fAmos

S708
USER GUIDE

72 OEK 227 01

January 1990

Copyright INMOS Limited 1990

This document may not be copied, in whole or in part, without prior written
consent of INMOS.

Q, fnmos , IMS and occam are trademarks of INMOS Limited.

INMOS is a member of the SGS-THOMSON Microelectronics Group.
72 OEK 227 01 January 1990

Contents

Contents i

Contents overview v

Preface vii
1 How to use the guide

1.1 Introduction

1.2 User guide

1.3 Reference manual
1.4 Appendices

Y Y Y Y Y

2 Introduction 3
2.1 Product components 3

2.2 Operating requirements 3

3 Installation 5
3.1 Introduction 5

3.2 Hardware Installation 5

3.2.1 Copying the Files 5

3.2.2 Reconfiguring DOS to accept the driver 6

User guide 9

4 Module motherboard software 11
4.1 Introduction 11

4.2 Getting started 11

4.3 Using the MMS 12

4.3.1 Running the MMS 12

4.3.2 Menu options 13

Help 13

Quit 13

Set C004 links 13

Check source files ' 14

Toggle diagnostics 14

Network mapper 14

Manual command entry 14

Change link numbers 14

View source file 15

72 OEK 227 01 January 1990

Contents

Reset subsystem 15

Initialise C004s 15

Create a bootable file 15

Create an occam table 15

4.4 Describing the software configuration 17
4.4.1 Softwire definition 18

4.5 Describing the hardware configuration 21
4.5.1 Hardwire definition 22

Sizes section 23

T2 chain section 24

Hardwire section 25

4.6 Error reporting 28
4.6.1 Errors in the hardwire description 28

File reading errors 28

Syntax errors 28

Range checking errors 29

Duplication errors 29

4.6.2 Errors in the softwire description 29
Reference manual 31
5 Device driver call definitions 33
5.1 The system calls available 33
5.1.1 OPEN 33

5.1.2 READ 34

5.1.3 WRITE 35

5.1.4 I0CTL 35

6 INMOS server 39
6.1 Introduction 39
6.2 Running the server 39
6.2.1 Supplying parameters to the program 39

6.2.2 Loading programs 39

6.2.3 Terminating the server 41

6.2.4 Specifying a link address or name - option SL 41

6.2.5 Terminating on error — option SE 41

6.3 Error messages 42
7 Server protocol definitions 45
7.1 iserver protocol 45
7.2 Server functionality 45
7.2.1 File commands 46

72 OEK 227 01

January 1990

Contents

7.2.2 Host commands 55

7.2.3 Server commands 57

Appendices 61

A Rebuilding the server 63
B INMOS standard link access routines 65
B.1 Link initialisation 65

B.2 Data operations 66

B.3 Subsystem control 67

B.4 Error testing 67

B.5 Data ready tests 68

C Softwire description language 69
D Hardwire description language 71
E Edge mappings for the B008 73
F The IMS C004 programmable link switch 75
G The stages of IMS C004 configuration 77
H Distribution disk 79
H.1 Contents of the release disk 79

| Bibliography 81
J Glossary 83

72 OEK 227 01

January 1990

iv Contents

72 OEK 227 01 January 1990

Contents overview

1 How to use the Describes the layout of the guide.
guide
2 Introduction Introductory explanation of the S708 and
its operating requirements.
3 Installation Installation instructions for the S708.

The user guide

4 Module Describes how to use the MMS software.
Motherboard
Software

The reference manual

5 Device driver call Shows the format of system calls to the

definitions driver.
6 INMOS server An introduction to the structure and use of
the standard INMOS server.
7 Server Protocol ~ Describes the protocol used by the Inmos
Definitions server.

72 OEK 227 01 January 1990

vi

Contents overview

The appendices

A

B

. =

Rebuilding the
server
INMOS standard
link access
routines.
Softwire description
language
Hardwire
description
language
Edge mappings on
the BO08
The IMS C004

programmable link .

switch

The stages of IMS
C004 configuration

Distribution disk

Bibliography
Glossary

Shows the user how to rebuild the INMOS
server.

Describes the set of C routines for talking
to a link from the host computer

Syntax of the MMS softwire description
language.

Syntax of the MMS hardwire description
language.

A Summary of the EDGE mappings on the
B0OS8.

A short description of the IMS C004.

Describes the method used to configure a
system of motherboards.

Lists contents and structure of the distri-
bution disk.

Lists literature worth referring to.

A glossary of terms used to describe the
features of the toolset.

72 OEK 227 01

January 1990

Preface

The S708 software supports the use of an IMS B008 board in an IBM PC AT or
IBM PC XT.

The software includes the module motherboard software which can be used to
set the programmable switches on the IMS B008 motherboard. These switches
determine the topology of the transputers hosted on the motherboard. The mod-
ule motherboard software alsc contains a network mapper (worm) program which
is used to explore the inter-connections of these transputers and provide a means
of checking the topology.

A DOS device driver is provided to interface the IMS B008 to the DOS operating
system.

Programs are run on the B0O8 by using the server program provided. The server
loads programs to transputer networks and provides file and terminal services to
the executing program. Both the module motherboard software and the WORM
are executed in this way.

72 OEK 227 01 - January 1990

viii Preface

72 OEK 227 01 January 1990

1 How to use the guide

The S708 User Guide is broadly structured into four sections:

o Introduction
e User Guide
e Reference manual

e Appendices

1.1 Introduction

This section gives an overview of the components of the S708 product and its
operating requirements.

1.2 User guide

This section provides information on how to use the components of the product
1.3 Reference manual

The reference manual gives the detailed technical information that was not ap-

propriate to the user guide.

1.4 Appendices

The appendices are provided for rapid reference.

72 OEK 227 01 January 1990

2 1 How to use the guide

72 OEK 227 01 January 1990

2 Introduction

This document relates to the S708 device driver product for an IBM PC running
MS-DOS. The S708 is a software package consisting of a MSDOS device driver
and a set of tools for use with the IMS B0O08 board product. The device driver,
once installed, provides a mechanism for loading transputers via a server.

2.1 Product components

The S708 is supplied in two formats: 53;" 360K and 3%" 720K MS-DOS floppy
disks. The contents of the disk should be as follows:

« Device driver.
o INMOS server.

e Module Motherboard Software (MMS).

2.2 Operating requirements

The S708 device driver is intended for use with IBM PC and compatible machines
running MSDQOS V2.10 or greater.

72 OEK 227 01 January 1990

4 2 Introduction

72 OEK 227 01 January 1990

3 Installation

3.1 Introduction

This section describes how to install the S708 Software on an IBM-PC Compat-
ible.

3.2 Hardware Installation
Before it is possible to successfully install the device driver it is necessary that
the B008 card is installed, in accordance with the B008 User Reference Guide
which is supplied with the board hardware. Whilst installing the board, take note
of the following configuration information which will be required in order to install
the device driver properly:

» Base IO Address of the B008 Card

e DMA Channel Number (B008-0a and B008-0b only)

3.2.1 Copying the Files

First move to the target disk drive and make a suitable direciory using the DOS
mkdir command. This directory can be anywhere on the disk.

Having made the directory, move in to it using the DOS ed command, insert the
S708 distribution disk in drive A: and issue the following command line:

xcopy a:*.* /s

If you have an earlier version of MS-DOS or PC-DOS which doesn't support the
xcopy command, issue the following commands instead:

copy a:*. *

mkdir iserver
copy a:iserver*.* iserver

The exact contents of the release disk are given in an appendix. The contents
of the directory after extraction will be as follows:

72 OEK 227 01 January 1990

6 3 Installation

BOOB L. MMS Hardwire file for the BO08
ISERVER.EXE ... Executable copy of the iserver

ISERVER Directory containing the sources for the iserver
MMS2.B4 = ... The module motherboard software
PCMMS.ITM ... lterm file for the MMS on a PC
S708DRIV.SYS ... The DOS Device Driver

SOFTWIRE Example softwire configuration

3.22 Reconfiguring DOS to accept the driver

Having physically installed both the hardware and the software components in
the PC it is necessary to tell DOS to recognise the new device. This is done
by altering a file called CONFIG.SYS in the root directory of the boot disk by
adding a line describing the device driver.

The syntax of the CONFIG.SYS line for the B0O08 Driver is:
DEVICE=pathname [/A address] [/D chan | N] [/N name] [/| int_num]
where: pathname is the full DOS pathname of the device driver file.

The pathname parameter is the pathname of the S708DRIV.SYS file on
the disk as installed in the previous step.

address is the 10 address of the BO08 card, as set by the hardware
switches on installation.

chan is the DMA channel number (0, 1, or 3). On older B008s this
number must also be set on the board itself using switches. For details
see the manual supplied with your B008.

If the character ‘N’ is specified instead of a decimal digit then the driver
will not attempt to use the DMA facilities of the B008. If DMA usage by
the BO08 has been disabled on the card switches then this parameter
must be set to ‘N’

name is the DOS device name which the device will assume. Use this
option with care if you intend to use inmos software products which may
expect this name to be the default name ‘LINK1'. The name cannot be
more than the DOS limit of eight characters.

int_num is the interrupt request line used by the B008, which should be set
to the correct value for your board. For details see the manual supplied
with your B008. The default is Irq3. On older B0O08s the number must
also be set up on the board itself.

