mMos*

occam 2 Toolset
Reference Manual

MICED CTRONICS
INMOS is a member flh SGS-THOMSON Microelectronics Group

© INMOS Limited 1993. This document may not be copied, in whole or in part, without
prior written consent of INMOS.

@ I’NMOS', 1M, occam and DS-Link are trademarks of INMOS Limited.
437, 25THOMSON s a registered trademark of the SGS-THOMSON Microelectronics Group.

INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.
INMOS document number: 72 TDS 367 01

Contents overview

Contents
Preface
Tools
1 oc Describes the occam 2 compiler.
2 occonf |Describes the configurer which generates configuration
binary files from configuration descriptions.
3 icollect |Describes the code collector which generates executable
code files.
4 idebug | Describes the network debugger. Lists the symbolic functions
and Monitor page commands at machine level.
5 idump |Describes the memory dumper tool which dumps root trans-
puter memory for post mortem debugging.
6 iemit Describes the memory configurer tool which helps to confi-
gure the transputer memory interface.
i ieprom | Describes the EPROM formatter tool which creates execut-
able files for loading into ROM.
8 ilibr Describes the toolset librarian which creates libraries from
compiled code files.
9 ilink Describes the toolset linker which links compiled code and
libraries into a single unit.
10 ilist Describes the binary lister which displays binary files in a
readable form.
1" imakef | Describes the Makefile generator which creates Makefiles for
toolset compilations.
12 imap Describes the map tool which generates a memory map for
an executable file.
13 iserver |Describes the host file server which loads programs onto
transputer hardware and provides host communication.
14 isim Describes the transputer simulator which allows programs to
be run without hardware.
15 iskip Describes the skip loader tool which loads programs onto
external subnetworks.

72 TDS 367 01

March 1993

Contents overview

Appendices

A Toolset standards and | Describes the conventions and standards ofthe
conventions toolset.

B Transputer types and |Describes the meaning and use of transputer
classes types and classes and lists the command line

options to select them for the compiler and
linker.

Cc ISERVER Protocol

Describes the server protocol and the
ISERVER functions.

D ITERM

Describes the format of the ITERM files.

E Bootstrap loaders

Describes the INMOS bootstrap loading
scheme and advises on how it might be custom-
ized.

72 TDS 367 01

March 1993

Contents

Contents: BVBIVIEW ..o vommumon o sms o iy s e T b S R e B R i
Contentso i ii
Preface e Xix
HOSENVOISIONS - is oy o sv v im0 im0 i v e i we i ik o 58§03 B s 0% a0 B3 Xix
Aboutthismanual, Xix
About the toolset documentationset XX
Othier docUMIBIS! v o s s v o8 o v o 5 o 0% 45 o 53 58 58 63 b s « Xxi
FORTRANfoolset, XXi
INQUEST ... XXi
Documentationconventionsl XX
OO s wvun 6 wmns wmiiis Fvidie dRies SIRITE SUE9T8 HTAEAa SA00Aik mumace mimsesn mimpe 1
1 oc-occam2compiler.............ccooiiiiiiinn. 3
1.1 IMtrodOetion: .. comwvimmmmsremmrpress sasssE Re TR RS 3

1.2 Running the compiler 4

13 Filenamest 7

14 Transputertargetsoovvveisvssm s inrmsar sesmsns s 7

1.5 Errormodescciiiiiiii i 8

16 Enable/Disable Error Detection 8

1.7 Enabling/disabling warning messages 9

1.8 Support fordebugging ... 10

1.9 Separately compiled units and libraries 10

110 CodeinsertionusingASM 1

111 Memory Mapoiriii e 11

142 CompilardirectiVes: s s pe s s v 5 55 v oes 12
1.12.1 Syntax of compiler directives 13

1422 FINCLUDE:: i wv svwnver s wivs o o i 55 2 i o v 13

1123 #USE ... 14

1124 #IMPORT 14

142:8 FCOMMENT . s s 5 50 57 00 1 50 525 2 v 05 s g 15

1126 #HOPTION e 16
UNDEFINED errormodecovnnnn.. 17

TAZT HPRAGMA . oo i e oo o e 56 55 0 55 o5 5 850 65 o5 65 i 17

iv Contents
#PRAGMA EXTERNAL "declaration” [comment] .. 18
Examples: 18
#PRAGMA LINKAGE ["section-name”] [comment] . 18

#PRAGMA TRANSLATE identifier "string”
[leomment | «.ovivimmmnsnmmsmmmmss s 20
113 Ermormessagesiiriiiiin 20
NOTBS . . cswmmmimmmmmmomsmsmsmra s 56 5 55 6 5 3 20
1131 Wamings ... 20
TA32 EHOPS! conumumssssmmmmmmsss o .95 55 55 66 16 me e + 23
2 occonf - occam configurertool 27
21 Introduction e mmemrpnareeie w5 o oy 4 27
2.2 Runningtheconfigurer 28
Examplesofuse: 28
221 Searchpaths 30
23 Boot-from-ROM options 30
24 Configurationerrormodes 31
25 Enable/Disable Error Detection 31
26 Enabling memory re-ordering and placement 32
2.7 Disabling virtualrouting 32
28 Enabling/disabling warning messages 32
29 Support for interactive debugging 33
210 ASMcOde K7
211 Supportfor INQUEST ...t 34
212 Default memOry Map ..oouammmes v s v 06 65 Ta o6 55 a0 34
2927 LoadStat conimes e i e s e 2ep 1t s 35
243 Configurer diagnosticsouvieaman i is oo o on on 8 50 5 35
2131 Wamingmessages......................ii.. 36
2132 Emormessages.................oiiiiniiiiin.. 38
3 icollect —COdeCONOCIOr .. cuocunssnssans cvusivss s 47
31 e e ey N e SN 47
Unconfigured program (using ‘T’ option): 48
Configured processor program: 48
3.2 Runningthe codecollector 48
3.21 Examplesofuse 51
3.2.2 Default command ng:ovvvvmsvomssa s 51
323 Inputfiles i 51
3.24 OUPULTIES:: & v e i e d 51
Specifying an output filename 52
Defaultcase 52

Contents v
Dynamically loadable output 52
Memory Map TBs: - sssm s nuvesim 52
Debugdatafileommmim ey 52
33 Program interface for occam unconfigured programs 52
3.3.1 Interface used for T'option 53
3.3.2 Interface used for ‘T'and ‘M’ options 53
34 Memory allocation for unconfigured programs 53
3441 Cand FORTRAN programs 54
34.2 OCCAM DIOOFEMS »svrnmnessmmeeemaeamn i . 55
343 Memory initializationerrors 56
344 Small values of IBOARDSIZE 56
35 Parity-checked memoryooiiiiiiiiiin 57
36 Non-bootable files created with the Koption 58
3.6.1 Fileformat ... 58
37 Boot-from-ROM outputfilest 59
3.8 Alternative bootstrap loaders for unconfigured programs 60
3.9 Alternative bootstrapschemes 60
3100 Thememory Mapfile: - .« .o s v o v e s o o 5% 08 won son o wom 60
3.10.1 Unconfigured (single processor), boot fromlink ... 61
Program targetted at transputertype 61
Program targetted at transputerclass 62
3.10.2 Configured program boot from link 64
3.10.3 PBootfrom ROMprograms 65
Unconfigured (single processor), boot from ROM,
TuUn N RAM : c: covcan wnamem o o on s o e 65
Uncqni?_gured (single processor), boot from ROM,
uninROM 65
Configured program, boot from ROM, run in RAM . 65
Configured program, boot from ROM, unin ROM . 65
3.11 Disabling interactive debugging - "Y' option 66
312 EITOT MOSSAMES: o waui s orsivininane arsioiinsimsomsssiis o aiweseintoge 67
3121 WaMINGS: v mas s pugmesmesrvms s s 67
3122 SerOUSEITOTScvivrriiennaeeeannanenenn 67
3123 Falalemorso-ssisimimvnraiai eV sies 72
4 idebug— networkdebuggerk 73
41 IMFOAUCHON o vs comnmmmmsmsams s s waere 73
42 Debugging the root transputer 73
421 Board WITINGo vommennsvnmnssnmsionsiosess 74
422 Post-mortem debugging R-mode programs 74
423 Post-mortem debugging T-mode programs 74
424 Post-mortem debugging from a network dump file . 75
425 Debuggingadummynetwork 75
426 Methods for interactive breakpoint debugging 75

vi

Contents

43

44

4.5
4.6
4.7

438
4.9

4.10

4.11

Running thedebugger 75
431 Toolset file types read by the debugger 77
432 Environmentvariables 78
433 Program termination........................... 79
Post-mortem mode invocation 79
441 Debugging T-mode programs — option ‘T" 80
442 Debugging R-mode programs — option ‘R’ 80
443 Debugging a network dump file — option ‘N’ 80
444 Debugghiﬂng a previous breakpoint session —

OPUOTE M’ v v 60005 55 64 5im mue oo 1on 1 mis sap wm 81
445 Re-invoking the debugger on single transputer

PROQOUAME. oononnsommmumrmss. is 08 158 s b Si8TavE RTINS & 81
4486 Debugging boot from ROM programs 81
Interactive mode invocationcocieviinininn. 81
Function key mappingsooviiiiiiieiinnnnnnnn.. 82
Debugging programs on INMOS boards 82
471 Subsystemwiring, 82
472 Debugging options to use with specific board types 83
473 Detecting the error flag in interactive mode 83
Debugging programs on non-INMOS boards 84
Monitor page commands 85
4.9.1 Commandformat 85
492 Specifying transputer addresses 85
493 Scrolling:the display:. ... swsmamsmnsmmas s w o 85
494 Editingfunctions 86
495 Commands mapped by ITERM 86
496 Summaryofcommands........................ 86
497 Symbolic-type commands 88
498 Scrollkeys ... 88
499 Monitor page command descriptions 89
4910 Symbolictypecommands 107
Symbolicfunctionsl 108
4.10.1 Symbolicfunctions 109
4.10.2 Interactive mode functions 111
4103 Locating Funchions : .« i« o avensnmmsmsmssess 112
4104 Cursor and display control functions 112
4.10.5 Miscellaneous functions 113
INSPECT/MODIFY expression languageforC 115
4111 Syntaxnotsupportedo s 115
4112 ExtensionstoCsyntax 115

SUDAITAYS = 5 a0 e0 i 5 i smesg sesmmsca aia-s 115

Scope resolution operator 115

Hexconstants 116

Address constantindirect 116

Contents vii

4114 Editingfunctions 117

A5 WaMINGS! owmin on on o3 o om0 85 55 0 0858 55 4 117

4118 TYPES oot 118

Type compatibility whenusing 118

4.12 Display formats for source code symbols 119
4421 Nolalioh' v convsmnmmrmrmsren s TR e TG 119

4122 BasicTYPeS ..o 120

4.12.3 Default type of “plain”char 120

4124 Enumeratedtypes 120

4125 Pointers 121

4126 FunctionPointers 121

4127 Structs ... 121

4128 Unionscooiiiiiiii 122

4129 Addressofoperator& 122
41210 AImays ... 122

41211 Channels 123

413 Example.displays .. . c.veon e soin on on o000 0 00 0 1 123
4.14 INSPECT/MODIFY expression language for occam 125
4141 Inspectingmemory 125

4142 Inspectingarraysoiiiii.... 125

4.14.3 Type compatibility whenusing 126

4.15 Display formats for source code symbols 127
4151 Nofationo 127

4152 BasiCTYPESc.oviiii e 127

4103 CHaNNelS: soss i e e e e st 128

4154 Amays ... 129

4.15.5 Procedures and functions 129

4:16° Exampledisplays:.coinensmmmmsnsarmnis s 129
417 EMOrmesSagesooovrerninein e, 133
4171 Out of Memony ermors:. ..« e 133

4.17.2 |Ifthedebuggerhangs 133

4473 Ermormessage stivoranesnssinias s o as avian 133

5 ididump—memorydumperoiiiiiiiiinnns 143
5.1 Introduction -. - -« w: o vn s cvms s vn e v a i s e v o Ve 143
5.2 Running the memory dumper 143
5.2.1 EXamplesofuse: «: v o s v s v om om o o a0 o s sms 144

53 Ermormessages ... 144
6 iemit — memory interface configurer 145
6.1 Introduchion: .. .« .o comnimir s o msreramey sy s v B i 145
6.2 Runningiemit, 146

6.3 Outputfiles, 148

viii Contents
6.4 Interactive operationl 148
6.4.1 Page 0 ..covmonue o wious e a o i inoas s moasiam e @i 148

6.4.2 Page 1o e 150

6.4.3 PEOEZ 5 uin s 5 0 55 oo s s e e 154

6.4.4 Page 3 ... e 155

6.4.5 PAgE 4 . o:uvnipin v spenenmunpms o avei s 156

646 Page S e 157

6.4.7 PAGBIE. ;o o v o s T s e e 158

6.5 iemit error and waming messagesc.oi.un 159
6.6 Memory configurationfileoociiviviriinmn o 160
7 ieprom-ROM programconvertor.................... 163
71 INOAUCHOR - vs v v s v s s o 163
7.2 Prerequisites to using the iepromtool 164
7.3 RUNBINGTEBIONT o 15 0 s it i s s o ot aa e oo 51 164
7.3 Examplesofuse 165

74 ieprom control file. vovvinovussir e ssanmiasas o e v 165
Statement:: . = oaasssm T o T 5 166
Parameter/Description 166

Statement 168
Parameter/Description:. .. .ccosscvoim v oo o s 168

7.5 What goesintothe EPROM 168
8.1 Memory configurationdata 168

7.52 Parityregistersl 169

7.53 JUMP INSIUICHONS 1uiicimmmmosmnmosmnmsonas w5 s o 169

754 Bootable fle:. cie i sein 23 0 5 3 96 6 170

7.55 Traceback information 170

7.6 iepromoutputfileso 170
761 Binaryoutput 170

762 Hex dUMpP «.osomisenmminisir srin os w os 5 0 5n 3 170

76.3 Intelhexformatociviiiinin i i on o i v 171

764 Intel extended hexformat 171

765 Motorola S-record format 171

1.7 Blockmode ..ot 171
7.71 Memory organization 171

77.2 Whentouseblockmode 172

773 Howtouseblockmode 172

7.8 Example:control files:...coxmmmuiinmummmnms o o ne s o e e 173
7.8.1 Simple:outplt . . conuemmumm s wa i s o o ov s o 173

7.8.2 Usingblockmodec.ouo... 173

79 Errorand: Warning meSSages . . s s s s s as s 6w o iss 174
B ATAbr==liDralan ... v seus oo s e e s 175

8.1 Introduction ..o e 175

Contents ix
8.2 Running the librarian ..o covsvivs sovsvsvoiea s 176
EXSmMDIR coammnnrms s i 176
8.21 Default.command liNe; ... smmmemmmmmmsmmmsmmse 176
822 Libraryindirectfiles 177
8.23 Linked object inputfiles 177
824 Libraryfilesasinput 177
8.3 Library mOQUISS smmomsan sam s s o san s s 177
8.3.1 Selective loading cocvvienrri sru o s e v 178
8.3.2 How the librarian sorts the library index 178
8.4 Library USEgETIes s o s s e s 0 55 RE s 178
8.5 Building libraries 179
8.5.1 Rules for constructing libraries 179
8.5.2 General hints for building libraries 179
8.5.3 Optimizing libraries 179
Alllibrariesccciiiiiiiii 180
Libraries containing occam modules 180
Semi—optimized library build targeted at all

transputertypes ...t 180
Optimized library targeted at all transputer types .. 181
Library build targeted at specific transputer types .. 181
8.6 Error MesSages .o..cuco sasman ws s an o v 53 o5 5 oa a5 sawe 182
8.6.1 Wamningmessagesooiiieiiiiiiin.. 182
8.6.2 SEerioUS BITOTSviiieieeei i eiieeaeeeeenn. 182
9 dlink == lNKeI..: .. vown viin sous swvs was s van swies i 185
9.1 IO UCION o mmisavron o prvess o o w5 o 5 oy ox on 2 2 omows 185
92 RUNBIRG S INKEE o5 s 2w o0 o o s o 0 v 00 o 4 e 8 g bwas 186
9.2.1 Default commandline 187
9.3 Linker indirect filos:. v vu v vn o i wn s v win s 0 500 n s 187
9.3.1 Linker indirect files supplied with the toolset 188
94 Linkerdirectives i 188
94.1 #alias basename {aliases} 188
94.2 #define symbolnamevalue 189
943 #include filename 189
944 #mainentry symbolname 189
945 #reference symbolname 189
946 #sectionname il 190
95 LinKeroptions.cou cir s sin sie e 2 57 6 5 95 538 53 5% 53 58 o 83 190
9.5.1 Processortypes ..., 190
95.2 Error modes —options H, Sand X 191
9.5.3 TCOFF and LFF output files — options T, LB, LC .. 191
954 Extraction of library modules — option EX 192
Example: Extraction from a user library 192

Example: Extraction from a user library, using the
run-timelibraryl 193

X Contents
Example: Extraction from a user library, for
multiple processortypes 193
Example: Generation of a completely linkable library 194
Extraction using #define 195
9.5.5 Display information —option | 195
9.5.6 Virtual memory —optionKB 195
9.5.7 Main entry point—option ME 195
9.58 Linkmap filename —option MO 196
959 Linked unit outputfile-O 196
9.5.10 Permit unresolved references — optionU 196
9.5.11 Disable interactive debugging—-Y 196
9.6 Selective linking of library modules 196
97 Thelinkmapfile i 197
9.7.1 MODULE record: ..o vammmnscn ia vn e o 50 a3 0% 197
972 SECTrecord:............ccvviiniininiennnnn.. 197
973 MAPrecord:ccoviiiiietiiiiinninnnnneennn 198
S04 Valoorecord::wcmmmmasnig 55 5w e o5 0 198
9.8 Using imakef for versioncontrol 198
9.9 EMormessages «ouvso s vmrssmnm e e w vs o g 5 0 e 0w 199
9.9.1 Wamings, 199
9.9.2 EMOIS wumemmmmmmss sov @5 0 35 7 000 e s 200
9.93 Serious eImorsooviuieiaieannn. 201
9.94 Embedded messages 203 .
10 dXiat- bInary iSter ; oo cosvsmn vvss sens vows 5ws saen o 205
101 Introduction 205
10:2 |Data diSplays: s o o o on s, 205
10.21 Modulardisplays 206
10.2.2 Example displays used in this chapter 206
10.3 Runningthe binarylister................................ 206
10.3.1 Options to use for specific filetypes 207
10.3.2 Outputdeviceccoiiiiiiin.. 208
10.3.3 Defaultcommandline 208
104 Specifying an outputfile—option O 208
10.5 Symboldata—optionA............. ...l 209
10.5.1 Specific section attributes 209
10.5.2 General symbol aftributes 209
10.5.3 Example symboldatadisplay 210
10.6 Code listing = optiGnC. . cvvumwimmsna v i w5 o on i o s 210
10.6.1 Example code listingdisplay 211
10.7 Exported names—optionE 212
10.7.1 Example exported names display 212
10.8 Hexadecimal/ASCll dump—optionH..................... 212

Contents Xi
10.8.1 Example hexdumpdisplay 213

10.9 Moduledata—optionMl 213
10.9.1 Example module datadisplay 214

10.10 Libraryindexdata—optionN............... 214
10.10.1 Example library index display 215

10.11 Procedural interface data—optionP 215
10.11.1 Example procedural data display 215

10.12 Specify reference —optionR, 216
10.13 Fulllisting=option T ... i, 216
10.13.1 Examplefulldatadisplay 216
10.13.2 Configuration datafiles 217

10.14 File identification —optionW 217
10.14.1 Example file identificationdisplay 218

10.15 External referencedata—option X 219
10.15.1 Example external reference data display 219

10.16 EmOrmessagesoveeviiieiienineenneeeinn.. 219
10.16.1 Wamingmessagescooeni.... 220
10.16.2 SerioUS eImOrSoevienreereennneannn. . 220

11 imakef — makefile generator 221
1t IntodUehion « aesmmans s o e s e 1 221
112 Howimakefworks it 221
11.3 File extensions forusewithimakef 222
M1 Targetfiles...coxcvomsmmmmmmessmmm s 222

114 Linkerindirectfiles L. 225
11.5 Library indirect and library usagefiles 225
11.6 Running the makefile generator 225
11.6.1 Exampleofuse, 227

11.6.2 Specifying languagemode 227

11.6.3 Configuration descriptionfiles 227

11.6.4 Disablingdebugdata 228

11.6.5 Removing intermediatefiles 228

11.6.6 FilesfoundonISEARCH 228

11.6.7 Mapfile outputforimap 228

11.7 imakefexamples 228
M7 Cexamples ..ccovionmasmppemmsee o e s 229

Single transputer program 229

Multitransputer program 230

1072 OCCaAMBXAMPIOS sy i s s 231

Single transputerprogram 231

Multitransputer program 232

11.7.3 Mixed language program 233

11.8 Formatofmakefiles.............. ..o, 234

Xiv Contents
14.41 Specifying numerical parameters 274

1442 Keysmappedby I TERM 274

1443 Commandsummary 275

1444 Command descriptions 275

145 Balch modeoperation .. . ccisvivevini vnis v o 281
1451 Settingup ISIMBATCH 281

14.5.2 Input commandfileseusus e 281

1453 Output.........coiiiiiiiiii 281

14.54 Batchmodecommands 281

146 EmMormessagesc.oiiiiiiiiiii i, 282

18 AakipeSRIDIOBEABE . ioui o comn somuuman snovs s sy v 285
16:1 Introduction oscvanemrnnar e sr e s 6 i 3 285
15611 Usesoftheskiptool 285

152 Running:the:skip.loader ..o vemmmmm s v o o o s 286
15.21 Skipping a single transputer 287
Subsystemwireddown: 287
Subsystemwiredsubs: 287

15.2.2 Skipping multiple transputers 287

15.23 Loadingaprogramcoiiini.. 288

15.2.4 Monitoring the error status —optionE 288

15.25 Clearingtheemorflag 289

153 Emormessagesouuuum 289
AppendiCesc.iiiiiiii et 291
A Toolset conventions and defaults 293
A1 Commandlinesyntaxccoiiiiiiiionn. 293
A11 General conventions 293

A12 Standardoptions.............ccoiiiiiiiian,. 293

A2 Unsupportedoptionscciiiiiiiinn... 294

A3 Filenames ... 294

Ad SearchiPaths ..vovves i o au o s o e srE 294

A5 Standard fileextensions 295
A5.1 Main source and objectfiles 296

Ab52 Indirect input files (scriptfiles) 297

AS53 Files read by the memory map toolimap 297

A54 Otheroutputfilescciiiiiiiiinn. 297

A55 Miscellaneousfiles 298

AB Extensions required forimakef 298

A7 Messagehandling: s «: v cnan cesnmmnmsmmmmssseamm s 299
ATA Meassage formiat! 5. averamussmsammrmams some o 299

AT2 Severities 299

Contents XV
AT3 RUBLIE BITOIS. « v o i w555 55 05 &5 o 55 o0 o 300
B Transputertypesandclassesccvvut 301
B.1 Transputer types supported by thistoolset 301
B.2 Transputer fypes andclassesoviunn 301
B.21 Single fransputertype 301
B.22 Creating a program which can run on a range of
1= 11] 01V 7= 5 A —— 302
B.2.3 Linked file containing code compiled for different
fargets 303
occam object files targetted at different targets 305
B.24 Classes/instruction sets — additional information .. 305
B.3 Transputer type command lineoptions 307
C iserverprotocolccoviiiiiiii it 309
CA1 iserverpackets 309
C2 ServercommEands . i v os v v s 0w o o 5 a0 e e e 309
C3 File: COMMENAS . ox so 5 o o0 o0 58 00 w8 a8 5 o5 5 o 08 4% o5 i o 311
C31 Fopen—Openafile 31
C3.2 Fclose—Closeafile 312
c3.3 Fread — Read ablockofdata 313
C34 Fwrite — Write a blockofdata 313
C.3.5 FGetBlock — Read a block of data and return
BUCBESS! ¢ crv oo s s i w74 5% o o 55 595 506 655 abs o5 s 500 o 314
C.3.6 FPutBlock — Write a block of data and return
SUCCESS v vvtetiee e e 315
C3.7 Fgets-Readaline 315
C38 Fputs—Writealine 316
C.39 Fflush—Flushastream 316
C4 Record Structured flecommands 317
C4.1 FopenRec - Open a record structuredfile 317
c4.2 FGetRec—Readarecord 319
C4.3 FPutRec—Writearecord 319
C44 FputEOF — Write an end of filerecord 320
C45 Fseek—Setpositioninafile.................... 320
C4.6 Ftell - Find out positioninafile 321
C47 Feof-Testforendoffile....................... 321
Cc438 Ferror— Getfileerrorstatus 322
C49 Remove-—-Deleteafile 322
C4.10 Rename-Renameafile....................... 323
C.4.11 Isatty — Discover if a stream is connected fo a
terminal 323
C.4.12 FileExists — Checktoseeifafileexists 324
C4.13 FerrStat—Getfileerrorstatus 324
C5 Hostcommands ... 325

xvi Contents
C.51 Getkey — Getakeystroke 325
CS52 Pollkey—Testforakey 325
C.53 RequestKey — Request a single keyboard ‘event’ . . 326
C.54 Getenv — Get environment variable 326
Cb55 Tme-Getthetimeofday 327
C56 System-Runacommand 327
C.5.7 Translate — Translate an environment variable 328
cé6 SeVeriCoMMAaNds c. s is on 56 oo saa s e i 329
C.6.1 Exit — Terminate theserver 329
C.6.2 CommandLine — Retrieve the server command line 329
C63 Core—Readpeekedmemory 330
C.64 Version - Find out abouttheserver.............. 331
C6.5 Getinfo — Obtain information about the host and

SOIVEE =02 = o o5 0 ol o, S R S T b B smserana 332

C.66 CommandArgs — Retrieve the server command line
arguments 333
Cc7 Reserved Tags and Third Party Tags 334
Cc.71 MSDOS - Perform MS-DOS specific function 334
C.7.2 SocketA — make a socket librarycall 335
C.7.3 SocketM — make a socket librarycall 335
C.74 ALSYS - Perform Alsys specific function 335
C.7.5 KPAR - Perform Kpar specific function 336
cs8 Record Structured fileformat.covieat.. 336
C81 Sun0SandMS-DOS 336
Formatted Sequential 336
Unformatted Sequential 336
Formatted Direct 336
Unformatted Directcovvnn.. 336
c9 Terminationcodescooiiiiii 337
D ITERMSAilescooiiiiiiiiiiiiii i eiiiaieaeenns 339
D.1 Infroduction, 339
D.2 The structure of an ITERMfile 339
D.3 The hostdefinitions 340
D.3.1 ITERMversionccccut. 340
D32 Screensize, 340
D4 Thescreendefinitions 340
D41 Goto XY processingceveis s cvie i i 341
D.5 The keyboard definitions 342
D.6 Setting up the ITERM environment variable 342
D.7 Iterms supplied withatoolset 343
B8 Anexample [TERM . .. c.commemmmmmmasmm s o o i 344
E Bootstraploadersciiiiiiiiiiin.. 347
E1 Introduction 347

Contents

E.1.1 The example bootstrap
Transferof 6ontrol.ccioin v vivs i o s o
E.1.2 Wiriting bootstrap loaders

...

Xviii Contents

Preface

Host versions

The documentation set which accompanies the occam 2 toolset is designed to
cover all host versions of the toolset:

e IMS D7305 - IBM PC compatible running MS-DOS
* IMS D4305 — Sun 4 systems running SunOS.
* |MS D6305 - VAX systems running VMS.
About this manual
This manual is the Toolset Reference Manual to the occam 2 toolset.
The manual provides reference material for each tool in the toolset describing:
¢ Command line syntax, including an example command line.
e Command line options.
¢ How to run the tool.
* A list of error messages which may be obtained.
Many of the tools in the toolset are generic to other INMOS toolset products i.e.
the ANSI C and FORTRAN toolsets and the documentation reflects this. Examples
are given in C.
The appendices provide details of:

« Toolset conventions.

Transputer types.

Server protocol.

L]

ITERM files.

Bootstrap loaders.

72 TDS 367 01 March 1993

About the toolset documentation set

About the toolset documentation set

The documentation set comprises the following volumes:

72 TDS 366 01 occam 2 Toolset User Guide

Describes the use of the toolset in developing programs for running on the
transputer. The manual is divided into two sections; ‘Basics’ which
describes each of the main stages of the development process and
includes a ‘Getting starfed’ tutorial. The ‘Advanced Techniques' section is
aimed at more experienced users. The appendices contain a glossary of
terms and a bibliography. Several of the chapters are generic to other
INMOS toolsets.

72 TDS 367 01 occam 2 Toolset Reference Manual (this manual)

72 TDS 368 01 occam 2 Toolset Language and Libraries Reference
Manual

Provides a language reference for the toolset and implementation data. A
list of the library functions provided is followed by detailed information
about each function. Details of extensions to the language are given in an
appendix.

72 TDS 379 00 Performance Improvement with the INMOS Dx305 occam
2 Toolset

This document provides advice about how to maximize the performance
of the toolset. It brings together information provided in other toolset docu-
ments particularly from the Language and Libraries Reference Manual.
Note: details of how to manipulate the software virtual through-routing
mechanism are given in the User Guide.

72 TDS 377 00 occam 2 Toolset Handbook

A separately bound reference manual which lists the command line
options for each tool and the library functions. It is provided for quick refer-
ence and summarizes information provided in more detail in the Tools
Reference Manual and the Language and Libraries Reference Manual.

72 TDS 378 00 occam 2 Toolset Master Index

A separately bound master index which covers the User Guide, Toolset
Reference Manual, Language and Libraries Reference Manual and the
Performance Improvement document.

72TDS 367 01 March 1993

Preface XXi

Other documents

Other documents provided with the toolset product include:
« Delivery manual giving installation data, this document is host specific.
o Release notes, common to all host versions of the toolset.
= ‘occam 2 Reference Manual’ published by Prentice Hall.

« ‘A Tutorial Introduction to occam Programming' published by BSP Profes-
sional Books.

FORTRAN toolset

At the time of writing the FORTRAN toolset product referred to in this document
set is still under development and specific details relating to it are subject to
change.

INQUEST

The INQUEST products referred to within this document are INMOS window-
based debugging and profiling products, which may be bought separately and
used with the toolset.

Documentation conventions

The following typographical conventions are used in this manual:

Bold type Used to emphasize new or special terminology.

Teletype Used to distinguish command line examples, code fragments,
and program listings from normal text.

Italic type In command syntax definitions, used to stand for an argument
of a particular type. Used within text for emphasis and for book
titles.

Braces {} Used to denote optional items in command syntax.

Brackets [] Used in command syntax to denote optional items on the
command line.

Ellipsis . . . In general terms, used to denote the continuation of a series. For
example, in syntax definitions denotes a list of one or more
items.

i In command syntax, separates two mutually exclusive alterna-
tives.

72 TDS 367 01 March 1993

XXii Documentation conventions

72TDS 367 01 March 1993

Tools

72 TDS 367 01 March 1993

2 Tools

72 TDS 367 01 March 1993

1 oc-—o0cCCam 2
compiler

This chapter describes the syntax and command line options of the occam 2
compiler oc. The chapter ends with a list of error messages.

Appendix B of the Language and Libraries Reference Manual describes some
technical aspects of occam’s implementation on the transputer, including the
allocation of memory, the machine representation of occam types, and other
hardware dependencies.

1.1 Introduction

The toolset compiler implements the occam 2 language targeting to IMS T212,
M212, T222, T225, T400, T414, T425, T426, T800, T801, and T805 transputers.
Transputer targets are discussed in detail in Appendix B.

oc supports some extensions to the occam 2 language, including: compiler direc-
tives; extended channel handling; extended syntax; and low level programming
support. These are compiler-dependent and do not extend the definition of the
language. Extensions supported by oc are listed in Appendix A of the Language
and Libraries Reference Manual,

Each compilation of a program must be targetted at a specific transputer type or
class, in one of three execution error modes and with interactive debugging either
enabled or disabled. The selection or not of interactive debugging determines the
method of channel input/output used by the compiler.

All components of a program to be run on the same transputer must be compiled
for compatible target processors, error modes, and method of channel ifo. The
compiler provides comprehensive error message information.

Libraries and separately compiled units must be already compiled before any file
which references them can itself be compiled. It is the programmer’s responsibility
to ensure all components of a program are compiled in the correct order and that
object code is kept up to date with changes in the source; the linker will object if
this is not done. This may be assisted by using a MAKE program in conjunction with
the imakef£ tool. The imakef tool depends on a particular system of file exten-
sions being used. For details of version control using MAKE programs and the
imakef tool see Chapter 11. The operation of the compiler in terms of standard
file extensions is shown below.

occam source files can contain references to object code libraries, occam
source to be included in the compilation, separately compiled occam code, and
code produced by compatible compilers for other languages.

72 TDS 367 01 March 1993

< 1.2 Running the compiler

For a full description and formal definition of the occam 2 language see the
occam 2 Reference Manual.
dib I

. oc

tco

The object file is generated by the compiler in Transputer Common Object File
Format (TCOFF). Object files are required to be in this format to be compatible with
other tools in the toolset such as the librarian and linker tools.

1.2 Running the compiler

The occam 2 compiler takes as input an occam source file and compiles it into
a binary object file. Command line options determine the target transputer for the
compilation, the compilation error mode, and other compiler facilities such as alias
and usage checking. A target processor and compilation error mode should be
specified for each compilation. The compiler default is to produce code forthe T414
in HALT mode, and for code of this type the transputer target and error mode
options may be omitted.

To invoke the compiler use the following command line:

» oc filename {options}

where: filename is the name of the file containing the source code. If you do not
specify a file extension, the extension .occ is assumed.

options is a list, in any order, of one or more of the options given in Table
1.1.

Options must be preceded by *~’ for UNIX-based toolsets and ‘/’ for
MS-DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be given in any
order.

Options must be separated by spaces.

If no arguments are given on the command line a help page is displayed giving the
command synfax.

72 TDS 367 01 March 1983

1 oc - occam 2 compiler 5

If the compilation is unsuccessful, error messages are displayed giving the name
of the file and the number of the line where the error occurred. Compiler error
messages are listed in section 1.13.

Example:

UNIX based toolsets:

oc -t425 simple

ilink simple.tco hostio.lib -t425 -f occama.lnk
occonf simple.pgm

icollect simple.cfb

iserver -se -sb simple.btl

MS-DOS/VMS based toolsets:

oc /td425 simple

ilink simple.tco hostio.lib /t425 /f occama.lnk
occonf simple.pgm

icollect simple.cfb

iserver /se /sb simple.btl

In this example the source code for a single processor program is compiled for a
T425 transputer. The example also shows the commands for linking, configuring,
collecting, and loading the program.

Option

Description

Transputer
type

See Appendix B for transputer type options.

A

Prevents the compiler from performing alias checking.This
option also disables usage checking. The default is to perform
alias checking. When alias checking is enabled, the compiler
may insert run-time alias checks. Details of alias and usage
checking rules are given in Appendix C of the Language and
Libraries Reference Manual and also inthe occam 2 Reference
Manual.

Displays messages in brief (single line) format.

Disables the generation of object code. The compiler performs
syntax, semantic, alias and usage checking only.

CODE nnn

Specifies how large to make the code buffer. If not specified, the
compiler will allocate 240 Kbytes. The code buffer is expressed
as Kbytes, e.g. to allocate a buffer = 100kbytes, specify CODE
100.

Generates minimal debugging information. The default is to
produce full debugging information. Debugging data is required
by the debugger and by the transputer simulator.

72 TDS 367 01

March 1993

1.2 Running the compiler

Disables the use of the compiler libraries. This prevents the
compilation of some programs which require ‘complicated’ arith-
metic such as real arithmetic on a processor which does not
have a floating point unit. If this option is used and the occam
code requires use of the libraries, an error is reported.

Enables the compiler to recognize the restricted range of trans-
puter instructions via the ASM construct, as listed in section C.8
of the User Guide.

Produces code in HALT mode. This is the default compilation
mode and may be omitted for HALT mode programs. (See
options S and X also).

Displays additional information as the compiler runs. This
information includes target and error mode, and information
about directives as they are processed. The default is not to
display this information.

Disables run-time range checking. The default is to insert run-
time range checks. See section 1.6.

Disables usage checking. The default is to perform usage
checking. Usage checking is also disabled by option ‘A", Details
of alias and usage checking rules are given in Appendix C of the
Language and Libraries Reference Manual and also in the

occam 2 Reference Manual.

Disables the insertion of run-time checks for calls to ASSERT.

Disables warnings when CHAN OF ANY is used. See section
1.7.

Disables warnings when the obsolete construct GUY is used.
See section 1.7.

Disables warnings when function or procedure parameters are
not used. See section 1.7.

Disables warmnings when declared variables or routines are not
used. See section 1.7.

0 outputfile

Specifies the name of the output file. If no output file is specified
the compiler uses the current directory and input filename and
adds a . tco extension.

P filename

Generates a map file giving details of code mapping in memory.
A filename must be specified. Map files can be displayed as
normal text files and are read by the imap tool. See section 1.11.

R filename

Redirects error messages to a file.

]

Produces code in STOP mode. (See options H and X also).

U

Disables the insertion of code to perform run-time error checks.
The default is to perform run-time error checks. See section 1.6.

v

Prevents the compiler from producing code which has a sepa-
rate vector space requirement. The default is to produce code
which uses separate vector space. See section B.1.4 in the
Language and Libraries Reference Manual.

72TDS 367 01

March 1993

1 oc - occam 2 compiler 7

W Enables the compiler to recognize the full range of transputer
instructions via the ASM construct. Transputer instructions are
listed in Appendix C of the User Guide.

WALL Enable all warnings which are controlled from the command line.
See section 1.7.
WD Provides a warning whenever a name is descoped. See section
1.7.
WO Provides a warning whenever a run-time alias check is gener-

ated. See section 1.7.
WQUAL Enables software quality warnings, see section 1.7.

X Produces code in UNIVERSAL mode. See section 1.5. (See
options H and S also).

Y Disables interactive debugging. See section 1.8. Note: This
option also disables the ‘virtual routing’ facilities of the confi-
gurer.

Table 1.1 occam 2 compiler options

1.3 Filenames

occam source files can be given any legal filename for the host system you are
using. The use of the .oce extension for 0ccam source, and the . inc extension
for files containing declarations of constants and protocols, is recommended. If an
extension is not specified for the input file, the compiler will assume the extension
is .oce.

Output files are specified using the ‘0’ option. If you do not specify a filename, the
input filename is used (minus any directory name) and a . tco file extension is
added. In this case the file will be placed in the current directory i.e. the directory
from which the compiler is invoked.

If you use the Makefile generator tool imakef you must use the extensions
described in section 11.3.

1.4 Transputer targets

The compiler produces code for the IMS T212, M212, T222, T225, T400, T414,
T425, T426, T800, T801, and T805 transputers. Command line options are
provided to specify the processor type for the compilation. If more than one
processor type is specified, the compilation will terminate immediately and an error
message will be displayed. If no target is specified the compilation defaults to a
T414 target.

Programs may also be targetted at transputer classes, which enable the same
code to be run on groups of related transputer types.

A description of transputer types and classes can be found in Appendix B.

72TDS 367 01 March 1993

8 1.5 Error modes

1.5 Error modes

The execution error mode determines the behavior of a program if it fails during
execution. There are two main modes; HALT system and STOP process. There
is also a special mode called UNIVERSAL. Command line options are provided to
select the error mode for the compilation. Specifying more than one error mode will
cause the compilation to terminate immediately and an error message will be
displayed.

The execution behavior of programs compiled in the different modes is as follows:

HALT When an error occurs in the program the transputer halts. This
is useful for developing and debugging systems and is the
default mode. For errors to be detected correctly the server must
be invoked with the ‘SE' option.

STOP When an emor occurs the system behaves like the occam
STOP process, that is the process causing an error does not
continue. Other processes continue until they become depen-
dent upon the stopped process. This ensures that a failure in
one process does not automatically produce failure in other
processes. Using this mode it is possible to build a system with
redundancy and enable a system to run even if parts of the
program fail or processes fail because a time out is exceeded.

UNIVERSAL UNIVERSAL mode enables the user to compile code that may
be run with either HALT or STOP mode in effect. The decision
about which mode to adopt need not be taken until the sepa-
rately compiled modules are combined into a linked object file.
On linking the modules, any code that has been compiled in
UNIVERSAL error mode will adopt the error mode of the other
modules i.e. either HALT mode or STOP mode. HALT and
STOP emor modes may not be combined on the same
processor.

Code compiled in either HALT or STOP mode may call code compiled in
UNIVERSAL mode, however, code compiled in UNIVERSAL mode may only call
code which has also been compiled in UNIVERSAL mode. It cannot call code
which has been compiled in HALT or STOP mode.

All separately compiled units for a single processor must be compiled for compat-
ible error modes. Where a library is used the module with the appropriate error
mode will be selected.

Compilation error modes and their effects are described in more detail in section
5.3 of the occam 2 Toolset User Guide.

1.6 Enable/Disable Error Detection

By default the compiler inserts code to execute run-time checks for errors it cannot
detect at compile time. In some circumstances it may be desirable to omit the run

72TDS 367 01 March 1993

1 oc - occam 2 compiler 9

time error checking in one part of a program, for example, in a time-critical section
of code, while retaining error checks in other parts of a program, for debugging
purposes. Three command line options are provided to enable the user to control
the degree of run-time error detection performed; they are the ‘X', ‘U’ and ‘N&’
options.

The compiler option "K' disables the run-time range checks for the module being
compiled. Range checking only includes checks on array subscripting and array
lengths.

The compiler option ‘U’ prevents the compiler from inserting any code to explicitly
perform run-time checks. This will disable run-time checks associated with type
conversion, shift operations, array access, range validation and replicated
constructs such as SEQ, PAR, IF, and ALT. Runtime checks implicit in the trans-
puter instructions are still performed, for example, add will automatically check for
arithmetic overflow.

Note: The ‘U’ option can be used to remove unnecessary runtime checks from
code which is fully debugged and known to be error-free. It is equivalent to
implementing the occam error mode UNDEFINED.

The ‘NA’ option prevents the compiler from inserting any code to check calls to
ASSERT. In effect, each ASSERT behaves like SKIP. Any calls to ASSERT which can
be evaluated at compile time will still be checked.

The effect of using these options is described in detail in section 5.3.2 of the
occam 2 Toolset User Guide.

1.7 Enabling/disabling warning messages

There are several command line options which allow the user to either enable or
disable the generation of certain warning messages produced by the compiler:

e The NWCA option disables the generation of warning messages when CHAN
OF ANY is used. CHAN OF ANY is now considered obsolete and replace-
ment with named protocols of type ANY is recommended. See section A.2.3
of the occam 2 Toolset User Guide.

e The NWGY option disables the generation of warning messages when the
GUY construct is used. GUY is now considered obsolete and AsM should be
used instead.

e The NWP option disables warning messages being generated when param-
eters to procedures are not used.

e The NWU option disables warning messages being generated when vari-
ables or routines are not used.

e The WALL option tums on all wamings which are controlled from the
command line i.e. it is currently equivalent to WD, WO and WQUAL.

727TDS 367 01 March 1993

10 1.8 Support for debugging

e The WD option provides a waming whenever a name is descoped, for
example when a name is used twice and one occurrence of it is hidden
within an inner procedure. See section 8 of the occam 2 Reference
Manual for details of occam scope rules.

¢ The WO option provides a waming whenever a run-time alias check is
generated i.e. to check that variables do not overlap. These checks
generate extra code and the user may wish to be alerted to this.

e The WQUAL option enables software quality wamings. Currently these
include a warning about incorrect positioning of PLACE statements and a
warmning about unused CASE options.

Section 1.13.1 lists the warning messages which are affected by these options.

1.8 Support for debugging

The occam 2 compiler supports interactive debugging with idebug by default.
When interactive debugging is enabled the compiler will generate calls to library
routines to perform channel input and output, rather than using the transputer’s
instructions.

Interactive debugging may be disabled using the compiler ‘Y’ option. This option
forces the compiler to use sequences of transputer instructions for channel input
and output, resulting in faster code execution. Note: This option also disables the
‘virtual routing’ facilities of the configurer.

Code which has interactive debugging disabled may call code which has interac-
tive debugging enabled, but not vice versa. However, when interactive debugging
is disabled in one part of the program this will prevent the interactive features of
the debugger being used on the program as a whole.

The compiler ‘D’ option disables the generation of full debugging data. Minimal
debugging data remains to allow the debugger to backtrace through the code. This
option enables library code to be created without the overhead of debugging data.

1.9 Separately compiled units and libraries

Any group of one or more occam procedures and/or functions may be compiled
separately provided they are completely self-contained and make no external
references except via their parameters or compiler directives. Separate compila-
tion is used to reduce the need for recompilation, and to split compilations into
smaller parts. Separately compiled code is known as a compilation unit.

Any collection of compilation units may be made into a library using the librarian
ilibr (see chapter 8). Libraries and compilation units differ in the following way:

o Libraries are selectively loaded as required by the transputer type and error
mode of the compilation, whereas separately compiled units are always
loaded. If a unit containing incompatible code is used an erroris generated,
whereas libraries containing incompatible code are ignored.

72TDS 367 01 March 1993

1 oc - occam 2 compiler 11

All separate compilation units and libraries must be compiled before the program
that references them is itself compiled. An easy way to ensure this is to use the
toolset Makefile generator imakef with a suitable Make utility. For more details
see Chapter 11.

1.10 Code insertion using ASM

Two compiler options are provided to enable the compiler to recognize transputer
instructions inserted into source code using the ASM construct. The ‘G’ option
permits use of a limited range of sequential instructions whereas the ‘W’ option
permits use of the full range of transputer instructions. For further details see
Appendix D of the User Guide. Transputer instructions are listed in Appendix C of
the User Guide.

1.11 Memory map

The compiler may be instructed, via the P mapfile option, to produce a map of work-
space for each function defined in the file. The file contains information which may
assist the user during program debugging. The map is written to the file mapfile.

The file consists of a series of workspace maps, one for each routine, giving details
of workspace requirements. These are followed by a section map listing details of
procedures and functions.

/’ﬁap of code and data for source file simple.occ —\\

Created by occam 2 compiler Beta Vn 2.01.79 (19:33:49 Oct 20 1992) (SunOS-S
und)

Target processor : T4
Error mode : HALT

Map of workspace

Routine : simple

Variable name Offset (words)
$anon0 4
length 5
result 6
buffer 10
Formal parameter name Offset (words)
fs 8
ts 9
memory 10
<hidden_dimension> 11
<vectorspace_pointer> 12

Workspace size = 53 words, Vectorspace size = 128 words

Section map

Section name : text%base : size = 164 bytes
Name Type Offset (bytes)

\\‘simple code 3 ‘//

Figure 1.1 Example compiler map

72 TDS 367 01 March 1993

12 1.12 Compiler directives

The file is generated in text format. The following information is present:

® The name of the source file for which the map of code and data is being
produced. The full pathname will be given if it exists.

¢ Version data for the compiler.

® The target transputer of the compilation, T805, T400, etc.

® The error mode of the compilation.

® Name of the routine for which the map of workspace is being produced. ltems

in the workspace map are given in ascending order of workspace offset.

* List of local variables giving their offset (in words) into the routine’s work-
space. This list may include temporary variables introduced by the
compiler.

» List of formal parameters giving their name and offset (in words) into the
routine’s workspace. Parameters added by the compiler may also be
listed, see Table 1.2.

» The workspace and vector space requirements of the routine in words.
This includes the requirements of all nested calls but not the four word
overhead introduced by the transputer call instruction.

® Name of the section for which the section map is being produced. Items in
the section map are given in ascending order of section offset.

Details of how the compiler allocates space for variables are given in section B.1
of the Language and Libraries Reference Manual.

Formal parameter
hidden dimension
vectorspace pointer
static link

Table 1.2 Parameters inserted by compiler

Note: The message “No local variables” may be displayed if no user vari-
ables are found, however, compiler temporaries may have been assigned to work-
space. In addition some compiler temporaries may not be listed in the map file.

Information generated in the compiler map file may be extracted by the imap tool.
This tool can be used to produce a memory map for the program after it has been
compiled, linked and collected. See chapter 12.

1.12 Compiler directives

The occam compiler supports a number of directives that allow the programmer
to customize a compilation. All are extensions to the language. If the compiler ‘T’
option is used directives are displayed on the screen as the compilation proceeds.

72 TDS 367 01 March 1993

1 oc - 0ccam 2 compiler 13

Directives supported are:

#INCLUDE - inserts OCCam source code

#USE — references separately compiled units and libraries
#IMPORT = references non-occam compiled code

#COMMENT - inserts comments in object code

#OPTION — allows selection of compiler options from within source text
#PRAGMA — miscellaneous extensions, including support for the import of

other languages, code placement in RAM, and disablement
of checks on specific variables.

1.12.1 Syntax of compiler directives

Filenames referred to in compiler directives must be enclesed in double quotes ().
Files are located according to the search strategy defined in section A.4 of the
Tools Reference Manual.

If double quotes are to be used within a directive, the double quote character must
be preceded by an asterisk (*).

The scope of directives are defined, like declarations of constants and protocols,
by the level of indentation in the occam source.

When imakef is used, if a filename in a $USE, # INCLUDE or #IMPORT directive
does not already have an extension then imakef£ will add the appropriate exten-
sion depending upon the target that it is attempting to build. If you use the Makefile
generator tool imakef you must use the extensions described in sections 11.3 and
A.6 of the Tools Reference Manual

1.12.2 #INCLUDE

The #INCLUDE directive inserts the contents of a named file at the point in the
program source where the directive occurs, with the same indentation as the direc-
tive.

#INCLUDE files can be used by any number of programs, including separately
compiled units, and are commonly used to share common declarations of
constants and protocols between several programs.

To track file dependencies within included files use of the imakef tool is recom-
mended.

The syntax of the #INCLUDE directive is as follows:
#INCLUDE "filename” [commen(]

where: filename is the name of the file to be included. The extension must be
supplied.

comment is any text preceded by the characters ‘=,

72 TDS 367 01 March 1993

14 1.12 Compiler directives

The first text after the directive must be the filename enclosed within double quotes
(7). All other text on the line is ignored and may be used for comments. For
example:

#INCLUDE “header.inc”
Included files may be nested to any depth.

1.12.3 #USE

The #USE directive allows separately compiled occam units and libraries (in
TCOFF format) to be referenced from occam source. The file referenced by the
#USE directive must be compiled for a compatible processor type and compilation
mode as the main program, and should be made available in all modes for which
the program will be compiled.

The compiler ignores all library modules compiled with a processor type or
compilation mode incompatible with the current compilation. A library may be used
in any number of separately compiled units or other libraries, provided that each
unit contains the #USE directive.

Any names in the library which do not conform to occam syntax, and which have
not been translated by means of a TRANSLATE pragma will be ignored. Note: this
means that a TRANSLATE pragma must precede its related #USE directive. See
section 1.12.7.

The syntax of the $USE directive is as follows:
#USE “filename” [comment]

where: filename is the name of the object code file. The object file can be a
compiled (. teo) or library (.1ib) file. If you omit the file extension, the
compiler adds the extension of the output file. This will be . teo unless you
specified an output filename using the ‘0’ option.

comment is any text preceded by the characters '—-’.

The firsttext after the #USE directive must be the filename, which must be enclosed
within double quotes (”). All other text on the line is ignored and may be used for
comments. For example:

#$USE “module”

#USE “library.lib”
#USE "module.tco”
#USE "module.t2h”

1.12.4 #IMPORT

The #IMPORT directive allows code produced by compatible non-occam
compilers to be referenced from occam programs. It operates in the same way

72 TDS 367 01 March 1993

1 oc - occam 2 compiler 15

as #USE except that the code that is imported is marked as ‘foreign’ and not
included in makefile searches.

Note: The code imported by # IMPORT must be compatible with the current toolset
linker ilink.

The syntax of the #IMPORT directive is as follows:
#IMPORT “filename” [comment]

where: filename is the name of the compiled equivalent occam process. If no
extension is given the . tco extension is assumed.

comment is any text preceded by the characters ‘—-".

The first text after the #IMPORT directive must be the file name, which must be
enclosed within double quotes (). All other text on the line is ignored and may be
used for comments.

An example of how to use the #IMPORT directive is given below:

#IMPORT “centry.lib” -- C interface code

PROC.ENTRY (fs, ts, flag, wsl, ws2, in, out)
— call C language program

The parameters supplied in the program call, £lag, wsl, ws2, in, and out are
those of the type 2 procedural interface. The program must be linked with C
libraries centry.1lib and 1libe.1ib. Details of this method of mixed language
programming can be found in section 11.2 of the User Guide.

Details of an alternative method of mixed language programming where non-
occam programs are called directly using library functions can also be found in
Chapter 11 of the User Guide.

1.12.5 #COMMENT

The $COMMENT directive allows comments to be placed in the object code. These
comments can be read by the binary lister tool ilist.

The syntax of the #COMMENT directive is as follows:
#COMMENT ”string” [comment]

where: siring is the text of the comment. Comments must be enclosed in double
quotes following the #COMMENT directive. Comments cannot be split over
more than one line.

72 TDS 367 01 March 1983

16 1.12 Compiler directives

Comments may not appear at the exact position in the object code corresponding
with the source code directive, but the sequence of comments in the file is always
maintained. Comments included by #COMMENT are stripped from the object code
when it is linked or made bootable.

The main use for the #COMMENT directive is in libraries or other pre-compiled code
where it can be used to indicate a version number, record dependencies on other
libraries, and hold copyright information. The comment strings can then be
displayed using ilist.

An example of how to use the #COMMENT directive is given below:
PROC my.lib ()

#COMMENT "My library V1.3, 18 May 1988"
#COMMENT “Copyright me 1988”

SEQ
. library source

#COMMENT acts like # PRAGMA COMMENT. For example:
#COMMENT ”string”

is equivalent to:
#PRAGMA COMMENT “string”

See also section 1.12.7.

1.12.6 #OPTION

The #OPTION directive allows you to specify certain command line options within
the source text of a compilation unit, so that they apply only to that unit. Options
specified in this way are simply added to the command line when the compiler is
invoked.

Arguments to #OPTION are those that relate directly to the source, namely:

A —disable alias (and usage) checking.

E — disable the compiler libraries.

G — allow sequential code inserts (via the ASM construct).
K - disable the insertion of run-time range checks.

N —disable usage checking.

U —disable the insertion of any run-time error checks.

V — disable separate vector space usage.

W — enable full code inserts, (via the ASM construct).

Y — disable interactive debugging.

Specifying any other option produces an error. Descriptions of the arguments can
be found in Table 1.1.

72TDS 367 01 March 1993

1 oc - occam 2 compiler ‘ 17

#OPTION directives can only appear in the file to which they apply; they cannot be
nested in an included file. #0PTION directives must also be the first non-blank or
non-comment text in the source file. If they are found at any other position in the
file an error is reported.

The syntax of the #0PTION directive is as follows:
#OPTION ”optionname {optionname}” [comment]

where: optionname is any option permitted in a #OPTION directive. Spaces within
the double quotes are ignored. No option prefix character is required in the
syntax and none should be specified.

comment is any text preceded by the characters ‘—-'.

The first text after the #0PTION directive must be the list of options enclosed in
double quotes. All other text on the line is ignored and may be used for comments.

An example of how to use the #OPTION directive is given below. In the example
the unit does not require usage checking but contains transputer code inserts from
the restricted set.

-— This compilation unit requires sequential
—— code inserts and does not pass the usage check.

#OPTION "G N”

PROC x ()
body of procedure

The #OPTION directive should only be used for compiler options that are always
required for a specific compilation.

UNDEFINED error mode
#OPTION ”“U” can be used to implement the occam error mode UNDEFINED.

1.12.7 §PRAGMA

The #PRAGMA directive is provided to reference segments of code for mixed
language compilations and/or linking functions:

#PRAGMA pragma-name {optional values} [comment]

where: pragma-name may be one of:

COMMENT
EXTERNAL
LINKAGE
PERMITALIASES
SHARED
TRANSLATE

72TDS 367 01 March 1993

18 1.12 Compiler directives

optional values may be specified for each type of pragma. The values that
the options may take are specific to the pragma being used; they are
described below.

comment is any text preceded by the characters ‘--". All pragma types may
have a comment appended to them.

#PRAGMA COMMENT ”sfring” [comment]

#PRAGMA COMMENT allows comments to be placed in the object code. These
comments can be read by the binary lister tool i1ist. In all respects #PRAGMA
COMMENT acts like #COMMENT (see section 1.12.5).

#PRAGMA EXTERNAL “declaration” [comment]

This directive allows access to other language compilations. declaration is a PROC
or FUNCTION declaration, with formal parameters which comespond to the
required calling convention. This is followed (within the string) by two numbers in
decimal, indicating the number of workspace slots (words) and optionally the
number of vectorspace slots to reserve for that call. The number of vectorspace
slots defaults to 0. The number of the workspace slots should not include those
needed fo set up the parameters for the call. Note: that if the vectorspace require-
ment is zero, then no vectorspace pointer parameter will be passed to the routine.

It is important to ensure that enough space is allocated, both for workspace and
vectorspace, because the compiler cannot check for overruns.

The syntax of the declaration is as follows:

formal procedure or function declaration = workspace [, vectorspace]

Examples:
#PRAGMA EXTERNAL “PROC pl (VAL INT x, y) = 207
#PRAGMA EXTERNAL ”PROC p2 (VAL INT x, y) = 20, 100~

#PRAGMA EXTERNAL ”INT FUNCTION f1 (VAL INT x, y) = 507
#PRAGMA EXTERNAL ”INT FUNCTION £2 (VAL INT x, y) = 50, 0”

The procedure or function name is the name by which the external routine is
accessed from the 0ccam source. It is also the name which will be used by the
linker to access the external language function, though this may be modified by use
of the TRANSLATE pragma.

#PRAGMA LINKAGE ["section-name”] [comment]

This pragma enables the user to identify modules that he wishes to be placed in
on-chip RAM. The user may then prioritize the order in which these modules are
linked together by using a linker directive. On-chip RAM is allocated to workspace
first and then to code. Provided there is enough RAM available it should be
possible for commonly used subroutines to be processed in the on-chip RAM. This
should make the program run faster.

72 TDS 367 01 March 1993

1 oc - 0ccam 2 compiler 19

Normally the compiler creates the object code in a section named “text%base”.
The #PRAGMA LINKAGE directive causes the compiler to change the name of the
section to that supplied in the string. If the directive is used but no section name
is provided by the user, the compiler supplies the priority section name
“pristexttbase”. More than one module may take the section name
“prigtextibase”.

A linker directive is used to change the order in which code modules are linked
together, by supplying a list of prioritized section-names, see section 9.4.6.
Provided that the linker does not encounter any linker directives listing section-
names, it will place “pri%text%base” modules first. Any unnamed modules are
added in an undefined order at the end of the linked unit.

Note: floating point routines such as REAL.320P and REAL320PERR are automati-
cally optimized by the compiler by placing them in a “pri%texttbase” section.

The $PRAGMA LINKAGE directive should appear at the start of the source code,
immediately following the #OPTION directive, if one is present.

For example:

#OPTION "N”
#PRAGMA LINKAGE “PRIORITY1” - highest priority

#PRAGMA PERMITALIASES variable.list [comment]

This pragma disables alias checking for specified variables. It may be applied to
normal variables, abbreviations and RETYPES, or non-VAL formal parameters.

See Appendix C in the Language and Libraries Reference Manualfor a description
of alias checking.

This pragma mustimmediately follow the declaration of the variable it refers to, e.g.

int x, y;, z :
PRAGMA PERMITALIASES x

PRAGMA PERMITALIASES y is correct
int x

int y :

PRAGMA PERMITALIASES X is incorrect

#PRAGMA SHAREL variable.list [comment]

This pragma disables usage checking for specified variables. It may be applied to
normal variables, abbreviations and RETYPES, or non-VAL formal parameters.

See Appendix C in the Language and Libraries Reference Manualfor a description
of usage checking.

This pragma must immediately follow the declaration of the variable it refers to, in
the same manner as the pragma PERMITALIASES, see above.

72 TDS 367 01 March 1993

20 1.13 Error messages_

#PRAGMA TRANSLATE identifier “string” [comment]

This is used to enable linkage with routines whose entry point names do not corre-
spond to occam syntax for identifier names; both imported names to be called by
this compilation unit and exported names defined in this compilation unit. An entry
point is a name which is visible to the linker. Thus procedures and functions
declared at the outermost level of a compilation unit are entry points, whereas
nested procedures and functions are not.

Any entry point defined in the compilation unit whose name matches identifier is
translated to string when inserted into the object file, and hence can only be refer-
enced as sfring when linking. Sfring may not contain the NUL character (“*#00’).

Any entry points in #USEd libraries and other compilation units whose names
match string can be referred to within the compilation unit as identifier, This also
applies to identifiers defined by EXTERNAL pragmas. TRANSLATE pragmas must
precede any reference to their identifier.

For example:

#PRAGMA TRANSLATE c.routine “c_routine”
#PRAGMA EXTERNAL “PROC c.routine () = 100"

1.13 Error messages

All messages produced by the compiler are in the standard toolset format. Details
of the format can be found in section A.7. Messages are generated at severity
levels Information, Warning, Error, and Fatal. No messages are generated at
severity level Serious.

No object files are generated if an error occurs.

Notes

1 The compiler libraries are automatically loaded if required, unless the
compiler 'E’ option is used.

2 The compiler finds the compiler libraries by searching the path specified by
the host environment variable ISEARCH. The most common cause of a
compiler library error is failure to set up this logical name correctly.

The error messages listed here are those which are produced by incorrect use of
the compiler, caused for instance by failing to specify command line options
correctly. The compiler also reports all syntax and semantic errors found in the
program; these messages are not listed here as they are language specific and
therefore outside the scope of this document.

1.13.1 Warnings

Badly formed #PRAGMA name directive

The pragma directive does not conform to the required syntax.

727TDS 367 01 March 1993

1 oc - occam 2 compiler 21

CHAN OF ANY is obsolete: use PROTOCOL name IS ANY

The CHAN OF ANY construct is now considered obsolete. The ability to
define a named protocol as in PROTOCOL name IS ANY provides greater
security and should be used in preference. This warning may be disabled
by means of the NWCA command line switch.

GUY construct is obsolete: use ASM instead

The GUY construct is obsolete; the ASM construct provides greater security
and should be used in preference. This warmning message may be disabled
by means of the NWGY command line switch.

name is not used

The named variable is never used. This warning may be disabled by the
NwU command line option.

Name name descopes a previous declaration

This name descopes another name which has already been declared. This
warning is only enabled when the WD command line option is used.

No compatible entrypoints found in name

The named library contains no routines which may be called from this error
mode and/or processor type.

Obsolete channel type conversion: use channel RETYPE

The ability to pass a CHAN OF ANY as an actual parameter to a procedure
whose formal parameter is a different channel type is obsolete. A channel
RETYPE should be inserted before the call to make the type conversion
explicit. This warning may be disabled by means of the NWCA command line
switch.

Parameter name is not used

The named parameter is never used. This waming may be disabled by the
NWP command line option.

Placement expression for name clashes with virtual routing system

The named variable is placed on one of the transputer links. This may inter-
fere with the INMOS interactive debugging system or the virtual routing
system. .

Placement expression for name wraps around memory

The calculation of the machine address for this variable has overflowed,;
the truncated address is used.

72TDS 367 01 March 1993

22 1.13 Error messages

PLACEment must immediately follow declaration of name

There should be no other variable declarations between a variable's own
declaration and any modifying PLACE statement. This warning is enabled
for PLACE statements by the WQUAL command line switch.

Possible side-effect: PLACED variable name

A PLACEd variable has been declared inside a VALOF. The compiler cannot
ensure that this cannot cause a side-effect.

Possible side—effect: instanced PROC has PLACED variable name

A PLACEd variable has been declared inside a PROC which is called from
within a VALOF. The compiler cannot ensure that this cannot cause a side-
effect.

PORT name must be placed

A PORT type must be placed using an allocation. See the occam 2 Refer-
ence Manual for further details.

Routine name is not used

The named routine was never called. This warning may be disabled by the
NWU command line option.

Run-time disjointness check inserted

number Run-time disjointness check inserted
The compiler has inserted run-time checks to ensure that variables are not
aliased (i.e. that they do not overlap). This wamning is only enabled when
the WO command line option is used.

TRANSLATE ignored: Module containing name has already been loaded

The #TRANSLATE pragma must precede any #USE of a library containing
that string.

TRANSLATE ignored: Name name has already been used
You may not specify multiple translation strings for the same name.
TRANSLATE ignored: String contains NUL character

The specified string for a #TRANSLATE pragma may not include a NUL
(zero) byte.

TRANSLATE ignored: String name has already been used

You may not specify multiple names to be translated to the same string.

72TDS 367 01 March 1993

1 oc - 0ccam 2 compiler 23

Unknown #PRAGMA hame: name
The pragma name is ignored.

Using length ‘name’ in array part of counted array input is obsolete
The language no longer permits using the length part of a counted array
input to appear in the array part. it does however allow the following special
case to be written where the length only appears as the length of a slice:

channel.exp ? name :: [array.exp FROM 0 FOR name]

This is transformed by the compiler into the equivalent construct:

channel.exp ? name :: amay.exp

The former construct is obsolescent and programs should be re-written to
use the latter form.

Workspace clashes with variable PLACED AT WORKSPACE number
A variable has been placed at the workspace address number, and this
clashes either with another placed variable, or with the compiler’s work-
space allocation requirements.

1.13.2 Errors

Bad object file format
Library or separately compiled procedure object code is not in the correct
format. The code may not have been linked correctly, or the file may have
become comrupted.

Badly formed compiler directive
A compiler directive following # was not recognized.

Badly formed #EXTERNAL directive
The number of workspace slots to reserve for the call has not been speci-
fied or negative workspace or vector space slots have been specified in
error.

Cannot open file "string”
File is missing, or file system error.

Cannot open output file

The object file could not be opened. File system error.

72 TDS 367 01 March 1993

24 1.13 Error messages

Cannot open output file (string)

The file given as parameter to the command line R option could not be
opened.

Cannot open source file

The source file cannot be opened. Either it does not exist, or there is a file
system error.

Code buffer full (nnn bytes); use command line to increase buffer size
The compiler has an internal buffer for code which is about to be placed into
the object file; this has overflowed. The CODE command line option may be
used to increase the size of this buffer.
Code insertion is not enabled
You must use the G or W options to enable assembler inserts.
Descriptor has incorrect format
Library or separately compiled procedure object code is not in the correct
format. The code may not have been linked correctly, or the file may have
become corrupted.
Duplicate error modes on command line
Multiple error modes may not be specified for the compilation.
Duplicate processor types on command line
Multiple processor types may not be specified for the compilation.
Expected string after #COMMENT
#COMMENT directive must be followed by a string containing the comment.
Expected string after #OPTION
#OPTION directive must be followed by a string containing the options .
‘Filename’ is not a valid object file
Library or separately compiled unit object code is not in the correct format.
The code may not have been linked correctly, or the file may have become
corrupted.

Instruction is not available in current code insertion mode

You must set the W option in order to use this instruction.

