NMos"

occam 2 Toolset

Language and Libraries
Reference Manual

MICROELECTRONMICS
INMOS is a member of the SGS—THOMSONM roelectronics Group

© INMOS Limited 1993. This document may not be copied, in whole or in part, without
prior written consent of INMOS.

, MMOS’, |MS, occam and DS-Link are trademarks of INMOS Limited.
477, BEHONEN is a registered trademark of the SGS-THOMSON Microelectronics Group.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

INMOS document number: 72 TDS 368 01

Contents overview

Contents

Preface

Libraries

1 The occam libraries |Describes the library procedures and functions

supplied with the toolset.
Appendices

A Language extensions |Describes language extensions that are

supported by the occam 2 compiler.

B Implementation of Describes how the compiler allocates memory
occam on the trans- |and gives details of type mapping, hardware
puter dependencies and language.

c Alias and usage Describes the alias checking that is imple-
checking rules mented by the compiler.

72 TDS 368 01 March 1993

72 TDS 368 01 March 1993

Contents

HOSEVEISIONS . .o.vvvi i iaiiennnna e rannneaeiaans
ADOUt this MAaNUAL vwuviiies i v i s ae ve e s o veae ne en
About the toolset documentationsetoil
Other docuUmMeNtscvvveneeenneinnernnreinnennnsnarennnes
FORTRANIGOISBE: v crinsminmmoman e @i mnm momm s
Documentationconventions

Libraries

1 The occam libraries

1.1
1.2

1.3

14

1.5

Introductioncooeiiiiinii s
Using the occam librariescooooiiiiins
121 Linking librariesc.ocoiiiiiiiieniiian
122 Listinglibrarycontentscooilln
123 Libraryconstants ool
Compilerlibrariescooiiiiriniriiiiinenn
1.31 Using compiler library routines
1.32 Maths RUNCHONS v o o5 o a8 s s ew i ae o om e
1.33 2D blockiMOVES . icuvisnis inonvn o wmvm o vs s
1.34 Bit manipulation functions
135 CRCfunctionscoovvnvvnvnnnnnnnnnns
1.3.6 Floating point arithmetic support functions
1.3.7 Dynamic code loadingsupport
1.3.8 Transputer-related procedures
139 Miscellaneous operations
Mathslibrariesccoiiiiiiiiii s
141 Introduction and terminology
14.2 Single and double length elementary function

Drames . ..o viii e e
143 :l\gs T400/T414/T425/T426 elementary function

e A e e
Host file serverlibrarycoiiiiiiiniainaenniens
1.5.1 Errors and the server run time library

15.2 Inputting real numbersooe.

w

oo bbb bW

iv Contents
1.53 Procedure descriptions 65

1.54 Elle aCtess -z s o s i s s 66

1.55 General host accesscivivewaricinviavin 76

1.5.6 Keyboardinputl 82

1.5.7 Screenoutplt . . o & esmprE TR 86

1.5.8 Fileoutput ... 89

1.5.9 MisScellaneos : = i & s aslevsrmsrsasmerss 93
TIMProcessiNg - .« wu vu ssnmsnmwies s emmis 93

Buffers and multiplexorsl 95

Buffering procedurescociviiiiiiiian 96

Multiplexing procedures 96

1.6 SHAaMIOEBIEYY cormnnni s sm e TRy 98
1.6.1 Namingconventionsc.oeunnn. 98

1,62 SUBAM PIOCESSES i o v iu sviuimuamianvvedis 99

16.3 SHeaminPUE . ..cumunen ou im0 104

164 Streamoutputl 105

1.7 String handling IBrany .o . covv vvis 55 svin cvove s ivesssa 111
1.7.1 Character identification 112

1.7.2 String COMPANSON «i wvis i oh v simiemim v vs ae e 113

1.73 Stringsearchingciiiiiiiiiia... 114

1.74 Stingediting ..couvcowm o in vn o ewmummus s sz 115

1.15 Lineparsingoovviierinniiiiiaaaaiaann 117

1.8 String conversionlibrary ...l 119
Procedure definitions 120

1.9 Block'CRE IBrary ..ueswswasnmsess 5 o5 o s v s 126
1.91 Exampleofuse ... 126

192 Funclion'definitions .:..ws s sssrsmamsmeansmsnsn 127

1.10 Extraordinary link handlinglibrarycoonat. 128
1.10.1 Procedure definitions 128

1.11 Debugging supportlibrary ... 130
1.11.1 Procedure definitions 130

1.12 DOS specifichostiolibrarycovviviiiiniinit. 131
1.12.1 Procedure definitions 132
ADPENAICES <o i vunams vais iy case dake e s Sale v vae 137
A Languageextensionsociiiiiiiiianiaaann 139
A SYNEaX L e 139
A1A1 Compiler keywords ...cocve vi vo vn on s siviisa 139

A1.2 Compilerdirectivescoii... 139

A13 Stringescapecharacters....................... 139

A1d Tabs ... 140

A15 Relaxationsonsyntax 140

A2 Channel operationg vevsss smmnmsevunsvevess sman o5 5 5o & 140

Contents v

A.21 Relypingichannels: «...ovewvosmmmmnms s 140

A.22 Channelconstructors 141

A23 ‘Anarchic'protocolsccoolt 141

A3 Low lavel programmingowsews s v v v ses s s 142
o I 142

A32 PLACE statements:...ivissmsnmsssnmmmsassmss 142

A33 INLINEkeywordcoieiiiiieennennn. 143

A4 Countedamayinpul.....covessccvimvssssesinisvainvas 144
A5 Retypingamaysccviiiiiniiiiiiiiiiiiiiiieeas 145
AB ObsolescontTealihes: ...ovoewus o s o wewarammes s 145
B Implementation of occam on the transputer 147
B.1 Memory allocation by the compiler 147
B.1.1 Procedure code:: . . cu ey aim ssve s 147

B.1.2 Compilatonmodules 148

B3 WOIKSPACE s iuivmvmsmmotvimsies s s o8 g vw s 148

B4 VeclOrpaos wamimsisbats o s 150

B.2 TYPE MaPPING ottt e 151
B.3 Implementationofchannels 152
B4 Transputer timers (clocks)cccoiiiiiiiiiiine 153
B.4.1 TIMER variablesccoiiiiiiiiiinnnnn 153

B.42 TIMERs as formal parameters 154

B.5 CASE Statemontuosu v sovmassmmmmsmmssmssssmsse 5 6 154
B.6 AlT statement T, 154
B.7 Formal parametersciiiiiiiiiiiiiiinnnnnn. 154
B.8 Hardware dependenciesccoiiiiiiiiiiiii 154
B.9 Summary of implementation restrictions 155
C Alias and usage checkingrules 157
c1 ANES CHECKING, .. v o5 o 2 o 45 55 5% 45 0% R s ERRTTEEY o8 i8 157
C.1.1 INHEOHUCHBN oooi i o5 05 5 0 60 0 005 8 o & 157

B2 RUIES ioicnvmwn 5 s me w8 wi s s w08 sl wto a56 s S50 157
Scalarvariablesccoiiiiiiiiiiiiiinn 157

BITEYE ..o onincnmss mimyesieiis 5o 435 35 95 45 58 908 &8 36 o4 s 158

C.1.3 Aliascheckingdisabled 159

VAL abbreviationsooiiiiiiiiiat 159

Non-VAL abbreviationscoitt, 160

Multiple assignmentol 161

Procedure parameters 161

Interaction with usage checking 161

C2 Usage Cheoking «oume s mssos s omimmiasso i s simimse 161

C.21 INEOAUCHON: ». oot T T S R 162

vi

Contents

c2z2
c23
c24
Cc.25
C.26
c27
c2s

...

Usagerulesofoccamccovvvninnnnn 162
Checking of non-array elements 162
Checking of arrays of variables and channels 162
Arrays as procedure parameters 163
Abbreviating variables and channels 164
Channels . vcvmsmamamassmesoes v @ 164
Usage checkingdisabled 164

167

Preface

Host versions

The documentation set which accompanies the occam 2 toolset is designed to
cover all host versions of the toolset:

s |MS D7305 - IBM PC compatible running MS-DOS
o |MS D4305 - Sun 4 systems running SunOS.
* |MS D6305 — VAX systems running VMS.

About this manual

This manual is the Language and Libraries Reference Manual to the occam 2
toolset and provides alanguage reference for the toolset and implementation data.

The larger part of the manual is contained in one chapter which introduces and
describes the occam libraries. Each library is described in a separate section. For
each library, a summary of the procedures it provides, is followed by a detailed
description of each procedure.

Appendices provide:

« adescription of the language extensions that are supported by the occam
2 compiler.

 implementation details of the Dx305 occam 2 toolset.
« details of the alias and usage checking rules adopted by the toolset.

72 TDS 368 01 March 1993

viii About the toolset documentation set

About the toolset documentation set
The documentation set comprises the following volumes:

» 72 TDS 366 01 occam 2 Toolset User Guide

Describes the use of the toolset in developing programs for running on the
transputer. The manual is divided into two sections; ‘Basics' which
describes each of the main stages of the development process and
includes a ‘Getting starfed’ tutorial. The ‘Advanced Techniques' section is
aimed at more experienced users. The appendices contain a glossary of
terms and a bibliography. Several of the chapters are generic to other
INMOS toolsets.

e 72 TDS 367 01 occam 2 Toolset Reference Manual

Provides reference material for each tool in the toolset including command
line options, syntax and error messages. Many of the tools in the toolset
are generic to other INMOS toolset products, e.g. the ANSI C and
FORTRAN toolsets, and the documentation reflects this — examples may
be given in more than one language. The appendices provide details of
toolset conventions, transputer types, the assembler, server protocol,
ITERM files and bootstrap loaders.

» 72 TDS 368 01 occam 2 Toolset Language and Libraries Reference
Manual (this manual)

e 72TDS 379 00 Performance Improvement with the INMOS Dx305 occam
2 Toolset

This document provides advice about how to maximize the performance
of the toolset. It brings together information provided in other toolset docu-
ments particularly from the Language and Libraries Reference Manual.
Note: details of how to manipulate the software virtual through-routing
mechanism are given in the User Guide.

» 72 TDS 377 00 occam 2 Toolset Handbook
A separately bound reference manual which lists the command line
options for each tool and the library functions. It is provided for quick refer-
ence and summarizes information provided in more detail in the Tools
Reference Manual and the Language and Libraries Reference Manual.

» 72 TDS 378 00 occam 2 Toolset Master Index
A separately bound master index which covers the User Guide, Toolset

Reference Manual, Language and Libraries Reference Manual and the
Performance Improvement document.

72 TDS 368 01 March 1993

Preface

Other documents

Other documents provided with the toolset product include:

+ Delivery manual giving installation data, this document is host specific.

« Release notes, common to all host versions of the toolset.

o ‘occam 2 Reference Manual’ published by Prentice Hall.

o ‘A Tuforial Infroduction to occam Programming’ published by BSP Profes-
sional Books.

FORTRAN toolset

At the time of writing the FORTRAN toolset product referred to in this document
set is still under development and specific details relating to it are subject to

change.

Documentation conventions

The following typographical conventions are used in this manual:

Bold type
Teletype

Htalic type

Braces {}
Brackets []

Ellipsis . ..

72 TDsS 368 01

Used to emphasize new or special terminology.

Used to distinguish command line examples, code fragments,
and program listings from normal text.

In command syntax definitions, used to stand for an argument
of a particular type. Used within text for emphasis and for book
titles.

Used to denote optional items in command syntax.

Used in command syntax to denote optional items on the
command line.

In general terms, used to denote the continuation of a series. For
example, in syntax definitions denotes a list of one or more
items.
In command syntax, separates two mutually exclusive alterna-
tives.

March 1993

X Documentation conventions

72 TDS 368 01 March 1993

Libraries

72 TDS 368 01 March 1993

2 Libraries

72 TDS 368 01 March 1983

1 The occam
libraries

11 Introduction

A comprehensive set of occam libraries is provided for use with the toolset. They
include the compiler libraries which the compiler itself uses, and a number of user
libraries to support common programming tasks. The compiler libraries are auto-
matically referenced whereas user libraries must be declared in a #USE directive.
Libraries, including the compiler libraries, must be specified to the linker. Table 1.1
lists the occam libraries.

Library Description Source
provided

Compiler libraries No
occamx.lib . |Multiple length integer arithmetic

Floating point functions

32-bit IEEE arithmetic functions

64-bit |IEEE arithmetic functions

2D block move library

Bit manipulation

CRC functions

Supplementary floating point support

Dynamic code loading support

Transputer-related functions
User libraries
snglmath.lib [Single length mathematical functions Yes
dblmath.lib |Double length mathematical functions Yes
tbmaths.lib |T400/T414/T425/T426 optimized maths Yes
hostio.lib Host file server library Yes
streamio.lib |Stream l/O library Yes
string.lib String handling library Yes
convert.lib |String conversion library Yes
cre.lib Block CRC library Yes
xlink.1lib Extraordinary link handling library No
debug.lib Debugging support library No
msdos.lib DOS specific hostio library Yes

Table 1.1 occam libraries

72 TDS 368 01 March 1993

4 1.3 Compiler libraries

1.2 Using the occam libraries
User libraries must be declared in a #USE directive. For example:
#USE “hostio.lib”

Any use of a library routine must be in scope with the $USE directive which refer-
ences the associated library. The scope of a library, like any occam declaration,
depends on its level of indentation within the text.

If the library uses a file of predefined constants (see section 1.2.3) then this must
be declared by an #INCLUDE directive, before the associated $USE. For example:

#INCLUDE "hostio.inc”

1.2.1 Linking libraries

All libraries used by a program or program module must be linked with the main
program. This includes the compiler libraries even though they are automatically
referenced by the compiler (see section 1.3).

1.2.2 Listing library contents

You can use the ilist tool to examine the contents of a library and determine
which routines are available. The tool displays procedural interfaces for routines
in each library module and the code size and workspace requirements for indi-
vidual modules. It can also be used to determine the transputer types and error
modes for which the code was compiled. (See chapter 10 of the occam 2 Toolset
Reference Manual for details of i1ist).

1.2.3 Library constants

Constants and protocols used by the libraries are defined in six include files:

File Description

hostio.ine Constants for the host file server interface (hostio library)
streamio.inc Constants for the stream i/o interface (streamio library)
mathvals.inc Maths constants

linkaddr.inc Addresses of transputer links

ticks.inc Rates of the two transputer clocks

msdos.inc DOS specific constants

Table 1.2 Llbrary constants

Include files should always be declared before the related library.