72 QEK 227 01 January 1990

3.2 Hardware Installation 7

The following are examples of typical CONFIG.SYS lines for the device driver:

DEVICE
DEVICE

C:\S708\S708DRIV.SYS /A 150 /NAME IMSB0OO8 /D N
C:\8708\S708DRIV.SYS /A 200 /D 1

Having altered the config.sys file, reboot the machine and run the MMS as de-
scribed in the relevant section of this document to confirm the correct installation
of the device and software.

72 OEK 227 01 January 1990

8 3 Installation

72 OEK 227 01 January 1990

User guide

72 OEK 227 01 January 1990

10

User guide

72 OEK 227 01

January 1990

4 Module motherboard
software

4.1 Introduction

The range of INMOS Module Motherboards[1] and Modules[2] allow many differ-
ent configurations of modules and the connections between them to be specified
without making physical changes to the boards. The configuration is performed
by sending configuration data to the IMS C004 link switches[3] on the board. The
MMS (Module Motherboard Software) is designed to make it easy to generate
the data needed to configure a system of motherboards.

The MMS provides interactive control of a motherboard or a system of moth-
erboards. It presents a menu-driven interface allowing the user to set up the
motherboards and also to create configuration programs for use outside of the
MMS.

This chapter describes how to use the hardware and software description lan-
guages needed to describe the hardware system and the desired connections
within that system, together with a description of the MMS program itself.

The MMS uses a terminal description file called PCMMS . ITM. In order for the
MMS to access this file it is necessary to set up an environment variable called
ITERM. This can be done by including the following line in your autoexec .bat
file:

set ITERM=PCMMS.ITM

4.2 Getting started

In the rest of this manual it is assumed that the motherboards in use have been
set up, and that you are familiar with the user guides for them.

In order to be able to configure the links connecting the IMS C004s on the moth-
erboards the MMS reads files, known as the ‘softwire’ and ‘hardwire’ files. The
first of these contains a description of the connections that the user wants to
make using the programmable link connections. The second contains a descrip-
tion of the hardware configuration of the boards being used.

The hardwire file is needed so that the MMS is able to determine what con-
nections it is possible to make; it contains information on such things as the
number of IMS C004s, number of module slots, and the connections between
them. Once this description has been set up no changes will have to be made

72 OEK 227 01 January 1990

12 4 Module motherboard software

unless physical changes are made to the motherboard system. If you are using
a single IMS B0O08 or IMS BO14 there should not be any need te understand the
information in the hardwire file in great detail as the supplied hardwire description
files for these boards can be used without modification.

The softwire file is needed to specify both the connections from module to module
and from module to edge on a motherboard. Unlike the hardwire file the softwire
file will be tailored for the application being run.

You should read section 4.4 on describing softwire connections and study the
example files supplied with the MMS before attempting to run the MMS or trying

to set up your own softwire description. To get going initially it is probably be
easiest to modify a copy of one of the example filesets provided.

4.3 Using the MMS
4.3.1 Running the MMS

To run the MMS, move to the directory in which the contents of the distribution
disk were unpacked and type

iserver /sb mms2.b4 softwire hardwire

replacing’ softwire and hardwire by files containing the softwire description and
hardwire description respectively. The MMS will display a menu screen and
prompt key command. At this point the user can enter any of the command
codes listed on the menu, including h for help and q for quit.

72 OEK 227 01 January 1990

4.3 Using the MMS 13

4.3.2 Menu options

The menu options available are as follows:

H — Help

Q — Quit

S — Set C004 links

C — Check source files

T — Toggle diagnostics

N — Network mapper

M — Manual command entry
L — Change link numbers
V — View source files

R — Reset subsystem

| — Initialise C004s

B — Create a bootable file
O — Create an occam table

The menu options are described below.

Help

The help option allows the user to call up a help screen for each of the menu
options. The help screen for the help option displays some information about
the MMS, including implementation limits of number of IMS C004s, IMS T212s,
slots, etc. The MMS version number is also displayed.

Quit

Return to operating system.

Set C004 links

The set command performs the IMS C004 setting as specified in the softwire
source file.

To carry out this command the MMS first reads the hardwire description, and
builds up an internal representation of the motherboards. The MMS then at-
tempts to boot the configuration pipeline with a special worm which allows com-
mands to be sent to the IMS C004s. The MMS then reads the softwire file, and
generates and sends the configuration commands to the configuration pipeline.

If errors are detected at any stage, they are reported and the command aban-
doned.

72 OEK 227 01 January 1990

14 4 Module motherboard software

Check source files

The check source files command is essentially the same as the set command
except that no attempt is made to perform the actual configuration of the boards.
In this way it is possible to check a set of source files without having the corre-
sponding hardware on-line.

Toggle diagnostics

This toggles the diagnostic mode. In this mode any command sequences that
are generated are also displayed on the screen.

Network mapper

The network mapper command sends a worm into the transputer network using
the currently set pipe-in link. The mapper is currently able to detect IMS T212s,
IMS T414s, IMS T800s and IMS M212s, although 6K bytes of memory is re-
quired, and therefore it will not be able to find the IMS T212s in the configuration
pipeline as they have no external memory.

Manual command entry

The manual command option allows the user to send IMS C004 command se-
quences to any IMS C004 specified in the hardwire file. These sequences are
of the same form as those generated automatically:

e IMS C004 id
e IMS C004 command
e any parameters required by the command

Itis not possible to send the enquire command (BYTE 2) as no facility is provided
for returning information from the configuration pipeline.

Change link numbers

The link change cptions allows the user to change the links which the MMS
uses to communicate with the configuration pipeline and the module pipeline.
The default settings are:

Link 1 — configuration pipeline
Link 2 — module pipeline

It is not possible to specify the same link for both pipelines.

72 OEK 227 01 January 1990

4.3 Using the MMS 15

View source file

The view option allows the user to view the source of the softwire and hardwire
files. It prompts for which file to view and which line number within that file to
view. That line together with the preceding and following two are then displayed.

Reset subsystem

The reset option asserts the subsystem reset on the host transputer, causing
the system of motherboards to be reset. This will not cause the IMS C004
configuration to be lost.

Initialise C004s

The initialise option causes a software reset to be sent to each IMS C004 in the
motherboard system. In order to do this the hardwire file is read to determine
the number and whereabouts of each of the IMS C004s within the system.

Create a bootable file

The bootable file option is similar to the set option except that the configuration
commands generated are written to a file containing a program which will con-
figure the network when it is booted from the server. The generated program
expects the configuration pipeline to be connected to the root transputer via the
configuration pipeline link set when the program is generated. This configura-
tion program can be used without the MMS being present on the system. When
run, the program will either print a message stating that the configuration was
successful or unsuccessful.

Create an occam table

The occam table option is similar to the set command except that the con-
figuration commands generated are written to a file in the form of an occam
table together with a program which controls the configuration pipeline during
the network configuration. This occam table can be sent to the configuration
pipeline using the extraordinary link communication procedures[4] to output the
table. The table output will fail if the network configuration is not successful.

72 OEK 227 01 January 1990

16 4 Module motherboard software

For example the following piece of OCCam can be used configure a network, as-
suming that the table generated by the MMS is contained in the file table. inc:

-- A procedure to configure module motherboards
-- at run time with a table produced by the mms2
-- software.

#INCLUDE "hostio.inc"
PROC config (CHAN OF SP fs, ts)

#INCLUDE "linkaddr.inc"

#INCLUDE "table.inc" -— occam table
#USE "hostio.lib"

#USE "xlink.lib"

CHAN OF ANY from.t2, to.t2:
PORT OF BYTE analyse, reset:

PLACE to.t2 AT linkl.out:
PLACE from.t2 AT linkl.in:
PLACE reset AT (0 >< (MOSTNEG INT)) >> 2:
PLACE analyse AT (4 >< (MOSTNEG INT)) >> 2:

VAL ONEms IS 15:
VAL fail.delay IS 8000:

BOOL failed, failed2:
BYTE result:

INT time:

[4]BYTE num:

TIMER timer:

PROC Pause ()
SEQ
timer ? time
timer ? AFTER time PLUS (5 * ONEms)

72 OEK 227 01 January 1990

4.4 Describing the software configuration 17

SEQ

analyse ! 0 (BYTE) -- Reset subsystem
reset ! 0 (BYTE)

Pause ()

reset ! 1 (BYTE)

Pause ()

reset ! 0 (BYTE)

Pause ()

timer ? time

time := time PLUS fail.delay

PAR
OutputOrFail.t (to.t2, Table, timer,time, failed)
InputOrFail.t (from.t2, num, timer,time,failed2)

IF
failed
SEQ
Reinitialise(to.t2) --clean up after failure
so.write.string.nl (fs, ts,
"Unable to configure T2 chain.")
TRUE

VAL INT32 n RETYPES num:
-- print no. of T2s found.
SEQ
so.write.string (fs,ts,"Size of T2 chain: ")
so.write.int32 (fs, ts, n + 1, 0)
so.write.string.nl (fs, ts, ".")

