard equality comparison
was intended, and return the correct answer with the Invalid Operation exception flag erased.
Note that the Invalid Operation exception must be unmasked for this action to occur.

3. The Standard requires that two kinds of NaN's be provided: trapping and nontrapping. Nontrap­
ping NaNs will not cause further Invalid Operation errors when they occur as operands to calcu­
lations. The NPX hardware directly supports only trapping NaN's; the EH287.LIB software
implements nontrapping NaNs by returning the correct answer with the Invalid Operation excep­
tion flag erased. Note that the Invalid Operation exception must be unmasked for this action to
occur.

4. The Standard requires that all functions that convert real numbers to integer formatsautomati­
cally normalize the inputs if necessary. The integer conversion functions contained in CEL287.LIB
fully meet the Standard in this respect; the 80287 FIST instruction alone does not perform this
normalization.

5. The Standard specifies the remainder function which is provided by mqerRMD in CEL287.LIB.
The 80287 FPREM instruction returns answers within a different range.

ADDITIONAL SOFTWARE TO MEET THE STANDARD

There are two cases in which additional software is required in conjunction with the 80287 Support
Library in order to meet the standard. The 80287 Support Library does not provide this software in
the interest of saving space and because the vast majority of applications will never encounter these
cases.

I. When the Invalid Operation exception is masked, Nontrapping NaNs are not implemented fully.
Likewise, the Standard's equality test for "unordered" operands is not implemented when the
Invalid Operation exception is masked. Programmers can simulate the Standard notion of a masked
Invalid Operation exception by unmasking the 80287 Invalid Operation exception, and providing
an Invalid Operation exception handler that supports nontrapping NaNs and the equality test, but
otherwise acts just as if the Invalid Operation exception were masked. The 80287 Support Library
Reference Manual contains examples for programming this handler in both ASM286 and
PL/M-286.

2. In Normalizing Mode, Denormal operands in the TEMP_REAL format are converted to 0 by
EH287.LIB, giving sharp Underflow to O. The Standard specifies that the operation be performed
on the real numbers represented by the denormals, giving gradual underflow. To correctly perform
such arithmetic while in Normalizing Mode, programmers would have to normalize the operands
into a format identical to TEMP_REAL except for two extra exponent bits, then perform the
operation on those numbers. ThUg, software must be written to handle the 17 -bit exponent explicitly.

In designing the EH287.LIB, it was felt that it would be a disadvantage to most users to increase the
size of the Normalizing routine by the amount necessary to provide this expanded arithmetic. Because
the TEMP_REAL exponent field is so much larger than the LONG_REAL exponent field, it is
extremely unlikely that TEMP_REAL underflow will be encountered in most applications.

C-2 122164-001

IMPLEMENTING THE IEEE P754 STANDARD

If meeting the Standard is a more important criterion for your application than the choice between
Normalizing and warning modes, then you can select warning mode (Denormal operand exceptions
masked), which fully meets the Standard.

If you do wish to implement the Normalization of denormal operands in TEMP_REAL format using
extra exponent bits, the list below indicates some useful pointers about handling Denormal operand
exceptions:

1. TEMP_REAL numbers are considered Denormal by the NPX whenever the Biased Exponent is
o (minimum exponent). This is true even if the explicit integer bit of the significand is 1. Such
numbers can occur as the result of Underflow.

2. The 80287 FLD instruction can cause a Denormal Operand error if a number is being loaded
from memory. It will not cause this exception if the number is being loaded from elsewhere in the
80287 stack.

3. The 80287 FCOM and FTST instructions will cause a Denormal Operand exception for un normal
operands as well as for denormal operands.

4. In cases where both the Denormal Operand and Invalid Operation exceptions occur, you will want
to know which is signalled first. When a comparison instruction operates between a nonexistent
stack element and a denormal number in 80286 memory, the D and I exceptions are issued simul­
taneously In all other situations, a Denormal Operand exception takes precedence over a nonstack
Invalid operation exception, while a stack Invalid Operation exception takes precedence over a
Denormal Operand exception.

C-3 122164-001

Appendix D
80287 80-Bit HMOS
Numeric Processor Extension

80287
80-Bit HMOS

NUMERIC PROCESSOR EXTENSION
80287-3

• High Performance 80-Bit Internal
Architecture

• Implements Proposed IEEE Floating
Point Standard 754

• Expands iAPX 286/10 Datatypes to
Include 32-, 64-, 80-Bit Floating Point,
32-, 64-Bit Integers and 18-Digit BCD
Operands

• Object Code Compatible with 8087

• Built-in Exception Handling

• Operates in Both Real and Protected
Mode iAPX 286 Systems

• Protected Mode Operation Completely
Conforms to the iAPX 286 Memory
Management and Protection
Mechanisms

• Directly Extends iAPX 286/10 Instruction
Set to Trigonometric, Logarithmic,
Exponential and Arithmetic Instructions
for All Datatypes

• 8x80-Bit, Individually Addressable,
Numeric Register Stack

• Available in EXPRESS-Standard
Temperature Range

The Intel® 80287 is a high performance numerics processor extension that extends the iAPX 286/10
architecture with floating point, extended integer and BCD data types. The iAPX 286/20 computing system
(80286 with 80287) fully conforms to the proposed IEEE Floating Point Standard. Using a numerics
oriented architecture, the 80287 adds over fifty mnemonics to the iAPX 286/20 instruction set, making the
iAPX 286/20 a complete solution for high performance numeric processing. The 80287 is implemented in
N-channel, depletion load, silicon gate technology (HMOS) and packaged in a 40-pin ceramic package.
The iAPX 286/20 is object code compatible with the iAPX 86/20 and iAPX 88/20.

BUS INTERFACE UNIT NUMERIC EXECUTION UNIT

1-----'--------------1
I ['~(lNl ~ T liON I

1 I BU'; BUS 1+----,
I r-:EC----'l
I I
I I

I ,
I :
I f 1-------1
I ~-------1

I
I
I
I
I

. I ~
t;=;:::=:J L _____ 1- ____ ~-_...'Z."~_-_'_. ____ .-3

Figure 1. 80287 Block Diagram

51 READY

CKM

HLDA

CLK286

015 PEACK

014 RESET

013 NP$1

012 NP52

Vee ClK

Vss CMD1

Vss
01. CMoo

N.C. NPWR

DO NPRD
DB ERROR
01 BUSY

DO PEREQ

05 o.
04

03

NOTE:
N.C. PINS MUST NOT BE CONNECTED.

Figure 2. 80287 Pin Configuration

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit
Patent Licenses are Implied. OCTOBER 1983

© INTEL CORP?RATION, 1983. ORDER NUMBER: 210920-002

D-1 122164-001

inter 80287

Table 1. 80287 Pin Description

Symbols Type Name and Function

ClK I Glock input: this clock provides the basic timing for internal 80287 opera-
tions. Special MaS level inputs are required. The 82284 or 8284A ClK
outputs are compatible to this input.

CKM I Clock Mode signal: indicates whether ClK input is to be divided by 3 or
used directly. A HIGH input will cause ClK to be used directly. This input
may be connected to Vcc or Vss as appropriate. This input must be either
HIGH or lOW 20 ClK cycles before RESET goes law.

RESET I System Reset: causes the 80287 to immediately terminate its present ac-
tivity and enter a dormant state. RESET is required to be HIGH for more than
480287 ClK cycles. For proper initialization the HIGH-lOW transition must
occur no sooner than 50 ILs after Vee and ClK meet their D.C. and A.C.
specifications.

015-00 I/O Data: 16-bit bidirectional data bus. Inputs to these pins may be applied
asynchronous to the 80287 clock.

BUSY a Busy status: asserted by the 80287 to indicate that it is currently executing
a command.

ERROR a Error status: reflects the ES bit of the status word. This signal indicates
that an unmasked error condition exists.

PEREa a Processor Extension Data Channel operand transfer request: a HIGH on
this output indicates that the 80287 is ready to transfer data. PEREa will be
disabled upon assertion of PEACK or upon actual data transfer. whichever
occurs first, if no more transfers are required.

PEACK I Processor Extension Data Channel operand transfer ACKnowledge: ack-
nowledges that the request signal (PEREa) has been recognized. Will
cause the request (PEREa) to be withdrawn in case there are no more
transfers required. PEACK may be asynchronous to the 80287 clock.

NPRD I Numeric Processor Read: Enables transfer of data from the 80287. This
input may be asynchronous to the 80287 clock.

NPWR I Numeric Processor Write: Enables transfer of data to the 80287. This input
may be asynchronous to the 80287 clock.

NPS1, NPS2 I Numeric Processor Selects: indicate the CPU is performing an ESCAPE instruc-
tion. Concurrent assertion of these signals (Le., NPS1 is lOW and NPS2 is
HIGH) enables the 80287 to perform floating point instructions. No data trans-
fers involving the 80287 will occur unless the device is selected via these
lines. These inputs may be asynchronous to the 80287 clock.

CMD1, CMDO I Command lines: These, along with select inputs, allow the CPU to directthe
operation of the 80287.
These inputs may be asynchronous to the 80287 clock.

0-2 122164-001

80287

Table 1. 80287 Pin Description (cont.)

Symbols Type Name and Function

ClK286 I CPU Clock: This input provides a sampling edge for the 80287 inputs 51, SO,
COD/INTA, READY, and HlDA. It must be connected to the 80286 ClK input.

51, SO I Status: These inputs must be connected to the corresponding 80286 pins.
COD/INTA

HlDA I Hold Acknowledge: This input informs the 80287 when the 80286 controls
the local bus. It must be connected to the 80286 HlDA output.

READY I Ready: The end of a bus cycle is signaled by this input. It must beconnected
to the 80286 READY input.

Vss I System ground, both pins must be connected to ground.

Vee I +5V supply

FUNCTIONAL DESCRIPTION effectively extends the register and instruction set
of an iAPX 286/10 system for existing iAPX 286
data types and adds several new data types as well.
Figure 3 presents the program visible register
model of the iAPX 286/20. Essentially, the 80287
can be treated as an additional resource or an
extension to the iAPX 286/10 that can be used as a
single unified system, the iAPX 286/20.

The 80287 Numeric Processor Extension (NPX)
provides arithmetic instructions for a variety of
numeric data types in iAPX 286/20 systems. It also
executes numerous built-in transcendental func­
tions (e.g., tangent and log functions). The 80287
executes instructions in parallel with a 80286. It

80286

a I 15 FILE' 79 78

AX I R1 SIGN EXPONENT

BX I
R2

CX I
R3

OX I
R4

Sl I
R5

01 I
RS

BP I
R7

SP I
RS

I
L __ ,

r-15 ___ -:::---__ ..,O I

I FL:GS :
L ____,

r-'5 ________ ...lf,0 I

gl I i

80287
STACK:

64 63

SIGNIFICAND

15

CONTROL REGISTER

STATUS REGISTER

TAG WORD

I- INSTRUCTION POINTER -

t- DATA POINTER -

Figure 3. iAPX 286/20 Architecture

D-3

TAG FIELD
0 1 0

o

122164-001

inter 80287

The 80287 has two operating modes similar to the
two modes of the 80286. When reset, 80287 is in
the real address mode. It can be placed in the
protected virtual address mode by executing the
SETPM ESC instruction. The 80287 cannot be
switched back to the real address mode except by
reset. In the real address mode, the iAPX 286/20 is
completely software compatible with iAPX 86/20,
88/20.

