
tForth Manual
Documentation for the Programming

Language of the Canon Cat

By the Staff of
Information Appliance, Inc.

Copyright © 1988
by Information Appliance, Inc.

Copyright Information

Copyright @ 1988 by Information Appliance Inc. All Rights Reserved.

LEAP is a registered trademark of Information Appliance Inc.
Information Appliance, Calculation-in-Context, and the command
names LEAP AGAIN, DISK and SEND are trademarks of Information
Appliance Inc. Patents Pending.

Canon Cat is a trademark of Canon Inc.

The Cat system is protected by one or more patents pending; all text,
code and circuitry is copyright © 1988 by Information Appliance Inc.

Canon Cat by Jef Raskin, Dr. James Winter, Terry Holmes, Minoru
Taoyama, Jonathan Sand, John Bumgarner, Paul Baker, Jim Straus,
Dave Boulton, Charlie Springer, Scott Kim, Ralph Voorhees, Richard
Kraus, Kouji Fukunaga, Kazuhiro Nakamura, Naohisa Suzuki,
Shigeru Ishida, Susumu Takase.

Manual by David Alzofon, Lori Chavez, Jim Winter, David Caulkins,
Terry Holmes, Minoru Taoyama, Jonathan Sand, John Bumgarner,
Scott Kim.

THIS DOCUMENT IS CONFIDENTIAL AND CONTAINS TRADE SECRETS
AND OTHER PROPRIETARY INFORMATION. ITS DISCLOSURE IS FOR
LIMITED PURPOSES ONLY AND WITHIN A RELATIONSHIP OF TRUST,
AND ITS CONTENTS MAY NOT BE USED. CopIED OR FURTHER
DISCLOSED IN WHOLE OR IN PART WITHOUT THE EXPRESS WRlillN
PERMISSION OF INFORMATION APPLIANCE INC

USE OF THE INFORMATION IN THIS DOCUMENT DOES NOT
CONSTITUTE A LICENSE TO USE ANY PROPRIETARY PROPERTY OF
INFORMA TION APPLIANCE INC., INCLUDING BUT NOT LIMITED TO
MATERIAL THAT IS PROTECTED BY PENDING OR GRANTED
PATENTS, TRADEMARKS, OR COPYRIGHTS.

THE FUNCTION OF THE sa=rwARE DESCRIBED IN THIS DOCUMENT
IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF ANY PROGRAMS
BASED ON THIS DOCUMENT LIES WITH YOU. SHOULD THE
INFORMATION IN THIS DOCUMENT PROVE ERRONEOUS OR
DEFECTlVE. YOU AND NOT INFORMATION APPLIANCE INC. ASSUME
THE ENTIRE RESPONSIBILITY AND EXPENSE FOR ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

TABLE OF CONTENTS

HOW TO INTEGRATE SOFTWARE INTO THE CANON CAT

INTRODUCTION/BACKGROUND
Background of Forth
Organization of This Manual
Enabling Forth
Talking to tForth
A Brief Introduction to Forth

tFORTH PROGRAMMER USER MANUAL
Moving Around in tForth
The Parameter Stack
Stack Notation

Vocabularies

Integers and Memory Operators
Program Control Structures
Character and String I/O
Numeric I/O and Number Formatting
Local Variables

tFORTH TECHNICAL REFERENCE MANUAL
System Memory Usage
The tForth Dictionary Structure
Vocabularies
Running tForth
The Basics of tForth Compilation
Execution of Token Threaded Code
Implementation of Integers
Implementation of Local Variables
Implementation of Program Control Structures

tFORTH 68000 ASSEMBLER
A Brief Overview of the 68000 Microprocessor
Using the tForth Assembler
Specifying Assembler Operands
Structured Assembly Language Programming Support
The movem Instruction
tForth Assembler Words

GLOSSARY (tFORTH KERNEL WORDS ARRANGED BY FUNCTION)
Arithmetic Operators
Logic Operators
Comparison Operators
Stack Manipulation Operators
Integer and Local Variable Words
Memory Operators
Program Control Structures
Character I/O Words
Numeric I/O Words
Defining Words
Dictionary Management Words
Compilation Words
Disk I/O Words (High Level)
Disk I/O Words (Low Level)

i

1
1
2
3
5
7

11
12
19
27
29
35
41
46
53

55
56
61
69
73
77
85
96

104
115

142
143
146
148
153
158
159

160
160
163
165
166
169
171
173
179
183
185
186
189
195
197

GLOSSARY (CONT .)

CRT Words
Sound Generator Words
Keyboard Words
Modem and Serial I/O Words (High Level)
Modem and Serial I/O Words (Low Level)
tForth System Integers

tFORTH GLOSSARY (Alphabetical Listing)

tFORTH SYSTEM INTEGERS (Alphabetical Listing)

APPENDIX: DEFINING WORDS

- 2 -

199
200
201
204
206
208

212

241

245

ILLUSTRATIONS

USER MANUAL

tForth Vocabularies
The tForth Parameter Stack
Manipulating the Parameter Stack
Number Formatting

TECHNICAL MANUAL

System Memory Map
tForth RAM Memory Map
Structure of a Dictionary Header
Close-up of the Dictionary Header Area
Structure of the Length Byte
Close-up of the Dictionary Code Area
Opening and Closing Vocabularies
Dictionary Entries: Address Threaded

Versus Token Threaded
Token Table
Token Threaded Execution
Integers Execution
System Integer Table
Local Variable Return Stack Usage
A 'begin ... until' Loop
A 'begin ... while ... again' Loop
An 'if ... else ... then' Loop
A'do ... loop'
A 'do ... while ... loop'
A'do ... if ... leave ... then ... loop'

ASSEMBLER MANUAL

68000 Execution Environment
68000 Instruction Set Table
An Example of a tForth Assembly Language Word Listing
tForth Assembler Register Symbols Table
68000 Address Mode Categories Table
Condition Code Symbol Table
Status Register
tForth Assembler Words Table

- 3 -

13
20
24
48

57
59
62
64
66
68
71

78
80
87
98

101
105
116
119
121
124
126
129

144
145
146
148

150-51
153
154
159

HOW TO INTEGRATE SOFTWARE INTO THE CANON CAT

Products designed by Information Appliance Inc. (IAI), such as
the Canon Cat, have a number of unique features. One of them
that directly affects third-party software development is the
principle of editor-based software.

In most microprocessor-based products, the user shifts between
applications by returning to the operating system, indicated by a
menu with a number of choices (or, equivalently, a window with a
number of icons.) Then the user chooses the next application.
Once having entered the application, the user gets the data on
which to work.

In an IAI interface, the data stays in place at all times so that
the user can concentrate on content rather than on the system.
As commands are given, different "applications" come to bear on
the user's text or graphics (there are graphics primitives in the
Cat, although the built-in software does not use them). This is
possible due to Gur unified data structure which is -- all at the
same time -- a text 9 a data base, a spreadsheet, and a
programming environment.