72TDS 367 01 March 1993

1 oc - 0ccam 2 compiler 25

Instruction is not available on target processor

The given instruction is not present in the target instruction set.
Invalid command line option (string)

The user specified an unrecognized command line option.
Missing filename

Filename is missing on #USE, #INCLUDE or #IMPORT directive.
Missing object file name

There is no object file name parameter to the command line © option.
Missing output file name

There is no output file name parameter to the command line R option.
No filename given

No source file was specified on the command line.
number reading source file

File system error. The source file or an include file could not be read.
number is the host file system error number.

number writing to object file

File system error. The object file could not be written to. numberis the host
file system error number.

Option in illegal position

Only one #OPTION directive is allowed in a file, and it must be on the first
non-blank or non-comment line in a file.

PRAGMA must immediately follow declaration of name

There should be no other variable declarations between a variable’s own
declaration and any modifying # PRAGMA.

Run out of symbol space
The source compilation unit is too large to be compiled.
Unrecognised option "char” in option string

Incorrect compiler options specified after a #OPTION directive.

72 TDS 367 01 March 1993

26 1.13 Error messages

72 TDS 367 01 March 1993

2 occonf—0CCam
configurer

This chapter describes the configurer tool occont that configures code for trans-
puter networks. It describes the command line syntax and explains how the tool
is used to generate a configuration data file for input to the code collector tool. The
chapter ends with a list of error messages.

2.1 Introduction

The configurer takes a configuration description created using the transputer
configuration language and produces a configuration data file which icollect
uses to generate bootable code for a transputer network. The bootable code may
be generated in a specific error mode.

A configuration description describes how code is to be run on a network of trans-
puters. It consists of separate definitions of the software and hardware networks,
and a mapping description which defines how the software will be placed on the
processor network. Using this description the configurer allocates code to partic-
ular processors and performs wide ranging consistency checks on the mapping
of software to hardware. Chapter 6 in the User Guide explains how to write a
configuration description.

Linked modules and libraries which are referred to by a configuration description
must be already compiled and linked before any file which references them can
itself be configured.

The operation of the configurer tool is illustrated below. Files are represented in
terms of their standard toolset file extensions.

< inc;

. —

v clu !

occonf produces two output files:
« the main configuration data file (. c£b) for the collector

» afile (.clu) containing executable code packets, used by the collector.

72 TDS 367 01 March 1993

28 2.2 Running the configurer

2.2 Running the configurer

To run the configurer use the following command line:

> occonf filename {opfions}

where: filename is the configuration description file. If no file extension is specified,
the extension .pgm is assumed. Only one file may be specified.

options is a list of one or more options from Table 2.1.

Options must be preceded by ‘- for UNIX-based toolsets and ‘/' for
MS-DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be given in any
order.

Options must be separated by spaces.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

Examples of use:

UNIX based toolsets:

oc simple

ilink simple.tco hostio.lib -f occama.lnk
occonf simple.pgm

icollect simple.cfb

iserver -sb simple.btl -ge

MS-DOS and VMS based toolsets:

oc simple

ilink simple.tco hostio.lib /f occama.lnk
occonf simple.pgm

icollect simple.cfb

iserver /sb simple.btl /se

72 TDS 367 01 March 1993

2 occonf - occam configurer

29

Option Description

B Displays messages in brief (single line) format.

c Disables the generation of object code. The configurer performs
syntax, semantic, alias and usage checking only.

CODE nnn |Specifies how large to make the code buffer. If not specified, the
configurer will allocate 40 Kbytes. nnnis a valuein Kbytes i.e. the
‘K’ suffix is not required.

G Enables the configurer o recognize the restricted range of trans-
puter instructions, via the ASM construct. See section 2.10 and
Appendix C in the User Guide.

GA Generates a configuration which can be debugged using the
INQUEST debugger. This option is incompatible with the R, RO,
NV, Y, PRE and PRU options.

H Produces code in HALT error mode. This is the default configura-
tion mode and may be omitted for HALT error mode programs.
See section 2.4.

I Displays extra information as the tool runs. This information
includes target and error mode, and information about directives
as they are processed. The default is not to display this informa-
tion.

K Disables run-time range checking. The default is to insert run-
time range checking. See section 2.5.

NA Disables the insertion of run-time checks for calls to ASSERT.
See section 2.5.

NV Disables the ‘virtual routing’ capabilities. If this option is speci-
fied, then processors may only communicate with adjacent
processors, and no more than 1 channel in either direction may
use any transputer link. See section 2.7.

NWCA Disables warnings when CHAN OF ANY is used. See section
2.8.

NWGY Disables warnings when the obsolete construct GUY is used. See
section 2.8.

NWP Do not wam if declared parameters are not used.

NWU Do not wam if declared variables or routines are not used.

O outputfile |Specifies an output filename. If no output file is specified the
configurer uses the input filename and adds the extension . c£b.

PRE Generates a configuration which can be profiled using the
INQUEST network execution profiler. Note: This option cannot
be used with the GA, RA, RO or PRU options.

PRU Generates a configuration which can be profiled using the
INQUEST network utilization profiler. Note: This option cannot
be used with the GA, RA, RO or PRE options.

R filename |Redirects error and information messages to a file.
72 TDS 367 01 March 1993

30 2.3 Boot-from-ROM options

RA Creates a file suitable for a boot-from-ROM application in which
the code and data are both loaded into RAM. Interactive debug-
ging must be disabled using the Y option.

RE Enables re-ordering of code and data layout in memory, using
the order.code, order.vs and order.ws atiributes.

Also enables the location. code, location.ws, and loca-
tion.ws atiributes. See section 2.6. This option disables the
ability to use idebug but not the INQUEST debugger.

RO Creates a file suitable for a boot-from-ROM application in which
the code is loaded into ROM and the data is loaded into RAM.
Interactive debugging must be disabled using the Y option.

S Produces code in STOP error mode. See section 2.4.

U Disables the insertion of all extra run-time error checking. The
default is to insert run-time error checks. This is a ‘stronger’
option than K, and can be used to implement the occam UNDE-
FINED error mode. See section 2.5.

v Prevents the configurer from producing code which has a sepa-
rate vector space requirement. The default is to produce code
which does use separate vector space.

W Enables the configurer to recognize the full range of transputer
instructions, via the ASM construct. See section 2.10 and
Appendix C in the User Guide.

WALL Enable all warnings. See section 2.8.
WD Provides a waming whenever a name is descoped.
WO Ptro;ides a warning whenever a run-time alias check is gener-
ated.
WQUAL Enables software quality warnings, see section 2.8.
X Produces code in UNIVERSAL error mode. See section 2.4.
Y Disables interactive debugging with idebug. See section 2.9.

Table 2.1 occonf command line options

2.21 Search paths

If a directory path is not specified the configurer uses the standard toolset search
mechanism for locating input files, include files, and system library files. Briefly, the
current directory is searched first, followed by the directories specified by
ISEARCH (if defined on the system). For details see section A 4.

2.3 Boot-from-ROM options

The boot-from-ROM options ‘RO’ and ‘RA’ indicate that the program is to be
collected for loading into EPROM and select the execution mode (from ROM or
RAM) for the root transputer code. Interactive debugging must be disabled.

72 TDS 367 01 March 1993

2 occonf - occam configurer 31

2.4 Configuration error modes

The configuration error mode determines the behavior of a program if it fails during
execution. The execution behavior of programs configured in the different modes
is as follows:

HALT An error halts the transputer immediately.
STOP An error stops the process and causes graceful degradation.

UNIVERSAL |Code configured in this mode behave as either HALT or STOP
mode, according to the state of the transputer’s HalfOnError
flag.

The error mode selected for the configuration must be compatible with the error
mode of the compiled units, referenced by the configuration source. The confi-
gurer will produce an error message, if this is not the case.

Table 2.2 indicates the compilation error modes which are compatible and the
possible error mode they may be configured for.

Compatible compilation error modes occonf options
HALT, UNIVERSAL H
STOP, UNIVERSAL s
UNIVERSAL X

Table 2.2 occonf error modes

Compilation error modes and their effects are described in more detail in section
5.3.1. Note: that occam UNDEFINED mode can be achieved by using the confi-
gurer ‘U’ option, to disable the insertion of run-time checks. This option behaves
in the same way as the ‘U’ option to the occam compiler, which is documented in
section 5.3.2 of the User Guide.

2.5 Enable/Disable Error Detection

By default the configurer inserts code to execute run-time checks for errors it
cannot detect during configuration. In some circumstances it may be desirable to
omit the run-time error checking in one part of a program, for example, in a time-
critical section of code, while retaining error checks in other parts of a program, for
debugging purposes. Three command line options are provided to enable the user
to control the degree of run-time error detection performed; they are the 'K’, ‘U’ and
‘N2’ options.

The ‘K’ option disables the insertion of run-time range checks on array subscripting
and array lengths.

The ‘U’ option prevents the configurer from inserting any code to explicitly perform
run-time checks. This option will disable run-time checks associated with type

72TDS 367 01 March 1993

32 2.6 Enabling memory re-ordering and placement

conversion, shift operations, array access, range validation and replicated
constructs such as SEQ, PAR, IF, and ALT.

The ‘NA’ option prevents the configurer from inserting any code to check calls to
ASSERT. In effect, each ASSERT behaves like SKIP. Any calls to ASSERT which can
be evaluated during configuration will still be checked.

Note: that some checks are still performed; some transputer instructions implicitly
check for erroneous conditions.

The K, U and NA options behave in exactly the same way, as the same options
provided for the occam compiler. The effects of using these options are described
in section 5.3.2 of the User Guide.

2.6 Enabling memory re-ordering and placement

The ‘RE’ option enables the user to have more control of the layout of code and
data areas in memory. When this option is used, the special processor atiributes
‘order.code’, ‘order.vs'and ‘order.ws’ which indicate the relative priority of
different data areas, and the placement attributes location.code, loca-
tion.ws, and location.vs, are enabled. See sections 6.5.5 and 6.5.7 in the
User Guide for more details.

Note: use of this option means that idebug cannot be used, neither in interactive
mode nor in postmortem mode.

2.7 Disabling virtual routing

The virtual routing facilities of the configurer are normally enabled, that is, the
configurer automatically adds virtual routing and multiplexing processes if they are
required by the configuration, and any explicit placements are ignored.

If virtual routing is not required the virtual router can be disabled by using the ‘NV’'
command line option. In the absence of explicitly supplied multiplexing processes,
the normal limit of two channels per link (one in each direction) and a maximum
of 4 links applies. If these limits are exceeded and no multiplexing is provided the
configuration will not compile. Note: the use of the ‘NV’ option also has an effect
on the value of LoadStart, see section 2.12.1.

Note: The "NV’ option can be used to reproduce the channel behavior of the
D7205/D5205/D6205 occam 2 toolsets, if this is required.

Note: if any part of the program has been compiled with interactive debugging
disabled this will also disable the use of virtual routing.
2.8 Enabling/disabling warning messages

There are several command line options which allow the user to either enable or
disable the generation of certain warning messages by the configurer:

727TDS 367 01 March 1983

2 occonf - occam configurer 33

» The NWCA option disables the generation of waming messages when CHAN
OF ANY is used. CHAN OF ANY is now considered obsolete and replace-
ment with named protocols of type ANY is recommended. See section
A.2.3 of the occam 2 Toolset Language and Libraries Reference Manual.

* The NWGY option disables the generation of warning meSsages when the -
GUY construct is used. GUY is now considered obsolete and ASM should be
used instead.

» The NWP option disables warning messages being generated when param-
eters to procedures are declared and not used.

« The NWU option disables warning messages being generated when vari-
ables or routines are not used.

e The WALL option turns on all warnings i.e. it is currently equivalent to WD,
WO and WQUAL.

* The WD option provides a waming whenever a name is descoped, for
example when a name is used twice and one occurrence of it is hidden
within an inner procedure. See section 8 of the occam 2 Reference
Manual for details of occam scope rules.

+ The WO option provides a waming whenever a run-time alias check is
generated i.e. to check that variables do not overlap. These checks
generate extra code and the user may wish to be alerted to this.

o The WQUAL opfion enables software quality wamings Currently these
include wamings for unused options in CASE inputs and warnings about
badly positioned PLACE statements.

Section 2.13.1 lists the various waming messages which are affected by these
options.

2.9 Support for interactive debugging

Interactive debugging with idebug is supported by default. When interactive
debugging is enabled the configurer will generate calls to library routines to
perform channel input and output, rather than using the transputer’s instructions.
Interactive debugging must be enabled in order fo use the interactive features of
the debugger.

Note: when interactive debugging and virtual routing are both enabled, the direct
placement of channels on inter-processor links is ignored by the configurer. See
section 6.5.2 of the occam 2 Toolset User Guide for more details.

Interactive debugging may be disabled by using the configurer ‘Y’ option. If this
option is used in conjunction with the ‘NV’ option the configurer is forced to use
sequences of fransputer instructions for channel input and output, resulting in
faster code execution.

72 TDS 367 01 March 1993

34 2.10 ASM code

Code which has interactive debugging disabled may call code which has interac-
tive debugging enabled, but not vice versa. However, when interactive debugging
is disabled in one part of the program this will prevent the interactive features of
the debugger being used on the program as a whole and will also prevent the use
of virtual routing (see section 2.7).

2.10 ASMcode

Two configurer options are provided to enable the configurer to recognize trans-
puter instructions, via the ASM construct (see Appendix D of the User Guide).

The ‘W option enables the full range of transputer instructions, as listed in
Appendix C of the User Guide. The ‘G’ option enables the use of a limited range
of sequential instructions, as listed in section C.8 of the same appendix. Examples
of the use of transputer code insertion can be found in Chapter 13 of the User
Guide.

The transputer instruction set is documented in full in the Transputer Instruction
Set— A compiler Writer's Guide.

2.11 Support for INQUEST

The Ga, PRE and PRU command line options support the use of the INMOS
INQUEST debugging and profiler tools.

212 Default memory map

By default the configurer maps code into memory into the same order as the
compiler i.e. beginning at LoadStart: workspace; code; separate vector space.
The memory segments are contiguous. The upper limit of the memory available
to the configurer is defined in the configuration description file (. pgm file), by the
memsize attribute specified for the processor node. The default memory map is
illustrated in Figure 2.1.

72 TDS 367 01 March 1993

2 occonf - occam configurer 35

Higher add,ress
Free memory
Vector space
Code
¥
Lower address | workspace
MemStart—

Figure 2.1 occonf default memory map

The first 2 or 4 Kbytes of memory above MOSTNEG INT isimplemented as on-chip
RAM, and includes a few words which are reserved by the transputer hardware
for the implementation of links and other hardware registers. LoadStart is either
just above or coincident with MemStart, see below. Free memory is unused
memory, not available to the program.

2121 LoadStart

The position of LoadStart for a processor varies depending on the use of occonf
command line options and the reserved processor attribute, optionally specified
within a configuration description.

When the reserved processor attribute is specified, LoadStart is defined to be
the memory location obtained by adding the value of reserved to MOSTNEG INT.

When the reserved processor attribute is not specified, LoadStart is coincident
with or just above MemStart:

» LoadStart=(MOSTNEG INT +40 words) when no command line options
are used i.e. virtual routing support is enabled.

o LoadStart = (MemStart + 6 words) when the ‘NV' command line option is
specified, disabling virtual routing, but debugging or profiling is enabled
either for idebug or the INQUEST product.

o LoadStart=MemStart when the ‘NV' command line option is specified but
neither idebug or the INQUEST debugger or profiler are used.

The value of LoadStart can be checked once the application has been collected,
by generating and examining the collector map file.

2.13 Configurer diagnostics

Ifthe source code does not conform to the occam 2 configuration language defini-
tion, then the configurer will issue diagnostics, in the form of error messages,

72TDS 367 01 March 1993

36 2.13 Configurer diagnostics

during the compilation process. When this occurs no object file nor configuration
binary file will be produced.

Errors in the configuration source produce diagnostic messages in standard
toolset format. Details of the format can be found in section A.7.

Diagnostics are generated at the standard severity levels Information, Warning,
Error, and Fafal. No messages are generated at severity level Serious.

Warning messages are listed below.

2.13.1 Warning messages
In the following list the Waming prefix is omitted for clarity.
Badly formed #PRAGMA name directive
The pragma directive named does not conform to the required syntax.
CHAN OF ANY is obsolete: use PROTOCOL name IS ANY

The CHAN OF ANY construct is now considered obsolete. The ability to
define a named protocol as in PROTOCOL name IS ANY provides greater
security and should be used in preference. This waming may be disabled
by means of the NWCA command line switch.

GUY construct is obsolete: use ASM instead

The GUY construct is obsolete; the ASM construct provides greater security
and should be used in preference. This warning message may be disabled
by means of the NWGY command line switch.

Exceeded linkquota on processor name, n Inputs, n Outputs

The configurer needs to use more links than permitted by the 1inkquota
attribute to route the channels for this program. The linkquota attribute
will be ignored.

name is not used

The named variable is never used. This warning may be disabled by
means of the NWU command line option.

Name name descopes a previous declaration.

This name descopes another name which has already been declared. This
warning is only enabled by means of the WD command line option.

No channel has been placed onto the host connection

PLACE or MAP statements should be used to define channel input/output
across the host connection, if host communication is required.

72 TDS 367 01 March 1993

2 occonf - occam configurer 37

No direction known for channel name on PROCESSOR name

The configurer cannot determine whether channel name is used for input
or output on this processor; it will make a guess.

Obsolete channel type conversion: use channel RETYPE

The ability to pass a CHAN OF ANY as an actual parameter to a procedure
whose formal parameter is a different channel type is obsolete. A channel
RETYPE should be inserted before the call to make the type conversion
explicit. This warning may be disabled by means of the NWCA command line
switch.

Parameter name is not used

The named parameter is never used. This warning may be disabled by
means of the NWP command line option.

Placement expression for name clashes with virtual routing system

The named variable is placed on one of the transputer links. This may inter-
fere with the INMOS interactive debugging system or the virtual routing
system.

Placement expression for name wraps around memory

The calculation of the machine address for this variable has overflowed;
the truncated address is used.

Placement of name is ignored because interactive debugging is enabled

A channel placement on an ARC has been ignored. This is because the
debugger idebug, which is enabled by default, requires all channel
connections between processors to be implemented as virtual channels.

Possible side-effect: PLACED variable name

APLACEd variable has been declared inside a VALOF. The compiler cannot
ensure that this cannot cause a side-effect.

Possible side-effect: instanced PROC has PLACED variable name

A PLACEd variable has been declared inside a PROC which is called from
within a VALOF. The compiler cannot ensure that this cannot cause a side-
effect.

Processor name unused
The named processor has no code placed onto it.
Routine name is not used

The named routine is never called. This warmning may be disabled by
means of the NWU command line option.

72 TDS 367 01 March 1993

38 2.13 Configurer diagnostics

Run-time disjointness check inserted
number Run-time disjointness checks inserted

The configurer has inserted run-time checks to ensure that variables are
not aliased (i.e. that they do not overlap). This waming is only enabled by
means of the WO command line option.

Unknown #PRAGMA name: name
The named pragma is unknown and therefore ignored.

Using length ‘name’ in array part of counted array input is obsolete

The language no longer permits using the length part of a counted array
input to appear in the array part. It does however allow the following special
case to be written where the length only appears as the length of a slice:

channelexp ? name :: [array.exp FROM 0 FOR name]
This is transformed by the compiler into the equivalent construct:
channelexp ? name :: array.exp

The former construct is obsolescent and programs should be re-written to
use the latter form.

Workspace clashes with variable PLACED AT WORKSPACE number

A variable has been placed at the address number in workspace, and this
clashes either with another placed variable, or with the configurer’s work-
space allocation requirements.

2.13.2 Error messages

Most of the messages in this section have been caused by mis—use of the configu-
ration language. For further help see chapters 6, 10 and appendix A of the occam
2 Toolset User Guide. These messages are generated at the severity level Error.

name has already been mapped
name appears twice on the left-hand side of a MAP or PLACE statement.
name has already been used as a physical NODE

Some attributes have already been set for name, so it can only be used as
a physical node and not as a logical node.

ARC name has already been connected

Examine all ‘CONNECT’ statements creating link connections between
processor edges or a processor edge and an external edge.

72 TDS 367 01 March 1993

2 occonf - occam configurer 39

Attribute name has already been set on NODE name

Check the declaration of node name and any attributes defined for name
in the mapping and network sections.

Attribute name has not been set for NODE name

Attribute name is a mandatory node atiribute and should be set in the
NETWORK description.

Attribute name may not be SET
You may not SET a link attribute.
Attribute name may not be used on logical NODEs

Logical nodes cannot have attributes set for them. Perhaps you meant to
set the attribute for a node representing a physical processor.

Attribute name set to illegal value on NODE name

Check the syntax and range of permitted values for the type of attribute
required. For further help see the relevant chapters of the User Guide as
indicated at the start of this section.

CHAN name is placed but not properly connected

Check that the ARC that CHAN name is PLACEd on is connected within the
NETWORK description by a CONNECT statement.

CONNECT expression must be of type EDGE

CONNECT expressions connect two nodes or a node to an external edge
by specifying their link connections. They take the form:

‘CONNECT edge TO edge [WITH arcname]’
where arcname is optional.

Cannot PLACE name which was declared outside a PROCESSOR construct
PLACE statement must}mmediatety follow channel declaration.

Cannot disable interactive debugging with the INQUEST debugger

You have used both of the command line options ‘Y’ and ‘GA’; they are
incompatible.

Cannot disable virtual routing with the INQUEST debugger

You have used both of the command line options ‘NV' and ‘GA’; they are
incompatible.

72 TDS 367 01 March 1993

40 2.13 Configurer diagnostics

Cannot interactively debug ROM programs

If you are configuring for boot-from-ROM i.e. you have used either the RA
or RO command line options, you must disable interactive debugging by
using the Y option.

If you want to debug your program, develop it as a boot-from-link program
and debug, and when it is clear of errors re-configure for boot-from-ROM.

Cannot run both profilers together

You have used both the PRE and PRU command line options, selecting both
INQUEST profiler tools. These tools are mutually exclusive.

Cannot run the profiler on ROM programs

The PRE or PRU command line options have been used in conjunction with
the RA or RO command line options.

Cannot run the profiler with the INQUEST debugger

The PRE or PRU command line options have been used in conjunction with
the GA command line option.

Cannot set NODE name as root; another has already been set

Examine the other processor declarations, one of them has the root
attribute set.

Cannot use VAL on a CHAN, PORT, TIMER, or hardware item

Abbreviations of CHAN, PORT, TIMER, NODE, ARC and EDGE cannot use
VAL

Cannot use VAL on a hardware item
It is illegal to use VAL on a NODE, ARC or EDGE.,
Channel name is mapped onto ARC name, not connected to this processor

You need to identify which physical or logical processor is connected to
ARC name. Either the ARC is connected to the wrong processor or you are
trying to map the wrong channel to ARC name.

Channel name is used for both input and output, but ARC name connects to
an EDGE

ARC name connects this processorto an edge, so this processor can input
on it or output on it but cannot do both. Two channels are required to
support two-way communication.

Channel name mapped onto unconnected ARC name

ARC name is required to be connected to a physical link. This is done using
a CONNECT statement within the NETWORK description e.g.:

‘CONNECT edge TO edge [WITH arcname]’

72 TDS 367 01 March 1993

2 occonf - occam configurer 41

Channel name used for input by more than one process

Channel name appears in a previous PROCESSOR statement, defining a
process and its channels,

Channel name used for output by more than one process

Channel name appears in a previous PROCESSOR statement, defining a
process and its channels.

Channel name with protocol containing INT used across different word-
lengths

This is a constraint of the current configurer, see section A.7 of the occam
2 Toolset User Guide.

Code buffer full (nnn bytes); use command line to increase buffer size

The configurer has an internal buffer for code which is about to be placed
into the object file; this has overflowed. The CODE command line option
may be used to increase the size of this buffer.

EDGE name has already been connected
Edge name has been connected in a previous CONNECT statement.
EDGE name is not connected to rest of network

Edge name defines a peripheral device which, if it is to be used, needs to
be connected to the rest of the network by a CONNECT statement.

Expected a NODE attribute, found a subscript expression

You appear to have used too many subscripts. The configurer expected to
see the name "1ink” as in:

CONNECT name [link] [number] TO
where name is a node name and number is the link connection

FUNCTION name returns a REAL result but is compiled for wrong calling
convention

A routine compiled for class TA can only be run on a T800 if it obeys the
comrect calling conventions. See the advice for occam code given in
section B.2.3. Alternatively re-compile your code for a T8 transputer.

lilegal item in configuration code

An illegal expression has been used in the configuration description.
Check the description against the syntax definition, described in appendix
A of the occam 2 Toolset User Guide.

72TDS 367 01 March 1993

42 2.13 Configurer diagnostics

lllegal item inside CONFIG construct

Check the configuration description against the syntax definition,
described in appendix A of the occam 2 Toolset User Guide.

lllegal item inside MAPPING construct

Check the configuration description against the syntax definition,
described in appendix A of the occam 2 Toolset User Guide.

lllegal item inside NETWORK construct

Check the configuration description against the syntax definition,
described in appendix A of the occam 2 Toolset User Guide.

lllegal processor type "name”

Supported processor types are: “T212” "T222” "T225" "M212"
#T400” “T414” ”T425” “T8O0” "T8O1l” "TBO5”

Implementation restriction: Cannot RETYPE INT constants on 16-bit
processors; use INT16

This is a constraint of the current configurer, see section A.7 of the occam
2 Toolset User Guide.

Implementation restriction: Cannot declare name name inside a replicator

Declarations of NODEs, ARCs, and EDGEs may not appear inside a repli-
cator.

Implementation restriction: Cannot use INT constant arrays on 16-bit
processors; use INT16

This is a constraint of the current configurer, see section A.7 of the occam
2 Toolset User Guide.

Implementation restriction: Cannot use replicator name in channel abbrevi-
ation outside a PROCESSOR construct

You have encountered an implementation restriction.

Implementation restriction: INT constant overflows on 16-bit processors;
use INT16

This is a constraint of the current configurer, see section A.7 of the occam
2 Toolset User Guide.

Implementation restriction: root NODE name must not be an array element

You have encountered an implementation restriction.

72TDS 367 01 March 1993

2 occonf - occam configurer 43

Left hand side of mapping must be of type CHAN
Channels are mapped onto an ARC, with a statement of the following form:
MAP channel list ONTO arc

where channellist is a list of channels previously declared to have type
CHAN.

Left hand side of mapping must be of type NODE

Logical processors are mapped onto a physical processor, with a state-
ment of the following form:

MAP processor.list ONTO node

where processor.list is a list of logical processors previously declared as
NODE types.

Link name[link][number] has already been connected
Check any previous CONNECT statements to identify what
link name[1ink][number] is connected to.

Link number number is illegal for this NODE

T400 and M212 transputers have just two links, identified 0 and 1. All other
transputers in the current range have four links, numbered 0, 1, 2 and 3.

Location attributes ignored because re—ordering isn’t enabled
Use the RE command line option to enable the location attributes.
Multiple CONFIG constructs not permitted

The CONFIG keyword introduces the software description, which is a PAR
or PLACED PAR and should include PROCESSOR statements defining all
required software processes.

Multiple MAPPING constructs not permitted

All MAP statements should appear in one section introduced by the
MAPPING keyword. Any aftributes used to control the use of memory or
routing should also be included in this section.

Multiple NETWORK constructs not permitted

Al statements describing the connectivity and attributes of physical nodes
should be placed in one section, introduced by the NETWORK keyword.

NODE name has not been mapped

Check your mapping description, a logical processor has been declared
but not mapped to a physical processor.

72 TDS 367 01 March 1993

4 2.13 Configurer diagnostics

No CONFIG construct

The software description is missing or has not been introduced by a
CONFIG keyword.

No NETWORK construct

The network description is missing or has not been introduced by a
NETWORK keyword.

No NODE has been specified as root

Configurations which are for boot-from-ROM application must have one
physical node defined to be the root transputer. This is performed using the
root atfribute in a SET statement.

No hardware route exists from processor name for channel name

There is nodirect link available for channel name to use. Because through-
routing has been disabled by the NV command line option an indirect route
cannot be established.

No priority expression permitted when mapping CHANs

The priority expression PRI can only be used when mapping logical
processors onto physical processors. The priority expression relates to the
software process which will run on the processor.

Not enough links from processor name for channel name

The NV command line option has been specified, disabling virtual routing.
This means that only one channel can be placed in each direction, onto
each link specified in the hardware description.

Ordering attributes ignored because re—ordering isn’t enabled
Use the RE command line option to enable the order attributes.
PRI expression nn must evaluate to 0 or 1

Priority expressions are introduced by a PRI keysword in a MAP statement.
PRI expressions may take one of two integer values; either 0 indicating
high priority or 1 indicating /ow priority.

Priority expression of mapping must be of type INT

PRI expressions may take one of two integer values; either 0 indicating
high priority or 1 indicating low priority.

Process evaluates to STOP

The logic within the configuration description itself evaluates to a STOP
and will therefore not execute.

72 TDS 367 01 March 1993

2 occonf - occam configurer 45

Process mapped at high priority may not contain a PRI PAR

The logic of the MAP statement which includes the PRI expression conflicts
with the internal logic of the program which uses a PRI PAR.

Processor type has already been set for NODE name

Node name already has the type aftribute set. Check the hardware
description.

Processor type has not been set for NODE name

The attribute type is a mandatory node attribute and should be set in the
hardware description for NODE name.

ROM memory size has not been set for root NODE

The size of ROM attached to the root node must be specified using the
romsize attribute. (The root node is the node which has the root attribute
set).

Right hand side of mapping must be a physical NODE

Logical processors are mapped onto a physical processor, with a state-
ment of the following form:

MAP processor.list ONTO node

where node is a physical node declared within the hardware description.
Right hand side of mapping must be of type ARC

Channels are mapped onto an ARC, with a statement of the following form:

MAP channel.list ONTO arc

where arc is a named link declared within the hardware description.
Right hand side of mapping must be of type NODE or ARC

MAP statements are used to map logical processors onto physical proces-
sors or channels onto named links called ARCs. The statement takes the
form:

MAP processor./ist ONTO node

where node is a physical node declared within the hardware description.
OR:

MAP channel list ONTO arc

where arc is a named link declared within the hardware description.

72 TDS 367 01 March 1993

46 2.13 Configurer diagnostics

SET expression must be of type NODE

The SET expression is used to set attributes for physical processors. It
takes the form:

SET device (attribute.assignment)
where device is a node name.
Too many channels inputting on ARC name

An ARC can carry a maximum of two channels, one in either direction. It is
a dedicated link i.e. one which will not be used by virtual channels.

Too many channels outputting on ARC name

An ARC can carry a maximum of two channels, one in either direction. It is
a dedicated link i.e. one which will not be used by virtual channels.

Unknown attribute name name

The attribute name used is not supported by the language. Valid attributes
are:

link linkquota location.code location.ws location.vs
memsize nodebug noprofile order.code order.ws order.vs
reserved romsize root routecost tolerance type

Further information can be found in appendix A of the occam 2 Toolset
User Guide.

Value must be in range 0 to n for attribute name
Attribute name has been incorrectly specified.

WITH expression must be of type ARC
The only configuration statement that a WI'TH expression may appear in,
is a CONNECT statement. This is used to connect an ARC with a link connec-
tion. It takes the form:

'CONNECT edge TO edge [WITH arcname]’

72 TDS 367 01 March 1993

3 icollect—-code
collector

This chapter describes the code collector tool icollect which generates an
executable file for a single or multitransputer program from a configuration data
file, or for a single transputer program directly from a linked unit. The tool is also
used to create files forinput to the EPROM programmer tool ieprom, and to create
files that can be dynamically loaded by a user program.

3.1 Introduction

icollect generates bootable files for transputer programs, and other execut-
able files in special formats.

Bootable files are transputer executable files that can be directly loaded onto the
transputer hardware down a transputer link. The bootable file contains all the
information for loading and running the program on a specific network of proces-
sors, including data that controls the distribution of code on the network, and self-
booting code for each processor. Bootable programs are therefore self-distributing
and self-starting when they are sent down a transputer link.

Recommended program development for single and multitransputer programs is
to create a configuration data file (i.e. binary file) and to use this as input to the
collector. The configuration data file describes the placement of processes and
channels on the processor network in a special format which can be read by the
collector. They are created from configuration descriptions by the configurer.

Single transputer programs can by-pass the configuration stage and use a single
linked unit as input. The collector then adds bootstrap and system code for a single
processor. Unconfigured programs can only run on a single fransputer. This
method of program development is not recommended and may not be supported
in future toolsets.

icollect can be directed to generate output files in a special format for proces-
sing by the iepromtool, and executable code with no bootstrap or system process
information, intended for dynamic loading by a supervisory program.

The command line default is to assume input from a configuration binary file.
Special format outputs are selected by specifying command line options.

The main inputs and outputs of the collector tool for bootable programs are shown
below.

72 TDS 367 01 March 1993

48 3.2 Running the code collector

Unconfigured program (using ‘T’ option):

==C
@—- icollect
T)
*.map; \ P :
*occam only et
Configured processor program:
Jku
.bir
icollect
‘}‘
* .map|

3.2 Running the code collector

The code collector is invoked using the following command line:

> icollect filename { options}

where: filename is a configuration data file created by a configurer or a single

linked unit created by ilink. Only one filename may be given on the
command line.

options is a list of the options given in Table 3.1.

Options must be preceded by '~ for UNIX-based toolsets and ‘/’ for
MS-DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be given in any
order.

Options must be separated by spaces.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

72 TDS 367 01 March 1993

3 icollect - code collector 49

Option

Description

B filename

Uses a user-defined bootstrap loader program in place of the
standard bootstrap. The program is specified by filename and
must conform to the rules described in appendix E.

This option can only be used with the ‘T’ option (unconfigured
mode) and cannot be used with the ‘RA’ and ‘RO’ options.

Instructs the tool to use a different bootstrapping scheme,
which uses the bottom of memory, see section 3.9.

This option is only valid for configured programs i.e. when the
“T’ option is not used.

C filename

Specifies a name for the debug data file. A filename must be
supplied and is used as given.

This option can only be used with the ‘T" option (unconfigured
mode) and cannot be used with the ‘D' or ‘'K’ options.

Instructs the collector to add a bootstrap which will clear
memory during the booting and loading of the transputer
network. Intended for use with parity-checked memory (see
section 3.5).

Disables the generation of the debug data file for single trans-
puter programs. This option can only be used with the ‘T’ option
(unconfigured mode).

Changes the setting of the transputer Halt On Error flag. HALT
mode programs are converted so that they not stop when the
error flag is set, and non HALT mode programs to stop when
the error flag is set.

This option can only be used with the ‘T’ option (unconfigured
mode).

Displays progress information as the collector runs.

Creates a single transputer file with no bootstrap code. If no file
is specified the output file is named after the input filename and
given the . rsc extension.

This option can only be used with the ‘T’ option (unconfigured
mode).

M memorysize

Specifies the memory size available (in bytes) on the root
processor for single transputer programs. memorysize is
specified in bytes and may be given in decimal format (option-
ally followed by ‘K’ or ‘™’ to indicate Kilobytes or Megabytes
respectively), or it may be specified in hexadecimal using the
‘#' or '’ prefixes.

This option can only be used with the ‘T’ option (unconfigured
mode) and results in a smaller amount of code being produced
(see section 3.4).

72TDS 367 01

March 1993

50

3.2 Running the code collector

Option

Description

0 filename

Specifies the output file. A filename must be supplied and is
used as given. (See section 3.2.4).

P filename

Specifies a name for the memory map file. A filename must be
supplied and is used as given. The file extension .map should
be used when the file is to be used asinputto imap, see chapter
12.

Creates a file for processing by ieprom into a boot from ROM
file to run in RAM. If no output file is specified the filename is
taken from the input file and given the .btr extension.

This option is only necessary when using the ‘T’ option (uncon-
figured mode) to create a ROM code file.

RO

Creates a file for processing by ieprom into a boot from ROM
file to run in ROM. If no output file is specified the filename is
taken from the input file and given the .btr extension.

This option is only necessary when using the ‘T’ option (uncon-
figured mode) fo create a ROM code file.

RS romsize

Specifies the size of ROM on the root processor in bytes. Only
valid when used with the ‘R’ or ‘RO’ options.

romsize is specified in bytes and may be given in decimal
format (optionally followed by K’ or ‘M’ to indicate Kilobytes or
Megabytes respectively), or it may be specified in hexadecimal
using the ‘#' or '$’ prefixes.

This option is only necessary when using the ‘T" option (uncon-
figured mode) to create a ROM code file.

S stacksize

Specifies the extra runtime stack size in words for single trans-
puter programs. (For occam programs this option refers to
stack.buffer, see section 3.4.2 for details).

stacksize is specified in words and may be given in decimal
format (optionally followed by ‘K’ or ‘M’ to indicate Kilowords or
Megawords respectively), orit may be specified in hexadecimal
using the ‘4§’ or ‘$’ prefixes.

This option can only be used with the ‘T’ option.

T Creates a bootable file for a single transputer. The input file
specified on the command line must be a linked unit. This
option can not be used for C programs which are linked with the
reduced runtime library.

Y Disables interactive debugging with idebug and reduces the

amount of memory used. (See section 3.11).

This option can only be used with the ‘T’ option (unconfigured
mode).

72 TDS 367 01

Table 3.1 icollect command line options

March 1993

3 icollect - code collector 51

3.21 Examples of use

Example A (unconfigured program mode):

UNIX based toolsets: MS-DOS/VMS based toolsets:
icc hello icc hello
ilink hello.tco —f cnonconf.ink ilink hello.tco / cnonconf.ink
icollect hello.lku -t icollect hello.lku /t
iserver —sb hello.btl —se iserver /sb hello.btl /se

Example B (configured program mode):

UNIX based toolsets: MS-DOS/VMS based toolsets:
icc hello icc hello
ilink hello.tco —f cstartup.ink ilink hello.tco / cstartup.ink
icconf hello.cfs icconf hello.cfs
icollect hello.cfb icollect hello.cfb
iserver —sb hello.btl —se iserver /sb hello.btl /se

Note: single transputer programs linked with the reduced runtime libraries cannot
be linked and collected with the ‘T’ option, they must be configured.

3.2.2 Default command line

Commonly used command line parameters can can be defined for the tool using
the ICOLLECTARG environment variable. Parameters specified in this way are
automatically added to the command line when the tool is run.

Parameters in ICOLLECTARG must be specified using the syntax required by the
command line.

3.2.3 Input files
The input file to icollect is either a configuration data file generated by a confi-
gurer, or a linked unit generated by ilink. By default the collector assumes a

configuration data file; for single transputer programs the input file may be a linked
unit, in this case the ‘T’ option must be given.

Input files of an incorrect format generate an error message and no output is
produced.

3.24 Output files

The output produced by the tool depends the type of file input to the collector and
the collector options used.

72 TDS 367 01 March 1993

52 3.3 Program interface for occam unconfigured programs

Specifying an output filename

An output filename can optionally be specified using the O option, followed by a
filename, which will be used as given. If the O option is not used, the input filename
will be used with an extension added indicating the file type, see below.

Default case

The default output file is a binary file that can be loaded directly onto the transputer
hardware down a transputer link. This type of file is known as a boot from link
program. By default the file is given the .bt1 extension.

Boot-from-ROM/RAM

Boot-from-ROM programs output is generated by using the appropriate command
line options; RO for boot-from-ROM; Ra for boot-from-RAM. By default the file will
be given the .btr extension.

C and FORTRAN programs must be configured, prior to using icollect, in order
to generate boot-from-ROM or RAM output. occam boot-from-ROM or RAM
output can be generated from either configured or unconfigured input.

Dynamically loadable output

Dynamically loadable code is generated by using the K command line option. By
default the file is given the . rse extension.

Dynamically loadable code file may only be generated when the input to the
collector is a linked unit and the T option is used, i.e. this type of output can only
be produced for the unconfigured case.

Memory map files

A memory map file may be generated, in addition to the normal output, by speci-
fying the P’ option. The format of these files is described in section 3.10.

Debug data file

For unconfigured fransputer programs only, the collector automatically generates
a configuration binary file for use by the debugger. By default the filename stem
is taken from the output file and the extension ‘. c£b' is added. If the ‘C’ option is
specified then the filename given is used, as supplied. Generation of the debug
data file can be disabled with the ‘D’ option.

3.3 Program interface for occam unconfigured programs

For programs which are loaded onto a single transputer, the program interface
must conform to the appropriate format, depending on whether or not memory size
is specified on the collector command line.

72 TDS 367 01 March 1993

3 icollect - code collector 53

3.3.1 Interface used for ‘T’ option

occam programs which are collected with the T option, without specifying memo-
rysize (using the M option), must use one of the following formats of procedure
declaration:

PROC program (CHAN OF SP from.link, to.link,
[1INT user.buffer)

PROC program (CHAN OF SP from.link, to.link,
[JINT user.buffer, stack.buffer)

where: £rom. 1link and to.link are the input and output channels respectively
of the transputer link, down which the transputer was booted.

user.buffer is the free memory buffer.

stack.buffer is a buffer allocated at the base of memory by the
collector, whose size is determined by the S option. If the S option is not
specified when icollect is invoked this buffer will be of size zero.

3.3.2 Interface used for ‘T’ and ‘M’ options

In the case where both the “T' and "M’ options are used, the program must conform
to one of the following procedure declarations:

PROC program (CHAN OF any profocol from.link, to.link,
[1INT user.buffer)

PROC program (CHAN OF any protocol from.link, to.link,
[1INT user.buffer, stack.buffer)

where: The channel protocol can take any valid type.

The other variables are as defined above.

3.4 Memory allocation for unconfigured programs

The memory allocation outlined in this section applies only to single processor
programs collected with the ‘T’ option and without the ‘K’ option. For configured
programs the layout of code and data in memory is determined by the configurer.
For programs generated with the ‘T’ option the layout is determined by the
collector. The details of memory use depend on the language used and the options
to icollect, this is described below.

Memory which is not reserved by the system for program code and data (known
as free memory) can be made available to a user application. For C programs this
is used for the heap and, optionally, the stack. In the case of a single transputer
occam program the free memory passed as an array.

To calculate the actual memory available, the loader program in the bootable file
first reads the total memory size from the host environment variable IBOARDSIZE.

72 TDS 367 01 March 1993

4 3.4 Memory allocation for unconfigured programs

This communication with the host is performed after the program has been loaded
onto the transputer board but before the program is started. The size of the free
memory is given by TBOARDSIZE minus the combined program code and data
space required.

The process code which reads IBOARDSIZE requires approximately 3.5 Kbytes
of memory. This process is executed and terminated before the user program
runs, and the segment of free memory that the process uses is then retumed to
the user program. Therefore when the user program executes it will not know
whether the process was present or not.

When the "M option is used to specify the memory size, IBOARDSIZE is not read
and therefore the total amount of memory required when loading the program will
be approximately 3.5 Kbytes less.

A memory map file may be obtained by specifying the ‘P’ command line option. The
content of memory map files is described in section 3.10.

3.4.1 C and FORTRAN programs

For C programs the bootstrap loader must allocate memory for static data, stack
and heap areas. FORTRAN programs have similar requirements and are handled
in the same way.

When the collector ‘S’ option is specified the program’s stack is placed at the
bottom of memory. When the ‘S’ option is not specified a stack area is allocated
by the runtime system, typically at the top of free memory.

Areas for static data and heap are always allocated by the language’s runtime
system at the bottom of free memory. The heap area grows upwards, towards the
top of memory, and the stack grows downwards.

Figure 3.1 shows the memory map layouts for programs with and without the stack
requirement specified by the user.

The value of LoadStart is described in section 3.10.

72 TDS 367 01 March 1993

3 icollect - code collector

55

Top of
memory
[Stack ¥
Heap } Free memory
Static 1 Heap |
Static
Code
Code
Stack
Bottom of
user memory
) (LoadStart)) .
Using ‘s’ option to Without using 'S’
specify stack size option

Figure 3.1 Memory maps for C and FORTRAN

34.2 occam programs

Free memory

Top of memory

Vector space
(if used)

Code

Workspace

stack.buffer
(if used)

Bottom of user
memory (LoadStart)

Figure 3.2 Memory map for ocCam program

72 TDS 367 01

March 1993

56 3.4 Memory allocation for unconfigured programs

Anoccam program requires space to be allocated for code, workspace and, poss-
ibly, vector space. Programs can also be passed one or two arrays as parameters;
one (always available) provides access to the free memory. The other is optional
but, if used, it is placed at the bottom of the memory map to provide access to the
transputer’s fast intemal RAM. This array is known as the stack.buffer. The
default bootstrap loader attempts to optimize placement of the program’s, and its
own, code and workspace. If present, the stack .buffer array is placed at the
bottom of memory (at LoadStart). This is followed in order by the workspace,
code, vector space (if used) and free memory. The ‘S’ option allows space to be
reserved in the internal RAM.

Figure 3.2 shows the memory map of the loaded 0ccam code as created by the
default bootstrap loader.

3.4.3 Memory initialization errors

While the loader is executing the memory initialization process, described above,
warning messages may be obtained which have the following format:

Warning-SystemA- message
where: message can be one of the following:
IBOARDSIZE, unable to read
IBOARDSIZE environment variable is not defined correctly.
number, illegal format number
The value specified for IBOARDSIZE is in the wrong format.
illegal 16 bit memory size, set to zero

The value of IBOARDSIZE is greater than 64K when a 16 bit processor
is being used. The memory size has therefore been set to zero.

negative memory size, set to zero

A negative value was specified for IBOARDSIZE, which has been set
to zero.

unable to reset free memory

The loader cannot return the memory it has used to the user.

All the above errors are generated by the system process at runtime.

3.4.4 Small values of IBOARDSIZE

When the ‘T’ option is used, very small values of IBOARDSIZE (including zero) are
detected at runtime and prevent the program from being run. IBOARDSIZE is read

72 TDS 367 01 March 1993

3 icollect - code collector 57

at runtime, not by the collector at build time. Small values of IBOARDSIZE cause
the collector to generate a warning message but do not prevent the generation of
a bootable file.

IBOARDSIZE must be = to the total memory requirements of the user program
being executed.

3.5 Parity-checked memory

If any processors in the network use parity-checking on external memory (typically
using the T426) then it is essential that that memory is initialized (written to) before
it is read. Reading from an un-initialized location is likely to cause a parity error.
Internal memory is not parity-checked, so a bootstrap program can always get
started, but the initialization must be done before any program using external
memory is run. Therefore the initialization of memory must be done during the
booting and loading of the processors.

There is an option to the collector, ‘CM’, which instructs the collector to use a boot-
strap that clears memory on each transputer before the application code is
executed. This must always be used when collecting programs for a network that
contains one or more T426s. When selected, the ‘CM' option applies to all proces-
sors in the network, not just to T426s.

In order to clear the memory on a processor, it is necessary for the bootstrapping
sequence to know the size of the memory. There are four cases to consider:

1 A configured program.

Here the memory size is known at configuration time, and is specified by
the user in the configuration source file. The bootstrapping sequence
produced by the collector will clear the amount of memory specified (in the
configuration source file) before booting the application.

2 A collected program with fixed memory size.

The collector may be used, with the ‘T’ option, to produce a bootable file
from a single linked unit. The amount of memory on the processor may be
specified with the ‘M’ option. In this case the bootstrapping sequence will
clear the amount of memory specified (with the ‘M’ option) before booting
the application.

3 A collected program with variable memory size, booted from link.

If the collector is run with the ‘T’ option, but without the ‘M’ option, the
memory size is known only at runtime. The memory size is found out at
runtime using the environment variable IBOARDSIZE. In this case the
bootstrapping sequence will clear memory up to the minimum required to
boot the program. After booting, the value of IBOARDSIZE will be read and
the remaining memory will be cleared.

72TDS 367 01 March 1993

58 3.6 Non—bootable files created with the K option

4 A collected program with variable memory size, booted from ROM.

If the collector is run with the “T" option, but without the ‘M’ option, and the
program is booted from ROM, then the memory size is not known at all. In
this case the bootstrapping sequence will clear enough memory for the
minimal requirements of the application. It is then the user program'’s
responsibility to clear any additional memory required.

Initialization of memory is carried out regardiess of the processor type; memory
is initialized even if the processor is not a T426. So if the ‘CM’ option is selected
every processor’s memory in the network will be initialized (including 16-bit trans-
puters). In the case of the T426, the bootstrap code also clears the parity registers
by reading them before the program starts.

3.6 Non-bootable files created with the K option

Files created with the ‘K’ option are non-bootable files which can be dynamically
loaded or manipulated by a program at runtime. Non-bootable files cannot be
loaded and run on transputer hardware in the normal way.

3.6.1 File format

Non-bootable files consist of program code preceded by a specific sequence of
data words which provide runtime information. The sequence of data words and
code blocks is summarized in table 3.2. Descriptions of the more important data
items are given in table 3.3.

Data Number of bytes occupied | Unit
Interface descriptor size Four bytes
Interface descriptor Set by above -
Compiler id size Four bytes
Compiler id Set by above -
Target processor type Four =
Version number Four -
Program scalar workspace requirement |Four words
Program vector workspace requirement | Four words
Static size Four words
Program entry point offset Four bytes
Program code size Four bytes
Program code block Set by above -

Table 3.2 Sequence of code segments in non-bootable files

72 TDS 367 01 March 1993

3 icollect - code collector 59

Target A value indicating the processor type or transputer
class for which the program was compiled. Set by
compiler options or by default. Possible values and
their meaning are:

Value Applies to:
2 T212, T222, T225, M212
4 T414
8 T800, T801, T805
9 T425, T400, T426
10 TA
1 TB
Version The format version number of the file. This can be

either 10 or 11 in TCOFF files. For C and FORTRAN
programs this value is 11, which indicates that the
‘Static size’ parameter (below) is present. For occam
programs the value is 10, indicating no static data; the
parameter list will also not be present.

Scalar workspace Specifies the size of the workspace required for the
linked program'’s runtime stack.

Vector workspace Specifies the size of the workspace required for the
linked program’s vector (array) data.

Static size Specifies the size of the static area (only present if the
file format version number is 11).

Entry point offset Indicates the offset in bytes of the program entry point
from the base of the code block.

Code size Indicates the size of the program code in bytes.
Code The program code.

Table 3.3 Details of code segments in non-bootable files

3.7 Boot-from-ROM output files

Boot—from—ROM output files are either generated by using the collector options
‘RA’ or ‘RO’ for unconfigured programs or by configuring a program to boot from
ROM, prior to collecting. (The configurer also has ‘RA’ and ‘RO’ command line
options).

The boot-from-ROM files contain code that can be loaded into EPROM using the
iepromtool. The code may be run on the root transputer of a network; processors
on the network connected to the root transputer are booted from the root transput-
er’s links.

‘RA’ generates code which is executed from RAM.The code is copied from ROM
into RAM at runtime. ‘RO’ generates code which is directly executed from ROM.

RAM executable code can be used for applications which are to be executed from
fast RAM, and for code which may be user-modified. ROM executable code may

72 TDS 367 01 March 1983

60 3.8 Alternative bootstrap loaders for unconfigured programs

require no external RAM for programs which use small amounts of data and can
be used to create a truly embedded system.

3.8 Alternative bootstrap loaders for unconfigured programs

If not otherwise specified, icollect uses the standard INMOS primary bootstrap
loading sequence. The correct code for the application program is chosen auto-
matically from a library of bootstraps compiled for different transputer types and
error modes.

The collector can be directed to use other bootstrap loader programs defining
different loading sequences by specifying the ‘B’ option. This option directs the
collector to append a user-defined loader program in place of the standard boot-
strap code.

User-defined bootstraps must comply with the format used by the standard INMOS
loader. The source of the standard INMOS Network Loader is supplied with the
toolset. The source is fully commented and can be used as a template to design
and code your own loading sequence.

3.9 Alternative bootstrap schemes

When building for a configured network, the collector uses a bootstrapping
scheme which makes use of the top two hundred bytes of memory. This memory
is required to load the last few bytes of application code prior to its execution. The
memory region becomes available to the user once their application is running.

This scheme does not remove memory from the user’s environment on a perma-
nent basis and it facilitates the absolute placement of code and data by the user.
See the User Guide for details.

The user can tell the collector to use a different booting scheme by using the option
‘BM. In this case the booting scheme permanently removes a section of memory
from the user’s environment and moves the value of LoadStart accordingly. This
section of memory is never made available to the user. This booting scheme does
not support the absolute placement of code and data by the user.

The booting scheme invoked by the ‘BM option, is used by default for unconfigured
programs i.e. those collected using the ‘T’ option.

3.10 The memory map file

A memory map file may be obtained by specifying the ‘P’ command line option,
followed by a filename. Such files contain the memory layout for each processor
in the network.

The file layout takes the form of a list of code and data to be placed on respective
processors. The right hand side of the file gives the start and end address followed
by the size of each block.

72 TDS 367 01 March 1993

3 icollect - code collector 61

The memory map file contains the following information:
e icollect version data
= For each processor the following details are given:
o Processor type
o Error mode (HALT or STOP)
o LoadStart (lowest user memory address)
o For each process on this processor the following is listed:

o Code, name offile, offset from start (decimal), start address and
end address (hex), size (decimal), entry address (if any, in Hex)

o Workspace, start and end address (hex), size (decimal)
o Any other data requirements

¢ Boot path for the network - only present if program is configured

« Connectivity of the network - only present if program is configured

The absolute addresses are calculated using LoadStart, which is the base of user
memory. This varies for different processor types i.e. the value of LoadStart for
a T4 processor is different to that for a T8.

If the ‘BM' option is used the memory from MemStart to LoadStart is used by the
low level bootstraps and their workspace.

When the ‘BM' option is not used the value of LoadStart is determined by the
configuration, see the reference chapter for the configurer, for further details.

The addresses allocated to various data items reflect the command line options
specified to the collector. Details of the memory map files for the following types
of files are given below:

¢ Unconfigured (single processor), boot from link programs targetted at a
specific processor type.

= Unconfigured (single processor), boot from link programs targetted at a
processor class.

* Configured, boot from link programs.
 Boot from ROM (single and configured)
The examples below demonstrate the map file format; they may change in detail.

3.10.1 Unconfigured (single processor), boot from link

Program targetted at transputer type

The first memory map described in this section is for a program which is to be
booted for a specific processor type.

72 TDS 367 01 March 1993

62 3.10 The memory map file

The example shown in Figure 3.3 was produced by the following command line:
icollect -t hello.lku -s 400 -p hello.map (UNIX)
icollect /t hello.lku /p /s 400 hello.map (MS-DOS/VMS)

where: hello. 1ku was produced by compiling and linking the example program
hello.cforaT425 in the default halt-on-error mode. The compiled object
file was linked with the C linker indirect file cnoncon£. 1nk because the
example is for an unconfigured program.

hello.map lists code and data segments to be placed on each processor (one
in this case). For each process the workspace and vector space requirements are
given together with the entry point of the process. Note that the first three
processes listed are non-user processes; this will always be the case for this type
of program.

(Iﬁollect : INMOS toolset collector —\\
Sun Version 3.0.17

Memory map for processor 0 T425
Load Start is 80000168, HALT ON ERROR, Minimum memory size is 21056
LOW priority INITSYSTEM process ’Init.system’
Code from ’sysproc.lib’, file offset 9438

#800001F8 #80000418 544

Entry address #800001F9
Invocation stack #800001D8 #800001F0 24
Workspace #80000168 #800001D8 112

LOW priority SYSTEM process ’‘System.process.a’
Code from ’'sysproc.lib’, file offset 27180

#80004670 #80005040 2512

Entry address §80004671
Invocation stack #80004654 #80004668 20
Workspace #8000443C $#80004654 536
Vectorspace #80005040 #80005240 512

HIGH priority SYSTEM process ’System.process.b’
Code from ’sysproc.lib’, file offset 45498

$8000044C #80000428 92

Entry address $8000044C
Invocation stack #80000430 $#80000444 20
Workspace $80000418 $80000430 24

LOW priority USER process
Code from "hello.lku’, file offset 2
§80000888 $8000427C 14836

Entry address #800008B3
Invocation stack #8000086C #80000880 20
Workspace #800007a8 #8000086C 196
Extra stack $80000168 #800007A8 1600
Static #8000443C #8000466A 558
\farameter data #8000427C #8000443C 44?//

Figure 3.3 Memory map file for a single T425 processor program

Program targetted at transputer class

The second memory map described in this section is for a program which is to be
booted for processor classes TA or TB.

72 TDS 367 01 March 1993

3 icollect - code collector 63

The example shown in Figure 3.4 was produced by the following command line:
icollect -t hello.lku -p hello.map (UNIX)
icollect /t hello.lku /p hello.map (MS-DOS/VMS)

where: hello. lku was produced by compiling and linking the example program
hello.c for class TA in the default halt-on-error mode. The compiled

object file was linked with the C linker indirect file cnoncon£ . 1nk because
the example is for an unconfigured program.

(:;ollect : INMOS toolset collector *\\
Sun Version 3.0.17

Memory map for processor 0 TA
Load Start is UNKNOWN, HALT ON ERROR, Minimum memory size is 20180
LOW priority INITSYSTEM process 'Init.system’
Code from ’sysproc.lib’, file offset 10420

#3D48 #3F68 544
Entry address #3D49
Invocation stack #3D28 #3D40 24
Workspace $3CB8 §3D28 112
LOW priority SYSTEM process 'System.process.a’
Code from "sysproc.lib’, file offset 30561
§419C $4B6C 2512
Entry address $419D
Invocation stack #4180 #4194 20
Workspace $3reg $4180 536
Vectorspace $4B6C #4D6C 512

HIGH priority SYSTEM process ’System.process.b’
Code from 'sysproc.lib’, file offset 45888

$34 #90 92
Entry address #34
Invocation stack t1ge {2C 20
Workspace #0 $18 24
LOW priority USER process
Code from ’"hello.lku’, file offset 2
$E0 #3AF8 14872
Entry address #10B
Invocation stack §c4 $D8 20
Workspace #0 ic4 196
Static §3F68 $#4196 558
\f?rameter data $3AF8 #3CB8 442//

Figure 3.4 Memory map file for a single TA processor program

The memory layout of user's code and data is the same as for the previous
example, except that no space is allocated for the extra stack (because extra stack
was not requested on the command line). LoadStart, from which the start and end
addresses are calculated, can only be calculated at runtime. This is because the
value of MemStart cannot be determined at collect time. The numbers given, in
place of absolute addresses are offsets from LoadStart.

72TDS 367 01 March 1993

64 3.10 The memory map file

3.10.2 Configured program boot from link

. 2

icollect : INMOS toolset collector
Sun Version 3.0.17

Memory map for ’Single’ processor 0 T425
Load Start is 800000A0, HALT ON ERROR, Minimum memory size is 73236

HIGH priority INITSYSTEM process ’Init.system.simple’
Code from ’sysproc.lib’, file offset 13366

#800000E4 #80000158 116

Entry address #800000E4
Invocation stack $800000C0 #800000E4 36
Workspace #800000A0 #800000CO 32

HIGH priority OVERLAYED SYSTEM process ’System.process.b’
Code from ’sysproc.lib’, file offset 44718

$#80000184 #800001E0 92
Entry address #80000184
Invocation stack #80000170 #80000184 20
Workspace #80000158 #80000170 24
LOW priority USER process ’'Simple’
Code from ’‘hello.lku’, file offset 2
#80001178 #80004B6C 14836
Entry address #800011A3
Invocation stack $#80001164 #80001178 20
Workspace #800000A0 #80001164 4292
Static #80004B6C $#80005424 2232
Heap #80005424 #80011C24 51200
Parameter data §80011C24 #80011D50 300

Boot path for network

Boot processor 0 down link 0 from HOST

Connectivity for network

Connect HOST to processor 0 link 0

/

Figure 3.5 Memory map file for a configured T425 processor program
The example shown in Figure 3.5 was produced by the following command line:
icollect hello.cfb -p hello.map (UNIX)
icollect hello.cfb /p hello.map (MS-DOS/VMS)

where: hello.c£b is the configuration binary file produced by the configurer for
the single processor ‘Hello World’ example program introduced in the ANS/
C Toolset User Guide.

The Memory map for the configured program is similar to that produced for uncon-
figured transputer programs except that it has two additional configuration
sections at the end of the file. The Boot path for the network lists processors in the
order in which they are to be booted. The Connectivity for network lists the link
connections between the processors.

72 TDS 367 01 March 1993

3 icollect - code collector 65

3.10.3 Boot from ROM programs

There are four cases for this type of program:
» Unconfigured (single processor), boot from ROM, run in RAM
e Unconfigured (single processor), boot from ROM, run in ROM
¢ Configured program, boot from ROM, run in RAM
+ Configured program, boot from ROM, run in ROM

The memory maps for each of these are summarized below.

Unconfigured (single processor), boot from ROM, run in RAM

The memory map for this case will have the same layout as the single processor
boot from link programs.

Unconfigured (single processor), boot from ROM, run in ROM

Itis not known at collect time where in memory the ROM is to be placed. Therefore,
the start and end addresses of the code segments are given as offsets from the
start of ROM, and are annotated as such. ltems such as workspace will have abso-
lute addresses allocated, if the program is targetted at a specific processor type.

Note: for C programs the runtime startup system would require modification first,
in order to provide the system with details of heap and stack etc.

Configured program, boot from ROM, run in RAM

The layout of the memory map for this case will be the same as that for the boot
from link configured program. This is because everything (code and data) is copied
into RAM.

Configured program, boot from ROM, run in ROM

For this case the root processor will be shown in the same format as the single
processor case, run in ROM; some memory locations being expressed as offsets
from the beginning of ROM.

The other processors in the network will appear as in the boot from link case.
The example shown in Figure 3.6 was produced by the following command line:
icollect hello.cfb -p hello.map (UNIX)
icollect hello.cfb /p hello.map (MS-DOS/VMS)

where: hello. cfb is the configuration binary file produced by the configurer, for
the single processor ‘Hello World’ example program introduced in the ANS/
C Toolset User Guide. The configurer ‘R0’ ‘RS’ and ‘P’ options were used
to create a boot from ROM input file for the collector.

72 TDS 367 01 March 1993

66 3.11 Disabling interactive debugging — ‘¥* option

Sun Version 3.0.17

(:;ollect : INMOS toolset collector ﬁ\\

Memory map for ’Single’ processor 0 (Booting and running in ROM) T425
Load Start is 800000A0, HALT ON ERROR, Minimum memory size is 58204

HIGH priority INITSYSTEM process ’Rom.init.system.simple’
Code from ’sysproc.lib’, file offset 16750

ROM OFFSET #3AD3 #3B6F 156
ROM entry offset #3RD6
Invocation stack §800000C0 #800000E4 36
Workspace §800000A0 #800000C0O 32

HIGH priority OVERLAYED SYSTEM process ’System.process.b’
Code from ’sysproc.lib’, file offset 44718

ROM OFFSET #3B6F #3BCB 92
ROM entry offset #3B6F
Invocation stack #800000FC #80000110 20
Workspace #800000E4 #800000FC 24

LOW priority USER process ’Simple’
Code from "hello.lku’, file offset 2

ROM OFFSET #DF #3AD3 14836

ROM entry offset #10a
Invocation stack #80001164 #80001178 20
Workspace #800000A0 #80001164 4292
Static #80001178 #80001A30 2232
Heap #80001A30 §8000E230 51200
Parameter data #8000E230 #8000E35C 300

Boot path for network

L\ionnectivity for network

J

Figure 3.6 Memory map for program configured to boot from and run in ROM

3.11 Disabling interactive debugging - ‘Y’ option
The ‘Y’ collector option has two effects on the program being built:
» |t disables interactive (breakpoint) debugging of the program
» |t reduces the amount of memory used.
For programs compiled and linked for a specific transputer type, this option will
cause icollect to produce a program that uses less memory. However,

programs compiled and linked for transputer classes ‘“TA’ or “TB’ will not build when
this option is used. This option is only valid for programs collected with the T option.

72 TDS 367 01 March 1993

3 icollect - code collector 67

3.12 Error messages

This section lists error messages generated by icollect. The messages are
listed in alphabetical order under the appropriate severity classification. In all
cases the introductory string (severity, and filename if appropriate) is omitted.

icollect generates errors of severities Warning and Serious. Serious errors
cause the tool to terminate without producing any output.

3.12.1 Warnings

The following messages are prefixed with ‘Warning-'. They are only generated
when the '’ option is used (single processor mode).

Extra disable option on command line ignored

The program has been configured with interactive debugging disabled
and the 'Y’ option specified to the collector is therefore superfluous.

Flip error mode ignored with user bootstrap

The ‘E’ option is ignored when a user-defined bootstrap is specified
since the collector will only accept a single linked unit as a bootstrap.

Program configured with interactive debugging enabled, option
ignored

The program has been configured with interactive debugging enabled
and the ‘Y’ option has been specified to the collector. The ‘¥’ option is
ignored and the boot file is built.

Strange board size for sixteen bit processor: Setting to zero

The memory size specified exceeds the addressing capacity of a 16 bit
processor (64 Kbytes). The collector uses a memory size of zero for the
rest of the build.

3.12.2 Serious errors
The following errors are prefixed with ‘Seriocus-'.

Address space for target processor exhausted

The address space required by the program is greater than 64Kbytes,
the maximum addressable space on a 16-bit processor.

Bootstrap file already specified
More than one bootstrap file was specified. Only one file is allowed.
Bootstrap filename too long

The maximum length allowed for the bootstrap filename is 255 charac-
ters.

72 TDS 367 01 March 1993

68

3.12 Error messages

Bootstrap is greater than 255 byte in library file

The library bootstrap is too large. This should only occur if the library
file is invalid or corrupt.

Cannot have both rom types

‘RA’ and ‘RO’ options are mutually exclusive and cannot both be speci-
fied on the same command line.

Cannot have configured and memory size

The memory size option is incompatible with building a bootable
program for a configuration binary file.

Cannot have configured and non bootable file

The collector cannot generate both a network loadable file and a non-
bootable file simultaneously for the same program.

Cannot have rom and non bootable file

The collector cannot generate both a ROM-loadable file and a non-
bootable file simultaneously for the same program.

Cannot open file filename
Host file system error. The file specified cannot be opened.
Cannot patch parameter data for processor class

The ‘¥’ option has been specified with a linked unit for a processor class.
The collector cannot initialize some of the data without a linked unit for
a specific processor type.

Cannot use absolute placement and bottom of memory loader

The user has specified BMto the collector but is using absolute code and
data placement at configuration. This combination is not legal.

Command line parsing error at string

Unrecognized command line option.
Debug file already specified

More than one debug was file specified. Specify one only.
Dynamic memory allocation failure

Memory allocation error. The collector cannot allocate the required
amount of memory for its internal data structures.

Error in writing to debug file

Host file system error. The debug file could not be written. This
message will only appear if the collector is invoked with the “T’ option
(unconfigured mode).

72 TDS 367 01 March 1993

3 icollect - code collector 69

Expected end tag found not present in .cfb file

A specific end tag is missing in the configuration binary file. Either the
file is corrupted or the versions of icollect and configurer used are
incompatible.

lllegal tag found in .cfb file

Incorrect format configuration binary file, recognized as an illegal tag.
Either the file is corrupted or the versions of icollect and configurer
used are incompatible.

lllegal language type found in input file

Source language used to create the file is not supported by the
collector. Less likely, but possible, is that the file was created using an
incompatible (possibly earlier) version of a tool.

lllegal process type

Unrecognized process type. Either the file has been corrupted or the
versions of icollect and configurer used are incompatible.

lllegal processor type

Unrecognized processor type. Either the file has been corrupted or
icollect and the configurer are incompatible.

lllegal tag found in input file : filename

Incorrect format input file. The most likely reason for this error is that an
incorrect file has been specified. Other less likely but possible explana-
tions are that the file was created using an earlier or incompatible
version of one of the tools, or that the file has become corrupted.