4.4 Describing the software configuration

The following sections describe how to specify the soft connections required on
a system of motherboards.

The syntax of both the softwire and hardwire descriptions are described in a
modified Backus-Naur Form (BNF). For example,

edge.to.edge.line = EDGE edge.id TO EDGE edge.id

This means ‘An edge.to.edge.line is the keyword EDGE, followed by an edge.id,
followed by the keywords TO EDGE, followed by an edge.id'.

72 OEK 227 01 January 1990

18 4 Module motherboard software

A vertical bar (]) means ‘or’, for example:

softwire.line = slot.to.slot.line
| slot.to.edge.line
| edge.to.edge.line

The written structure of the description is specified by the syntax. Each statement
normally occupies a single line, and the indentation of each statement forms an
intrinsic part of the syntax of the language. For example,

board.softwires.line = PIPE board.id
{ softwire.line }

This means ‘A board.softwires.line is the keyword PIPE followed by a board.id
followed by zero or more softwire.lines, each on a separate line, and indented
two spaces further than PIPE'. Curly brackets { and } are used to indicate the
number of times a syntactic object occurs. { object } means, ‘zero or more
objects, each on a separate line’. Similarly {, object } means, ‘one or more
objects, each on a separate line.’ [object] means that object is optional.

Comments are introduced by a double dash (--), and extend to the end of the
line.

Summaries of the syntax of the description languages are given in appendices
C and D.

4.41 Softwire definition

The softwire connections allow links on modules on a motherboard to be con-
nected to other modules and edges, without requiring a direct hardwired route
between the two. Instead the MMS routes the channels via the IMS C004s on
the motherboard. It may not be possible to make every possible connection
desired. This depends on how the IMS C004s and module slots are physically
connected to each other.

72 OEK 227 01 January 1990

4.4 Describing the software configuration

19

A SOFTWIRE description has the following basic structure:

SOFTWIRE
PIPE 0

soft connections for board 0

PIPE 1

. soft connections for board 1

éIPE n
soft connections for board n
END-
The syntax of a softwire description is:

SOFTWIRE
{ board.softwires.line}
END

softwire.description

board.softwires.line = PIPE board.id
{ softwire.line}

The softwire lines are specified in three ways:
« Edge to edge connections
e Slot to edge connections
o Slot to slot connections

The syntax for softwire lines is:

softwire.line edge.to.edge.line

| slot.to.edge.line
| slot.to.slot.line

72 OEK 227 01

January 1990

20 4 Module motherboard software

An edge to edge connection simply specifies that the two edges named are to
be connected together. For example,

EDGE 4 TO EDGE 7
The syntax for an edge to edge line is:
edge.to.edge.line = EDGE edge.id TO EDGE edge.id

A slot to edge line specifies that the edge is to be connected to the specified
link on the slot. For example,

SILOT 3, LINK 3 TO EDGE 6
The syntax for a slot to edge line is:
slot.to.edge.line = SLOT slot.id, LINK link.num TO EDGE edge.id

A slot to slot line specifies a connection is to be made between a link on one
module to a link on another module, for example:

SLOT 2, LINK 0 TO SLOT 1, LINK 0
specifies that link 0 of slot 2 will be softwired to link 0 of slot 1.

The slot to slot line has another form which includes a VIA statement. This form
specifies that the connection is to be made via the two edges specifed. This
form is really just a shorthand equivalent to two slot to edge lines. For example

SLOT 2, LINK 0 TO SLOT 12, LINK 3 VIA EDGE 3, 6

is equivalent to the longer form:

SLOT 2, LINK 0 TO EDGE 3
SLOT 12, LINK 3 TO EDGE 6

It is the user's responsibility to complete the connection by hardwiring the two
edge connectors together. The purpose of this is to allow soft connections to
be set up indirectly via edge links where the board architecture does not permit
direct connection.

72 OEK 227 01 January 1990

4.5 Describing the hardware configuration 21

The syntax for slot to slot lines is:

slot.to.slot.line= SLOT slot.id, LINK link.num TO SLOT slot.id,
LINK link.num [via.section]

via.section =VIA EDGE edge.id, edge.id

As an example of a complete file using these constructs, the following softwires
file specifies all the connections in the diagram below:

SOFTWIRE
PIPE 0
SLOT 0, LINK 3 TO SLOT 1, LINK 3
SLOT 0, LINK 0 TO SLOT 1, LINK 0 VIA EDGE 0, 1
SLOT 2, LINK 0 TO EDGE 2
END

SLOT 0
\(

SLOT1 —<

/)
0
SLOT 2

LINK CABLE

4.5 Describing the hardware configuration

This section describes how to define the hardware configuration of a motherboard
system. The MMS needs to know how the slots, IMS C004s and edges are
connected together on the board in order to be able to determine whether a
particular set of softwire connections is possible or not.

The following sections will describe what is required in each section of a board
definition, including some examples.

72 OEK 227 01 January 1990

22 4 Module motherboard software

4.5.1 Hardwire definition

A typical hardwire definition would look something like the following:

define boarda

DEF boardb
-- sizes section
-- t2chain section
-- hardwires section
PIPE boarda, boardb, boardb, boarda, boarda END

The definition consists of two separate parts
« The definition of board types
¢ The definition of the pipeline

The pipeline definition tells the MMS how the boards in the system are arranged.
In the example above we have the following system:

boarda boardb boardb boarda boarda

The board definition, on the other hand, specifies the connections within a par-
ticular board type. Each section of the board definition will now be described in
more detail.

The syntax for a hardwire description is:

harawire.description

{1 board.definition }
pipeline.description

board.definition DEF board.name
sizes
t2.chain

hardwires

pipeline.description

PIPE { board.name }

72 OEK 227 01 January 1990

4.5 Describing the hardware configuration 23

Sizes section

The sizes section is used to tell the MMS how many IMS T212s, IMS C004s,
slots and edges are present on the board for example:

SIZES
T2 1
c4 1
SLOT 3
EDGE 2
END

describes a board with one IMS T212, one IMS C004, three module slots, and
two edge connections.

The syntax of the sizes section is:

sizées = SIZES
T2 positive.integer
C4 positive.integer
SLOT positive.integer
EDGE positive.integer
END

72 OEK 227 01 January 1990

24

4 Module motherboard software

T2 chain section

The T2 chain section tells the MMS how the T2 chain is connected to the IMS
C004s. It specifies which links of the IMS T212s are connected to the configu-
ration links of the IMS C004s. For example,

T2CHAIN
T2 0, LINK 0 C4
T2 0, LINK 3 C4
T2 1, LINK 0 C4
T2 1, LINK 3 C4
END :

describes the following system:

wWMNKHEO

C40

C42

— T20

T21 F——s=

C41

C43

The syntax of the T2 chain section is:

t2.chain = T2CHAIN
{ t2.c4.line}
END
t2.c4.line = T2 t2.id, LINK chain.link.num C4 c4.id
t2.id = positive.integer
chain.link.num = 0
| 3
c4.id = 0.31

72 OEK 227 01

January 1990

4.5 Describing the hardware configuration 25

Hardwire section

The hardwire section describes how the slots, edges and IMS C004s are con-
nected together. A typical structure is as follows:

HARDWIRE
-- pipeline
-— slots to IMS C004s
-- edges to IMS C004s
-- slots to edges
END

The sections may appear in any order and lines from each may be freely inter-
mixed, although organising it as above will aid understanding.

The syntax of the hardwire section is:

hardwires HARDWIRE
{ hardwire.line }

END

hardwire.line slot.to.slot
c4.to.slot
c4.to.edge

slot.to.edge

The pipeline section describes how the module slots on the motherboard are
connected together to form the module pipeline. In general, link 2 of a slot is
connected to link 1 of the following slot so that it conforms with the module
motherboard architecture[1]. It is not possible to separate the input and output
channels of the links. For example,

SLOT 0, LINK 2 TO SLOT 1, LINK 1
SILOT 1, LINK 2 TO SLOT 2, LINK 1
SLOT 2, LINK 2 TO SLOT 3, LINK 1

describes the following four module pipeline

—= SLOT O SLOT 1 SLOT 2 SLOT 3 —

72 OEK 227 01 January 1990

26 4 Module motherboard software

The syntax of slot to slot lines is:

slot.to.slot = SLOT slotid, LINK link.num TO SLOT slot.id,
LINK link.num
slot.id = positive.integer

The slots to IMS C004s section describes how the non-pipeline links of the slots
are connected to the IMS C004 link switches. In general both links 0 and 3 will
be taken to an IMS CO004. It is possible to specify that the input and output
channels of a link are taken to different IMS C004s by including an | or O in the
definition. For example,

C4 0, LINK 0 TO SLOT 0, LINK 0

C4 1, LINK O, O TO SLOT 1, LINK O, I
C4 1, LINK 1, I TO SLOT 1, LINK O, O
C4 1, LINK 5, O TO SILOT 2, LINK 3, I

specifies the following connections

0.0 50
C40 C41
0 1.1
0 o1 |00
1 2 1 2 1 2
—{ SLOT 0 SLOT 1 SLOT 2 >
L tax

The syntax of IMS C004 to slot lines is:

c4.to.slot = C4 c4.id, LINK c4.link.no[, i/o] TO SLOT slot.no,
LINK link.num [, i/o]
ifo = I
| ©
link.num = 0
| 1
| 2
| 3
c4.link.no = positive.integer