The user has a much simpler mental model with the IAI interface
than with traditional products, since invoking an application
looks just like another simple editor command. The user does not
have to work with a number of different editors, one for each
application. This is an improvement over the Macintosh, for
example, in that with the Macintosh model each application must
recreate (using provided routines) an interface that is similar
to that of other applications.

When developing new applications for the Cat, it is easiest, both
on the programmer and the user, to make your application look
just like the existing built-in software. When your application
needs to get information from the user t it generally asks a
question. This can be done by sending the question to the
screen, perhaps surrounded by a few blank lines so that it is
visible. If the user finds that the question has come out in an
awkward place (say,in the middle of a letter), then the user can
always delete the question or move it elsewhere.

A typical question for an accounting package might be:

Name of account?

When this appears, the application should wait for a response to
be sent to it by the ANSWER command (USE FRONT-ERASE). Thus the
user is free to employ any and all the features of the Cat in
creating the answer, for example, they might leap to their
account area, or even change disks or perform a calculation to
find the information they need. The idea here is to leave the
full power of the Cat available at all times.

-i-

When the user has formulated the answer to the question your
application has asked, they highlight it and use the ANSWER
command. At this point, your application is in control again and
can do what it wishes until it asks its next question.

This "loss of control" after a question has been asked will
disturb some designers who are used to a forcefully directed
dialog with the user. However, research has shown that users
work better if they can do tasks at their own speed, and if they
are in control. There is nothing more annoying than a program
that demands an answer and won't let you use the system (say for
looking up a phone number you need right now) until you are
finished answering the computer's question -- a task that might
take a few minutes if you have to look up something that's in a
file cabinet somewhere.

One secret of the Cat's utility is that all abilities are
available simultaneously and instantaneously. If your
application has a number of features or areas, then allow the
user to create a message which activates them when desired (the
messages sent to your application via the ANSWER command, of
course. One set of messages might be: "AH" to activate the
accounts receivable package, nAP" to activate the accounts
payable package, and "GL t, to run the general ledger package.
Once in any of these packages, the dialog would work as already
described.

Notice that you do not have to write any I/O editing routines.
You can simply send strings to the screen, and receive strings
(edited by the user). Naturally, your application may need to do
error checking, but when an error is detected, you can just send
a string to the screen with the message, the user can edit their
previous response using the Cat's built-in editor, and res end it
to your application.

Following this protocol will keep the Cat feeling like a Cat, and
will be least disruptive to a user's habits. It is also very
easy and quick to create application interfaces this way.

- ii -

Jef Raskin
13 September 1988

INTRODUCTION/BACKGROUND

BACKGROUND OF FORTH

The Forth language was developed in the early 1970's by Charles
"Chuck" Moore. It was designed for control applications in an
astronomical laboratory environment. Forth's interactive nature
and its extremely small "kernel" of basic words (the Forth kernel
typically requires only 2-5K bytes of memory) made it ideal for
machine control using the very limited minicomputers of the time.

tFORTH

The intent of this manual is to describe the "tForth"
("token-threaded Forth") implementation of Forth designed
specifically for use in the Information Appliance Inc. Cat
project. The basics of Forth and Forth programming are not
covered in a comprehensive manner. Starting Forth includes very
good explanations of basic Forth programming and good
descriptions of the inner structure of a simple Forth.

ORGANIZATION OF THIS MANUAL

This manual is organized as follows:

Introduction:

tForth
Programmer
User Manual

tForth
Technical
Reference
Manual

tForth
68000
Assembler

Glossaries

Appendices

A very brief, general overview of the Forth
language. This section tries to give the reader
a feel for the Forth language by presenting
examples and discussion of interactive and
compiled execution of Forth words and parameter
stack usage.

How to program in tForth. Examples are used to
demonstrate how common programming tasks
{arithmetic, memory access, character and
numeric I/O, control structures, constants,
variables, etc.} are performed in tForth. This
section will give the reader a quick
introduction to the use and power of tForth.

Implementation-specific information required by
those who intend to change or extend the tForth
system. Topics covered include system memory
usage, the vocabulary and dictionary structure,
compilation and token-threading specifics.

How to use the tForth 68000 Assembler.

Stack notation and short descriptions of the
words included on the tForth source disks. The
words are grouped according to function (there
is a list of functional groups at the start of
the Glossary). The words are arranged
alphabetically within in each group.

Program listings.

- 2 -

ENABLING FORTH IN THE CAT

Forth is normally hidden away, inaccessible in the Cat. However,
with a simple incantation you can "enable Forth," making it
possible to switch from the Cat's editor to a Forth programming
environment, or to run Forth programs from the pat's editor with
the ANSWER command. Forth enablement is associated with a given
disk and text. If you enable Forth, record the text, change to a
non-enabled disk, then Forth will no longer be enabled.

Remember to exercise caution whenever Forth has been enabled"
For example, a nonprogrammer may be trapped in Forth if they
accidentally press the key combination SHIFT-USE FRONT-SPACE BAR
while editing the text on a Forth-enabled disk. The key
combination USE FRONT-SEMI-COLON will erase the disk in the drive
if Forth is enabled. Other pitfalls exist. SO, PROCEED WITH
CAUTION IF YOU ENABLE FORTH. READ THE DISCLAIMER AT THE
BEGINNING OF THE MANUAL.

How to Turn on Forth

We will now explain how to turn on Forth, and, equally important,
how to turn it off:

1. To turn on Forth in a Cat, type the following phrase (be sure
to capitalize "E", "F", and "L"):

Enable Forth Language

2. Highlight these three words.

3. Hold down the USE FRONT key and, while holding it, tap the
ANSWER key (ERASE). Then let go. This executes the ANSWER
command, enabling Forth. You are not yet in Forth.

4. Now hold down the USE FRONT key AND the SHIFT key t and, while
holding BOTH keys, tap the SPACE BAR. You are now in the
Cat's Forth editor.

5. Type the following and press the RETURN key (the letters will
automatically appear in boldface):

-1 wheel! savesetup re

This step allows you to enter Forth simply by pressing
SHIFT-USE FRONT-SPACE BAR from now on.

To enable easy access to Forth with Step 4 only. make some
change to a Setup parameter, then use the DISK command. This
will save the Forth enabling information on the disk.
Whenever you play back this disk, you can then enter Forth
using only the procedure of Step 4.

- 3 -

6. To turn off Forth, type the following and press RETURN key:

Forth? off 0 wheel! re

Make some change to a Setup parameter, then use the DISK
command. This restores the Cat to normal operation, meaning
that you will have to start over at step 1 again to invoke
Forth. Normal Cat users will not be trapped in Forth in case
they happen to accidentally press SHIFT-USE FRONT-SPACE BAR.

