AMOS"

occam 2 Toolset
User Guide

INMOS is a member of the SGS—THOMSON Microelectronics Group

© INMOS Limited 1993. This document may not be copied, in whole or in part, without
prior written consent of INMOS.

@) fmmos; IMS, occam and DS-Link are trademarks of INMOS Limited.

Ly7, S55THOMSON is a registered trademark of the SGS-THOMSON Microelectronics Group.
INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

INMOS document number: 72 TDS 366 01

Contents overview

Contents

Preface

Basics

1 Introduction fo trans- |An introduction to transputers and transputer
puters programming.

2 Introduction to the An introduction to the occam 2 toolset and its
toolset features including a list of the fools provided.

3 Developing programs | An overview of the program development cycle

for the transputer

using the toolset.

4 Getting started

Shows the command sequences to generate
occam programs, using simple examples.

5 Programming single |An introduction to programming single trans-
fransputers puter networks.
6 Configuring Describes the configuration language and how
transputer programs |to use it to configure software on transputer
networks.
7 Loading transputer Describes how to load programs onto trans-
programs puter networks, with brief descriptions of the
tools used.
8 Access to host Describes how to access host services using
services the host file server and i/o libraries.
9 Debugging transputer |Describes how to use the debugger to debug
programs transputer programs in post-mortem and

breakpeint modes.

Advanced techniques

10 Advanced use of the
configurer

Describes advanced features of the configurer
which can be used, for example, to partition
networks.

1 Mixed language
programming

Describes how to mix C and occam code at
source and configuration levels.

12 EPROM Programming

Describes how to use the EPROM support tools
to develop ROM-based programs.

13 Low level program-
ming

Describes the low level facilities of occam.

72TDS 366 01

March 1993

ii Contents overview

Appendices
A Configuration Defines the syntax of the transputer configura-
language definition tion language.
B Equivalent data types |Lists type equivalences in C and occam.
Cc Transputer instruction | Lists instruction sets for INMOS transputers.
set
D Transputer code inser- | Describes the facilities for inserting transputer
tion instructions into occam programs, using the
' ASM construct.
E Glossary A glossary of terms.
F Bibliography Lists literature and documentation for further
reading.

72 TDS 366 01 March 1993

Contents

Contents overview i i
Contentso iii
Preface: ..« cuvsssompsommsmme ve e i S S 08 S e xvii
HOSEVSISIONS' uonmommaass w5 8% 50 Tm 55 55 05 5 0 6 0 i et msmne xvii
Aboutthismanual o XVii
Examples usedinthismanual xviii
About the toolset documentationset Xviii
Otherdocuments i, Xix
FORTRANTfooIset Xix
INQUEST o .o onmsusmssmmmmssra o o e s e sies sss ass 94 9 19 Xix
Documentationconventions, Xix
BSEBIEE 5555 100 M0 5 mmer msnsnis momomm s womints simsnsn, WOGCHSH oSPR RURASHS xxi
1 Introductiontotransputersc.o.... 1
1.1 BEc- 1o 1] OO — 1

1.1.1 Transputerlinks 1

11.2 Process schedulingovvisimmmmemorse 2

113 Real time programming 3

114 Multitransputer systems 3

1.2 Programming models: counn sesaon i 36 03 0 5 o o msens 4
1.21 Parallel processingmodel 4

1.3 Transputerproducts 4

1.31 Toolset products: | cooe v on v o o om0 00 0 va s 5

2 Introductiontothetoolsetccevun.... 7
21 131 i6Ts [Tec (1 T e A T T 7

22 Toolsetfeatures i, 7

23 Standard objectfile format 7

24 occam 2compiler...........oeeiiiiiiiii 8
241 Programming: model....... ceawss wvan s i s s 8

242 Language extensions 8

243 occamlibraries i, 9

244 Low level programming 9

25 Multilanguage linkeruvwsisruseesame e v vs 9

26 Configuration system 10
2.6.1 Software routing and multiplexing 10

iv Contents
26.2 Codeanddataplacement...................... 10

27 Mixed language programmingcovnvnvnnn.. 11
2.8 TOOISBL BUMMANY: cuwni w3 v 15 & 3 S sasaTa s 12
3 Developing programs for the transputer 13
3.1 Introduction 13
3.2 Program development using the toolsets 13
3.2.1 Compatibility with previous toolset releases 16

33 Compilingooniii e 17
34 Tools for building executablecode 17
341 LnKer =K s cam i o S iacmansmmns 17

342 CONfIQUIST” :...vi v v saassimmiim 18

343 Code collector—icollect........................ 18

35 Loading and running programsccoeiiii.n... 18
3.51 Host file server—iserver 18

35.2 Skip loader=isKip' .covevn s v v i s sn on o 18

386 Program development and support 19
3.6.1 Network debugger—idebug 19

3.6.2 Memory dumper—idump 20

3.6.3 Libradan—dlib e o0 0 0 3 g sresmnssniines 20

3.64 Binary lister=ilist:« v o s s s 20

365 Makefile generator —imakef 20

366 Memory mapfool—imap 20

300 T420 simulator<=8IML. .. onmmmusvsnmsss e o 21

37 EPROM programmingccovieieninenenennnnnn... 21
3.71 EPROM programmer —ieprom 21

3.7.2 Memory configurer—iemit 21

3.8 File typesandextensionsccooiieiaat. 22
3.8.1 File extensions required by imakef 23

39 Errorreporting ... 25
310 Hostdependentiesussvwevammmmas on i 5 v v v 25
Command linesyntax 25

340 Flenames: isvsvssnsvssovemasmsss o o oy s sias 26

3102 Searchpath 26

3.10.3 Environmentvariables 26

3.104 Default command line arguments 27

3.11 Linker startup and indirectfiles 28
3 ANSLEC TooISel -....cvumnmiainin v v 28
cstartupdnk ... 29

Cslantrd Ik o cown i @ ssmaaa 29

cnonconfnk 29

3112 occam2Toolset 30

3.11.3 Mixedlanguageprograms....................... 30

Contents v

3.11.4 Other startup files supplied with the ANSI C Toolset 31

3.12 Unsupportedoptionscccoiiiiiiinna. 31
4 Gettingstartedciiiiiiiiiiii 33
41 IntrodUCtion «uenmmmmemsn s m R TR S i esm 33
4.2 Runningtheexamples 33
421 BOUNCES.. «-vicwsivams scisaiorssassssagasrarsis s s e s g s 34

422 Examplecommandlines 34

423 Using the simulatorc.oviiiviiiviiiiianines 34

4.3 The:BXample: BIOGIAIM:..cumiramsmrss s s m s 34
431 Compilingthe program 35

43.2 Linking the:programo smoes s s 35

433 Configuring the program 36

434 Collectingtheprogram 37

435 Running the program on a transputer board 37

436 Running the program using isim 38

4.3.7 A short cut to creating a bootable file 38

44 Compiling and linking for other transputer types 39
45 Using imakel.. .o nwmsmnammrmmams s siyma s 39
5 Programming single transputers 41
5:] Programexamplescoiiiiiiiiiin.. 41
5.2 OCCaAM Programscveriiiiiieeennneannnnn 41
5.2.1 Compilingprogramscccuunn. 42
Compilation information 43

5.22 Linkingprograms 43

H:23 Displaying the contents of codefiles v 44

524 Making bootable programs s

525 Loading and running programs 44

526 Interruptingprograms 45

5.3 occam:emorbandBng . . v o ssonin v s sm s se S 55 en 45
5.3.1 Errormodes, 45

Error mode UNDEFINED 46

53.2 Errordetection...................... 46

54 Interactive debugging and virtual routing 48
5.5 Aliasand usagechecking............................... 48
5.6 Using separate vectorspaceccovnvnnnn. 50
57 Sharing source betweenfiles 51
5.8 Separate compilation 52
5.8.1 Sharing protocols and constants 52

5.8.2 Compiling and linking large programs 53

59 UsingimaKef ...t 54

vi Contents
510 Librariescooiiiiiii 54
5.10.1 Selectiveloading.............................. 55

5.10.2 Buildinglibraries 55

511 Example program — the pipelinesorter 57
511.1 Overviewoftheprogram 57

5.11.2 Thechannelprotocol 59

5113 Thesortingelement 60

5.11.4 The input/output process 61

5115 Thecallingprogram 62

5.11.6 Compilingtheprogram 63

5.11.7 Linkingtheprogram 63

5.11.8 Configuring and collecting the program 64

5119 Runningtheprogram 64

5.11.10 Altemative method of creating a bootable file 65

5.11.11 Automated programbuilding 66

6 Configuring transputer networks 67
6.1 Introduction, 67
6.1.1 Mixing lanQuUages . .. o cosswsenssaissessmanasey 67

6.2 Configurationmedell 68
6.2.1 Configurationlanguage 69
Importing code and sourcefiles 70

6.2.2 Overall structure of a configuration description 70

6.3 Hardware:descriplioncciassvwisin svsswons vo ss v 2 74
6.3.1 Declaringprocessorsc..o.... 74

632 NODEaUIDIRES -...onuinwnmonmncsmmmmsms s swes 74

6.3.3 NETWORKdescription 75

6:34. Dedding EDGES .qcwunmsninsmess s sanimess 7

635 Declaing ARCS ...ucuvusmsmasin vvsmemsnsnas 78

636 Abbreviations.._ 79

637 Hostoonnecloncovevsvsscsmesmmemnans 79

6.3.8 Examples of network descriptions 80

6.4 Software descripionl 81
6.4.1 Libraries of linked units 82

6.4.2 Example ... 82

6.5 Mapping descriptions’ so s wspney sssmsssssssivs 83
6.5.1 Mapping processes 84

R o T T — 85

653 Mappingchannels 87

6.54 Mapping without a MAPPING section 88

6.55 Movingcodeanddataareas 88

656 Reservingmemoryc.covvvvrnnnnnnnn. 89

6.5.7 Absolute address code placement............... 90

6.5.8 Control of routing and virtual channel placement .. 91

Contents vii
routecost: ... 91

POMBTANCEL: 5 iuo sos w55 v st 5 0w il w03 506 603 904 o3 &% 435 574 46 91

linkquota:l 92

0CCONfiNC ... e e 92

6.5.9 Control of debugging by the INQUEST tools 92

6.5.10 Mappingexamplesc.coeinnn.. 92

6.6 Example: A pipeline sorter on four transputers 93
6.6.1 Buildingthe program 95

6.6.2 Runningtheprogram 97

6.6.3 Automated program building 97

6.6.4 Other configurationexamples................... 97

6.7 Conditional configurations 98
6.7.1 Example: Configuration using conditional IF 98

6.8 Summary of configurationsteps 100
6.9 Further considerationscoviiiriinnnen... 100
6.9.1 The effect of occonfonidebug 100

6.9.2 Reliable Channel Communications 101

6.9.3 Checking the configuration 102

7 Loading transputer programsccvvuveinan 103
7.1 Infroduction 103
7.2 TooIS for Ioading s covy o smmmve ss 5 v s 2 06 o5 o6 2% 5% P3R5 103
7.3 The boot from link loading mechanism 104
74 Boards and subnetworks, 104
7.4.1 SubsystemWINNg: .« .. cocsvnin i vimmes i o . 105

74.2 Connecting subnetworks 105

75 Loading programs for debuggingccoo.... 106
7.5.1 Breakpoint debugging 106

7.5.2 Board: WPeS .vvvmvansmnmumsnsnsnersrsiam e 106

753 Useoftheroottransputer 106

7.54 AnalyseandReset 107

7.6 Exampleskiplaad .o venmmpsmnaasni i s s e smaa s gnoms 107
7.6.1 Targetnetwork ..o, 107

7.6.2 Loading the programcccovvmvivianns 108

763 Clearingthenetwork 108

8 Accesstohostservicescciiiiiiiiiiiininnn 109
8.1 Introduction ... e 109
8.2 Communicating with the host’ ... 109
8.2.1 The hostTile SBIVET vz s e s 109

822 LSBrany:SUPPOI: oo s v 110

8.2.3 Filestreams ..ot 110

Prolocols uouuasammenenses 5 5 6 9 o5 15 6 S 111

viii Contents
8.3 Host implementation differences 111
84 Accessing the host fromaprogram 111

8.4.1 Using the simulator 111

8.5 Multiplexing processes tothe host 111
8.5.1 Buffering processestothe host 113

8.5.2 S Ts =111 7T) o AR SO 113

9 Debugging transputer programs 115
9.1 Introduction 115
9.1.1 Post-mortem debugging 115

9.1.2 Interactive debugging 116

9.1.3 Mixed language debugging 116

9.14 Bebugging With ising <as e commes o o0 v s va .0 116

9.2 Programs thatcanbedebugged 116
9.3 Compiling programs for debugging 117
Minimal debugging information M7

occam channel communication 117

C channel communication 118

9.3.1 EMOrMOAdes s s s s s ataem 118

94 Debugging configured programsccoevvuunnn. 118
94.1 Debugging with configuration level channels 119

94.2 Debugging with the configurer reserved attribute .. 120

95 Debugging boot from ROM programs 120
9.6 Post-mortem debuggingcciiiiiiiiiin 120
9.6.1 C and FORTRAN programs 120

9.6.2 OCCAM Programsoovernerennnnennnnnn 121

96.3 Interrupted programs ... 122

9.6.4 Pality 6018 & i o s on on cnimsmanin o5 455 o 2 ois 4 122

9.6.5 Debugging the rootfransputer 123
Skiploadingcooiiiiiiii 123

9.7 Interactive debUgaINg . :u svos sovmnemvamsmng i o5 56 v 0 4 123
9.7.1 Runtime kernel 123

9.7.2 Processors without hardware breakpoint support .. 125

9.73 Creating programs for debugging 125

974 Loadingtheprogram 126
Clearingerrorflagso...... 126

Parity-checked memory 126

975 Running thedebugger 127

976 Interactive mode functions and commands 128
Symbolic:unclons ..uwananis o sewmmrsemmars 128

Monitor pagecommands 128

9.7.7 Breakpoints usvnmicii 6 i 15 anaamnii naims 128

9.8 Programmt ferminiation’ ...ovawswmsse s s 128

Contents iX
9.9 Symbolic fadiliies couew e os on v on oo o o w0 o e 129
HEIP SOROEN & wu coom s i 53 50 o 45 s 558 90 95 08 53 8 129

9.9.1 Locatingtosourcecode 130

992 Browsing sourcecode 130

993 Inspecting source code and variables 131

994 Jumpingdownchannels 131

995 Tracingprocedurecalls 131

9.9.6 Modifyingvariables 132

9.9.7 Breakpointingoiial.L. 132

998 Miscellaneous functions 132

910 Monitorpagecooviiiir 132
9.10.1 Startupdisplayciiiiiiiiii... 133
Process WorkspaceorStack 134

Process Descriptors 134

Process pointersovsvmeesiv s s 135

Practicalnotes 135

Registors: covocaenumvsseavam s se se g vy 135

Emorflags i, 135

CIOCKS oovoios e 75,55 56 56 £6 59 5 we sir sor 2ommae 136

Partyermors ...t 136

Memorymapccovviiiiiiii i 136

910.2 Monitorpagecommands 137
Examiningmemoryccoiinn.. 137

Locating processescoiill. 137

Specifying processes . i i s svsavssirsngss os o 138

Selecting processescoiiiaaL. 138
Otherprocessorscccoviviienn.... 138
Breakpointcommands 139

Changing to post-mortem debugging 139

911 Locating processesvwwienimesms sviesssososios 139
9111 Running onthe processor 140

9.11.2 Waitingonarunqueue 140

9.11.3 Waitingonatimerqueue....................... 140

9.11.4 Waiting for communicationonalink 141

9.11.5 Waiting for communication on a software virtual link 141

9.11.6 Waiting for communication on a channel 141

9.11.7 Interrupted by a high priority process 141

9.11.8 Processes terminated or not started 142

9.11.9 Locating to procedures and functions 142

912 Debugging supportlibrarycccoiiiiiin.s. 142
9121 Examplest 143

C eXamPle! .. s vvs v o o5 o o s 0 0 s 55 0 b 144
occamexample ..., 145

9.12.2 Actions when the debugger is not available 145

9.13 Debugging withisimcccoiiiiiiiiiiiiiiin... 146

Contents

9.14

9.15

9.16

9.13.1 Commandinterface 146
9.13.2 Usingthesimulator............................ 146
9.13.3 Program execution monitoring 146
Breakpoints L. 146
Single stepexecution 147
9134 Coredumpfile.............covviiiiininenn. 147
Hints and furtherguidance 147
9.14.1 Invalidpointers, 147
9.14.2 Examining and disassembling memory 147
9.143 Scoperulesiiiiiiiiiii i, 147
9.144 Inspecting soft configuration channels 147
9.145 Locating to IF, ALT and CASE inoccam 148
9146 Analyzingdeadlockciuinnnn. 148
Points to note when using the debugger 151
9.15.1 Abusinghardlinksoal. 151
9.15.2 Examining an active network (the network is volatile) 78
9.15.3 Using with channel communications 152
9.154 Debugging in the presence of software virtual links 152
9.15.5 Selecting events from specific processors 153
9.15.6 Minimal confidencecheck 153
9457 INTERRUPT KoY cnumsus i wanmnm s 153
9.158 Programcrashesc.ccoiviiniinn... 154
9.15.9 Undetected programcrashes 154
9.15.10 Debugger hangs when starting program 154
9.15.11 Debuggerhangsccoviiineinnnn.. 154
9.15.12 Catching concurrent processes with breakpoints .. 155
9.15.13 Phantom breakpoints 155
9.15.14 Breakpoint configuration considerations 156
9.15.15 Determining connectivity and memory sizes 156
9.15.16 Long sourcecodelines 156
9.15.17 Resuming breakpoints on the transputer seterr
instruction 156
9.15.18 Shifting by large or negative values 157
9:15:19 Aspectsiof Cdebugging . ..vves vs vowvmimmanaaes 157
Arrays as arguments to C functions 157
Backtracing with concurrent C processes 157
Errors generated by the full Clibrary 158
Errors generated by the reduced C library 158
Cicompileroptimizations«. vs csvammmesvmmemss 158
Cdebuggingexampleo iiiiiiiinain.. 159
9.16.1 Theexampleprogramc.coovvvvennn.. 159
9.16.2 Compiling and loading the example 164
9.16.3 Setting initial breakpoints 165
9.164 Startingtheprogram 166
9.16.5 Enteringthedebugger 166

Contents Xxi

9.16.6 Inspectingvariables 166

9.16.7 Finding addresses of variables 166

9168 Backtracingoi i 166

9.16.9 Jumpingdownachannel....................... 167
9.16.10 Inspecting by expression 167

9.16.11 Modifyingavariable 167
9.16.12 Backtracingtomain() 167
9.16.13 Entering #includefiles 168
9.16.14 Quitting thedebugger 168

9.17 occam debuggingexample 168
9171 Theexampleprogram 168

9.17.2 Compiling the facs program 171
Usingimakef 172

Using the toolsdirectly 172

9.18 Breakpointdebuggingoov it 172
9181 Loadingtheprogram 172

9.18.2 Setting initial breakpoints 173

9.183 Staringtheprogram 173

9.184 Enteringthedebugger 173

9.185 Inspectingvariables 173

9186 Backlracingvaasuoesiesinin e vioron s vonn 174

9.18.7 Jumpingdownachannel 174

9.188 Modifyingavariable 174

9.189 Entering#INCLUDEfiles 174
9.18.10 Resumingtheprogram 174

9.18.11 Clearingabreakpoint 175
9.18.12 CQuitting thedebugger 175

9.19 Post-mortemdebugging 175
9.19.1 Running the example program 175

9.19.2 Creating a memory dumpfile 176

9.193 Runningthedebugger 176
Inspecting variablescco.ioiiwiinovisvsan 176

Inspecting channels 177

Retracing and Backtracing 177

Displaying process queues 178

Gotoprocessooiiiiii 178

Advanced techniquescciiieieiiiininen., 179
10 Advanced use of the configurer 181
101 Codeanddataplacementcccoenu.. 181
1011 Defaultmemorymap 181

10.1.2 Other memory configurations 182

1013 reservedattribute 183

Xii Contents
Example: 184

10.1.4: location allibites . vovsm aaesnet 184
Example (on a 32-bit processor): 185

10.1.5 orderatiributesl 185

10.1.6 location versus order aftributes 185

10.2 Channel communication — configuration techniques 185
10.2.1 Routing and placementconstants 186

10.2.2 Optimizing important application channels 187

10.2.3 Virtual communications — use of fast memory 187

10.24 Confrol of routing and placement 188
Introduction to routing and placement attributes ... 188

ROUINGCOSY . v vi v i o5 vonmmmvsrememin s we 188

Tolerancecooveiiiiniiiiiii i 189

LINKGUORET s won 5 Siesiimsmimes doms s 19 - 190

The minimal spanningtree 190

Summary of routing and placement attributes 191

Prevention of through-routing via critical processors 192

Use of additional processors for through-routing .. 192

Support for memory-critical systems 193

10.3 Example — optimized filter test program 194
11 Mixed language programmingcovvvvveneenn. 199
11.1 Mixed language programscovvvviennenennnne. 199
11.1.1 Declaring externalroutines 200

11.1.2 Translating identifiers 200

1:1.3 Paramelerpassing ... cvvwsmmss s s s s s 4 201
Parameter compatibility 201

Range checkinginoccam 202

occamtimers i 203

11.1.4 Passing array parameters 203
CcallingOCCamvviivriieniinsninansnsnnes 203
Multi-dimensional amrays (C calling occam): 205
occameceallingC ... 205
Multi-dimensional arrays (occam callingC) 207

11.1.5 Functionreturnvalues 207
Clunctiontype void. . cuavnmses o v v 208

Restrictions on functions that may be called 209

11.1.6 Global static base parameter 209
Method 1 — dummy GSB parameter. 210

Method 2 — nolinkpragma 211

Method 3 — using call_without_gsb function 212

.47 Linking the programune i o snwmvan s vssmi 212

Calling oceamMromiC. v v sumssnimmssmmmsenzi 212

Calling C from DCCAM ..cvcviiin iivivimaoani e 212

Contents Xiii
11.1.8 Allocating memory for C functions called from occamzia
Thestaticarea 213
Theheaparea:c.o.ivvviiiivininiiiins s, 213
Providing staticand heap 213
Deciding whether a static area is required 213
Calling functions which do not require static or heap 214
Calling functions which do require staticorheap .. 214
EXSIO oociniisisnnismses 5o o e v s s 217
11.1.9 Restrictionsandcaveats 220
| g | e U 220
Rules forimportingCcode 220
Rules for importing occamcode 221
11.2 occaminterface procedures.......................c..... 222
11.21 Interfacecodeo ..., 222
TYPOIT i s v o oo o ooe 5 o aecsss SO U0 o350 33 2 222
TYPE 2 222
TP c v i 65 513 55 55 5% 55 Bbeioummsecmommce mam merr e g 223
Channelamayscccooiviiiiieinnnnnn.. 223
Reservedchannels 224
11.22 Parameterstothe Cprogram 224
11.2.3 Stack and heap requirements 225
Stack overflow detection 225
11.24 Type 1 interface definition 226
Proceduralinterface 226
ParameterstoCprogram 226
Example ... 227
11.2.5 Type 2 interface definition 227
Procedural interface 227
Parametersto Cprogram 228
EXAMDIE & i v s 50 50 50 95 65 038 0 s smmene moncrinct ais 200 229
11.26 Type 3interface definition 229
Proceduralinterface 230
ParameterstoCprogram 230
EXamble ...comnmmemmmmmmesmnssmmsmmssmnmsie 231
11.2.7 Building the occam equivalent process 231
12 EPROM programmingcvvieivvrinvnnnnnn 233
121 Introduction, 233
122 Processing configuraions: . cocovecssmmn sumosesusmswmms 234
12.2.1 Single processor, run fromROM 235
122.2 Single processor, runfromRAM 235
1223 Multiple process, multiple processor, run from RAM 235

1224

Multiple process, multiple processor, root run from ROM,
rest of network unfromRAM 235

Xiv Contents
123 The EPROM ool iepromcoovivinieieiniiinennns 235
124 Using the configurer and collector to produce ROM-bootable cozdae6
125 Summary of EPROM tool steps for different configurations .. 237

1251 Usingicconf ..., 237

12.5.2 Single processor unconfigured occam program .. 237

12563 Using 0cconf . .. i v vo vn v sviiinniionsss s e on e 238

13 Lowlevel programming.............cooiviiivennnnnnn, 239
13 ANOCRHONT: oo o v i e v v s epovmes eae e 75 53 58 5 5 5 239
1311 ThePLACEstatement 240

13.1.2 Allocating specific workspace locations 241

13.1.3 Allocating channelstolinks 242

13.2 RETYPING channels and creating channel array constructors 243
13.3 Codeinsertionc i 245
13.3.1 Using the code insertion mechanism 246

13.3.2 Specialnames...........ccvvveiiieninnnennnnn. 248

13:3.3 Labels and Jumpscoiswnin s cosiwvavmigsi 248

1334 Workspacezerociiiiiiiinn.. 249

13.3.5 Belowworkspaceslots 249

13138 Channels: s s i 249

13.3.7 Programmingnotescccviininn. 249

134 Dynamic codaloadifigoosmevnsnss oo is snsninas s 250
1341 Callingecodecovviiiiiiiiiiii 250

1342 Loadingparameterscoooinnn... 252

1343 Examples 253
Example 1: load from linkandrun 253

Example 2: systemloader....................... 253

13.5 Extraordinaryuseoflinks 256
13810 Introduction: v 5 w0 o v e o 256

13.5.2 Clarification of requirements 256

13.5.3 Programmingconcems 257

13.54 Input and output procedures 257

1355 Recoveryfromfailurecccoeiiinnn.. 258

13.5.6 Example: a development system 258

13:6: Schedullng .. w v v on o mvim s srensresieuae & o i W 260
13.7 Settingtheerrorflagcoooiiiii ... 260
PV o] o<1 T 1 T~ 261
A Configuration language definition 263
A1 NOtation v s cusssssnmmmmemme e T BT SRS 263
A2 Infroduction i 263

Contents XV

A3 New types and specifications 264
A3.1 Syntax of configuration description 264

A4 Hardware description 264
Ad1 Processorattributes 265

A42 Syntax definition 266

A5 Software-description’ccvivsisivicsiassieiies s 267
AS5.1 Syntax:definition ..v.v v ieicr v vim e e s 267

A6 Mapping structure ... 267
AB.1 Syntax definition, 268

A7 ConStraINtS: «vwmwivvaien s frasmmhi e 269
B Equivalentdatatypesccoiiiiiiiinnnn.. 271
B.1 occamasthecallinglanguage 271
B.11 Parameterpassing 271

B2, Retumnvalles: . ..o v s i sa su vwan i 56 o5 i 55 o 272

B.1.3 Example of passing parameters fromoccamto C 273

B.2 Casthecallinglanguage 275
B.2.1 Parameterpassing 275

B.2.2 ROUrMNVARIOS! « vx wn v wwemmnssvnm s 277

B.23 Example of passing parameters from C to occam 277

C Transputerinstructionset 281
CA1 Prefixing instructions 281
C.2 Directinstructions 281
G:3 OPBratlons mucsssms s s o s s i b poses s s eesrtaaseos 282
Cc4 Additional instructions for T400, T414, T425and TB 285
C.5 Additional instructions for IMS T800, T801 and T805 285
c5.1 Floating-point instructions 285

Cb %ddlstlonal instructions for IMS T225, T400, T425, T800, T801, -

...

C.7 Additional instructions for the IMS T225, T400, T425, T801 and
T805 287

C.8 Instructions supported by ‘sequential code insertion’ 288

D Transputer codeinsertion............................ 289
D.1 Inline transputer code insertion 289
D.1.1 Sequential code insertion 289

D.1.2 Fullcodeinsertion 289

D.2 ASMconstruct 289
D.21 SyntaX .., 289

E Glossarycooiiiiiiiiiiiii i iiiiiiiiiiieianaennns 293
F Bibliography ... 301

F.1 TrANBPULETSE . o s o0 a5 55 58 45 s s e o e me s e s 301

xvi Contents
F.2 Cprogrammingo.ueinmeeeei i aiaaeannns 301
F3 OCCaM Programmingccevreirieneeneannennnnn. 302
F4 INMOS technicalnotes, 303
F.5 Development Systems v cusi v s v sosn s sosasaos s 304
F.6 Referencest 304
Index ... 307

Preface

Host versions

The documentation set which accompanies the occam 2 toolset is designed to
cover all host versions of the toolset:

* [MS D7305 - IBM PC compatible running MS-DOS
« |MS D4305 - Sun 4 systems running SunOS.
» IMS D6305 - VAX systems running VMS.

About this manual

This manual is the User Guide to the occam 2 toolset and is divided into two parts:
‘Basics’ and ‘Advanced Techniques’ plus appendices. In addition some chapters
are generic to other INMOS toolsets.

Differences from the previous release of the occam 2 toolset are listed immedi-
ately after this preface.

The basic section introduces the transputer and the toolset; provides an overview
of the development cycle and then provides a chapter on each of the following:

» Getting started — a tutorial.

» Parallel programming using a single transputer.

* The configuration process.

» Loading programs onto a transputer network.

* Access to host services.

* Debugging programs with the toolset debugger idebug.

The advanced section is aimed at the more experienced user and covers the
following topics:

= Advanced use of the configurer including placing code and data at specific
memory locations and the software virtual through-routing mechanism.

¢ Mixed language programming.
» Developing programs for EPROM.

« Low level programming facilities provided by the toolset e.g. dynamic code
loading.

The appendices provided in the User Guide include a glossary of terms and a bibli-
ography.

72 TDS 366 01 March 1993

Xvii Examples used in this manual

Examples used in this manual

Sources for many of the examples used in this manual can be found in the exam-
ples/manuals subdirectory supplied with the toolset. This directory is further
subdivided to group related example files. ‘Readme’ files provide guidance on the
content of the examples subdirectories, together with brief instructions about how
to build the examples.

Only complete examples are provided in source form, code fragments listed in the
manuals are not included.

About the toolset documentation set
The documentation set comprises the following volumes:

» 72 TDS 366 01 occam 2 Toolset User Guide (this manual)

* 72 TDS 367 01occam 2 Toolset Reference Manual

Provides reference material for each tool in the toolset including command
line options, syntax and error messages. Many of the tools in the toolset
are generic to other INMOS toolset products, e.g. the ANSI C and
FORTRAN toolsets, and the documentation reflects this — examples may
be given in more than one language. The appendices provide details of
toolset conventions, transputer types, the assembler, server protocol,
ITERM files and bootstrap loaders.

* 72 TDS 368 01 occam 2 Toolset Language and Libraries Reference
Manual

Provides a language reference for the toolset and implementation data. A
list of the library functions provided is followed by detailed information
about each function. Details of extensions to the language are given in an
appendix.

e 72TDS 379 00 Performance Improvement with the INMOS Dx305 occam
2 Toolset

This document provides advice about how to maximize the performance
of the toolset. It brings together information provided in other toolset docu-
ments, particularly from the Language and Libraries Reference Manual.
Note: details of how to manipulate the software virtual through-routing
mechanism are also given in the User Guide.

e 72 TDS 377 00 occam 2 Toolset Handbook

A separately bound reference manual which lists the command line
options for each tool and the library functions. It is provided for quick refer-
ence and summarizes information provided in more detail in the Tools
Reference Manual and the Language and Libraries Reference Manual.

72 TDS 366 01 March 1993

Preface XiX

» 72 TDS 378 00 occam 2 Toolset Master Index

A separately bound master index which covers the User Guide, Toolset
Reference Manual, Language and Libraries Reference Manual and the
Performance Improvement document.

Other documents

Other documents provided with the toolset product include:
= Delivery manual giving installation data, this document is host specific.
« Release notes, common to all host versions of the toolset.
» ‘occam 2 Reference Manual’ published by Prentice Hall.

‘A Tutorial Introduction to occam Programming’ published by BSP Profes-
sional Books.

FORTRAN toolset

At the time of writing the FORTRAN toolset product referred to in this document
set is still under development and specific details relating to it are subject to
change.

INQUEST

The INQUEST products referred to within this document are INMOS window-
based debugging and profiling products, which may be bought separately and
used with the toolset.

Documentation conventions

The following typographical conventions are used in this manual:

Bold type Used to emphasize new or special terminology.

Teletype Used to distinguish command line examples, code fragments,
and program listings from normal text.

Italic type In command syntax definitions, used to stand for an argument
of a particular type. Used within text for emphasis and for book
titles.

Braces {} Used to denote optional items in command syntax.

Brackets [] Used in command syntax to denote optional items on the
command line.

Ellipsis . . . In general terms, used to denote the continuation of a series. For
example, in syntax definitions denotes a list of one or more
items.

| In command syntax, separates two mutually exclusive alterna-
tives,

72 TDS 366 01 March 1993

XX Documentation conventions

72 TDS 366 01 March 1993

Basics

72 TDS 366 01 March 1993

72 TDS 366 01 March 1993

1 Introduction to
transputers

This chapter introduces transputers and the programming models which may be
adopted when designing programs for the transputer. It describes the main
features of the transputer and transputer systems, and introduces the Communi-
cating Sequential Process (CSP) model of parallel processing.

1.1 Transputers

Transputers are high performance microprocessors that support parallel proces-
sing through on-chip hardware and external communication links. They can be
connected one-to-another by their INMOS serial links in application-specific ways
and may be used as building blocks for complex parallel processing networks or
as powerful dedicated microprocessors.

The transputer is a complete microcomputer on a single chip. In addition to hard-
ware support for concurrent programming and inter-processor communication it
contains:

* A very fast (single cycle) on-chip memory.

* A programmable memory interface that allows external memory and
memory mapped devices to be added with the minimum of supporting
logic.

= System services for integrating transputer systems.

¢ Real time clocks.

» On the T8 series, an integral floating point unit.
Figure 1.1 shows the generalized architecture of the INMOS family of 32-bit trans-
puters. 16-bit transputers are also available.
111 Transputer links

Links allow processes running on connected processors to exchange data and
synchronize their activity. Support for link communications is implemented in hard-
ware on each transputer chip. Communications down links operate concurrently
with the processing unit and data can be transferred simultaneously on all links.
Most transputers have four links except the IMS M212 and T400 transputers which
have just two links.

72 TDS 366 01 March 1993

2 1.1 Transputers

Transputer links allow tools such as debugging programs to examine memory
directly, from a remote processor. Links also provide a means of loading programs
onto a network from the host down a single transputer link. Alternatively a network
can be loaded via its links from a ROM on a single transputer.

BootFromROM —>| ’_
Analyse —™ System N 30.pit
Raset services A Processor
Error =]
6 Link =+—In
N interface ——= Out
A Link =t— In
On-d'lip A N interface ——= Out
RAM
) p Link =—In
h— interface ——= Out
AN Link <—In
interface ——= Out
1l
Application specific interface

Figure 1.1 Transputer architecture

11.2 Process scheduling

Each transputer has a highly efficient run-time scheduler for time-sharing user
application processes running on the same transputer. Within a single transputer
communication between processes is supported using single words in memory.
Processes waiting for input or output, or waiting for a time-slice, consume no CPU
resources, and process context switching time is often less than one microsecond.

72 TDS 366 01 March 1993

1 Introduction to transputers 3

1.1.3 Real time programming

Features of the transputer provide direct hardware support for real time program-
ming. The key features are:

= Direct and efficient implementation of parallel processes in hardware.
* Prioritization of parallel processes.
= Simple implementation of interrupt handling software.

= Easy programming of software timers, allowing close control of timing and
non-busy polling.

e Placement of variables at specific addresses in memory, for accessing
memory mapped devices.

Direct support for these features can be found in the current range of INMOS
language toolsets, which use a common code format to facilitate code compati-

bility.
11.4 Multitransputer systems
Multitransputer systems can be built very simply using the four high speed links;

only two wires are required to connect two links together. The circuitry to drive the
each link is on the transputer chip.

Transputers may be connected by their INMOS links in many configurations,
depending on the needs of the application. Some possible arrangements of
networks of transputers are illustrated in Figure 1.2.

Linked processors Pipeline

Tree Grid

Figure 1.2 Transputer networks

72 TDS 366 01 March 1993

4 1.2 Programming models

1.2 Programming models

Programs developed for running on a single transputer can be designed using
traditional sequential programming methods or they can be designed to exploit
parallelism.

Parallelism can be designed into a program at two levels by dividing the program
up into a number of independent communicating processes capable of operating
in parallel. Such processes can either be run on a single transputer or on a network
of transputers. Programs designed for running on a network of transputers must
use the parallel processing model. See section 1.2.1.

Sequential programs can be run on a single transputer connected to a host. Such
programs can exploit the fransputer architecture and software support provided
by INMOS toolsets and iq systems products, see section 1.3.

1.2.1 Parallel processing model

The abstract programming model which the transputer supports is the Communi-
cating Sequential Process (CSP) model, based on the idea of independent parallel
processes communicating through channels. Channels are one-way, point-to-
point communication paths that allow processes to exchange data and synchro-
nize their activity. (Further details can be found in ‘Communicating Sequential
Processes’ — C.A.R. Hoare, published by Prentice Hall International).

Each process is built from any number of parallel processes, so that an entire soft-
ware system can be described in the form of a hierarchy of intercommunicating
parallel processes. This model is consistent with many modem software design
methods.

Communication between processes is synchronized. When data is passed
between two processes the output process does not proceed until the input
process is ready and vice versa.

Communication between software processes running on the same transputer
takes place through internal channels implemented as words in memory; commu-
nication between processes running on connected processors is driven by the link
interfaces and takes place through the transputer links.

1.3 Transputer products

There is a complete family of transputer devices, including: 32-bit and 16-bit
processors; a link switch; and an adaptor from a parallel port to a link.

72 TDS 366 01 March 1993

[8)}

1 Introduction to transputers

A wide range of INMOS iq systems transputer boards is available for specific
hosts. These can be used for:

» Developing and debugging transputer software

¢ Improving system performance (as accelerator boards)
* | oading software onto embedded systems

* Building specific transputer networks

« Specific applications such as SCSI interfacing.

1.3.1 Toolset products

The INMOS compiler toolsets are complete cross-development systems for trans-
puters. They allow transputers to be programmed sequentially and in parallel
using high-level languages, making optimum use of the transputer's built-in
parallel features. The combination of access to parallelism from a high level
language and a set of tools for configuring and loading programs on transputer-
based systems forms a powerful development system for all parallel and
embedded software applications.

72 TDS 366 01 March 1993

6 1.3 Transputer products

72 TDS 366 01 March 1993

2 Introduction to the
toolset

This chapter introduces the occam 2 toolset. It describes the main features of the
toolset and provides introductions to the occam 2 compiler, the toolset linker, the
configuration system, and mixed language programming. A summary of the
toolset components is given at the end of the chapter.

2.1 Introduction

The occam 2 toolset is a software cross-development system for transputers,
hosted on PC/MS-DOS, Sun 4/SunOS and VAX/VMS systems. It consists of an
occam 2 compiler, a multilanguage linker, configuration and code collection tools,
a host file server, and program development tools.

The program development tools include an interactive and post-mortem
debugger, a librarian, an object code lister, a makefile generator, and EPROM
programming tools. Together with the compilation system, these form an inte-
grated support and development environment for the programming of transputers
and transputer-based hardware.

2.2 Toolset features
This toolset incorporates a number of important features:
» Standard object code format generated by the compiler and linker.

* An updated occam 2 compiler with language improvements, facilitating
full exploitation of a programming model designed to support parallelism.

* A configuration language which is an extension to 0ccam and facilitates
the mapping of software to hardware. The language supports:

o Automatic placement of channels using software routing and multi-
plexing processes. The ability to place channels is also retained as
an option.

o Placement of code and data at specific memory addresses.
» Support for mixed language programming through the configuration
system and by specific support in the compiler.
2.3 Standard object file format

The current range of INMOS toolsets generate object code in an intermediate form
known as TCOFF (Transputer Common Object File Format), that can be

72 TDS 366 01 March 1993

8 2.4 occam 2 compiler

processed by other tools in the toolset. This standard has been adopted for the
development of transputer toolsets and enables modules written in different
languages to be freely mixed in the same system.

2.4 occam 2 compiler

The occam 2 compiler compiles occam source code contained within standard
host format text files. Any text editor that produces ASCII files can be used to create
the occam source. occam source code must conform to the definition of occam
2 which is described in the occam 2 Reference Manual. The compiler implements
a number of non-standard language extensions (see appendix A in the occam 2
Toolset Language and Libraries Reference Manual).

The compiler targets the current range of INMOS transputers. Code may be gener-
ated for specific processor types or for related groups (see appendix B in the
occam 2 Toolset Reference Manual).

Code may be generated in HALT, STOP, or UNIVERSAL occam emror modes. The
error mode must be the same (or compatible) for all units in the compilation, and
must be the same as the linker error mode.

241 Programming model

The occam programming model consists of parallel processes communicating
over channels. Processes may be on the same or different processors, communi-
cating over internal channels or transputer links.

occam 2 has been optimized for the architecture of the fransputer — parallelism
is expressed directly in the language. The use of a formal mathematical framework
enables occam code to be extensively checked at compile time and supports
formal program proving and optimization. The inherent security of occam code
coupled with efficient use of the fransputer’s parallel features make it a powerful
tool for the development of concurrent systems.

24.2 Language extensions

The compiler implements a number of language extensions. These are compiler-
dependent and do not form part of the occam 2 definition.

Directives supported are #INCLUDE, #USE, #COMMENT, # IMPORT, #OPTION, and
#PRAGMA. #PRAGMA supports a number of compiler-dependent functions,
including foreign language code import and name translation. These are fully
described in section 1.12 of the 0ccam 2 Toolset Reference Manual.

Other language extensions supported by the compiler are: assembly code inser-
tion; memory placement; and extended channel and array constructs. See

72 TDS 366 01 March 1993

2 Introduction to the toolset 9

appendix A of the occam 2 Toolset Language and Libraries Reference Manual
for details.

2.4.3 occam libraries

A comprehensive set of libraries and include files are supplied with the toolset.
They include the compiler libraries which form part of the standard support for the
occam language and a set of user libraries for use by the applications
programmer.

The compiler libraries are used intemally by the compiler; they are not intended
for general use by the programmer, although some routines have been made
visible (see section 1.3 in the 0ccam 2 Toolset L anguage and Libraries Reference
Manual). The compiler automatically loads the cormrect set of routines for the
selected error mode. Compiler libraries are specified to the linker by means of
target-specific linker indirect files (see section 3.11.2).

The user libraries provide application-level support. There are libraries to support:
single length, double length, and T4-optimized maths; file-based, stream-based,
and DOS-specific /o; string handling; type conversion; link error handling; CRC
coding; and debugging. Constants and definitions are supplied in include files. See
the occam 2 Toolset Language and Libraries Reference Manual for details.

2.4.4 Low level programming

Sequences of transputer instructions can be embedded in occam code using the
ASM construct. This can be useful for optimizing critical sections of code, but the
facility should not be over used because it reduces the compiler’s opportunity to
check code.

A set of procedures are provided which enable a separately compiled and linked
occam procedure to be called at runtime and incorporated in a running occam
program. This facility is aimed at experienced toolset users.

Full descriptions of these facilities are given in chapter 13.

2.5 Multilanguage linker

The toolset linker takes compiled code and libraries and generates a linked unit
in TCOFF format. Code can be input from any compiler system which generates
TCOFF code, for example, the INMOS ANSI C compiler ice. Linker indirect files
(command scripts to the linker) may be used to specify operations to the linker; for
example, as in the linker indirect files provided with the toolset for referencing the
compiler libraries (see section 3.11.2).

Linker directives, which must be referenced using linker indirect files, may be used
to modify the content of the linked unit. Linker directives are described in section
9.4 of the occam 2 Toolset Reference Manual.

72 TDS 366 01 March 1993

10 2.6 Configuration system

2.6 Configuration system

The configurer occonf generates configuration information for transputer
networks from a textual configuration description containing separate descriptions
of hardware and software. Mapping of software to hardware is performed
according to a mapping description written by the user, while the mapping of chan-
nels to links can be performed automatically by the configurer or be specified by
the user.

The tool prepares the program for configuring on a specific arrangement of trans-
puters by analyzing the network description file in conjunction with the configura-
tion file, and creating a configuration data file for the code collector tool to read.
The code collector then generates the program image which may be loaded onto
the hardware. *

The configuration language used to write the configuration description is an exten-
sion of occam. It allows software and hardware networks to be described sepa-
rately and joined by an optional software-to-hardware description. The language
is a simple declarative language incorporating high-level constructs such as repli-
cation and conditional statements.

26.1 Software routing and multiplexing

The configurer uses software routing and multiplexing software to implement
channel communication over virtual links. This allows many virtual channels to use
a single physical link between processors and enables processes on non-adjacent
processors to communicate directly.

Software routing and multiplexing is performed automatically by the configurer and
requires no intervention on the part of the programmer. Existing configuration code
can be reused — virtual routing will be employed where required unless virtual
routing is specifically disabled by the configurer NV option. This option effectively
allows users to revert to the functionality of the D7205/D4205/D5205/D6205 tool-
sets.

Future INMOS transputer devices will implement virtual channel communication
directly in hardware. The presence of a software virtual routing configurer in the
current toolset provides some of the functionality of future processors and is
intended to ease the transition to the next generation of transputer products.

2.6.2 Code and data placement

Normally, the configurer will use up the available memory accessible to a
processor by allocating the various parts of the application from the lowest address
upwards. However, it is sometimes necessary to specify exactly where a piece of
code or data should reside. The configurer allows the user to state where the code,
workspace (stack) or vectorspace of an occam program must be placed in
memory.

72 TDS 366 01 March 1993

2 Introduction to the toolset 11

The transputer has some very fast RAM which the application may be required to
use in a special way. The configurer can also be told to avoid this area of memory
so that the user has free access to it.

2.7 Mixed language programming

The use of standard TCOFF format allows compiled and linked modules from
different language sources e.g. C and occam, to be mixed in the same system.
Individual linked units in TCOFF format can be mixed in any combination and
placed on any processor in the network.

Calling modules written in other languages is also possible. For example, 0ccam
can call C by using library routines to set up and terminate the static and heap
areas. C can call occam using a ‘nolink’ pragma which directs the C code to be
compiled without a static base parameter, or a dummy static base parameter can
be declared in the occam code.

In all mixed language calls, parameters and return values passed must be of the
correct type. Lists of type equivalents between C, and occam are given in chapter
11. Where character sets differ between languages, ‘translate’ pragmas available
in the compilers can be used to create acceptable aliases.

72 TDS 366 01 March 1983

12

2.8 Toolset summary

2.8

Toolset summary

The components of the toolset are listed in Table 2.1. Descriptions of the tools can
be found in Chapter 3 which also describes the main stages of program develop-

ment.

Tool Description

icollect |The toolset code collector. Collects linked units into a single file
for loading on a transputer network. Takes as input a configura-
tion data file or a single linked unit.

idebug The toolset network debugger. Supports post-mortem and inter-
active debugging of transputer programs.

idump The memory dumper. An auxiliary tool for use when debugging
programs on the root fransputer.

iemit The transputer memory configuration tool. Used for evaluating
and defining memory configurations for later incorporation into
ROM programs.

ieprom The EPROM program formatter tool. Formats transputer boot-
able code for input to ROM programmers.

ilibr The toolset librarian. Builds libraries of compiled code.

ilink The toolset linker. Resolves external references and links sepa-
rately compiled units into a single file.

ilist The binary lister. Disassembles and decodes object code and
displays information in a readable form.

imakef The Makefile generator. Generates Makefiles for input to MAKE
programs.

imap The map tool which gives the addresses of functions and vari-
ables used by the program.

iserver The host file server. Loads programs onto transputer hardware
and provides runtime access to host services.

isim The T425 simulator. Simulates program execution on an IMS
T425 transputer and provides simple debugging facilities.

iskip The skip loader tool. Used with iserver to load programs onto
external networks over the root transputer.

oc The occam compiler. Compiles code for the current range of
INMOS fransputers.

occonf The occam configurer. Reads a configuration description and
produces a configuration data file for the code collector.

72 TDS 366 01

Table 2.1 The occam 2 toolset

March 1993

3 Developing
programs for the
transputer

This chapter gives an overview of the program development cycle using INMOS
toolsets. It briefly describes the purpose of each tool and outlines how to use them
in developing, configuring, loading and running transputer programs from the host
system. The chapter also provides details of command line defaults, environment
variables, and host dependencies.

3.1 Introduction

This toolset is one of a range of cross-development systems designed and devel-
oped by INMOS for transputer applications. Toolsets which are available include
ANSI C, occam, and FORTRAN products.

The toolsets have been designed to make program development as simple as
possible. Each toolset features a particular language compiler with full library
support and then uses a common set of tools for further development stages. For
example, tools are included for: creating libraries, linking code, configuring soft-
ware to run on transputer networks, producing the program bootable file and for
loading the application onto hardware. This means that one development method-
ology can be used to develop programs using a number of different programming
languages. Indeed one of the features of the toolsets is that they facilitate mixed
language programming.

The toolset includes support for the following functions:
» building executable code;
* |oading and running code;
» debugging programs;
+ preparing programs for ROM;

« obtaining information about object files.

3.2 Program development using the toolsets

Programs may be developed on the user's host system before down-loading onto
either a single transputer or a network of transputers to run.

72 TDS 366 01 March 1993

14 3.2 Program development using the toolsets

Executable code is loaded onto a transputer either from ROM or from the host
system via a single transputer link onto the ‘roof' transputer i.e. the transputer
connected to the host. Loadable code is propagated to any other transputers in the
network via the interconnecting transputer links.

Creation of executable code for a transputer or transputer network takes several
stages involving the use of specific tools at each stage:

1 Software design.

The software designer can specify the components of a system in terms
of communicating processes. The overall design can be directly expressed
in the parallel constructs of the language.

Alternatively conventional sequential programs can be developed for
running on a single transputer.

2 Write the source.

Source code can be written using any ASCI| editor available on the host
system. Code can be divided between any number of source files. Source
code must conform to the syntax required by the particular language
compiler used. For C this is the ANSI standard; occam source code must
conform to the occam 2 language definition and FORTRAN source code
to FORTRAN-77 syntax.

3 Compile the source.

Each source file is compiled using the appropriate language compiler to
produce one or more compiled object files in TCOFF format. Each file must
be compiled for the same transputer type or for a transputer class covering
several compatible types. (More information about transputer types and
classes is given in the appendices of the accompanying Toolset Reference
Manual). Commonly used object code can be combined into libraries using
the librarian ilibr.

4 Link the compiled units.

The compiled object files and libraries are linked together using ilink.
This generates a single file called a linked unit in which all external refer-
ences are resolved. The linking operation links in the library modules
required by the program, which are selected by transputer type from the
compiled library code. Object files for input to the linker can be generated
by any TCOFF compatible compiler.

Programs developed for the transputer may comprise one or more linked
units, created from separately compiled code and library modules. Linked
units are assigned to run on a single transputer or a network of transputers
during configuration. A linked unit is the smallest unit of code which may
be placed on a transputer.

72 TDS 366 01 March 1993

3 Developing programs for the transputer 15

5 Configure the program.

Configuration is the process of defining how the application is to be run on
hardware. It is achieved by writing a configuration description, assigning
linked units to specific processors and optionally connecting them by chan-
nels. By changing the configuration description it is possible to run a
program on either a single transputer or on different network topologies.
The description is processed by the configurer tool to produce a configura-
tion data file. Configuration is used for both single and multiprocessor
transputer programs.

The language used to write the configuration description is determined by
the toolset. The C and FORTRAN toolsets provide a common configurer,
icconf which can be used to configure programs written in C,
FORTRAN-77 or occam. Using icconf, modules written in different
languages can be mixed at configuration level, see Chapter 11. The
occam toolset configurer occonf is designed to exploit the parallel
programming model of the language and is specific to the occam toolset.

6 Generate an executable file.

Before a program can be run it must be made ‘bootable’. This involves
adding bootstrap information to make the program loadable and is
achieved using the collector tool.

The configuration binary file generated by the configurer is read by the
code collector icollect which generates a single executable file for a
transputer network. The collector can generate either a file which is suit-
able for booting onto a transputer network via a transputer link or one for
booting from ROM. The default behavior of the tool is to produce a boot-
from-link executable.

Whether a boot-from-ROM executable is generated is determined by
command line options specified to the configurer prior to creating the
configuration binary file.

7 Load and run the program.

An executable boot-from-link file is loaded and run on the transputer
network down a host link using iserver. Once loaded the code begins to
execute immediately. The server tool maintains the environment that
supports the program’s communication with the host.

8 Place in ROM.

Executable boot-from-ROM files for embedded systems, are processed by
the ieprom tool to produce an output file which is suitable for blowing into
ROM. Such files may be configured to run from ROM or from RAM.

Programs to be placed in ROM are often developed first as boot-from-link,
until they are error free. They are then prepared for ROM by re-submitting

72 TDS 366 01 March 1993

16 3.2 Program development using the toolsets

them to the configurer and collector, specifying different command line
options, prior to using the eprom tools to format them for ROM.

Program development is supported by additional tools which provide facilities for
debugging, creating object code libraries, automating the program build, and
obtaining information about object files.

Figure 3.1 summarizes the main development stages.

Compile source and library Build any user libraries from
modules.] compiled sou]rce:
'
Link
Configure
Make executable,
using the collector
|
{ 3
Use iserver to load OR | Use iepromto prepare
onto network via link. ROM loadable input.

Figure 3.1 Main development stages

3.21 Compatibility with previous toolset releases

For single transputer programs the configuration stage of the development
process can be omitted. Instead bootable code can be generated directly from the
linked unit by specifying a collector command line switch.

This mode of development is not recommended, however, and may not be
supported in future toolset releases.

72 TDS 366 01 March 1993

3 Developing programs for the transputer 17

3.3 Compiling

INMOS compilers produce compiled code for specific processor types or for a
group of related processors called a transputer class. Each compiler has the same
set of options to select the target transputer; these are listed in the appendices to
the accompanying Toolset Reference Manual. The role of transputer types and
classes in compilation and program development is also described in these appen-
dices.

The current range of INMOS compilers generate object code in an intermediate
form known as TCOFF (Transputer Common Object File Format). This standard
has been adopted for the development of transputer compilers and enables
modules written in different languages to be freely mixed in the same system.

Supplied with each compiler is a set of language specific libraries which provide
runtime support, input/output operations, mathematical functions etc. Support is
also provided for language extensions, concurrent programming and software
configuration of a network.

The compiler and libraries supplied with this toolset are introduced in Chapter 2.
Detailed information about the compiler and libraries can be found respectively in
the Toolset Reference Manual and the Language and Libraries Reference Manual
supplied with this toolset.

3.4 Tools for building executable code

Three tools are used in sequence to generate the loadable file from compiled
object code:

» ilink - the toolset linker which links separately compiled units

¢ icconf or occonf — the configurer tool which generates a configuration
binary file.

* icollect -the code collector which generates a bootable file for a trans-
puter network from the configuration data file.

The configurer works on a configuration source file written by the programmer. The
output of the configurer is an information file which is processed by the collector
to generate an executable or bootable file. The executable file contains all the
information needed to distribute, load, and run the program on a specific network
of transputers.

34.1 Linker —ilink

The toolset linker i1ink links separately compiled modules and libraries into a
single code unit, resolving external references and generating a single linked unit.
Linked units are referenced directly from configuration descriptions to map soft-
ware onto specific arrangements of transputers.

72 TDS 366 01 March 1993

18 3.5 Loading and running programs

Library modules are linked in with the program by a linker indirect file which must
be specified on the linker command line. (In the C toolset this is known as a startup
file). The correct linker indirect file must be specified, depending which version of
the compiler or runtime libraries is required, see section 3.11 for further details.

34.2 Configurer

The configurer generates configuration information for transputer networks from
a textual configuration description. The tool prepares the application for confi-
guring on a specific arrangement of transputers by analyzing the configuration
description and creating a configuration binary file for the code collector tool to
read.

Configuration descriptions are written using the transputer configuration language
appropriate to the configurer used, see above.

34.3 Code collector— icollect

The code collector tool i collect takes the binary file generated by the configurer
(which references the linked code) and generates a single file that can be loaded
and run on a transputer network. The collector generates bootstrap and loading
code. The output from the collector contains bootable code modules together with
distribution information that is used by the loading code to place the correct
modules on each processor.

The collector may also generate non-bootable output files which may be dynami-
cally loaded or loaded onto ROM or RAM.

3.5 Loading and running programs

Boot-from-link code for single transputers and transputer networks is output from
icollect and is loaded onto the transputer hardware using the host file server
tool iserver. The iskip tool can be used in combination with iserver to load
a program onto an external network, skipping the root transputer (the transputer
connected to the host).

Boot-from-ROM code is processed by the eprom programming tools introduced
in section 3.7.
3.51 Hostfile server — iserver

The host file server iserver is a combined host server and program loader tool.
When invoked to load a program it both loads the code onto the transputer hard-
ware and provides runtime services on the host for the transputer program such
asilo.

3.5.2 Skip loader - iskip

The skip loader iskip forces a program to be loaded over the root transputer (the
transputer connected to the host). iskip is loaded prior to invoking iserver for

72 TDS 366 01 March 1993

3 Developing programs for the transputer 19

loading user programs onto a transputer board and prevents the root transputer
being used as part of the configured network. It continues to run as long as the user
program and passes messages between the host and the network.

The tool is useful when debugging programs because it leaves the root transputer
free to run the debugger. This avoids the use of idump to save the program image
and allows the user program to run on a network that would not support the
debugger e.g. because it has not enough memory.

3.6 Program development and support
Several tools are provided to assist in program development:
¢ idebug - the interactive network debugger.

¢ idump - the memory dump tool for use with idebug when debugging
programs on the root transputer.

¢ ilibr - the librarian which generates libraries of compiled code.
« ilist - the binary lister which decodes and displays object files.

» imakef — the Makefile generator which creates Makefiles for use with
MAKE programs.

+ imap —the map tool which generates a memory map of the functions and
variables used by the program.

» igim-the T425 simulator tool which enables programs fo be executed in
the absence of transputer hardware.

3.6.1 Network debugger — idebug

The network debugger idebug provides post-mortem and interactive debugging
for transputer programs. It allows stopped programs to be analyzed from their
memory image or from image dump files (post-mortem debugging) and supports
interactive execution of a program using breakpoints (breakpoint debugging).
Breakpoints can be set on source lines or memory addresses, variables can be
inspected and modified, and the program restarted with new values.

idebug provides two debugging environments: a symbolic environment which
allows a program to be debugged from source code; and the Monitor page environ-
ment which allows a program to be debugged at machine level.

The debugger inserts no additional code into the program, but uses parallel
processing to monitor the program and display its state. This guarantees that the
code generated when debugging is disabled will always run in the same way as
the final version of the program.

72 TDS 366 01 March 1993

20 3.6 Program development and support

3.6.2 Memory dumper — idump

The special debugging tool idump is provided to assist with the post-mortem
debugging of programs that run on the root transputer. Since idebug executes
on the root transputer and overwrites the program image, idump must be used to
save the image to a file which is later read by the debugger.

3.6.3 Librarian-ilibr

The librarian ilibr creates libraries of compiled code for use in application
programs.

A library is a concatenation of compiled files called modules. The linker only links
in modules that are required.

Code compiled by compatible TCOFF toolsets can be mixed in the same library.

3.6.4 Binarylister—ilist

The binary lister i1ist decodes object code files and displays data and informa-
tion from them in a readable form. Command line options select the category and
format of data to be displayed.

Examples of the kind of information that can be displayed are symbolic names,
code listing, the modular structure and indexing of libraries and external reference
data.

3.6.5 Makefile generator — imakef

The Makefile generator imake£ creates Makefiles for specific program compila-
tions. Coupled with a suitable ‘make’ program it can automate building of execut-
able code and greatly assist with code management and version control. Note: a
make program is not supplied.

imakef constructs a dependency graph for a given object file and generates a
Makefile in standard format. In order to make use of the tool a special set of file
extensions for source and object files must be used throughout program develop-
ment. imakef uses these file extensions to deduce target transputer types and
other options. These extensions are described for imakef in the Toolset Refer-
ence Manual.

3.6.6 Memory map tool - imap

The memory map tool imap takes the text output from the toolset compiler, linker
and collector and creates a map of the absolute addresses of the static variables
for functions. The memory map is output on the display screen or redirected to a
file as the user wishes.

72 TDS 366 01 March 1993

3 Developing programs for the transputer 21

3.6.7 T425 simulator — isim

The T425 simulator tool isim simulates the operation of the T425 transputer,
enabling programs to be executed in the absence of transputer hardware.

Run in interactive mode it provides low level debugging features such as the
inspection of variables, registers and queues, disassembly of memory, break
points, and single step execution.

Batch mode operation of the simulator allows programs to be executed without
entering the debugging environment.

3.7 EPROM programming

Two tools assist with the installation of programs into ROM, namely, the EPROM
programmer ieprom and the memory configurer iemit.

3.7.1 EPROM programmer — ieprom

The EPROM programmer ieprom converts ROM-bootable files generated by
icollect into a format suitable for input to ROM programmers. Files can be
generated for input to ROM loading programs provided for specific ROMSs, or
dumped in straight hexadecimal or binary for input to the users’ own ROM loaders.

iemit output can also be interpreted and the appropriate bit pattern included in
the ROM, see below.

3.72 Memory configurer — iemit

Some transputers have programmable memory interfaces which may be confi-
gured for a particular memory design.

The memory interface configurer iemit allows specific transputer memory
configurations to be evaluated and can output a configuration file for incorporation
into ROM by ieprom. The completed configuration file can be read by ieprom
and interpreted for inclusion in the ROM at the correct address. The transputer can
automatically read this data whenitis reset and use it to configure its memory inter-
face.