72 TDS 368 01 March 1993

1 The occam libraries 5

1.3 Compiler libraries

Compiler libraries contain multiple length and floating point arithmetic functions,
IEEE functions, and special transputer functions such as bit manipulation and 2D
block data moves. They are found automatically by the compiler on the path speci-
fied by the ISEARCH host environment variable and do not need to be referenced
by a #USE directive. However, they must be specified to the linker along with all
other libraries that the program uses; this is best done using one of the linker indi-
rect files occam2 . 1nk, occam8 . 1nk, or occama . 1ok, which specify the correct
libraries for the transputer target.

Separate compiler libraries are supplied for different types and families of proces-
sors. Processor types supported are:

e T2 family
e T8 family
o 32-bit processors

The compiler selects the correct library for the fransputer type specified. All error
modes are supported in each library.

File Processor types supported
occam2.lib T212/T222/T225/M212
occam8.lib T800/T801/T805
occama.lib T400/T414/T425/T426/TA/TB

occamutl.lib All
virtual.lib All

occamutl . 1ib contains routines which are called from within some of the other
compiler libraries and virtual.lib is used to support interactive debugging.
These two libraries support all processor types and error modes.

File names of the compiler libraries must not be changed. The compiler assumes
these filenames, and generates an error if they are not found. (See section A4 in

the occam 2 Toolset Reference Manual for details of the mechanism for locating
files.)

The compiler ‘E’ option disables all of the compiler libraries except virtual. 1ib,
which can be disabled by the ‘Y’ option.

The occam 2 Reference Manual contains formal descriptions of many of the
compiler library routines.

1.3.1 Using compiler library routines

Although primarily intended for use by the compiler, some compiler library routines
are available to the programmer. These are listed in sections 1.3.2 through 1.3.9.

72 TDS 368 01 March 1993

6 1.3 Compiler libraries

They can be called directly without referencing them via a $USE statement and are
disabled by the compiler ‘E’ option.

As an example of how they may be used, consider an application which requires
compliance with the |IEEE standards for NaNs (‘Not a Number’) and Infs ('t
infinity’). The occam compiler defaults to non-IEEE behavior i.e. NaNs and Infs
are treated as errors, whereas ANSI/IEEE 754-1985 requires there to be error and
overflow handling. To obtain IEEE behavior the appropriate compiler library func-
tion must be called.

The following code fragments show a simple addition can be implemented by
default or using IEEE-compatible functions.

If A, B, and C are REAL32s and b is a BOOL:

A :=B + C -- default occam behavior.

-
[

REAL320P(B, 0, C) —— IEEE function, round
== to nearest only. The 0
—— indicates a ‘+’
—— operation.

b, A := IEEE320P(B, 1, 0, C) —— IEEE function with
—- rounding option. The
-— 1 indicates round to
- nearest. The 0

== indicates a ‘+’

—— operation.

1.3.2 Maths functions

The following table lists compiler library maths functions available to the
programmer. Further details can be found in appendices K, L, and M of the occam
2 Reference Manual.

Result(s) Function name Parameter specifiers
REAL32 ABS VAL REAL32 x
REAL32 SQRT VAL REAL32 x
REAL32 LOGB VAL REAL32 x
INT, REAL32 FLOATING.UNPACK |VAL REAL32 x
REAL32 MINUSX VAL REAL32 x
REATL32 MULBY2 VAL REAL32 x
REAL32 DIVBY2 VAL REAL32 x
REAL32 FPINT VAL REAL32 x

72 TDS 368 01 March 1993

1 The occam libraries

Result(s) Function name Parameter specifiers
BOOL ISNAN VAL REAL32 x
BOOL NOTFINITE VAL REAL32 x
REAL32 SCALEB VAL REAL32 x, VAL INT n
REAL32 COPYSIGN VAL REAL32 x, ¥y
REAL32 NEXTAFTER VAL REAL32 x, ¥y
BOOL ORDERED VAL REAL32 x, Yy
BOOL, ARGUMENT .REDUCE |VAL REAL32 x, y, y.err
INT32,
REAL32
REAL32 REAL320P VAL REAL32 x,
VAL INT op,
VAL REAL32 y
REAL32 REAL32REM VAL REAL32 x, ¥y
BOOL, REAL32 IEEE320P VAL REAL32 x,
VAL INT rm, op,
VAL REAL32 y
BOOL,REAL32 IEEE32REM VAL REAL32 x, ¥
BOOL REAL32EQ VAL REAL32 x, ¥
BOOL REAL32GT VAL REAL32 x, ¥y
INT IEEECOMPARE VAL REAL32 x, Y
REALG64 DABS VAL REAL64 x
REAL64 DSQRT VAL REAL64 x
REALG64 DLOGB VAL REAL64 x
INT ,REAL64 DFLOATING.UNPACK |VAL REAL64 x
REALG4 DMINUSX VAL REAL64 x
REAL64 DMULBY2 VAL RERL64 x
REAL64 DDIVBY2 VAL REAL64 x
REAL6G4 DFPINT VAL REAL64 x
BOOL DISNAN VAL REAL64 x
BOOL DNOTFINITE VAL REAL64 x
REAL64 DSCALEB VAL REAL64 x, VAL INT n
REAL64 DCOPYSIGN VAL REAL64 x, ¥y
REAL64 DNEXTAFTER VAL REAL64 x, y
BOOL DORDERED VAL REAL64 x, y
BOOL, DARGUMENT .REDUCE |VAL REAL64 x, y, y.err
INT32,
REALG64
72 TDS 368 01 March 1993

1.3 Compiler libraries

Result(s) Function name Parameter specifiers

REALG64 REALG40P VAL REAL64 x,
VAL INT op,
VAL REAL64 y

REALG4 REALG4REM VAL REAL64 x, ¥y

BOOL, REAL64 IEEE640P VAL REAL64 x,
VAL INT rm, op,
VAL REAL64 y

BOOL, REALG64 IEEE64REM VAL REALE4 x, Yy

BOOL REALG4EQ VAL REAL64 x, Yy

BOOL REALG64GT VAL REALG64 x, Yy

INT DIEEECOMPARE VAL REAL64 x, ¥y

INT LONGADD VAL INT left, right,
carry.in

INT LONGSUM VAL INT left, right,
carry.in

INT LONGSUB VAL INT left, right,
borrow.in

INT, INT LONGDIFF VAL INT left, right,
borrow.in

INT, INT LONGPROD VAL INT left, right,
carry.in

INT, INT LONGDIV VAL INT dividend.hi,
dividend.lo, divisor

INT, INT SHIFTLEFT VAL INT hi.in, lo.in,
places

INT, INT SHIFTRIGHT VAL INT hi.in, lo.in,
places

INT, INT, INT |NORMALISE VAL INT hi.in, lo.in

INT ASHIFTLEFT VAL INT argument, places

INT ASHIFTRIGHT VAL INT argument, places

INT ROTATELEFT VAL INT argument, places

INT ROTATERIGHT VAL INT argument, places

Notes

SHIFTRIGHT and SHIFTLEFT return zeroes when the number of places to shift
is negative, or is greater than twice the transputer’s word length. In this case they
may take a long time to execute.

ASHIFTRIGHT, ASHIFTLEFT, ROTATERIGHT and ROTATELEFT are all invalid
when the number of places to shift is negative or exceeds the transputer’s word
length.

72 TDS 368 01 March 1993

1 The occam libraries 9

1.3.3 2D block moves

This section describes compiler library block move routines available to the
programmer.

Procedure Parameter Specifiers
MOVE2D VAL [][]BYTE Source,
VAL INT sx, sy, [][]BYTE Dest,
VAL INT dx, dy, width, length
DRAW2D VAL [][]1BYTE Source,
VAL INT sx, sy, [][]BYTE Dest,
VAL INT dx, dy, width, length
CLIP2D VAL [][]1BYTE Source,
VAL INT sx, sy, [][]BYTE Dest,
VAL INT dx, dy, width, length
MOVE2D

PROC MOVE2D (VAL [] []BYTE Source,
VAL INT sx, sy, [][]BYTE Dest,
VAL INT dx, dy, width, length)

Moves a data block of size width by length starting at byte
Source[sy] [sx] to the block starting at Dest [dy] [dx].

This is equivalent to:

SEQ y = 0 FOR length
[Dest[y+dy] FROM dx FOR width] :=
[Source[y+sy] FROM sx FOR width]

DRAW2D

PROC DRAW2D (VAL [][]BYTE Source,
VAL INT sx, sy, [][]BYTE Dest,
VAL INT dx, dy, width, length)

As MOVE2D but only non-zero bytes are transferred.

This is equivalent to:

SEQ line = 0 FOR length
SEQ point = 0 FOR width
VAL temp IS Source[line+sy] [point+sx]
IF
temp <> (0(BYTE))
Dest[line+dy] [point+dx] := temp
TRUE
SKIP

72 TDS 368 01 March 1993

10 1.3 Compiler libraries

CLIP2D

PROC CLIP2D (VAL [][]BYTE Source,
VAL INT sx, sy, [][]BYTE Dest,
VAL INT dx, dy, width, length)

As MOVE2D but only zero bytes are transferred.

This is equivalent to:

SEQ line = 0 FOR length
SEQ point = 0 FOR width
VAL temp IS Source[line+sy] [point+sx]
IF
temp = (0(BYTE))
Dest[line+dy] [point+dx] := O (BYTE)
TRUE
SKIP

1.3.4 Bit manipulation functions

This section describes compiler library bit-based routines available to the
programmer.

Result Function name Parameter Specifiers

INT BITCOUNT VAL INT Word, CountIn
INT BITREVNBITS VAL INT x, n

INT BITREVWORD VAL INT x

BITCOUNT

INT FUNCTION BITCOUNT (VAL INT Word, CountIn)

Counts the number of bits set o 1in Woxd, adds it to CountIn, and returns
the total.

BITREVNBITS
INT FUNCTION BITREVNBITS (VAL INT x, n)

Returns an INT containing the n least significant bits of x in reverse order.
The upper bits are set to zero. The operation is invalid if n is negative or
greater than the number of bits in a word.

BITREVWORD
INT FUNCTION BITREVWORD (VAL INT x)

Returns an INT containing the bit reversal of x.

72 TDS 368 01 March 1993

1 The occam libraries 11

1.3.5 CRC functions

This section describes compiler library CRC functions available to the
programmer.

Result Function name Parameter Specifiers

INT CRCWORD VAL INT data, CRCIn,
generator

INT CRCBYTE VAL INT data, CRCIn,
generator

A cyclic redundancy check value is the remainder from modulo 2 polynomial divi-
sion. Consider bit sequences as representing the coefficients of polynomials; for
example, the bit sequence 10100100 (where the leading bit is the most significant
bit) corresponds to P(x) = x7 + x5 + x2. CRCWORD and CRCBYTE calculate the
remainder of the modulo 2 polynomial division:

(x" H(x) + F(x))/G(x)

where: F(x) corresponds to data (the whole word for CRCHORD; only the most
significant byte for CRCBYTE)

G(x) corresponds to generator
H(x) corresponds to CRCIn
nis the word size in bits of the processor used (i.e. nis 16 or 32).

(CRCIn can be viewed as the value that would be pre-loaded into the cyclic
shift register that is part of hardware implementations of CRC generators.)

When representing G(x) in the word generator, note that there is an understood
bit before the msb of generator. For example, on a 16-bit processor, with G(x)
=x16 + x12 + x5 + 1, which is #11021, then generator must be assigned #1021,
because the bit corresponding to x'¢ is understood. Thus, a value of #9603 for
generator, comresponds to G(x) = x16 + x15 + x12 +x10 + x? + x + 1, for a 16-bit
processor.

A similar situation holds on a 32-bit processor, so that:
Gx)=x32+ x26 + xBB 422 + x16 4+ x12.4 x1 4 x10 4)8 + 37 + xS 4xd + 32 + x + 1
is encoded in generator as #04C11DB7.

Itis gossible to calculate a 16-bit CRC on a 32-bit processor. For example if G(x)
= x16 + x12 + x5 + 1, then generator is #10210000, because the most significant
16 bits of the 32-bit integer form a 16-bit generator and for:

CRCWORD, the least significant 16 bits of CRCIn form the initial CRC value,
the most significant 16 bits of data form the data; and the calculated CRC
is the most significant 16 bits of the result.

72TDS 368 01 March 1993

12 1.3 Compiler libraries

CRCBYTE, the most significant 16 bits of CRCIn form the initial CRC value;
the next 8 bits of CRCIn (the third most significant byte) form the byte of
data; and the calculated CRC is the most significant 16 bits of the result.

CRCWORD
INT FUNCTION CRCWORD (VAL INT data, CRCIn, generator)

Takes the whole of the word data to correspond to F(x) in the above
formula. This implements the following algorithm:

INT MyData, CRCOut, OldCRC :

VALOF
SEQ
MyData, CRCOut := data, CRCIn
SEQ i = 0 FOR BitsPerWord -- 16 or 32
SEQ

01dCRC := CRCOut
CRCOut, MyData := SHIFTLEFT (CRCOut, MyData, 1)
IF

OldCRC < 0 —— MSB of CRC =1
CRCOut := CRCOut >< generator
TRUE
SKIP
RESULT CRCOut

CRCBYTE
INT FUNCTION CRCBYTE (VAL INT data, CRCIn, generator)

Takes the most significant byte of data to correspond to F(x) in the above
formula. This implements the following algorithm:

INT MyData, CRCOut, OldCRC :
VALOF
SEQ
MyData, CRCOut := data, CRCIn
SEQ i = 0 FOR 8
SEQ
OldCRC := CRCOut
CRCOut, MyData := SHIFTLEFT (CRCOut, MyData, 1)
IF
O1dCRC < 0 — MSB of CRC = 1
CRCOut := CRCOut >< generator
TRUE
SKIP
RESULT CRCOut

72 TDS 368 01 March 1993

1 The occam libraries 13

Note: The predefines CRCBYTE and CRCWORD can be chained together to help
calculate a CRC from a string considered as one long polynomial. A simple
chaining would calculate:

(xkH(x) + Fx))/G(x)

where F(x) corresponds to the string and k is the number of bits in the string. This
is not the same CRC that is calculated by CRCFROMMSE and CRCFROMLSB in
cre.lib, section 1.9, because these latter routines shift the numerator by x™.