- 4 -

TALKING TO tFORTH

tForth is hiding in the background of every Cat system. It is
very easy and convenient to communicate with tForth from within
the editing environment.

Sending Commands to tForth

Once Forth has been enabled (see the previous page), commands and
programs can be sent to tForth from the editor by highlighting
the desired command string or program listing and pressing
[ERASE] while holding the [USE FRONT] key down. tForvhts
responses will be printed out in the editor. I

All examples in this manual are expected to be typed into the
editor and ttsentft to tForth in this manner. All examples
presented are set off from the body of the text by two blank
lines and are indented:

3 dup 3 3

A section of the above example was underlined. In an example,
the underlined sections are the sections of the text which should
be highlighted and passed to tForth by pressing the [USE
FRONT][RETURN] key combination. After the above example was sent
to tForth, tForth responded by printing two 3's on the screen.

Using the Calc Command to Talk to tForth

Commands and programs can also be sent to tForth with the use of
the [USE FRONT] [CALC] key combination. When this method is
used, all command strings or program listings sent to tForth must
be preceded by a tt]ft character:

]3 dup 3 3

The above example produced the same results as the [USE FRONT]
[RETURN] example. The [USE FRONT][CALC] method is not used in
this manual.

Errors

The [USE FRONT][RETURN] is used to let Forth know it should start
'processing' any highlighted words. If Forth ever has a problem
processing an input, a beep will be issued. To see the error
message press the [EXPLAIN] key while holding the [USE FRONT] key
down. For example, if tForth is sent the following input:

How now brown cow?

- 5 -

it will beep and [USE FRONT][EXPLAIN] will reveal a "can't use"
message. This is the error message which occurs when tForth is
sent a command it does not recognize.

CAUTION: ALWAYS RECORD YOUR EDITOR TEXT ON DISK BEFORE DIRECT
EXECUTION OF tFORTH WORDS. IT IS VERY EASY TO MAKE PROGRAMMING
MISTAKES WHICH COULD PERMANENTLY DAMAGE THE DOCUMENT.

- 6 -

A BRIEF INTRODUCTION TO FORTH

The Forth language is comprised of many "words" (commands). This
collection of words is referred to as the "Forth dictionary."
The tForth dictionary contains approximately 600 words. The list
below shows a few Forth words and the actions they perform:

emit

+

words

if
then

@

Takes a number and displays the corresponding
ASCII character on the screen.

Adds two numbers together and returns the·
result.

Produces a listing of all available words.

Words used to implement the IF ... THEN
program control construct.

Fetches a 32-bit value from memory.

I

As the list shows, a Forth word can either have the format of a
'normal' word (a sequence of letters), or it can be a punctuation
mark, a sequence of punctuation marks, or a mixture of
punctuation marks and characters. In a Forth program, all words
must be separated from each other by at least one space, tab, or
carriage return. In this document Forth commands will be shown
in boldface. For eX8nople:

"The Forth word words will produce a listing of all available
words."

Note: tForth is case-sensitive. This means that tForth thinks a
capital W is different than a lowercase w. Thus tForth will
think Words is a different command than words.

If the pronunciation of a Forth word is unclear. it's first usage
in the text will be followed by the natural language
pronunciation enclosed in quotes and parentheses. For example:

To take a number off of the parameter stack
and display it, use the word ("dot").

Executing a Forth Word

Most of the words in the Forth dictionary may be executed
directly and immediately, from the keyboard. The example below
shows how the Forth word emit could be used to display an
asterisk character on the screen. In the example, the underlined
type is used to indicate which commands should be highlighted and
sent to tForth. The normal type is used to show Forth's
responses.

- 7 -

Note: Do not confuse the underlined commands in the examples
with the underlined Forth words in the text. In the examples the
underlined commands are those commands which should be
highlighted and sent to tForth with the ANSWER command.

42 emit *

emit , as was described above, is a Forth word which will display
the character which corresponds to the ASCII value passed to it.

Compiling Forth Words

The interactive execution of emit in the previous example did not
cause any code to compiled. The Forth word: ("colon n) is used
to turn the Forth compiler on:

printstar 42 emit

The above example shows how a new word may be added to the Forth
dictionary. The word which immediately follows (printstar
in the above example) is the name which will be assigned to the
new word. The Forth words following the name and preceding the

will be compiled into the new definition; these are the words
which define the actions of the new word. Since the action words
for printstar are 42 emit, printstar will print an asterisk when
executed. The word; ("semi-colon") is used to turn the compiler
off and return to the interactive execution mode.

Note that in this example, sending the input to Forth did not
cause the asterisk to be displayed. Since the Forth compiler was
"on" when the "42 emit" was typed, the 42 emit was compiled
rather than executed. Forth was able to successfully compile the
new definition so no error beep was issued. Forth is an
"incremental compiler"; code is compiled definition by
definition; compilation is triggered by each reception of a line
of input.

The Forth Parameter Stack

Forth is a stack-based language. Any Forth word which takes an
input will expect to find its input parameter on the Forth
parameter stack when it executes. Any Forth word which returns a
value will leave the value on the parameter stack when it
completes execution.

The parameter stack, and stacks in general, are functionally
similar to the spring-loaded stack of plates which can be found
at most institutional kitchens. Whenever a plate is taken from
the stack, it is always taken from the top of the stack of
plates. Whenever a plate is added to the stack, it is always
added to the top of the stack of plates. A person who does not
want the steaming hot plate on top of the stack must remove the
top plate before the second plate can be accessed. If no plates
are available, the stack is empty.

- 8 -

The Forth parameter stack works the same way as the stack of
plates, excep~ the Forth parameter stack is set up to hold
numeric values rather than plates. Also, just as the kitchen
stack was designed for a certain plate size, the Forth parameter
stack is designed for a certain numeric value size (the plate
size of the tForth parameter stack will be discussed later).

Interacting With the Parameter Stack

To put a number on the parameter stack, send the number to Forth:

34

To take a number off the parameter stack, use the word drop. To
take a number off the parameter stack and display it, use the
word ("dot"):

34

To place more than one number at a time on the stack, send the
numbers, separated from each other by a space or spaces (so that
Forth knows they are distinct numbers), to Forth:

368

Now there are three numbers on the stack. If. is used, it will
take the top number off the stack and display it. Since the 8
was the last value placed on the stack, it will be the top value
on the stack:

8

To place more than one number on the stack at a time, the numbers
were separated by spaces and sent to Forth. This is the same way
Forth commands (words) work. To take both of the remaining
numbers off the stack, the word . can be used twice on the same
line:

6 3

Forth's response should be read left to right. The 6 is the
result of the first use of The 3 is the result of the second
use of

Note what happens if . is used again:

. 0

You should hear a beep as. tried to remove a value from an
empty stack and Forth responded by displaying a zero, beeping and
issuing a "stack is empty" error message.