72TDS 366 01 March 1993

22 3.8 File types and extensions

3.8 File types and extensions

The current range of INMOS toolsets use, by default, a standard set of file exten-
sions to identify specific files such as source, compiled object, linked units and
bootable files. Certain file extensions are assumed by the tools on input, and
others generated by the tools on output, unless extensions are explicitly given on
the command line. For example the compiler adds the extension . teco to the
output file unless otherwise specified.

The adoption of a standard system allows file extensions to be omitted on the
command line, and permits host file system utilities to be used. The system is
designed to form an integrated whole and reflects the architecture of toolset
compilation.

The standard set of file extensions is not mandatory and may be modified
according to personal choice, unless imakef is to be used to build the makefile.
imakef uses a special scheme to identify processor types and error modes, as
described below.

The standard system has the advantage of ready defaults but may not be readily
mapped onto existing development schemes. However, if it is decided to adopt a
personalized scheme then it should be reasonably formal and controlled, which
is especially important across development teams.

Some extensions recognized by the toolset are used for convention only and are
not interpreted by the tools in any special way. For example, the .1ib suffix for
library files and the . ine suffix for include files are toolset programming conven-
tions.

The main file extensions used in developing transputer programs are listed in
Table 3.1. A full list of all file extensions used by the toolset with descriptions of the
file types is given in the appendices to the accompanying Toolsef Reference
Manual.

Figure 3.2 illustrates the program development process in terms of the file exten-
sion defaults used by the toolsets. The extensions assumed on input and gener-
ated on output are used to represent source and target files. Figure 3.2 highlights
the differences between the different language toolsets and shows how software
can be developed to be loaded onto transputer hardware directly via a transputer
link or held in ROM.

72 TDS 366 01 March 1993

3 Developing programs for the transputer 23

Extension |Description
.btl Bootable code file. Created by icollect.
i Executable code minus bootstrap information. Used for input to
: the EPROM tool. Created by icollect.
.e C source files. Assumed by ice, the ANSI C compiler.
.cfb Configuration data (binary) file. Created by the configurer.
o f_.':onﬁguration description (source) file, read by the C configurer
icconf.
.clu Configuration linked unit. Created by occont£.
£77 FORTRAN source programs. Assumed by if77, the
3 FORTRAN-77 compiler.
.h Header files for use in C source code.
Include files named in #INCLUDE compiler directives for
.inc occam, or #include statements in configuration descrip-
tions or in FORTRAN-77 statements.
.1bb Library build file. Input to ilibr.
.1ib Library object file. Created by ilibr.
.liu Library usage files. Created and used by imakef.
.lku Linked unit. Created by ilink.
.1nk Linker indirect file. Input to i1ink.
.occ occam source files. Assumed by oc, the occam 2 compiler.
Configuration description (source) file, read by the occam confi-
P gurer occonf.
.rsc Dynamically loadable code file. Created by icollect.
.tco Compiled code file. Created by all INMOS TCOFF compilers.

Table 3.1 Toolset main file extensions

3.8.1 File extensions required by imakef

The Makefile generator imakef requires a special set of file extensions to be used
for compiled and linked object files. The extensions define the architecture of
toolset compilation so that imake£ can trace file dependencies and create the
correct sequence of build commands. They are also used fo deduce the transputer
type and error mode for each unit.

For details of the file extensions that you must use with the imakef tool see the
appendices of the accompanying Toolsef Reference Manual.

72 TDS 366 01

March 1993

3.8 File types and extensions

24

r 1“ SE0URIRJY —- -
" uig | yjed I
_ _Eoan_m__,mv uepy =-— |
|
| Jow ! _
“ WOud3 wozdet [a_ “
_ xyy ! _
I : | |
_ : _
| xoy’ oo _
| WO¥d3 10j atedaid v _
N RN .. o A T RN NP S e |
|
|
"
L M T A S
_ |
_ |
| yiompeN |
| Jejndsues| I9AIONT __
|
| y}lomjau ojuo vao._ “
e e i i e e i s S e A i e i S i s o
|
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII |
== =
| i b
| 320 | L) .
_ Wwess0o [F- [
i LX) |
_ Qo FUoDDT I|.® | __
|
_ NY¥L40 Pue 5 1
| ainbyuon __ |
B N A |

LL3T Ly

00T

Figure 3.2 Development cycle

March 1993

72 TDS 366 01

3 Developing programs for the transputer 25

3.9 Error reporting

If atool detects an errorinits input, it is reported in a standard format. This contains
the name of the tool, a severity level, and some explanatory text explaining why
the error occurred. Errors found in files or the file system may also generate a file-
name and line number. Standardization of the format is designed to improve error
reporting and to support automated error handling by host system utilities.
For example:

Serious—ilibr-mymod. txt-bad format: not a TCOFF file
where: mymod. txt is the name of the input file causing the problem.
Note: Messages that are part of the normal operation of the tool, for example, diag-
nostic messages generated by the compiler, and messages from the debugger
and simulator tools, are not required to conform to the standard and may be

displayed in special formats appropriate to the tool. The formats will become
familiar with use of the tool.

Details of the standard format can be found in the appendices of the accompanying
Toolset Reference Manual.

3.10 Host dependencies

The toolset uses a host to develop code which is then down loaded onto a trans-
puter or transputer network.

The toolset can be hosted on one of several different platforms, and the tools are
designed fo blend in as far as possible with the operating system. Source and
object code is portable between all systems.

The toolset is available for the following host systems:
» |BM 386 PC (and compatibles) running MS-DOS
e Sun 4 running SunOS
e VAX running VMS.

Differences between the operation of the tools on the various platforms are minor
and reflect the flavor’ of the particular operating system.

Host system dependencies are as far as possible made invisible to the user. The
few differences are some minor variations in command line syntax, host-specific
library routines, directory names, and environment settings such as search paths
and global variables. Each is described briefly below.

Command line syntax

The major difference between host implementations is the use of the host system
option prefix. For UNIX based toolsets (Sun 4) the prefix character is the dash -’;

72 TDS 366 01 March 1993

26 3.10 Host dependencies

for MS-DOS and VAX/VMS based toolsets the prefix characteris the forward slash
I/I-
For consistency between implementations, the case of options is not significant.

However, the host syntax for filenames is used (see below), which means that on
UNIX systems the case of filenames /s significant.

Other command line syntax conventions are identical in all implementations and
are described in the appendices of the accompanying Toolset Reference Manual.

3.10.1 Filenames

Filenames, with or without a directory path, conform to the normal host system
conventions except that characters which can be interpreted as directory separa-
tors (on any of the supported hosts) must not be used in filenames. This prohibits
the use of the following characters: colon ‘:’, semi-colon *;’, forward slash /",
backslash ‘\' (¢’ for Japanese systems), square brackets ‘[]’, round brackets
‘()’, angle brackets ‘<>’, exclamation mark ‘!’,or the equals sign ‘=’.

In addition the linker cannot handle filenames which begin with a hash ‘#' or with
two dashes ‘~='. These are used to identify commands and comments within linker
indirect files.

Where the host operating system allows logical names to be used in place of file-
names, such as with VMS, the toolset allows logical names to be used, but the
name must be followed by a dot ‘.". This prevents the tool from adding an exten-
sion, which would generate a host file system error.

3.10.2 Search path

All tools which use or generate filenames use a standard mechanism for locating
files on the host system. The same mechanism is used in all operating system
versions of the toolset. Briefly, the search mechanism is based on a list of directo-
ries to be searched in sequence.

If a directory path is specified only this directory is searched. If the file is not found
on the path an error is generated. Relative pathnames are treated as relative to
the current directory, i.e. the directory from which the tool is invoked.

If no directory path is specified the current directory is searched followed by the
directories specified in the ISEARCH environment variable.

Details of how to set up a search path on your system can be found in the Delivery
Manual that accompanies the release.

Full details of the mechanism used in file searching can be found in the appendices
of the accompanying Toolset Reference Manual.
3.10.3 Environment variables

The toolsets use a number of environment variables on the host system. Use of
these variables is optional but if defined they will influence the behavior of certain

72 TDS 366 01 March 1993

3 Developing programs for the transputer 27

of the tools on your system. Further information is given in the accompanying
Toolset Reference Manual.

Variable Meaning
ICONDB Defines the connection database to be used by iserver.
ISESSION Defines the session manager configuration file to be used by
iserver. Defaults to session. cfq if not defined.
ISEARCH The search path; i.e. the list of directories that will be

searched if a pathname is not specified. Pathnames must be
terminated by the standard directory separator character for
the system. Used by all tools that read and write files.
ISIMBATCH Used by isim to enable/disable batch mode. Values can be
VERIFY or NOVERIFY.

ITERM The file that defines terminal keyboard and screen control
codes. Used by idebug, isim and iemit.

IBOARDSIZE The size (in bytes) of memory on the transputer board. Used
when loading non-configured programs.

TRANSPUTER | Defines the capability (user link name) to be used by the
server. Can be overridden by i server command line option.
IDEBUGSIZE |The size (in bytes) of memory connected fo the root frans-
puter. Used by idebug.

toolnameARG Default command line arguments. Applies to certain tools
only. See section 3.10.4.

Table 3.2 Toolset environment variables

The exact commands used to define environment variables depend on the oper-
ating system. For example, under MS-DOS they are defined using the set
command; on VAX systems running VMS they can be set up either as logical
names or as VMS symbols. Examples of how to set up environment variables can
be found in the Delivery Manual that accompanies the release.

For IBOARDSIZE and IDEBUGSIZE the value can be given in decimal or hexade-
cimal format. Hexadecimal numbers must be preceded by ‘#’ or ‘$'. Leading and
trailing spaces may not be given.

Note: If IBOARDSIZE is specified incorrectly, for example as a character or string,
the system defaults to a board size of 0 (zero) and the program cannot be run. If
IBOARDSIZE is explicitly set to a very small value a similar error may occur.

3.10.4 Default command line arguments

An environment variable can be defined on the system to specify a default set of
command line arguments for certain tools. The variable name must be defined in
upper case and is constructed from the tool name by appending the letters ‘ARG’".
For example, the variable for i1ink is ILINKARG.

Tools for which a default command line can be defined, and the variables used to
define them, are listed below.

72 TDS 366 01 March 1993

28 3.11 Linker startup and indirect files

Tool Variable

icec ICCARG

if77 IF77ARG
ilink ILINKARG
icconf ICCONFARG
icollect ICOLLECTARG
ilibr ILIBRARG
ilist ILISTARG

Table 3.3 Environment variables for invoking tools

Command line parameters must be specified within each variable using the
specific syntax required by each tool.

3.11 Linker startup and indirect files

Linker indirect files are text files containing lists of input files and commands to the
linker.

A number of linker indirect files are supplied with each toolset. The purpose of
these files is fo reference various runtime libraries (or in the case of occam,
compiler libraries) required to link application programs. When specifying the
program modules to be linked, the appropriate linker indirect file must be included
on the linker command line, as described in the reference chapter for i1ink in the
accompanying Toolsef Reference Manual.

3.11.1 ANSI C Toolset

For C the linker indirect files are known as ‘linker startup’ files. They reference
runtime library files which provide the runtime environment for the program and
define which version of the C runtime initialization code is used by specifying a
main entry point. This is the name of the routine which is called by the transputer
bootstrap code or configuration system code, in order fo start the C program
executing.

Most C programs will require one of the three linker startup files listed in table 3.4.
Two files are provided for use with configured programs; one with the full runtime
library and one with the reduced runtime library. The reduced library does not
support host I/O. It is recommended that all programs are configured.

The third file is provided for use with non-configured programs using the full
runtime library.

Special linker startup files which do not specify a main entry point are described
in section 3.11.4 below.

72TDS 366 01 March 1993

3 Developing programs for the transputer 29

Startup file to support:

Configured programs Non-configured
programs

Full runtime library [Reduced runtime |Full runtime library
library

cstartup.lnk cstartrd.lnk cnonconf.lnk
Table 3.4 C startup files

cstartup.lnk

This linker startup file is used to create linked units which use the full C runtime
library and are to be configured using icconf. It also specifies a main entry point
of C.ENTRYD. This is the main entry point of the standard C startup code for confi-
gured systems using the full runtime library. C.ENTRYD is the first of a sequence
of routines which are responsible for setting up the full version of the C runtime
system and eventually calling the main function. The source of this startup code
is supplied with this toolset and is described in the ANS/ C Toolset Language and
Libraries Reference Manual.

estartup. lnk includes clibs. 1nk (see 3.11.4). estartup.1nk should only
be used if the configurer is also used. The effect of using this linker startup file to
create a linked unit which is then passed directly to icollect, without using the
configurer first, is undefined. It should only be used when the C linked unit created
is to have access to host link channels. The startup code assumes that a server
exists and will attempt to communicate with it. Thus the effect of its use in an envi-
ronment where there is no access to the server is undefined.

cstartrd.lnk

This linker indirect file is used to create linked units which use the reduced C
runtime library and are to be configured using iccon£. It also specifies a main
entry point of C. ENTRYD . RC. This is the main entry point of the standard C startup
code for configured systems using the reduced runtime library. C.ENTRYD.RC is
the first of a sequence of routines which are responsible for setting up the reduced
version of the C runtime system and eventually calling the main function. The
source of this startup code is supplied with this toolset and is described in the ANS/
C Toolset Language and Libraries Reference Manual.

estartrd. lnk includes clibsrd.1lnk (see 3.11.4). estartrd.lnk should
only be used if the configurer is also used. The effect of using this linker indirect
file to create a linked unit which is then passed directly to icollect, without using
the configurer first, is undefined. It should be used in situations where the C linked
unit created has or requires no access to the server. No host link channels are
defined.

cnonconf . lnk

This linker indirect file is used fo create linked units which use the full C runtime
library and are suitable for passing directly to icollect thereby omitting the

72 TDS 366 01 March 1993

30 3.11 Linker startup and indirect files

configuration stage. Note: this method of program development is only applicable
to single processor programs and is not recommended for any new program devel-
opment as it may be unsupported in future toolsets.

cnonconf . 1nk specifies a main entry point of C. ENTRY. This is a special version
of the C startup code which can derive for itself information which is normally
supplied by the configurer (as such it is less efficient than the equivalent version
of the startup code for configured systems and so use of the configurer is recom-
mended).

C.ENTRY is the first of a sequence of routines which are responsible for setting up
the full version of the C runtime system and eventually calling the main function.
cnonconf. Ink includes clibs. 1nk (see 3.11.4). cnoncon£. 1nk should only
be used if the configuration stage is to be omitted. The effect of using this linker
indirect file to create a linked unit which is subsequently passed to the configurer
is undefined. It should only be used when the C linked unit created is to have
access to host link channels. The startup code assumes that a server exists and
will attempt to communicate with it. Thus the effect of its use in an environment
where there is no access to the server is undefined. Indeed, omission of the config-
uration stage is only possible if the full library is used, therefore there is no equiva-
lent reduced version of this linker indirect file.

3.41.2 oOCcam 2 Toolset

For occam, one of three linker indirect files should be selected according to the
target transputer type(s) used, see table 3.5.

Linker indirect file | Target transputers
occam2. lnk T212/T222/T225/M212
occama.lnk T400/T414/T425/T426/TA/TB
occam8. lnk T800/T801/T805

Table 3.5 occam linker indirect files

Each file contains a list of occam library files which may be required to be linked,
but which are additional to those explicitly referenced by the program. These
include compiler libraries and support for interactive debugging. Depending on the
other inputs and options specified on the command line the linker will select which
libraries it requires from the supplied indirect file.

3.11.3 Mixed language programs

Mixed language programs require an appropriate linker indirect file for each
language used.

Foroccam, one of the indirect files listed in table 3.5 is always used and when the
main program is written in C, one of the files listed in table 3.4 should be used.

72 TDS 366 01 March 1993

3 Developing programs for the transputer 31

However, if a non-C program calls in C modules, the standard C startup files are
not suitable because they define a C main entry point which would conflict with the
actual main entry point of the program. In this case one of the linker files described
in section 3.11.4 should be used. These linkerfiles should also be used when incor-
porating a C program into an occam program as if it were an 0ccam process.

Further information about mixed language programming is given in Chapter 11.

3.11.4 Other startup files supplied with the ANSI C Toolset
Two additional linker indirect files are supplied with the ANSI C Toolset:

Linker indirect file |Comment
clibs.lnk Lists the library files required for the full library.
clibsrd.1lnk Lists the library files required for the reduced library.

Table 3.6 C linker indirect files referencing libraries only

Unlike the files listed in table 3.4, c1ibs.1nk and clibsrd.lnk do not specify
amain entry point. They can be used whenever the main entry point of the program
is not one of the standard C entry points, for example certain mixed language
programs and when producing code which will be dynamically loaded.

clibs. 1nk should only be used when the C linked unit created is to have access
to host link channels. The effect of using in an environment where there is no
access to the server is undefined.

clibsrd.lnk should be used in situations where the C linked unit created has
or requires no access to the server. No host link channels are defined.

3.12 Unsupported options

A number of tools have various command line options beginning with ‘z’. These
options are used by INMOS for development purposes and have not been
designed for users. As such they are unsupported and should not be used. INMOS
cannot guarantee the results obtained from such options nor their continued pres-

ence in future toolset releases.

72 TDS 366 01 March 1993

32 3.12 Unsupported options

72 TDS 366 01 March 1993

4 Getting started

This chapter contains a tutorial that shows you how to compile, link, and run a
simple example program on a single transputer.

A more complex programming example illustrating separate compilation can be
found in Chapter 5, together with a detailed description of program development
for single processor systems. Chapter 6 provides examples of multitransputer
programming.

41 Introduction

In order to create and run a transputer executable file, this sequence must be
followed:

1 The source files are compiled with the occam 2 compiler. The compiler
creates from each source file an object file.

2 The object files are linked together along with any libraries required, to
create a file known as a linked unit. Each linked unit contains the code and
data necessary to execute as a main program.

3 The linked units are then configured onto a transputer network and a boot-
able program is created. In the case of a single program on a single trans-
puter, there is a short cut available here. However, it is strongly recom-
mended that development is made by using the full facilities of the
configurer. There are many advantages to this which will become apparent
as the procedures are described.

4 The program is then loaded and run from the host by using the host file
server. The bootable program contains everything necessary for execution
on the transputer network and it will start automatically after it has been
loaded.

4.2 Running the examples

In the following examples, the programs are compiled and executed on a single
T425 with 1Mbyte of memory available. If you have some other transputer, then
you should make the necessary changes to the command lines and configuration
file as indicated. (Command line options for specifying other transputer types are
listed in appendix B of the occam 2 Toolsef Reference Manual).

The examples assume the existence of an environment variable TRANSPUTER
which defines the name of a User Link on which to load the program, and that a
connection database file exists to define that User Link. See the Delivery Manual

72 TDS 366 01 March 1993

34 4.3 The example program

which accompanies this toolset and the iserver documentation (chapter 13 of
the occam 2 Toolset Reference Manual) for more details.

The examples also assume the existence of the environment variables ISEARCH,
ICONDB, and IBOARDSIZE. See the Delivery Manual for details.

The tutorial assumes that you have a boot from link board. If you have a boot from
ROM board or other non-standard hardware, refer to the manufacturer’s docu-
mentation.

4.21 Sources
Source files are held in the toolset directory examples/manuals/simple.

4.2.2 Example command lines

In the examples below, the command lines are written in both the UNIX form with
the option character *-/ , and in non-UNIX form with the option character * /7 (for
MS-DOS and VAX/VMS systems). Choose the one that is applicable to you.

4.2.3 Using the simulator

If there is no transputer available, then you can use the simulator isim to run the
bootable program, provided it is built for a single T425.

4.3 The example program

The example program is contained in the file simple.occ. simple.occ reads
a name from the keyboard and displays a greeting on the screen. The program
uses the library hostio. 1ib and the include file hostio. inc. The configuration
description resides in the file simple .pgm.

The program is illustrated below.

#INCLUDE “hostio.inc” —- contains SP protocol
PROC simple (CHAN OF SP fs, ts)
#USE "hostio.lib”
[1000]BYTE buffer :
BYTE result:
INT length:
SEQ
so.write.string (fs, ts,
"Please type your name :")
so.read.echo.line (fs, ts, length, buffer,

result)
so.write.nl (fs, ts)
so.write.string (fs, ts, "Hello ")

so.write.string.nl (fs, ts,
[buffer FROM 0 FOR length])

so.exit (fs, ts, sps.success)

72 TDS 366 01 March 1993

4 Getting started 35

The first line in the program loads the file hostio . ine. This file contains the defi-
nition of protocol SB, used to communicate with the host file server, and a number
of constants that are used in conjunction with the host i/o library.

The procedure simple is then declared. All the working code is contained within
this procedure. The server library hostio. 1ib is referenced by the #USE direc-
tive. This library contains all the procedures used by the program. See section 1.5
in the occam 2 Toolset Language and Libraries Reference Manual for descrip-
tions of the routines.

Before the body of the procedure a number of variables are declared. buffer
holds the input string, Length refers to the number of characters in the name read
from the keyboard, and result is used by the library routine to indicate whether
or not the read was successful. The result is ignored by this example for the sake
of simplicity; itis assumed that screen writes and keyboard reads always succeed.
The working code is contained within a SEQ, indicating that the statements which
follow are to be executed sequentially. All of the statements are calls to library
routines in hostio. lib. The code prompts for a name, reads the name from the
keyboard, and types a greeting on the screen.

The last statement calls a library procedure which terminates the server, retuming
control to the host operating system. Without this statement the program would
finish and appear to hang, and the server would have to be terminated explicitly
by interrupting the program.
4.3.1 Compiling the program
In order to compile the program use the following command line:

oc simple -t425 (UNIX)

oc simple /td25 (MS-DOS/VMS)

The compiler performs the necessary syntax, alias and usage checks, inserts code
to perform run-time error checking, and creates a file called simple.tco.
Because the source file has the default extension of . occ you can omit the exten-
sion on the command line.

The target processor is a T425. For information about compiling for other trans-
puter types, see section 4.4.

By default, the compiler enables interactive debugging with idebug and compiles
the program in HALT mode (see section 5.3.1).
4.3.2 Linking the program
To use the result of your compilation it must be linked with the libraries that it uses.
To link the program type:

ilink simple.tco hostio.lib —t425 -f occama.lnk (UNIX)

ilink simple.tco hostio.lib /t425 /£ occama.lnk (MS-DOS/VMS)

72 TDS 366 01 March 1993

36 4.3 The example program

This program uses hostio.1lib and various target-specific compiler libraries.
hostio.lib is directly specified on the command line; the comect compiler
libraries are referenced via the ‘£’ option (see below).

Note: It is always good practice to specify to the linker what the transputer target
is, since it is possible to produce code that can execute on a range of transputers
and the linker must then be told which the actual target will be. In this example the
chosen target is T425.

The ‘£’ option introduces a linker indirect file which is used to link in the correct
compiler libraries. For more details see Chapter 9 in the occam 2 Toolset Refer-
ence Manual.

The linked program will be written to the file simple.lku. As no output file is
specified, the file is named after the input file and the default link extension . 1ku
is added. By default the program is linked in HALT mode.

Note: In more complex programs, libraries may be dependent on other files and
libraries. To ensure all necessary libraries are linked into a program, the imakef
tool may be used with a suitable MAKE program (see section 4.5).

4.3.3 Configuring the program

In order to configure the program, a description is required of the network it is run
on. The file simple.pgm contains such a description.

You should look at this file and edit it if it does not correspond to the hardware you
actually have. For example check which link is connected to the host, the trans-
puter type, and memory size.

The file simple . pgm contains the following:

NODE p
ARC hostarc :
NETWORK
DO
SET p(type, memsize := ”“T425”, 1024 * 1024)
CONNECT p[link] [0] TO HOST WITH hostarc

#INCLUDE "hostio.inc”
#USE ”simple.lku”

CONFIG
CHAN OF SP fs, ts :
PLACE fs, ts ON hostarc :
PROCESSOR p
simple(fs, ts)

72 TDS 366 01 March 1993

4 Getting started 37

In order to configure the application for the network, the configurer is invoked as
follows:

occonf simple.pgm
This produces a file called simple . c£b which contains all the information about
where the different parts of the program are to be placed.
434 Collecting the program

The final next stage is to collect all the parts of the program and combine them into
a file which can be loaded onto the transputer for execution. This is done by the
collector tool icollect. The collector is invoked as follows:

icollect simple.cfb

The result is the executable (‘bootable’) file simple.btl.

4.3.5 Running the program on a transputer board

To load the bootable program onto a transputer board and run it use the host file
server tool iserver:

iserver —se -sb simple.btl (UNIX)
iserver /se /sb simple.btl (MS-DOS/VMS)

The address of the transputer board is taken from the TRANSPUTER environment
variable.

The 'sb’ option specifies the file to be booted and loads the program onto the trans-
puter board. It has the effect of resetting the board, opening communication with
the host, and loading the program onto the network. The ‘se’ option directs the
server to terminate if the program sets the error flag. For further information about
server options see Chapter 13 in the occam 2 Toolset Reference Manual.

Figure 4.1 shows an example of the screen display obtained by running
simple.btl on a UNIX based toolset, for a user called ‘John’.

iserver -se -sb sin'lple.btl

Please type your name :John
Hello John

Figure 4.1 Example output produced by running simple.btl

72 TDS 366 01 March 1993

38 4.3 The example program

4.3.6 Running the program using isim

To run the example program via the simulator use one of the following commands:
isim -bg simple.btl (UNIX)
isim /bg simple.btl (MS-DOS/VMS)

The 'bq’ option directs the simulator to run the program in ‘batch quiet’ mode, that
is, run the program immediately and then terminate. For more information about
the simulator tool see Chapter 14 in the occam 2 Toolset Reference Manual.

4.3.7 A short cut to creating a bootable file

For single-transputer programs booted from transputer links attached to a host,
an alternative method can be used to create the . bt1 file. This method is not appli-
cable to standalone systems nor to systems which boot from ROM, and requires
the program to be contained within a single linked unit. The Advanced Toolset
debugger cannot be used to debug programs created in this way.

Note: Non-configured programs require a different procedural interface to confi-
gured programs because certain parameters are expressed in the configuration
description. simple. occ would therefore require the following change:

replace:
PROC simple (CHAN OF SP fs, ts)
with:
PROC simple (CHAN OF SP fs, ts, []INT memory)

Single processor programs must always use a similar parameter list. A modified
version of the program can be found in the examples directory under the name
simple3.occ.

To make use of the short cut, compile and link the simple3. occ in the same way
as in the previous example. Then, omitting the configurer stage, invoke the
collector directly on the linked unit, adding the t option to the command line (the
t option directs the collector to build a bootable file from a single linked unit):

icollect simple3.lku -t (UNIX)
icollect simple3.lku /t (MS-DOS/IVMS)

The bootable file simple3.bt1lis created. This can be loaded and runin the usual
way using iserver or isim.

Note: This facility acts as a compatibility mode with previous versions of the toolset
and may be discontinued in future releases.

72 TDS 366 01 March 1993

4 Getting started 39

44 Compiling and linking for other transputer types

If you are using a transputer other than a T425 you should specify the appropriate
target transputer type for the compilation and linking operations. Appendix B in the
occam 2 Toolset Reference Manual describes the options available. The same
option must be specified to both the compiler, linker, and configurer, otherwise an
error is reported. In addition, you must specify the correct linker indirect file for the
selected target, in order to link in the correct compiler libraries (see Chapter 9 of
the occam 2 Toolset Reference Manual).

For example, to compile and link the program ‘simple.occ’ so that it will run on
a T800, T801 or T8O5:

UNIX:

oc simple -t800
ilink simple.tco hostio.lib -f occam8.lnk -t800

MS-DOS/VMS:

oc simple /t800
ilink simple.tco hostio.lib /f occam8.lnk /t800

Modify simple . pgm to match the transputer type and memory size of your hard-
ware and run occonf on the modified file. Then collect and load the program as
before.

4.5 Using imakef

As an alternative method of program development the toolset Makefile generator
imakef can be used. This tool can produce a Makefile for any type of file that can

be built with the toolset tools. See Chapter 11 in the occam 2 Toolset Reference
Manual for a description of the tool.

imakef serves two purposes:

» [t enables the user to generate a target file automatically (e.g. a bootable
file) without having to manually perform the intermediate stages of
program development i.e. compiling, linking, configuring etc.

» For more complex programs, comprising several modules, it simplifies the
incorporation of changes to the program by identifying dependencies and
incorporating them into the Makefile.

In order for imakef to be able to identify file types, a different system of file exten-
sions must be used to that used in the examples above. See section 11.3 in the

occam 2 Toolset Reference Manual for a description of the system.

72 TDS 366 01 March 1993

40 4.5 Using imakef

To create a Makefile for the configured simple program, use the following
command:

imakef simple2.btl
The .btl extension directs imakef to build a bootable file from a configuration
description file (simple2.pgm). This file can be found in the examples directory.
Within the . pgn file the correct format of file extension is used to reference the
linked unit for imake£. For example:

#USE "simple.c5h”

directs imakef to compile the program for a T425 in HALT error mode. For other
transputer types and error modes use different suffixes, see section 11.3 in the
occam 2 Toolset Reference Manual.

To build the program run your MAKE program on simple?2.mak:
make -f simple2.mak (UNIX)
make /f simple2.mak (MS-DOS/VMS)

This creates the bootable file simple2.bt1 which can be run in the normal way
using iserver or isim,

72 TDS 366 01 March 1993

o0 Programming single
transputers

This chapter provides an introduction to occam programming on single trans-
puters. For information about programming multitransputer networks see
Chapter 6.

Before reading this chapter the user should already be familiar with the concepts
and syntax of the 0ccam programming language. A tutorial introduction to occam
programming is a good introductory text and the occam 2 Reference Manual
contains a formal definition of the language.

5.1 Program examples

This chapter uses a relatively complex programming example (section 5.11), illus-
trating separate compilation. A simple programming example, to get you started,
is provided in Chapter 4.

All the example programs are designed for boot from link boards. If you have a
board that boots from ROM you should set it to boot from link or run the example
programs using the T425 simulator tool isim.

5.2 occam programs

Within the toolset a single processor program is a single occam procedure with
a fixed pattemn of formal parameters, as illustrated below.

#INCLUDE “hostioc.inc”
PROC occam.program (CHAN OF SP fs, ts,
[1INT memory)
body of program

The procedure and its parameters can have any legal 0ccam names. You must
always supply the procedure with the same type of formal parameters as shown
above, to enable communication with the host and fo enable the program to use
free memory. The optional parameter stack .buffer may also be supplied; this
allows the program to make use of the transputer’s internal RAM (see sections 3.3

and 3.4.2 in the occam 2 Toolset Reference Manual).

All occam procedures are terminated by a colon (:), at the same indentation as
the corresponding PROC keyword. Do not forget the colon at the end of a program.

72 TDS 366 01 March 1993

42 5.2 0CCam programs

Program input and output is supported by the host file server, which is resident on
the host computer. Access to the host file server is via the i/o libraries, which are
described in the occam 2 Toolset Language and Libraries Reference Manual.
Whenever routines from these libraries are used the channels £s and ts must be
passed to the routine so that it can communicate with the host file server. Channel
fs comes from the host file server and ts goes to the host file server. Both use
protocol SB, which is defined in the include file hostio. inc. Figure 5.1 shows
how these channels are connected.

The array memory contains the free memory remaining on the transputer evalua-
tion board after the program code has been loaded and the workspace allocated.
It is calculated by subtracting the area occupied by the program code and data
from the value specified in the IBOARDSIZE host environment variable. The
memory array is passed to the program as an array of type INT, where it can be
used. By allowing programs to be run on boards with different memory sizes, this
array aids program portability between different boards.

host computer transputer board
host fs
S
s occam
server = program

Figure 5.1 Program input/output

5.21 Compiling programs

The compiler produces object code in TCOFF format for input to the linker. The
compiler is capable of compiling code for any one of a range of transputers (the
IMS T212, M212, T222, T225, T400, T414, T425, T426, T800, T801 or T805) in
one of three error modes and with interactive debugging either enabled or
disabled. The compiler enables interactive debugging by default unless the
compiler ‘Y’ option is used.

Transputer types and classes are described in Appendix B of the occam 2 Toolset
Reference Manual.

The standard error modes are HALT system and STOP process. A special mode,
UNIVERSAL, enables code to be compiled so that it may be run in either HALT or
STOP mode. The target processor and error mode must be specified for each
compilation, using options on the command line.

By default the compiler compiles for an IMS T414 in HALT mode, and when
compiling for this transputer type and error mode you may omit the options. In all
other cases the options must be supplied.

72 TDS 366 01 March 1993

5 Programming single transputers 43

Other operating features of the compiler may be changed by options and direc-
tives. See Chapter 1 in the occam 2 Toolset Reference Manual.

If the compiler detects any errors, a source file name and line number is displayed
along with an explanatory message and a portion of the source code surrounding
the error.

If the compilation succeeds, the compiler creates a new code file in the current
directory. The filename for the new file is derived from the name of the source file
and the default file extension . tco is added. The filename can also be specified
on the command line.

Compilation information

It is sometimes necessary to check how much workspace (data space) will be
required to run the code. This information is stored in the code file produced by the
compiler, linker and librarian. To display the information use the ‘I’ command line
option or use the binary lister tool i1ist. For details of 11ist see Chapter 10 in
the occam 2 Toolset Reference Manual.

5.2.2 Linking programs

When all the component parts of a program have been compiled they must be
linked together to form a whole program. Component parts include the main
program, any separately compiled units, and any libraries used by the program,
including the compiler libraries.

If required, the compiler libraries are automatically loaded by the compiler unless
specifically disabled with the compiler ‘E’ option. If you are unsure whether your
program uses the compiler libraries it is best to always link in the appropriate library
anyway. Only library modules actually used by the compiled code will be included
in the linked code file. The correct library for your program depends on the trans-
puter type of the compilation.

Three linker indirect files listing the compiler libraries are supplied for different
transputer types. occam2 . 1nk is provided for the T2 series, occam8 . 1nk for the
T8 series and occama . 1nk for other 32-bit transputers. The relevant file should
be included on the linker command line using the ‘£’ option. For further details of
the compiler libraries see the 0occam 2 Toolset Language and Libraries Reference
Manual.

By default, the order in which the code modules are specified on the command line
determines their order within the linked unit; library modules being placed after the
separately compiled modules. This default can be overruled by using the compiler
directive #PRAGMA LINKAGE and the linkage directive #section (see sections
1.12.7 and 9.4.6 in the occam 2 Toolset Reference Manual). These directives
enable the user to prioritize the order in which modules are linked together and so
influence the use of on-chip RAM.

72 TDS 366 01 March 1993

44 5.2 0CCam programs

5.2.3 Displaying the contents of code files

Object code files produced by compiling or linking programs can be examined
using the binary lister tool ilist. Information that can be displayed includes
procedure definitions, exported names, external references within the code, and
symbol data. For more details see Chapter 10 in the occam 2 Toolset Reference
Manual.

5.24 Making bootable programs

Code that has been linked to form a program cannot be loaded directly onfo a
transputer evaluation board, for two reasons. Firstly, object code produced by the
linker and compiler tools contains exfra information required by some tools. This
information must be removed before the program can be loaded. Secondly, code
to be run on a board which boots from link, such as the IMS B004, require the addi-
tion of bootstrap information to load the program and start it running.

Extraneous data is removed, and a boot-from-link bootstrap is added, by the
collector tool icollect.

5.25 Loading and running programs

Bootable programs can be loaded onto the transputer evaluation board using the
host file server iserver (see Chapter 13 in the occam 2 Toolset Reference
Manual). The server must be given a number of parameters when it loads a
program. All server options are two characters long, with 'S’ as the first character.
Server parameters are removed from the command line by the server, so you
should avoid using the same options for your own program (it is best to avoid giving
programs two letter options beginning with the letter ‘s’).

To load a program use the ‘SB’ option and specify the file to be loaded. This has
the same effect as using options ‘SR’, 'Ss’, ‘sT’, and ‘sC’ together, that is, it resets
the board, provides access to host facilities such as file access and terminal i/o,
and loads the program. The ‘SI’ option directs the tool to display progress informa-
tion as it loads the file. To terminate when the transputer error flag is set, thereby
enabling the program to be debugged, add the server ‘SE’ option.

Programs can also be loaded onto transputer networks, without using code on the
root transputer, by first using the iskip tool to set up a skip process and then
loading the program using iserver. This can be useful when loading programs
onto external networks via a transputer evaluation board. It is also useful for
debugging programs that normally use the root transputer to run all or part of a
program. The debugger always runs on the root transputer. Provided the network
has at least one processor which is not used by the program, iskip may be used
in conjunction with iserver to load the program over the root transputer. Further

details can be found in the occam 2 Toolset Reference Manual.

72 TDS 366 01 March 1993

5 Programming single transputers 45

5.2.6 Interrupting programs

To interrupt an application program while it is still running, press the host system
BREAK key to interrupt the server. See the section entitled ‘Server Interrupts’ in
the Delivery Manual for the correct key to use on your system.

When the BREAK key is pressed on DOS and VAX/VMS systems the following
prompt is displayed:

(x)exit, (s)hell, or (c)ontinue?

To abort the program type ‘x’ or press [RETURN |. This terminates the host file
server.

To suspend the program so that you can resume it later, type ‘s’.

To abort the interrupt and continue running the program, type ‘c’.

5.3 occam error handling

For systems that require maximum security and reliability, the error behavior is of
great concern. occam 2 specifies that run-time errors are to be handled in one
of three ways, each suitable for different programs. The error mode to be used is
supplied as a parameter to both the compiler and linker. The options are listed in
Table 5.1.

Option(s) | Description
H HALT mode
s STOP mode
X UNIVERSAL mode

Table 5.1 Compiler and linker options for selecting error mode

5.3.1 Error modes

The first mode, called Halt system mode or HALT mode, causes all run-time errors
to bring the whole system to a halt promptly, ensuring that any errant part of the
system is prevented from corrupting any other part of the system. This mode is
extremely useful for program debugging and is suitable for any system where an
error is to be handled externally. HALT system mode is the default for the compiler,
and you should use this mode when you may want fo use the debugger.

Note: on the IMS T414, T212, T222, and M212, HALT mode does not work for
processes running at high priority, as the HaltOnError flag is cleared when going

to high priority.

The second mode, called Stop process mode or STOP mode, allows more control
and containment of emrors than HALT mode. It maps all errant processes into the

72 TDS 366 01 March 1993

46 5.3 0OCCam error handling

process STOP, again ensuring that no errant process corrupts any other part of
the system. This has the effect of gradually propagating the STOP process
throughout the system. This makes it possible for parts of the system to detect that
another part has failed, for example, by the use of ‘watchdog’ timers. It allows multi-
ply-redundant, or gracefully degrading systems, to be constructed.

The third mode, called UNIVERSAL mode, may behave as either HALT or STOP
mode depending on the transputer’s Halt-On-Error flag. For example if a library
is compiled in UNIVERSAL mode, it may be linked in HALT mode with HALT mode
modules and it will behave as if it had been compiled in HALT mode. Alternatively
ifitis linked in STOP mode with STOP mode modules it will behave as if it had been
compiled in STOP mode.

All separately compiled units for a single processor must be compiled and linked
with compatible error modes. HALT and STOP modes are mutually exclusive
whereas UNIVERSAL mode can be mixed with either HALT or STOP.

If no mode is specified the linker defaults to HALT mode; if the program contains
STOP modules then an error is generated. Similarly, if STOP is specified on the
command line the presence of HALT modules generates an error.

Where a library is used the module with the appropriate error mode is selected by
the compiler.

Programs may also be compiled and linked in UNIVERSAL mode. This may be
useful where linked modules are used as components of the final linked program
- the error mode of the program can be postponed until the final link stage which
builds the whole program. Programs built entirely in UNIVERSAL mode and
targetted at single processors have their error mode set by the collector tool to its
default which is HALT mode.

Table 5.2 summarizes error mode compatibility.

Error mode |Compatible with

HALT HALT, UNIVERSAL
STOP STOP, UNIVERSAL
UNIVERSAL |HALT, STOP, UNIVERSAL

Table 5.2 Compatibility between error modes

Error mode UNDEFINED

The occam error mode UNDEFINED can be reproduced by specifying the U
command line option or the U argument to the #OPTION directive.

5.3.2 Error detection

In some circumstances it may be desirable to omit the run time error checking in
one part of a program, for example, in a time-critical section of code, while retaining
error checks in other parts of a program, for debugging purposes.

72 TDS 366 01 March 1993

5 Programming single transputers 47

The compiler provides three command line options to enable the user to control
the degree of run time error detection; they are the ‘'K', ‘U’ and ‘NA’ options and they
prevent the compiler from inserting code fo explicitly perform run time checks.

These options should only be used on code which is known to be correct. The
compiler does not insert a lot of error checking code so it should only be disabled
as a last resort.

It is the user’s responsibility to ensure that errors cannot occur. The ability to
disable certain error checking code by using the ‘K’ and ‘0’ options should not be
abused in an attempt to use illegal code, since there is no way of telling the
compiler to ignore all errors.

The ‘K’ option disables the insertion of code to perform run time range checking.
In this context the term range checking refers only to checks on array subscripting
and armray lengths. Note: in any situation where the compiler can detect a range
check error without specifically adding code, it may still do so. The type of situation
where this is likely to happen is when an array subscript such as [i+/] is used, and
i+j overflows.

The ‘U’ option disables the insertion of code whose only purpose is to detect some
kind of error. This option is stronger than the ‘K’ option, and includes the 'K’ option,
so it is not necessary to use both options together. (Note: that the ‘U" does not
include the "NA’ option which is described below).

The ‘U’ option will disable the insertion of run-time checks to detect occurrences
such as the following:

negative values in replicators

errors in type conversion values,

errors in the length of shift operations,

array range errors,

errors in replicated constructs such as SEQ, PAR, IF and ALT.

Note: again in any situation where the compiler can detect an error without specifi-
cally inserting code, it may still do so. Thus arithmetic overflows, etc, can still cause
an error. (To avoid overflow errors the operators PLUS, MINUS and TIMES can be
used).

If the ‘U’ option is used in conjunction with HALT mode, it will prevent explicit
checking for floating point errors in those cases where library calls are not used
to perform floating point arithmetic (see below). In addition if the ‘U’ option is used
with STOP or UNIVERSAL mode, it inhibits the ability of the system to gradually
propagate a STOP process throughout the system. This means that the ‘0’ option,
when used with any error mode produces identical code. The object file, however,
is still marked as being compiled in a particular error mode.

Note: The ‘U option can be used to optimize runtime performance in code which
is fully debugged and known to be error-free. This is equivalent to implementing
UNDEFINED error mode.

72 TDS 366 01 March 1993

43 5.4 Interactive debugging and virtual routing

Thus, faster code is produced by using the ‘U’ option with any error mode. Any
libraries which are linked with the modules will maintain the error mode and level
of error detection that they were compiled for. In practice, libraries compiled in
HALT mode will be fastest, so for benchmarking, modules should be compiled in
HALT mode and the ‘U’ option used.

The ‘NA’ option disables the insertion of code to check calls to ASSERT.

The occam 2 compiler recognizes a procedure ASSERT with the following param-
eter:

PROC ASSERT (VAL BOOL test)

At compile time the compiler will check the value of test and if it is FALSE the
compiler will give a compile time error; if it is TRUE, the compiler does nothing. If
test cannot be checked at compile-time then the compiler will insert a run-time
check to detect its status. The ‘NA’ option can be used to disable the insertion of
this run-time check.

5.4 Interactive debugging and virtual routing

The compiler and linker tools supportinteractive debugging by default. When inter-
active debugging is enabled the compiler or linker will generate calls to library
routines to perform channel input and output rather than using the transputer’s
instructions. This does cause a performance penalty to be incurred when interac-
tive debugging is enabled. Disabling interactive debugging by using the command
line option ‘Y’ results in faster code execution.

Interactive debugging must be enabled in order to use the interactive features of
the debugger. However, the debugger does not have to be present in order to run
the code.

Code which has interactive debugging disabled may call code which has interac-
tive debugging enabled but not vice versa. If interactive debugging is disabled for
any module in a program this will prevent the whole program from being debugged
interactively.

Disabling interactive debugging also disables virtual routing because both
systems use the same set of routing and multiplexing processes.
5.5 Alias and usage checking

The compiler implements the alias and usage checking rules described in the
occam 2 Reference Manual. Alias checking ensures that elements are not
referred to by more than one name within a section of code. Usage checking

72 TDS 366 01 March 1993

5 Programming single transputers 49

ensures that channels are used correctly for unidirectional point-to-point commu-
nication, and that variables are not altered while being shared between parallel
processes. For a further discussion of the rationale behind these rules, see
Appendix C in the occarmn 2 Toolset Language and Libraries Reference Manual.
Information is also given in the Transputer Applications Notebook — Architecture
and Software, Chapter 6 — The development of occam 2.

Alias and usage checking during compilation may be disabled by means of the

compiler options ‘A’ and ‘N’. Using the ‘N’ option it is possible to carry out alias

checking without usage checking. However, it is not possible to perform usage

checking without alias checking, as the usage checker relies on lack of aliasing in

Lhe ;Ll]o%ram. If you switch off alias checking with option ‘A', usage checking is also
isabled.

The behavior of programs where alias and usage checks are disabled is defined
in Appendix C of the occam 2 Toolset Language and Libraries Reference Manual.

The ‘K’ and ‘U’ options will also disable the insertion of alias checks that would
otherwise be performed at run-time. These options do not affect the insertion of
alias checks at compile time nor the insertion of usage checks which are only
performed at compile time. Alias checking can impose some code penalties, for
example, extra code is inserted if array accesses are made which cannot be
checked until runtime. The ‘W0' command line option will produce a warning
message every time one of these checks is generated. However, alias checking
can also improve the quality of code produced, since the compiler can optimize the
code if names in the program are known not to be aliased.

The compiler usage check detects illegal usage of variables and channels, for
example, attempting to assign to the same variable in parallel. The compiler
performs most of its checks according to the rules defined in the occam 2 Refer-
ence Manual, but with certain limitations. Normally, if it is unable to implement a
check exactly, it will perform a stricter check. For example, if an array element is
assigned to, and its subscript cannot be evaluated at compile time, then the
compiler assumes that all elements of the array are assigned to.

If a correct program is rejected because the compiler is imposing too strict a rule,
itis possible to switch off usage checking, either on the command line for the entire
compilation, or by a pragma for a specific variable.

It should also be noted that usage checking can slow the compiler down. For
example, programs which contain replicated constructs defined with constant
values for the base and count, will be checked for each iteration of the routine.
Replicated constructs which have variable base and count values are only
checked once with a stricter check, because the compiler cannot evaluate, at this
point, the actual limits of the replication.

72TDS 366 01 March 1993

50 5.6 Using separate vector space

5.6 Using separate vector space

The compiler normally produces code which uses separate vector space. Arrays
which are declared within a compilation unit are allocated into a separate ‘vector
space’ area of memory, rather than into workspace, when they are > 8 bytes.

This decreases the amount of stack required, which has two benefits: firstly, the
offsets of variables are smaller, access to them is faster; secondly, the total amount
of stack used is smaller, allowing better use to be made of on-chip RAM.

The compiler option ‘v’ disables the use of a separate vector space, in which case
arrays are placed in the workspace.

When a program is loaded onto a transputer in a network, memory is allocated
contiguously, as shown in Figure 5.2.

MOSTNEG INT
+ IBOARDSIZE
Unallocated memory
(passed as parameter
to program)
occam vector space
occam code
occam workspace
ey - MemStart
Reserve ransputer
#80000000 £ Ep MOSTNEG INT

Figure 5.2 Memory allocation on a 32-bit transputer

This allows the workspace (and possibly some of the code) to be given priority use
of the on-chip RAM. Generally, the best performance will be obtained with the
separate vector space enabled.

72 TDS 366 01 March 1993

5 Programming single transputers 1

The default allocation of an array can be overridden by an allocation immediately
after the declaration of an array. This allocation has one of the forms:

PLACE name IN VECSPACE :
PLACE name IN WORKSPACE :

(Note: the PLACE statement must be inserted immediately following the declara-
tion of the variable to which it refers).

For example, in a program which is normally using the separate vector space, it
may be advantageous fo put an impartant buffer into workspace, so that it is more
likely to be put into internal RAM. The program would be compiled with separate
vector space enabled, but would include something like:

[buff.size]BYTE crucial.buffer :
PLACE crucial.buffer IN WORKSPACE :

For a program where it is required to put all of the data apart from one large array
into the workspace, the program would be compiled with separate vector space
disabled, and the array allocated to vector space by a place statement such as
PLACE large.array IN VECSPACE.

Within a program it is possible to mix code compiled with separate vector space
on and code compiled with separate vector space off. The parts of the program
which have been compiled with separate vector space enabled will be given use
of the vector space.

Note that certain libraries such as hostio. 1ib use vector space. Therefore, it
is likely that some use of vector space will be made, even if vector space is disabled
for a program module.

5.7 Sharing source between files

The source of a program can be split over any number of files by using the
#INCLUDE directive. This directive enables the user to specify a file which contains
occam source. The contents of this file are included in the source at the same
point and with the same indentation as the #INCLUDE directive. Include files may
be nested to any depth — the compiler does not impose a limit. By convention, the
.inc file extension is used for occam constant and protocol definitions. An
example of using the # INCLUDE directive is given below:

#INCLUDE ”infile.inc” =-— source in infile.inc

The name of the file to be included is placed in quotes. All of the line following the
closing quote may be used as for comments. All directives occupy a singlé line.

72TDS 366 01 March 1993

52 5.8 Separate compilation

5.8 Separate compilation

Separate compilation reflects the hierarchical structure of occam, and the
occam compiler compiles occam procedures and/or functions (PROCs and
FUNCTIONS). Any number of procedures and/or functions may be compiled at any
time, provided the only external references they make are via their parameter lists.

A group of procedures and/or functions that are compiled together are known as
a compilation unit. Each procedure and/or function in such a group may be called
internally by other procedures declared later in that group, or externally by any
occam in the scope of the directive which references that separate compilation
unit. Constant declarations and protocols are also permitted inside a compilation
unit, for the use of the procedures and functions within it. The scope of a separate
compilation unit is the same as any normal occam procedure or function.

Separately compiled units are referenced from 0ccam source as object code files,
using the #USE directive. The object file may be a compiled (. teo) or library
(.1ib) file. If the file extension is omitted the compiler adds the extension of the
current output file. This will be (. tco) unless an output file has been specified
using the ‘0’ option.

An example of how to reference a separately compiled unit is shown below.
#USE “scunit.tco” -- code in file scunit.tco

The filename must be enclosed in double quotes. All of the line following the
closing quote can be used as comment. The directive must occupy a single line.

Separate compilation units may be nested to any depth and may contain
#INCLUDE directives. They may also use libraries, as described in section 5.10.
A separate compilation unit must be compiled before the source which references
it can be compiled.

5.8.1 Sharing protocols and constants

occam constants and protocols may be declared and used within a compilation
unit according to the rules of the language. Where a constant and/or protocol is
to be used across separate compilation boundaries, it should always be placed in
a separate file. The file should be referenced in any compilation unit where it is
needed, by using the #INCLUDE directive before any ¥USE directive, which
introduces procedures using the protocol in their formal parameter lists. Protocols
will also need to be referenced in any enclosing compilation unit (because the

72 TDS 366 01 March 1993

5 Programming single transputers 53

channels will either be declared there or passed through). For example, suppose
we have a protocol Pdefined in afilemyprot . inc. We might then use it as follows:

PROC main ()
#INCLUDE "myprot.inc”
#USE “mysc.tco”

CHAN OF P actual.channel :
PAR
do.it(actual.channel)

The separately compiled procedure do. it, in the file mysc. oce, would look like
this:

#INCLUDE “myprot.inc” —- declares protocol P
PROC do.it (CHAN OF P in)

SEQ
. body of procedure

Since the protocol name P occurs in the formal parameter list of the separately
compiled procedure do . i t, the compilation unit must include a #INCLUDE direc-
tive, preceding the declaration of de. it, to introduce the name B.

5.8.2 Compiling and linking large programs

Building a program which includes separate compilation units and library refer-
ences is straightforward. Separate compilation units in the program can be
compiled individually by applying the compiler to them. Nested compilation units
must be compiled in a bottom-up order before the top level of the program is
compiled; finally the whole program is linked together.

Separate compilation units must be compiled before the unit which references
them can be compiled. This is because the object code contains all the information
about a unit (names, formal parameters, workspace and code size, etc.) which is
needed to arrange the static allocation of workspace and to check correctness
across compilation boundaries. This information may be viewed using the i1ist
tool.

When a program is linked the code for all the separate compilation units in the
program is copied into a single file. In addition, code for any libraries used is
included in the file. Where libraries contain more than one module, only those
modules containing routines actually required in a program are linked into the final
code. This helps to minimize the size of the linked code.

72 TDS 366 01 March 1983

54 5.9 Using imakef

The target processor or transputer class and error mode must be specified to the
linker to enable it to select appropriate library modules. Only one processor type
or class may be used for the linking process and this must be compatible with the
transputer type or class used to compile the modules. The error mode used for the
linking process must also be compatible with the error mode(s) used to compile
the modules. Compatible use of the compiler and linker ‘Y’ option must also be
adopted for the modules to be linked.

If there are a large number of input modules, they may be supplied to the linker
within anindirect file, as a list of filenames. Indirect files may also contain directives
to the linker. Linker directives enable the user to customize the linkage operation,
e.g. define aliases, symbols, and references, modify the ordering of modules, and
include other indirect files. Section 9.4 in the 0ccam 2 Toolset Reference Manual
describes the operation of linker directives.

5.9 Using imakef

When a change is made to part of a program it is necessary to recompile the
program to create a new code file reflecting the change. The purpose of the sepa-
rate compilation system is to split up a program so that only those parts of the
program which have changed or which depend on the changed units, need to be
recompiled, rather than needing to recompile the whole program. However, it
would be tedious to have to remember which modules had been edited, which
modules might be affected by calls and the order in which the modules were
compiled and linked. For this reason a Makefile generator imakef£ is supplied with
the toolset and may be used to assist with building programs consisting of several
modules. This tool, when applied to a program (or part of a program), compiles a
list of dependencies of compilation units and uses this list to produce a Makefile.
The Makefile can be used with a suitable MAKE program to recompile only the
changed parts of a program. This ensures that compilation units will always be
recompiled where a change has made this necessary.

To use the Makefile generator you must tell it the name of the file you wish to build.
The tool can produce a Makefile for any type of file that can be built with the toolset
tools. In order for imakef to be able to identify file types, a different system of file
extensions must be used to that used in this chapter. The filename rules for
imakef are described in section 11.3 of the occam 2 Toolset Reference Manual.

5.10 Libraries

A library is a collection of compiled procedures and/or functions. Any number of
separately compiled units may be made into a library by using the librarian. Sepa-
rately compiled units and libraries can be added to existing libraries. Each compila-
tion unitis treated as a separately loadable module within a library. When compiling
or linking, only modules which are used by a program are loaded. The rules for
selective loading are described in the following section.

72 TDS 366 01 March 1983

5 Programming single transputers 55

Libraries are referenced from occam source by the #USE directive. For example:
#USE "hostio.lib” —- host server library

The filename is enclosed in quotes. The rest of the line, following the closing quote,
may be used for comments. Directives must occupy a single line.

Libraries should always use a .lib file extension, and this must always be
supplied in a #USE directive.

5.10.1 Selective loading

Each module (separately compiled unit) in a library is selectively loadable by the
linker; i.e. parts of a library not used or unusable by a program are ignored. The
unit of selectivity is the library module; i.e. if one procedure or function of a library
module is used then all the code for that module is loaded.

The compiler is selective when a library is referenced. Only modules of a library
that are of the same, or compatible, transputer type or class, error mode and
method of channel input/output, are read (see Appendix B in the occam 2 Toolset
Reference Manual, and sections 5.3 and 5.4 in this chapter).

Selective loading is based on the following rules:

1 The transputer type or class of a library module must be the same as, or
compatible with, the code which could use it.

2 The error mode of the library module must be the same as, or compatible
with, the code which could use it.

3 The interactive debugging mode (i.e. whether interactive debugging is
enabled or not) of the library must be the same, or compatible with, the
code which could use it.

4 At least one routine (entry point) in a module is called by the code.

Rules 1 to 3 apply to the compiler. All the rules are used by the linker. The compiler
only selects on transputer type, error mode and method of channel input/output.
it is not until the linking stage that unused modules are rejected. For details on
mixing processor classes see Appendix B in the occam 2 Toolset Reference
Manual, and for information on mixing error modes see section 5.3.

5.10.2 Building libraries

Libraries are built using the librarian tool ilibr, Libraries can be created from
either separately compiled units (. tco or library files . 1ib) or from linked units

72 TDS 366 01 March 1993

56 5.10 Libraries

(. lkufiles) but not a combination of both. The librarian takes any number of input
files and combines them into a single library file. Each separately compiled unit
forms a single module in the library.

When forming a library the librarian will warn if there are multiply defined routines
(entry points). In other words, for each combination of transputer type, error mode
and method of channel input/output there may only be one routine with a particular
name. For further information on building and optimizing libraries see Chapter 8 of

the occam 2 Toolset Reference Manual.

As an example consider building a library called mylib. 1ib. The source of this
library is contained in a file called mylib . oce and has been written to be compil-
able for both 16 and 32 bit transputers. We want the library to be available for T212
and T800 processors in halt on error mode only. Having compiled the source for
the two processors we will have two files, for example: mylib.t2h and
mylib.t8h. To form a library from these compilation units use the following
command line:

ilibr mylib.t2h mylib.t8h

When an output filename is not specified, as in this example, the librarian uses the
first file in the list to make up the output file name and adds the extension . 1ib.
In this case it will write the library to the file mylib. 1ib.

The librarian can also take an indirect file containing a list of the files to be built into
the library. Such files should have the same name as the library, but with a . 1bb
file extension. So, still using the above example, if the names of the files to make
up the library were put in a file called my1ib. 1bb, we could then build the library
using one of the following commands:

ilibr -f mylib.lbb -o mylib.lib (UNIX)
ilibr /f mylib.1lbb /o mylib.lib (MS-DOSIVMS)

Compiled modules can be added to an existing library file. However, if the librarian
attempts to create an output file with the same name as an input library file, an error
will be produced. This can be avoided by specifying a different output filename
using the ‘0’ option. Alternatively if one on the compiled modules to be added to
the library has a different name, this could be specified first on the command line.
Once the new library file has been created it can be renamed if necessary. Adding
modules to an existing library does not require programs which call it to be recom-
piled, provided it is given its original name in its final form.

The Makefile generator imake £ can be used to assist with the building of libraries.
This is particularly useful where libraries are nested within other libraries or
compilation units, because imakef can identify the dependencies of libraries on
other modules or separately compiled units. For further information about the

imakef tool see Chapter 11 of the occam 2 Toolset Reference Manual.

72 TDS 366 01 March 1993

5 Programming single transputers 57

5.11 Example program — the pipeline sorter

This section introduces an example which serves to show how a large program
might be structured, in terms of separate compilation units, libraries, and a shared

protocol. occam source files, header files, and the configuration description for
this program, can be found on the examples/sorter directory.
5.11.1 Overview of the program

The program sorts a series of characters into the order of their ASCII code values.

Figure 5.3 Basic structure of sorter program

Figure 5.3 shows the basic structure of this program. There are three processes:
the input process, the output process and the sorter process. We can decompose
the sorter process by using a pipeline structure. This uses the algorithm described
in A tutorial infroduction to occam programming. If we design the pipeline carefully
we can ensure that each element of the pipeline is identical to all the other
elements. The pipeline is served by an input process, which reads characters from
the keyboard, and an output process which writes the sorted characters to the
screen. Figure 5.4 shows the structure of the program using a pipeline.

@ |

Figure 54 Pipeline of n elements

An obvious implementation would be to write an 0occam process for each process
in Figure 5.4, using a replicated process for the pipeline. Communication between
the processes is via 0occam channels and to aid program correctness we should
use an occam PROTOCOL for these channels. This protocol must be shared by
all the processes. As the occam compiler compiles processes (PROCs) and as
each of the processes is independent we can implement each one as a separately
compiled unit. The processes share a common protocol and the best way to
ensure consistency is to place the protocol in a separate file and use the

72 TDS 366 01 March 1993

58 5.11 Example program - the pipeline sorter

#INCLUDE mechanism o access it. These processes can then be called in parallel
by an enclosing program which can access the code of each process by the #USE
mechanism,

There is a problem with this implementation because two processes require
access to the host file server. The host file server is accessed via a pair of occam
channels and occam does not allow the sharing of channels between processes.
There are a number of ways around this problem. One solution is to use a multi-
plexor process for the server channels, as described in section 8.5. Another solu-
tion is to merge the two processes into a single process. This solution is used
because the program accesses the server in a sequential manner (read a line then
display sorted line, read a line etc.). Figure 5.5 gives the final process diagram for
the program.

elelalent ----

Figure 5.5 Program with combined input/output process

The implementation can be split functionally into four files:

element.oce the pipeline sorting element
inout.oce the input/output process
sorter.ocec the enclosing program
sorthdr.inc the common protocol definition

Figure 5.6 shows the way these files are connected together to form a program.

72 TDS 366 01 March 1993

5 Programming single transputers

59

sorter
#INCLUDE [} t $USE
#$USE
element inout
#INCLUDE T
|
sorthdr #INCLUDE

Figure 5.6 File structure of program

The source of the program is given below and is supplied in the ‘examples’ direc-
tory. You can either copy these files to a working directory or you can type in the

source as given below.

Two other files are required to complete the program. These are the host file server
library hostio.lib and the corresponding .inc file containing the host file
server constants. These are automatically referenced using the ISEARCH environ-

ment variable.