Input file already specified
More than one input file specified on the command line.
Input file has not been linked filename

The collector accepts only linked files, either directly when using single
processor operation, or indirectly via entries in the configuration binary
file. This message can be generated if the file was created using a
previous version of a tool, or if the file is corrupt.

Input file is of incorrect type: filename

If the “T* option is specified (single processor program) the input file
must be a single linked unit (. 1ku type). If the “T* option has not been
specified the input file must be a configuration binary file (. c£b type).

Input filename too long

The maximum length allowed for the input filename is 256 characters.

72 TDS 367 01 March 1993

70

3.12 Error messages

Linked unit file in cfb and linked unit in input file found do not match:
filename

The linked file specified in the configuration binary and the one found
the collector do not match.

Linked unit module not found in: filename

The required library module is missing or has been corrupted. This
message is generated when an incorrect version of the library is
installed.

Memory requirement for build is greater than specified, an extra <n>
bytes required at least

The amount of memory specified on a processor is not enough for the
program to execute. An extra <n> bytes are required at least.

Memory size already specified
Memory size must be specified once only.
Memory size string invalid

Memory size must be given in decimal or hex. Hex numbers must be
introduced by ‘#’ or ‘§’.

Memory size string too long
Specified memory size is too large.
More than one parameter statements

The collector expects only one parameter statement per processor.
Either the file has been corrupted or the versions of icollect and
configurer used are incompatible.

No debug and debug output file specified in command line

Options ‘D’ (disable debug) and ‘C’ (debug filename) cannot be used
together.

No input file specified
One, and only one, input file must be specified on the command line.
No parameter descriptor present in input file: filename

The formal parameter descriptor in the input file is not present. This
usually means that the process has not been linked with a main entry
routine. This message will only appear if the collector is invoked with the
“T* option (unconfigured mode).

Output file already specified

More than one output file was specified. Specify only one.

72TDS 367 01 March 1993

3 icollect - code collector 71

Output filename too long
The maximum length allowed for the output filename is 256 characters.
Parameter descriptor error in input file : filename

The formal parameter descriptor in the input file is not of the correct
form, indicating that the process interface is not one recognized by the
collector. This message will only appear if the collector is invoked with
the ‘T* option (unconfigured mode). See section 3.3.

Print map file already specified
More than one print map file was specified. Specify one only.

Program configured for boot from ROM command line is boot from link

The specified configuration binary file was created for either ROM or
RAM, and neither has been specified to icollect.

Program configured for running in RA mode command line is RO mode

Wrong mode specified, or incorrect option given to the configurer when
the specified configuration binary file was created. RA and RO modes
are mutually exclusive.

Program configured for running in RO mode command line is RA mode

Wrong mode specified, or incorrect option given to the configurer when
the specified configuration binary file was created. RA and RO modes
are mutually exclusive.

Require at least <ny> bytes at the top of memory for bootstrapping on
processor <n>

The bootstrapping sequence requires an extra <ny> bytes at the top of
memory. Once the bootstrapping has finished this memory is available
to the user.

Rom size already specified
ROM size must be specified once only.
Rom size in input file and command line do not match

The ROM size specified on the command line does not match that
specified to the configurer when the input file was created.

Rom size not specified

A ROM size must be specified because the input file is to be loaded into
ROM.

72TDS 367 01 March 1993

72

3.12 Error messages

Rom size string invalid
ROM size must be given in decimal.
Rom size string too long
ROM size specified was too large.
Stack size already specified
Stack size must be specified once only.
Stack size string invalid
Stack size must be specified in decimal format.
Stack size string too long
Specified stack size was too large.
Strange function or attribute for linked unit in : filename

The collector has found an unfamiliar value in the input file. Either an
old version of a tool was used in the creation of the input file, or the input
file has been corrupted.

System error

Host system error has occurred, probably when accessing a file. This
message may be generated when a file is read and its contents seem
to have changed or the file does not exist.

Unexpected end of file : filename

One of the files specified in the configuration binary has ended prema-
turely. filename identifies the offending file. If the message ‘Suspect
corrupted file’ is substituted for filename then the file is corrupted.

User bootstrap not allowed when program is configured

User defined bootstrap loaders can only be used with single processor
programs.

User bootstrap not allowed with rom option

User defined bootstrap loaders cannot be used with ROM-loadable
code.

User bootstrap type does not match that of linked unit

Either the target processor type or the error mode of the bootstrap code
does not match that of the input file.

3.12.3 Fatal errors

Internal error <message text>

An internal error has occurred this should be reported to your local
INMOS distributor or field applications engineer.

72 TDS 367 01 March 1993

4 idebug— network
debugger

This chapter is a reference chapter for the network debugger tool idebug. It
describes the command line syntax and gives examples of the commands to use
in different situations. It provides detailed reference information about the
debugger symbolic debugging functions and Monitor page commands, and
provides a list of error messages.

This chapter does not describe how to use the debugger, which is covered in
Chapter 9 of the User Guide.

41 Introduction

The network debugger idebug is a comprehensive debugging tool for transputer
programs. It can be run in posf-mortem mode to determine the cause of failure in
a halted program, or in inferactive (breakpoint) mode to execute a program step-
wise by setting breakpoints in the code. In either mode programs can be debugged
from source code using the symbolic functions or from the machine code using the
Monitor page commands

Post-mortem debugging allows programs to be examined for the cause of failure
after a transputer halts on error. The debugger locates the errant process in the
program either by direct examination of the program image in transputer memory
or by reading memory dump files. Processes running in parallel with the errant
process anywhere on the network can be examined.

Interactive breakpoint debugging allows programs to be executed in a stepwise
manner under interactive control. Breakpoints can be set within the code to cause
the program to pause for the inspection of variables, channels, and processes;
variables can be modified and the program continued with the new values.

The debugger can also be invoked on a dummy network to examine the static
features of a program. The dummy network simulates the contents of memory
locations and registers, and can also be used to explore the features of the
debugger without running a real program.

4.2 Debugging the root transputer

idebug can be used to debug single and multitransputer programs. The tech-
niques and commands to use when invoking the debugger differ slightly depending
on whether or not the program (or a process forming part of the program) runs on
the root transputer, and according to the debugging mode (post-mortem or break-
point).

72 TDS 367 01 March 1993

74 4.2 Debugging the root transputer

Two procedures are used to debug programs in post-mortem mode, depending on
whether the application uses the root transputer. Programs that use the root trans-
puter are referred to in this chapter as R-mode programs, and programs that do
not use the root transputer are referred to as T-mode programs. Command line
options are used to select the correct mode of operation for idebug.

To avoid the need for a memory dump, programs can be skip loaded over the root
transputer using iskip. Skip loading requires at least one extra processor in the
network (which will be used by the debugger) but speeds up debugging consider-
ably and is the recommended method where more than one processoris available.
Skip loading is described in detail in chapter 15 of this manual.

421 Board wiring

Before any program can be debugged in post-mortem mode, the transputer’s
Analyse signal must be asserted once, and once only. Because different proce-
dures must be adopted for programs which do and do not use the root transputer,
the debugger cannot assert the signal automatically and so the appropriate
iserver option must be specified on the idebug command line.

Table 4.4 summarizes the command sequences to use for the two program modes
on different board types.

422 Post-mortem debugging R-mode programs

Code running on the root transputer, and loaded with iserver directly, is
debugged in post-mortem mode from a memory dump file which is specified by the
‘R’ option. The memory dump file must be created using the idump tool before the
debugger is invoked. Other transputers in the network are debugged down links
connected to the root transputer, in the normal way.

For R-mode programs, idump asserts the Analyse signal and the ‘SA’ option is not
required on the idebug command line. In fact a second assertion of the signal
would cause data in the memory to become corrupted. If idump is not used before
the debugger is run then the debugger cannot load onto the root transputer and
a server error is reported.

A description of the idump tool can be found in chapter 5 of this manual.

4.23 Post-mortem debugging T-mode programs

T-mode programs are loaded using iskip and subsequently debugged using the
‘T’ option to specify the root transputer link to which the network is connected. The
‘SA’ server option must also be added to the idebug command line in order to
assert Analyse.

If the ‘SA’ option is not given, the debugger can not be booted onto the root trans-
puter and the server aborts with an error message. The debugger should then be
re-invoked with the correct options.

72 TDS 367 01 March 1993

4 idebug - network debugger 75

4.24 Post-mortem debugging from a network dump file

To suspend a post-mortem R or T debugging session without losing the original
context, the Monitor page [N'] command can be used to dump the entire state of
a network into a network dump file. The debugger can then be invoked using this
file, without being connected to the network (although one transputer will still be
needed to run the debugger).

Note: This option will only work for programs that have not been interactively
(breakpoint) debugged.

Memory dump files and network dump files are not the same: the former contains
a single processor's memory image while the later contains data about a complete
network (they are also in different formats). The i1list tool can be used to deter-
mine the format of a dump file.

425 Debugging a dummy network

The debugger may be used to debug a program using dummy data. Using the
debugger command line ‘D’ option which simulates the contents of memory loca-
tions and registers, static features of a program may be examined. This is useful
to determine processor connectivity and memory mapping for each processor in
the network. Because memory locations etc. are simulated, this option only
requires the root transputer in order to execute the debugger (even when used with
a bootable file for a network of transputers).

The ‘D’ option may also be used to explore most features of the debugger without
running a program.
4.26 Methods for interactive breakpoint debugging

Interactive mode breakpoint debugging does not require use of the memory dump
tool because the program is automatically skip loaded over the root transputer
where the debugger is running. However, like all skip loads it requires an exira
processor on the network.

4.3 Running the debugger

The debugger is invoked using the following command line:

[idebug bootablefile {options}

where: boofablefile is the bootable file to be debugged.

options is a list of the options given in Table 4.1.

Options must be preceded by ‘-’ for UNIX-based toolsets and ‘/’ for
MS-DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be given in any
order.

Options must be separated by spaces.

72TDS 367 01 March 1993

76 4.3 Running the debugger

Only one bootable file may be specified on the command line.

If no arguments are given on the command line a help page is displayed giving the
command syntax and a list of command line options.

Command line parameters for programs being debugged interactively should not
be entered on the debugger command line. The debugger will prompt for these
parameters when the code being debugged is about to be started.

Note: idebug is unique amongst the toolset tools in that, when invoked with
command line options, its driver program does not automatically reset (or analyze,
as appropriate) the root transputer. This is due to the diversity of hardware configu-
rations where the appropriate sequence may not be obvious to the driver. Because
of this, the task of selecting the appropriate i server command is delegated to the
user.

Failure to supply the appropriate i server reset (SR) or analyze (SA) options along
with idebug command line options will result in iserver failing to boot idebug.

Only when invoked with no command line options at all will idebug automatically
reset the root transputer and display its own help page.

Option Description
A Assert INMOS subsysitem Analyse. Directs the debugger to
assert Analyse on the sub-network connected to the root
processor.
Required when using B004 type boards.
AP A replacement for the A option when running programs on

boards from certain vendors. Asserts Analyse on the neftwork
connected to the root processor.

Contact your supplier to see whether this option is applicable to
your hardware. It does not apply to boards manufactured by
INMOS.

B linknumber |Interactive breakpoint debug a network that is connected to the
root processor via link linknumber. idebug executes on the root
processor.

Must be accompanied by the iserver ‘SR’ option.

C fype Specify a processor type (e.g. T425) instead of a class (e.g. TA)
for programs that have not been configured.

D Dummy debugging session. Can be used for familiarization with
the debugger or establishing memory mappings.

Must be accompanied by the iserver ‘SR’ option.
GXX Improves symbolic debugging support for C++ source code.
Should be specified when debugging C++ programs.

72TDS 367 01 March 1993

4 idebug - network debugger

77

Option

Description

I

Display debugger version string.
Must be accompanied by the iserver ‘SR’ option.

J #hexdigits

Takes a hexadecimal digit sequence of up to 16 digits and repli-
cates it throughout the data regions of a program (stack, static,
heap and vectorspace as appropriate) when interactive debug-
ging. The digit sequence must be preceded by a hash, ‘#', char-
acter.

Used when breakpoint debugging configured T426 programs.

K #hexdigits

As the J option but includes freespace.
Used when interactive debugging non-configured T426
programs.

M linknumber

Postmortem debug a previous interactive debugging session.
idebug executes on the root processor.

Must be accompanied by the iserver ‘SK option.

N filename

Postmortem debug a program from a network dump file file-
name, created by idebug. The file is assumed to have the
extension .dmp if none is specified.

Must be accompanied by the iserver ‘SR’ option.

Q variable

Specify environment variable used to specify the ITERMfile. The
default is “ITERM'.

R filename

Postmortem debug a program that uses the root fransputer. file-
name is the file that contains the contents of the root processor
(created by idump or isim). The file is assumed to have the
extension .dmp if none is supplied.

Ignore subsystem signals when interactive debugging.

T linknumber

Postmortem debug a program that does not use the root
processor, on a network that is connected to link linknumber of
the root processor. idebug executes on the root processor.

Must be accompanied by the iserver ‘SA’ option.

X0

Causes the debugger to request confirmation of the Quit
command.

4341

Table 4.1 idebug command line options

Toolset file types read by the debugger

The debugger uses information within files produced by toolset tools in order to
establish the hierarchy of components used to produce a bootable file.

Table 4.2 provides a list of file types used by the debugger. The table covers all
languages which the debugger supports (FORTRAN, C, and occam).

72TDS 367 01

March 1993

78 4.3 Running the debugger

File extension |Description
-£77 FORTRAN source code file.
.h77 FORTRAN include file.
.c C source code file.
.h C include file.
.occ occam source code file.
.inc occam include file.
.cfb Configuration data file.
.pgm occam configuration data file.
.btl Bootable file to be debugged.
.btr ROM code file to be debugged.
.clu occam configuration object file.
.1ku Linked unit generated by linker.
.teco Object file generated by compiler.
.1lib Library file.
.dmp Root processor dump file (created by idump or isim) or
network dump file (created by idebug).

Table 4.2 File types read by debugger

With the exception of a dump file which must have a . dmp filename extension, the
debugger will accept different extensions for a particular file type. (For example the
extensions used by imakef such as . tah which can be used instead of . tco).

4.3.2 Environment variables
idebug requires three environment variables to be set up on the host system (in
addition to those required to run the iserver and to build a bootable file). These

are listed in table 4.3. Details of how to set up these variables can be found in the
Delivery Manual that accompanies this release.

72 TDS 367 01 March 1993

4 idebug - network debugger 79

ITERM Contains the name of the file which defines key mappings for
debugger symbolic functions and some monitor page commands.
The name of the environment variable may be over-ridden by
using the ‘Q' command line option.

IDEBUGSIZE |Defines the amount of memory available on the root fransputer
board. This variable must be specified for idebug to work
correctly (idebug requires at least 1 Mbyte of available root
transputer memory: it is strongly recommended that 2 Mbytes or
more be available).

IBOARDSIZE |The amount of memory available for the application program.
Required for bootable single transputer programs (created from
linked units using icollect with the ‘T’ option and without the
‘M’ option), where the memory size was not specified.

Table 4.3 Environment variables used by idebug

4.3.3 Program termination

If the program terminates by issuing the ‘terminate’ command to the server, the
following message is displayed:

[Program has finished (after nnn seconds) - hit any key
for monitor page]

The debugger can be re-entered after server termination by pressing any key. The
final state of the network can be examined using the full range of symbolic and
Monitor page commands.

The exit status returned by the program is displayed on the Monitor page.

If the program contains independent processes which require no communicaticn
with the server then the debugger allows the program to be resumed. In this case
the debugger displays the following warning message:

[Warning: iserver terminated by user program: use CTRL-A
for monitor page]

44 Post-mortem mode invocation

To invoke the post-mortem debugger use the appropriate command from the
following list. Command lines are shown in both in UNIX and MS-DOS/VMS
formats.

Note: Commands are given for a BO08 board wired subs (see section 4.7.1). For

the commands and command sequences to use on other board types see
section 4.7.2.

72 TDS 367 01 March 1993

80 4.4 Post-mortem mode invocation

441 Debugging T-mode programs — option ‘T’

idebug bootablefile -t linknumber -sa
idebug boofablefile / t linknumber /sa

where: bootablefile is the program bootable file;

flinknumber is the number of the link of the root processor which is
connected to the network.

Use the ‘T’ option for programs that do not use the root transputer, that is those
loaded by using iskip. The program is debugged from the program image that
is resident in the memory of each transputer; the information about the rest of the
network is extracted down the root transputer link. This method provides the fastest
post-mortem debugging because the root transputer memory image is not saved.
However, the option does require an extra transputer on the network. The ‘T’ option
should be accompanied by the ‘SA’ option to assert Analyse on the network.

44.2 Debugging R-mode programs — option ‘R’

idebug bootablefile -xr dumpfile
idebug bootablefile /x dumpfile

where: bootablefile is the program bootable file;

dumpfile is the root transputer memory dump file.
Use the ‘R’ option for programs that use the root transputer in a network. The dump
file is created by using idump, which produces a dump of the program image on

the root transputer only; the debugger extracts information about other transputers
on the network (if applicable) via the root transputer’s links.

44.3 Debugging a network dump file — option ‘N’

idebug boofablefile -n neffile -sr
idebug bootablefile /n netfile /sr

where: bootablefile is the program bootable file;

neffile is a network dump file.
Use the 'W’ option to debug programs without access to the original network of
transputers. This is effectively debugging off-line. The network dump file is gener-
ated by the idebug Monitor page [N] command. Note: this can only be used for

programs that have not been debugged interactively. The ‘N’ option should be
accompanied by the iserver ‘SR’ option to reset the network.

72 TDS 367 01 March 1993

4 idebug - network debugger 81

444 Debugging a previous breakpoint session — option M’

idebug bootablefile -m linknumber -sa
idebug bootablefile /m linknumber /sa

where: bootablefile is the program bootable file;

linknumber is the number of the link of the root processor which is
connected to the network.

Use the ‘M’ option to debug a previous breakpoint debugging session where either
the network has crashed (error flag was set) or the host key was used
to to terminate the debugger. This option is the same as the ‘T’ option but informs
the debugger the breakpoint runtime kemnel is present. The ‘M’ option should be
accompanied by the iserver ‘SA’ option to assert Analyse on the network. The
same action may be achieved when using the debugger in interactive mode with
a subsystem wired subs (see section 4.7.1) by use of the Monitor page
command.

Note: Symbolic functions and Monitor page commands that support breakpointing
are absent in post-mortem mode.

445 Re-invoking the debugger on single transputer programs

For programs running on a single transputer only and debugged from a memory
dump file the debugger can be re-invoked on the same dump file by passing the
‘SR’ option to iserver from the idebug command line. This option is required to
reset the transputer before loading the debugger program (the resetting is normally
done by idump).

446 Debugging boot from ROM programs

Programs which are configured to boot from ROM and run in RAM may be
debugged in post-mortem mode via a fransputer link in a similar manner to that
described in section 4.4.1. The debugger must be run on the root processor of the
network (as specified to the configurer via the ‘P’ option) which must be set to boot
from link while debugging.

idebug romcodefile -t linknumber -sa
idebug romcodefile /t linknumber /sa

where: romcodefile is the .btr output file produced by icollect for use by
ieprom,

linknumber is the number of the link of the root processor which is
connected to the network.

4.5 Interactive mode invocation

To run the debugger in interactive mode use one of the commands below.

72 TDS 367 01 March 1993

82 4.6 Function key mappings

Note: Commands are supplied for a BO08 board wired subs. For the commands
to use on other board types see Table 4.4.

idebug bootablefile -b linknumber -sx
idebug bootablefile /b linknumber /st

where: bootablefile is the program executable file;

linknumber is the number of the root transputer link where the application
network is connected.

In interactive mode idebug loads the bootable file directly onto the network and
sets up a runtime kemel and idebug virtual link system on each processor used
by the program. iserver is not required to load the program, but an exira
processor is required to run the debugger; the program is in effect ‘skip’ loaded.

When first invoked in interactive mode, the debugger immediately enters the
Monitor page where the (Breakpoint Menu) command can be used o set
breakpoints before the program is started.

4.6 Function key mappings

All the debugger symbolic functions, and some Monitor page commands, are
assigned to specific keys on the keyboard by the ITERM file (the file specified by
the environment variable ITERM). For the correct keys to use on your terminal
consult the keyboard layouts provided in the Delivery Manual that accompanies
this release.

ITERM files are supplied with the release for terminals commonly used with your
host system but may also be created to suit your own requirements. Details of the
ITERM file and an example listing which illustrates the format can be found in
appendix D.

Key-mapped Monitor page commands are listed in section 4.9.7. A complete list
of symbolic functions can be found in section 4.10.

4.7 Debugging programs on INMOS boards

On transputer boards the Analyse and Reset signals can be propagated from the
root transputer in two ways, and this influences the options that must be used when
debugging programs.

4.71 Subsystem wiring

On transputer boards the subsystem signal is either propagated unchanged to all
transputers on the network (known as wired down), or the signals are connected
to the subsystem port (wired subs) from where they are controlled by the board’s
root processor.

72 TDS 367 01 March 1993

4 idebug - network debugger 83

On B004 boards and other boards where subsystem is wired in the same way
Analyse must be asserted on the network before transputers can be accessed by
the debugger from the root processor. However, if Analyse is asserted more than
once the program will be corrupted in transputer memory.

The wiring type can be identified by the hardware addresses of the three
subsystem registers. On B004-type boards the addresses are as follows:

Signal Hardware address
Reset #00000000
Analyse #00000004
Error #00000000

An example of a BOO4-type board is the IMS B404 TRAM. For details of the
subsystem wiring on other boards consult the Datasheet or board specification.

In addition, TRAM boards and B004 boards differ in the way the subsystem port
is used. On TRAMs these subsystem signals are propagated to all transputers on
the network, whereas on B004 boards the signals are not propagated at all.

The sample program assert.occ illustrates resetting a BO04-type board. This
program is supplied on the toolset examples directory.

4.7.2 Debugging options to use with specific board types

The conditions outlined above affect the commands that must be used when
debugging T-mode and R-mode programs. Table 4.4 shows the command line
options to use for different combinations of board type, subsystem wiring, and
program mode.

For further details about loading programs see the chapters on loading and debug-
ging in the User Guide (chapters 7 and 9).

4.7.3 Detecting the error flag in interactive mode

In interactive mode the debugger detects that a processor has its error flag set by
use of the subsystem services. If the hardware is not wired up to use the subsystem
services then the debugger is unable to detect when an error flag is set; this may
cause the debugger to hang for no apparent reason. On such networks the
iserver ‘SE’ option should be used to detect when an error flag has been set.
Note, however, that detection of a set error flag will terminate the debugger without
warning — the debugger can, however, be subsequently re-invoked in post-
mortem mode.

Note: When using the debugger in interactive mode, the hardware should be
set-up to use the subsystem services if possible.

72TDS 367 01 March 1993

84 4.8 Debugging programs on non-INMOS boards

Board |Wiring |Mode |Command line(s) to use
TRAM |down T |idebug program -b linknumber -sr -set -st

idebug program -m linknumber -sa

idebug program -t linknumber -sa

R |idump dumpfile size
idebug program -r dumpfile

subs T |idebug program -b linknumber -sr
idebug program -m linknumber -sa

idebug program -t linknumber -sa

R |idump dumpfile size
idebug program -x dumpfile

BO04 down T |idebug program -b linknumber -sx -set -st

idebug program -m linknumber -sa
idebug program -t linknumber -sa

R |idump dumpfile size
idebug program -r dumpfile

subs T |idebug program -b linknumber -a -sr
idebug program -m linknumber -a -sa
idebug program -t linknumber -a -sa

R |idump dumpfile size
idebug program -xr dumpfile -a

Command lines are given in UNIX format (*-' option switch character). For
MS-DOS and VMS based toolsets use the ‘/’ option switch character.

The ‘SI’ option may also be used on any command line to display activity
information while the debugger is loading.

Modes: R = program using the root transputer; T = program not using the root
transputer, and debugged down a root transputer link.

program is the program bootable file.
T See section 4.7.3.

Table 44 Commands to use on different board types

4.8 Debugging programs on non-INMOS boards

If the hardware does not adhere to the INMOS subsystem convention then it is
necessary to determine how the hardware is configured with respect to the
subsystem and select the appropriate command line options.

It will probably be necessary to use the idebug command line ‘s’ option when
breakpoint debugging in order to stop the debugger monitoring the subsystem

72TDS 367 01 March 1993

4 idebug - network debugger 85

error status, and the iserver 'SE’ option to determine when the error flag has
been set.

Note: Some non-INMOS boards use a specific subsystem convention which is
supported by idebug, but which is different from the INMOS convention. To assert
subsystem Analyse on such boards, use the ‘AP’ rather than the ‘A’ option. The
board supplier should be able to say whether the ‘AP’ option is appropriate for their
system.

4.9 Monitor page commands

This section lists and describes the debugger Monitor page commands. The
commands are tabulated in alphabetical order for easy reference. Where a
command invokes an option submenu the operation of each option in the submenu
is described.

Monitor page commands are also listed for easy reference in the Handbook that
accompanies this release.

4.9.1 Command format

All Monitor page commands are either single letter commands or are invoked by
a single function key press. Key mappings for the few general commands that use
function keys can be found in the Delivery Manual that accompanies this release.

49.2 Specifying transputer addresses

Many Monitor page commands require a memory address to be entered. Where
there is a default value, this is displayed with the prompt. The default address is
the last address specified or located to, and is used if RETURN] is pressed without
entering an address.

Addresses can be specified in decimal or hexadecimal format. Hexadecimal
numbers must be given as a sequence of hexadecimal digits preceded by the char-
acters ‘¥, ‘$’, or‘%’. The ‘¥ and ‘$’ characters are used to prefix a full hexadecimal
address. The ‘s’ character adds MOSTNEG INT to the hexadecimal value using
modulo arithmetic. This is useful when specifying transputer addresses which are
signed and start at MOSTNEG INT. For example, $70 is interpreted as #80000070
on a 32 bit transputer, and as #8070 on a 16 bit transputer.

Address may also be specified relative to the Iptr or Wptr (derived from the
current Wdesc) currently displayed in the monitor page. One of the following forms
may be used:

i+nnnor i-nnn: for addresses relative to Iptr — in this case nnn is a byte offset.
w+nnn orw—nnn: for addresses relative to wptx — in this case nnn is a word offset.

4.9.3 Scrolling the display

Several commands mapped by the ITERM file (see below) may be used to scroll
certain of the Monitor page displays. Cursor keys may also be used.

72TDS 367 01 March 1993

oo}

6 4.8 Debugging programs on non-INMOS boards

49.4 Editing functions

The following string editing functions are available for on-screen editing of strings
for certain commands:

Move the cursor to the beginning of the string.

Move the cursor to the end of the string.

Delete the string.

Move the cursor left one character.

Move the cursor right one character.

[(A] Replace the current string with the string used in the
previous invocation of the command.

Delete the character to the left of the cursor.

Enter the string.

Note: [STARTOFLINE |, [ENDOFLINE |, [DELETELINE |, and[DELETE | are
mapped by the ITERM file to specific keys on the keyboard. Details of the key
mappings on your terminal can be found in the Delivery Manual that accompanies
this release. will not be applicable to some commands.

495 Commands mapped by ITERM

Certain Monitor page commands are mapped to specific keys on the terminal by
the ITERM file. Commands mapped in this way include keys which are used to
scroll the display (see below), commands which produce the same effect in both
debugging modes, and the commands [TOP], [RETRACE |, [RELOCATE | and

which invoke the corresponding symbolic mode functions.

The keys to use for all Monitor page commands mapped by ITERM can be found
by consulting the keyboard layouts supplied in the Delivery Manual.

496 Summary of commands

Key [Meaning Description

A* ASCII View a region of memory in ASCII.

Bi* |Breakpoint Display the Breakpoint menu enabling breakpoints to
be set, cleared or listed.

T = Interactive mode only.
* = String editing functions available for these commands, see section 4.9.4.

72 TDS 367 01 March 1993

4 idebug - network debugger 87

Key |Meaning Description

Cc Compare Compare the code on the network with the code that
should be there to ensure that the code has not been
corrupted.

D* Disassemble Display the transputer instructions at a specified area
of memory.

E Next Emror Switch the current display information to that of the
next processor in the network which has halted with its
error flag set.

F* Select file Select a source file for symbolic display using the file-
name of the object file produced for it.

G Goto process | Goto symbolic debugging for a particular process.

H* Hex View a region of memory in hexadecimal.

I* Inspect View aregion of memory in a symbolictype. Types are
expressed as standard occam types.

Ji*r [Jump Start or resume the application program.

K Processor Display the names and types of all processors in the

names network.

L Links Display instruction pointers and process descriptors
for the processes currently waiting for input or output
on a transputer link, or for a signal on the Event pin.

M Memory map Display the memory map of the current processor.

N* Network dump | Copy the entire state of the transputer network into a
‘network dump’ file in order to allow continued (off-line)
debugging at a later date.

o* Specify process |Resume the source level symbolic features of the
debugger for a particular process.

P* Processor Switch the current display information to that of
another processor.

Q Quit Leave the debugger and retum to the host operating
system.

R Run queues Display instruction pointers and process descriptors of
the processes on either the high or low priority active
process queue.

St Show messages | Display the Messages menu enabling the default

actions of the debugger to debug support functions to
be changed.

T = Interactive mode only.

* = String editing functions available for these commands, see section 4.9.4.

72 TDS 367 01

March 1993

88 4.8 Debugging programs on non-INMOS boards

Key |Meaning Description

T Timer queues | Display instruction pointers, the process descriptors
and the wake-up times of the processes on either the
high or low priority timer queue.

U+t Update Update the monitor page display to reflect the current
state of the processor.

' Process names |Display the memory map of processes on the current
processor.

Wi* | Write Write to any portion of memory in a symbolic type.
Types are expressed as standard occam types.

X Exit Retumn to symbolic mode.

Yt Postmortem Change an interactive breakpoint debugging session
into a post-mortem debug session.

z Virtual links Display instruction pointers and process descriptors
for processes waiting on the configurer's software
virtual links.

? Help Display help information.

T = Interactive mode only.
* = String editing functions available for these commands, see section 4.9.4.

49.7 Symbolic-type commands

Display help information.

Re-draw the screen.

Switch to symbolic mode and perform symbolic relocate.

Restart a process stopped at a breakpoint.

Switch to symbolic mode and perform symbolic retrace.
TOP Locate to the last instruction executed on the current

processor.

Key bindings for these commands on specific terminal types can be found in the
rear of the Delivery Manual.
4.9.8 Scroll keys

LINE UP Scroll the currently displayed memory, disassembly, queue,
or list.

72 TDS 367 01 March 1993

4 idebug - network debugger 89

LINE

DOWN Scroll the currently displayed memory, disassembly, queue,

or list.

PAGE UP Scroll the currently displayed memory, disassembly, queue,

or list.

PAGE DOWN Scroll the currently displayed memory, disassembly, queue,

or list.

TOP OF FILE Go to the top of the cumrently displayed processor name

list, or software virtual link list.

END OF FILE Go to the end of the currently displayed processor name

E@EBIIIII

list, or software virtual link list.

Scroll the currently displayed memory, disassembly, queue,
or list.

Scroll the curmrently displayed memory, disassembly, queue,
or list.

Scroll the currently displayed processor left.

Scroll the currently displayed processor right.

Key bindings for these commands on specific terminal types can be found in the
rear of the Delivery Manual.

49.9

[>]

Monitor page command descriptions

ASCI

This command displays a segment of transputer memory in ASCII format,
starting at a specific address. If no address is given the last specified
address is used. Specify a start address after the prompt:

Start address (#hhhhhhhh) ?

Either press to accept the default (last specified) address, or
enter the desired address. The address can be entered as a decimal
number, a hexadecimal number preceded by ‘¥, or the short form
‘Sh...hH.

The memory is displayed in blocks of 16 rows of 32 ASCII bytes, each row
preceded by an absolute address in hexadecimal. Bytes are ordered from
left to right in each row. Unprintable characters are substituted by a full
stop.

The scroll keys (section 4.9.7) can be used to scroll the display.

72 TDS 367 01 March 1993

90 4.9 Monitor page commands

Breakpoint menu (interactive mode only)
This command invokes the Breakpoint Menu:

Breakpoint Menu
Set a breakpoint on this processor
Toggle a breakpoint on this processor
Clear a numbered breakpoint
Clear all breakpoints on all processors
Clear all breakpoints on this processor
Set a breakpoint at all entries this processor
Set a breakpoint at all entries all processors
Set a breakpoint at all main () this processor
List all breakpoints and hits
List all breakpoints and hits on this processor
Quit this option

OUOuEHEEaoaR@wPOE®

Breakpoint option (A,B,C,E,G,L,M,P,Q,S,T) ?

Options are selected by entering one of the single letter commands. A
selected option can be cancelled by pressing[RETURN | with no typed input
when it prompts for an address or a breakpoint number,

The ‘E'and ‘G’ options, which set breakpoints at the entry point of all config-
uration level processes, are mainly for use with 0ccam programs where
the entry point of the program is the start of the top-level process. For non-
configured occam programs the entry point is the first procedure called
when the program starts. For configured 0occam programs the entry point
is the configuration level code.

The ‘M option is intended for languages which have run-time support and
a known entry point to the application code (such asmain () in C, or the
FORTRAN main program). This option sets a breakpoint at all the program
entry points on the cumrent processor.

Note: for processors which do not have hardware breakpoint support the
debugger will not set breakpoints in high priority configuration level
processes when the ‘E’, ‘G’ or ‘M’ options are used.

Breakpoints are assigned a unique number which must be used with the
‘C’ option. Numbers are given on the List Breakpoints displays.

In addition, the List Breakpoint displays provide information about the
processor the breakpoint has been placed on (Proc:), the address of the
breakpoint (Addxr:), the number of times the breakpoint has occurred
(Hits:) and for breakpoints set in symbolic mode the filename and line
number they correspond to. For example:

4) Proc: 0, Addr: #8000408E, "“facs.c”:201
Hits: 3

72 TDS 367 01 March 1993

4 idebug - network debugger 91

This display means that breakpoint number 4 on processor 0 at address
#8000408E (which comresponds to line number 201 of the file “facs.c”)
has been hit three times.

Note: Only breakpoints which are set in symbolic mode (at the beginning
of a statement) are properly supported. Setting breakpoints at arbitrary
addresses using the ‘S’ option may cause incorrect execution of the
program.

Note: Breakpoints should not be set in high priority processes on proces-
sors without hardware breakpoint support (M212, T212, T222, T414, and
T800). The E, G and M options will not set a breakpoint in a high priority
(configuration level) process on these processors.

Compare memory

This option compares the code actually in memory on the network with the
code that was loaded, to check that memory has not become corrupted.

Note: This option treats breakpoints as corrupted code.

The following menu is displayed:

Compare memory
Number of processors in network is : n

Check all network processors for discrepancies
Check this processor for discrepancies
Compare memory of this processor on screen
Find first error on this processor

Quit this option

ooaow@
I T I

Compare memory option (A,B,C,D,Q) ?

Type one of the options A, B, C, D, or Q. Option ‘Q’ retuns to the Monitor
page.
Checking the whole network - option A

Option ‘A’ checks all the processors in the network and displays a summary
of the discrepancies found.

If there are no errors the following message is displayed:
Checked all processorrrs in network OK

If any errors are detected the number of errors is given along with the
address of the first error found and the name of the processor on which it
occurred.

72 TDS 367 01 March 1993

92

4.9 Monitor page commands

Checking a single processor - option B
Option ‘B’ checks just the current processor. In all other respectsit is similar
to option ‘A’

Compare memory on screen - option C

Option ‘C’ displays the actual and expected code for each address in the
program code area of the current processor. Discrepancies are marked
with an asterisk (‘*’).

Memory is checked in blocks of 128 bytes. At the end of each block, type
either 'Q’ to quit, or to read and display the next block.
The format of the display is similar to the following example:

Processor Code Correct Code
#800001234 : 0011223344556677 7766554433221100 *
#80000123C : 0011223344556677 0011223344556677
#800001244 : 0011223344556677 7766554433221100 *

#8000012AC : AABBCCDDEE££0011 AABRCCDDEEE£0011

Press [DOWN] to scroll memory, [SPACE] for next err
or, or Q to quit :

Pressing automatically invokes option D’ - Find first
error. .. (see below).
Find first error - option D

Option ‘D’ searches the current processor's memory for the first occurrence
of a discrepancy. If a discrepancy is found the display is the same as in
option ‘C’ above, and the memory can be checked and displayed as in
‘Compare memory on screen’.

Disassemble memory

The Disassemble command disassembles memory into transputer instruc-
tions. Specify an address at which to start disassembly after the prompt:

Start address (#hhhhhhhh) ?

Either press to accept the default address, or enter the desired

address. The address can be entered as a decimal number, a hexadecimal
number preceded by ‘¥, or the short form ‘sh. ...

The memory is displayed in batches of sixteen transputer instructions,
starting with the instruction at the specified address. If the specified

72 TDS 367 01 March 1993

4 idebug - network debugger 93

address is within an instruction, the disassembly begins at the start of that
instruction. Where the preceding code is data ending with a transputer
‘p£ix’ or ‘nfix’ instruction, disassembly begins at the start of the pfix or
nfix code.

Each instruction is displayed on a single line preceded by the address
corresponding to the first byte of the instruction. The disassembly is a direct
translation of memory contents into instructions; it neither inserts labels,
nor provides symbolic operands.

The scroll keys (section 4.9.7) can be used to scroll the display.
Next Error

Next Error searches forward through the network for the next processor
which has both its error and halt-on-error flags set. Processors are
searched in the same order as they are listed by the ‘K’ command, starting
from the current processor and wrapping round. If a processor is found with
both flags set the display is changed to the new processor as if the ‘B’ option
had been used. Press to display the source line which caused the

€ITOr.

If there is only one processor in the network then a message to this effect
is displayed.

Select source file

This command enables a program source file to be displayed within the
symbolic debugging environment for a particular processor. This allows
breakpoints to be set in modules which have not yet been reached in the
program’s execution. (Source which has not yet been executed cannot be
displayed using the ‘0’ or ‘G’ options because the Iptr and Wdesc
addresses are not yet known.)

When the source file is first displayed, the cursor is placed on the first
source code line which generates object code. If the start of the source file
contains an include file it is possible for the debugger to locate this instead.
In order to locate the intended source file, use the key to exit

the include file.

The select source file command may also be used to browse source files

rather like the symbolic function. However, unlike

it allows some of the symbolic debugging operations to be
used.

Note: Editing keys may be used with this command to provide a simple
history mechanism (see section 4.9.4).

For mixed language programs, the behavior of this command will differ
depending on whether icconf or the 0ccam configurer occonf has

72TDS 367 01 March 1993

94

4.9 Monitor page commands

been used to configure the program. (icconf is supplied with FORTRAN
and ANS| C toolsets, occonf with occam toolsets.)

The differences in the behavior are described below:;

Behavior of command when no configurer or icconf is used

If a processor has been configured to contain more than one process, this
option first prompts for the process number corresponding to the source
code:

Select process number (0 - N) ?

The range of numbers displayed in brackets are process numbers
assigned by the debugger to different processes on the processor. The
process numbers assigned to process names by the debugger can be
determined by using the Monitor page Process Name (‘V") option before
invoking the ‘F’ command.

Once a valid process number has been supplied (if applicable), the
debugger prompts for the filename of the compiled object module. The full
object filename (including extension — conventionally . tco) must be
supplied.

Object module filename ?

The object flename must be specified because the debugger extracts the
source code filename from the debug information in the compiled object
file.

Note: Editing keys may be used with this command to provide a simple
history mechanism (see section 4.9.4). At each prompt this command may

be aborted by pressing with no typed input.

Behavior of command when occonf is used

The debugger first prompts for the filename of a linked object module. The
full linked filename (including extension — conventionally . 1ku) must be
supplied.

Linked unit filename ?

The linked filename must be specified because the debugger needs to
know which linked unit (incorporated by a configurer $USE directive)
contains the object code from the source file to be displayed.

The debugger then prompts for the filename of a compiled object module
contained within the selected linked unit. The full abject filename (including
extension — conventionally . tco) must be supplied.

Object module filename ?

72 TDS 367 01 March 1993

4 idebug - network debugger 95

The object module filename must be specified because the debugger
extracts the source code filename from the debug information in the
compiled object file.

At each prompt this command may be aborted by pressing with
no typed input.

Go to process

This command locates to the source code for any process which is
currently shown on the screen. Any process displayed by using the [T,

[T, [R],[T], or[Z] commands may be selected.

The cursor is positioned next to the Iptr value and permitted responses
are listed on the screen, as follows:

Goto process - use [CURSOR] then [RETURN], or 0 to
F, (I)ptr, (L)o or (Q)uit

To select a process and display the source code, move the cursor to a
displayed Iptr value and press [RETURN], or use one of the following
short-cuts:

» The[1] option locates to the current process (the process corre-
sponding to the displayed Iptr and Wdesc values).

o [f currently in high priority, the option can be used to locate to
the interrupted low priority process (the process corresponding to
the displayed IptrIntSave and WdescIntSave values).

* The hex numbers [0] — will locate to the process corre-
sponding to one of the 16 lines displayed on the right hand side
of the Monitor page (the entries in the timer or run queues, or
processes waiting on links).

Type ‘Q’, [FINISH |, or [REFRESH | to abort this command.

Hex

The Hex command displays memory in hexadecimal. Specify the start
address after the prompt:

Start address (#hhhhhhhh) ?

Press to accept the default address, or enter the desired
address. The address can be entered as a decimal number, a hexadecimal
number preceded by ‘#, or the short form ‘sh. . . k. If the specified start
address is within a word, the start address is aligned fo the start of that
word.

72 TDS 367 01 March 1993

96

4.9 Monitor page commands

The memory is displayed as rows of words in hexadecimal format. Each
row contains four or eight words, depending on transputer word length.
Words are displayed in hexadecimal (four or eight hexadecimal digits
depending on word length), most significant byte first.

For a four byte per word processor the sequence of bytes in a single row
would be:

3210 7654 11 10 9 8 15 14 13 12
For a two byte per word processor, the ordering would be:
10 32 54 76 S 8 11 10 13 12 15 14

Words are ordered left o right in the row starting from the lowest address.
The word specified by the start address is the top leftmost word of the
display.

The address at the start of each line is an absolute address displayed in
hexadecimal format.

The scroll keys (section 4.9.7) can be used to scroll the display.
Inspect memory

The Inspect command can be used to inspect the contents of an entire
array. Specify a start address after the prompt:

Start address (#hhhhhhhh) ?

Either press to accept the default address, or enter the desired

address. The address can be entered as a decimal number, a hexadecimal
number preceded by ‘#', or the short form ‘sh. . .H'.

When a start address has been given, the following prompt is displayed:

Typed Memory Dump
ASCII
INT
BYTE
BOOL
INT16
INT32
INT64
REAL32
REAL64
CHAN
Quit this option

| I T R B B |

U ~JoUdWNKO

Which occam type (1 - INT) ?

72 TDS 367 01 March 1993

4 idebug - network debugger 97

Give the number corresponding to the type of data to be displayed, press
to accept the default type or enter Q to quit this option.

The types correspond to formal occam types as defined in the occam 2
Reference Manual. occam equivalences of C and FORTRAN types are
listed in table 4.5.

C FORTRAN occam
int INTEGER INT
char CHARACTER BYTE
unsigned char

LOGICAL BOOL
short INTEGER*2 INT16
signed short
long INTEGER*4 INT32
signed leong

REAL
float REAL*4 REAL32
double DOUBLE PRECISION
long double REAL*S REALGA

Table 4.5 Type equivalents for Inspect command

ASCI| arrays are displayed in the format used by the Monitor page
command [A]. Other types are displayed both in their normal representa-
tion and hexadecimal format.

The memory is displayed as sixteen rows of data. The address at the start
of each line is an absolute address displayed as a hexadecimal number.
The element specified by the start address is on the top row of the display.

Start addresses are aligned to the nearest valid boundary for the type, that
is: BYTE and BOOL to the nearest byte; INT16 to the nearest even
byte; INT, INT32, INT64, REAL32, REAL64, and CHAN fo the nearest
word.

The scroll keys (section 4.9.7) can be used to scroll the display.
Jump into and run program

This command starts up a program from the Monitor page, or restarts a
process which has encountered a breakpoint or has been stopped by one
of the debug support functions (for details of these functions see the
appropriate Language and Libraries Reference Manual).

Starting a program

When starting a program the debugger converts (paiches) the configura-
tion external channels (those assigned fo links) for each processor into

72TDS 367 01 March 1993

98

4.9 Monitor page commands

virtual channels for use with the debugging kemel. This action is indicated
by an activity indicator.

When the patching is complete the debugger prompts for a command line
for the program:

Command line:
Simply press if the program does not require any command line
parameters. The program will then start running.
Resuming from a breakpoint

When jumping into and resuming a program from a breakpoint, in the
monitor page, the following menu is displayed:

Jump into Application
R - Resume process stopped at a breakpoint
O - Resume monitoring of network
(abandon process stopped at a breakpoint)

J - Restart process at a different location

Q - Quit this option

Which option (J,0,Q,R) ?
Note: the key can be used as an altemative to using this
command with the R option.
Resuming from debug support functions

When resuming from one of the debug support functions, the following
submenu is displayed:

Jump into Application
O - Resume monitoring of network
(abandon process stopped at a program error)
J - Restart process at a different location
Q - Quit this option

Which option (J,0,Q) ?

Jump options

The four Jump options are described in the following table:

72 TDS 367 01 March 1993

4 idebug - network debugger 99

Option |Description

R Restarts the process that encountered the breakpoint.

(o] lgnores the stopped process and resumes monitoring the
network for other process activity.

Note: When a process has stopped, other processes
continue to run until they either encounter a breakpoint or
program error (i.e. one of the debugging support functions),
or become dependent on the stopped process.

Note: Using this option for a process stopped on a breakpoint
removes the process forever.

J Restarts the process from a different location. Only use this
option if you are confident that the program can be resumed
from the new location; resumption from most locations will
corrupt the program.

Q Quits the Jump sub-menu.

Editing keys

Editing keys may be used with this command when entering the command
line parameters starting the program, see section 4.9.4.

Processor names

This command displays the intemnal processor numbers corresponding to
processor names used in the configuration description and the corre-
sponding processor type. Processor numbers must be given when
selecting specific processors for display.

The scroll keys (section 4.9.7) can be used to scroll the display.

Note: The debugger displays only the first 19 characters of the processor
name. If this is a problem then names should be made unique within the
first 19 characters.

Links

The Links command displays the instructicn pointer, workspace descriptor,
and priority of the processes waiting for communication on the links, or for
a signal on the Event pin. If no process is waiting, the link is described as
‘Empty’. Link connections on the processor, and the link from which the
processor was booted, are also displayed.

If a processor uses software virtual links then the fitle line of the data
displayed appears as:

Link Information (virtual links present)

72 TDS 367 01 March 1993

100 4.9 Monitor page commands

This is to warn that the link state information may be for software virtual
processes which cannot be located to in the normal manner. In this case
it is more useful to use the Monitor page [Z] command to display the soft-
ware virtual links instead.

For configured programs, the debugger checks that the link the root
processor has been booted from matches that expected by the configurer.
It it does not, the following message is displayed:

Booted from linkn < Should be linkm !!! >
The format of the display is similar to the following:

Link Information

Link 0 out Empty
Link 1 out Empty
Link 2 out Iptr: #80000256 Wdesc: #80000091 (Lo)
Link 3 ocut Empty
Link 0 in Empty
Link 1 in Empty
Link 2 in Iptr: #80000321 Wdesc: #80000125 (Lo)
Link 3 in Iptr: #80000554 Wdesc: #80000170 (Hi)

Event in Empty
Link 0 connected to Host
Link 1 not connected
Link 2 connected to Processor 1, Link 1
Link 3 connected to Edge
Booted from link 0
[M] Memory map

The Memory map command displays the memory map of the current
processor along with the mode that idebug is currently in. The mode may

be one of:
Mode Description
Interactive Mode Interactive breakpoint debug-

ging session

Postmortem Interactive Mode |Postmortem debugging session
of a previous interactive debug-
ging session.

Postmortem Mode Postmortem debugging session
either down a transputer link or
from a dump file.

Dummy Session Dummy debugging session

72 TDS 367 01 March 1993

4 idebug - network debugger 101

The display includes the address ranges of on-chip RAM, program code,
configuration code, stack (workspace) and vectorspace, the sizes of each
component in bytes rounded up to the nearest 1K bytes, total memory
usage, and the address of MemStart (the first free location after the RAM
reserved for the processor’s own use).

Also displayed is the total memory usage. Total memory usage indicates
the amount of memory used by a user program. Note that this may include
a region of memory at the beginning of freespace, this area is used for
configuration code before execution of a user program starts (this memory
may be safely overwritten by the user program because the configuration
code finishes executing before the user code starts).

The minimum memory size specified to the configurer or the collector, or
as defined in IBOARDSIZE as appropriate, must be at least as large as the
total memory usage for each processor.

Also displayed is the maximum number of processors that can be accom-
modated by the debugger's buffer space. This will depend on the amount
of memory on the root processor, indicated to the debugger by the host
environment variable IDEBUGSIZE.

The address of MemStart is the value actually found on the transputer in
the network. If this does not comrespond to that expected by the configura-
tion description, for example if a T414 was found when a T805 was
expected, the following message is displayed:

MemStart: #80000048 (T414)7
MemStart should be: #80000070 (T805) <>

If an incorrect MemStart is detected the symbolic functions may not work
cormrectly. In this case the program should be rebuilt for the correct
processor types before re-invoking the debugger.

[N] Network dump

The Network dump command saves the state of the transputer network for
later analysis. If the debugger is terminated without creating a network
dump file, debugging cannot continue from the same point without re-run-
ning the program. This is because the debugger itself overwrites parts of
the memory on each transputer in the network.

Note; This command cannot be used in interactive mode (idebug
command line option ‘B') or when post-mortem debugging a breakpoint
session (idebug command line option ‘')

Once a network dump file has been created, debugging can continue from

the dump file, and the debugger does not need to be connected to the
target network.

72TDS 367 01 March 1993

102 4.9 Monitor page commands

Before the dump file is created, the debugger calculates the disk space
required, and requests confirmation. The size of the file depends on how
much of each processor’s memory is actually used in running the program,
and is displayed as follows:

Create network dump file
Number of processors to dump : .2
File size excluding Freespace : 112604 bytes
File size including Freespace : 2097308 bytes
Continue with network dump (Y,N) ?
To continue with the network dump, type ‘¥’

The debugger will then ask whether to include freespace in the dump file
(this is not normally required for configured programs).

Do you wish to include Freespace (Y ,N) ?
Type ‘Y’ or ‘N’ as appropriate and specify a filename after the prompt:
Filename (”"network.dmp” or "QUIT”) ?

Press to accept the default filename, enter a filename (any
extension will be replaced by ‘. dmp'), or type ‘QUIT’ (uppercase) to exit.

If the file already exists, confirmation is asked for:

File "network.dmp” already exists
Overwrite it (Y,N) ?

If W’ is entered then a new filename is asked for,

While the dump file is being written, a message is displayed at the terminal.
For example;

Dumping network to file “network.dmp” ...

Processor 1 (T800)
Memory to dump : 10456 bytes ...

[O] Specify process

This command retumns to symbolic debugging, either at the same source
line, or at another location. It can be used to locate to any source line,
whether or not a process is waiting or executing there. To ensure the
debugger locates to a valid process, it is better to use the ‘G’ command.

To return to symbolic debugging, the debugger requires values for Iptr
and Wdesc. Specify Iptr after the prompt:

Iptr (#hhhhhhhh) ?

72TDS 367 01 March 1993

4 idebug - network debugger 103

The default displayed in parentheses is the last line located to on this
processor, or the address of the last instruction executed. Either press
to accept the default address, or enter the desired address. The
address can be entered as a decimal number, a hexadecimal number
preceded by ‘¥, or the short form ‘sh. .. k"

Useful process addresses can be determined using the [L], [R], or
commands to display processes. These processes can, however, be more
easily located by using the @ command. The value of the saved low
priority Iptr can also be used.

ifthe Iptr is not within the program body, the debugger indicates the type
of code to which it corresponds.

After the Iptr has been entered the debugger prompts for the value of the
process descriptor:

Wdesc (#hhhhhhhh) ?

If a displayed Iptr was specified, its coresponding Wdesc is offered as
a default. Press to accept the default, or specify a value in the
same format as the Iptr.

If no symbolic features other than a single ‘locate’ are required, then Wdesc
is not needed and the default can be accepted.

If an invalid Wdese is given, most of the symbolic features will not work, or
will display incorrect values. However, the values of scalar constants and
some other symbols can still be determined.

Any attempt to inspect or modify variables or channels, or to backtrace, will
give one of the following messages:

Wdesc is invalid - Cannot backtrace

Wdesc is invalid - Cannot Inspect variables

Wdesc is invalid - Cannot Modify variables

Wdesec is invalid - Cannot auto backtrace out of library

Once the Iptr and Wdesc have been supplied, the debugger displays the
source code at the required location, and the full range of symbolic features
are available.

[P] Change processor

This command changes to a different processor in the network. Specify the
processor number after the prompt:

New processor number (0 - n) ?

To determine the mapping between the processor number and the
processor name used in the configuration file, use the 'K' command. If the

72 TDS 367 01 March 1993

104 4.9 Monitor page commands

processor exists the display is changed to provide information about the
specified processor. If the new processor's word length is different from
that of the previous processor, the start address is reset to the bottom of
memory. If the processor is not in the configuration, the following message
is displayed:

Error : That processor number does not exist

To abort the command press with no input.

If there is only one processor in the network, an appropriate message is
displayed.

The scroll keys (section 4.9.7) can be used to change the displayed
processor. The sequence of processors is the same as that displayed by
the ‘K’ command.

[Q] Quit

This command quits the debugger and returns to the operating system.
Once quit, the debugger cannot be used to debug the same program
without reloading the program unless a ‘network dump’ file has been
created. This is because using the debugger overwrites some of the
contents of the network.

If the command line option XQ has been used the debugger will ask for
confirmation before quitting.

[R] Run queues

This command displays Iptrs and Wdescs for processes waiting on the
processor’'s active process queues.If both high and low priority front
process queues are empty, the following message is displayed:

Both process queues are empty
If neither queue is empty, the debugger ask which queue is to be displayed:
High or low priority process queue ? (H,L)

Type 'H' or ‘L’ as required. If only one queue is empty, the debugger displays
the non-empty queue.

The screen display is paged. The scroll keys (section 4.9.7) can be used
to scroll the display.

Note: Ininteractive mode this command may show the details of a process
more than once. The string ‘<!>’ next to the queue heading serves as a
reminder that this may occur.

Processes which belong to the debugging kernel are also displayed and
identified with the string * (Runtime kernel)’.

72 TDS 367 01 March 1993

4 idebug - network debugger 105

(5]

Show debugging messages

This command is used to enable and disable debugging messages and
prompts. It invokes the following submenu:

Show Messages Menu

-- Show message for breakpoints : ON
-- Show debug messages : ON
Show message for program errcrs : ON
== Quit this option

OO W
1
i

which option (B,D,E,Q) ?

Options B and E control the display of prompts when a breakpoint or
program error (i.e. one of the debug support library functions
debug_assert() and debug_stop (), etc.) is encountered. Disabling
these options ensures that the debugger is entered on a breakpoint or error
without requesting confirmation.

Option D controls the display of debugging messages inserted with the
library functions debug_message (), etc.

Timer queues

This command displays Iptrs, Wdescs, and wake-up times for processes
waiting on the processor’s timer queues. Prompts and displays are similar
to those for the Run gueues command.

Update registers

This command updates the clock and status display (e.g. run queues, links)
for the current processor. It enables the activity of other processes to be
monitored while one process is stopped at a breakpoint or error.

Process memory map

This command provides details on each process resident on a processor.
This consists of user processes, and configuration processes for virtual
channels (if applicable: their names begin with a ‘¢"); it does notinclude the
debugging kernel used by the debugger when interactive breakpoint
debugging (this information is shown by the Memory Map option).

A process is assigned a number by the debugger in order to identify the
process when using certain other monitor page options. In addition to the
process number, the following details are provided: the name of the
process, the priority the process starts in, and the process stack and code
areas. Note that for non-configured C programs, the stack area displayed
is not that used by the program (the actual stack used is provided by the
freespace area).

72TDS 367 01 March 1993

106

4.9 Monitor page commands

An example output for two configured processes is shown below:

Process Memory Map
Process 0 : "occam process”
Initially : High priority
Stack : #80005000 - #80005023
Code : #8000A038 - #B8000A04B

Process 1 : “c_process”
Initially : Low priority
Stack : #80005024 - #8000A037
Code : #8000A04C - #8000D73B

Note: The debugger displays only the first 19 characters of the process
name. If this is a problem then names should be made unique within the
first 19 characters.

Note: Processes placed on a processor to provide software virtual links
have names starting with ‘%',

Write to memory

This command writes a value to a specified address. Values must be speci-
fied in the current type (the type used in the previous Monitor page Inspect

command), or the occam type INT if the type was a CHAN or the Disas-
semble or Hex options have been used after an Inspect.

Exit

This command returns to symbolic mode and locates to the current
address.

Enter post-mortem debugging

This command allows the debugger to be switched into post-mortem mode
when the program crashes (a process sets the emor flag on any processor).
Halted processors prevent the breakpoint debugger from accessing the
network correctly and debugging must continue in post-mortem mode. It
has the same effect as re-invoking the debugger with the command line ‘M’
option.

If the program has not already started, then the debugger prompts for
confirmation:

The program has not started - are you sure (Y,N) ?
If the program has not crashed, the debugger prompts for confirmation:
The program has not crashed - are you sure (Y,N) ?

If checking of the subsystem ermor status is disabled (with the command
line ‘s’ option), then the prompt is:

Unable to detect if the program has crashed - are y
ou sure (Y, ,N) ?

72 TDS 367 01 March 1993

4 idebug - network debugger 107

Typing ‘Y’ continues the operation, typing ‘N’ aborts it.

This command will only work if the subsystem is wired subs (see section
4.7.1). For a subsystem wired down, it is necessary to quit and restart the
debugger using the Monitor page ‘M' command line option (instead of the
previous breakpoint command line ‘B’ option).

Note: State information for a process that has stopped (on breakpoint or
error) will be lost when switching from breakpoint to post-mortem mode. If
the information is important it should be noted before switching modes.

Display software virtual links

This command displays instruction pointers and process descriptors for the
processes currently waiting on software virtual links placed onto a processor by the
configuer. All of the virtual output links (displayed as Vout N) are displayed
followed by all of the virtual input links (displayed as Vin N).

The scroll keys (section 4.9.7) can be used to scroll the display.

In order to establish the mapping of user channels onto software virtual links on
a particular processor, you should use the configurer information ‘I’ option when
configuring.

Note: all low priority user processes using software virtual links will be promoted
temporarily to high priority when they communicate. The debugger cannot tell if
they were originally at high or at low priority. If you need to specify a low priority
Wdesc then use the displayed value with the least significant bit set (e.g. $1234
becomes $1235).

4.910 Symbolic-type commands

TOP

This command is used to display the source cormresponding to the last
instruction to be executed on the current processor. Itis the same as typing

‘6", then ‘I’ (or ‘'G’, then [RETURN]).
RELOCATE

This command retumns to symbolic mode and performs a symbolic
[RELOCATE |. It cannot be used if the processor has been changed at the
Monitor page.

RETRACE

This command retums to symbolic mode and performs a symbolic
[RETRACE). It cannot be used if the processor has been changed at the
Monitor page.

72 TDS 367 01 March 1993

108 4.10 Symbolic functions

This command resumes a process stopped at a breakpoint in a similar
manner using the command when in symbolic mode. It is a
shorthand equivalent to using the J command and selecting the R option
to resume a process stopped at a breakpoint from the monitor page.

These commands display a summary of the commands available at the
Monitor page.

This command refreshes the screen.

4.10 Symbolic functions

Symbolic debugging allows high level language programs to be debugged from the
identifiers used in the source code. Symbolic identifiers are the names given in the
program to variables, constants, channels, and functions.

Symbolic functions are invoked using keyboard function keys. Keyboard layouts
that show the key bindings for common terminal types can be found in the Delivery
Manual that accompanies the release. The symbolic functions are summarized
alphabetically below. Each description includes a reference to the page where the
command function is described in more detail.

Note: T = Functions only available in interactive mode.

Locate to the calling function or procedure [page 112].
Go to the last line in the file [page 113].

Display a different source file [page 113].

Locate to the process waiting on a channel [page 110].

CONTINUE FROM |' Restart a stopped process from the current line [page 111].

Change to an included source file [page 113].

Return to the enclosing source file [page 113].
Quit the debugger [page 114].

Display the location of a source line in memory [page 113].

72TDS 367 01 March 1993

4 idebug - network debugger 109

TOP OF FILE

+

Go to a specific line in the file [page 113].

Display a éummary of commonly used symbolic functions
[page 113].

Display process information (e.g. instruction pointer,
process descriptor, process name) [page 110].

Display the type and value of a source code symbol
[page 108].

Force the debugger into the Monitor page without stopping
the program [page 111].

Change the value of a variable in memory [page 111].
Change to the monitor page [page 114].

Locate back to the last location line [page 112].
Resume a process stopped at a breakpoint [page 111].
Undo a [page 112].

Search for a specified string [page 113].

Set or clear a breakpoint on the current line [page 111].

Enables/disables hex-oriented display of constants and
variables for C and FORTRAN [page 114].

Locate back to the error or last source code location
[page 112].

Go to the first line in the file [page 113].

4.10.1 Symbolic functions

INSPECT

This function displays the value and type of source code symbols. To
inspect a symbol, use the cursor keys to position the cursor on the required
symbol and press [INSPECT |. If the cursor is not on a valid symbol when
is pressed, a symbol name is prompted for. Type to
abort the[INSPECT | operation, or type a name followed by . The

case of letters in a variable name is significant — except when debugging

72 TDS 367 01

March 1993

110 4.10 Symbolic functions

FORTRAN where case is not significant. Variable names which contain
spaces must be entered without the spaces. Specifying an empty expres-

sion aborts the [INSPECT | operation.

The symbol must be in scope from the line to which the debugger last
located, which may not be different from the current cursor position. If the
symbol is not in scope at that location, or not found at all, one of the
following messages is displayed (depending on the language being
debugged):

Name ‘symbol’ not in dynamic scope

Name ‘symbol’ not found

error: identifier "name” is not in scope
error: identifier "name” not found

Expression language

supports an expression language for examining source file
symbols. Details of the language and display formats for symbols can be
found in the appropriate, language specific, sections below.

This function jumps’ down a channel if a process is waiting at the other end.
This is used in the same way as [INSPECT |, but positioned on a channel.
The debugger locates to the source line comesponding to the waiting
process; that process can then be debugged.

The function will jump to other processors along transputer
links as long as the program has not been configured to use virtual links
(see section 9.4 of the debugging chapter in the User Guide). If a process
running on another processor is waiting for communication on a channel
the debugger jumps down the link and automatically changes to that
processor.

This function displays the Iptr and Wdesc of the last location, the process
name and priority, and the processor number.

If the Wdesc is not in the defined region for a process the message: Unde-
fined process is displayed in place of the process name. For single
processor programs that have not been configured there is no defined
region and the message: <Stack area unknown> is displayed to reflect
this.

If a Wdesc has not been supplied, it is shown as ‘invalid’.

72TDS 367 01 March 1993

4 idebug - network debugger 11

4.10.2

Interactive mode functions

The following functions are only available when running in interactive mode.

TOGGLE BREAK

This function toggles a breakpoint on the source line indicated by the cursor
and provides information on the breakpoint number (as used by the Monitor
page command), whether it was set or cleared, and the line number

itis on.

When the source line the cursor is on produces no associated object code
the debugger displays an exclamation mark (<!>) after the line number to
indicate that the breakpoint has been toggled on a different line to the one
the cursor is on (as shown at the bottom of the display).

This function restarts a process stopped at a breakpoint. (To restart a
process which has been stopped by one of the debug support functions use

CONTINUE FROM).

CONTINUE FROM

This function restarts the program from the line indicated by the cursor.
should only be used to resume a process after it has
been stopped by one of the debug support functions. The result of contin-
uing from other points in the code may be unpredictable if there are inter-
vening stack adjustments.

This function changes the value of a variable in fransputer memory. For C
and FORTRAN, accepts expressions involving any symbol in
scope. To modify a variable place the cursor on the name and press

[MODIEY .

Expression language

Variables to be modified can be specified using the [INSPECT | expression
language. Details of the syntax can be found in the following language
specific sections.

INTERRUPT

This function forces the debugger to enter the Monitor page without stop-
ping the program.

72 TDS 367 01 March 1993

112 4.10 Symbolic functions

Note: This command does not operate if there are keystrokes waiting
before it in the keyboard buffers. It may also fail if the application program
is waiting for input from the keyboard.

Note: A side effect of this command is that the debugger suspends
iserver communications in order to preserve debugger output to the
screen.

4.10.3 Locating functions

The following functions are used to change the debugger’s current ‘location’. The
current location is the point at which the all symbolic functions apply — associated
with the location are an instruction pointer value and a workspace address. The
initial location will generally be a breakpoint (in interactive mode) or the pointwhere
an error occurred (in post-mortem mode).

BACKTRACE

This function locates to the line where a procedure or function was called.
If the debugger is already located in the program’s topmost procedure, no
backtrace is possible.

RETRACE

This function locates back to the previous place where the debugger was
located. Repeated use of reverses the effect of previous

BACKTRACE | operations.
RELOCATE

This function returns the cursor to the last place located to by the debugger.
For example, it can be used to return to the original source line of an error
after browsing other areas of the code with the cursor keys or the file selec-
tion functions.

TOP

This function locates back to the line containing the original breakpoint or
error, or to the line located to by the previous use of the monitor page

or[O] commands.
4.10.4 Cursor and display control functions

These functions are used to move the cursor around the program and to view other
source files.

72 TDS 367 01 March 1993

4 idebug - network debugger 113

GOTO LINE

This function locates to a particular line in the source file. Specify a line
number, or type to abort the operation.

TOP OF FILE

Moves to the start of the current file.

END OF FILE

Moves to the end of the current file.
SEARCH
This function searches forwards in the source file for a specified string.

Either specify a search string or press to accept the default,
which is the last string specified.

ENTER FILE

Enters an included source file. Position the cursor on the include directive

and press [ENTERFILE |.

EXIT FILE

Exits from an entered include file.

CHANGE FILE

This function opens a different source file for reading only. No symbolic
functions are available, unlike the Monitor page ‘F’ option.

This function displays a help screen of the commonly used debugger
symbolic functions.

GET ADDRESS

This function displays the address of the transputer code corresponding to
the source line where the cursor is currently placed (not necessarily the
current ‘location’)

72 TDS 367 01 March 1993

114 4.10 Symbolic functions

TOGGLE HEX

This function turns the display of hexadecimal values of variables on and
off. When enabled, the debugger displays hexadecimal as well as decimal
values. The default for C and FORTRAN is to display variables in decimal
format only.

This function switches to the Monitor page environment.

This function quits the debugger. The Monitor page ‘Q’ command has the
same effect. If the command line option ‘XQ’ was used then the debugger
will ask form confirmation before quitting.

72 TDS 367 01 March 1993

4 idebug - network debugger 115

4.11 INSPECT/MODIFY expression language for C

The expression language for source code symbols (variables, constants, and
channels) follows the syntax of the C programming language with some minor
modifications.