- 9 -

Passing Parameters to Forth Words on the Stack

Many Forth words take input parameters from the stack and return
results on the stack. The Forth word + ("plus") is a good
example of such a word:

54+ 9

+ takes two numbers from the stack (the 5 and the 4 in the above
example), adds them together and returns the single number result
on the stack. In the example, . was use to display the result
returned by +

Summary

*

*

*

*

Forth programs are developed by creating new
words out of previously existing words.

The parameter stack is the primary means of
communication among Forth words.

The Forth language does not have many syntax
requirements. This gives the experienced programmer
great control over the computer but can make it
difficult for beginning programmers to locate mistakes.

The interactive abilities of Forth make it a hard-to-beat
debugging environment. Each word can be tested
individually and interactively.

This is the end of our brief introduction to the Forth language.
For more introductory Forth reading, refer to the first chapter
of Starting Forth, by Leo Brodie (Prentice-Hall, Inc., Englewood
Cliffs, NJ 07632, 1981).

- 10 -

tFORTH PROGRAMMER USER MANUAL

INTRODUCTION

Now it's time to actually try some tForth programming. tForth
contains words for performing many types of programming tasks.
The available tForth words may be grouped into 19 functional
categories: arithmetic words, stack manipulation words,
character I/O words, numeric I/O words, structured programming
words, etc. A complete list of these categories is shown at the
start of the tForth glossary section, and the words in the
glossary are grouped according to these functions.

This section of the manual will concentrate on describing how a
few words from the most important functional categories are
used. The categories covered will be:

* Vocabularies
* Stack Operators
* Integers
* Program Control Structure Words
* Character I/O Words
* Numeric I/O Words
* Local Variable Words

- 11 -

MOVING AROUND IN tFORTH - - VOCABULARIES

Before tForth programming can commence, the 'layout' of the
tForth dictionary should be explained from a user's point of
view. The words in the tForth dictionary are arranged into four
groups of words called 'vocabularies'. The names of the four
initial tForth vocabularies are forth , user , function , and
arithmetic. The diagram on the following page demonstrates the
relationships between the four initial tForth vocabularies. The
forth vocabulary is the main or 'root' vocabulary. The three
other vocabularies branch out from forth (the new vocabulary
should be ignored for now), i.e., forth is the parent vocabulary
of user .

existing is a Forth word which will print out the names of all
existing vocabularies, the names of their parent vocabularies,
and a count of how many vocabularies may still be added to the
system:

existing
function (in forth) arithmetic (in forth)
forth (in forth) 12 free

user (in forth)

Note: There is also a fifth initial vocabulary which is
invisible to the user and is named, appropriately, hidden. The
hidden vocabulary contains the words used to implement the Cat
editor.

The Vocabulary Search Order

In order for tForth to compile or execute a word, it must be able
to find the word in the tForth dictionary. The programmer helps
tForth find words by setting up a 'vocabulary search order'. The
vocabulary search order is a list which tells tForth which
vocabularies it should search through and in which order the
vocabularies should be searched. The word searched displays the
current search order:

searched user forth arithmetic function

The names indicate which vocabularies are being searched, and the
order of the names, read from left to right, indicates the order
in which the vocabularies are searched.

Modifying the Search Order

A vocabulary may be added to the front of the search order by
executing its name. If the vocabulary was already in the search
order, executing its name will place it first in the search
order. For example, to have the forth vocabulary searched first:

forth
searched forth user arithmetic function

- 12 -

arithmetic
vocabulary

hidden
vocabulary

The tForth Vocabularies

forth
vocabulary

'--
.......................... user

vocabulary

function
vocabulary

To remove a vocabulary from the search order use the word
deactivate

deactivate arithmetic
searched forth user function

Listing the Words in a Vocab...llary

The tForth command words can be used to print a listing of all
words in the first vocabulary in the search order:

forth

words
! !char !csp !ptr " "to N N#ichrs N#ind ##wide #lIlt
##sp 11# tabs IIwd II> Nab Nbe Nchars Nchrs #cmptabs
#count IIctrl # formats llguard #ichrs #indent #iwide
IIlearns IIleft IIlimit Nline Nlmar #lnloc Nlong Nnextwrap
<cr> ok

The word forth was used to place the forth vocabulary first in
the search order. /

The words listing may be terminated by pressing any key. In the
example, the carriage return key was used to prematurely
terminate the listing. Since most of tForth's 600 words are
located in the forth vocabulary a complete listing of all words
in the vocabulary would be dull reading (masochists, however, are
encouraged to display the complete listing at their terminals).

The words in a tForth vocabulary are arranged alphabetically.
This allows tForth to locate words in the vocabulary with a very
quick binary search algorithm. In most Forths the words are
arranged in a chronologically ordered linked list. New words are
added to the beginning of the vocabulary list. Locating a word
in linked list requires that the list of words be searched
linearly, starting from the newest word and progressing through
the list to the oldest added word.

If you have been reading Starting Forth you should recognize a
few of the words (t and II>) in the listing above. The
unfamiliar words are additional Forth words which were not
described in Starting Forth.

Adding New Words to a Vocabulary

New words may only be added to the current "open" vocabulary.
Only one vocabulary may be open at a time. The word addto is
used' to open a vocabulary so that words may be added to the
vocabulary. When addto is used, it is followed by the name of
the desired vocabulary; in each case, here points to the next
available byte of dictionary space (see page 70 for more on
addto) .

- 14 -

Note: The user vocabulary is the vocabulary to which all new
"user-defined" words should be added. The function and
arithmetic vocabularies are used by the editor so they should not
be altered. The words in the forth vocabulary are located in
EPROM so it is not possible to add words to the forth vocabulary.

The example below shows how a new word is added to the user
vocabulary. The phrase 'addto user' opens the user vocabulary
so that new words may be added. The previous open vocabulary is
closed.

printchar is a word which performs the same functions as the
printstar word defined in an example in the introduction.

To reiterate the earlier description of compilation, the Forth
word : turns the Forth compiler on. The word]which immediately
follows : will be the name for the new word. The characters
between the left and right parens form a comment string"\ (Forth
commenting style will be discussed later). All other words
between the definition name and the final semicolon are compiled
into the new definition. When the definition is later executed,
these compiled words will be run.

addto user

printchar -> Prints a character. 42 emit .•

Now that printchar has been compiled, words can be used to ensure
that printchar was really added to the user vocabulary:

user

words
printchar

Make user the current vocabulary)
and then use words to list the words
in the current vocabulary. }

The word printchar is the only word in the user vocabulary.
(Note: If you have been experimenting with your system, your
user vocabulary may have additional words). The new word may be
executed interactively by typing its name followed by a carriage
return:

printchar *

A Short Program

The program below is taken from page 13 of Starting Forth. It
prints a large letter "F" using asterisk characters.