5.11.2 The channel protocol

Declarations of constants and channel protocols are contained in the include file
sorthdr. ine, which is listed below.

PROTOCOL LETTERS
CASE
letter; BYTE
end.of.letters
terminate

‘}AL number.elements IS 100:

—— upper bound

This declares a protocol called LETTERS, which permits three different types of

message to be communicated:

72 TDS 366 01

March 1993

60 5.11 Example program - the pipeline sorter

letter — followed by the character to be sorted.
end.of .letters - marks the end of the sequence to be sorted.
terminate — signals the end of the program.

The constant number . elements is also declared. This defines both the number
of sorting elements in the pipeline and the maximum length of the sequence of
characters that can be sorted.

5.11.3 The sorting element
The sorting element element . oce is listed below:

#INCLUDE ”sorthdr.ine”
PROC sort.element (CHAN OF LETTERS input, output)
BYTE highest:
BOOL going:
SEQ
going := TRUE
WHILE going
input ? CASE
terminate
going := FALSE
letter; highest
BYTE next:
BOOL inline:
SEQ
inline := TRUE
WHILE inline
input ? CASE
letter; next
IF
next > highest
SEQ
output ! letter; highest
highest := next
TRUE
output ! letter; next
end.of.letters
SEQ
inline := FALSE
output ! letter; highest
output ! end.of.letters
output ! terminate

This program consists of two loops, one nested inside the other. The outer loop
accepts either a termination signal or a character sequence for sorting. If it
receives a character it enters the inner loop. The inner loop reads characters until
it receives an ‘end of letters’ signal, signifying the end of the string of characters

72 TDS 366 01 March 1993

5 Programming single transputers 61

to be sorted. The sort is performed by storing the highest (ASCII) value character
it receives and passing any lesser (or equal) characters on to the next process. The
‘end of letters’ tag causes the stored value fo be passed on and the inner loop
terminates.

The maximum number of characters which can be sorted is determined by the
number of sorter processes. One character is sorted per process.

5.11.4 The input/output process

This process consists of a loop which reads a line from the keyboard, then sends
the line to the sorter and, in parallel, reads the sorted line back. It then displays the
sorted line. If the line read from the keyboard is empty the loop is terminated. At
the end of the process the host file server is terminated with the success constant
sps . success, Which is defined in the file hostio. inc.

If any /o errors occur the program will stop, allowing it to be examined by the
debugger.

The input/output process inout. occ is listed below.

#INCLUDE “sorthdr.inc”
#INCLUDE “hostio.inc”
PROC inout (CHAN OF SP fs, ts,
CHAN OF LETTERS from.pipe, to.pipe)
#USE "hostio.lib”
[number.elements — 1]BYTE line, sorted.line:
INT line.length, sorted.length:
BYTE result:
BOOL going:
SEQ
so.write.string.nl (fs, ts,
"Enter lines of text to be sorted *
*— empty line terminates”)
going := TRUE
WHILE going
SEQ
so.read.echo.line(fs, ts, line.length,
line, result)

IF
result <> spr.ok
STOP —— stop if an error occurs
TRUE
so.write.nl (fs, ts)
PAR
SEQ
IF

(line.length = 0)
to.pipe ! terminate

72 TDS 366 01 March 1993

62 5.11 Example program - the pipeline sorter

TRUE
SEQ
SEQ i = 0 FOR line.length
to.pipe ! letter; line[i]
to.pipe ! end.of.letters
BOOL end.of.line:
SEQ
end.of.line := FALSE
sorted.length := 0
WHILE NOT end.of.line
from.pipe ? CASE
terminate
SEQ
end.of.line := TRUE
going := FALSE
letter; sorted.line[sorted.length]
sorted.length := sorted.length + 1
end.of.letters
SEQ
so.write.string.nl(fs, ts,
[sorted.line FROM 0
FOR sorted.length])
end.of.line := TRUE
so.exit(fs, ts, sps.success) -- terminate server

5.11.5 The calling program

This process calls the input output process in parallel with the sorter elements, in
a pipeline. The memory parameter must be declared, but the program does not
use it.

The calling program sorter. oce is listed below.

#INCLUDE “hostio.inc” ——
PROC sorter (CHAN OF SP fs, ts, []INT memory)
#USE “hostio.lib”
#INCLUDE “sorthdr.inc” —-
#USE ”inout”
#USE "element”

[number.elements + 1]CHAN OF LETTERS pipe:
PAR
inout(fs, ts, pipe[number.elements], pipe[0])
PAR i = 0 FOR number.elements
sort.element (pipe[i], pipe[i+l])

72 TDS 366 01 March 1993

5 Programming single transputers 63

5.11.6 Compiling the program

To build the program, first compile each component of the program separately, link
them together, and add bootstrap code to the main compilation unit.

The program’s components must be compiled in a bottom up fashion, that is,
element.occ and inout.occ first (in either sequence), followed by the main
program sorter.oce. First, compile the sorting element element. oce using
one of the following commands:

oc element -t425 (UNIX)
oc element /t425 (MS-DOS/VMS)

The file extension can be omitted on the command line because the source file has
the conventional extension .ocec. The compiler produces a file called
element. tco, compiled for a T425 in HALT mode.

Next compile the input/output process using the following command:
oc inout -t425 (UNIX)
oc inout /td25 (MS-DOS/VMS)

The compiler produces afile called inout. teo, compiled for a T425 in the default
HALT error mode.

Finally compile the main body using the command line:
oc sorter -t425 (UNIX)
oc sorter /td25 (MS-DOS/VMS)

The compiler produces a file called sorter. teco, compiled for a T425 in HALT
mode.

5.11.7 Linking the program

Having compiled all the components of the program you can now link them
together to form a whole program. Any libraries used by the program must also be
specified to the linker. The library hostio. 1ib is the server library used by this
program. Remember the include file, occama. 1nk, which identifies the other
libraries, such as compiler libraries, required in the linking process (see section
3.11.2).

To link the files use one of the following commands:

ilink sorter.tco inout.tco element.tco hostio.lib -f occama.lnk -t425

(UNIX)

ilink sorter.tco inout.tco element.tco hostio.lib /f occama.lnk /t425

(MS-DOS/VMS)

72 TDS 366 01 March 1993

64 5.11 Example program - the pipeline sorter

The linker will create the file sorter. 1ku linked for a T425 in HALT mode.

If a main entry point is not specified, the linker uses the first valid entry point that
it encounters in the input. Therefore, in the above example, it is important to list
the file ‘sorter. teo' first. A main entry point may be specified within an indirect
file using the linker directive #mainentry or on the command line using the linker
‘ME’ option.

5.11.8 Configuring and collecting the program

Before you can run the program you must configure and collect the program. This
will generate a bootable file which can be loaded and run using iserver or isim.
Use the following sequence of commands:

occonf sorter.pgm

icollect sorter.cfb

occonf generates the file sorter . c£b which is then processed by the collector
tool This creates the bootable file sorter.btl.

sorter.pgm configures the program for a single IMS T425 with 1Mbyte of
memory, this should be checked against your own hardware and modified if neces-

sary:

NODE p :
ARC hostarc :
NETWORK
DO
SET p(type, memsize := "T425”, 1024 * 1024)
CONNECT p[link] [0] TO HOST WITH hostarc

#INCLUDE “hostio.inc”
#USE “sorter.lku”

CONFIG
CHAN OF SP fs, ts :
PLACE fs, ts ON hostarc :
PROCESSCR p
[1]INT dummy.memory :
sorter(fs, ts, dummy.memory)

5.11.9 Running the program

The bootable file can be run using iserver or isim. To load the program onto
a transputer board use one of the following commands:

iserver -se -sb sorter.btl (UNIX)
iserver /se /sb sorter.btl (MS-DOS/VMS)

72 TDS 366 01 March 1993

5 Programming single transputers 65

The ‘sb’ option specifies the file to be booted and loads the program onto the trans-
puter board. It has the effect of resetting the board, opening communication with
the host, and loading the program onto the network. The ‘se’ option directs the
server to terminate if the program sets the error flag. For more details about
running the iserver see Chapter 13 in the occam 2 Toolset Reference Manual.

The program reads characters from the keyboard, sorts the line and redisplays it.
The program will run until input is terminated by typing RETURN on an empty line.

Figure 5.7 shows an example of the screen display obtained by running
sorter.btl on a UNIX based toolset. The user inputs the string ‘Sorter program’
and terminates the program by pressing RETURN.

iserver —se —-sb sorter.btl

Enter lines of text to be sorted - empty line terminates
Sorter program

Saegmooprrrrt

Figure 5.7 Example output produced by running sorter.btl
To run the program using isim use one of the following commands:
isim -bq sorter.btl (UNIX)
isim /bg serter.btl (MS-DOS/VMS)

The 'bq’ option specifies batch quiet mode which causes the simulator to run the
program and then terminate. For a description of the simulator tool see Chapter
14 in the occam 2 Toolset Reference Manual.

5.11.10 Alternative method of creating a bootable file

Because the program is to be loaded on a single transputer, a shortcut may be
used (see section 4.3.7). The bootable file can be created directly from the linked
unit using the collector ‘t’ option, omitting the configurer stage:

icollect sorter.lku -t (UNIX)
icollect sorter.lku /t (MS-DOS/VMS)

The ‘t’ option informs the collector that the input file is a linked unit rather than the
output of the configurer tool. If this method is used, the collector creates as a
by-product a . e£b file, redundant in this example.

As in the configured case the collector creates the bootable file sorter.btl
which can be loaded and run using iserver or isim.

72TDS 366 01 March 1993

66 5.11 Example program — the pipeline sorter

5.11.11 Automated program building

The imakef tool can be used to automate the development process. From the
above example it can be seen that there are many steps to go through when
building a program of any size. Some of these steps must be performed in a
specific order and if part of the program were changed then all affected parts must
be recompiled and relinked etc.

MAKE is a common tool for building programs. It uses information about when files
were last updated, and performs all the necessary operations to keep object and
bootable files up to date with changes in any part of the source. Makefiles are the
standard method of providing the MAKE program with the information it needs.

The occam toolset is designed in such a way that it is possible for a tool to
construct Makefiles to build occam programs. The Makefile generator imakef
produces Makefiles in a format acceptable to most MAKE programs.

imakef requires the user to adopt a particular convention of file extensions. The
user then only has to specify the target file s/he requires i.e. a bootable file and
imakef, using its knowledge of file names rules, creates a suitable Makefile. This
file has full instructions on how to build the program. By running the MAKE program
for the file the entire program will be automatically compiled, linked and made boot-
able, ready for loading onto the transputer.

For more details about the imakef tool and an example of how to create a make-
file for the pipeline sorter program used in this chapter, see Chapter 11 in the

occam 2 Toolset Reference Manual.

72TDS 366 01 March 1993

6 Configuring
transputer networks

This chapter describes how to build programs that run on networks of transputers.
It describes how to configure an occam program for a network of transputers
using the configuration language and the occam configurer tool ccconf, illus-
trated with an example program for four transputers. The chapter also includes
examples illustrating various aspects of configuration.

6.1 Introduction

In order to build programs for multitransputer networks a program is split into a
number of self contained components, and each of these is implemented as an
occam process. Each process may communicate with other processes resident
on the same transputer or, via links, with processes on other transputers.

Programs consisting of 0ccam processes can be run on single or multiple trans-
puters, in any combination. Performance requirements can be met by adapting the
application to run on differing numbers of transputers, and by using differing
network topologies.

The mapping of processes to processors on a transputer network is known as
configuration. Transputer programs can be configured to run on any physical
network of transputers. They can be loaded from an external host down a trans-
puter link, or loaded from ROM.

Configuration is achieved by writing a configuration description in the occam
configuration language. A configuration description is created by the useras atext
file which is processed by the configurer tool to generate a configuration data file.
This data file is in turm processed by the collector tool icollect to generate a
transputer loadable file.

Within a configuration description the hardware network and the software descrip-
tion are kept separate. This enables the software description to be used for running
the same parallel program on a variety of alternative hardware networks. Likewise
a particular physical network may be described once for use in a variety of configu-
rations describing different programs that may be run on the same network.

6.1.1 Mixing languages

By using the facilities for calling other languages from occam, programs compiled
from mixed language sources may also be configured using the occam confi-

72 TDS 366 01 March 1993

68 6.2 Configuration model

gurer. (These facilities enable the foreign language code to be incorporated into
the occam program as equivalent occam processes. An example of this is
provided in the user examples directory supplied with the toolset. A description
of this method of mixed language programming is given in Chapter 11). Similarly
it is possible to configure occam modules which are called by C programs using
the configurer provided with the ANSI C toolset. Details of how to do this are given
in the ANSI C Toolset User Guide.

6.2 Configuration model
The configuration model consists of the following parts:

* A hardware network description which declares a network as a connected
~ graph of processors.

* A software description in the form of an occam process.

» A mapping between the processes and channels of the software and the
nodes (processors) and arcs (transputer link connections) of the network.
The mapping is achieved by declaring names and, in the scopes of these
declarations, referring to the names in the structures of the configuration
description. Normal occam scope rules apply.

The software description takes the form of an occam process with at least as
many parallel sub-processes as there are hardware processors in the network.
Within the description, each process which may be independently placed on a
processor, is introduced by a PROCESSOR construct naming a processor. Proces-
sors so named may either be the hardware processors declared in the network
description, or may be logical processors mapped onto the hardware processors
in a separate mapping structure. In either case the processor name must have
appeared in a NODE declaration in whose scope the software description is written.

The connections between processes in the software description are defined by
occam channels. Itis thus possible for the configurer tool to determine what code
is to be loaded onto what processor, and to choose its own mapping of channels
onto physical connections between processors.

Some channels may be used to connect to hardware outside the network, such
as the development host or other hardware connected by means of link adaptors.
External objects of this kind are declared as EDGEs in the hardware description.

All processors which are connected together are connected via their links, repre-
sented in the language as attributes, of type EDGE, of declared NODEs.

The connections to external edges, or those between processors, may optionally

be declared as ARCs, which associate a name with a particular connection. This
enables explicit mappings of channels onto these arcs to be made.

72TDS 366 01 March 1993

6 Configuring transputer networks 69

6.2.1 Configuration language

A configuration description consists of a sequence of declarations and statements.
The language used is an extension to occam and follows the usual occam scope
rules - in fact, the configurer uses the occam compiler to evaluate these state-
ments. Appendix A defines the syntax of the occam configuration language.

Configuration declarations introduce physical processors, arcs and edges of the
network, network connections and processor attributes, logical processors to be
mapped onto physical processors, the software description, and the mapping
between logical and physical processors. These are listed in Table 6.1.

Declaration |Description

NODE Introduces processors (nodes of a graph). These processors
are considered to be physical if they are defined as part of the
hardware description, or logical if they are defined as part of
the software description and mapped to a physical processor
as part of the mapping.

ARC Introduces named connections (arcs of a graph) between
processors (using the transputer links). These connections
need not be declared as ARCs unless channels are required to
be explicitly placed on particular links.

EDGE Introduces external connections of the hardware description.
External edges may be the host, or any peripheral connected
via a link adaptor e.g. a joystick, disc drive.

NETWORK Defines the connections and attribute settings of previously
declared NODEs (physical processors).

MAPPING Defines mappings between logical processors and physical
processors.

CONFIG Introduces the software description.

Table 6.1 Configuration description declarations

Arrays of NODEs, EDGEs, and ARCs may be declared. A configuration description
includes one NETWORK, one CONFIG and, optionally, one MAPPING. Each of the
items appearing before CONFIG behaves as an 0ccam specification, and ordinary
VAL abbreviations may be included amongst these components to facilitate the
description of scalable configurations. A NETWORK, CONFIG, or MAPPING s option-
ally named by an identifier following its opening keyword.

Configuration declarations are usually followed by statements which perform
various actions relating to the declaration. Actions are defined by SET, CONNECT
and MAP statements. The DO construct enables these statements to be grouped
or replicated. PROCESSOR statements introduce processes which may be mapped
onto named processors. IF may be used as in occam. Configuration language
statements are listed in Table 6.2.

The MAP statement may be replicated, via the DO construct, within a MAPPING
declaration. SET and CONNECT statements may be used within a NETWORK decla-
ration and may be combined in any order using the DO statement.

72 TDS 366 01 March 1993

70 6.2 Configuration model

Statement Description

SET Defines values for NODE attributes.

CONNECT Defines a connection between two EDGES, either of two
nodes or between a node and a declared external EDGE.

MAP Defines the mapping of a logical processor onto a

physical processor declared as a NODE. Optionally
defines the mapping of up to two channels onto an ARC.

PROCESSOR Introduces a software process and associates it with a
logical or physical processor.

DO Groups one or more actions defined by SET, CONNECT,
or MAP statements.

IF Conditional.

Table 6.2 Configuration description statements
Importing code and source files

Compiled code from other files may be refereniced by means of the #USE directive,
either at the top level, or within the CONFIG construct.

#INCLUDE directives can be used to include other source files. It is suggested that
the distinct sections are kept in different files, accessed by # INCLUDE directives
from a ‘master’ file.

The include file occonf. ine, supplied with the toolset, defines some useful
configuration values. It can be found on the toolset 1ibs directory.

6.2.2 Overall structure of a configuration description

A configuration description consists of two or three parts; a hardware network
description, a software network description, and an optional mapping between the
two.

The hardware description defines processor connections. It also defines attributes
such as processor types and memory sizes. These processors are known as
physical processors.

The software description is basically an occam parallel process, annotated with
PROCESSOR statements to indicate which processes are to be compiled for which
processors. These processes are allocated to logical processors.

The mapping section can be used to ease the task of changing a particular
program to execute on a different hardware network. The mapping section
enables this to be performed without modifying the software description in any
way, by flexibly mapping the logical processors onto the physical processors, see
figure 6.1.

72 TDS 366 01 March 1993

6 Configuring transputer networks

71

Alternative hardware descriptions

=

{|Hwo=x

T425

T800 T800

M

4M 4M

Hardware description

T425 T425
2M 2M

N

Mapping description

MAP logical processor ONTO physical processor

Logical

Define physical hardware

Define logic of program

-] Alternative software descriptions

Figure 6.1 Configuration using logical processors

72TDS 366 01

March 1993

72

6.2 Configuration model
The following example illustrates the basic style of the language:

—- hardware description, omitting host connection
#INCLUDE “occonf.inc” —- contains useful constants
—— for memory sizes
NODE root.p, worker.p : — declare two processors
NETWORK simple.network
DO
SET root.p (type, memsize

= "T414”, 1 * M)
SET worker.p (type, memsize

= "T800”, 4 * M)
CONNECT root.p[link][3] TO worker.p[link][0]

—— mapping

NODE root.l, worker.l —- logical processors
MAPPING
DO

MAP root.l ONTO root.p
MAP worker.l ONTO worker.p

—— software description

#INCLUDE “prots.inc” -- declare protocol
#USE “root.lku”

#USE "worker.lku”

—— must be linked units
CONFIG

CHAN OF protocol root.to.worker, worker.to.root
PLACED PAR

PROCESSOR root.1l

root.process (worker.to.root, root.to.worker)
PROCESSOR worker.l

worker.process (root.to

.worker, worker.to.root)
This example is illustrated in Figure 6.2.

Eoot.p worker.p
T414 T800
’ 110
(1M) bt (4M)
% B S -
Y root.to.worker : H
% root. v
process .
Mépsonu) worker. to.root
Figure 6.2 Mapping of software onto hardware
72 TDS 366 01

March 1993

6 Configuring transputer networks 75

Attributes that can be set in the MAPPING section are listed below.

order.code Defines the priority of the program code in memory.

order.vs Defines the priority of the program's vectorspace in
memory.

order.ws Defines the priority of the program’s workspace in memory.

reserved Deﬁrtles a block of memory to be reserved for code place-
ment.

location.code Defines an absolute address at which program code
should be placed.

location.ws Defines an absolute address at which the workspace
(stack) should be placed.

location.vs Defines an absolute address at which the vectorspace
should be placed (if it exists).

routecost Weights or de-weights specific processors in the network
for virtual routing.

tolerance Defines the level of usage of a particular processor for
load-sharing routing paths.

linkquota Defines the maximum number of links on the processor to
be used by virtual routing.

nodebug For use with the INQUEST debugger. Informs the

debugger that the process is not to be debugged. Takes
the values TRUE or FALSE; the default is FALSE.

noprofile For use with the INQUEST profiling tools. Informs the tools
that process is not to be profiled. Takes the values TRUE or
FALSE; the default is FALSE.

Use of these attributes is fully described in sections 6.5.5 10 6.5.9.

6.3.3 NETWORK description

The NETWORK keyword introduces a section which describes the connectivity, and
attributes of previously declared NODEs. These should be declared outside of the
NETWORK description, so that they are visible inside and below the NETWORK
description.

To describe a single processor, the SET statement provides values for the proces-
sor's atfributes in the style of a multiple assignment.

NETWORK single
SET processor (type, memsize := ”T800”, 1024*1024)

The type attribute must be set to a BYTE aray (of any length) whose contents
describe the processor type. Trailing spaces at the end of the processor’s type are
ignored.

72 TDS 366 01 March 1993

76 6.3 Hardware description

Supported types are:

”T212” H’Tzzzﬂ ”T225” J'IM212”
”T‘Oo” IIT414” !!T425”
JITBOO” ”Taolll IITSOS”

The memsize atiribute must be set to the amount of usable memory (on-chip +
external memory) available to that processor. It is expressed as a contiguous
amount starting at the most negative address, in BYTEs. (K and M, defined in
occonf . ing, can be used to specify Kbytes and Mbytes).

Both the type and memsize attributes must be defined for all processors. No
attribute may be defined more than once for each processor.

The above example could also be written as a sequence of SET statements in a
DO construct:

NETWORK single
DO
SET processor (type
SET processor (memsize

IITBOO")
1024*1024)

Since the DO construct does not imply any particular ordering, there is no absolute
constraint on the order in which attributes may be defined. However, it is consid-
ered good occam style by many to declare processor types and attributes before
other statements such as CONNECT statements.

If a network is to be configured to be loaded from ROM, the attribute root must
be set to TRUE for one processor only. By default this attribute is FALSE for all
processors. The attribute romsize should be set to the number of bytes of ROM
on the root processor. These attributes are ignored if the network is configured to
be booted from link.

IF, SKIP and STOP may be used in DO constructs and are effectively executed at
configuration time.

Processors must be connected together by means of CONNECT..TO.. statements
quoting a pair of edges:

VAL K IS 1024:
NETWORK pair.from.ROM
DO
SET procl (type, memsize
SET procl (root, romsize TRUE, 256 * K)
SET proc2 (type, memsize ”'1‘414” 1024 * K)
CONNECT procl[link] [0] TO proc2[11nk] [3]

778007, 2048 * K)

II nn

The order of the two edges in a CONNECT statement is irrelevant.

72 TDS 366 01 March 1993

6 Configuring transputer networks 77

Arrays of processors do not need to all have the same types or attributes. They
can be set by using DO replicators within the NETWORK construct, and by using
conditionals, as in this (rather contrived) example:

NETWORK pipe
DO

DO i = 0 FOR 100

IF
(i\4 =0
SET processor[i] (type, memsize := ”"T8007,
4 * (1024 * 1024))
TRUE

SET processor[i] (type, memsize := "“T414",
2 * (1024 * 1024))

DO i = 0 FOR 99
DO
CONNECT processor[i] [link] [1] TO
processor[i+l] [1link] [0]

IF
(i\2)=0
CONNECT processor[i] [1link] [2] TO
processor[i+2] [1ink] [3]
TRUE

SKIP

More complicated expressions may also be used, as long as they can be evaluated
at configuration time:

VAL processors IS [”T414”, "T414”, "T414", "T800"]
NETWORK fancy —— every fourth processor is different!
DO i = 0 FOR SIZE array
SET array[i] (type := processors[i \ 4])

6.3.4 Declaring EDGEs

Declared EDGEs define the ends of external connections of a NETWORK. For
instance, a connection to another machine whose internal structure is irrelevant.

72 TDS 366 01 March 1993

78 6.3 Hardware description’

They are declared as though they were occam data types, and as usual we can
declare arrays of them:

[10]EDGE diskdrive :
NETWORK disk.farm
DO i = 0 FOR 10
DO
== insert code to set attributes, then:
CONNECT processor[i][link] [0] TO diskdrive[i]

EDGE joystick :
NODE controller :
NETWORK n
DO
SET controller (type, memsize := "T212”, 64 * 1024)
CONNECT controller[link][2] TO joystick

6.3.5 Declaring ARCs

In some circumstances a programmer may require to name a connection between
two processors. This isn't normally necessary, because the configurer can place
channels between processors onto links automatically, but where a channel must
be connected onto an external EDGE this is required. Also, ifthere are multiple links
between two processors, and one link is set for some reason to go at a different
data rate than another, the programmer might wish to have more control.

These named links are called ARCs, and are declared as though they were occam
data types. They are associated with a link connection by adding a WITH clause
to the end of a CONNECT statement.

EDGE joystick :

ARC link.to.joystick :

NODE controller :

NETWORK n

DO
SET controller (type, memsize := "T212", 64 * 1024)
CONNECT controller[link][2] TO joystick WITH
link.to.joystick

72 TDS 366 01 March 1993

6 Configuring transputer networks 79

6.3.6 Abbreviations

occam style abbreviations are permitted, to enable easier reference to elements
of arrays, etc:

[10]NODE pipe :
NETWORK pipeline
DO i = 0 FOR 10
NODE this IS pipe[i]
SET this (type, memsize := "T414”, 1024%*1024)

Since NODEs have an attribute 1ink, whose type is []EDGE, we can abbreviate
one link of a processor as an EDGE:

[10]NODE pipe :
NETWORK pipeline
DO

DO i = 0 FOR 10

SET pipe[i] (type, memsize := “T414", 1024*1024)
DO i =0 FOR 9

EDGE this IS pipe[i][link][2]

EDGE that IS pipe[i+l1][link][3]

CONNECT this TO that

Simple one-to-one mappings of logical to physical processors may also be
expressed as abbreviations:

NODE root.l IS root.p :

6.3.7 Host connection

There is a predefined EDGE named HOST, which indicates the connection to a host
computer:

NODE single :
ARC hostlink :
NETWORK B004
DO
SET single (type, memsize := “T800”, 1000000)
CONNECT single[link] [0] TO HOST WITH hostlink

When configuring a program which is designed to be booted via a transputer link,
one processor must be connected to the predefined EDGE HOST.

72 TDS 366 01 March 1993

80 6.3 Hardware description

6.3.8 Examples of network descriptions
1) Single processor configuration connected to host:

#INCLUDE “occonf.inc”
NODE MyB004:
ARC hostlink:
NETWORK B0O04
DO
SET MyB004 (type, memsize := “T414", 2 * M)
CONNECT MyBO004[link] [0] TO HOST WITH hostlink

This configuration is illustrated in Figure 6.3.

MyB004
T414

hostlink

-1 Ox

0
(2M)

Figure 6.3 Example of host connection
2) Simple pipe with one processor with different memory size:

#INCLUDE "occonf.ine”
[P]NODE Pipe:

ARC hostLink:
NETWORK simple.pipe
DO
SET Pipe[0] (type, memsize := “T800”, 2*M)

DO i =1 FOR p-1

SET Pipe[i] (type, memsize := ”T800", 1*M)
CONNECT HOST TO Pipe[0] [link] [0] WITH hostLink
DO i = 0 FOR p-1

CONNECT Pipe[i] [1ink][2] TO Pipe[i+1][link][1]

This network is illustrated in Figure 6.4.

pipe[0] pipe[1] pipe[2] ipe[p-1
T800 T800 T800 T800

hostlink]

0 2 1 2 1 2 1
(2M) (1M) (1M) (1M)

=~ O L
l

Figure 6.4 Simple pipeline with different processor memory sizes

72 TDS 366 01 March 1993

6 Configuring transputer networks 81

3) Square array with host interface processor:

#INCLUDE "occonf.inc”

VAL Up IS O:

VAL Left IS 1:

VAL Down IS 2:

VAL Right IS 3:

NODE HostSquare:

[p] [P]NODE Square:

ARC hostlink:

NETWORK square

DO
SET HostSquare (type, memsize := "T414”", 2*M)
CONNECT HOST TO HostSquare[link][0] WITH hostlink
CONNECT HostSquare[link] [1] TO
Square[p-1] [p~1] [1link] [Down]

j 0 for p
DO
SET Square[i][j] (type, memsize := "T800", 1*M)
IF
(i =0) AND (j = 0)
CONNECT HostSquare [link][Down] TO
Lo o Square[0] [0] [1ink] [Up]
1=
CONNECT Square[p - 1][j - 1][link] [Down] TO
Square([0 113 1[1ink] [Up]
TRUE
CONNECT Square[i - 1] [j][link] [Down] TO
Square[i 1[3]1[1ink] [Up]
DO i=0 forp
DO j=0 for p
IF
j= (p-1)
CONNECT Square[i] [j] [link] [Right] TO
Square[(i + 1)\p][0][link] [Left]
TRUE

CONNECT Square[i] [j] [link] [Right] TO
Square[i] [j + 1][link] [Left]

6.4 Software description

The software description is introduced by a CONFIG statement and may optionally
be given a name.

The software description itself, is an 0ccam process, PAR or PLACED PAR, with
processes annotated by PROCESSOR statements. These identify which processes
may be placed on particular processors. The keyword PLACED is retained for
compatibility with earlier products; it is no longer required and has no effect.

72 TDS 366 01 March 1983

82 6.4 Software description

The NODEs which are referenced by a PROCESSOR statement may be either
physical processors if they are described as part of the hardware description, or
logical processors if they are described as part of the software description. If the
latter, they are mapped onto physical processors by means of a MAPPING section.

Physical processor names are allowed here to simplify small networks, or those
which will not be re-mapped, so that the programmer does not need to invent two
names for each processor.

The logical processor names must be introduced first by means of NODE declara-
tions. These look identical to those used in the hardware description, but cannot
have attribute settings. Since these must be visible to a following MAPPING
section, they must be declared outside the CONFIG construct. Channels which are
to be placed on ARCs by mapping statements must also be declared outside the
CONFIG construct.

A PROCESSOR statement associates the process instance (process) it labels with
the logical or physical processor it names. The same name may be referenced in
more than one PROCESSOR statement. The set of processes so named will run in
parallel on that processor.

The process ‘inside’ the PROCESSOR statement may consist of occam text.
However, it is recommended that the code should be restricted to simple proce-
dure callsi.e. to separately compiled procedures, referenced as linked compilation
units using the #USE directive. Code which generates library calls is not allowed.

Note: when imakef is used to build the program, any linked units referenced by
the software description must be given extensions of the type .cxx. This is
because imakef uses a different convention for file extensions to the normal
TCOFF file extensions, see chapter 11 in the occam 2 Toolset Reference Manual.

6.4.1 Libraries of linked units

The facility to create libraries of linked units provides an easy method of targeting
a process at different processor types within a software description.

For example, suppose a process is compiled and linked once for a T2 and once
for a T8 and the linked units are given imakef file extensions in order to distinguish
them. Referencing the two linked units directly within the software description by
#USE directives, will cause one of them to hide the other from the configurer.

If, however, the linked units are used to create a library and this is referenced by
a single #USE directive, the configurer will be able to extract the correct copy of the
process for each PROCESSOR statement it finds.

Only libraries containing linked units may be referenced from within a software
description.
6.4.2 Example

The following example of a software description, is for the pipeline sorter program
introduced in section 5.11. The example is developed to show the complete config-

72TDS 366 01 March 1993

6 Configuring transputer networks 83

uration description for the program, in section 6.6. Figure 6.5 illustrates the
mapping of the software processes onto a network of logical processors, which in
this example is achieved without an actual mapping section. This method of
mapping is explained in section 6.5.4.

#INCLUDE "hostio.inc” -- declares SP

#INCLUDE ”sorthdr.inc” -- declares LETTERS

#USE “inout.lku” —- linked unit

#USE “element.lku” —— linked unit

NODE inout.p : —— logical processor

[string.length] NODE pipe.element.p : —-— logical
— processors

CONFIG

CHAN OF SP app.in, app.out:
PLACE app.in, app.out ON hostlink:
[string.length+l1]CHAN OF LETTERS pipe:
PAR
PROCESSOR inout.p
inout (app.in, app.out, pipe[string.length],
pipe[0])
PAR i = 0 FOR string.length
PROCESSOR pipe.element.p[i]
sort.element (pipe[i], pipe[i+l])

This example names a single processes inout.p and an array of processes
pipe.element.p. The code may be mapped onto any hardware configuration
onto which matches the defined logical network and which includes an ARC decla-
ration for the host connection hostlink.

pipe. Eigent
= element Y[strin?.
inout.p -p[0] ength-1]
H Tig;.
0 Pipell] lengthiilf gorg.
S element
T

pipe[string.length]

Figure 6.5 Pipeline sorter — mapping processes onto processors
6.5 Mapping descriptions

A MAPPING structure is used if the user has declared logical processors. The
MAPPING maps logical processors used in the software description onto physical

72 TDS 366 01 March 1993

84 6.5 Mapping descriptions

processors used in the hardware description. It is possible to map any number of
logical processors onto any physical processor. The mapping description may also
place software channels on processor links.

The priority at which a process runs may be determined as part of the mapping,
if that logical process does not explicitly include high priority code. This reflects the
fact that changes in mapping may not affect the overall structure of the software,
but can often change the decisions made about which processes should be priori-
tized.

IF, SKIP, and STOP may be used in a mapping structure.

As would be expected from the 0ccam scoping rules, logical processor names
must be declared as NODEs in the software description, before the opening
keyword MAPPING of the mapping description. Each name so declared must
appear once and once only on the left hand side of a mapping item. Physical
processors may appear on the right hand sides of multiple mapping items.

The mapping structure itself may appear either before or after the software
description.

6.5.1 Mapping processes

Having declared physical processors, as part of the hardware description, and
logical processors, as part of the software description, we can assign logical

processors to physical processors using the MAP statement.

MAPPING map
MAP logical.proc ONTO physical.proc

We can also supply a list of logical processors to all be mapped onto the same
physical processor:

MAPPING map
MAP router.proc, application.proc ONTO root.processor

This is exactly equivalent to:

MAPPING map
DO
MAP router.proc ONTO root.processor
MAP application.proc ONTO root.processor

72 TDS 366 01 March 1993

6 Configuring transputer networks 85

And we can use DO replicators, and IF constructs, etc:

MAPPING map
DO
DO i =0 FOR 10
MAP router.proc[i] ONTO router.processor[i]
DOi=0FORS
MAP sieve.proc[i] ONTO sieve.processor

If we require that the process's priority be determined by the mapping, we can use
the optional PRI clause. The argument fo PRI can be either 0 to indicate high
priority, or 1 to indicate Jow priority:

The file occon£ . inc includes two named constants HIGH and LOW which can be
used for this.

MAPPING map
DO i =0 FOR 10
MAP logical.proc[i] ONTO physical.proc PRI (INT (i = 0))

The configuration tool will reject the mapping at high priority of a process which
itself includes a PRI PAR.
6.5.2 Channels

Channels are unidirectional, point-to-point connections which may be imple-
mented in one of four ways:

e Soft channel — a channel which communicates between processes
running on the same processor.

e Channel edge — a channel which provides communication between the
network and the outside world.

« Direct channel — one of up to two channels (one in each direction) placed
on a single link between adjacent processors.

¢ Virtual channel — a channel placed on on a virfual link.

No further action is required at configuration time to define or place the soft chan-
nels within an application; they are fully defined by the software itself.

Channel edges must be placed on a hardware arc. This can be done with a PLACE
or MAP statement:

PLACE fs ON hostarc:
or:

MAP fs ONTO hostarc

72 TDS 366 01 March 1993

86 6.5 Mapping descriptions

All other channels on a network may be implemented as either direct channels or
virtual channels. By default the configurer automatically places software channels
on links using the placement of processes on processors and channel edges on
hardware edges as a guide.

The configurer can implement many channels over a single hardware link as well
as channels between non-adjacent processors; channels implemented in this way
are known as virtual channels. They are implemented by software virtual routing
processes added automatically, as required, by the configurer.

Direct channels occur when only one or two channels (one in each direction) are
placed on a link between adjacent processors. Direct channels may be automati-
cally allocated by the configurer or the user may specifically place up to two chan-
nels on a named arc. For example, a channel edge is an example of a mandatory
direct channel. Note: when interactive debugging with idebug and virtual routing
are both enabled (the default), any direct non-edge channel placements will be
ignored.

Virtual channels enable an application program to run on most network topologies
irrespective of the number of physical links connecting processors. The configurer
can form virtual channels that span up to 24 hops across the target network. (A
‘hop’ is when a processor is required for routing a channel, zero hops implies that
no processors were required to route the channel). Should the configurer fail to
implement a long distance connection in a very large network, it will generate an
error message. Chapter 10 provides further information about routing channels.

Virtual channels are unidirectional and synchronized and are implemented by
means of virfual links. A virtual link can be thought of as a bi-directional virtual
connection between two processors, providing a communication path sufficient for
two channels (one in each direction) and the appropriate synchronization signals.

Explicit placement of channels on arcs using direct channels is only required when
connecting channels to hardware edges or where links are used for special
purposes. For example, connection to a device, or where an application uses input
and output channels separately, as in software implementations of high-speed
links. In certain performance critical applications it may also be important to avoid
the overhead incurred when using virtual channels.

Alink may carry one explicitly placed channel as well as many virtual channels (in
the opposite direction). In addition a pair of virtual channels (one in each direction)
may be routed by the configurer via different physical links.

In general channels should not be explicitly placed on arcs, unless they are edge
connections. This enables the configurer to implement channels where applicable
using routing and multiplexing software.

72 TDS 366 01 March 1993

6 Configuring transputer networks 87

Attention: Ifitis essential that the configuration does not use any virtual routing,
e.g. for performance reasons, the occonf ‘NV' command line option should be
used. This disables the configurer from using the virtual routing processes. (The
configurer will fail if configuration is not possible, in which case the configuration
should be modified to ensure that all channels can be placed). The bootable file
generated will be smaller when the virtual routing processes are not included.

6.5.3 Mapping channels

Channels between processors need not be placed by the user. The configurer will
determine that a connection exists, and will allocate all the channels to links if they
are available. The example in section 6.4.2 demonstrates this method and this is
the simplest way of implementing virtual channels. If virtual channels are to be
used it is essential that some channels are left unplaced.

However, if a user wants to override the default allocation, channels may be explic-
itly mapped onto named ARCs. Also, channels connecting processors to external
EDGEs must be mapped onto an ARC which connects to that EDGE.

Channels are mapped onto ARCs in exactly the same way as logical processors
are mapped onto physical processors. Two channels may be mapped onto the
same ARC. Obviously the ARC must connect EDGEs of the processors onto which
are mapped the processes which use the channel.

The channel behavior of the D7205/D5205/D6205 occam 2 toolsets may be
recreated by specifying the configurer ‘NV' option, which disables all virtual routing.

Channels may be assigned to arcs within the MAPPING section. For example:

EDGE peripheral :
ARC peripheral.arc :
NODE root.proc : — physical processor
NETWORK n
DO
— insert code to set attributes, then:
CONNECT root.proc[link][0] TO peripheral WITH peripheral.arc

CHAN OF protocol to.periph, from.periph :
NODE process : — logical processor
CONFIG
PLACED PAR
PROCESSOR process
— reads from channel from.periph, writes to
— channel to.periph

MAPPING
Do
MAP process ONTO root.proc
MAP to.periph, from.periph ONTQO peripheral.arc

72 TDS 366 01 March 1993

88 6.5 Mapping descriptions

From the above example it can be seen that more than one channel can be
mapped to a single arc. This makes it easy to place two opposing channels onto
a transputer link using a single line of code.

6.5.4 Mapping without a MAPPING section

Channels can also be assigned to arcs outside the MAPPING section, using the
PLACE statement. This is known as channel allocation. Any channel in scope at
the point where a process is labelled is available for explicit placement on an arc
declared in the hardware network.

Placements must immediately follow the channel declaration. For example:

CHAN OF protocol to.periph, from.periph :
PLACE to.periph, from.periph ON peripheral.arc :
CONFIG
PLACED PAR
PROCESSOR root.proc
—— as before

As with channel mapping, two opposing channels can be assigned to the same link
in a single statement.

6.5.5 Moving code and data areas

Three processor attributes may be used to provide greater control of the layout of
code and data areas in memory. Since these attributes are essentially properties
of the user’s program, not of the hardware description, the settings must be made
as part of the MAPPING section. However, the processor which is referenced must
be a physical processor.

Normally the configurer arranges for the program’s workspace to be given the
highest priority, and hence placed at the lowest address on chip. This means that
the workspace can make best use of the transputer’s on-chip RAM. Program code
is treated with next priority, and vectorspace has the lowest priority.

These priorities can be overridden by setting three processor attributes:
order.code; order.ws; and order.vs; which comrespond to the program
code, the program’s workspace, and the program’s vectorspace respectively.
They are all set to 0 by default.

These attributes can be set to INT values, where lower integers indicate a higher
priority. Hence setting order. code to —1 means that the program’s code will be
placed at a lower address than the workspace or vectorspace. The default
ordering if priorities are equal is: workspace; code; vectorspace (workspace is
placed lowest in memory).

72 TDS 366 01 March 1993

6 Configuring transputer networks 89

Thus we may have a mapping section like:

MAPPING prioritise.code
Do
SET physical.processor (order.code := -1)
MAP logical.processor ONTO physical.processor

This would place the program code before the workspace i.e. closer to on-chip
RAM. In this mapping vectorspace has no priority defined and is therefore placed
by default after the workspace.

All three attributes must be enabled on the configurer command line by the code
re-ordering option ‘RE". If this option is not specified on the command line the attrib-
utes will be ignored.

Note: Changing the default ordering means that the INMOS debugger cannot be
used. It is for this reason that the attributes must be explicitly enabled.

6.5.6 Reserving memory

A block of memory may be reserved using the processor attribute reserved. The
block is specified as a number of bytes starting at the bottom of memory. Since this
attribute is essentially a property of the user's program, not of the hardware
description, the setting must be made as part of the MAPPING section. However,
the processor which is referenced must be a physical processor.

By default, the configurer uses memory in a contiguous block from the bottom of
the transputer’s available memory (near MemStart) to the top of the memory
specified by the memsize attribute.

This can be overridden by means of the reserved attribute. This attribute speci-
fies the number of bytes of memory which should be reserved so that the confi-
gurer does not use it. By default, this value is approximately the number of bytes
below MemStart. It must be set to a positive value.

For example:
MAPPING reserve.low.memory
DO

MAP logical ONTO physical
SET physical (reserved := #1000)

This would ensure that the bottom 4096 bytes of memory are reserved and will not
automatically be used by the configurer.

Use of the reserved attribute is described in more detail in section 10.1.

72 TDS 366 01 March 1993

90 6.5 Mapping descriptions

6.5.7 Absolute address code placement

The location. processor attributes allow various parts of a program to be placed
at absolute addresses in the transputer’s address space. Since these attributes
are essentially properties of the user’s program, not of the hardware description,
the settings must be made as part of the MAPPING section. However, the processor
which is referenced must be a physical processor.

The address referenced by location must not have been used by the configur-
er's normal scheme; i.e. it must either lie in an area reserved by the reserved
attribute, or must be above memsize bytes from the bottom of memory.

There are three location attributes:

location.code specifies the absolute address at which program code for
this processor should be placed.

location.ws specifies the absolute address at which the workspace
(stack) for this processor should be placed.
location.vs specifies the absolute address at which the vectorspace

for this processor should be placed (if it exists).

For example:

MAPPING use.absolute.addresses
DO
MAP logical ONTO physical
SET physical (reserved := #1000)
SET physical (location.ws := #80000100)

This would ensure that the bottom 4096 bytes of memory are reserved and will not
automatically be used by the configurer, except that the workspace is placed at
address #800000100. (This is just above MemStart, in the transputer’s on-chip
RAM).

MAPPING use.absolute.addresses
DO
MAP logical ONTO physical
SET physical (location.code := #80001000)
SET physical (location.vs 1= #80002000)

This would place the code at address #800001000, and the vectorspace at
#80002000.

location attributes must be enabled on the configurer command line using
the'RE’ option. If this option is not given these attributes will be ignored.

72 TDS 366 01 March 1993

6 Configuring transputer networks 9

Use of the 1location attributes is described in more detail in section 10.1.

6.5.8 Control of routing and virtual channel placement

Three processor attributes can be used to control the way that virtual routing is
performed. They are routecost, tolerance, and linkquota. Since these
attributes are essentially properties of the user’s program, not of the hardware
description, the settings must be made as part of the MAPPING section. However,
the processor which is referenced must be a physical processor.

The exact behavior of these attributes is and their use in defining routing strategy
for a network is described in section 10.2.4.

Values of all three attributes are defined as numerical values. For example:

MAPPING routing.example
DO
MAP logical ONTO physical

SET physical (routecost := 1000)
SET physical (tolerance := 1000)
SET physical (linkquota := 2)

routecost:

This attribute is used to weight and de-weight specific processors in the network
for virtual routing. It defines an associated cost of routing virtual channels through
a particular processor. routecost can be used to specifically exclude certain
processors from the virtual routing network.

routecost may be set to an INT value within the range 1 to 1000000 inclusive.
If a value greater than 1000000 is specified, then no through-routing will be
permitted on that processor. If routecost is not specified for a particular
processor, then a default cost value of 1000 is assumed.

MIN.COST, MAX.COST, INFINITE.COST and DEFAULT . COST are defined in the
include file occonf. ine, see below.

tolerance:

This atfribute is used to indicate how much a particular processor can be used to
provide load-sharing routing paths for other processors.

tolerance may be set to an INT value within the range 0 to 1000000 inclusive.
If tolerance is not specified for a particular processor, then the default value of
1 will be assumed. This allows the processor to implement alternative routes for
through-routed channels with exactly the same cost as the “best” route found
between any two other processors.

If the value 0 is specified, then the processor will only be used for through-routing
if it lies on the “best” route found to implement virtual channels.

72 TDS 366 01 March 1993

92 6.5 Mapping descriptions

If tolerance is set to the maximum value 1000000 on all processors in the target
network almost every possible route will be used to share the cost of carrying data
between any pair of non-adjacent processors.

ZERO.TOLERANCE, MAX . TOLERANCE, and DEFAULT . TOLERANCE are defined in
the include file occonf . inc, see below.

linkquota:

This atiribute is used to indicate the maximum number of links on the processor
that should be used by the virtual channel routing system.

linkquota may be setto an INT value within the range 0 to 4 inclusive. Awarning
is generated if the suggested 1inkquota for a processor is exceeded. This will
only happen if it is necessary for through-routing other processors.

occonf.inc

This file contains a number of constants associated with the routing and placement
attributes. The file must be included within the configuration description if any of
the configuration constants are used e.g.

#INCLUDE occonf.inc

6.5.9 Control of debugging by the INQUEST tools

Two attributes are included for use only with the INMOS INQUEST product,
namely, nodebug and noprofile. These are boolean parameters which control
the INQUEST debugging and profiling tools respectively. They can be set to TRUE
or FALSE. If set equal to TRUE for a process, that process will be ignored. The
default for both attributes is FALSE.

nodebug and noprofile have no effect on the functioning of the toolset
debugger idebug, or on any other tool supplied with the current toolset.

6.5.10 Mapping examples
1) pipeline sorter on a single processor

MAPPING
DO
MAP inout.p ONTO MyB004
DO i = 0 FOR string.length
MAP pipe.element.p[i] ONTO MyB004

2) pipeline sorter on a ring of processors, one per process

MAPPING
DO
MAP inout.p ONTO MyB004
DO i = 0 FOR string.length
MAP pipe.element.p[i] ONTO ring[i]

72 TDS 366 01 March 1993

6 Configuring transputer networks 93

6.6 Example: A pipeline sorter on four transputers

This section describes how the pipeline sorter program first described in
section 5.11 may be distributed over four T425 transputers. Each processor has
many processes allocated to it.

An explanation of the configuration description is given, followed by detailed
instructions about how to compile, configure and run the program.

The occam source and configuration description developed in this example is
supplied with the toolset in the examples/manuals/sorter directory; you can
either work in this directory or copy the relevant files to a working directory:

sorthdr.inc the common protocol definition.
element.occ the sorting element.
inout.oce the interface to the host file server.

sortconf.pgm the configuration description for the network.

sorthdr.inc, element.occ, and inout. occ are the same as those used in
the single transputer example described in section 5.11.

sortconf.pgm describes the hardware and software networks and maps the
software to the hardware. The software description is imported in the include file
sortsoft.inec.

In the configuration description it is assumed that there is a transputer network of
four T425 transputers connected in the pipeline configuration shown in Figure 6.6.
If this configuration does not match your hardware the description can easily be
modified by changing the number and type of transputers. The example assumes
the link connections shown in Figure 6.6.

transputer 0 transputer 1 transputer 2 transputer 3

H
O |_hostlin IMS IMS _ IMS IMS
S 0 T425 2/~ 1 T425 2[*=|1 T425 2[~=|1 T425
5

3 3

Figure 6.6 Pipeline of four transputers

The mapping places an equal number of element processes on all processors in
the pipeline after the first one, which gets any remaining element processes.

72TDS 366 01 March 1993

94 6.6 Example: A pipeline sorter on four transputers

--To run this program connect any number of identical
--transputers in a pipeline: connect link 1 of processor 0
--to link 2 of processcr 1 and sa on; complete the pipeline
=-by connecting first and last via their link 3s;
--finally connect processor 0 to the host.

—-max no of chars on a line

VAL string.length IS 80:

--include useful definitions e.g. K=Kilo, M=Mega
#INCLUDE “occonf.inc”

-—change the following to suit your network

VAL number.of.transputers IS 4:

--declare processors as an array
[number.of.transputers]NODE pipeline.t:

ARC Hostlink:

--hardware description
NETWORK
Do
DO i = 0 FOR number.of.transputers
--change the following to suit your transputer type
SET pipeline.t[i] (type, memsize := "T425”, 1*M)

DO i = 0 FOR number.of.transputers - 1
CONNECT pipeline.t[i][link][2] TO pipeline.t[i+1][link][1]

CONNECT pipeline.t[number.of. transputers-1][link][3] TO
pipeline.t[0] [Llink] [3]

CONNECT pipeline.t[0][link][1] TO HOST WITH Hostlink

~-mapping

VAL number.of.elements IS string.length:
——number.of.elements/number.of.transputers must be >= 2

VAL elements.per.transputer IS number.of.elements/number.of.transputers:
VAL remaining.elements IS number.of.elements\number.of.transputers:

VAL elements.on.root IS elements.per.transputer + remaining.elements:
NODE inout.p:

[number.of.elements] NODE pipe.element.p:

MAPPING
DO
MAP inout.p ONTO pipeline.t[0] PRI HIGH

DO i = 0 FOR elements.on.root-1
MAP pipe.element.p[i] ONTO pipeline.t[0] PRI LOW

MAP pipe.element.p[elements.on.root-1] ONTO pipeline.t[0] PRI HIGH

DO j = 0 FOR number.of.transputers - 1
VAL first.element.here IS elements.on.root +(j*elements.per.transputer):
VAL last.element.here IS first.element.here +(elements.per.transputer-1):
DO
MAP pipe.element.p[first.element.here] ONTO pipeline.t[j+l] PRI HIGH
DO i = first.element.here + 1 FOR elements.per.transputer - 2
MAP pipe.element.p[i] ONTO pipeline.t[j+l] PRI LOW
MAP pipe.element.p[last.element.here] ONTO pipeline.t[j+1] PRI HIGH

--software description
#INCLUDE "hostio.ine”
#INCLUDE ”“sorthdr.inc”
#USE ”inout.lku”

#USE “element.lku”
#INCLUDE "sortsoft.inc”

72 TDS 366 01 March 1993

6 Configuring transputer networks 95

In the mapping structure shown, the logical processors named in the software
description are mapped onto the physical processors declared in the hardware
description. Note: On each processor, processes which communicate on external
channels are mapped to be run at high priority.

The allocation of processes to transputers is shown in Figure 6.7. The number of
elements on each processor depends on the maximum string length permitted by
the program and the number of transputers in the pipeline.

transputer 0

transputer 1

element | - -| element

element |- -

2

transputer 3 transputer 2

Figure 6.7 Pipeline sorter processes

6.6.1 Building the program

The components of the program must be compiled in a bottom up fashion. First
compile the sorting element:

oc element -t425 (UNIX)
oc element /t425 (MS-DOS/VMS)

Because the file has a . occ file extension you can omit the extension from the file-
name. The command line option to specify the error mode may be omitted

72 TDS 366 01 March 1993

96 6.6 Example: A pipeline sorter on four transputers

because the default is required i.e. HALT mode, but the T425 transputer target
must be specified. The compiler creates a file called element. tco.

Next compile the input/output process:

oc inout -t425 (UNIX)

oc inout /t425 (MS-DOS/VMS)
This creates the file inout. tco.

These files must now be linked. Because the two processes are to be placed on
separate processors, each must be linked individually, together with any files they
reference. Each linking operation creates a unit of code which may be loaded onto
the transputer network, according to the configuration defined in the configuration
description.

To link element. tco:
ilink element.tco —f occama.lnk -t425 (UNIX)
ilink element.tco /f occama.lnk /t425 (MS-DOS/VMS)

This creates a file called element.lku. The linker indirect file occama.lnk
contains the necessary references to the compiler libraries. (This file is supplied
with the toolset.)

To link inout. teo:

ilink inout.tco hostio.lib -f occama.lnk -t425
(UNIX)

ilink inout.tco hostioc.lib /f occama.lnk /t425
(MS-DOS/VMS)

This creates a file called inout. 1ku.

Now configure the file sortconf.pgm which defines both the communication
channels between the processes and how they should be loaded onto the network:

occonf sortconf

This creates an output file called sortcon£. cfb. The input file extension can be
omitted as occonf assumes .pgm.

Finally the program must be made executable. To do this run the collector tool
icollect on the .cfb file.

icollect sortconf.cfb

This creates the bootable file sortconf.btl is created. The file extension is
required.

72 TDS 366 01 March 1993

6 Configuring transputer networks 97

6.6.2 Running the program

Load and run the bootable file on the transputer network using iserver:
iserver —se -sb sortconf.btl (UNIX)
iserver /se /sb sortconf.btl (MS-DOS/VMS)

The ‘se’ option directs the server to terminate if the program sets the error flag.

If the pipeline network is connected to the host via a root transputer use the skip
loader to jump over the root transputer, and use the iserver ‘ss’and ‘sc’ options
rather than ‘sb’. In the following example the pipeline network is connected to link
2 of the root transputer:

iskip 2 -e -r
iserver -se —ss -sc sortconf.btl (UNIX)

iskip 2 /e /r
iserver /se /ss /sc sortconf.btl (MS-DOS/VMS)

In either case the program sorts each line of input until terminated by a blank line.

6.6.3 Automated program building

As with the single processor version of this program it is possible to automate the
building of this program with the Makefile generator tool and a suitable MAKE
program. The version of the configuration program supplied in the file sort-
mak . pgm is written using imakef file naming conventions, for example, the linked
units are given file extensions of the form cxx.

Note: sortmak. pgm compiles the program for fransputer class TA in HALT error
mode — it references the linked units as . cah files and is configured for T425 trans-
puters. For a list of transputer targets see appendix B in the occam 2 Toolset
Reference Manual.

To produce a Makefile for the program type:
imakef sortmak.btl

This will produce afile called sortmak . mak containing a MAKE description for the
program. It will also produce linker indirect files for the two compiled units which
comprise the program; these will refer to any necessary modules from the library.

To build the program run your MAKE program on the file sortmak .mak and all the
necessary compiling, linking and configuration will be done automatically. For
more information about MAKE programs see Chapter 11 in the occam 2 Toolset
Reference Manual.

6.6.4 Other configuration examples

Example .pgm files which configure the sorter program for other networks are
supplied on the sorter directory. Descriptions can be found in the source files and
in the readme file for the directory.

72 TDS 366 01 March 1993

98 6.7 Conditional configurations

6.7 Conditional configurations

Conditional constructs (IF) are permitted inside NETWORK, MAPPING and CONFIG
constructs. This makes it possible to create configuration descriptions which can

be ‘conditionally compiled’ for different network structures.

For example, while developing a program, it may be useful to modify a program
to bypass the root processor, so that an application may be placed directly onto
an application processor. The following, rather trivial, example demonstrates this.

6.7.1 Example: Configuration using conditional IF

In this example, when a single processor is in use, the application communicates
directly with the host, as shown in Figure 6.8. When two processors are available,
a buffer process is loaded onto the root processor. This process buffers the
communication between the application and the host. See Figure 6.9.

application

rootlink |, T425

-NnO X

Figure 6.8 Direct host connection

root applicatiocn

hostlink 0 T425 3 rootlink 0 T425

-wOoxT

Figure 6.9 Communication via the root processor

The implementation is split into the following files:

app.occ — the application
buff.occ — the buffer process
myprog.pgm — the configuration description file

The content of app . occ is as follows:

#INCLUDE ~“hostio.inc”
#USE "hostio.lib”

PROC application.process (CHAN OF SP fs, ts)
SEQ
so.write.string.nl(fs, ts, "Hello world”)
so.exit (fs, ts, sps.success)

72 TDS 366 01

March 1993

6 Configuring transputer networks 99

The content of buff . occ is as follows:

#INCLUDE “hostioc.inc”
#USE “hostioc.lib”

PROC buffer.process (CHAN OF SP fs, ts, from.app, to.app)
CHAN OF BOOL stopper :
— This never terminates
so.buffer (fs, ts, from.app, to.app, stopper)

The content of myprog. pgm is as follows:

VAL number.of.processors IS 1 : — 1 when running,
— 2 for developing

NODE rcot, application :

ARC hostlink, rootlink :

NETWORK
DO
IF
number.of .processors = 2
DO
SET root (type, memsize := ”T425”, #100000)
CONNECT root([link] [0] TO HOST WITH hostlink
CONNECT root[link][3] TO application[link][0] WITH rootlink
TRUE
CONNECT application[link][0] TO HOST WITH rootlink
SET application(type, memsize := ”“T414”, #100000)

#INCLUDE “"hostio.inc”
#USE “app.cah”
#USE "buff.cah”

CONFIG
CHAN OF SP fs, ts :
PLACE fs, ts ON rootlink : — Note that this is ‘rootlink’, not
— ‘hostlink’
PAR
IF

number.of .processors = 2
CHAN OF SP fs0, ts0 :
PLACE fs0, tsO ON hostlink :
PROCESSOR root
buffer.process (f£s0, ts0, ts, £fs)
TRUE
SKIP
PROCESSOR application
application.process (fs, ts)

The configuration uses a constant to set the number of available processors. This
is then used to conditionally build the program for one or two transputers. NODEs
which are declared, but do not have any attributes set, are ignored when confi-
guring a program.

The program can be built manually or using imakef. Note: when building the
program for two processors, warning messages will be generated concering

72 TDS 366 01 March 1993

100 6.8 Summary of configuration steps

interactive debugging; these can safely be ignored. Disabling interactive debug-
ging with the imakef 'y’ option will prevent the warnings being generated.

Source files can be found on the examples/manuals/config directory. When
building manually remember to use imakef naming conventions — the program
is configured for a T414 transputer and HALT eror mode. The output of the
program is ‘Hello World'.

6.8 Summary of configuration steps

To summarize, the steps involved in building a program that runs on a network of
transputers are as follows:

1 Decide how your program will be distributed over the transputers in your
network.

2 Write a configuration description for your program by:
3 Describing your hardware network.

4 Inserting PROCESSOR statements into your program and adding any
necessary mapping description.

5 Compile all the separate compilation procedures that form the code for
each transputer in a bottom up fashion.

6 Link each configuration procedure with its component parts into a file with
the name used in #USE directives in the configuration source file.

7 Run the configurer on the configuration description file.
8 Collect the code using icollect.
9 Load the program into the network using the host file server.

Steps 5 to 8 can be automated by using imakef and a suitable MAKE program.

6.9 Further considerations

6.9.1 The effect of occonf on idebug

The use of command line options to occon£ has a direct effect on the way in which
the interactive/post mortem debugger i debug can be used to debug the program.

There are two main ways of using occonf£:

* No special command line options, (the default) - this is compatible with
either the interactive or postmortem debugger. However, the real time
performance of the bootable produced may be significantly different to that
produced by using the Y option, if there is a high incidence of channel
communication between processors.

72 TDS 366 01 March 1993

6 Configuring transputer networks 101

= With the Y command line option - this is compatible with the postmortem
debugger only.

Important note: when virtual routing processes are used, idebug cannot jump
down channels between adjacent processors. If this is required, the configurer ‘Nv’
option should be used to disable virtual routing.

Table 6.3 summarizes the use of the relevant options.

occonf command options | Effect
NV’ Interactive and post-mortem debugging enabled.
Virtual routing disabled.

Possible to jump down channels between adja-
cent processors.

default settings Interactive and post-mortem debugging enabled.

Virtual routing enabled and will be used even if not
required, i.e. direct channel placements between
processors will be ignored.

Not possible to jump down channels between
adjacent processors.

‘Y'and NV’ Post-mortem debugging enabled.
Virtual routing disabled.

Possible to jump down channels between adja-
cent processors.

b & Post-mortem debugging enabled.
Virtual routing enabled and may be used.

Only possible to jump down channels between
adjacent processors if they are not used for virtual
routing.