72 OEK 227 01 January 1990

4.5 Describing the hardware configuration 27

The edges to IMS C004s section specifies which edges, if any, are connected to
the IMS C004s on the board. As with slots to IMS C004s, the input and output
channels can be handled separately. For example,

C4 0, LINK O, I TO EDGE 1, ©
C4 0, LINK 4 TO EDGE 3

describes the following connections

4 EDGE 3

C0040 |44 EDGE 1,0

The syntax of IMS C004 to edge lines is:

c4.to.edge = C4 c4.id, LINK c4.link.no [, i/o]
TO EDGE edge.id [, i/0]

edge.id positive.integer

The slots to edges section specifies which edges are connected to slots. It is not
possible to separate the input and output channels for slot to edge connections.
For example

SIOT 1, LINK 3 TO EDGE 3

describes the following connection:

3 EDGE 3
SLOT 1 |

The syntax of a slot to edge connection is:

slot.to.edge = SLOT slotid, LINK link.num TO EDGE edge.id

72 OEK 227 01 January 1990

28 4 Module motherboard software

4.6 Error reporting
4.6.1 Errors in the hardwire description
There are a number of different types of error that may be detected by the MMS
when reading the hardwire file:
¢ File Reading Errors
e Syntax Errors
e Range Checking Errors
e Duplication Errors

Most error messages should be self-explanatory.

File reading errors

If the MMS is not able to read the source files an error will be reported and
explained. In some cases errors of this type will be detected first as a syntax
error and reported as such.

Syntax errors

Any syntax errors in the hardwire file will be reported, producing one of the
following types of error message:

... unexpected symbol found ...’
‘... unexpected number found ...’
‘... unexpected word found ...’

The symbol that was expected at that point is usually displayed as well, together
with the source line number that the error was found on. This line is also dis-
played in full below the error message.

For example, if the SIZES section of the hardwire file looked like this:

SIZES
T2 2
C4 4
SLOT 32
END

The MMS would produce the following error message:

Error detected in HL1l file at line 4 :
- Unexpected symbol found (‘END’). ‘EDGE’ was expected

Line 4 : END

72 OEK 227 01 January 1990

4.6 Error reporting 29

Range checking errors

Numbers outside the following ranges will cause out of range error messages:
« implementation limit restrictions
e values defined in the SIZES section

e link values outside range 0-3

Duplication errors

If any link from a slot, IMS C004 or edge is mentioned more than once in the
HARDWIRE section, a duplication error will occur and an error message will be
displayed. Similarly, duplicated IMS T212 links or IMS C004 IDs in the T2CHAIN
section will give rise to errors.

For example,

C4 0, LINK 4, O TO SLOT 4, LINK 3, I

C4 0, LINK 4, O TO SLOT 7, LINK 0, I

will produce an error message similar to:

Error detected in HL1 file at line x :

- The C004 link in this connection is already involved
in a C004 to slot connection

Line x : C4 0, LINK 4, O TO SLOT 7, LINK 0, I

Links may not be checked for duplication in the same order as they appear in
the line.

4.6.2 Errors in the softwire description
Many errors in the softwire definition are handled in the same way as the hardwire

description. In addition to these errors, however, the MMS will also report soft
connections which it is unable to establish.

72 OEK 227 01 January 1990

30 4 Module motherboard software

This can be for one of two reasons:

« A ‘hard link’ mentioned in a soft connection is not defined as connected
anywhere in the hardwire description

¢ Two hard channels are required to have a soft connection between them,
but are connected to different IMS C004s making their connection impos-
sible.
To make it easier to report and correct such errors the MMS error messages
break the process of establishing a soft link down into four stages. An error may
be detected and reported at any of these stages:
1 From ‘from link' output to IMS C004 input
2 From IMS C004 output to ‘to link’ input
3 From ‘o link’ output to IMS C004 input

4 From IMS C004 output to ‘from link’ input

STAGE 1 STAGE 3

() EDGE OR
SLOT LINK

STAGE 2 STAGE 4

For example, in the following line:
SLOT 0, LINK 3 TO SLOT 1, LINK 0
the stages are as follows:
1 Check slot 0, link 3 output is connected to a IMS C004 input
2 Chgck IMS C004 output is connected to slot 1, link 0 input
3 Check slot 1, link 0 is connected to a IMS C004 input

4 Check IMS C004 output is connected to slot 0, link 3 input.

72 OEK 227 01 January 1990

Reference manual

72 OEK 227 01 January 1990

32 Reference manual

72 OEK 227 01 January 1990

5 Device driver call
definitions

5.1 The system calls available

The interface between the user program and the drivers is via a set of system
calls. Because of the way a device driver integrates the device handling into
the operating system, these system calls are the normal MS-DOS calls for doing
input and output to a file or device.

The device driver interfaces the B008 to the operating system as a character
device, this means that the device can be accessed by READ or WRITE calls
with variable length buffers.

e OPEN — Open device for reading or writing.

¢ READ — Read a number of bytes from the link.
¢ WRITE — Write a number of bytes to the link.
¢ IOCTL — loctl calls to perform the following:

1 ReadFlags — Read the value of the transputer subsystem error
flag and the driver timeout flag, as well as the status of the read
and write channels of the link.

2 SetFlags - Sets up the following actions:
(a) Reset — Reset the transputer network.
(b) Analyse — Analyse the transputer network.

(c) settimeout — Sets the timeout value and enables time-
outs.

e CLOSE — Close device.

5.1.1 OPEN

The open call to MSDOS, generates a file descriptor to be used to access the
device. The open call is passed a file name which MSDOS first checks against
its list of character device names. If a match is found then the MSDOS sends
all subsequent 10 requests associated with the descriptor to the device driver
rather than to a file. The IBM Disk Operating System Technical Reference gives
a full description of how to call the operating system, the following code segment

72 OEK 227 01 January 1990

34 5 Device driver call definitions

shows a typical open call.

name db LINK1’, O
open_file: mov dx, offset name
mov al, MODE
mov ah, 3Dh
int 21h

;File handle returned in AX
or from C
fd = open("LINK1", O_RDWR);

There is a problem however with the DOS open call to open a device. If there
is no device which has the same name as the parameter then DOS will decide
that the open call was to a real file, thus a file descriptor to an open file will be
returned rather than to a device. In this way it is not possible by means of the
open call to determine whether the device driver is installed or not.

There is however a DOS IOCTL call which returns information about the type of
an open file descriptor. One of the bits in the returned status word corresponds
to whether the descriptor points to a device or to a plain file. The procedure for
opening a descriptor to the link should be to perform an open call on the name
of the device, then perform an ioctl call on the new descriptor to check that it
does in fact reference the device rather than a file of the same name.

Assuming the open file descriptor in bx, the following code will test whether the
desriptor references a device:

mov ax, 4400h ;IOCTL call, function 0
mov bx,<file handle>

int 21h

test dl, 80h

jz not_a_device

The DOS IOCTL call is not usually implemented directly in C runtime libraries.

5.1.2 READ

Having opened the device, the read call allows data to be read from the link. The
DOS Read call takes a file descriptor (which should be the descriptor obtained
from open) a buffer pointer and a length. The buffer pointer and length are then
passed to the device driver for service.

72 OEK 227 01 January 1990

5.1 The system calls available 35

The device driver attempts to read the requisite number of bytes into the buffer,
returning control to DOS and hence the user program when:

e All the bytes have been read
¢ A Timeout occurs see the timeout ioctl call
e The user presses ctrl-break

If all the bytes were read, then read will return the passed length. If only part of
the request was read due to either timeout or break detection then the number
of bytes read is returned. If a timeout or break occured before any bytes were
read then —1 is returned by the read call.

5.1.3 WRITE

The write call allows data to be written to the link adapter. The DOS Write call
takes a file descriptor (which should be the descriptor obtained from open) a
buffer pointer and a length. The buffer pointer and length are then passed to
the device driver for service.

In a similar way to the Read call, the device driver attempts to write the correct
number of bytes from the buffer to the link, returning control to DOS and hence
the user program when:

« All the bytes have been written
o A Timeout occurs see the timeout ioctl call
e The user presses ctrl-break

If all the bytes were written, then write will return the passed length. If only part of
the request was written due to either timeout or break detection then the number
of bytes written is returned. If a timeout or break occured before any bytes were
written then —1 is returned by the write call.

5.1.4 I0CTL

In DOS, the ioctl call is a way of passing and retrieving control information to
the device or the device driver. This information is passed or retrieved using
sub-function 02 and 03 of the ioctl (ah=44h) DOS INT 21 system call. The ioctl
call is not usually supported directly by C compilers, it must be executed through
either asssembly language or a generic operating system call interface of the
language.