Once in protected mode, all references to memory
for numerics data or status information, obey the
iAPX 286 memory management and protection
rules giving a fully protected extension of the
80286 CPU. In the protected mode, iAPX 286/20
numerics software is also completely compatible
with iAPX 86/20 and iAPX 88/20.

SYSTEM CONFIGURATION
As a processor extension to an 80286, the 80287
can be connected to the CPU as shown in Figure 4.
The data channel control signals (PEREO,
PEACK), the BUSY signal and the NPRD, NPWR
signals, allow the NPX to receive instructions and
data from the CPU. When in the protected mode, all
information received by the NPX is validated by the
80286 memory management and protection unit.
Once started, the 80287 can process in parallel
with and independent of the host CPU. When the
NPX detects an error or exception, it will indicate
this to the CPU by asserting the ERROR Signal.

The NPX uses the processor extension request and
acknowledge pins of the 80286 CPU to implement
data transfers with memory under the protection
model of the CPU. The full virtual and physical
address space of the 80286 is available. Data for
the 80287 in memory is addressed and represented
in the same manner as for an 8087.

The 80287 can operate either directly from the CPU
clock or with a dedicated clock. For operation with
the CPU clock (CKM=O), the 80287 works at one­
third the frequency of the system clock (i.e., for an
8 MHz 80286, the 16 MHz system clock is divided
down to 5.3 MHz). The 80287 provides a capability
to internally divide the CPU clock by three to pro­
duce the required internal clock (33% duty cycle).
To use a higher performance 80287 (8 MHz), an
8284A clock driver and appropriate crystal may be
used to directly drive the 80287 with a 1/3 duty
cycle clock on the ClK input (CKM=1).

HARDWARE INTERFACE
Communication of instructions and data operands
between the 80286 and 80287 is handled by the
CMDO, CMD1, NJ5Sf, NPS2, f\ll5R'(), and fJI5WR sig­
nals. I/O port addresses 00F8H, OOFAH, and OOFCH
are used by the 80286 for this communication. When
any of these addresses are used, the NJ5Sf input
must be lOW and NPS2 input HIGH. The lORe and
TOWC outputs of the 82288 identify I/O space trans­
fers (see Figure 4). CMDO should be connected to
latched 80286 A 1 and CMD1 should be connected to
latched 80286 A2. The ST, sa, COD/INTA,~,
HlDA, and ClK pins of the 80286 are connected to
the same named pins on the 80287.

I/O ports 00F8H to OOFFH are reserved for the
80286/80287 interface. To guarantee correct oper­
ation of the 80287, programs must not perform any
I/O operations to these ports.

The PEREO, PEACK, BUSY, and ERROR signals of
the 80287 are connected to the same-named 80286
input. The data pins of the 80287 should be directly
connected to the 80286 data bus. Note that all bus
drivers connected to the 80286 local bus must be
inhibited when the 80286 reads from the 80287.
The use of COD/INTA and M/ra in the decoder
prevents INTA bus cycles from disabling the data
transceivers.

PROGRAMMING INTERFACE

Table 2 lists the seven data types the 80287 sup­
ports and presents the format for each type. These
values are stored in memory with the least signifi­
cant digits at the lowest memory address. Pro­
grams retrieve these values by generating the
lowest address. All values should start at even
addresses for maximum system performance.

Internally the 80287 holds all numbers in the tem­
porary real format. load instructions automati­
cally convert operands represented in memory as
16-, 32-, or 64-bit integers, 32- or 64-bit floating
point number or 18-digit packed BCD numbers
into temporary real format. Store instructions per­
form the reverse type conversion.

80287 computations use the processor's register
stack. These eight 80-bit registers provide the
equivalent capacity of 40 16-bit registers. The
80287 register set can be accessed as a stack, with

0-4 122164-001

Vee

20 KO

RESET I--+-i----,

READY 1-+--11--.

82284 CLK I--

511--

Vee
?

~;

80287

20K"

I ADDRESS

r--~~~I~~-~--~~~~~~~-~T~~~~~cr~~~r.~~!cT~~~~IT~;~~~~~C'--
A ,5-Ao

"--+-+--1 RESET

READY I--t-l-++t-+~-I READY

82288

C~ C~

511--t-<H+~--j-t-i51
SO 1-+--1-+-1-+--++--1 SO

M/iO I--+-H-++-H-+--I M/iO

80286

0 ,5 -00 f--~

I- ERROR PEREa I-t-

.- BUSY PEACK ~
COD/iNl'A HLDA

DT/R I-+-H-++----I-+-----..1I---i---+-+--1

ALEI--+-H-+-+----I-+-----..1I---i---+-+--1

-I
- I. 0 0 0

IORC CODIINTA HLDA I-+-t-~----IIC~ a a

'----t-t--t RESET PEACK c- ;---.

'----+-t--t READY PEREa ~ ~
.---+-t--t CLK286 T ~

,-+---+-1-,51 0 ,5-00 1--__ -=D.:.;AT.:.;.A-=--_____ --._r-'T"""'4 8~~6
L--+---++-fSO 80287 8287

'------
NPRD NPS2 -Vee
--
NPWR NPS1

r- ERROR CMD1

'-- BUSY CMDO
CLK CKM

,----,
:[:--1 1 /'
C' 8284A -------0

:i:J 1 L ___ ..J

Figure 4. iAPX 286/20 System Configuration

0-5 122164-001

80287

Table 2. 80287 Oatatype Representation in Memory

Most Significant Byte HIGHEST ADDRESSED BYTE
Oat.a

Range Precision

01 7 01 7 01 7 01 7 01 7 01 7 01 7 01 7 01 7 o 1 Formats 7

Word Integer 104 16 Bits ;1 I (TWOS S MAGNITUDE COMPLEMENT)

15 0

Short Integer 109 32 Bits sl MAGN(TUDE I (TWO'S
COMPLEMENT)

31 0

Long Integer 1019 64 Bits sl MAGNITUDE I (TWOS
COMPLEMENT)

63 0

MAGNITUDE
Packed BCD 1018 18 Digits sl x k d'b d'5 d q do d'2 d ll d 10 dg dB d 7 ds d, d, d, d, d,

79 72

Short Real 10±38 24 Bits ;1 BIASED I S EXPONENT SIGNIFICAND I
31 23'-- I. 0

Long Real 10±308 53 Bits si BIASED
I SIGNIFICAND J EXPONENT

63 52'L. 0 I.

BIASED Temporary Real 10±4932 64 Bits sl EXPONENT l-il SIGNIFICAND

NOTES:
(1) S = Sign bit (0 = positive, 1 = negative)
(2) dn = Decimal digit (two per byte)

79

(3) X = Bits have no significance; 8087 ignores when load­
ing, zeros when storing.

(4) ,= Position of implicit binary point
(5) I = Integer bit of significand; stored in temporary real,

implicit in short and long real

instructions operating on the top one or two stack
elements, or as a fixed register set, with instruc­
tions operating on explicitly designated registers.

Table 6 lists the 80287's instructions by class. No
special programming tools are necessary to use
the 80287 since all new instructions and data types
are directly supported by the iAPX 286 assembler

64 63·

(6) Exponent Bias (normalized values):
Short Real: 127 (7FH)
Long Real: 1023 (3FFH)
Temporary Real: 16383 (3FFFH)

(7) Packed BCD: (-1)s(D17· . Do)
(8) Real: (_1)s(2E'BIAS)(Fo F1 .. ·)

and appropriate high level languages. All iAPX
86/88 development tools which support the 8087
can also be used to develop software for the iAPX
286/20 in real address mode.

Table 3 gives the execution times of some typical
numeric instructions.

D-6 122164·001

do I
0

I
0

80287

Table 3. Execution Time for Selected 80287 Instructions

Floating Point Instruction

Add/Subtract

Multiply (single precision)

Multiply (extended precision)

Divide

Compare

Load (double precision)

Store (double precision)

Square Root

Tangent

Exponentiation

SOFTWARE INTERFACE
The iAPX 286/20 is programmed as a single pro­
cessor. All communication between the 80286 and
the 80287 is transparent to software. The CPU au­
tomatically controls the 80287 whenever a numeric
instruction is executed. All memory addressing
modes, physical memory, and virtual memory of
the CPU are available for use by the NPX.

Since the NPX operates in parallel with the CPU,
any errors detected by the NPX may be reported
after the CPU has executed the ESCAPE instruc­
tion which caused it. To allow identification of the
failing numeric instruction, the NPX contains two
pointer registers which identify the address of the
failing numeric instruction and the numeric
memory operand if appropriate for the instruction
encountering this error.

INTERRUPT DESCRIPTION

Several interrupts of the iAPX 286 are used to
report exceptional conditions while executing
numeric programs in either real or protected
mode. The interrupts and their functions are
shown in Table 4.

D-7

Approximate Execution
Time (ILs)

80287
(5 MHz Operation)

14/18

19

27

39

9

10

21

36

90

100

PROCESSOR ARCHITECTURE
As shown in Figure 1, the NPX is internally divided
into two processing elements, the bus interface
unit (BIU) and the numeric execution unit (NEU).
The NEU executes all numeric instructions, while
the BIU receives and decodes instructions, re­
quests operand transfers to and from memory and
executes processor control instructions. The two
units are able to operate independently of one
another allowing the BIU to maintain asynchro­
nous communication with the CPU while the NEU
is busy processing a numeric instruction.

BUS INTERFACE UNIT
The BIU decodes the ESC instruction executed by the
CPU. If the ESC code defines a math instruction, the
BIU transmits the formatted instruction to the NEU. If
the ESC code defines an administrative instruction,
the BIU executes it independently of the NEU. The
parallel operation of the NPX with the CPU is normally
transparant to the user. The BIU generates the I3ITSV
and ERROR signals for 80826/80287 processor syn­
chronization and error notification, respectively.

The 80287 executes a single numeric instruction at
a time. When executing most ESC instructions, the

122164-001

80287

Table 4. 80286 Interrupt Vectors Reserved for NPX

Interrupt Number Interrupt Function

7 An ESC instruction was encountered when EM or TS of the 80286 MSW was set.
EM=1 indicates that software emulation of the instruction is required. When TS is
set, either an ESC or WAIT instruction will cause interrupt 7. This indicates that the
current NPX context may not belong to the current task.

9 The second or subsequent words of a numeric operand in memory exceeded a
segment's limit. This interrupt occurs after executing an ESC instruction. The saved
return address will not point at the numeric instruction causing this interrupt. After
processing the addressing error, the iAPX 286 program can be restarted at the
return address with IRET. The address of the failing numeric instruction and
numeric operand are saved in the 80287. An interrupt handler for this interruptmust
execute FNINIT before any other ESC or WAIT instruction.

13 The starting address of a numeric operand is not in the segment's limit. The return
address will pOint at the ESC instruction, including prefixes, causing this error. The
80287 .has not executed this instruction. The instruction and data address in 80287
refer to a previous, correctly executed, instruction.