1.3.6 Floating point arithmetic support functions

Result(s) Function name Parameter Specifiers

INT FRACMUL VAL INT x, ¥

INT, INT, INT |UNPACKSN VAL INT x

INT ROUNDSN VAL INT Yexp, Yfrac, Yguard
FRACMUL

INT FUNCTION FRACMUL (VAL INT x, y)

Performs a fixed point multiplication of x and y, treating each as a binary
fraction in the range [-1, 1), and retuming their product rounded to the
nearest available representation. The value of the fractions represented by
the arguments and result can be obtained by multiplying their INT value by
2-31(on a 32-bit processor) or 2-7° (on a 16-bit processor). The result can
overflow if both x and y are -1.0.

This routine is compiled inline into a sequence of transputer instructions on
32-bit processors, or as a call to a standard library routine for 16-bit proces-
sors.

UNPACKSN
INT, INT, INT FUNCTION UNPACKSN (VAL INT x)

This retums three parameters; from left to right they are Xfrac, Xexp, and
Type. x is regarded as an IEEE single length real number (i.e. a RETYPED
REAL32). The function unpacks x into Xexp, the (biased) exponent, and
Xfrac the fractional part, with implicit bit restored. It also retums aninteger
defining the Type of x, ignoring the sign bit:

Type |Reason
0 X is zero
1 X is a normalized or denormalized number
2 Xis Inf
3 X is NaN

72 TDS 368 01 March 1993

14 1.3 Compiler libraries

Examples:

UNPACKSN (#40490FDB) returns #C90FDB00 , #00000080, 1
UNPACKSN (#00000001) returns #00000100 ,#00000001, 1
UNPACKSN (#7FC00001) retums #40000100 ,#000000FF, 3

This routine is compiled inline into a sequence of transputer instructions on
32-bit processors such as the IMS T425, which do not have a floating
support unit, but do have special instructions for floating point operations.
For other 32-bit processors the function is compiled as a call to a standard
library routine. Itis invalid on 16-bit processors, since Xfrac cannotfit into
an INT.

ROUNDSN
INT FUNCTION ROUNDSN (VAL INT Yexp, Yfrac, Yguard)

This takes a possibly unnormalized fraction, guard word and exponent, and
returns the IEEE single length floating point value it represents. It takes
care of all the normalization, post-normalization, rounding and packing of
the result. The rounding mode used is round to nearest. The exponent
should already be biased. This routine is not intended for use with Yexp
and Yfrac representing an infinity or a NaN.

Examples:

ROUNDSN (#00000080, #C90FDBO00O, #00000000) returns $40490FDB
ROUNDSN (#00000080, #CS0FDB80, #00000000) returns $40490FDC
ROUNDSN (#00000080, $C90FDASO, #00000000) returns $40490FDA
ROUNDSN (#00000080, #C90FDA80, $00003000) returns #40490FDB
ROUNDSN (#00000001, #00000100, #00000000) returns #00000001

The function normalizes and post-normalizes the number represented by
Yexp, Yfrac and Yguard into local variables Xexp, Xfrac, and Xguard.
It then packs the (biased) exponent Xexp and fraction Xfrac into the
result, rounding using the extra bits in Xguard. The sign bit is set to 0. If
overflow occurs, Inf is retumed.

This routine is compiled inline into a sequence of transputer instructions on
32-bit processors such as the IMS T425, which do not have a floating
support unit, but do have special instructions for floating point operations.
For other 32-bit processors the function is compiled as a call to a standard
library routine. Itis invalid on 16-bit processors, since Xfrac cannot fit into
an INT.

72 TDS 368 01 March 1993

1 The occam libraries 15

1.3.7 Dynamic code loading support

This section describes compiler library dynamic loading routines available to the
programmer.

Procedures
Procedure Parameter Specifiers
KERNEL . RUN VAL []BYTE cecde,

VAL INT entry.offset,
[1INT workspace,
VAL INT no.of.parameters

LOAD. INPUT . CHANNEL INT here,
CHAN OF ANY in

LOAD. INPUT .CHANNEL . VECTOR INT here,
[JCHAN OF ANY in

LOAD . OUTPUT . CHANNEL INT here,
CHAN OF ANY out

LOAD.QUTPUT.CHANNEL.VECTOR INT here,
[ICHAN OF ANY out

LOAD . BYTE . VECTOR INT here,
VAL []BYTE bytes

Functions
Result(s) Function name Parameter Specifiers
INT WSSIZEOF routinename
INT VSSIZECF routinename
KERNEL . RUN

PROC KERNEL.RUN (VAL []BYTE code,
VAL INT entry.offset,
[1INT workspace,
VAL INT no.of.parameters)

The effect of this procedure is to call the procedure loaded in the code
buffer, starting execution at the location code [entry.offset].

The code to be called must begin at a word-aligned address. To ensure
proper alignment either start the array atzero or realign the code on a word
boundary before passing it into the procedure.

The workspace buffer is used to hold the local data of the called proce-
dure. The required size of this buffer, and the code buffer, must be derived
by visually inspecting the executable code file (.zrsc file) to be loaded

72 TDS 368 01 March 1993

16 1.3 Compiler libraries

using the binary lister tool i1ist. Alternatively, a routine can be written to
read this file and pass the information to KERNEL . RUN. The format of the
.rsc file is described in section 3.6 of the Tools Reference Manual.

The parameters passed to the called procedure should be placed at the top
of the workspace buffer by the calling procedure before the call of
KERNEL. RUN. The call to KERNEL . RUN returns when the called procedure
terminates. If the called procedure requires a separate vector space, then
another buffer of the required size must be declared, and its address
placed as the last parameter at the top of workspace. As calls of
KERNEL.RUN are handled specially by the compiler it is necessary for
no.of .parameters to be a constant known at compile time and to have
avalue 2 3.

The workspace passed to KERNEL . RUN must be at least:
[ws.requirement + (no.of.parameters + 2)]INT

where ws. requirement is the size of workspace required, determined
when the called procedure was compiled and stored in the code file, and
no.of .parameters includes the vector space pointer if it is required.
The parameters must be loaded before the call of KERNEL.RUN. The
parameter corresponding to the first formal parameter of the procedure
should be in the word adjacent to the saved Iptr word, and the vector space
pointer or the last parameter should be adjacent to the top of workspace
where the Wptr word will be saved.

LOAD. INPUT . CHANNEL
LOAD.INPUT.CHANNEL (INT here, CHAN OF ANY in)
The variable here is assigned the address of the input channel in.

The normal protocol checking of channel parameters is suppressed; there-
fore channels of any protocol may be passed to this routine. The channel
parameter is considered by the compiler to have been used for input.

LOAD. INPUT.CHANNEL . VECTOR

LOAD. INPUT . CHANNEL . VECTOR (INT here,
[]CHAN OF ANY in)

The variable here is assigned the address of the base element of the
channel array in (i.e. the base of the array of pointers).

The normal protocol checking of channel parameters is suppressed; there-

fore channels of any protocol may be passed to this routine. The channel
parameter is considered by the compiler to have been used for input.

72TDS 368 01 March 1993

1 The occam libraries 17

LOAD.QUTPUT .CHANNEL
LOAD.QOUTPUT .CHANNEL (INT here, CHAN OF ANY out)
The variable here is assigned the address of the output channel out.

The normal protocol checking of channel parameters is suppressed; there-
fore channels of any protocol may be passed to this routine. The channel
parameter is considered by the compiler to have been used for input.

LOAD . OUTPUT . CHANNEL . VECTOR

LOAD.OUTPUT .CHANNEL.VECTOR (INT here,
[ICHAN OF ANY out)

The variable here is assigned the address of the base element of the
channel array out (i.e. the base of the array of pointers).

The normal protocol checking of channel parameters is suppressed; there-
fore channels of any protocol may be passed to this routine. The channel
parameter is considered by the compiler to have been used for input.

LOAD.BYTE.VECTOR
LOAD.BYTE.VECTOR (INT here, VAL []BYTE bytes)
The variable here is assigned the address of the byte array bytes. This
can be used in conjunction with RETYPES to find the address of any vari-
able.

WSSIZEOF
INT FUNCTION WSSIZEOF (routinename)

This function returns the number of workspace ‘slots’ (words) required by
the procedure or function routinename. INLINE or predefined routines are
not permitted.

VSSIZEOF
INT FUNCTION VSSIZEOF (routinename)

This function returns the number of vectorspace ‘slots’ (words) required by
the procedure or function routinename. INLINE or predefined routines
are not permitted.

1.3.8 Transputer-related procedures

This section describes compiler library transputer-specific routines available to the
programmer.

72 TDS 368 01 March 1993

18

1.3 Compiler libraries

Procedure

Parameter Specifiers

CAUSEERROR

()

RESCHEDULE

()

CAUSEERROR

CAUSEERROR ()

Inserts instructions into the program to set the transputer error flag. If the
program is in STOP or UNIVERSAL mode instructions to stop the current
process are also inserted.

The error is then treated in exactly the same way as any other error would
be treated in the emor mode in which the program is compiled. For
example, in HALT mode the whole processor will halt and in STOP mode
that process will stop, leaving the transputer error flag set TRUE. If run-time
error checking has been suppressed (e.g. by a command line option), this
stop is suppressed.

The difference between CAUSEERROR () and the STOP process, is that
CAUSEERROR guarantees to set the transputer’s error flag.

RESCHEDULE

RESCHEDULE ()

This causes the current process to be rescheduled by inserting instructions
into the program to cause the current process to be moved to the end of
the current priority scheduling queue. This occurs even if the current
process is a ‘high priority’ process.

RESCHEDULE effectively forces a ‘timeslice’, even in high priority.

1.3.9 Miscellaneous operations

This section describes miscellaneous compiler library routines available to the

programmer.

Procedure Parameter Specifiers
ASSERT VAL BOOL test
ASSERT

PROC ASSERT (VAL BOOL test)

At compile time the compiler will check the value of test and ifitis FALSE
the compiler will give a compile time error; if it is TRUE, the compiler does
nothing. If test cannot be checked at compile-time then the compiler will

72 TDS 368 01 March 1993

1 The occam libraries 19

insert a run-time check to detect its status. This run-time check may be
disabled by means of a command line option.

ASSERT is a useful routine for debugging purposes. Once a program is
working correctly the compiler option ‘NA’ can be used to prevent code
being generated to check for ASSERTs at run-time. If possible ASSERTs will
still be checked at compile time.

72 TDS 368 01 March 1993

20 1.4 Maths libraries

1.4 Maths libraries

Elementary maths and trigonometric functions are provided in three libraries, as
follows:

Library Description
snglmath.lib Single length library
dblmath.lib Double length library
tbmaths.lib TB optimized library

The single and double length libraries contain the same set of maths functions in
single and double length forms. The double length forms all begin with the letter
‘D’. All function names are in upper case.

The TB optimized library is a combined single and double length library containing
functions forthe T4 series (T400, T414, T425, and T426). The functions have been
optimized for speed. The standard single or double length libraries can be used on
T4 processors but optimum performance will be achieved by using the TB opti-
mized library. The accuracy of the T400/T414/T425/T426 optimized functions is
similar to that of the standard single length functions but results returned may not
be identical because different algorithms are used. If the optimized library is used
in code compiled for any processor except a T400, T414, T425, or T426, the
compiler reports an error.

To obtain the best possible speed performance with the occam maths functions
use the following strategy:

* For networks consisting of only T4 series transputers, use the
tbmaths. 1ib library.

* For networks consisting of only T8 series transputers, use the
snglmath.lib and dblmath. 1ib libraries.

*» For networks consisting of a mix of T4 series and T8 series transputers use:

O tbmaths.lib on the T4 series and snglmath.lib or
dblmath.1ib on the T8 series when a consistent level of accu-
racy is not required;

o if accuracy must be the same in the T8 and T4 processes then use
the snglmath.lib and dblmath.1ib libraries.

Constants for the maths libraries are provided in the include file mathvals. inc.
The elementary function library is also described in appendix N of the occam 2
Reference manual.

1.4.1 Introduction and terminology

This, and the following subsections, contain some notes on the presentation of the
elementary function libraries described in section 1.4.2, and the TB version
described in section 1.4.3.

72 TDS 368 01 March 1993

1 The occam libraries 21

These function subroutines have been written to be compatible with the ANSI stan-
dard for binary floating-point arithmetic (ANSI-IEEE std 754-1985), as imple-
mented in occam. They are based on the algorithms in:

Cody, W. J., and Waite, W. M. [1980]. Software Manual for the Elementary
Functions. Prentice-Hall, New Jersey.

The only exceptions are the pseudo-random number generators, which are based
on algorithms in:

Knuth, D. E. [1981]. The Art of Computer Programming, 2nd. edition,
Volume 2: Seminumerical Algorithms. Addison-Wesley, Reading, Mass.

Inputs

All the functions in the library (except RAN and DRAN) are called with one or ftwo
parameters which are binary floating-point numbers in one of the IEEE standard
formats, either ‘single-length’ (32 bits) or ‘double-length’ (64 bits). The param-
eter(s) and the function result are of the same type.

NaNs and Infs

The functions will accept any value, as specified by the standard, including special
values representing NaNs (‘Not a Number’) and Infs (‘Infinity’). NaNs are copied
to the result, whilst Infs may or may not be in the domain. The domain is the set
of arguments for which the result is a normal (or denormalized) floating-point
number.

Outputs
Exceptions

Arguments outside the domain (apart from NaNs which are simply copied through)
give rise to exceptional results, which may be NaN, +inf, or —Inf. Infs mean that
the result is mathematically well-defined but too large to be represented in the float-
ing-point format.

Error conditions are reported by means of three distinct NaNs:
undefined.NaN

This means that the function is mathematically undefined for this argument, for
example the logarithm of a negative number.

unstable.NaN

This means that a small change in the argument would cause a large change in
the value of the function, so any error in the input will render the output meaning-
less.

inexact.NaN

This means that although the mathematical function is well-defined, its value is in
range, and it is stable with respect to input errors at this argument, the limitations

72 TDS 368 01 March 1993

22 1.4 Maths libraries

of word-length (and reasonable cost of the algorithm) make it impossible to
compute the correct value.

The implementations will return the following values for these Not-a-Numbers:

Error Single length value Double length value
undefined.NaN #TF800010 #7FF00002 00000000
unstable.NaN #7F800008 #7FF00001 00000000
inexact.NaN #TF800004 #TFF00000 80000000
Accuracy

Range Reduction

Since itis impractical to use rational approximations (i.e. quotients of polynomials)
which are accurate over large domains, nearly all the subroutines use mathemat-
ical identities to relate the function value to one computed from a smaller argument,
taken from the ‘primary domain’, which is small enough for such an approximation
to be used. This process is called ‘range reduction’ and is performed for all argu-
ments except those which already lie in the primary domain.