Table 6.3 Effect of occonf options on debugging

6.9.2 Reliable Channel Communications

There are a number of library routines that can be used to handle faults in the
communication network. These can be used only on direct channels (see section
6.5.2). They must not be used on virtual channels, nor during debugging. The
routines are:

PROC InputOrFail.t (CHAN OF ANY c, []BYTE mess,
TIMER t, VAL INT time,
BOOL aborted)

PROC OutputOrFail.t (CHAN OF ANY c,
VAL []BYTE mess,
TIMER t, VAL INT time,
BOOL aborted)

72 TDS 366 01 March 1993

102 6.9 Further considerations

PROC InputOrFail.c (CHAN OF ANY c, []BYTE mess,
CHAN OF INT kill,
BOOL aborted)

PROC OutputOrFail.c (CHAN OF ANY c,
VAL []BYTE mess,
CHAN OF INT kill,
BOOL aborted)

The routines attempt a transfer of data on a channel. Those ending in . t include
a timeout for failed communication, those endingin . c send a status message on
another channel. If the communication succeeded normally, aborted is set to
FALSE, if the communication was aborted (on timeout or link failure, depending on
which routine was used), aborted is set to TRUE.

Note: These routines are not intended as the normal mode of communications.
They have a higher overhead than other methods.

A further routine is available to reset a channel that has gone awry in its commu-
nications. This is:

PROC Reinitialise (CHAN OF ANY c)
For example, when a hard link is quiescent it can be reset by this routine.

Full descriptions of all these routines can be found in section 1.10 of the occam
2 Toolset Language and Libraries Reference Manual.

Important note: These routines should not be used for checking the communica-
tions within a network if there is any doubt as to whether the data might not have
transferred in a given amount of time. In general, you should be absolutely sure
that the failure is due to a hardware failure, and not to the receiving or sending
device being very busy. If the communication is terminated while data is actually
being transmitted, then the results are undefined, and could stop one or both of
the processors.

There is no point in using these routines on soft channels, because the commu-
nication on soft channels can be assumed to be secure.

6.9.3 Checking the configuration

Configurations may be checked against the hardware on a transputer board using
a network check program such as ispy. The ispy program is supplied as part of
the support software for some INMOS iq systems products.

INMOS iq systems products are available separately through your local INMOS/
SGS-THOMSON authorized distributor or SGS-THOMSON sales office.

72 TDS 366 01 March 1993

7 Loading transputer
programs

This chapter explains how to load programs onto single transputers and transputer
networks. It briefly describes the format of loadable programs and introduces the
program loading tools iserver and iskip. The chapter goes on to explain how
to load programs for debugging and ends with an example of skip loading.

7.1 Introduction

Transputer programs are loaded onto transputer boards with the iserver tool
which installs code on each processor using processor and distribution information
embedded in the executable file. The executable file consists of code to which
bootstrap information has been added to make the program self-booting on the
transputer. Self-booting executable code is also known as bootable code.

Bootable files are generated by icollect from configuration data files (network
programs) or linked units (single transputer programs). Bootable files are gener-
ated with the default extension .bt1 (for loading onto boot from link boards), or
.btr (for loading onto boot-from-ROM boards). Note: a bootable file is
constructed such that copying it to a link will boot the network automatically.

7.2 Tools for loading
Two tools are provided to load programs onto transputers and transputer networks:
» iserver — the file server and loader tool.

iserver loads the bootable file onto the single transputer or transputer
network and activates the host file server that provides communication with
the host.

e iskip — the skip loading tool.

iskip allows a program to be loaded over the root transputer onto an
external network. The tool is used prior to invoking iserver to start up
a special route-through process on the root transputer that transfers data
between the the network and the host system.

Skip loading is useful for the post-mortem debugging of programs that do not use
the root transputer. The root transputer in the network is omitted from the logical
network and the program is loaded onto the first processor affer the root transputer,
leaving it free to run the debugger. This avoids having to debug the code from a
memory dump file.

72 TDS 366 01 March 1993

104 7.5 Loading programs for debugging

Programs loaded using iskip always require one extra processor on the network
in addition to those required to run the program. For example, a program written
for a single transputer requires at least two processors, one to act as the root trans-
puter and one to run the program.

7.3 The boot from link loading mechanism

iserver loads programs onto transputer networks, via the host link connection.
It does this by simply copying the contents of the bootable file to the link. The boot-
able file contains all the bootstrap and loader code to ensure that the program is
loaded onto the network and starts running.

The server has to be told which link connection to use and how to access it. This
is done by specifying the name of a User Link on the command line or in the envi-
ronment variable TRANSPUTER. The server gets information about the specified
User Link from a connection database file. See the iserver documentation in
chapter 13 of the Toolset Reference Manual.

The bootstrap code for the fransputers in the network is sent first. The code is prop-
agated through the network as individual processors load neighboring processors.
Atfter all of the transputers in the network have been booted, program code is
loaded onto individual processors. For a multitransputer network the allocation of
processes to processors is determined by the configuration file. For single trans-
puter programs code is loaded onto the first processor on the network.

When all of the code is loaded into the transputer's memory, the program starts
running and can communicate with the host using the standard library routines for
input and output. The libraries actually communicate with the host via the server
using a predefined communication protocol known as the ‘SP’ protocol. This
protocol is defined in the iserver documentation.

The program continues to run until: an error occurs, the server is terminated by
pressing the iserver interrupt key (usually CTRL-C or CTRL-BREAK), or the
program terminates naturally. Note: terminating the server will not stop the
program running on the transputer. However, any processes on the transputer
which attempt to communicate with the server will deadlock. This may eventually
cause the whole program to stop as other processes become dependent on this
communication. The program may be able to continue if the server is restarted.

If iskip is used, the first transputer in the network is bypassed. Therefore the
network must contain one additional transputer to the number required to run the
program.

74 Boards and subnetworks

There are two basic types of transputer evaluation board: those that boot from link
and those that boot from ROM.

72 TDS 366 01 March 1993

7 Loading transputer programs 105

Boot from link TRAM boards form the majority of transputer boards in general use.
They are loaded down the link that connects the root transputer to the host using
the iserver tool. Programs intended to run on boot from link boards must consist
of bootable code, such as that generated by icollect.

Examples of boot from link boards supplied by INMOS are the IMS B008 PC
motherboard (with appropriate TRAMs) and the IMS B014and IMS B016 VME bus
standard interface boards.

Boot from ROM TRAM boards are intended for stand-alone applications such as
embedded systems.

7.4.1 Subsystem wiring

Subsystem wiring is the way in which boards are connected together, and deter-
mines the manner in which transputer subnetworks are controlled.

Three signals are used to control transputers mounted in a system, namely Reset,
Analyse, and Error. Together these are known as the system services. All INMOS
transputer boards use a common scheme for propagating these signals to other
subnetworks. The scheme is as follows.

Each transputer board has three ports for communicating system services from
one board to another. These are Up, Down, and Subsystem. Up is the input port,
used to control the board from an external source; Down and Subsystem are both
output ports and are used to propagate the Up signals to other boards or subnet-
works.

The Down and Subsystem ports work in the following ways:

Down propagates the Up signal unchanged to the next board or subnetwork. This
allows multiple boards to be chained together by connecting successive Up and
Down ports and the whole network can be controlled by a single signal.

Subsystem propagates the Reset and Analyse signals but also allows control by
the board, enabling subnetworks downstream of the board to be independently
reset, analyzed, and their error flags read, under the control of the transputer to
which the subsystem is attached.

7.4.2 Connecting subnetworks

Multiple transputer systems can either be controlled by the host computer or by a
master transputer controlled by the host computer.

In a typical multitransputer system the root transputer’s Up port is connected to the
host computer so that the host can control the loading of programs and monitor
errors on the network. The first processor in the subnetwork is connected fo either
Down or Subsystem depending on the application, and other processors on the
network are chained together via their Up and Down ports.

72 TDS 366 01 March 1993

106 7.5 Loading programs for debugging

In a simple application requiring multiple transputers, the subnetwork would
normally be connected to Down on the root transputer. This would allow the host
computer to reset the whole network in a single operation and to monitor the error
signal on any transputer in the network.

A more complicated application may require several programs to be loaded onto
the subnetwork under the control of the root transputer. Here the subnetwork would
be connected to Subsystem so that the root transputer could repeatedly reset and
re-load the subnetwork. Any errors in the subnetwork would be detected by the root
transputer through its Subsystem port, and the error would not be propagated
through the Up port to the host computer. Reset and Analyse signals are propa-
gated through to the Subsystem port, but the error signal is not relayed back. (Note
some boards do not conform to this system of signal propagation, see 7.5.2).

7.5 Loading programs for debugging

Special debugger and server options must be used for the debugging of programs
running on transputer boards. The options vary with the subsystem wiring, the
board type, and whether or not the program uses the root transputer. The effects
of subsystem wiring are described above; the effects of board type and program
mode are described in the following sections.

Commands to use for various combinations of subsystem wiring, board type, and
program mode, are listed in the debugger reference documentation.

7.5.1 Breakpoint debugging

Programs are loaded for breakpoint debugging using the idebug command.
When invoked in interactive mode this command incorporates a skip load and
iserver is not required. Because it uses a skip load, breakpoint debugging
requires at least two processors on the network.

7.5.2 Board types

Some early INMOS boards of the B004 type, unlike later TRAM-based boards, do
not propagate Reset through to the Subsystem port. On these boards the ‘A’
debugger option must be supplied on the debugger command line to reset the
network.

7.5.3 Use of the root transputer

The use made of the root transputer by the program changes the methods you
must use in post-mortem debugging. This is because the debugger program
executes on the root transputer and any application code becomes overwritten
when the tool is invoked.

Two methods can be used to load and debug code running on the root transputer:

72 TDS 366 01 March 1993

8 Access to host
services

This chapter describes how programs communicate with the host computer via the
host file server and the i/o libraries. It briefly describes the protocols used, outlines
how to place host channels on a transputer board, and discusses how processes
can be multiplexed to a single host.

8.1 Introduction

occam, like most high level programming languages, is independent of the host
operating system. At the programming level, communication with the host is
achieved via a set of /o libraries that are provided with the toolset. The libraries
in turn use the services provided by the host file server. The host file server and
the functions it provides are transparent to the programmer. The server functions
are activated whenever a program is loaded using the iserver tool. Programs
that use the i/o libraries should always be loaded using iserver.

For an example of a program that communicates in a simple way with the host
computer, including details of how it is compiled, linked and loaded, see Chapter 5.

8.2 Communicating with the host

Programs communicate with the host through i/o library routines that in turn use
functions provided by the host file server.

8.21 The host file server

The host file server provides the runtime environment that enables application
programs to communicate with the host. It contains functions for:

* Opening and closing files
¢ Reading and writing to files and the terminal
¢ Deleting and renaming files

» Returning information from the host environment, such as the date and
time of day

+ Returning information specific to the server, such as a version number

« Starting and stopping the server.

72 TDS 366 01 March 1993

110 8.2 Communicating with the host

Details of the server functions can be found in appendix C of the occam 2 Toolset
Reference Manual.

8.2.2 Library support

Two i/o libraries are provided for accessing the file system and other host services.
The libraries are summarized below.

hostio.lib File and terminal i/o; host access
streamio.lib Stream-based terminal and file i/o

All routines in these libraries are independent of the host operating system.

The hostio library contains basic routines for accessing files and controlling the file
system. It also contains routines for general interaction with the host. Use the
hostio library for basic file operations, and for accessing host services.

The streamio library contains routines for creating and outputting to streams. It
also provides primitives for reading and writing text and numbers, and for control-
ling the screen. Use the streamio library for inputting and outputting character and
data streams.

Definitions of constants and protocols used within the libraries are provided in the
include files hostio. inc and streamio. inc. These files should be included in
all programs where the respective libraries are used.

Details of all ifo procedures and functions can be found in the occam 2 Toolset
Language and Libraries Reference Manual.

8.2.3 File streams

The host file server supports a stream model of file and terminal access. When a
file is opened a 32-bit integer stream id is retumned to the program. This identifier
must be quoted by the program whenever the file is accessed, and is valid until the
file is closed. Streams and files must be explicitly closed by the programs that use
them, and the server must be explicitly terminated when the program finishes and
host services are no longer required.

Three streams are predefined:

spid.stdin standard input
spid.stdout standard output
spid.stderr standard error

These streams can be closed by the programmer, but cannot be reopened. Take
care not to close the standard streams if you are using hostio routines that read
or write to them. The streams can only be closed by specifying the streamid explic-
itly and cannot be closed inadvertently using the hostio routines.

72 TDS 366 01 March 1993

8 Access to host services 111

Standard input and output are normally connected to the keyboard and screen
respectively, but may be redirected by the operating system. Streams and files
other than the three standard streams described above must be explicitly closed
by the program. When the program finishes and host services are no longer
required, the server should be terminated by the transputer application calling
so.exit.

Protocols

occam programs communicate with the host file server through a pair of occam
channels. Requests for service are sent to the host on one channel and replies are
received on the other. Both channels use the SP protocol, which is defined in the
include file hostio. ine.

8.3 Host implementation differences

The IBM PC version of the host file server supports a number of DOS specific
commands via routines in the library file msdos.1ib. The VAX/VMS and UNIX
implementations have no host specific commands.

If you wish to write programs that are portable between all implementations of the
toolset you are recommended to use only host independent routines. All proce-
dures and functions in the hostio and streamio libraries are host independent.

8.4 Accessing the host from a program

For programs to be run on transputer boards the host is accessed through the
channels £s and ts, both defined as CHAN OF SP. Protocol SP is defined in the
include file hostio.inc. For single transputer programs the channels are
defined within the program, and for multiprocessor programs the channels are
placed on the link that is connected to the host. The normal location for the connec-
tion to the host is link zero on the root processor.

8.4.1 Using the simulator

The simulator tool isim provides access to the host file server in the same way
as a single processor program running on a board, connected via link 0.

8.5 Multiplexing processes to the host

The host file server is a single resource, connected to a process running on the
root transputer via a pair of occam channels. This is illustrated in Figure 8.1.

72 TDS 366 01 March 1993

12 8.2 Communicating with the host

host transputer

st
e
server

Figure 8.1 Program input/output

If more than one process requires access to the host then the server must be
shared between a number of processes, ensuring that all processes are served
in turn. The simplest solution where a resource is used by more than one process
is to provide a multiplexor.

A multiplexor is a process which takes many inputs and connects them to a single
shared resource and ensures that communications from different processes do
not conflict.

Four routines that allow multiple processes to communicate with the host via the
host file server channels are provided in the hostio library. The routines are:
so.multiplexor; so.overlapped.multiplexor; so.pri.multiplexor;
and so.overlapped.pri.multiplexor. Details of the routines can be found
in section 1.5.9 of the occam 2 Toolset Language and Libraries Reference
Manual.

An example of a multiplexed system is shown in Figure 8.2, and the occam code
that would implement the system is listed in Figure 8.3.

host

st
ile @-
server \

Figure 8.2 Multiplexing the host file server

72 TDS 366 01 March 1993

8 Access to host services 113

#INCLUDE “hostio.ine” -— SP protocol declaration
PROC mux.example (CHAN OF SP fs, ts,
[JINT free.memory)

#USE “hostio.lib” -- host ifo libraries

#USE “process0” -—- user processes
#USE “processl”
#USE "process2”
SEQ
CHAN OF BOOL stop:
[3]CHAN OF SP from.process, to.process:

PAR
so.multiplexor(fs, ts, —— server channels
from.process, to.process,
—— multiplexed channels
stop) — termination channel
SEQ
PAR —=— run user processes in parallel

—— sharing the iserver
process0 (to.process[0], from.process[0])
processl (to.process[l], from.process[1l])
process2 (to.process[2], from.process[2])
stop ! FALSE -- terminate multiplexor
so.exit(fs, ts, sps.success)

Figure 8.3 Multiplexing example
This source for this program can be found in examples/manuals/mux.

Multiplexor processes can be chained together to produce any degree of multi-
plexing to the host. However, the host is a single, finite resource and unrestrained
multiplexing of processes should be avoided if possible.

8.5.1 Buffering processes to the host

It may sometimes be useful to pass data invisibly through another process, for
example when passing data to the server through intervening processes. The
hostio library routine so.buffer takes a pair of input and output channels and
passes data through unchanged.

8.5.2 Pipelining

If data has to pass through many processes before reaching the server efficiency
may be improved by allowing a data transfer to begin before the previous one has
completed its journey down the line of processes. This allows several data trans-
fers to be in progress simultaneously and is known as pipelining.

72 TDS 366 01 March 1993

114 8.2 Communicating with the host

The routine so.overlapped.buffer can pipeline several buffers up to a user-
defined limit. A pipelined version of the multiplexor process called so.overlap-
ped.mul tiplexor performs the same function for multiplexed processes. Priori-

tized versions of the routines may also be used.

72 TDS 366 01 March 1993

9 Debugging
transputer programs

This chapter describes how to debug transputer programs. It describes the facili-
ties of the toolset debugger idebug and shows how they can be used to debug
transputer programs in a systematic manner. It explains how the debugger can be
used in two modes (post-mortem and interactive) to analyze transputer programs
and describes the two debugging environments (source code symbolic and low
level monitor page). The chapter ends with some hints about debugging transputer
programs and a list of points to note when using the debugger.

Worked examples are given at the end of this chapter, the sources of which may
be found in the toolset examples subdirectory.

Chapter 4 of the accompanying Toolset Reference Manual provides detailed
information about idebug, including command line syntax and full descriptions of
the symbolic debugging and monitor page commands.

9.1 Introduction

The network debugger idebug is a symbolic debugger for transputers and frans-
puter networks. It can be used to examine stopped programs (post-mortem debug-
ging) or to debug programs interactively (breakpoint debugging). It can be used
with INMOS ANSI C, occam, and FORTRAN-77 programs, and with mixed
language systems.

Programs can be analyzed using the symbolic functions which operate using
source code symbols or the monitor page commands which operate at memory
and processor level.

Symbolic functions allow files to be examined, variables inspected, and proce-
dures traced, from source code level. Monitor page commands allow transputer
memory to be examined and processor state to be determined anywhere on the
network. Symbolic and monitor page environments are separate but can be
switched between at will.

idebug can be used to debug mixed language programs, although certain facili-
ties are available for some languages and not others. For example, a comprehen-
sive expression language exists for C and a simpler one for occam. The exact
usage of some facilities may also differ slightly between languages.

9.11 Post-mortem debugging

Post-mortem mode debugging allows stopped programs to be analyzed from the
residual contents of transputer memory or from a network dump file. Programs that

72 TDS 366 01 March 1993

116 9.2 Programs that can be debugged

run on the root transputer must be debugged from a memory dump file because
the debugger overwrites the root transputer’s memory. The memory dump file is
created using the idump tool (see chapters 4 and 5 of the accompanying Toolsef
Reference Manual).

9.1.2 Interactive debugging

Interactive debugging (also known as breakpoint mode debugging) allows trans-
puter programs to be executed interactively using breakpoints set in the code.

Breakpoints can be set symbolically on lines of source text or at transputer memory
addresses, and values can be modified in transputer memory to show the effect
of changing variables. Breakpoint mode debugging requires the use of two or more
transputers, because the debugger tool runs on the root transputer.

Certain symbolic functions and monitor page commands are only available in
breakpoint debugging mode.

9.1.3 Mixed language debugging

When debugging programs constructed from a mixture of languages from different
INMOS toolsets, you should always use the version of idebug with the highest
version number (as displayed in the help or monitor pages). This is true for all
versions of idebug with a version number greater than v2.00. 00. This will help
ensure that no toolset incompatibilities occur.

9.1.4 Debugging with isim

The transputer simulator tool isim can also be used to debug fransputer
programs from a low level environment. Using a similar environment to the
debugger monitor page fransputer memory can be examined, breakpoints set,
and programs executed by single stepping.

The debugging facilities of the simulator are briefly described in this chapter
(section 9.13). Details of how to use the simulator tool can be found in chapter 14
of the accompanying Toolset Reference Manual.

9.2 Programs that can be debugged

The debugger can analyze programs running on transputers that are either directly
attached to a host through a server program, or connected to the host via a root

transputer.

The root transputer is the processor that is directly connected to the host computer.
In a transputer network thatis connected to the host it forms the root of the network.
The debugger always runs on the root transputer, which must be a 32-bit trans-
puter with at least one megabyte of memory (preferably two or more).

72 TDS 366 01 March 1993

9 Debugging transputer programs 117

The relationship of the root transputer to the host computer and the rest of the
network is illustrated in figure 9.1.

host computer root transputer
from server
host file I " idebug Link(s) Other
server to server transputers

Figure 9.1 Debugging a fransputer network

If breakpoint debugging is used the transputer network must contain at least two
processors because the root transputer is dedicated to running the breakpoint
debugger in parallel with the user’s program.

9.3 Compiling programs for debugging

Programs to be debugged should be compiled with full symbolic debugging
information enabled. For C and FORTRAN, this is achieved by specifying the
compiler ‘G’ option when the program is compiled. The occam compiler generates
object files containing full debugging information by default. Two command line
options may be used to limit the debugging information produced by the compiler.

Minimal debugging information

By default the C and FORTRAN compilers generate object files containing minimal
symbolic debug information so that object modules, especially those to be used
as libraries, are kept as small as possible. Minimal debug information enables the
debugger to backtrace out of a library function to a module compiled with full debug
information.

occam programs can be compiled with minimal debug information by using the
compiler ‘D’ option.

Note: The object code produced by the C and FORTRAN compilers with minimal
debug information contains certain optimizations that are absent in code gener-
ated with full debugging information enabled. As a consequence the object code
produced may differ slightly from code compiled with full debugging information
enabled.

OCCam channel communication

The ‘Y’ option to the occam compiler disables channel communication via library
routines and, instead, produces optimal in-line code for channel i/o. Interactive

72 TDS 366 01 March 1993

118 9.2 Programs that can be debugged

debugging requires all communications to be done by means of the library
routines, so this option also disables interactive debugging.

C channel communication

Use of the C library DirectChan functions on channels provided by the configurer
will interfere with and corrupt interactive debugging. Note that the DirectChan
functions can be safely used with edges passed from the configurer, and with
internal (soft) channels declared in C source files.

9.3.1 Error modes

Programs to be debugged should be generated in HALT mode, which is the linker
default. The behavior of a program when an error occurs depends on the mode
in which the program was compiled and linked, as follows:

e In HALT mode any error during program execution halts the transputer
immediately.

¢ In STOP mode, errors do not halt the program, rather they stop the errant
process allowing other processes executing on the same transputer to
continue. Programs compiled in this mode can only be debugged if they
are halted explicitly.

¢ Programs compiled in UNIVERSAL mode will adopt the error mode
selected at link time i.e. HALT or STOP mode. If UNIVERSAL mode is
selected at both compile and link time, then the error behavior will default
to HALT mode.

By default, C and FORTRAN programs are compiled in UNIVERSAL error mode
and linked in HALT mode. By default, occam programs are compiled in HALT
mode and linked in HALT mode.

9.4 Debugging configured programs

Programs configured with the C-style configurer, iccong, must have debugging
enabled by means of the appropriate icconf command line options. occam
programs are compiled, linked, and configured with interactive debugging enabled
by default. Debugging can be disabled in cccam modules by the appropriate
occonf command line options.

Table 9.1 summarizes the effects of the relevant iccon£ and occonf options on
interactive and post-mortem debugging, and on virtual routing.

72 TDS 366 01 March 1993

9 Debugging transputer programs

119

icconf occonf Effect
command command
options options
‘g"and 'nv' ‘nv’ Interactive and post-mortem debugging
enabled.
Virtual routing disabled.
Possible to jump down channels between adja-
cent processors.
‘g’ default Interactive and post-mortem debugging
settings enabled.
Virtual routing enabled and will be used even if
not required, i.e. direct channel placements
between processors will be ignored.
Not possible to jump down channels between
adjacent processors.
‘gp’and nv' | ‘v’ and ‘nv’ |Post-mortem debugging enabled.
Virtual routing disabled.
Possible to jump down channels between adja-
cent processors.
‘gp’ 'y’ Post-mortem debugging enabled.
Virtual routing enabled and may be used.
Only possible to jump down channels between
adjacent processors if they are not used for
virtual routing.

Note: the icconf ‘gp’ and the occonf 'y’ options are not equivalent. For further
details of configuration options, see the Toolset Reference Manual.

Table 9.1 Effect of icconf and occonf options on debugging

941 Debugging with configuration level channels

idebug cannot locate to a process waiting on a transputer link, or locate to a
process (on a different processor) waiting on a channel mapped onto a link, if that
link is used by the configurer for software virtual channels.

idebug is able to locate to a process waiting on a transputer link or jump down
a channel between two processes (which may be on different processors) if the
channel is one of the following:
e Aninternal (soft) channel between processes on the same processor.
¢ An external (hard) channel between processes on different processors
which is not used by the configurer for software virtual links.

72 TDS 366 01 March 1993

120 9.2 Programs that can be debugged

9.4.2 Debugging with the configurer reserved attribute

The reserved attribute should not be specified to the configurer in order to reserve
on-chip memory if you wish to interactively breakpoint debug the program. This is
because the runtime kernel (see section 9.7.1) which the debugger places on each
processor reserves the first 11K — 15K of memory for its own use (regardless of
the reserved attribute being specified to the configurer).

9.5 Debugging boot from ROM programs

Programs configured using the icconf ‘GP’ option or the occonf ‘Y’ option (see
table 9.1) may also be debugged in boot from ROM run in RAM systems (confi-
gurer ‘RA’ option).

9.6 Post-mortem debugging

Post-mortem debugging is the analysis of stopped programs, that is, programs
that have failed to run correctly and have set the transputer error flag (or have
detected a hard parity error). Programs that are to be debugged in this mode
should be compiled and linked in HALT mode (HALT is the linker default) so that
the processor halts when the flag is set. They should be loaded by iserver using
the ‘SE’ option, so that the error flag is monitored and the server terminated if the
error flag is set.

The conditions in which the transputer emor flag may be set depend on the
language being used. C and FORTRAN provide little or no automatic checking of
errors whereas 0Ccam provides comprehensive error checking by default.

C programs can also set the error flag and halt the processor when the program
is terminated by functions such as halt processor, abort, assert,
debug_stop or debug_assert.

9.6.1 Cand FORTRAN programs

Little automatic error checking is provided in C or FORTRAN — this can make it
difficult to cause a program to halt when an error occurs. This rather restricts the
usefulness of post-mortem debugging, but it can be used if programs are halted
explicitly using the debugging support functions such as debug_assert()
(DEBUG_ASSERT () in FORTRAN) etc. These functions are described more fully
in the appropriate Language and Libraries Reference Manual and in the debug-
ging examples.

Breakpoint debugging, with its associated debugging support functions, is a more
flexible approach and is the recommended method when debugging C and
FORTRAN programs.

The Clibrary abort () function can be enabled to halt the processor by calling the
auxiliary function set abort action(). This enables a backtrace to be

72 TDS 366 01 March 1993

9 Debugging transputer programs 121

performed to the point in a program where the error occurred without the need to
modify any of the assert () statements contained in the program.

This technique is illustrated with the following example (which is contained in the
C toolset debugger examples directory):

/i**ii***it*ttt*******t******t******i***

Debugger example: abort.c

Example of foreing a C program to HALT the
processor for post-mortem analysis regardless
of the error mode it has been configured in.

Use of the debug support functions is encouraged
as an alternative (see debugger example file debug.c
for further details).

L B B

*i***t***i**it**t*tti***************i**/

#include <stdio.h>
#include <stdlib.h>
#$include <misc.h>

#include <assert.h>

int

main (void)

{
/* 0 will cause assert() to fail assertion test */
int x=0;
printf ("Program started\n”);

/* override normal abort action */
set abort action (ABORT_HALT);

printf ("Program being halted by assert ()\n");
assert (x);

printf ("Program being halted by abort ()\n”);
abort ();

exit (EXIT SUCCESS);

9.6.2 OCCam programs

The runtime errors that can cause an occam program to set the error flag and halt
include:

72 TDS 366 01 March 1993

122 9.2 Programs that can be debugged

« An arithmetic error, such as overflow or divide by zero, has occurred.
= An array index is out of range.

¢ Avalue is out of range in a type conversion.

» An alignment error has occurred in a type conversion or abbreviation

¢ An array element is being ‘aliased’ at run-time — that is, being referred to
by more than one name within a given scope.

¢ A STOP process, or a process which behaves like STOP (e.g. an IF with
no TRUE guards, or an ALT with no enabled guards), being executed.

When a run-time error occurs, the program halts the processor and allows the
debugger to enter the program for post-mortem debugging.

In addition, some debug support functions (e.g. DEBUG.ASSERT ()) are provided
to aid debugging of programs by implementing an explicit program error; details
of these functions can be found in the occam 2 Toolset Language and Libraries
Reference Manual and in the debugging examples.

96.3 Interrupted programs

Post-mortem debugging can also be used to debug programs that have been
explicitly interrupted with the host system BREAK key. To interrupt a program, for
example when a program ‘hangs’, press the BREAK key, which stops the server
but not the program, and then run idump to take a snapshot of the running
program. Running idump stops the program by sending an Analyse signal to the
transputer in order to take a snapshot of its current activity.

9.6.4 Parity errors

The T426 will detect two types of parity errors, hard and soft. A soft error is one
which disappears on retry; it does not stop the processor but sets, and resets, the
SoftParityError pin. This allows soft errors to be monitored externally (or inter-
nally if SoftParityError is connected back to the Event input). A hard error occurs
if a location still causes a parity error on retry; in this case the processor is stopped
immediately and the HardParityError pin is asserted.

After a hard parity error has been detected the debugger can be started in post-
mortem mode. If the debugger fails to find a processor which has halted with the
error flag set, it will try to find a T426 processor which has had a hard parity error.
It will then display this as the first processor in error. The debugger does not auto-
matically locate to the program source if a parity error has occurred — the
debugger will instead display the monitor page to allow the parity registers to be
examined.

The parity registers are displayed on the monitor page at the bottom left of the
display below the clock registers. These registers are not displayed in interactive

72 TDS 366 01 March 1993

9 Debugging transputer programs 123

mode. This is because the registers are volatile and reading the registers would
interfere with any user code attempting to handle soft parity errors.

9.6.5 Debugging the root transputer

Programs which run on the root transputer, or which use the root transputer to run
part of a multiprocessor program, must be debugged ‘off-line’ from a separately
created memory image file. This is necessary because the debugger executes on
the root fransputer and overwrites the code in its memory. The memory dump is
performed using the idump tool after the program has failed and before the
debugger is started with the ‘R’ option. Details of how to use the idump tool can
be found in chapter 5 of the accompanying Toolset Reference Manual.

Skip loading

As an altemative to using the idump tool, the application program can be skip
loaded onto the next processor on the network, avoiding the root transputer. This
leaves the root transputer free to run the debugger. A disadvantage of this method
is that it requires one extra processor on the network in addition to those needed
for the program.

If only one transputer is available, for example on single-transputer boards, the
memory dump method must be used. If more than one transputer is available skip
loading is the recommended method since it enables the program to be directly
debugged from transputer memory.

Use of the skip loader is described in chapter 7 of this manual and chapter 15 of
the accompanying Toolset Reference Manual.

9.7 Interactive debugging

Interactive debugging allows programs to be executed under interactive control
using breakpoints set in the code. Breakpoints can be set on any line of source.
Symbolic and monitor page facilities can be used to examine code, inspect vari-
ables, jump down channels to other processes or processors, and determine the
state of the network. Special symbolic functions and monitor page commands,
only available in breakpoint mode, support the modification of variables and
memory locations and the restarting of programs from the breakpoint or from other
points in the code.

Programs that communicate to the host must use iserver protocol, as used by
the standard /O libraries, when being debugged interactively.
9.71 Runtime kernel

The breakpoint debugger places a special runtime kernel on each processor in
addition to the application bootable code. This kemel provides a communication

72TDS 366 01 March 1993

124 9.2 Programs that can be debugged

network to enable the debugger to transparently share transputer links with the
application in addition to providing a breakpoint handler to deal with breakpoints,
errors, inspection of processor state efc. The scheme is illustrated in Figure 9.2.

Note: The debugging kemnel places the fransputer into Halt-On-Error mode (HALT
mode) regardless of the error mode of the program. This means that during break-
point debugging a fransputer will always halt when an error occurs.

Without debugging With debugging
kernel kernel
0 0
3 Runtime
3 User 1 kernel 1
process 2
/
|2 Transputer
Transputer

Figure 9.2 Debugger runtime kernel

The runtime kemnel requires a certain amount of memory on each processor, the
exact amount differing slightly between processor types. Kernels on processors
with hardware support require slightly more memory because they retain more
state information. The size of the kemnel on each transputer type is given in
table 9.2

Apart from the extra memory required, the kemel is transparent to the application
program if processes on different processors communicate with each other in the
normal way, using channels supplied by the configurer.

Note: To allow breakpoint debugging to function correctly a program must not
place channels explicitly onto processor link addresses. Programs that do so may
introduce conflict with the runtime kemnel, which also uses the links. Programs
currently coded in this way should be re-coded to pass in hard channels, or edges,
from the configurer, otherwise breakpoint debugging may not be used.

72 TDS 366 01 March 1993

9 Debugging transputer programs 125

Processor |Kemnel size |H/W support
M212 11.25K No
T212 11.25K No
T222 11.25K No
T225 12.75K Yes
T414 13.5K No
T800 13.5K No
T400 15.25K Yes
T425 15.25K Yes
T426 15.25K Yes
T801 15.25K Yes
T805 15.25K Yes

Table 9.2 Runtime kemel size and processor breakpoint support

9.7.2 Processors without hardware breakpoint support

Certain transputers have built-in instructions to aid breakpointing (see table 9.2).
For those processors without hardware breakpoint support, breakpoints should
not be set within high priority processes because the mechanism used to imple-
ment breakpoints causes such processes to lock the processor and disables all
communications to the processor via the runtime kemel. To help safeguard against
this problem, the debugger monitor page breakpoint option will only set break-
points at high priority process entry points ormain () on processors with hardware
breakpoint support.

The exact effect on the network of encountering such a breakpoint will depend on
the position of the processor in the network hierarchy but the possibility should be
avoided. Since the debugger is, in general,unable to check the validity of break-
points it is the programmer’s responsibility to ensure correct operation on proces-
sors without direct hardware breakpoint support.

9.7.3 Creating programs for debugging

Programs to be debugged using breakpoint debugging should be compiled with
full debug information enabled, using the C and FORTRAN compilers ‘G’ option
and the occam compilers default.

All modules in the program must be compiled in the same, or a compatible, mode.
Modes are checked at link time and if incompatible modes are found then the link
is aborted.

The code must be produced without using the 'Y’ option with any of the tools if inter-
active debugging is to be done.

72 TDS 366 01 March 1993

126 9.2 Programs that can be debugged

9.7.4 Loading the program

Breakpoint debugging does not require special loading or memory dump proce-
dures because the program is automatically skip loaded by the breakpoint
debugger. However, breakpoint debugging does require one extra processor in
the network because the root processor is dedicated to running the debugger.

Clearing error flags

If either iserver or idebug detect that the error flag is setimmediately a program
begins to run, it is likely that the network contains more processors than you are
currently using, and that one or more of the unused processors has its error flag
set. The error flag may be randomly set when the transputer is powered up — it
is normally cleared by the bootstrap code.

The error flags of all the processors in a network can be cleared by running a
network check program such as ispy. This ensures a clean network on which to
load the program. This generally only needs to be done once, after the system is
first tumed on.

The ispy program is provided as part of the support software for some INMOS
iq systems products. These products are available separately through your local
INMOS distributor.

An alternative way of clearing all the error fiags in the network is to load a dummy
program which is configured to use every processor in the network. In the act of
loading the dummy code the processor error flag is cleared.

Parity-checked memory

In system that include some processors which have external memory with parity-
checking (e.g. systems built with the T426) it is necessary to initialize the contents
of memory before the application code is run. This is because a read from un-ini-
tialized memory could cause a parity error to be reported.

Normally, when not breakpoint debugging, the contents of memory are initialized
by the bootstrap loader code. This is controlled by the collector CM option (see
chapter 3 of the Toolset Reference Manual).

The debugger has two command line options which can be used for for memory
initialization — both of these are followed by a hexadecimal number representing
the pattern to be written to memory. The ‘T’ option writes the given pattern to all
of the data areas (stack, workspace, static, heap and vectorspace as appropriate)
in each processor. The 'K’ option writes to the same areas of memory as the ‘7’
option and also to the ‘freespace’ area.

In general, the ‘3" option should be used for configured programs and the ‘K’ option
for non-configured programs (i.e. programs for a single processor produced using
the collector’s ‘T’ option). The memory initialization is performed on all processors
in the network, not just T426s.

72 TDS 366 01 March 1993

9 Debugging transputer programs 127

These options can also be useful for seeing where data has been written to
memory. For example, they can be used to determine the size of stack or heap
used by a program when it runs, or to detect data written to unexpected areas of
memory. Note that the bootstrap phase of a program may use a small part of the
program data and freespace areas for its own purposes, consequently the pattern
of data may have some holes in it.

9.7.5 Running the debugger

The command idebug starts the host file server program, iserver, to load the
debugger onto the root transputer and provide it with host services. Different
options need to be given to idebug depending on the type of debugging being
done (e.g. breakpoint or post-mortem) and the details of the transputer network
being used (e.g. is the code to be debugged running on the root processor or is
that transputer available for the debugger). Some basic examples are given here.

Note that the transputer network is not reset or analyzed by default so, generally,
one of the iserver options must be specified for this (e.g. ‘SR’ or ‘SA’). This is true
even if the ‘D’ option is being used to run the debugger without using transputers
(because the processor running the debugger must be reset).

When doing breakpoint debugging, the 'SR’ option is used to cause the iserver
to reset the transputer network and the ‘B’ option to specify which link from the root
transputer is connected to the processors running the application code — for
example:

idebug -sr -b 2 program.btl (UNIX)
idebug /sr /b 2 program.btl (MS-DOS/VMS)

As another example, when using the debugger in post-mortem mode to debug a
program which does not use the root transputer, the ‘SA’ option would be used to
make the server put the network into Analyse mode with the “T’ option to specify
the link from the root processor to the transputer running the program to be
debugged:

idebug -sa -t 2 program.btl {UNIX)
idebug /sa /t 2 program.btl (MS-DOS/VMS)

Finally, when debugging a program running on the root transputer in post-mortem
mode, the idump command is first used to create a file containing a dump of the
transputer's memory and then idebug is run with the ‘R’ option to specify the core
dump filename — for example:

idump core.dmp #100000

idebug -r core.dmp program.btl (UNIX)
idebug /r core.dmp program.btl (MS-DOS/VMS)

Complete details of which options to use in different circumstances are given in the
accompanying Toolset Reference Manual, chapter 4.

72 TDS 366 01 March 1993

128 9.2 Programs that can be debugged

9.7.6 Interactive mode functions and commands

Several symbolic debugging functions and monitor page commands are only
available in interactive mode. The commands available are summarized below.

Symbolic functions

Set or clear a breakpoint on the current line.
Restart a process stopped at a breakpoint.
| CONTINUE FROM | Restart a stopped process from the current line.

MODIFY Change the value of a variable in memory.

Monitor page commands

Breakpoint menu.

Execute program.

Show debugging messages.
Update register display.
Write to memory.

9.7.7 Breakpoints

Breakpoints can be set, cleared, and listed using monitor page commands, and
set/cleared using symbolic functions.

Breakpoints can be set at any point in a process running on any processor. At each
breakpoint, or on program error, the process pauses and the source code may be
displayed.

Note: When a process is stopped at a breakpoint or by one of the debugging func-
tions (e.g. debug_stop) other parallel processes in the program continue to run.
A side effect of pausing is that the debugger suspends iserver communications
in order to preserve the debugger’s screen display.

Breakpoints can be set at code entry points, or on any line of source code. Vari-
ables within scope at the breakpoint can be modified and the process restarted.
Breakpoints can also be set at the monitor page but care should be taken not to
set breakpoints at addresses that do not correspond to the start of a source code
statement, otherwise the behavior is undefined.

Setting breakpoints at symbolic level is the recommended method.

9.8 Program termination

Program termination is signalled to the debugger by the termination of iserver.
This is performed automatically by the C and FORTRAN runtime systems, and

72 TDS 366 01 March 1993

9 Debugging transputer programs 129

must be done explicitly by the user in occam code. If the program contains inde-
pendently executing processes which do not require communication with the
server the debugger may be resumed to interact with these processes.

To run or debug the program again it must be reloaded onto the transputer using
iserver, of idebug in breakpoint mode.

9.9 Symbolic facilities

Symbolic debugging is debugging at source code level using the symbols defined
in the program for variables, constants and channels. Features provided in
symbolic debugging include the examination of source code, the inspection of vari-
ables and channels, and the backtracing of procedure calls. A number of special
breakpoint functions are available if the debugger is run in breakpoint mode.

Source level debugging is accessed through symbolic functions mapped to
specific keyboard function keys (e.g. [INSPECT |) by an ITERM file. Keyboard
layouts for specific terminal types can be found in the Delivery Manual that accom-
panies this release. Altematively, the comments in the ITERM file can be read to
find the mapping of functions to keys.

Help screen

A help page can be displayed by pressing either [?] or [HELP], this displays the
following information:

4 N

idebug Symbolic Help Summary

dkkk ok kR kA kAR RN AR AR A TN

1-INSPECT 2-CHAN 3-TOP 4-RETRACE 5-RELOC 6-INFO 7-MOD 8-RESUME 9-MONITOR 0-BACK

The above list summarises the commonly used functions available in symbolic
mode. For a complete list of all symbolic functions available please refer to
the idebug documentation. The mapping of a symbolic function to a particular
key may be found in the file defined by the ITERM environment variable.

INSPECT - Display the type and value of a variable

CHANNEL - Locate the process waiting on a channel

TOP - Locate back to the error or last source code location
RETRACE - Undo a BACKTRACE

RELOCATE - Locate back to the last location line

INFO - Display process information (eg. Iptr, Wdesc, process name)
MODIFY - Change the value of a variable in memory

RESUME - Resume a process stopped at a breakpoint

MONITOR - Change back to the Monitor page

BACKTRACE - Locate to the calling function or procedure

HELP or ? - This help summary

L\h Hit any key to continue 4‘,)

The main symbolic debugging activities and the functions that are used to access
them are described in the following sections.

72 TDS 366 01 March 1993

130 8.2 Programs that can be debugged

9.9.1 Locating to source code

Locating to the source code for a particular process is a crucial procedure in the
debugging process on which other operations depend. For each required location
the debugger must be given a memory address which it uses to locate to the
source. When the required code is located, symbolic functions can be used to
browse the code and inspect variables. Where the source code is unavailable, for
example, libraries supplied as object code with minimal debug information, the line
containing the library call is located to instead.

When first started in post-mortem mode, the debugger determines the address of
the last instruction executed, which it uses to automatically locate to the relevant
source code. Subsequently for each new point to locate to in the code the
debugger requires a new address which can be supplied by the programmer.

Process addresses can be determined using the monitor page [R],[T], and
commands that display the processes waiting on the run queues, the timer
queues, and the transputer links. To locate to a process displayed by one of these
commands, use the [G | command. Code corresponding to any memory address

can be located using the monitor page [0] command.

Certain addresses are already known to the debugger and can be located to using
symbolic functions without specifying the address or switching to monitor page
commands. Many of the common operations used during source code debugging
can be performed directly with symbolic functions. They include relocating to the
previous location, locating to the original error, and locating to a process waiting
on a channel.

The symbolic functions that can be used directly for locating to specific locations
and sections of source code are listed below.

Locate back to the last location line.

TOP Locate back to the error or last source code location.
Locate to the process waiting on a channel.

The function is described more fully in section 9.9.4.

Other functions which locate to specific sections of code are the and
functions. These are used to trace subprogram calls and do not require
a specified address. The functions are described in section 9.9.4.

A strategy for locating processes in multi-process programs is presented in
section 9.11.
9.9.2 Browsing source code

Several functions are available for browsing source files once they have been
located. They include functions for navigating files, changing fo included or new
files, and string searching. The functions are listed below.

72 TDS 366 01 March 1993

9 Debugging transputer programs 131

Go to the first line.

Go to the last line.

Go to a specified line.

Search for a specified string.

Enter an included source file.

Exit an included source file back to the enclosing source
file.

Display a different source file.

9.9.3 Inspecting source code and variables

The values of constants, variables, parameters, arrays, and channels can be

Display the type and value of a source code symbol.
Locate to the process waiting on a channel.

Enables/disables Hex-oriented display of constants and
variables. Selects the display of source code symbols in
hexadecimal form for C and FORTRAN.

Displays the start address of the sequence of transputer

instructions corresponding to the selected source line.
Displays low-level information about the selected process.

994 Jumping down channels

The function can be used to locate to a process waiting on a channel.
This is known as ‘jumping down’ a channel and works for channels on the same
processor (internal or soft channels) or channels assigned in the configuration to
transputer links (external or hard channels which connect processes on different
processors together). It cannot be used to jump down software virtual links
provided by the configurer. Debugging can then continue at the waiting process.
If no process is waiting on a channel the channel is reported as ‘Empty’.

9.95 Tracing procedure calls

Two functions assist in the tracing of procedure and function calls. They can be
used even if the source of the called routine is not present, for example, libraries

72 TDS 366 01 March 1993

132 9.2 Programs that can be debugged

supplied as object code with minimal debug information. In this case the line
containing the function call is displayed rather than the library code itself. Where
procedures are nested, successive backtrace operations will locate to the original
call. Variables and other symbols can be inspected at any stage. The two functions
are listed below.

BACKTRACE Locate to the calling procedure or function.
RETRACE Undo a | BACKTRACE |.

9.9.6 Modifying variables

The function allows variables to be changed in transputer memory and
the program continued with the new values. For C and FORTRAN it supports the
same expression language as [INSPECT |. For further details see chapter 4 in the
Toolset Reference Manual.

9.9.7 Breakpointing

Symbolic functions are provided for setting and clearing breakpoints, for modifying
the value of a variable, and for continuing the program.

TOGGLE BREAK | Set or clear a breakpoint on the current line.

Restart a process stopped at a breakpoint.

[CONTINUE FROM | Restart a stopped process from the current line.

Force the debugger into the monitor page (without neces-
sarily stopping the program).

Change the value of a variable in memory.

9.9.8 Miscellaneous functions
The following extra functions are available at symbolic level:

Change to the monitor page.
Quit the debugger.

9.10 Monitor page

The debugger monitor page is a low level debugging environment which gives
direct access to machine level data. It allows memory to be viewed and disas-
sembled and gives access to information about the processor's activity through
the display of error flag status and pointers to process queues. Specific debugging

72 TDS 366 01 March 1993

9 Debugging transputer programs 133

operations are selected by single letter commands typed after the ‘Option’
prompt.

9.10.1 Startup display

When first started in interactive mode, orin post-mortem mode with an invalid Iptr
or Wdesc (see below), the debugger enters the monitor page environment and
displays information such as the addresses of instruction and workspace pointers,
status of error flags, and information about the processor run queues. The memory
map is also displayed.

If an Iptr or Wdesc is invalid at startup it is indicated by an asterisk (‘*"). A double
asterisk ("**’) is used to indicate an Iptr or Wdesc which is outside the defined
memory on a processor (i.e. beyond the ‘freespace’).

The monitor page display differs slightly between post-mortem and breakpoint
modes. In post-mortem mode the display includes the saved pointers for the low
priority process if the processor was running at high priority when analyzed; in
breakpoint mode the display does not include these pointers but does include the
contents of the registers Areg, Breg, and Creg, if known. At startup in breakpoint
mode, no machine pointers or register values are available (the program has not
yet started) and so no values are displayed.

A typical startup display is shown in Figure 9.3.

(/Toolset Debugger : v4.00.00 Processor 0 "7 (T426) \

Processor State Memory map (Postmortem Mode)

Iptr #8000010C * Configuration code #80000070 - #8000014F (224)

Wdesc NotProcess Stack : #80000150 - #800008BF (1904)

Error Clear Program code : #800008CO - $#80004573 (16K)

Halt On Error Set Static area : #80004574 - #80004E27 (2228)

Fptrl (low Empty Configuration code : $#80004E28 - $80004FET (448)

Bptrl queue) Freespace : #80004FE8 - #800FFFFF (1005K)

Fptr0 (high Empty

Bptr0 queue) Total memory usage : 23912 bytes (24K)

Tptrl (timer Empty

Tptr0 gqueues) Empty On-chip memory (4K) : #80000000 - #80000FFF

Clockl (low) $000C2DD6 MemStart : $80000070

Clock0 (high) #030B757C

ParityError Hard 1011 Debugger has enough memory for 283 processors

ParityAddr #80005DF0

Last instruction was : in

Q:!tion (? for help) (A,C,D,E,F,G,H,I,K,L,MN,0,PQ,R,T,V,X,2) ? j

Figure 9.3 Example post-mortem startup display for a T426 processor

Items displayed on the startup page and their meanings are summarized in
table 9.3. Most of the data displayed is common to all fransputer types. Where the
display differs for specific processor types and debugging modes, this is indicated
in the table.

72 TDS 366 01 March 1993

134 9.2 Programs that can be debugged

Item displayed |Description

Iptr Instruction pointer (address of the last instruction
executed).

Wdesc Process descriptor (process priority and workspace
pointer).

IptrIntSavef |Saved low priority instruction pointer, if applicable.

WdescIntSavet | Saved low priority process descriptor, if applicable.

A Registeri |Contents of A register, if known.

B Registerf |Contents of B register, if known.

C Registerf |Contents of C register, if known.

Error Status of transputer error flag.

FPU Error Status of FPU error flag (T80x series only).

Halt On Error |Status of halt on error flag.

Fptrl Front pointer to low priority process queue.

Bptrl Back pointer to low priority process queue.

Fptro Front pointer to high priority process queue.

Bptro0 Back pointer to high priority process queue.

Tptrl Pointer to low priority timer queue.

Tptr0 Pointer to high priority timer queue.

Clockl Value of low priority transputer clock.

Clock0 Value of high priority transputer clock.

ParityErrort |Status of parity error register, if applicable.

ParityAddrf |Address of parity error, if applicable.

7 Not available in breakpoint mode.

Not available in post-mortem mode. Not known to the debugger in break-

point mode on processors with no hardware support for breakpointing.

Table 9.3 Data displayed at the monitor page

Process Workspace or Stack

A process workspace (or stack) consists of a vector of words in memory. It is used
to hold local variables of the process. The workspace is organized as a falling
stack, with ‘end of stack’ addressing; that is the local variables of a process are
addressed as positive offset from the workspace pointer (Wptr).

Process Descriptors

In order to identify a process completely, it is necessary to know both its workspace
pointer Wptr (in which the byte selector is always 0), and its priority (which is 0 for
high priority and 1 for low priority). A process descriptor, Wdesc, is the sum of the
process's workspace pointer, Wptr, and its priority.

72 TDS 366 01 March 1993

9 Debugging transputer programs 135

Process pointers

Iptr points to the last instruction executed and Wdesc contains the process
descriptor. The saved low priority Iptr and Wdesc are also displayed if the
processor was running a high priority process when it was halted. An asterisk
placed next to either an Iptr or Wdesc indicates an invalid memory location for the
process. A double asterisk indicates that the address is outside the defined
memory map of the processor. A Wdesc value of ‘NotProcess’ indicates that no
process was executing on the processor when it halted

Practical notes:

¢ [f Wdesc contains the value ‘MemStart' it is likely that the Analyse signal
has been asserted more than once on the network. This can occur on
transputer boards where the subsystem signal is asserted on analyze, as
on the IMS B004. For further guidance on the use of such boards refer to
chapter 4 in the accompanying Toolset Reference Manual.

o If Wdesc contains the word ‘NotProcess’ it means that there were no
runnable processes at that instant on the transputer (check timer and
external links for any waiting processes) — this may also occur in the pres-
ence of deadlock.

+ |f WdescIntSave contains the word ‘NotProcess’ it means that a low
priority process was not interrupted when the high priority process started
running.

Fptr and Bptr point to the process run queues, which hold information about
processes awaiting execution. The suffix 0 indicates the high priority queue and
the suffix 1 indicates the low priority queue.

If the front and back pointers are the same then only one process is waiting; if there
are no processes waiting the pointers have no value and the queue is shown as

‘Empty’.
Tptr0 and Tptr1 are pointers to the high and low priority timer queues respectively.

Registers

in breakpoint mode only, the contents of the transputer registers Areg, Breg, and
Creg are displayed for those processors which have built in instructions for break-
point handling (see table 9.2). Values displayed are those which were current
when the process stopped.

Error flags

Two flags are displayed for all processors: Error and HaltOnError. The FPError
flag is also displayed for transputers with an integral floating point unit (IMS T80x
series).

72 TDS 366 01 March 1993

136 9.2 Programs that can be debugged

Clocks

Clock0 and Clock1 display the values of the high and low priority clocks when the
process was stopped. In breakpoint mode the clock values, queue pointers and
link information can be updated using the monitor page command.

Parity errors

ParityError and ParityAddr are only displayed for a T426 processor in post-
mortem mode. ParityError is the state of the ParityErrorReg and can contain one
of the following:

Soft xxxx A soft parity error has occurred
Hard xxxx A hard parity error has occurred

The value xxxx shows the byte selector bits of the emor registers; the value
is in binary with byte 3 on the left through to byte 0 on the right. Thus, the value
1011 would show that bytes 3, 1, and 0 are in eror.

NotinMem The memory in a dump file does not include the parity registers
Clear No parity error has occurred

ParityAddr shows the state of the ParityErrorAddressReg and can contain one
of the following:

#hhhhhhhh Word address, in hexadecimal, of location where error occurred
NotinMem The memory in a dump file does not include the parity registers

Undefined No parity error has occurred

Memory map

The memory map display is included on the standard startup display — this is the
same memory map as displayed by the monitor page [M] command. Any or all of
the following memory segments may be displayed, depending on the application
program and its configuration:

Runtime kernel
Reserved memory
Configuration code
Stack (Workspace)
Program code
Vectorspace

Static area

Heap area
Configuration code
Freespace

72 TDS 366 01 March 1993

9 Debugging transputer programs 137

When the memory map is displayed, the mode that the debugger is running in is
shown. This will be one of:

Interactive Mode When interactively debugging a program.
Postmortem Mode When debugging a program in post-mortem
mode.

Interactive Postmortem When post-mortem debugging a program which
was previously debugged interactively.

Dummy Session When the debugger is started with the D
command line option.

9.10.2 Monitor page commands

Most monitor page commands are single-letters that are typed at the monitor page
Option prompt. A few commands are mapped onto specific function keys. The
commands that support breakpoint debugging are only available when the
debugger is run in interactive mode.

The main monitor page commands allow you to disassemble and display trans-
puter memory, locate and debug processes, and examine the network processor
by processor.

The main commands for common debugging operations are introduced in the
following sections. Full details of all the commands can be found in chapter 4 of
the accompanying Toolset Reference Manual.

Examining memory

Specific segments of transputer memory can be displayed in hexadecimal, ASCII,
any high level language type, or disassembled into transputer instructions. The
segment of memory to be displayed is specified by a starting address. A map of
the transputer’s memory can be displayed giving the positions of code and work-
space. Commands for examining transputer memory are summarized below.

Display memory in ASCII.
Disassemble into transputer instructions.
Display memory in hexadecimal.

Display memory in selected data type.

ENSRERCRE

Memory map.

Locating processes

Locating to code for specific processes is one of the major functions available
through the monitor page. The commands available allow processes other than

72 TDS 366 01 March 1993

138 9.2 Programs that can be debugged

the stopped or current process to be located and examined anywhere on the
network. Processes can be located on the current processor by examining run
queues, and on other processors by jumping down transputer links.

Four commands are used, three to display waiting processes and one to jump to
the selected code of a process displayed by the other three.

(R] Display processes waiting on Run queues.

Display processes waiting on Timer queues.
Display processes waiting on transputer Links.
Display processes waiting on software virtual links.
Goto symbolic debugging for the selected process.

These commands can be used to trace all processes on a network and determine
the cause of program failure. The method is explained in more detail in
section 9.11.

Specifying processes

The @ command allows a specific process to be selected for symbolic debug-
ging, providing the address is known.

(9] Specify a process for symbolic debugging.

This command is useful for switching directly to symbolic debugging for a process
whose instruction pointer and process descriptor you have already noted, earlier
in the debug session.

Selecting processes

The command enables a source file to be selected for symbolic display using
the filename of the object module produced for it.

Select a source file to be displayed.

This option enables symbolic locating (for setting breakpoints etc.) without
needing to know Iptr and Wdesc process details (as the[G] and[O | commands
do).

Other processors

Two commands and two cursor keys allow other processors to be selected.

(E] Go to next halted processor.
[P] Go to specified processor.

72 TDS 366 01 March 1993

9 Debugging transputer programs 139

[« Go to the next lowest numbered processor.

] Go to the next highest numbered processor.

The sequence of processors used by the [E | and cursor key commands is an
internal sequence read by the debugger. Processor humbers corresponding to
visible names in the configuration file can be determined by using the
command.

Breakpoint commands

The following commands support breakpointing. To use these commands the
debugger must be run with the ‘B’ command line option.

Breakpoint menu.

or[RESUME | Jump into and run application program.

[§] Show debugging messages and prompts menu.
Update processor status display.

W] Write value to memory.

Changing to post-mortem debugging

When a program crashes during interactive debugging you are able to change to
post-mortem debugging using the following command:

Postmortem debug current breakpoint session.

9.11 Locating processes

Most transputer programs consist of several processes running in parallel, either
on the same fransputer or on separate processors connected by their INMOS
links.

If a program error halts the transputer then the debugger automatically locates to
the stopped process, which can then be examined directly. If the program runs
incorrectly but does not halt the processor, a good approach is to locate to and
examine each process in tum.

72 TDS 366 01 March 1993

140 9.2 Programs that can be debugged

There may be many processes running on the transputer when it is interrupted
from the keyboard, or the idump tool is run to create a dump file for debugging.
Each process exists in one of a number of possible states:

¢ Not yet started.

e Running on the processor.

o Waiting on a process execution queue (Run queue).

¢ Waiting on a timer queue.

o Waiting for communication from another process on the same processor.
¢ Waiting for communication on a transputer link (Link information).

¢ Interrupted by a high priority process.

o Already stopped or terminated.

9.11.1 Running on the processor

One, and only one, process may execute on the transputer at any instant. The
debugger will automatically locate to this process (if there was one) when the
debugger is executed. All other processes are either waiting, stopped, or not yet
started.

9.11.2 Waiting on a run queue

Processes on the run queues (i.e. waiting to be executed) can be located by first
using the monitor page E] command to display the list of waiting processes. A
process can be selected from the list by pressing[G] (for ‘Goto process’), moving
the cursor to the appropriate address, and then pressing [RETURN |. Processes
can also be located to by specifying the displayed Iptr and Wdesc with the [0]
command.

The values displayed with the [R | command can be used to determine the overall
status of run queues. If no processes are waiting then the content of the queue is
shown as ‘Empty’. If pointer addresses are displayed then there are processes
waiting; if the front and back pointers have the same value then there is only one
process waiting.

9.11.3 Waiting on a timer queue

Processes waiting for a specified time are placed on the high and low priority timer
queues. These are similar to the run queues except that they are controlled by the
transputer clocks.

72 TDS 366 01 March 1993

9 Debugging transputer programs 141

In a similar way to processes on the Run queues, processes on the timer queues
can be located by using the monitor page command to display a list of
processes and then using the [G] command, or by specifying the process
address. Pointers to the timer queues indicate overall queue status in a similar way
to the run queues.

9.11.4 Waiting for communication on a link

Processes waiting for a hardware communication (input or output on a transputer
link, or an input on the Event pin) can be located by using the monitor page
command to display a list of waiting processes, and then using the [G] command
to locate to the process. Links where no processes are waiting are shown as
lEmPty'.

At most 9 processes can be waiting for a hardware communication, two for each
of the four links and one on the Event pin.

See section 9.4.1 for information on the restrictions on locating down hard chan-
nels.

9.11.5 Wiaiting for communication on a software virtual link

Processes waiting for a communication on a software virtual link (as provided by
the configurer) can be located by using the monitor page[Z | command to display
a list of waiting processes, and then using the [G] command to locate to the
process. Virtual links where no processes are waiting are shown as ‘Empty’.

This is the preferred method for locating processes waiting on external commu-
nications when software virtual links are present.
9.11.6 Waiting for communication on a channel

Processes waiting for a communication on a channel can be located from source
level using the function. This function works for both internal (or soff)
channels and external (or hard) channels (channels mapped onto processor
links).

Only one process can be waiting on a channel. If no process is waiting, the channel
is shown as ‘Empty’.
9.11.7 Interrupted by a high priority process

A low priority process may have been interrupted by a high priority process. Such
a process may be selected using the[G] or[0] commands and the values stored
in the WdescIntSave location.

72 TDS 366 01 March 1993

142 9.2 Programs that can be debugged

9.11.8 Processes terminated or not started

Processes which have stopped executing, or not yet started, do not have process
descriptors and so they cannot be examined by the debugger. If the currently
running process and all the waiting processes have been found (not forgetting all
those processes waiting on all the internal channels) then any processes still unac-
counted for must either have already finished or failed to start.

9.11.9 Locating to procedures and functions

When a procedure is called, the workspace pointer is moved. If the debugger
locates inside any code of defined scope (such as a procedure) then only local vari-
ables, and variables declared globally, are in scope and available for inspection.

To inspect variables or channels not in scope within the procedure or function, use
to locate to a position where the desired variable or channel is in
scope. To relocate back into the procedure or function use to undo
each backtrace, or [TOP | to return to the initial location.

9.12 Debugging support library

Three routines are provided in the libraries to assist with debugging. These provide
the functions stop, assert, and message. The routines have different names for
each language and are described in more detail in the appropriate Language and
Libraries Reference Manual. Table 9.4 summarizes the routines for each
language.