The word decimal tells Forth that all numbers input from this
point on are to be treated as decimal numbers. addto user opens
the user vocabulary. The program is comprised of the five
definitions above, and the printchar definition which was
compiled earlier. The program was developed by first writing the
three lowest level words: printchar , printchars , and margin.
Next, two intermediate words, blip and bar, which use the three

- 15 -

lower level words, are defined. Finally, the highest level word,
F , which uses the two intermediate words, is defined. Since
Forth programs continually build upon themselves, the order in
which words are defined is extremely important. A word caru.ot be
used in a new definition unless the word has been previously
defined.

The program is run be executing the highest level word F (use
uppercase "FU !).

addto user
decimal

F

printchars
o do

-) n
printchar

Prints n asterisks.
loop

margin -) Prints a carriage return and 30 spaces.
30 spaces / cr

blip -) Prints 30 spaces followed by an asterisk
margin printchar

bar -) Prints 30 spaces followed by 5 stars.
margin 5 printchars

F -) I Prints a large letter 'F'.
bar blip bar blip blip cr

*

*
*

Redefining a Word (Changing the Actions of a Word)

After a word has been defined, the action of the word can be
altered by 'redefining' the word, i.e., entering a new colon
definition which has the same name as the word to be replaced.
For example, to change the action of printchar:

printchar -)
64 emit

I Prints an '@'.
redefining printchar

Whenever tForth compiles a new definition, it looks at the names
of all other words in the open vocabulary to see if a word with
the same name already exists. If a word with the same name does
exist, the compiler knows that the word is being redefined.
Instead of creating a new entry in the vocabulary for the word,
the compiler will replace the old actions of the word with the
new actions. The message redefining <name> will be issued
whenever a word is redefined.

- 16 -

This new version of printchar will print a .@' instead of a .*,
when executed. All other words which referenced printchar will
also be affected by this change:

F
@@@@@
@

@@@@@
@
@

How Words Are Redefined in Other Forths

In most Forth's the redefinition of a word causes a complete new
entry to be added to the dictionary. Because the vocabulary list
is searched from newest entry to oldest entry, the redefined
version of the word will be found before any previous versions of
the word in all future dictionary searches. For example, if the
word printchar had been redefined in most other Forths, any word
defined later which referenced printchar would always use the
redefined version of printchar. However, any words defined
BEFORE printchar was redefined would ALWAYS reference the
original, obsolete version of printchar.

In tForth, programmers can alter the actions of definitions
without leaving unused, obsolete code in the dictionary. Every
word in a program will always reference the most up-to-date
versions of other words in the program.

Purging a Word From the Dictionary

The tForth word purge can be used to remove any word, regardless
of vocabulary, from the dictionary (remember that the words in
the forth vocabulary cannot be altered because they are in
EPROM). The example demonstrates how printchar could be removed:

purge printchar

What about the words which referenced printchar? Let's execute F
to see what happens:

F
(X)

Your cursor should have stopped at the point marked by the '(X)'
above (you shouldn't see the' (X)' though) and a beep and the
error message "unassigned token" should have been issued.

The first word run when F was executed above was bar (refer to
the program listing). The first word in bar was margin.
margin did not reference printchar so it executed without error
and printed a carriage return and 30 spaces. The next word in
bar was printchars , a word which did reference printchar. As
soon as printchars tried to execute printchar , tForth displayed
an error message which indicated that it could not find the word

- 17 -

it was supposed to execute next. This situation can be remedied
by defining a new word named printchar

printchar (-)
70 emit

Print a character.

. This time the redefining printchar message was not issued because
there was no word named printchar in the vocabulary at the time
the definition was compiled. Now F can be successfully executed:

F
FFFFF
F
FFFFF
F
F

Creating New Vocabularies

The word vocabulary is used to create new, named vocabularies.
The new vocabulary will be empty and inactive (closed). The
parent vocabulary for the new vocabulary will be the vocabulary
which was open when the new vocabulary was created:

addto user
vocabulary testvocab

existing testvocab (in user) function (in forth)
arithmetic (in forth) user (in forth) forth (in forth)

testvocab words

11 free

In the example, a new vocabulary named testvocab was created.
Since the user vocabulary was open when testvocab was created,
the user vocabulary is the parent vocabulary of testvocab. This
relationship was verified above by using existing to print a
listing of all of the vocabularies and their parent vocabularies.

Next, words was used to verify that testvocab was empty when it
was created.

- 18 -

THE PARAMETER STACK

In Forth, the programmer places the parameters on the stack and
then executes the word. The word is responsible for taking the
parameters it requires from the stack. If the word returns any
parameters, it will leave them on the parameter stack. The

. programmer is responsible for removing any parameters returned
from the stack. For example, consider the addition of 3 and 4,
and the display of the sum:

3 4 + 7

First, the parameters 3 and 4 are placed on the stack by entering
the numbers separated by spaces. Next, the addition command +
('plus') is executed. + takes the 3 and the 4 off the stack,

adds them together, and leaves the result (7) on the stack. The
word . takes the result off the stack and displays it.

Structure of the Parameter Stack

The diagram on the following page uses interlocking blocks to
depict the functioning of the tForth parameter stack. The tForth
parameter stack can hold up to 48 parameters. During execution
of a program, only 5-10 parameters are typically on the stack at
one time.

The parameter stack grows downward in memory_ The word spO
('s-p-zero') returns the address of the base of the parameter
stack. The word sp@ ('s-p-fetch') returns the address of the top
item on the stack. Each parameter placed on the stack is placed
in successively lower memory locations.

spO
sp@

3

sp@

4

sp@

286748
286748

286744

286740

The stack is empty so both)
spO and sp@ return the)
same address, the address)
of the base of the stack.)

Place one item on stack.)

Now sp@ points at the top item
{ on the stack, which is located
(4 bytes lower in memory than)
(the base of ·the stack.)

Place another item on the stack.

(sp@ has been decremented by)
(4 bytes again.)

Notice that each time a parameter was added to the stack, the
address returned by sp@ (also called the 'stack pointer') is
decremented by 4. This is because the tForth parameter stack is
4 bytes wide. Each item on the stack is a 4 byte, or 32-bit,
value. This means the largest signed number which can be placed
on the tForth parameter stack is 7FFFFFFF (hexadecimal).

- 19 -

The tForth Parameter Stack

Illllll!!lillllPlliiil s pO, s p@ spO
..... iiiiiiiIiiiiiiI

spO
...... iiiIiioioI

sp@

sp@

Room for 48 parameters Room for 46 parameters Room for 47 parameters

An empty stack. Two items on the stack. One item on the stack.