For most of the functions the quoted error is for arguments in the primary domain,
which represents the basic accuracy of the approximation. For some functions the
process of range reduction results in a higher accuracy for arguments outside the
primary domain, and for others it does the reverse. Refer to the notes on each func-
tion for more details.

Generated Error

If the true value of the function is large the difference between it and the computed
value (the ‘absolute error’) is likely to be large also because of the limited accuracy
of floating-point numbers. Conversely if the true value is small, even a small abso-
lute error represents a large proportional change. For this reason the error relative
to the true value is usually a better measure of the accuracy of a floating-point func-
tion, except when the output range is strictly bounded.

If fis the mathematical function and F the subroutine approximation, then the rela-
tive error at the floating-point number X (provided f(X) is not zero) is:

_ P& - f0)
7

Obviously the relative error may become very large near a zero of f(X). If the zero
is at anirrational argument (which cannot be represented as a floating-point value),
the absolute error is a better measure of the accuracy of the function near the zero.

RE(X)

As it is impractical to find the relative error for every possible argument, statistical
measures of the overall ermror must be used. If the relative error is sampled at a
number of points X,, (n = 1 to N), then useful statistics are the maximum relative
error and the root-mean-square relative error.

72TDS 368 01 March 1993

1 The occam libraries 23

MRE = max_ |RE(Xn)|
IsnsN

N
RMSRE = [S (REGK)?
n=1

Corresponding statistics can be formed for the absolute error also, and are called
MAE and RMSAE respectively.

The MRE generally occurs near a zero of the function, especially if the true zero
is irrational, or near a singularity where the result is large, since the ‘granularity’ of
the floating-point numbers then becomes significant.

A useful unit of relative error is the relative magnitude of the least significant bit in
the floating-point fraction, which is called one ‘unit in the last place’ (ulp), (i.e. the
smallest & such that 1+¢ = 1). lts magnitude depends on the floating-point format:
for single-length itis 2-23=1.19+10~7, and for double-length itis 2-52=2.22+10716.

Propagated Error

Because of the limited accuracy of floating-point numbers the result of any calcula-
tion usually differs from the exact value. In effect, a small error has been added to
the exact result, and any subsequent calculations will inevitably involve this error
term. Thus it is important to determine how each function responds to errors in its
argument. Provided the error is not too large, it is sufficient just to consider the first
derivative of the function (written f”).

If the relative error in the argument X is d (typically a few ulp), then the absolute
error (E) and relative error (e) in f(X) are:

E=|X"(X)d| = Ad -

XXNd | _
e= || = M

This defines the absolute and relative error magnification factors A and R. When
both are large the function is unstable, i.e. even a small errorin the argument, such
as would be produced by evaluating a floating-point expression, will cause a large
error in the value of the function. The functions return an unstable.NaN in such
cases which are simple to detect.

The functional forms of both 4 and R are given in the specification of each function.
Test Procedures

For each function, the generated error was checked at a large number of argu-
ments (typically 100 000) drawn at random from the appropriate domain. First the
double-length functions were tested against a ‘quadruple-length’ implementation
(constructed for accuracy rather than speed), and then the single-length functions
were tested against the double-length versions.

72 TDS 368 01 March 1993

24 1.4 Maths libraries

In both cases the higher-precision implementation was used to approximate the
mathematical function (called f above) in the computation of the error, which was
evaluated in the higher precision to avoid rounding errors. Error statistics were
produced according to the formulae above.

Symmetry

The subroutines were designed to reflect the mathematical properties of the func-
tions as much as possible. For all the functions which are even, the sign is removed
from the input at the beginning of the computation so that the sign-symmetry of the
function is always preserved. For odd functions, either the sign is removed at the
start and then the appropriate sign set at the end of the computation, or else the
sign is simply propagated through an odd degree polynomial. In many cases other
symmetries are used in the range-reduction, with the result that they will be satis-
fied automatically.

The Function Specifications
Names and Parameters

All single length functions except RAN return a single result of type REAL32, and
all except RAN, POWER and ATAN2 have one parameter, a VAL REAL32.

POWER and ATAN2 have two parameters which are VAL REAL32s for the two argu-
ments of each function.

RAN returns two results, of types REAL32 and INT32, and has one parameter
which is a VAL INT32.

In each case the double-length version of name is called Dname, returs a REAL64
(except DRAN, which returns REAL64, INT64), and has parameters of type
VAL REAL64 (VAL INT64 for DRAN).

Terms used in the Specifications

A and R Multiplying factors relating the absolute and relative errors in the output
to the relative error in the argument.

Exceptions Outputs for invalid inputs (i.e. those outside the domain), other than
NaN (NaNs are copied directly to the output and are not listed as exceptions).
These are all Infs or NaNs.

Generated Error The difference between the true and computed values of the
function, when the argument is error-free. This is measured statistically and
displayed for one or two ranges of arguments, the first of which is usually the
primary domain (see below). The second range, if present, is chosen to illus-
trate the typical behavior of the function.

Domain The range of valid inputs, i.e. those for which the output is a normal or
denormal floating-point number.

MAE and RMSAE The Maximum Absolute Error and Root-Mean-Square absolute
error taken over a number of arguments drawn at random from the indicated
range.

72 TDS 368 01 March 1993

1 The occam libraries 25

MRE and RMSRE The Maximum Relative Error and Root-Mean-Square relative
error taken over a number of arguments drawn at random from the indicated
range.

Range The range of outputs produced by all arguments in the Domain. The given
endpoints are not exceeded.

Primary Domain The range of arguments for which the result is computed using
only a single rational approximation to the function. There is no argument
reduction in this range.

Propagated Error The absolute and relative error in the function value, given a
small relative error in the argument.

ulp The unit of relative error is the ‘unit in the last place’ (ulp). This is the relative
magnitude of the least significant bit of the floating-point fraction (i.e. the
smallest € such that 1+e = 1).

N.B. this depends on the floating-point format.

For the standard single-length format it is 2723 = 1.19+1077.

For the double-length format it is 2752 = 2.22+10716,

This is also used as a measure of absolute error, since such errors can be
considered ‘relative’ to unity.

Specification of Ranges

Ranges are given as intervals, using the convention that a square bracket ' or T
means that the adjacent endpoint is included in the range, whilst a round bracket
‘(" or ‘) means that it is excluded. Endpoints are given to a few significant figures
only.

Where the range depends on the floating-point format, single-length is indicated
with an S and double-length with a D.

For functions with two arguments the complete range of both arguments is given.
This means that for each number in one range, there is at least one (though some-
times only one) number in the other range such that the pair of arguments is valid.
Both ranges are shown, linked by an ‘X',

Abbreviations

In the specifications, XMAX is the largest representable floating-point number: in
single-lé%régth it is approximately 3.4+1038, and in double-length it is approximately
1.8+10°95,

Pi means the closest floating-point representation of the transcendental number
=, In(2) the closest representation of log,(2), and so on.

In describing the algorithms, ‘X’ is used generically to designate the argument, and
‘result’ (or RESULT, in the style of occam functions) to designate the output.
1.4.2 Single and double length elementary function libraries

The versions of the libraries described by this section have been written using only
floating-point arithmetic and pre-defined functions supported in occam. Thus they

72 TDS 368 01 March 1993

26 1.4 Maths libraries

can be compiled for any processor with a full inplementation of occam, and give
identical results.

These two libraries will be efficient on processors with fast floating-point arithmetic
and good support for the floating-point predefined functions such as MULBY2 and
ARGUMENT . REDUCE. For 32-bit processors without special hardware for floating-
point calculations the altemnative optimized library described in section 1.4.3 using
fixed-point arithmetic will be faster, but will not give identical results.

A special version has been produced for 16-bit transputers, which avoids the use
of any double-precision arithmetic in the single precision functions. This is distin-
guished in the notes by the annotation ‘T2 special’; notes relating to the version for
T8 and TB are denoted by ‘standard’.

Single and double length maths functions are listed below. Descriptions of the func-
tions can be found in succeeding sections.

To use the single length library a program header must include the line
#USE “snglmath.lib”

To use the double length library a program header must include the line
#USE “dblmath.lib”

Result(s) Function |Parameter specifiers

REAL32 ALOG VAL REAL32 X

REAL32 ALOG10 VAL REAL32 X

REAL32 EXP VAL REAL32 X

REAL32 POWER VAL REAL32 X, VAL REAL32 Y
REAL32 SIN VAL REAL32 X

REAL32 cos VAL REAL32 X

REAL32 TAN VAL REAL32 X

REAL32 ASIN VAL REAL32 X

REAL32 ACOS VAL REAL32 X

REAL32 ATAN VAL REAL32 X

REAL32 ATAN2 VAL REAL32 X, VAL REAL32 Y
REAL32 SINH VAL REAL32 X

REAL32 COSH VAL REAL32 X

REAL32 TANH VAL REAL32 X

REAL32,INT32 |RAN VAL INT32 X

REALG4 DALOG VAL REAL64 X

REAL64 DALOG10 (VAL REAL64 X

REALG64 DEXP VAL REAL64 X

72 TDS 368 01 March 1993

1 The occam libraries

27

Resuli(s) Function |Parameter specifiers

REALG4 DPOWER VAL REAL64 X, VAL REAL64 Y
REAL64 DSIN VAL REAL64 X

REAL64 DCOS VAL REAL64 X

REAL64 DTAN VAL REAL64 X

REAL64 DASIN VAL REAL64 X

REALG64 DACOS VAL REAL64 X

REALG64 DATAN VAL REAL64 X

REAL64 DATAN2 VAL REAL64 X, VAL REAL64 Y
REAL64 DSINH VAL REAL64 X

REALG64 DCOSH VAL REAL64 X

REALG4 DTANH VAL REAL64 X

REAL64 ,INT64 |DRAN VAL INT64 X

Function definitions

ALOG
DALOG

REAL32 FUNCTION ALOG (VAL REAL32 X)
REAL64 FUNCTION DALOG (VAL REAL64 X)

Compute loge(X).

Domain:

Range:

Primary Domain:

Exceptions

(0, XMAX]
[MinLog, MaxLog] [MinLog, MaxLog] (See note 2)
V212, «/2) = [0.7071, 1.4142)

All arguments outside the domain generate an undefined.NaN.

Propagated Error

A=1,

R =1/loge(X)

Generated Error

Primary Domain Error:

Single Length(Standard):
Single Length(T2 special):
Double Length:
The Algorithm

1 Split X into its exponent N and fraction F.

72 TDS 368 01

MRE

1.7 ulp
1.6 ulp
1.4 ulp

RMSRE
0.43 ulp
0.42 ulp
0.38 ulp

March 1993

28

1.4 Maths libraries

2 Find LnF, the natural log of F, with a floating-point rational approxima-
tion.

3 Compute In(2) * N with extended precision and add it to LnF to get
the result.

Notes

1) The term In(2) = N is much easier to compute (and more accurate) than
LnF, and it is larger provided N is not 0 (i.e. for arguments outside the
primary domain). Thus the accuracy of the result improves as the modulus
of log(X) increases.

2) The minimum value that can be produced, MinLog, is the logarithm of
the smallest denormalized floating-point number. For single length MinLog
is—=103.28, and for double length it is —=744.4. The maximum value MaxLog
is the logarithm of XMAX. For single-length it is 88.72, and for double-
length it is 709.78.

3) Since Inf is used to represent all values greater than XMAX its logarithm
cannot be defined.

4) This function is well-behaved and does not seriously magnify errors in
the argument.

ALOGI1O0
DALOG10

REAL32 FUNCTION ALOG10 (VAL REAL32 X)
REAL64 FUNCTION DALOGLO (VAL REAL64 X)

Compute logqg(X).

Domain: (0, XMAX)
Range: [MinL10, MaxL10] (See note 2)
Primary Domain: [\/2/2, ./2) =[0.7071, 1.4142)

Exceptions

All arguments outside the domain generate an undefined.NaN.
Propagated Error

A=logiple)y R =logio(e)loge(X)

Generated Error

Primary Domain Error: MRE RMSRE
Single Length (Standard): 1.70ulp 045 ulp

72 TDS 368 01 March 1993

1 The occam libraries 29

EXP
DEXP

Single Length (T2 special): 1.71ulp 0.46ulp
Double Length: 1.84ulp 045ulp
The Algorithm
1 Set temp:= ALOG (X).

2 If temp is a NaN, copy it to the output, otherwise set
result = log(e) * temp

Notes
1) See note 1 for ALOG.

2) The minimum value that can be produced, MinL 10, is the base-10 loga-
rithm of the smallest denormalized floating-point number. For single length
MinL10 is —44.85, and for double length it is =323.3. The maximum value
MaxL10 is the base-10 logarithm of XMAX. For single length MaxL10 is
38.53, and for double-length it is 308.26.

3) Since Inf is used to represent all values greater than XMAXits logarithm
cannot be defined.

4) This function is well-behaved and does not seriously magnify errors in
the argument.

REAL.32 FUNCTION EXP (VAL REAL32 X)
REAL64 FUNCTION DEXP (VAL REAL64 X)

Compute eX.
Domain: [-Inf, MaxLog) = [-Inf, 88.72)S, [-Inf, 709.78)D
Range: [0, Inf) (See note 4)

Primary Domain: [-Ln2/2, Ln2/2) = [-0.3466, 0.3466)
Exceptions
All arguments outside the domain generate an Inf.
Propagated error
A=XeX, R=X
Generated error

Primary Domain Error: MRE RMSRE
Single Length(Standard): 099ulp 0.25ulp

72 TDS 368 01 March 1993

30 1.4 Maths libraries

Single Length(T2 special): 1.0ulp 0.25ulp
Double Length: 14ulp 0.25ulp

The Algorithm
1 Set N =integer part of X/In(2).

2 Compute the remainder of X by In(2), using extended precision arith-
metic.

3 Compute the exponential of the remainder with a fioating-point
rational approximation.

4 Increase the exponent of the result by N. If N is sufficiently negative
the result must be denormalized.

Notes

1) MaxLog is log, (XMAX).

2) For sufficiently negative arguments (below —87.34 for single-length and
below —708.4 for double-length) the output is denormalized, and so the
floating-point number contains progressively fewer significant digits, which
degrades the accuracy. In such cases the error can theoretically be a factor
of two.