4.11.1 Syntax not supported

Table 4.6 lists the standard C expression syntax nof supported in the debugger
expression language.

Area of limitation Example
Casting to pointer types (char *) ptr
Calling of functions sqrt (x)
Entry of strings "a string”
Entry of initializer lists {1, 2, 3}
Increment and decrement operators ++count
Trigraph sequences i
Bit field modification
Modification by assignment operators x=y
n+=1
Conditional operator a?b:c

Table 4.7 Limitations to syntax

In addition, the ‘address of’ operator ‘&' retumns an int rather than a pointer to the
type.

4.11.2 Extensions to C syntax

Subarrays

The language supports the specification of array subranges for arithmetic data
types. Subranges are specified as two array bounds separated by a semicolon. For
example: £foo[2;4] displays the values of elements foo[2], foo[3] and
foo[4].

Note: For arrays and structures the information displayed will normally overwrite
part of the screen display. Press any key, when prompted, to restore the display.

Scope resolution operator

The scope resolution operator ‘: :’ is available when debugging both C and C++
programs. This allows access to a global identifier which has been hidden by a
local declaration, for example:

72TDS 367 01 March 1993

116 4.11 INSPECT/MODIFY expression language for C

static int foo = 42;
void example (void) {
int foo = 321;

debug_stop(); /* program will stop here */
}

In this example, when the program has stopped at the debug_stop () function,
the identifier £oo can be inspected and the value 321 (the value that is currently
in scope) will be displayed. If : :foo is inspected then the value 42 will be
displayed.

Hex constants

The hex constant syntax has been extended to accept a ‘%’ character after the
leading ox component of a hex constant. This provides a shorthand mechanism
for specifying transputer addresses in a similar manner to that provided in the
Monitor page. The ‘%’ character adds INT_MIN (the most negative integer) to the
hex constant using modulo arithmetic.

For example, 0x%70 produces the value 0x80000070 on a 32 bit transputer and
0x8070 on a 16 bit transputer.

Address constant indirect

When using [INSPECT | or[MODIFY | a constant expression which has type int or
unsigned int may be de-referenced. Normally only pointers may be de-refer-
enced: this addition removes the need to change to the Monitor page to inspect
memory locations.

Forexample, *0x80000000 (or *0x%0) would display the integer at memory loca-
tion 0x80000000 on a 32 bit processor.

4.11.3 Automatic expression pickup

When [INSPECT | or[MODIFY |is selected, idebug will automatically ‘capture’ the
identifier which is underneath the cursor (if any). The captured expression can then
be modified (using the editing keys described below) before applying the selected
option.

In this release the automatic capture is more eager for simple struct orunien
member expressions which contain only the . and -> operators.

This is best illustrated by example. In the following examples, the cursor is posi-
tioned over baz when [INSPECT | or [MODIFY | is selected:

72 TDS 367 01 March 1993

4 idebug - network debugger 117

Program text Expression captured
baz baz

baz.ptr baz.ptr

* (baz) .ptr baz

*baz.ptr baz.ptr
baz.ptr—>ptr baz.ptr->ptr
baz.foo.ptr baz.foo.ptr
baz->foo->ptr baz->foo->ptr
baz[x].ptr baz

In addition, for those captured expression which match the the program text, the
cursor may be positioned anywhere on the expression before selecting

4114 Editing functions

The following functions are available for the on-screen editing of expressions:

START OF LINE Move the cursor to the beginning of the expression.
END OF LINE Move the cursor to the end of the expression.

DELETE LINE Delete the expression.

[« Move the cursor left one character.

] Move the cursor right one character.

(Al Replace the current expression with the expression used in
the previous [INSPECT | or [MODIFY | operation.

Delete the character to the left of the cursor.

Enter the expression for evaluation.

Note:

START OF LINE |, [END OF LINE |, [DELETE LINE |, and [DELETE | are mapped by
the ITERM file to specific keys on the keyboard. Keyboard layouts can be found
in the Delivery Manual.

4.11.5 Warnings

When evaluating an expression, checking is performed which may lead to warning
messages being produced (e.g. overflow in arithmetic operation, mis-aligned

72 TDS 367 01 March 1993

118 4.11 INSPECT/MODIFY expression language for C

pointer). Such warnings are intended to highlight potential problems and to ensure
that a user understands any action idebug is taking.

4.11.6 Types
C types are interpreted and displayed by the debugger as follows:

ANSI C types are categorized, by the debugger, as shown in table 4.8. These cate-
gories define the operations that can be performed on the various types and are
also used in error messages when invalid operands are used in expression syntax.
For example, arithmetic can be performed on any of the ‘scalar’ types, but
attempting to use a ‘derived’ type, such as a struct, in an expression produces
an error message of the form “error: non-scalar left-hand operand.’

Name Member types

character char, signed char, unsigned char

floating float, double, long double

basic character, signed integer, unsigned integer, floating
integral character, signed integer, unsigned integer, enum
arithmetic integral, floating

scalar arithmetic, pointer

derived array, function pointer, struct, union

Table 4.8 Type categories in C

Type compatibility when using

Source and destination expressions must be type compatible according to the
rules of C. Scalar types are cast automatically into other scalar types but non-
scalar expressions must be strictly compatible.

Type conversions, where required, are performed according to normal C promo-
tion rules.

The following examples illustrate the rules governing type compatibility.
Given the following declarations:

int two_d array[2][10];

int one d array[10]:;

int foo;

char bar;

Then the following modifications are permitted:

Source: one_d array (array of 10 integers)
Destination: two_d_array[1] (row of 10 integers)

72 TDS 367 01 March 1993

4 idebug - network debugger 119

Source: foo (a scalar type: int)
Destination: bar (a scalar type: char)
Source: two_d_array[1] [2] (single element of type int)
Destination: bar (single integer)

The following modification is nof permitted:

Source: two_d_array([1] (row of 10 integers)

Destination: foo (single integer)

4.12 Display formats for source code symbols

When displaying an object, idebug will, where possible, also display type informa-
tion for an object (e.g. unsigned char).

4121 Notation

The debugger uses the following symbols in its display of values:

{1} indicates a list of values, or a structure

{ }sss indicates a character list of unknown
length terminated by a null character
(which is shown)

fc! indicates a character
"\HH' indicates a hexadecimal character
e indicates a character string in an array of

known size

e indicates a character string of unknown
length terminated by a null character
(which is not shown)

<> indicates the contents of a basic or
channel object which is addressed by a
pointer (except when the object is
veolatile)

() provides extra information about an object
In addition, in the descriptions below, the following notation is used:

ddd indicates a (possibly signed) decimal value

OxHHH indicates a hexadecimal value

fif indicates a floating point number of the
form: ddd.ddd or ddd.dddEddd

72TDS 367 01 March 1993

120 4.12 Display formats for source code symbols

412.2 Basic Types

Display formats for basic C types are given in table 4.9. Displays are given in
normal decimal format and in hex format (invoked by [TOGGLE HEX]).

Type Hex print off Hex print on

char ddd (’c’) type ddd (' \xHH") type
short

int ddd type 0xHHH (ddd) type
long

float fiff £loat fif (0xHHH) float
double

Leing -AoHBLE fff double fif (0xHHH) double
For char, fype is either signed char, orunsigned char.

For integral types, fype is either just the type name, or unsigned followed by the
type name.

Table 4.9 Basic C types

412.3 Default type of “plain” char

By default, the type of a char (known as a “plain” char) typed into idebug is
unsigned char. This matches the default implemented by the INMOS C
compiler icec. If however, the default type of plain chars has been overridden with
the C compiler 'FC’ option, it may be necessary to override the default type in
idebug by use of a cast. For example:

(signed char) ’‘c’

Note that such a cast is only necessary for a plain char entered by hand: idebug
will correctly interpret the type of a plain char identifier contained in program code.
4.12.4 Enumerated types

Variables of an enumerated type are displayed as their integer value (in exactly the
same manner as an int) followed by the name of the enumeration and the
enumeration constant name for the value. If there are multiple enumerated
constants that share the same value, a list is formed containing all of the enumera-
tion constant names. invalid enum constant is used toindicate whenavalue
is not a member of an enumerated type.

integer (enum-tag-name: enum-const-name)

integer (enum-tag-name: {enum-const-name, ..})

integer (enum-tag-name: invalid enum constant)

72 TDS 367 01 March 1993

4 idebug - network debugger 121

4125 Pointers
Pointers are displayed in one of the following ways:
0xHHH (null pointer)
0xHHH (pointer to const volatile)
0xHHH (pointer to volatile)
OxHHH (channel pointer to link)
0xHHH (channel pointer to idebug virtual link [link)
0xHHH (channel pointer to software virtual link [ink)
0xHHH (channel pointer to Event in)
0xHHH (channel pointer)
0xHHH * (mis-aligned pointer)
oxHHH < content of basic object >
0xHHH (pointer)

4.12.6 Function Pointers

If the function pointed to is defined in the current medule, then the name of the func-
tion is displayed.

0xHHH (function pointer to ”functionname ()")

0xHHH (cannot find corresponding function)

412.7 Structs

Members of structures are described as for other identifiers of the appropriate type.
In order to display structures in a readable manner, members which are derived
types are not always displayed in as much detail as when the member occurs on
its own. To obtain more detail, inspect the member of the structure explicitly.

identifier = {
member1
member?2
member3
}

For large structures, idebug pages the display and requests confirmation to
continue after each page.

72 TDS 367 01 March 1993

122 4.12 Display formats for source code symbols

412.8 Unions

Unions are displayed in the same manner as structs except that a question mark
2 appears to the left of each member to indicate that only one member of the union
should be selected.

identifier = {
? member1
? member2
? member3
? H

412.9 Addressof operator &

The result of the addressof operator, &, is automatically printed as both a hex and
integer value regardless of the setting of |TOGGLE HEZ. Note that the result type

of addressof is an int rather than a pointer to the type used and is displayed in
a similar way:

&identifier = 0xHHH (ddd)

41210 Arrays
When displaying arrays, idebug prints the valid range of each dimension (if
known) in addition to any type information and the contents of the array. For single
dimension amrays containing arithmetic types each member of the array is
displayed regardless of the size of the array. For large arrays idebug pages the
display and requests confirmation to continue after each page. For large arrays,
where the full display may be unwieldy, use array subranging to display the area
of interest.
Single dimensional arrays of arithmetic types are displayed as:

identifiler = array [0..M] of type {listof values}
Single dimensional arrays of other types are displayed as:

identifier = array [0..M] of fype
Multi-dimensional arrays of all types are displayed as:

identifier = array [0..M][0..N] of fype
Sub ranges of arrays are shown as follows:

identifier[ddd;ddd] = subarray of fype {list of values}

72 TDS 367 01 March 1993

4 idebug - network debugger 123

4.12.11 Channels

Channels are displayed with information about the process that is waiting on the
channel (or Empty if no is process waiting), in one of the following forms:

identifier = Channel <Iptr: address, Wdesc: address (Lo)>

identifler = Channel <Iptr: address, Wdesc: address (Hi)>

identifier = Channel <Empty>

identifier = Channel <Empty (Link link)>

identifier = Channel <Empty (Software wvirtual link /ink)>
An asterisk * is used to denote an incorrect Iptr or Wdesc which is not in the
defined memory map range of the program but is in the defined memory range of
the processor.
A double asterisk ** is used to denote an incorrect Iptr or Wdesc which is not
in the defined memory map range of the program and not in the defined memory
range of the processor.

channel (name) = Channel <Iptr: addr*, Wdesc: addrr*>

4.13 Example displays

Tables 4.10 and 4.11 show the display formats for a number of types, using the
following source code segment compiled for a 32 bit transputer (for a 16 bit trans-
puter, addresses and integers in hex format would be displayed with 4 hex digits
instead of 8). The program containing this code is provided as display.cin the
C toolset debugger examples directory.

enum colour { red =1 };
struct Many {

int a;
double b;
};
enum colour shoe = red;
struct Many many = { —-42, 2.0 };
int answer = 42;
char key = 'A";
char string[] = "bye”;
char* ptr = string;

short jarrayl] {1, 2, 3, 4 };

72TDS 367 01 March 1993

124 4.13 Example displays
Expression |Display (hex print off)
answer answer = 42 int
&answer &answer = 0x801FFF2C (-2145386708) int
key key 65 ('A’) unsigned char
string string = array [0..3] of unsigned char ”"bye\0”
ptr ptr = O0xB01FFF18 < "bye”... unsigned char >
array[l;2] |array[l;2] = subarray of short {2, 3}
shoe shoe = 1 int (colour: red)
red red = 1 int (enum constant)
many many = {
a = -42 int
b = 2.0 double
}
Table 4.10 Display formats with hex printing off
Expression |Display (hex print on)
answer answer = 0x0000002A (42) int
Sanswer &answer = OxB801FFF2C (-2145386708) int
key key 65 ("\x41’) unsigned char
string string = array [0..3] of unsigned char {\x62,
\x79, \x65, \x00}
ptr ptr = Ox801FFF18 < {\x62, \x79, \x65, \x00}...
unsigned char >
?rray[l;z array[1l;2] = subarray of short {0x0002, 0x0003
shoe shoe = 0x00000001 (1) int (colour: red)
red red = 0x00000001 (1) int (enum constant)
many many = {
a = OxFFFFFFDé (-42) int
b =2.0 (0x4000000000000000) double
}

72 TDS 367 01

Table 4.11 Display formats with hex printing on

March 1993

4 idebug - network debugger 125

4.14 INSPECT/MODIFY expression language for occam

The expression language for debugging occam programs is simpler than that
provided for C and FORTRAN — only a single identifier name can be entered for
inspection and only literal constants can be used as modification values.

4.14.1 Inspecting memory

To inspect the contents of any location in memory, specify an address rather than
a symbol name. Type the address as a decimal number, a hexadecimal number
(preceded by #'), or the special short form %h. . . h, which assumes the prefix
#8000. ..

The debugger displays the contents of the word of memory at that address, in both
decimal and hexadecimal. For more versatile displays of memory contents, use
the Monitor page commands.

4.14.2 Inspecting arrays

If the symbol inspected is an array, elements from the array can be selected using
constant integer subscripts enclosed in square brackets (‘[’ and ‘]'); if no
subscripts are specified the debugger prompts for them.

For short byte arrays the debugger displays the contents of the array as a string.
Otherwise the debugger displays the size and type of the array, and prompts for
subscript values. For example:

[5][4]INT ARRAY ‘a’, Subscripts ?

Press[RETURN | to obtain the address of the array, or enter the required subscripts,
which must be in the correct range. The subscripts should be typed either as
decimal constant integer values, or as integers separated by commas, for example
‘[31[2], 0r'3, 2. Spaces are ignored.

To simplify access to values indexed by variables (such as ‘a[i]’) an array may
be indexed with ‘1" (e.g. ‘a[!]") — the ‘!’ character is replaced by the value of the
last integer displayed.

Scrolling arrays

As well as simply displaying a single element of an array, the debugger allows an
array to be scrolled through one element at a time. In addition, byte arrays can be
displayed as a 16 byte ‘segment’ of the array — this segment can be moved up and
down like a window into the amray contents.

Array scrolling is enabled by adding ‘++' after the array name when prompted for
a symbol name, or after the subscript when responding to the ‘Subscripts ?’
prompt (entering ‘++' alone in response to the subscript prompt assumes a
subscript of zero). The debugger then displays the first array element and then the
following prompt on the second line of the screen:

Press [UP] or [DOWN] to scroll, any other key to exit :

72 TDS 367 01 March 1993

126 4.14 INSPECT/MODIFY expression language for 0CCam

The [A] and [¥] cursor keys can then be used to scroll through the elements of

the array. The debugger will not allow you to scroll past the beginning or end of the
array. Pressing any other key will return you to normal symbolic mode.

Byte arrays can be viewed in sixteen character segments by appending a ‘+' after
the array name or subscript. As before, the cursor keys can be used to move the
‘window’ up and down the byte array one character at a time. Using *+' on anything
other than a byte array behaves identically to using ‘++'.

4.14.3 Type compatibility when using

Once a variable is selected the debugger prompts for a new value. The new value
should be specified in the expected occam type (as specified within the prompt)
although there are a few relaxations to this rule to allow for implicit casts when
using the debugger (see below). REAL32 and REAL64 values must be given in the

correct occam format — including a sign for the exponent, if present.

The following occam types may be freely mixed to provide implicit type casts so
long as the value is defined within the destination type:

BOOL BYTE INT INT16 INT32 INT64

The following are examples of valid modification values:

Type Modify value
REATL32 42.0

INT64 TRUE

INT ra'

BOOL 1

BOOL ' %400’
INT16 #R20

INT32 $1a

BYTE 42

The following are examples of invalid modification values:

Type Modify value
REAL32 42

INT64 2.0

BOOL r*4027
INT16 32768

BYTE -1

BYTE #100

72 TDS 367 01

March 1993

4 idebug - network debugger 127

4.15 Display formats for source code symbols

When displaying an object, idebug will display its type and value, together with
its address in memory. If there is too much information to be displayed on one line,
it is displayed in two parts. The symbol's name and type is displayed first and then,
after a short pause, the value and address.

The display formats for the basic occam types (BOOL, BYTE, INT, INT16, INT32,
INT64, REAL32 and REAL64), channels, arrays, and procedures and functions
are described below. For protocol names and tags, and timers only the type and
name are displayed.

4.15.1 Notation

The debugger uses the following symbols in its display of values:

re! indicates a character

oy indicates a character string

() provides extra information about an object
(at shows the memory address of an object
#hhh)

In addition, in the descriptions below, the following notation is used:

ddd indicates a (possibly signed) decimal value
#hhh indicates a hexadecimal value
fif indicates a floating point number of the

form: ddd.ddd or ddd.dddEddd

bbb indicates a boolean value (TRUE or FALSE)

4.15.2 Basic Types

Display formats for the basic occam types are given in table 4.12. When debug-
ging occam programs, the debugger always displays both decimal and hexade-

cimal values for integer types (regardless of the state invoked by [TOGGLE HEX)).

72 TDS 367 01 March 1993

128 4.15 Display formats for source code symbols

Type Display

BYTE BYTE ‘name’ has value ddd (#hh, 'c’) (at #hhh)
Note: non—printing characters are displayed as ’ .’

BOOL BOOL ‘hame’ has value bbb (at #hhh)

INT type ‘name’ has value ddd (#hhh) (at #hhh)

INT16

INT32

INT64

REAL32 type ‘name’ has value fff (#hhh) (at #hhh)

REALG64

Table 4.12 Display formats for basic occam types

If a variable is optimized out because it is not used in the program, then the
following message is displayed:

lype ‘name' was never used and has been optimised out.

4.15.3 Channels

For channels, which are not empty, the Iptr and Wdesc of the process waiting for
communication, and its priority, are displayed.

Channels are displayed in one of the following forms:
CHAN ‘chan’ is empty (at #hhh)
CHAN ‘chan’ has Iptr: #hhh and Wdesc: #hhh (Lo) (at #hhh)
CHAN ‘chan’ has Iptr: #hhh and Wdesc: #hhh (Hi) (at #hhh)

An asterisk * is used to denote an incorrect Iptr or Wdesc which is not in the
defined memory map range of the program but is in the defined memory range of
the processor.

A double asterisk ** is used to denote an incorrect Iptr or Wdesc which is not in
the defined memory map range of the program and not in the defined memory
range of the processor.

CHAN ‘chan’ has Iptr: #hhh* and Wdesc: #hhh (Hi) (at
#hhh**)

If the channel is a hard channel then information about the link (or event channel)
that it is mapped onto is also provided. For example:

CHAN ‘fs’ is empty (Link 1 in)

If the channel is a software virtual link provided by the configurer, then the virtual
link number is displayed. However, this does not show whether this is an input or
output virtual link. For example:

CHAN ‘fs’ is empty (virtual Link 41 at #hhh)

72 TDS 367 01 March 1993

4 idebug - network debugger 129

4154 Arrays

If subscripts are specified then the type, value, and address of the array element
are displayed as described above.

If no subscripts are given then, for a short BYTE array, the contents are displayed
in ASCII. For any other type of array, just the dimensions, type and address of the
array are displayed.
4.15.5 Procedures and functions
For procedure or function names, the entry address, and nested workspace and
vectorspace requirements are displayed (no address is displayed for library
names):

PROC ‘name’ at #hhh, uses ddd WS and ddd VS slots

FUNCTION ‘name’ at #hhh, uses ddd WS and ddd VS slots

4.16 Example displays

Table 4.13 shows the display formats for a number of types, using the following
source code segment compiled for a 32 bit transputer (for a 16 bit transputer,
addresses and integers in hex format would be displayed with 4 hex digits instead
of 8).

72 TDS 367 01 March 1993

130 4.16 Example displays

—- Debugger example: display.occ
—— Example of occam display types within idebug.

-- Note: This example uses the PAR construct in an
s inefficient manner for illustrative purposes only.

#INCLUDE "hostio.inc”
#INCLUDE ”linkaddr.inc”
#USE "hostio.lib”
#USE "debug.lib”

PROC example (CHAN OF SP fs, ts, []INT free.memory)
VAL name IS "occam example” :

CHAN OF INT ca, cb :
PLACE ca AT event.in :
BOOL bool :

BYTE byte :

INT int :

INT16 intlé :

INT32 int32 :

INT64 inté4 :

REAL32 real32 :
REAL64 real6d :

[20] [32] INT grid :
[256]BYTE string :

INT x, ¥ :

INT not.used :

SEQ

PAR

ca ? x
cb ?y
bool := TRUE
byte := 'Bf
int := -42
intlé := —-42 (INT16)
int32 := -42 (INT32)
inté4 := -42 (INT64)
real32 := 1.0 (REAL32)
realéd := 1.0 (REAL64)

grid[0] := grid[l]
[string FROM 0 FOR SIZE name]
IF
(SIZE free.memory) > 0
free.memory[0] := 66
TRUE
SKIP

72 TDS 367 01 March 1993

4 idebug - network debugger 131

DEBUG.STOP () — debugger will locate to here

so.exit(fs, ts, sps.success)

Symbol Display

ca CHAN ‘ca’ ...
(then, after a pause)
has Iptr: #80003EAE and Wdesc: #80003DE5 (Lo)
(PLACED AT 8) (Event in)

cb CHAN ‘cb’ has Iptr: #80003EB5 and Wdesc:
#80003DD9 (Lo) (at #B0003E24)

not.used INT ‘not.used’ was never used and has been
optimised out

bool BOOL ‘bool’ has value TRUE (at #80003E20)

byte BYTE ‘byte’ has value 66 (#42, 'B’) (at
#80003E1C)

int INT ‘int’ has value -42 (#FFFFFFD6) (at
#80003E18)

intlé INT16 ‘intl6’ has value -42 (#FFD6) (at
#80003E14)

int32 INT32 ‘int32’ has value -42 (#FFFFFFD6) (at
#80003E10)

int64 INT64 ‘int64’ has value -42
(#FFFFFFFFFFFFFFD6) (at #80003E08)

real32 REAL32 ‘real32’ has value 1.0 (#3F800000) (at
#80003E04)

real6d REAL64 ‘real64’ has value 1.0
(#3FF0000000000000) (at #80003DFC)

grid [20] [32]INT ARRAY ‘grid’ (at #800041D8)

72 TDS 367 01

March 1993

132 4.16 Example displays

Symbol Display

string [256]BYTE ARRAY ‘string’ (at #80004BD8)

string + [16]BYTEs from ‘string[0]’ is "occam
example...” (at #80004BD8) Press [UP] or
[DOWN] to scroll, any other key to exit :

string ++ |BYTE ‘string[0]’ has value 111 (#6F, ’'o’) (at
#80004BD8) Press [UP] or [DOWN] to scroll, any
other key to exit :

example PROC ‘example’ at #B0003E4C, uses 74 WS and
706 VS slots

DEBUG.STO |LIB PROC ‘DEBUG.STOP'’ uses 25 WS and 0 VS

P slots

72 TDS 367 01

Table 4.13 occam display formats

March 1993

4 idebug - network debugger 133

417 Error messages

This section lists error messages generated by idebug. Other messages not in
this list may be generated by corrupt files and by files not created by the toolset.
4171 Out of memory errors

If the debugger runs out of memory when trying to read in information and the
offending code module cannot be reduced in size, the amount of memory available

to the debugger may be increased by increasing the size of the memory on the
transputer the debugger is running on and updating IDEBUGSIZE accordingly.

4.17.2 If the debugger hangs

If the debugger starts up but then hangs with the message:
Loading network...

one of the following errors may have occurred:

1 The network connectivity is not correctly described in the configuration
description, for example, a link is not connected to a processor, or the type
of a processor has been specified incomrectly.

Network connectivity on a board can be checked by running a check or
worm program, such as the ispy program supplied with the support soft-
ware for some INMOS iq systems products. These products are available
separately from your local INMOS distributor.

2 You have set IDEBUGSIZE fo be larger than the memory on the root
processor (where the debugger is running).

Change IDEBUGSIZE to reflect the correct root processor memory size.

4.17.3 Error message list

"filename” not compiled with full symbolic debug information

The object code module does not contain sufficient debug information for
the debugger to locate to its corresponding source code (i.e. it contains
minimal debug information). Recompile the module and rebuild the
program in order to debug it symbolically.

Already located — No process is waiting at the other end of this link
An attempt to jump down a hard channel (link) has failed because there is
no process waiting at the other end.

72TDS 367 01 March 1993

134 4.17 Error messages

Attempted read outside Parameter block
Attempted write outside Parameter block

The configuration system has become corrupted. Check hardware using
a memory check program such as ispy. (The ispy program is supplied
as part of the board support software for INMOS iq systems products.
These products are available separately from your local INMOS distrib-
utor.)

Can only specify a transputer type if bootable is for a class

Cannot specify a transputer type for configured bootable files

You have tried to specify a processor type when the bootable file is already
for a specific processor type.

Cannot create network dump - reason

Creation of a network dump file is not permitted on a program that is, or has
been, interactively debugged. reason can be either of the following:

1 when in Interactive mode
2 when in Postmortem Interactive mode
3 Already reading one
Cannot debug boot from ROM run in ROM file *filename™
You may only debug boot from ROM run in RAM programs with idebug.
Cannot find this line’s location
Either of the following has occurred:

1 You have moved the cursor beyond the end of the current source
file for which there is no executable code.

2 The compiler has optimized the executable code out.
Cannot locate beyond Freespace area

The address specified is not within the memory map range of the
processor.

Cannot locate to area (Iptr: #address)

The address specified is not within the code area for the program on the
processor. area can be any of the following:

Reserved transputer memory
Runtime kernel

72TDS 367 01 March 1993

4 idebug - network debugger 135

Reserved memory
Configuration code area
Stack area

Vectorspace area

Static area

Heap area

Freespace area

Cannot open "filename”

Either the file does not exist or it is not on the ISEARCH path (note that by
default this includes the current directory). The i1ist tool can be used to
confirm this.

Note: if the file name is vrdebxx. tco (or something similar), where xx is
a sequence of digits, then you are probably trying to locate to one of the
configurer's software virtual link processes. Use the command to
display processes waiting on the software virtual links.

Cannot read processor number (Txxx)

The debugger cannot communicate with that processor. Any of the
following emors may have occurred:

1 The root processor’s core dump has been incorrectly specified.

2 The debugger has failed to analyze the network correctly. Either
you have failed to specify the ‘A’ option or the system control
signals are wired incorrectly.

3 The network does not match that specified in the configuration file.
Check network connectivity using a check program such as ispy.
(The ispy program is supplied as part of the board support soft-
ware for INMOS iq systems products. These products are avail-
able separately from your local INMOS distributor.)

Cannot run application — the program has crashed !

Use the (Enter post-mortem debugging) Monitor page command to
post-mortem debug the (now defunct) breakpoint session.

Channel is invalid
The channel does not point to aknown process executing on the processor.

Configuration info inconsistent with linked unit

You have probably relinked a component of a program and forgotten to
reconfigure it.

72 TDS 367 01 March 1993

136 4.17 Error messages

Configured for post-mortem debugging only

You have explicitly disabled interactive debugging (using configurer or
collector options).

Debug info too large (reason)

The debugging information for a particular compilation module is too large
for the debugger. Either reduce the size of the offending module orincrease
the size of memory on the processor where the debugger is running (see
section 4.17.1 on how to overcome this).

reason can be any of the following:

ix.tags is full
ws.array is full
name table is full

Debugger incompatible configuration file "filename”

You have configured your program without specifying the debugger
compatible option (‘G’ option) to the configurer, iccon£.

For mixed language programs configured with the occam toolset confi-
gurer occonf, the error may be that you have configured your program
with the configurer ‘RE’ option to enable memory layout re-ordering.

File has changed since configuration "filename”
You should rebuild the program again.
FILE IS TOO BIG - truncated

The debugger buffer capacity has been exceeded. The buffer contains as
much of the file as could be read before the capacity was exceeded (see
section 4.17.1).

lllegal virtual channel address

The channel has been (possibly incorrectly) tagged as virtual but does not
point to a valid software virtual channel (as defined by the debugging kernel
or the configurer). This is caused by a channel that has become corrupted
(normally by overwriting the location of the channel). You should ensure
that no compiler checks have been disabled to prevent accidental corrup-
tion.

Incompatible debugger modes: message
Mutually incompatible options have been specified on the command line.
Interactive debugging has been disabled

The module has been linked with the linker ‘¥’ option to disable breakpoint
(interactive) debugging. Rebuild your program without disabling interactive
debugging and retry.

72 TDS 367 01 March 1993

4 idebug - network debugger 137

ITERM error on line linenumber, message

The debugger has detected a syntax emor in the ITERM file. message
describes the error.

Name symbol is not in dynamic scope

The symbol symbol exists in the module, but is not in scope from where the
debugger last located to. In order to inspect the symbol you must locate to
a new position where the symbol is in scope.

Not a (compatible) bootable file "filename”

The file is either a non-bootable file or a pre-product release bootable file.
Use ilist to determine the contents of the file if in doubt.

Not enough free memory for the debugger

You have either not set the environment variable IDEBUGSIZE or you have
set it to be too small (it should be > 400K). Change the variable to reflect
the memory size of the root processor.

Not on a valid INCLUDE line

You may only use [ENTER FILE | when the cursoris on a line with aninclude
directive.

Only debugging tools and cursor keys are available
You have pressed a key which is not defined.
Option must be followed by a link number (0 - 3)

Command line options ‘B’, ‘M', and ‘T’ require a link number in the range 0
to 3.

Option must be followed by a valid processor type (eg. T425)
The processor type supplied is not recognized by the debugger.

(Probe Go) : Processor number — Cannot contact

The debugger is unable to communicate with processor number. The
processor type specified in the configuration (or to the debugger via the ‘C’
option) does not match that found. Check the network using a program
such as ispy in order to determine the correct processor type.

(Probe Go) : Processor number - Expected processor type Txxx, found Txxx

The processor type specified in the configuration (or to the debugger via
the ‘C’ option) does not match that found. Check the configuration descrip-

72 TDS 367 01 March 1993

138 4.17 Error messages

tion and the network (using a program such as ispy) in order to determine
the correct processor type.

(Probe Resume) : Processor number — Invalid Breakpoint

The debugger has stopped at a breakpoint which it did not place in the
code. If you wish to continue executing the program set a breakpoint at the
same address and retry the command.

Processor number : insufficient memory, require at least number bytes

The memory requirement of the processor as specified to the configurer,
the collector, orin IBOARDSIZE (as appropriate) is too small. (Note that the
value displayed may include memory for some configuration code that is
reclaimed when program starts executing.)

This may also be caused by the debugging Runtime kemel using an extra
11—15K of memory.

Processor type must be a 32 bit processor (eg. T425)

You must specify a 32 bit processor type because processor classes are
for 32 bit processors only.

Processor type must be not abbreviated

You must specify specific processor types rather than abbreviated types
(e.g. T425 rather than T5) because some abbreviated types cover more
- than one specific type.

READ ERROR - fruncated

The debugger could not read all of the file. The buffer contains as much of
the file as could be read (see section 4.17.1 on how to overcome this).

Runtime kernel is not present (or has been overwritten)

Either the runtime kemel has been corrupted or you are trying to post-
mortem a breakpoint session that didn’t occur.

There is no enclosing INCLUDE

You have attempted to use when not located in a nested
include file.

There are no processes waiting at either end of this link

An attempt to jump down a hard channel (link) has failed because there are
no processes waiting at either end.

This transputer link is connected to the host

The link specified in the ‘B', ‘M’, or ‘T’ command line option is the commu-
nication link from the debugger to the host and is not connected to the
network.

72 TDS 367 01 March 1993

4 idebug - network debugger 139

Too many processes declared at configuration level (number)
Too many processes used at configuration level (number)

The debugger requires more memory in order to operate on this many
processes (see section 4.17.1 on how to overcome this).

Too many processors — There is only enough room for (number)

The debugger requires more memory in order to operate on this many
processors (see section 4.17.1 on how to overcome this).

Unable to find any low priority entrypoints on any processor
Unable to find any low priority entrypoints on this processor
Unable to find any low priority main () on this processor

The processes you have requested the debugger to set breakpoints in are
all at high priority on processors with no hardware breakpoint support.

Unable to read environment variable ITERM

There is no translation for the ITERM environment variable which defines
the screen and keyboard format.

Unable to toggle a breakpoint on this line
The breakpoint cannot be set or cleared on this source line. Either:
1 The current file contains no executable code, or

2 Executable code is contained in an include file and the debugger
cannot determine whether you mean to toggle the breakpoint in
that file or in the current file.

Move to the line where you really want to toggle the breakpoint and retry
the command.

Unknown core dump format "filename”

The network dump file is in the wrong format or the wrong file has been
specified. You can use ilist to determine the format of the file.

Wdesc is invalid — message

The Wdesc supplied is invalid: this may be deliberate because it is
unknown. If you supplied it from the Monitor page environment, retry the
command with a valid Wdesc.

message can be one of:

cannot inspect variables
cannot modify variables

72 TDS 367 01 March 1993

140 4.17 Error messages

cannot backtrace
cannot auto backtrace out of library

Wrong number of processors in network dump file filename

The number of processors does not correspond to the current program.
The wrong network dump file may have been specified.

You cannot backtrace from here (to configuration code)

This normally occurs when you try to backtrace from the program’s topmost
procedure into the bootstrap routine which is not supported symbolically by
the debugger (i.e. the configuration code area).

You cannot backtrace from here (to Iptr: #nnn, Wdesc: #mmm)

An attempt to backtrace from a procedure or function has failed because
the resultant process details are invalid (e.g. Iptr isnotin the Code area),
or you are trying to locate to a software virtual link router process..

The Iptr and Wdesc shown are those of the invalid process which
supposedly called the current procedure or function,

If this error occurs, you should use [INFO_] before backtracing to check that
the current process details are valid (they are normally only invalid when
incorrect process details have been specified with the Monitor page ‘¢’
command). Corruption of the stack (workspace) is another possible cause
of this error; to prevent accidental corruption you should ensure that no
compiler checks have been disabled.

This error can also occur if you try to locate to a process which implements
the software virtual links. This can be checked by using the command
to search for a process with a Code area which contains the displayed
Iptr and a stack area which contains the displayed Wdesc. If the name
of the process is “6ROUTER[n]” then it is a software virtual link process
which can not be located to.

You have changed file, so you can’t use this key

There are certain symbolic features that cannot be used if you have
changed to another source file. Either use [RELOCATE |, or relocate to the
original file using the Monitor page (Select file) command, before
retrying the command.

You must specify a filename

The command line syntax requires a filename.

72TDS 367 01 March 1993

4 idebug - network debugger 141

You must specify a transputer type (bootable is for a TA class)
You must specify a transputer type (bootable is for a TB class)

The program you are trying to debug is for a transputer class (either TA or
TB); the debugger needs to know the actual processor type (e.g. T425).

You should retry using the debugger with the command line ‘C’ option to
specify the appropriate processor type.

You must specify the application boardsize in IBOARDSIZE to be <=#10000

On a T2 the maximum memory size is 64K (#10000).

72 TDS 367 01 March 1993

142 4.17 Error messages

72TDS 367 01 March 1993

O idump — memory
dumper

This chapter describes the memory dumper tool idump that dumps the contents
of the root processor’s memory to disk. It is used to enable the debugging of code
running on the root transputer.

5.1 Introduction

The memory dumper allows programs that use the root transputer to be debugged
in the normal way using the debugger tool i debug. Itis required because idebug
runs on the root transputer and overwrites all code and code in its memory. idump
saves the contents of the root transputer to a disk file in a format that can be read
by the debugger. Information contained in the file allows the debugger to analyze
datainthe root transputer in the same manner as other transputers on the network.

When idump is invoked it calls the server with the 'SA’ option so that the space
occupied by the dumper program is saved before it is loaded onto the transputer.

5.2 Running the memory dumper

To invoke the idump tool, use the following command line:

> idump filename memorysize [{starfoffset length }]

where: filename is the name of the dump file to be created.

memorysize is the number of bytes, starting at the bottom of memory, to
be written to the file.

startoffset is an offset in bytes from the start of memory.

length is the amount of memory in bytes, starting at starfoffset, to be
dumped in addition to memorysize.

All parameters can be expressed in either decimal or in hexadecimal format. Hexa-
decimal numbers must be preceded by the hash character ‘#' or the dollar sign ‘$".

The memory dump file stores the contents of the transputer’s registers and the first
memorysize bytes of memory. The file is given the . dmp extension. After the dump
has been performed idump remains resident on the transputer board ready to
load the debugger.

72TDS 367 01 March 1993

144 5.3 Error messages

memorysize must be large enough to contain the complete program with its work-
space and vectorspace. If the program to be dumped uses the free memory buffer,
the whole of the transputer board’s memory should be dumped.

Further portions of memory can be dumped by specifying the start of the segment
of memory to be dumped and the number of bytes, using pairs of starfoffsef length
parameters. The start address is given by sfarfoffset and the number of bytes by
length. The overall size of the memory dump file is given by the amount of memory
saved plus around 500 bytes for the register contents.

5.2.1 Example of use

Assuming a value of 100K for IBOARDSIZE:
idump core 102400

This command writes the contents of the root transputer's memory to the file
core.dmp. The .dmp extension is added by default because the filename is
specified with no extension.

5.3 Error messages

Badly formed command line

Command line error. The command syntax requires a file name followed
by the number of bytes of memory to dump. Check the syntax of the
command and retry.

Cannot open file

File system error. The memory dump file could not be opened on the host
system.

Cannot write file

File system error. The memory dump file could not be written to the host
system.

You must tell the server to peek the transputer

idump has been invoked by calling the host file server with the incorrect
option. This error can only occur if the tool is not invoked with the supplied
driver file.

727TDS 367 01 March 1983

6 iemit — memory
Interface configurer

This chapter describes the memory configuration tool iemit. This tool can be
used interactively to explore the effects of changes in the external memory inter-
face parameters of certain 32 bit transputers. The tool can also be used in batch
mode to create ASCII or PostScript files. The tool produces a memory configura-
tion file which may be included as an input file to ieprom and blown into EPROM
along with a ROM-bootable application file.

The chapter describes how to use iemit and outlines its capabilities. Example
displays are provided, followed by a list of error messages which the tool may
generate. The format of the memory configuration file is described and an example
is given. Note: memory configuration files are simple text files which may be
created manually using a standard text editor or generated by using iemit.

6.1 Introduction

The IMS T400, T414, T425, T426, T800 and T805 transputers have a configurable
external memory interface (EMI) which allows a variety of types of memory device
to be connected using few extra components.

For these transputers, the interface configuration may be selected by one of two
mechanisms. The user may select one of the 17 standard memory configurations
(13 for the T414) or a customized memory configuration may be loaded from a
ROM or PAL on reset.

Both methods of memory configuration are available when booting from ROM or
from link. If the transputer is being booted from ROM, a customized memory
configuration may be added to the ROM or a standard configuration may be used.
If the transputer is booted from link a standard configuration may be used at no
extra cost, or a dedicated ROM or PAL may be added for a customized configura-
tion.

In order to generate a customized configuration the user may create a memory
configuration file, describing the memory configuration and have this blown into
an EPROM. The configuration chosen is made known to the transputer by simple
board level connections which are detected by the transputer on reset. If a stan-
dard configuration is required the MemConfig pin is connected to the appropriate
address pin. For example, standard configuration 7 is selected via address pin
MemAD7. If a customized configuration is required the MemConfig pin is
connected though an invertor to the appropriate data line, usually this is
MemnotWrDO0. Note: when iemit is used to generate the memory configuration,

72 TDS 367 01 March 1993

146 6.2 Running iemit

the MemnotWrDO pin must be used. For further details see The fransputer data-
book.

The external memory interface configuration tool iemit produces timing
diagrams for potential configurations of the memory interface and warns of
possible errors in the design. It indicates whether one of the preset configurations
that are available would be suitable, or whether it would be necessary to use an
externally programmed configuration.

Note: That it is assumed that readers creating memory configuration files are
familiar with the memory interface of the processor that they are using. The stages
in designing a memory interface, including examples, are described in chapter 2
of The transputer applications notebook - Systems and performance. Further
information may also be found in The transputer databook.

6.2 Running iemit

The iemit tool can be invoked by the following command line:

> iemit options

where: options is a list of options given in Table 6.1.

Options must be preceded by *-’ for UNIX-based toolsets and ‘/’ for
MS-DOS and VMS based toolsets.

Options may be entered in upper orlower case and can be given in any
order.

Options must be separated by spaces.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

Option Description

A Produce ASCII output file.
E Invoke interactive mode.
F filename |Specify input memory configuration file.
I Select verbose mode. In this mode the user will receive status

information about what the tool is doing during operation for
example, reading or writing to a file.

0 filename | Specify output filename.
P Produce PostScript output file.

Table 6.1 iemit command line options

Note: that if option 'E’ is selected i.e. interactive mode, then no other options may
be specified on the command line.

72 TDS 367 01 March 1983

6 iemit - memory interface configurer 147

The operation of iemit in terms of standard file extensions is shown below:

=

Examples of use

Job

iemit may be invoked in interactive mode by using one of the following
commands:

iemit -e (UNIX based toolsets)
iemit /e (MS-DOS and VMS based toolsets)

Output files in ASCII or PostScript may be specified by command options from
within interactive mode; alternatively iemit may be invoked in batch mode, to
create an output file in one of these formats.

When the tool is invoked in batch mode to produce an output file in either ASCI|
or PostScript format, then an input file must be supplied using the ‘F’ option. ltis
alsoc mandatory to specify either the ‘A’ or ‘P’ option. If the ‘0’ parameter is not
supplied then an output filename will be constructed, from the input filename, with
an extension of ‘. ps’ for a PostScript output, or ‘. ase’ for an ASCII output.

Example:

The following commands cause iemit to produce an output file in PostScript
format. The tool is invoked in verbose mode.

UNIX based toolsets:

iemit -i -p -f memconfig.mem -o waveform.ps
MS-DOS and VMS based toolsets:

iemit /i /p /f memconfig.mem /o waveform.ps

Note: iemit will make use of the ITERM host environment variable, if it is avail-
able, otherwise it will use defaults.

72 TDS 367 01 March 1993

148 6.3 Output files

6.3 Output files

Two different types of output may be produced by iemit, these are listed below:

« A memory configuration file suitable for including as an input file to the
ieprom tool.

¢ An output file in either ASCII or Postscript format, suitable for inclusion in
documentation.

The tool may be used interactively to produce a memory configuration file in text
format. This file may then be used as an input file to the iepromtool, thus enabling
the memory configuration to be stored on ROM. iemit is capable of saving and
reloading configurations to allow for design over an extended period and for
comparison of different configurations. The memory configuration file is described
and an example is given in section 6.6.

Additionally iemit may be used to produce an output file which is either a plain
ASCII file containing timing data or a file in PostScript format containing waveform
diagrams. These formats were chosen so that the results of the program could be
easily included in reports or other documentation.

6.4 Interactive operation

When iemit is invoked in interactive mode the program will start up with the
default standard configuration 31.

The tool's user interface is presented as a number of display pages showing timing
data. The displays may be updated by changing the timing parameters, which are
accessed from page 1. All inputs are executed immediately so that the user can
see the effect on any of the displays. As each page is shown, the user has the
option of selecting another page for display by keying in its number. The current
configuration may be saved at any time to a specified output file.

The information displayed and options available on each page are described
below.

6.4.1 Page0

This page acts as an index to the others. It shows the title of each page and allows
one of them to be selected. An option is provided fo enable an input file to initialize
the memory configuration. Other options enable the user to selectively generate
output files. Options are listed in table 6.2 and an example of the display page is
given in figure 6.1.

The user enters an option code followed by the key. If a file option is
specified the user will be prompted for a filename. Note: file extensions should be
specified, there are no defaults.

72 TDS 367 01 March 1993

6 iemit - memory interface configurer 149

Option

Description

1l tose

Selects the page to be displayed.

Q

Quit - selection of this option exits the program.

L

Load previously saved configuration. A filename is prompted for,
and the configuration saved in that file is read in and the display
datais updated. The program expects a memory configuration file.

If loading does not succeed because the file has a bad format, the
current configuration is reset to standard configuration 31. If
loading fails because the file could hot be found or could not be
opened for reading, the load is abandoned without losing the
current configuration.

Save configuration to a file. The program prompts for the name of
a file to which the data will be written, by convention the extension
.mem should be used. Output is a memory configuration file. An
error is reported if the data could not be saved. The saved file is
given comments in its header indicating that it was created by the
iemit program.

Qutput pages in ASCII format to a file. The program prompts for
the name of a file to which the data will be written. Output is in plain
ASCII format with a form feed (FF) character after each page. It
includes full timing information and a representation of the timing
diagrams for read and write cycles. An error is reported if the
output could not be written.

Generate PostScript file. The program prompts for a filename. The
program writes to the file a program in the PostScript page descrip-
tion language to draw the timing diagrams for the chosen memory
interface configuration. The waveforms shown are the same as
those which can be seen by selecting pages 4 and 5.

The file produced fully conforms to the PostScript structuring
conventions, allowing it to be processed by other programs. The
diagram is designed to fit lengthways on an A4 page, and is suit-
able for inclusion in technical notes and reports. The file can be
sent directly to an Apple LaserWriter or other PostScript output
device.

Table 6.2 iemit page 0 options

72 TDS 367 01 March 1993

150 6.4 Interactive operation

/’bage 0 —\\

T414/T800 External Memory Interface Program

Page 0: 1Index - this page

1 EMI configuration parameters
2: General timing

3: Dynamic RAM timing

4: Read cycle waveforms

5: Write cycle waveforms

6: Configuration table

Please enter l1...6 to see a new page;
<85> to save configuration to a file;
<L> to load a saved configuration;
<A> to generate an ASCII listing of all pages to a file;
<p> to generate PostScript file of waveforms;
<Q> to exit the program.

Figure 6.1 Example iemit display page 0

6.42 Page1

This page shows the input parameters to iemit. It is from these parameters that
the tool computes the timing information and the waveforms. Only one parameter
may be changed at a time and the display data is immediately updated. An
example of the display page is given in figure 6.2.

Page 1 ﬁ\\
EMI configuration parameters

Device type T425-25

EMI clock period Tm 20ns at ClockIn = 5MHz

Wait states 0

Address setup time Ti:z 4 periods Tm

Address hold time T2: 4 periods T™m

Read cycle tristate/write data setup T3: 4 periods Tm

Extended for wait T4: 4 periods Tm

Read or write data T5: 4 periods Tm

End tristate/data hold T6: 4 periods Tm

Nonprogrammable strobe “notMemS0 ” "0” SO

Programmable strobe "notMemS1 ” ”1” Sl: 30 periods Tm

Programmable strobe "notMemS2 " 727 S2: 30 periods Tm

Programmable strobe "notMemS3 " ”"3" S3: 30 periods Tm

Programmable strobe "notMemS4 * ”4% S4: 18 periods Tm

Read ¢ycle strobe “notMemRd " "r*~

Write cycle strobe "notMemWrB” “"w”

Refresh period: 72 ClockIn periods Wait: 0

Write mode: Late Configuration: 31

\\gnter a new page number (0 for the index) or <C> to change a parameter: ‘//

Figure 6.2 Example iemit display page 1

When the page is displayed, the user has the option to select a new page by
entering its number, or entering[T | to change one of the parameters. In the latter

72 TDS 367 01 March 1993

6 iemit - memory interface configurer 151

case, a list of parameter identifiers is displayed (see table 6.3) and the user is a

prompted to select one. The user may then specify a new value, or by pressing the
[RETURN] key, leave the current selection unchanged. The parameters used for
modifying the timing data are described in tables 6.4, and 6.5.
Parameter |Parameter
identifier
0 to 6 |Pageto be displayed
D Device type
Tl Address setup time before address valid strobe
T2 Address hold time after address valid strobe
T3 Read cycle tristate or write data setup
T4 Extendible data setup time
T5 Read or write data
T6 End tristate or data hold
S0 Non-programmable strobe “notMemS0”
s1 Programmable strobe “notMemS1”
s2 Programmable strobe “notMemS2”
S3 Programmable strobe “notMemS3”
s4 Programmable strobe “notMemS4”
RS Read cycle strobe name
WS Write cycle strobe name
R Refresh period
WM Wirite mode
W Memwait input connection
c Standard configuration

Table 6.3 iemit page 1 parameter identifiers

Note: there are two parameters displayed on page 1 which are calculated by
iemit and cannot be directly updated by the user; they are the EMI clock period
Tm and the Wait states (see Table 6.5).

72 TDS 367 01 March 1993

152

6.4 Interactive operation

Parameter

Description

Device type

This parameter enables the program to deduce the time
taken for a half cycle of the signal ProcClockOut: this is
Tm, the basic unit of time of the memory interface. A menu
of the available devices is displayed and the user is invited
to select one:

T400-20 T800-17
T414-15 T800-20
T414-17 T800-22
T414-20 T800-25
T425-17 T800-30
T425-20 T800-35
T425-25 T805-25
T425-30 T805-30

Tstates T1-T6

The length of each Tstate T1 to T6, is entered as a number
of Tm periods between 1 and 4. (2 Tm periods = 1 clock

cycle).

Programmable
Strobes S0-S4

The programmed durations of the strobes notMem$S0 to
notMemS4. The strobes each have two names which can
be altered. One which can be up to 9 characters in length,
and one consisting of just one character. There should be
no embedded spaces in the long names. The short names
are used in the timing information on pages 2 and 3, while
the long names are used to label the waveforms on pages4
and 5, and in the PostScript output. The signal names are
initialized to sensible defaults.

Note: that SO0 is a fixed strobe, so its duration cannot be
changed. The duration of a strobe can be 0 to 31 Tm
periods. If the value for S1 is set to zero, then notMemS1
stays high throughout the cycle; if the value for S2, 83 or
S4 is set to zero, then the strobe is low for the duration of
the cycle.

Read strobe
name

The names for the read strobe notMemRd can be altered.

Write strobe

The names for the write strobe notMemWrB can be

name altered. Note that because the four byte write strobes have
the same timing, only one is considered.
Refresh The refresh period is given as a number of Clockin periods
periocd (18, 36, 54, or 72) or as Refresh Off if zero is selected.

72 TDS 367 01

Table 64 iemit page 1 parameters

March 1993

6 iemit - memory interface configurer 153

Parameter Description

Write mode The write mode can be set to Early or Late to suit
the type of memory being used.

Wait connection |The MemWait input may be connected to one of
the strobes S2, $3, S4 by entering 'S2’, ‘S3’ or 'S4’
respectively. Alternatively, by specifying a
number in the range 1 to 60 MemWait may be
connected to a simulated external wait state
generator. This causes MemWait to be held high
then to become inactive (low) a set number of Tm
periods after the start of T2. Note: that this mode
is not supported directly by the T414; in a final
design, a circuit would have to be built to perform
this function.

If the current connection of MemWait causes the
signal to become inactive just as ProcClockOut
is falling during T4, a waming is given that there
is a hazard of a wait race condition. This is
because MemWait is sampled on the falling edge
of ProcClockQut —and if the signal is changing
while being sampled, the result is undefined.

EMI clock period Tm |The value of Tmfora clockin frequency of SMHz.
This is computed from the other parameters and

displayed.

Wait states The number of wait states in the current configu-
ration. This is computed from the other parame-
ters and displayed.

Standard configura- |The parameters can all be reset to those for one
tion of the built in configurations. There are 13 stan-

dard configurations available for the T414, valid
configuration numbers being 0 to 11 and 31. For
the T400, T425, T800 and the T805 there are 17
standard configurations available, valid configu-
ration numbers being 0 to 15 and 31. If the user
selects, for a T414, one of the four configurations
which are not available, a message will be
displayed indicating that this configuration may
not be hardwired on a T414.

Ifthe currently set configuration happens to corre-
spond exactly to one of the preset configurations,
the tool reports the fact.

Table 6.5 iemit page 1 parameters

72TDS 367 01 March 1993

154

6.4 Interactive operation

6.4.3 Page2

This page shows general timing information for the interface, such as delays
between various strobes and required access times of the memory devices to be
used. The user should adjust these figures to allow for delays in external logic.

Table 6.6 lists the timing information displayed on this page while an example of
the display is given in figure 6.3.

JEDEC Parameter description

symbol

TOLOL Cycle time (in both nanoseconds and processor cycles)

TAVQV Address access time

TOLQV Access time from notMemS0
TrLQv Access time from notMemRd
TAVOL Address setup time

TOLAX Address hold time

TrHQX Read data hold time

TrHQZ Read data turn off

TOLOH notMemS0 pulse width low
TOHOL notMemsS0 pulse width high
TrLrH notMemRd pulse width low
TrLOH Effective notMemRd width
TOLwL notMemS0 to notMemWrB delay

TDVwL Wirite data setup time

TwLDX Write data hold time 1

TwHDX Write data hold time 2

TwLwH Write pulse width

TwLOH Effective notMemWTrB width

Table 6.6 General timing parameters

The total cycle time is given in nanoseconds and in processor clock cycles. The
only option available from this page is to select another page for display.

72 TDS 367 01

March 1893

6 iemit - memory interface configurer 155

(,;aqe 2 -\\

General Timing
Symbol Parameter min(ns) max(ns) Notes
TOLOL Cycle time 480 - 12 processor cycles
TAVQV Address access time - 400
TOLQV Access time from 0 - 320
TrLQV Access time from r - 160
TAVOL Address setup time 80 -
TOLAX Address hold time 80 =
TrHQX Read data hold time 0 -
TrHQZ Read data turn off - 80
TOLOH 0 pulse width low 320 .
TOHOL 0 pulse width high 160 -
TrLrH r pulse width low 160 -
TrLOH Effective r width 160 =
TOLWL 0 to w delay 160
TDVWL Write data setup time 80
TWLDX Write data hold time 1 240 -
TwHDX Write data hold time 2 80
TwIlwH Write pulse width 160
TwLOH Effective w width 160 =
\\flease enter a new page number (0 for the index): ,//

Figure 6.3 Example iemit display page 2

6.44 Page3
Page 3 ﬁ\\
Dynamic RAM Timing

Symbol Parameter min(ns) max(ns) Notes
T1L1H 1 pulse width 400 =

T1H1L 1 precharge time 80 =

T3L3H 3 pulse width = -

T3H3L 3 precharge time = -

T1L2L 1 to 2 delay = =

T2L3L 2 to 3 delay = =

T1L3L 1 to 3 delay - =

TILQV Access time from 1 “ 320

T2LQV Access time from 2 - -
T3LQV Access time from 3 - -
T3L1E 1 hold (from 3) = -
TIL3H 3 hold (from 1) - -
TWL3R w to 3 lead time =
TwLlH w to 1 lead time 240 =

T1LwH w hold (from 1) 320 =

TILDX Wr data hold from 1 400 = ‘

T3HQZ Read data turn off = =

TRFSH 256 refresh cycles - 3650 time in microseconds
\\flease enter a new page number (0 for the index): 4,)

Figure 6.4 Example iemit display page 3

This page gives timing information of special interest to designers working with
dynamic memory, including various access times and the time for 256 refresh
cycles. With this information the designer can ensure that the requirements of the

72 TDS 367 01 March 1993

156 6.4 Interactive operation

memory devices to be used are met. The user should adjust these figures fo allow
for delays in external logic. Table 6.7 lists the DRAM timing parameters.

The only option available from this page is to select another page for display. An
example of the display is given in figure 6.4.

JEDEC Parameter description
symbol

T1L1H notMemS1 pulse width

T1H1IL notMemS1 precharge time

T3L3H notMemS3 pulse width

T3H3L notMemsS3 precharge time

TiL2L notMemS1 to notMemS2 delay
T2L3L notMemS2 to notMemS3 delay
T1L3L notMemS1 to notMemS3 delay
TiLQV Access time from notMemS1

T2LQV Access time from notMemS2

TLQv Access time from notMemS3

T3L1H notMemS1 hold (from notMemS3)
T1L3H notMemS3 hold (from notMemS1)
TwL3H notMemWrB to notMemS3 lead time
TwL1H notMemWrB to notMemS1 lead time
T1LwH notMemWrB hold (from notMem$S1)
T1LDX Write data hold from notMemS1
T3HQZ Read data tumn off

TRFSH Time for 256 refresh cycles (in microseconds)

Table 6.7 DRAM timing parameters

6.4.5 Page4

This page shows graphically the timing for a memory read cycle. An example of
the display page is given in figure 6.5.

The Tstates and strobes are labelled, and bus activity is shown. The point where
data are latched into the processor is also indicated.

At the top of the page is displayed the processor clock and the Tstates, a number
indicating the Tstate, ‘W’ indicating a wait state, and ‘E’ indicating a state that is
inserted to ensure that T1 starts on a rising edge of the processor clock.

72TDS 367 01 March 1993

6 iemit - memory interface configurer 157

Below this are displayed the waveforms of the programmable strobes and the
read, write and address/data strobes. Each of these strobes is labelled with the
corresponding label parameter.

The point at which the read data is latched is indicated by a “*' beneath the read
cycle address/data strobe.

/Page 4 11111111121212121313131314141414/5151515161616161 \
ProcClock / _/ A/ A/ A\ T\ AN AL\

notMems0 (0) \ /
notMemS1 (1) \

notMemS2 (2)

notMemS3 (3)

notMemS4 (4)

MemWait \

READ CYCLE

MemAD P < P
Read data latched here *

notMemRd (r) \ /

Please enter a new page number (0 for the index), <L> to
\\fcroll display left, or <R> to scroll display right: ,/

Figure 6.5 Example iemit display page 4
The MemWait waveform shows the input to the MemWait pin. If the wait input is
a number then it goes low n Tm periods after the end of T1 and high again at the
end of T6, if the wait input is connected to a strobe it goes low and then high when
that strobe does so.

If the cycle is too long to fit horizontally on the screen, it may be scrolled left and
right using the and[R] keys. The displayed area moves by about 15 charac-
ters each time these are used.

6.4.6 Page5

Page 5 shows the waveforms for a memory write cycle. The display is similar to
that of page 4, indeed the read and write cycle diagrams are combined when the
PostScript output is produced.

Scrolling the display to the left or right is done in the same way as for page 4.

An example of the display page is given in figure 6.6.

72 TDS 367 01 March 1983

158 6.4 Interactive operation

(,;age 5 1111111112121212131313131414141415151515161616161 A‘\
ProcClock / _/ \/ \/ A\

notMems0 (0) \ I

notMemS1 (1) \

notMemS2 (2)

notMems3 (3)

notMemS4 (4)

MemWait \
WRITE CYCLE
MemAD X X

notMemWrB (w) \ /

Please enter a new page number (0 for the index), <L> to
\\?croll display left, or <R> to scroll display right: ‘//

Figure 6.6 Example iemit display page 5

6.4.7 Page6

This page gives a configuration table for the current configuration. This is a listing
of the data which have to be placed in a ROM situated at the top of the transputer’s
memory map in order to achieve the desired configuration. The table consists of
36 words of data, but only the least significant bit in each is used. The address and
contents are given for each location. Note: when iemit is used to generate the
memory configuration, the Memconfig pin must be connected to MemnotWrDO0.

An example of the display page is given in figure 6.7.
Note: that if page 1 indicates that the configuration is one of the transputer’s preset

ones, there will be no need for a ROM; configuration can be achieved by
connecting the MemConfig pin of the device to one of the address/data lines.

72TDS 367 01 March 1993

6 iemit - memory interface configurer 159

(’;age 6 ﬂ\\
Configuration Table

#7fffff6c : 1 §7fffffb4 : 1
#TE£££££70 1 1 $7££££ffb8 : 1
§TEEEEE74 ¢ 1 $7fffffbc : 1
#TELE££78 @ 1 $7££fffcO : 1
$7£££££7c & 1 $71££fffcd : 0
$1£E££££80 & 1 $7£ffffe8 : 1
$TLEEEEB4 @ 1 #1fffffcec : 1
$7£££££88 : 1 §7£££££d0 ¢ 1
#1££fff8c : 1 #7£££ffd4 ¢ 1
$T£££££90 : 1 $7££E£fA8 : 0
$TEEEEF94 : 1 $7£ffffde : 1
#TELE££98 : 1 $7£ffffe0 : 0
#7££££f9% : 0 $1fffffed : 0
#7£££££a0 : 1 §1fffffed : 1
#7fffffad : 1 $1fffffec : 1
#7fffffag : 1 $TLELEEE0 ¢ 1
§1fffffac : 1 $TLEEEEF4 ¢ 1
#TEE££££D0 @ 0 $7£EEFEE8 : 1

)

\\?lease enter a new page number (0 for the lndex H

Figure 6.7 Example iemit display page 6

6.5 diemit error and warning messages
The following is a list of error and warning messages the tool can produce:
Wait race

If one of the programmable strobes is used to extend the memory cycle
then the strobe must be taken low an even number of periods Tm after the
start of the memory interface cycle. If the strobe is taken low an odd number
of periods after the start then a wait race warning will appear. Should this
warning appeatr, it will remain on display on page 1, until the race condition
is removed. Further information can be obtained from reference 1, listed
at the start of this chapter.

Input out of range

If the value entered for a numeric parameter is outside the range valid for
that parameter, an input out of range waming is displayed, the value
cleared from the screen and the program waits for a new value.

MemWait connection error

If an attempt is made to connect S1 to the MemWait input an error is
displayed because it is a meaningless operation.

Configuration cannot be hardwired on a T414

The transputers which have a configurable memory interface all have (with
the exception of the T414) 17 standard memory configurations available

72 TDS 367 01 ‘March 1993

160 6.6 Memory configuration file

to them. The T414 only has a choice of 13 standard configurations. If the
standard configurations 12, 13, 14 or 15 are selected for a T414 the above
warning message will be displayed against the selection on page 1.

Unable to open configuration file ‘filename’
This can occur when attempting to load a memory configuration file and
indicates that the tool cannot find the specified input file. Check the spelling
of the filename and/or that the file is present.

Command line parsing error
An option has been specified that the tool does not recognize.

No input file specified

This indicates that when trying to invoke the tool to produce an output file,
the user has not specified a memory configuration file to use as input.

One and only one of options A or P must be specified

This indicates that when trying to produce an output file, the user has not
specified whether the output is to be in ASCII or PostScript format.

Unable to open output file filename’

An output filename has been specified incorrectly. Check the format of the
filename.

6.6 Memory configuration file

Memory configuration files are text files which may be generated by a standard text
editor or by using the memory interface configuration tool iemit, see section 6.2.

By convention memory configuration files have the file extension .mem. The file
consists of a sequence of statements and comments. The following are consid-
ered to be comments:

¢ Blank lines
= Any line whose first significant characters are ‘--'
= Any portion of a line following ‘'

Comments are ignored by the ieprom and iemit fools. Statements are all other
lines within the file; they may be interspersed with comments.

Individual statements are constructed of the statement and an associated param-
eter. These must be separated by at least one space or tab but extra spaces may

72 TDS 367 01 March 1993

6 iemit - memory interface configurer 161

be inserted before, between, or after them for aesthetic purposes. An example
memory configuration file is shown in figure 6.8.

-)

— Memory configuration file produced
- by a save command from IEMIT.
- on Thu Feb 13 15:04:04 1992
device.type 1= T425-25
tl.duration = 4

t2.duration =4

t3.duration =4

td.duration =4

t5.duration =4

t6.duration =4

s0.label := notMemS0

sl.label i= notMemsSl

s2.label := notMemsS2

s33.label := notMemsS3

84.label := notMemS4

rs.label t= notMemRd

ws.label := notMemWrB
sl.duration = 30

s2.duratioen = 30

s3.duration = 30

s4.duratien =18

refresh.period := 72

write.mode = LATE
wait.connection := 0 _//

Figure 6.8 Example memory configuration file

The statements defined are listed along with their parameters in table 6.8. Further
information about specifying parameters is given in section 6.4.2.

Option Description

standard.configuration |0 to 13, or 31 for T414 processors. 0 to 15, or
31 for T400, T425, T800 and T805 processors.

device.type One of the following devices:

T400-20 T800-17
T414-15 T800-20
T414-17 T800-22
T414-20 T800-25
T425-17 T800-30
T425-20 T800-35
T425-25 T800-25
T425-30 T805-30

72TDS 367 01 March 1993

162

6.6 Memory configuration file

Option

Description

t2.duration,
t3.duration,
t4.duration,
t5.duration,
t6.duration

tl.duration,

1 to 4 Tm periods. (2 Tm periods = 1 clock
cycle). Defines the length in Tm periods of
Tstates, T1 to T6, of the memory cycle.

s0.label,
sl.label,
s2.label,
s3.label,
s4.label

Each of these parameters accepts two text
strings. They are the long (up to 9 characters)
and short (1 character) names of the strobes
notMemS0 to notMemS4. The names should
not contain embedded spaces. Names longer
than the permitted number of characters will be
truncated.

rs.label

As above, the long and short names for the
read strobe notMemRd.

ws.label

As above, the long and short names for the
read strobe notMemWrB.

sl.duration

0 to 31 Tm periods. The S1 strobe goes low at
the start of Tstate 2. This parameters defines
the number of Tm periods before it goes high.

s2.duration,
s3.duration,
s4 .duration

0to 31 Tm periods. The S2 to S4 strobes all go
high at the end of Tstate 5. These parameters
define the number of Tm periods before each
strobe goes low.

refresh.pericd

18, 36, 54, 72 or the string “Disabled”. This
parameter defines the period between refresh
cycles as a count of Clockin cycles.

write.mode

String value either: “Early” or “Late”. Defines
the write mode.

wait.connection

S2, S3, 84 or a value in the range 0 to 60. This
parameter connects MemWait to one of the
strobes S2, S3, $4 orto simulated external wait
state generator.

Table 6.8 Memory Configuration file statements

72 TDS 367 01

March 1993

/ ieprom— ROM
program convertor

This chapter describes the EPROM hex tool ieprom. This tool is used to convert
a ROM-bootable file into one or more files suitable for programming an EPROM.

The chapter describes how to invoke ieprom and gives details of the command
line syntax. It describes the control file which the tool accepts as input and provides
background information on the layout of the code in the EPROM. A description of
the various file formats which may be output by the tool is given, including block
mode where the output is split up over a number of files. The chapter ends with a
list of error messages which may be generated by the tool.

7.1 Introduction

The INMOS EPROM software is designed so that programs which have been
developed and tested as boot-from-link programs, using the INMOS toolset may
be placed in ROM with only minor modification (see below).

This has the advantages that an application need not be committed to ROM until
it is fully debugged and the actual production of the ROMs can be done relatively
late in the development cycle without the fear of introducing new problems.

If a network of transputers is being used, only the root transputer needs to be
booted from ROM; once this has been booted it will boot its neighbors by link.