Routine Description

debug_assert C
DEBUG.ASSERT 0OCCam
DEBUG_ASSERT FORTRAN
debug_stop c

DEBUG. STOP occam Stop the process and inform the debugger.
DEBUG_STOP FORTRAN
debug_message C
DEBUG.MESSAGE oOccam Insert a debugging message in the program.
DEBUG_MESSAGE FORTRAN

If the parameter evaluates to false then stop
the process and inform the debugger.

Table 9.4 Debug support functions

The stop and assert routines are used to stop a process, the latter on the failure
to meet a specified condition; such events are treated as a program error by the
debugger. The message is used to insert messages that will only be displayed
when the program is run under the interactive debugger.

72 TDS 366 01 March 1993

9 Debugging transputer programs 143

For C and FORTRAN the procedures are included in the standard library that is
incorporated at link time and are directly accessible from the program without
further action by the programmer. For occam programs, the library debug. 1ib
must be referenced with a #USE in the source code and also included as an input
to the linker.

In the following descriptions the C versions of the functions are used; the descrip-
tions apply equally to the respective occam and FORTRAN versions.

debug_assert() and debug_stop () allow a process to be stopped at any
point in the code, where it can then be debugged using the symbolic functions and
Monitor page commands. debug_stop () always stops the process whereas
debug_assert () only stops the process if the parameter evaluates to false.

debug_message () is used to insert debugging messages into the code.
Messages are relayed back to the terminal from any point in the program, even
from code running on distant processors of a network. It can be used to monitor
the activity of outlying processors which are not directly connected to the host. The
display of debug messages at the terminal is controlled by an option on the Monitor
page Breakpoint Menu (the default is to display them). Note: Only the first 80 char-
acters of a message are displayed.

9121 Examples

The use of the debug support functions is llustrated in the C and occam examples
below. Sources may be found in examples/manuals/idebug.

72 TDS 366 01 March 1993

144 9.2 Programs that can be debugged

C example:

/*******************t*iti**t*t**********

Debugger example: debug.c

Example of debug support functions when used with
and without the debugger.
(see also debugger example file abort.c)

* % % % ¥ % ¥

ii*i*i****i*iii****ii**t*iiitt***t!ttii/

#include <stdio.h>
#include <stdlib.h>
#include <misc.h>

int
main (void)
{

/* 0 will cause debug_assert () to fail assertion test */
int x = 0;

printf (”Program started\n”);
debug message (”A debug message only within the debugger”);

printf ("Program being halted by debug_assert ()\n”);
debug assert (x);

printf (“Program being halted by debug stop ()\n”);
debug_stop ()

exit (EXIT SUCCESS);
}

In this example, if x is 1 debug_assert evaluates to true and the program runs
untilitencounters debug_stop. If xis 0 (as in the example) debug_assert eval-
uates to false and the process stops before it reaches debug stop. Code
stopped by debug_assert and debug_stop may be resumed from the line
following the call of the debug function using the [CONTINUE FROM | key.

72 TDS 366 01 March 1993

9 Debugging transputer programs 145

occam example:

-= Debugger example: debug.occ

-— Example of dabug support procedures when used with
—— and without the debugger.

#INCLUDE "hostio.inc”
#USE “hostio.lib”
§usSE "dabug. 1ib”

FROC debug.entry (CHAN OF SP fs, ts, []INT free.memory)
BOOL x :
SEQ
== FALSE will cause DEBUG.ASSERT to fail assertion test
x := FALSE

so.write.string.nl (fs, ts, "Program started”)
DEBUG.MESSAGE (”"A debug message only within the debugger”)

so.write.string.nl (fs, ts, "Program being halted by DEBUG.ASSERT ()”)
DEBUG.ASSERT (x)

so.write.string.nl (fs, ts, "Program being halted by DEBUG.STOP ()”)
DEBUG.STOP ()

so.exit (fs, tas, sps.success)

In this example x is set to FALSE, therefore DEBUG . ASSERT evaluates to FALSE
and the process stops before it reaches DEBUG.STOP. If x were set to TRUE
DEBUG.ASSERT would evaluate to TRUE and the program would run until it
encountered DEBUG. STOP. Code stopped by DEBUG.ASSERT or DEBUG. STOP
may be resumed from the line following the call of the debug function using the
[CONTINUE FROM | key.

9.12.2 Actions when the debugger is not available

If the debugger is not available on the system the debug library procedures have
the following actions:

debug_assert |If the parameter evaluates to false then stop the process
DEBUG.ASSERT |(also stops the processor if configured in HALT mode).
DEBUG_ASSERT

debug_stop Stop the process (also stops the processor if configured in
DEBUG.STOP HALT mode).
DEBUG_STOP

debug_message |No action.
DEBUG.MESSAGE
DEBUG_MESSAGE

72 TDS 366 01 March 1993

146 9.2 Programs that can be debugged

9.13 Debugging with isim

The T425 simulator isim provides a single processor interactive simulation of a
program running on an IMS T425 transputer, on a boot from link transputer board
connected fo a host computer through the host file server iserver. The interac-
tive environment provides a machine level (non-symbolic) environment, similar to
the debugger monitor page, for debugging programs and monitoring program
execution.

The simulator allows any single processor program to be run and analyzed without
a transputer board. All the component parts of a program to be simulated, must
be compiled for the T425 transputer type (or compatible class — see appendix B
of the accompanying Toolset Reference Manual).

Note: The simulator can only be used to simulate single transputer programs.

9.13.1 Command interface

The simulator has a single command interface which corresponds to the debugger
monitor page. Most commands are single letter commands and can be executed
with a single key press. For a list of commands see chapter 14 in the accompa-
nying Toolset Reference Manual.

9.13.2 Using the simulator

The simulator can be used in two ways:

» To debug programs by inspection of the transputer and memory, in the
same way as with the debugger. Registers, memory, and machine state
can be examined directly at the monitor page.

« To monitor the execution of programs using machine level single step
execution and the setting of break points at specific memory locations.
Code can be executed by stepping single transputer instructions.
9.13.3 Program execution monitoring

The simulator provides a number of functions that can be used interactively to
monitor and control the behavior of a program. These are:

o Breakpoints

e Single step execution of a program

Breakpoints

Breakpoints can be set, displayed, and cancelled using the ‘B' command to display
the Breakpoint Options Page.

72 TDS 366 01 March 1993

9 Debugging transputer programs 147

Single step execution

A program can be stepped a single transputer instruction at a time using the ‘s’
command.

9.13.4 Core dump file

isim may be used to produce a core dump file that can be read by the debugger
(as if the code had been executed on a real transputer and the memory dumped
using the idump tool).

9.14 Hints and further guidance

This section gives some further guidance on some specific points related to use
of the debugger.

9.14.1 Invalid pointers

The debugger checks process instruction pointers (Iptr) and process descriptors
(Wdesc) for the correct code and data limits. Invalid pointers are flagged by an
asterisk (*) on the screen. Invalid pointers outside the processor’s memory are
flagged with a double asterisk (***"),

Invalid pointers can indicate a major problem with the program. They may also be
caused by specifying an incorrect dump file.
9.14.2 Examining and disassembling memory

Within the monitor page environment, the debugger keeps a record of two memory
addresses; the start address of the last disassembly, used as the default by the [D]
command, and the address of the last region of memory to be displayed, used by

the [A],[H] and [T] commands.

This allows you to switch easily between code disassembly and memory display.
You can, for example, disassemble a portion of memory using the [D] command,
examine its workspace in hex using the [H | command, and then return to the orig-
inal address by using the [D | command once again.

9.14.3 Scope rules

The debugger can only display variables that are in scope at its current location
point in the source code.

9.14.4 Inspecting soft configuration channels

Soft channels declared at the configuration level (i.e. those internal to a processor
which are not placed on its external links) may be inspected from the monitor page

72 TDS 366 01 March 1993

148 9.2 Programs that can be debugged

by knowing that they are located near the beginning of the Configuration code area
which appears afier the user Program code area (as displayed by the monitor page
Memory map command).

9.14.5 Locating to IF, ALT and CASE in occam

IF and ALT constructs with no TRUE guards, and CASE constructs where no selec-
tions are matched, stop the program as though a STOP statement had been
encountered. In cases like these there is no obvious statement to locate to and the
debugger locates instead to the starf of the construct.

When using these constructs it is good practice to always define the default case.
The debugger can then locate directly to the STOP statement where the error
occurred.

9.14.6 Analyzing deadlock

Deadlocks that occur in multitransputer networks can be debugged by using the
Monitor page ‘L' command to examine processes on the transputer links. Dead-
locks in single transputer programs are more difficult to debug because there is
no way to enter the program; there are no active processes from which to inspect
channels, and no links to other transputers to provide an alternative entry point.

In practice, it is often obvious to the programmer which channel or channels are
causing deadlock, and a dummy process can be added to the program to provide
an entry point for the debugger. This is illustrated below using occam; programs
could be similarly written in C or FORTRAN.

Sources may be found in examples/manuals/idebug.

72 TDS 366 01 March 1993

9 Debugging transputer programs 149

Consider the following code which creates a deadlock:

-— Debugger example: deadlock.occ

—— Example of deadlock.

#INCLUDE “hostio.inc”
#USE "hostio.lib”

PROC deadlock.entry (CHAN OF SP fs, ts, []INT free.memory)

PROC deadlock ()
CHAN OF INT c :
PAR

SEQ
c ! 99
c ! 101

INT x :
SEQ

—— <= Missing second input
SEQ

deadlock ()
so.exit (fs, ts, sps.success)

72 TDS 366 01 March 1993

150 9.2 Programs that can be debugged

The program can be debugged by adding a process that will remain idle (here,
waiting on a TIMER) while the program is debugged. An example of the type of
code that is required is illustrated below.

—— Debugger example: deadfix.occ

—— Example of deadlock and how to provide
—= debugging support.

#INCLUDE ”"hostio.ine”
#USE "hostio.lib”
#USE "debug.lib”

PROC deadfix.entry (CHAN OF SP fs, ts, []INT free.memory)

PROC deadlock.debug ()
CHAN OF INT c :
CHAN OF INT stopper :
PAR
DEBUG.TIMER (stopper) —— Hook for debugger
SEQ
PAR
SEQ
c! 99
c ! 101

INT x :
SEQ
c?x
-— <= Missing second input

stopper ! 0 —— terminate DEBUG.TIMER

SEQ
deadlock.debug ()
so.exit (fs, ts, sps.success)

The procedure DEBUG . TIMER is supplied in the 0ccam debugging library. Similar
routines could be written for other languages, and the principle of operation is the
same — the process lies dormant on the processor’s timer queue waiting for a time
as far into the future as the processor can provide. When the timeout expires, the

72 TDS 366 01 March 1993

9 Debugging transputer programs 151

process places itself back on the timer queue. Such a process provides a hook into
the program for locating deadlocked processes because the process is always
accessible to the debugger on the timer queue. By locating to it you can access
variables which are in scope at the point of its execution and thereby detect the
deadlock. In the modified program a deadlock still forms in the procedure, but there
is now a way to enter the program.

To enter the program and inspect the deadlock, first invoke the Monitor page envi-
ronment, and use the Monitor page ‘T’ command to inspect the transputer’s timer
queue, on which there will be a process waiting. Use the ‘6’ command to go to that
waiting process, and the debugger will locate to the call of DEBUG. TIMER.

You can then use to examine the channel c where the program has
deadlocked, and which will therefore contain the process that is waiting for
communication. Finally you can use fo jump to the deadlocked
process.

The compiler does not insert this kind of debugging code automatically, for several
reasons. Firstly, it is the philosophy of the toolset that the runtime code should not
be needlessly altered. Secondly, most programs use many channels, and the
execution overheads and code size could become unacceptably large. Again for
the above example code this would be unimportant because the process
consumes no CPU time, but this may not always be true. Lastly, it could be difficult
fo distinguish the true deadlocked process from the many idle debug processes
waiting on the timer queues.

9.15 Points to note when using the debugger

This section contains some extra information which may be of use when using the
debugger. Sections 9.15.1 to 9.15.18 apply to debugging in all languages; section
9.15.19 gathers together those aspects which apply only to C.

9.15.1 Abusing hard links

Current generation transputers permit unsynchronized transfer of messages on
external channels (links). This allows, for example, two 4-byte messages to be
sent and for them to be received as a single 8-byte message on the receiving trans-
puter. This is not consistent with the communication of messages between
processes on the same processor where the transfer of messages is synchro-
nized.

When breakpoint debugging, external communications are handled by the debug-
ger’s virtual link system,; this involves an internal transfer which will function incor-
rectly if user code is relying on unsynchronized transfers. Unsynchronized data
transfer should not be used where breakpointing is used to debug a program. It
is bad practice anyway and will certainly cause the virtual link system (used by both
the debugger and the virtual-routing configurer) to crash.

72 TDS 366 01 March 1993

152 9.2 Programs that can be debugged

9.15.2 Examining an active network (the network is volatile)

When a process stops at a breakpoint you should remember that all of the other
processes are still running (unless they hit a breakpoint, terminate etc.). This
means that data displayed by any of the monitor page commands that display
process queues, etc. (e.g.[R],[L],[T] etc.) may change if they are re-displayed
(e.g. by using the same command again or the [U], Update, command to update
the displayed information).

When in symbolic mode the same is true for channels which may appear empty
when first inspected only to change to a waiting process when inspected again.
The only way to effectively freeze all processes is to flip to post-mortem mode by
using the monitor page (Enter Postmortem Mode) command. You should
remember that when you use this command that all processes that have hit a
breakpoint will not appear in the runtime queues. If this is a problem, you should
note the Iptr and Wdesc values of the processes and, when in post-mortem
mode, use the monitor page [O] (Select Process) command to locate to them

symbolically.

9.15.3 Using with channel communications

When debugging a program compiled for interactive debugging it should be
remembered that channel communication is achieved via library calls. As a conse-
quence, the INSPECT | key may display an Iptr relating to code in the debugging
kernel system rather than the Iptr of a user process waiting on the channel. This
may lead to several channel communications appearing to having the same
process Iptr (the Wdesc will be valid and unique). In order to correctly establish
the Iptr of the process waiting at the other end, you should use the

key to locate to the process followed by the key to obtain process details.

9.15.4 Debugging in the presence of software virtual links

When the configurer creates software virtual links it places additional processes
onto the processor in order to provide the virtual link services. These processes
will be displayed by the debugger — it displays all processes it finds on the run
queue, links etc. A consequence of this is that, occasionally, a process will be
displayed which forms part of the software virtual link system. It is not possible
locate to these processes (as they are is not part of the program being debugged).
These processes may be identified by noting the Iptr and Wdesc values and
using the command to search for a process with a code area which contains
the Iptr value, and a stack area which contains the Wdesc value. If the name of
the processis “sROUTER [] " then itis a software virtual link process which you may
not locate to.

A similar problem occurs when attempting to locate to a process waiting on a trans-
puter link which is used by the software virtual link system — the debugger will

72 TDS 366 01 March 1993

9 Debugging transputer programs 153

complain that it cannot find a file with a name such as “vrdebxx. teo” (where xx
is a sequence of digits).

Another problem encountered with using software virtual links and idebug is that
low priority user processes are promoted, temporarily, to high priority when they
communicate on software virtual links The debugger cannot tell if they were origi-
nally at high or at low priority: it will locate to what it believes is a high priority
process. In general, this is not a problem if you wish to inspect variables etc. If this
does present a problem and you know that a particular process is a low priority
process, you should use the[0] command and specify a low priority Wdesc when
prompted, by setting the least significant bit of the Wdesc value of the process (e.g.
%1234 becomes %$1235).

In general, the preferred method for locating processes waiting on external
communications when software virtual links are present is the Monitor page [Z]
command. If however, you know that a transputer link is not used for software
virtual routing, you should use the Monitor page command to locate to such
processes.

9.15.5 Selecting events from specific processors

The debugger provides no guarantee that debugging events, such as breakpoints
and debugging messages, from processes running on different processors are
presented in the same that order they occur in. Events on processors which are
closer, in terms of connectivity, to the root transputer (where the debugger is
running) are usually displayed before events on more distant processors.

If it is important that you encounter a debugging event on a specific processor
before events on other processors, you can usually achieve this by changing to
the processor of interest (using the monitor page [P | command or left and right

cursor keys) before resuming via the or[RESUME | command.

9.15.6 Minimal confidence check

A first level confidence check to perform with a program which is misbehaving is
to perform a ‘compare memory’ check using the monitor page [C] command. This
will help to highlight any memory corruption problems which may occur due to
faulty memory or faulty program logic. If using occam, you can prevent out of
range accesses to memory by ensuring that no compiler checks have been
disabled.

9.15.7 INTERRUPT key

The debugger can be diverted from the running program to return to the monitor

page by the use of the key. However, problems can arise if the
running program is simultaneously trying to read from the keyboard; the debugger

72 TDS 366 01 March 1993

154 9.2 Programs that can be debugged

is then unable to intercept the interrupt key. (Sometimes it is possible to force the
interrupt to be recognized by repeating the key quickly.)

A similar problem arises when there are existing keystrokes buffered before the
interrupt key; if the application program does not read these buffered keystrokes
the debugger will never have a chance to see the interrupt key.

Note: The key will disable all iserver requests to the application
until the debugger is directed to resume the application.

9.15.8 Program crashes

If the debugger detects that the program has crashed immediately after starting
program execution (i.e. after the [J], Jump into application, command), you
should use the post-mortem debug command, [Y], to determine the cause.
However, if no error flags are set on the network that is running the program then
it is likely that an error flag is set on a transputer that is not in use. This may occur
on boards where the subsystem services are wired to propagate all error flags to
the root transputer. In this instance you need to clear all the error flags in the
network (see section 9.7 .4).

9.15.9 Undetected program crashes

When operating in breakpoint mode and a program overwrites the debugging
kernel or you have set a breakpoint in a high priority process on a processor
without hardware breakpoint support, the debugger cannot fully recover and is
unable to indicate that the program has crashed. In this situation the debugger fails
to update the screen other than to put the following message at the top of the
screen when it attempts to display the monitor Page:

Toolset Debugger : V4.00.00 Processor n "name” (TxXX)

In such instances you should use the host BREAK key in order to terminate the
debugger and restart the debugger using the command line ‘M’ option to post-
mortem debug the session.

9.15.10 Debugger hangs when starting program

If the debugger hangs immediately after you have supplied the command line
arguments when starting execution of a program you have probably set a break-
point in a configuration-level, high priority process on a processor without hard-
ware breakpoint support.

9.15.11 Debugger hangs

If the debugger hangs when attempting to flip fo post-mortem mode using the
monitor page command, or when trying to quit, you should terminate the

72 TDS 366 01 March 1993

9 Debugging transputer programs 155

debugger manually using the host BREAK key. If you were trying to switch to post-
mortem mode you should restart the debugger using the command line ‘M’ option
to resume debugging in post-mortem mode.

9.15.12 Catching concurrent processes with breakpoints

Sometimes a concurrent process is executing in a program (often in a loop) and
you would like to be able to control it better by using breakpoints. If the process
is communicating with other processes via channels, and you have set break-
points in these other processes, then breakpoints can be set on a communication
and, when you hit that breakpoint, the channel can be jumped down to debug the
executing process.

However, if the process has entered a non-communicating loop or you are not sure
where exactly it is in your program code, you must use a different approach. In
order to set a breakpoint, you should use the key to return to the
monitor page and then, by using the [R] (Run queues) command and/or the
(Timer queues) command, list the Iptrs and Wdeses of the processes currently
executing. (Often, this will include the debugging kernel processes but these are
easy to detect because they are marked as kernel processes.)

Use the [G] (Goto process) command to select the Iptr and Wdesc to locate
symbolically to the process. You can then set a breakpoint on that line, retum to
the monitor page and resume the program using the [J] or[RESUME | command;
when the process hits the breakpoint you may continue to debug it. If there are no
processes on either the run or timer queues and there are no external communica-
tions, it means that your program has either deadlocked or terminated.

9.15.13 Phantom breakpoints

Because of the mechanism used for breakpoints on those transputers without
hardware breakpoint support (see table 9.2) it is possible for the output from the
INMOS compilers to contain code that fools the debugger into thinking it is a break-
point (a phantom breakpoint). This happens when the code contains an empty
loop that does not terminate. The following code examples will generate phantom
breakpoints:

c occam FORTRAN
while (1){ WHILE TRUE DO WHILE TRUE
; SKIP END DO
}
for (;:;){ 100 GOTO 100
}

If you encounter a phantom breakpoint and you wish to continue execution, you
must set a breakpoint at the same address and then resume execution. To do this

72 TDS 366 01 March 1993

156 9.2 Programs that can be debugged

use the key to obtain the start address of the empty loop when in

symbolic mode, change to the monitor page and use the Set Breakpoint option on
the Breakpoint menu to set a breakpoint at the loop address.

9.15.14 Breakpoint configuration considerations

When breakpoint debugging you should remember that the root transputer of a
network is used by the debugger for its own purposes. On some fransputer
motherboards with an built-in pipeline, the root transputer is normally booted down
link 0; subsequent transputers in the pipeline boot down link 1. This may (acciden-
tally) be a problem if you simply take a network configuration which was not confi-
gured with breakpoint debugging in mind (e.g. a pipeline configuration) and
attempt to breakpoint debug it. The debugger will in effect, attempt to skip load it
onto the rest of the network; the program may load (if by chance the right link
connections are available) but, if the boot link is different, it will not be able to talk
to the host (via iserver) when it executes.

Such a problem may easily be checked for by using the monitor page
command when positioned on processor 0. This will indicate whether the root
transputer was booted from a different link to that specified in the configuration file.

When breakpoint debugging, the debugger will warn you if the boot link is different
from that expected for the root processor before the network is loaded.

9.15.15 Determining connectivity and memory sizes

In order to establish the connectivity and memory map range for each processor
in a program you should use the icollect 'P’ option. Alternatively you may use
the debugger command line option ‘D’ (dummy debug).

9.15.16 Long source code lines

Source code lines longer than 500 characters cause the symbolic source code
browser to treat them as multiple lines and subsequently it will loose line synchro-
nization; (i.e. it displays incorrect line number information).

9.15.17 Resuming breakpoints on the transputer seferr instruction

If an attempt is made to resume from a breakpoint which is at the address of a
seferr instruction, the debugger does not continue with the original (correct) Iptr
(it resumes with an Iptr within the kemel area). Because the debugger operates
in Halt-on-Emror mode, the seferr instruction will halt the processor.

The effect of the incorrect Iptr is only apparent if you subsequently switch to post-
mortem debugging whereupon the debugger will complain that it is unable to
locate to an Iptr within the kemel area. If this is a problem, you should note the
Iptr before resuming from the breakpoint

72 TDS 366 01 March 1993

9 Debugging transputer programs 157

Setting and resuming breakpoints on an occam STOP statement compiled in
HALT mode, will cause this problem.

9.15.18 Shifting by large or negative values

The shift instructions on current transputers take time proportional to the number
of places shifted — as this number is unsigned, negative values will be treated as
large positive values. Large shifts will cause current transputers to temporarily
‘lock’ for a number of cycles equal to the number of places shifted — on 32 bit trans-
puters this can cause the device to hang-up for up to 232 cycles (approximately 31/,
minutes for a 20 MHz device).

Some languages, such as C, performs no runtime checks for invalid shift values
and so do not protect you against their consequences. Other languages, such as
occam, do perform such checks.

If the debugger, in post-mortem mode, locates to a source line containing a shift
operator and the error flag has not been set then it is likely that a shift by a large
value is taking place — this can be verified by using the key to check

the shift count.

9.15.19 Aspects of C debugging

Arrays as arguments to C functions

Because C requires a declaration of a parameter as array of fype to be adjusted
to pointer to type the debugger must treat all array parameters as pointers. This
means that it cannot automatically display the contents of an array passed as a
parameter.

In order to display the contents of arrays you should use specify the range of the
array to be displayed. This is illustrated in the following example.

void foo (int p[4]) {
debug_stop ();
}

The argument p will be treated as a pointer to int rather than an array of int by
the C compiler. Using the function on p will cause the address of pto

be displayed. In order to see the contents of the array, the inspect command should
be given an array range, for example: p[0;3].

Backtracing with concurrent C processes

idebug supports backiracing from a parallel process to the parent process (where
the parallel process was started via a C library call). However, for processes
started asynchronously via ProcRun, ProcRunHigh, or ProcRunLow, idebug
merely enables you to backtrace and does not allow operations such as inspection

72 TDS 366 01 March 1993

158 9.2 Programs that can be debugged

of variables after a backtrace. This is because the parent process which started
the asynchronous processes may no longer exist, in which case inspection is
meaningless.

Errors generated by the full C library

Generally, the full C runtime library is able to detect when there is insufficient
memory for it to function correctly; in such instances it displays an error message
at startup.

In rare circumstances the library is able to detect that there is insufficient memory
but it does not have enough memory to display the startup error message. In such
instances, it sets the error flag and terminates execution. If a program sets the
error flag and the debugger is unable to backtrace when the last instruction
executed was seterr (error explicitly set), and the following error message is
displayed by the debugger then it is highly likely that insufficient memory is avail-
able for either the static or the heap area:

Error: Not compiled with debugging enabled ”libc.lib”
Errors generated by the reduced C library

Because the reduced C runtime library has no host to communicate with, if a
runtime error occurs the reason for the eror is not readily apparent. If a program
sets the errorflag and the debugger is unable to backtrace when the last instruction
executed was seferr (error explicitly set), and the following error message is
displayed by the debugger then it is highly likely that insufficient memory is avail-
able for either the static or the heap area:

Error: Not compiled with debugging enabled ”libcred.lib”
C compiler optimizations

The INMOS compilers perform some code optimizations. If an external variable
is optimized out from a module because it is never used then the debugger is
informed of this and is able to relay the information to the user.

72 TDS 366 01 March 1993

9 Debugging transputer programs 159

However, for some optimizations the debugger is not informed and consequently
it may provide misleading information. The following code illustrates this:

int main (void) {

int a
int b

0;
0;

wn

while (1) { /* or ’for (;;)! */
}
/* following code optimized out by compiler

* as it can never be reached
*

a
b
a

-

i~

Lo I N
N

* 4~

[« N

}

In these cases the debugger may show the discrepancy in either of the following
ways:

1 If a function follows the optimized code, the debugger associates the
address of the optimized lines with the address of the start of the function.

2 If no function follows the optimized code then the debugger indicates that
it is unable to find the address for any of the optimized lines.

9.16 C debugging example

This example illustrates some of the post-mortem and breakpoint features of the
debugger. The debugger is run in interactive mode.

A similar example program written in occam is described in section 9.17.

9.16.1 The example program

The example program facs.c calculates the sum of the squares of the first n
factorials, using a rather inefficient algorithm. It has been structured this way for
clarity in process structure and to demonstrate parallel processing and debugging
methods. The same program coded in occam is supplied with the occam 2
toolset. The program incorporates five processes, each coded as a separate func-
tion. The five processes in turn input n, calculate factorials, square the factorials,
sum the squares, and output the result. The program is listed below.

72 TDS 366 01 March 1993

160 9.2 Programs that can be debugged

/***********i*******i**t*ii****t********

Debugger example: facs.c

idebug (and parallel C) example based on similar program
in occam toolset.

Uses 5 processes to compute the sum of the squares of the
first N factorials using a rather inefficient algorithm.

Plumbing:

= > feed -> facs -> square -> sum -> control <--> User I/O
| |

% % ok % o W 4 ¥ ¥ % ¥ ¥ ¥ *

******i**ttt*ititlttiit***t****!i**!***/

#include <stdio.h>
#include <stdlib.h>
#include <process.h>
#include <channel.h>

const double stop_real
const int stop_integer

-1.0;
-1:

nn

/* output a double down a channel */
void
ChanOutDouble (Channel *out, double value)

{
ChanOut (ocut, (void *) &value, sizeof (value));

}
/* input a double from a channel */
double

ChanInDouble (Channel *in)

{
double value;

ChanIn (in, (void *) &value, sizeof (value));
return value;

72 TDS 366 01 March 1993

9 Debugging transputer programs

161

/* compute factorial */
double
factorial (int n)

{
double result;

int i;
result = 1.0;
for (i = 1; i <= n; ++i) {

result = result * i;

}

return result;

/* source stream of ints */
void
feed (Process *p, Channel *in, Channel *out)

{

int n, i;
(void) p; /* stop compiler usage warning

n = ChanInInt (in);
for (i = 0; i < n; ++i) {
ChanOutInt (out, i);

}
ChanOutInt (out, stop_integer);

/* generate stream of factorials */
void
facs (Process *p, Channel *in, Channel *out)

{
int x;
double fac;

(void) p; /* stop compiler usage warning

x = ChanInInt (in);

while (x !'= stop_integer) {
fac = factorial (x);
ChanOutDouble (out, fac);
x = ChanInInt (in);

}

ChanOutDouble (out, stop real);

*

e/

72 TDS 366 01 March 1993

162 9.2 Programs that can be debugged

/* generate stream of squares */
void
square (Process *p, Channel *in, Channel *out)

{
double x, sqg;

(void) p; /* stop compiler usage warning */

x = ChanInDouble (in);

while (x != stop_real) {
8q = x * x;
ChanOutDouble (out, sq):;
x = ChanInDouble (in);

}

ChanOutDouble (out, stop real);

}
/* sum input */

void
sum (Process *p, Channel *in, Channel *out)

{
double total, x;
(void) p; /* stop compiler usage warning */
total = 0.0;
x = ChanInDouble (in);
while (x != stop_real) {
total = total + x;
x = ChanInDouble (in);
}
ChanOutDouble (out, total);
}

72 TDS 366 01 March 1993

9 Debugging transputer programs 163

/* user interface and control */
void
control (Process *p, Channel *in, Channel *out)

{
double value;

int n;
(void) p; /* stop compiler usage warning */
printf (”Sum of the first n squares of factorials\n”)

do {
printf (“Please type n : ”);
} while (scanf (”%d”, &n) != 1);
printf ("n = %d\n”, n);
printf (”Calculating factorials ... ”);

ChanOutInt (out, n);
value = ChanlInDouble (in);

printf (”\nThe result was : %g\n”, value);

Channel *
Checked ChanAlloc ()

{
Channel *chan;

if ((chan = ChanAlloc ()) == NULL) {
fprintf (stderr, ”"ChanAlloc () failed\n”);
exit (EXIT FAILURE);

}

return chan;

Process *
Checked ProcAlloc (void (*func) (), int sp, int nparam,
Channel *cl, Channel *c2)

Process *proc;

proc = ProcAlloc (func, sp, nparam, cl, c2);

if (proc == NULL)
fprintf (stderr, ”ProcAlloc () failed\n”);
exit (EXIT_FAILURE) ;

}

return proc;

72 TDS 366 01 March 1993

164

9.2 Programs that can be debugged

int
main (void)

{
Channel
Channel
Channel

Process
Process

facs_to

square_t
sum to ¢

feed_to_:
control_!

p_feed =
p_facs =
p_square =
p_sum =

p_contro

ProcPar

*facs to_square, *square to sum;
*sum to _control, *feed to_facs;
*control_to_feed;

*p_feed, *p_facs, *p_square;
*p _sum, *p control;

_square = Checked ChanAlloc ();
o_sum = Checked ChanAlloc ();
ontrol = Checked ChanAlloc ();
facs = Checked_ChanAlloc ();
to feed = Checked ChanAlloc ();
Checked ProcAlloc (feed, 0, 2,
control to_feed, feed to_facs);
Checked ProcAlloc (facs, 0, 2,
foed to facs, facs_to square);
Checked Prochlloc (square, 0, 2,
facs to_square, square to_sum);
Checked ! Prochlloc (sum, 0, 2,

square_to_sum, sum_to_control);
1 = Checked ProchAlloc (control 0, 24
sum_to_control, control_to feed) ;

(p_feed, p facs, p square, p_sum,
p_control, NULL);

exit (EXIT SUCCESS);

9.16.2 Compiling

and loading the example

The source of the program is provided in the toolset debugger examples subdi-
rectory. It should be compiled for transputer class TA with debugging enabled, then

linked with the appro

priate library files and made bootable using icollect with

the ‘T’ option to create single transputer bootable code.

HOST root |2 T425

32 bit

transputer

Figure

72 TDS 366 01

9.4 Hardware configuration for the example

March 1993

9 Debugging transputer programs 165

The example is intended for running on a BO08 board wired subs. See section 4.7
in the accompanying Toolset Reference Manual debugger chapter if your system
is different.

A typical sequence of commands for compiling, linking, and booting the program
is shown below. The ‘I’ option on the linker command line is optional but provides
useful information on the progress of the linking operation.

Command sequences are shown for UNIX-based and MS-DOS/VMS-based tool-
sets. Use the appropriate set of commands for your system.

UNIX:

icc facs.c -g -ta -o facs.tax
ilink facs.tax -f cnonconf.lnk -ta -o facs.cah -i
icollect facs.cah -t

MS-DOS/VMS:

icec facs.c /g /ta /o facs.tax
ilink facs.tax /f cnonconf.lnk /ta /o facs.cah /i
icollect facs.cah /t

The program is loaded for breakpoint debugging by running idebug with in inter-
active mode using one of the following commands:

idebug -sr -si -b2 facs.btl -c t425
idebug /sr /si /b2 facs.btl /c td25

This command starts up the debugger and displays the Monitor page but does not
start the program. The iserver ‘SI’ switch is optional.

Note: If your transputer is not a T425 you should change the t425 option to the
appropriate transputer type. You may also need fo change the number specified
after the ‘B’ option to the number of the root transputer link to which the network
is connecled. See table 4.4 in chapter 4 of the accompanying Toolset Reference
Manual for more details about the options to use, if in doubt.

9.16.3 Setting initial breakpoints

Initial breakpoints can often be set by using the Monitor page command and
specifying a breakpoint at the start of main (). In this example we use a different
method based on setting specific breakpoints in the source code before the
program is started.

At the Monitor page select[F | to display the source file. At the object module file-

name prompt specify the compiled object file facs.tax. The debugger uses
debug information within the object module to select the source file.

72 TDS 366 01 March 1993

166 9.2 Programs that can be debugged

The source file is displayed with the cursor positioned at the first function definition.
At this point the program is still waiting to be started.

Set a breakpoint at the beginning of the ChanOutDouble() function
using [TOGGLE BREAK |. The debugger confirms the breakpoint is set and gives

the breakpoint a unigue identification number (note that the breakpoint is set on
the first executable line of the function).

9.16.4 Starting the program

Retum to the Monitor page using the key and start the program by
selecting the [J] command. Press at the ‘Command line' prompt (no
command line is required) and give a small positive number (e.g. 12) when the
program prompts for input. The program runs until it reaches the breakpoint.

9.16.5 Entering the debugger

At the breakpoint the debugger displays the number of the breakpoint and the
number of times it has been encountered (or hit) and then requests confirmation
to continue the stopped process. Press any key except[R] or [r] to enter the
symbolic debugging environment. The debugger locates to the breakpoint and
displays the source code.

9.16.6 Inspecting variables

Variables and channels in ChanOutDouble() can now be examined. For
example, to examine the variable value press and specify its name
at the prompt. The debugger displays the value 1.0 and labels it as a double.
Pressing with the cursor positioned on value has the same effect.

Note that only variables in scope at the debugger’s current location point can be
inspected, although the rest of the file can be displayed with the cursor keys. The
current location point is at the start of function ChanOutDouble ().

9.16.7 Finding addresses of variables

The debugger provides a comprehensive C expression language which may be
used with INSPECT and MODIFY. To obtain the address of a variable, you use the
same expression as you would in a C program. Press and specify
&value fo display the address of value. Notice that addresses are displayed in

hex notation by default. may be used to display the values of vari-
ables in hex notation if required.

9.16.8 Backtracing

ChanOutDouble () is called from function facs () to output the factorial it calcu-
lates for each integer received from £eed () . To confirm this press

72 TDS 366 01 March 1993

9 Debugging transputer programs 167

and the debugger locates to the line in facs () where ChanOutDouble () is
called. Press to return to where the breakpoint occurred. Now press

TOGGLE BREAK | to remove the breakpoint on this line.

9.16.9 Jumping down a channel

Within £acs () the variable fac is the firstin a sequence of outputs on the channel
out. To frace the destination process for fac first use to see the value
of the channel out, which is declared to be a channel pointer. Use

again but this time specify *out, which de-references the channel pointer. The
debugger displays an Iptr and Wdese, indicating that there is a low priority
process waiting at the other end of the channel.

Now press and again specify *out to de-reference the channel
pointer. The debugger jumps down the channel connecting the two processes and
locates to ChanInDouble(). Now backtrace to the function which called
ChanInDouble() to input a value, namely function squaze () . Variables in scope
now become available for inspection (at this stage they have not been initialized).

While still in function square () move the cursor to the first line containing
ChanOutDouble () and set a breakpoint. Then press in order to run
the program up to the breakpoint just set.

9.16.10 Inspecting by expression
In function square () inspect the variable sq and check the computation by

and specifying the expression x * x. Note how [INSPECT | can be
used to perform arithmetic on any variable in scope. Expressions can also include
numbers and other variables and constants in scope at the location point.

Press and type x != stop_real in order to see the value used to
control the while loop.

9.16.11 Modifying a variable

In breakpoint debugging any program variable may be modified. To modify a vari-
able x press and specify x at the ‘Destination’ prompt. The debugger
now requests the new value by display the ‘Source’ prompt. Enter any value and
check the value has changed by inspecting x once again.

9.16.12 Backtracing tomain ()

While still in square (), press to locate back to where the function
was called. The debugger locates to ProcPar () in function main () where the
five major processes are started in parallel. If the call to function squaze () had

72 TDS 366 01 March 1993

168 9.2 Programs that can be debugged

been nested in other calls, successive operations might have been
necessary but would have eventually located to the call in the program main func-
tion.

9.16.13 Entering #include files

Press and select line 20. This will locate you to the line

#include <stdio.h>. By using the key you may now enter the
#include file (and then any nested files within it); the key will bring
you out again into the enclosing file.

9.16.14 Quitting the debugger

Finally, to quit the debugger use the[FINISH] key (you may also quit the debugger
from the Monitor page using the [Q] command). If the debugger was run with the
‘XQ' option, then it will prompt for confirmation before exiting.

9.17 occam debugging example

This example illustrates some of the post-mortem and breakpoint features of the
debugger. The debugger is run in interactive mode.

9.17.1 The example program

The example program facs . occ calculates the sum of the squares of the first n
factorials, using a rather inefficient algorithm. It has been structured this way for
clarity in process structure and to demonstrate parallel processing and debugging
methods. The same program coded in C is supplied with the C toolset. The
program incorporates five processes, each coded as a separate procedure. The
five processes in turn input n, calculate factorials, square the factorials, sum the
squares, and output the result. The program is listed below.

Note: Triple braces ({ { { and } } }) in the listing indicate fold marks in the program.
They are retained for compatibility with the folding editors often used for writing

occam programs.

The source file can be found in examples/manuals/idebug.

72 TDS 366 01 March 1993

9 Debugging transputer programs

169

Debugger example: facs.occe

Uses 5 processes to compute the sum of the squares
of the first N factorials using a rather inefficient
algorithm.

Plumbing:

feed-> facs-> square-> sum-> control <--> User IO
| |

#INCLUDE "hostio.inc”
#USE "hostio.lib”

PROC facs.entry (CHAN OF SP fs, ts, []INT free.memory)

VAL stop.real IS -1.0 (REAL64)
VAL stop.integer IS -1 :

=={{{ FUNC factorial - compute factorial
REAL64 FUNCTION factorial (VAL INT n)

REAL64 result :
VALOF
SEQ
result := 1.0 (REAL64)
SEQ i =1FORn
result := result * (REAL64 ROUND i)
RESULT result

==}}}

-={{{ PROC feed - source stream of integers
PROC feed (CHAN OF INT in, out)
INT n :
SEQ
in ? n
SEQ i =0 FOR n
out ! i

out ! stop.integer

—=}}}

72 TDS 366 01

March 1993

170 9.2 Programs that can be debugged

-—{{{ PROC facs - generate stream of factorials
PROC facs (CHAN OF INT in, CHAN OF REAL64 out)
INT x :
REAL64 fac :
SEQ
in ? x
WHILE x <> stop.integer
SEQ
fac := factorial (x)
out ! fac
in ? x

out ! stop.real
—}}h
—{{{ PROC square - generate stream of squares
PROC square (CHAN OF REAL64 in, out)
REAL64 x, sq :
SEQ
in ? x
WHILE x <> stop.real
SEQ
sq = x * x
out ! sq
in ? x
out ! stop.real

)

—={{{ PROC sum - sum input
PROC sum (CHAN OF REAL64 in, out)
REAL64 total, x :
SEQ
total := 0.0 (REAL64)
in ? x
WHILE x <> stop.real
SEQ
total := total + x
in ? x
out ! total

—}})

72 TDS 366 01 March 1993

9 Debugging transputer programs

171

=={{{

SEQ

PROC control -

user interface and contrel
PROC control (CHAN OF SP fs, ts,

CHAN OF REAL64 result.in,
CHAN OF INT n.out)

REAL64 value :
INT n :

BOOL error :

so.write.string.nl (fs, ts,
Sum of the first n squares of factorials”)

arror := TRUE
WHILE error

SEQ

so.write.string (fs, ts, "Please type n: ")
so.read.echo.int (fs, ts, n, error)

so.write.nl (fs,

ts)

so.write.string(fs, ts, ”Calculating factorials...”)

n.out ' n
result.in ? value

s0.
.write.string (fs,

80

80.
850.
80.

=i}

CHAN OF REAL64 facs.to.square, square.to.sum :

write.nl (fs, ts)

write.real64 (fs,
write.nl (fs, ts)
exit (fs, ts, sps

ts, "The result was:
ts, value, 0, 0) —

.success)

CHAN OF REAL64 sum.to.control :
CHAN OF INT feed.to.facs, control.to.feed :

PAR

feed (control.to.feed, feed.to.facs)
facs (feed.to.facs, facs.to.square)
square (facs.to.square, square.to.sum)
sum (square.to.sum, sum.to.control)
control (fs, ts, sum.to.control, control.to.feed)

9.17.2 Compiling the £acs program

)
free format

The source of the program is provided in the toolset examples subdirectory. It
should be compiled for transputer class TA with debugging enabled, then linked
with the appropriate library files and made bootable using icollect with the ‘T’
option to create single fransputer bootable code. The example is intended for
running on a BOO8 board wired subs. See section 4.7 in the accompanying Toolset
Reference Manual debugger chapter if your system is different.

72 TDS 366 01

March 1993

172 9.2 Programs that can be debugged

Using imakef

If your system has a make utility you may use imakef to generate a suitable make-
file to help build the program:

imakef facs.bah

make -f facs.mak (UNIX)
make /f facs.mak (MS-DOS/VMS)
Using the tools directly

A typical sequence of commands for compiling, linking, and booting the program
is shown below. The ‘I’ option on the linker command line is optional but does
provide useful information on the progress of the linking operation.

Command sequences follow for UNIX-based and MS-DOS/VMS-based toolsets.
Use the appropriate set of commands for your system.

UNIX:

oc -ta facs.ocec -o facs.tah

ilink -ta facs.tah hostio.lib convert.lib -f occama.lnk
-0 facs.cah

icollect -t facs.cah -o facs.bah

MS-DOS/VMS:

oc [ta facs.oce /o facs.tah

ilink /ta facs.tah hostio.lib convert.lib /f occama.lnk
/o facs.cah

icollect /t facs.cah /o facs.bah

9.18 Breakpoint debugging

The following section demonstrates how to debug the example program in interac-
tive mode.

32bit |5
HOST root T425
transputer

Figure 9.5 Hardware configuration for breakpoint example

9.18.1 Loading the program

The program is loaded for breakpoint debugging by running idebug in interactive
mode using one of the commands given below. Use the appropriate command for
your system.

idebug -sr -si -b2 facs.bah -c t425 (UNIX)
idebug /sr /si /b2 facs.bah /c td25 (MS-DOS/VMS)

72 TDS 366 01 March 1993

9 Debugging transputer programs 173

This command starts up the debugger and displays the Monitor page but does not
start the program. The iserver ‘SI’ switch is optional.

Note: If your transputer is not a T425 you should change the t425 option to the
appropriate transputer type. You may also need to change the number specified
after the ‘B’ option to the number of the root transputer link where your network is
connected. See table 4.4 in chapter 4 of the accompanying Toolset Reference
Manual for more details about the options to use if in doubt.

9.18.2 Setting initial breakpoints

Initial breakpoints can often be set with the Monitor page command and speci-

fying an entry point breakpoint (this would set a breakpoint at facs . entry). Inthis
example a different method is used based on setting specific breakpoints in the
source code before the program is started.

At the Monitor page select option to display the source file. At the object

module filename prompt specify the compiled object file facs . tah. The debugger
uses debug information within the object module to select the source file. The
source file facs . occ is displayed with the cursor positioned at the first procedure
definition, namely facs.entry. At this point the program is still waiting to be
started.

Use to move the cursor to line 56 (out ! fac) and set a break-
point there using [TOGGLE BREAK |. The debugger confirms the breakpoint is set

and gives the breakpoint a unique identification number.

9.18.3 Starting the program

Return to the Monitor page using the key and start the program by
selecting the[J] command. Press [RETURN | at the ‘Command 1ine’ prompt (no
command line is required) and give a small positive number (e.g. 12) when the
program prompts for input. The program runs until it reaches the breakpoint.

9.18.4 Entering the debugger

At the breakpoint the debugger displays the number of the breakpoint and the
number of times it has been encountered (or hit) and then requests confirmation
to continue the stopped process. Press any key except]E] or [r] to enter the
symbolic debugging environment. The debugger locates to the breakpoint and
displays the source code.

9.18.5 Inspecting variables

Variables and channels in £acs can now be examined. For example, to examine
the variable £ac move the cursor to £ac and press [INSPECT |. The debugger

72TDS 366 01 March 1993

174 9.2 Programs that can be debugged

displays the value as REAL64 1.0 and gives its address. Pressing

with the cursor positioned on a space causes the debugger to prompt you for a
symbol. Note that only variables in scope at the debugger’s current location point
can be inspected, although the rest of the file can be displayed with the cursor
keys. The current location point is line 56 in the procedure facs.

9.18.6 Backtracing

facs is called in parallel by facs.entry to output the factorial it calculates for
each integer received from feed. To confirm this press and the
debugger locates to the line in facs . entry where facs is called. Press
to return to where the breakpoint occurred. The current location point is line 56 in
the procedure facs.

9.18.7 Jumping down a channel

Within facs the variable £ac is the first in a sequence of outputs on the channel
out. Totrace the destination process for £ac first| INSPECT |the channel out. The
debugger displays an Iptr and Wdese, indicating that there is a low priority
process waiting at the other end of the channel.

Now press and again specify out. The debugger jumps down the
channel connecting the two processes and locates to the corresponding channel
input in procedure square (the statement in ? x). Variables in scope within
square now become available for inspection (at this stage they have not been
initialized).

9.18.8 Modifying a variable

In breakpoint debugging program variables may be modified. Start by first
inspecting x in order to ensure that the new value will be different. To modify the
variable x position the cursor on x and press [MODIFY |. Atthe modify value prompt
specify the value to be placed in x. Note that the modify prompt reminds you of the
type of x. Enter any valid value and check the value has changed by inspecting
x once again.

9.18.9 Entering #INCLUDE files

Press and select line 17. This will locate you to the line
#INCLUDE ”hostio.inc”. By using the key you may now enter
the #INCLUDE file (and any nested # INCLUDE files within it); the key
will bring you out again into the enclosing file.

9.18.10 Resuming the program

To resume execution of the program from the current breakpoint press
the key. This will cause the program to continue running until it encoun-

72 TDS 366 01 March 1993

9 Debugging transputer programs 175

ters the breakpoint again. Press an appropriate key to enter the symbolic debug-
ging environment. This will cause the debugger to locate to line 56.

9.18.11 Clearing a breakpoint

To clear the breakpoint already set at line 56 use the key. The
debugger will confirm that the breakpoint has been cleared. Press to
resume execution and cause the program to display its result. The debugger will
confirm that the program has finished and will pause in order to enable you to read
the output from the program. Press any key as indicated to enter the Monitor page.
Note that the Monitor page displays the exit status from the program.

9.18.12 Quitting the debugger

Finally, to quit the debugger you can use the Monitor page[@ | command. You may
also quit the debugger from symbolic mode by using the key. If the

debugger was run with the ‘xQ’ option, then it will prompt for confirmation before
exiting.

9.19 Post-mortem debugging

The following section demonstrates how to debug the example £acs program in
post-mortem mode.

T425
HOST root
transputer

Figure 9.6 Hardware configuration for post-mortem example

9.19.1 Running the example program

When you have built an executable code file you can run the program by typing
one of the following commands:

iserver -se -sb facs.bah (UNIX)
iserver /se /sb facs.bah (MS-DOS/VMS)

The program immediately prompts you for a value. For correct execution the
number must be less than 100. To create an error for the purpose of this example,
enter the value 101 and press [RETURN . The program will fail with the message:

Error - iserver - Error flag raised by transputer.

72 TDS 366 01 March 1993

178 9.2 Programs that can be debugged

9.19.2 Creating a memory dump file
To create a memory dump file for the debugger to read, type:
idump facs 15000

This creates a file called facs . dmp containing the transputer’s register contents
and the first 15000 bytes of memory. You are then returned to the operating system
prompt.

9.19.3 Running the debugger
To debug the example program, use one of the following commands:

idebug -si facs.bah -r facs -c t425 (UNIX)
idebug /si facs.bah /r facs /c td425 (MS-DOS/VMS)

The iserver ‘SI’ switch is optional. The ‘R’ option identifies the program as one
that was executed on the roof transputer and specifies the memory dump file to
be read.

Note: If your transputer is not a T425 you should change the t425 option to the
appropriate transputer type.

Should you wish to run the debugger a second time on this single processor
example, without an intervening idump command, you will need to add the
iserver ‘SR’ option to the command line to reset the network.

The debugger first displays its version number, then some processing information,
and eventually locates to the source line from which the error was generated:

8q := x * x

You can now begin to debug the program. You can use the symbolic facilities to
browse the source, locate to specific lines and areas of code, inspect variables and
channels, and trace procedure calls, and you can inspect and disassemble
memory using the Monitor page commands.

The following sections illustrate some of the debugging operations you can
perform on the example program. For further details about any of the debugging
functions described in these sections, see chapter 4 of the accompanying Toolset
Reference Manual.

Inspecting variables

When the debugger is displaying source code, you may inspect any variable by
placing the cursor on the variable and pressing [INSPECT |.

For example, to display the value of x, place the cursor over x in the source code
and press[INSPECT |. x is displayed in both decimal and hexadecimal forms, and
its address in memory is given in hexadecimal. For example:

REAL64 ‘x’ has value ...
9.3326215443944096E+155 (#605166CE698CF1838) (at #80000464)

72 TDS 366 01 March 1993

9 Debugging transputer programs 177

In the same way you can inspect the values of sq, square, stop. integer,
stop.real, and any other variable or constant that is in scope. Use the cursor
keys to scroll through the code. To return to the source of the original error, use the

RELOCATE | function. You can also use the [INSPECT | function to examine proce-

dures and functions. If you place the cursor on a procedure or function name and
press| INSPECT |, the debugger displays its address and workspace requirements.

You can also examine any symbol in the source by specifying its name. To do this,
move the cursor to a blank area and press[INSPECT |. The debugger then prompts

for the symbol name.
Inspecting channels

The debugger can also examine processes on channels within the scope of the
original error. If you place the cursor on channel out and press [INSPECT |,
information about the channel is displayed. For example:

CHAN ‘out’ has Iptr:#800022F8 and Wdesc:#80000381 (Lo) (at #B8000063C)

This indicates that there is a process waiting for communication on channel out,
and that it is a low priority process. To find out which occam process is waiting,
press[CHANNEL . The cursor will be placed on the line corresponding to the other
process, which in this example is inside the procedure sum, on the following line:

in ? x

Within procedure sum, you can examine any symbol using [INSPECT |. Within the
sum procedure you can inspect the channel out and use to jump to
the waiting process, which is the procedure control that is waiting for the final

result. Again you can use [INSPECT | to examine any symbol.

Retracing and Backtracing

So far the debugger has located three of the five processes that compose the
program. What about the others? First use the key to retrace your
steps back to procedure square. When in procedure square, inspect channel
in, which is connected to the facs procedure. It is empty, which means that no
process is waiting to communicate.

Next try [BACKTRACE |. This function backtraces down nested procedure calls.
Each time the function is used the debugger locates to the line in the enclosing
code from which the procedure was called.

In this example, moves the cursor to the line where procedure
square is called. Again, you can inspect any symbol which is in scope at this line.
For example, you can inspect the channels feed.to.facs and
facs.to.square. Both should be empty, which means that the remaining
processes were actively executing, rather than waiting to communicate, when the
program halted.

72 TDS 366 01 March 1993

178 9.2 Programs that can be debugged

To find the active processes, you need to examine the transputer’s process
queues using the Monitor page facilities, as described below.

Displaying process queues

To display the process queues, first enter the debugger Monitor page from the
symbolic environment by pressing the key. Low level information is
displayed for the current processor, along with a list of Monitor page commands.

To display the process queues, use the Monitor page[R | command. This displays
two active processes, identified by their respective Iptr and Wdesc. When you
have identified the processes to examine, you can use the Monitor page
command to jump to those processes and inspect the code. Other commands to
try from the Monitor page are [T |, which displays the processes waiting on the
transputer’s timers; and[L], which displays processes waiting for communication
on the transputer’s links.

Goto process
When you press [G |, the following message is displayed:

Goto process — use [CURSOR] then [RETURN], or 0 to F, (I)ptr, (L)o or
(Quit

To display the first active process’, type [0] (zero). The cursor will be placed on
the following source line (in procedure ‘feed’):

out ! i

Because this process is on the queue and not waiting, it must have already
performed the communication and is about to resume executing. You can examine
variables within the procedure as before.

To display the last remaining process in the program, press [MONITOR] again, and
type [G] followed by to locate to the second process in the queue. This
process will either be executing code within the compiler libraries or within the
replicated SEQ. If it is executing code within a library, the debugger displays the call
to the library routine rather than the source itself, because the source is not
supplied. For example:

result := result * (REAL64 ROUND i)

Again, you may inspect variables within the process. For example, by inspecting
the variable ‘i’, you can determine how many times the loop has been executed.
Or you can use to determine where the function was called from.

1. For afull explanation of the possible responses see the definition of the Goto Process command
in the idebug reference chapter (chapter 4 of the accompanying Toolset Reference Manual).

72 TDS 366 01 March 1993

Advanced techniques

72 TDS 366 01 March 1993

180

72 TDS 366 01 March 1993

10 Advanced use of the
configurer

This chapter describes how to use the advanced features of the configurer. It is
aimed at users who wish to override certain configuration defaults. The chapter
deals with two topics:

* Memory usage by the configurer (code placement)
* Channel communications (channel placement and routing).

These allow the user to override the default allocation of user’s code and data in
memory, and to refine the channel communication for the target network using
advanced virtual routing techniques. An example configuration using virtual
routing is provided at the end of the chapter.

10.1 Code and data placement

The configuration language recognizes seven processor attributes (‘reserved’,
three ‘location’ attributes, and three ‘order’ atiributes), which influence the use
of memory. These are described, with examples, in sections 6.5.5 to 6.5.7. This
section describes the circumstances in which these attributes should be used.

‘location’ and ‘order’ attributes are normally disabled and must be explicitly
enabled by the configurer ‘RE’ option. Note: When these attributes are enabled,
debugging using the toolset debugger idebug is not supported.

10.1.1 Default memory map

By default, code is mapped into memory in the following order beginning at LoadS-
tart: workspace; code; vector space. The memory segments are contiguous. The
upper limit of the memory available to the configurer is defined by the memsize
attribute specified for the processor nodes.

By default, the configurer only knows about this continuous block of memory,
whose upper and lower limits are set by the value of memsize minus the LoadS-
tart offset for the processor. The default memory map is illustrated in Figure 10.1.

72 TDS 366 01 March 1993

182 10.1 Code and data placement

memsize —=*;
: Free Space !
<«— FreeStart
Program
Vectorspace
Program Contiguous
Code memory
Program
Workspace
<— LoadStart
<+— MemStart
Rg:ervefii by
Minint = nsputer
MOSTNEG INT .| architecture

Figure 10.1 occonf default memory map

The first 2 or 4Kbytes of memory above MOSTNEG INT is implemented as on-chip
RAM, and includes a few words which are reserved by the transputer hardware
for the implementation of links and other hardware registers. LoadStart is either
just above or coincident with MemStart.

10.1.2 Other memory configurations

Figure 10.2 illustrates a memory configuration with additional requirements to
those provided by the configurer in default mode. To cater for such situations the
reserved and location.... attributes are supported by the configuration
language.

Figure 10.2 illustrates two different sets of possible requirements:
¢ The first is where the available memory is discontinuous and the lowest
block of memory is not sufficiently large enough to hold all the code and
data.

+ The second is where a block of memory is available outside the default
range of memory addressed by the configurer (see above).

72 TDS 366 01 March 1993

10 Advanced use of the configurer 183

Dual-ported <— location
RAM
memsize
DRAM
— order (May only be used
in this region).
SRAM
reserved —» <— LoadStart
On-chip
RAM =— location
Minint = AARAANANNANY MemStart
MOSTNEG INT

Figure 10.2 Example discontinuous memory map

10.1.3 reserved attribute

This atiribute is used to specify the size of memory, in bytes, to reserve from
MOSTNEG INT which cannot be used by the configurer to place user and system
processes. The programmer may then use this reserved block in any way, for
example, to place code and data segments of specific user processes into
reserved memory using the location.... attributes. For example, in Figure 10.2
the reserved attribute has been used to force the configurer to place system and
user code into the second block of memory and to ignore the on-chip RAM.

Checks are performed to ensure that the reserved memory size is greater than
the default LoadStart offset for the processor and less than the memory size
specified by the memsize attribute. The configurer will also ensure that the size
is word aligned by rounding the size up to the nearest word boundary. Note: the
value of the default LoadStart is variable.

When the reserved attribute is used, the region of memory available to the confi-
gurer for automatically placing the non-addressed code and data segments of
system and user processes is defined as being:

the top of memory as specified by the memsize attribute minus the
memory size specified by the reserved atiribute.

72 TDS 366 01 March 1993

184 10.1 Code and data placement

If no reserved attribute is defined then the region of memory available to the
configurer is:

the top of memory as specified by the memsize attribute minus the default
LoadStart offset for the processor.

The reserved attribute is set within the configuration file MAPPING section using
a physical processor name.

Example:

MAPPING
DO
SET processormname (reserved := 5%1024)

10.1.4 location attributes

There are three attributes which allow absolute addresses to be optionally speci-
fied for the code and data segments of a process: location.ws; location.vs;
and location.code, corresponding to occam workspace, vectorspace, and
program code respectively. As an example, Figure 10.2 indicates how the location
attributes can be used to access memory below LoadStart (which has been
changed from its default value by the reserved attributes) or spare memory loca-
tions available on external RAM.

Note: location.... aftributes override the equivalent order.... attributes if
specified.

Checks are performed to ensure that any code and data segments that have been
absolutely addressed using the location.... atfributes are not placed into an
illegal region of memory, such as:

+ memory used by the configurer for automatically placing code and data
segments i.e. the region defined by Loadstart and the memsize attribute.

(See section 2.12.1 in the occam 2 Toolset Reference Manual).

» address locations that exceed the highest possible memory address loca-
tion for the processor.

The configurer will fail with an error message if either of the above occur. An error
will also be generated if the addresses specified are not word aligned.

A further check is made that the addresses are non-overlapping and a warning will
be generated if they are. It is not illegal to have overlapping regions of memory
within the permitted regions for configuration code, as described above. However,
itis the programmer’s responsibility to ensure there is no conflictin the use of over-
lapping regions at runtime.

A warning will also be generated if the location. ... attributes place code or data
at address locations that exist below MemStart.

72 TDS 366 01 March 1993

10 Advanced use of the configurer 185

If the location. ... attributes are not specified then the configurer will automati-
cally place non-addressed code and data segments.

The location.... attributes are set on a physical processor name within the
configuration file MAPPING section.

Example (on a 32-bit processor):

MAPPING
DO
SET processomame (location.code := #80000100)

This example specifies the start address for the process code segment. It assumes
that LoadStart has been redefined, using the reserved attribute.

10.1.5 order attributes

The three order attributes described in section 6.5.5, can be used in conjunction
with the reserved and location.... attributes. The order. ... attributes are
used to change the ordering priority of those process segments automatically
placed by the configurer i.e. non-addressed code and data segments. They only
operate within the memory region delimited by LoadStart and the value of the
memsize attribute.

10.1.6 location versus order attributes

location.code, location.ws and location.vs attributes act on the same
parameters as order. code, order.ws and order. vs, namely, program code,
workspace and vectorspace.

As stated in section 10.1.4, if both the location....and order attributes are
specified for a particular segment, e.g. vectorspace, then the location....
attribute will override the effect of the order. ... attribute.

10.2 Channel communication - configuration techniques

When software virtual routing is required, the configurer works by adding mulfi-
plexing and demultiplexing processes to implement a number of virtual channels
over a single hardware link. It will also add routing processes to through-route data
between processors which are not directly connected. In doing so it assumes by
default that:

» any link to link connections in the target network can be used for imple-
menting virtual channel traffic.

« any of the processors can be used for through-routing.

72 TDS 366 01 March 1993

186 10.2 Channel communication — configuration techniques

« where multiple routes of the same length exist between two processors,
the virtual channels between these processors should be shared out
between these routes as much as possible.