16 The previous numeric instruction caused an unmasked numeric error. The address
of the faulty numeric instruction or numeric data operand is stored in the 80287.
Only ESC or WAIT instructions can cause this interrupt. The 80286 return address
will point at a WAIT or ESC instruction, including prefixes, which may be restarted
after clearing the error condition in the NPX.

80286 tests the BUSY pin and waits until the 80287
indicates that it is not busy before initiating the com­
mand. Once initiated, the 80286 continues program
execution while the 80287 executes the ESC instruc­
tion. In iAPX 86/20 systems, this synchronization is
achieved by placing a WAIT instruction before an ESC
instruction. For most ESC instructions, the iAPX 286/20
does not require a WAIT instruction before the ESC
opcode. However, the iAPX 286/20 will operate cor­
rectly with these WAIT instructions. In all cases, a WAIT
or ESC instruction should be inserted after any 80287
store to memory (except FSTSW and FSTCW) or load
from memory (except FLOENV or FRSTOR) before the
80286 reads or changes the value to be sure the
numeric value has already been written or read by
the NPX.

Data transfers between memory and the 80287,
when needed, are controlled by the PEREQ
PEACK, NPRD, NPWR, NPS1, NPS2 signals. The
80286 does the actual data transfer with memory
through its processor extension data channel.
Numeric data transfers with memory performed by
the 80286 use the same timing as any other bus

0-8

cycle. Control signals for the 80287 are generated
by the 80826 as shown in Figure 4, and meet the
timing requirements shown in the AC require­
ments section.

NUMERIC EXECUTION UNIT
The NEU executes all instructions that involve the
register stack; these include arithmetic, logical, tran­
scendental, constant and data transfer instructions.
The data path in the NEU is 84 bits wide (68 signifi­
cand bits, 15 exponent bits and a sign bit) which
allows internal operand transfers to be performed at
very high speeds.

When the NEU begins executing an instruction, it
activates the BIU BUSY signal. This signal is used
in conjunction with the CPU WAIT instruction or
automatically with most of the ESC instructions to
synchronize both processors.

REGISTER SET
The 80287 register set is shown in Figure 5. Each of
the eight data registers in the 80287's register stack

122164-001

inter 80287

DATA FIELD TAG FIELD
~~79~~78 ________ 6_4~63 ____________________ ~O 1 0

SIGN EXPONENT SIGNIFICAND

15

CONTROL REGISTER
STATUS REGISTER

TAG WORD

- INSTRUCTION POINTER -

- DATA POINTER -

Figure 5. 80287 Register Set

is 80 bits wide and is divided into "fields" corre­
sponding to the NPX's temporary real data type.

At a given point in time the ST field in the status
word identifies the current top-of-stack register. A
"push" operation decrements ST by 1 and loads a
value into the new top register. A "pop" operation
stores the value from the current top register and
then increments ST by 1. Like 80286 stacks in
memory, the 80287 register stack grows "down"
toward lower-addressed registers.

Instructions may address the data registers either
implicitly or explicitly. Many instructions operate on
the register at the Stack Top. These instructions
implicitly address the register pointed by the ST.
Other instructions allow the programmer to explic­
itly specify the register which is to be used. This
explicit register addressing is also "top-relative."

Bits 14-12 ofthe status word paints tothe 80287 regis­
ter that is the current top-of-stack (ST) as described
above. Figure 6 shows the six error flags in bits
5-0 of the status word. Bits 5-0 are set to indicate
that the NEU has detected an exception while
executing an instruction. The section on exception
handling explains how they are set and used.

The instructions FSTSW, FSTSW AX, FSTENV, and
FSAVE which store the status word are executed
exclusively by the BIU and do not set the busy bit
themselves or require the Busy bit be cleared in
order to be executed.

The four numeric condition code bits (CO-C3) are
similar to the flags in a CPU: instructions that perform
arithmetic operations update these bits to reflect the
outcome of NPX operations. The effect of these
instructions on the condition code bits is summarized
in Tables 5a and 5b.

Bits 14-12 of the status word point tothe 80287 regis­
ter that is the current top-of-stack (8T) as described
above. Figure 6 shows the six error flags in bits 5-0
of the status word. Bits 5-0 are set to indicate that
the NEU has detected an exception while executing
an instruction. The section on exception handling
explains how they are set and used.

Bit 7 is the error summary status bit. This bit is set if
any unmasked exception bit is set and cleared other­
wise. If this bit is set, the ERROR signal is asserted.

D-9 122164-001

80287

15 o
I B I C31 ST Icd c, ICoIESI x IPEluEloElzEIDEllEI

I
EXCE PTION FLAGS (1 ~ EXCEPTION HAS OCCURRED)

INVALID OPERATION'

DENORMALIZED OPERAND"

ZERO DIVIDE"

OVERFLOW"

UNDERFLOW"

PRECISION'

(RESE RVED)
ERRO R SUMMARY STATUS(l)

TION CODE(2) CONDI

STAC K TOP POINTER(3)

BUSY NEU

(1) ES IS SET IF ANY UNMASKED EXCEPTION BIT IS SET, CLEARED OTHERWISE.
(2) SEE TABLE 1-4 FOR CONDITION CODE INTERPRETATION.
(3) ST VALUES

000 ~ REGISTER 0 IS TOP OF STACK
001 ~ REGISTER 1 IS TOP OF STACK

111 ~ REGISTER 7 IS TOP OF STACK

'FOR DEFINITIONS, SEE THE SECTION ON EXCEPTION HANDLING

Figure 6. 80287 Status Word

TAG WORD

The tag word marks the content of each register as
shown in Figure 7. The principal function of the tag
word is to optimize the NPX's performance. The eight
two-bit tags in the tag word can be used, however, to
interpret the contents of 80287 registers.

INSTRUCTION AND DATA POINTERS

The instruction and data pointers (See Figures 8a
and 8b) are provided for user-written error hand­
lers. Whenever the 80287 executes a new instruc­
tion, the BIU saves the instruction address, the
operand address (if present) and the instruction
opcode. 80287 instructions can store this data into
memory.

The instruction and data pointers appear in one of
two formats depending on the operating mode of
the 80287_ In real mode, these values are the 20-bit
physical address and 11-bit opcode formatted like
the 8087. In protected mode, these values are the
32-bit virtual addresses used by the program

which executed an ESC instruction. The same
FLDENV/FSTENV/FSAVE/FRSTOR instructions as
those of the 8087 are used to transfer these values
between the 80287 registers and memory.

The saved instruction address in the 80287 will
point at any prefixes which preceded the instruc­
tion. This is different than in the 8087 which only
pointed at the ESCAPE instruction opcode.

CONTROL WORD

The NPX provides several processing options
which are selected by loading a word from memory
into the control word. Figure 9 shows the format
and encoding of fields in the control word.

The low order byte of this control word configures
the 80287 error and exception masking. Bits 5-0 of
the control word contain individual masks for each
of the six exceptions that the 80287 recognizes.
The high order byte of the control word configures
the 80287 operating mode including precision,

D-10 122164-001

inter 80287

Table Sa. Condition Code Interpretation

Instruction
~ ~ Type

Compare. Test 0 0
0 0
1 0
1 1

Remainder 01 0

U 1

Examine 0 0
0 0
0 0
0 0
0 1
0 1
0 1
0 1
1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1

NOTES:
1. 5T = Top of stack
2. X = value is not affected by instruction
3. U = value is undefined following instruction
4. Qn = Quotient bit n

Table 5b. Condition Code Interpretation after
FPREM Instruction As a Function of

Dividend Value

Dividend Range Q2 Q1 Qo

Dividend < 2 • Modulus C3 C1 00
Dividend < 4 • Modulus C3 01 00
Dividend;;. 4 • Modulus 02 01 00

NOTE:

C1

X
X
X
X

00

U

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

1. Previousvalueof indicated bit, not affected by FPREM
instruction execution.

D-11

Co Interpretation

0 ST > Source or 0 (FTST)
1 ST < Source or 0 (FTST)
0 ST = Source or 0 (FTST)
1 ST is not comparable

02 Complete reduction with
three low bits of quotient
(See Table 5b)

U Incomplete Reduction

0 Valid, positive unnormalized
1 Invalid, positive, exponent =0
0 Valid, negative, unnormalized
1 Invalid, negative, exponent =0
0 Valid, positive, normalized
1 Infinity, positive
0 Valid, negative, normalized
1 Infinity, negative
0 Zero, positive
1 Empty
0 Zero, negative
1 Empty
0 Invalid, positive, exponent = 0
1 Empty
0 Invalid, negative, exponent = 0
1 Empty

rounding, and infinity control. The precision con­
trol bits (bits 9-8) can be used to set the 80287
internal operating precision at less than the
default of temporary real (80-bit) precision. This
can be useful in providing compatibility with the
early generation arithmetic processors of smaller
precision than the 80287. The rounding control
bits (bits 11-10) provide for directed rounding and
true chop as well as the unbiased round to nearest
even mode specified in the IEEE standard. Control
over closure of the number space at infinity is also
provided (either affine closure: ± "', or projective
closure: 00, is treated as unsigned, may be
specified).

122164-001

inter 80287

NOTE: The index i of tag (i) is not top-relative. A program
typically uses the "top" field of Status Word to deter­
mine which tag(i) field refers to logical top of stack.

TAG VALUES:
00 ~ VALID
01 ~ ZERO
10 ~ INVALID or INFINITY
11 ~ EMPTY

Figure 7. 80287 Tag Word

MEMORY OFFSET

15

CONTROL WORD +0

STATUS WORD +2

TAG WORD +4

IP OFFSET

CS SELECTOR +8

DATA OPERAND OFFSET +10

DATA OPERAND SELECTOR +12

Figure 8a. Protected Mode 80287 Instruction and Data Pointer Image in Memory

EXCEPTION HANDLING

The 80287 detects six different exception conditions
that can occur during instruction execution. Any or
all exceptions will cause the assertion of external
ERliOli signal and ES bit of the Status Word if the
appropriate exception masks are not set.

The exceptions that the 80287 detects and the 'default'
procedures that will be carried out if the exception is
masked, are as follows:

Invalid Operation: Stack overflow, stack underflow,
indeterminate form (DID, 00, -00, etc) or the use of a
Non-Number (NAN) as an operand. An exponent value
of all ones and non-zero significand is reserved to
identify NANs. If this exception is masked, the 80287
default response is to generate a specific NAN called

INDEFINITE, or to propogate already existing NANs
as the calculation result.

Overflow: The result is too large in magnitude to
fit the specified format. The 80287 will generate an
encoding for infinity if this 1xception is masked.

Zero Divisor: The divisor is zero while ,the divi­
dend is a non-infinite, non-zero number. Jl:gain, the
80287 will generate an encoding for infinity if this
exception is masked.

Underflow: The result is non-zero but too small in
magnitude to fit in the specified format. If this
exception is masked the 82087 will denormalize
(shift right) the fraction until the exponen~ is in
range. The process is called gradual underflow.