3) Although the true exponential function is never zero, for large negative
arguments the true result becomes too small to be represented as a float-
ing-point number, and EXP underflows to zero. This occurs for arguments
below —103.9 for single-length, and below —745.2 for double-length.

4) The propagated error is considerably magnified for large positive argu-
ments, but diminished for large negative arguments.

POWER
DPOWER

REAL32 FUNCTION POWER (VAL REAL32 X, Y)
REAL64 FUNCTION DPOWER (VAL REAL64 X, Y)

Compute XY
Domain: [0, Inf] x [-Inf, Inf]
Range: (-nf, Inf)

Primary Domain: See note 3.
Exceptions

Ifthe first argument is outside its domain, undefined.NaN is returned. If the
true value of XY exceeds XMAX, Infis returned. In certain other cases other
NaNs are produced: See note 2.

72 TDS 368 01 March 1993

1 The occam libraries 31

Propagated Error
A=YXY1+log.(X)), R=Y(1=log.(X))(See note 4)

Generated error

Example Range Error: MRE RMSRE (See note 3)
Single Length(Standard): 1.0ulp 0.25ulp
Single Length(T2 special): 63.1ulp 13.9ulp
Double Length: 21.1ulp 24ulp
The Algorithm

Deal with special cases: either argument = 1, 0, +Inf or —Inf (see note 2).
Otherwise:

(a) For the standard single precision:

1 Compute L = log,(X) in double precision, where X is the first argu-
ment.

2 Compute W=Y x L in double precision, where Y'is the second argu-
ment.

3 Compute RESULT = e¥ in single precision.
(b) For double precision, and the single precision special version:

1 Compute L = log,(X) in extended precision, where X is the first argu-
ment.

2 Compute W=Y x L in extended precision, where Y is the second
argument.

3 Compute RESULT = 2¥in extended precision.
Notes

1) This subroutine implements the mathematical function » to a much
greater accuracy than can be attained using the ALOG and EXP functions,
by performing each step in higher precision. The single-precision version
is more efficient than using DALOG and EXP because redundant tests are
omitted.

72 TDS 368 01 March 1993

32

1.4 Maths libraries

2) Results for special cases are as follows:

First Input (X) Second Input (Y) Result
<0 ANY undefined.NaN
0 =0 undefined.NaN
0 0 <Y<XMAX 0
0 Inf unstable.NaN
0<X<1 Inf 0
0 <X <1 ~Inf Inf
1 —XMAX <Y< XMAX 1
1 + Inf unstable.NaN
1 < X < XMAX Inf Inf
1 <X < XMAX —Inf 0
Inf 1<Y<Inf Inf
Inf =Inf =Y = -1 0
Inf -1 <Y <1 undefined.NaN
otherwise 0 1
otherwise 1 X

3) Performing all the calculations in extended precision makes the double-
precision algorithm very complex in detail, and having two arguments
makes a primary domain difficult to specify. As an indication of accuracy,
the functions were evaluated at 100 000 points logarithmically distributed
over (0.1, 10.0), with the exponent linearly distributed over (-35.0, 35.0)
(single-length), and (-300.0, 300.0) (double-length), preducing the errors
given above. The errors are much smaller if the exponent range is reduced.

4) The error amplification factors are calculated on the assumption that the
relative error in Yis £ that in X, otherwise there would be separate factors
for both X and Y. It can be seen that the propagated error will be greatly
amplified whenever log.(X) or Y'is large.

SIN
DSIN

REAL32 FUNCTION SIN (VAL REAL32 X)

REAL64 FUNCTION DSIN (VAL REAL64 X)

Compute sine(X) (where X is in radians).

Domain: [-Smax, Srmax]

Range:

Primary Domain:

72TDS 368 01

= [-205887.4, 205887.4]S (Standard),

=[-4.2+106, 4 2+106]S (T2 special)
= [4.29+10%, 4.29+10%D

[1.0, 1.0]

[-Pil2, Pil2)= [-1.57, 1.57]

March 1993

1 The occam libraries 33

Exceptions

All arguments outside the domain generate an inexact.NaN, except =+ Inf,
which generates an undefined.NaN.

Propagated Error
A=Xcos(X), R=Xcol(X)
Generated error (See note 1)

Primary Domain [0, 2P]]
MRE RMSRE MAE RMSAE
Single Length(Standard): 0.94ulp 023ulp 0.96ulp 0.19ulp
Single Length(T2 special): 0.92ulp 023ulp 094 ulp 0.19ulp
Double Length: 0.90ulp 022ulp 091ulp 0.18ulp

The Algorithm
1 Set N = integer part of | X| /Pi.

2 Compute the remainder of |X| by Pi, using extended precision arith-
metic (double precision in the standard version).

3 Compute the sine of the remainder using a floating-point polynomial.

4 Adjust the sign of the result according to the sign of the argument and
the evenness of N.

Notes

1) For arguments outside the primary domain the accuracy of the result
depends crucially on step 2. The extra precision of step 2 is lost if N
becomes too large, and the cut-off Smax is chosen to prevent this. In any
case for large arguments the ‘granularity’ of floating-point numbers
becomes a significant factor. For arguments larger than Smax a change in
the argument of 1 ulp would change more than half of the significant bits
ofthe result, and so the result is considered to be essentially indeterminate.

2) The propagated error has a complex behavior. The propagated relative
error becomes large near each zero of the function (outside the primary
range), but the propagated absolute error only becomes large for large
arguments. In effect, the error is seriously amplified only in an interval about
each irrational zero, and the width of this interval increases roughly in
proportion to the size of the argument.

3) Since only the remainder of X by Pi is used in step 3, the symmetry
sin(x+ nx) = + sin (x) is preserved, although there is a complication due to
differing precision representations of x.

72 TDS 368 01 March 1993

34

1.4 Maths libraries

cos
DCOs

4) The output range is not exceeded. Thus the output of SIN is always a
valid argument for ASIN.

REAL32 FUNCTION COS (VAL REAL32 X)
REAL64 FUNCTION DCOS (VAL REAL64 X)

Compute cosine(X) (where X is in radians).

Domain: [-Cmax, Cmax] = [-205887.4, 205887.4]S (Standard),
= [-12868.0, 12868.0]S (T2 special)
= [-2.1%108, 2.1+108]D

Range: [-1.0, 1.0]
Primary Domain: See note 1.
Exceptions

All arguments outside the domain generate an inexact.NaN, except +Inf,
which generates an undefined.NaN.

Propagated Error
A=-Xsin(X), R=-Xtan(X) (See note4)
Generated error

[0, Pil4) [0, 2P]]
MRE RMSRE MAE RMSAE

Single Length(Standard): 093 ulp 0.25ulp 088ulp 0.18 ulp
Single Length(T2 special): 1.1ulp 03ulp 084ulp 0.19ulp
Double Length: 10ulp 028ulp 090ulp 0.19ulp

The Algorithm
1 Set N =integer part of (| X| +Pi/2)/Pi and compute the remainder of
(|X| +Pi/2) by Pi, using extended precision arithmetic (double preci-
sion in the standard version).
2 Compute the sine of the remainder using a floating-point polynomial.
3 Adjust the sign of the result according to the evenness of N.

Notes

1) Inspection of the algorithm shows that argument reduction always
occurs, thus there is no ‘primary domain’ for C0S. So for all arguments the

72 TDS 368 01 March 1993

1 The occam libraries 35

accuracy of the result depends crucially on step 2. The standard single-pre-
cision version performs the argument reduction in double-precision, so
there is effectively no loss of accuracy at this step. For the T2 special
version and the double-precision version there are effectively K extra bits
in the representation of ={K=8 for the former and 12 for the latter). If the
argument agrees with an odd integer multiple of a/2 to more than & bits
there is a loss of significant bits from the computed remainder equal to the
number of extra bits of agreement, and this causes a loss of accuracy in
the resuit.

2) The difference between COS evaluated at successive floating-point
numbers is given approximately by the absolute error amplification factor,
A. For arguments larger than Cmax this difference may be more than half
the significant bits of the result, and so the result is considered to be essen-
tially indeterminate and an inexact.NaN is retumed. The extra precision of
step 2 in the double-precision and T2 special versions is lost if N becomes
too large, and the cut-off at Cmax prevents this also.

3) For small arguments the errors are not evenly distributed. As the argu-
ment becomes smaller there is an increasing bias towards negative errors
(which is to be expected from the form of the Taylor series). For the single-
length version and X in [-0.1, 0.1], 62% of the errors are negative, whilst
for X in [-0.01, 0.01], 70% of them are.

4) The propagated error has a complex behavior. The propagated relative
error becomes large near each zero of the function, but the propagated
absolute error only becomes large for large arguments. In effect, the error
is seriously amplified only in an interval about each irrational zero, and the
width of this interval increases roughly in proportion to the size of the argu-
ment.

5) Since only the remainder of (|X]+Fif2) by Pi is used in step 3, the
symmetfry cos(r+ nx) = £ cos(x) is preserved. Moreover, since the same
rational approximation is used as in SIN, the relation cos(x) = sin(x+m/2) is
also preserved. However, in each case there is a complication due to the
different precision representations of x.

6) The output range is not exceeded. Thus the output of COs is always a
valid argument for ACOS.

TAN
DTAN

REAL32 FUNCTION TAN (VAL REAL32 X)
REAL64 FUNCTION DTAN (VAL REALE4 X)

Compute tan(X) (where X is in radians).

72 TDS 368 01 March 1993

36

1.4 Maths libraries

Domain: [-Tmax, Tmax] = [-102943.7, 102943.7]S(Standard),
= [-2.1+106, 2.1+106]S(T2 special),
=[-2.1x10%, 2.1+10%D

Range: (~Inf, Inf)
Primary Domain: [-Pil4, Pil4]=[-0.785, 0.785]
Exceptions

All arguments outside the domain generate an inexact.NaN, except + Inf,
which generate an undefined.NaN. Odd integer multiples of w2 may
produce unstable.NaN.

Propagated Error
A=X(1+tanX(X)), R=X(1+tan?(X))tan(X) (See note 3)
Generated error

Primary Domain Error: MRE RMSRE (See note 3)
Single Length(Standard): 144 ulp 0.39 ulp
Single Length(T2 special): 1.37ulp 0.39 ulp
Double Length: 1.27ulp 0.35ulp

The Algorithm

1 Set N = integer part of X/(Pi/2), and compute the remainder of X by
Pil2, using extended precision arithmetic.

2 Compute two floating-point rational functions of the remainder,
XNum and XDen.

3 If Nis odd, set RESULT = — XDen/XNum, otherwise set RESULT =
XNumiXDen.

Notes

1) R is large whenever X is near to an integer multiple of 2/2, and so tan
is very sensitive to small errors near its zeros and singularities. Thus for
arguments outside the primary domain the accuracy of the result depends
crucially on step 2, so this is performed with very high precision, using
double precision Pi/2 for the standard single-precision function and two
double-precision floating-point numbers for the representation of /2 for
the double-precision function. The T2 special version uses two single-pre-
cision floating-point numbers. The extra precision is lost if N becomes too
large, and the cut-off Tmax is chosen to prevent this,

2) The difference between TAN evaluated at successive floating-point
numbers is given approximately by the absolute error amplification factor,

72 TDS 368 01 March 1993

1 The occam libraries 37

ASIN

DASIN

A. For arguments larger than Smax this difference could be more than half
the significant bits of the result, and so the result is considered to be essen-
tially indeterminate and an inexact.NaN is returned.

3) Tan is quite badly behaved with respect to errors in the argument. Near
its zeros outside the primary domain the relative error is greatly magnified,
though the absolute error is only proportional to the size of the argument.
In effect, the error is seriously amplified in an interval about each irrational
zero, whose width increases roughly in proportion to the size of the argu-
ment. Near its singularities both absolute and relative errors become large,
so any large output from this function is liable to be seriously contaminated
with error, and the larger the argument, the smaller the maximum output
which can be trusted. If step 3 of the algorithm requires division by zero,
an unstable.NaN is produced instead.

4) Since only the remainder of X by Pi/2 is used in step 3, the symmetry
tan(x+ nx) = tan(x) is preserved, although there is a complication due tothe
differing precision representations of x. Moreover, by step 3 the symmetry
tan(x) = 1/tan(=2 - x) is also preserved.

REAL32 FUNCTION ASIN (VAL REAL32 X)
REAL64 FUNCTION DASIN (VAL REAL64 X)

Compute sine~1(X) (in radians).

Domain: [-1.0, 1.0]
Range: [-Pil2, Pil2]
Primary Domain: [-0.5, 0.5]
Exceptions

All arguments outside the domain generate an undefined.NaN. -
Propagated Error
A=X\/1-X2 R=Xl(sin"YX) /1-X%)

Generated Error

Primary Domain [-1.0, 1.0]
MRE RMSRE MAE RMSAE
Single Length: 058ulp 021ulp 1.35ulp 0.33ulp
Double Length: 059ulp 021ulp 1.26ulp 0.27 ulp
The Algorithm

1 If |X] > 0.5, set Xwork:= SQRT ((1 — |X|)/2). Compute Rwork =
arcsine(—2 = Xwork) with a floating-point rational approximation, and
set the result = Rwork + Pil2.

72 TDS 368 01 March 1993

38

1.4 Maths libraries

ACOS
DACOS

2 Otherwise compute the result directly using the rational approxima-
tion.

3 In either case set the sign of the result according to the sign of the
argument.

Notes

1) The error amplification factors are large only near the ends of the
domain. Thus there is a small interval at each end of the domain in which
the result is liable to be contaminated with error: however since both
domain and range are bounded the absolute error in the result cannot be
large.

2) By step 1, the identity sin—1(x) = &/2 — 2 sin—1(,/(1-x)/2)) is preserved.

REAL32 FUNCTION ACOS (VAL REAL32 X)
REAL64 FUNCTION DACOS (VAL REAL64 X)

Compute cosine~(X) (in radians).

Domain: [-1.0, 1.0]
Range: [0, Pi]
Primary Domain: [-0.5, 0.5]

Exceptions

All arguments outside the domain generate an undefined.NaN.
Propagated Error

A=-XI\/1-X2, R=-X/sin"1(X) v/1-X?)

Generated Error

Primary Domain [-1.0, 1.0]
MRE RMSRE MAE RMSAE
Single Length: 1.06 ulp 0.38ulp 237ulp 0.61ulp
Double Length: 096ulp 0.32ulp 225ulp 0.53ulp

The Algorithm

1 If |1X] > 0.5, set Xwork:= SQRT ((1 — |X])/2). Compute Rwork =
arcsine(2 * Xwork) with a floating-point rational approximation. If the
argument was positive, this is the result, otherwise set the result = Pi
— Rwork.