Since one bit is used for the sign bit, this is the largest
number which can be expressed with 31 bits.

tForth Is a 32-bit Forth Implementation

Because of the stack width, tForth is categorized as a 32-bit
Forth implementation. A 32-bit Forth fits well on the 68000
microprocessor with its internal 32-bit wide data path and 32-bit
general purpose registers. Most of the current Forths, including
the Forth described in Starting Forth, are 16-bit Forths since
32-bit microprocessors have only recently become widely available.

Observing the Stack

Most Forth words either put values on the stack or remove items
from the stack. .s is a word which displays the contents of the
stack without disturbing the contents:

3 4 5 6 .s 345 6

Since .s does not disturb the stack in any way, it is a very
handy tool for checking results. Another useful stack checking
word is depth . depth returns a count of the number of items
currently on the stack:

depth 4

depth o
654 3

There are four items on the stack.)
Take the four values off of the stack.
Now the stack is empty.)

tForth Words Which Operate on the Stack

In the glossary, the tForth words which operate on the parameter
stack are grouped together under the 'Stack Manipulation'
heading. The stack manipulation words are used to rearrange, to
duplicate, to remove, and to check items on the parameter stack.

Here are some examples of the use of some of these stack
manipulation words. The diagram on page 23 has a visual
demonstration of the effects of these examples on the stack:

- 21 -

234 Put three items on the stack.)

CHECKING THE STACK
.s 2 3 4 Display the items on the stack

without removing them from the stack.

REARRANGING STACK ITEMS)
swap .s 2 4 3 Move the second stack item to the top.
rot .s 4 3 2 Move the third stack item to the top.

(DUPLICATING STACK ITEMS)
over .s 4 3 2 3 (Copy the second item on the stack.

(Leave the copy on top of the stack,
dup .S 4 3 2 3 3 (Copy the top item on the stack.

(Leave the copy on top of the stack.

REMOVING STACK ITEMS)
drop .S 4 3 2 3 Discard the top stack item.

SimEle Words Which Use the Stack

The words which perform the basic arithmetic operations:
addition, subtraction, multiplication, and division, are all
simple words which use the stack. These simple operators have
been grouped under the "Arithmetic Operators" headings in the
glossary. Here are some examples of their use:

)
)

)
)

Here is the name, pronunciation, and stack notation for each word
used below:

+ nl n2 - n3
1+ nl - n2)

nl n2 - n3
2- nl - n2)

* nl n2 - n3
2* nl - n2)

/ nl n2 - n3
2/ (nl - n2)
mod

2 3
+

.S 5

1+
.S 6

(nl n2 - n3)

('plus')
('one-plus')

('minus')
('two-minus')

(, times')
(, two-times')

(' divide ')
(, two-divide')

ADDITION)
Put two numbers on the stack.)
Use + ['plus'] to add the numbers.
Display the result.)

Add 1 to the number on the stack.)
Display the result.

(cant.)

- 22 -

}
)

9 6

.S 3

2-
1

2 4
*
.S 8

2*

16

50 3
/

.S 16

2/

.S 8

5 mod

3

SUBTRACTION }
Put two numbers on the stack.)
Use ['minus'] to subtract the top
number on the stack from the second
number on the stack: 9 - 6 = 3 .)
Display the result.)

Subtract 2 from the number on the stack.
Remove the result from the stack and)
display it.)

MULTIPLICATION
Put two numbers on the stack.
Multiply the two numbers.)
Display the result.)

Multiply the number on top of the stack
by 2.)
Remove the result from the stack and)
display it.)

(DIVISION)
(Put two numbers on the stack.)
(Divide the second number on the stack
(by the number on top of the stack:)
(50 / 3 = 16 .)
(Display the result.)

Divide the number on top of the stack }
by 2.)
Display the result.)

Divide the number on top of the stack)
by 5 and return the remainder.)
Remove the remainder from the stack and)
display it: 8 / 5 = 1 t remainder = 3 .)

- 23 -

t:,
~

Initial stack

afterQYU

Manipulating the Stack
Examples are cumulative

after ~

after ~

after LQ.t

><

after.d.!Q.Q

All of these words take one or two numerical inputs, perform an
arithmetic operation upon the input (s), and return a numerical
result on the stack. However, as will be shown below, the stack
does not have to be used for numerical values only.

Comparison Operators and Flags

The tForth comparison operators are another group of simple words
which use the stack. The comparison operators treat their inputs
as numbers and return a flag as a result. A flag is a value
which may only represent one of two states: "true" or "false".
In general, tForth treats any non-zero flag as a true flag and
any flag with a value of 0 as a false flag. All of the words
listed under the "Comparison Operators" section of the glossary,
except the words max and min ,will return a specific
non-zero value, '-1', if the result of their operation is true
and will return '0' if the result of their operation is false.
Here are some examples of comparison operator use.

Here is the name, pronunciation, and stack notation for each
comparison operator used below:

0< n - f ('zero-less-than')
0= n - f (t zero-equal')

= nl n2 - f (, equal')
<> nl n2 - f (, not-equal')

< nl n2 - f (, less-than')
> nl n2 - f (, grea ter- than')

in range nl n2 n3 - f)

max nl n2 - n3
min nl n2 - n3

3 0=
-2 0<

3 3
3 3
6 3
6 3

. 0
-1

= -1
<> . 0
< . 0
> .-1

5 2 8 inrange . -1

4 8 max • 8
4 8 min 4

SINGLE PARAMETER COMPARISONS)
False, 3 is not equal to O.)
True, -2 is less than O.)

DOUBLE PARAMETER COMPARISONS
True, 3 is equal to 3.)
False, 3 and 3 are equal.)
False, 6 is not less than 3.
True, 6 is greater than 3.)

TRIPLE PARAMETER COMPARISONS
True, 2<=5<=8)

(8 is the larger of 4 and 8.
(4 is the lesser of 4 and 8.

Note that the max and min comparison operators are the only
ones which return numbers instead of flags.

- 25 -

Forth Is Not a "Typed" Language

In many languages, the type of each program parameter must be
declared. If a parameter is a number it must be declared to be
of type byte, integer, long, real, signed, unsigned. If a
parameter is declared to be of type address or flag, it can only
be used by functions which operate on addresses or flags. A
language which requires typed parameters can help the programmer
avoid mistakes since it is constantly cross checking actual input
parameter types with the allowed input parameter types for a
given operation.

The Forth language does not enforce typed parameters. Any type
of item (number, address, flag) may be placed on the parameter
stack. Since all Forth words can use the parameter stack, it
follows that all Forth words can accept any type of input
parameter.

There are both advantages and disadvantages to non-typed
languages:

DISADVANTAGES

* A non-typed language cannot help the programmer by
double checking all input parameters used.