Figure 7.1 shows how a network of five transputers would be loaded from a ROM
accessed by the root fransputer.

Boot from link

.

= | Root fransputer . .
ROM boot from ROM Boot from link Boot from link

Boot from link

Figure 7.1 Loading a network from ROM

72 TDS 367 01 March 1993

164 7.2 Prerequisites to using the ieprom tool

Some 32 bit transputers have a configurable external memory interface. For these
transputers a memory configuration file may be created and put into ROM together
with the application. A description of memory configuration files and how to create
them is given in Chapter 6.

7.2 Prerequisites to using the ieprom tool

For an application file to be suitable for programming into ROM it must have been
configured to be booted from ROM rather than booted from link. This selection is
made by specifying the appropriate command line option when using the confi-
gurer and collector tools (see the relevant chapters of this manual). Itis also essen-
tial that all C and FORTRAN programs, including those targeted at a single
processor, are configured. C and FORTRAN programs prepared with the
icollect ‘T’ option are notin a format suitable for ieprom.

7.3 Running ieprom

ieprom takes as input a control file and outputs one or more files which may be
put into ROM by an EPROM programmer.

The control file, in text format, specifies the root transputer type, the name of the
bootable file containing the application, the memory configuration file (if one is
being used), the amount of space available in the EPROM, and the format that the
output is to take. Available output formats are: binary, hex dump, Intel, Extended
Intel, or Motorola S-Record format.

The ieprom tool is invoked by the following command line:

> ieprom filename { options}

where: filename is the name of the control file.

options is a list of options from Table 7.1.

Options must be preceded by ‘~' for UNIX-based toolsets and '/’ for
MS-DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be given in any
order.

Options must be separated by spaces.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

72TDS 367 01 March 1993

7 ieprom - ROM program convertor 165

Option Description

I Selects verbose mode. In this mode the user will receive status
information about what the tool is doing during its operation, for
example reading or writing to a file.

R Directs ieprom to display the absolute address of the code

reference point. This address can be used to locate within the
memory map created by the icollect ‘P’ option.

Table 7.1 ieprom command line options

The operation of ieprom in terms of standard file extensions is shown below.

3

.bin

7.31 Examples of use
ieprommay be invoked in verbose mode by using one of the following commands:
ieprom -i mycontrol.epr (UNIX based toolsets)

ieprom /i mycontrol.epr (MS-DOS and VMS based toolsets)

7.4 ieprom control file

The control file is a standard text file, prepared with an editor; it consists of
comments and statements. A comment is any blank line or any text following the
comment marker ‘—-'. Comments are ignored by the ieprom tool.

Statements are all other lines within the file. They may be in any order, except that
the four statements defining a block must immediately follow the statement
‘output.block’ (see table 7.3). Statements may be interspersed with
comments.

Individual statements are constructed of a keyword and an associated parameter.
These must be separated by at least one space or tab but extra spaces may be
inserted before, between, or after them for aesthetic purposes. The statements are
listed, along with their parameters, in tables 7.2 to 7.4.

Examples of control file contents are given in section 7.8.

72TDS 367 01 March 1993

166

7.4 ieprom control file

The statements in table 7.2 are used to specify the contents of the EPROM: the
processor type, the source of the data (code and memory configuration) to be
placed in the EPROM, and the total size of EPROM memory.

Statement

Parameter/Description

root.processor. type

type

This statement specifies the processor type. The
processor type can be specified in full (e.g. T400),
or one of the following classes can be specified:

T2: 16 bit processor (M212, T212, T222, T225)
T4: 32 bit processor (T400, T414, T425, not T426)
T8: 32 bit processor with FPU (T800, T801, T805)

The IMS T426 must be specified as T426. See
appendix B for a full list of valid processor types.

This statement must be present as the first line in
the control file.

bootable.file

filename

This statement specifies the file that contains the
output of icollect, usually the application plus
its ROM loader(s).

This statement must be present in the control file.

memory.configuration

filename

This statement specifies a T4/T8 memory configu-
ration file to be included in the EPROM image. This
fileis a standard memory configuration description
(see chapter 6 for details).

This statement is optional. If absent from the
control file then no memory configuration will be
inserted in the output file.

eprom.space

hex number

This statement specifies the size of the EPROM
memory space in bytes. This space may actually
contain several physical devices.

This statement must be present in the control file.

Table 7.2

72TDS 367 01

Specifying the EPROM contents

March 1993

7 ieprom - ROM program convertor

167

The statements in table 7.3 specify the output to be produced: the format of the
data and whether the data is to be placed in a single file or split into blocks.

Statement

Parameter/Description

output.format

hex | intel | extintel | srecord | binary

This statement specifies the output file format as being one
of: plain ASCII hex, Intel hex, extended Intel hex, Motorola
S-record or binary format respectively. These output formats
are explained in section 7.6.

This statement is optional. If absent from the control file then
the default output is hex.

output.all
output.block

filename
filename
These statements are used to specify the type of output and

the output filename. By convention the following file exten-
sions should be used:

.hex Hexadecimal
.bin Binary

.ihx Intel formats
.mot Motorola format

output.all means that all of the image is to be output to
one file.

output.block specifies that a block of data is to be output
to the specified file. It must be followed by the four statements
that define the block; these are detailed in table 7.4.

The control file must contain one output.all statement, or
one or more output.block statements.

Table 7.3 Specifying the output format

Table 7.4 lists the statements used to define each output block. One of each of
these statements must follow each cutput.block statement.

72TDS 367 01

March 1993

168 7.5 What goes into the EPROM

Statement Parameter/Description

start.offset hex number

This statement specifies the address of the start of the
block, as a byte offset into the EPROM space.

end.offset hex number

This statement specifies the address of the end of the
block, as a byte offset into the EPROM space.

byte.select byte list | all

This statement is followed by either a list of byte numbers
(separated by &), or the keyword all. It specifies which
bytes in a word are to be output in this block. The byte
numbers canbe 0, 1, 2 and 3 for 32 bit processors; or 0 and
1 for 16 bit processors.

output.address |hex number

This statement specifies the byte address, in the EPROM
programmer’s memory map, at which the block is to be
output.

Table 7.4 Output block specification

7.5 What goes into the EPROM

This section describes the contents of the EPROM, the reasons behind the code
layout and the function of those components inserted by ieprom.

The contents of the EPROM includes the bootable file, traceback data and jump
instructions to enable the processor to find the start of the bootable file. Should the
user define the memory configuration this information will also be placed in the
EPROM. The general layout of the code in the EPROM is shown in figure 7.2.

7.51 Memory configuration data

Memory configuration data, when present, is placed immediately below the top
word of the EPROM. The top word holds the first instructions to be executed if the
transputer is booting from ROM.

If the processor has a configurable memory interface it will scan the memory
configuration data held on the EPROM, before executing the first instructions. If
a standard memory configuration is being used there should be no memory config-
uration data present and the processor will ignore this section of the EPROM.

72 TDS 367 01 March 1993

7 ieprom - ROM program convertor 169

Address (T4/T8) Address (T2)

jumptobounce [~ #¥7FFFFFFE #7FFE

data from memory
configuration file
(T4 and T8 only)

(T426 only)
bounce jump

/

i

#7FFFFF68 (others)

content of bootable
file minus icollect
comment bootstrap

traceback information

increasing address
empty

Figure 7.2 Layout of code in EPROM

7.5.2 Parity registers

The T426 has the ParityErrorReg and ParityErrorAddressReg mapped into the
two words immediately below the memory configuration data (addresses
#TFFFFF64 and # 7TFFFFF68). The EPROM tool needs to know that it must avoid
these addresses on the T426 and so the processor type must be given explicitly
in the root.processor.type statement.

7.5.3 Jump instructions

The first instruction executed by the processor when booting from EPROM, is
located at most positive integer — 1: this is $7FFFFFFE for 32-bit machines and
#7FFE for 16-bit machines. The first two instructions cause a backwards jump to
be made, with a distance of up to 256 bytes; however, since most applications are
larger than 256 bytes it is necessary for ieprom to insert a ‘bounce’ jump back to
the start of the bootable file.

72 TDS 367 01 March 1993

170 7.6 ieprom output files

7.5.4 Bootable file

The bootable file will have been produced by the collector tool icollect, using
a boot from ROM loader. The comment bootstrap, containing traceback informa-
tion originally added to this file by icollect, is stripped off by ieprom.

The bootable file is placed in the EPROM such that the start of the file is placed
at the lowest address, with the rest of the file being loaded in increasing address
locations. The end of the file is placed immediately below the bounce jump instruc-
tion, which points to the start of the bootable file.

7.5.5 Traceback information

iepromcreates its own traceback information consisting of the name of the control
file and the time at which ieprem ran. This information is placed below the start
of the bootable file. Note: at present this information is not used by any of the tools.

7.6 ieprom output files

The tool can produce output in a form readable by the user or in a form readable
by EPROM programming devices. The following formats are supported:

o Binary output

e Hex dump

e |ntel hex format

¢ Intel extended hex format
¢ Motorola S-record format

Whichever form is used, it is sometimes necessary to output the data in separate
blocks. Block mode operation is discussed in section 7.7.

Note: there is no output for unused areas of the EPROM. If the buffer in the
EPROM programmer is not initialized before loading the files produced by this
program into it, unused areas of the EPROM will be filled with random data.
Although the operation of the bootstrap code and loader programs will not be
affected by the presence of random data, these areas of the EPROM cannot
subsequently be programmed without erasing the whole device.

7.6.1 Binary output

This file is in binary format and simply contains all bytes output. There is no addi-
tional information such as address or checksums.

7.6.2 Hex dump

This simple format is intended to be used to check the output from the program.
The dump consists of rows of 16 bytes each, prefixed by the address of the first

72 TDS 367 01 March 1993

7 ieprom - ROM program convertor 171

byte of each row. The format contains no characters other than the hexadecimal
digits, the space character and newlines.

7.6.3 Intel hex format

This is a commonly used protocol for EPROM programming equipment. A
sequence of data records is sent. Each record contains a few bytes of information,
a start address and a checksum. In addition, a special record marks the end of a
fransmission. Since the format only supports 16-bit addresses, any longer
addresses will generate an error message. Records produced by this program
contain at most 32 bytes each.

7.6.4 Intel extended hex format

This format, also known as Intel 86 format, is similar to Intel hex, but adds another
type of record. The new type 02 record is used to specify addresses of more than
16 bits. The type 02 record contains a 16-bit field giving a segment base offset. This
value is shifted left four places and added to subsequent addresses. This mimics
the operation of the segment registers on the Intel 8086 range of microprocessors.
The segment base offset value persists until the next type 02 record occurs. This
format therefore allows addresses up to 20 bits in length. Again, longer addresses
will generate an error message. The program minimizes the number of type 02
records inserted in its output.

7.6.5 Motorola S-record format
This format is another well known industry standard; it consists of a header record,
data records, and finally an image end record. The advantage of this format is that,

by the use of different data record types, it can support 16, 24, or 32 bit addresses.
This program uses whichever data record type is necessary.

7.7 Block mode

Block mode is a term used to describe the output from ieprom, when more than
one output file is produced. The user defines how the data is to be split between
files using control file statements (see table 7.4).

7.7.1 Memory organization

In order to understand the ideas behind block mode operation it is helpful to under-
stand the way memory is organized in a 16 or 32 bit transputer.

In general, a transputer with a 32 bit data bus will expect to read from memory in

32 bit words; the addresses of these words will be on word boundaries (i.e. the
address will always be divisible by 4, the two least significant bits will be 0). EPROM

72 TDS 367 01 March 1993

172 7.7 Block mode

devices, however, are usually 8 bits wide, and so it is necessary to have 4 EPROMs
side by side to make up the 32 bit width. These 4 devices are addressed as bytes
0 to 3. The two least significant bits of an address (the ‘byte selector’) give the byte
numbers.

Similarly a 16 bit transputer will expect to read from memory in 16 bit words. The
address of each word will always be divisible by 2. The two EPROM devices
required to make up the 16 bit width will be addressed as bytes 0 and 1. Inthis case
the least significant bit of an address indicates the byte being accessed.

7.7.2 When to use block mode
Block mode has three uses:

* When the EPROM programmer being used is unable to split the input data
into bytes, in order to program separate byte wide devices.

¢ When the EPROM programmer has insufficient memory to hold the entire
image.

¢ When it is necessary, for some reason, to load the program to a different
address in the EPROM programmer to that which it will occupy in the
EPROM space.

7.7.3 How to use block mode

When block mode is to be used, the user must first decide on the blocks to be
output. For each block an output.block statement must be specified in the
control file. Each cutput.block statement must be followed by the four state-
ments:

start.offset
end.offset
byte.select
output.address

ieprom will scan the entire image and output those bytes that have an EPROM
space address beiween start.offset and end.offset and whose byte
address matches the byte.select value. It will output this data to contiguous
addresses starting at output.address.

Note: if the image does not occupy all of the EPROM space then there may be
some space at output.address before the data starts.

72 TDS 367 01 March 1993

7 ieprom - ROM program convertor 173

7.8 Example control files

7.8.1 Simple output

For this example the application is in the file bootable . btr, there is no memory
configuration, there is 128 kbytes of EPROM, and the EPROM programmer can
take all of the code as one file.

—— EPROM description file for example 1
root.processor.type T4

bootable.file bootable.btr
eprom.space 20000
output. format srecord
output.all image.mot

7.8.2 Using block mode

In this example the application is in embedded. btr, there is a memory configura-
tionin fastsram.mem, there are 16 kbytes of EPROM and the data is to be split
into four blocks of 4k EPROMs fo be programmed at locations 0000, 1000, 2000,
and 3000 in the EPROM programmer's memory.

—— EPROM description file example 2
root.processor.type T8

bootable.file embedded.btr
memory.configuration fastsram.mem

eprom. space 4000
output.format intel
output.block partl.ihx
start.offset 0000
end.offset 3FFF
byte.select 0
output.address 0000
output.block part2.ihx
start.offset 0000
end.offset 3FFF
byte.select h |
output.address 1000
output.block part3.ihx
start.offset 0000
end.offset 3FFF
byte.select 2
output.address 2000
output.block partd.ihx
start.offset 0000
end.offset 3FFF
byte.select 3
output.address 3000

72 TDS 367 01

March 1993

174 7.9 Error and warning messages

7.9 Error and warning messages
The following is a list of error and warning messages the tool can produce:
Command line parsing error

This indicates that a command line option has been specified that the tool
does not recognize.

Control file error

This message will be received whenever an error is found in the format of
the control file. A self explanatory message will be appended, giving details
of what the tool expects the format fo be.

No input file specified

This indicates that when trying to invoke the tool the user has not specified
a control file to use as input.

Unable to open bootable file ‘filename’

The bootable file specified in the control file cannot be found. Check the
spelling of the filename and/or that the file is present.

Unable to open configuration file ‘filename’

The memory configuration file specified in the control file cannot be found.
Check the spelling of the filename and/or that the file is present.

Unable to open control file ‘filename’

The control file specified cannot be found. Check the spelling of the file-
name and/or that the file is present.

Unable to open output file filename’

An output filename has been specified incorrectly. Check the format of the
filename.

72 TDS 367 01 March 1993

8 ilibr — librarian

This chapter describes the librarian tool i 1ibr that integrates a group of compiled
code files into a single unit that can be referenced by a program. The chapter
begins by describing the command line syntax, goes on to describe some aspects
of toolset libraries, and ends with some hints about how to build efficient libraries
from separate modules.

8.1 Introduction

The librarian builds libraries from one or more separately compiled units supplied
as input files. The input files may be any of the following:

e Compiled object code files produced by the INMOS compilers:
— oc (occam 2 compiler),
— iec (ANSI C compiler),
- if£77 (FORTRAN-77 compiler).
o Library files already generated by i1ibr (see section 8.2.4).
e Linked object files (see section 8.2.3).

The librarian takes a list of compiled files in TCOFF format and integrates them into
a single object file that can be used by a program or program module. Each module
in the input list becomes a selectively loadable module in the library. Input files can
either be specified as a list on the command line or in indirect files.

The library, once built, will contain an index followed by the concatenated modules.
The index is generated and sorted by the librarian to facilitate rapid access of the
library content by the other tools in the toolset, for example, the linker.

Compiled object files (excluding library files) may be concatenated for conve-
nience before using the librarian. This may prove useful when dealing with a large
number of input files.

The operation of the librarian in terms of standard file extensions is shown below.

Jib
. ilibr —
A
Jku ':lbb:

72 TDS 367 01 March 1993

176 8.2 Running the librarian

8.2 Running the librarian

To invoke the librarian use the following command line:

P ilibr filenames {options}

where: filenames is a list of input files separated by spaces.

options is a list of one or more options from Table 8.1.

Options must be preceded by ‘-’ for UNIX-based toolsets and ‘/’ for
MS-DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be given in any
order.

Options must be separated by spaces.

The number of file names allowed on a command line is system dependent. To
avoid overflow, files may be concatenated or an indirect file used. It is the user’s
responsibility to ensure that the concatenation process does not corrupt the
modules, for example by omitting to specify that the concatenation is to be done
in binary mode.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

Option Description
F filename |Specifies a library indirect file.
I Displays progress information as the library is built.

0 filename |Specifies an output file. If no output file is specified the name is
taken from the first input file and a . 1ib extension is added.

Table 8.1 ilibr command line options

Example
ilibr myprog.t4x myprog.t8x

In this example, the compiled object code files myprog. t4x and myprog.t8x
(compiled for T4 and T8 transputers respectively) are used to create a library.
Because no output file name is specified on the command line, the library will be

given the name myprog. 1ib.

8.21 Default command line

A set of default command line options can be defined for the tool using the
ILIBRARG environment variable. Options must be specified in the variable using
the syntax required by the command line.

72TDS 367 01 March 1893

8 ilibr - librarian 177

8.2.2 Library indirect files

Library indirect files are text files that contain lists of input files, directives to the
librarian, and comments. Filenames and directives must appear on different lines.
Comments must be preceded by the double dash character sequence ‘~-, which
causes the rest of the line to be ignored. By convention indirect files are given the
. 1bb extension.

Indirect files may be nested within each other, to any level. This is achieved by
using the #INCLUDE directive. By convention nested indirect files are also given
the extension . 1bb.

The following is an example of an indirect file:
-— user’s .lbb file

userprocl. tco == single modules
userproc2. tco
userproc3.tco

myconcat. tco == concatenation of modules
#INCLUDE indirect.lbb -- another indirect file
userprocd.tco == another single module

The contents of a nested indirect file will effectively be expanded at the position it
occurred.

To specify indirect files on the command line each indirect filename must be
preceded by the ‘F’ option.
8.2.3 Linked object input files

The librarian will also accept linked object files as input, with certain conditions. The
facility to create libraries of linked modules provides an easy method of specifying
input to the configurer. Such library files should only be referenced from a configu-
ration description.

The librarian will generate an error if an attempt is made to include both linked units
and compiled modules in a single library. In addition, libraries of linked object
modules must not be used as input to the linker i1ink. This is because the linker
does not accept linked units as input files.

8.2.4 Library files as input

Library files can themselves be used as input files to i 1ibr. When a library file is
used as a component of a new library, its index is discarded by ilibr.

Library files may not be concatenated for input to the librarian.

8.3 Library modules

Libraries are made up of one or more selectively loadable modules. A module is
the smallest unit of a library that can be loaded separately. Modules are selected
via the library index.

72 TDS 367 01 March 1993

178 8.4 Library usage files

8.3.1 Selective loading

Libraries can contain the same routines compiled for different transputer types and
(for occam modules) in different error modes.

Selection of library modules for linking in with the program is made on the basis
of target processor type and error mode. For example, if the program is compiled
for an IMS T414 only modules compiled for this processor type or for processors
in acompatible transputer class are loaded. For languages such as FORTRAN and
C the error mode is always UNIVERSAL.

For C and FORTRAN modules the linker selects the library modules best suited
to the compilation units. For occam the compiler identifies the modules to be
selected according to the requirements of the main program. The linker then
makes the selection.

The linker also selects library modules for linking on the basis of usage. Only those
modules that are actually used by the program are linked into the program.

8.3.2 How the librarian sorts the library index

The librarian creates a library index which is used by the linker to select the
required modules. The librarian sorts the index so that for a given processor type,
the optimum module is always selected by the linker.

The librarian compares and sorts modules according to a number of factors
including attributes set by the compiler options used. These determine for
example, the instruction set of the module and influence run-time execution times.

For example, where two library modules were derived from the same source but
compiled for classes TA and T4, the librarian would place the T4 module first
because it uses a larger instruction set. Modules compiled with interactive debug-
ging enabled are placed later in the index than those for which debugging is
disabled. The librarian orders the index enfries such that the first valid entry is
always the ‘best choice’. If two entries are found to be identical the librarian will
issue a warning.

8.4 Library usage files

Library usage files describe the dependencies of a library on other libraries or
separately compiled code. They consist of a list of separately compiled units or
libraries referenced within a particular library. The . 1iu files required by the tool-
set's libraries are supplied by INMOS.

If the imakef tool is used then library usage files should be created for all libraries
that are supplied without source. This is to enable the imakef tool to generate the
necessary commands for linking. Library usage files are text files. They may be
created for a specific library by invoking the imakef tool and specifying a . 1iu
target. See section 11.5.

72TDS 367 01 March 1993

8 ilibr - librarian 179

Such files are given the same name as the library file to which they relate but with
an . liu extension.

8.5 Building libraries

This section describes the rules that govemn the construction of libraries and
contains some hints for building and optimizing libraries.

8.51 Rules for constructing libraries

1. Routines of the same name in a library must be compiled for different frans-
puter types, ermor modes or debug attributes.

2. Libraries that contain modules compiled for a transputer class (i.e. TA or
TB) are treated as though they contain a copy for each member of the class
(using the subset of instructions which are common).

3. Libraries that contain modules compiled in UNIVERSAL mode are treated
as though they contain a copy for each of the two error modes HALT and
STOP.

4. Libraries that contain modules with interactive debugging enabled are
treated as though they also contain a copy with interactive debugging
disabled. (When interactive debugging is enabled, channel input/output is
performed via library calls otherwise transputer instructions are used).

8.5.2 General hints for building libraries

Routines that are likely to be used together in a program or procedure (such as
routines for accessing the file system) can be incorporated into the same library.
At a lower level, routines that will always be used together (such as those for
opening and closing files) can be incorporated into the same module.

Libraries can contain the same routines compiled for different transputer types, in
different error modes and with different input/output access to channels. Only
those modules actually used by the program are incorporated by the compiler and
linked in by the linker.

Where possible compile library input files with debugging enabled. This enables
the debugger to locate the library source if an error occurs inside the library.

When building C libraries care should be taken if the ‘Fs’ or ‘FC’ INMOS C compiler
command line options are used, that code compatibility is maintained.
8.5.3 Optimizing libraries

It is possible for the user to optimize the size and content of any libraries which he
builds himself, to target appropriate processors, improve the speed of code execu-
tion and to provide the best code for a given processor.

72TDS 367 01 March 1993

180 8.5 Building libraries

All libraries

Points to consider when constructing libraries in any language or mixture of
languages:

o Whether the library is to be targeted at one or two specific processors or
awide range of processors. The transputer type specified for the compila-
tion of a library module determines the instruction set used. Transputer
classes TA and TB provide the basic instruction sets common to several
transputer types. Transputer classes such as the T5 provide extended
instruction sets but are targetted at fewer transputers than classes TA and
TB.

¢ For floating point operations, classes T5 and TB provide better code and
therefore better execution times than class TA.

o Whether the versatility of the library should be reduced in order to create
a smaller library.

Libraries containing occam modules

When building libraries which include modules written in occam the same consid-
erations apply, but also note the following:

e The error mode used will affect the size of the library. A library created from
modules compiled in UNIVERSAL mode will behave as if it contains a copy
of the code for both HALT and STOP mode. Also, on the current range of
transputers, code compiled in HALT mode will tend to execute faster than
if it is compiled in STOP or UNIVERSAL error modes.

» Forlibraries containing modules where the method of channel input/output
may be altered, (such as in occam), both the availability of the interactive
debugging facility and the speed at which the code will be executed may
be affected.

When interactive debugging is enabled, channel input/output will be imple-
mented via library calls. When interactive debugging is disabled using the
compiler ‘Y’ option, transputer instructions are used for channel input/
output. This leads to faster execution times. However, disabling interactive
debugging for one module of a program, will disable this facility for the
whole program.

For a detailed description of transputer types and error modes, see appendix B.

Outlined below are three different approaches to optimization. The first approach
provides the greatest level of flexibility in its application. The experienced user may
refine these guidelines to specific requirements.

Semi—optimized library build targeted at all transputer types
This is the simplest way to build a library that covers the full range of transputers.

72 TDS 367 01 March 1993

8 ilibr - librarian 181

The user should compile each module separately for the following three cases and
incorporate all three versions into the library.

Processor type/class |Error mode Method of channel I/O

T2 UNIVERSAL Via library calls

TA UNIVERSAL Via library calls.

T8 UNIVERSAL Via library calls.

Note: Error mode and channel i/o only apply only to modules which employ them
e.g. occam modules compiled by oc.

The resulting library will be small in terms of the number of modules it will contain.
Due to their generic nature the modules themselves may be bulky and because
they contain only the base set of instructions, the execution time for the program
will tend to be slower than a more optimized approach.

Optimized library targeted at all transputer types

In order to build a library which is both generalized enough to work for all 32-bit
transputers and is then optimized for modules which require extended instructions
sets the following approach is recommended:

1. Compile all modules for classes TA and T8. This will provide modules which
can be run on all 32-bit transputers.

2. If any of the modules perform floating point operations, compile these
modules for class TB as well.

For 16-bit transputers it should be sufficient to compile all modules for class T2.
Library build targeted at specific transputer types
This method of building a library will limit the use of the library modules to specific
transputer types and error modes. It is recommended as the simplest strategy to
use when the following options are known for each module:

e Target transputer type.

e Error mode of modules, if any, (i.e. HALT, STOP or UNIVERSAL).

e Method of channel input/output, if any.
All modulesto be included in the library must be compiled for eachtarget transputer
type and, if appropriate, for the same error mode and method of channel input/
output. The resulting library may be large and contain a certain amount of duplica-
tion.

For example, for the following options:

72TDS 367 01 March 1993

182

8.6 Error Messages

* T414 and T425 processor types

e HALT error mode

o channel input/output via library calls

each module should be compiled for the following:

Processor type/class |Error mode Method of channel l/O
T414 HALT Via library calls
T425 HALT Via library calls.

Note: Error mode and channel /o only apply only to modules which employ them
e.g. occam modules compiled by oc.

8.6 Error Messages

This section lists each error and warning message which may be generated by the
librarian. Messages are in the standard toolset format which is explained in

appendix A.

8.6.1 Warning messages

filename - bad format: symbol symbo/ multiply exported

Anidentical symbol has occurred in the same file. There are three possibili-

ties:

The same file has been specified twice.

The file was a library where previous wamings have been ignored.

A module in the file has been incormectly generated.

filename1 - symbol symbol also exported by filename2

An identical symbol has occurred in more than one module. If the linker
requires this symbol, it will never load the second module.

8.6.2 Serious errors

bad format: reason

A module has been supplied to the librarian which does not conform to a
recognized INMOS file format or has been corrupted.

72 TDS 367 01

March 1993

8 ilibr - librarian 183

filename - line number - bad format: excessively long line in indirect file

A line is too long. The length is implementation dependent, but on all
currently supported hosts, is long enough to only be exceeded in error.

filename - line number - bad format: file name missing after direcive
A directive (such as INCLUDE) has no file name as an argument.
filename - line number - bad format: non ASCII character in indirect file
The indirect file contains some non printable text. A common mistake is to
specify a library or module with the F command line argument or the
INCLUDE directive.
bad format: not a TCOFF file
The supplied file is not a library or module of any known type.
filename - line number - bad format: only single parameter for directive
The directive has been given too many parameters.
command line error token
An unrecognized tokén was found on the command line.
filename - could not open for reading
The named file could not be found/opened for reading.
filename1 - line number - could not open filename?2 for reading
The file name specified in an INCLUDE directive could not opened.
filename - could not open for writing
The named file could not be opened for writing.
filename - must not mix linked and linkable files

The librarian is capable of creating libraries from compiled modules or
linked units, but it is illegal to attempt to create a library from both.

no files supplied

Options have been given to the librarian but no modules or libraries.

filename - nothing of importance in file

The file name specified in a library indirect file or in an INCLUDE directive
was empty or contained nothing but white space or comments.

72TDS 367 01 March 1993

184 8.6 Error Messages

filename - line number - only one file name per line

More than one file name has been placed on a single line within an indirect
file.

filename - line number - unrecognised directive directive

An unrecognized directive has been found in an indirect file.

72TDS 367 01 March 1993

9 ilink — linker

This chapter describes the linker tool ilink which combines a number of
compiled modules and libraries into a linked object file. The chapter begins with
a short introduction to the linker, explains the command line syntax and goes on
to describe linker indirect files and the main linker options. The chapter ends with
a list of linker messages.

9.1 Introduction

The linker links a number of compiled modules and library files into a single linked
object file (known as a linked unit), resolving all external references. The linker may
be used to link object files produced by the ANSI C compiler ice, the 0ccam 2
compiler oc, and the FORTRAN-77 compiler 1 £77. Code produced by the linker
can be used as input to the configurer and collector tools to produce a bootable
code file.

The linker can be driven directly from the command line or indirectly from a linker
indirect file. This is a text file which contains a list of files to be linked, together with
directives to the linker.

The linker is designed to accept input files in the Transputer Common Object File
Format (TCOFF) supported by this release of the toolset. However, the linker can
be directed to produce output files in Linker File Format (LFF). In this format the
output is compatible with either the iboot or iconf tools used by previous?
INMOS toolset releases.

The operation of the linker in terms of standard toolset file extensions is shown
below.

e
®

2. Pre-TCOFF toolsets, for example the Dx05 occam toolsets.

72 TDS 367 01 March 1993

186 9.2 Running the linker

9.2 Running the linker

To invoke the linker use the following command line:

> ilink [filenames] f{options}

where: filenames is a list of compiled files or library files.

options is a list of the options given in Table 9.1.

Options must be preceded by ‘~' for UNIX-based toolsets and ‘/’ for
MS-DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be givenin any
order.

Options must be separated by spaces.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

If an error occurs during the linking operation no output files are produced.

Example of use:

UNIX based toolsets:

icc hello

ilink hello.tco -f cstartup.lnk
icconf hello.cfs

icollect hello.cfb

iserver -sb hello.btl -se

MS-DOS and VMS based toolsets:

lcc hello

ilink hello.tco /f cstartup.lnk
icconf hello.cfs

icollect hello.cfb

iserver /sb hello.btl /se

In this example a compiled C file is linked for the default T414 transputer, using the
standard C startup linker indirect file cstartup.1lnk. The example also shows
the steps for compiling, booting and loading the program.

72TDS 367 01 March 1993

9 ilink - linker 187

Option Description
Transputer fype |See appendix B for a list of options to specify transputer type.
EX Allows the extraction of modules without linking them. See
section 9.5.4.
F filename |Specifies a linker indirect file.
H Generates the linked unit in HALT mode. This is the default

mode for the linker and may be omitted for HALT mode
programs. This option is mutually exclusive with the ‘s’

option.
I Displays progress information as the linking proceeds.
KB memorysize |Specifies virtual memory required in Kilobytes.
1B Specifies that the output is to be generated in LFF format, for

use with the iboot bootstrap tool and iconf configurer tool
used in earlier INMOS toolsets. (Pre~TCOFF toolsets e.g.
the Dx05 occam toolset).

1c Specifies that the output is to be generated in LFF format, for
use with the iconf tool used in earlier INMOS toolsets. (Pre—
TCOFF toolsets e.g. the Dx05 occam toolset).

ME enfryname |Specifies the name of the main entry point of the program and
is equivalent to the #mainentry linker directive (See 9.4.4).
MO filename |Generates a module information file with the specified name.
0 filename |Specifies an output file.

S Generates the linked unitin STOP mode. This option is mutu-
ally exclusive with the ‘B’ option.

T Specifies that the output is to be generated in TCOFF format.
This format is the default format.

1] Allows unresolved references.

X Generates the linked unit in UNIVERSAL error mode, which
can be mixed with HALT and STOP modes.

Y Disables interactive debugging for occam code. Used when
linking in occam modules compiled with interactive debug-
ging disabled.

Table 9.1 ilink command line options

9.21 Default command line

A set of default command line options can be defined for the tool using the TLIN-
KARG environment variable. Options must be specified using the syntax required
by the command line.

9.3 Linker indirect files

Linker indirect files are text files containing lists of input files and commands to the
linker. Indirect files are specified on the command line using the 'F’ option.

72TDS 367 01 March 1993

188 9.4 Linker directives

Linker indirect files can contain filenames, linker directives, and comments, File-
names and directives must be on separate lines. Comment lines are introduced
by the double dash (‘==") character sequence and extend to the end of line.
Comments must occupy a single line.

Indirect files can include other indirect files.

Linker indirect files must be created for all link operations which involve the use of
imakef and either C or FORTRAN modules. For further details see section 11.4.

9.3.1 Linker indirect files supplied with the toolset

Linker indirect files supplied with the toolset are described in section 3.11 of the
Toolset User Guide. The purpose of these files is to reference various runtime
libraries (or in the case of occam, compiler libraries) required to link application
programs. When specifying the program modules to be linked, the appropriate
linker indirect file must be included on the linker command line.

9.4 Linker directives

The linker supports six directives which can be used to fine tune the linking opera-
tion. Linker directives must be incorporated in indirect files (they cannot be speci-
fied on the linker command line) and are introduced by the hash (‘#") character.

The six linker directives are summarized below and described in detail in the
following sections.

Directive Description
$#alias Defines a set of aliases for a symbol name.
$#define Assigns an integer value fo a symbol name. Not applicable to

occam programs.
#include Specifies a linker indirect file.
#mainentry |Defines the program main entry point.
#reference |Creates a reference to a given name.
#section Defines the linking priority of a module.

Note: Symbol names are case sensitive.

9.4.1 #alias basename {aliases}

The #alias directive defines a list of aliases for a given base name. Any reference
to the alias is converted to the base name before the name is resolved or defined.
For example, if a module contains a call to routine proc_a, which does not exist,
then another routine proc_d may be given the alias proc_a in order to force the
call to be made to routine proc_d.

#alias proc_d proc_a

72 TDS 367 01 : March 1993

9 ilink - linker 189

In the above example the reference to proc_a is considered to be resolved.
Modules may be loaded from the library for proc_d but the linker will not attempt
to search for library modules for proc_a. If a procedure called proc_a is found
in any module then an error will result as the symbol will be multiply defined.

942 §define symbolname value

The §define directive defines a symbol and gives it a value. This value must
either be an optionally signed decimal integer, or an unsigned hexadecimal
integer. (If it is the latter it must be preceded by a # sign). #define is also
discussed in section 9.5.4.

Note: this directive is not applicable to occam.

943 #include filename

The #include directive allows a further linker indirect file to be specified. Linker
indirect files can be nested to any level. The following is an example of nested indi-
rect files:

—— user’s .lnk file:

userprocl. tco —— module
#mainentry proc_a -- main entry point directive
#include sub.lnk —- nested indirect file

-— user’s sub.lnk file:

userproc2. tco —— further modules
userproc3. tco
userlib.lib —— library

944 #mainentry symbolname

The #mainentry directive defines the main entry point of the program i.e. the top
level function of the program. This directive is equivalent to the ‘ME' command line
option. Only one main entry point may be specified. If it is omitted the linker will
select the first valid entry point in its input as a default. If there is more than one
such symbol the linker will warn that there is an ambiguity.

For C and FORTRAN programs the supplied linker indirect startup files define the
system main entry point.
945 #reference symbolname

The #reference directive creates a forward reference to a given symbol. This
allows names to be made known to the linker in advance, or forces linking of library

72 TDS 367 01 March 1993

190 9.5 Linker options

modules that would otherwise be ignored. The purpose is to allow the inclusion of
library initialization routines which might not otherwise be included. For example:

#ireference open

The above example causes open to be included in the link, whether it is needed
or not.

9.46 #section name

The §#section enables the user to define the order in which particular modules
occur in the executable code.

In order to use this directive the program modules must have been compiled using
the compiler pragma IMS linkage (C programs) or LINKAGE (OCCam
programs). Details of the appropriate directive can be found within the compiler
reference chapter of this manual.

A compiler directive enables a section name to be associated with the code of a
compilation module. A section name may take the default value
“pri%textibase” or a name specified by the user.

The linker will place modules associated with the section name
“pristextibase” first in the code of the linked unit, in the order in which these
modules are encountered. When the linker directive #section is used this default
condition is overridden. The modules identified by user defined section names will
be placed first in the linked module, in the order in which the #section directives
are encountered. These will be followed by any other modules in an undefined
order at the end of the linked unit.

For example:

#section firstisection¥name
#section second%section%name

In the above example any modules identified by £irst%section%name will be
linked first, followed by modules identified by second%section¥name, followed
by any other modules.

9.5 Linker options

9.5.1 Processor types

A number of options are provided to enable the user to specify the target processor
for the linked object file, see appendix B. Only one target processor or transputer
class may be specified and this must be compatible with the processor types or
transputer class used to compile the modules.

72 TDS 367 01 March 1993

9 ilink - linker 191

If no target processor is specified, the processor type for the linked object file will
default to a T414 processor type.

If any inputfile in the list is incompatible with the processor type in use, the link fails
and an error is reported.

9.5.2 Error modes — options H, S and X

Linked code may be generated in three error modes. For C or FORTRAN modules,
compiled respectively using icc or i£77, the error mode will be UNIVERSAL.
occam modules, compiled by oc, may be compiled in one of three error modes
as shown in table 9.2.

Error mode |Description
HALT An error halts the transputer immediately.

STOP An error stops the process and causes graceful degradation.

UNIVERSAL |Modules compiled in this mode may be run in either HALT or
STOP mode depending on which mode is selected at link time.

Table 9.2 Ermor modes

Modules that are fo be linked together must be compiled for compatible error
modes. C and FORTRAN modules can be mixed with occam modules and
occam modules compiled for different error modes may also be mixed. Table 9.3
indicates the compilation error modes which are compatible and the possible error
modes they may be linked in.

Compatible error modes ilink options
HALT, UNIVERSAL H
STOP, UNIVERSAL]

Table 9.3 ilink error modes

Note: Modules which have been compiled in UNIVERSAL error mode may be
linked in this mode using the X option. If the resulting linked unit is then processed
by the icollect tool it will be freated as if it had been linked in HALT mode.

The linker will produce an error if an input file is in a mode incompatible with the
command line options or defaults. The linker default is to create linked modules
in HALT mode unless otherwise specified.

9.5.3 TCOFF and LFF output files — options T, LB, LC

These three options enable the format of the linked unit output file to be changed.
The linker will default to TCOFF output if none is specified.

72 TDS 367 01 March 1993

192 9.5 Linker options

Option T specifies that the linked unit is to be outputin TCOFF format. This file may
then be processed normally by other tools in the toolset, for example, the confi-
gurer and collector tools.

The LB and LC options specify that the linked unit is to be output in LFF format so
that it is compatible with previous toolsets. The LB option produces a file compat-
ible with the iboot and iconf£ tools used by earlier INMOS toolsets. (See footnote
2). The specified main entry point of the linked program is then available for boot-
strapping by iboot or configuring by iconf. The LC option is used only in mixed
language systems incorporating occam programs. No main entry point need be
specified.

When the LB and LC options are used the linked output file will not be compatible
with the current toolset, which requires TCOFF format.

9.5.4 Extraction of library modules - option EX

The EX option instructs the linker to extract the modules which would normally
have been linked by the i1ink command, and to insert them unmeodified into an
output file. When the EX option is used, the linker does not produce a linked unit
as output. Instead it outputs a concatenation of the component modules that would
have made up the linked unit. This file can then itself be used as input to either the
linker or librarian. By default the output file produced will have the extension . 1ku,
although it is not a linked unit. An alternative output filename and extension can
be specified using the i1ink O option.

This mechanism can be used for creating sub units for linking at a later date or for
extraction of modules from libraries.

When linking or extracting modules the linker attempts to resolve any unresolved
references. The linker U option and the §reference directive are particularly
useful for controlling the extraction of unlinked modules. For non-occam modules
the #define directive can also be used to refine the selection of modules which
are extracted. Linker options and directives used in conjunction with the EX option
do not modify the extracted modules, they just influence the selection process.

Example: Extraction from a user library

This example demonstrates how to extract sub—parts of a previously supplied
library.

Suppose we are given a library, my1lib. 1ib, which contains routines with entry-
points start, run, clear, and stop. These routines may also call other modules
which reside in the same library, but we are not concemed about their exact
names. We can use the linker's EX option to extract a sub-ibrary, which just
contains start, run, and stop, but does not contain clear.

We do this by forcing the linker to ‘find’ references to start, run and stop, but
leave out clear.

72 TDS 367 01 March 1993

9 ilink - linker 193

1 Create the following linker indirect file x. 1nk:
— Items wanted
#reference start

f#reference stop
$reference run

— Libraries
mylib.lib

2 Use ilinkto extractthe required modules and place themin a namedfile:

ilink -f x.lnk -o sublib.tco —ex (UNIX)
ilink /f x.lnk /o sublib.tco /ex (MS-DOS and VMS)

This command will create a file called sublib . teeo which will contain all the
submodules required.

3 The librarian can then be used to create a library:

ilibr sublib.tco -o sublib.lib (UNIX)
ilibr sublib.teo /o sublib.lib (MS-DOS and VMS)

Example: Extraction from a user library, using the run—time library

The example demonstrates how to extract sub—parts of a previously supplied
library which uses the run—time library.

Consider the same example as that described above, but where the routines
start, stop and run have calls to the run-time library embedded inside them.
We have to tell the linker not to complain about these references, because they
will be resolved later, when sublib. 1ib is used.

1 We do the same as before, but we tell the linker not to complain about unre-
solved references, by using the U command line flag:

ilink -f x.1lnk -o sublib.tco —ex -u (UNIX)
ilink /f x.lnk /o sublib.tco /ex /u (MS-DOS and VMS)

2 sublib. teo then be supplied to the librarian in the same way as before.
Example: Extraction from a user library, for multiple processor types

Suppose we are supplied with mylib. 1ib which contains the routines start,
stop, run, and clear for both T400 and TA, and that we wish to create a library
sublib.1lib which contains everything except clear.

1 We use the same method as the first example to extract the T400 code:

ilink —f x.lnk —o sublib.t4 —ex -t400 (UNIX)
ilink /f x.lnk /o sublib.td4 /ex /t400 (MS-DOS and VMS)

This command will create afile called sublib . £4 which will contain all the submo-
dules compiled for T400.

72TDS 367 01 March 1993

194 9.5 Linker options

2 We do the same again for TA:

ilink -f x.lnk —o sublib.ta -ex -ta (UNIX)
ilink /f x.1lnk /o sublib.ta /ex /ta (MS-DOS and VYMS)

This command will create afile called sublib. ta which will contain all the submo-
dules compiled for TA.

3 The librarian can then be used to create a library containing both:

ilibr sublib.td sublib.ta —o sublib.lib (UNIX)
ilibr sublib.td4 sublib.ta /o sublib.lib (MS-DOS and VMS)

Example: Generation of a completely linkable library

Suppose we have built a library mylib. 1ib, which requires access to the run—
time library, and we wish to supply this to another person, without having to supply
the run-time library separately. We can arrange for the linker to extract all the
required parts of the run—time library and add them to mylib.1ib.

1 Create a linker indirect file x. 1nk which contains §reference lines for
each symbol in mylib. 1ib:

— Items wanted
#reference start
#reference stop
§reference run

— Libraries

mylib.lib

— Linker indirect file to access run—time library
#include occama.lnk

The run—time library line should be adjusted depending on the type of
processor which is being used:

Language |When Linker indirect filet
Cc Full run—ime library clibs.lnk
C Reduced run—time library clibsrd.lnk

occam 32-bit processors without an FPU |occama. 1nk

occam 32-bit processors with an FPU occam8.lnk

occam 16-bit processors occam2. lnk

T The C linker indirect files apply to the Dx314 toolsets and the occam
indirect files to the Dx305 toolsets.

2 Use ilink to extractthe required modules and place them in anamed file:

ilink -f x.lnk —o fulllib.tco —ex (UNIX)
ilink /f x.lnk /o fulllib.tco /ex (MS-DOS and VMS)

72 TDS 367 01 March 1993

9 ilink - linker 195

This command will create a file called £ul11ib. teo which will contain all
the submodules required.

3 The librarian can then be used to create the extended library full-
1ib.1ib which will contain the user library together with any routines
which are required from the run—time library.

ilibr fulllib.tco -o fulllib.lib (UNIX)
ilibr fulllib.tco /o fulllib.lib (MS-DOS and VMS)

Extraction using #define

A module is the smallest unit the linker can extract from a library, and a module may
contain several functions. It is quite likely that a module contains functions which
are not required as well as functions which are referenced from modules which are
required. To prevent a function from being extracted it is assigned a dummy value
within a #define directive; any value will do. This causes any reference to it to
be satisfied.

When the linker encounters a reference to a required function it will extract the
whole module. However, if the module contains a function already specified in a
#define directive, the function will be multiply defined and the linker will abort the
extraction. It may be wise when a function is not required, to define all functions
which are exported from that module, to some dummy value, thereby preventing
them all from being extracted.

9.5.5 Display information - option I

This option enables the display of linkage information as the link operation
proceeds.

9.5.6 Virtual memory — option KB

The KB option allows the user to specify how much memory the linker will use for
storing the image of the users program. By default the linker will attempt to store
the entire image in memory. In situations where memory is limited, an amount (= 1
Kbytes) may be specified. If the program is larger than the amount specified then
the linker will use the host filing system as an intermediate store. A reduction in
speed may be expected at link time.

9.5.7 Main entry point — option ME

The ME option defines the main entry point of the program i.e. the point from which
linking will start. This option is equivalent to the #mainentry directive and takes
as its argument a symbol name which is case sensitive.

Only one main entry point may be specified. If it is omitted the linker will select the
first valid entry point in its input as a default. If there is more than one such symbol
the linker will warn that there is an ambiguity.

72 TDS 367 01 March 1993

196 9.6 Selective linking of library modules

9.5.8 Link map filename — option MO

This option causes a link map file to be produced with the specified name. A file
extension should be specified as there is no default available. By convention the
first character of the extension should be ‘d’; the 2nd and 3rd characters are deter-
mined by the extension of the linker object file. For example, if the linker object file
takes the default extension . 1ku, the map file should be given the extension . dku.

If the MO option is not specified, a separate link map file is not produced.

A link map file is a text file containing information about the position of modules in
the code file, see section 9.7. It is intended to be used as input to the imap tool,
see chapter 12

9.59 Linked unit output file -0

The name of the linked unit output file can be specified using the 0 option. If the
option is not specified the output file is named after the first input file given on the
command line and a . 1ku extension is added. If the first file on the command line
is an indirect file the output file takes the name of the first file listed in the indirect
file.

Note: Because there is no restriction on the order in which files may be listed it is
up to the user to ensure that the output file is named appropriately.

9.5.10 Permit unresolved references — option U

The linker normally attempts to resolve all external references in the list of input
files and reports any that are unresolved as errors.

Sometimes it is desirable to allow unresolved external references, for example
during program development. The U option allows the link to proceed to completion
by assuming unresolved references are to be resolved as zero. Warning
messages may still be generated and the program will only execute correctly if
such references are in fact redundant.

9.5.11 Disable interactive debugging - ¥

This option applies only to the occam modules only. The option directs the linker
not to use library calls for channel /o but instead use transputer instructions,
resulting in faster execution. occam modules cannot be interactively debugged
if this option is used.

9.6 Selective linking of library modules

Library modules that are compiled for incompatible processor types or error
modes are ignored by the linker. This allows library modules to be selectively
loaded for specific processor types or transputer classes.

72 TDS 367 01 March 1993

9 ilink - linker 197

Libraries supplied with the toolset are supplied in several forms to cover the
complete range of transputer types. User libraries that are likely to be used on
different transputer types should be supplied for all transputer fypes likely to be
used.

Libraries are also selected for linking on the basis of previous usage. Modules that
are used by several input files are linked in only once.

9.7 The link map file

Module data and details of the target processor are always included in the linked
unit output file in the form of a comment. This information may also be directed to
a named output file by using the MO command line option.

The file contains a map of the code being linked and contains information which
may assist the user during program debugging. It is intended as input to the imap
tool, see chapter 12.

The map file is generated in text format and covers two categories of input file;
separate compilation units, and library modules. The map consists of single line

records containing a number of fields. Fields have a single character name
followed by a colon. The following information is included:

9.71 MODULE record:

A module record is created for each component module in the linked unit.

Record |Description
name

N Module number assigned by the linker.
S Source filename, may be empty if string is unobtainable.

F Object filename, the name of the file of library from which the
module has been loaded. This will be the full path name.

File offset, the offset (in bytes) of the module within its object file.

R Reference, an external symbol that is used for loading the module
from a library. This field will be blank it the module was not loaded
from a library.

M The compilation mode, processor type/class.

O

9.7.2 SECT record:

A section record is created for each section in the linked unit and shows where it
is located.

72 TDS 367 01 March 1993

198 9.8 Using imakef for version control

Record |Description
name

N Section number assigned by the linker.
R Name of the section.

A Section attributes, where R — read, W — write, X — execute, D -
debug, V — virtual.

P Whether the code has been placed at a fixed address; either N (no)
orY (yes).

0] The offset in bytes of the section within the code.
S The size in bytes of the section.

9.7.3 MAP recerd:

This record shows how a region of the linked unit is mapped to a module and
section.

Record |Description
name
M Module number of the module that supplied this region.
T R |Section number of the section in which this region lies.
A Address of the region, in bytes.
S Size of the region, in bytes.

9.74 Value record:
This record shows the value of a symbol after linkage.

Record |Description
name

N Name of the symbol.

0] Name of the origin symbol — occam modules only. (Used by the
linker to ensure the order of compilation is correct in respect to
#USE) .

Module number of the exporting module.

U Whether the symbol has been used (extemally at least); either N
(no) or Y (yes).

Vv Value of the symbol after linking. Expressed as a decimal integer or
as a section number plus byte offset into that section.

9.8 Using imakef for version control

The imakef£ tool may be used to simplify the linking of complex programs, particu-
larly those which use libraries that are nested within other libraries or compilation
units.

72TDS 367 01 March 1993

9 ilink - linker 199

Note: For imakef£ to function correctly the special file extension system described
in section 11.3 and appendix A must be used.

9.9 Error messages

This section lists each error and warning message that can be generated by the
linker. Messages are in the standard toolset format which is explained in
appendix A.

9.91 Warnings

filename - bad format: reason

The named file does not conform to a recognized INMOS file format or has
been corrupted.

Size bytes too large for 16 bit target

The code part of the linked unit has exceeded the address space of the
T212 derived processor family.

filename - symbol, implementation of channel arrays has changed

Only generated in programs where occam code is used that was compiled
in LFF format. The implementation of channel arrays in occam differs
between the earlier occam 2 compiler and the current TCOFF-based
configurer, and channel arrays cannot therefore be used as parameters to
configured procedures.

filename - symbol symbol not found

The specified symbol was not found in any of the supplied modules or
libraries.

file1 - usage of symbol out of step with file2

May be generated when linking programs incorporating occam modules
with a #USE directive, which causes the compiler to scan the file for details
concerning certain program resources. This file must be unchanged at link
time, and the message indicates that this is not the case. There are several
possible causes:

1 file2 has been recompiled after file1, in which case file1 requires
recompiling.

2 The file that occurred in the #USE directive has been replaced by
a different version of the file at link time.

3 The file that occurred in the #USE directive has not been supplied
to the linker, but the linker has located a different version of a
required entry point elsewhere.

72 TDS 367 01 March 1993

200

9.9 Error messages

9.9.2

The occam compiler oc may need to scan certain libraries, of which the
user is unaware. Specifying one of the special occam linker indirect files
occam?2.1lnk, occama.lnk of occam8. 1nk should take care of these
‘hidden’ libraries.

Errors

filename - name clash with symbol from filename

May be generated when linking mixed language programs incorporating
occam modules.

In languages such as occam entry points may be scoped, i.e. extra
information is associated with each symbol to indicate which version of that
entry pointit is. This allows programs to be safely linked even though there
are several different versions of the same entry point occurring at different
lexical levels within the program.

This error indicates that a language without 0occam-type scoping has been
mixed with a scoped language and a name conflict has occurred between
a scoped and non scoped symbol.

filename - symbol symbol multiply defined

The symbal, introduced in the specified file, has been introduced
previously, causing a conflict. The same module may have been supplied
to the linker more than once or there may be two or more modules with the
same entry point or data item defined.

filename - symbol symbol not found

The specified symbol was not found in any of the supplied modules or
libraries.

filename - usage of symbol out of step with namefile

May be generated when linking programs incorporating modules with a
#USE directive which causes the compiler to scan the file for details
concerning certain program resources. This file must be unchanged at link
time, and the message indicates that this is not the case. There are several
possible causes:

1 file2 has been recompiled after file1, in which case file1 requires
recompiling.

2 The file that occurred in the #USE directive has been replaced by
a different version of the file at link time.

3 The file that occurred in the #USE directive has not been supplied
to the linker, but the linker has located a different version of a
required entry point elsewhere.

72 TDS 367 01 March 1993

9 ilink - linker 201

The occam compiler oc may need to scan certain libraries, of which the
user is unaware. Specifying one of the special occam linker indirect files
occam2.lnk, occama.lnk or occam8. lnk should take care of these
‘hidden’ libraries.

9.9.3 Serious errors

filename - bad format: reason

The named file does not conform to a recognized INMOS file format or has
been cormrupted.

filename - line number - bad format: excessively long line in indirect file

A line is too long. The length is implementation dependent, but on all
currently supported hosts it is long enough so as only to be exceeded in
€rror.

filename - line number - bad format: file name missing after directive
A directive (such as include) has no file name as an argument.
filename - line number - bad format: directive invalid number

A numeric parameter supplied to a directive does not comrespond to the
appropriate format.

filename - bad format: multiple main entry points encountered

A symbol may be defined to be the main entry point of a program by a
compiler. Only one such symbol must exist within a single link.

filename - linenumber - bad format: non ASCII character in indirect file

The indirect file contains some non printable text. A common mistake is to
specify a library or module with the ‘F' command line argument or an
include directive.

filename - bad format: not linkable file or library

The linker expects that all files names presented without a preceding
switch (on the command line) or directive (in an indirect file) are either
libraries or modules.

filename - line number - bad format: only single parameter for direcfive
The directive has been given too many parameters.

Cannot create output without main entry point
No main entry point has been specified.

Command line: 1k minimum for paged memory option

When using the KB option, the amount of memory used to hold the image
of the program being linked is specified. There is a minimum size of 1k.

72TDS 367 01 March 1993

202 9.9 Error messages

Command line: token

An illegal token has been encountered on the command line.
Command line: bad format number

A numerical parameter of the wrong format has been found.
Command line: image limit niultiply specified

The command line option ‘KB' has been specified more than once.
Command line: 'load and terminate’ option set, some arguments invalid

Options to load and terminate the linker have been specified in conjunction
with other command line options. The linker cannot execute these options
if it has been instructed to terminate first.

Command line: multiple debug modes

The command line option ‘¥’ has been specified more than once.
Command line: multiple error modes

More than one error mode has been specified fo the linker.
Command line: multiple module files specified

The command line option ‘MO’ has been specified more than once.
Command line: multiple output files specified

The command line option ‘0’ has been specified more than once.
Command line: multiple target type

More than one target processor type has been specified to the linker.
Command line: only one output format allowed

The options “T’, ‘LB’ and ‘'LC’ are mutually exclusive.
filename - could not open for input

The named file could not be found/opened for reading.
filename - could not open for output

The named file could not be opened for writing.
filename - line number - could not open for reading

The file name specified in an include directive could not opened.
Could not open temporary file

The ‘KB’ option has been used in a directory where there is no write access
or not enough disc space.

72 TDS 367 01 March 1993

9 ilink - linker 203

filename - mode: mode - linker mode: mode

The linker has been given a module to link which has been compiled with
attributes incompatible with the options (or lack thereof) on the linker
command line.

Invalid or missing descriptor for main entry point symbol

Applies to occam modules only. The specified main entry point to the
program does not have a valid occam descriptor. This occurs if the wrong
symbol name has been used, for example a data symbol in C.

Multiple main entry points specified

The main entry point has been specified on the command line orin an indi-
rect file more than once.

filename - line number - directive not enough arguments
The wrong number of arguments have been supplied to a directive.
filename - nothing of importance in file

The file name specified in an include directive was empty or contained
nothing but white space or comments.

Nothing to link
Various options have been given to the linker but no modules or libraries.
filename - line number - only one file name per line

More than one file name has been placed on a single line within an indirect
file.

filename - line number - directive too many arguments
The wrong number of arguments have been supplied to a directive.

Unknown error modes not supported in the LFF format
Unknown processors not supported in the LFF format

When generating LFF format files, certain constructs will have no repre-
sentation. For example processor types that have come into existence
since the LFF format was defined.

filename - line number - unrecognised directive directive

An unrecognized directive has been found in a linker indirect file.

9.94 Embedded messages

Tools that create modules to be linked with i1ink may embed "messages” within
them. Three levels of severity exist; serious, warning, and message. The docu-

72 TDS 367 01 March 1993

204 9.9 Error messages

mentation of the appropriate tool should be consulted for more information. The
format of these messages is as follows:

Serious - ilink - filename - message: message
Warning - i1ink - filename - message: message
Message - ilink - filename - message

72 TDS 367 01 March 1993

10 ilist - binary lister

This chapter describes the binary lister tool 11ist, which takes an object file and
displays information about the object code in a readable form. The chapter
provides examples of display options and ends with a list of error messages which
may be generated by ilist.

10.1 Introduction

The binary lister tool ilist reads an object code file, decodes it, and displays
useful information about the object code on the screen. The output may be redi-
rected to a file. Command line options control the type of data displayed.

The i1isttool can decode and display object files produced by icc, by the linker,
librarian, configurer and collector tools, and by other compatible INMOS compilers
such as the occam 2 compiler oc. Files in editable ASCI| format are listed without
further processing.

The i1ist tool will also list compilation and linked units in Linker File Format used
by earlier versions of the INMOS toolsets (such toolsets are the IMS
D705/D605/D505 and the D711/D611/D511 series toolsets).

Also, because ilist uses the same method to locate files as the other tools (see
section A.4) it can be used to find and display the location of header files and library
files in the search path specified by ISEARCH.

10.2 Data displays

There are several categories of data that can be displayed. Categories are
selected by options on the command line. The main categories are:

» Symbol data — symbol names in each module. Information is displayed in
tabular form.

s FExternal reference data — names of external symbols used by each
module. Information is displayed in tabular form.

e Module data — data for each module including target processor, compila-
tion mode, and module file name.

¢ Code listing — code contained in each module, displayed in hexadecimal
format.

» Index data - the content of library indexes.

e Procedural data — for external occam calls only.

72 TDS 367 01 March 1993

206 10.3 Running the binary lister

10.2.1 Modular displays

Object code files reflect the modular structure of the original source. Single unit
compilations produce a file containing a single object module, whereas units
containing many compilations, such as libraries and concatenations of modules,
produce object files with as many object modules. The data produced by ilist
reflects the modular composition of object files.

10.2.2 Example displays used in this chapter

Except where indicated, the example displays used in this chapter show the output

generated from the lister for the compiled (. teo) file generated by icc for the
‘Hello World’ example program. The program was compiled for a T425 processor.

10.3 Running the binary lister
To invoke the binary lister use the following command line:
P ilist {filenames} {options}

where: filenames is a list of one or more files to be displayed.

options is a list of one or more of the options given in Table 10.1.

Options must be preceded by ‘-’ for UNIX-based toolsets and */’ for
MS-DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be given in any
order.

Options must be separated by spaces.

Only one filename may be given on the command line.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

Note: Options will only be applied to files of the appropriate file type. If the file
cannot be displayed by the specified option, an error message is generated and
the file is not displayed.

Example of use:

ilist hello.tco -a (UNIX based toolsets)
ilist hello.tco /a (MS-DOS and VMS based toolsets)

72TDS 367 01 March 1993

10 ilist - binary lister 207

Option Description

A Displays all the available information on the symbols used within
the specified modules.

c Displays the code in the specified file as hexadecimal. This
option also invokes the ‘T’ option by default.

E Displays all exported names in the specified modules.

H Displays the specified file(s) in hexadecimal format.

I Displays full progress information as the lister runs.

M Displays module data.

N Displays information from the library index.

0 filename |Specifies an output file. If more than one file is specified the last
one specified is used.

P Displays any procedural interfaces found in the specified
modules.

R reference |Displays the library module(s) containing the specified refer-
ence. This option is used in conjunction with other option to
display data for a specific symbol. If more than one library file is
specified the last one specified is used.

T Displays a full listing of a file in any file format.

W Causes the lister to identify a file. The filename (including the
search path if applicable) is displayed followed by the file type.
This is the default option.

X Displays all external references made by the specified modules.

Table 10.1 ilist command line options

ilist will attempt to identify the file type by its contents. If filenames only are
supplied, i1ist uses the default option ‘W and simply displays the file’s identity.

Examples of i1ist usage and the displays generated by the options can be found
in succeeding sections.

10.3.1 Options to use for specific file types

Table 10.2 lists the available options and indicates which file formats they may be
used to list. The table also lists the file types it is recommended to use with each
option, in order of usefulness.

72TDS 367 01

March 1993

208 10.4 Specifying an output file — option 0

Option [Permitted file format |Recommended usage

H Any format

o Any format

s Any format

W Any format

A TCOFF only .1ib, . tco, .1lku
c TCOFF only .teco, .1ky, .1lib
E TCOFF only .1ib, . teco, .1ku
M TCOFF only .teo, .1ky, .1ib
N TCOFF libraries only .1lib

P TCOFF only .1lib, .tco, .1lku
R TCOFF libraries only .1ib

X TCOFF only .1ib, . teo, .1ku

Table 10.2 Recommended options

10.3.2 Output device

ilist sends its output to the host standard output stream, normally the terminal
screen. Facilities available on the host system may allow you to redirect the output
to afile, or send it to another process, such as a sort program. For details of these
facilities consult the documentation for your system. Alternatively the ilist ‘0’
command line option may be used to redirect output to a specified file.

10.3.3 Default command line

A set of default command line options can be defined for the tool using the ILIS-
TARG environment variable. Options must be specified using the syntax required
by the command line.

10.4 Specifying an output file — option o

The 0 option enables the user to redirect the display data to an output file. If more
than one output file is specified on the command line then the last one specified
is used. File extensions should be specified, because defaults are not assumed.

Display options are described in the following sections 10.5 to 10.15. Options are
given in alphabetical order.

72 TDS 367 01 March 1993

10 ilist - binary lister 209

10.5 Symbol data - option a

This option displays all the available information about the symbols used within the
specified modules. A tabular format is used.

Note: The data produced by this display is extensive and detailed and assume
some knowledge of the object file format.

The following information is given:
¢ Symbol name.
e Section atiributes, if applicable.
¢ Symbol attributes.
¢ The number of the symbol within the module plus the number of its origin.
¢ Module name.
o Target processor.
o Error mode.
« Interactive debugging — if disabled indicated by the presence of a ‘Y’ char-
acter. If this field is blank then interactive debugging is enabled.
10.5.1 Specific section attributes
Certain attributes apply only to symbols which are section names. If they are appli-

cable, these attributes are indicated by the following nomenclature and displayed
as a character string:

R |- Read section.
W |- Write section.

X |- Execute section.
D |- Debug section.
V |- Virtual section.

10.5.2 General symbol attributes

Atftributes for all symbols, including section names, are also indicated by a char-
acter string, using the following nomenclature:

72 TDS 367 01 March 1993

210 10.6 Code listing — option ¢

Symbol Description attribute

L Symbol local to the module.

E Symbol exported from the module.

I Symbol imported to the module.

w Weak attribute, indicates that the symbol takes the value 0 when
not defined.

c Conditional atiribute, indicates that the first value given to the
symbol is always used.

u Unindexed, indicates that the symbol is not present in the library
index.

P Provisional attribute, indicates that the last value given to the
symbol is always used.

o Indicates that the symbol is an origin symbol. The origin symbol
is used by the linker to check the origin of the module.

Symbol attributes are displayed immediately after the section attributes, and each
attribute is displayed at a specific position in the string. Attributes which are not
present are indicated by a hyphen ‘-,

The position of each attribute in the string is as follows:

RWXDV LEIWCUPO

10.5.3 Example symbol data display
Figure 10.1 shows the symbol data display for the compiled file hello. teco.

module%tabletbase -——--V -E———- 0 hello.c T425 X ﬁ\\
module$number hello.c T425 X
statictbase hello.c T425 X
local%static hello.c T425 X
%1sb hello.c T425 X
textibase hello.c T425 X
localstext hello.c T425 X
next%common hello.c T425 X
main hello.c T425 X
_IMS_printf hello.c T425 X
static%space ———= -E-—UP- 10 hello.c T425 X 4/}

Figure 10.1 Example output produced by the A option.

10.6 Code listing - optionc

The 'C’ option produces a full listing of the code in the same format as that gener-
ated by the "I’ option, but with the addition of a hex listing of the code at each
LOAD_TEXT directive. This option may be accompanied by the ‘T’ option; if the ‘T’
option is not specified it is supplied automatically.

72 TDS 367 01 March 1993

10 ilist - binary lister 21

The output from this option gives an ASCII dump, in hexadecimal format, of the
code for each module. It can be used on any object code.

When used to display object code produced by the occam compiler, the code for
each module is displayed as a contiguous block of lines, where each line has the
format:

address ASCII hex ASCII characters

where: address is the address of the first byte on the line, expressed as an offset
from the start of the module.

ASCII hex is the hex representation of the code
ASCII characters are the ASCII characters corresponding to the hex code.

In all cases code is read from left to right. If a value is not printable it is replaced
by adot‘.’.

10.6.1 Example code listing display
Figure 10.2 shows the code listing display for the compiled file hello. tco.

(;BOOOOOO LINKABLE

00000002 START_MODULE CORE FMUL FPSUP DUP WSUBDB MOVE2D CRC BITOPS FPTSTERR
LDDEVID DBGSUP TMRDIS LDMSTVL POP BIT32 MS=28 ICALL X lang: ANSI _C "”
00000010 VERSION tool: icc origin: hello.c

0000001E SECTION VIR EXP "module$tabletbase” id: 0

00000034 SET_LOAD_POINT id: 0

00000037 SYMBOL LOC "module%number” id: 1

00000048 DEFINE LABEL id: 1

0000004B SECTION VIR EXP “static%base” id: 2

0000005B SET LOAD POINT id: 2

0000005E SYMBOL LOC ”"local%static” id: 3

0000006E DEFINE LABEL id: 3

00000071 SYMBOL LOC "%lsb” id: 4

00000079 DEFINE_SYMBOL id: 4 SS:04SV:3

00000081 SECTION REA EXE EXP "text$%base” id: 5

0000008F SET_LOAD_POINT id: 5

00000092 SYMBOL LOC "local%text” id: 6

000000A0 DEFINE_LABEL id: 6

000000A3 SYMBOL EXP CON UNI "next%common” id: 7

000000B2 DEFINE SYMBOL id: 7 S§S:2

000000B7 COMMENT bytes: 5

000000C1 LOAD EXPR size: 4 SV:1

000000C6 SYMBOL EXP "main” id: 8

000000CE DEFINE_SYMBOL id: 8 SV:6+4

000000D6 SYMBOL IMP ”_IMS_printf” id: 9

000000E5 LOAD_TEXT bytes: 24

000000E8 4521FB71 219222F0 0A48656C 6C6F2057 E!.q!."..Hello W
000000F8 6F726C64 0A002020 orld..