72 OEK 227 01 January 1990

36 5 Device driver call definitions

The call to INT 21h, AH=44h, AL=03h is used to write certain control information
to the the device driver. In all cases a 32-bit (4-byte) value is passed into the
call. The top 16-bits specify the kind of operation to be done, the bottom sixteen
bits contain the parameter to the operation (if any)

Top 16 bits | Bottom 16 bits meaning

0000h don't care Reset the root transputer

0001h don't care Assert analyse and reset

0002h Timeout period (x 0.1 seconds) | Set the timeout period
(0 means no timeout)

Example code to reset the root transputer:

reset_word dw 00

dw 00
reset_link:
mov ah, 44h ;Function 44 - 03
mov al, 03h
mov bx, <file handle> ;Handle returned by open
mov cx, 4 ;8ize of status string
mov dx, offset cs:reset_word
push cs
jole)] ds ;Address in ds:dx
int 21h ;Make DOS call

The call to INT 21h, AH=44h, AL=02h is used to read the status information from
the device driver. The call should be made, specifying a 32-bit transfer area in
CX. On return the transfer area will be as follows:

Bit Number | Meaning
0 The transputer error flag is set
1 A Timeout occured on the last 10 operation
2 The transputer link is able to accept at least one byte
3 The transputer link has a least one byte available

72 OEK 227 01 January 1990

5.1 The system calls available

37

Example code to retrieve the error flag:

status
dw 00

reset_link:

mov
mov
mov
mov
mov
push
PoP
int
mov
and

72 OEK 227 01

dw 00

ah, 44h ;Function 44 - 02
al, 02h

bx, <file handle>

cx, 4 ;Size of status string
dx, offset cs:status_word

cs

ds ;Address in ds:dx
21h ;Make DOS call

ax, [status] ;AX=returned status
al,1 ;Only leave error bit

January 1990

38

5

Device driver call definitions

72 OEK 227 01

January 1990

6 INMOS server

This chapter describes the host file server iserver, which loads programs
onto transputers and transputer networks and provides the run-time environment
through which programs communicate with the host.

6.1 Introduction
The host file server iserver provides two functions:
e Loading programs and controlling transputer networks
» Runtime access to host services for application programs.
At the application program level, all communications with the host file server are

through the libraries hostio.lib and streamio.lib. These are described
in the ‘occam 2 toolset user manual’.

6.2 Running the server
To run the host file server use the following command line:

iserver {options}

where: options is a list of one or more options from table 6.1.

6.2.1 Supplying parameters to the program

Any text on the command line that is not a server option is passed as parameters
to the program. Valid option strings will always be interpreted as server options
and must not be used as program parameters.

If iserver is invoked with no options, brief help information is displayed.

6.2.2 Loading programs

Before a program can be loaded onto a transputer network it must be compiled,
linked and made bootable using either the bootstrap tool iboot (for single
transputer programs), or the configurer iconf (for multitransputer programs).
The file to be loaded will have a .bt1 or a .bxx file extension.

72 OEK 227 01 January 1990

40 6 INMOS server

Option Description

SA Analyses the root transputer and peeks 8K of its memory.
SB filename | Boots the program contained in the named file.

SC filename | Copies the named file to the root transputer link.

SE Terminates the server if the transputer error flag is set.

ST Displays progress information as the program is loaded.

SL name Specifies link address or device name.

SP n Set size of memory to peek on Analyse to n KBytes.

SR Resets the root transputer and subsystem on the link.

sSs Serves the link, that is, provides host system support to pro-

grams communicating on the host link.

Options must be preceded by ‘-’ for UNIX based toolsets.

Options must be preceded by ‘/’ for non-UNIX based toolsets.

Spaces between options and the case of letters in the parameters are not
significant.

Options may be in any order.

Option SB filename is equivalent to SR SS SI SC filename.

Table 6.1 Host file server options

The name of the file containing the program to be loaded is specified using the
‘SB’ option. If the file cannot be found an error is reported. This resets the board
prior to loading the program. When the program has been loaded the server then
provides host services to the program.

Note: Using the ‘SB’ option is equivalent to using the SR, SS, ST and SC options
together.

To load a program onto a board without resetting the root transputer, use the
'SC’ option. This should only be done if the transputer has already been reset,
or has a resident program that can interpret the file. To reset the transputer
subsystem use the ‘SR’ option.

To terminate the server immediately after loading the program use the ‘SR’ and
‘SC’ options together. This combination of options resets the transputer, loads
the program onto the board, and terminates.

To load a board in analyse mode, for example when you wish to use the debugger
to examine the program’s execution, use the ‘SA’ option to dump the first 8 Kbytes
of the transputer’s memory (starting from MOSTNEG INT). The data is stored
in an internal buffer which is read by the idump tool when programs are to be
debugged that use the root transputer.

72 OEK 227 01 January 1990

6.2 Running the server 41

6.2.3 Terminating the server

To terminate the server press the host system break key. When the key is
pressed the following prompt is displayed:

(x)exit, (s)hell, or (c)ontinue?
To terminate the server type ‘x’ or press

To suspend the server and resume the program later, type ‘s’. On DOS-based
systems this option may require a host environment variable. On UDP-based
versions this option should not be used — the target transputers may timeout
and reset themselves.

To abort the interrupt and continue running the program, type ‘c’.

6.2.4 Specifying a link address or name — option SL

The server contains a default address or device name for communicating with
boot from link boards. The address or name can be changed by specifying the
‘SL’ option followed by the new value. Addresses can be given in decimal format,
or in hexadecimal format by prefixing the number with ‘#'.

The default address is overridden by the value of host environment variable
TRANSPUTER, if this variable has been set. This variable is itself overridden by
the address or name specified by the ‘SL' option.

6.25 Terminating on error — option SE

When debugging programs it is useful to force the server to terminate when the
subsystem’s error flag is set. To do this use the ‘SE’ option. This option should
only be used for programs written entirely in occam and compiled in HALT
system mode. If the program is not written entirely in occam then the error flag
may be set even though no error has occurred.

72 OEK 227 01 January 1990

42 6 INMOS server

6.3 Error messages
A list of possible error messages which isexrver may produce follows. In many
cases, the messages listed may be followed by an extra message which gives
additional information. This information is host specific.
Aborted by user

The user interrupted the server, by pressing or [Cirl] [Break].
Bad link specification

The link name specified is not valid.

Boot filename is too long, maximum size is number characters

The specified filename was too long. number is the maximum size for
filenames.

Cannot find boot file filename
The server cannot open the specified file.
Command line too long (at string)

The maximum permissible command line length has been exceeded. The
overflow occurred at string.

Copy filename is too long, maximum size is number characters

The specified filename was too long. number is the maximum size for
filenames.

Error flag raised by transputer

The program has set the error flag. Debug the program.
Expected a filename after -SB option

The ‘SB’ option requires the name of a file to load.
Expected a filename after -SC option

The ‘SC’ option requires the name of a file to load.

72 OEK 227 01 January 1990

6.3 Error messages 43

Expected a name after -SL option

The ‘SL’ option requires a link name or address.
Expected a number after -SP option

The ‘SP’' option must specify the number of Kbytes to peek.
Failed to allocate CoreDump buffer

The 'SP’ option was used and the server was unable to allocate enough
memory to allow the transputer's memory to be copied.

Failed to analyse root transputer
The link driver could not analyse the transputer.
Failed to reset root transputer
The link driver could not reset the transputer.
Link name is too long, maximum size is number characters
The specified name was too long. number is the maximum length.
Protocol error, message

Incorrect protocol on the link. This can happen if there is a hardware
fault, or if an incorrect version of the server is used.

message can be any of the following:
got number bytes at start of a transaction
packet size is too large
read nonsense from the link
timed out getting a further dataname
timed out sending reply message
For more information about server protocols see chapter 7.

Reset and analyse are incompatible

Reset and analyse options cannot be used together.

72 OEK 227 01 January 1990

44 6 INMOS server

Timed out peeking word number
The server was unable to analyse the transputer.

Transputer error flag has been set
The program has set the error flag. Debug the program.

Unable to access a transputer
The server was unable to gain access to a link. This occurs when the
link address or device name, specified either with the SL option or the
TRANSPUTER environment variable, is incorrect.

Unable to free transputer link

The server was unable to free the link resource because of a host error.
The reason for the error will be host dependent.

Unable to get request from link

The server failed to get a packet from the transputer because of some
general failure.

Unable to write byte number to the boot link
The transputer did not accept the file for loading. This can occur if the

transputer was not reset or because the file was corrupted or in incorrect
format.

72 OEK 227 01 January 1990

7 Server protocol
definitions

This section provides a technical description of the server's functionality and
the protocol used to implement requests to and replies from the server. This
information is intended to help those porting the server to a new host machine,
or are extending server functionality.

7.1 iserver protocol

Every communication, both to and from the server, is a counted array of bytes.
The first two bytes are a (little endian) count of the following message length.
In the to—server direction, there is a minimum packet length of 8 bytes (i.e. a
minimum message length of 6 bytes). In both to and from directions there is a
maximum packet length of 1024 bytes. A further restriction is that the message
must always be an even number of bytes.

l s1 l s2 I message of length s1+(256"s2)

In 0ccam these messages can be routed as INT16: : []BYTE protocol.