* It is difficult for code written in non-typed languages
to be shared since the types of the input and output
parameters being used is usually not easily determined by
the reader of the program listing.

ADVANTAGES

* A program written in a non-typed language should
execute faster than a program written in a typed
language because all of the code required for
parameter checking is removed.

* A non-typed language gives the programmer the
extra control over the language which is often required
to get more performance out of a computer.

In Forth, as in any language, the second disadvantage above can
be overcome by interspersing useful, thoughtful comments
throughout the program code. The Forth community has taken the
commenting solution a step farther by developing a suggested
Forth commenting style which has been widely accepted. This
commenting style, called 'stack notation' is discussed next.

- 26 -

STACK NOTATION

Stack notation is a standard method of commenting the stack usage
of Forth words. For example:

< nl n2 f

This is the stack notation for the word < ('less-than'). The
word (('left-parent) is a Forth commenting word. Because (is a
Forth word, it must be surrounded on either side by at least one
space or tab. Any characters-in a Forth program which lie
between parentheses are considered to be comments and are ignored
by the Forth compiler. The characters between the parentheses
above comprise the stack notation for < •

In stack notation, characters to the left of the ,_, are used to
indicate the inputs a Forth word expects to find on the parameter
stack when it starts execution. Characters to the right of the
,_, are used to indicate the outputs a Forth word will leave on
the parameter stack when it completes execution.

In stack notation, the following codes are used to indicate
parameter types:

CODE

f

c

b

w

n

u

a

MEANING

Boolean flag

7-bit ASCII
character

unsigned 8-bit
number

unsigned 16-bit
number

signed 32-bit
number

unsigned 32-bit
number

32-bit address

HEXADECIMAL RANGE

o = false, non-zero = true

O ••• 7F

0 ... FF

0 ... FFFF

-80000000 ... 7FFFFFFF

O ... FFFFFFFF

O ... FFFFFFFF

Here are other examples of stack notation. Note that a digit
suffix is used to differentiate multiple parameters of the same
type:

words

fill a u b

words
outputs.

takes no inputs and returns no)
)

fill takes three inputs and returns no)
outputs.)

- 27 -

t

key c key takes no inputs and returns one)
output.)

*/mod n1 n2 n3 n4 n5
*/mod is a word which accepts multiple

numeric parameters. Digits are used
the 'n' code to differentiate the)
parameters.)

-trailing a n a n'

When an output parameter is followed immediately by an
apostrophe character it means the output parameter is a slightly
modified version of an input parameter, rather than a completely
new parameter. For example, -trailing takes as inputs a string
address (a) and the length of the string (n). -trailing strips
any trailing spaces from the string and returns the new, adjusted
length of the string (nt, pronounced tn-prime').

tForth Stack Notation

In tForth, the stack notation structure has been slightly
extended to include comments:

c, b Compile byte b at here.)

The 'I t marks the end of the normal stack notation and the start
of the comment field. The comment field can be as long as
necessary (multi-line) as long as it is terminated by a closing
paren.

- 28 -

INTEGERS AND MEMORY OPERATORS

Variable data is program data whose value changes during
execution of a the program. Constant data is program data whose
value will remain constant throughout program execution. For
example, the equation used to calculate the area of a circle is a
familiar equation which makes use of both constant and variable
data:

(PI) * (radius, squared) = area

(100*PI) * {[radius (meters)] A2} = area (cm A2)

The '(100*PI)' or '(100*3.14 = 314)', is the constant in the
circle area equation. The radius is the variable data. Scaling
is used (the PI value is multiplied by 100 to eliminate
fractional values) to ensure that only integer values are
required.

Forth Note: Most Forth implementations do not support floating
point number input/output or floating point math calculations.
Many Forth designers/programmers feel that any floating point
operation can be implemented using integer math with the proper
scaling and that the integer math operations will be faster and
more compact than their floating point counterparts.

Declaring Constant and Variable Program Data

The tForth word integer is used to define and name both
constant and variable program data. The general format for the
use of integer is:

<value> integer <name>

<value> is the 4 byte value for and <name> is the name of the
constant or variable data. integer makes <name> an executable
Forth word. Whenever <name> is executed it will put its
associated value on top of the parameter stack.

Forth Note: If Forth were a strictly postfix language the syntax
for integer would be:

<value> <address of name string> integer

The constant data for the circle area equation is defined as
follows:

314 integer pi*100

The variable data could be defined as follows:

1 integer smallradius
7 integer mediumradius
15 integer 1 argerad ius

- 29 -

When one of the above names is executed, it will push its
associated data onto the stack:

pi·lOO . 314

smallradius . 1
mediumradius . 7
largeradius . 15

Forth Note: The following colon definition performs the same
action as the integers above when executed:

mediumradius 7

When mediumradius is executed, it will push a '7' onto the
stack. The drawback of the colon definition is that the '7' is
"hardcoded" into the definition. If mediumradius must put a
different value on the stack, the definition would have to be
recompiled.

Integers, on the other hand, were designed so that their contents
could be easily modified during program execution and thus are
ideal for use as program variables. The operators used to alter
the contents of integers are discussed below.

Now let's make the circle area equation part of a Forth word
which, when passed a radius value (expressed in meters) will
return the corresponding area (expressed in centimeters squared):

circlearea
dup
*
pi*IOO *

nl n2
Make a copy of the radius.)
Multiply: radius*radius, square it.
Multiply the radius squared by the)
pi*IOO constant.)

smallradius circlearea
mediumradius circlearea
largeradius circlearea

. 314
. 15386

. 70650

Altering Integer Data

The tForth words to t +to t on , and off are used to modify
integer data:

23 largeradius to
largeradius . 23

Put a '23' in the largeradius
Get and display the contents of

integer.

5 largeradius +to
largeradius . 28

largeradius off
largeradius . 0

}
largeradius)

Add '5' to the contents of largeradius
Get and display the contents of }
largeradius)

Put a 'false' flag, '0', in largeradius .

(cant.)

- 30 -

1 arge radius on
largeradius .-1

(Put a 'true' flag, '-1', in largeradius .

to is used to change the contents of an integer to a specified
value. +to is used to add a 4 byte value to the contents of an
integer. off and on are boolean integer operators, usually
used on integers which are being used as flags. off is used to
turn an integer value 'off', i.e. to set the integer's value to
'false' (0). on is used to turn an integer value 'on', i.e. to
set the integer's value to 'true' ('-1' or 'non-zero').

The Use of Integer§ Versus the Direct Alteration of Memory

tForth's generic integer data structure (can be used to hold
either constant or variable data) frees the programmer from
having to treat variable data differently than constant data.
They also free the programmer from having to remember the 'type'
of a particular piece of memory. This is especially convenient
in a multi-programmer programming environment where each
programmer may not be intimately familiar with the constants and
variables being used by another programmer. Any tForth
programmer is able to get the value of any integer without having
to know whether another programmer is using the integer as a
constant or variable.