00000100 LOAD_PREFIX size: 6 AP(SV:9-LP) instr: j

00000109 LOAD_TEXT bytes: 2

0000010C 2020

0000010E COMMENT bytes: 33

00000134 SYMBOL EXP UNI PRC "static%space” id: 10

00000144 DEFINE_SYMBOL id: 10 SV:7

\3@000149 END_MODULE ’/

Figure 10.2 Example output produced by the C option

72 TDS 367 01 March 1993

212 10.7 Exported names — option E

10.7 Exported names - option E

The output from this option is in a tabular format. It consists of a list of names
exported by the modules. This option also displays any globally visible data.

The following information is given by the display:
o Exported name.
¢ The name of the module in which the exported name is found.
e Language used.
¢ Target processor.
« Error mode.

o Interactive debugging - if disabled indicated by the presence of a Y’ char-
acter. If this field is blank then interactive debugging is enabled.

10.7.1 Example exported names display
Figure 10.3 shows the exported names display for the compiled file helle. tco.

main -> hello.c ANSI C T425 X

Figure 10.3 Example output produced by the E option

10.8 Hexadecimal/ASCIl dump - option B

This option provides a display of the specified files in hexadecimal and ASCII
format. The option does notattempt to identify file types and may be used to display
any files which the lister has previously identified incorrectly.

The output takes the form of a hexadecimal representation of the whole of the file
content. The display has a similar appearance to that produced by the C option,
however, the C option only functions on code found within the file.

Each module is displayed as a contiguous block of lines, where each line has the
format:

address ASCII hex ASCII characters

where: address is the address of the first byte on the line, expressed as an offset
from the start of the module.

72 TDS 367 01 March 1993

10 ilist - binary lister 213

ASCII hex is the hex representation of the code
ASCII characters are the ASCII characters corresponding to the hex code.

In all cases code is read from left to right. If a value is not printable it is replaced
by adot .’

10.8.1 Example hex dump display
Figure 10.4 shows the hex dump display for the compiled file hello. tco.

/GOODOODD 0100020C FDFFFE1F 00FD52EQ 07000400 @uaens Riotarses ‘\
00000010 1BOC0369 63630768 656C6C6F 2E630B14 ...icc.hello.c..
00000020 1002116D 6F64756C 65257461 626C6525 ' ...module%table%
00000030 62617365 0401001E OF010D6D 6F64756C base....... modul
00000040 65256E75 €D626572 OE01010B 0E10020B efnumber........
00000050 73746174 69632562 61736504 01021EQE staticibase.....
00000060 010C6C6F 63616C25 73746174 69630E01 ..local¥static..
00000070 031E0601 04256C73 620F0604 06040003 $1sb.cvases
00000080 030BOCO6 02097465 78742562 61736504 «+» .0 - textibase.
00000090 01051E0C 010A6CEF 63616C25 74657874local¥text
000000A0 OE01061E OD320B6E 65787425 636F6D6D 2.next¥comm
000000B0 6F6EQF03 07040214 08000005 0D008134 ONossnsnnesnanns
000000C0 06080304 03011E06 02046D61 696EQF06 ssssssssasmain..,
000000D0 08060306 01041E0D 040B5F49 4D535F70 ..ievvannss _IMs p
000000E0 72696E74 66061918 4521FB71 219222F0 rintf,...Bl.ql.”.
000000F0 OA48656C 6C6F2057 6F726C64 0A002020 .Hello World..
00000100 0707060D 07030902 00060302 20201424 .5

00000110 00002103 03010001 OE050404 03060800
00000120 000E0908 040EOBOA 040EODOC OAO40E04
00000130 OFOC101C 1EQOE620C 73746174 69632573
\EP000140 70616365 OF030A03 070300

Figure 10.4 Example output produced by the H option

10.9 Module data — option M

This option displays any header information which is present. This may include
version control data, general comments that may have been appended to the file
during use of the toolset and copyright information. The data is displayed for indi-
vidual modules in the object file and includes:

¢ Module name

Transputer type and compilation error mode

Language type

Version control data

Comments inserted by the toolset, for example, copyright clauses.

Datais displayed in separate blocks for each module. Some of the data is also used
by other tools in the toolset, for example, some comments are used by the

72 TDS 367 01 March 1993

214 10.10 Library index data — option N

debugger tool 1idebug while version information is used by some tools for compati-
bility testing.

When linked units are displayed using this option, a long comment will be
displayed. This comment gives details of the allocation of memory to each sepa-
rately compiled code and library module used in the linked module. The following
information is given in tabular format:

¢ Code type - Separately compiled code (SC) or library module (LIB).
¢ Module name.

¢ Address offset in linked module.

¢ Start address.

¢ End address.

o Reference in library (if applicable) used to locate the relevant library
module.

10.9.1 Example module data display
Figure 10.5 shows the module data display for the compiled file hello. tco.

MODULE: ANSI_C T425 X
VERSION: icc hello.c

Figure 10.5 Example output produced by the M option

10.10 Library index data — option N

This option is used fo list library indexes. The data is given in a tabular format. For
each entry in the index the following information is given:

¢ The address of the module in the library.
¢ The symbol name.

¢ The language the module is written in.

» The target processor type.

¢ The error mode used.

¢ |nteractive debugging — if disabled indicated by the presence of a Y’ char-
acter. If this field is blank then interactive debugging is enabled.

72 TDS 367 01 March 1993

10 ilist - binary lister 215

10.10.1 Example library index display

Figure 10.6 shows part of the output produced by the ‘N’ option for one of the stan-
dard C library files.

00025C21 ie6dop.pax:8340ACT1 OCCRM TA X
00036155 xlinkl.pax:F11BAD5SA OCCAM TA X
00034AF7 DATAN2%c OCCAM TA X
000330D0 DCOS%c OCCAM TA X
00008898 DefaultSignalHandleric ANSI_C TA X
0001CAC6 floorf ANSI_C TA X
00020078 get_static sizef%c ANSI_C TA X
000129aD sub_vfprintfic ANSI_C TA X

Figure 10.6 Example output produced by the N option

10.11 Procedural interface data — option p

This option is only applicable to occam modules or mixed language programs. It
displays procedural interface information for all external occam functions and
procedures. The following information is displayed for each module:

¢ Target processor.
e Error mode.
e Language used.
o Amount of workspace used by the procedure or function, in words.
e Amount of vector space used by the procedure or function, in words.
o Parameters used by the procedure or function.
e Data type of parameters.
e Channel usage, if applicable.
Channel usage is displayed in occam notation. A channel marked with an ? is an

input channel to the code of that entry point, and a channel marked with ! is an
output channel.

When a library file is listed this will be indicated by the words ‘INDEX ENTRY
mode :’ rather than ‘DESCRIPTOR mode’.

10.11.1Example procedural data display

Figure 10.7 shows an example procedural data display for a compiled occam
module. This example is taken from the ‘simple’ example occam program
compiled by oc for the TA processor class.

72 TDS 367 01 March 1993

216 10.12 Specify reference — option R

-

DESCRIPTOR mode: TA H language: OCCAM <ORIGIN DESCRIPTOR>
DESCRIPTOR mode: TA H language: OCCAM

ws: 52 vs: 378

PROC simple(CHAN OF SP fs,CHAN OF SP ts)

SEQ

fs?

ts!

e #

Figure 10.7 Example output produced by the P option

10.12 Specify reference — option r

This option is used in conjunction with any of the other display options to locate a
specific symbol within a named library. All library modules that export the symbol
are displayed.

The exact format of the display depends on the main display option with which R
is used.

Note: Symbol names must be specified in the comrect case.

10.13 Full listing — option T

This option displays all data found in the input file. Provided that i1ist recognizes
the file type, the file is decoded in its own format. Text file are displayed as text and
unrecognized file types are displayed as a hexadecimal dump.

Data is not displayed in a tabular form but is output in the sequence in which it is
found in the module.

The display formats are tailored to each file format and are intended for diagnostic

support and analysis; large amounts of data are produced which may require
skilled interpretation.

10.13.1 Example full data display

Figure 10.8 shows the full data display for the compiled file hello. tco.

72 TDS 367 01 March 1993

10 ilist - binary lister 217

(GBUGDODO LINKABLE

00000002 START_MODULE CORE FMUL FPSUP DUP WSUBDB MOVE2D CRC BITOPS FPTSTERR
LDDEVID DBGSUP TMRDIS LDMSTVL POP BIT32 MS=28 ICALL X lang: ANSI_C “*
00000010 VERSION tool: icc origin: hello.c
0000001E SECTION VIR EXP "module%table%base” id: 0
00000034 SET_LOAD_POINT id: 0

00000037 SYMBOL LOC "module$number” id: 1
00000048 DEFINE_LABEL id: 1

0000004B SECTION VIR EXP "static%base” id: 2
0000005B SET_LOAD_POINT id: 2

0000005E SYMBOL LOC "local%static” id: 3

0000006E DEFINE_LABEL id: 3

00000071 SYMBOL LOC "%lsb” id: 4

00000079 DEFINE SYMBOL id: 4 S5:0+5V:3

00000081 SECTION REA EXE EXP ”text%base” id: §
0000008F SET_LOAD_POINT id: 5

00000092 SYMBOL LOC "localt%text” id: 6

000000A0 DEFINE_LABEL id: 6

000000A3 SYMBOL EXP CON UNI “"next%common” id: 7
000000B2 DEFINE SYMBOL id: 7 SS:2

000000B7 COMMENT bytes: 5

000000C1 LOAD_EXPR size: 4 SV:l

000000C6 SYMBOL EXP “main” id: 8

000000CE DEFINE_SYMBOL id: 8 SV:6+4

000000D6 SYMBOL IMP ”_IMS_printf” id: 9

000000E5 LOAD_TEXT bytes: 24

00000100 LOAD_PREFIX size: 6 AP(SV:9-LP) instr: j
00000109 LOAD_TEXT bytes: 2

0000010E COMMENT bytes: 33

00000134 SYMBOL EXP UNI PRO “"static%space” id: 10
00000144 DEFINE_SYMBOL id: 10 Sv:7

\22000149 END_MCDULE 1/

Figure 10.8 Example output produced by the T option

10.13.2 Configuration data files

The full data listing of a configured (.cf£b) file shows how the processes are
mapped onto a transputer system and has a different appearance to other displays
produced by this option.

10.14 File identification — option w

This option causes the lister to identify the file type. ilist takes a heuristic
approach to file identification. The filename is displayed along with the file type.
The full path to the file is also displayed if the file is not in the current directory (i.e.
if it has been found in the search path specified in the ISEARCH environment vari-
able). This is the default command line invocation if no other option is supplied.

Table 10.3 indicates how the lister classifies file types.

72 TDS 367 01 March 1993

218

10.14 File identification — option W

File format Default Listed file type
extension
TCOFF compiled unit .teco TCOFF LINKABLE UNIT
TQ?FF compiled library .1ib TCOFF LINKABLE UNIT LIBRARY
uni
TCOFF linked unit .1lku TCOFF LINKED UNIT
TCOFF linked library unit |.1ib TCOFF LINKED UNIT LIBRARY
Configuration binary .cfb CONFIGURATION BINARY
Core dump .dmp CORE DUMP FILE
Network dump .dmp NETWORK DUMP
LFF file .exx, LFF SC
CExx
LFF library .1lib LFF LIBRARY
Extracted SC .IXX EXTRACTED SC
iboot program .bxx BOOTABLE PROGRAM (iboot)
Extracted program .btl BOOTABLE PROGRAM
Empty file - EMPTY FILE
Text files - TEXT FILE
None of the above - UNKNOWN BINARY FORMAT

Table 10.3 File types recognised by ilist

where: SC files are separately compiled files.

LFF files are separately compiled or linked files in LFF format.

Extracted files are files which have been compiled and developed to be
dynamically loaded onto a transputer system.

iboot programs are programs which have had a bootstrap added by the
iboot tool, supported by previous issues of the toolset i.e. the IMS
D711/D611/D511 and D705/D605/D505 series toolsets.

10.14.1 Example file identification display

Figure 10.9 shows the file identification display for the compiled file hello. tco.
and two linker control files. This output was generated by the following command:

ilist hello.tco occama.lnk clibsrd.lnk

72 TDS 367 01

March 1993

10 ilist - binary lister 219

hello.tco TCOFF LINKABLE UNIT
/home/D4205/1ibs/occama.lnk TEXT FILE
/home/D4300/1ibs/clibsrd. 1nk TEXT FILE

Figure 10.9 Example output produced by the W option

10.15 External reference data - option x

This option displays a list of all the code and data symbols imported by the modules
specified to the lister, i.e. it lists their external references. External references are
references to separately compiled units. For C programs the option will also display
any external references to globally visible data.

The output from this option is in a tabular format. It consists of a list of external refer-
ences and their associated modules. The following information is displayed:

e External reference i.e. name of the separately compiled unit.

¢ The name of the module in which the external reference exists.
e Language used.

« Target processor.

¢ Error mode.

e Interactive debugging — if disabled indicated by the presence of a "Y' char-
acter. If this field is blank then interactive debugging is enabled.

10.15.1 Example external reference data display

Figure 10.10 shows the external reference data display for the compiled file
hello.tco.

_IMS_printf <- hello.c ANSI_C T425 X

Figure 10.10 Example output produced by the X option

10.16 Error messages

This section lists error and warning messages that can be generated by the lister.
Messages are in the standard toolset format which is explained in appendix A.

72 TDS 367 01 March 1993

220 10.16 Error messages

10.16.1 Warning messages

filename - reason
The named file does not conform to a recognized INMOS file format
or has been corrupted.

10.16.2 Serious errors

filename - bad format: reason

The named file does not conform to a recognized INMOS file format
or has been corrupted.

filename - could not open for input

The named file could not be found/opened for reading.
filename - could not open for output

The named file could not be opened for writing.
filename - file type does not correspond to command line options

The options given to the lister apply to formats dissimilar to the
format of the file being read.

must supply additional TCOFF options with reference reference

The required format of the listing has not been specified.
filename - no entry for reference in library index

The specified reference cannot be found in the library index.
parsing command line foken

An unrecognized token was found on the command line.
filename - unexpected end of file

The named file does not conform to a known INMOS file format or
has been corrupted.

72 TDS 367 01 March 1993

11 imakef — makefile
generator

This chapter describes the makefile generator imakef that creates makefiles for
input to make programs. It explains how the tool can be used to create makefiles
and describes the special file naming conventions that allow imakef fo create
makefiles for mixtures of code types. The chapter describes the format of makefiles
generated by imakef and ends with a list of error messages.

11.1 Introduction

Make programs automate program building by recompiling only those components
that have been changed since the last compilation. To do this they read a makefile
which contains information about the interdependencies of files with one another,
along with command lines for rebuilding the program.

imakef£ creates makefiles for all types of toolset object files, using its built in knowl-
edge of how files referenced within the target file depend on one another. It is
intended to be used with all INMOS compiler systems that generate TCOFF object
code, which includes the the ANSI C compiler ice, the 0ccam 2 compiler oc and
the FORTRAN-77 compiler 1£77. lts mode of operation with different languages
is controlled by command line options. The makefile is generated in a standard
format for input to most make programs.

Makefiles created using imakef are compatible with many public domain and
proprietary make programs. The following make programs are directly compatible:

+ Borland make.
e UNIX make.
¢ Microsoft nmake.
e Gnu make.
However, the older Microsoft make program “make” is nof compatible.

The source of imakef£ is supplied with the toolset so that it can be modified for use
with other make programs.

11.2 How imakef works

imakef operates by working back from the target file to determine its depen-
dences on other files, using its knowledge of inputs and outputs of each tool and

72TDS 367 01 March 1993

222 11.3 File extensions for use with imakef

the compilation architecture of the toolset. For example, compiled object files must
be created from language source files using the compiler.

In a similar way linked files must be generated from compiled files. imakef
assumes that programs targeted at a single transputer are not required to be confi-
gured. Bootable files may therefore be generated from linked units or configuration
data files. imakef works back from the target file, determining file dependencies
and creating commands to recreate the target file, recompiling and relinking where
necessary.

11.3 File extensions for use with imakef

imakef identifies files and file types by a special set of file extensions which iden-
tify the transputer target type and compilation error mode. This allows the tool to
produce makefiles for mixed module combinations.

Note: The extensions that imakef£ requires differ in most cases from the standard
toolset default extensions which are described in section A.5. For imake£ to work
correctly the extensions described in section 11.3.1 must be used on all inter-
mediate and target files, at all stages of program development i.e. compiling,
linking, configuring, and booting.

The file naming convention uses a three-character extension which identifies the
type of file and in most cases includes the transputer target and error mode. Source
files for the most part use standard language extensions.

11.3.1 Target files

The following table lists the types of object code files for which imakef£ can create
makefiles, along with the file extension formats that must be used.

Target file File extension
Compiled code. XX
Linked code. .CXX
Bootable code for single transputer programs. .bxx
Bootable code for multitransputer programs. .btl
Dynamically loadable code. LEXX
Libraries. . .1lib
Configuration binary file. .cfb
Library usage file. .1liu
Library indirect file. .1bb

Compiled, linked, bootable and non-bootable files, whatever their language origin,
have a transputer target designator as the second character of the extension, and

72 TDS 367 01 March 1993

11 imakef - makefile generator 223

an error mode designator as the third character. Accepted values of these designa-
tors are listed below.

2nd Transputer types 3rd Error mode

Character |supported Character

2 T212, T222, M212 x UNIVERSAL

3 T225 h HALT

4 T414 S STOP

5 T426, T425, T400

8 T800

9 T805, T801

a Class TA

b Class TB

Examples:
.tdx — refers to a compiled module targetted for T4 transputers, in

UNIVERSAL error mode.
s t?jh - refers to a module targetted for any 32-bit transputer in HALT error
mode.

Compiled code generated by icc or i£77 is in UNIVERSAL mode, designated by
the character ‘x’. HALT and STOP code can be generated by the occam 2
compiler oc.

Transputer types are explained further in section B.2.

Program development using imake£ and the extensions to use are illustrated in
Figure 11.1. Target files which can be created by imakef are shown in bold.

72 TDS 367 01 March 1993

11.3 File extensions for use with imakef

224

—l lllllllllllllllllllllllllllllllllll = | |
| I o |
i sHoMBN Lo P71
] Je)ndsuel | “ | T _
|

" P |
“ “ “ | w37 _
| @) |
7|1]
_ | {our } 1
I F) I N
| 30RTTODT e HUTTT xa L ‘Nvdldod |
_ L " | !
" _ w | 20 _
| I |
_ :peoj pue jooq yurp 1 | [
L e — o= — - il] - “
L .— “ _\8_.\, |
[T e e e e 1) N |
I 4 11 ‘Wweooo |
“ qJo Fuoooo @ | “ |
" :Wes90 “ “ . - “
“ B “
| ! 11 ‘e |
i e JuoooT sjo° 1 | _/_._ ;!
! ‘NVHLHO4 pue O I 4 S “

| 7
| | |
.] :uonejidwo i
| uomembpiod _ _ ______ I e e J

March 1993

Figure 11.1 Main target files showing extensions required

72 TDS 367 01

11 imakef - makefile generator 225

11.4 Linker indirect files

For C and FORTRAN modules linker indirect files must be created for all linked
units where imakef will be used to generate atarget file. Linker indirect files define
to imakef the components of the linked unit, providing a starting point for working
out file dependencies.

Linker indirect files must be named after the linked unit to which they relate and
carry the . 1nk extension.

For programs written wholly in occam, imakef will automatically generate a
linker indirect file. The file is named after the target filename but is given an exten-
sion in the form . Lyor. The file contains a list of modules to be linked. In addition
an #INCLUDE statement references a further linker indirect file, referencing
compiler libraries. imakef deduces the compiler libraries to be included from the
extension of the linked object file.

Section 11.6.2 provides a short description of linker indirect files and several exam-
ples are given in section 11.7.

11.5 Library indirect and library usage files

When building a library using imakef, a file must be provided that contains the
names of all the object modules required to build the library. This file is known as
a library indirect file and has the extension . 1bb. See chapter 8 for further details.

Library usage files describe the dependencies of a library on other libraries or
separately compiled code. They contain a list of files to which the library must be
linked before it can be run, and ensure that the correct linker commands are gener-
ated.

Library usage files should be created for all user-defined libraries where the source
of the library is not available. They are created using imakef.

Library usage files are given the same name as the library to which they relate, but
with a . 1iu extension. To create a library usage file using imakef, specify the
library name and add a .1iu extension. For example, the following command
creates a library usage file for the library mylib.1ib:

imakef mylib.liu
When imakef is used to create a library usage file no makefile is generated.
11.6 Running the makefile generator
The imakef tool takes as input a list of files generated by tools in the toolset and

generates a makefile, containing full instructions of how to build the application

72 TDS 367 01 March 1993

226 11.6 Running the makefile generator

program. The output file is named after the first target filename and is given a . mak
extension (if no output file is specified on the command line).

To invoke imakef use the following command line:

P imakef filenames {options}

where: filenames is a list of target files for which makefiles are to be generated. If
more than one file is specified the single makefile generated will generate
all of the specified files.

options is a list, in any order, of one or more options from Table 11.1.

Options must be preceded by ‘-’ for UNIX-based toolsets and ‘/’ for
MS-DOS and VMS based toolsets.

Options may be given in any order.

Options may be entered in upper or lower case and can be given in any
order.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

Option |Description

C This option is used when incorporating C or FORTRAN modules
into the program. It specifies that the list of files to be linked is to be
read from a linker indirect file. This option must be specified for
correct C or FORTRAN operation.

D Disables the generation of debugging information in compilations.
The default is to compile with full debugging information.

I Displays full progress information as the tool runs.

M Produce compiler, linker and collector map files for imap.

NI Files in the directories in ISEARCH are not put into the makefile.
This means that system files are not present, making it much easier
fo read.

o filename | Specifies an output file. If no file is specified the output file is named
after the target file and given the .mak extension.

R Writes a deletion rule into the makefile.

Y Disables interactive (breakpoint) debugging in all compilations.
The default is to compile with full breakpoint debugging information.

Table 11.1 imakef options

72 TDS 367 01 March 1993

11 imakef - makefile generator 227

11.6.1 Example of use

imakef hello.bdx —c (UNIX based toolsets)
imakef hello.bdx /c (MS-DOS and VMS based toolsets)

This creates the makefile hello.mak which when used as input to make gener-
ates the bootable file hello.bdx (a bootable file for T4 transputers).

11.6.2 Specifying language mode

imakef can be used with all compilers in the INMOS TCOFF family. This includes
the ANSI C compiler ice, the occam compiler oc as well as the FORTRAN
compiler 1£77.

imakef has two modes of operation: one for the traditional languages FORTRAN
and C, and another for occam. occam mode is the default; FORTRAN and C
operation is controlled by a command line option.

In occam programs, file dependencies are wholly deducible from the source and
target files. In FORTRAN and C programs the list of files fo be processed by the
linker must be created in a linker indirect file; use of the imakef£ ‘C’ option instructs
imakef that there are linker indirect file(s) to be read. The linker indirect files must
include all the components of a program, including any libraries that are used.

The ‘C’ option must be specified for all C and FORTRAN programs and for any
mixed language programs which incorporate modules in these languages. For
mixed language programs all files which are to be linked must be listed in the linker
indirect file(s), including any occam modules or library files. In systems that use
mixtures of code compiled for different transputer types and error modes, a sepa-
rate linker indirect file must be created for each.

An example is given in section 11.7.3 of how imake£ may be used to build a mixed
language program.

11.6.3 Configuration description files

When imakef builds a makefile for a configured program it will ook for the pres-
ence of a configuration description file which has the same name as the program
to be built.

The type of file searched for depends on the mode of operation specified to
imakef£. If the default occam mode is used, that is, the ‘C’ option is not specified,
imakef£ will look first for a configuration description file with the extension . pgm,
(readable by the occam configurer occont). If a . pgm file is not present imakef
will then look for a . c£s file (readable by the ‘C-style’ configurer icconf).

If the FORTRAN/C mode is used, that is, the ‘C’ option is specified, the reverse
sequence is used, that is, imakef looks first for a . c£s file.

72 TDS 367 01 March 1993

228 11.7 imakef examples

11.6.4 Disabling debug data
Two options to imakef disable the creation of debug data.

The D’ option disables the generation of all debugging information in the target file.
If this option is used the resulting target code cannot be debugged.

The 'Y’ option disables only the data required for interactive (breakpoint controlled)
debugging. If this option is given no breakpoint debugging operations can be used
on the final program. Post-mortem debugging is unaffected.

11.6.5 Removing intermediate files

Intermediate files can be removed by specifying the ‘R’ option to imakef. This
adds a delete rule to the makefile which directs make to remove all intermediate
after the program is built. The delete operation is only honored if make is subse-
quently invoked with the DELETE option.

11.6.6 Files found on ISEARCH

When imakef runs, it includes all dependencies in the set of rules. The NI option
prevents imakef recording in the makefile, any dependencies on files found using
ISEARCH. As a result the makefile is easier to read and is more portable.

11.6.7 Map file output for imap

Using the ‘M’ option, imakef can be made to generate switches in the calls to the

compiler, linker or collector to output map files. These map files are then available
for reading by the imap tool, details of which can be found in chapter 12.

11.7 imakef examples
This section contains several examples of the use of imakef with different
programming languages. The final example shows how a mixed language

program can be built with imakef.

The sources appropriate to the toolset are supplied in the examples subdirectory.

72 TDS 367 01 March 1993

11 imakef - makefile generator 229

11.7.1 C examples

The first example shows how to create a makefile for a multi-module program,
written in C, running on a single transputer. The second example shows how to
create a makefile for a configured C program.

Single transputer program
This first example is for a program which is not configured.

The example program is made up of three source files, written in C:

main.c
hellof.c
worldf.c

imakef needs to know the names of the main components of the program, and
looks for the associated linker indirect file hello. 1nk:

hello.lnk must contain the following text:

main. tdx

hellof. tdx

worldf. tdx

#include cnonconf.lnk

Note: the use of the . t4x extension rather than . tco. This is because imakef
needs to work out the required processor type. The startup linker indirect file
cnonconf. lnk is also included. The inclusion of this file is standard for all C
programs which are not configured and directs imakef to include the libraries. To
create the makefile use the command:

imakef hello.bdx -c (UNIX based toolsets)
imakef hello.bdx /c (MS-DOS and VMS based toolsets)

Note: the use of the . bdx extension instead of . bt1. Using this form of extension
informs imakef that we wish to create a bootable program for a single transputer
without the aid of the configurer. The makefile hello.mak is created.

72TDS 367 01 March 1993

230 11.7 imakef examples

Multitransputer program

This example program uses the configurer {o place linked units on two processors.
The program is made up of the following source files written in C:

master.c
mult.c
multi.cfs

The .cfs file is the configuration description file. It places 2 linked units on 2
processors, using the following statements:

use "master.c8x” for master;
use “mult.cdx” for mult;

Note: the use of the . exx form of extension instead of the toolset default exten-
sion for linked units . 1lku. imakef reads the .c£s file and determines that the
program is made up of two linked units, each of which must have an associated
linker indirect file, namely, master.1nk, and mult. 1nk.

The two linker indirect files files must contain the following text:

master.Ink: mult.Ink:
master.t8x mult. tdx
#include cstartup.lnk #include cstartrd.lnk

Again note the use of the . txx form of extension. master . lnkincludes the linker
indirect file cstartup . 1nk, which is used for configured programs linked with the
full runtime library. mult. 1nk includes estartrd. 1nk, the standard linker indi-
rect file used for configured programs linked with the reduced library. This library
can be used by mult. t4x because the module does not require host access.

To create the makefile use the following command:

imakef multi.btl -c (UNIX based toolsets)
imakef multi.btl /e (MS-DOS and VMS based toolsets)

The .bt1 extension informs imake£ that the target is a configured program, to be
built from a configuration description file called multi.cfs. The makefile
multi.mak is created.

Note: when multi.mak invokes the configurer, the following warning is issued:
Warning-icconf-Using single hop software virtual links

This warning may be ignored.

72TDS 367 01 March 1993

11 imakef - makefile generator 231

11.7.2 occam examples

Two examples are again provided, the first for a multi-module program running on
a single transputer and the second example for a configured program.

Single transputer program

The example program is made up of four source files, written in occam:

sorthdr.inc
element.occ
inout.occ

sorter.ocec

The sources are the same as those used in the sorter example described in the
Toolset User Guide.

To create the makefile use the following command:
imakef sorter.bdh

Note the use of the .b4h extension instead of .bt1. Using this form of extension
informs imakef£ that we wish to create a bootable program for a single transputer
without the aid of the configurer.

The makefile generator has built-in knowledge of the file name rules for occam.
In this example, it knows by examining the file name that the program to be built
is for a single T414 processor in HALT mode, and that the source of the main body
of the program is in the file sorter.occ. It reads the file sorter.occ and
discovers that it uses a library called hostio.lib, the two compilation units
inout and element, and two include files, sorthdr.inc and hostio.inc. It
then reads the sources of the include files and compilation units and finds no more
file dependencies.

With this information about source file and their dependencies, imakef builds a
makefile called sorter.mak containing full instructions on how to build the
program and creates a linker indirect file sorter.14h (see section 11.4).

To build the program run the make program on sorter.mak. The entire program

will be automatically compiled, linked and made bootable, ready for loading onto
the transputer.

72 TDS 367 01 March 1993

232 11.7 imakef examples

Multitransputer program

This version of the sorter program is configured to place linked units on four proces-
sors. It is based on the configured sorter program described in the Toolsef User
Guide and uses the same sources.

The program is made up of the following occam files:

sorthdr.inc
element.occ
inout.occ

sortconf.pgm

To create the makefile use the following command:
imakef sortconf.btl

The .bt1 extension informs imakef that the target is a configured program, to be
built from a configuration description file called sortconf . pgm. The configuration
description references two linked units:

#$USE "inout.cdh”
#USE "element.cd4h”

Note: the use of the . cxx form of extension instead of the toolset default extension
for linked units . 1ku. imakef reads the .pgnm file and will produce a file called
sortconf .mak containing a make description of the program.

To build the program run the make program on sortconf .mak.

72 TDS 367 01 March 1993

11 imakef - makefile generator 233

11.7.3 Mixed language program

This example, uses a mixed language program which combines both occam and
C modules. ltis based on the example given in the ‘Mixed language programming’
chapter of the accompanying User Guide.

The example program is made up of the following files:

mixed. t4h - Compiled occam module
efunc. tdx — Compiled C module

where: the occam module is the main program which calls in the C function.

To create the makefile for the example program use one of the following
commands:

imakef mixed.bdh -c (UNIX based toolsets)
imakef mixed.bdh /e (MS-DOS and VMS based toolsets)

This command informs imakef that we wish to create a bootable program for a
single T414 processor in HALT mode. The ‘C’ option tells imakef that the program
also includes modules written in C.

imakef needs to know the names of the C components of the program, and looks
for the associated linker indirect file mixed. 1nk. Because a linker indirect file is
supplied to imakef, all the modules to be linked must be listed.

mixed.lnk must contain the following files:

mixed. tdh

cfunc. tdx

callec.lib
hostio.lib

#$INCLUDE clibsrd.lnk
#$INCLUDE occama.lnk

The occam module is listed first, because it contains the main entry point of the
program. Note: the use of the . t4h and . t4x extensions. The C module has been
compiled in UNIVERSAL mode, which is the standard mode for the C compiler.
This does not cause a problem because UNIVERSAL mode may be called by
HALT mode.

The files hostio.1lib and calle.lib are the occam libraries. occama. 1nk
contains a list of cccam compiler libraries which may be required.

clibsrd. 1nk references the reduced C runtime library used by the C module.

With this information imakef builds the make program mixed.mak.

72TDS 367 01 March 1993

234 11.8 Format of makefiles

Further information about mixed language programming can be found the accom-
panying User Guide.

11.8 Format of makefiles

Makefiles essentially consist of a number of rules for building all the parts of a
program. Each rule contains two main elements: a definition of the file's dependen-
cies in a format acceptable to make programs; and the command to recreate the
file on a specific host. All makefiles also contain macros which define command
strings and option combinations.

11.8.1 Macros

All makefiles created by imake£ include a set of macro definitions inserted at the
head of the file.

Macros define strings which are used to call the compiler, the configurer, the linker,
the librarian, the collector, and the eprom formatter tools, and fixed combinations
of options for these tools.

Macros are provided so that customized versions of the toolset commands, and
specific combinations of options, can be easily incorporated. Existing macros can
be modified for specific host environments, and new macros created, by editing the
makefile.

The full set of macros defined by imake£ can be found by consulting any makefile
created by the tool.
11.8.2 Rules

Rules define the dependencies of object files on other files and specify action
strings to build those files,

Example:

UNIX based toolsets:

example.t4h : example.c
$(CC) example -t4 -h -o example.tdh §(COPT)

MS-DOS and VMS based toolsets:

example.tdh : example.c
$(CC) example /t4 /h /o example.tdh §(COPT)

This rule first defines the target as the compiled program example . t4h, which is

dependent on the source file example.c and then specifies the command that
must be invoked to build it.

72 TDS 367 01 March 1993

11 imakef - makefile generator 235

The first rule in all makefiles is for the main target. Succeeding rules define sub-
components of the main target, and are listed hierarchically.

Action strings

Action strings define the complete command line needed to recreate a specific file.
The format is similar for all tools and consists of a call to the tool via a predefined
macro, a fixed set of parameters, a list of command line options, probably also via
amacro, and the output filename. (The output file is specified on the command line
so that the rebuilt file is always written to the directory that contains the source.)

11.8.3 Delete rule

The delete rule directs make to remove all intermediate object files once the
program has been built. It consists of a single labelled action string which invokes
the host system 'delete file' command. Deletion is only performed if make is subse-
quently invoked with the DELETE option.

The delete rule is appended to the makefile by specifying the imakef ‘R’ option.

11.8.4 Editing the makefile

Makefiles created by the imakef tool can be edited for specific requirements. For
example, new macros can be added and new rules defined for compiling and
linking code written in other languages.

Adding options

imakef generates action strings which have the minimum of options for each tool.
In most cases additional options are unnecessary or may be specified using
compiler directives. To modify the set of default options for a particular tool simply
edit the appropriate macro in the makefile.

For example, if the output of progress information is to be enabled for all invoca-
tions of the compiler, the compiler ‘I’ option would be added to the macro which
defines the standard combination of options for invoking the compiler. Alternatively
a new macro containing only the ‘I’ option could be defined and added to each
compiler action string.

Re-running imakef

Once the set of options have been changed in the macros, it is useful to retain this
set of options when imakef is run again. For this reason, imake£ will check for
the existence of a previous makefile. If one exists, it will re-use (in the new make-
file) the set of macro definitions from the old one, plus any additional text up to a
line marked “IMAKEF CUT”".

11.9 Error messages

imakef generates error messages of severities Waming and Error. Messages are
displayed in standard toolset format.

72 TDS 367 01 March 1993

236 11.9 Error messages

Cannot have a makefile

The file specified on the command line is not one for which imakef can
generate amakefile. imake£ can only create makefiles for object files and
bootable files.

Cannot open *filename” :reason

The file specified as the output file cannot be opened for writing by the
program, for the reason given.

Cannot write linker command file
The linker command file cannot be opened for writing by the program.
Command line is invalid

An incorrect command line was supplied to the program. Check the syntax
of the command and try again.

Error whilst reading
A file system error has occurred whilst reading the source.
#IMPORT references are illegal in configuration text

At the given line number in the file there is a reference to the # IMPORT
directive, which is illegal for configuration source.

#INCLUDE may not reference a library

The #INCLUDE directive is being used to reference a file with the .1ib
extension.

#INCLUDE may not reference binary files

The #INCLUDE directive is being used to reference a file containing
compiled code.

Incomplete compiler directive
At the given line number in the file there is an invalid compiler directive.
Library on PATH "pathname” also exists in the current directory

Alibrary with the specified name has been found on the current search path
and in the current directory.

Malloc failed

The program has failed while trying to dynamically allocate memory for its
own use. Try using a transputer board with more memory. If the program
is being run on the host it may be possible to increase the memory available
using host commands.

Options are incorrectly delimited

The terminating bracket, which determines the options in a library build file,
is missing at the given line number.

72 TDS 367 01 March 1993

11 imakef - makefile generator 237

#SC references are illegal in configuration text

Applies to occam modules only.
At the given line number in the file there is a #SC directive, which is illegal
in configuration source code.

#SC, #USE may not reference source files

Applies to occam modules only.

The directives #SC and #USE cannof be used to reference occam source
code.

Source file does not exist

The referenced source file does not exist on the system.
Target is not a derivable file

The specified file cannot be generated by the toolset.
Tree checking failed - no output performed

The tree of files has been found to be invalid and unusable for generating
makefile. This message always follows a message indicating what is wrong
with the tree. The most common reason for this error is the presence of
cyclic references in the source.

"filename” unknownl/illegal file reference

A compiler directive is attempting to reference the wrong type of file.
Writing file

A host system error occurred while the file was being written.

72TDS 367 01 March 1993

238 11.9 Error messages

72 TDS 367 01 March 1993

12 imap — memory
mapper

This chapter describes the memory map tool imap. The tool takes the text output
from the toolset compiler, linker and collector and gives the absolute addresses
of the static variables and functions. The chapter begins with an introduction to
imap and explains the command line syntax. imap’s output is described in some
detail and an example is given. The chapter ends with a list of error messages.

12.1 Introduction

The imap tool takes as input memory map files output by the compiler, linker and
collector. Command line options for these tools enable the user to specify that a
memory map file is to be produced. imap collates the information from the different
source files and puts itin a format suitable for output on the display screen. Alterna-
tively the output from imap can be redirected to another output file as the user
wishes. Memory maps may be generated for both single and multiprocessor trans-
puter programs.

imap is invoked by supplying it with the name of a map file produced by the
collector. The tool will automatically determine the names of map files produced
by the linker and compiler, provided the naming convention for extensions has
been adhered to, see section 12.2.1. Each tool generates a different level of
information:

Collector: For each process on each processor, memory locations of code,
static, heap, stack, invocation stack and vector space are listed.

Linker: For each process the offset in memory for code and static for
individual modules which make up the process are listed.

Compiler: For each module listed in the linker output file the offset in
memory for individual static items, procedures and functions are
listed.

Where a particular category of information is not applicable to a language, this field
will be left blank. occam programs forinstance do not use heap, so obviously such
details are not generated for occam.

Where the output files from the compiler and linker cannot be opened or parsed
properly imap will insert a warning at the appropriate point in the output.

The operation of the map tool in terms of standard toolset file extensions is shown
below. Output is sent to standard out, which is usually set to the display screen.

72 TDS 367 01 March 1993

240 12.2 Running the map tool

imap [" [g]
; : L m—\
S Iclc
- -= References

12.2 Running the map tool

To invoke the map tool use the following command line:

P imap filename { options }

where: filename is the name of the file containing the map output from the collector
icollect. Ifthere is no extension given, . map is assumed. Otherwise the
file name is taken as given.

options is a list of the options given in Table 12.1

Options must be preceded by ‘-’ for UNIX-based toolsets and ‘/’ for
MS-DOS and VMS based toolsets.

Options may be entered in upper orlower case and can be given in any
order.

Options must be separated by spaces.

Only one filename may be given on the command line.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

Examples of use:

imap myprog
imap myprog.map

Both the above examples will cause imap to read the file myprog . map, generated
by the collector.

72 TDS 367 01 March 1993

12 imap - memory mapper 241

Option Description

A Displays the list of symbols produced by the linker, including
those symbols the linker identifies as not being used. This
option will not override the ‘R’ option if it is used.

I Displays progress information as imap processes informa-
tion from the input files, such as the filenames of files as they
are opened and closed.

0 filename Specifies an output file.

R This option reduces the amount of detail generated by imap

in fwo ways:

« the Module memory usage table only displays
details for user modules ie. ‘USER’' and
‘SHARED_USER' processes.

« the Symbol table excludes those symbols containing
a ‘%' character in their name. Such symbols are
normally internal symbols e.g. C runtime library
symbols.

ROM hex offset

This option is only applicable to, and must be specified for,
code targetted at ROM. It enables a hexadecimal offset to be
specified which represents the start address of the code in
ROM. This offset will be added to the start address of any
code which is to run in ROM, in imap's output.

Table 12.1 imap command line options

12.2.1 Source files required by imap

Three different types of source file are read by imap and should therefore be made
available. The files are in fact memory maps generated by the compiler, linker and
collector. The appropriate command line option must be specified on each tool's
command line including a filename for the map produced. The filename specified
by the user must have the appropriate extension as indicated in table 12.2.

Extension |File description

.mXX Map file output by the compiler. The characters ‘xx’are determined
by the 2nd and 3rd characters of the extension given to the compiler
object file. For example if the compiler object file takes the default
extension . tco, the information file is given the extension .mco.

.dxx Map file output by the linker. The characters ‘xx’are determined by
the 2nd and 3rd characters of the extension given to the linker
object file. For example if the linker object file takes the default
extension . 1ku, the information file is given the extension .dku.

.map Map file output by the collector.

Table 12.2 Files extensions for imap source files

72 TDS 367 01

March 1993

242 12.3 Output format

12.2.2 Re-directing imap’s output

imap’s output goes to standard out by default. To redirect it to an output file, use
the "o’ option and specify an output filename.

12.3 Output format

This section describes the format of the memory map produced by imap. An
example output is given in section 12.4.

If the imap tool cannot find a linker or compiler output file, it will insert a warning

message in place of the missing information. It will not produce a warning if the
process or module comes from a library (such as the system process library).

72 TDS 367 01 March 1993

12 imap - memory mapper 243

12.3.1 imap memory map structure

® All processors used are listed. Details for each processor are as follows:

» Processor name — if specified by the user in a configuration data file.

* Processor Id. — a unique number which is assigned by the collector.
These numbers start from zero, and increase by one for each processor.

» Processor type e.g. T400, T805 etc.

» A list of processes, (in the same order as the collector output file). The
following details are given for each process as appropriate:

o Process Id. — a three digit number assigned by imap. Process
numbers start at 000 and are incremented by 1 for each new process.

o Process priority — HIGH or LOW

o Process type — USER; SHARED USER, INITSYSTEM; SYSTEM or
OVERLAID_SYSTEM. See table 12.3.

o Process name, if specified by the user.

o List of linked units or a library from which the process is made. For
each linked unit or library the following details are included:

o Name of the linked unit or library
o The file offset in memory, expressed as a decimal number.

o The offset from the start of the linked unit or library, at which code
for that process begins, (expressed as a decimal number). In a
linked unit this will usually be a very small number, pointing to just
after the header, whereas in a library, where the code is selected
from a number of related chunks of code, the offset may point to
anywhere within the library.

o A list of modules that make up the unit. The list is in the same
order as the linker output file. Details include:

- Module Id. - a three digit module number assigned by imap.
— TCOFF object filename.
- Name of the source file from which the object was generated.

» A table of the memory blocks allocated to user processes. See 12.3.3.

» Atable of the code and static memory blocks used by individual modules,
including the section of memory that each block represents. See 12.3.4.

= Atable of the memory blocks that non—user processes use. See 12.3.5.

® A table of symbols used by all of the processors. See 12.3.6.

72 TDS 367 01 March 1993

244 12.3 Output format

12.3.2 Process types

Process type Description
INITSYSTEM A process used in the initialization of the transputer
network.

OVERLAID_SYSTEM |System processwhich is overwritten by other processes
after it has been used.

SYSTEM A process used in the initialization and running of the
network.

USER A user process.

SHARED USER A user process whose code can be used by more than

one process.
Table 12.3 Process types

12.3.3 User processes

The table headed with “User processes” gives the start and end addresses and
lengths of the various blocks of memory used by the user processes for that
processor. The table is ordered by start address and is structured as follows:

¢ Process number or ‘All’ if it is the parameter data block, which is not asso-
ciated to just one process.

» Memory block type — stack; overhd; code; heap; static or param.
See table 12.4.

« Start address in hexadecimal.
* End address in hexadecimal.
¢ Length in decimal.

Block type Description

stack Used for workspace

overhd Used for invocation stack

code Used for code

heap Used for heap

static Used for static data

param Used for the parameter data block

vector Used for vector space (for occam programs)

Table 12.4 Memory block types

12.3.4 Module memory usage
The table headed with “Module memory usage” gives the memory areas that are
used by each module for code or static data. The table is ordered by start address

and has the following format:

72 TDS 367 01 March 1993

12 imap - memory mapper 245

e Processi.d.

e Module i.d.

+ Type (code or static)

» Name of the section that the area belongs to
» Start address in hexadecimal.

¢ End address in hexadecimal.

« Length of the area in decimal.
Examples of section names are pri%text%$base and text%base for code, and
static%base for static data.

If the ‘R’ command line option is used only details of user processes are shown.

12.3.5 Other processes

The table headed with “Other processes” is the same as the “User processes
table but for all the non—user processes. This table will not include an entry for the
parameter data block.

12.3.6 Symbol table

The symbol table is alphabetically ordered by symbol name and gives the following
information:

+ Symbol name.

* Processor |d.

* Process Id.

» Module Id.

» Start address associated with symbol (in hexadecimal).

» Symbol type (see below).
The type field of the symbol table is either taken directly from the compiler map file,
oris created by imap. In the latter case, the field will be enclosed in parentheses.
This information is based on which section the symbol comes from. Refer to the
compiler documentation for the meaning of items in this field that aren’t enclosed in
parentheses.

Note: command line options can be used to extend or limit the amount of symbol
information generated. Normally imap only gives details of symbols used by the
program; the ‘A’ option instructs imap to include unused symbols in the list. The
‘R’ option prevents details of internal symbols, such as those used by the runtime
libraries, being listed.

72TDS 367 01 March 1993

246 12.4 Example

12.4 Example

The following example, for a single processor program, was generated by the
command:

imap test -r (UNIX)
imap test /r (MS_DOS and VMS)

\

Memory map for testl’

Map for processor 0 (T800)

List of processes

P:000 - LOW priority INITSYSTEM process: ’Init.system’
From ’sysproc.lib’ (offset 4969)

P:001 - LOW priority SYSTEM process: ’System.process.a’
From ’sysproc.lib’ (offset 13391)

P:002 - HIGH priority SYSTEM process: ’System.process.b’
From ’sysproc.lib’ (offset 28774)

P:003 - LOW priority USER process:
From 'testt800.1lku’ (offset 2)

M:000 - Module ’testt800.tco’ from ‘testt800.c’
M:001 - Module ’/inmos/prod/d4214b/libs/centry.lib’ from ’tmp.occ’
M:002 - Module ’/inmos/prod/d4214b/libs/libec.lib’ from ’exit.p8x’
M:003 - Module ’/inmos/prod/d4214b/libs/libe.1ib’ from ‘virtual.tmp’
M:004 - Module ’/inmos/prod/d4214b/libs/libc.lib’ from ’semprocs.tmp’
M:005 - Module ’/inmos/prod/d4214b/libs/libc.lib’ from ’support.c’
M:006 -~ Module ’/inmos/prod/d4214b/libs/libc.lib’ from ’chandeb.c’
M:007 - Module ’/inmos/prod/d4214b/libs/libc.lib’ from ‘plus.c’
M:008 - Module ’/inmos/prod/d4214b/libs/libc.lib’ from "newsem2.c’
M:009 - Module ’/inmos/prod/d4214b/1ibs/1libc.lib’ from ’'printf.c’
M:010 - Module ’/inmos/prod/d4214b/libs/libc.lib’ from ’stdioini.c’
M:011 - Module ’/inmos/prod/d4214b/libs/libc.lib’ from ’tmp.s’
M:012 - Module ’/inmos/prod/d4214b/libs/libc.lib’ from ’'crunl.c’
M:013 - Module "/inmos/prod/d4214b/libs/libc.lib’ from ’crun2.c’
M:014 - Module ‘/inmos/prod/d4214b/libs/libc.lib’ from ’ioprgnam.c’
M:015 - Module ’/inmos/prod/d4214b/libs/libc.lib’ from ’iocmdlin.c’
M:016 - Module ’/inmos/prod/d4214b/libs/libec.1lib’ from ’iscmdlin.c’
M:017 - Module '/inmos/prod/d4214b/libs/libc.lib’ from ’isbuf.c’
M:018 - Module ’/inmos/prod/d4214b/libs/libc.1lib’ from ‘ismisc.c’
M:019 - Module '/inmos/prod/d4214b/libs/libec.lib’ from ’isversn.c’
M:020 - Module ’/inmos/prod/d4214b/libs/libc.1ib’ from ’ctype.c’
M:021 - Module ’/inmos/prod/d4214b/libs/libc.lib’ from ’clock.c’
M:022 - Module ’/inmos/prod/d4214b/libs/libc.lib’ from ’ptime.c’
M:023 - Module ’/inmos/prod/d4214b/libs/libc.lib’ from ’atexit.c’
M:024 - Module ’/inmos/prod/d4214b/libs/libc.lib’ from ‘ioinit.c’
M:025 - Module ’/inmos/prod/d4214b/1ibs/libc.lib’ from ‘agwalloc.c’
M:026 - Module ’/inmos/prod/d4214b/libs/libe.lib’ from ’flushbuf.e’
M:027 - Module ’/inmos/prod/d4214b/libs/libc.lib’ from 'misc.c’
M:028 - Module ’/inmos/prod/d4214b/libs/libc.lib’ from ’fflush.c’
M:029 - Module ’/inmos/prod/d4214b/1libs/libc.lib’ from ’<fabricated>’
M:030 - Module ‘/inmos/prod/d4214b/libs/libc.lib’ from "istatic.c’

- o

Figure 12.1 imap example, screen 1 of 3

72 TDS 367 01 March 1993

12 imap - memory mapper

247

/"

M:031 - Module ’/inmos/prod/d4214b/libs/libc.lib’
M:032 - Module ’/inmos/prod/d4214b/libs/libe.lib’
M:033 - Module ’/inmos/prod/d4214b/libs/libe.1ib’
M:034 - Module ’/inmos/prod/d4214b/libs/libc.lib’
M:035 - Module ’/inmos/prod/d4214b/libs/libc.lib’

User processes:

M:036 - Module ’/inmos/prod/d4214b/libs/libe.lib’ from ’'memset.c’
M:037 - Module ’/inmos/prod/d4214b/libs/libe.lib’ from 'fpprintf.c’
M:038 - Module ’/inmos/prod/d4214b/libs/libe.lib’ from "math.c’
M:039 - Module ’/inmos/prod/d4214b/1ibs/libc.lib’ from ’strcpy.c’
M:040 - Module ’/inmos/prod/d4214b/libs/libc.lib’ from ’strlen.c’
M:041 - Module ’/inmos/prod/d4214b/libs/libec.lib’ from ’'fseek.c’
M:042 - Module '/inmos/prod/d4214b/libs/libc.lib’ from ’iofsize.c’
M:043 - Module ’/inmos/prod/d4214b/libs/libc.1lib’ from 'isfseek.c’
M:044 - Module ’/inmos/prod/d4214b/libs/libe.lib’ from ’'isftell.c’
M:045 - Module ’/inmos/prod/d4214b/libs/libc.lib’ from ’clearerr.c’
M:046 - Module ’/inmos/prod/d4214b/libs/libc.lib’ from "ftell.c’
M:047 - Module '/inmos/prod/d4214b/libs/libec.1ib’ from ‘vfprintf.c’
M:048 - Module ’/inmos/prod/d4214b/libs/libc.lib’ from ‘writebuf.c’
M:049 - Module ’/inmos/prod/d4214b/libs/1ibc.1lib’ from ’iolseek.c’
M:050 - Module ’/inmos/prod/d4214b/libs/libc.1lib’ from ’iowrite.c’
M:051 - Module '/inmos/prod/d4214b/libs/libe.1ib’ from ’isfflush.c’
M:052 - Module ’/inmos/prod/d4214b/libs/libc.lib’ from ’‘isfwrite.c’

from "tmp.s’

from ’'ioisatty.c’
from ‘tmp.s’

from 'memcpy.c’
from ‘memmove.c

Other processes:

Process Type Start End Length

P:003 stack #80000154 $80000267 276

P:003 overhd #80000268 #8000027B 20

P:003 code #80000284 #80004E2F 19372

P:All param #80004E30 $B80004FEF 448

P:003 static #800052A0 $800054D9 570

Module memory useage:

Process Module Type Section Start End Length
P:003 M:000 code textibase #80000284 #800005C7 836
P:003 M:000 static module%table%base #800052A0 #800052A3 4
P:003 M:000 static static%base #80005300 #8000531B 28

-

Process Type Start End Length

P:002 stack #80000154 #8000016B 24
P:002 overhd #8000016C #8000017F 20
P:002 code #80000188 #800001E3 92
P:000 stack #80004FF0 #8000505F 112
P:000 overhd #80005060 #80005077 24
P:000 code #80005080 #8000529F 544
P:001 stack #800052A0 #800054B7 536
P:001 overhd #800054B8 #800054CB 20
P:001 code $800054D4 #80005E1F 2380
P:001 vector #B80005E20 #8000601F 512

Figure 12.2 imap example, screen 2 of 3

72TDS 367 01

March 1993

248 12.4 Example

Table of symbols

Symbol name Processor Process Module Start Type

C.ENTRY
_IMS_IsFileBuffer
_IMS_StartTime
_IMS_SystemLink
_IMS board type
_IMS_closeptr

P:003 M:001 #800005C9 (code)

P:003 M:005 #80005364 (static)
P:003 M:005 #8000532C (static)
P:003 M:005 #8000535C (static)
P:003 M:005 #800055R0 (static)
P: 003 M:024 $#80005A90 (static)

_IMS ctype P:003 M:020 #800058BB (static)
_IMS_entry_term mode P:003 M:005 #80005330 (static)
_IMS_errno P:003 M:005 #8000531C (static)
_IMs_fcloseptr P:003 M:010 #800055B0 (static)
_IMS_fdmap P:003 M:024 #80005A8C (static)

P:003 M:010 #800055B4 (static)
P:003 M:005 #80005348 (static)
P:003 M:005 $8000534C (static)
P:003 M:005 #8000559C (static)
P:003 M:005 #80005334 (static)
P:003 M:010 #B800055B8 (static)
P:003 M:005 #800055A4 (static)
P:003 M:005 #8000533C (static)
P:003 M:005 #80005354 (static)

_IMs_fflushptr
_IMS_heap base

IMS heap front
_IMS_host_type
_IMS_huge val

_IMS_iob
_IMS_isbufsize
_IMS_last recorded wptr
_IMS max wptr_extent

_IMS_os_type P:003 M:005 $80005598 (static)
TIMS printf P:003 M:009 $B80000DBA (code)
_IMS_retval P:003 M:005 $80005328 (static)

P:003 M:005 $80005340 (static)
P:003 M:005 #80005350 (static)
P:003 M:005 #80005344 (static)
P:003 M:005 #80005320 (static)

_IMS_shared area
_IMS_stack_base

_IMS_stack_limit
_IMS_startenv

calloc P:003 M:025 #800020El1 (code)
clock P:003 M:021 #80001B54 (code)
exit P:003 M:023 #B0001BFD (code)
exit.pB8x:B905SFFTC P:003 M:002 480000284 (code)
fflush P:003 M:028 #80002727 (code)
free P:003 M:025 $800020C0 (code)
frexp P:003 M:038 #80003600 (code)
ldexp P:003 M:038 $80003580 (code)
longjmp P:003 M:033 80002925 (code)
main P:003 M:000 #80000299 code

malloc P:003 M:025 #80001FB5 (code)
memcpy P: 003 M:034 $#80002%40 (code)
memmove P:003 M:035 #8000294C (code)
memset P:003 M:036 #80002A260 (code)
printf P:003 M:037 #80003403 (code)
semprocs.tmp:3B081E0C P:003 M:004 #80000284 (code)
strecpy P:003 M:039 $800036D4 (code)
strlen P:003 M:040 #80003744 (code)
testl P:003 M:000 #80005300 data

test2 P:003 M:000 #80005304 data

test3 P:003 M:000 #80005308 data

testfunctiont800 P:003 M:000 #80000288 code

tolower P:003 M:020 #80001A83 (code)

O 0 O D O D OO 00 D000 0000000000000 0000000000000 000 O

virtual.tmp:E5F06ATA P:003 M:003 §80000284 (code)

% J

Figure 12.3 imap example, screen 3 of 3

72 TDS 367 01 March 1993

12 imap - memory mapper 249

12.5 Error messages

This section lists each error message that can be generated by the memory map
tool. Messages are in the standard toolset format which is explained in appendix A.

All open files are closed when an error is found and the tool halts without producing
a map.
12.5.1 Serious errors
Filename input file cannot be parsed properly
The named file cannot be read by imap.
Cannot open collector’s output file for reading
The collector map file specified on the command line cannot be found.

Check that the extension used for the collector map file is in the correct
format. See section 12.2.

Cannot open output file for writing

The output file cannot be opened for writing. May indicate a disk space
problem or some other host system error.

Error parsing command line

The command line has the wrong syntax or a non—existent option has been
specified.

Must specify input file

An input file must be specified.
Only single output filename allowed

More than one output filename has been specified.
Only single ROM offset value allowed

More than one ROM offset has been specified.

12.5.2 Fatal errors
Filename internal data structure failure or file corrupt

A source file used by imap has referenced something which cannot be
found. This can occur when redundant map files are read by imap in error.

72TDS 367 01 March 1993

250 12.5 Error messages

Filename out of heap space
There is not enough heap space to generate the memory map.

Unexpected end of file

A source file, read by imap has been corrupted. Regenerate compiler,
linker and collector map files.

72 TDS 367 01 March 1993

13 iserver — host file
server

This chapter describes the host file server iserver which loads application
programs onto transputer networks and provides runtime access to the host.

This document describes version 1.5 of the server. This is completely compatible
with earlier versions but provides greater flexibility in the way transputers are
accessed. In particular, the server can access transputer systems connected to a
computer network (e.g. via Ethemet).

A summary of the new features of this version appears in Section 13.9.

13.1 Introduction

The host file server iserver provides three functions:
¢ |oading bootable programs onto transputer systems.

e A runtime environment for application programs, giving access to host
services (e.g. file and terminal i/0).

e Controlled access to transputer systems; multiple users in a computer
network can request a specific transputer system or a particular type of
transputer. Access to each transputer system is granted to one user at a
time for as long as required.

13.2 Loading programs

Before a program can be loaded into a transputer network it must be compiled and
linked. Multi-transputer programs must also be configured for the transputer
system they are to run on. The program is made bootable with the collector tool,
icollect. The bootable file will generally have a .bt1 file extension.

13.3 Host interface

Generally, transputer applications communicate with the host file server using the
standard i/o libraries for the language being used. The library calls available and
their parameters will be documented in the relevant language manual.

The communication with the host is based on a protocol, defined in appendix C.
This protocol is used by the C, FORTRAN, and occam run time libraries to
communicate with the host.

72TDS 367 01 March 1993

252 13.4 Access to transputer networks

13.4 Access to transputer networks

Previous versions of the server required different code (and, therefore, a different
executable) for every type of host interface. This version of the server provides
support for all types of link interface in a single program. This means that when the
server is run, it must be told what transputer systems are available and which type
of interface to use for each.

User links

Each transputer system can be thought of as being connected to the host by a user
link. User links are given descriptive names (known as capabilities) which are used
by the server to find a suitable transputer system. Programs may be loaded onto
transputer systems down user links, whilst operating system services are provided
to the programs by communicating with the host file server via the user link. The
names of the available user links, and the way in which the transputers are
accessed, are defined in a connection database file.

More detail on user links, the connection database file, and accessing transputer
networks is provided in section 13.7.

The session manager

The iserver guarantees unique access to a transputer system while itis running.
The system is released when the server terminates. Often, the same resource
needs to be used to run several programs (or run one program several times). For
example, after running a program, it may be necessary to use the debugger — it
would not be very useful if another user had started using the transputer between
the program failing and the debugger starting.

The server's session manager allows access to a resource to be guaranteed for
as long as required. The session manager is started with the ‘sM’ option and
provides a simple command line interface. All the normal host operating system
commands can be used as well as the i server and session manager commands.

More detail on using the session manager are given in section 13.6.

13.5 Running the iserver

To run the host file server use the following command line:

=2 iserver {oplions}

where: options is a list of one or more options from Table 13.1.

If iserver is invoked with no options, help information is displayed, briefly
explaining the command line arguments.

Some parameters can also be provided by the environment variables which are
described in Section 13.5.2. These can be overridden by values provided on the
command line.

72 TDS 367 01 March 1993

13 iserver - host file server 253

Option Description

sa Analyses the root transputer and peeks 8K of its memory.

SB filename |Boots the program contained in the named file.

SC filename |Copies the named file to the root transputer link.

SE Terminates the server if the transputer error flag is set or a
control link error message is received.

[-3: Displays progress information as the program is loaded.

SK interval Specifies the number of seconds between attempts to access
the resource.

SL name Specifies the capability name.

SM Invokes the session manager interface.

SP n Sets the size of memory to peek on Analyse to n Kbytes.

SR Resets the root transputer and its subsystem.

ss Serves the link, i.e. provides host system support to programs
communicating on the host link.

ST All of the following command line is passed directly to the
booted program as parameters.

Options must be preceded by ‘~' for UNIX based toolsets.
Options must be preceded by */’ for non-UNIX based toolsets.

There must be at least one space between options. The case of letters in the
parameters are not significant.

Options may be in any order, except that no further options may appear after ST.
Option ‘sB filename’ is equivalent to ‘SR S8 SI SC filename'.

Table 13.1 Host file server options

13.5.1 Examples of use

UNIX based toolsets: MS-DOS/VMS based toolsets:
icc hello icc hello
ilink hello.tco —f cstartup.ink ilink hello.tco /f cstartup.ink
icconf hello.cfs icconf hello.cfs
icollect hello.cfb icollect hello.cfb

iserver -sb hello.btl -se iserver /sb hello.btl /se
In this example iserver is executed to load and serve the bootable file
hello.btl and to terminate on error. The example also shows the steps for
compiling, linking, configuring and making the bootable file.

Note: this example assumes that the environment variable TRANSPUTER has been
set to the name of the user link to be used.

72 TDS 367 01 March 1993

254 13.5 Running the iserver

13.5.2 Server environment variables

The server may obtain some parameters by inspecting environment variables. The
following names are used:

TRANSPUTER Defines the capability (user link name) to be used by the
server. May be overridden by the SL option.

ICONDB Defines the name of the connection database file used by the
server.

ISESSION Defines the name of the session manager configuration file.
The default is ‘session.cfg’.

13.5.3 Loading programs

Before a program can be loaded onto a transputer network it must be compiled,
linked and made bootable.

Running a program using the iserver — option SB

The name of the file containing the bootable program is specified using the ‘SB’
option. This resets the board and then copies the contents of the bootable file to
the userlink. If the file cannot be found an error is reported. When the program has
been successfully loaded the server then provides host services to the program.

Note: Using the ‘SB’ option is equivalent to using the SR, SS, SI and SC options
together.

Sending data down a user link — option sC

To send data down a user link, or to load a program onto a board without resetting
the root transputer, use the ‘sC’ option — this simply copies the contents of the
specified file to the user link. This should only be done if the transputer is running
a program that can interpret the data sent down the link, or has already been reset.
To reset the transputer subsystem use the ‘SR’ option.

Running programs which do not use the server

To terminate the server inmediately after loading the program use the ‘SR’ and ‘sc’
options together. This combination of options resets the transputer, loads the
program onto the board, and terminates the server — the program on the trans-
puter will continue running. This can be used to run a program which does not need
to use the server facilities. If the program on the transputer attempts to access the
server then it will deadlock until the server is run with the ‘ss’ option.

Note: single transputer programs built with the collector’s ‘T’ option cannot be run
in this way as the loader uses the server to read the value of the environment vari-
able IBOARDSIZE. Configured programs (and programs built with the collector’s
‘' and ‘M’ options) will perform no communication with the host other than that
specified in the user’s program.

72 TDS 367 01 March 1993

13 iserver - host file server 255

Analyzing a transputer network — option SA

To load a board in analyze mode, for example when you wish to use the debugger
o examine the program’s execution, use the ‘S’ option to dump a section of the
transputer’s memory (starting from MOSTNEG INT). The default amount of
memory to dump is 8 Kbytes, but this can be overridden with the ‘Sp’ option. The
data is stored in an internal buffer which can be read by the idump tool when
programs that use the root transputer are to be debugged.

Terminating the server

When the program sends a terminate command to the server (or some serious
error occurs) the server will terminate if the session manager is not being used. If
an error occurred an error message will be printed. If the session manager inter-
face is being used, then control will return to the session manager.

13.5.4 Supplying parameters to a program

Any parameters on the command line following the ‘ST’ option are passed as
parameters to a booted program. This includes parameters that would normally be
interpreted as i server parameters. In addition, any text on the command line that
is not recognized as a server parameter is also passed to a booted program.

13.5.5 Specifying the transputer resource — option SL

To specify the transputer resource to be used a capability name must be specified.
The server may be given the capability on the command line using the 'SL’ option.

The capability may also be specified by the environment variable TRANSPUTER.
This variable is overridden by a capability specified by the ‘sL’ option.

The SK option can be used to specify how frequently the server should retry if the
requested resource is not available; by default it does not retry.

13.5.6 Temminating on error — option SE

When debugging programs it is useful to force the server to terminate when the
subsystem’s error flag is set. To do this use the ‘SE’ option. This option should only

be used for programs written entirely in occam and compiled in HALT system
mode. If the program is not written entirely in occam then the error flag may be
set even though no error has occurred.

13.5.7 Terminating the server

To terminate the server press the host system break key. The server will either then
terminate, returning to the host operating system prompt, or return to the session
manager interface prompt if the server was invoked with the ‘SM’ option.

72 TDS 367 01 March 1993

256 13.6 Using the session manager interface

13.5.8 Specifying the session manager configuration file

The session manager configuration file contains iserver commands for use by
the session manager and may be customized for personal use.

The file is given by the environment variable ISESSION. If ISESSION is not set,
then the filename ‘session.c£g’ is used.

13.6 Using the session manager interface

The session manager provides a mechanism for guaranteeing unique access to
a transputer system for as long as is required. Once the server terminates, or the
system is released from within the session manager, access to the same system
is no longer guaranteed.

13.6.1 Session manager commands

The session manager has a simple command line interface. There are a number
of commands for managing the session such as open to select the transputer
resource to be used, and exit to terminate the session. A complete list of session
manager commands is given in table 13.2.

Command Description

iserver parameters |Run as server to load network and provide host
services. This command has most of the same options
as the normal iserver command (except, of course,

‘SL’ and ‘SM’).
source filename Read commands from a file
open capability Release any held system and open a session with the

named capability.
options parameters | Specify command line parameters to iserver

command.
show List user-defined commands.
help List internal and user-defined commands.
exitorquit Release any held system and exit the session
manager.
user command A user-defined command.

any other command | Any other command is passed directly to the host
operating system.

Table 13.2 Session manager commands

13.6.2 The options command

The options command allows a set of standard options for the session manag-
er's iserver command to be defined. Any parameters to the options command

72 TDS 367 01 March 1993

13 iserver - host file server 257

are saved and added to any following iserver command. See the examples in
sections 13.6.3 and 13.6.4.