The server code on the host can take advantage of the fact that it will always be
able to read 8 bytes from the link at the start of a transaction.

7.2 Server functionality
This section describes the basic set of server functions. All versions of the
iserver will support these functions, enabling programs to be ported between
different versions of the toolset.
The functions implemented by the server are separated into three groups:

1 Interacting with files

2 Interacting with the host environment

3 Interacting with the server itself
In the descriptions that follow, the arguments and results of server calls are listed
in the order that they appear in the data part of the protocol packet. The length

of a packet is the length of all the items concatenated together, rounded up to
an even number of bytes.

72 OEK 227 01 January 1990

46 7 Server protocol definitions

All server calls return a result byte as the first item in the return packet. If the
operation succeeds the result byte will be zero. If the operation fails the result
byte will be non-zero. The result will be one (1) in the special case where the
operation failed because it was not implemented’. If the result is not zero, some
or all of the return values may not be present, resulting in a smaller return packet
than if the call was successful.

In the descriptions below, 0ccam types are used to define the format of data
items in the packet. All integer types are communicated least significant byte
first. Negative integers are represented in 2s complement. Strings and other
variable length blocks are introduced by a 16 bit signed count.

7.21 File commands

Open files are identified with 32 bit descriptors. There are three predefined open
files:

0 standard input

1 standard output

2 standard error

If one of'these is closed it may not be reopened.

"Result values between 2 and 127 are defined to have particular meanings by 0CCam
server libraries, Result values of 128 or above are specific to the implementation of a server.

72 OEK 227 01 January 1990

7.2 Server functionality 47

Fopen - Open a file

Synopsis: StreamId = Fopen(Name, Type, Mode)
To server: BYTE Tag = 10
INT16::[]BYTE Name
BYTE Type = 1 or 2
BYTE Mode = 1...6
From server: BYTE Result
INT32 StreamId

Fopen opens the file Name and, if successful, returns a stream identifier
StreamId.

Type can take one of two possible values:
1 Binary. The file will contain raw binary bytes

2 Text. The file will be stored as text records. Text files are host—
specified.

Mode can have 6 possible values:
1 Open an existing file for input
2 Create a new file, or truncate an existing one, for output
3 Create a new file, or append to an existing one, for output

4 Open an existing file for update (both reading and writing), starting
at the beginning of the file

5 Create a new file, or truncate an existing one, for update

6 Create a new file, of append to an existing one, for update
When a file is opened for update (one of the last three modes above) then
the resulting stream may be used for input or output. There are restric-
tions, however. An output operation may not follow an input operation
without an intervening Fseek, Ftell or F£lush operation.

The number of streams that may be open at one time is host-specified,
but will not be less than eight (including the three predefines).

72 OEK 227 01 January 1990

48

7 Server protocol definitions

Fclose — Close a file

Synopsis: Fclose(StreamlId)

To server: BYTE Tag = 11
INT32 StreamId

From server: BYTE Result

Fclose closes a stream StreamId which should be open for input or out-
put. Fclose flushes any unwritten data and discards any unread buffered
input before closing the stream.

Fread — Read a block of data

Synopsis: Data = Fread(StreamId, Count)
To server: BYTE Tag = 12

INT32 StreamId

INT16 Count
From server: BYTE Result

INT16:: []BYTE Data

This function is obsolete. See the definition of FGetBlock for its
replacement.

Fread reads Count bytes of binary data from the specified stream. Input
stops when the specified number of bytes are read, or the end of file is
reached, or an error occurs. If Count is less than one then no input is
done. The stream is left positioned immediately after the data read. If
an error occurs the stream position is undefined.

Result is always zero. The actual number of bytes returned may be
less than requested and Feof and Ferror should be used to check for
status.

72 OEK 227 01 January 1990

7.2 Server functionality 49

Fwrite — Write a block of data

Synopsis: Written = Fwrite(StreamId, Data)
To server: BYTE Tag = 13
INT32 StreamId

INT16::[]BYTE Data

From server: BYTE Result
INT16 Written

This function is obsolete. See the definition of FPutBlock for its
replacement.

Fwrite writes a given number of bytes of binary data to the specified
stream, which should be open for output. If the length of Data is less
than zero then no output is done. The position of the stream is advanced
by the number of bytes actually written. If an error occurs then the re-
sulting position if undefined.

Fwrite returns the number of bytes actually output in Written. Result
is always zero. The actual number of bytes returned may be less than
requested and Feof and Ferror should be used to check for status.

If the StreamId is 1 (standard output) then the write is automatically
flushed.

72 OEK 227 01 January 1990

50 7 Server protocol definitions

Fgets — Read a line

Synopsis: Data = Fgets(StreamId, Count)
To server: BYTE Tag = 14

INT32 StreamId

INT16 Count
From server: BYTE Result

INT16::[]BYTE Data

Fgets reads a line from a stream which must be open for input. Charac-
ters are read until end of file is reached, a newline character is seen or
the number of characters read is not less than Count.

If the input is terminated because a newline is seen then the newline
sequence is not included in the returned array.

If end of file is encountered and nothing has been read from the stream
then Fgets fails.

Fputs — Write a line

Synopsis: Fputs(StreamId, String)
To server: BYTE Tag = 15
INT32 StreamId

INT16:: []BYTE String

From server: BYTE Result

Fputs writes a line of text to a stream which must be open for output.
The host-specified convention for newline will be appended to the line
and output to the file. The maximum line length is host-specified.

72 OEK 227 01 January 1990

7.2 Server functionality 51

Fflush — Flush a stream

Synopsis: Fflush(StreamId)

To server: BYTE Tag = 16
INT32 StreamId

From server: BYTE Result

Fflush flushes the specified stream, which should be open for output. Any
internally buffered data is written to the destination device. The stream
remains open.

Fseek — Set position in a file

Synopsis: Fseek (StreamId, Offset, Origin)
To server: BYTE Tag = 17

INT32 StreamId

INT32 Offset

INT32 Origin
From server: BYTE Result

Fseek sets the file position for the specified stream. A subsequent read
or write will access data at the new position.

For a binary file the new position will be Offset characters from
Origin which may take one of three values:

1 Set, the beginning of the file
2 Current, the current position in the file
3 End, the end of the file

For a text stream, Offset must be zero or a value returned by Ftell. If the
latter is used then Origin must be set to 1.

72 OEK 227 01 January 1990

52

7 Server protocol definitions

Ftell — Find out position i
Synopsis:

To server:

From server:

n a file

Position = Ftell(StreamId)

BYTE Tag = 18
INT32 StreamId
BYTE Result

INT32 Position

Ftell returns the current file position for StreamId.

Feof — Test for end of file
Synopsis:

To server:

From server:

Feof succeeds if the

Feof(StreamId)

BYTE Tag = 19
INT32 StreamId
BYTE Result

end of file indicator for StreamId is set.

Ferror — Get file error status

Synopsis:

To server:

From server:

ErrorNo, Message = Ferror (StreamId)

BYTE Tag = 20
INT32 StreamId
BYTE Result
INT32 ErrorNo

INT16:: []BYTE Message

Ferror succeeds if the error indicator for StreamId is set. If it is, Fer-
ror returns a host—defined error number and a (possibly null) message
corresponding to the last file error on the specified stream.

72 OEK 227 01

January 1990

7.2 Server functionality 53

Remove — Delete a file
Synopsis: Remove (Name)

To server: BYTE Tag = 21
INT16::[]BYTE Name

From server: BYTE Result

Remove deletes the named file.
Rename — Rename a file
Synopsis: Rename (OldName, NewName)
To server: BYTE Tag = 22
INT16::[]BYTE OldName
INT16:: []BYTE NewName

From server: BYTE Result

Rename changes the name of an existing file 01dName to NewName.

72 OEK 227 01 January 1990

54 7 Server protocol definitions

FGetBlock — Read a block of data and return status

Synopsis: Data,Result = FGetBlock (StreamId, Count)

To server: BYTE Tag = 23
INT32 StreamId
INT16 Count

From server: BYTE Result

INT16:: []BYTE Data

FGetBlock reads Count bytes of binary data from the specified stream.
Input stops when the specified number of bytes are read, or the end of
file is reached, or an error occurs. If Count is less than one then no
input is done. The stream is left positioned immediately after the data
read. If an error occurs the stream position is undefined.

The actual number of bytes returned may be less than requested. In the
case of Result indicating a failure Feof and Ferror should be used to
determine the cause of the error.

This function is preferred over the Fread function, which should no longer
be used.

72 OEK 227 01 January 1990

7.2 Server functionality 55

FPutBlock — Write a block of data and return status

7.2.2

Synopsis: Written,Result = FPutBlock (StreamId, Data)

To server: BYTE Tag = 24
INT32 StreamId
INT16::[]BYTE Data

From server: BYTE Result
INT16 Written

FPutBlock writes a given number of bytes of binary data to the speci-
fied stream, which should be open for output. If the length of Data is
less than one then no output is done. The position of the stream is ad-
vanced by the number of bytes actually written. If an error occurs then
the resulting position if undefined.