While these are, in general, reasonable assumptions, users may require more
control over how processors and links are used for implementing virtual channels
in specific networks. The configurer permits users to control its routing decisions
by means of processor attributes and channel placements which can be defined
in the configuration source file. These are designed to supply the following capabil-
ities:

» Achannel may be placed on a specific hardware arc between processors.
This instructs the configurer to implement the channel directly using the
hardware link rather than as a virtual channel. Only two channels may be
placed (one in each direction) on a hardware link. This can be used to
ensure that a limited number of critical channels are directly implemented
by hardware links. Note: that this placement is ignored if both interactive
debugging (with idebug) and virtual routing are enabled.

« ltis possible to prevent specific processors from being used as pathways
for virtual channels required by other processors. This ensures that certain
critical processors within the target system are not used for through-routing
virtual channels for less critical processors.

« |t is possible to ensure that all virtual channels are routed via a group of
processors specifically placed in the target network to support them.
Hence a group of small inexpensive processors may be placed in the
middle of a network of processors to provide the communications require-
ments at little cost to the other processors.

o |t is possible to control the number of virtual channel support processes
that are added to particular processors, and also whether they are given
use of internal memory in preference to application processes. This
preserves the performance of critical processors in the target network and
allows virtual channel support on processors with limited memory capacity.

The following sections describe the use of the PLACE statementand the order. ...
attributes to optimize important channels and to make the best use of fast memory.
Section 10.2.4 introduces the additional attributes used to control the configurer’s
routing system and describes how to use them to meet the requirements identified
above. An example is described in section 10.3.

10.2.1 Routing and placement constants

The include file occon£ . inc contains a number of constants associated with the
routing and placement attributes. The file should be referenced at the top of the
configuration before the hardware description if any of the configuration constants
mentioned in the following sections are used, e.g.

#INCLUDE occonf.inc

72 TDS 366 01 March 1993

10 Advanced use of the configurer 187

10.2.2 Optimizing important application channels

By placing an application channel on a hardware arc it is possible to reserve the
hardware link solely for the use ofthe application channel concerned (except when
interactive debugging with idebug and virtual routing are both enabled).

With this technique a sub-set of the channels used by an application can be placed
on a sub-set of the hardware links available within the target system. This then opti-
mizes the performance of the placed data paths.

When doing the placement the user must be careful to leave at least enough free
links to form a minimal spanning tree between each sub-set of processors in the
target network that require through-routed virtual channels to connect them. (See
section 10.2.4).

10.2.3 Virtual communications - use of fast memory

Normally the workspace segment of virtual channel support processes (added to
the target network by the configurer), where used, is allocated within fast memory
(i.e. at the most negative addresses) before the user process code and data
segments are allocated.

User process code and data segments can, however, be allocated from internal
store before the stack of the virtual channel support processes is allocated. This
is done by setting order attributes for the relevant user processes to lower values
than those automatically given to the stack segments of the virtual channel support
processes.

Virtual channel support processes are divided into roufing processes and multi-
plexing/demultiplexing processes. Workspace segments of all routing processes
placed by the configurer are all given the value ROUTER.ORDER. Workspace
segments of all muftiplexing/demulfiplexing processes placed by the configurer
are given the value MUXER . ORDER. Default values of -20000 and -10000 respec-
tively are defined for these constants in the include file occonf . ine which is
supplied with the toolset.

So, if order values on the code and data segments of user processes are less
than ROUTER . ORDER the segments concerned will be allocated from internal store
before any of the virtual channel support processes’ workspace is allocated.

If oxrder values on user processes are less than MUXER . ORDER but greater than
ROUTER. ORDER, only the workspace required by routing processes will be allo-
cated before the configurer allocates space for the user processes concerned.

Caution: If the stack segments of heavily-used virtual channel support processes
are pushed out of internal store by giving priority to user processes, the impact on
the performance of the virtual links and the processor will be quite noticeable. User
processes should only be given priority over the virtual channel support processes
on a processor if the amount of data through-routed by the processor during
normal operation is likely to be small.

72 TDS 366 01 March 1993

188 10.2 Channel communication — configuration techniques

Giving user processes priority use of fast memory will only impact the performance
of those virtual channels used by processes on the processor. The CPU cost of
supporting those virtual channels will only be slightly increased.

10.2.4 Control of routing and placement

This section describes how the allocation of a virtual routing system across a
network can be controlled. For example, particular routes can be avoided or
promoted as required.

Introduction to routing and placement attributes

User control of routing and placement is performed by means of three exira
processor attributes routecost, tolerance, and linkquota. These are
specified in the MAPPING section of the configuration file. They are specified for
physical processor names using the following syntax:

SET processomame (routecost := exp)
SET processomame (tolerance := exp)
SET processomame (linkquota := exp)

Routing cost

routecost can be used to make the configurer choose one processor
over another when deciding how to route channels in the network. In the
default case, all processors and links in the network are assumed to be
equally usable. When deciding how to route a channel between two
processors, the configurer works out the routes between the two points,
and then calculates the “cost” of each route by counting the number of
processors on each route. The “best” of these (the one with the least
number of processors) is then chosen to implement the channel, and the
appropriate through-routing processes are placed on each intermediate
processor on the route. If there are a number of channels to be imple-
mented between the two ends, and there is more than one route of the
same (“best”) length available, then the channels are shared between the
available routes.

routecost allows a routing cost to be explicitly allocated to one or more
processors in the network. The cost of a route between two processors is
then determined not simply by the number of intermediate processors, but
by the sum of the routing costs of all the intermediate processors. There
is a default routing cost for processors which have not had one explicitly
allocated. So by giving a high routing cost value to a processor, this will
discourage the configurer from using it as an intermediate node when
routing channels. Similarly by giving it a low cost compared with other
processors in the network, this will encourage the configurer to use it for
through-routing.

72 TDS 366 01 March 1993

10 Advanced use of the configurer 189

A value greater than or equal to the maximum permitted value INFI-
NITE.COST (defined in occonf. inc) prohibits through-routing on that
processor.

Tolerance

The second attribute — tolerance — controls how the configurer decides
to share out channels between available routes. If there are a number of
channels to be implemented between two processors, then the configurer
normally calculates the cost of each possible route, and then shares out
the channels between available “best” routes with the least cost. If there
is only one “'best” route then all the channels will go via that one. In some
circumstances it may be better to share out the channels more evenly, to
prevent bottlenecks in the system, even if this results in some channels
being implemented on slightly higher cost routes. The tolerance
attribute for a processor is designed to allow this.

When calculating whether to use a route for channel sharing, the confi-
gurer uses the minimum of the tolerance values of the processors on
that route. It subtracts that tolerance from the route cost; if the resultis less
than the cost of the “‘best’’ route, then this route, as well as the ‘‘best”
routes, may be used for load-sharing of channels. As an example, consider
a network in which all processors have been given the same routing cost
(say 1000). Normally, this would result in load-sharing of channels only
when the routes are the same length. However, if the tolerance of all the
processors were set to twice the routing cost value (2000), then the confi-
gurer would also include routes with one more processor on them than the
“best’ route for channel load-sharing.

When setting up a network, the routecost attributes should be set first
to indicate which processors are preferred for through-routing. Then the
tolerance attribute can be set, for all processors in the network, to influ-
ence the load-sharing strategy. In general a set of processors in a network
(orin part of a network) would be given the same tolerance value to indi-
cate the load-sharing strategy required for that network (or part of the
network). The likely cases are:

¢ Azero tolerance value indicates that virtual channels should only be
placed on a route if it is the only ‘best” route between two processors.
If all “best” routes have zero tolerance, then one will be picked arbitrarily
and all virtual channels will be routed on that one.

* A default tolerance value indicates that channels may be shared
between the “best” routes between two processors.

¢ A tolerance value which is some multiple of the routing cost values
in the network indicates that channels should be shared between the
“best'” routes and those routes with a higher cost but with tolerance
values indicating that they are also acceptable.

72 TDS 366 01 March 1993

190 10.2 Channel communication — configuration techniques

+ The maximum tolerance value indicates that all routes between two
processors can be used for channels. This might lead to some very long
routes being chosen.

ZERO.TOLERANCE, DEFAULT . TOLERANCE and MAX.TOLERANCE are
defined in the include file cceonf. inc.

Link quota

The third attribute — 1inkquota — confrols how many links on a processor
may be used to carry virtual channels to the processes on that processor.
In the default case any of the four links may be used. For each link which
is used, a small additional memory overhead is incurred. On processors
with very small amounts of memory it may be important to keep the
memory overhead as low as possible.

The 1inkquota attribute can be set to a value in the range 0to 4 inclusive.
It should only be set to 0 if no virtual channels will be required by the
processes on that processor. If it is set to 1, then the processes on the
processor may use virtual channels, but it should be possible for the confi-
gurer to implement them all via one of the processor’s links. Similarly for
values of 2, 3, and 4 (although, obviously, sefting the quota to 4 on a
processor with four links has no effect).

The linkquota attribute is a guide to the configurer rather than an abso-
lute directive. If a processor has a 1inkquota value of 1, butthe processor
provides the only route available for the implementation of a particular
channel in the network, then the configurer will choose to route data
through that processor, even though this will cause the link quota to be
exceeded.

The linkquota is not intended as a method of avoiding routing through
a processor; the routecost attribute should be used for that. Instead it
is intended to indicate, on memory-critical processors, that the minimum
overhead should be placed on them. The quota should reflect the require-
ments of the processes placed on that processor, and the routing costs in
the network should be chosen so that other processors are used for
through-routing. The link quotas will then be checked by the configurer as
it sets up the multiplexing and routing processes. The configurer will output
a warning message if it has exceeded a quota. The network can then be
re-examined to see why this is happening.

The minimal spanning tree

There is one aspect of the implementation of virtual channels which may become
evident when constraints are placed on how the configurer may route channels in
the network. Normally the configurer can use any of the links in the network for
virtual channels, so if the network is connected, then virtual channels can be routed
from any processor to any other. However, (as described in section 10.2.2) it is
possible to PLACE a pair of opposing channels on a link in the network; in this case

72 TDS 366 01 March 1993

10 Advanced use of the configurer 191

the link is used directly to implement those two channels, and cannot be used for
virtual channels. Also the routecost atiribute on selected processors in the
network may prevent the use of some processors (and hence links) in the network
for through-routing. If too many links are removed from the network in this way then
it may become impossible to implement some of the virtual channels required.

So it isimportant to ensure that, for a set of processors in a network requiring virtual
channels to be connected between them, there is a set of links connecting the
processors over which virtual channels is allowed. This set of links will then be
used by the configurer to construct a minimal spanning tree of links to ensure that
it can always implement the virtual channels between these processors. Any addi-
tional links available for virtual channels will also be used to provide better routes
between processors. If the configurer is unable to construct the route necessary
to implement a requested virtual channel, it will give an error message.

A network may not require a single minimal spanning tree to cover the whole
network; it depends on the virtual channel requirements of the configuration. For
example, it might be possible fo divide a configuration into two separate parts,
each requiring virtual channels internally, but with a single pair of channels (which
can be directly mapped onto a link) joining the two parts. In this case a minimal
spanning tree of links is required for each of the two parts. These are known as
sub-networks.

Summary of routing and placement attributes

The attributes are defined in more detail as follows:

* routecost - defines, within the range MIN. COST to MAX . COST inclusive,
the associated cost of routing virtual channels through a particular
processor. Default values of 1 and 1000000 respectively are defined for
these constants in the include file occon£. inc

If a value greater than the maximum of MAX . COST (e.g. INFINITE.COST)
is specified then no through-routing will be permitted on that processor.

The default value for this attribute is 1000 i.e. DEFAULT . COST.

* tolerance - controls how much a particular processor can be used to
provide load-sharing routing paths for other processors. It uses any value
in the range ZERO. TOLERANCE = 0 to MAX . TOLERANCE =1000000 inclu-
sive.

The default value for this attribute is 1 i.e. DEFAULT . TOLERANCE. This
allows the processor to implement alternate routes for through-routed
channels with exactly the same total cost as the “best” route found
between any two other processors.

If the value ZERO . TOLERANCE is specified then the processor will only be
used for through-routing if it lies on the “best” route found to implement
virtual channels.

72 TDS 366 01 March 1993

192 10.2 Channel communication — configuration techniques

If the maximum value MAX . TOLERANCE is specified on all processors in
the target network almost every possible route will be used to share the
cost of carrying data between any pair of non-adjacent processors.

* linkquota - suggests the maximum number of links on the processor
that should be used by the virtual channel routing system.

linkquota can have the values 0 to 4 inclusive.

A warning will be produced if the suggested linkquota for a node is
exceeded. The linkquota will only be exceeded because of the require-
ments of through-routing data for other processors.

Default values for these attributes are defined in the include file occonf. inc
which is supplied with the toolset.

Prevention of through-routing via critical processors

If there are processors within the target network that are likely to be CPU-limited
by the application, then it may be undesirable to allow virtual channels from
surrounding processors to be routed through the performance-critical processors.
In this case the routecost attribute for the critical processors should be set to
INFINITE.COST. If this is done then no virtual channels can be through-routed
via these processors.

Care must be taken to ensure that a minimal spanning tree of links is provided by
the other processors in the network. If a particular processor should only be used
for through-routing channels when absolutely necessary, then the routecost
attribute on the processor can be set to some multiple of the default value. Altema-
tively the cost value can be explicitly set on the other processors. If for example,
the multiple concerned is larger than the number of lower cost processors in the
network then any route via those processors will be chosen in preference to a route
via one of the high cost processors.

Use of additional processors for through-routing

There may be situations when the configurer is required to route all communica-
tions via a particular set of processors. For example:

* to emulate closely the communications structure that would be provided
by dedicated hardware routing devices, or

« when a block of low performance processors is provided in the target
network solely for the purposes of through-routing data for other proces-
sors.

This can be achieved in one of two ways:

» |fthe routecost of all processors, other than those intended as routers,
is setto INFINITE.COST then the only processors that the configurer can
use for through-routing are those left with the default routing cost. This

72 TDS 366 01 March 1993

10 Advanced use of the configurer 193

technique has the advantage of guaranteeing that no through-routing will
be done via the standard processors.

* Ifthe routecost of all the routing processors are set to a small value then
any route via these processors will be used in preference to routes via
processors with the default routing cost. This technique has the advantage
that the normal processors can still be used by the configurer for routing
channels that cannot be implemented by the nominated routing proces-
sors. Hence the nominated routing network need not provide full connec-
tivity.

Generally the second method is preferred as it preserves the ability of the confi-
gurer of mapping an arbitrary application onto the target hardware.

Support for memory-critical systems

It may be desirable to ensure that for a particular processor the additional run-time
overhead added by the configurer is kept to a minimum.

Normally the configurer spreads virtual channels running between a pair of
processors across all routes that have equal cost. For each additional route
employed additional support processes may be required and hence additional
memory consumed on the target system.

This should not normally be a problem as the total cost of the maximal set of run-
time processes that can be placed on the target system by the configurer
consumes only a few thousand bytes more than the minimal set.

Some example figures of the minimum and maximum costs of both through-
routing and multiplexing software on different word length transputers are shown
below (all sizes are in bytes):

Word Size Function Code | Min Stack | Max Stack
32 bits | Through-routing | 699 768 2112
Multiplexing 1940 784 2056
16 bits | Through-routing | 708 512 1568
Multiplexing 1952 524 1556

Multiplexing software is needed whenever a processor has virtual channels termi-
nating on it. In the current system each opposing pair of virtual channels forming
a virtual link will require approximately 120 bytes of local storage on a 32-bit
processor and 80 bytes of storage on a 16-bit processor.

Note: In the default configuration case, extra overheads will be incurred to allow
interactive debugging of the application. Use the Y command line option to over-
ride this.

A particular case of the critical memory problem comes when the set of user
processes on a particular processor do not in themselves require virtual channels

72 TDS 366 01 March 1993

194 10.3 Example — optimized filter test program

at all, because the channels they use can be mapped directly onto the hardware
links available. However, if the configurer decides to use through-routing then
through-routing support processes will be added to the processor. In addition, to
enable the available hardware links to be shared, some of the channels used on
the processor may be implemented as virtual channels. In this case multiplexing
software will also be required. In this special case the processor can be completely
protected from run-time overheads by using the techniques described above
under the heading Prevention of through-routing via critical processors.

A linkquota attribute can be specified on each processor in the target network.
If the 1inkquota of a particular processor is specified as 1 and the routecost
set to INFINITE.COST, then only a single hardware link will be used on the
processor to provide all the virtual channels it uses. In addition the memory over-
heads of the virtual link system will be reduced to a minimum (minimal multiplexer
only).

If 1inkquota is set to 1 on all processors in the target system then the minimal
spanning tree of links will be used to support all virtual channels required. Warn-
ings will be produced in this case for all processors that have had more than 1ink-
quota links used on them; this is because all processors cannot be chosen as
“leaves” in the spanning tree.

If both performance and memory size are a problem in a particular system itis likely
that the user will have fo tune the 1inkquota and tolerance parameters of
many processors in order to get the best result.

10.3 Example — optimized filter test program
Figure 10.3 describes an example configuration that needs to be placed onto a
network of six processors (Figure 10.4). The function of the program is to test the

two filter components which are limited by the speed of the processors concerned.
Sources are supplied in the examples/manuals/advconf directory.

72 TDS 366 01 March 1993

10 Advanced use of the configurer

195

Filter([0] Filter[1]

Result[1]

O Process

—> Channel

Figure 10.3 Example filter test program

PORT1 PORT2
A
Y Y
3 0 3
FILTERA GENERATE FILTERB
|—D 0 2 g—p{1 2lt—> 1 0 s
T425 + 128K TBOO + 32k T425 + 128K
1 3 2
2 0 1
RESULTA MONITOR RESULTE
—>=13 1 {2 3 {0 3 fe-
T425 + 128K T425 + 2M T425 + 128K
1 2
D Transputer ¢

-—®» Link HOST

Figure 10.4 Example filter test hardware

This is not a real program but has been constructed to demonstrate many of the
features for optimization described in the previous sections, within a comparatively
small and simple system. The basic configuration description is listed in the

following example:

72 TDS 366 01

March 1993

196

10.3 Example — optimized filter test program

—— Include values for router attributes
#INCLUDE ”occonf.inc”

— Hardware description for specialised sub-system

NODE GENERATE, FILTERA, FILTERB :

NODE RESULTA, RESULTB, MONITOR :

EDGE portl,

port2 :

ARC hostarc :

—— The following ARCs are only required when optimising

ARC GENERATE.TO.FILTERA, GENERATE.TO.FILTERB :
ARC FILTERA.TO.RESULTA, FILTERB.TO.RESULTB :

NETWORK
DO

SET GENERATE
SET FILTERA
SET FILTERB
SET RESULTA
SET RESULTB
SET MONITOR

CONNECT
CONNECT
CONNECT
CONNECT
CONNECT
CONNECT
CONNECT
CONNECT

CONNECT
CONNECT

CONNECT
CONNECT
CONNECT

—— Software

memsize
memsize
memsize
memsize
memsize

HOST

MONITOR[link] [2]
MONITOR[1link] [3]
MONITOR[link][0] TO
GENERATE [1ink] [1] TO
GENERATE . TO . FILTERA
GENERATE [link] [2] TO
GENERATE . TO . FILTERB
RESULTA[link] [2] TO
FILTERA.TO.RESULTA
RESULTB[1link] [1] TO
FILTERB.TO.RESULTB
RESULTA[1ink] [3]
RESULTB[1link] [3]

TO
TO
TO

TO
TO
GENERATE[link] [0] TO

FILTERA[link] [3]
FILTERB[link] [3]

TO
TO

W W

memsize :

78007, 32*K)
#4257, 128*K)
#4257, 128*K)
4257, 128*K)
#4257, 128*K)
npazse, 2%M)

MONITOR[1link] [1]
RESULTA[link] [1]
RESULTB [link] [0]
GENERATE [1ink] [3]
FILTERA[link] [2] WITH
FILTERB[link] [1] WITH
FILTERA[link] [1] WITH
FILTERB[link] [2] WITH

FILTERA[link] [0]
FILTERB[link] [0]

RESULTB[link] [2]

portl
port2

description for filter test program

NODE generate.p, monitor.p :
[2]NODE result.p, filter.p :

#INCLUDE "hostio.inc”
#USE “generate.c8h”

"filter.c5h”
“result.c5h”
“monitor.c5h”

CHAN OF SP fs, ts :
[2]CHAN OF BYTE Out :
[2]CHAN OF BYTE Filter.to.Res :

CONFIG

[2]CHAN OF BYTE Res :

72 TDS 366 01

WITH hostarc

March 1993

10 Advanced use of the configurer 197

[4]CHAN OF BYTE Cntl :
PAR
PROCESSOR monitor.p
Monitor (fs, ts, Res, Cntl)
PROCESSOR generate.p

Generate (Out)
PAR i = 0 FOR 2
PAR

PROCESSOR result.p[i]

Result (Filter.to.Res[i], Res[i], Cntl[i])
PROCESSOR filter.p[il

Filter (Out[i], Filter.to.Res[i], Cntl[i+2])

— Mapping description
MAPPING
DO

MAP generate.p ONTO GENERATE
MAP filter.p[0] ONTO FILTERA
MAP filter.p[l] ONTO FILTERB
MAP result.p[0] ONTO RESULTA
MAP result.p[l] ONTO RESULTB
MAP monitor.p ONTO MONITOR

MAP fs, ts ONTO hostarc
—— Mapping optimisation:

—— Prevent through routing via GENERATE
SET GENERATE (routecost := INFINITE.COST)

—— Ensure minimum overhead on FILTERA
SET FILTERA (routecost, linkquota := INFINITE.COST, 1)

—— Ensure minimum overhead on FILTERB
SET FILTERB (routecost, linkquota := INFINITE.COST, 1)

—— Optimise Generate to Filter 0 Path
MAP Out[0] ONTO GENERATE.TO.FILTERA

—— Optimise Generate to Filter 1 Path
MAP Out[l] ONTO GENERATE.TO.FILTERB

—— Optimise Filter to Result 0 Path
MAP Filter.to.Res[0] ONTO FILTERA.TO.RESULTA

— Optimise Filter to Result 1 Path
MAP Filter.to.Res[l] ONTO FILTERB.TO.RESULTB

—— Use otherwise unspecified linkquotas to check
— overheads on GENERATE, RESULTA, and RESULTB

SET GENERATE (linkquota := 0)
SET RESULTA (linkquota := 2)
SET RESULTB (linkquota := 2)

For this real-time program to actually work correctly a number of optimization
features of the configurer have been exploited to ensure the right routing decisions
are made:

72 TDS 366 01 March 1993

198 10.3 Example — optimized filter test program

+ GENERATE has no memory space available to carry the overheads of
routing software and requires no virtual channels itself, so setting route-
cost to INFINITE.COST prevents routing software being placed on it.

¢ FILTERA and FILTERB must be operated in a state as close as possible
to the real case, where all their channels are placed onto hardware links.
The main data path through the Filter component must operate at hard-
ware data rates, so the In and Out channels must both be placed onto
hardware links to guarantee the required performance. The Cnt1 channel
which carries a small amount of parameterization data can, however, be
implemented as a virtual channel without significant effect.

These are implemented in the Mapping description.

Note: the example should be built with interactive debugging disabled so that
explicit channel mapping can take effect.

72 TDS 366 01 March 1993

11 Mixed language
programming

This chapter describes the mechanisms for mixing code modules written in
different high level languages. It is divided into two parts. The first part discusses
how to call procedures and functions written in one language from another
language. This includes details of the library procedures provided to allow occam
programs to call C functions which require use of static or heap memory.

The second part describes how complete C programs can be called as if they were
occam processes with a standard channel interface.

11.1 Mixed language programs

For many applications it is appropriate to write the software using more than one
programming language. For example, a particular algorithm may be better
expressed in a specific language, or application modules may already exist in
particular languages. In either case a well defined mechanism for mixing
languages within a single system is desirable.

The toolset provides a clean and simple basis for mixing languages on transputer
networks. Independent software processes can be written in different languages,
compiled and linked using a common set of tools, and the linked modules placed
anywhere on a network of fransputers using a configuration description. Compiler
pragmas are provided to allow code to be imported with the correct calling conven-
tions, and to translate names so they are valid in the calling language.

Code written in other languages can be used as external routines in a program,
providing the language calling conventions are honored, and no conflicts of name
occur.

There are a number of issues to be considered when mixing languages. These are:

» The declaration of the extemnal routine — in order for the calling program
to be able to correctly call an external routine, it must have a description
of the interface to the routine. The way in which this is done depends on
the language being used.

* The translation of names — programming languages differ in the legal
character set for identifiers and symbolic names. Thus, names acceptable
in one language may not be valid in another. To avoid these problems
compiler pragmas are provided to perform name translations.

72 TDS 366 01 March 1993

200 11.1 Mixed language programs

= The calling conventions of the languages — including passing the address
of the static area and the types of the parameters in the two languages.

» The types returned by functions.

» The presence, or otherwise, of a static area in each language (this is
discussed in more detail below).

» The libraries fo be used when linking the complete program.
These issues are discussed in more detail in the the following sections.

Note: When mixing languages, the external procedures must not do any host
communications. All Vo should be performed by the calling program. The external
procedures can however perform channel communications with other processes.

11.1.1 Declaring external routines

In order to properly call a separately compiled procedure or function, the compiler
needs to be given information about the extemnal routine. In C this is done by
declaring the function as external, for example:

extern int £ (int a, int b);
extern void pl (char c);

The functions should be declared as prototypes, including the types of parameters,
to ensure that the actual parameters are converted to the specified types. If the
functions are declared without the parameter types then the default C argument
type promotions will take place.

The occam compiler uses a pragma to provide information about external proce-
dures and functions. The syntax of this is:

#PRAGMA EXTERNAL “formal declaration = workspace [, vectorspace]”
The optional parameter vectorspace is not required for C functions.
For example:

#PRAGMA EXTERNAL ”"PROC pl (VAL BYTE c) = 20~

$PRAGMA EXTERNAL ”PROC p2 (BYTE x, y) = 40, 100~
#PRAGMA EXTERNAL “INT FUNCTION f (VAL INT a, b) = 50"

A void function in C is equivalent to a procedure in occam.

11.1.2 Translating identifiers

Because the syntax of valid identifiers can vary from one language to another,
compiler pragmas are provided in C and occam to allow the names used in a
source file to differ from those used externally.

72TDS 366 01 March 1993

11 Mixed language programming 201

The pragma can be used to change the name which is used in the object code to
reference an external routine. For example, a C program which needs to call an
occam function called ‘get . next' could use the following to convert the name
into a valid C identifier:

#pragma IMS_ translate(get next, “get.next”)
extern void get_next(int *n, Channel *in);

Alternatively the pragma could be used to change the name ‘exported’ from the
occam code:

#PRAGMA TRANSLATE (get.next, ”get next”)

PROC get.next (INT next, CHAN input)

In this case, the object file will contain the name ‘get_next'andthe procedure can
only be called by this name.

11.1.3 Parameter passing

The two issues in passing parameters between languages are, firstly, the types of
the formal and actual parameters (including whether they are passed by value or
by reference) and, secondly, the use of a static area by each language. These are
described in more detail below.

Parameter compatibility

Correct parameter passing depends on the compatibility of data types between
languages. See the language implementation chapters of the appropriate
Language and Libraries Reference Manual for details of the implementation of
types and how parameters are passed.

The way in which parameters are passed — either as a copy of the data (by value)
or a pointer to the data (by reference) — involves two issues: the semantics of the
language, and the actual implementation.

C: All parameters are passed by value. Arrays are passed as pointers to
the base type of the array. Itis possible to pass pointers to variables which
gives the effect of passing by reference.

occam: parameters are either VAL parameters or non-VAL parameters.
VAL parameters may be implemented by passing by value, or by passing
a pointer. The latter will happen when the size of the parameter is larger
than the word length of the processor and will therefore depend on the data
type and the processor type.

72 TDS 366 01 March 1993

202 11.1 Mixed language programs

Types can be considered to be compatible if they have the same interpretation, are
the same size and are passed in the same way. For example, a C parameter of type
int is compatible with an occam VAL INT parameter. Similarly, as an occam
INT parameter is passed as a pointer it is compatible with a C int * parameter.

When passing parameters the correct data type should be used. Equivalences for
the main C and occam data types are listed in tables 11.1 and 11.2.

occam type C type
char
VAT BEER unsigned char
char *

BYIE unsigned char *
VAL INT16 short int
INT16 short int *
VAL INT int
INT int *
INT32 long int *
REAL32 float *
VAL REAL64
REAL64 donble: =
CHAN Channel *
TIMER No parameter required

Table 11.1 Type equivalents for all processors

C type
occam type) typ i
16 bit processor 32 bit processor

VAL INT32 |long int * long int
VAL REAL32 |float * float

Table 11.2 Type equivalents dependent on processor word length

Comprehensive equivalence tables, with examples of calling external routines
from each language, can be found in Appendix B.

Range checking in occam

It is important to ensure that parameters passed to occam procedures and func-
tions from C have values within the legal range for the type. For example, when
passing to a formal parameter of type BYTE the value must be in the range 0

72 TDS 366 01 March 1993

11 Mixed language programming 203

through 255. Violation of this rule is liable to cause a runtime range check error in
the occam code.

occam timers

An occam TIMER parameter should have no associated actual parameter. For
example, consider the following occam procedure :

PROC p (VAL INT pl, TIMER t, VAL INT p2)
SEQ

The C code to call the above is as follows:

void p(int pl, int p2);
#pragma IMS nolink (p)

int X, y;
P(xl y):’

11.1.4 Passing array parameters

Inboth C and occam an array parameter is passed as a pointer to the start of the
array, i.e. the address of the first element. occam also supports unsized array
parameters where some or all of the array bounds may be omitted from the param-
eter declaration. In this case the address of the array is followed by a sequence
ofinteger parameters, one for each unknown bound, giving the value of that bound.
The unknown bound parameters appear in the same order as the unknown bounds
in the array parameter declaration.

In the following sections occam procedures are used in the examples. The prin-
ciples described apply equally to occam functions except that an occam function
may only have VAL parameters.

C calling occam

There are four cases to consider when calling occam routines, which accept
arrays as parameters, from C. In the following examples we assume that the C
declaration of the 0ccam routine has the nolink pragma applied to it so that the
hidden Global Static Base (GSB) parameter is not passed when we call the
occam routine (see section 11.1.6). Although the examples use INT amays, the
same principles apply to an array of any other occam type.

1 Sized array:

PROC £ ([B]INT a)

72 TDS 366 01 March 1993

204 11.1 Mixed language programs

To call the above from C we can declare the occam procedure as a C prototype
in any of the following ways:

a)void f£(int a[8]);
b) veid £(int a[]);
c)void f(int *a);

The function is called as follows:
int a[8];
f(a);

2 Sized VAL array:
PROC f (VAL [8]INT a)

This is similar to case 1 except that since the array is a VAL array we can declare
the occam routine as a C prototype which accepts a const array.

a) void f(const int a[8]):
b) void f(const int a[]);
c) void f(const int *a);
The function is called as follows:
int a[8];
£f(a);
3 Unsized array:

PROC £([]INT a)

Here the occam procedure expects a hidden integer parameter following the
array which gives the number of elements in the array. Thus we can declare this

occam routine as a C prototype as follows:

a)void f£(int a[], const int size);
b) void £(int *a, const int size);

The function is called as follows:
int a[8];
f(a, 8);

4 Unsized VAL array:

PROC f(VAL []INT a)

72 TDS 366 01 March 1993

11 Mixed language programming 205

This is similar to case 1 except that since the array is a VAL array we can declare
the occam routine as a C prototype which accepts a const array.

a) void f(const int a[], const int size);
b) void f£(const int *a, const int size);

The function is called as follows:
int a[8];

f(a, 8);

Multi-dimensional arrays (C calling occam):

Multi-dimensional arrays are treated in the same way as that described for unitary
arrays. The hidden array dimensions are passed in the same order as they appear
in the array definition. For example, consider the following 0ccam routine which
is to be called from C:

PROC £([8][][]1INT a)

This can be declared as the following C prototype:

void f(int a[8][][], const int boundl, const int bound?2) ;
#ipragma IMS nolink (f)

Note that even though the array has three dimensions we only declare explicit extra
parameters for those dimensions that are hidden.

This function can be called as follows:
int a[B][9][4];

f(a, 9, 4);

occam calling C

There are a number of cases to consider when calling C routines, which accept
arrays as parameters, from occam. In the following examples we assume that the
C functions to be called have been declared using the nolink pragma so that we
do not need to pass a hidden GSB parameter (see section 11.1.6). Although the
examples use int arrays, the same principles apply to an array of any other C

type.
1 Simple arrays and pointers
a)void f£(int a[8]):

b) void £(int a[]);
¢) void f£(int *a);

72 TDS 366 01 March 1993

206 11.1 Mixed language programs

These would be declared as an occam procedure and called as follows:
#PRAGMA EXTERNAL ”“PROC £([8]INT a)=ws”

[B]INT a:
f(a)

Note that b) and c) cannot be declared as accepting unsized arrays in occam
because they are not expecting the hidden parameters that occam would pass
implicitly when £ was called.

2 const arrays and pointers
a) void f(const int a[B8]);

b) void £(const int a[]);
c) void f(const int *a);

These would be declared as an occam procedure and called as follows:
#PRAGMA EXTERNAL “PROC £ (VAL [8]INT a)=ws”

[B]INT a:
£ (a)

Note that b) and c) cannot be declared as accepting unsized arrays in occam
because they are not expecting the hidden parameters that occam would pass
implicitly when £ was called.

3 Arrays and pointers accompanied by size values

It may be that the C function to be called is written in such a way that it expects an
integer to follow the array which gives the number of elements in that array. This

matches the parameter passing conventions for occam unsized arrays. Thus if
the C function is defined as follows:

a)void £(int a[], const int s);
b) void £(int *a, const int s);

then the equivalent occam declaration and call is:
#PRAGMA EXTERNAL “PROC £([]INT a)=ws”

[8]INT a:
£(a)

When £ is called occam implicitly passes the array bound, 8, which is picked up
as s by the C function.

72 TDS 366 01 March 1993

11 Mixed language programming 207

4 const arrays and pointers accompanied by size values

This is similar to the above but the array in the occam declaration of the C function
is now declared as a VAL array. Thus given the following:

a)void f(const int a[], const int s);
b) void f(const int *a, const int s);

then the equivalent occam declaration and call is:
#PRAGMA EXTERNAL ”"PROC £ (VAL []INT a)=ws”

[B]INT a:
f(a)

Multi-dimensional arrays (occam calling C)

Multi-dimensional arrays are treated in the same way as unitary arrays. For
example, consider the following C routine which we want to call from occam:

void f£(int a[3][4]);
then the equivalent occam declaration and call is:
#PRAGMA EXTERNAL “PROC f([3] [4]INT a)=ws”

[3]1[4]INT a:
f(a)

occam expects any hidden array dimensions to be passed in the same order as
they appear in the array definition. Consider the following C routine, which expects
the array bounds to be passed separately, and which we want to call from occam:

void f£(int *a, const int boundl, const int bound2);
The equivalent occam declaration and call is:
#PRAGMA EXTERNAL ”"PROC £([][]INT a)=ws”

[3]1[4]INT a:
f(a)

When £ is called in this case the C function will receive 3 for boundl and 4 for
bound2. The bounds are passed implicitly by occam.

11.1.5 Function return values

When functions are being called it is also necessary for the retum types to be
compatible.

72 TDS 366 01 March 1993

208 11.1 Mixed language programs

The definition of compatibility for function retumn types is stricter than that for
parameters. Floating point and integer function results are returned in different
ways (depending on the processor type) and so it is essential to ensure that the
types of function return values are strictly equivalent. A partial list of equivalents
is given in table 11.3 for guidance. Comprehensive tables of equivalent types can
be found in Appendix B.

occam function type C function type
BYTE ﬁﬁ::gned char
INT32 long int

INT int

REAL32 fleoat

REALG4 double

Table 11.3 Equivalent function return types
As an example, consider the C function efun which returns int:
int cfun(int a);
#pragma IMS nolink(cfun)

int cfun(int a)

{
)

This would be called from 0ccam as an INT FUNCTION as follows:
#PRAGMA EXTERNAL “INT FUNCTION cfun (VAL INT x) = 20”

. cfun(42)

C function type void

A C function of type void must be called from occam as a PROC. For example:
void cfun(int a);
#pragma IMS nolink (cfun)

void cfun(int a)

1
}

72 TDS 366 01 March 1993

11 Mixed language programming 209

This can be called from occam in the following way:

#PRAGMA EXTERNAL ”“PROC cfun (VAL INT x) = 20"
cfun (42)
Similarly, an occam PROC must be called from C as a void function.

Restrictions on functions that may be called

Because occam functions can only have VAL parameters, and these do not
always have C equivalents, there are restrictions on the types of occam functions
that can be called from C and vice-versa. For example, there are no equivalents
of the occam BOOL type and so functions which require this type of parameter
cannot easily be called.

Similarly, because C functions can only retumn a single value, only occam func-
tions with a single return value can be called from C.

occam cannot call C functions which return structure types.

C functions that are called by occam must not modify any global variables, that
is, they must be free from side-effects.

11.1.6 Global static base parameter

C uses an area of memory for static data. This requires a parameter to be passed
to the called function to enable it to access the static area — this parameter is
known as the Global Static Base or GSB. This parameter is added automatically
by the compiler and is not normally visible to the programmer.

occam differs from C in that it does not use a static or heap area and so does not

expect a GSB parameter to be passed to procedures. Similarly, o0ccam programs
do not pass a GSB pointer when procedures are called. In order to allow calls to
work correctly between languages the presence of the GSB parameter must be
taken into account.

There are two possible solutions to this problem:
1 A dummy GSB parameter can be provided in occam.

2 A compiler pragma can be used in the C program to specify that a function
does not require a GSB parameter.

3 When calling occam from C, make use of the call without_gsb func-
tion (see the ANSI C Toolset Language and Libraries Reference Manual).

The first two techniques can be used either on the routine being called or in the
calling program, whichever is more appropriate.

72 TDS 366 01 March 1993

210 11.1 Mixed language programs

In the examples below which show C functions called from occam, it is assumed
that the C code does not use any static or heap memory. However, it will often be
necessary for the occam calling program to allocate some memory for use by the
C code as the static or heap area; a pointer to this memory is then passed as the
first parameter when the function is called. This technique is described in more
detail in section 11.1.8.

Method 1 — dummy GSB parameter.

A dummy parameter can be used either as a formal parameter for procedures
which are to be called from C, or as an actual parameter for C functions which are
being called from occam. For example the following occam function can be
directly called from a C program:
INT FUNCTION ocfunc (VAL INT GSB, argl, arg2?)

—— Note: dummy parameter GSB is not used

INT return:

VALOF

RESULT return

Note: because the dummy parameter is not used, the occam compiler will
generate a warning message but correct object code is still generated.

To call this version of ocfunc from a C program it is declared as an extern func-
tion (without the GSB parameter) and then called normally:

/* declare function as external */
extern int ocfunc(int argl, int arg2);

/* call function */
ret = ocfunc(x, y);

The same method can be used to call a C function from occam by passing a
dummy first parameter of type INT. For example the C function:

void cfun(int a)

.{
)
Could be called from occam in the following way:
#PRAGMA EXTERNAL "PROC cfun (VAL INT GSB, x) = 20”
: VAL INT GSB IS 0:

cfun (GSB, 42)

72 TDS 366 01 March 1993

11 Mixed language programming 211

Method 2 — nolink pragma

In order to simplify mixing occam and C, the INMOS C compiler provides the
IMS nelink pragma which directs the specified function to be compiled without
the static link parameter. Any calls of the function, within the scope of the pragma,
will not have the GSB.added to the parameter list. If the function is defined within
the scope of the pragma then it will be compiled without the requirement for a static
link parameter (the compiler will flag a serious error if the function requires access
to static data).

As an example, consider the occam function ocfunc below:

INT FUNCTION ocfunc (VAL INT argl, arg2)
INT ret :
VALOF

RESULT ret

To call oefunc from a C program it must first be declared as an extern function
and then specified as not requiring the GSB parameter:

/* declare function as external */
extern int ocfunc(int argl, int arg2?);

/* specify that function has no GSB parameter */
#pragma IMS nolink (ocfunc)

/* ecall function */
ret = ocfunc(x, y);

The same technique can be used to compile a C function which does not require
a GSB parameter so that it can be called directly from occam. As an example,
consider the C function below:

/* declare function before referencing */
void cfun(int a);

/* specify that function has no GSB parameter */
#pragma IMS nolink (cfun)

/* define the function */
void cfun(int a)
{
}
This can be called from occam in the following way:
#PRAGMA EXTERNAL “PROC cfun (VAL INT x) = 207

cfun (42)

72 TDS 366 01 March 1993

212 11.1 Mixed language programs

Method 3 — using call_without_gsb function

This method is applicable only when dynamically loading code using the ANSI C
Toolset. It is described in the ANS/ C Toolset User Guide.

11.1.7 Linking the program

After all the component parts of the program have been compiled, they must be
linked together with any libraries required. The libraries that are required will
depend on a number of factors such as the language that the main (calling)
program is written in, whether the program communicates with the host, which
library routines are used by the different language modules. Some guidelines for
various configurations are given below.

Calling occam from C

When calling occam code from a C program, then the following library files must
be linked with the compiled occam and C code.

¢ The C runtime library

If the program uses the host file server then the full runtime library must be
used. This can be linked in by using the linker indirect file cstartup. 1nk.

If the program does not use the host file server then the reduced runtime
library must be used. This can be linked in by using the linker indirect file
cstartrd.lnk.

¢ The standard occam compiler libraries will be required by most occam
code. These libraries can be linked in by using the appropriate
occamx. 1nk linker indirect file.

* Any other C or occam modules or libraries referenced by the program
must also be linked in.

Calling C from occam

When calling C code from an occam program, then the following library files must
be linked with the compiled C and occam code.

¢ The standard occam compiler libraries can be linked in by using the
appropriate occamx. 1nk linker indirect file.

 If the main program is written in occam and allocates static or heap
memory for C functions using the library procedures described in section
11.1.8, then the library calle. 1ib must be linked in.

» Any other C or occam libraries used must also be linked in.

72 TDS 366 01 March 1993

11 Mixed language programming 213

 The reduced C library must be used as the called functions cannot make
any host file server requests. The reduced runtime library can be linked in
by using the c1libsrd. 1nk linker control file.

11.1.8 Allocating memory for C functions called from occam

The C runtime environment automatically provides C programs with a static area
(for holding static data and external variables) and a heap area (for memory alloca-
tion). However occam does not provide these and so this memory must be explic-
itly allocated by the calling program before C functions are called. Four routines
in the occam library calle. 1ib are used to set up and terminate C static and
heap areas from occam for C functions that require them.

The static area

C static data is stored in a reserved area of memory called the static area which
must be set up by the system and initialized. Each C function which uses static data
needs to be able to find this area. In order to do this, every C function is passed,
as the first parameter, a pointer to the start of the static area, the global static base
(GSB). The static area must be set up and the GSB parameter passed explicitly
by the calling occam code. This means that a call to a C function from occam will
have one extra parameter compared to an equivalent call from C.

The heap area

The heap area is that area of memory from which the C memory allocation func-
tions reserve their memory space. It is separate from the static area and requires
a static area to be previously allocated because information about the heap is held
in static variables.

The heap need not be set up if it is not required, but remember that it may be used
implicitly by a library call.

Providing static and heap

Some simple C functions may not require static or heap areas and may be called
more easily without using the special library routines. When calling a C function
therefore, the first step is to decide whether static and heap areas are required.

Deciding whether a static area is required

For many C functions it may not be immediately obvious whether static or heap is
required (the heap area requires a previously set-up static area). For example,
some, but not all, library functions require static and heap areas and so, because
it would be difficult to distinguish those that do, a static and heap area should be
assumed whenever a library function is called.

Because of the difficulty in covering all types of functions, the following series of
rules is offered as a way of determining whether a function requires static or heap.

72 TDS 366 01 March 1993

214 11.1 Mixed language programs

The rules include the most common reasons for a C function requiring static or
heap memory.

o If the function uses static variables then static is required.
» [f the function accesses external variables then static is required.

« [fthe function includes an automatic structure or union initializer then static
is required.

« |If the function uses any functions from the runtime library then static and
heap may be required.

Functions which fail all the above tests will probably not require static or heap, and
can be called without using any of the static or heap library functions.

Calling functions which do not require static or heap

C functions which do not require static or heap can be called as described in
section 11.1.6.

Calling functions which do require static or heap

For C functions which require static and/or heap the space must be set up in the
occam code before the function is called, and terminated when no longer
required. These operations are performed by procedures supplied in the library
callc.lib. Thislibraryis supplied as part of the ANSI C toolset —do not use any
previous version of the library which was supplied as part of an 0cCam toolset.

The library calle. 1ib provides four occam procedures for initializing static and
heap areas and terminating them after use. The routines are summarized in table
11.4 and described in more detail below.

Procedure Description
init.static Initializes an area of memory for use as the
static area.
init.heap Initializes an area for use as the heap area.

terminate.heap.use |Terminates heap usage.
terminate.static.use | Terminates static usage.

Table 11.4 Library procedures to support memory allocation
PROC init.static([]INT static.area, INT required.size, GSB)
init.static is used to set aside and initialize an area of memory for use as a

C static area before any C functions are called. The static area is declared as an
integer array in the calling occam program.

72 TDS 366 01 March 1993

11 Mixed language programming 215

Two integer values are returned in the procedure parameters:

required.size The number of words of static space required.

GSB A pointer to the base of the array which will act as the
global static base.

Note: the size of the integer array is equivalent to the number of words of static
space required. One element of the integer array is equivalent to one word of
memory. If an error occurs on initializing the static area the value MOSTPOS INT
is returned instead of the required size.

The procedure can be used to check the size of static area required by checking
the value returned in the second parameter. For example:

#USE “callec.lib”

INT required.size, GSB:
[STATIC.SIZE] INT static.area:

SEQ
init.static(static.area, required.size, GSB)
IF
required.size > STATIC.SIZE
not enough space reserved
TRUE
array is big enough

Another possible way of using init.static is to reserve a large amount of
memory for use by the C function. To do this an initial call to init. static would
be made with an array size of zero to obtain the required size, followed by a second
call which would set up a segment of memory as the static area. The rest of the

72 TDS 366 01 March 1993

216 11.1 Mixed language programs

memory could be used by the occam program for its own purposes, perhaps to
allocate the C heap. For example:

#USE “calle.lib”

INT required, GSB:
[VERY.BIG.NUMBER] INT memory :

SEQ
—— check the static requirement
init.static([memory FROM 0 FOR 0], required, GSB)

—— allocate required amount of memory for static
static.area IS [memory FROM 0 FOR required]:
-— rest is available for other purposes
memory.left IS [memory FROM required FOR
(VERY.BIG.NUMBER - required)]:
SEQ
—— now use allocated memory as static
init.static(static.area, required, GSB)
... rest of program

PROC init.heap (VAL INT GSB, []INT heap.area)

init.heapisused to set aside an area of memory for use as a C heap before any
C functions are called. The first argument is the GSB pointer returned by
init.static, which is required because the memory allocation routines make
use of static data.

Like the static area, the heap area is declared as an integer array. This array must
be large enough to accommodate all calls to the C memory allocation functions.
The size of the integer array is equivalent to the number of words of heap area
required. One element of the integer amray is equivalent to one word of memory.

Ifthe heap is used by a function before init. heap has been called the C memory
allocation functions will fail with their normal error returns.

PROC terminate.heap.use (VAL INT GSB)

terminate.heap.use should be called when the heap is no longer required, i.e.
when no more C functions will be called. It provides a clean way of terminating the
use of the heap.

Once the heap terminate procedure has been called, the state of the heap is unde-
fined.

terminate.heap.use must be called before terminating the static area
because the heap is accessed using static variables.

72 TDS 366 01 March 1993

11 Mixed language programming 217

PROC terminate.static.use (VAL INT GSB)

terminate.static.use should be called when the static area is no longer
required, i.e. when no further calls to C will be made. It provides a clean way of
ending the use of the C static area.

Once the static terminate procedure has been called, the state of the static area
is undefined.

Example

The following example illustrates how these library procedures can be used to set
up and terminate the static and heap areas for a C function. The C function to be
called is:

#include <stdlib.h>
int ¢ func(int n, int release){

static int *ptr = NULL;
int i;
if (ptr = NULL) {

ptr = (int *) malloc(n);

if (ptr == NULL)
return 1;

}

for (1 =0; i < n / sizeof(int); i++)
ptr[i] = i;
if (release){
free (ptr);
ptr = NULL;
}

return 0;

72 TDS 366 01 March 1993

218 11.1 Mixed language programs

The occam code to call this function (on a 32 bit transputer) is shown below:

#INCLUDE "hostio.inc”
#USE "hostio.lib”
#USE “callc.lib” -—— the ’'calling C’ functions.

#PRAGMA TRANSLATE C “c_func”

—- declare the C function as an occam descriptor.
#PRAGMA EXTERNAL “INT FUNCTION C (VAL INT GSB,x,free) = 200~

PROC mixed (CHAN OF SP fs, ts, []INT freemem)
INT GSB, required.size :

== Allow very large static and heap area sizes
VAL static.size IS 4000 :

VAL heap.size IS 4000 :
[static.size] INT static.area :
[heap.size] INT heap.area :

SEQ
—— set up static.area as the static area
init.static(static.area, required.size, GSB)
—— now check for error
IF
required.size > static.size
so.write.string(fs, ts,
"error initialising static*n”)
TRUE
INT fail:
SEQ
== Set up the heap area.
—— Note that GSB is the first parameter
init.heap (GSB, heap.area)

—— Call the C function. Note that the GSB
—— is passed as the first parameter.
fail := C (GSB, 20000, 0)

IF
fail =0
so.write.string(fs, ts, ”“malloc OK*n”)
TRUE

so.write.string(fs, ts, "malloc failed*n”)
== now tidy up the stack and heap allocated
terminate.heap.use (GSB)
terminate.static.use(GSB)
—— and exit
so.exit(fs, ts, sps.success)

The occam program must be compiled and then linked with the compiled C func-
tion, the memory allocation library, the reduced C runtime library, the occam host

72 TDS 366 01 March 1993

11 Mixed language programming 219

i/o library, and the standard occam libraries. In this example (assuming that the
C source code is in a file called efune. ¢ and the occam source is in a file called
mixed.occ) the set of files to be linked is:

mixed. tco compiled occam program

efune.teo compiled C function

clibsrd.lnk linker indirect file for the C reduced runtime library
hostio.lib occam ilo library

calle.lib call C library

occama.lnk linker indirect file listing standard occam libraries for code
compiled for transputer class TA

Sources can be found on the toolset examples directory. Standard libraries and
linker indirect files are available on the toolset libraries directory.

The linker allows files to either be specified on the command line or listed in an indi-
rect file. Because there are several files required in this instance, it may be easier
to supply a linker indirect file. This file can also include a $mainentry directive
to define the entry point of the program, in this case the top level occam procedure
‘mixed’. To do this create a text file called calle. 1nk, containing the following
lines:

mixed. tco

cfunc. tco

#include clibsrd.lnk
hostio.lib
calle.lib

#include occama.lnk
#mainentry mixed

The correct linker command line (using the default processor T414 in HALT mode)
would be as follows:

ilink -f calle.lnk (UNIX)
ilink /f calle.lnk (MS-DOS/VMS)

Details of the operation of the linker can be found in chapter 9 in the Toolset Refer-
ence Manual.

Once linked, the program can be collected and run in the usual way. The output
of the program is the message ‘malloc OK'.

72 TDS 366 01 March 1993

220 11.1 Mixed language programs

11.1.9 Restrictions and caveats

General

A number of restrictions must be observed when calling routines written in one
language from a program in a different language:

1 The formal and actual parameters (and function return types) must be
compatible. See sections 11.1.3 and 11.1.5 for more detail.

2 As occam does not have ‘external’ variables, there can be no common
data between the calling program and the called routine. Therefore, the
only way that data can be transferred between them is by means of param-
eters (and return values). The called procedure may also use channels to
communicate with other parts of the program that are running in parallel.

3 No function or procedure which requires direct communication with the
host file server may be called.

Rules for importing C code

The following restrictions apply to C functions which are to be called from an
occam program:

1 Stack checking should not be enabled in any C function to be called from
occam.

2 Only C functions linked with the reduced C runtime library, can be called
from occam, i.e. those which do not require any server communication.

3 Imported C functions which return a single value (other than a pointer) must
not have any ‘side-effects’. They must not: alter parameters and variables
(except those declared within the function); perform channel or host i/o; call
functions which do have side-effects; perform parallel operations; use
timer delays; or perform heap operations.

4 The following functions cannot be called in the imported C code:
clock ()
exit ()
exit terminate()
exit noterminate ()
exit repeat()

get detail of free_stack space()

72 TDS 366 01 March 1993

11 Mixed language programming 221

Rules for importing cccam code

There are certain rules which govemn the calling of 0ccam code from C:

1
2

3

occam functions that return more than a single value may not be called.

The occam procedure or function to be called must be at the outer level
of a compiled module.

INLINE procedures and functions cannot be called from C.

4 The occam code must not use vector space, or call any other occam

code which uses vector space. Arrays, if used, should be explicitly placed
within workspace or the code should be compiled with the v option to
disable the use of separate vector space.

Some occam libraries supplied with the occam 2 toolset use vector
space and therefore cannot be called from C. These are:

hostio.lib streamioc.lib msdos.lib

There must be enough workspace for the called procedures or functions
on the stack of the calling program. It is the programmer’s responsibility to
ensure that this is the case.

There must be no aliasing between the parameters to occam functions or
procedures and the destination of the result. In other words the same vari-
able must not be used as both a parameter which will be read, and as a
result. The occam compiler checks that this is so for occam procedures
and functions called within an occam program.

The presence or absence of alias checking when the occam code is
compiled has no effect on this rule.

As an example consider the occam function:
INT FUNCTION succ (VAL INT n) IS n + 1 :

If this is called from within an occam program, the compiler will check to
see whether the parameter and result are aliased; if they are then the
compiler will generate temporary variables as necessary. So, for example,
the occamcall i := succ (i) may be compiled with a temporary vari-
able for the function result, which is then copied to the variable i. The C
compileris not able to perform these checks and so, if this function is called
from C, it is up to the programmer to ensure that there is no aliasing. A suit-
able calling sequence could be:

int tmp;

tmp = suce(i);

i = tmp;
Note that there may be mutual aliasing between VAL parameters as these
are only read, not written.

72 TDS 366 01 March 1993

222 11.2 0OCCaM interface procedures

11.2 occam interface procedures

The following sections describe a set of interfaces provided to allow complete
programs written in C to be called from occam. This might be done for various
reasons, for example to allow a C program to be used with the occam configurer
occonf, or to provide some simple modification of the runtime environment of the
program — e.g. initializing some external hardware before the application code
starts, or intercepting the program’s communications with the host file server.

By specifying the appropriate entry point for a C program, itis given an occam-like
procedural interface allowing the program to be called from an occam program.
The code produced in this way is known as an occam equivalent process as it
makes the program look like an occam process with channels for input and output.

11.2.1 Interface code

The occam interface code described here provides a number of fixed interfaces
to a C program. There are three types of interface code, known as types 1, 2, and
3. Descriptions and process diagrams for the three interfaces are given below.

Type 1

This interface is used when the C program runs on a single transputer and commu-
nicates only with the host file server. This interface is used with the full version of
the C runtime library.

fs

MAIN.ENTRY
ts

Figure 11.1 Type 1 interface

Type 2

This interface is used when the C program communicates with other processes as
well as the host file server. This interface is used with the full version of the C
runtime library.

72 TDS 366 01 March 1993

11 Mixed language programming 223

fs

PROC.ENTRY

Figure 11.2 Type 2 interface

Type 3

This interface is similar to the type 2 interface except that there is no access to the
host file server. The interface must be used with the reduced version of the C
runtime library, which does not contain any functions which require access to
iserver facilities such as the host file system.

PROC.ENTRY.RC

Figure 11.3 Type 3 interface

Channel arrays

The Type 2 and type 3 interfaces have arrays of channels which enable the C
program to communicate with other processes in the program. These arrays are
mapped directly onto the channel arrays which form part of the standard parameter
list of the C main function (see section 11.2.7).

These channel arrays actually appear as arrays of integers in the occam param-
eter lists — this allows pointers to channels to be passed to the C program which
provides a more flexible way of mapping channels onto the arrays. Because
occam does not support pointers directly, two library procedures are provided to
assign channel pointers to array elements (for more information on these, see the
examples below and the occam 2 Toolset Language and Libraries Reference
Manual).

72 TDS 366 01 March 1993

224 11.2 OCCam interface procedures

Reserved channels

Two of the input channels and two of the output channels in the Type 2 and Type
3 occam interface procedures (i.e. in[0], in[1], out[0] and out[1]) are
reserved. No program should use these channels. They are reserved as follows:

out[0] Reserved for diagnostic output.
in[0] Reserved for diagnostic input.

out[1] Messages from the runtime library to the host file server.
in[1] Responses from the host file server to the runtime library.

11.2.2 Parameters to the C program

Parameters to the C main function are described by the following function proto-

type:

#include <channel.h>

int main (int arge, char *argv[], char *envp[],
Channel *in[], int inlen,
Channel *out[], int outlen);

Where:

» arge — the number of arguments passed to the program from the
command line, including the program name.

* argv — an array of pointers to those arguments.

Note: for programs linked with the reduced runtime library (i.e. using the
Type 3interface), argciis setto 1 and the first element of argv is a pointer
to an empty string.

» envp — included for compatibility with previous toolsets — in this imple-
mentation, this parameter is always set to NULL.

* in— an array of input channels.

¢ inlen — the size of the array in.

¢ out — an array of output channels.
* outlen — the size of the array out.

The channel arrays in and out in the C program are passed from the interface
procedures, and can be set up as described below. Where applicable, these chan-
nels can be used by the C code to communicate via channels passed in from the
calling occam program. Note, however, that the first two elements in the arrays
are reserved for use by the C program’s runtime system and cannot be used by
the application program.

72 TDS 366 01 March 1993

11 Mixed language programming 225

11.2.3 Stack and heap requirements

Data storage (workspace) requirements for C programs are provided by arrays in
the occam code. Stack, static and heap requirements vary from program to
program. The workspace arrays passed to the program must be large enough to
accommodate:

« the stack needed by the program when it runs
«+ all the static data required by the program
+ the heap used by the program and the runtime libraries.

Stack overflow may lead to unpredictable behavior by the program. For this reason
itis best to run a program initially with a large combined stack and heap. Later, after
the program has been run to determine stack and heap usage, it can be modified
to use a separate stack and heap of the appropriate sizes. The use of a separate
array for the stack allows the stack to be placed in the transputer’s internal memory
to optimize the performance of the program. Methods for optimizing memory
usage are described in: Performance Improvement with the INMOS Dx305
occam 2 Toolset (supplied with the toolset); and INMOS Technical Note 55 Using
the occam toolsets with non-occam applications.

A minimum stack size of 512 words is recommended.

Stack overflow detection

Failure or unpredictable behavior of programs may be due to stack overflow. To
obtain an estimate of the amount of stack used by a program:

1 Build all C code with stack checking enabled.

2 Call the function max_stack_usage at the end of the program, this will
return an approximation of the amount of stack used by the program.

A test for stack overflow in a program is to use the procedure outlined below:

1 Initialize the bottom few words of the stack (a falling stack is used) to some
easily recognizable pattern of values.

2 Run the program and, after it crashes, use the debugger to examine the
values in the stack. If the values you initialized have been changed then
stack overflow is likely.

3 Increase the stack size and try again.

A similar method can be used to determine static data and heap requirements,
except that these are allocated upwards in memory. The following 0ccam frag-
ment gives an example of initializing the bottom of the stack:

SEQ i = 0 FOR SIZE wsl
wsl[i] := #DEFACED

72 TDS 366 01 March 1993

226 11.2 OCCaMm interface procedures

Stack overflow in the C parts of the program can also be detected by using the
stack checking mechanism built into the C compiler and libraries.
11.2.4 Type 1 interface definition

The Type 1 interface is used when the C program does not communicate with any
other process apart from the host file server.

The parameters for the Type 1 procedure are: a pair of channels to communicate
with the host file server; and two arrays to provide the C program’s heap, static and
stack space.

Procedural interface
The Type 1 occam interface is defined as follows:

PROC MAIN.ENTRY (CHAN OF SP fs, ts,
[1INT free.memory,
[1INT stack.memory)

The parameters to this procedure are:
e f£s — achannel from the host file server to the C program.
+ ts — a channel from the C program to the host file server.

The channels £s and ts are connected to the channels in[1] and
out[1] which are passed as parameters to the C program — these are
provided for the use of the C runtime libraries only, and should not be used
by the application code.

* free.memory — used by the C program for its heap and static areas.

This array is generally used to pass the free memory which is available to
the C program after the all the code has been loaded.

» stack.memory — used by the C program for its runtime stack (if the size
of the array is non-zero).

If the size of the stack.memory array is zero then the free.memory
array is used for the program’s runtime stack as well as for the static and
heap data areas.

Parameters to C program
The channel array parameters to the C main function are set up as follows:
e inlen and outlen are setto 2

* in[0] and out[0] are set to NULL

72 TDS 366 01 March 1993

11 Mixed language programming 227

* in[1] is a pointer to the £s channel and is used by the C runtime system
to communicate with the host

¢ out[1] is a pointer to the ts channel and is used by the C runtime system
to communicate with the host

Example

The following example is an occam procedure, call.progl, which callsa C
program via the MAIN.ENTRY procedure interface:

#INCLUDE "hostio.inc”

PROC call.pregl (CHAN OF SP fs, ts)

#USE “centry.lib” -- C interface code
[100000] INT heap : —— static and heap space
[1024] INT stack : —— stack for program
PLACE stack IN WORKSPACE : -- Put on chip

—— call program
MAIN.ENTRY (fs, ts, heap, stack)

11.2.5 Type 2 interface definition

The Type 2 interface is used when building a program that will communicate with
other processes as well as with the host file server.