D-12 122164-001

80287

15

CONTROL WORD

STATUS WORD

TAG WORD

INSTRUCTION POINTER (15-0)

INSTRUCTION i)1 I INSTRUCTION
POINTER (19-16) 0 OPCODE (10-0)

DATA POINTER (15-0)

DATA POINTER I
(19-16) 0

15 12 11

MEMORY
OFFSET

+0

+2

+4

+6

+8

+10

+12

Figure 8b. Real Mode 80287 Instruction and Data Pointer Image in Memory

15

IxxxllCIRCl PC I x I x IPMluMloMlzMIDMllMI

"'PRECISION CONTROL
00 = 24 BITS (SHORT REAL)
01 = RESERVED
10 = 53 BITS (LONG REAL)
11 = 64 BITS (TEMP REAL)

I I

(2)ROUNDING CONTROL
00 = ROUND TO NEAREST OR EVEN
01 = ROUND DOWN (TOWARD -x)
10 .= ROUND UP (TOWARD +x)
11 = CHOP (TRUNCATE TOWARD ZERO)

EXCEPTION MASKS (1 =EXCEPTION IS MASKED)

INVALID OPERATION
DENORMALIZED OPERAND

ZERO DIVIDE

OVERFLOW

UNDERFLOW
PRECISION

(RESERVED)

(RESERVED)

PRECISION CONTROL (1)

ROUNDING CONTROL(2)

INFINITY CONTROL (0 = PROJECTIVE, 1 = AFFINE)

(RESERVED)

Figure 9. 80287 Control Word

D-13 122164-001

inter 80287

Denormalized Operand: At least one of the
operands is denormalized; it has the smallest ex­
ponent but a non-zero significand. Normal pro­
cessing continues if this exception is masked off.

Inexact Result: The true result is not exactly repre­
sentable in the specified format, the result is rounded
according to the rounding mode, and this flag is set.
If this exception is masked, processing will simply
continue.

If the error is not masked, the corresponding error
bit and the error status bit (ES) in the control word
will be set, and the ERROR output signal will be
asserted. If the CPU attempts to execute another
ESC or WAIT instruction, exception 7 will occur.

The error condition must be resolved via an inter­
rupt service routine. The 80287 saves the address
of the floating point instruction causing the error
as well as the address of the lowest memory loca­
tion of any memory operand required by that
instruction.

iAPX 86/20 COMPATIBILITY:
iAPX 286/20 supports portability of iAPX 86/20
programs when it is in the real address mode.
However, because of differences in the numeric
error handing techniques, error handling routines
may need to be changed. The differences between
an iAPX 286/20 and iAPX 86/20 are:

1. The NPX error signal does not pass through an
interrupt controller (8087 INT signal does).

Therefore, any interrupt controller oriented in­
structions for the iAPX 86/20 may have to be
deleted.

2. Interrupt vector 16 must point at the numeric
error handler routine.

3. The saved floating point instruction address in
the 80287 includes any leading prefixes before
the ESCAPE opcode. The corresponding saved
address of the 8087 does not include leading
prefixes.

4. In protected mode, the format of the saved in­
struction and operand pointers is different than
for the 8087. The instruction opcode is not
saved-it must be read from memory if needed.

5. Interrupt 7 will occur when executing ESC in­
structions with eitherTS or EM of MSW=1.lfTS
of MSW=1 then WAIT will also cause interrupt
7. An interrupt handler should be added to han­
dle this situation.

6. Interrupt 9 will occur if the second or subse­
quent words of a floating point operand fall
outside a segment's size. Interrupt 13 will occur
if the starting address of a numeric operand
falls outside a segment's size. An interrupt
handler should be added to report these pro­
gramming errors.

In the protected mode, iAPX 86/20 application
code can be directly ported via recompilation if the
286 memory protection rules are not violated.

0-14 122164-001

80287

ABSOLUTE MAXIMUM RATINGS'

Ambient Temperature Under Bias .. O°C to 70°C
Storage Temperature -65°C to +150°C
Voltage on Any Pin with
Respect to Ground -1.0 to +7V
Power Dissipation 3.0 Watt

-NOTICE: Stresses above those listed under Ab­
solute Maximum Ratings may cause permanent
damage to the device. This is a stress rating only
and functional operation of the device at these or
any other conditions above those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS TA = O°C to 70°C, Vcc = 5V, +/-5%
5 MHz

Symbol Parameter -3 Min -3 max Unit Test Conditions

VIL Input lOW Voltage -.5 .8 V

VIH Input HIGH Voltage 2.0 Vcc +.5 V

VILC Clock Input lOW Voltage
CKM = 1: -.5 .8 V
CKM =0: -.5 .6 V

VIHC Clock Input HIGH Voltage
CKM = 1: 2.0 Vcc + 1 V
CKM =0: 3.8 Vcc + 1 V

VOL Output lOW Voltage .45 V IOL = 3.0 mA

VOH Output HIGH Voltage 2.4 V IOH = -400 /lA

III Input leakage Current ±10 /lA OV '" VIN '" Vcc

ILO Output leakage Current ±10 /lA .45V '" VOUT '" Vcc

Icc Power Supply Current 475 mA

CIN Input Capacitance 10 pF Fc = 1 MHz

Co Input/Output Capacitance
(00-015)

20 pF Fc = 1 MHz

CCLK ClK Capacitance 12 pF Fc = 1 MHz

0-15 122164-001

80287

A.C. CHARACTERISTICS (T A = O°C to 70°C, Vcc + 5V,=/-5%)
TIMING REQUIREMENTS
A.C. timings are referenced to 0.8V and 2.0V points on signals unless otherwise noted.

5 MHz

Symbol Parameter -3 Min -3 max Unit Test Conditions

TCLCL ClK Period
CKM= 1: 200 500 ns
CKM=O: 62.5 250 ns

TCLCH ClKLOWTime
CKM=1: 118 ns At 0.8V
CKM=O: 15 230 ns At 0.6V

TCHCL ClK HIGH Time
CKM=1: 69 ns At 2.0V
CKM=O: 20 235 ns At 3.8V

TCH1CH2 ClK Rise Time 10 ns 1.0V t03.5V if CKM = 1.

TCL2CL1 ClK Fall Time 10 ns 3.5V to 1.0V if CKM = 1.

TDVWH Data Setup to NPWR Inactive 75 ns

TWHDX Data Hold from "j\j"I5WR Inactive 30 ns

TWLWH'
TRLRH NPWR, NPRD Active Time 95 ns At 0.8V

TAVRL, Command Valid to f\IT5WR or
TAVWL NPRD Active 0 ns

TMHRL Minimum Delay from PEREQ
Active to NPRD Active 130 ns

TKLKH PEACK Active Time 85 ns At 0.8V

TKHKL PEACK Inactive Time 250 ns At 2.0V

TKHCH J5EACK Inactive to f\IT5WR, NJ5l1Cj
Inactive , 50 ns

TCHKL NPWR, NJ5Ri) Inactive to PEACK
Active -30 ns

TWHAX' Command Hold from f\IT5WR,
TRHAX NJ5R[5 Inactive 30 ns

TKLCL J5EACK Active Setup to NPWR,
Jill5R[j Active 50 ns

T2CLCL ClK286 Period 62.5 ns

T2CLCH ClK286 lOW Time 15 ns At 0.8V

T2CHCL ClK286 HIGH Time 20 ns At 2.0V

T2SVCL "SO, "ST Setup Time to ClK286 22.5 ns

T2CLSH "SO, "ST Hold Time from ClK286 0 ns

0-16 122164-001

A.C. CHARACTERISTICS, continued
TIMING REQUIREMENTS

Symbol Parameter

TCIVCL COD/fN'rA Setup Time to ClK286

TCLCIH COD/INTA Hold Time from ClK286

TRVCL READY Setup Time to ClK286

TCLRH READY Hold Time from ClK286

THVCL HlDA Setup Time to ClK286

TCLHH HlDA Hold Time from ClK286

T1VCL NPWR, NPRD to ClK Setup Time

TCLIH NPWR, NPRD from ClK Hold Time

TRSCL RESET to ClK Setup Time

TCLRS RESET from ClK Hold Time

A.C. CHARACTERISTICS,
TIMING RESPONSES

Symbol Parameter

TRHQZ NJ5RO Inactive to Data Float

TRLQV iiJi5Rl) Active to Data Valid

TILBH ERlIDR Active to BUSY Inactive

TWLBV f\Jl5W'R Active to mmv Active

TKLML PEACK Active to PEREa Inactive

TCMDI Command Inactive Time
Write-to-Write
Read-to-Read
Write-to-Read
Read-to-Write

TRHQH Data Hold from NJ5RO Inactive

NOTES:

80287

5 MHz

-3 Min -3 max Unit Test Conditions

0 ns

0 ns

38.5 ns

25 ns

0 ns

0 ns

70 ns NOTE 1

45 ns NOTE 1

20 ns NOTE 1

20 ns NOTE 1

5 MHz

-3 Min -3 max Unit Test Conditions

37.5 ns NOTE 2

60 ns NOTE 3

100 ns NOTE 4

100 ns NOTE 5

127 ns NOTE 6

95 ns At 2.0V
250 ns At2.0V
105 ns At2.0V
95 ns At2.0V

5 ns NOTE 7

1. This is an asynchronous input. This specification is given for testing purposes only, to assure recognition at a specific ClK edge.
2. Float condition occurs when output current is less than ILO on 00-015.
3. 00-015 loading: Cl = 100pF.
4. BUSY loading: Cl= 100pF.
5. BUSY loading: Cl = 100pF.
6. On'last data transfer of numeric instruction.
7, 00-015 loading: Cl = 100pF.

D-17 122164-001

inter 80287

WAVEFORMS (conI.)

DATA TRANSFER TIMING (INITIATED BY 80286)

CMDO CMD1
Nm,NPS2

NPRD

00-0'5

}. VALID

_TRLRH '" TRHAX

TAVRL \, V --- '_TRHOZ_
_ TRLOV 1- _TRHOH_I

/////1/ DATA OUT D \.\.\.\.\.\. VALID
TAVWL

'"
__ TWLWH_,"

TWHAX

\ V --,

TDVWH TWHDX _. ..

~
..

-

~ = ~ DATA MAY CHANGE DATA MAY CHANGE DATA IN
VALID

- TWLBN .-
BUSY ~..t --4--

DATA CHANNEL TIMING (INITIATED BY 80287)

CMDO'CMD1~~
I'lm,NPS2 J-----f-.:.j
~

TAVWL
TAVRL -

\

VALID

- TRHAX
TWHAX -

,k'

1
DATA
TRANSFER
FROM
80287

I DATA
TRANSFER
TO
80287

'" TCMDI_
_TMHRL--__ _ TCLML __

_TCHKL __

TKLCL_ - 'J r .. TKLML_ - TKHCH --- _TKHKL

S -------------
r

i / ~I\-
-----I
PEACK

'" TKLKH ..

0-18 122164-001

inter 80287

WAVEFORMS (cont.)

ERROR OUTPUT TIMING

iiiiSY __ , rn".=i
ERROR ~

80286 STATUS TIMING

.. Ts -----.+ ,...-.------ Tc

NOTES
1. This nput transition occurs before TS'
2. This nput transition occurs after Te.