72 TDS 368 01 March 1993

1 The occam libraries 39

2 Otherwise compute Rwork directly using the rational approximation.
If the argument was positive, set result = Pi/2 — Rwork, otherwise
result = Pi/2 + Rwork.

Notes

1) The emor amplification factors are large only near the ends of the
domain. Thus there is a small interval at each end of the domain in which
the result is liable to be contaminated with error, although this interval is
larger near 1 than near -1, since the function goes to zero with an infinite
derivative there. However since both the domain and range are bounded
the absolute error in the result cannot be large.

2) Since the rational approximation is the same as thatin ASIN, the relation
cos~1(x) = /2 — sin~1(x) is preserved.

ATAN
DATAN

REAL32 FUNCTION ATAN (VAL REAL32 X)
REAL64 FUNCTION DATAN (VAL REAL64 X)

Compute tan—1(X) (in radians).

Domain: [Hinf, Inf]

Range: [-Pif2, Pil2]

Primary Domain: [=z,z], z=2-/3=0.2679
Exceptions
None.

Propagated Error
A=XI(1+X2,R=Xl(tan"1(X)(1 +X2)
Generated Error

Primary Domain Emor. MRE RMSRE

Single Length: 0.56 ulp 0.21ulp
Double Length: 0.52ulp 0.21ulp
The Algorithm

1 If X] > 1.0, set Xwork = 1/|X] , otherwise Xwork = |X].

2 If Xwork > 2—-/3, set F = (Xwork+\/3 —1)/(Xwork +./3), otherwise F
= Xwork.

72 TDS 368 01 March 1993

40

1.4 Maths libraries

ATAN2

3 Compute Rwork = arctan(F) with a floating-point rational approxima-
tion.

4 |f Xworkwas reducedin (2), set R=Pi/6 + Rwork, otherwise R = Rwork.

5 If X was reduced in (1), set RESULT = Pi/2 - R, otherwise RESULT
=R.

6 Set the sign of the RESULT according to the sign of the argument.
Notes

1) For |X] > ATmax, [tan—1(X)| is indistinguishable from n/2 in the floating-
point format. For single-length, ATmax = 1.68%107, and for double-length
ATmax = 9+1015, approximately.

2) This function is numerically very stable, despite the complicated argu-
ment reduction. The worst errors occur just above 2—/3, but are no more
than 3.2 ulp.

3J) ltis also very well behaved with respect to errors in the argument, i.e.
the error amplification factors are always small.

4) The argument reduction scheme ensures that the identities tan—1(X) =
2 — tan~1{1/X), and tan~1{X) = w6 + tan~{(\/3+X=1)/(\/3 + X)) are
preserved.

DATAN2

REAL32 FUNCTION ATAN2 (VAL REAL32 X, Y)
REAL64 FUNCTION DATAN2 (VAL REAL64 X, Y)

Compute the angular co-ordinate tan—1(¥/X) (in radians) of a point whose
X and Y co-ordinates are given.

Domain: [Hinf, Inf] x [Hinf, Inf]
Range: (—Pi, Pi]
Primary Domain: See note 2.
Exceptions
(0, 0) and (%Inf,LInf) give undefined.NaN.
Propagated Error
A=X(1£V)(X2+72), R=X(1 £ Y)/(tan~{YIX)(X2 + ¥2)) (See note 3)
Generated Error

See note 2.

72 TDS 368 01 March 1993

1 The occam libraries 41

The Algorithm

1 If X, the first argument, is zero, set the result to + = /2, according to
the sign of ¥, the second argument.

2 Otherwise set Rwork:= ATAN (YIX). Then if Y < 0 set RESULT =
Rwork — Pi, otherwise set RESULT = Pi — Rwork.

Notes

1) This two-argument function is designed to perform rectangular-to-polar
co-ordinate conversion.

2) See the notes for ATAN for the primary domain and estimates of the
generated error.

3) The error amplification factors were derived on the assumption that the
relative errorin Yis 4 that in X, otherwise there would be separate factors
for X and Y. They are small except near the origin, where the polar co-ordi-
nate system is singular.

SINH
DSINH

REAL32 FUNCTION SINH (VAL REAL32 X)
REALG64 FUNCTION DSINH (VAL REAL64 X)

Compute sink(X).

Domain: [-Hmax, Hmax] =[-89.4, 89.4]S, [-710.5, 710.5]D
Range: (~Inf, Inf)

Primary Domain: (-1.0,1.0)

Exceptions

X <-Hmax gives -Inf, and X > Hmax gives Inf.
Propagated Error

A=Xcosh(X), R=Xcoth(X) (See note3)
Generated Error

Primary Domain [1.0, XBig] (See note 2)
MRE RMSRE MAE RMSAE
Single Length: 0.91 ulp 0.26 ulp 1.41 ulp 0.34 ulp
Double Length: 0.67 ulp 0.22 ulp 1.31 ulp 0.33 ulp

The Algorithm
1 If |X] > XBig, set Rwork:= EXP (|X] - In(2)) .

72 TDS 368 01 March 1993

42

1.4 Maths libraries

COSH
DCOSH

2 f XBig = |X] 21.0, set temp:= EXP (|X]), and set Rwork = (temp —
1ltemp)/2.

3 Otherwise compute sinh(]X]) with a floating-point rational approxima-
tion.

4 In all cases, set RESULT = =+ Rwork according to the sign of X.
Notes

1) Hmax is the point at which sinh(X) becomes too large to be represented
in the floating-point format.

2) XBig is the point at which e 1 becomes insignificant compared with e}1,
(in floating-point). For single-length it is 8.32, and for double-length it is
18.37.

3) This function is quite stable with respect to errors in the argument. Rela-
tive error is magnified near zero, but the absolute error is a better measure
near the zero of the function and it is diminished there. For large arguments
absolute errors are magnified, but since the function is itself large, relative
error is a better criterion, and relative errors are not magnified unduly for
any argument in the domain, although the output does become less reliable
near the ends of the range.

REAL32 FUNCTION COSH (VAL REAL32 X)
REAL64 FUNCTION DCOSH (VAL REAL64 X)

Compute cosh(X).

Domain: [-Hmax, Hmax] =[-89.4, 89.4]S, [-710.5, 710.5]D

Range: [1.0, Inf)

Primary Domain: [-XBig, XBig]= [-8.32, 8.32]S
=[-18.37, 18.37]D

Exceptions

|X] > Hmax gives Inf.

Propagated Error

A=Xsinh(X), R=Xtanh(X) (See note3)
Generated Error

Primary Domain Eror: MRE RMS
Single Length: 124 ulp 0.32ulp
Double Length: 124 ulp 0.33ulp

72 TDS 368 01 March 1993

1 The occam libraries 43

The Algorithm

1 If |X] > XBig, set result:= EXP (|X] - In(2)) .

2 Otherwise, set temp:= EXP (|X]), and set result = (temp + 1/temp)/2.
Notes

1) Hmax is the point at which cosh(X) becomes too large to be represented
in the floating-point format.

2) XBigis the point at which e 1 becomes insignificant compared with e/X1
(in floating-point).

3) Errors in the argument are not seriously magnified by this function,
although the output does become less reliable near the ends of the range.

TANH
DTANH

REAL32 FUNCTION TANH (VAL REAL32 X)
REAL64 FUNCTION DTANH (VAL REAL64 X)

Compute tanh(X).

Domain: [=inf, Inf]
Range: [-1.0, 1.0]
Primary Domain: [-Log(3)/2, Log(3)/2] = [-0.549, 0.549]

Exceptions

None.

Propagated Error

A =Xlcosh®(X), R =Xlsinh(X) cosh(X)
Generated Error

Primary Domain Error. MRE RMS

Single Length: 053ulp 0.2ulp
Double Length: 0.53ulp 0.2ulp
The Algorithm

1 I |X] > In(3)/2, set temp:= EXP (|X]/2) . Then set
Rwork = 1 — 2/(1+temp).

2 Otherwise compute Rwork = tanh(|X]) with a floating-point rational
approximation.

72 TDS 368 01 March 1993

1.4 Maths libraries

DRAN

3 In both cases, set RESULT = & Rwork according to the sign of X.
Notes

1) As a floating-point number, tanh(X) becomes indistinguishable from its
asymptotic values of +1.0 for |X]> HTmax, where HTmax is 8.4 for single-
length, and 19.06 for double-length. Thus the output of TANH is equal to
+1.0 for such X.

2) This function is very stable and well-behaved, and errorsin the argument
are always diminished by it.

REAL32,INT32 FUNCTION RAN (VAL INT32 X)
REAL64,INT64 FUNCTION DRAN (VAL INT64 X)

These produce a pseudo-random sequence of integers, or a corre-
sponding sequence of floating-point numbers between zero and one. X is
the seed integer that initiates the sequence.

Domain: Integers (see note 1)
Range: [0.0, 1.0] x Integers
Exceptions
None.
The Algorithm

1 Produce the next integer in the sequence: Ni41 = (@Ne + 1o it

2 Treat N4+ as a fixed-point fraction in [0,1), and convert it to floating
point.

3 Output the floating point result and the new integer.
Notes

1) This function has two results, the first a real, and the second an integer
(both 32 bits for single-length, and 64 bits for double-length). The integer
is used as the argument for the next call to RAN, i.e. it ‘carries’ the pseudo-
random linear congruential sequence N, and it should be kept in scope for
as long as RAN is used. It should be initialized before the first call to RAN
but not modified thereafter except by the function itself.

2) If the integer parameter is initialized to the same value, the same
sequence (both floating-point and integer) will be produced. If a different
sequence is required for each run of a program it should be initialized to
some ‘random’ value, such as the output of a timer.

72 TDS 368 01 March 1993

1 The occam libraries 45

3) The integer parameter can be copied to another variable or used in
expressions requiring random integers. The topmost bits are the most
random. A random integer in the range [0,L] can conveniently be produced
by taking the remainder by (L+1) of the integer parameter shifted right by
one bit. If the shift is not done an integer in the range [-L,L] will be
produced.

4) The modulus M is 232 for single-length and 264 for double-length, and the
multipliers, a, have been chosen so that all M integers will be produced
before the sequence repeats. However several different integers can
produce the same floating-point value and so a floating-point output may
be repeated, although the seguence of such will not be repeated until M
calls have been made.

5) The floating-point result is uniformly distributed over the output range,
and the sequence passes various tests of randomness, such as the ‘run
test’, the ‘maximum of 5 test’ and the ‘spectral test'.

6) The double-length version is slower to execute, but ‘more random’ than
the single-length version. If a highly-random sequence of single-length
numbers is required, this could be produced by converting the output of
DRAN to single-length. Conversely if only a relatively crude sequence of
double-length numbers is required, RAN could be used for higher speed
and its output converied to double-length.

1.4.3 IMS T400/T414/T425/T426 elementary function library

To use this library a program header must include the line:
#USE “tbmaths.lib”

The version of the library described by this section has been written for 32-bit
processors without hardware for floating-point arithmetic. Functions from it will
give results very close, but not identical to, those produced by the corresponding
functions from the single and double length libraries.

This is the version specifically intended to derive maximum performance from the
IMS T400, T414, T425, and T426 processors. The single-precision functions make
use of the FMUL instruction available on 32-bit processors without floating-point
hardware. The library is compiled for transputer class TB.

The tables and notes at the beginning of section 1.4 apply equally here. However
all the functions are contained in one library.

Function definitions

ALOG
DALOG

REAL32 FUNCTION ALOG (VAL REAL32 X)
REAL64 FUNCTION DALOG (VAL REAL64 X)

72 TDS 368 01 March 1993

48

1.4 Maths libraries

These compute: log,(X)

Domain: (0, XMAX)
Range: [MinLog, MaxLog] (See note 2)
Primary Domain: [,/2/2, \/2) =[0.7071, 1.4142)

Exceptions

All arguments outside the domain generate an undefined.NaN.
Propagated Error

A =1, R=log(X)

Generated Error

Primary Domain Error: MRE RMSRE

Single Length: 1.19ulp 0.36 ulp
Double Length: 24ulp 1.0ulp
The Algorithm

1 Split X into its exponent N and fraction F.

2 Find the natural log of F with a fixed-point rational approximation, and
convert it into a floating-point number LnF.,

3 Compute In(2) * N with extended precision and add it to LnF to get
the result.

Notes

1) The term In(2) * N'is much easier to compute (and more accurate) than
LnF, and it is larger provided N is not 0 (i.e. for arguments outside the
primary domain). Thus the accuracy of the result improves as the modulus
of log(X) increases.

2) The minimum value that can be produced, MinLog, is the logarithm of
the smallest denormalized floating-point number. For single length MinLog
is —103.28, and for double length it is —744.4. The maximum value MaxLog
is the logarithm of XMAX. For single-length it is 88.72, and for double-
length it is 709.78.

3) Since Infis used to represent all values greater than XMAX its logarithm
cannot be defined.

4) This function is well-behaved and does not seriously magnify errors in
the argument.

72TDsS 368 01 March 1993

1 The occam libraries 47

ALOG10
DALOG10

REAL32 FUNCTION ALOG10 (VAL REAL32 X)
REAL64 FUNCTION DALOG10 (VAL REAL64 X)

These compute: logyg(X)

Domain: (0, XMAX]
Range: [MinL10, MaxL10] (See note 2)
Primary Domain: [\/2/2,./2)=[0.7071, 1.4142)

Exceptions

All arguments outside the domain generate an undefined.NaN.
Propagated Error

A= logiole), R =logiole)iog(X)

Generated Error

Primary Domain Emmor;. MRE RMSRE

Single Length: 143ulp 0.39ulp
Double Length: 264 ulp 096 ulp
The Algorithm

1 Set temp:= ALOG (X).

2 Iftemp is a NaN, copy it to the output, otherwise set
result = log(e) * temp.

Notes
1) See note 1 for ALOG.

2) The minimum value that can be produced, MinL 10, is the base-10 loga-
rithm of the smallest denormalized floating-point number. For single length
MinL10 is —44.85, and for double length it is ~323.3. The maximum value
MaxL10 is the base-10 logarithm of XMAX. For single length MaxL10 is
38.53, and for double-length it is 308.26.

3) Since Inf is used to represent all values greater than XMAX its logarithm
cannot be defined.

4) This function is well-behaved and does not seriously magnify errors in
the argument.