The parameters for the Type 2 procedure are: a pair of channels to communicate
with the host file server; a flag value to control the use of memory by the C program;
two arrays to provide the C program'’s heap, static and stack space; and a pair of
channels for passing channel pointers to the C program.

Procedural interface

The Type 2 occam interface is defined as follows:

PROC PROC.ENTRY (CHAN OF SP fs, ts,
VAL INT flag,
[JINT wsl, ws2,
[JINT in, out)

The parameters are described below:
¢ fs — a channel from the host file server to the C program.
* ts — a channel from the program fo the host file server.

The channels £fs and ts are connected to the channels in[1] and
out[1] which are passed as parameters to the C program — these are
provided for the use of the C runtime libraries only, and should not be used
by the application code.

72 TDS 366 01 March 1993

228

11.2 OCCaMm interface procedures

flag — indicates whether one or two workspaces are to be used.

Ifthe value of £1ag s set to 0 then the program will run with two workspace
areas; one for static and heap data, the other for the runtime stack. If the
value of £lag is set to 1 then the program will run with a single combined
workspace.

wsl — used by the C program for its workspace.

If £1ag is 0 then this amray is used only for the runtime stack, if f1ag is 1
then it is used as the program’s combined workspace (static, heap and
stack).

ws2 — used by the C program as its static’/heap workspace when f£lagis
set to zero, otherwise unused.

in — an array of pointers to occam channels going to the C program.

out — an array of pointers to occam channels going from the C program.

Note: The first two elements in the channel pointer arrays in and out are reserved
for use by the C program’s runtime system and cannot be used by the program.

Parameters to C program

The channel array parameters to the C main function are set up as follows:

inlenand outlen are setto the number of elements in the occam arrays
in and out

in[0] and out[0] are set to NULL

in[1] is a pointer to the £s channel and is used by the C runtime system
to communicate with the host

out[1] is a pointer to the ts channel and is used by the C runtime system
to communicate with the host

The remaining elements of the arrays in and out are set to the values in
the corresponding elements of the occam arrays

72 TDS 366 01 March 1993

11 Mixed language programming 229

Example

The following example is an occam procedure, call.prog2, which calls a C
program via the PROC . ENTRY procedure interface:

#INCLUDE “hostioc.ine”

PROC call.prog2 (CHAN OF SP fs, ts,
CHAN OF COMM to.process,
CHAN OF COMM from.process)

#USE "hostio.lib”

#USE “centry.lib” —— C interface code

VAL flag IS 1 : —— combined heap and stack
[100000] INT wsl : —— stack and heap for program
[1]INT ws2 : —— dummy workspace for program
[3]INT in, out : —— channel pointers (not used)
SEQ

-— set up user output channel
LOAD.OUTPUT.CHANNEL (out[2] , from.process)

-— set up user input channel
LOAD.INPUT.CHANNEL(in[2], to.process)

—— call program
PROC.ENTRY (fs, ts, flag, wsl, ws2, in, out)
so.exit(fs, ts, sps.success)

Two channels are declared of type COMM, the first being an input channel to the
process, the second an output channel from the process. (The declaration of
protocol type COMM is assumed.)

11.2.6 Type 3 interface definition

The Type 3 interface is used to run programs which communicate with other
processes on the same processor or in a network of processes, but which do not
require access to host services. Processes built with the Type 3 interface can
communicate with other processes through channels in the same way as Type 2
processes.

Programs using the Type 3 interface must be linked with the reduced C runtime
library.

The parameters for the Type 3 procedure are: a flag value to control the use of
memory by the C program; two arrays to provide the C program’s heap, static and
stack space; and a pair of channels for passing channel pointers to the C program.

72 TDS 366 01 March 1993

230 11.2 OCCaM interface procedures

Procedural interface
The interface for Type 3 equivalent occam processes is defined below:

PROC PROC.ENTRY.RC (VAL INT flag,
[JINT wsl, ws2,
[1INT in, out)

The parameters are described in the following list.

+ flag— indicates whether one or two workspaces are to be used.
Ifthe value of £1ag s set to 0 then the program will run with two workspace
areas; one for static and heap data, the other for the runtime stack. If the
value of £1ag s set to 1 then the program will run with a single combined
workspace.

» wsl — used by the C program for its workspace.
If £1ag is 0 then this array is used only for the runtime stack, if £lag is 1
then it is used as the program’s combined workspace (static, heap and
stack).

* ws2 — used by the C program as its static/heap workspace when £lag is
set to zero, otherwise unused.

» in— an array of pointers to occam channels going to the process.
» out — an array of pointers to 0ccam channels coming from the process.
Note: The first two elements in the channel pointer arrays in and out are reserved

for use by the C program’s runtime system and cannot be used by the occam
program.

Parameters to C program

The channel array parameters to the C main function are set up as follows:

¢ inlenandoutlenare settothe number of elementsinthe occam arrays
in and out

e in[0],in[1], out[0] and out[1] are are set to NULL
» The remaining elements of the arrays in and out are set to the values in

the corresponding elements of the occam amays

72 TDS 366 01 March 1993

11 Mixed language programming 231

Example

The following shows how to call a Type 3 equivalent occam process from occam
source, and how to set up the parameters required. The example consists of an
occam procedure ‘call . prog3’ within which a C program is called.

PROC call.prog3 (CHAN OF COMM to.process,
CHAN OF COMM from.process)

#USE “centry.lib” -— C entry point library

VAL flag IS O : -- separate heap and stack
[1000] INT wsl : -- stack for program

[40000] INT ws2 : —— heap for program

[3]1INT in, out : —-- pointers to inputs/outputs
SEQ

—- set up user output channel
LOAD.OUTPUT.CHANNEL (out[2] , from.process)

—— set up user input channel
LOAD.INPUT.CHANNEL (in[2], to.process)

—- call program
PROC.ENTRY.RC (flag, wsl, ws2, in, out)

Two channels are declared of type COMM, the first being an input channel to the
process, the second an output channel from the process. (The declaration of
protocol type COMM is assumed.)

The first statement sets up a pointer to the output channel, using the procedure
LOAD.QUTPUT .CHANNEL. The second statement sets up a pointer to the input
channel, using the procedure LOAD . INPUT . CHANNEL. Note that the first two input
and output channels are reserved by the runtime system even though there is no
host communication taking place.

11.2.7 Building the occam equivalent process

The occam equivalent processes built from these interfaces can be called from

an occam program in the same way as any other occam procedure. Note that,
because the interface procedures have fixed names, there can only be one
process of a particular type in each linked unit. However, multiple C programs
called in this way may be placed on a processor by the configurer.

Once all the component C and occam code for the complete program has been
compiled, it is linked with the C runtime libraries, the occam entry points library

72 TDS 366 01 March 1993

232 11.2 OCCaMm interface procedures

and any other occam libraries required. The program is then configured and a
bootable code file produced.

The occam interface code is supplied in the library centry. 1ib. The C libraries
can be linked by using the linker control file e1ibs . 1nk, for the full runtime library,
or clibsrd.lnk, for the reduced runtime library. For example, consider a
program that consists of the following compiled files:

* main.tco — the compiled C program to be called from occam
* wrap.tco—the compiled occam code that calls the interface procedure

This program can be linked with the full run-time libraries, for a 32 bit transputer,
using the following command:

ilink wrap.tco main.tco calle.lib -f clibs.lnk -f occama.lnk
(UNIX toolsets)

ilink wrap.tco main.tco calle.lib /f clibs.lnk /f occama.lnk
(MS-DOS/VMS toolsets)

72 TDS 366 01 March 1993

12 EPROM
programming

INMOS EPROM software is designed so that programs can be developed, booted
onto a network via link and tested using the INMOS toolset. Once they are working,
they can be placed in ROM with only minor change.

12.1 Introduction

During development, software is booted onto a network from a link connecting the
network to the host computer. Then the software is prepared for a ROM, which is
attached to the root transputer in the network.

Figure 12.1 shows how a network of five transputers would be loaded from a ROM
accessed by the root transputer.

Boot from link

Root transputer . .
ROM boot from ROM Boot from link Boot from link

Boot from link

Figure 12.1 Loading a network from ROM

To prepare software to be booted from ROM, rather than to be booted from link,
the following two steps must be taken:

1. Give different options to the configurer and collector tools so that they
produce ROM-bootable code.

2. Runthe ieprom tool to produce afile or set of files suitable for blowing into
EPROM.

Figures 12.2 and 12.3 illustrate the stages of preparing ROM-bootable software.

Figure 12.2 shows an occam program compiled and linked for a single processor.
Figure 12.3 shows a configured program, consisting of one or more linked units,

72 TDS 366 01 March 1993

234 12.2 Processing configurations

connected together and allocated to processors as described in a configuration
file.

JIku icollect]

®

— |nput/output
——»= References

®®®GE

Figure 12.2 Preparation of ROM-bootable software (single occam program)

occonf
.Ccfb}»icollecty® .bir e

@, Locont |
©

— Input/output
——» References

Figure 12.3 Preparation of ROM-bootable software (configured program)

12.2 Processing configurations

The processing configuration used will depend on the number of software
processes, the number of transputers available to run the code and whether the
code is to run from ROM or RAM. The following sections outline the possible
configurations.

When preparing FORTRAN or C code to be booted from ROM the configurer must
be used in order to specify the size of stack and heap. This applies even when the

72 TDS 366 01 March 1993

12 EPROM programming 235

application consists of a single process running on a single processor. A single
occam process can be configured or prepared as a single, linked program.

12.2.1 Single processor, run from ROM

The application process is prepared as one or more processes, connected as
described in a configuration file. If the application consists of a single occam
program then it can be prepared without using the configurer. It is then run on a
single processor, with the code in ROM, and the RAM is used as the data area.

12.2.2 Single processor, run from RAM

The application process is prepared as one or more processes, connected as
described in a configuration file. If the application consists of a single occam
program then it can be compiled and linked without using the configurer. When
booted from ROM, the processor copies the code into RAM and runs it, using the
RAM for the data area.

12.2.3 Multiple process, multiple processor, run from RAM

The application is prepared as a collection of processes, connected and allocated
to processors as described in a configuration file. The compiled and configured
application code is placed in the ROM of the root processor. When booted from
ROM, the root processor loads its own code into RAM, and loads the rest of the
network via its links. Each processor then sets off its own processes, and the
application runs. (This is the configuration shown in figure 12.1).

12.2.4 Multiple process, multiple processor, root run from ROM, rest of
network run from RAM

The application is prepared as a collection of processes, connected and allocated
to processors as described in a configuration file. The compiled and configured
application code is placed in the ROM of the root processor. When booted from
ROM, the root processor loads the rest of the network via its links, and then
continues to run its own code from the ROM.

12.3 The EPROM tool: ieprom

The EPROM tool ieprom takes the output of the collector, and produces a file or
set of files suitable for blowing into an EPROM. The following output formats are
supported:

— Binary

— Hex

— Intel hex format

— Intel extended hex format
- Motorola S-record format

72 TDS 366 01 March 1993

23612.4 Using the configurer and collector to produce ROM-bootable code

iepromsupports the production of code files in block mode , which allows the code
to be placed in a set of different files. This is useful to program EPROMS organized
as separate byte-wide devices, or where the EPROM programming device does
not have enough memory to hold the entire image.

ieprom also supports the inclusion in the EPROM image of a memory configura-
tion. Some 32-bit transputers have a configurable memory interface which can be
initialized from a fixed area in the ROM, when the transputer is reset. A particular
memory configuration can be specified to ieprom in a text file. These files are
known as memory configuration files and normally have the file extension .mem.
The format of these files, and the facility to edit them using an interactive tool called
iemit is described in chapter 6 of the accompanying Toolset Reference Manual.

ieprom is driven by a control file which normally has the file extension .epz. A
detailed description of iepromand its control file is given in chapter 7 of the accom-
panying Toolset Reference Manual.

12.4 Using the configurer and collector to produce ROM-boot-
able code

To produce code suitable for running in ROM or RAM, the configurer and collector
tools must be specified with the appropriate command line options. The following
options are used to configurer single and multi-processor programs and to collect
unconfigured single processor programs:

¢ The ro option specifies that the code is to run in ROM.
¢ The ra option specifies that the code is to run in RAM.

e The rs option specifies the ROM size (if not specified in configuration file).
This option does not apply to the occam configurer occon€£, see below.

In addition, if using icconf (the C configurer), the P option must be used in order
to specify the root processor name.

If using occon€£, the NETWORK description in the configuration file should indicate:
¢ which processor is the root processor, by setting its root attribute to TRUE

o the size of the ROM on that processor, by setting its romsize attribute to
the appropriate value, in bytes.

The collector will add the appropriate ROM bootstrap to the application code and
the output file will be given the extension .btr.

72 TDS 366 01 March 1993

12 EPROM programming 237

12.5 Summary of EPROM tool steps for different configurations

12.5.1 Using icconf

I('_:olznpile and Configure Collect EPROM
in
Single Compile and |Configure Collect Run EPROM
processar, linkasetof |withthe ro, tool to add
run from units, one per |rsand p 'E?&”;gggg‘)face
ROM. process. options. and produce
EPROM files.
Single Compile and | Configure Collect Run EPROM
processor, link asetof |with the ra, tool to add
run from units, one per |rs and p Fﬁ’ggg;”;g}face
RAM. process. options. and produce
EPROM files.
Multiple Compile and |Configure Collect Run EPROM
processor, link a setof |with the ra, tool to add
run from units, one per |rs and p ?;i’gg;’:;?ace
RAM. process. options. and produce
EPROM files.
Multiple Compile and |Configure Collect Run EPROM
processor link asetof |with the ro, tool to add <
root runs from | units, one per |rs and p g‘ﬁ:gggsge)ace
ROM, rest of |process. options. and pmduc?; :
network runs EPROM files.
from RAM.

12.5.2 Single processor unconfigured occam program

I(}o;npile and Configure Collect EPROM
in
Run from Compile and |Not needed. |Collect with |RunEPROM
ROM. link program. the ro and t |toolfo add
options. memory interface
(if necessary),
and produce
EPROM files.
Run from Compile and |Not needed. |Collect with |RunEPROM
RAM. link program. the raand |fooltoadd
t options memory interface
t (if necessary),
and produce
EPROM files.

72 TDS 366 01 March 1993

238 12.5 Summary of EPROM tool steps for different configurations

12.5.3 Using occonf

Compile and Configure Collect EPROM
link
Single Compile and | Configure Collect Run EPROM
processor, linka setof |with the ro L‘:gﬁg ;digte e
EJS ll‘lj'rom units. option. (f reccssary),
. and produce
EPROM files.
Single Compile and | Configure Collect Run EPROM
processor, |linkasaset |withthe ra tgg'nzg ;diﬂte s
EJAn Jlrom of units. option. (i rechssary),
: and produce
EPROM files.
Multiple Compile and | Configure Collect Run EPROM
processor, link asetof |withthe ra :gg}_:g ;di:te o
run from units. option. (if necessary),
RAM. and produce
EPROM files.
Multiple Compile and | Configure Collect Run EPROM
processor, |linkasetof |withthe ro :zg'n:g ;‘1:13 ifacs
E)SE\A runs {ro;n units. option. (If necessary),
,resto and produce
network runs EPROM files.
from RAM.
72 TDS 366 01 March 1993

13 Low level
programming

This chapter describes a number of features of the toolset occam 2 compiler
which support low-level programming of transputers. These are as follows:

Allocation This allows a channel, a variable, an array or a port to be placed at an
absolute location in memory.

RETYPING channels and creating channel array constructors. These facilities
enable channels to be manipulated.

Code insertion This allows sections of iransputer machine code to be inserted into
occam programs.

Dynamic code loading A set of library procedures is provided that allows an
occam program to read in a section of compiled code (from a file, for
example) and execute it.

Extraordinary use of links A set of library procedures is provided which allow link
communications which have not completed to be handled by timeout, or be
aborted by another part of the program.

Scheduling Using the predefined routine RESCEEDULE to reschedule processes.

Setting the error flag The transputer error flag can be explicitly set using the
predefined routine CAUSEERROR.

13.1 Allocation

Allocation is performed using the occam PLACE statement, which is defined
formally as follows:

allocation = PLACE name AT expression :

(Section A.3.2 of the 0ccarmn 2 Toolset Language and Libraries Reference Manual
provides details of the PLACE statement).

The PLACE statement allows a variable to be assigned to a specific memory loca-
tion. The variable can be a scalar variable, array variable, channel, or port. This
feature may be used for a number of purposes, for example:

¢ To map occam channels onto specific transputer links from within an
occam program. Channels mapped onto links in this way are known as
‘hard’ channels.

72 TDS 366 01 March 1993

240 13.6 Scheduling

+ To map arrays onto particular hardware such as video RAM.

¢ To access devices (such as UARTSs or latches) mapped into the transput-
er's address space.

The PLACE statement must be inserted immediately following the declaration of
the variable to which it refers e.g.

int x, y, z :

PLACE x

PLACE ¥ is correct
int x :

int y :

PLACE X is incorrect

13.1.1 The PLACE statement

Normally the PLACE statement should not be used to force critical arrays or vari-
ables into on-chip RAM. The occam compiler allocates memory according to the
scheme outlined in Appendix B of the occam 2 Toolset Language and Libraries
Reference Manual, and cannot allow data to be placed arbitrarily in memory. To
make the best use of on-chip RAM use separate vector space as described in
section 5.6.

The address of a placed object is derived by treating the value of the expression
as a word offset into memory. In occam addresses start at zero, while physical
machine addresses start atMOSTNEG INT (#80000000 on 32-bit transputers and
#8000 on 16-bit fransputers). An occam address can be considered as a
subscript to an INT vector mapped onto memory. Thus the following statement
would cause chan to be allocated address 80000004 on a 32-bit transputer:

PLACE chan AT 1:

Addresses are calculated in this way so that the transputer links can be accessed
using code that is independent of the word length. The links are mapped to
addresses 0, 1, 2...7. (See section 13.1.3).

Translation from a machine address to the equivalent occam address PLACE
value can be achieved by the following declaration:

VAL occam.addr IS
(machine.addr>< (MOSTNEG INT)) >> w.ad]just:

where: w.adjust is 1 for a 16-bit fransputer and 2 for a 32-bit transputer.

All placed objects must be word aligned. If it is necessary to access a BYTE object
on an arbitrary boundary, or an INT16 object on an arbitrary 16-bit boundary, the

72 TDS 366 01 March 1993

13 Low level programming 241

object must be an element of an array which is placed on a word address below
the required address. For example, to access a BYTE port called io.register
located at physical address #40000001 on a 32-bit transputer use the following:

[4]PORT OF BYTE io.regs.vec :
PLACE io.regs.vec AT #30000000 :
io.register IS io.regs.vec[1]

The PLACE statement must be placed immediately after the declaration of the vari-
able.

Placement may be used on transputer boards to access board control functions
mapped into the transputer’s address space. For example, on a TRAM with a
subsystem, the subsystem control functions (Error, Reset and Analyse) are
mapped into the address space and can be accessed from occam as placed
ports. The following code will reset the subsystem on a TRAM:

PROC reset.tram.subsystem()

VAL subsys.reset IS #20000000: —— address 0
VAL subsys.error IS #20000000: -- address 0
VAL subsys.analyse IS #20000001: --— address 4

PORT OF BYTE reset, analyse, error:
PLACE reset AT subsys.reset:
PLACE analyse AT subsys.analyse:
PLACE error AT subsys.error:
VAL delay IS 78: == 5 msec delay
TIMER clock:
INT time:
SEQ
—— set reset and analyse low
analyse ! 0 (BYTE)
reset ! 0 (BYTE)
reset ! 1 (BYTE) —— hold reset high
clock ? time
clock ? AFTER time PLUS delay
reset ! 0 (BYTE) —— reset subsystem

The Error and Analyse functions can be controlled from occam in a similar way.

A more specific example of how to reset B004 type boards is given in the examples
directory examples/manuals/assert.

13.1.2 Allocating specific workspace locations

A number of specialized transputer instructions require specific workspace plac-
ings. For example, the instructions POSTNORMSN, OUTBYTE, OUTWORD and the
disabling ALT instructions all use workspace location 0. To accommodate this the
compiler supports the following allocation:

PLACE name AT WORKSPACE n:

72 TDS 366 01 March 1993

242 13.6 Scheduling

where: nis a constant integer. (See Appendix A in the occam 2 Toolsef Language
and Libraries Reference Manual for syntax details).

This is used to ensure that a variable is allocated a particular position within a
procedure or function’s workspace. The compiler ensures that at least n words of
workspace are allocated, and that no other variables are placed at that address.
The compiler will warn if a variable PLACED AT WORKSPACE n is in scope when
its own workspace allocation requires to use that workspace location, or when
another is PLACED at the same location.

For example on a T425, the POSTNORMSN instruction can be used to pack a floating
point number; it requires an exponent to be previously stored at workspace offset
0. The following code may be used:

REAL32 FUNCTION pack (VAL INT guard, frac, exp, sign)
REAL32 result :
VALOF
INT temp :
PLACE temp AT WORKSPACE 0 :
SEQ
temp := exp
ASM
LDAB guard, frac
NORM
POSTNORMSN
ROUNDSN
LDL sign
OR
ST result
RESULT result

(For the background on this example, see the Transputer instruction set —a
compiler writer’s guide, section 7.11.2). Use of the ASM construct is described in
section 13.3.

13.1.3 Allocating channels to links

When mapping channels to specific transputer links, the channel word is placed
at the specified address for scalar channels. Arrays of channels, however, are
mapped as arrays of pointers to channels:

PLACE scalar.channel AT n:
places the channel word at that address.

PLACE array.of.channels AT n:
places the array of pointers at that address.

The following two code fragments illustrate the placement of channels on links.

72 TDS 366 01 March 1993

13 Low level programming 243

CHAN OF ANY in.link0, out.link0 :
PLACE in.link0 AT linkO.in:
PLACE out.link0 AT link0.out:

CHAN OF ANY in.linkl, out.linkl :
PLACE in.linkl AT linkl.in:
PLACE out.linkl AT linkl.out:

CHAN OF ANY in.link2, out.link2 :
PLACE in.link2 AT link2.in:
PLACE out.link2 AT link2.out:

CHAN OF ANY in.link3, out.link3 :
PLACE in.1link3 AT link3.in:
PLACE out.link3 AT link3.out:

CHAN OF ANY in.event :
PLACE in.event AT event.in:

or:

CHAN OF ANY out.link0, out.linkl, out.link2, out.link3 :

PLACE cut.link0 AT linkO.out :

PLACE out.linkl AT linkl.out :

PLACE out.link2 AT link2.out :

PLACE out.link3 AT link3.out :

[4]CHAN OF ANY outlink IS [out.link0, out.linkl,
out.link2, out.link3] :

CHAN OF ANY in.link0O, in.linkl, in.link2, in.link3 :

PLACE in.link0 AT 1inkO0.in :

PLACE in.linkl AT linkl.in :

PLACE in.link2 AT link2.in :

PLACE in.link3 AT link3.in :

[4]CHAN OF ANY inlink IS [in.link0, in.linkl, in.link2,
in.link3] :

Link addresses are defined in the include file 1inkaddr . inc that is supplied with
the toolset.

Although shown here as CHAN OF ANY channels you should use specific occam
channel protocols wherever possible to ensure that channels are properly checked
at compile time.

13.2 RETYPING channels and creating channel array construc-
tors

Channels may be RETYPEd, (see also section A.2.1. of the occam 2 Toolset
Language and Libraries Reference Manual). This allows the user to change the
protocol on a channel in order to pass it as a parameter to another routine, for
example:

72 TDS 366 01 March 1993

244 13.6 Scheduling

PROTOCOL PROT32 IS INT32 :
PROC p (CHAN OF INT32 X)
X ! 99(INT32)

PROC ql (CHAN OF PROT32 y)

SEQ
P (y) —= this is illegal
CHAN OF INT32 z RETYPES y :
p(z) —- this is legal

The facilities for RETYPEing channels should only be used by programmers who
understand the implementation of transputer channels, and the implications of
attempting to circumvent occam'’s checking of channel usage. These facilities
may be useful for those programmers who are using occam at a very low level,
for example, writing loaders and other operating system type functions.

The current implementation of channels allows flexible use of channel arrays,
which are implemented as an array of pointers to channel words. This means, for
example, that it is possible to create an array of channels which map onto the hard
links in a different order than 0 to 3, by using channel array constructors. For
example:

CHAN OF ANY out.link0, out.linkl, out.link2,
out.link3 :

PLACE out.link0 AT link0O.out :

PLACE out.linkl AT linkl.out :

PLACE out.link2 AT link2.out :

PLACE out.link3 AT link3.out :

[4]CHAN OF ANY outlink IS [out.link3, out.linkl,
out.link2, out.link0]

A particular effect of this implementation is that it may be useful to retype channels
and arrays of channels into integers, in order to give the programmer access to
these pointers. A programmer may set up an array of integers whose values are
the addresses of channel words, and then use these as addresses of channels,
like so:

[n]INT x:
SEQ
. initialize elements of array x, then:

[n]CHAN OF protocol ¢ RETYPES x:

SEQ
.. then communicate on c[i]

72 TDS 366 01 March 1993

13 Low level programming 247

Pseudo-operations are more complex operations built up from sequences of
instructions. Like macros, they expand into one or more transputer instructions,
depending on their context and parameters.

For example, to perform a 1's complement addition we can write the following
occam:

INT carry, temp:

SEQ
carry, temp := LONGSUM (a, b, 0)
¢ := carry PLUS temp

However, if this occurs in a time-critical section of the program we might replace
it with:
ASM
LDABC a, b, 0
LSUM
SUM
ST ¢

which would avoid the storing and reloading of carry and temp. (Note: such
examples are specific to the current compiler implementation; future releases are
likely to behave differently).

Values in the range MOSTNEG INT to MOSTPOS INT may be used as operands
to all of the direct functions without explicit use of prefix and negative prefix instruc-
tions. Access to non-local occam symbols is provided without explicit indirection,
if you use the pseudo-instructions ‘LD’, ‘LDAB' etc.

A more complex example, which sets an error if a value read from a channel is not
in a particular range, takes advantage of both these facilities:

INT a :
... other code
PROC get.and.check.index (CHAN OF INT c)
SEQ
c? a
ASM
LDAB 512, a —-- push value of free
-- variable onto stack
-- followed by 512
CCNT1 -— if NOT (0 < a <= 512)
-- then set error

If there is a requirement for the code insertion to use some work space, then the
work space may be declared before the ASM construct, in which case, the work
space locations are accessed like any other occam symbol.

72 TDS 366 01 March 1993

248 13.6 Scheduling

INT a:
SEQ
INT b, e:
ASM
LD a —— push value in a onto stack
ST b —— pop value from stack into b
more code

13.3.2 Special names

The following special names are available as constants inside ASM expressions.

.WSSIZE Evaluates to the size of the current procedure’s workspace. This will
be the workspace offset of the return address, except within a repli-
cated PAR, where it will be the size of that replication’s workspace
requirement.

.VSPTR Evaluates to the workspace offset of the vector space pointer. When
it is used inside a replicated PAR, it points to the vector space pointer
for that branch only. A compile time error is generated if there is no
vector space pointer because no vectors have been created.

.STATIC Evaluates to the workspace offset of the static link. When it is used
inside a replicated PAR it points to the static link for that branch only.
A compile time error is generated if there is no static link.

For example, to determine the retum address of a procedure, the following could
be used: LDL .WSSIZE.

It is not checked that these names are used sensibly, for example, J .WSSIZEis
legal even though it has no useful effect.

13.3.3 Labels and jumps

Labels may be defined inside an ASM construct. Labels are in scope for the entire
procedure or function; thus both forward and backward references are permitted.
It is illegal to declare two labels with the same name in the same routine.

To insert a label into the sequence of instructions, put the name of the label,
preceded by a colon, on a line of its own. When the label is used in an instruction,
the name is again preceded by a colon. For example:

ASM
some instructions
:FRED
some more instructions
CJ :FRED

Currently labels are declared in a different namespace from ordinary identifiers;
thus itis possible to have both a label x and a variable x in scope at the same time;

72 TDS 366 01 March 1993

13 Low level programming 249

the label is recognized in context (following a *:°). This will not necessarily be true
in all implementations.

Branches may only be made to a label defined within the same procedure or func-
tion. It is permitted to branch to a PROC or FUNCTION which is in scope; it is up to
the assembly programmer to load the parameters for the call correctly.

13.3.4 Workspace zero

Some fransputer instructions make use of data at the current workspace pointer,
known as ‘workspace zero’. These instructions are OUTBYTE, OUTWORD POST-
NORMSN and the ALT disabling instructions.

If these instructions are used inside ASM, it is the programmer’s responsibility to
reserve this location by means of the allocation:

PLACE name AT WORKSPACE n :
See section 13.1.2.

13.3.5 Below workspace slots

Some instructions require various words at small negative offsets of workspace to
be reserved. The compiler automatically reserves these when it sees the following
instructions inside an ASM statement.

Instructions Negative offsets
IN OUT OUTBYTE OUTWORD 3

ALT ALTWT ENBC ENBS

DISC DISS

VIN VOUT LDCNT

ENBG DISG GRANT

TIN TALT TALTWT ENBT DIST

| W W] Wl w

13.3.6 Channels

Channels may be accessed in ASM; they are considered to be a pointer to a channel
word. Thus ‘loading’ a channel will load a pointer to the channel word, and loading
the ‘address’ of a channel will load a pointer to a pointer to the channel word.

13.3.7 Programming notes

1 Floating-point (fp) registers cannot be loaded directly; they must be loaded
or stored by first loading a pointer to the register into an integer register and
then using the appropriate floating-point instruction.

72 TDS 366 01 March 19983

250 13.6 Scheduling

2 The operands to the load pseudo-ops must be small enough to fit in a
register and the operands to the store pseudo-ops must be word-sized
modifiable efements.

3 Code insertion using the GUY construct is obsolescent.

13.4 Dynamic code loading

The toolset compiler permits the dynamic loading and execution of code using the
procedures described in this section.

These procedures are provided automatically by the compiler and are nof refer-
enced by a #USE directive. The procedures allow you to write an 0cCam program
that reads in a compiled occam procedure, and then calls it. The called procedure
may be compiled and linked separately from the calling program and read in from
afile. It is possible to pass parameters to the procedure, which must have at least
3 formal parameters.

Dynamically loadable code files can be created using the icollect ‘K’ option. By
default they are given the . rsc extension.

(Note that if you wish to dynamically load occam FUNCTIONS, it is recommended
that you call the FUNCTION indirectly from an occam PROC, and use non-VAL
parameters to return the results to the calling environment).

The procedures for setting up parameters before the call and for making the call
are outlined in the table below, and described in the following sections, with exam-
ples. Further information and examples of this technigue can be found in section
5.3.5 of The Transputer Applications Notebook — Systems and Performance.

Procedure Parameter Specifiers

KERNEL . RUN VAL []BYTE code,

VAL INT entry.offset,
[1INT workspace,

VAL INT no.of.parameters

LOAD.INPUT.CHANNEL INT here, CHAN OF ANY in
LOAD.INPUT.CHANNEL.VECTOR |INT here, []JCHAN OF ANY in
LOAD.QUTPUT .CHANNEL INT here, CHAN OF ANY out
LOAD.OUTPUT .CHANNEL.VECTOR |INT here, []JCHAN OF ANY out
LOAD.BYTE.VECTOR INT here, VAL []BYTE bytes

The collector tool icollect can produce code in a format suitable for dynamic
loading. The tool is described in Chapter 3 of the occam 2 Toolset Reference
Manual.

13.4.1 Calling code

The occam 2 compiler recognizes calls of a procedure KERNEL . RUN with the
following parameters:

72 TDS 366 01 March 1993

13 Low level programming 251

PROC KERNEL.RUN (VAL []BYTE code,
VAL INT entry.offset,
[1INT workspace,
VAL INT no.of.parameters)

The effect of this procedure is to call the procedure loaded in the code buffer,
starting execution at the location code [entry.offset].

The code to be called must begin at a word-aligned address. To ensure proper
alignment either start the array at zero or realign the code on a word boundary
before passing it into the procedure.

The workspace buffer is used fo hold the local data of the called procedure. For
details of the contents of the workspace buffer see Figure 13.1. The required size
of this buffer and the code buffer must be derived from information in the code file.

The parameters passed to the called procedure should be placed at the top of the
workspace buffer by the calling procedure before the call of KERNEL . RUN. The
call to KERNEL . RUN retumns when the called procedure terminates. If the called
procedure requires a separate vector space, then another buffer of the required
size must be declared, and its address placed as the last parameter at the top of
workspace. As calls of KERNEL . RUN are handled specially by the compiler it is
necessary for no.of .parameters to be a constant known at compile time and
to have a value = 3.

workspace
[(SIZE workspace) -1] saved Wpir

vector space pointer
or last parameter

saved by KERNEL.RUN

[no.of.parameters+2] INT

loaded by caller
parameters (must be = 3)
1st parameter
saved Iptr saved by KERNEL . RUN

[ws.requirement] INT

workspace of
called procedure

workspace [0]

Figure 13.1 Workspace buffer

The workspace passed to KERNEL . RUN must be at least:

[ws.requirement + (no.of.parameters + 2)]INT

72 TDS 366 01 March 1993

252 13.6 Scheduling

where ws . requirement is the size of workspace required, determined when the
called procedure was compiled and stored in the code file, and no . of . parame~
ters includes the vector space pointer if it is required. The parameters must be
loaded before the call of KERNEL . RUN. The parameter corresponding to the first
formal parameter of the procedure should be in the word adjacent to the saved
Iptr word, and the vector space pointer or the last parameter should be adjacent
to the top of workspace where the Wptx word will be saved.

13.4.2 Loading parameters

There are a number of library procedures to set up parameters before the call.
These are:

LOAD.INPUT.CHANNEL (INT here, CHAN OF ANY in)
The variable here is assigned the address of the input channel in.

LOAD . INPUT . CHANNEL . VECTOR (INT here,
[ICHAN OF ANY in)

The variable here is assigned the address of the base element of the
channel array in (i.e. the base of the array of pointers).

LOAD.QUTPUT.CHANNEL (INT here, CHAN OF ANY out)
The variable here is assigned the address of the output channel out.

LOAD.OUTPUT.CHANNEL.VECTOR (INT here,
[JCHAN OF ANY out)

The variable here is assigned the address of the base element of the
channel array out (i.e. the base of the array of pointers).

LOAD.BYTE.VECTOR (INT here, VAL []BYTE bytes)
The variable here is assigned the address of the byte array bytes.

Note that when passing vector parameters, if the formal parameter of the PROC
called is unsized then the vector address must be followed by the number of
elements in the vector, for example:

LOAD.BYTE.VECTOR (param[0] , buffer)
param[l] := SIZE buffer

Thus an unsized vector parameter requires 2 parameter slots. The size must be
in the units of the array (not in bytes, unless it is a byte vector, as above). For multi-
dimensional arrays, one parameter is needed for each unsized dimension, in the
order that the dimensions are declared.

All variables and arrays should be retyped to byte vectors before using
LOAD.BYTE. VECTOR to obtain their addresses, using a retype of the form:

72 TDS 366 01 March 1993

13 Low level programming 253

[IBYTE b.vector RETYPES variable:

LOAD.BYTE.VECTOR should also be used to set up the address of the separate
vector space.

13.4.3 Examples

This section gives two examples of dynamic loading. The first is a simple example
showing how parameteriess code can be input on a channel and loaded. The
second is a more complex example showing how to set up and pass parameters
into a dynamically loaded program. Sources can be found in the examples/
manuals/dynamic directory.

Example 1: load from link and run

This is a simple procedure to load a (parameterless) code packet from a link and
run it. The type of the packet is given by the protocol:

PROTOCOL CODE.MESSAGE IS INT::[]BYTE; INT; INT

The code is sent first, as a counted array, followed by the entry offset and work-
space size.

PROC run.code (CHAN OF CODE.MESSAGE input,
[IINT run.vector, []BYTE code.buffer)
VAL no.parameters IS 3 : —— smallest allowed
INT code.length,entry.offset,work.space.size:
INT total.work.space.size:
SEQ
input ? code.length: :code.buffer;
entry.offset; work.space.size
total.work.space.size :=
work.space.size + (no.parameters + 2)
[]JINT work.space IS [run.vector FROM 0 FOR
total.work. space.size]
KERNEL.RUN (code.buffer, entry.offset,
work.space, no.parameters)

Example 2: system loader

This example shows how to set up parameters prior to running code loaded from
a file. It is assumed that the code requires use of a separate vector space.

Consider a process with an entry of the form:

PROC process (CHAN OF SP fs, ts, []INT buffer,
VAL BOOL debugging, INT result)

72 TDS 366 01 March 1993

254 13.6 Scheduling

The two channel parameters £s and ts handle output from and input to the file
server; the INT vector acts as a buffer. The two channels and the buffer are the
same parameters as are provided by the bootstrap code added by the collector tool
(see Chapter 3inthe occam 2 Toolset Reference Manual), and the example takes
advantage of this. The fourth parameter is a value parameter that will not be
changed by the process, so only the value needs to be passed. The final parameter
is an INT that will be changed by the process, and its address must be passed into
the procedure.

The calling program is shown below. The program reserves 256 bytes for the code
that is to be read in; if you use this program make sure you modify this value to suit
the size of your own code.

#INCLUDE "hostio.inc”
PROC call.program (CHAN OF SP fs, ts, []INT free.memory)

== Variables for holding code and entry and workspace
== data read from file

[256]BYTE code:

INT code.length, entry.offset, work.space.size:

INT vector.space.size:

INT result: —— Variable used by process
VAL debugging IS TRUE: -- Value param for process
VAL no.params IS 7: -- No. of parameter slots

— Need 1 slot per parameter + 1 for the size of the
—— array parameter + 1 for the vector space pointer

SEQ
-- Read in code and data about code

-— Slice up memory vector for use by process
— Reserve work space requirement for process
[]INT ws IS [free.memory FROM 0 FOR
work.space.size + (no.params + 2)]:
-— Reserve vector space requirement for process
[JINT vs IS [free.memory FROM SIZE ws FOR
vector.space.size]:
-— Reserve remainder of memory for use
-- as process parameter buffer
[1INT buffer IS
[free.memory FROM (SIZE ws) + (SIZE vs) FOR
(SIZE free.memory) - ((SIZE ws) + (SIZE vs))]:
SEQ
— Reserve slot in ws for parameters
[1INT parameter IS
[ws FROM work.space.size + 1 FOR no.params]:
SEQ
LOAD.INPUT.CHANNEL (parameter[0], £fs)
LOAD.OUTPUT .CHANNEL (parameter[l], ts)
-— Retype buffer to take its address
[I1BYTE b.buffer RETYPES buffer:
LOAD.BYTE.VECTCOR (parameter[2], b.buffer)
parameter[3] := SIZE buffer

72 TDS 366 01 March 1993

13 Low level programming 255

—— Store VAL BOOL parameter
parameter[4] := INT debugging
—— Store address of INT parameter
[IBYTE b.result RETYPES result:
LOAD.BYTE .VECTOR (parameter[5] , b.result)
—— Store pointer to vector space
[IBYTE b.vs RETYPES vs:
LOAD.BYTE.VECTOR (parameter[€], b.vs)
== Run the process
KERNEL.RUN([code FROM 0 FOR code.length],
entry.offset, ws, no.params)

This example first declares the variables and constants required for the process.
The vector code should be of a size large enough to hold the code for the process.
The values of the variables code . length, entry.offset, work. space.size
and vector. space. size are determined from the data in the code file.

Next the vector free . memory is partitioned for use as the process’s work space,
vector space and as the variable vector used by the process. All vectors and vari-
ables used by the process must be retyped as byte vectors so that their address
can be determined by the predefined routine LOAD . BYTE . VECTOR.

The parameters for the process are then set up. The unsized vector buffer is
passed as an address followed the size of the vector, in integers. Note that the size
of buffer, not b.buffer, is used.

The partitioning of the free memory buffer is illustrated in Figure 13.2.

=— Top of free memory

buffer

ws + vs
vectorspace

ws
Wptr

vector space address

parameters

Iptr

workspace

<— Start of free memory

Figure 13.2 Partitioning of free memory

72 TDS 366 01 March 1993

256 13.6 Scheduling

13.5 Extraordinary use of links

13.5.1 Introduction

The transputer link architecture provides ease of use and compatibility across the
range of transputer products. It provides synchronized communication at the

message level which matches the occam model of communication.

In certain circumstances, such as communication between a development system
and atarget system, itis desirable to use a fransputer link even though the synchro-
nized message passing of 0ccam is not exactly what is required. Such extraordi-
nary use of transputer links is possible but requires careful programming and the
use of some special occam procedures.

The use of these procedures is described in this chapter. To use them in a compila-
tion unit, the directive #USE “xlink.1lib” should be inserted at the top of the
source for that unit. For details of the procedures see section 1.10 in the occam
2 Toolset Language and Libraries Reference Manual.

13.5.2 Clarification of requirements

As an example, consider a development system connected via a link to a target
system. The development system compiles and loads programs onto the target
and also provides the program executing in the target with access to facilities such
as a file store. Suppose the target halts (because of a bug) whilst it is engaged in
communication with the development system. The development system then has
to analyze the target system.

A problem will arise if the development system is written in ‘pure’ occam. It is
possible that when the target system halts, the development system is in the
middle of communicating on a link. As a result, the input or output process will not
terminate and the development system will be unable to continue. This problem
can occur even where an input occurs in an altemative construct together with a
timeout (as illustrated below). When the first byte of a message is received the
process performing the alternative is committed to input; the timer guard cannot
subsequently be selected. Hence, ifinsufficient data is transmitted the input will not
terminate.

ALT
TIME ? AFTER timeout

from.other.system ? message

It is important to note that the problem arises from the need to recover from the
communication failure. It is perfectly straightforward to defect the failure within
‘pure’ occam and this is quite sufficient for implementing resilient systems with
multiple redundancy.

72 TDS 366 01 March 1993

13 Low level programming 257

13.5.3 Programming concerns

The first concem of a designer is to understand how to recognize the occurrence
of a failure. This will depend on the system:; for example, in some cases a timeout
may be appropriate, in others the failure may need to be signalled to another
process on a channel.

The second concem is to ensure that even if a communication fails, all input
processes and output processes will terminate. As this cannot be achieved directly
in occam, there are a number of library procedures which perform the required
function. These are described below.

The final concemn is to be able to recover from the failure and to re-establish
communication on the link. This involves reinitializing the link hardware; again
there is a suitable library procedure to allow this to be performed.

13.5.4 Input and output procedures

There are four library procedures which implement input and output processes
which can be made to terminate even when there is a communication failure. They
will terminate either as the result of the communication completing, or as the result
of the failure of the communication being recognized. Two procedures provide
input and output where communication failure can be detected by a simple timeout,
the other two procedures provide input and output where the failure of the commu-
nication is signalled to the procedure via a channel. The procedures have a
boolean variable as a parameter which is set TRUE if the procedure terminated as
aresult of communication failure being detected, and is set FALSE otherwise. Ifthe
procedure does terminate as a result of communication failure then the link
channel can be reset.

All four library procedures take as parameters a link channel ¢ (on which the
communication is to take place), a byte vector mess (which is the object of the
communication) and the boolean variable aborted. The choice of a byte vector
as the parameter to these procedures allows an object of any type to be passed
along the channel provided it is retyped first. Channel retyping (see section 13.2)
may be used to pass channels of any protocol to these procedures.

The two procedures for communication where failure is detected by a timeout take
atimer parameter TIME, and an absolute time t. The procedures treat the commu-
nication as having failed when the time as measured by the timer TIME is AFTER
the specified time t. The names and the parameters of the procedures are as
follows:

InputOrFail.t(CHAN OF ANY ¢, []BYTE mess,

TIMER TIME,
VAL INT t, BOOL aborted)

OutputOrFail.t (CHAN OF ANY c, VAL []BYTE mess,
TIMER TIME,
VAL INT t, BOOL aborted)

72 TDS 366 01 March 1993

258 13.6 Scheduling

The other two procedures provide communication where failure cannot be
detected by a simple timeout. In this case failure must be signalled to the inputting
or outputting procedure via a message on the channel kill. The message is of
type INT. The names and parameters to the procedures are as follows:

InputOrFail.c (CHAN OF ANY c, []BYTE mess,
CHAN OF INT kill, BOOL aborted)

OutputOrFail.c(CHAN OF ANY c, VAL []BYTE mess,
CHAN OF INT kill, BOOL aborted)

13.5.5 Recovery from failure

To reuse a link after a communication failure has occurred it is necessary to rein-
itialize the link hardware. This involves reinitializing both ends of both channels
implemented by the link. Furthermore, the reinitialization must be done after all
processes have stopped trying to communicate on the link. So, although the
InputOrFail and CutputOrFail procedures reset the link automatically when
they abort a transfer, it is necessary to use the fifth library procedure Rein-
itialise (CHAN OF ANY c)after it is known that all activity on the link has
ceased.

The Reinitialise procedure must only be used to reinitialize a link channel
after communication has finished. If the procedure is applied to a link channel
which is being used for communication the transputer’s error flag will be set and
subsequent behavior is undefined.

13.5.6 Example: a development system

For our example consider the development system illustrated in Figure 13.3.

Development Target
System Link System

Figure 13.3 Development system

The first step in the solution is to recognize that the development system knows
when a failure might occur, and hence knows when it might be necessary to abort
a communication.

When the development system decides to reset the target it can send a message
to the interface process directing it to abort any transfers in progress. It can then
reset the target system (which resets the target end of the link) and reinitialize the
link.

72 TDS 366 01 March 1993

13 Low level programming 259

The example program below could be that part of the development system which
runs when the target system starts executing and continues until the target is reset
and the link is reinitialized.

SEQ

CHAN OF ANY terminate.input, terminate.output :
PAR

interface process

monitor process

reset target system

Reinitialise(link.in)
Reinitjalise(link.out)

The monitor process will output on terminate. input and terminate. output
when it detects an ermor in the target system.

The interface process consists of two processes running in parallel; one process
outputs to the link, and the other inputs from the link. As the structures of the two
processes are similar only the output process is illustrated here.

If there were no need to consider the possibility of communication failure the
process might be:

WHILE active
SEQ
ALT
terminate.output ? any
active := FALSE
from.dev.system ? message
link.out ! message

This process will loop, forwarding input from from.dev.system to link.out,
until it receives a message on terminate . cutput. However, if the target system
halts without inputting after this process has attempted to forward a message, the
interface process will fail to terminate.

The following program overcomes this problem:

WHILE active
BOOL aborted :
SEQ
ALT
terminate.output ? any
active := FALSE
from.dev.system ? word
SEQ
QutputOrFail.c (link.out, message,
terminate.output, aborted)
active := NOT aborted

72 TDS 366 01 March 1993

260 13.6 Scheduling

This program is always prepared to input from terminate.output, and is
always terminated by an input from terminate . output. There are two possible
cases. The first is where a message is received by the input which then sets
active to FALSE. The second is where the output is aborted. In this case the
whole process is terminated because the variable aborted would then be true.

13.6 Scheduling

Processes in occam may have one of two priorities, high or low. A high priority
process will be executed in preference to a low priority process if both are active,
so that a low priority process will be interrupted. The PRI PAR construct is used
to assign priority to processes.

Scheduling in occam is achieved using the transputer’s scheduler which main-
tains a list of processes. The following predefined procedure may be used to affect
scheduling:

¢ RESCHEDULE () —inserts instructions into the program to cause the current
process to be moved to the end of the current priority scheduling queue,
even if the current process is a ‘high priority’ process.

This procedure is recognized automatically by the compiler and does not need to
be referenced by the #USE directive.

13.7 Setting the error flag

The transputer error flag can be explicitly set from software using the following
predefined procedure:

e CAUSEERROR () — inserts a seferr instruction into the program. If the
program is in STOP or UNIVERSAL mode it inserts a stopp instruction as
well,

This procedure is recognized automatically by the compiler and does not need to
be referenced by the #USE directive.

CAUSEERRCR sets the transputer error flag no matter what the error mode of the
compilation. This is distinct from the occam primitive process STOP, which only
sets the flag if the compilation is in HALT mode.

72 TDS 366 01 March 1993

Appendices

72 TDS 366 01 March 1993

262

72 TDS 366 01 March 1993

A Configuration
language definition

This appendix defines the syntax of the occam configuration language. This
should be considered as extending the syntax of occam.

A.1 Notation

Syntax definitions are presented in a modified Backus-Naur Form (BNF). Briefly,
the form is as follows:

» Each phrase definition consists of an equality expression built up using an
equals sign to separate the two sides.

* Terminal strings of the language — those not built up by rules of the
language — are printed in teletype font e.g. NODE.

» Alternatives are separated by vertical bars ().
» Optional sequences are enclosed in italic square brackets (‘f and T).

¢ Iltems which may be repeated zero or more times appear in braces (‘{' and
7).

* {0, X} represents a list of zero or more items of type 'x’ separated by
commas.

* {1, x} represents a list of one or more items of type 'x’ separated by
commas.

A.2 Introduction

A configuration program file contains a sequence of specifications. These specifi-
cations should include one hardware description (containing at least one node
declaration), and one software description. Optionally there may be edge declara-
tions and arc declarations. An optional mapping may appear either before of after
the software configuration, but after the declaration of any nodes, edges or arcs

which it references. Normal occam scope rules apply.

The #INCLUDE mechanism may be used to incorporate hardware descriptions,
software descriptions, or any other source text from other files.

The #USE statement may be used to reference pre-compiled code, either at the
outer level, or within the software description.

72 TDS 366 01 March 1993

264 A.3 New types and specifications

A.3 New types and specifications

This section defines the new occam types introduced by the configuration
language.

The syntax adds the new primitive types NODE, EDGE and ARC, and structures
CONFIG, NETWORK and MAPPING to the 0ocCam language.

NODE declarations introduce processors (nodes of a graph). These processors are
physical if their type and memory size attributes are defined as part ofthe hardware
description, and logical otherwise.

EDGE declarations introduce external connections of the hardware description.

ARC declarations introduce named connections (arcs of a graph). Each arc
connects two edges, which may be attributes of nodes, or declared edges.
Connections need only be named if it is required to force a particular mapping of
channels, or if names are required to aid debugging.

NETWORK declarations introduce the hardware description.
CONFIG declarations introduce the software description.

MAPPING declarations introduce the mapping description.

A.3.1 Syntax of configuration description

configuration = hardware.description
software.description

[mapping]

| specification

configuration

specification VAL

NODE
EDGE
ARC

primitive type

o on

A4 Hardware description

The NETWORK keyword introduces a hardware description, an optionally named
structure which describes the types, connectivity and attributes of previously
declared processor nodes. Connections are defined in CONNECT statements.
Attributes are given values in SET statements. The attributes of a processor node
include an array of edges which are its links, a string which defines its processor
type, and an integer which is the memory size in bytes.

Connections and attribute settings may be combined in any order using the Do
constructor, including replication and conditionals. For each node which has a type

72 TDS 366 01 March 1993

A Configuration language definition 265

defined to be a processor the aftributes with predefined names type and
memsize must be set once only. The connections connect declared edges and
edges of nodes, which have the predefined attribute name 1ink. The boolean
attribute root may be setto TRUE for only one node in a network without a connec-
tion to the predefined edge HOST. The attribute romsize defines the size in bytes
of read only memory on a node. Attributes are referenced by subscripting node
names with attribute names in brackets.

A.4.1 Processor attributes

This section describes processor atfributes defined in the occam configuration
language.

The following processor attributes can be defined in the NETWORK description:

* link — used by processor and network nodes to define interconnection.
Only defined if the type attribute has already been defined.

¢ memsize — used by processor nodes to define memory size.
¢ root — defines the root processor if there is no host connection.

¢ romsize - specifies the size of ROM attached to the processor,
expressed as an integer.

s type — used by processor nodes to define processor type.
The following processor attributes can be defined in the MAPPING description:

* linkquota — suggests the maximum number of links on the associated
processor that should be used by the virtual channel routing system.

* location.code, location.ws, location.vs, — used by process
nodes to specify the absolute locations of their code, workspace, and
vectorspace segments.

¢ order.code, order.ws, order.vs — used to specify the ordering of
code and data segments.

* nodebug — disables debugging by the Inquest Toolsef. Takes the value
TRUE or FALSE; the default is FALSE.

* noprofile - disables debugging by the Inquest Toolset. Takes the value
TRUE or FALSE; the default is FALSE.

* reserved — used by processor nodes to reserve memory.

* routecost — defines within the range 1 to 1000000 the associated cost
of through-routing data through this processor for other processor’s virtual
channel traffic.

72 TDS 366 01 March 1993

266 A.4 Hardware description

* tolerance - controls with any value between 0 and 1000000 how much
the particular processor concerned can be used for the provision of load-
sharing through-routing paths for other processors.

A4.2 Syntax definition

hardware.description = NETWORK [networkname]|
network.item

| specification
hardware.description

specification = node.declaration
| edge.declaration
| arc.declaration
| VAL

node.declaration = {0 [expression] } NODE nodename -
edge.declaration = {o [expression] } EDGE edgename :
arc .declaration = {o [expression] } ARC arcname :

network.item = DO
| DO replicator

network.item
connection.item
attribute.setting
conditional.network.item
SKIP
STOP
abbreviation
network.ifem

connection.item = CONNECT edge TO edge [WITH archame |

edgename
| device ”[1ink]” " [”expression”]"”

1

edge

attribute.setting = SET device { altribute.assignment }
device = nodename {¢ [subscript]}
attribute.assignment = {y, attribute } := {7, attribute.value }
attribute = aftnibute.name {¢ , [subscript] }
attribute.value = expression
conditional. network.ifem = IF
{network choice}

network choice = guarded.network.choice

| conditional.network.item
guarded .network.choice = boolean

network.item

72 TDS 366 01 March 1993

A Configuration language definition 267

A5 Software description

A CONFIG declaration introduces the software description as an occam process.
Additional specifications and processes are added to occam: the processor name
in a PROCESSOR statement may be a physical processor name or the name of a
logical processor which is mapped onto a physical processor. A channel allocation
may allocate up to two channels onto a named arc of the network.

A.5.1 Syntax definition

software.description = CONF1IG [config.name]
placedpar

| specification
software.description

placedpar = [PLACED | PAR
{ placedpar }
| [PLACED] PAR replicator
placedpar
| PROCESSOR processor.name
process.name
specification
placedpar
conditional.network.item
SKIP
STOP

IF
{network choice}

conditional.network.item
network choice = guarded.network.choice
| conditional .network.ifem

boolean
network.item

guarded .network.choice

A.6 Mapping structure

The keyword MAPPING introduces an (optionally named) mapping structure which
may be either before or after the software description. DO and IF constructs may
be used as in occam. SKIP and STOP are also allowed.

Mappings are introduced by the MAP keyword. A mapping may be used to

associate logical processors with physical processors (code mapping), and chan-
nels with arcs (channel mappings).

72 TDS 366 01 March 1993

268 A.6 Mapping structure

In code mappings a logical processor may appear on the left hand side of only one
mapping item whereas a physical processor may appear on the right hand side of
more than one mapping item. A code mapping may include a priority clause,
introduced by PRI, which will determine the priority at which the process will run.
SET may be used to define processor attributes (see section A.4.1).

In channel mappings the arc must connect the nodes onto which the processes
using the channels are mapped. The effect of channel mappings is identical to the
corresponding channel allocations which may appear in the software description.
Mappings involving single channels may use the PLACE statement.

Channel mappings are optional except in the case where one end of the arc is an
external edge. (The configurer will normally choose a mapping from its knowledge
of the connectivity of the hardware and the implied connectivity derived from the
use of channels as in the software description.)

A.6.1 Syntax definition

mapping = MAPPING [mapping.name |
mapping.item

| specification
mapping

mapping.item = code.mapping
| channel.mapping
| channel.allocation
| DO
mapping.ifem
| DO replicator
mapping.item
| conditional.map.item
| SKIp
| stop
| abbreviation
mapping.item
| attribute.setting

code.mapping = MAP processor.list ONTO node [priority.clause]
priority.clause = PRI expression

processor list = {1, processid}

processid = processor.name {¢ [subscript] }
processor.name = node.name

node = node.name {g [subscripf] }
channel.mapping = MAP channel.list ONTO arc

channel list = {1, channelid}

72 TDS 366 01 March 1993

A Configuration language definition 269

channelid = channel.name {g [subscript] }
arc = arc.name {¢ [subscript 1}
channel.allocation = PLACE {channel.list } ON arc:

attribute.setting

SET device { aftribute.assignment }

device = nodename { [subscript] }
attribute.assignment = {1, attribute } := {; , aftribute.value }
attribute = attribute.name {o , [subscript] }
attribute.value = expression
conditional.map.item = IF

{mapping.choice}
mapping.choice = guarded.mapping.choice

| conditional.map.item

guarded.mapping.choice = boolean

AT

map.item

Constraints

The following constraints apply to all configurations:

All physical processors whose types are set must be connected fo each
other.

Any physical processor whose type is set must have its memsize set.

Logical processors may only be mapped onto physical processors whose
type has been set.

Channels connecting processors of different word size must not use proto-
cols based on the type INT.

A priority expression must evaluate to 0 (high) or 1 (low).

INT array constructors such as [1,2,3] are not accepted for 16-bit
processors. They should be converted into INT16 arrays.

It is not permitted to RETYPE INT constants into other types for 16-bit
processors. INT16 constants should be used instead.

INT expressions are treated as INT32s. Thus MOSPOS INT evaluates to
the same value as MOSTPOS INT32. Where thisis a problem, i.e. it causes
a 16-bit integer overflow, the configurer will generate an error.

72 TDS 366 01 March 1993

270 A.7 Constraints

72 TDS 366 01 March 1993

B Equivalent data
types

This appendix lists equivalent data types to use when passing parameters to
external routines and receiving function return values. The information is pres-
ented with both occam and C as the calling language.

B.1 occam as the calling language

B.1.1 Parameter passing

The following table lists the equivalent data types to use when passing parameters
from occam to C. The first column gives the C formal parameter, the second and
third columns give the occam actual parameter type to pass. Where there is no
true equivalent the action to take is given.

C formal parameter occam actual parameter

(32 bit) (16 bit)
char VAL BYTE VAL BYTE
unsigned char
signed char No direct equivalentt |No direct equivalentt
short No direct equivalentt |VAL INT
signed short (see Note 1) VAL INT16
unsigned short No direct equivalentt |No direct equivalentf
int VAL INT VAL INT
signed int VAL INT32 VAL INT16
enum
unsigned int No direct equivalent} |No direct equivalentf
long VAL INT No direct equivalent}
signed long VAL INT32
unsigned long No direct equivalentt |No direct equivalent}
float VAL REAL32 No direct equivalent}
double No direct equivalentt |No direct equivalent}
struct No direct equivalentt |No direct equivalentf
union
char * BYTE BYTE
unsigned char *
signed char * No direct equivalentt |No direct equivalentt

72 TDS 366 01

March 1993

272 B.1 0CCaMm as the calling language
short * INT16 INT16

signed short * INT

unsigned short * No direct equivalentt |No direct equivalentt
int * INT INT

signed int * INT32 INT16

enum *

unsigned int * No direct equivalentt |No direct equivalentt
long * INT INT32

signed long * INT32

unsigned long * No direct equivalentt |No direct equivalentt
float * REAT32 REAL32

double * REAL64 REAL64

struct * No direct equivalentt |No direct equivalentt
union *

channel * CHAN CHAN

array See section 11.1.4. See section 11.1.4.

1There is no direct type equivalent in occam. Either recode the C program or
pass the parameter in another form.
Note 1: A C short on a 32 bit processor is stored in 32 bits with the upper 16
bits zeroed. In occam an INT16 on a 32 bit processor is also stored as a 32
bit value, however, in this case the upper 16 bits are ignored and not zeroed.
Hence C short and 0ccam INT16 are not directly equivalent.

B.1.2 Return values

The following table gives the occam data type to use when receiving return values
from C functions. Equivalents are given separately for 32 bit and 16 bit transputers.

C function type occam function type
(32 bit) (16 bit)
char BYTE BYTE
unsigned char
signed char No direct equivalentt |No direct equivalentt
short INT16 INT
signed short INT16
unsigned short No direct equivalentt |No direct equivalentt
int INT INT
signed int INT32 INT16
enum
unsigned int No direct equivalentt |No direct equivalentt
long INT INT32
signed long INT32

72 TDS 366 01

March 1993

B Equivalent data types 273

unsigned long No direct equivalentt |No direct equivalentt
float REAL32 REAL32

double REAL6G4 REALG64

struct No direct equivalentt |No direct equivalentt
union

Any pointer type No direct equivalentt | No direct equivalentt

tThere is no direct type equivalent in occam. Either recode the C program or
pass the parameter in another form.

B.1.3 Example of passing parameters from occamto C

The following examples show two C functions with a variety of formal parameters
along with the occam code which can call them. The code for 32 bit and 16 bit
transputers is given separately.