With no parameters, the options command displays the parameters which are
currently set. To remove parameters which have previously been set with the
options command, use an empty string as the parameter, i.e.

options "”

13.6.3 The iserver command

The command iserver starts the server, from within the session manager, to load
code onto the transputer system and provide host services to it. This command can
be followed by any of the command line options described in section 13.5 (except
‘SL’ and ‘SM' which are ignored). This allows programs to be run repeatedly on the
same transputer system. When the program running on the transputer terminates
(whether due to a normal termination, an error condition, or a userinterrupt) control
is returned to the session manager, without releasing the transputer system.

Note: the options to the session manager iserver command must be preceded
by the appropriate option character as defined in table 13.1.

When an iserver command is executed, either directly or via a user-defined
command, the parameters are built up from 3 parts in the following order:

1 The parameters supplied with the options command.

2 The parameters entered on the command line by the user.

3 The parameters from the command definition (if a user-defined command).
Example (UNIX based systems):
If the following commands are executed in the session manager:

options -sb ika.btl
iserver -si 42 tako.dat

Then the following iserver command line is generated:

iserver | -sb ika.btl] :-si 42 tako.dat!

Parameters from the Parameters from the
options command command line

Example (MS-DOS/VMS based systems):
If the following commands are executed in the session manager:

options /sb ika.btl
iserver /si 42 tako.dat

72 TDS 367 01 March 1993

258 13.6 Using the session manager interface

Then the following iserver command line is generated:

iserver | /sb ika.btl! !/si 42 tako.dat !

Parameters fromthe Parameters from the
options command command line

13.6.4 User-defined commands

In addition to the built-in commands of the session manager, new commands can
be defined by the user. These commands define a set of of parameters to be
passed to the session manager iserver command, giving a shorthand for regu-
larly used commands.

New commands are defined in the session manager configuration file, named in
the environment variable ISESSION. The commands are defined as a set of
parameters to the session manager's iserver command.

The format of the file is simple. Each command occupies a single line. The
command name is the first word on the line. The rest of the line are the parameters
to the iserver command that is fo be substituted for the user-defined command.

As an example, suppose a program called mytool is normally booted onto a trans-
puter with the SE and the SB options followed by user parameters for the tool. The
normal iserver command line might look something like this:

iserver —se —sb /usr/tpbin/mytool.b8h parameters (UNIX)
iserver /se /sb /usr/tpbin/mytool.b8h parameters (MS-DOS/VMS)

To simplify this inside the session manager, the following lines would be put in the
session manager configuration file:

mytool -se -sb /usr/tpbin/mytool.b8h (UNIX)
mytool /se /sb /usr/tpbin/mytocl.b8h (MS-DOS/NMS)

Then, if the command ‘mytool parameters’ is entered on the session manager
command line it will be replaced with the command:

UNIX based systems:

iserver' parameters :,-se -sb /usr/tpbin/mytool. th

Parameters fmm Parameters from the
the command line command definition

MS-DOS/VMS based systems:

Parameters from Parameters from the
the command line command definition

72 TDS 367 01 March 1993

13 iserver - host file server 259

The server command line is built up as described above in section 13.6.3 so, if
some extra parameters are defined with the options command they will be
included as well. For example, the command sequence:

UNIX based systems: MS-DOS/VMS based systems:
options -si options /si
mytool parameters mytool parameters

Would cause the following iserver command to be generated:

iserver -si paramefers —se -sb /usr/tpbin/mytool.b8h (UNIX)
iserver /si paramefers /se /sb /usr/tpbin/mytool.b8h
(MS-DOS/VMS)

Running the debugger from the session manager

One important use of user defined commands in the session manager is to allow
the debugger to be run. This is done by defining a command such as the following
in the session manager configuration file.

idebug -se —-sb /usr/local/D5214/itools/idebug.btl (UNIX)
idebug /se /sb /usr/local/D5214/itools/idebug.btl
(MS-DOS/VMS)

The exact form of this command will depend on which toolset is being used and
the type of program being debugged. For more details on idebug command line
options, see chapter 4.

13.6.5 Host OS commands

If a command is not one of the session manager’s internal commands and not a
user-defined command then it is passed to the host's operating system for execu-
tion.

13.7 Connecting transputers to computer networks

Transputer systems may be connected to the host computer in a number of ways.
For example, they may be connected directly to the host via a board such as the
IMS B008 motherboard, or via Ethernet using an IMS B300 TCPlink box."

Each connection, howeverimplemented, is treated in the same way. Programs can
be loaded onto a transputer system via any of these connections and that program
can then gain access to host facilities and communicate with the user via the same
connection. Each of these connections is known as a user link.

13.7.1 Capabilities

User links are identified to users (and tools) by name. Each user link has one or
more names, known as capabilifies — the names should be chosen to indicate to
1. Itis also possible to remotely access a transputer directly connected to another (remote) host.
This requires the host connection server (HCS) to be running on the remote host — currently the

HCS software is only available for PCs.

72TDS 367 01 March 1993

260 13.7 Connecting transputers to computer networks

a user what type of transputer system is connected to that user link. Examples of
capability names that might be used are B008, T801+2MB, or Grid:10x10.

Capabiliti Capabili Capabilii Capabili
USERLINK1 USERLINK2 USERLINK3 USERLINK4
T8Torus 16bit-Transputer 32bit-Transputer 32bit-Transputer
T805 1212 T425 T800

Figure 13.1 Capabilities for user links

If access to a transputer system is desired, one of the capability names of a user
link is given to the iserver. If a user link of that name is free then unique access
to that user link is granted until the server terminates. If the session managerinter-
face of the server is used (see Section 13.6), then unique access to the user link
can be maintained for as long as required. If the capability specified is not unique
then the iserver searches for the first free user link on the local machine with that
capability. If that capability is not available, remote machines are then searched.
For this reason each user link will normally have several capabilities, at least one
of which will be unique in the network.

Figure 13.1 shows an example computer network with four user links. Each user
link has several capabilities. If a specific user link is to be used then the capability
USERLINK1, USERLINK2 efc. should be used. If that user link is free unique
access to it will be given. If all that is required is a 32 bit transputer (to run a tool,
for instance) then the capability 32bit-Transputer could be used; connection
to either of user links 3 or 4 could then be made, assuming that one of them is free.

When the iserver is run it is given the name of a capability with the ‘SL’ option
or the environment variable TRANSPUTER. The server finds the information it
needs to access that transputer network from the connection database file.

13.7.2 The connection database

Each transputer system available is described in the connection database file. The
iserver, when given the name of a transputer system, uses the connection data-
base to determine how to access that system. The name of the connection data-
base file is defined by the environment variable ICONDE.

The connection database is a text file which contains a description of all the avail-
able capabilities. In a PC development system, for example, the connection data-
base may contain only a single entry — the transputer board which is installed in
the PC. In a multi-user development environment, such as a networked Sun
workstation, the database may contain a number of capabilities representing

72 TDS 367 01 March 1993

13 iserver - host file server 261

transputer links connected directly to the host or accessible via Ethernet. In this
case the connection database will be set up by the system administrator.

There may be several entries in the connection database with the same capability
name. In this case, when a user runs iserver specifying this capability, the first
system with that capability name which is not already in use will be allocated to the
user.

The connection database must exist for iserver to be able to access a trans-
puter. The server uses the environment variable ICONDR to locate the connection
database file.

Examples and further details of the contents of the connection database are given
in section 13.8.

13.7.3 Using a specific node

It is possible to request that a capability on a specific network node is used (note
that ‘node’ in this context may be an IMS B300 Ethernet interface). To do this the
character '@’ is added after the capability name, followed by the name of the node.
When this is done the named node is contacted directly. If the specified capability
is not free on that node then the request will fail.

For example, to use the capability T4-torus on the node pwllheli the name
T4-torus@pwllheli would be specified to the server.

The special name localhost is defined as being the the local host (alternatively,
the local host's name may be used directly). If the local host is specified then only
local user links may be used. If no suitable user link is found locally the request will
fail.

13.8 The connection database
This section gives more detail about the connection database file that provides
information to the server about the available transputer networks.

13.8.1 Connection databases

A connection database file must be available on your host before you can gain
access to any user links. The connection database describes the transputer
systems available on your network. The format of the connection database file is
described below, in section 13.8.2.

In a single-user system such as a PC-compatible development system, there may
only be a single entry in the connection database file — this will describe the trans-
puter board installed in the PC. A typical entry for an IMS B008 board in a PC might
look like this:

|BOOS|T|localhost|#150|b004 || |BO08 with 3 x T805]

72 TDS 367 01 March 1993

262 13.8 The connection database

In alarger development environment, there may be many entries describing all the
transputer systems in the entire network of development systems. In this case, the
connection database file will usually be created and managed by the system
administrator.

Capability names

There may be a number of different user links with the same name so that similar
transputer systems can have the same capability. For example, all the user links
which are connected to transputers which can run transputer based tools could be
given the capability ToolHost.

Similarly, there may be more than one entry for each transputer system in order
to give multiple names to the same resource. This allows a transputer network with
a30MHz T805 transputer, for example, to be described with the capabilities Tool -
Host (for user who want to use any transputer that can run transputer based tools)
and T805-30 (for those who need to use that specific type of transputer).

13.8.2 Connection database format

Connection database files are ASCII text files. It can contain four types of line:
o Blank lines — these are ignored.
¢ Lines starting with a '#' character are comment lines, and are ignored.

¢ Lines starting with a ‘|’ character are record lines, containing connection
data.

e Lines starting with a **' character are continuation lines, used when a
record line will not conveniently fit on one line.

Records in the database are made up of eight fields, in a fixed order. Fields are
separated by a ‘|’ character. Records may be broken over a number of lines if
required, but may only be broken between fields. In this case a“*’ character is used
as the field separator, and must appear at the end of the line to be continued, and
as the first character on the continuation line. The characters ‘|’ and ‘*’ are not
permitted within any field. Trailing spaces in a field are ignored.

The fields are shown in Table 13.3. There are two field types, String and Boolean.
A String is one or more ASCI| text characters and a Boolean is a single ASCII char-
acter, either ‘£’ or ‘F' for false or ‘t’ or ‘T’ for frue.

72 TDS 367 01 March 1993

13 iserver - host file server 263

Field Type Description Example
Capability |String |Capability (Name) of user link T8-grid
IsWorking |Boolean | True if the user link is available T

Machine String | Network name of host machine for |pwllheli
that user link (Localhest if local)

Linkname ([Sfring |Name of link connected to user link |/dev/bxvi0
Linkdev String | Type of device providing user link BO16

Mmsfile String | Reserved for future use
Mmslink String |Reserved for future use
Description [Sfring | Comment describing user link T805 Square

Grid

Table 13.3 Connection database record fields

13.8.3 Example connection databases
PC development system

The first example shows how 2 PC add-in boards in the same system could be
described. Each board has two names: a common name (B008) to allow a user
to access whichever user link is available, and a unique name to enable the user
to specify which transputer system they wish to use (T400 or T805).

The following resource describes a B008 with a T400.
The link device is at address #150.

|T400 |T|localhost|#150|b004|]||B008 board with T400 + 2ZMB|
|BO08 |T|localhost[#150|b004|||B008 board with T400 + 2MB|

The following resource describes a B008 with a T801.
The link device is at address #200.

|T805 |T|localhost|#200|b004]|||B008 board with T801 + 2MB|
|B008 |T|localhost|#200|b004|||B008 board with TB01 + 2MB|

72TDS 367 01 March 1993

264 13.8 The connection database

Sun workstation

This example shows how the various boards that can be connected to a Sun
workstation directly, can be described in a connection database file.

Sample connection database.

The device names and addresses supplied are the default names
and/or addresses suggested in the installation section of the
board’s manual.

The following resource allows access to a B0ll connected to this
host. The resource name is ”“B011” and the device is accessed
at address 0x800000.

|B011|T|localhost|0x800000|b011] | |Description of board|

The following resource allows access to a B0l4 connected to the
host. The resource name is “B0l14” and the B014 device driver is
accessed via “/dev/bxiv0”.

|B014 |T|localhost|/dev/bxiv0|b014|||Description of board]
#

The following resource allows access to a BOl6 connected to the
host. The resource names are ”"B016-0” to ”B016-3” and the BO16
device drivers are accessed via “/dev/bxvi0” through to

”/dev/bxvi3”.

B016-0	T	localhost	/dev/bxvi0	b016]			Description of board
BO16-1	T	localhost	/dev/bxvil	b016]			Description of board
B016-3	T	localhost	/dev/bxvi2	b016			Description of board
B016-4	T	localhost	/dev/bxvi3	b016			Description of board

IMS B300

The following example shows how four transputer systems available via Ethernet
could be described.

Connection database for an IMS B300 with the node name ’billy’

A T425 connected to link 2 of the B300
|HOSTLINKO |T|billy|2|tcp]|||T425+1M]|
ITA IT|billy|2|tep| | |T425+1M]
|T425 IT|billy|2|tepl | |T425+1M|

A TB0O5 connected to link 3 of the B300
|HOSTLINKL |T|billy|3|tcp|||T805+2M]
|TA ITIbilly|3|tep]| | | TBO5+2M)|
| T805 |T|billy|3|tcp]| | | TBO5+2M|

Another T805 connected to link 0 of the B300
HOSTLINK2	T	billy	0	tcp]			T805+2M
TA IT	billy	0	tep			T8O5+2M	
T805	T	billy	0	tcp			T805+2M

A small network connected to link 1 of the B300

HOSTLINK3	T	billy	1 Itep			TB00+4M + TBOS5+2M + T222+60K	
TA	T	billy	1l	tcp			TB00+4M + TBO05+2M + T222+60K
T800	TIbilly	1	tep			TBO0+4M + TBO5+2M + T222+60K	

72 TDS 367 01 March 1993

13 iserver - host file server 265

13.9 New server features

This section summarizes the main differences between version 1.5 of the
iserver and previous versions.

The new features are:
» The addition of a session manager user interface.

e A connection manager has been added, and capability names are used
instead of link names. There is no longer a default name.

» Some new command line options have been added.
o User interrupt behavior has changed.
o Exit codes have changed.
+ New error codes have been added.
o Stream identifiers are validated.
o Support for record structured files has been added.
These changes are described in more detail in the following sections.

13.9.1 Session manager

This is a simple user interface that provides control of access to shared transputer
resources. It will provide unique access to a specified transputer resource (if avail-
able) for as long as required. See section 13.6.

13.9.2 Connection manager

The connection manager provides transparent access to both remote and local
transputer resources. Resources are identified by a “capability name” and, option-
ally, the name of the host to which the resource is connected. See section 13.7.
13.9.3 New command line options
Three new command line options have been added:

SK Retry the connection at intervals.

SM Invoke the session manager interface.

ST All arguments which follow are nof iserver arguments and will be
passed to the application. Note that this is a significant change to the way
thatthe iserver parses its command line. Existing command files or shell
scripts may need to be changed.

13.9.4 User interrupt

Behavior on user interruption depends on how the server is being run. If the
session manager interface is being used, then the server returns to the session

72TDS 367 01 March 1993

266 13.10 Error messages

manager interface. If the session manager is not being used then the server termi-
nates.
13.9.5 Exit codes

This version of the iserver makes it possible to distinguish between the various
causes of termination of the server, such as user break, error flag set etc.
Appendix C provides full details of the exit codes.

13.9.6 Error codes

Server operations now return a range of error codes to indicate the cause of a
failure. Checks are now made to ensure that operations are supported, a particular
transputer system is available etc.

Appendix C provides details of iserver ermor codes.

13.9.7 Stream identifier validation

Checks have been added to the server to validate all stream identifiers. Earlier
versions of the server assumed that a stream identifier would always be valid.

13.9.8 Record structured file support

Support for record structured files has been added for all supported hosts.
Supported formats are formatted sequential, unformatted sequential, formatted
direct and unformatted direct. See Appendix C for full details.

13.10 Error messages

A list of possible error messages which iserver may produce follows. In some
cases, these messages may be followed by an extra message giving additional
information; these are listed below in section 13.10.1.

Aborted by user
The user interrupted the server, by pressing [Cii=C] or [Cir=Break].

Boot filename is too long, maximum size is number characters
The specified filename was too long. number is the maximum size for file-
names.

Cannot find boot file filename
The server cannot open the specified file.

Command line too long (at string)
The maximum permissible command line length has been exceeded. The
overflow occurred at string.

72 TDS 367 01 March 1983

13 iserver - host file server 267

Copy filename is too long, maximum size is number characters
The specified filename was too long. number is the maximum size for file-
names.

Error flag raised by transputer
The program has set the error flag. Debug the program.

Expected a filename after —SB option
The ‘SB’ option requires the name of a file to load.

Expected a filename after -SC option
The ‘SC’ option requires the name of a file to load.

Expected a name after —SL option
The ‘SL’ option requires a link name or address.

Expected a number after —SP option
The 'SP’ option must specify the number of Kbytes to peek.

Failed to allocate CoreDump buffer
The ‘'SP’ option was used but the server was unable to allocate enough
memory to allow the transputer’s memory to be copied.

Failed to analyse root transputer
The link driver could not analyze the transputer.

Failed to reset root transputer
The link driver could not reset the transputer.

Reset and analyse are incompatible
Reset and analyze options cannot be used together.

Timed out peeking word number
The server was unable to peek the transputer.

Transputer error flag has been set
The program has set the error flag. Debug the program.

Unable to access a transputer
The server was unable to gain access to a link. This occurs when the link
address or device name, specified either with the SL option or the TRANS-
PUTER environment variable, is incorrect or does not exist. This message
will be followed by one of the messages listed below.

72TDS 367 01 March 1993

268 13.10 Error messages

Unable to free transputer link
The serverwas unable to free the link resource because of a host error. The
reason for the error will be host dependent.

Unable to get request from link
The server failed to get a packet from the transputer because of some
general failure.

Unable to write byte number to the boot link
The transputer did not accept the file for loading. This can occur if the trans-
puter was not reset or because the file was corrupted or in incorrect format.

13.10.1 Additional error messages

The following messages provide additional information to accompany error
messages from the server.

: no environment variable ICONDB

There is no environment variable ICONDB.

: can’'t open connection database file [...]
The file specified in the environment variable ICONDE cannot be accessed.
connection database, file [...], at line [...]
—> premature end of file
The database file is corrupt, a record line is not complete.
connection database, file [...], at line [...]
—> premature end of file, looking for field {...}
The database file is corrupt. A record line is not complete; the field {...} does
not exist.

connection database, file [...], at line [...]
—> expecting continuation character

Line[...] of the database file is corrupt. The record was not complete, a field
is missing and there was no continuation indicating the record is continued
on the next line.

connection database, file[...], at line[...]
—> expecting continuation character at start of line, looking for field {...}

Line [...] of the database file is corrupt. The previous line ended with a
continuation character — a continuation was expected to start the current
line.

72 TDS 367 01 March 1993

13 iserver - host file server 269

connection database, file[...], at line[...]
—> can’t start a line with continuation, looking for field {...}

Line [...] of the database file is corrupt. A record line started with a continua-
tion character (it should start with a field separator). The {...} field was
expected.

connection database, file[...], at line][...]
—>bad field separator, looking for field {...}

Line [...] of the database file is corrupt; the field was illegal.

connection database, file[...], at line[...]
—> field {...} cannot be null

Line [...] of the database file is corrupt. The field {...} contained a null value
(this is illegal).

connection database, filel[...], at line[...]

—> illegal boolean value, looking for field {...}

Line [...] of the database file is corrupt. The field {...} should contain a
boolean value.

connection database, file[...], at line[...]
—> jllegal linkdev field — unknown method

Line [...] of the database file is corrupt. The Linkdev field should contain a
link method value.

72 TDS 367 01 March 1993

270 13.10 Error messages

72 TDS 367 01 March 1993

14 isim— T425
simulator

This chapter describes the T425 simulator tool isim that allows programs to be
run and tested without transputer hardware. The chapter explains how to invoke
the tool and describes the simulator commands that allow the simulated program
to be debugged interactively.

14.1 Introduction

The simulator can run any transputer program that would run on a single IMS T425
mounted on a normal transputer evaluation board and supported by a host running
iserver. No transputer hardware is required.

Because the simulator runs the same code that would be loaded onto a real trans-
puter, any program that runs satisfactorily in the simulator will run on an IMS T425.
Because all 32-bit transputers are compatible at the source level, the same
program can also be run on any INMOS 32-bit processor after recompiling for the
correct processor type.

The simulator also provides a reduced set of debugging facilities similar to those
of the debugger Monitor page. Additional features provided by the simulator are
the ability to set break points at simulated transputer addresses and to single step
the program. The program should be loaded into memory (using the [G], or
[P] commands) before breakpoint debugging facilities are used. This ensures that
breakpoints are not overwritten during the booting phase.

The simulator can also be used to familiarize new users with transputers and trans-
puter programming, and as a teaching aid.
14.2 Running the simulator
To run the simulator use the following command line:
> isim program [programparameters] {options}
where: program is the program bootable file.
programparameters is a list of parameters to the program. The list of

parameters may follow the isim ‘N’ option and parameters must be sepa-
rated by spaces. See section 14.2.1.

72TDS 367 01 March 1993

272 14.2 Running the simulator

options is a list of options from Table 14.1.

Options must be preceded by ‘-’ for UNIX-based toolsets and ‘/’ for
MS-DOS and VMS based toolsets.

Options may be given in any order.

Options may be entered in upper or lower case and can be given in any
order.

Only one filename may be given on the command line.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

Option Description

B Batch mode operation. The simulator runs in line mode i.e. full
display data is not provided. Commands are read in from the input
stream e.g. the keyboard and executed. The commands are not
echoed to the output stream e.g. the display screen, as they are
executed.

BQ Batch Quiet mode. The simulator automatically executes the
program sp« cified on the command line and then terminates. If an
ermror occurs, the appropriate message will be displayed. The
debugging facilities of the simulator are not available in this mode.

BV Batch Verify mode. Similar to batch mode, except that the
commands and prompts displayed when running the simulator in
interactive mode are echoed to the output stream e.g. the display.

I Displays information about the simulator as it runs.

N No more options for the simulator. Any options entered after this
option will be assumed to be program parameters to be passed to
the program running on the simulator.

Table 14.1 isim options

14.2.1 Passing in parameters to the program

Program parameters can be passed to programs which are simulated on any host.
Parameter passing is equivalent to running a transputer bootable program using
iserver.

isimwill normally parse the command line and any options it recognizes as its own
will not be passed to the user program. In cases where options are required for a
user program which clash with one of the isim opfions the ‘N’ option can be used.
After the ‘N’ option isim ceases parsing the command line for its own options; the
remainder of the command line is simply passed through to the user program.

72 TDS 367 01 March 1993

14 isim - T425 simulator 273

14.2.2 Example of use
isim hello.btl

This invokes the simulator on the ‘Hello World' program.

When first invoked the simulator enters the debugging environment. To start the
program invoke the ‘G’ command. Then press [RETURN] in response to the
"break point address” prompt. The program then runs until it completes
successfully, a runtime error occurs, or a break point is reached. If an error occurs
the processor halts, the error flag is set, and the program can be debugged using
commands to examine memory and registers.

When invoked with the ‘BQ’ option (Batch Quiet) the simulatorimmediately runs the
program and does not enter the debugging environment.

isim -bg hello.btl (UNIX based toolsets)
isim /bg hello.btl (MS-DOS and VMS based toolsets)
14.2.3 ITERM file

The simulator reads the ITERM file to determine how to control the terminal screen
and to map a few simulator commands. The ITERM file must be defined in the host
environment variable ITERM. See appendix D.

14.3 Monitor page display

The simulator Monitor page is similar to that of the debugger, which is described
in chapter 4. Data displayed at the simulator Monitor page includes:

Iptr Contents of instruction pointer (address of the next instruction
to be executed).

Wptr Contents of workspace pointer.

Error Status of error flag.

Halt On Error |Status of halt on eror flag.

Fptrl Pointer to the front of the low priority active process queue. If
‘jump 0’ breaks are enabled the letter B is displayed after the
pointer value.

Bptrl Pointer to the back of the low priority active process queue.

Fptr0 Pointer to the front of the high priority active process queue.

Bptro0 Pointer to the back of the high priority active process queue.

TPtrl Pointer to the low priority timer queue. If the timer is disabled
the letter X is displayed after the pointer value.

TPtx0 Pointer to the high priority timer queue.

Note: If Wptr contains the most negative address value, it will be described as

‘invalid’. This normally means that no process is executing in the simulator (for

example, the program may have become deadlocked).

72 TDS 367 01 March 1993

274 14.4 Simulator commands

The Monitor page also displays the last instruction executed, a summary of Monitor
page commands, and, if an error has occurred, the cause of the error.

14.4 Simulator commands

All simulator commands are given at the Monitor page. Many of the commands are
similar tothose of the 1debug Monitor page, however, there are a number ofimple-
mentation differences. Full descriptions of the commands are given in the following
sections.

14.4.1 Specifying numerical parameters

Some simulator commands require numerical parameters, such as addresses.
These can be specified as simple expressions in decimal or hexadecimal format.
Expressions can be the sum of two expressions, the result of subtracting one
expression from another, or constants. Constants that can be specified are: Areg,
Breg, Creg, Iptr, Wptr, decimal constants, hexadecimal constants, or abbre-
viated hexadecimal constants.

Hexadecimal constants are specified using the prefix #. Abbreviated hex constants
can be created by prefixing the sequence of hex digits with ‘s, which assumes the
hexadecimal prefix‘8000. . . . For example, the abbreviation ‘¢ F8&'is interpreted
as the hex number '8000F8A’.

14.4.2 Keys mapped by ITERM

Several commands for controlling the display are mapped to specific keys by the
ITERM file, see appendix D. Key mappings for specific terminal keyboards can be
found in the Delivery Manual.

Displays help information.
Re-draws the screen.
Quits the simulator,
Scrolls the current display.
Scrolls the current display.
(Al [¥] Scrolls the current display.

72 TDS 367 01 March 1993

14 isim - T425 simulator 275

14.4.3 Command summary

Key |Meaning Description

A ASCII Displays a portion of memory in ASCII.

B Break points Breakpoint menu.

D Disassemble Displays transputer instructions at a specified area
of memory.

G Go Runs (or resumes) the program.

H Hex Displays a portion of memory in hexadecimal.

| Inspect Displays a portion of memory in any occam type.

J Jump into Runs (or resumes) the program. Same as G.

program

L Links Displays Iptr and Wptr for processes waiting for
input or output on a link, or for a signal on the
Event pin.

M Memory map This option is not supported for the current toolset.

N Create dump file | Creates a core dump file.

P Program boot Simulates a program ‘boot’ onto the transputer.

Q Quit Quits the simulator.

R Run queue Displays Iptr and Wptr for processes on the high
or low priority active process queues.

S Single step Executes the next transputer instruction.

T Timer queue Displays Iptr, Wptr, and wake-up times for
processes on the high or low priority timer queues.

u Assign register | Assigns a value to a register.

? Help Displays help information.

Table 14.2 Simulator commands

14.4.4 Command descriptions

— ASClII

This command displays a segment of transputer memory in ASCII format, starting
at a specific address. If no address is given the default address Wptr is used.
Specify a start address after the prompt:

(Start address (Wptr)) ?
Either press to accept the default address, or enter the desired address.

The address can be entered as a decimal number, a hexadecimal number
preceded by ‘4, or the short form ‘sh. . .h'.

72 TDS 367 01 March 1993

276 14.4 Simulator commands

The memory is displayed in blocks of 13 rows of 32 ASCIl bytes, each row
preceded by an absolute address in hexadecimal. Bytes are ordered from left to
right in each row. Unprintable characters are substituted by a full stop.

The [A], [¥], [PAGEUP], and [PAGEDOWN | keys can be used to scroll the
display.

- Breakpoints

Sets, displays, and cancels break points at specified memory locations or proce-
dure calls. The program should be loaded into memory (using the [G, or[P]
commands) before this command is used to set breakpoints. (The [D] command
may also be used prior to this command, to determine where to set breakpoints).

The command displays the Breakpoint Options Page:
Breakpoint Options Page
1) Set breakpoint at Address
2) Display breakpoints
3) Cancel breakpoint at Address
Select Option?

Options are selected by entering one of the single digit commands. The following
prompts are displayed depending on the command selection:

Command Prompt
1 (break address) ?
3 (break address (ALL))

Pressing with no typed input in response to command 1 cancels the
option; in response to command 3, it causes all breakpoints to be cancelled.

After each breakpoint command the user is returned to the simulator command
prompt.

[D] - Disassemble

The Disassemble command disassembles memory into transputer instructions.
Specify an address at which to start disassembly after the prompt:

(Start address (Iptr)) ?
Either press[RETURN | to accept the default address, or enter the desired address.

The address can be entered as a decimal number, a hexadecimal number
preceded by ‘#’, or the short form ‘&h. . .h".

72 TDS 367 01 March 1993

14 isim - T425 simulator 277

The memory is displayed in batches of thirteen transputer instructions, starting
with the instruction at the specified address. If the specified address is within an
instruction, the disassembly begins at the start of that instruction. Where the
preceding code is data ending with a transputer ‘p£ix’ or ‘nfix’ instruction, disas-
sembly begins at the start of the pfix or nfix code.

Each instruction is displayed on a single line preceded by the address corre-
sponding to the first byte of the instruction. The disassembly is a direct translation
of memory contents into instructions; it neither inserts labels, nor provides
symbolic operands.

The [A], [¥], [PAGEUP], and [PAGE DOWN | keys can be used to scroll the
display.

[G] -Go

Starts the program, or continues running the program after a breakpoint or error
has been encountered. The program will run until it completes successfully, sets
the error flag, or reaches a break point.

To start the program, specify a break point address after the following prompt and

press | RETURN |
(break point address)

The default is not to set a break point.

[H] - Hex

The Hex command displays memory in hexadecimal. Specify the start address
after the prompt:

(Start address (Wptr) ?

Press to accept the default address, or enter the desired address. The
address can be entered as a decimal number, a hexadecimal number preceded
by ‘#', orthe short form ‘%h. . . h'. If the specified start address is within a word, the
start address is aligned to the start of that word.

The memory is displayed as rows of words in hexadecimal format. Each row
contains four words of eight hexadecimal digits, with the most significant byte first.

Words are ordered left to right in the row starting from the lowest address. The word
specified by the start address is the top leftmost word of the display.

The address at the start of each line is an absolute address displayed in hexade-
cimal format.

72 TDS 367 01 March 1993

278 14.4 Simulator commands

[T] - Inspect

Displays a portion of memory in any occam type — as defined in the ‘0occam 2
Reference Manual'.

The Inspect command can be used to inspect the contents of an entire array.
Specify a start address after the prompt:

(Start address (Wptr)) ?

Either press[RETURN | to accept the default address, or enter the desired address.
The address can be entered as a decimal number, a hexadecimal number
preceded by ‘¥, or the short form ‘$h. . .h'".

When a start address has been given, the following prompt is displayed:

Typed memory dump

ASCII

INT

BITE

BOOL

INT16

INT32

INT64 (Not implemented)
REAL32 (Not implemented)
REAL64 (Not implemented)
CHAN

wodouswhhHO
(N T Y O A O OO |

Which occam type ?

Give the number corresponding to the type you wish to display or press
fo accept the default type. Initially the default will be HEX; for subsequent use of
the command the default takes the value of the last selected type.

ASCI| arrays are displayed in the format used by the Monitor page command
‘ASCII'. Other types are displayed both in their normal representation and hexade-
cimal format.

The memory is displayed as thirteen rows of data. The address at the start of each
line is an absolute address displayed as a hexadecimal number. The element
specified by the start address is on the top row of the display.

Start addresses are aligned to the nearest valid boundary for the type, thatis: BYTE
and BOOL fo the nearest byte; INT16 to the nearest even byte; INT, INT32 and
CHAN to the nearest word.

- Jump info program

Same as - starts or continues running the program.

72 TDS 367 01 March 1993

14 isim - T425 simulator 279

- Links
Displays information about simulated links.

The Links command displays the instruction pointer Iptr, workspace descriptor
Wdesc and priority, of the processes waiting for communication on a link, or for a
signal on the Event pin. If no process is waiting, the link is described as ‘Empty'.
Link connections on the processor, and the link from which the processor was
booted are also displayed.

The format of the display is similar to the following:

Link 0 out Iptr: #80000256 Wdesc: #80000091 (Lo)
Link 1 out Empty
Link 2 out Empty
Link 3 out Empty
Link 0 in Empty
Link 1 in Empty
Link 2 in Empty
Link 3 in Empty

Link 0 connected to Host
Links 1, 2, 3 not connected

Booted from link 0

[M] —Memory map

This option is not applicable to the current version of isim, if used the following
message will be displayed:

Memory Map Invalid

[N] - Create dump file

Creates a core dump file from which the program can be debugged off-line. The
name of the file and the number of bytes to write must be specified. A file extension
is not required and should not be specified. The dump file is automatically given
the . dmp extension. This can be used by idebug, see chapter 4.

[P] - Program boot

Loads the program into transputer memory (‘boots the program’) so that debug-
ging can start at beginning of the application program without stepping through
bootstrap loading code. The program is loaded into memory but is not automati-
cally run. This command can only be used priorto executing any other instructions.

[@] - Quit

Quits the simulator, and returns to the host operating system.

72 TDS 367 01 March 1993

280 14.4 Simulator commands

[R] —Run queues
This command displays Iptrs and Wdescs for processes waiting on the proces-
sor's aclive process queues. If both high and low priority front process queues are
empty, the following message is displayed:

Both process queues are empty
If neither queue is empty, you are required to specify the queue:

High or low priority process queue ? (H,L)

Type ‘B’ or ‘L’ as required. If only one queue is empty i sim displays the non-empty
queue.

The [A], [¥], [PAGEUP], and [PAGE DOWN | keys can be used fo scroll the
display.

[S] - Single step transputer instruction
This command executes the transputer instruction pointed to by Iptr. By

repeating the command the user may single step through the program, observing
the changes to the process queues and registers, as the display is updated.

- Timer queue
This command displays Iptrs, Wdescs, and wake-up times for processes waiting

on the processor’s timer queues. Prompts and displays are similar to those for the
Run queue command.

- Assign
Assigns a value to a register, Iptr orWptr. To assign a value, specify the register
by name (abbreviations are permitted), and give a value fo be assigned to the

register. This enables the program to be re-run (using[G] or[J]) with alternative
values in the registers.

— Help

Lists the available simulator commands.

REFRESH |- Refresh

Refreshes the screen.

72 TDS 367 01 March 1993

14 isim - T425 simulator 281

- Quit
Quits the simulator, and returns to the host operating system.

The [A], [W], [PAGEUP), and [PAGE DOWN | keys can be used to scroll the
display.

14.5 Batch mode operation

isim can be run in batch mode by setting up the environment variable ISIM-
BATCH. If this variable is defined on the system isim automatically selects batch
mode operation.

14.5.1 Setting up ISIMBATCH

ISIMBATCH is set up on the system as an environment variable using the
appropriate command for your host system.

VERIFY and NOVERIFY modes which enable and disable the output of input
commands and user responses are defined by setting a value for ISIMBATCH. In
MS-DOS the command to use is the set command. For example:

C:\ set ISIMBATCH=VERIFY
C:\ set ISIMBATCH=NOVERIFY

In UNIX the equivalent command is setenv and on VMS systems the command
to use is define. Details of how to use these commands can be found in the user
documentation for your system.

14.5.2 Input command files

In batch mode isim is driven from a command script containing simulator
commands and responses to prompts. All prompts by isim must be followed by
a valid response.

14.5.3 Output

Output can be written to a log file or displayed at the terminal. Input and output
streams can be assigned to files or the user’s terminal by commands on the host.

isimcan be set upto operatein VERIFY or NOVERIFY mode by setting a different
values for ISIMBATCH. In VERIFY mode all prompts and user responses are
included in the output.

14.5.4 Batch mode commands

Batch mode simulator commands ‘A’ through ‘U’ are the same as the interactive
debugging commands. Two additional commands generate special batch mode
output:

72 TDS 367 01 March 1993

282 14.6 Error messages

Key |Meaning Description
? Query state Displays values of registers and queue pointers.
Where Displays next Iptr and transputer instruction.

- Query state

Displays information about the processor state, including current values of regis-
ters, queue pointers, and error flag status. For example:

Processor state

Iptr #80000070
Wptr #800000C8
Areg #80000070
Breg #800000C8
Creg #80000010
Error Clear

Halt on Error Set

Fptrl (Low #00000000
Bptrl queue) #00000000
Fptr0 (High #00000000
Bptr0 queue) #00000000
Tptrl (timer #2D2D2D2D
Tptr0 (queues #2D2D2D2D

[|- Where

Displays the Iptr of the next instruction to execute and a disassembly of that
instruction. For example:

Iptr #80000070. Low Priority, Next Instruction : ajw 42 - §2A

14.6 Error messages

Cannot open booffile filename’

The file containing the code to be run could not be opened or could not be
found.

Environment variable IBOARDSIZE’ does not exist

Board memory size must be specified to the system using the the host envi-
ronment variable IBOARDSIZE. Details of how to set up IBOARDSIZE on
your system can be found in the Delivery Manual.

Environment variable 'ITERM’ not set up

The ITERM definition file for the simulator function keys must be specified
in the ITERM host environment variable.

72 TDS 367 01 March 1993

14 isim - T425 simulator 283

IBOARDSIZE is too small (at least number bytes required)

The simulator requires a minimum memory size in order to run correctly.
Modify IBOARDSIZE and retry the command.

ITERM error
[term initialisation has failed

The ITERM file for setting up the terminal codes is invalid. I[TERM error
describes the fault in the file.

Simulator terminated: Error flag set - message

Simulator messages may be output when the simulator halts (i.e. as an
error condition). message can be one of:

arithmetic overflow
arithmetic underflow
long overflow
subscript out of range
count out of range
check single

check word
arithmetic exception
floating point error

Simulator terminated: message
Simulator messages may be output when the simulator halts, due to an
i:fyalid operation within the program being simulated. message can be one
attempt made to input from non-existent hard channel
Attempt to input from output link.
attempt made to output to non-existent hard channel
Attempt to output to input link.
attempt to output to unattached hard channel
Attempt to output on unattached link.
attempt to read illegal memory byte at address

The memory address specified is invalid (not within IBOARDSIZE).

72TDS 367 01 March 1993

284 14.6 Error messages

attempt to read illegal memory word at address

Invalid memory address or attempt to access non word aligned.
attempt to set illegal memory byte pointer

Invalid memory address (not within IBOARDSIZE).
attempt to set illegal memory word pointer

Invalid memory address or attempt to access non word aligned.
attempt to write illegal memory byte at address

Invalid memory address (not within IBOARDSIZE).
attempt to write illegal memory word at address

Invalid memory address or attempt to access non word aligned.
high priority process restored from save area

A swapped out low priority process has been written over during an inter-
rupt.

illegal operand (nnn) to operate command
An attempt has been made to execute invglid instruction for the T425.
input from iserver when iserver outputting
ISERVER packet input before leading output sent.
inputting iserver packet larger than expected
lllegal ISERVER protocol packet on input.
output iserver packet larger than expected
lllegal ISERVER protocol packet on output.
output to iserver when iserver inputting

ISERVER packet output before response to last output received.

72 TDS 367 01 March 1993

15 iskip - skip loader

This chapter describes the skip loader tool that allows programs to be loaded onto
transputer networks over the root transputer. The tool sets up a data transfer
protocol on the root transputer that allows programs running on the rest of the
network to communicate directly with the host.

15.1 Introduction

The skip tool 1 skip prepares a network to load a program over the root transputer
by setting up a transparent route-through process on the root transputer to transfer
data from the application program running on the target network to and from the
host computer. A subsequent call to iserver loads the program onto the network
connected to the root transputer, but does not use the root transputer as part of the
network. The root transputer is in effect rendered transparent to the rest of the
network. The route-through process uses a simple protocol that transfers data byte
by byte between the program and the host.

After iskip has been invoked to set up the data link across the root transputer,
the program can be loaded down the host link using iserver. iskip can be used
to skip any number of processors and load a program into any part of a network,
see section 15.2.2.

iskip itself may only be executed on 32 bit transputers which have more than 8
Kbytes of memory, although it may be used to reach both 16 and 32 bit transputers
for target program execution.

15.1.1 Uses of the skip tool
The skip tool has two main uses :

1 To allow programs configured for specific arrangements of transputers to
be loaded onto the target network without using the root transputer to run
the program. The root transputer helps to load the program onto the
network and subsequently provides a route-through process which trans-
fers data from the application program to the host.

Example of boards supplied by INMOS that can be used to skip load
programs are the IMS B004 PC add-in board, which contains a single IMS
T414 transputer, and the IMS B008 PC motherboard fitted with a TRAM in
slot zero to act as the root transputer. Other slots on the motherboard can
be used to accommodate the target network.

2 Programs configured for a network that normally incorporates the root
transputer can be debugged without having to use idump to save root

72 TDS 367 01 March 1993

286

15.2 Running the skip loader

transputer’s memory to disk. Programs can be loaded into the network
connected to the root transputer and the debugger can safely run on the
root transputer without overwriting the program. The external network must
have the correct number and arrangement of processors and memory for
the program to be loaded.

This can make debugging transputer programs easier when an extra trans-
puter is available.

15.2 Running the skip loader

To invoke the iskip tool use the following command line:

> iskip linknumber { options}

where: linknumber is the link on the root transputer to which the target transputer
network is connected.

options is a list, in any order, of one or more options from Table 15.1.

Options must be preceded by ‘-’ for UNIX-based toolsets and */’ for
MS-DOS and VMS based toolsets.

Options may be given in any order.
Options may be entered in upper or lower cass.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

Option

Description

Directs iskip to monitor the subsystem ermor status and termi-
nates when it becomes set.

I Displays detailed progress information as the tool loads.
Reset subsystem.Resets all transputers connected downstream of
link linknumber. Does not reset the root transputer.
RP A replacement for the R option when running programs on boards

from certain vendors.

Contact your supplier to see whether this option is applicable to
your hardware. It does not apply to boards manufactured by
INMOS.

Table 15.1 iskip options

72 TDS 367 01 March 1993

15 iskip - skip loader 287

15.2.1 Skipping a single transputer

This example illustrates how to use iskip to skip over the root transputer for the
example network shown in Figure 15.1.

i 32 bit 16 or 32 bit
0] 2 1

root target
? transputer transputer

Figure 15.1 Skipping a single transputer

For further information about subsystem wiring see chapter 7 in the User Guide
and the debugger documentation in chapter 4 of this manual.

Subsystem wired down;
iskip 2 -r (UNIX based toolsets)
iskip 2 /r (MS-DOS/VMS based toolsets)

In this example iskip is invoked for a network where the subsystem is wired
down. The network is prepared to load the program over the root transputer, which
is connected to the network via link 2; the ‘r’ option resets the target network.
Subsystem wired subs:

iskip 2 -r -e (UNIX based toolsets)

iskip 2 /r /e (MS-DOS/VMS based toolsets)

Inthis example iskip is invoked for a network where the subsystem is wired subs.
The ‘e’ option has been added to the example, to direct iskip to monitor the
subsystem error status, see section 15.2.4.

15.2.2 Skipping multiple transputers

This example illustrates how to use iskip to skip over two transputers (starting
with the root transputer) for the example network shown in Figure 15.2.

H .
16 or 32 bit

O | | 32bit root |2 1 2bit |0 3] target

s transputer transputer transputer

T

Figure 15.2 Skibping over two transputers

72 TDS 367 01 March 1993

288 15.2 Running the skip loader

Normally iskip is invoked via its driver program; this resets the root transputer
and loads the transputer bootable image iskip.btl onto the transputer (essen-
tially it performs an iserver -se -sb iskip.btl operation). Note: because
the root transputer is reset, running iskip twice in succession will not achieve any
more than running iskip once; the second invocation will reset the first and load
iskip onto the root transputer. In order to skip over more than one transputer,
iskip must be loaded onto subsequent transputers by a ‘different’ method that
does not involve resetting the root transputer. This is best illustrated by an example
as shown below (for a network wired subs):

iskip 2 -r -e (UNIX based toolsets)
iserver -se -ss -sc iskip.btl 0
iskip 2 /r /e (MS-DOS/VMS based toolsets)

iserver /se [ss [/sc iskip.btl 0

iskip.btl isthe transputer bootable component of iskip, it may be found in the
tools directory of this toolset release. For details of toolset directories see the
delivery manual supplied with this toolset.

15.2.3 Loading a program

Once iskip has been invoked to prepare the network, the program is loaded by
invoking iserver with the ‘SE’, ‘ss’ and ‘SC’ options. iserver must be invoked
with the ‘SE’ option if the error flag is required to be monitored. This applies whether
the iskip ‘E’ option is used or not. For example:

iserver -se -ss -sc myprog.btl (UNIX toolsets)
iserver /se /ss /sc myprog.btl (MS-DOS/VMS toolsets)

Note: After using the skip tool the root transputer must not be reset or analyzed,
that is, iserver must nof be invoked with the 'SR’, ‘SB’, or ‘SA’ options, while
iskip is required to run.

15.2.4 Monitoring the error status — option E

The iskip ‘E’ option should only be used when the sub-network is connected to
the Subsystem port of the root transputer i.e. ‘wired subs ’. When the sub-network
is connected to the Down port on the root fransputeri.e. ‘wired Down’, the ‘E’ option
must not be used.

The 'E’ option instructs iskip to monitor the subsystem error status and terminate
when it becomes set. When it terminates it sefs its own error flag in order that the
server may detect that an error in the subsystem has occurred. This allows the
program to be debugged.

If the subsystem ermor status is not properly monitored when the program is run,
the server may become suspended when a program error occurs. In these circum-
stances the server can be terminated using the host system BREAK key.

72 TDS 367 01 March 1993

15 iskip - skip loader 289

Note: There is a delay of one second after iskip is invoked with the ‘E’ option
before monitoring of the subsystem eror status begins; if the program fails before
this the server may not terminate correctly and the host system BREAK key should
be used.

15.2.5 Clearing the error flag

If either iskip or iserver detect that the error flag is set immediately a program
starts executing it is likely that the network consists of more processors than are
currently being used and that one or more of the unused processors has its error
flag set.

On transputer boards the network may be reset using network check programs,
such as ispy, which clear all error flags.

The ispy program is provided as part of the support software for some INMOS iq
systems products. These products are available separately through your local
INMOS distributor.

An alternative to using a network check program to clear the network is to load a

dummy process onto each processor. In the act of loading the process code the
error flag is cleared.

15.3 Error messages
This section lists error messages that can be generated by the skip tool.
Called incorrectly

Command line error. Check command line syntax and retry.
Cannot read server’s command line

Syntax error. Retry the command.
Duplicate option: option

option was supplied more than once on the command line.

No filename supplied

No filename was supplied on the command line.
This option must be followed by a parameter: option

The option specified requires a parameter. Check syntax and retry.

72TDS 367 01 March 1993

230 15.3 Error messages

Unknown option: option
The specified option is invalid. Check option list and retry.
You must specify a link number (0 to 3)
A link number is required. Specify the number of the root transputer link to

which the network is connected. If you specify the host link an error is
reported.

72 TDS 367 01 March 1993

Appendices

72TDS 367 01 March 1993

292 Appendices

72 TDS 367 01 March 1993

A Toolset conventions

and defaults

This appendix describes the standards and conventions used by INMOS toolsets

for:

A1

Command line syntax
Filenames

Search paths

File extensions

Error message format

Command line syntax

All tools in the toolsets conform to a common command line format.

A11

A1.2

General conventions

Commands, and their parameters and options, obey host system stan-
dards.

Filenames, either directly specified on the command line or as arguments
to options, must conform to the host system naming conventions.

Options must be prefixed with the standard option prefix character for the
operating system (‘' for UNIX based toolsets and */’ for VMS and MS-DOS
based toolsets).

Command line parameters and options can be specified in any order but
must be separated by spaces.

Lists of arguments to options, where allowed, must be enclosed in paren-
theses, and the items in the list must be separated by commas.

If no parameters or options are specified the tool displays a help page that
explains the command syntax.

Standard options

Standard command line options used in the toolsets have the same action for all
tools. Standard options and their descriptions are given below.

72 TDS 367 01 March 1993

294 A.2 Unsupported options

Option |Description
F Specifies an indirect file (command script).
I Displays progress data in full.
0 Specifies an output file.

A.2 Unsupported options

A number of tools have various command line options beginning with ‘Z’. These
options are used by INMOS for development purposes and have not been
designed for users. As such they are unsupported and should not be used. INMOS
cannot guarantee the results obtained from such options nor their continued pres-
ence in future toolset releases.

A.3 Filenames

File names generally follow the naming and character set conventions of the host
operating system except that the following directory separator characters cannot
be used within a filename:

e Colon‘:’

¢ Semi-colon ‘;’

e Forward slash ‘/’

o Backslash ‘\' ("¢’ for Japanese MS-DOS)
o Square brackets ‘[]’

e Round brackets ‘()’

¢ Angle brackets ‘<>’

e Exclamation mark ‘!’

o Equals sign ‘=’

A4 Search paths

The tools locate files by searching a specified direcfory path on the host system.
The path is specified using the host environment variable ISEARCH. The search
rules for all tools are as follows:

1 Ifthe filename contains a directory specification then the filename is used
as given. Relative directory names are treated as relative to the directory
in which the tool is invoked.

72 TDS 367 01 March 1993

A Toolset conventions and defaults 295

2 If no directory is specified the directory in which the tool is invoked is
assumed.

3 If the file is not present in the current directory, the path specified by the
environment variable (or logical name) ISEARCH is searched. If there are
several files of the same name on this path, the first occurrence is used.

4 If the file is not found using the above rules, then the file is assumed to be
absent, and an error is reported.

If no search path has been set up then only rules 1 and 2 apply.

By default all files are written to the current directory.

A.5 Standard file extensions

The INMOS toolsets use a standard set of file extensions for source and object
files. In most cases these extensions must be specified on the command line for
input files. They are automatically created for output files, unless an alternative file-
name is specified on the command line.

A separate set of extensions for object files must be used where imakef is used
to build programs for mixed processor networks. These are described separately
in section A.6.

72TDS 367 01 March 1993

296 A.5 Standard file extensions

A.5.1 Main source and object files

Extension |Description

.btl Bootable file which can be loaded onto a transputer or transputer
network. Created by icollect directly from a .1ku file (single
transputer programs) or from a . e£b file. Bootable files can be sent
down a link by iserver for immediate execution. Contains
information used by iserver to control the host link for execution.
Also read by idebug®.

.c C source files. Assumed by ice, the ANSI C compiler.

.cfb Configuration binary file containing a description of how code is to
be placed on a network, a description of the route to be used to load
the network, and the parameters to be passed to each of the
processes. Created by the configurer from a user-defined configu-
ration description and read by icollect to prepare a bootable file
and by idebug* to load a network for debugging.

.cfs Configuration description file. This is a text file, created by the user
and describes the hardware and software networks and the
mapping between them. It also references the linked units and is
used as input to the C configurer icconf.

X7 FORTRAN source files. Assumed by i£77, the FORTRAN-77
compiler.

.h Header files for use in C source code.

.lku Linked unit. Created by i1ink as an executable process with no

external references. Used as input to icollect (single transputer
programs) or within a configuration description. Also read by

idebug®.
.1ib Library file containing a collection of binary modules. Created by
ilibr.
.oce occam source files. Assumed by oc, the occam 2 compiler.
-pgm occam configuration description file. This is a text file, created by

the user and describes the hardware and software networks and
the mapping between them. It also references the linked units and

is used as input to the occam configurer occont£.

.teco Compiled binary module produced by all INMOS TCOFF
compilers. Used as input to ilink and ilibr. Also read by
idebug®.

* Not applicable to the FORTRAN toolset

72 TDS 367 01 March 1993

A Toolset conventions and defaults 297

A.5.2 Indirect input files (script files)

Extension |Description

.ine Include files named in #INCLUDE compiler directives for occam,
or #include statements in configuration descriptions or in
FORTRAN-77 statements.

.1bb Library build files which specify the components of a library to
ilibr.

.liu Library usage files. Created and used by imakef.

.1nk Linker indirect files which specify the components of a program to

be linked. Also used by imakef when creating Makefiles.

A.5.3 Files read by the memory map tool imap

Extension

Description

XX

Map file output by the compiler. The characters ‘xx’are determined
by the 2nd and 3rd characters of the extension given to the compiler
object file. For example if the compiler object file takes the default
extension . teo, the information file is given the extension .mco.

Map file output by the linker. The characters ‘xx’are determined by
the 2nd and 3rd characters of the extension given to the linker
object file. For example if the linker object file takes the default
extension . 1ku, the information file is given the extension .dku.

.map

Map file output by the collector.

Note: These extensions also satisfy imakef's requirements, see section A.6.

A.5.4 Other output files

Extension |Description

.bin Binary format files produced by ieprom for loading into ROM.

.btr Executable code without a bootstrap. Created by icollect and
used as input to ieprom.

.clu Configuration object file, created by the occam configurer

occonf.

.hex A hex dump of a file for loading onto a ROM by a custom ROM
loader tool.

.ihx Intel hex format files produced by ieprom for loading into ROM.

.mot Motorola 'srecord’ files produced by ieprom for loading into ROM.

.rsc An . rsc file contains the code of a process together with a descrip-

tion of its requirements for data areas and parameters. Itis created
by the collector from a linked unit. The format is described in
chapter 3. . rsc files are suitable for using with either the occam
or C functions which support dynamic code loading.

72 TDS 367 01 March 1993

208 A.6 Extensions required for imakef

A.5.5 Miscellaneous files

Extension |Description

.dmp* Memory dump and network dump files. Created by idump for
debugging code on the root fransputer (memary dump) or by
idebug for off-line analysis of a program on a network (network
dump). Read by the debugger for post-mortem debugging.

Litm ITERM files containing information about the terminal. Used by
tools such as idebug to handle the screen in a device-independent
manner. Can also be created by users for other terminals. The file
is referenced via the environment variable ITERM.

.mak Makefile generated by imakef£. This file may be input to a “make”
utility to build the target file. May also be edited by the user.

* Not applicable to the FORTRAN toolset

A.6 Extensions required for imakef

The standard set of file extensions are adequate for simple programs executing
on a single transputer, or on a network of transputers all of the same type. If the
network is heterogeneous and a particular source file needs to be compiled for
more than one transputer type, the following scheme can be used to identify the
individual processor types and error modes.

If imakef is used to build the program, this scheme must be used.
The extended system uses extensions of the form . fpe:

where: f denotes the type of file and can take the following values:

t for . teo equivalents.
1 for . 1nk equivalents.
¢ for . 1ku equivalents.
r for . rsc equivalents.

p denotes the transputer target type or class. This can take the
following values:

2 - T212, T222, M212
3-T225

4-T414

5 — T425, T400, T426

8 — T800

9 —T801, T805

a — T400, T414, T425, T800, T801, T805
b — T400, T414, T425

72 TDS 367 01 March 1993

A Toolset conventions and defaults 299

e denotes the execution error mode. The values it can take are:
h—on execution, an error willimmediately halt the transputer.
s —when an error occurs, this process will terminate.

x — the program can be executed in either HALT or STOP
mode.

A.7T Message handling

All tools in the toolsets display diagnostic messages in a standard format. This has
certain advantages:

1 The tool generating the message can be identified even when the tool is
run out of contact with the terminal.

2 User programs or system utilities can be used to detect and manipulate
errors. Some host system editors permit automatic location of errors.

A.71 Message format

Diagnostic messages are displayed in a standard format by all tools. The general-
ized format can be expressed as follows:

severity — toolname — [filename [(linenumber)] |-message

where: severity indicates the severity level. Severity categories are described
below.

toolname is the standard toolset name for the tool. Names used to rename
tools by the user, are not used.

filename and linenumber indicate the file and line where an error occurred.
They are only displayed if the error occurs in a file. They are commonly
displayed when files of the wrong format are specified on the command
line, for example, a source file is specified where an object file is expected.

message explains the error and may recommend an action.

A.7.2 Severities

The severity attached to the message indicates the importance of the diagnostic
to the operation of the tool. It also implies a certain action taken by the tool.

Five severity categories are recognized:
Information Warning Error Serious Fatal

Information messages provide the user with information about the functioning or
performance of the tool. They do notindicate an error and no user action is required
in response.

72 TDS 367 01 March 1993

300 A.7 Message handling

Warning messages identify minor logical inconsistencies in code, or warn of the
impending generation of more serious errors. The tool continues to run and may
produce usable output if no serious errors are encountered subsequently.

Ermror messages indicate errors from which the tool can recover in the short-term
but may cause further errors to be generated which may lead to termination. The
tool may continue to run but further errors are likely and the tool is likely to abort
eventually. No output is produced.

Serious errors are errors from which no recovery is possible. Further processing
is abandoned and the tool aborts immediately. No output is produced.

Fatal errors indicate internal inconsistencies in the software and cause immediate
termination of the operation with no output. Fatal errors are unlikely to occur but
if they do the fact should be reported fo your local INMOS distributor or field
applications engineer.

A.7.3 Runtime errors

Ermors which prevent the program from being run are detected by the runtime
system at startup or during program execution. These errors are displayed in a
similar format to that used by the tools. All runtime errors are generated at Fatal
severity and cause immediate termination of the program.

72TDS 367 01 March 1993

B Transputer types
and classes

This appendix first identifies the INMOS transputer types supported by this toolset.
It then explains the concept of transputer classes in terms of developing programs
for multiple transputer targets. This includes compiling and linking program
modules. The examples given are based on the ‘Hello world' program, written in
C and compiled with the ice compiler.

It also explains the command line options which can be used to specify a target
processor or transputer class.

Note: the information given in this appendix covers the current range of INMOS
transputers and language compilers; readers should ignore details of transputer
types or languages which do not apply to this particular toolset.

B.1 Transputer types supported by this toolset

The ANSI C and occam 2 toolsets can be used to develop programs targetted at
the following INMOS transputer types:

IMS M212, T212, T222, T225, T400, T414, T425, T426, T800, T801, T805.

The FORTRAN toolset can only be used to develop programs targetted at 32-bit
transputers. This includes the following INMOS transputer types:

IMS T400, T414, T425, T426, T800, T801, T8O5.

The default type assumed by various tools, if none is specified on the command
line, is T414.

B.2 Transputer types and classes

This section describes the meaning of transputer types and classes and how
selection of the target processor affects the compilation and linking stages of
program development. The section describes how to compile and link code
targeted at a single processor type and then describes how to compile and link
programs so that they can be executed on different processor types.

B.2.1 Single transputer type

For those who have a single transputer or indeed a network of transputers all of
the same type, the compilation and linking stages of program development are
very straightforward. Simply compile and link all your modules for the required
processor.

72 TDS 367 01 March 1993

302 B.2 Transputer types and classes

Example: to compile and link for a T800:
icec hello -t800
ilink hello.tco -t800 -f cstartup.lnk (UNIX)

icc hello /t800
ilink hello.tco /t800 /f estartup.lnk (MS-DOS and VMS)

For a T414 the command lines are simpler:

ice hello

ilink hello.tco -f estartup.lnk (UNIX)

icec hello

ilink hello.tco /f cstartup.lnk (MS-DOS and VMS)

B.2.2 Creating a program which can run on a range of transputers

The compiler and linker use the concept of transputer class to enable programs
to be developed which may be run on different transputer types without the need
to recompile.

A transputer class identifies an instruction set which is common to all the proces-
sors in that class. When a program is compiled and linked for a transputer class
it may be run on any member of that class.

Note: Code created for a transputer class will often be less efficient than code
created for a specific processor type. Therefore, creating code for a transputer
class is discouraged in situations where program efficiency is a primary concern;
it should only be performed where there is a genuine need to produce code which
will run on a range of transputers or to reduce the size of a support library, where
program efficiency is not a major concern.

Table B.1 lists all the transputer classes which the compiler and linker support and
indicates which processors the program can be run on.

Transputer class |Processors which class can be run on

T2 * T212, M212, T222, T225

T3> T225
T4 T414, T400, T425, T426
15 T400, T425, T426
T8 T800, T801, T805
T9 T801, T805
TA T400, T414, T425, T426, T800, T801, T805
TB T400, T414, T425, T426

* Not applicable to the FORTRAN toolset

Table B.1 Transputer classes and target processor

72 TDS 367 01 March 1993

B Transputer types and classes 303

In order to develop a program which will run on different processor types, perform
the following steps:

1 Identify the processors on which the program is to run.

2 Using Table B.1 select the class which may be run on all the target proces-
SOrs.

3 Compile and link all the program modules for this class.

For example, to create a program which will run on both a T400 and a T425,
compile and link for transputer class T5:

icc hello -t5
ilink hello.tco -t5 -f cstartup.lnk (UNIX)

icc hello /t5
ilink hello.tco /t5 /£ cstartup.lnk (MS-DOS and VMS)

Alternatively to create a program which will run on a T400, T425 or a T800, compile
and link for transputer class TA:

ice hello -ta
ilink hello.tco -ta -f cstartup.lnk (UNIX)

ice hello /ta
ilink hello.tco /ta /f estartup.lnk (MS-DOS and VMS)

Code compiled for a T414 (class T4) may be run on a T400 or T425, which form
class T5.

Programs compiled for the T212, M212, or T222 transputers i.e. class T2, can be
run on a T225 (class T3) because a T225 has a similar but larger instruction set
than class T2 transputers. Similarly the T400, T425 and T426 have additional
instructions to those of the T414. Likewise, code compiled for a T800 (class T8)
may be run on a T801 or T805, which form class T9. Again the T801 and T805 have
additional instructions to those of the T800. See section B.2.4.

B.2.3 Linked file containing code compiled for different targets

This section describes how object code compiled for one target processor or trans-
puter class can be linked with code compiled for different transputer types or
classes.

The ability to do this provides the user with greater flexibility in the use of program
modules:

e An individual module can be compiled once e.g. for class T4, and then
linked with separate programs to run on different processor types e.g.
T414 and T425.

72TDS 367 01 March 1993

304 B.2 Transputer types and classes

* When the user is preparing a library for use by programs intended to run
on different processor types, a single copy of code compiled for a trans-
puter class can be inserted instead of multiple copies for specific trans-
puters.

When linking a collection of compiled units together into a single linked unit, the
user must select a specific transputer type or transputer class on which the linked
unit is to run. As before, this determines the set of transputer types on which the
code will run. When linking for a particular type or class, the linker will accept
compilation units compiled for a compatible class. Table B.2 shows which trans-
puter types and classes the linker will accept when linking for a particular class.

Link class |Transputer classes which may be linked

T2 * iF2

T3 T3, T2
T4 T4, TB, TA
T5 T5, T4, TB, TA
T8 T8
T9 T9, T8
TB TB, TA
TA TA

* Not applicable to the FORTRAN toolset

Table B.2 Linking transputer classes

For example, if the target processors are a T400 and a T425 the user may compile
for classes T5 and TB and link the code for for class T5. Code for a different trans-
puter class can be included in the final linked unit, as long as:

* [t uses the instruction set or a subset, of the instruction set of the link class

» The calling conventions are the same.

Classes T8 and T9 cannot be linked with class TA. This is a change from early
toolset releases e.g. the Dx11 C toolsets, the Dx05 occam toolsets and the
Dx13 3L FORTRAN toolsets.

The reason why these classes cannot be linked together is explained in
section B.2.4. which gives details of the differences between the instruction sets,
as additional information.

Alibrary can be made, consisting of the same modules compiled for different trans-
puter types or classes. The user then needs only to specify the library file to the

72 TDS 367 01 March 1993

B Transputer types and classes 305

linker, and the linker will choose a version of a required routine which is suitable
for the system being linked.

The linker uses the rules given in Table B.2 to determine whether a compiled
module, found in a library, is suitable for linking with the current system. So, for
example, to create a library which may be linked with any transputer class or
specific transputer type, all routines could be compiled for classes T2, TA and T8.

If there are a number of possible versions of a module in a library the best one (i.e.
the most specific for the system being linked) is chosen.

occam object files targetted at different targets

For occam programs the above rules must also be applied during the program
design stage when deciding which modules should call each other. Code for a
different transputer class can be called provided that it uses the instruction set or
a subset of the instruction set of the calling class. (This is because the compiler
needs to know which modules to select from libraries containing copies for
different processor types).

Table B.2 can be used as guide, by regarding the ‘link class’ as the ‘calling class’
and the ‘transputer classes which may be linked’, as the ‘transputer classes which
may be called’.

Note: classes T8 and T9 cannot call class TA.

Note: At configuration level, code compiled for class TA can be run on a T8 trans-
puter, provided it does not include any function which returns an arithmetic REAL.
This is because of the different methods of evaluating REAL arithmetic for different
transputer targets, see section B.2.4.

B.24 Classes/instruction sets — additional information

The instruction sets of the transputer classes differ in the following ways:

e Classes T2 and T3 support 16-bit transputers whereas all the other trans-
puter classes support 32-bit transputers.

¢ Class T3 is the same as class T2 except that T3 has some extra instruc-
tions to perform CRC and bit operations, dup, double word indexing and
includes special debugging functions.

* Class T5 is the same as class T4 except that T5 has extra instructions to
perform CRC, 2D block moves, bit operations, double word indexing,
special debugging functions and also includes the dup instruction.

* Class T9 is the same as class T8 except T9 has additional debugging
instructions.

» The T800, T801 and T805 processors use an on-chip floating point
processor to perform REAL arithmetic. Thus a large number of floating

72TDS 367 01 March 1993

306

B.2 Transputer types and classes

point instructions are available for these transputers and for their
associated classes T8 and T9. These instructions are listed in the instruc-
tion set appendix of the User Guide.

For the T414, T400, T425 and T426 processors i.e. transputer classes T4
and T5 the implementation of REAL arithmetic is in software. These trans-
puters make use of a small number of floating point support instructions.
Details can be found in the instruction set appendix of the User Guide.

The instruction set of class TA only uses instructions which are common
to the T400, T414, T425, T426, T800, T801 and T805 transputers. There-
fore it does not use the floating point instructions, the floating point support
instructions or the extra instructions to perform CRC, 2D block moves or
special debugging or bit operations and it does not use the dup instruction.

The instruction set of class TB only uses instructions which are common
to the T400, T414, T425 and T426 processors. Therefore it uses the
floating point support instructions, but does not use the extra instructions
to perform CRC, 2D block moves or special debugging or bit operations
and it does not use the dup instruction.

When considering the similarities and differences in the instruction sets of different
transputer classes it helps to divide them into the separate structures as shown
in Figure B.1.

T2 @ T8
T3 @ T9

T4

TS

Figure B.1 Structures for mixing transputer types and classes

By comparison with Table B.2 it can be seen that a module may only be linked with
modules compiled for a transputer class which belongs to the same structure.

Classes T2 and T3 are targetted at 16-bit transputers so it is obvious that they
cannot be linked with the other classes which ar all targetted at 32-bit transputers.

72 TDS 367 01 March 1993

B Transputer types and classes 307

The reason why classes T8 and T9 cannot be linked with classes TA, TB, T5 or
T4 is because floating point results from functions are returned in a floating point
register for T8 and T9 code and in an integer register for all other 32-bit processors.
Even if your code does not perform real arithmetic, linking code compiled fora T9
or T8 with code compiled for any of the other classes is not permitted.

To summarize, compiling code for the transputer classes TA and TB enables it to
be run on a large number of transputer types, however, the code may not be as
efficient as code compiled for one of the other transputer classes or for a specific
transputer type. For example compiling code for class T5 enables the CRC and
2D block move instructions to be used, whereas these instructions are not avail-
able to code compiled for classes TA and TB.