72 TDS 368 01 March 1993

48 1.4 Maths libraries

EXP
DEXP

REAL32 FUNCTION EXP (VAL REAL32 X)
REAL64 FUNCTION DEXP (VAL REAL64 X)

These compute: eX

Domain: [Hinf, MaxLog) = [-Inf, 88.03)S, [-Inf, 709.78)D
Range: [0, Inf) (See note 4)
Primary Domain: [-Ln2/2, Ln2/2) = [-0.3466, 0.3466)

Exceptions

All arguments outside the domain generate an Inf.
Propagated Error |
A=XX R=X

Generated Error

Primary Domain Emor:. MRE RMSRE

Single Length: 051ulp 0.21ulp
Double Length: 05ulp 0.21ulp
The Algorithm

1 Set N =integer part of X/In(2).

2 Compute the remainder of X by In(2), using extended precision arith-
metic.

3 Convert the remainder fo fixed-point, compute its exponential using
a fixed-point rational function, and convert the result back to floating
point.

4 Increase the exponent of the result by N. If N is sufficiently negative
the result must be denormalized.

Notes

1) MaxLog is log. (XMAX).

2) The analytical properties of e*make the relative error of the result propor-
tional to the absolute error of the argument. Thus the accuracy of step 2,
which prepares the argument for the rational approximation, is crucial to
the performance of the subroutine. It is completely accurate when N =0,
i.e. in the primary domain, and becomes less accurate as the magnitude

72 TDS 368 01 March 1993

1 The occam libraries 49

of N increases. Since N can attain larger negative values than positive
ones, EXP is least accurate for large, negative arguments.

3) For sufficiently negative arguments (below —87.34 for single-length and
below —708.4 for double-length) the output is denormalized, and so the
floating-point number contains progressively fewer significant digits, which
degrades the accuracy. In such cases the error can theoretically be a factor
of two.

4) Although the true exponential function is never zero, for large negative
arguments the true result becomes too small to be represented as a float-
ing-point number, and EXP underflows fo zero. This occurs for arguments
below —103.9 for single-length, and below —745.2 for double-length.

5) The propagated error is considerably magnified for large positive argu-
ments, but diminished for large negative arguments.
DPOWER

REAL32 FUNCTION POWER (VAL REAL32 X, Y)
REAL32 FUNCTION DPOWER (VAL REAL64 X, Y)

These compute: XY
Domain: [0, Inf] x [-Inf, Inf]

Range: (—inf, Inf)
Primary Domain: See note 3.

Exceptions

Ifthe first argument is outside its domain, undefined.NaN is returned. Ifthe
true value of XY exceeds XMAX, Infis retumed. In certain other cases other
NaNs are produced: See note 2.

Propagated Error
A=YXY1+log.(X)), R=Y(1=log(X))(See note 4)

Generated Error

Example Range Emor. MRE RMSRE (See note 3)
Single Length: 1.0ulp 024 ulp

Double Length: 13.2ulp 1.73ulp
The Algorithm

Deal with special cases: either argument = 1, 0, +Inf or —Inf (see note 2).
Otherwise:

72 TDS 368 01 March 1993

50

1.4 Maths libraries

72 TDS 368 01

(a) For single precision:
1 Compute L = logy(X) in fixed point, where X is the first argument.

2 Compute W=Y x L indouble precision, where Yis the second argu-
ment.

3 Compute 2% in fixed point and convert to floating-point result.
(b) For double precision:

1 Compute L = log,(X) in extended precision, where X is the first argu-
ment.

2 Compute W=Y x L in extended precision, where Y is the second
argument.

3 Compute RESULT = 2% in extended precision.
Notes

1) This subroutine implements the mathematical function x¥ to a much
greater accuracy than can be attained using the ALOG and EXP functions,
by performing each step in higher precision.

2) Results for special cases are as follows:

First Input (X) Second Input (Y) Result
<0 ANY undefined.NaN
0 <0 undefined.NaN
0 0 <Y<XMAX 0
0 Inf unstable.NaN
0<X<1 Inf 0
0<X<1 =Inf Inf
1 -XMAX =Y = XMAX 1
1 % Inf unstable.NaN
1 <X = XMAX Inf Inf
1 < X <= XMAX —Inf 0
Inf 1<Y<Inf Inf
Inf —Inf <Y < -1 0
Inf -1<¥Y<1 undefined.NaN
otherwise 0 1
otherwise 1 X

3) Performing all the calculations in extended precision makes the double-
precision algorithm very complex in detail, and having two arguments

March 1993

1 The occam libraries 51

SIN
DSIN

makes a primary domain difficult to specify. As an indication of accuracy,
the functions were evaluated at 100 000 points logarithmically distributed
over (0.1, 10.0), with the exponent linearly distributed over (-35.0, 35.0)
(single-length), and (~300.0, 300.0) (double-length), producing the errors
given above. The errors are much smaller if the exponent range is reduced.

4) The error amplification factors are calculated on the assumption that the
relative error in Y is 4 that in X, otherwise there would be separate factors
for both X and ¥, It can be seen that the propagated error will be greatly
amplified whenever log,(X) or Y'is large.

The Algorithm
1 Compute L = log,(X) in fixed point, where X is the first argument.

2 Compute W=Y x L indouble precision, where Y'is the second argu-
ment.

3 Compute 2% in fixed point and convert to floating-point result.

4 Compute L =logy(X) in extended precision, where X is the first argu-
ment.

5 Compute W=Y X L in extended precision, where Y is the second
argument.

6 Compute RESULT = 2¥ in extended precision.

REAL32 FUNCTION SIN (VAL REAL32 X)
REAL64 FUNCTION DSIN (VAL REAL64 X)

These compute: sine(X) (where X is in radians)

Domain: [-Smax, Smax] = [-12868.0, 12868.0]S,
= [-2.1+108, 2.1+108]D

Range: [-1.0, 1.0]
Primary Domain: [-Pil2, Pi/2] = [-1.57, 1.57]

Exceptions

All arguments outside the domain generate an inexact.NaN, except £ Inf,
which generates an undefined.NaN.

Propagated Error
A=Xcos(X), R=Xcot(X)

72 TDS 368 01 March 1993

52

1.4 Maths libraries

Generated Error (See note 3)

Range: Primary Domain [0, 2Pi]
MRE RMSRE MAE RMSAE
Single Length: 065ulp 022ulp 0.74ulp 0.18ulp
Double Length: 056ulp 021ulp 064ulp 0.16 ulp
The Algorithm

1 Set N = integer part of |[X]/Pi.

2 Compute the remainder of |X] by Pi, using extended precision arith-
metic.

3 Convert the remainder to fixed-point, compute its sine using a fixed-
point rational function, and convert the result back to floating point.

4 Adjust the sign of the result according to the sign of the argument and
the evenness of N.

Notes

1) For arguments outside the primary domain the accuracy of the result
depends crucially on step 2. The extended precision corresponds fo K
extra bits in the representation of = (K = 8 for single-length and 12 for
double-length). If the argument agrees with an integer multiple of x to more
than K bits there is a loss of significant bits in the remainder, equal to the
number of extra bits of agreement, and this causes a loss of accuracy in
the result.

2) The extra precision of step 2 is lost if N becomes too large, and the cut-off
Smax is chosen to prevent this. In any case for large arguments the ‘granu-
larity’ of floating-point numbers becomes a significant factor. For argu-
ments larger than Smax a change in the argument of 1 ulp would change
more than half of the significant bits of the result, and so the result is consid-
ered to be essentially indeterminate.

3) The propagated error has a complex behavior. The propagated relative
error becomes large near each zero of the function (outside the primary
range), but the propagated absolute error only becomes large for large
arguments. In effect, the erroris seriously amplified only in an interval about
each irrational zero, and the width of this interval increases roughly in
proportion to the size of the argument.

4) Since only the remainder of X by Piis used in step 3, the symmetry sin(x+
nx) =t sin(x) is preserved, although there is a complication due to differing
precision representations of x.

5) The output range is not exceeded. Thus the output of SIN is always a
valid argument for ASIN.

72 TDS 368 01 March 1993

1 The occam libraries 53

cos
DCOs

REAL32 FUNCTION COS (VAL REAL32 X)
REAL64 FUNCTION DCOS (VAL REAL64 X)

These compute: cosine (X) (where X is in radians)

Domain: [~Smax, Smax] = [12868.0, 12868.0]S,
= [-2.1+108, 2.1+10%]D

Range: [-1.0,1.0]
Primary Domain: See note 1.

Exceptions

All arguments outside the domain generate an inexact.NaN, except LInf,
which generates an undefined.NaN.

Propagated Error
A=-Xsin(X), R=-Xtan(X) (See note4)

Generated Error

Range: [0,Pil4) [0, 2P]]

MRE RMSRE MAE RMSAE
Single Length: 10ulp 0.28ulp 0.81ulp 0.17 ulp
Double Length: 093ulp 026ulp 0.76ulp 0.18 ulp
The Algorithm

1 Set N = integer part of (|[X]+Pi/2)/Fi.

2 Compute the remainder of (|X]+Pi/2) by Pi, using extended precision
arithmetic.

3 Compute the remainder to fixed-point, compute its sine using a fixed-
point rational function, and convert the result back to floating point.

4 Adjust the sign of the result according to the evenness of N.
Notes

1) Inspection of the algorithm shows that argument reduction always
oceurs, thus there is no ‘primary domain’ for COS. So for all arguments the
accuracy of the result depends crucially on step 2. The extended precision
corresponds to K extra bits in the representation of x (K = 8 for single-length
and 12 for double length). If the argument agrees with an odd integer
multiple of 7/2 to more than KX bits there is a loss of significant bits in the

72 TDS 368 01 March 1993

1.4 Maths libraries

TAN
DTAN

remainder, equal to the number of extra bits of agreement, and this causes
a loss of accuracy in the result.

2) The extra precision of step 2 is lost if N becomes too large, and the cut-off
Smax is chosen to prevent this. In any case for large arguments the ‘granu-
larity’ of floating-point numbers becomes a significant factor. For argu-
ments larger than Smax a change in the argument of 1 ulp would change
more than half of the significant bits of the result, and so the result is consid-
ered to be essentially indeterminate.

3) For small arguments the errors are not evenly distributed. As the argu-
ment becomes smaller there is an increasing bias towards negative errors
(which is to be expected from the form of the Taylor series). For the single-
length version and X in [-0.1, 0.1], 62% of the errors are negative, whilst
for X'in [-0.01, 0.01], 70% of them are.

4) The propagated error has a complex behavior. The propagated relative
error becomes large near each zero of the function, but the propagated
absolute error only becomes large for large arguments. In effect, the error
is seriously amplified only in an interval about each irrational zero, and the
width of this interval increases roughly in proportion to the size of the argu-
ment.

5) Since only the remainder of (|X]+Pi/2) by Pi is used in step 3, the
symmetry cos{x+ nn) = &= cos(x) is preserved. Moreover, since the same
rational approximation is used as in SIN, the relation cos(x) =sin(x+ n/2) is
also preserved. However, in each case there is a complication due to the
different precision representations of x.

6) The output range is not exceeded. Thus the output of COS is always a
valid argument for ACOS.

REAL32 FUNCTION TAN (VAL REAL32 X)
REAL64 FUNCTION DTAN (VAL REAL64 X)

These compute: tan(X) (where X'is in radians)

Domain: [-Tmax, Tmax] =[-6434.0, 6434.0]S

= [-1.05+108, 1.05%108]D
Range: (—Inf, Inf)
Primary Domain: [-Pi/4, Pil4] =[-0.785, 0.785]
Exceptions

All arguments outside the domain generate an inexact.NaN, except = Inf,
which generate an undefined.NaN. Odd integer multiples of w2 may
produce unstable.NaN.

72 TDS 368 01 March 1993

1 The occam libraries 55

Propagated Error
A=X(1+tan¥(X)), R=X(1+tan?(X))fan(X) (See note 4)
Generated Error
Primary Domain Error: MRE RMSRE
Single Length: 35ulp 023ulp
Double Length: 0.69ulp 0.23ulp
The Algorithm

1 Set N = integer part of X/(Pi/2).

2 Compute the remainder of X by Pif2, using extended precision arith-
metic.

3 Convert the remainder to fixed-point, compute its fangent using a
fixed-point rational function, and convert the result back to floating
point.

4 [If N'is odd, take the reciprocal.
5 Set the sign of the result according to the sign of the argument.
Notes

1) R is large whenever X is near to an integer multiple of /2, and so tan
is very sensitive to small errors near its zeros and singularities. Thus for
arguments outside the primary domain the accuracy of the result depends
crucially on step 2. The extended precision corresponds to K extra bits in
the representation of /2 (K = 8 for single-length and 12 for double-length).
If the argument agrees with an integer multiple of #/2 to more than K bits
there is a loss of significant bits in the remainder, approximately equal to
the number of extra bits of agreement, and this causes a loss of accuracy
in the result.

2) The extra precision of step 2 is lost if N becomes too large, and the cut-off
Tmax is chosen to prevent this. In any case for large arguments the ‘granu-
larity’ of floating-point numbers becomes a significant factor. For argu-
ments larger than Tmax a change in the argument of 1 ulp would change
more than half of the significant bits of the result, and so the resultis consid-
ered to be essentially indeterminate.

3) Step 3 of the algorithm has been slightly modified in the double-precision
version from that given in Cody & Waite to avoid fixed-point underflow in
the polynomial evaluation for small arguments.

4) Tan is quite badly behaved with respect to errors in the argument. Near
its zeros outside the primary domain the relative error is greatly magnified,

72 TDS 368 01 March 1993

56 1.4 Maths libraries

though the absolute error is only proportional to the size of the argument.
In effect, the error is seriously amplified in an interval about each irrational
zero, whose width increases roughly in proportion to the size of the argu-
ment. Near its singularities both absolute and relative errors become large,
so any large output from this function is liable to be seriously contaminated
with error, and the larger the argument, the smaller the maximum output
which can be trusted. If step 4 of the algorithm requires division by zero,
an unstable.NaN is produced instead.

5) Since only the remainder of X by Pi/2 is used in step 3, the symmetry
tan(x+ nn) = tan(x) is preserved, although there is a complication due to the
differing precision representations of x. Moreover, by step 4 the symmetry
tan(x) = 1/ tan(/2 —x) is also preserved.