FPutBlock returns the number of bytes actually output in Written. The
actual number of bytes returned may be less than requested and Feof
and Ferror should be used to check for status.

If the StreamId is 1 (standard output) then the write is automatically
flushed.

This function is preferred over the Fwrite function, which should no longer
be used.

Host commands

Getkey — Get a keystroke

Synopsis: Key = GetKey()

To server: BYTE Tag = 30

From server: BYTE Result
BYTE Key

GetKey gets a single character from the keyboard. The keystroke is
waited on indefinitely and will not be echoed. The effect on any buffered
data in the standard input stream is host—defined.

72 QEK 227 01 January 1990

56 7 Server protocol definitions

Pollkey — Test for a key

Synopsis: Key = PollKey ()

To server: BYTE Tag = 31

From server: BYTE Result
BYTE Key

PollKey gets a single character from the keyboard. If a keystroke is not
available then PollKey returns immediately with a non-zero result. If a
keystroke is available it will not be echoed.The effect on any buffered
data in the standard input stream is host—defined.

Getenv — Get environment variable

Synopsis: Value = Getenv(Name)

To server: BYTE Tag = 32
INT16::[]BYTE Name

From server: BYTE Result
INT16::[]BYTE Value

Getenv returns a host—defined environment string for Name. If Name is
undefined then Result will be non-zero.

Time — Get the time of day

Synopsis: LocalTime, UTCTime = Time ()

To server: BYTE Tag = 33

From server: BYTE Result
INT32 LocalTime
INT32 UTCTime

Time returns the local time and Coordinated Universal Time if it is avail-
able. Both times are expressed as the number of seconds that have
elapsed since midnight on 1st January, 1970. If UTC time is unavailable
then it will have a value of zero.

72 OEK 227 01 January 1990

7.2 Server functionality 57

System - Run a command

Synopsis: Status = System(Command)

To server: BYTE Tag = 34
INT16:: []BYTE Command

From server: BYTE Result
INT32 Status

System passes the string Command to the host command processor for
execution. If Command is zero length then System will succeed if there
is a command processor. If Command is not null then Status is the
return value of the command, which is host—defined.

7.2.3 Server commands

Exit — Terminate the server

Synopsis: Exit(Status)

To server: BYTE Tag = 35
INT32 Status

From server: BYTE Result

Exit terminates the server, which exits returning Status fo its caller.

If Status has the special value 999999999 then the server will terminate
with a host-specific ‘success’ result.

If Status has the special value —999999999 then the server will terminate
with a host—specific ‘failure’ result.

72 OEK 227 01 January 1990

58 7 Server protocol definitions

CommandLine — Retrieve the server command line

Synopsis: String = CommandLine(All)

To server: BYTE Tag = 40
BYTE All

From server: BYTE Result
INT16::[]BYTE String

CommandLine returns the command line passed to the server on invo-

cation.

If A1l is zero the returned string is the command line, with arguments
that the server recognised at startup removed.

If A1l is non—zero then the string returned is the entire command vector
as passed to the server on startup, including the name of the server

command itself.

Core — Read peeked memory

Synopsis Data = Core(Offset, Length)

To server: BYTE Tag = 41
INT32 Offset
INT16 Length

From server: BYTE Result
INT16::[]BYTE Core

Core returns the contents of the root transputer's memory, as peeked
from the transputer when the server was invoked with the analyse option.

Core fails if Offset is larger than the amount of memory peeked from the
transputer or if the transputer was not analysed.

If (Offset + Length) is larger than the total amount of memory that was
peeked then as many bytes as are available from the given offset are

returned.

72 OEK 227 01

January 1990

7.2 Server functionality 59

Version — Find out about the server

Synopsis: Id = Version()

To server: BYTE Tag = 42

From server: BYTE Result
BYTE Version
BYTE Host
BYTE 0s
BYTE Board

Version returns four bytes containing identification information about the
server and the host it is running on.

If any of the bytes has the value 0 then that information is not available.

Version identifies the server version. The byte value should be divided
by ten to yield a version number.

Host identifies the host box. Currently 8 are defined:

1 PC 5 |IBM 370 Architecture
2 NEC-PC 6 Sun-4

3 VAX 7 Sun-386i

4 Sun-3 8 Apollo

083 identifies the host environment. Currently 5 are defined:

1 L 4 sunos
3 VMS 5 OMS

Board identifies the interface board. Currently 11 are defined:

B004

1
7 QTO
2 B0o8s
8 BO15
3 BO10
9 CAT
4 BO11
10 BO16
B 11 UDP-Link
6 DRX-11

INMOS reserves numbers up to and including 127 for these three fields.

72 OEK 227 01 January 1990

60

7

Server protocol definitions

72 OEK 227 01

January 1990

Appendices

72 OEK 227 01 January 1990

62 Appendices

72 OEK 227 01 January 1990

A Rebuilding the server

The INMOS server consists of a set of C modules and header files. The source
can be altered to be used with various applications. When this is done the
server needs to be recompiled and linked using the hosts C compiler, to make
this process easier a Makefile is supplied.

72 QEK 227 01 January 1990

64 A Rebuilding the server

72 OEK 227 01 January 1990

B INMQOS standard link
access routines

This appendix describes a standard set of ‘C’ bindings for talking to transputer
links from a host computer. These routines are independent of the host spe-
cific software that drives the hardware (e.g. a device driver, or an assembly
language routine). INMOS has implemented versions of these routines for all its
development boards across several hosts and uses this scheme in its server.

If you wish to create a version of the server for your own board it should only be
necessary to replace these functions in the server provided.

B.1 Link initialisation

/* OpenLink

*

* Ready the link associated with ‘Name’.

* If ‘Name’ is NULL or "" then

* any free link can be used.

* Returns any positive integer as a link id or
*

a negative value if the open fails.

int OpenlLink (Name)
char *Name;

/* Closelink

* Close the active link ‘LinkId’.
* Returns 1 on success or

* negative if the close failed.
*/

int Closelink (LinkId)
int LinkId;

{

}

72 OEK 227 01 January 1990

66 B INMOS standard link access routines

B.2 Data operations

/* ReadLink

*

* Read ‘Count’ chars into ‘Buffer’

* from the specified link.

* LinkId is a valid link identifier,

% opened with OpenLink.

* ‘Timeout’ is a non negative integer representing
% tenths of a second.

* A ‘Timeout’ of zero is an infinite timeout.

* The timeout is for the complete operation.

* If ‘Timeout’ is positive then ReadLink may return
* having read less than the number of chars asked for.
* Returns the number of chars placed in ‘Buffer’

*

(which may be zero) or negative to indicate an error.

»
~

int ReadLink (LinkId, Buffer, Count, Timeout)
int LinkId;
char *Buffer;
unsigned int Count;
int Timeout;

~
*

WriteLink

Write ‘Count’ chars from ‘Buffer’
to the specified link.
LinkId is a wvalid link identifier,
opened with OpenLink.
‘Timeout’ is a non negative integer representing
tenths of a second.
A '‘Timeout’ of zero is an infinite timeout.
The timeout is for the complete operation.
If ‘Timeout’ is positive then WriteLink may return
having written less than the number of chars asked for.
Returns the number of chars actually written
(which may be zero) or negative to indicate an error.

¥ % % % % O F X ¥ ¥ * X% ¥

*
L

int WritelLink (LinkId, Buffer, Count, Timeout)
int LinkId;
char *Buffer;
unsigned int Count;
int Timeout;
{
}

72 OEK 227 01 January 1990

B.3 Subsystem control 67

B.3 Subsystem control

/* ResetLink

*

* Reset the subsystem associated

* with the specified link.

* Returns 1 if the reset is successful,
* negative otherwise.

*yf

int ResetLink (LinkId)
int LinkId;

{

}

/* AnalyseLink

Analyse the subsystem associated
with the specified link.

Returns 1 if the analyse is successful,
negative otherwise.

* ¥ * ¥ % *

/

int AnalyseLink (LinkId)
int LinkId;

{

}

B.4 Error testing
/* TestError

Test the error status associated

with the specified link.
Returns 1 if error is set, 0 if it is not and
negative to indicate an error.

/

* ¥ % * *

int TestError (LinkId)
int LinkId;

{

}

72 OEK 227 01 January 1990

68 B INMOS standard link access routines

B.5 Data ready tests
/* TestRead

*
* Test input status of the link.

* Returns 1 if ReadLink will return one byte

* without timeout,

* 0 if it may not and negative to indicate an error.

int TestRead (LinkId)
int LinkId;

{

}

/* TestWrite

*

* Test output status of the link.