B.3 Transputer type command line options

This section lists the command line options used to specify a target processor or
transputer class. The options can be used with the following tools:

ice The ANSI C compiler.

oc = The occam 2 compiler.

if77 The FORTRAN-77 compiler.

ilink The toolset linker.

72TDS 367 01 March 1993

308 B.3 Transputer type command line options
Option Description
TA Specifies target transputer class TA (T400, T414, T425,
T426, T800, T801, T805).
TB Specifies target transputer class TB (T400, T414, T425,
T426)
T212 Specifies a T212 target processor.
T222 Specifies a T222 target processor. Same as T212
M212 Specifies a M212 target processor. Same as T212
T2 Same as T212, T222 and M212
T225 Specifies a T225 target processor.
T3 Same as T225.
T400 Specifies a T400 target processor. Same as T425.
T414 Specifies a T414 target processor. This is the default
processor type and may be omitted when the target
processor is a T414 processor.
T4 Same as T414 (default).
T425 Specifies a T425 target processor.
T426 Specifies a T426 target processor.
T5 Same as T400, T425 and T426.
T800 Specifies a T800 target processor.
T8 Same as T800.
T801 Specifies a T801 target processor. Same as T805.
T805 Specifies a T805 target processor.
T9 Same as T801 and T805.

72 TDS 367 01

Table B.3 Transputer type command line options

March 1993

C iserver protocol

This appendix provides a technical description of the host file server protocol for
version 1.5 ofthe iserver. It alsodescribes the basic set of server functions which
all versions of iserver must support and includes a set of extensions which may
be present in some versions of iserver.

C.1 iserver packets

Every communication, both to and from the server, is a packet comprising a
counted array of bytes. The first two bytes are a (little endian) count of the following
message length. This is followed by a fag byte which specifies the iserver
command. The remaining bytes are parameters to the command. Results returned
by the iserver have a result value in place of the tag byte.

[s1] s2 [tag : parameters |
|—rnessage of length (s1 + (256 * s2)) bwes»l

In occam this protocol is defined as:
INT16::[]BYTE

In the to-server direction, there is a minimum packet length of 8 bytes (i.e. a
minimum message length of 6 bytes). In both fo and from directions there is a
maximum packet length of 1040 bytes. The packet size must always be an even
number of bytes. If the number of bytes is an odd a dummy byte must be added
to the end of the packet and the packet byte count rounded up by one.

The server code on the host can take advantage of the fact that it will always be
able to read 8 bytes from the link at the start of a transaction.

C.2 Server commands
The functions implemented by the server are separated into five groups:
¢ File commands

Record Structured file commands

e Host commands
e Server commands

e Reserved and Third Party commands

72 TDS 367 01 March 1993

310 C.2 Server commands

The following sections contain descriptions of each command under each of the
five groups.

In the descriptions the arguments and results of server calls are listed in the order
that they appear in the data part of the protocol packet. The length of a packet is
the length of all the items concatenated together, rounded up to an even number

of bytes.

occam types are used fo define the format of data items in the packet. All integer
types are communicated least significant byte first. Negative integers are repre-
sented in 2s complement. Strings and other variable length blocks are introduced
by a 16 bit signed count.

All server calls return a result byte as the first item in the return packet. ifthe opera-
tion succeeds the result byte will be zero. If the operation fails the result byte will
be non-zero. The result will be one (1) in the special case where the operation failed
because it was not implemented. If the result is not zero, some or all of the return
values may not be present, resulting in a smaller return packet than if the call was
successful. All server calls will use, where possible, a failure code from Table C.1
to give details of the failure.

Value |Name Description
0 Success Success.
1 NoCommand |Command not implemented.
128 |Reserved Unknown error.
129 |Failed Unknown error.
130 |Reserved Never generated.
131 |NoPriv Insufficient privilege.
132 |NoResource |Insufficient system resources available.
133 |NoFile File not found.
134 |Truncated Data truncated.
135 |Badld A bad file id was specified.
136 |NoPosn File position has been lost.
137 |NotAvailable |The requested configuration can not be provided.
138 |EOF An end of file mark has been encountered.
139 |Reserved Reserved for use by Linkops.
140 |Reserved Reserved for use by Linkops.
141 |BadParas Invalid or inconsistent parameters.

Table C.1 iserver failure codes

1. Result values between 2 and 127 are defined to have particular meanings by occam server
libraries, result values of 128 or above are specific to the implementation of a server.

72 TDS 367 01 March 1993

C iserver protocol 311

C.3 File commands

Open files are identified with 32 bit descriptors. There are three predefined open
files:

0 standard input
1 standard output
2 standard error

If one of these is closed it may not be reopened.

If an application is both reading and writing to a file, then no read operation can be
followed directly with a write operation and vice versa. Fseek must be called
between a read/write or write/read, otherwise the error code NoPosn will be
retumned.

When reading from a file open in text mode, the host's newline sequence will be
translated into the single character LINEFEED(0x0a). No translation will be
performed on binary files.

When writing to a file open in text mode, the single character LINEFEED (0x0a)

will be translated into the host's newline sequence. No translation will be performed
on binary files.

C.3.1 Fopen - Open afile

Synopsis: Streamld = Fopen(Name, Type, Mode)
To server: BYTE Tag = 10

INT16:: []JBYTE Name

BYTE Type = 1 or 2

BYTE Mode = 1...6
From server: BYTE Result

INT32 StreamId

Fopen opens the file Name and, if successful, retums a stream identifier
StreamId.

Type can take one of two possible values:

Value |[Name |Description
1 | Binary | The file will contain raw binary bytes.

2 |Text |The file will be stored as text records.
Text files are host-specified.

72TDS 367 01 March 1993

312 C.3 File commands

Mede can have 6 possible values:

Value |Name Description
1 |Input Open an existing file for input
2 |Output Create a new file, or truncate an existing one, for
output
3 |Append Create a new file, or append to an existing one, for
output

4 |BExistingUpdate |Open an existing file for update (both reading and
writing), starting at the beginning of the file

5 |NewUpdate Create a new file, or truncate an existing one, for
update

6 |AppendUpdate |Create a new file, or append to an existing one, for
update

When a file is opened for update (one of the last three modes above) then the
resulting stream may be used for input or output. There are restrictions however;
an output operation may not follow an input operation without an intervening
Fseek, Ftell or F£lush operation.

The number of streams that may be open at one time is host-specified, but will not
be less than eight (including the three predefines).

Return Codes

Success Failed NoPriv NoResource NoFile

C.3.2 Fclose - Close afile

Synopsis: Fclose(StreamId)

To server: BYTE Tag = 11
INT32 Streamld

From server: BYTE Result

Fclose closes a stream StreamId which should be open for input or output.
Fclose flushes any unwritten data and discards any unread buffered input before
closing the stream.

Return Codes

Success Failed Badld NoResource

72 TDS 367 01 March 1993

C iserver protocol 313

C.3.3 Fread — Read a block of data

Synopsis: Data = Fread(StreamId, Count)
To server: BYTE Tag = 12

INT32 StreamId

INT16 Count
From server: BYTE Result

INT16::[]BYTE Data

This function should not be used. It has been included only for compatibility
purposes. A replacement routine, FGetBlock, has been provided, which is
described in C.3.5.

Fread reads Count bytes of binary data from the specified stream. Input stops
when the specified number of bytes are read, or the end of file is reached, or an
error occurs. If Count is less than one then no input is done. The stream is left posi-
tioned immediately after the data read. If an error occurs the stream position is
undefined.

Result is always zero. The actual number of bytes retumed may be less than
requested and Feof and FerrStat should be used to check for status.

Return Codes

Success

C.3.4 Fwrite — Write a block of data

Synopsis: Written = Fwrite(StreamId, Data)
To server: BYTE Tag = 13
INT32 StreamId
INT16::[]BYTE Data
From server: BYTE Result
INT16 Written

This function should not be used. It has been included only for compatibility
purposes. A replacement routine, FPutBlock, has been provided, which is
described in C.3.6.

Fwrite writes a given number of bytes of binary data to the specified stream, which
should be open for output. If the length of Data is less than zero then no output is
done. The position of the stream is advanced by the number of bytes actually
written. If an error occurs then the resulting position is undefined.

72TDS 367 01 March 1993

314 . C.3 File commands

Fwrite returns the number of bytes actually output in Written. Result is always
zero. The actual number of bytes retumed may be less than requested and Feof
and FerrStat should be used to check for status.

If the Streamid is 1 (standard output) then the write is automatically flushed.
Retum Codes

Success

C.3.5 FGetBlock — Read a block of data and return success

Synopsis: Data = FGetBlock(StreamId, Count)
To server: BYTE Tag = 23

INT32 Streamld

INT16 Count
From server: BYTE Result

INT16:: []BYTE Data

FGetBlock reads Count bytes of binary data from the specified stream. Input
stops when the specified number of bytes are read, or the end of file is reached,
or an emror occurs. If Count is less than one then no input is done. The stream is
left positioned immediately after the data read. If an error occurs the stream posi-
tion is undefined.

The actual number of bytes returned may be less than requested. This is consid-
ered a failure. Result will contain 0 fo indicate success, anything else failure, in
which case Feof and FerrStat should be used to check for status.

This function is preferred over the Fread function which should no longer be used.
Return Codes

Success Failed Truncated Badld

72 TDS 367 01 March 1993

C iserver protocol 315

C.3.6 FPutBlock — Write a block of data and return success

Synopsis: Written = FPutBlock(Streamld, Data)
To server: BYTE Tag = 24
INT32 StreamId
INT16::[]BYTE Data
From server: BYTE Result
INT16 Written

FPutBlock writes a given number of bytes of binary data to the specified stream,
which should be open for output. If the length of Data is less than or equal to zero
then no output is done. The position of the stream is advanced by the number of
bytes actually written. If an error occurs then the resulting position if undefined.

FPutBlock returns the number of bytes actually output in Weitten. The actual
number of bytes retumed may be less than requested. Result will contain 0 to
indicate success, anything else failure, in which case Feof and FerrStat should be
used to check for status.

If the Streamld is 1 (standard output) then the write is automatically flushed.
This function is preferred over the Fwrite function which should no longer be used.
Return Codes

Success Failed NoResource Badld NoPosn

C.3.7 Fgets — Read a line

Synopsis: Data = Fgets(StreamId, Count)
To server: BYTE Tag = 14

INT32 StreamId

INT16 Count
From server: BYTE Result

INT16::[]BYTE Data

Fgets reads aline from a stream which must be open forinput. Characters are read
until end of file is reached, a newline is seen or the number of characters read is
equal to Count.

If the input is terminated because a newline is seen then the newline sequence is
not included in the returmed array.

72TDS 367 01 March 1993

316 C.3 File commands

if end of file is encountered and nothing has been read from the stream then Fgets
fails.

Retum Codes

Success Failed Badid NoPosn

C.3.8 Fputs — Write a line

Synopsis: Fputs(StreamId, String)
To server: BYTE Tag = 15
INT32 StreamId

INT16::[]BYTE String

From server: BYTE Result

Fputs writes a line of text to a stream which must be open for output. The host-spe-
cified convention for newline will be appended to the line and output to the file. The
maximum line length is host-specified.

Return Codes

Success Failed NoResource Badld NoPosn

C.3.9 Fflush = Flush a stream

Synopsis: Fflush(Streamld)

To server: BYTE Tag = 16
INT32 StreamId

From server: BYTE Result

Fflush flushes the specified stream, which should be open for output. Any inter-
nally buffered data is written to the destination device. The stream remains open.

Retumn Codes

Success Failed NoResource Badid

72 TDS 367 01 March 1993

C iserver protocol 317

C.4 Record Structured file commands

This section describes the commands for record structured files. File formats are
discussed in Section C.8.

C.41 FopenRec — Open a record structured file

Synopsis: Streamld,RealMrs = FopenRec(Name, Type, Mode,
Mrs)

To server: BYTE Tag = 26
INT16::[]BYTE Name
BYTE Organisation = 3...4
BYTE Mode = 1...6
BYTE Type = 0...2
BYTE Format = 0...1
INT32 Mrs

From server: BYTE Result
INT32 RealMrs
INT32 StreamId
BYTE RealType

FopenRec opens the file Name and, if successful, returns a stream identifier
Streamld.

Organisation can take one of two possible values:

Value |Name Description

3 Variable | The file will be organized in records of variable length.
The maximum record size is contained in the Mrs field.

4 Fixed The file will be organized in records of fixed length. The
size of a record is supplied in the Mrs field. Record
files are implemented in a host-specific way.

For each organization, Type can have one of the following values:

Value [Name Description
0 DontCare |Use whatever type is most natural, and return the type
in RealType.

1 Stream Use streams.
2 Record Use record oriented files.

72TDS 367 01 March 1993

318 C.4 Record Structured file commands

Format can take one of two possible values:

Value |[Name Description
0 Formatted Formatted record structured file
1 Unformatted Unformatted record structured file

Mode can have 6 possible values:

Value |Name Description
1 |Input Open an existing file for input
2 |Output Create a new file, or truncate an existing one, for
output
3 |Append Cr?at? a new file, or append to an existing one, for
outpu

4 |ExistingUpdate |Open an existing file for update (both reading and
writing), starting at the beginning of the file

5 |[NewUpdate Create a new file, or truncate an existing one, for
update

6 |AppendUpdate |Create a new file, or append to an existing one, for
update

When a file is opened for update (one of the last three modes above) then the
resulting stream may be used for input or output. There are restrictions however,
an output operation may not follow an input operation without an intervening
Fseek, Ftell or Fflush operation.

When an existing file is opened, the record size supplied in the open request is
compared with that stored in the file if possible (some hosts do not record this
information). If they are different then the open fails. If the real record size is not
available, it is considered to be the same as the requested record size, and so the
open can succeed. The actual record size for the file is returned in RealMrs.

The number of streams that may be open at one time is host-specified, but will not
be less than eight (including the three predefines).

Returmn Codes

Success Failed NoPriv NoResource NoFile
NotAvailable

72 TDS 367 01 March 1993

C iserver protocol 319

C.4.2 FGetRec - Read a record

Synopsis: Data = FGetRec(StreamId)

To server: BYTE Tag = 27
INT32 StreamId
INT16 ChunkSize
INT32 Offset
BYTE PerformRead

From server: BYTE Result
INT32 RecordSize

INT16::[]BYTE Data

FGetRec reads a record from a record stream which must be open for input.

If an end of file record is encountered then FGetRec fails. If PerformRead is non-
zero, then a record is transferred from the file specified by StreamIdinto the serv-
er's buffer, otherwise, data from the previous FGetRec is transferred. If Perform-
Read s zero, and no records have ever beenread from StreamlId, then FGetRec
fails. ChunkSize specifies the number of bytes to be transferred, starting at byte
number Of£set from the record buffer.

Return Codes

Success Failed Badld NoPosn EOF

C.4.3 FPutRec — Write a record

Synopsis: FPutRec(StreamId, Record)
To server: BYTE Tag = 28
INT32 StreamId
INT32 RecordSize
INT16 ChunkSize
INT32 Offset
BYTE PerformWrite

INT16::[]BYTE Record

From server: BYTE Result

FPutRec writes a record to a record stream which must be open for output.
ChunkSize specifies the number of bytes to be transferred, starting at byte
number Of £set into the record buffer. RecordSize specifies the size of the entire
record. If PerformWri te is non-zero, then a record is transferred to the file speci-
fied by StreamId from the server’s buffer, otherwise, data from a previous record
is transferred.

72TDS 367 01 March 1983

320 C.4 Record Structured file commands

Return Codes

Success Failed Badld NoPosn

C.4.4 FputEOF — Write an end of file record

Synopsis: FputEOF(StreamId)

To server: BYTE Tag = 29
INT32 StreamId

From server: BYTE Result

FPUtEOF writes an end of file record to a record structured file. When the file is
closed, the file will be truncated after the first end-of-file record and data after it will
be lost.

Return Codes
Success Failed Badld

C.4.5 Fseek - Set position in a file

Synopsis: Fseek(StreamId, Offset, Origin)
To server: BYTE Tag = 17

INT32 StreamId

INT32 Offset

INT32 Origin
From server: BYTE Result

Fseek sets the file position for the specified stream. A subsequent read or write
will access data at the new position.

For a binary file the new position will be 0Of£set characters from Origin which
may take one of three values:

Value ([Name Description
1 Set The beginning of the file.
2 Current The current position in the file.
3 End The end of the file.

For a text stream, 0Of£set must be zero or a value returned by Ftell. If the latter
is used then Origin must be set to 1. For a record structured file 0Of£set is the

number of records to seek from Origin.

72 TDS 367 01 March 1993

C iserver protocol 321

Return Codes

Success Failed Badld

C.4.6 Ftell - Find out position in a file

Synopsis: Position = Ftell(StreamId)

To server: BYTE Tag = 18
INT32 StreamId

From server: BYTE Result
INT32 Position

Ftell returns the current file position for StreamId. For record structured files, the
Position is the record number relative to the start of the file.

Return Codes

Success Failed Badld

C.4.7 Feof - Test for end of file

Synopsis: Feof (StreamId)

To server: BYTE Tag = 19
INT32 Streamld

From server: BYTE Result

Feof succeeds if the end of file indicator for StreamId is set. Note that the defini-
tion of ‘end of file is any attempt to read past the last byte in the file. i.e. Reading
the last byte in a file will not set EOF; attempting to read the next byte will.
Return Codes

Success Failed Badld

72 TDS 367 01 March 1993

322 C.4 Record Structured file commands

C.4.8 Ferror — Get file error status

Synopsis: ErrorNo, Message = Ferror (StreamlId)
To server: BYTE Tag = 20

INT32 Streamld
From server: BYTE Result

INT32 ErrorNo

INT16::[]BYTE Message

This function should not be used. It has been included only for compatibility
purposes. A replacement routine, FGetBlock, has been provided, which is
described in C.3.5.

Ferror succeeds if the error indicator for StreamId is set. If it is, Ferror returns
a host-defined error number and a (possibly null) message corresponding to the
last file error on the specified stream. The maximum size of Message will be
restricted to 506 bytes for compatibility purposes. If the message is longer, then
it will be truncated to fit and Ferror will fail.

Retum Codes

Success Failed
C.4.9 Remove - Delete a file

Synopsis: Remove (Name)

To server: BYTE Tag = 21
INT16::[]BYTE Name

From server: BYTE Result

Remove deletes the named file.
Return Codes

Success Failed NoPriv NoFile

72 TDS 367 01 March 1993

C iserver protocol 323

C.4.10 Rename - Rename a file

Synopsis: Rename (OldName, NewName)

To server: BYTE Tag = 22
INT16::[]BYTE OldName
INT16::[]BYTE NewName

From server: BYTE Result

Rename changes the name of an existing file 01dName to NewName.
Return Codes

Success Failed NoPriv NoFile

C.4.11 Isatty — Discover if a stream is connected to a terminal

Synopsis: Isatty(Streamld)

To server: BYTE Tag = 25
INT32 StreamId

From server: BYTE Result
BYTE Istty

Isatty determines if the stream specified by StreamId is connected to a terminal.
Any non-zero value in Isatty indicates that the stream is connected to a terminal.

Return Codes

Success Failed Badld

72 TDS 367 01 March 1993

324 C.4 Record Structured file commands

C.4.12 FileExists — Check to see if a file exists

Synopsis: Exists := FileExists(Name)
To server: BYTE Tag = 80
INT16::[]BYTE Name
From server: BYTE Result
BYTE Exists

FileExists checks to see if the file Name exists. Any non-zero value in Exists indi-
cates that the file does exist.

Return Codes

Success Failed

C.4.13 FerrStat ~ Get file error status

Synopsis: ErrorNo, Message = FerrStat(Streamld)
To server: BYTE Tag = 82

INT32 StreamId

INT16 MessLen
From server: BYTE Result

INT32 ErrorNo

INT16::[]JBYTE Message

FerrStat succeeds if the errorindicator for StreamIdis set. Ifitis, FerrStat retums
a host-defined error number and a (possibly null) message corresponding to the
last file error on the specified stream. The maximum size of Message is restricted
to MessLen bytes. If the message is longer, then it will be truncated to fit and Ferr-
Stat will fail with status of Truncated.

Return Codes

Success Failed Truncated

72TDS 367 01 March 1993

C iserver protocol 325

C.5 Host commands

C.5.1 Getkey - Get a keystroke

Synopsis: Key = GetKey()

To server: BYTE Tag = 30

From server: BYTE Result
BYTE Key

GetKey gets a single character from the keyboard. The keystroke is waited on
indefinitely and will not be echoed. The effect on any buffered data in the standard
input stream is host-defined. It should be noted that GetKey will only get one char-
acter from the keyboard stream; if a single key-press results in more than one char-
acter being generated, then GetKey/Pollkey should be called as many times as
required to read them all.

Return Codes

Success Failed

C.5.2 Pollkey - Test for a key

Synopsis: Key = PollKey()

To server: BYTE Tag = 31

From server: BYTE Result
BYTE Key

PollKey gets a single character from the keyboard. If a keystroke is not available
then PollKey returns immediately with a non-zero result. If a keystroke is available
it will not be echoed. The effect on any buffered data in the standard input stream
is host-defined. It should be noted that PollKey will only get one character from the
keyboard stream; if a single key-press results in more than one character being
generated, then GetKey/PollKey should be called as many times as required to
read them all.

Return Codes

Success Failed

72 TDS 367 01 March 1993

326 C.5 Host commands

C.5.3 RequestKey — Request a single keyboard ‘event’

Synopsis: Result = RequestKey ()
To server: BYTE Tag = 36
From server: BYTE Result

This command should never be generated by an application. It may be used
by the 1inkops server to improve performance over a network.

Once iserver has received one of these requests, it monitors the keyboard and if
a key is pressed, it generates a keyboard ‘event’ across the link. This event will
never reach the application since it will have been filtered out by the linkops
server. Each RequestKey command will only solicit one keyboard event. The
‘event’ that iserver generates looks exactly like the reply to the GetKey command.
It will only be generated while iserver is idle (waiting for another iserver request to
arrive).

Return Codes
Success & Failed

C.5.4 Getenv — Get environment variable

Synopsis: Value = Getenv(Name)

To server: BYTE Tag = 32
INT16::[]BYTE Name

From server: BYTE Result
INT16::[]BYTE Value

This function should not be used. It has been included only for compatibility
purposes. A replacement routine, Translate, has been provided, which is
described in C.5.7.

Getenv returns a host-defined environment string for Name. If Name is undefined
then Result will be non-zero. If the resultant environment string for Name is longer
than 509 bytes, then it will be truncated to fit and Getenv will fail.

Return Codes

Success Failed

72 TDS 367 01 March 1993

C iserver protocol 327

C.5.5 Time — Get the time of day

Synopsis: LocalTime, UTCTime = Time()
To server: BYTE Tag = 33
From server: BYTE Result

UNSIGNED INT32 LocalTime
UNSIGNED INT32 UTCTime

Time returns the local time and Coordinated Universal Time if it is available. Both
times are expressed as the number of seconds that have elapsed since midnight
on 1st January, 1970. If UTC time is unavailable then it will have a value of zero.

Return Codes

Success Failed

C.5.6 System — Run a command

Synopsis: Status = System(Command)

To server: BYTE Tag = 34
INT16::[]BYTE Command

From server: BYTE Result
INT32 Status

System provides access to the host's command processor, if one is available. If
the length of Command is zero, then the command processor will not be invoked
(and the empty string therefore not executed), and System will succeed only if a
command processor is available. The value of Status is undefined in this case.
If the length of Command is non-zero, then the string is passed to the command
processor, which will attempt to execute it. In this case Status is the return value
of the command, which is host-defined.

Return Codes

Success Failed NoResource

72 TDS 367 01 March 1993

328 C.5 Host commands

C.5.7 Translate — Translate an environment variable

Synopsis: Value = Translate(Name, Length)
To server: BYTE Tag = 81
INT32 Offset
INT16 Length
INT16::[]BYTE Name
From server: BYTE Result
INT32 TotalLength

INT16::[]BYTE Value

Translate returns a host-defined environment string for Name. If Name is undefined
then Result will be non-zero. Data is transferred from the resultant string starting
at 0Of£set for Length bytes. If 0££set is beyond the end of the string, then an
empty (zero length) string will be returned. The TotalLength field of the reply
contains the total length of the translated string.

Return Codes

Success Failed

72 TDS 367 01 March 1993

C iserver protocol 329

C.6 Server commands

C.6.1 Exit — Terminate the server

Synopsis: Exit(Status)

To server: BYTE Tag = 35
INT32 Status

From server: BYTE Result

Exit terminates the server, which exits returning Status to its caller.

If Status has the special value 999999999 then the server will terminate with a
host-specific ‘success’ result.

If Status has the special value —999989999 then the server will terminate with a
host-specific ‘failure’ result.

Return Codes

Success

C.6.2 CommandLine — Retrieve the server command line

Synopsis: String = CommandLine(All)

To server: BYTE Tag = 40
BYTE All

From server: BYTE Result

INT16::[]BYTE String

This function should not be used. It has been included only for compatibility
purposes. A replacement routine, CommandArgs, has been provided, which is
described in C.6.6.

CommandLine obtains the command line passed to the server. The server is
passed the command line arguments as a number of discrete items. The items are
built into a command string using the following rules.

« The individual items are concatenated together into a string, with a single
space (0x20) being inserted between each item.

wn

¢ Any quote character (0x22) found in any item is quoted. e.g. ” becomes

s Any command line item found to contain whitespace (0x20 or 0x09) has a
quote character prefixed to it and another added after it.

72 TDS 367 01 March 1993

330 C.6 Server commands

CommandLine returns the command line passed to the server on invocation. On
certain operating systems it is possible to quote arguments on the command line.
The quotes themselves have been removed by the time iserver gets to see the
arguments. When building the command line to pass on to the application,
iserver places quotes (0x22) around any argument containing whitespace. Any

genuine quote characters in the command line are quoted. e.g. ” becomes ™.

If A1l is zero the returned string is the command line, with the server name, argu-
ments that the server recognized (including any parameters to the arguments)
removed.

If A1l is non-zero then the string returned is the entire command vector as passed
to the server on startup, including the name of the server command itself.

Return Codes

Success Failed

C.6.3 Core - Read peeked memory

Synopsis Data = Core(Offset, Length)
To server: BYTE Tag = 41
INT32 Offset
INT16 Length
From server: BYTE Result

INT16:: []BYTE Core

Core returns the contents of the root transputer's memoary, as peeked from the
transputer when the server was invoked with the analyze option.

Core fails if 0f£set is larger than the amount of memory peeked from the trans-
puter or if the transputer was not analyzed.

If (O£ £set + Length) is larger than the total amount of memory that was peeked
then as many bytes as are available from the given offset are returned.

If of£set and Length are both zero, the the result of this function will indicate if
the transputer was analyzed and peeked by the server.

Return Codes

Success Failed

72 TDS 367 01 March 1993

C iserver protocol

331

C.6.4 Version — Find out about the server

Synopsis:

To server:

From server:

Id = Version()

BYTE

BYTE
BYTE
BYTE
BYTE
BYTE

Tag = 42

Result
Version
Host

0os

Board

Use of this function is discouraged. To obtain similar information in a more portable
manner, use the function Getinfo (C.6.5).

Version returns four bytes containing identification information about the server
and the host it is running on.

If any of the bytes has the value 0 then that information is not available.

Version identifies the server version. The byte value should be divided by ten to
yield a version number

Host identifies the host box. Currently 8 are defined:

Value |Host Value [Host
1 |[PC 2 |NEC-PC
3 [VAX 4 |Sun3
5 |IBM 370 6 (Sun4
7 |Sun386i] 8 |Apollo
9 |Afari

s identifies the host environment. Currently 5 are defined:

Value |Operating system Value |Operating system
1 DOS 2 |Helios
3 |VMS 4 |SunOS
5 |CMs 6 |TOS

72 TDS 367 01

March 1993

332

C.6 Server commands

Roard identifies the interface board. Currently 12 are defined:

Value |Board Value |Board

1 |IMS B004 2 |IMS B008
3 |IMS B010 4 |IMS BO011
5 |IMSB014 6 [DRX-11

7 |Caplin QTO 8 |IMSBO015
9 |IBM CAT 10 |IMS B016
11 |UDP 12 |TCPlink
13 |ACSILA

INMOS reserves numbers up to and including 127 for these three fields.

Return Codes

Success

Failed

C.6.5 Getinfo — Obtain information about the host and server

Synopsis: NoOfBytes = GetInfo(Item, Buffer)
To server: BYTE Tag = 43

BYTE Item

INT16 ReplySize
From server: BYTE Result

Item specific result

Getinfo is used to obtain host and server specific information in as portable a
fashion as possible. ReplySize specifies the maximum size of the reply in bytes.
If the reply exceeds this value, it will be truncated and an appropriate failure status
will be returned. Values for I tem and their representation are shown in Table C.2.

Value | Name Returned as Description

1 | SwitchChar | BYTE The switch character used by the
host.

2 |EndOfLine |INT16::[]BYTE |The end of line sequence.

3 |Stdemr BOOL A boolean value indicating whether or
not the standard error stream can be
redirected.

4 |Serverld INT16: : [1BYTE | A string identifying the server.

5 |ServerMaj |INT32 The server's major version number.

6 |ServerMin |INT32 The server’s minor version number.

7 |PacketSize |INT32 The server’s maximum packet size.

72 TDS 367 01

Table C.2 Results of Getlnfo command

March 1993

C iserver protocol 333

A BOOL will be represented as a single byte, with any non-zero value meaning
TRUE, and zero FALSE.

Return Codes

Success Failure NoPriv Truncated

C.6.6 CommandArgs — Retrieve the server command line arguments

Synopsis: String = CommandArgs (Argno, Length)
To server: BYTE Tag = 83

INT16 Argno

INT16 Length
From server: BYTE Result

INT16 NumArgs

BYTE ServerArg

INT16::[JBYTE String

CommandArgs provides access to the server's command line. Axrgno specifies
the command line argument number and is used as an index into the server's argv
array. Length specifies the maximum length of String. If String is too big, it
will be truncated to fit, and a status of Truncated will be returned. If Serverarg
is non-zero, it indicates that String was recognized as a server argument, and
should be ignored by the application. NumArgs is the highest argument number
which may be requested, and is the equivalent of the C variable arge. Argument
number zero is always present.

Return Codes

Success Failed Truncated

72 TDS 367 01 March 1993

334 C.7 Reserved Tags and Third Party Tags

C.7 Reserved Tags and Third Party Tags
The following tags have been reserved for specific applications or by Third Parties

for use in their own servers. Their use is not encouraged, since the third party tags
will not be present in the standard INMOS server.

C.7.1 MSDOS - Perform MS-DOS specific function

Synopsis: MsDos (Command)
To server: BYTE Tag = 50
BYTE Function code

Function specific data

From server: BYTE Result
Function specific results.

MSDOS is used to perform a number of MS-DOS specific functions. This is used
to support some early INMOS PC-based programs. Use of this function is discour-
aged for portability reasons. The functions supported are shown in Table C.3.

Value | Name Description
0 |[SendBlock |Write a block of data anywhere in the PC's memory map.

1 |GetBlock |Read a block of data from anywhere in the PC’s memory
map.

Callint Invoke a software interrupt.
GetRegs |Read the segment registers.
PortWrite |Write to a port.

PortRead |Read from a port.

bk WwN

Table C.3 MS-DOS functions
Return Codes

Success Failed

72 TDS 367 01 March 1993

C iserver protocol 335

C.7.2 SocketA — make a socket library call

Synopsis: BYTE Tag = 70
BYTE Socket operation
Function specific data.

From server: BYTE Result
Function specific results.

This function allows an application to make a socket library call.
Return Codes

Success Failed

C.7.3 SocketM — make a socket library call

Synopsis: BYTE Tag = 71
BYTE Socket operation
Function specific data.

From server: BYTE Result
Function specific results.

This function allows an application to make a socket library call.
Return Codes

Success Failed

C.7.4 ALSYS - Perform Alsys specific function

Synopsis: AlsSys(...)

To server: BYTE Tag = 100
Function specific data

From server: BYTE Result
Function specific results

Alsys is used to perform a number of Alsys specific functions. This is used fo
support the Alsys compilers.

72 TDS 367 01 March 1993

336 C.8 Record Structured file format

C.7.5 KPAR - Perform Kpar specific function

Synopsis: Kpar(...)

To server: BYTE Tag = 101
Function specific data

From server: BYTE Result
Function specific results

This is used to perform a number of Kpar specific functions. This is used to support
Kpar tools.

C.8 Record Structured file format

Under VAX/VMS, record structured files are implemented using the VAX Record
Management Service (VAX/RMS). Under all other hosts record structured files are
implemented using binary files. Files created are of a similar format to that used
by Sun FORTRAN.

C.8.1 SunOS and MS-DOS

Formatted Sequential

Each record in a Formatted Sequential file has a linefeed character (0x0a)
appended to it. Thus an extra byte per record is required. i.e.

| record data |Iinefeed|

Unformatted Sequential

Unformatted Sequential files are implemented by prefixing and suffixing each
record with a four byte length field, most significant byte first. The length field is the
length of the data, not the data plus the length fields. This means an extra eight
bytes per record are required. i.e.

[datalength | length bytes of data | data length]

Formatted Direct
The record size is specified at open.
Unformatted Direct

The record size is specified at open.

72 TDS 367 01 March 1993

C iserver protocol

337

C.9 Termination codes

There are various circumstances under which iserver can terminate. iserver
1.5 makes it possible for a controlling script to distinguish between the following

cases

L]

Terminated properly with any other value.

Terminated on receipt of a user break.

« Terminated on seeing the transputer error flag set.

e Any other termination.

The values used are shown in Table C.4.

Terminated properly on receipt of an sps . success token.

Terminated properly on receipt of an sps. failure token.

Host Termination User Break |Error |Any
Flag |Other
Success |Failure |[Other

MS-DOS |0 255 exit code 254 253 |252
Helios 0 255 exit code 254 253 |252
VAXIVMS |1 4 exitcode x 16 |10 2 12

error class |success |fatal warning information |error |fatal
SunOS 0 255 exit code 254 253 |252

Table C4 iserver termination codes

The values chosen for VAX/VMS have been designed to generate different

‘classes’ of error.

Under all operating systems apart from VAX/VMS, error codes between 240 and
255 are reserved for use by iserver.

72 TDS 367 01

March 1993

338 C.9 Termination codes

72 TDS 367 01 March 1993

D ITERM files

This appendix describes the format of ITERM files; it is included for people who
need to write their own ITERM because they are using terminals that are not
supported by the standard ITERM file supplied with the toolset.

Standard ITERM files for this release are provided in the i terms directory, which
is a subdirectory of the main toolset installation directory. These files may be used
as templates and tailored to suit your own needs. It is recommended that the instal-
lation files are not changed in any way, and that modifications are only made to
copies of the files.

D.1 Introduction

ITERMs are ASCII text files that describe the control sequences required to drive
terminals. Screen oriented applications that use ITERM files are terminal indepen-
dent.

ITERM files are similar in function to the UNIX termcap database and describe
input from, as well as output to, the terminal. They allow applications that use func-
tion keys to be terminal independent and configurable.

Within the toolset, the ITERM file is only used by the debugger tool idebug and
the T425 simulator tool isim.

Adefault ITERM file may be defined in the ITERM environment variable. For details
see section D.8 and the Delivery Manual for the release.

D.2 The structure of an ITERM file

An ITERM file consists of three sections. These are the host, screen and keyboard
sections. Sections are introduced by a line beginning with the section letters ‘H’,
‘s’ or ‘K. Case is unimportant and the rest of the line is ignored. Sections consist
of a number of lines beginning with a digit. A section is terminated by a line begin-
ning with the letter ‘E’. The host section must appear first; other sections may
appear in any order in the file. Sections must be separated by at least one blank
line.

The syntax of the lines that make up the body of a section is best described in an
example:

3:34,56,23,7. comments

Each line starts with the index number followed by a colon and a list of numbers
separated by commas. Each line is terminated by a full stop (*.") and anything

72TDS 367 01 March 1993

340 D.3 The host definitions

following it is treated as a comment. Spaces are not allowed in the data string and
an entry cannot be split across more than one line.

Comment lines, beginning with the character ‘#', may be placed anywhere in an
ITERM file. Extra blank lines in the file are ignored.

The index numbers in each section correspond to an agreed meaning for the data.
In the following sections the meaning of the data in each of the three sections is
described in detail.

D.3 The host definitions

D.3.1 ITERM version

This item identifies an ITERM file by version. It provides some protection against
incompatible future upgrades.

eg. 1:2.

D.3.2 Screen size

This item allows applications to find out the size of the terminal at startup time. The
data items are the number of columns and rows, in that order, available on the
current terminal.

e.g. 2:80,25.

Screen locations should be numbered from 0, 0 by the application. Terminals
which use addressing from 1, 1 can be compensated for in the definition of goto
xXY.

D.4 The screen definitions

The lists of values in the screen section represent control codes that perform
certain operations; the data values are ASCII codes to send to the display device.

ITERM version 2 defines the indices given in table D.1. These definitions are used
in the example ITERM file; for a complete listing of the file see section D.8.

72 TDS 367 01 March 1993

D ITERM files 341

Index |Screen operation Index |Screen operation

1 Cursor up 9 clear to end of screen
2 cursor down 10 insert line

3 cursor left 11 delete line

4 cursor right 12 ring bell

<] gotoxy 13 home and clear screen
6 insert character 20 enhance on (not used)
7 delete character at cursor 21 enhance off (not used)
8 clear to end of line

Table D.1 ITERM screen operations

For example, an entry like: ‘8:27,91,75." indicates that an application should
output the ASCIl sequence ‘ESC [K'to the terminal output stream to clear to end
of line.

D.4.1 Goto XY processing

The entry for 5, ‘goto X Y’, requires further interpretation by the application. A
typical entry for ‘goto X Y might be:

5:27,-11;32;~21,32
The negative numbers relate to the arguments required for X and Y.
.., —ab, nn, ..
where: a is the argument number (i.e. 1 for X, 2 for Y).
b controls the data output format.
If b =1 output is an ASCII byte (e.g. 33 is output as !).
If b =2 output is an ASCII number (e.g. 33 is output as 33).
nn is added to the argument before output.
As a complete example, consider the following ITERM entry in the screen section:
5:27,91,-22,1,59,-12,1,72. ansi cursor control

This would instruct an application wishing to move the terminal cursor to X=14, Y=8
(relative to 0,0) to output the following bytes to the screen:

Bytes in decimal: 27 91 57 59 49 53 72
Bytes in ASCII: ESC [9 i 1 5 H

72TDS 367 01 March 1993

342 D.5 The keyboard definitions

D.5 The keyboard definitions

Each index represents a single keyboard operation. The data specified after each
index defines the keystroke associated with that operation. Multiple entries for the
same index indicate alternative keystrokes for the operation.

ITERM version 2 defines the indices given in table D.2. These definitions are used
in the example ITERM file; for a complete listing of the file see section D.8.

Index |Function Index |Function

2 delete character 39 goto line

6 cursor up 40 backtrace

7 cursor down 141 inspect

8 cursor left 42 channel

9 cursor right 43 top

12 delete line 44 retrace

14 start of line 45 relocate

15 end of line 46 info

18 line up 47 modify

19 line down 48 resume

20 page up 49 monitor

21 page down 50 word left

26 enter file 51 word right

27 exit file 55 top of file

28 refresh 56 end of file

29 change file 62 toggle hex

31 finish 65 continue from
34 help 66 toggle breakpoint
36 get address 67 search

Table D.2 [ITERM key operations

D.6 Setting up the ITERM environment variable

To use an ITERM the application has to find and read the file. An environment vari-
able (or logical name on VMS) called ITERM should be set up with the pathname
of the file as its value.

For more details about setting environment variables see the Delivery Manual that
accompanies the release.

72 TDS 367 01 March 1993

D ITERM files 343

D.7 Ilterms supplied with a toolset

The following ITERM files are supplied with the toolset;

File Description
ansi.itm Generic ANSI iterm
ned.itm NCD X terminal iterm

necansi.itm |NEC PC iterm

pcansi.itm PC iterm (requires ANSI.SYS)
sun.itm SunView iterm

vt100.itm vt100 iterm

Table D.3 ITERM files supplied

ansi.itmislikely to be the most portable in that it will work unchanged with most
hosts. However, because of this it may only use the normal (alpha—-numeric keys)
of a keyboard. This means that some keys (when used in conjunction with the
CNTL or SHIFT key) are associated with more than one operation. Specific host
iterms make use of known function keys etc. which leads to less overloading of
keys.

Each iterm file may be treated as an example; you may create and use your own
iterm file if you wish.

72 TDS 367 01 March 1993

344

D.8 An example ITERM

D.8 An example ITERM
This is the generic toolset ITERM file for an ANSI terminal.

ANSI ITERM for any ANSI terminal
Support for idebug and isim

e 2l 2 e s e W N W

V1.0 16 November 1950 (RD) Created
Vvi.1 11 January 1951 (NH) Modified

host section
1:2. version
2:80,24. screen size
end of host section
screen control characters
screen section

DEBUGGER SIMULATOR
1:27,91,65. cursor up
2:27,91,66. cursor down
3:27,91,68. cursor left cursor left
4:27,91,67. cursor right
5:27,91,-22,1,59,-12,1,72. goto x y goto x y
#6. insert char insert char
#7. delete char delete char
8:27,91,75. clear to eol clear to eol
9:27,91,74. clear to eos clear to eos
#10 ansi terminals do insert line insert line
#11 not have these delete line delete line
12:7. bell bell

13:27,91,50,74.
end of screen section

keyboard section

#

25127

2:8.
6:27,91,65.
7:27,91,66.
8:27,91,68.
9:27,91,67.
12:21.
14:1.

15:5.
18:27,85.
18:27,117.
19:27,68.
19:27,100.
20:27,86.
20:27,118.
21:27,87.
21:27,1189.
26:14.

72TDS 367 01

clear screen

DELETE
BACKSPACE

DOWN

LEFT

RIGHT
Crtl-u
CTRL-A
CTRL-E
EsC
EsC
Esc
ESC
ESC
EsSC
EsC
ESC
CTRL-N

EX4 <SaUEd

DEBUGGER

del char

del char
cursor up
cursor down
cursor left
cursor right
delete line
start of line
end of line
line up

line up

line down
line down
page up

Ppage up

page down
page down
enter file

clear screen

SIMULATOR

cursor up

cursor down
cursor left
cursor right

start of line
end of line

page up
page up
page down
page down

March 1993

D ITERM files 345
27:24. # CTRL-X exit file

28:12. # CTRL-L refresh refresh
28:23. # CTRL-W refresh refresh
29:27,70. 4 ESCF change file
29:27,102. # ESC £ change file
31:27,88. # EsC x finish

34:27,72. # ESC H help help
34:27,104. # ESCh help help
36:27,65. # ESC A get address
36:27,97. # ESC a get address

39:7. # CTRL-G goto line

40:27,48. # Esc 0 backtrace

41:27,49. # ESC 1 inspect

41:9. # CTRL-I inspect

42:27,50. # ESC 2 channel

43:27,51. # ESC 3 top

44:27,52. # ESC 4 retrace

45:27,53. # ESC 5 relocate

46:27,54. # ESC 6 info

47:27,55. # ESC 7 modi fy

48:27,56. # ESC 8 resume

49:27,57. # ESC 9 monitor

50:11. # CTRL-K word left

51:16. # CTRL-P word right
55:27,60. # ESC < top of file
56:27,62. # ESC > end of file
62:27,116. # ESC t toggle hex
62:27,84. # EsC T toggle hex
65:27,67. # ESC C continue from
65:27,99. # ESC c continue from

66:2. # CTRL-B toggle break

67:6 # CTRL-F search (Find)

end of keyboard section

idebug key that isn’t really part of iterm but its here all the

same!

#

INTERRUPT
§ THAT’S ALL FOLKS

72 TDS 367 01

CTRL A

— IDEBUG

March 1993

346 D.8 An example ITERM

72 TDS 367 01 March 1993

E Bootstrap loaders

E.1 Introduction

Special loading procedures can be created for the program and used in place of,
or in addition to, the standard INMOS bootstrap. The file containing the new boot-
strap is specified by invoking the collector with the ‘B' and ‘T’ options.

User defined bootstraps must perform all the necessary operations to initialize the
transputer, load the network, and set up the software environment for the applica-
tion program.

Bootstraps are output to the program bootable file as the first section of code in
the bootable file. The bootstrap, consisting of the primary and secondary bootstrap
sequences, is followed by the standard INMOS network loader program, which is
output in small packets, each packet consisting of a maximum of 60 bytes. The last
packet of the network loader is followed by a length byte of zero.

In most cases a custom bootstrap will interface directly with the standard INMOS
Network Loader, which places various pieces of code and data within the trans-
puter memory in a controlled way. However, it is possible to skip the standard
loader by sinking its code packets and following the commands used by the
network loader that are output after the network loader.

The general format of a custom bootstrap is a concatenated sequence of bootstrap
code segments each preceded by a length byte. The sequence can be any length.
The bootstrap program must be contained in a single file.

The source of the standard INMOS Network Loader is supplied with the toolset and
is fully commented. See the accompanying Delivery Manual for details of source
directories supplied.

E.1.1 The example bootstrap

The example bootstrap loader provided on the toolset examples directory is a
combination of several files used in the standard INMOS bootstrap scheme. The
files have been combined into a single file to illustrate how to create a user-defined
bootstrap; the functionality is the same as that used in the the standard INMOS
scheme based on multiple files.

The program is written in fransputer code and consists of two parts:

» Primary bootstrap — performs processor setup operations such as initial-
izing the transputer links

72TDS 367 01 March 1993

348 E.1 Introduction

» Secondary bootstrap — sets up the software environment and interfaces to
the Network Loader.

Transfer of control
The calling sequence in the standard INMOS scheme is as follows:

The primary loader calls the secondary loader, which then calls the Network
Loader. When the Network Loader has completed its work control returns to the
secondary loader, which calls the application program via data set up by the
Network Loader.

Custom bootstraps should follow the same sequence.

E.1.2 Wiriting bootstrap loaders

Bootstrap loader programs should be written to perform the same operations as
the standard scheme, that is, hardware initialization, setting up the software envi-
ronment, and calling the Network Loader. If you skip the Network Loader by sinking
its code bytes then you must ensure its function is reproduced in your own code.
If you do use the Network Loader you must ensure the interface to it is correct by
setting up the invocation stack. The method by which this is achieved can be
deduced from the example program source.

If you wish to make only a few small changes to the standard loader, for example,
insert code to initialize some D-to-A convertors, then the example code can be
used and the required code can be inserted between the Primary and Secondary
Loader code as an additional piece of bootstrap code in the sequence of boot-
straps. The rest of the code can be used as it stands.

If you decide to devise your own loading scheme and rewrite the Primary and
Secondary Loaders then you should be familiar with the design of the Transputer
and its instruction set. For engineering data about the transputer consult the
‘Transputer Databook ’ and for information about how to use the instruction set see
the ‘Transputer Instruction Set: a compifer writer’s guide '.

72TDS 367 01 March 1993

Index

Symbols

|, idebug, 101, 104, 111, 125
i, idebug, 115
#
idebug, 85
idump, 143
igim, 274
#alias, 188
#COMMENT, 15
#define, linker directive, 189
#IMPORT, 14
#INCLUDE, 13
#include, linker directive, 189
#mainentry, 189
#OPTION, 16

#PRAGMA, 17
COMMENT, 18
EXTERNAL, 18
LINKAGE, 18, 190
PERMITALIASES, 19
SHARED, 19
TRANSLATE, 14, 20

#pragma, IMS linkage, 190

#reference, 189

#section, 190

#USE, 14

$
idebug, 85
idump, 143

%
idebug, 85, 116
imap, 241
isim, 274

@, iserver, 261

+, idebug, 126

72 TDS 367 01

++, idebug, 125
*, idebug, 92, 116, 121, 123, 128
** idebug, 123, 128

A

Action strings, in makefiles, 235

Alias check, 5, 16
disable, 10, 19

ALT, 9

Analyse, 74, 82, 83, 85
Array, subranges, 115, 125
ASM, 16, 34

ASSERT, 9, 32

B

B004, 285
BO008, 285

[BACKTRACE], 112
binary. See output. format

Binary lister, 205
command line, 206
errors, 219

Binary output, ieprom, 170
Block mode, ieprom, 171
Boards, wiring, 74

Boot from link, 145
collector memory map, 61, 64
default collector output, 52

Boot from ROM, 52, 59, 145, 163
configurer options, 30

Bootable code, 27, 47
bootable.file, 166

Bootstrap
alternatives, 60

March 1993

350 Index
example, 347 ilist, 207
loaders, 60, 348 imakef, 226
imap, 241
key, 255; 258 iserver, 253
Breakpoint, 80, 276 isim, 272
commands, 90 iskip, 286
menu, 90 oe, 7
ocecongf, 30

Breakpoint debugging, methods, 75
Building libraries, 179
byte.select, 168

c

Capability, 255, 259
specific host, 261

centry.lib, 15
CHAN OF ANY, 9,33

[CHANGE FILE], 113
Change processor, debugging, 103

[CRANNEL], 110
Checking, a network, 91

Clearing, error flag, 133, 289

Code
allocation in memory, 34
insertion, 16
listing, 210
position in memory, 32, 53, 55

Collector
command line, 48
error messages, 67
input files, 51
output files, 51
non-bootable, 58

Command line, 293

Command line options
icollect, 50
idebug, 77
iemit, 146
ieprom, 165
ilibr, 176
ilink, 187

72 TDS 367 01

specify fransputer target, 308
COMMENT pragma, 18

Comments
in EPROM control files, 165
in object code, 15, 18

Compare memory, debugging, 91
Compatibility

error modes, 8

with previous toolsets, 32

Compilation
error modes, 8
order of, 11
targets, 7

Compiler

command line, 4

command line options, 5, 7

diagnostics, implementation data,
299

directives, 12
syntax, 13

error messages, 20

file names, 7

libraries, disabling, 6

memory map, 11

occam, 3

selective loading of libraries, 178

warning messages, 20

warnings, enable/disable, 9

Compiling, for a range of trans-
puters, 302

Configuration
description, 27
error modes, 31
warning messages, enable/dis-
able, 32

Configurer, 27
command line, 28

March 1993

Index

351

error messages, 35
memory map, 34
options, 29, 30
search paths, 30

Connection database, 260
example, 263
format, 262

CONTINUE FROM |, 111

Conventions
command line options, 293
command line syntax, 293
error messages, 299
filenames, 294
imakef file extensions, 298
search paths, 294
standard file extensions, 295

Core dump, 74, 143, 279
listing, 218

Current location, in debugger, 112
Cursor positioning, 341

D

Data, listing all, 216
Debug, support functions, 97, 111

Debugger, 73
command line, 75
environment variables, 78
errors, 133
monitor commands
definitions, 89-108
editing functions, 86
mapped by ITERM, 86
summary, 86-88
monitor page
commands, 85
scroll keys, 88
symbolic commands, 88
program hangs, 133
scroll keys, 85
symbolic functions, 108

Debugging
See also Monitor page
B004 boards, 82

72TDS 367 01

current location, 112

data, 5

inspecting channels, 110
inspecting memory, 125
interactive, 196

options, for different boards, 84
program termination, 79

single step, 280

TRAMs, 82

Default, memory map, 34
DELETE, 228

Directives, linker, 188
Directory path, 294

Disable
alias checking, 19
configurer warnings, 32
error detection, 8
interactive debugging, 16, 33
range checks, 9, 16, 31
run-time checks, 9, 16, 31
separate vector space, 16
usage checking, 16, 19
virtual routing, 32
warning messages, 9
Disassemble memory, 92
Display
debugging messages, 105
memory in hex, 95
object code, 205
processes, 105
reference, 216
run queues, 104
timer queues, 105

DRAM timimg parameters, 155

Dynamic code loading
file format, 58
listing files, 218

E

Early write, 153
Editing functions, 86
Editing makefiles, 235

EMI, 145
clock period, 153

March 1993

352 Index

[ENDOF FILE |, 89, 113 UNIVERSAL, 8
runtime, 300
end.offset, 163 severities, 299
[ENTERFILE], 113 Error flag
Entry point, 20 clearing in a network, 133, 289
Envisiiont vaiabies. 342 detection in interactive debugging,
accessing through iserver, 328 i
IBOARDSIZE, 53 Error messages
ICOLLECTARG, 51 format, 299
ICONDB, 254, 261 :E.collect, 67
ILIBRARG, 176 idebug, 133
ILINKARG, 187 idump, 144
ILISTARG, 208 iemit, 159
ISESSION, 254 ieprom, 174
ISIMBATCH, 281 ilibr, 182
ITERM, 82, 273 ilink, 199
TRANSPUTER, 254, 260 ilist, 219
used by idebug, 78 _‘1:;“"’5&335
EPROM, 30, 59 isef:!ver, 266
code layout, 168 additional, 268
devices, 172 igim, 282
EPROM program convertor, 163 iskip, 289
binary output, 170 oc, 20
block mode, 171 occonf, 35
command line, 164 runtime memory initialization, 56
control file, 165 Ethernet, 251
errors, 174
hex dump, 170 Event, 99, 279
Intel extended hex format, 171 Examples
Intel hex format, 171 #COMMENT, 16
Motorola S-record format, 170 #IMPORT, 15
output files, 170 :gPTION, g{ "
EPROM programming, 163 #DRAGMA LINKAGE, 19
eprom. space, 166 #PRAGMA TRANSLATE, 20
S bootstrap loader, 347
: : connection database, 263
ﬂ:m:;"'zdsgab'e’ 8,31 ieprom control file, 173
2 imakef, 228
mﬁ:ﬁ:&;ﬂ‘, 1:?11 mixed languages, 233
compatibility, 8, 31 °°5°a’"' 231
configurer, 31 o,
HALT, 8 occonf, 28

- ; o skipping a single processor, 287
ggllgc;lvg loading of libraries, 178 skipping multiple transputers, 287

UNDEFINED, 9, 17, 31 [EXTFILE], 113

72 TDS 367 01 March 1993

Index

353

Exported names, listing, 212

Extensions
file, 295
required by imakef, 222, 298
language, 3

External memory interface, 145
EXTERNAL pragma, 18

External references, listing, 219
extintel. See output.format
Extraction of library modules, 192

F

File
extensions, 295
imap source files, 241
required by imake£, 222, 298
identification, 217, 295
name, conventions, 294
types read by idebug, 77

(NS, 114

Free memory, 35
Function keys, idebug, 82

G
[GETADORESS], 113

Go to process, 95

[SOTOTRE T, 113
GUY, 9, 33

H

HALT error mode, 8, 31

Heap area, 54
position in memory, 53

[HELP |, 88, 108, 113

hex. See output. format

72 TDS 367 01

Hexadecimal

arguments to idump, 143
listing, 212

Hexadecimal format, for EPROM,

170

Host

for capability, 261
versions, xix

Host file server, 251

terminating, 288

IBOARDSIZE, 53, 79

errors, 56

icollect

command line, 48

command line options, 50
environment variables, 51, 53
errors, 67

ICOLLECTARG, 51
ICONDB, 254, 261
idebug, 73

command line, 75

options, 77
environment variables, 78
errors, 133
interactive mode, 81
post-mortem debugging, 79
restarting, 81

IDEBUGSIZE, 79

errors, 133

idump, 74, 143, 255, 285

errors, 144

iemit, 145

command line, 146

DRAM timing parameters, 155
errors, 159

index page, 148

input parameters, 150
memory read cycle, 156
memory write cycle, 157
timing information, 154

ieprom, 163

command line, 164

March 1993

354 Index
control file, 165 [INSPECT], 109
errors, 174 Inspect memory, 96
IF,9

ilibr, 175, 177
command line, 176
command line options, 176
error messages, 182

ILIBRARG, 176

ilink, 185
command line, 186
indirect files, 187

ILINKARG, 187

ilist, 15, 205
command line, 206
command line options, 207
errors, 219

ILISTARG, 208

imakef, 3, 7, 13, 198, 221
command line, 225
command line options, 226
deleting intermediate files, 228
errors, 235
examples, 228
file extensions, 222, 298
file formats, 234
linker indirect files, 225, 227
mixed language example, 233
occam examples, 231
target files, 222

imap, 239
command line, 240
command line options, 241
errors, 249
output file structure, 243

Implementation, compiler diagnos-

tics, 299
IMS B004, 285
IMS B008, 285
IMS B404, 83

(WG], 110
INQUEST, xxi, 34

72 TDS 367 01

intel. See output. format

Intel extended hex format, ieprom,
170

Intel hex format, ieprom, 170

Interactive debugging
collector option, 66
compiler support, 10
configurer option, 33
detecting the error flag, 83
disabling, 33
invocation, 81
methods, 75

[INTERRUPT], 111
ISEARCH, 30, 294

iserver, 251, 285
accessing transputers, 260
capability, 255
command line, 252
command line options, 252
connection manager, 265
environment variables, 254
error codes, 266
error messages, 266
exit codes, 266
functions, 251
halt system error mode, 255
loading programs, 254
new features, 265
passing parameters to a program,
255
protocol, 309
ALSYS - Alsys call, 335
CommandArgs - get command
line arguments, 333
CommandLine - get server
command line, 329
Core — read peeked memory,
330
Exit — exit the server, 329
Fclose — close afile, 312
Feof — test for end of file, 321
Ferror — get file error status, 322
FerrStat — Get file error status,
324

March 1993

Index

355

Fflush — flush a stream, 316

FGetBlock — read and retumn
success, 314

FGetRec —read a record, 319

Fgets — read a line, 315

file commands, 311

FileExists, 324

Fopen — open a file, 311

FopenRec - open record file,
317

FPutBlock — write and return
success, 315

FPutEOF — write end-of-file, 320

FPutRec — write a record, 319

Fputs — write a line, 316

Fread — read block of data, 313

Fseek — set position in a file,
320

Ftell — find position in a file, 321

Fwrite — write block of data, 313

Getenv — get host variable, 326

Getinfo — get host and server
info, 332

Getkey — get keystroke, 325

host commands, 325

Isatty — terminal connect status,
323

KPAR - Kpar call, 336

MSDOS - MS-DOS command,
334

packets, 309

Pollkey — test for key press, 325

record structured file
commands, 317

record structured file format, 336

Remove — delete a file, 322

Rename — Rename a file, 323

Requestkey — request keyboard
event, 326

reserved commands, 334

server commands, 329

SocketA - socket library call,
335

SocketM - socket library call,
335

System - run a command, 327

termination codes, 337

Time - get the time of day, 327

72 TDS 367 01

Translate — translate an environ-
ment variable, 328

Version — server info, 331
record sfructured files, 266
session manager, 252, 256, 265

customizing interface, 258
specifying the transputer to use,

255
stream identifier validation, 266
subsystem reset, 254
terminating, 255

on error, 255
user interrupt, 265

ISESSION, 254, 256

isim, 271
command line, 271
command line options, 272
errors, 282

ISIMBATCH, 281

iskip, 74, 285
command line, 286
command line options, 286
errors, 289

ispy, 133, 289
ITERM, 79, 82, 273, 342

ITERM file
example listing, 344
format, 339
keyboard, 342
screen, 340
use by simulator, 273, 274
version, 340

J

JEDEC, symbol, 154, 156
Jump instructions, in ROM, 169
Jump into program, 97
Jumping down a channel, 110

K

Keyboard, definitions, 342

March 1993

356

Index

L

Late write, 153
LFF files, listing, 218
libe.lib, 15

Librarian, 175
command line, 176
concatenated input, 175
linked object input, 177
options, 176

Library
building, 179
building optimized, 179
compilation, 10
extraction of modules, 192
index, 175, 178
indirect files, 175, 177
imakef, 225
linking supplied libraries, 188
listing index, 214
modules, 177
selective loading of, 178
usage files, 178
imakef, 225

LINE DOWN |, 89

[ONEUP), 88

Link
debugging, 99
debugging simulated, 279
map, 197

LINKAGE pragma, 18

Linker, 185
command line, 186
compatible transputer classes,
190
directives, 188
errors, 199

extraction of library modules, 192

indirect files, 187
imakef, 225, 227
LFF output, 191

selective loading of libraries, 178

TCOFF output, 191

72TDS 367 01

Linking, transputer targets, 301
Lister. See ilist
Loading programs
iserver, 251
iskip, 288
LoadStart, 34, 35, 61, 63
localhost, 261
Location, in debugger, 112
location.code, 32
location.vs, 32
location.ws, 32
Logical name, 342

M

Macros, in makefiles, 234
Main entry point, 195

Make programs, 221
Borland, 221
Gnu, 221
Microsoft, 221
UNIX, 221

Makefile generator, 221
command line, 225
errors, 235

Makefiles
delete rule, 235
editing, 235
formats, 234
macros, 234

MemConfig, 145
MemnotWrDO0, 145

Memory

configuration
ASCIl output, 148
customized, 145
file, 160
in PAL, 145
in ROM, 145, 168
PostScript output, 148
standard, 145, 153
table, 158

March 1993

Index

357

configurer, 145
command line, 146
default configuration, 148
errors, 159
input parameters, 150
interactive operation, 148
output files, 148

disassembly, 276

Hex display, 95

inspecting, 278

interface, configurable, T4 and T8
series, 145

mapper, 239
command line, 240
errors, 249

on-chip, 18, 35

parity-checked, 57

read cycle, 156

write cycle, 157

Memory dumper, 143

command line, 143
error messages, 144
Memory map, 100, 279
boot from link (network), 64
boot from link (single processor),
61
boot from ROM, 65
collector output, 60
configurer, 34
memory .configuration, 166
MemStart, 35, 61

MemWiait, 153, 157
connection error, 159

Mixed language programming
#IMPORT directive, 14
TRANSLATE pragma, 20
use of imakef, 233

[WODY), 111
Module data, listing, 213

[WONTOR], 114
Monitor page
See also Debugging
commands, 85
default address, 85

72 TDS 367 01

display virtual links, 107
Enter post-mortem, 106
exit, 106

simulator, 273

Monitoring the error status, 288
MOSTNEG INT, 85

Motorola S-record format, ieprom,
171

MS-DOS, 293

N

Network, dump, 101
listing, 218

Next error, 93
Non-bootable files, format, 58

Non—configured programs. See
icollect

notMemRd, 152
notMemS0, 152
notMemS4, 152
notMemWrB, 152

Numerical parameters, interpreta-
tion by isim, 274

o)

Object code, displaying, 205
Object file, 4

oc, 3
command line options, 7
error messages, 23
memory map, 11
syntax, 4
warning messages, 20

occam, interface code, 52

occonf, 27
command line options, 29, 30
error messages, 35
syntax, 28
warning messages, 36

On-chip RAM, 18, 35

March 1993

358

Index

Optimization, code placement, 18

Options
in occam source, 16
specify transputer target, 308
standard, 293
unsupported, 294

order.code, 32

order.vs, 32

order.ws, 32

Out of memory errors, idebug, 133
output.address, 168
output.all, 167
output.block, 167

output. format, 167

P

PAGE DOWN |, 89

[PAGEUP), 89
PAR, 9

Path searching, 294
PERMITALIASES pragma, 19
Port, 22

Post-mortem debugging
dummy network, 75
from core dump, 75
invocation, 79
R-mode programs, 74
T-mode programs, 74

Pragmas. See #PRAGMA
Priority, 104
ProcClockOut, 152, 153

Procedural interface data, listing,
215

Process
memory map, 105
queue, 280
displaying, 104

72 TDS 367 01

Processor
names, 99
types, 301

Protocol, iserver, 309

Q

Queue
process, 104, 280
run, 104, 280
timer, 280

Quit
debugger, 104
simulator, 279

R

R-mode programs, 74
RAM, 18, 30, 59, 65
Read, strobe, 152

[REFRESH], 88, 108
Refresh period, 152

Registers
assigning value, 280
memory dump, 144

[RELOCATE |, 88, 107, 112
reserved, 35

Reset, 82

Resource, 255

[RESUME |, 88, 108, 111

Resume program
from debugger, 98
from simulator, 278

[RETRACE], 88, 107, 112
Retry - server, 255
ROM, 30, 59, 65, 163

Root fransputer
debugging, 73
loading over, 285

root.processor. type, 166

March 1993

Index

359

Run queues, displaying, 104, 280

S

Scalar workspace, 59

Scheduling lists. See Process
queue; Run queue

Screen definitions, 340
Screen size, 340

[SEARGH], 113

Search path
configurer, 30
conventions, 294

Select process, 102

Select source file, 93

Selective linking, 196

Selective loading, libraries, 178
Separate compilation, 10
Separate vector space, 6, 16
SEQ, 9

Session manager, 252, 256
configuration file, 254

SHARED pragma, 19
Show debugging messages, 105

Simulator, 271
batch command files, 281
batch commands, 281
batch mode, 281
booting program, 279
command
definitions, 275-281
summary, 275
command line, 271
commands, 274
errors, 282
options, 272
starting a program, 277

SKIP, 32

Skip loader, 285
command line, 286

72 TDS 367 01

command line options, 286
errors, 289

srecord. See output. format
Stack, position in memory, 53
stack.buffer, 56

Standard memory configuration,
153

Standards
command options, 293
command syntax, 293
file extensions, 295

start.offset, 168

Static area, position in memory, 53
Static data, 54

Static variables, memory map, 239
STOP error mode, 8, 31

Subsystem
connecting, 82
reset, 286
wiring, 287

Symbol data, listing, 209
Symbolic debugging, 108

-

T-mode programs, 74

T4 series, configurable memory
interface, 145

T8 series, configurable memory
interface, 145

Target files, for imakef, 222

Target transputer, 301
command line options, 308

TCOFF, 4
listing files, 218

Terminate
on error, 255
the server, 255

Text files, listing, 218
Timer queue, displaying, 105, 280

March 1993

360 Index

Timing data, 154 position in memory, 55
Tm, 152
' 111 Virtual memory, 195
[TOGGLE HEX], 114 Virtual routing, disabling, 10, 32
Toolset

documentation, xx VMS, 293, 342

conventions, xxi
standards and conventions, 293

[ToP], 88, 107, 112

[TOPOF FILE 1, 89, 113 W
Traceback information, in ROM,
170
TRAM, 285 Wait
TRANSLATE pragma, 14 connection, 153
TRANSPUTER, 254, 255, 260 race, 153
Transputer error, 159
accessing, 252 states, 153
on a remote host, 261
on the local host, 261 Warnings. See Error messages
classes, 7
simulator, 271 Waveform diagrams, 156
targets, 4, 7, 301
command line options, 308 Wired down, 82, 287
§] Wired subs, 82, 287
UNDEFINED error mode, 9, 17, 31 Workspace, 18
UNIVERSAL error mode, 8, 31 default, 34
UNIX, 293 .
Write
Unresolved references, 196 mode, 153
Unsupported options, 294 strobe, 152
Update registers, 105 to memory, in idebug, 106
Usage check, 6, 16
disable, 19
User link, 252, 259
Z
\')
Vector space, 18, 59
default, 34 Z, command line option, 294

72TDS 367 01 March 1993

	Contents overview
	Contents
	Preface
	Tools
	1. oc - occam 2 compiler
	2. occonf - occam configurer
	3. icollect - code collector
	4. idebug - network debugger
	5. idump - memory dumper
	6. iemit - memory interface configurer
	7. ieprom - ROM program convertor
	8. ilibr - librarian
	9. ilink - linker
	10. ilist - binary lister
	11. imakef - makefile generator
	12. imap - memory mapper
	13. iserver - host file server
	14. isim - T425 simulator
	15. iskip - skip loader

	Appendices
	A toolset conventions and defaults
	B Transputer types and classes
	C iserver protocol
	D ITERM files
	E Bootstrap loaders

	Index