C functions to be called on a 32-bit transputer:

int cfuncl (int parml);

#pragma IMS nolink (cfuncl) /* remove the gsb hidden
parameter */

void cprocl (char c, int i,
long 1, float £,
char *cp, short *sp,
int *ip, long *1p,
float *£fp, double *dp,
int arrayl[8],
int array2[], const int array?len);

#pragma IMS nolink (cprocl) /* remove the gsb hidden
parameter */

int cfuncl (int parml)
{

return parml * 10;
}

void cprocl(char ¢, int i,
long 1, float f,
char *cp, short *sp,
int *ip, long *1lp,
float *fp, double *dp,
int arrayl([B8],
int array2[], const int array2len)

c;
(short)ec;
i;
1;

g
nn

*
[
o
{1}

72 TDS 366 01 March 1993

274 B.1 OCCam as the calling language

*fp = £;

*dp = (double)i;

for (j =0; j < 8B; j+¥)
arrayl[j] = 42;

for (j = 0; j < array2len; j++)
array2[j] = array2len;

occam code to call the above C functions on a 32 bit transputer:

#PRAGMA EXTERNAL “INT FUNCTION cfuncl (VAL INT parml) = 100”

#PRAGMA EXTERNAL ”“PROC cprocl (VAL BYTE c, VAL INT i, *
* VAL INT32 1, VAL REAL32 £, *
* BYTE cp, INT16é sp, *
* INT ip, INT32 lp, *
* REAL32 fp, REAL64 dp, *
* [8]INT arrayl, []INT array2) = 100"

BYTE c, cp:

INT i, ip, result:

INT16 sp:

INT32 1, lp:

REAL32 £, fp:

REAL64 dp:

[8]INT arrayl:

[5]1INT array2:

SEQ
result := cfuncl(i)
cprocl(e, i, 1, £, cp, sp, ip, 1lp, fp, dp, arrayl, array2?)

C functions to be called on a 16 bit transputer:

int cfuncl(int parml);

#pragma IMS nolink (cfuncl) /* remove the gsb hidden
parameter */

void cprocl (char c, int i,
short s, char *cp,
short *sp, int *ip,
long *lp, flocat *fp,
double *dp, int arrayl[8],
int array2[], const int array2len);

#pragma IMS_nolink (cprocl) /* remove the gsb hidden
parameter */

int efuncl(int parml)
{

return parml * 10;
}

void cprocl(char ¢, int i,
short s, char *cp,
short *sp, int *ip,
long *1lp, float *fp,

72 TDS 366 01 March 1993

B Equivalent data types

275

double *dp, int arrayl[8],
int array2[], const int array2len)

int j;

*cp = ¢;

*sp = s;

*ip = i;

*1p = (long)i;

*fp = (float)i;

*dp = (double)i;

for (j =0; j < 8; j++)
arrayl[j] = 42;

for (j = 0; j < array2len; j++)
array2[j] = array2len;

occam code to call the above C functions on a 16 bit fransputer:

#PRAGMA EXTERNAL “INT FUNCTION cfuncl (VAL INT parml) = 100"

#PRAGMA EXTERNAL ”PROC cprocl (VAL BYTE c, VAL INT i, *
* VAL INT16 s, BYTE cp, *
* INT16 sp, INT ip, *
* INT32 lp, REAL32 fp, *
* REAL64 dp, *
*

[8]1INT arrayl, []INT array2) = 100~

BYTE ¢, cp:

INT i, ip, result:

INT16 s, sp:

INT32 1p:

REAL32 fp:

REAL64 dp:

[B]INT arrayil:

[S]INT array2:

SEQ
result := cfunecl(i)
cprocl(e, i, s, cp, sp, ip, lp, fp, dp, arrayl, array2)

B.2 C as the calling language

B.2.1 Parameter passing

The following table lists the equivalent data types to use when passing parameters
from C to occam. The first column gives the occam formal parameter, the second
and third columns give the C actual parameter type to pass. Where there is no true

equivalent the action fo take is given.

72 TDS 366 01 March 1993

276

B.2 C as the calling language

occam formal parameter

C actual parameter

(32 bit) (16 bit)

VAL BOOL int int

(value must be 0 or 1) |(value must be 0 or 1)
VAL BYTE char char

unsigned char unsigned char
VAL INT16 short int short int

int

VAL INT32 int long int *

long int
VAL INT64 No direct equivalentt |No direct equivalentt
VAL INT int int
VAL REAL32 float float *
VAL REAL64 double * double *
VAL array See section 11.1.4. See section 11.1.4,
BOOL char * char *

unsigned char * |unsigned char*

(value pointed to must | (value pointed to must

be Oor1) beOor1)
BYTE char * char *

unsigned char * |unsigned char *
INT16 short int * short int *

int *

INT32 int * long int *

long int *
INT64 No direct equivalentt |No direct equivalentt
INT int * int *
REAL32 float * float *
REAL64 double * double *
CHAN Channel * Channel *

(see Note 1) (see Note 1)
PORT No direct equivalentt |No direct equivalentt
TIMER Pass nothing (see Pass nothing (see

page 203). page 203).
array See section 11.1.4. See section 11.1.4.

channel .h.

TThere is no direct type equivalent in C. Either recode the occam program or
pass the parameter in another form.

Note 1: Channel is an INMOS specific type declared in the C header file

72 TDS 366 01

March 1993

B Equivalent data types

277

B.2.2 Return values

The following table outlines the conventions that must be followed when receiving
occam function return values in C.

occam function type C function type
(32 bit) (16 bit)

BOOL int int
BYTE char char

unsigned char unsigned char
INT16 short int short int

int

INT32 int long int

long int
INT64 No direct equivalentt |No direct equivalentt
INT int int
REAL32 float float
REALG4 double double
tThere is no direct type equivalent in C. Either recode the occam program or
pass the parameter in another form.

B.2.3 Example of passing parameters

The following example shows an occam function and an occam procedure with
a variety of formal parameters, along with the C code which can call them. The
calling code for 32 bit and 16 bit transputers is given separately. The occam
routines to be called are as follows:

INT32 FUNCTION ocfuncl (VAL INT32 parml) IS parml:

PROC ocprocl (VAL BYTE vb,
VAL

INT16 vilé,

INT32 vi32,

INT vi,

REAL32 wr32,

BOOL vbo,

VAL
VAL
VAL
VAL REAL64 vré64,
VAL
VAL

[1INT varrl,
VAL [8]INT wvarr2,

BOOL bo,
[JINT arrl,
[B]INT arr2)

72 TDS 366 01

March 1993

278 B.2 C as the calling language
SEQ

b :=vb
ilé := wileé
i32 := vi32
i:=vwvi
r32 := vr3i2
r64 := vred
bo := wvbo
arrl := wvarrl
arr2 := varr2

The C code to call the above occam routines on a 16 bit transputer is as follows:

#define ARRAY SIZE 1
#define ARRAY SIZE 2

4
8

extern long int ocfuncl(long int parml);

extern void ocprocl (

char vb, short int vilse,

long int vi32, int vi,

float vr32, double *vréd,

int vbo,

int varrl[], const int varrl_size,
int varr2 [ARRAY SIZE 2],

char *b, short int *il6,

long int *i32, int *i,

float *r32, double *r64,

char *bo,

int arrl[], const int arrl_size,
int arr2[ARRAY SIZE 2]);

#pragma IMS nolink(ocfuncl)
#pragma IMS nolink (ocprocl)

long int 1i, result;
char vb, b;

short int wilé, il6;
long int vi32, i32;
int vi, i;

float vr32, r32;
double vréd, ré4;
int vbo;

char bo;

int wvarrl[ARRAY SIZE

1], arrl[ARRAY SIZE 1];

int varr2[ARRAY SIZE 2], arr2[ARRAY SIZE 2];

result = ocfuncl(li)

ocprocl (vb, vil6, wvi
vbo, varrl,

‘

32, vi, vr32, &vré4,
ARRAY SIZE 1, varr2,

&b, &il6, &i32, &i, &r32, &r64,
&bo, arrl, ARRAY SIZE 1, arr2);

72 TDS 366 01

March 1993

C Transputer
Instruction set

This appendix provides a reference for the fransputer instruction set as supported
by assembly code insertion. For detailed specifications of the instructions, refer to
the Transputer instruction set: a compiler writer’s guide.

Instructions listed in sections C.1 to C.7 can be used when ‘full code insertion’ is
enabled by the "W’ command line option. Instructions listed in section C.8 can be
used when ‘sequential code insertion’ is enabled by the ‘G’ command line option.
Note: Only use those instructions which exist on the target processor may be used.
For example, floating point instructions (see section C.5.1) may not be used on T4
series transputers.

C.1 Prefixing instructions

The transputer instruction set is built up from 16 direct instructions, each with a
4-bit argument field. The direct instructions include prefix instructions which
augment the 4-bit field in a direct instruction which follows them by their own 4-bit
argument field, effectively allowing the argument to be extended to 32 bits.
Normally, the assembler will compute the prefix instructions required for operand
values greater than 4 bits automatically.

pfix prefix
nfix negative prefix

C.2 Directinstructions

The direct instructions form the core of the transputer instruction set. Each direct
instruction has a single operand, normally an integer constant, which will be
encoded in the instruction itself and, if it is larger than will fit into the 4-bit argument
field of the direct instruction, into a series of pfix and nfix instructions as well.

The transputer architecture is based around a three-register evaluation stack and
a single base register Wreg. The load and store ‘local’ instructions access a word
in memory at a displacement from Wreg given by the operand value used. The
displacement is scaled by the word size. The load and store ‘non-local’ instructions
use the top evaluation stack register (Areg) as the base instead of Wreg, allowing
computed base addresses to be used.

The operand of the j, ¢j and call instructions is interpreted as a byte displacement
from the instruction pointer (program counter) register Iptr. ldpiis similar but takes
its operand from Areg.

72 TDS 366 01 March 1993

282 C.3 Operations

adc Add constant operand value to Areg.

ajw Adjust workspace pointer Wreg by constant operand value (scaled
by word length).

call Call.

cj Conditional jump i.e. jump if zero otherwise pop Areg’. As with
Jjump , alabel identifier may be used as argument to this instruction.

eqc Testif Areg equals constant; (result ‘true’ or ‘false’, placed in Areg).

f Jump: the argument may be an identifier indicating a label for the
jump to go to; the assembler will compute the displacement
required.

lde Load constant.

ldl Load local word

Idip Load pointer to local word

Idnl Load non-local word

Idnip Load pointer to non-local word

opr ‘operate’: the argument to this instruction is a code indicating a

zero-operand indirect instruction to be executed. Most of the trans-
puter instruction set is made up of these indirect instructions.
Normally you would use the mnemonic for the specific indirect
instruction which you require: the assembler will encode this as an
opr instruction on your behalf. However, it is possible to use opr
explicitly, for example to synthesize the instruction sequence for a
new indirect instruction not supported by the T414 and T800 trans-

puters.
stl Store local word
stnl Store non-local word

C.3 Operations

The instructions in this section are all indirect instructions built out of the opr
instruction. None of these instructions take an argument; instead, they work solely
with the transputer evaluation stack.

The arithmetic instructions take their operands from the top of the evaluation stack
(Areg, Breg) and push the result value back on the stack in Areg.

add Add

alt Alt start
altend Alt end
altwt Alt wait

and Bit-wise and
bent Byte count

72 TDS 366 01 March 1993

C Transputer instruction set 283

bsub
centt
clrhalterr
csngl
csub0
cword
diff
disc
diss
dist
div
enbc
enbs
enbt
endp
fmul
gajw
geall
gt

in
ladd
b
[diff
Idiv
Idpi
Idpri
Idtimer
lend
Imul
Ishl
Ishr
Isub
Isum
mint
move
mul

Byte subscript (Areg = Areg + Breg)
Check count from 1

Clear halt-on-error

Check single

Check subscript from 0

Check word

Difference

Disable channel

Disable skip

Disable timer

Divide

Enable channel

Enable skip

Enable timer

End process

Fractional multiply (32-bit processors only)
General adjust workspace

General call (swap Areg+ptr)

Greater than (result 'true’ or ‘false’, placed in Areg)
Input message

Long add

Load byte

Long difference

Long divide

Load pointer to instruction (Areg is byte displacement from Iptr)
Load current priority

Load timer

Loop end

Long multiply

Long shift left

Long shift right

Long subtract

Long sum

Minimum integer

Move block of memory (src: Creg dest: Breg len: Areg)
Multiply

72 TDS 366 01 March 1993

284 C.3 Operations
norm Normalize

not Bit-wise not

or Bit-wise inclusive or

out Output message

outbyte Output byte

outword Output word

prod Product

rem Remainder

resetch Reset channel

ret Return

rev Reverse top two stack elements
runp Run process

saveh Save high priority queue registers
savel Save low priority queue registers
sb Store byte

seterr Set error

sethalter Set halt-on-error

shl Shift left

shr Shift right

startp Start process

sthb Store high priority back pointer
sthf Store high priority front pointer
stib Store low priority back pointer
stif Store high priority back pointer
stoperr Stop on error

stopp Stop process

sttimer Store timer

sub Subtract

sum Sum

falt Timer alt start

taltwt Timer alt wait

testerr Test error false and clear
testhalterr Test halt-on-error

testpranal Test processor analyzing

tin Timer input

went Word count

72 TDS 366 01 March 1993

C Transputer instruction set 285

wsub Word subscript (Areg = Areg + 4*Breg)
xdble Extend to double

xor Bit-wise exclusive or

xword Extend to word

C.4 Additional instructions for T400, T414, T425 and TB

The indirect instructions in this section may only be executed on a T400, T414 or
T425 processor.

cflerr Check single-length floating-point infinity or not-a-number

Idinf Load single-length infinity

postnormsn Post-normalize correction of single-length floating-point number
roundsn Round single-length floating-point number

unpacksn Unpack single-length floating-point number

C.5 Additional instructions for IMS T800, T801 and T805

The instructions in this section may only be executed on T800, T801 and T805
processors.

C.5.1 Floating-point instructions

The indirect instructions in this section provide access to the T8 series built-in float-
ing-point processor. Note that the instructions beginning with ‘fpu . . ." are doubly
indirect: they are accessed by loading an entry code constant with a /dc instruction,
then executing an fpentry instruction, which is itself indirect. As with ordinary indi-
rect instructions, this indirection is handled transparently by the assembler,
although the fpentry instruction is also available.

The floating-point load and store instructions use the infeger Areg as a pointer to
the operand location.

fpadd Floating-point add
fpb32tor64 Convert 32-bit unsigned integer to 64-bit real
fpchkerr Check floating error

fpdiv Floating-point divide

fpdup Floating duplicate

fpentry Floating-point unit entry: used to synthesize the ‘fpu . . ." instruc-
tions.

ipeq Floating-point equality

fpgt Floating-point greater than

72 TDS 366 01 March 1993

286 C.5 Additional instructions for IMS T800, T801 and T805
fpi32tor32 Convert 32-bit integer to 32-bit real
pi32tor64 Convert 32-bit integer to 64-bit real
fpint Round to floating integer
fpldnladddb Floating load non-local and add double
foldniaddsn Floating load non-local and add single
fpldnidb Floating load non-local double
foldnidbi Floating load non-local indexed double
fpldnimuldb Floating load non-local and multiply double
foldnimulsn Floating load non-local and multiply single
fpldnisn Floating load non-local single
fpldnisni Floating load non-local indexed single
fpldzerodb Floating load zero double
fpldzerosn Load zero single
fornul Floating-point multiply
fonan Floating-point not-a-number
fonotfinite Floating-point finite
fpordered Floating-point orderability
fpremfirst Floating-point remainder first step
fpremstep Floating-point remainder iteration step
fprev Floating reverse
fprtoi32 Convert floating to 32-bit integer
fostnidb Floating store non-local double
fpstnli32 Store non-local int32
fpstnisn Floating store non-local single
fpsub Floating-point subtract
fptesterr Test floating error false and clear
fpuabs Floating-point absolute
fpuchki32 Check in range of 32-bit integer
fpuchki64 Check in range of 64-bit integer
fpuclrerr Clear floating error
fpudivby?2 Divide by 2.0
fouexpdec32 Divide by 232
fouexpinc32 Multiply by 232
fpumulby2 ~ Multiply by 2.0
founoround Convert 64-bit real to 32-bit real without rounding
fpur32tor64 Convert single to double

72TDS 366 01

March 1993

C Transputer instruction set 287

fpur64tor32 Convert double to single

fpurm Set rounding mode to round minus
fpurn Set rounding mode to round nearest
fourp Set rounding mode to round positive
fpurz Set rounding mode to round zero
fouseterr Set floating error

fpusqrtfirst Floating-point square root first step
fpusgrtlast Floating-point square root end
fpusqristep Floating-point square root step

C.6 Additionalinstructions forIMS T225, T400,T425,T800, T801,
T805
The indirect instructions in this section supplement the T414’s integer instruction
set.

bitcnt Count the number of bits set in a word

bitrevnbits Reverse bottom n bits in a word

bitrevword Reverse bits in a word

crchyte Calculate CRC on byte

creword Calculate Cyclic Redundancy Check (CRC) on word

dup Duplicate top of stack

pop Pop processor stack

Iddevid Load device identity

wsubdb Form double-word subscript

The following 2-dimensional block move instructions apply to the IMS T400, T425,
T800, T801 and T805 only:

moveZ2dall 2-dimensional block copy

move2dinit Initialize data for 2-dimensional block move
move2dnonzero 2-dimensional block copy non-zero bytes
moveZ2dzero 2-dimensional block copy zero bytes

C.7 Additional instructions for the IMS T225, T400, T425, T801
and T805

The indirect instructions listed in this section provide debugging and general
support functions.

clrj0break Clear jump 0 break enable flag
setj0break Set jump 0 break enable flag

72 TDS 366 01 March 1993

288 C.8 Instructions supported by ‘sequential code insertion’
testjObreak Test if jump 0 break flag is set

timerdisableh Disable high priority timer interrupt

timerdisablel Disable low priority timer interrupt

timerenableh Enable high priority timer interrupt

timerenablel Enable low priority timer interrupt

Idmemstartval Load value of MemStart address

C.8 Instructions supported by ‘sequential code insertion’

The instructions in this section can be used when ‘sequential code insertion’ is
enabled by the ‘G’ compiler option. Note: Only use those instructions which exist
on the target processor may be used. For example, floating point instructions
(those beginning with fp) may not be used on T4 series transputers.

adc
bitrevnbits
cf

cword
fmul

fodup

fpint
fpldnimuldb
fpldzerosn
foremfirst
fpstnli32
fpuchki32
fpuexpinc32
fpurm
fpusqrtfirst
ladd

Idinf

ldni

Imul

mint

zero

or

rev

shr

sum

went
xword

add
bitrevword
crchyte

diff

fpadd

fpeq
fpldnladddb
foldnimulsn
fpmul
fpremstep
fpstnisn
fpuchki64
fpumulby2
fpurn
fpusgqrtlast
b

ldiv

Idnip

Ishi

move
move2dzero
pop
roundsn

st

testerr

wsub

and

bsub
creword
div
fob32tor64
fpgt
foldnladdsn
fpldnisn
fonan
fprev

fpsub
fouclrerr
fpunoround
fourp
fousgristep
Idc

Idl

Idpi

Ishr
move2dall
mul
postnormsn
sb

stnl
testhalterr
wsubdb

bent
cent1
csngl

dup
fpchkerr
fpi32tor32
fpldnidb
fpldnlsni
fpnotfinite
fprtoi32
fptesterr
fpudivby?2
fpur32tor64
fpurz

gt

Iddevid
ldip

Idpri

Isub
move2dinit
norm
prod
seterr
sttimer
testpranal
xdble

bitcnt

cflerr
csub0

eqc

fpdiv
fpi32tort4
fpldnidbi
fpldzerodb
fpordered
fpstnidb
fpuabs
fouexpdec32
fpur64tor32
fpuseterr

J
Idiff

Idmemstartval
Idtimer

Isum
moveZ2dnon-
not

rem

shi

sub

unpacksn

Xxor

ASM pseudo-operations are also permitted when sequential code insertion is

enabled.

72 TDS 366 01

March 1993

D Transputer code
Insertion

This appendix describes the facilities for inserting transputer instructions into
occam programs, using the ASM construct.

D.1 Inline transputer code insertion

The occam compiler supports the insertion of transputer code directly into an
occam program. The facility must be specifically enabled on the command line.
Two levels of insertion are available.

D.1.1 Sequential code insertion

‘Sequential code insertion’ allows access to all transputer instructions on the
processor except those which affect parallel processes and scheduling. A list of
instructions supported by this facility can be found in section C.8.

D.1.2 Full code insertion

‘Full code insertion’ allows access to all transputer instructions supported by the
processor where the process is running. A list of instructions can be found in
Appendix C.

D.2 AsM construct

The AsM construct provides the ability to insert transputer code sequences into
occam programs.

D.2.1 Syntax

process = asm.construct
asm.construct = ASM
{ asm.line }
asm.line = primary.op constant.expression

load.or.store.op name
branch.op :label
branch.op name
secondary.op

72 TDS 366 01 March 1993

290 D.2 ASM construct

| pseudo.op
| labeldef

labeldef

:label

]

primary.op any primary instruction (in upper-case letters)

load.or.store.op LDL | LDNL | LDLP | LDNLP

STL | STNL

branch.op J | CJ | CALL

secondary.op = any secondary instruction (in upper-case letters)

pseudo.op = LD asm.exp

LDAB asm.exp, asm.exp

LDABC asm.exp, asm.exp, asm.exp
ST element

STAB element, element

STABC element, element, efement
BYTE {, constant.expression }
WORD {, constant.expression }
ALIGN

LDLABELDIFF :/abel- :label
RESERVELOWWS constant.expression

asm.exp = ADDRESSOF element
| ADDRESSOF routine.name
| expression

Note: Instructions should be specified in uppercase.
ASM instructions

The primary instructions which perform loads and stores are allowed to take a
symbolic name as their operand; they evaluate to the primary instruction with an
operand equal fo that symbol’s offset in workspace. Note that this means, for
example, that LDL x where x is a non-VAL parameter, will retum the pointer to x.
This also means that if x is a non-local variable, the operand used will be the vari-
able’s offset in the non-local workspace. Primary instructions with symbolic name
operands should only be used in special cases; you would normally use the
pseudo ops as described below.

The assembler will optimize away primary instructions which are known to be no-
ops. These are:

AJW 0 ADC 0 LDNLP 0

72 TDS 366 01 March 1993

D Transputer code insertion

291

PFIX O should be used where a NOP byte is required, or the BYTE pseudo-op

could be used.

Secondary instructions, and the fpentry instructions, simply expand out to the
correct byte sequence, as expected.

Branching to a label defined within the same procedure or function is permitted.
(Two labels with the same name may not appear in the same procedure.)

Branching to a PROC or FUNCTION which is in scope is permitted, but it is the
responsibility of the programmer to load the parameters for the call correctly.

Pseudo operations

The pseudo.op operations are defined as follows:

LD

Loads a value into the Areg. May use other stack slots and/or
temporaries.

LDAB

Loads values into the Areg and Breg. The left hand expres-
sion ends up in Areg. May use other stack slots and/or tempo-
raries.

LDABC

Loads values into the Areg, Breg and Creg. The leftmost
expression ends up in Areg. May use temporaries.

ST

Stores the value from the Areg. May use other stack slots
and/or temporaries.

STAB

Stores values from the Areg and Breg. The left hand element
receives Areg. May use other stack slots and/or temporaries.

STABC

Stores values into the Areg, Breg and Creg. The leftmost
element receives Areg. May use temporaries.

BYTE

Inserts the following constant BYTE value(s) into the code.
The expression may be either a single BYTE, or a BYTE table
or sfring, or a comma separated list of such items.

WORD

Inserts the following constant INT value(s) into the code. The
expression may be either a single integer, or an integer table,
or a comma separated list of such items.

LDLABELDIFF

Calculates the difference, n, between two labels and inserts
alDCn.

RESERVELOWWS

Reserves ‘below wokspace' slots. This ensures that the
specified number of words are reserved below the current
process's workspace, and will not be allocated to any other
concurrent process. The specified expression must be a
compile-time integer constant.

ALIGN

Inserts zero or more PFIX 0 instructions until aligned to a
word boundary. Currently not implemented.

Note: that arbitrarily complicated expressions are permitted, including function

calls. For example:

72 TDS 366 01

March 1993

292 D.2 ASM construct

ASM
IDABC a[x], y+27, f(p,q/x)
STABC a[f(w,x,y)], z, a[9]

Expressions used in foad pseudo-ops must be word sized or smaller. To load a
floating point value, use a LD ADDRESSOF name to load its address, then a
FPLDNLSN or FPLDNLDB as required. Elements used in sfore pseudo-ops must
be word sized or smaller.

ADDRESSOF operator

The ADDRESSOF operator is used in the LD, LDAB, and LDABC pseudo-ops, and
can be applied to any variable, constant expression, or routine name. It returns a
word containing the machine address of that object.

Special names

The following special names are available as constants inside ASM expressions.

.WSSIZE Evaluates to the size of the current procedure’s workspace. This
will be the workspace offset of the return address, except within
a replicated PAR, where it will be the size of that replication’s
workspace requirement.

.VSPTR Evaluates to the workspace offset of the vectorspace pointer. If
inside a replicated PAR, it points to the vectorspace pointer for
that branch only. A compile time error is generated if there is no
vectorspace pointer because no vectors have been created.

.STATIC Evaluates to the workspace offset of the static link. If inside a
replicated PAR, it points to the static link for that branch only. A
compile time error is generated if there is no static link.

For example, to determine the retum address of a procedure, you would use: IDL
.WSSIZE There is no checking of ‘suitability’, hence, for example, J .WSSIZEis
legal.

Channels

Channels may be accessed in ASM; they are considered to be a pointer to a
channel word. Thus ‘loading’ a channel will load a pointer to the channel word, and
loading the ‘address’ of a channel will load a pointer to a pointer to the channel
word.

72 TDS 366 01 March 1993

E Glossary

Alias

If two or more expressions denote the same memory address, then the
expressions are aliases or one another.

Alias check
A program compilation check that ensures that names are unique within a
given scope.

Analyse

A transputer input pin which forces the processor to halt at the next
de-scheduling point, to allow the state of the processorto be read. To assert
the Analyse input on a transputer. In the context of ‘analyzing a network’,
to analyze all transputers in that transputer network.

Backtrace

Within the debugger an simulator tools, to move from a position within a
procedure or function body to the call of that procedure or function.

Big endian

The opposite of little endian — see below.

Bootable code

Self-starting program code that can be loaded onto a transputer or trans-
puter network down a user link and run. Bootable code is produced by
icollect from linked units (single transputer programs) or configuration
binary files (for configured programs).

Bootstrap

A transputer program, loaded from ROM or over a link after the transputer
has been reset or analyzed, which initializes the processor and loads a
program for execution (which may be another loader).

72 TDS 366 01 March 1993

294 Glossary

Capability
A text string which identifies a transputer resource (or resources).

Compiler library

A group of occam library routines that are used by the compiler to imple-
ment extended arithmetic and transputer system operations.

Configuration

The association of components of a program with a set of physical
resources. Used in this manual to refer to the specific case of allocating
software processes to processors in a network, and channels to links
between processors. The term is also used, depending on the context, to
describe the act of deciding on these allocations for a program, the configu-
ration code which describes such a set of allocations, and the act of
applying the configurer to a configuration description.

Configurer

The tool which assigns processes and channels on a specified configura-
tion of transputers. The output from the tool is a configuration binary file for
input to icollect.

Connection manager

The functionality provided by the Linkops part of the host file server.
Provides and maintains connections to transputer systems across a
network and is used by the session managerto select a transputer system
and maintain unique access to that system.
Core dump
A memory dump. Core dumps are required as part of the process of debug-
ging multitransputer programs that incorporate the root transputer.
Communicating Sequential Processes (CSP)

A theory and notation, developed by Professor Tony Hoare, for describing
systems made up of concurrent processes which communicate via chan-

nels. The occam model of concurrency is based on CSP.

Deadlock

A state in which one or more concurrent processes can no longer proceed
because of a communication interdependency.

72 TDS 366 01 March 1993

Glossary 295

Error modes

The compilation mode of a program that determines what happens when

a program error (such as an array bounds violation) occurs. Programs are

compiled by icec in UNIVERSAL mode, which is the mode that can be

mixed with HALT and STOP code generated by other INMOS compilers.
Error signal (or error flag)

In the transputer, an external signal used to indicate that an error has
occurred in a running program. Also refers to one of the system control
functions on transputer networks. Error signals can be OR-ed together on
transputer boards to indicate that an error has occurred in one of the trans-
puters in a network.

Ethernet
A LAN technology based on a passive coaxial cable which transmits at 10
Mbps.

Extended data types

The occam data types INT16, INT32, INT64, REAL32 and REAL64.

External memory interface (EMI)

The signals which connect a transputer to external memory, consisting of

address and data buses and a number of control signals. Most of the 32

bit transputers (T4xx and T8xx) have a programmable EMI which can be

configured for different types and speeds of external memory device.
Event

An input signal to the transputer which can be used an external interrupt.
The event input can be treated by a process as a (zero length) communica-
tion.

Free variables

Variables which are referred to in a function or procedure, but declared
outside of it.

Gateway

A dedicated computer that connects two or more networks, and routes
messages between them.

72 TDS 366 01 March 1993

296 Glossary

Hard channels
Channels which are mapped onto links between processors in a trans-
puter network (see also soft channels).

Host

The computer to which a transputer system is connected and which poss-
ibly also provides file system access and terminal I/O.

Host file server

A server which provides access to the filing system and terminal I/O of a
host operating system.

Include file

A file containing source code which is incorporated into a program using
the C #include (#INCLUDE for occam) directive. Include files are, by
convention, given the . h extension in C; occam include files are given the
extension . inc.

LAN (Local Area Network)
Any computer network that works over short distances at high speeds.

Library

A collection of separately compiled procedures or functions, created by the
toolset librarian 11ibr, which may be shared between parts of a program
or between different programs.

Library build file

A file containing a list of input files for the librarian tool i1ibr. Each file
forms a separately loadable module in the library. Library build files should
have the . 1bb extension.

Library usage file
A file listing the libraries and separately compiled units used by another
library. Library usage files must have the . 1iu extension.

Link

In the context of transputer hardware, the serial communication link
between processors.

72TDS 366 01 March 1993

Glossary 297

In the context of program compilation, collecting together all the compiled
code for a program, resolving all references and placing the collected code
into a single file.

Linker

The program or tool which links a program or compilation unit.

Linkops

The recommended INMOS link interface, used by iserver 1.5.

Little endian

The transputer is totally ‘little endian’, i.e. less significant data is always
held in lower addresses. This applies to bits in bytes, bytes in words and
words in memory.

Loader

Depending on the context, refers to the part of the host file server which
loads a transputer network or to a small program which is loaded into a
transputer, and which then distributes code to other transputers and loads
a larger program on top of itself.

Makefile

Aninput file for a ‘make’ program. A makefile contains details of file depen-
dencies and directions for rebuilding the object code. Makefiles are created
for the toolset using imakef.

Network

Depending on context may refer to a conventional computer network or a
set of interconnected transputers.

Object code

Intermediate code between source and bootable code. Object code
cannot be directly loaded onto a transputer and run. The compiler and
linker tools generate object code.

72 TDS 366 01 March 1993

208 Glossary

Peek and poke
To read (peek) and write (poke) locations in a transputer’'s memory via a
link, while the transputer is waiting to be booted.

PostScript

PostScript is a device-independent, interpreted language for describing
the layout of text and graphics on a page. It is used by a large number of
printers and software applications as the standard means of transferring
graphics data.

Preamble

The part of a transputer loader program that initializes the state of the
processor.

Priority
In the transputer, the priority level at which the currently executing process
is being run. INMOS transputers support two levels of priority, known as
‘high’ and ‘low’.

Process

Self-contained, independently executable code.

Protocol

The pattem (type, etc.) of communications between two processes, often
including communications on more than one channel. Protocols can be

defined in occam and must be specified when a channel is declared.

Reset

The transputer system initialization control signal.

Root transputer (or root processor)

The processor in a transputer network which is physically connected to the
host computer, and through which the transputer network is loaded.

Separate compilation

A self-contained part of a program may be separately compiled, so that
only those parts of a program which have changed since the last compila-
tion need to be re-compiled (see also makefile).

72 TDS 366 01 March 1993

Glossary 299

Server

A program running on a host computer which provides access to the filing
system and terminal /O of the host for the transputers, or access to the
transputer system from the host. The server can also be used to load the
program onto the network.

Session manager
That part of the server which maintains unique access (a session) to a
transputer system when requested by a user.

Soft channels

Channels declared and used within a process running on a single trans-
puter (see also hard channels). Soft channels are implemented by a
single word in memory.

Standard error

The host system ermror handler. Erors directed to standard error are
displayed in a host-defined way, for example, on the terminal screen. For
details of how to modify standard error on the system, consult the operating
system documentation.

Standard input

The host system input handler. Specifies the standard input device, for
example the terminal keyboard or a disk file. For details of how to modify
standard input on the system, consult the operating system documenta-
tion.

Standard output

The host system output handler. Specifies the standard output device, for
example, the terminal screen ora disk file. For details of how to modify stan-
dard input on the system, consult the operating system documentation.

Subsystem

In transputer board architecture, the combination of the Reset, Analyse
and Error signals which allows one board to control ancther board
connected to its subsystem port.

Target transputer

The transputer on which the code is intended to run. The transputer type,
or a restricted set of types defined in a transputer class, is defined when
the program is compiled, using command line options.

72 TDS 366 01 March 1993

300 Glossary

Transputer Module (TRAM)

A range of small printed circuit boards which typically hold a transputer,
some memory and, optionally, some other application specific hardware.
TRAMs can be interconnected via links to build systems based on a
number of motherboard architectures. For more information see the
iq systems databook.

Usage check

A compilation check that ensures no variables are shared between parallel
processes, and that enforces rules about the use of channels as unidirec-
tional, point-to-point connections.

User link

-The connection of a fransputer resource to a host computer.

Vector space

The data space required for the storage of arrays within occam code (see
also workspace).

Worm

A program that distributes itself through a network of transputers (perhaps
with an unknown topology) and allows all the processors in the network to
be loaded, tested or analyzed.

Workspace

The data space required by an occam process. When used in contrast o
vector space, refers to the data space required for scalars within the
occam code.

72 TDS 366 01 March 1993

F Bibliography

F.1 Transputers

The transputer databook (Third Edition 1992)

INMOS Ltd, July 1992
INMOS document number 72 TRN 203 02

The military and space transputer databook (First Edition 1990)

INMOS Ltd, July 1990
INMOS document number 72 TRN 224 00

Transputer instruction set: A compiler writer’s guide

INMOS Lid
Prentice Hall 1988

Transputer Hardware and systems design

JC Hinton and AL Pinder
Prentice Hall 1993

The transputer handbook

lan Graham and Tim King
Prentice Hall 1990

F.2 C programming

The C programming language (First Edition)

Brian W Kernighan & Dennis M Ritchie
Prentice Hall 1978

72 TDS 366 01 March 1993

302

Bibliography

The C programming language (Second Edition — ANSI C)

Brian W Kernighan and Dennis M Ritchie
Prentice Hall 1988

C: A reference manual (Second Edition — ANSI C)

Samuel P Harbison and Guy L Steele
Prentice Hall 1987

American National Standard for Information Systems —
Programming Language C

American National Standards Institute 1990
Ref. Doc. X3J11/88-159

F.3 occam programming

occam 2 reference manual

INMOS Ltd
Prentice Hall 1988

A tutorial introduction to occam programming

D Pountain and D May
Blackwell Scientific 1987

An introduction fo occam 2 programming

KC Bowler, RD Kenway, GS Pawley and D Roweth
Chartwell-Bratt 1987

Programming in occam 2

A Burns
Addison-Wesley 1988

occam 2

A Gallently
Piman 1989

72 TDS 366 01

March 1993

Bibliography

303

Programming in occam 2

G Jones and M Goldsmith
Prentice Hall 1988

Concurrent programming in occam 2

J Wexler
Ellis Horwood 1989

F.4 INMOS technical notes

The transputer applications notebook:
Architecture and software (First Edition 1989)

INMOS Ltd, May 1989
INMOS document number 72 TRN 206 00

The transputer applications notebook:
Systems and performance (First Edition 1989)

INMOS Ltd, June 1989
INMOS document number 72 TRN 205 00

IMS B004 IBM PC add-in board

Technical note 11
INMOS document number 72 TCH 011

Notes on graphics support and performance improvements on the IMS T800

Technical note 26
INMOS document number 72 TCH 026

Security aspects of occam 2

Technical note 33
INMOS document number 72 TCH 033

Simple real-time programming with the transputer

Technical note 51
INMOS document number 72 TCH 051

72 TDS 366 01

March 1993

304 Bibliography

Using the occam toolsets with non-occam applications

Technical note 55
INMOS document number 72 TCH 055

F.5 Development systems

The transputer development and iq systems databook (Second Edition 1991)

INMOS Ltd, 1991
INMOS Document Number 72 TRN 219 01

IMS B300 TCPlink hardware manual

INMOS Limited, June 1991
INMOS Document Number 72 TRN 229 01

ANSI CVY—lbtybh 2—¥F—. 2227 (HXER)
(D4214B,. D5214B. D7214CNHK—¥Yay)

IR : FHEXEE (BR) L7 0o 2AHMEREFLATFLAHES
HiFE. HATW., XEAA. & 7B, SWEX
SGSrAVY Y - T4 7uzL 7oz X ()
BEAE
FEITH: HPLEFE (8)

F.6 References

Software manual for the elementary functions

WJ Cody and WM Waite
Prentice Hall 1980

The art of computer programming
2nd edition, Volume 2: Seminumerical algorithms

DE Knuth
Addison Wesley 1981

72 TDS 366 01 March 19983

Bibliography 305

IEEE Standard for binary floating-point arithmetic
ANSI-IEEE Std 754-1985

Communicating sequential processes

CAR Hoare
Prentice Hall

72 TDS 366 01 March 1993

306 Bibliography

72 TDS 366 01 March 1993

Index

Symbols

.STATIC, 248, 292
.VSPTR, 248, 292
.WSSIZE, 248, 292
#COMMENT, 8
#IMPORT, 8

#INCLUDE, 8, 51, 52, 53
in configuration language, 263

#OPTION, 8

#PRAGMA, 8
EXTERNAL, 200
LINKAGE, 43
TRANSLATE, 201

#pragma
IMS nolink, 211
IMS translate, 201

#SECTION, 43

#USE, 8, 52, 55
in configuration language, 263

A

Abbreviation, configuration
language, 79, 266

Abort, 120
interrupt, 45
link communication, 258
program, 45

ADDRESSOF, 292
Alias, 293
Alias check, 48, 293

Alias checking, warning messages,
49

Alignment, word, 240

72 TDS 366 01

Allocating
channels to links, 242
specific workspace locations, 241

Analyse, 105, 135, 241, 293
use when debugging, 107
ANSI C toolset, 68
ARC, 69, 78, 85, 264
Areg, 134, 281, 291
Array
as argument, 157
occam, 276

of channels, 242
passing between languages, 203

ASM, 245, 246
channel use, 292
examples, 247
predefined names, 248
syntax, 289

Assembly code
direct instructions, 246
indirect instructions, 246
insertion into occam, 245
instruction set, 281
operands, 246
prefix instructions, 246
primary operations, 246

ASSERT, 48
Assigning code to transputers, 14
Automated program building, 97

B

B004, 44, 106

B008, 107
PC motherboard, 105

B014, VME motherboard, 105
B016, VME motherboard, 105
Backtrace, 157, 174, 177, 293

March 1993

308

Index

Backus-Naur Form, configuration
language, 263

Big endian, 293
Binary output, ieprom, 235
BNF. See Backus—Naur Form

Boards
boot from link, 105
boot from ROM, 105
connections, 105
IMS B004, 106
IMS B008, 105
IMS B014, 105
IMS B016, 105
types, 106

BOOL, 276

Boot from link
boards, 105
loading mechanism, 104

Boot from ROM
boards, 105
code, debugging, 120

Bootable code, 44, 293
creating, 38

Bootstrap, 293
Bptr0, 134
Bptr1, 134

key, 45

Breakpoint, 146
clearing, 175
hardware support, 125
phantom, 155
setting and clearing, 128

Breakpoint debugging. See Debug-
ging; Interactive debugging

Breg, 134, 282, 291
Buffering processes, 113
Build files, library, 296
BYTE, 276

72 TDS 366 01

C

C.ENTRY, 30
C.ENTRYD, 29
C.ENTRYD.RC, 29
calle.lib, 213, 214
callc.lnk, 212
Capability, 294

CASE, debugging occam, 148
CAUSEERROR, 260
CHAN, 276

CHAN OF SP 41, 111
Change control, 54

Channel, 4
See also CHAN OF
array, 242
array constructors, 239, 243
checking, 49
configuration, 68
direct, 85
edge, 85
fault handling, 101, 257
hard, 296
initialize, 102
optimize, 187
place at address, 240
placement, 85, 91, 242
reinitialize, 102, 258
reliable, 101
reserved, 224
reset, 102, 259
retyping, 243
soft, 85, 299
usage, 49
usage checking, 49
use within AsM, 292
virtual, 85, 86
channel.h, 276
Check
alias, 48
channel, 48

configuration, 102
usage, 48

March 1993

Index

309

Checking, occam code, 246

Clearing
breakpoint, 175
error flag, 108, 126

clibs. 1nk, 31, 232
clibsrd. 1nk, 31, 213, 232

Clock, 134
displayed on Monitor page, 136

Clock0, 134
Clock1, 134
cnonconf. 1nk, 29

Code
allocation in memory, using
PLACE statement, 239
insertion, 239, 245
placement, 90, 181
position in memory, 88, 181

Collecting, simple program, 37
Collector, 18

Communicating Sequential
Processes, 4, 294, 305

Communication. See Channel
Compilation, 42
information, 43

separate, 52
unit, 52
Compiler
directive, 43
libraries
introduction, 9
occam, 212, 219, 294
optimizations, in debugging, 158
Compiling, 17
for debugging, 117
for other transputer types, 39
introduction, 42
simple example, 35

Concurrency, hardware support, 2
CONFIG, 69, 264, 267

72TDS 366 01

Configuration, 67, 294
channels, 85
checking, 102
code & data placement, 10
debugging considerations, 100,
101, 156
description, 67, 70
multiple transputer example, 94
examples, 72, 73, 80
multiple transputer, 93
simple, 36
virtual routing, 194
hardware description, 68, 74
host connection, 79
language, 69
abbreviations, 79
constraints, 269
introduction, 10
predefinitions, 265
syntax, 263
libraries of linked units, 82
mapping, 68
channels, 87
description, 83
processes, 84
mixed language, 67
model, 68
occam scope rules, 68
reliable channels, 101, 257
single transputer program, 38
software description, 68, 81
summary, 100
using imakef, 97
virtual routing, 86
Configurer, 18, 294

producing debuggable programs,
118

CONNECT, 69, 264

Connecting
boards, 105
links, 69, 264
subnetworks, 105
Connection manager, 294

Constants
include files, 110
sharing, 52

March 1993

310 Index
Core dump, 294 information, 117
Creg, 134, 283, 291 [INSPECT], 152
CSP, 4, 294, 305 inspecting channels, 177

estartrd.lnk, 29, 212
estartup.lnk, 29, 212

D

deadfix.occ, 150
Deadlock, 148, 294
deadlock.occ, 149
Debug library, 142

DEBUG. TIMER, 150
Debuggable programs, 116

Debugger, 19
hints, 147
kemel, 123
quitting, 175

Debugging, 115

See also Interactive debugging;
Monitor page; Post—-mortem
debugging

abusing hard links, 151

arrays as arguments, 157

boot from ROM code, 120

breakpoint, 172

catching concurrent processes,
155

commands, only available in inter-

active mode, 128
compiler optimizations, 158
confidence check, 153
configured programs, 118, 156
deadfix.occ, 150
deadlock.oce, 149
direct channel functions, 118
error modes, 118
errors, 158

examining the active network, 152

example, C, 159

goto process, 178

hard parity errors, 120, 122
important points, 151

72 TDS 366 01

inspecting variables, 176

interactive, 116, 123, 172
disabling, 118

key, 153

invalid pointers, 147

large shift values, 157

library, 142

library functions, in absence of
idebug, 145

loading programs, 106

low level, 132

memory size, 156

mixed language, 116

Monitor page, 132

post-mortem, 115, 120, 175

program crashes, 154

program hangs, 154

root transputer, 123

seterr, 156

soft configuration channels, 147

tracing processes, 177

undetected program crashes, 154

use of isim, 116

virtual links, 152

Default
command line arguments, 27
error mode, 42, 118
memory map, 181
transputer type, 42

Direct channels, 85, 101
Direct instructions, 246, 281

Disable
alias checking, 49
interactive debugging, 48, 118
range checking, 47
run-time checks, 46
usage checking, 49
vector space, 50
virtual routing, 48, 117

Display
debugger help page, 129
memory, 137
memory map, 136

March 1993

Index

311

Monitor page, 133
object code, 44
process queues, 178
source code, 130

DO, 69, 268
DOs, 111
Down, subsystem wiring, 105

Dynamic code loading, 239, 250
examples, 253

E

EDGE, 69, 77, 264
Edge
channel, 85, 86
declaring, 77

EMI. See External Memory Inter-
face

Entry points
C.ENTRY, 30
C.ENTRYD, 29
C.ENTRYD.RC, 29

Environment variables, 26, 34

EPROM programming, 21, 233
collecting, 236
configuring, 236
tools, introduction, 21

Error, 105, 241, 295

Error

detection, disable, 46

modes, 45, 295
default, 42
HALT, 45, 295
in debugging, 118
STOP, 45, 295
UNDEFINED, 46
UNIVERSAL, 46, 295

reporting, 25

Error flag
clearing in a network, 108, 126
displayed on Monitor page, 134,
135

of a subsystem, 105

72 TDS 366 01

setting, 239, 260
Ethernet, 295
Event, 141
Event, 295

Examples

ASM, 247

collecting, 37

configuration, 36

configuration mapping, 92

deadlock, 149

debugging C, 159

debugging in post-mortem mode,
175

debugging occam, 168

dynamic code loading, 253

facs.c, 160

facs.oce, 169

linking equivalent occam
process, 232

multiple transputer, 93

multiplexing to host, 113

network description, 80

optimized filter program, 194

passing C parameters, 273

phantom breakpoints, 155

pipeline sorter, 57

placing channels, 242

resetting B004, 241

retyping channels, 244

running a program, 37

simple program, 34

simple.occ, 34

single transputer program, 38

skip load, 107

software description, 83

sorter.occ, 62

type 1 interface, 227

type 2 interface, 229

type 3 interface, 231

use of debugging library, 144

virtual routing, 196

Executable code, 17

Extended data types, occam, 295
Extensions, file, 22

External memory interface, 295

March 1993

312

Index

Extraordinary use of links, 239, 256

F

facs.e, 160
compiling and loading, 164

facs.occ, 169
compiling and loading, 171
File
extensions, 22
imakef, 23
streams, 110

Floating point
instructions, 285
registers, 249

FORTRAN, xvii, 120
FPError, 134
Fptr0, 134

Fpir1, 134

Free memory, 42
Free variables, 295

G

Gateway, 295

Getting started, 33

Global static base, 209, 213
Grid, network topology, 3

H

HALT error mode, 45
in debugging, 118

HaltOnError, 45, 134
Hard channels, 296

Hardware configuration description,
74, 264

Hardware support
for breakpointing, 125
for concurrency, 2

72 TDS 366 01

Heap area, mixed language
programs, 213, 225

Help, page in debugger, 129

Hexadecimal format
for environment variables, 27
for EPROM, 235
syntax, 27

HOST, 79, 265

Host, 296
access to services, 109
channel protocols, 111
communications, 109
connection, in configuration
language, 79
dependencies, 25
command line syntax, 25
filenames, 26
search paths, 26
environment variables, 26
versions, xv

Host file server, 296
file streams, 110
introduction, 109

Hostio library, 110
hostio.ine, 110
hostio.lib, 110

IBM PC, 7, 111
386, 25

IBOARDSIZE, 27, 34, 42
ice, 9

ICCARG, 28

icconf, 118
ICCONFARG, 28
icollect, 18
ICOLLECTARG, 28
ICONDB, 27, 34

idebug, 19
help page, 129

March 1993

Index

313

IDEBUGSIZE, 27
idump, 20

iemit, 21

ieprom, 21, 233, 235

IF, 69, 98, 266
debugging occam, 148

ilibr, 20

ILIBRARG, 28

ilink, 17

ILINKARG, 28

ilist, 20

ILISTARG, 28

imakef, 20, 39, 54, 97
imap, 20

Importing C functions, 213
IMS T800, 135

Include file, 110, 296
occonf. ing, 70, 187, 192

Indirect instructions, 246, 282
init.heap, 214
init.static, 214
Initialize

channel, 102

link, 258
parity checked memory, 126

InputOrFail.c, 102
InputOrFail.t, 101
INQUEST, xvii

[WSPECT], 176

Instruction pointer, 134
invalid, 147

Instruction set, 281

INT, 276

INT16, 276

INT32, 276

INT64, 276

Intel extended hex format, 235

72 TDS 366 01

Intel hex format, 235
Interactive debugging, 116, 123,
129

See also Debugging
addresses of variables, 166
backtracing, 166, 174
backtracing to main (), 167
breakpoint commands, 132
browsing source code, 130
clearing a breakpoint, 175
compiler option, 48
disabling, 48, 118
entering #include files, 168
inspecting by expression, 167
inspecting variables, 131, 166,
173
jumping down a channel, 167,
174
jumping down channels, 131
locating to code, 130
modifying a variable, 167, 174
modifying variables, 132
program loading, 126
program termination, 128
quitting, 168, 175
resuming program, 174
runtime kernel, 123
setting breakpoints, 165, 173
starting a program, 166, 173
tracing procedure calls, 131

Interrupt, program, 45
in debugging, 153

Invalid pointers, 147
Iptr, 134, 281
IptrintSave, 134

iq systems, 102, 108, 126
ISEARCH, 27, 34
iserver, 18, 103, 109
ISESSION, 27

isim, 21, 65, 146
ISIMBATCH, 27
iskip, 18, 103

ispy, 102, 108, 126
ITERM, 27

March 1983

314

Index

J

Jump, in ASM code, 248

Jumping down a channel, 131, 167,

174

K

KERNEL.RUN, 250

L

Label, in ASM code, 248
LAN, 296

Large programs, 53
Large shift values, 157
Librarian, 20

Library, 296
build files, 296
building, 55
C runtime

full, 232
reduced, 232

compiler, 9
debugging, 142
linking supplied libraries, 28
maths, 9
occam, 9, 221
of linked units, 82
usage files, 296
using, 54

Link, 3, 296
addresses, 243
failure, 256
introduction, 2
recovery from failure, 258
renitialize, 258
virtual, 86

link, 74, 265
linkaddr.inc, 243

Linker, 17, 297
indirect files, 28

72 TDS 366 01

startup files, 28
clibs.1lnk, 232
clibsrd.1lnk, 232
Linking
introduction, 43
mixed language programs, 212
simple example, 35

Linkops, 297

linkquota, 75, 92, 190, 265
Lister, 20

Little endian, 297
LOAD.BYTE.VECTOR, 250
LOAD. INPUT . CHANNEL, 250

LOAD. INPUT.CHANNEL. VECTOR,
250

LOAD.OUTPUT . CHANNEL, 250

LOAD.OQUTPUT.CHANNEL. VECTOR,
250

Loader, 297

Loading programs, 44, 103
for breakpoint debugging, 106
for debugging, 106
for interactive debugging, 126
introduction, 18
methods, 104
onto boards and subnetworks,

tools, 103
LoadStart, 181
location.code, 75, 90, 184, 265
location.vs, 75, 90, 184, 265
location.ws, 75, 90, 184, 265
Logical processor, 69
Low-level programming, 239

MAIN.ENTRY, 222
procedure interface, 226

MAKE, 66
Makefile generator, 20, 39, 54

March 1993

Index

315

Makefiles, 297
MAP, 69, 268
MAPPING, 69, 264, 267

Mapping
channels, 87
description, 83
examples, 92
in configuration description, 267
processes, 84
with MAPPING, 87
without MAPPING, 88

Master transputer, of a system, 105
Maths, libraries, introduction, 9

Memory

allocation, 50

initializing, 126, 225

map, 181

on-chip, 1

ordering code, 88

placing code, 90, 181

reserved words
IptrintSave, 134
WdescintSave, 134

reserving, 89

Memory dump, 123
example, 176

Memory dumper, 20

Memory map, 181
displayed on monitor page, 136

memsize, 74, 265
MemStart, 89, 135

Mixed language programming, 199
example, 273
heap area, 213
importing C code, 213
introduction, 11
linking, 212
occam libraries, 221
reduced runtime library, 220
static area, 213
vector space, 221
workspace, 221

72TDS 366 01

Monitor page, 132
See also Debugging
breakpoint commands, 139
command format, 137
data displayed, 134
examining memory, 137
locating processes, 137
selecting process, 138
specifying process, 138
startup display, 133
switching processor, 138
MOSTNEG INT, 240, 247
MOSTPOS INT, 247
Motorola S-record format, 235
Moving code and data areas, 88
MS-DOS, 7, 25, 26, 27

Multiplexing, 10
examples, 113
processes, 111

N

NETWORK, 69, 264

Network, 297
configuration, 67
description, 75

examples, 80
grid, 3
pipeline, 3
Tree, 3

nfix, 246

NODE, 68, 69, 264
attributes, 74

nodebug, 75, 265
NOB, 291
noprofile, 75, 265
NotProcess, 135

o

Object code, 297
displaying, 44

Object file, format, 7, 17

March 1993

316 Index
occam order.ws, 88, 185, 265
array, 276 OutputOrFail.ec, 102

compiler libraries, 9, 294
configuration language, 263
equivalent process, 222
extended data types, 295
function retumn values, 272, 277
interface code, 222
libraries, 221

low-level programming, 239
maths libraries, 9

mixing with C code, 199
programming model, 8
programs, 41

standard libraries, 9

occam 2 toolset, introduction, 7
occam?2. 1lnk, 30, 43, 212
occam8. 1nk, 30, 43, 212
occama. lnk, 30, 43, 212

occong, 10, 67, 87, 118
interaction with idebug, 100

oceconf.ing, 70, 92, 186, 187,
192

On-chip memory, 1
use for program stack, 225

On-chip RAM, 43, 50

Operating systems
command lines, 25
dependencies, 25
MS-DOS, 25
Sun0s, 25
UNIX, 25
VMS, 25

opr, 246

Optimization
code placement, 181
virtual routing, 187

Options
prefix, 25
unsupported, 31

order.code, 75, 88, 185, 265
order.vs, 75, 88, 185, 265

72 TDS 366 01

OutputOrFail.t, 101

P

PAR, 81

Parallel processing
example, 62
introduction, 4

Parameter passing, 271, 275

Parameters
GSB, 213
occam and C equivalents, 271,
275
passing by reference, 201
passing by value, 201
TIMER, 203
to KERNEL.RUN, 251

Parity checked memory, initializing,
126

Parity error registers, displayed on
Monitor page, 136

Parity errors, post-mortem debug-
ging, 120, 122

ParityAddr, 134

ParityError, 134

Peek, 298

pfix, 246, 291

Phantom breakpoints, 155

Physical processor, 69

Pipeline, network, 3

Pipeline sorter, example configura-
tion, 93

Pipelining processes, 113

PLACE, 51, 239
channels on links, 242
examples, 240

PLACED PAR, 81

Placement
at address, 239

March 1993

Index

317

channels, 85, 240
code, 88, 90, 181
variable in workspace, 242

Pointer to channel, 242
Poke, 298
PORT, 276

Port, 241
place at address, 239

Post-mortem debugging, 115, 120
See also debugging
communication on channels, 141
communication on links, 141
communication on virtual links,

141
hard parity errors, 120, 122
locating procedures and func-
tions, 142
outline of method, 139
stopped process, 142
stopped process location, 140
waiting on run queue, 140
waiting on timer queue, 140

PostScript, 298

Preamble, 298

Prefixing instructions, 246, 281
Primary operations, 246
Priority, 298

PROC . ENTRY, 223
procedure interface, 227

PROC.ENTRY.RC, 223
procedure interface, 230

Procedure parameters, 251

Process, 4, 298
descriptor, 134
invalid, 147
pointers, in debugging, 135
queue, 135, 140
scheduling, 260

PROCESSOR, 68, 69, 267
Program building, automated, 66

Program development, introduction,

13

72 TDS 366 01

Program hangs, debugging, 154

Program termination, interactive
debugging, 128

Programmable memory interface, 1
Programs, loading, 103

Protocol, 298
in debugging, 123
include files, 110
iserver, 104
sharing, 52
SPp, 104, 111
used by standard libraries, 123

Pseudo operations, 247, 291

Q

Queue
process, 140, 178
run, 135, 138, 140
timer, 135, 138, 140

R

RAM, 234

Real-time programming, 3
REAL32, 276

REAL64, 276

Reduced library, 232

Registers
Areg, 134, 281
Bptr0, 134
Bptr1, 134
Breg, 134, 282
Clock0, 134
Clock1, 134
Creg, 134, 283
displayed on Monitor page, 135
Error, 134
FPError, 134
Fptr0, 134
Fptr1, 134
HaltOnError, 134
Iptr, 134, 281
ParityAddr, 134

March 1993

318

Index

ParityError, 134
Tptr0, 134
Tptr1, 134
Wdesc, 134
Wreg, 281

Reinitialise, 102, 258
Reinitialize

channels, 102

link, 258
RESCHEDULE, 260
reserved, 75, 89, 183, 265

Reserved channels, in occam
equivalent processes, 224

Reserving memory, 89, 183

Reset, 105, 241, 298
use when debugging, 107

Retyping, channels, 239, 243

ROM bootable code, 233
processing configurations, 234

romsize, 74, 265
root, 74, 265

Root transputer, 298
debugging, 106
loading over, 107

routecost, 75, 91, 188, 265
Run queue, 135, 140

Running programs, 44
dynamically loaded, 250
introduction, 18
simple example, 37
using isim, 38

S

Scheduling, 239
occam processes, 260

Scheduling lists. See Process
queue; Run queue

Scope rules, 147
Search path, 26

72 TDS 366 01

Secondary operations, 246
Selective loading, libraries, 55
Separate compilation, 52, 298
Separate vector space, 50, 251
Sequential programming, 4
Serial links, 1

Server, 18, 299

Session manager, 299

SET, 69, 264

seterr, 156, 260

Simulator, 21
use in debugging, 146

Single step execution, 147
SKIP, 268

Skip load
example, 107
in debugging, 123

Skip loader, 18

so.buffer, 113

so.exit, 111
so.multiplexor, 112
so.overlapped.buffer, 114

so.overlapped.multiplexor,
112

Soft channels, 85, 299
Software, virtual routing, 86

Software description, 81, 267
example, 82

sortconf.pgnm, 93
sortsw.ing, 93

Source level debugging, 129
Sp, 111

Stack, 225
overflow detection, 225
placing in on-chip RAM, 225

Standard error, 110, 299
Standard input, 110, 299
Standard output, 110, 299

March 1993

Index

319

Static area, 213
pointer, 213
requirement, 213

STOP, 268

STOP error mode, 45
debugging, 118

stopp, 260

Streamio library, 110
streamio.inec, 110
streamio.lib, 110

Subsystem, 105, 299
wiring, 105

Sun4, 7,25
Sun0s§, 7, 25
Suspending programs, 45

Symbolic debugging, 129
See also Debugging
compiling for, 117

Synchronized communication, 4
System services, 105

T

Target transputer, 8, 299
TCOFF, 7, 17
terminate.heap.use, 214

terminate.static.use, 214

Timeout, 256
channel input, 101
channel output, 101
on links, 257

TIMER, 276
parameters, 203

Timer. See Clock
Timer queue, 135, 140
tolerance, 75, 91, 189, 266

Toolset
development cycle, 13

72TDS 366 01

documentation, xvi
conventions, xvii
file extensions, 22
program development, 13
summary, 12
Tptr0, 134
Tptr1, 134
TRAM, 106, 241, 300
TRANSPUTER, 27, 33, 104
Transputer
architecture, 2
clock, 134, 136
in real-time programming, 3
instruction set, 281
introduction, 1
loading, 103
master, 105
module, 300
networks, 3
operation codes, 282
products, 4
root, 298
targets, 299
timer, 134

Tree, network topology, 3
type, 74, 265

U

UART, 240
UNDEFINED error mode, 46, 47

UNIVERSAL error mode, 46
debugging, 118

UNIX, 25

Unsupported options, 31
Up, subsystem wiring, 105
Usage check, 48, 300
Usage files, libraries, 296
User link, 300

\Y

VAL, 69, 276

March 1993

320

Index

Variable, place in workspace, 242
VAXIVMS, 7, 25, 286, 27, 111
VECSPACE, 51
Vector space, 50, 51, 300
disabling, 50
in mixed language programming,
221
position in memory, 181
Virtual channel, 85
disable, 87
Virtual link, 85, 152

Virtual routing, 86
controlling, 91
disable, 48, 87
introduction, 10
optimization techniques, 187
software, 86

VME bus, motherboard, 105
VMS, 25, 27

W

Wdesc, 134
WdescintSave, 134
Wired down, 105
Wired subs, 105

Word alignment, placed objects,
240

Word length, independence, 240
WORKSPACE, 51, 241

Workspace, 300
in ASM code, 247
in dynamic loading, 251
in mixed language programming,
221
position in memory, 181
Worm, 300

Wreg, 281

X

xlink.1lib, 256

72 TDS 366 01

z

Z, command line option, 31

March 1993

	Contents overview
	Contents
	Preface
	Basics
	1. Introduction to transputers
	2. Introduction to the toolset
	3. Developing programs for the transputer
	4. Getting started
	5. Programming single transputers
	6. Configuring transputer networks
	7. Loading transputer programs
	8. Access to host services
	9. Debugging transputer programs

	Advanced techniques
	10. Advanced use of the configurer
	11. Mixed language programming
	12. EPROM programming
	13 Low level programming

	Appendices
	A. Configuration language definition
	B. Equivalent data types
	C. Transputer instruction set
	D. Transputer code insertion
	E. Glossary
	F. Bibliography

	Index