* Returns 1 if Writelink can write one byte

* without timeocut,

* 0 if it may not and negative to indicate an error.
*/

int TestWrite (LinkId)
int LinkId;

{

}

72 OEK 227 01 January 1990

C Softwire description
language

soffwire.description= SOFTWIRE
{ board.softwires}
END

board.softwires ~ =PIPE board.id
{ softwire.line}

softwire.line = slot.to.slot.line
| slot.to.edge.line

| edge.to.edge.line

slot.to.slot.line= SLOT slot.id, LINK link.num TO SLOT slot.id,
LINK link.num [via.section]

via.section =VIA EDGE edge.id, edge.id
slot.to.edge.line = SLOT slot.id, LINK link.num TO EDGE edge.id

edge.to.edge.line= EDGE edge.id TO EDGE it edges.id

link.num =0

|1

|12

|13
slot.id = positive.integer
edge.id = positive.integer

72 OEK 227 01 January 1990

70

C Softwire description language

72 OEK 227 01

January 1990

D Hardwire description
language

harawire.description

positive.integer
pipeline.description

board.definition

sizes

t2.chain

t2.c4.line
t2.id

chain.link.num

link.num

cd.id

72 QEK 227 01

{1 board.definition }
pipeline.description

a positive integer varying between implementations
PIPE { board.name }

DEF board.name
sizes
t2.chain
hardwires

SIZES
T2 positive.integer
C4 positive.integer
SLOT positive.integer
EDGE positive.integer
END

T2CHAIN
{ t2.c4.line}
END

T2 t2.id, LINK chain.link.num C4 c4.id

positive.integer

w o

w M =0

0..31

January 1990

72 D Hardwire description language

hardwires = HARDWIRE
{ hardwire.line }
END

harawire.line = slot.to.slot

| c4.to.slot

| c4.to.edge

| slot.to.edge
slot.id = positive.integer
c4.link.no = positive.integer
edge.id = positive.integer

slot.to.slot

SLOT slot.id, LINK link.num TO SLOT slot.id,
LINK link.num

c4.to.slot = C4 c4.id, LINK c4.link.no [, i/o] TO SLOT slot.no,
LINK link.num [, i/0]
i/o = I
| ©
c4.to.edge = C4 c4.id, LINK c4.link.no [, /o] TO EDGE edge.id[, i/0]

slot.to.edge SLOT slot.id, LINK link.num TO EDGE edge.id

72 OEK 227 01 January 1990

E Edge mappings for the
BOO8

The MMS2 hardwire file for the B0O8 as supplied in the file 'b008’ contains EDGE
definitions for the output connectors of the B008. The edge definitions map onto
the connectors as follows (The connector label on the link break-out board is
also given)

Hardwire Mnemonic | Signal Name Breakout Label
EDGE 0 EdgeLink0 LO
EDGE 1 EdgeLink1 L1
EDGE 2 Edgelink2 L2
EDGE 3 EdgeLink3 L3
EDGE 4 Edgelink4 L4
EDGE 5 EdgeLink5 L5
EDGE 6 EdgelLinké L6
EDGE 7 EdgeLink7 L7
EDGE 8 PatchLinkO L8
(via patch header)
EDGE 9 PatchLink0 L9
(via patch header)

72 OEK 227 01 January 1990

74

E Edge mappings for the B008

72 OEK 227 01

January 1990

F The IMS C004
programmable link
switch

The IMS C004 programmable link switch provides a full crossbar switch be-
tween 32 link inputs and 32 link outputs. It will switch links running at standard
transputer speeds (10 and 20 Mbits/sec). The IMS C004 is programmed via a
separate serial link called the configuration link.

Each input and output is identified by a number in the range 0 to 31. A con-
figuration message consisting of one, two or three bytes is transmitted on the
configuration link. The configuration messages sent to the switch are shown
below.

Configuration Message Function
[O][input][output] Connects input to output
[1] [link1] [link2] Connects link1 to link2 by connecting the input

of link1 to the output of link2 and the input of
link2 to the output of link1.

[2] [output] Enquires which input the output is connected to.
The IMS C004 responds with the input. The most
significant bit of this byte indicates whether the
output is connected (bit set high) or disconnected
(bit set low). Early versions do not respond to the
command.

[3] This command byte must be sent at the end of ev-
ery configuration sequence which sets up a con-
nection. The IMS C004 is then ready to accept
data on the connected inputs.

[4] Resets the switch. All outputs are disconnected
and held low. This also happens when Reset is
applied to the IMS C004.

[5] [output] Qutput output is disconnected and held low.
[6] [link1] [link2] Disconnects the output of link1 and the output of
link2

For more detailed information on the IMS C004 see [3] and [5].

72 OEK 227 01 January 1990

76

F

The IMS C004 programmable link switch

72 OEK 227 01

January 1990

G The stages of IMS
C004 configuration

This appendix is designed to give some extra information about the method
used to configure the system of motherboards. The configuration takes place in
a number of stages, as described below.

A special IMS T212 worm is sent down the configuration pipeline which looks for
IMS T212s attached to link 2. The total number of IMS T212s found is passed
back up the pipeline to the host transputer. If the number found is different
from the number described in the hardwire file then an error is reported and the
configuration abandoned.

At this stage a hardware reset of the IMS C004s is performed (if available on
the motherboard in use), by writing to the external memory interface of the IMS
T212.

The host transputer now sends the identification numbers of the IMS C004s in
the system down the pipeline. This enables the worm on any particular IMS
T212 to intercept commands intended for the IMS C004s it controls and pass on
commands for others.

The configuration pipeline is now in a state where it is able send configuration
data to the IMS C004s.

Before sending any configuration data to the pipeline, the host transputer sends
a software reset command to each IMS C004 in the system to ensure that the
IMS C004s are in a known state.

The configuration data for the network is then send down the configuration
pipeline, each command preceded by the identification number of the IMS C004
it is meant for.

The configuration will now be complete and it is possible to reset the system of
motherboards without destroying the soft configuration.

72 OEK 227 01 January 1990

78 G The stages of IMS C004 configuration

72 OEK 227 01 January 1990

H Distribution disk

H.1 Contents of the release disk

The S708 is supplied on standard 55" 360K and 33" 720K MS-DOS floppy disks.
The disks contain the following files:

b008
ibmpec.itm
iserver.exe
mms2 .b4
softwire
s708driv.sys

The directory 'iserver’ on the release disk, contains the following files:

b004asm.asm
b0041link.c
b008link.c
b0lllink.c
b0l4link.c
change. log
filec.c
helios.c
hostc.c
inmos.h
iserver.c
iserver.h
link.c
makefile
msdosc.c
pack.h
gtOlink.c
serverc.c
s386ilink.c
vmserr.msg
updlink.c

72 OEK 227 01 January 1990

80 H Distribution disk

72 OEK 227 01 January 1990

| Bibliography

1 Module motherboard architecture, Trevor Watson,
Technical note 49, INMOS Limited, Bristol. 1988

2 Dual inline transputer modules (TRAMs), Paul Walker,
Technical note 29, INMOS Limited, Bristol. 1988

3 IMS C004 programmable link switch,
Data sheet, INMOS Limited, Bristol.

4 Extraordinary use of transputer links, Roger Shepherd,
Technical note 1, INMOS Limited, Bristol. 1987

5 Design and applications for the IMS C004, Glenn Hill,
Technical note 19, INMOS Limited, Bristol. 1987

6 Exploring multiple transputer arrays, Neil Miller,
Technical note 24, INMOS Limited, Bristol. 1987

7 Transputer instruction set: a compiler writer's guide,
Prentice Hall. 1988

72 OEK 227 01 January 1990

82 | Bibliography

72 OEK 227 01 January 1990

J Glossary

Analyse Assert a signal to a transputer to tell it to halt at the next de-scheduling
point, and allow the state of the processor to be read. In the context of
‘analysing a network’, analyse all processors in the network. One of the
system control functions on transputer boards.

Bootstrap A transputer program, loaded from ROM or over a link after the trans-
puter has been reset or analysed, which initialises the processor and
loads a program for execution (which may be another loader).

Hard channels Channels which are mapped onto links between processors in
a transputer network (used in contrast to Soft channels).

Module Motherboard Motherboards are provided to interface to various buses.
They have slots for inserting INMOS TRAMs and switch chips which can
be programmaed to connect the transputers in different topologies.

Network A set of transputers connected together using links, as a connected
graph (i.e. in such a way that there is a path, via links, and other trans-
puters, from one transputer to every other transputer in the set).

Reset Transputer system initialisation control signal.
Root transputer The transputer connected directly to the host machine.

Server A program running in a host computer attached to a transputer network
which provides access to the filing system and terminal /O of the host
computer. The server is normally used to boot up the network as well.

Soft channels Channels declared and used within a process running on a single
transputer (used in contrast to Hard channels).

TRAM Standard hardware module which can be used to quickly construct sys-
tems for a particular application or for a prototype. TRAMSs consist of
transputers, memory and sometimes application specific circuitry. They
conform to a published specification.

Weorm A program that will distribute itself through a network of transputers (per-
haps with an unknown topology) and allow all the processors in the net-
work to be loaded, tested or analysed.

72 OEK 227 01 January 1990

	Contents
	Contents overview
	Preface
	1. How to use this guide
	2. Introduction
	3. Installation

	User Guide
	4. Module motherboard software

	Reference Manual
	5. Device driver call definitions
	6. INMOS server
	7. Server protocol definitions

	Appendices
	A Rebuilding the server
	B INMOD standard link access routines
	C Softwire description language
	D Hardwire description language
	E Edge mappings for the B008
	F The IMS C004 programmable link switch
	G The stages of IMS C004 configuration
	H Distribution Disk
	I Bibliography
	J Glossary