0-19 122164-001

inter
WAVEFORMS

ClK
(IFCKM = 1)

80287

(Reset, NPWR, NPRDare inputsasynchronoustoClK. Timing requirements on this page

are given iortesting purposes only, to assure recognition at a specific ClK edge.)

ClK, RESET TIMING (CKM = 1)

_________________________ T_CL_IH_-. ___ • ____ .J~ r-__ T_I~ __ L __ -- ______ _

RESET ~

ClK, NPRO, NPWR TIMING (CKM = 1)

I l/', I l/'2

ClK~ ;I
(IF CKM = 1) '--------'

I

t
NPRO,
NPWR

RESET

\\\~\\\\\

~-f- T RSCL

ClK, RESET TIMING (CKM = 0)

(

/

NOTE: Reset must meet timing shown to guarantee known phase of internal + 3 circuit

NPRD,
NPWR \\\\ \\\\\ \\

ClK, NPRD, NPWR TIMING (CKM =0)

I $2 $,

'~1 I'~
'lIlt

0-20 122164-001

80287

Table 6. 80287 Extensions to the 80286 Instruction Set

Data Transfer

FLO ~ LOAD 1 MF

I
Optional
8,16 Bit

Displacement

Integer/Real Memory to ST(O) [ESCAPE MF 1 [MOD 0 0 0 RIM [- = _ ~.I~P = =:

Long Integer Memory to STIO) 1 ESCAPE 1 1 1 1 MOD 1 0 1 RIM 1 = = ~.I~P = =:

Temporary Real Memory to
STIO)

BCD Memory to STIO)

STII) to ST(O)

FST ~ STORE

STIO) to Integer/Real Memory

STIO) to STII)

FSTP ~ STORE AND POP

ST(O) to Integer/Real Memory

ST(O) to Long Integer Memory

STIO) to Temporary Real
Memory

STIO) to BCD Memory

ST(O) to STII)

FXCH ~ Exchange STII) and
ST(O)

Comparison

FCOM ~ Compare

Integer/Real Memory to STIO)

STII) to ST (0)

FCOMP ~ Compare and Pop

Integer/Real Memory to ST(O)

STII) to ST(O)

FCOMPP ~ Compare STll) to
ST(O) and Pop Twice

FTST ~ Test ST(O)

FXAM ~ Examine STIO)

MnemOniCs ,f\ Intel 1982

1 ESCAPE 0 1 1 1

I ESCAPE 1 1 1 I

I ESCAPE 0 0 1 1

MOD 1 0 1 RIM 1_ = = =DI~P = =:

MOD 1 0 0 RIM [___ .?I~P _ ~

1 1 0 0 0 ST(I) 1

I ESCAPE MF 1 1 MOD 0 1 0 RIM 1 DISP

I ESCAPE 1 0 1 I 1 1 0 1 0 STII) 1

1 ESCAPE MF 1 I

I ESCAPE 1 1 1 I

MOD 0 1 1 RIM 1- ~ ~ 91~P ~ J
MOD 1 1 1 RIM I ~ ~ ~I~< J

LI_E_SC __ A_P_E __ O __ l ___ l-LI_M __ O_D __ l ___ l __ l __ R_I_M~I_ .~ ~ ~I~P~.J

1 ESCAPE 1 1 1 I MOD 1 1 0 RIM 1_ ~ ~ ~I~ ~ J
~====~====~
I ESCAPE 1 0 1 1 1 1 0 1 1 STII) 1

@CAPE 0 0 1 1 1 1 0 0 1 STII) 1

r--------r---------,- - - - - - -

1 ESCAPE MF 0 1 MOD 0 1 0 RIM I DISP

I ESCAPE 0 0 0 I 1 1 0 1 0 STII) I

:=1 E,;S~C~A=P~E~"'M=F=~041 ="'M~O~D~O"'=I==1 ~R",/M",==~[~I~P = =:
[ESCAPE 0 0 0 [1 1 0 1 1 STII) 1

1 ESCAPE 1 1 0 I 1 1 0 1 1 0 0 1 1

1 ESCAPE 0 0 1 I 1 1 1 0 0 1 0 0 I

1 ESCAPE 0 0 1 I 1 1 1 0 0 1 0 1 I

0-21

Clock Count Range
32 Bit 32 Bit 64 Bit 16 Bit
Real Integer Real Integer

00 01 10 11

38-56 52-60 40-60 46-54

60-68

53-65

290-310

17-22

84-90 82-92 96-104 80-90

15-22

86-92 84-94 98-106 82-92

94-105

52-58

520-540

17-24

10-15

60-70 78-91 65-75 72-86

40-50

63-73 80-93 67-77 74-88

45-52

45-55

38-48

12-23

122164-001

80287

Table 6. 80287 Extensions to the 80286 Instruction Set (cont.)

Constants

I MF

I
Optional
8,16 Bit

Displacement

FLDZ ~ LOAD + 0.0 into ST(O) I ESCAPE 0 0 1 I 1 1 1 0 1 1 1 0 I

FLDl ~ LOAD + 1.0 into ST(O) I ESCAPE 0 0 1 I 1 1 1 0 1 0 0 0

FLDPI ~ LOAD 7T into ST(O) I ESCAPE 0 0 1 I 1 1 1 0 1 0 1 1

FLDL2T ~ LOAD log2 10 into
ST(O)

FLDL2E ~ LOAD log2 e into
ST(O)

I ESCAPE 0 0 1 I 1 1 1 0 1 0 0 1

[ESCAPE 0 0 1 I 1 1 1 0 1 0 1 0

FLDLG2 ~ LOAD 10glO 2 into
ST(O) I ESCAPE 0 0 1 I 1 1 1 0 1 1 0 0 I

FLDLN2 ~ LOAD log.2 into §PE 0 0 1 I 1 1 1 0 1 1 0 1 I
ST(O)

Arithmetic

FADD ~ Addition

Integer/Real Memory with ST(O) IL-E_S_C_A_P_E_M_F __ o----'I_M_O_D_O __ O_O_R_/M_~ _ ___..J~. ~DI~P~ J
ST(i) and ST(O) I ESCAPE d P 0 I 1 1 0 0 0 ST(i)

FSUB = Subtraction

Integer/Real Memory with ST(O) I ESCAPE MF 0 I MOD lOR R/M

ST(i) and ST(O) I ESCAPE d Pol 1 1 lOR R/M

FMUL ~ Multiplication

[=DI~P= J
I

Clock Count Range
32 Bit 32 Bit 64 Bit 16 Bit
Real Intager Real Integer

00 01 10 11

11-17

15-21

16-22

16-22

15-21

18-24

17-23

90-120 108-143 95-125 102-137

70-100 (Note 1)

90-120 108-143 95-125 102-137

70-100 (Note 1)

Integer/Real Memory with ST(O) I ESCAPE MF 0 I MOD 0 0 1 R/M [~DI~P~' -: 110-125 130-144 112-168 124-138

ST(i) and ST(O) I ESCAPE d P 0 I 1 1 0 0 1 RIM

FDIV = Division
Integer/Real Memory with ST(O) I ESCAPE MF 0 I MOD 1 1 R R/M

ST(i) and ST(O) I ESCAPE d Pol 1 1 1 1 R R/M

FSQRT ~ Square Root of ST(O) I ESCAPE 0 0 1 I 1 1 1 1 1 0 1 0 I

FSCALE ~ Scale ST(O) by ST(I) I ESCAPE 0 0 1 I 1 1 1 1 1 1 0 1 I

FPREM ~ Partial Remainder of I ESCAPE 0 0 1 I 1 1 1 1 1 0 0 0 I
ST(O) +ST(I)

FRNDINT ~ Round ST(O) to
Integer

NOTE:
1. If P=1 then add 5 clocks.

I ESCAPE 0 0 1 I 1 1 1 1 1 1 0 0 I

0-22

90-145 (Note 1)

215-225 230-243 220-230 224-238

193-203 (Note 1)

180-186

32-38

15-190

16-50

122164·001

80287

Table 6. 80287 Extensions to the 80286 Instruction Set (cont.)

FXTRACT 0 Extract
Components of St(O)

FABS = Absolute Value of
ST(O)

FCHS 0 Change Sign of ST(O)

Transcendental

FPTAN = Partial Tangent of
ST(O)

ESCAPE 0 0 1

ESCAPE

ESCAPE

1 1 1 1 0 1 0 0

Optional
8,16 Bit

Displacement

o~

o 0 0 I

1 1 1 1 a 0 1 0 ~001
----~---------------

FPATAN 0 Partial Arctangent [ESCAPE
of ST(O) -ST(l) '--------'-------------'

F2XM1 0 25T(0) -1 ESCAPE
L-________ ~ __________ ~

~ L-__________ ~ ________ _

o 0 1

o 1

'-_______ '-_______ R_/M __ -'I ~ ~~I~~~J
,-------------,----------------, -- - - ---

DISP : RIM

_-'-_______ R_/M ___ I_ ~~~S~ ~ .. ~

D-23

Clock Count Range

27-55

10-17

10-17

30-540

250-800

310-630

900-1100

700-1000

2-8

2-8

10-16

7-14

12-18

12-18

2-8

40-50

35-45

205-215

205-215

6-12

6-12

122164-001

80287

Table 6. 80287 Extensions to the 80286 Instruction Set (cont.)
----_._--------_._--- --------------,

FFREE ~ Free ST(i) ESCAPE 1 0 1 I 1 1 0 0 0 ST(i)

FNOP = No Operation ESCAPE 0 0 1 I 1 1 0 1 0 0 0 0

NOTES:
1, if mod =00 then DISP=O', disp-Iow and disp-high are absent

if mod=01 then DISP=disp-low sign-extended to 16-bits, disp-high is absent
if mod=10 then DISP=disp-high; disp-Iow
if mod = 11 then rim is treated as an ST(i) field

2. if r/m=OOO then EA=(BX) + (SI) +DISP
if r/m=001 then EA=(BX) + (DI) +DISP
if r/m=010 then EA=(BP) + (SI) +DISP
if r/m=011 then EA=(BP) + (DI) +DISP
if r/m=100 then EA=(SI) + DISP
if r/m=101 then EA=(DI) + DISP
if r/m=110 then EA=(BP) + DISP
if r/m=111 then EA=(BX) + DISP

'except if mod=OOO and r/m=110 then EA =disp-high; disp-Iow.
3. MF= Memory Format

00-32-bit Real
01-32-bit Integer
10-64-bit Real
11-16-bit Integer

4. ST(O) = Current stack top

ST(i) ith register below stack top
5. d= Destination

O-Destination is ST(O)
1-Destination is ST(i)

6. P= Pop
O-No pop
1-PopST(0)

7, R= Reverse: When d=1 reverse the sense of R
O-Destination (op) Source
1-Source (op) Destination

8. For FSQRT: -0 ,,;; ST(O) ,,;; +co

For FSCALE: _215 ,,;; ST(1) < +215 and ST(1) integer
For F2XM1: 0,,;; ST(O),,;; 2-1

For FYL2X: 0 < ST(O) <00
-'" < ST(1) < + co

For FYL2XP1: 0,,;; IST(O)I < (2 -\12)/2
-co < ST(1) < co

For FPTAN: 0,,;; ST(O) ';1r/4
For FPATAN: 0,,;; ST(O) < ST(1) < +00

9, ESCAPE bit pattern is 11011.