ASIN
DASIN

REAL32 FUNCTION ASIN (VAL REAL32 X)
REAL64 FUNCTION DASIN (VAL REAL64 X)

These compute: sin~(X) (in radians)

Domain: [-1.0,1.0]
Range: [=Pil2, Pil2]
Primary Domain: [-0.5, 0.5]

Exceptions

All arguments outside the domain generate an undefined.NaN.
Propagated Error

A=XI\/1-X2, R=Xl(sin"}(X) v/1-X2)

Generated Error

Primary Domain [-1.0,1.0]
MRE RMSRE MAE RMSAE
Single Length: 053ulp 021ulp 1.35ulp 033 ulp
Double Length: 28ulp 14ulp 234ulp 0.64ulp

The Algorithm
1 If [X]> 0.5, set Xwork:= SQRT ((1— |X])/2) .
Compute Rwork = arcsine(—2 * Xwork) with a floating-point rational
approximation, and set the result = Rwork + Pif2.
2 Otherwise compute the result directly using the rational approxima-
tion.

72 TDS 368 01 March 1993

1The

occam libraries 57

ACOS
DACOS

72 TDS 368 01

3 In either case set the sign of the result according to the sign of the
argument.

Notes

1) The emror amplification factors are large only near the ends of the
domain. Thus there is a small interval at each end of the domain in which
the result is liable to be contaminated with error: however since both
domain and range are bounded the absolute error in the result cannot be
large.

2) By step 1, the identity sin~—1(x) = &/2 - 2 sin~1(,/(1-x)/2)) is preserved.

REAL32 FUNCTION ACOS (VAL REAL32 X)
REAL64 FUNCTION DACOS (VAL REAL64 X)

These compute: cosine~1(X) (in radians)

Domain: [-1.0, 1.0]
Range: [0, Pi]
Primary Domain: [-0.5, 0.5]

Exceptions

All arguments outside the domain generate an undefined.NaN.
Propagated Error

A=-XI\/1-X2, R=-XI(sin"YX)/1-X%)

Generated Error

Primary Domain [-1.0, 1.0]
MRE RMSRE MAE RMSAE
Single Length: 141ulp 038ulp 24ulp 0.61ulp
Double Length: 13ulp 034ulp 29ulp 0.78ulp

The Algorithm

1 If|X]> 0.5, set Xwork:= SQRT ((1- |X])/2) . Compute Rwork = arcsine
(2 + Xwork) with a floating-point rational approximation. If the argu-
ment was positive, this is the result, otherwise set the result = Pi -
Rwork.

2 Otherwise compute Rwork directly using the rational approximation.
If the argument was positive, set result = Pi/2 — Rwork, otherwise
result = Pif2 + Rwork.

March 1993

58

1.4 Maths libraries

ATAN
DATAN

Notes

1) The error amplification factors are large only near the ends of the
domain. Thus there is a small interval at each end of the domain in which
the result is liable to be contaminated with error, although this interval is
larger near 1 than near -1, since the function goes to zero with an infinite
derivative there. However since both the domain and range are bounded

the absolute error in the result cannot be large.

2) Since the rational approximation is the same as thatin ASIN, the relation

cos~1(x) = w2 — sin~!(x)is preserved.

REAL32 FUNCTION ATAN (VAL REAL32 X)
REAL64 FUNCTION DATAN (VAL REAL64 X)

These compute: tan—(X) (in radians)

Domain: [Inf, Inf]

Range: [=Pil2, Pil2]

Primary Domain: [-z,z], z=2-./3=0.2679
Exceptions

None.

Propagated Error
A= XI(1+X2), R=X/(tan"1{X)(1 + X2))
Generated Error

Primary Domain Error: MRE RMSRE

Single Length: 053 ulp 021ulp
Double Length: 1.27 ulp 0.52 ulp
The Algorithm

1 If |X] > 1.0, set Xwork = 1/|X], otherwise Xwork = [X].

2 If Xwork > 2—/3, set F = (Xwork++/3 —1)/(Xwork +./3), otherwise F

= Xwork.

3 Compute Rwork = arctan(F) with a floating-point rational approxima-

tion.

4 If Xwork was reduced in (2), set R=Pi/6 + Rwork, otherwise R = Rwork.

72 TDS 368 01

March 1993

1 The occam libraries 59

5 If X was reduced in (1), set RESULT = Pi/2 - R, otherwise RESULT
=R.

6 Set the sign of the RESULT according to the sign of the argument.
Notes
1) For |X] > ATmax, [tan—1(X)| is indistinguishable from x/2 in the floating-
point format. For single-length, ATmax = 1.68+107, and for double-length
ATmax = 91015, approximately.

2) This function is numerically very stable, despite the complicated argu-
ment reduction. The worst errors occur just above 2— /3, but are no more
than 1.8 ulp. 3) ltis also very well behaved with respect to errors in the argu-
ment, i.e. the error amplification factors are always small.

4) The argument reduction scheme ensures that the identities tan—1(X) =
w2 — tan—}(1/X), and tan—1(X) = «/6 + tan~1((,/3+X~1)/(v/3 + X)) are
preserved.

ATAN2
DATAN2

REAL32 FUNCTION ATAN2 (VAL REAL32 X, Y)
REAL64 FUNCTION DATAN2 (VAL REAL64 X, Y)

These compute the angular co-ordinate tan—1(¥/X) (in radians) of a point
whose X and Y co-ordinates are given.

Domain: [Hinf, Inf] x [Hnf, Inf]
Range: (—F, Pi]
Primary Domain: See note 2.

Exceptions

(0, 0) and (+Inf,%Inf) give undefined.NaN.

Propagated Error

A=X(1 L YV(X2+Y2), R=X(1+ V)(tan-}(YIX)(X2+ Y2)) (See note 3)
Generated Error

See note 2.

The Algorithm

1 If X, the first argument, is zero, set the result to 4= n/2, according to
the sign of ¥, the second argument.

72 TDS 368 01 March 1993

60 1.4 Maths libraries

2 Otherwise set Rwork:= ATAN (Y/X) . Then if Y < 0 set RESULT =
Rwork — Pi, otherwise set RESULT = Pi — Rwork.

Notes

1) This two-argument function is designed to perform rectangular-to-polar
co-ordinate conversion.

2) See the notes for ATAN for the primary domain and estimates of the
generated error.

3) The error amplification factors were derived on the assumption that the
relative error in Y'is - that in X, otherwise there would be separate factors
for X and Y. They are small except near the origin, where the polar co-ordi-
nate system is singular.

SINH
DSINH

REAL32 FUNCTION SINH (VAL REAL32 X)
REAL64 FUNCTION DSINH (VAL REAL64 X)

These compute: sinh(X)
Domain:[-Hmax, Hmax] =[-89.4, 89.4]S, [-710.5, 710.5]D

Range: (~Inf, Inf)
Primary Domain: (-1.0,1.0)
Exceptions

X < —Hmax gives —Inf, and X > Hmax gives Inf.
Propagated Error
A=Xcosh(X), R=Xcoth(X) (See note3)

Generated Error

Primary Domain [1.0, XBig]

(See note 2)
MRE RMSRE MAE RMSAE
Single Length: 089ulp 03ulp 098ulp 0.31ulp
Double Length: 13ulp 051ulp 10ulp 03ulp

The Algorithm
1 If |X] > XBig, set Rwork:= EXP (|X] —In(2)).

2 fXBig = |X] = 1.0, set temp:= EXP (|X]) , and set
Rwork = (temp — 1/temp)/2.

72 TDS 368 01 March 1993

1 The occam libraries 61

Notes

COSH

DCOSH

3 Otherwise compute Rwork = sinh([X]) with a fixed-point rational
approximation.

4 In all cases, set RESULT = £ Rwork according to the sign of X.

1) Hmax is the point at which sinh(X) becomes too large to be represented
in the floating-point format.

2) XBigis the point at which e ~1becomes insignificant compared with elX],
(in floating-point). For single-length it is 8.32, and for double-length it is
18.37.

3) This function is quite stable with respect to errors in the argument. Rela-
tive error is magnified near zero, but the absolute error is a better measure
near the zero of the function and it is diminished there. For large arguments
absolute errors are magnified, but since the function is itself large, relative
error is a better criterion, and relative errors are not magnified unduly for
any argument in the domain, although the output does become less reliable
near the ends of the range.

REAL32 FUNCTION COSH (VAL REAL32 X)
REAL64 FUNCTION DCOSH (VAL REAL64 X)

These compute: cosh(X)

Domain: [-Hmax, Hmax] = [-89.4, 89.4]S, [-710.5, 710.5]D
Range: [1.0, Inf)

PrimaryDomain; [-XBig, XBig] =[-8.32, 8.32]S
=[-18.37, 18.37]D

Exceptions

|X] > Hmax gives Inf.

Propagated Error

A=Xsinh(X), R=Xtanh(X) (See note3)
Generated Error

Primary Domain Emmor: MRE RMS
Single Length: 0.99ulp 03ulp
Double Length: 1.23ulp 03 ulp

72 TDS 368 01 March 1993

62 1.4 Maths libraries

The Algorithm
1 If |X] > XBig, set result:= EXP ([X] - In(2)) .
2 Otherwise, set temp:= EXP (|X]), and set result = (temp + 1/temp)/2.
Notes

1) Hmax is the point at which cosh(X) becomes too large to be represented
in the floating-point format.

2) XBigis the point at which e =1 becomes insignificant compared with e}l
(in floating-point).

3) Ermors in the argument are not seriously magnified by this function,
although the output does become less reliable near the ends of the range.

TANH
DTANH

REAL32 FUNCTION TANH (VAL REAL32 X)
REAL64 FUNCTION DTANH (VAL REAL64 X)

These compute: tanh(X)

Domain: [=inf, Inf]

Range: [-1.0, 1.0]

Primary Domain: [-Log(3)/2, Log(3)/2] = [-0.549, 0.549]
Exceptions

None.

Propagated Error

A =Xlcosh!(X), R =X/sinh (X) cosh(X)

Generated Error

Primary Domain Error: MRE RMS

Single Length: 0.52ulp 0.2ulp
Double Length: 46ulp 26ulp
The Algorithm
1 If |X] > In(3)/2, set temp:= EXP (|X}/2). Then set Rwork = 1 —
2/(1+temp).

2 Otherwise compute Rwork = tanh(|X]) with a floating-point rational
approximation.

72TDS 368 01 March 19983

1 The occam libraries 63

DRAN

3 In both cases, set RESULT = £ Rwork according to the sign of X.
Notes

1) As a floating-point number, tanh(X) becomes indistinguishable from its
asymptotic values of +1.0 for |X] > HTmax, where HTmax is 8.4 for single-
length, and 19.06 for double-length. Thus the output of TANH is equal to
+1.0 for such X.

2) This function is very stable and well-behaved, and errors in the argument
are always diminished by it.

REAL32,INT32 FUNCTION RAN (VAL INT32 X)
REAL64,INT64 FUNCTION DRAN (VAL INT64 X)

These produce a pseudo-random sequence of integers, and a corre-
sponding sequence of floating-point numbers between zero and one.

Domain: Integers (see note 1)
Range: [0.0, 1.0] x Integers
Exceptions
None.
The Algorithm

1 Produce the next integer in the sequence: Ni4+7 = (aNk + 1)mod M

2 Treat N4+ as a fixed-point fraction in [0,1), and convert it to floating
point.

3 Output the floating point result and the new integer.
Notes

1) This function has two results, the first a real, and the second an integer
{both 32 bits for single-length, and 64 bits for double-length). The integer
is used as the argument for the next call to RAN, i.e. it ‘carries’ the pseudo-
random linear congruential sequence N, and it should be kept in scope for
as long as RAN is used. It should be initialized before the first call to RAN
but not modified thereafter except by the function itself.

2) If the integer parameter is initialized to the same value, the same
sequence (both floating-point and integer) will be produced. If a different
sequence is required for each run of a program it should be initialized to
some ‘random’ value, such as the output of a timer.

72TDS 368 01 March 1993

64 1.4 Maths libraries

3) The integer parameter can be copied to another variable or used in
expressions requiring random integers. The topmost bits are the most
random. Arandomintegerin the range [0,L] can conveniently be produced
by taking the remainder by (L+1) of the integer parameter shifted right by
one bit. If the shift is not done an integer in the range [-L,L] will be
produced.

4) The modulus M is 232 for single-length and 264 for double-length, and the
multipliers, a, have been chosen so that all M integers will be produced
before the sequence repeats. However several different integers can
produce the same floating-point value and so a floating-point output may
be repeated, although the sequence of such will not be repeated until A
calls have been made.

5) The floating-point result is uniformly distributed over the output range,
and the sequence passes various tests of randomness, such as the ‘run
test’, the ‘maximum of 5 test' and the ‘spectral test'.

6) The double-length version is slower to execute, but ‘more random’ than
the single-length version. If a highly-random sequence of single-length
numbers is required, this could be produced by converting the output of
DRAN to single-length. Conversely if only a relatively crude sequence of
double-length numbers is required, RAN could be used for higher speed
and its output converted to double-length.

72 TDS 368 01 March 1993

1 The occam libraries 65

1.5 Host file server library
Library: hostio.lib

The host file server library contains routines that are used to communicate with the
host file server. The routines are independent of the host on which the server is
running. Using routines from this library you can guarantee that programs will be
portable across all implementations of the toolset.

Constant and protocol definitions for the hostio library, including error and return
codes, are provided in the include file hostio. inc.

The result value from many of the routines in this library can take the value =
spr.operation. failed which is a server dependent failure result. It has been
left open with the use of = because future server implementations may give more
information back via this byte.

1.5.1 Errors and the server run time library

The hostio routines use functions provided by the host file server. These are
defined in Appendix C in the Toolsef Reference Manual. The server is imple-
mented in C and uses routines in a C run time library, some of which are imple-
mentation dependent.

In particular, the hostio routines do not check the validity of stream identifiers, and
the consequences of specifying an incorrect streamid may differ from system to
system. For example, some systems may return an error tag, some may return a
text message. If you use only those stream ids returned by the hostio routines that
open files (so.open, so.open. temp, and so.popen.read), invalid ids are
unlikely to occur. It is also possible in rare circumstances for a program to fail alto-
gether with an invalid streamid because of the way the C library is implemented
on the system. This error can only occur if direct use of the library to perform the
operation would produce the same error.

1.5.2 Inputting real numbers

Routines for inputting real numbers only accept numbers in the standard occam
format for REAL numbers. Programs that allow other ways of specifying real
numbers must convert to the occam format before presenting them to the library
procedure.

For details of the occam syntax for real numbers see the occam 2 Reference
Manual.
1.5.3 Procedure descriptions

In the procedure descriptions, £s is the channe