0-24

Clock Count Range

9-16

10-16

122164-001

Glossary Of 80287 And
Floating-Point Terminology

GLOSSARY OF 80287
AND FLOATING-POINT TERMINOLOGY

This glossary defines many terms that have precise technical meanings as specified in the IEEE 754
Standard. Where these terms are used, they have been capitalized to emphasize the precision of their
meanings. In reading these definitions, you may therefore interpret any capitalized terms or phrases as
cross-references.

Affine Mode: a state of the 80287, selected in the 80287 Control Word, in which infinities are treated
as having a sign. Thus, the values + INFINITY and - INFINITY are considered different; they can
be compared with finite numbers and with each other.

Base: (1) a term used in logarithms and exponentials. In both contexts, it is a number that is being
raised to a power. The two equations (y = log base b of x) and (bY = x) are the same.

Base: (2) a number that defines the representation being used for a string of digits. Base 2 is the binary
representation; Base 10 is the decimal representation; Base 16 is the hexadecimal representation. In
each case, the Base is the factor of increased significance for each succeeding digit (working up from
the bottom).

Bias: the difference between the unsigned Integer that appears in the Exponent field of a Floating­
Point Number and the true Exponent that it represents. To obtain the true Exponent, you must subtract
the Bias from the given Exponent. For example, the Short Real format has a Bias of 127 whenever the
given Exponent is nonzero. If the 8-bit Exponent field contains 10000011, which is 131, the true
Exponent is 131-127, or +4.

Biased Exponent: the Exponent as it appears in a Floating-Point Number, interpreted as an unsigned,
positive number. In the above example, 131 is the Biased Exponent.

Binary Coded Decimal: a method of storing numbers that retains a base 10 representation. Each decimal
digit occupies 4 full bits (one hexadecimal digit). The hex values A through F (1010 through 1111)
are not used. The 80287 supports a Packed Decimal format that consists of 9 bytes of Binary Coded
Decimal (18 decimal digits) and one sign byte.

Binary Point: an entity just like a decimal point, except that it exists in binary numbers. Each binary
digit to the right of the Binary Point is multiplied by an increasing negative power of two.

C3-CO: the four "condition code" bits of the 80287 Status Word. These bits are set to certain values
by the compare, test, examine, and remainder functions of the 80287.

Characteristic: a term used for some non-Intel computers, meaning the Exponent field of a Floating­
Point Number.

Chop: to set the fractional part of a real number to zero, yielding the nearest integer in the direction
of zero.

Control Word: a 16-bit 80287 register that the user can set, to determine the modes of computation
the 80287 will use, and the error interrupts that will be enabled.

Denormal: a special form of Floating-Point Number, produced when an Underflow occurs. On the
80287, a Denormal is defined as a number with a Biased Exponent that is zero. By providing a Signi­
ficand with leading zeros, the range of possible negative Exponents can be extended by the number of

Glossary-1 122164-001

inter GLOSSARY OF 80287 AND FLOATING-POINT TERMINOLOGY

bits in the Significand. Each leading zero is a bit of lost accuracy, so the extended Exponent range is
obtained by reducing significance.

Double Extended: the Standard's term for the 80287 Temporary Real format, with more Exponent
and Significand bits than the Double (Long Real) format, and an explicit Integer bit in the Significand.

Double Floating Point Number: the Standard's term for the 80287's 64-bit Long Real format.

Environment: the 14 bytes of 80287 registers affected by the FSTENV and FLDENV instructions. It
encompasses the entire state of the 80287, except for the 8 Temporary Real numbers of the 80287
stack. Included are the Control Word, Status Word, Tag Word, and the instruction, opcode, and operand
information provided by interrupts. .

Exception: any of the six error conditions (I, D, 0, U, Z, P) signalled by the 80287. \
Exponent: (1) any power that is raised by an exponential function. For example, the operand to the
function mqerEXP is an Exponent. The Integer operand to mqerYI2 is an Exponent.

Exponent: (2) the field of a Floating-Point Number that indicates the magnitude of the number. This
would fall under the above more general definition (1), except that a Bias sometimes needs to be
subtracted to obtain the correct power.

Floating-Point Number: a sequence of data bytes that, when interpreted in a standardized way, repre­
sents a Real number. Floating-Point Numbers are more versatile than Integer representations in two
ways. First, they include fractions. Second, their Exponent parts allow a much wider range of magni­
tude than possible with fixed-length Integer representations.

Gradual Underflow: a method of handling the Underflow error condition that minimizes the loss of
accuracy in the result. If there is a Denormal number that represents the correct result, that Denormal
is returned. Thus, digits are lost only to the extent of denormalization. Most computers return zero
when Underflow occurs, losing all significant digits.

Implicit Integer Bit: a part of the Significand in the Short Real and Long Real formats that is not
explicitly given. In these formats, the entire given Significand is considered to be to the right of the
Binary Point. A single Implicit Integer Bit to the left of the Binary Point is always 1, except in one
case. When the Exponent is the minimum (Biased Exponent is 0), the Implicit Integer Bit is O.

Indefinite: a special value that is returned by functions when the inputs are such that no other sensible
answer is possible. For each Floating-Point format there exists one Nontrapping NaN that is designated
as the Indefinite value. For binary Integer formats, the negative number furthest from zero is often
considered the Indefinite value. For the 80287 Packed Decimal format, the Indefinite value contains
all 1 's in the sign byte and the uppermost digits byte.

Infinity: a value that has greater magnitude than any Integer or any Real number. The existence of
Infinity is subject to heated philosophical debate. However, it is often useful to consider Infinity as
another number, subject to special rules of arithmetic. All three Intel Floating-Point formats provide
representations for + INFINITY and - INFINITY. They support two ways of dealing with Infinity:
Projective (unsigned) and Affine (signed).

Integer: a number (positive, negative, or zero) that is finite and has no fractional part. Integer can also
mean the computer representation for such a number: a sequence of data bytes, interpreted in a stand­
ard way. It is perfectly reasonable for Integers to be represented in a Floating-Point format; this is
what the 80287 does whenever an Integer is pushed onto the 80287 stack.

Glossary-2 122164-001

GLOSSARY OF 80287 AND FLOATING-POINT TERMINOLOGY

Invalid Operation: the error condition for the 80287 that covers all cases not covered by other errors.
Included are 80287 stack overflow and underflow, NaN inputs, illegal infinite inputs, out-of-range
inputs, and illegal unnormal inputs.

Long Integer: an Integer format supported by the 80287 that consists of a 64-bit Two's Complement
quantity.

Long Real: a Floating-Point Format supported by the 80287 that consists of a sign, an II-bit Biased
Exponent, an Implicit Integer Bit, and a 52-bit Significand-a total of 64 explicit bits.

Mantissa: a term used for some non-Intel computers, meaning the Significand of a Floating-Point
Number.

Masked: a term that applies to each of the six 80287 Exceptions I,D,Z,O,U,P. An exception is Masked
if a corresponding bit in the 80287 Control Word is set to 1. If an exception is Masked, the 80287 will
not generate an interrupt when the error condition occurs; it will instead provide its own error recovery.

NaN: an abbreviation for Not a Number; a Floating-Point quantity that does not represent any numeric
or infinite quantity. NaNs should be returned by functions that encounter serious errors. If created
during a sequence of calculations, they are transmitted to the final answer and can contain information
about where the error occurred.

Nontrapping NaN: a NaN in which the most significant bit of the fractional part of the Significand is
1. By convention, these NaNs can undergo certain operations without visible error. Nontrapping NaNs
are implemented for the 80287 via the software in EH87.LIB.

Normal: the representation of a number in a Floating-Point format in which the Significand has an
Integer bit I (either explicit or Implicit).

Normalizing Mode: a state in which nonnormal inputs are automatically converted to normal inputs
whenever they are used in arithmetic. Normalizing Mode is implemented for the 80287 via the software
in EH87.LIB.

NPX: Numeric Processor Extension. This is the 80287.

Overflow: an error condition in which the correct answer is finite, but has magnitude too great to be
represented in the destination format.

Packed Decimal: an Integer format supported by the 80287. A Packed Decimal number is a lO-byte
quantity, with nine bytes of 18 Binary Coded Decimal digits, and one byte for the sign.

Pop: to remove from a stack the last item that was placed on the stack.

Precision Control: an option, programmed through the 80287 Control Word, that allows all 80287
arithmetic to be performed with reduced precision. Because no speed advantage results from this option,
its only use is for strict compatibility with the IEEE Standard, and with other computer systems.

Precision Exception: an 80287 error condition that results when a calculation does not return an exact
answer. This exception is usually Masked and ignored; it is used only in extremely critical applications,
when the user must know if the results are exact.

Projective Mode: a state of the 80287, selected in the 80287 Control Word, in which infinities are
treated as not having a sign. Thus the values + INFINITY and - INFINITY are considered the same.

Glossary-3 122164-001

GLOSSARY OF 80287 AND FLOATING-POINT TERMINOLOGY

Certain operations, such as comparison to finite numbers, are illegal in Projective Mode but legal in
Affine Mode. Thus Projective Mode gives you a greater degree of error control over infinite inputs.

Pseudo Zero: a special value of the Temporary Real format. It is a number with a zero significand
and an Exponent that is neither all zeros or all ones. Pseudo zeros can come about as the result of
multiplication of two Unnormal numbers; but they are very rare.

Real: any finite value (negative, positive, or zero) that can be represented by a decimal expansion. The
fractional part of the decimal expansion can contain an infinite number of digits. Reals can be repre­
sented as the points of a line marked off like a ruler. The term Real can also refer to a Floating-Point
Number that represents a Real value.

Short Integer: an Integer format supported by the 80287 that consists of a 32-bit Two's Complement
quantity. Short Integer is not the shortest 80287 Integer format-the 16-bit Word Integer is.

Short Real: a Floating-Point Format supported by the 80287, which consists of a sign, an 8-bit Biased
Exponent, an Implicit Integer Bit, and a 23-bit Significand-a total of 32 explicit bits'.

Significand: the part of a Floating-Point Number that consists of the most significant nonzero bits of
the number, if the number were written out in an unlimited binary format. The Significand alone is
considered to have a Binary Point after the first (possibly Implicit) bit; the Binary Point is then moved
according to the value of the Exponent.

Single Extended: a Floating-Point format, required by the Standard, that provides greater precision
than Single; it also provides an explicit Integer Significand bit. The 80287's Temporary Real format
meets the Single Extended requirement as well as the Double Extended requirement.

Single Floating-Point Number: the Standard's term for the 80287's 32-bit Short Real format.

Standard: "a Proposed Standard for Binary Floating-Point Arithmetic," Draft 10.0 of IEEE Task P754,
December 2, 1982.

Status Word: A 16-bit 80287 register that can be manually set, but which is usually controlled by side
effects to 80287 instructions. It contains condition codes, the 80287 stack pointer, busy and interrupt
bits, and error flags.

Tag Word: a 16-bit 80287 register that is automatically maintained by the 80287. For each space in
the 80287 stack, it tells if the space is occupied by a number; if so, it gives information about what
kind of number.

Temporary Real: the main Floating-Point Format used by the 80287. It consists of a sign, a 15-bit
Biased Exponent, and a Significand with an explicit Integer bit and 63 fractional-part bits.

Transcendental: one of a class of functions for which polynomial formulas are always approximate,
never exact for more than isolated values. The 80287 supports trigonometric, exponential, and logarith­
mic functions; all are Transcendental.

Trapping NaN: a NaN that causes an I error whenever it enters into a calculation or comparison, even
a nonordered comparison.

Two's Complement: a method of representing Integers. If the uppermost bit is 0, the number is consid­
ered positive, with the value given by the rest of the bits. If the uppermost bit is 1, the number is
negative, with the value obtained by subtracting (2b't count) from all the given bits. For example, the
8-bit number 11111100 is -4, obtained by subtracting 28 from 252.

Glossary-4 122164-001

GLOSSARY OF 80287 AND FLOATING-POINT TERMINOLOGY

Unbiased Exponent: the true value that tells how far and in which direction to move the Binary Point
of the Significand of a Floating-Point Number. For example, if a Short Real Exponent is 131, we
subtract the Bias 127 to obtain the Unbiased Exponent +4. Thus, the Real number being represented
is the Significand with the Binary Point shifted 4 bits to the right.

Underflow: an error condition in which the correct answer is nonzero, but has a magnitude too small
to be represented as a Normal number in the destination Floating-Point format. The Standard specifies
that an attempt be made to represent the number as a Denormal.

Unmasked: a term that applies to each of the six 80287 Exceptions: I,D,Z,O,U,P. An exception is
Unmasked if a corresponding bit in the 80287 Control Word is set to O. If an exception is Unmasked,
the 80287 will generate an interrupt when the error condition occurs. You can provide an interrupt
routine that customizes your error recovery.

Unnormal: a Temporary Real representation in which the explicit Integer bit of the Significand is
zero, and the exponent is nonzero. We consider Unnormal numbers distinct from Denormal numbers.

Word Integer: an Integer format supported by both the 80286 and the 80287 that consists of a 16-bit
Two's Complement quantity.

Zero divide: an error condition in which the inputs are finite, but the correct answer, even with an
unlimited exponent, has infinite magnitude.

Glossary-5 122164-001

INDEX

Address Modes, 2-39, 2-40, 3-1
Architecture, 1-8, 3-1, 3-2, D-l, D-7
Arithmetic Instructions, 2-4 through 2-9,

D-22, D-23
ASM 286, 2-38 through 2-45
Automatic Exception Handling, 1-36

Binary Integers, 1-15

Comparison Instructions, 2-9, 2-10, 2-11
Compatibility of 80287 and 8087, 2-1,

Appendix B, D-14
Computation Fundamentals, 1-13
Concurrent (80286 and 80287) Processing,

2-45 through 2-50
Condition Codes Interpretation, 1-9, 1-10,

1-11, D-ll
Constant Instructions, 2-13, 2-14, D-22
Control Word, 1-11, 1-12, D-I0, D-13

Data Synchronization, 2-46, 2-47, 2-48
Data Transfer Instructions, 2-2, 2-3, 2-4,

D-21
Data Types and Formats,

Binary Integers, 1-15
Decimal Integers, 1-15
Encoding of Data Type, 1-28 through 1-32
Infinity Control, 1-19
Precision Control, 1-18, 1-35
Real Numbers, 1-15, 1-16, 1-17
Rounding Control, 1-18

Decimal Integers, 1-15
Denormalization, 1-20
Denormalized Operand, 1-33, 1-35
Denormals, 1-19, 1-20, 1-21
Destination Operands, 2-2

EM (Emulation Mode) Bit in 80286, 3-3
Emulation of 80287, 2-45, 3-4, 3-5
Encoding of Data Types, 1-28 through 1-32
Error Synchronization, 2-48, 2-49, 2-50

Exception Handling, Numeric Processing,
3-5,3-6,3-7, D-12

Exceptions, Numeric, 1-32 through 1-37
Automatic Exception Handling, 1-36
Handling Numeric Errors, 1-33
Inexact Result, 1-33
Invalid Operation, 1-32
Masked Response, 1-33, 1-34, 1-35
Numeric Overflow and Underflow, 1-33,

1-35
Software Exception Handling, 1-36, 1-37
Zero Divisor, 1-32, 1-35, D-I0

Exponent Field, 1-15

F2XMl (Exponentiation), 1-2,2-12,2-35,
D-23, D-24

FADD (Add Real), 1-2,2-2,2-5,2-6,2-22,
D-22

FADDP (Add Real and POP), 2-5, 2-6, 2-22,
D-22

F ABS (Absolute Value), 2-5, 2-9, 2-22, D-23
FBLD (Packed Decimal~-BCD-Load), 2-2,

2-4,2-22
FBSTP (Packed Decimal-BCD--Store and

Pop), 2-2, 2-4, 2-3
FCHS (Change Signs), 2-5, 2-9, 2-23, D-23
FCLEX/FNCLEX (Clear Exceptions), 2-14,

2-16,2-32, D-23
FCOM (Compare Real), 2-10, 2-23, D-21
FCOMP (Compare Real and Pop), 2-10,

2-23, D-21
FCOMPP (Compare Real and Pop Twice),

2-10,2-24, D-21
FDECSTP (Decrement Stack Pointer), 2-14,

2-19, 2-24, D-23
FDISI/FNDISI, 2-15, B-1
FDIV (Divide Real), 2-5, 2-7, 2-24, D-22
FDIV DWORD PTR (Division, Single

Precision), 1-2
FDIVP (Divide Real and Pop), 2-5, 2-7, 2-24
FDIVR (Divide Real Reversed), 2-5, 2-7,

2-24

Index-1

FDIVRP (Divide Real Reversed and Pop),
2-5, 2-7, 2-25

FENIjFNENI, 2-15, B-1
FFREE (Free Register), 2-14, 2-19, 2-25,

D-23
FIADD (Integer Add), 2-5, 2-6, 2-25
FICOM (Integer Compare), 2-10, 2-25
FICOMP (Integer Compare and Pop),2-10,

2-25
FIDIV (Integer Divide), 2-5, 2-7, 2-26
FIDIVR (Integer Divide Reversed), 2-5, 2-7,

2-26
FILD (Integer Load), 2-2, 2-3, 2-26
FIMUL (Integer Multiply), 2-5, 2-7, 2-26,

D-22
FINCSTP (Increment Stack Pointer), 2-14,

2-19,2-26, D-23
FINIT jFNINIT (Initialize Processor), 2-14,

2-15,2-27,2-37, D-23
FIST (Integer Store), 1-34, 1-35, 2-2, 2-3,

2-27
FISTP (Integer Store and Pop), 2-2, 2-4,

·2-27
FISUB (Integer Subtract), 2-5, 2-6, 2-27
FISUBR (Integer Subtract Reversed), 2-5,

2-6,2-27
FLD (Load Real), 1-35,2-3,2-28, D-21
FLDI (Load One), 2-13, 2-29, D-22
FLDCW (Load Control Word), 2-14, 2-15,

2-28, 2-37, D-23
FLDENV (Load Environment), 1-36,2-14,

2-19,2-25, D-23
FLDLZE (Load Log Base 2 of e), 2-13,

2-14,2-29, D-22
FLDL2T (Load Log Base 2 of 10), 2-13,

2-14,2-29, D-22
FLDLG2 (Load Log Base3 10 of 2),2-13,

2-14,2-28, D-22
FLDLN2 (Load Log Base e of 2),2-13,

2-14,2-28, D-22
FLDPI (Load PI), 2-13, 2-14, 2-25, D-22
FLDZ (Load Zero), 2-13, 2-29, D-22
Floating Point, 1-15, 1-20
FMUL (Multiply Real), 2-5, 2-7, 2-30
FMULP (Multiply Real and Pop), 2-5, 2-7,

2-30

INDEX

FNOP (No Operation), 2-14, 2-19, 2-30,
D-23

FPATAN (Partial Arctangant), 1-2,2-12,
2-30, D-23, D-24

FPREM (Partial Remainder), 1-34, 2-5, 2-7,
2-8,2-30,4-17, D-22

FPTAN (Partial Tangent), 2-12, 2-31, 4-17,
D-23, D-24

FRNDINT (Round to Integer), 1-23,2-5,
2-9, 2-35, D-23

FRSTOR (Restore State), 2-14, 2-17, 2-31,
2-37, D-23

FSAVE, FNSAVE (Save State), 2-14, 2-17,
2-31,2-37, D-23

FSCALE (Scale), 2-5, 2-7, 2-32, D-22
FSETPM (Set Protected Mode), 2-14, 2-15,

2-32, D-23
FSQRT (Square Root), 1-34,2-1,2-5,2-7,

2-32, D-22
FST (Store Real), 1-34, 1-35, 2-2, 2-3, 2-32,

D-21
FSTCW jFNSTCW (Store Control Word),

2-14, 2-16, 2-32, D-23
FSTENV jFNSTENV (Store Environment),

2-14, 2-18, 2-32, D-23
FSTP (Store Real and Pop), 1-34, 1-35,2-2,

2-3, 2-33, D-21
FSTSW jFNSTSW (Store Status Word),

2-9,2-14,2-16,2-33,2-37, D-23
FSTSW AX, FNSTSW AX (Store Status

Word in AX), 2-14, 2-16, 2-33, D-23
FSUB(Subtract Real), 2-5, 2-6, 2-33, D-22
FSUBP (Subtract Real and Pop), 2-5, 2-6,

2-34
FSUBR (Subtract Real Reversed), 2-5, 2-6,

2-34
FSUBRP (Subtract Real Reversed and Pop),

2-5, 2-6, 2-34
FTST (Test), 2-10, 2-11, 2-34, D-21
FWAIT (CPU Wait), 2-14,2-19,2-34
FXAM (Examine), 1-2, 1-23,2-10,2-11,

2-35, 4-2, 4-3, D-21
FXCH (Exchange Registers), 2-2, 2-3, 2-35,

D-21
FXTRACT (Extract Exponent and

Significand), 2-5, 2-9, 2-35, D-23

Index-2

FYL2X (Logarithm-of x), 1-2,2-13,2-35,
D-23, D-24

FYL2XPI (Logarithm-of x+ 1),2-13,2-35,
D-23, D-24

GET$REAL$ERROR (Store, then Clear,
Exception Flags), 2-37

Handling Numeric Errors, 1-33
Hardware Interface, 1-6, D-4

I/O Locations (Dedicated and Reserved),
3-2

IEEE P754 Standard, Implementation,
Appendix C

Indefinite, 1-27
Inexact Result, 1-33
Infinity, 1-25
Infinity Control, 1-19
INIT$REAL$MA TH$UNIT (Initialize

Processor Procedure), 2-37
Initialization and Control, 3-2 through 3-7
Instruction Coding and Decoding, A-I
Instruction Execution Times, 2-20, 2-21
Instruction Length, 2-22 through 2-36
Integer Bit, 1-16, 1-17, 1-20
Introduction to Numeric Processor 80287,

1-1, Appendix D
Invalid Operation, 1-32

Long Integer Format, 1-16
Long Real Format, 1-16

Machine Instruction Encoding and
Decoding, Appendix A

Masked Response, 1-33, 1-34, 1-35
MP (Math Present) Flag, 3-3

NaN (Not a Number), 1-25, 1-26, 1-27
NO-WAIT FORM, 2-14
Nonnormal Real Numbers, 1-20
Number System, 1-13, 1-14, 1-15
Numeric Operands, 2-1
Numeric Overflow and Underflow, 1-33,

1-35
Numeric Processor Overview, 1-1

INDEX

Output Format, 4-17
Overflow, 1-20, 1-33,4-16, D-12

Packed Decimal Notation, 1-15, 1-16
Precision Control, 1-18, 1-35
PLM-286, 2-41, 2-42
Pointers (INstruction/Data), 1-12, D-1O
Processor Control Instructions, 2-14 through

2-19, D-23, D-24
Programming Examples (Chapter 4),

Conditional Branching, 4-1, 4-2
Exception Handling, 4-3 through 4-6
Floating Point to ASCII Conversion, 4-7

through 4-16
Function Partitioning, 4-14
Special Instructions, 4-15

Programming Interface, 1-5, D-4
Pseudo zeros and zeros, 1-23, 1-24

Real Number Range, 1-14
Real Numbers, 1-15, 1-16, 1-17
Recognizing the Presence of 80287, 3-2, 3-33
Register Stack, 1-8, 1-9
RESTORE$REAL$STA TUS (Restore

Processor State), 2-3 7
Rounding Control, 1-18

SA VE$REAL$ST ATUS (Save Processor
State), 2-37

Scaling, 4-16
SET$REAL$MODE (Set Exception Masks,

Ronding Precision, and Infinity
C.ontrols),

2-37
Short Integer Format, 1-16
Short Real Format, 1-16
Significand, 1-15
Software Exception Handling, 1-36, 1-37
Source Operands, 2-2
Status Word, 1-9, 1-10, 1-11

Tag Word 1-12, D-1O
Temporary Real Format, 1-16
Transcendental Instructions, 2-11, 2-12, D-23
Trigonometric Calculation Examples, 4-17

through 4-23

Index-3

Underflow, 1-20, 1-33,4-16, D-12
Unnormals, 1-20, 1-22, 1-23
U pgradability, 1-4

WAIT Form, 2-14

INDEX

Word Integer Format, 1-16

Zero Divisor, 1-32, 1-35, D-10
Zeros, 1-23, 1-24

Index-4

DOMESTIC SALES OFFICES

ALABAMA GEORGIA NEW JERSEY PENNSYLVANIA (Cont'd)

TEXAS
ARIZONA ILLINOIS

NEW MEXICO

CALIFORNIA
INDIANA NEW YORK

Parkway

IOWA

NE

KANSAS

UTAH

Street

LOUISIANA
City 84123
263-8051

Industrial Digital Systems Corp VIRGINIA
Tel: (504) 899-1654

MARYLAND Rosa Road

23288
282-5668

NORTH CAROLINA
WASHINGTON

Road

COLORADO
OHIO

MASSACHUSETTS

300
WISCONSIN

Road

CONNECTICUT
MICHIGAN OKLAHOMA

CANADA
ONTARIO

Canada, Ltd.

MINNESOTA OREGON

FLORIDA

MISSOURI
PENNSYLVANIA

City Expressway QUEBEC

63045 Canada, Ltd

291-1990

*Field Application Location

BELGIUM

Intel Corporation SA
Parc Seny
Rue du Moulin a Papier 51
Boite 1
B-1160 Brussels
Tel: (02)661 07 11
TELEX: 24814

DENMARK

Inlel Denmark A/S·
Glentevej 61 - 3rd Floor
DK-2400 Copenhagen
Tel: (01) 19 80 33
TELEX: 19567

FINLAND

Intel Finland OY
Hameentie 103
SF - 00550 Helsinki 55
Tel: 0/716 955
TELEX: 123 332

FRANCE

Intel Corporation, S.A.R.L.·
5 Place de la Balance
Silic 223
94528 Rungis Cedex
Tel: (01) 687 22 21
TELEX: 270475

EUROPEAN SALES OFFICES

FRANCE (Cont'd)

Intel Corporation, SAR.L
Immeuble BBC
4 Quai des Etroils
69005 Lyon
Tel: (7) 842 40 89
TELEX: 305153

WEST GERMANY

Inlel Semiconductor GmbH'
Seidlslrasse 27
0-8000 Munchen 2
Tel: (89) 53891
TELEX: 05-23177 INTL D

Intel Semiconductor GmbH'
Mainzer Sirasse 75
0-6200 Wiesbaden 1
Tel: (6121) 70 08 74
TELEX: 04186183 INTW 0

Intel Semiconductor GmbH
Brueckstrasse 61
7012 Fellbach
Stuttgart
Tel: (711) 58 00 8~
TELEX: 7254826 INTS 0

Intel Semiconductor GmbW
Hohenzollern Strasse 5*
3000 Hannover 1
Tel: (511) 34 40 81
TELEX: 923625 INTH 0

ISRAEL

Intel Semiconductor Ltd."
P.O. Box 1659
Haifa
Tel: 4/524 261
TELEX: 46511

ITALY

Intel Corporation ltalia Spa*
Milanofiori, Palazzo E
20094 Assago (Milano)
Tel: (02) 824 00 06
TELEX: 315183 INTMIL

NETHERLANDS

Intel Semiconductor Nederland B.v.·
Alexanderpoort Building
Marten Meesweg 93
3068 Rotterdam
Tel: (10) 21 23 77
TELEX: 22283

NORWAY

SPAIN

28

40 04

SWEDEN

SWITZERLAND

UNITED KINGDOM

'Field Application Lec

EUROPEAN DISTRIBUTORS/REPRESENTATIVES

AUSTRIA

Bacher Elektronische Geraete GmbH
Rotemuehlgasse 26
A 1120 Vienna
Tel: (222) 83 63 96
TELEX: 11532 BASAT A

BELGIUM

Inelco Belgium SA
Ave. des Croix de Guerre 94
B1120 Brussels
Tel: (02) 216 01 60
TELEX: 25441

DENMARK

iTT MultiKomponent A/S
Naverland 29
DK-2600 Gloskrup
Tel: (02) 45 66 45
TX: 33355

FINLAND

Oy Fintronlc AB
Melkonkatu 24 A
SF-0021O
Helsinki 21
Tel: {OJ 692 60 22
TELEX: 124 224 Ftron SF

FRANCE

Generim
ZA de Courtaboeul
Avenue de la. Baltique
91943 Les Ulis Cedex-B.P.88
Tel: (1) 907 78 78
TELEX: F691700

Jermyn SA
16, Avenue Jean-Jautes
94600 Choisy-Le-Roi
Tel: (1) 853 12 00
TELEX: 260967

Metrologie
La Tour d' Asnieres
4, Avenue Laurent Cely
92606-Asnieres
Tel: (1) 790 62· 40
TELEX: 611-448

Tekelec Airtronic
Cite des Bruyeres
Rue Carle Vernet B.P 2
92310 Sevres
Tel: (1) 535 75 35
TELEX: 204552

WEST GERMANY

Electronic 2000 Vertriebs A.G.
Neumarkter Strasse 75
D-8000 Munich 80
Tel: (89) 43 40 61
TELEX 522561 EIEC D

Jermyn GmbH
Postfach 1180
Schulstrasse 48
D-6277 Bad Camberg
Tel: (06434) 231
TELEX: 484426 JERM 0

Celdis Enatechnik Systems GmbH
Gutenbergstrasse 4
2359 Henstedt.Ulzburg
Tel: (04193) 4026
TELEX: 2180260

Metrologie GmbH
Hansastrasse 15
8000 Munich 21
Tel: (89) (7 30 84
TELEX: 0 5213189

Proelectron Vertriebs GmbH
Max Planck Strasse 1-3
6072 Oteieich bei Frankfurt
Tel: (6103) 33564
TELEX: 417983

IRELAND

Micro Marketing
Glenageary Office Park
Glenageary
Co. Dublin
Tel: (1) 85 62 88
TELEX: 31584

ISRAEL

Eastronics Ltd
11 Rozanis Street
P.O. Box 39300
Tel Aviv 61390
Tel: (3) 47 51 51
TELEX: 33638

ITALY

Eledra 3S S.PA
Viale Elvezia, 18
I 20154 Milano
Tel: (2) 34 97 51
TELEX: 332332

Intesi
Milanoljori Pal. E/5
20090 Assago
Milano
Tel: (02) 82470
TELEX: 311351

NETHERLANDS

Koning & Hartman
Koperwerl 30
P.O. Box 43220
2544 EN's Gravenhage
Tel: 31 (70) 210.101
TELEX: 31528

NORWAY

Nordisk Elektronic (Norge) AlS
Postoffice Box 122

~fs~dSH~a~:t~d 4

Tel: (2) 846 210
TELEX: 17546

PORTUGAL

Ditram
Componentes E Electronica LOA
Av. Miguel Bombarda, 133
Pl000 Lisboa
Tel: (19) 545 313
TELEX: 14182 Brieks-P

SPAIN

Interface S.A
Ronda San Pedro 22, 3 Piso
Barcelona 10
Tel: (34) 33 01 78 51
TWX: 51508

In SESA
~~dW~ ~ggel 21, 6 Piso

Tel: (34) 14 1954 00
TELEX: 27461

SWEDEN

AB Gosta Backstrom
Box 12009
Aistroemergatan 22
S-10221 Stockholm 12
Tel: (8) 541 080
TELEX: 10135

Nordisk Electronik AB
Box 27301
Sandhamnsgatan 71
S-10254 Stockholm
Tel: (8) 635 040
TELEX: 10547

Telko AB
Gardsfogdevagen 1
Box 186
S-161 26 Bromma
Tel: (8) 98 08 20
TELEX: 11941

SWITZERLAND

UNITED KINGDOM

By tech Ltd.
Unit 57
London Road

§!~I~lhir:eading
Tel: (0734) 61031
TELEX: 848215

Comway Microsystems Ltd.
Market Street
UK-Bracknell, Berkshire
Tel: 44 (344) 55333
TELEX: 847201

Jermyn Industries
Vestry Estale
Sevenoaks, Kent
Tel: (0732) 450144
TELEX: 95142

M.ED.L
East Lane Road

~?J~~e~;m~~~ 7PP
Tel: (01) 904 93 07
TELEX: 28817

Rapid Recall, LId.
Rapid House/Denmark St

~~~s,W~~~~~d HP11 2ER 
Tel: (0494) 26 271 
TELEX: 837931 

YUGOSLAVIA 

H. R. Microelectronics Enterprises 
P.O. Box 5604 
San Jose, California 95150 
Tel: 408/978-8000 
TELEX: 278-559 