A limitation of integers, however, is that they only support
interaction with 4 byte data values. Handling of data sizes
which are smaller (byte, word) or larger (arrays, data
structures) than 4 bytes requires that the contents of memory be
accessed directly.

Directly Accessing the Contents of Memory

The following words are the main words used for direct
manipulation of data in memory. The stack notations for these
words are:

WORD PRONe

'store'

@ 'fetch'

wt 'w-store'

STACK NOTATION

(n a Stores the 4-byte value on
the parameter stack, 'n', into memory
starting at the address 'a' .)

a n Fetches the 4-byte value 'n'
stored in memory starting at address 'a'
and returns it on the parameter stack.)

(w a Stores the lower 2 bytes of
the 4-byte value on the parameter stack
into memory starting at address 'a'.)

- 31 -

'w-fetch'

c! fe-store'

c@ 'c-fetch'

(a w I Fetches the 2-byte value 'Wi

stored in memory starting at address 'a'
and returns it in the lower two bytes of
the number on top of the parameter stack,
the upper two bytes are set to zero.)

(c a I Stores the lowest order byte
of the 4-byte value on top of the parameter
stack into memory starting at address 'a'.)

a c I Fetches the l-byte value 'c'
stored in memory at address 'a' and returns
it in the least significant byte of the number
on top of the parameter stack. The upper
three bytes are set to zero.)

+! 'plus-store' n a Adds the 4-byte increment
value 'n' to the 4-byte value located in
memory starting at address 'a'.)

Directly Altering Integer Data

The execution of an integer variable name puts the value of the
integer variable directly on the stack. To get the address of
the location where an integer's data is stored, use the word
addr ("adder") immediately after the name of the integer:

hex
largeradius addr . 478FE The contents of the integer }

largeradius are located in)
starting at address '478FE'.)

To directly access the contents of largeradius ,without using
to or executing largeradius ,the direct memory access words
described above may be used to directly access the memory
location ('479F6') where qty's contents are stored:

12345678 479F6 Store the 4 byte value '12345678' in)
memory starting at the address '479F6' .)

479F6 @ . 12345678 Fetch and display the 4 byte value)

9876 479F6 wI

479F6 W@ • 9876

FF 479F6 ct

479F6 c@ . FF

(residing in memory starting at address
('479F6'.)

Store the 2 byte value '9876' in memory
starting at the address '479F6'.)

(Fetch and display the 2 byte value
(residing in memory starting at address
('479F6'.)

Store the 1 byte value 'FF' into memory
starting at the address '479F6'.)
Fetch and display the 1 byte value)
residing in memory starting at address
'479F6'.)

- 32 -

5 479F6

1 479F6 +t

479F6 @ . 6

Store the 4 byte value '12345678' in)
memory starting at the address '479F6' .)
Add 1 to the 4 byte value located at)
address '479F6'. }
Fetch and display the 4 byte incremented
result.)

Other Useful Direct Memory Access Operators

and! , ort , not! , and xort are memory operators which perform
logical operations with data stored somewhere in memory.

fill , move , and amove are memory operators which perform memory
operations on large sections of memory. See the "Memory
Operators" section of the Glossary for more information of these
words.

Starting Forth Note

Chapter 8 of Starting Forth discusses how the defining words
variable and constant are used to create named variable
locations and constant values in Forth. In tForth variable and
constant have been replaced by the single word integer. The
following table compares integers, variables, and constants:

ACTION

Create a
named variable
location:

Store a value
into a variable:

Fetch a value
from a variable:

Increment the
contents of a
variable:

Get the address
of a variable
location:

Create a
named cons tan t
value:

Get the
constant value:

INTEGER VARIABLE/CONSTANT

5 integer fred variable fred

7 fred to 7 fred

fred fred @

1 fred +to 1 fred +!

fred addr fred

12 integer dozen 12 constant dozen

dozen dozen

As the table shows, there is no substantial difference between

- 33 -

479F6
479F6
47A06
47A16
47A26

constant and integer when the purpose is the creation of
constant data. The difference between integer and variable
when creating variable data is that integer allows the creation
of initialized variable data and the value of a variable created
with integer can be obtained by simply executing the name of
the integer variable. Variables created with variable must use
the @ operator to obtain their values. If a program works
mainly with 4 byte variables and never needs the addresses of the
variable locations, the use of integer to create those
variables can save many 'fetch' operations during the execution
of a program. The integer operators to and +to are also
more readable commands than the memory operators and +!

Displaying the Contents of Memory

The tForth utility word dump is used to display the contents of
memory:

10 dump 479F6
479F6 FF 76 56 78 00 00 00 DA 81 00 07 2F 83 63 6E 74

.vVx I.cnt

dump has the following stack notation:

dump a n

dump displays 'n' bytes of data starting at address 'a' in
memory. The start address of the memory dump is shown on the far
left of the display. dump displays memory in 16-byte chunks.
Each byte in the memory dump is separated from the next byte by a
space. The ASCII equivalents of the 16 byte values shown in the
memory dump are listed on the far right side of the display.
Here is how dump would be used to display 40 (hex) bytes of
memory:

40 dump
FF 76 56 78 00 00 00 DA 81 00 07 2F 83 63 6E 74
07 37 89 63 75 72 72 65 6E 63 79 24 07 35 85 64
61 74 65 24 07 30 88 64 65 63 69 73 69 6F 6E 07
31 89 64 65 63 69 73 69 6F 6E 32 07 38 8c 6D 61

- 34 -

.vVx / .cnt

.7.currency$.5.d
ate$.O.-decision.
1.decision2.8.ma

PROGRAM CONTROL STRUCTURES

There are four major types of program control structures:

1. Conditional Execution

Code within a conditional execution structure is
executed only if certain conditions are met.
The tForth words used for the implementation of
conditional execution structures are:

if else then

2. Definite Loops

Definite, or counted, loops are used to cause a set
of instructions to be executed a specific number of times.
The number of times the loop is to be executed is known
prior to the start of the loop. The tForth words used
for the implementation of definite loops are:

do +loop loop i

3. Indefinite Loops

Indefinite loops are used to cause a set of instructions
to be executed an unknown number of times.
These types of loops are termed 'indefinite' because
the number of times the loop will be executed is
determined during execution of the loop. The tForth
words used for the implementation of indefinite loops are:

begin until again while

4. Forced Execution

Forced execution words are used when program execution
must be unconditionally redirected to another section of
the code. The tForth forced execution words are:

abort abort" exit leave

A Special Note about tForth Program Control Structures

In most Forth systems, program control structures can only be
used within colon definitions. In tForth, program control
structures can be used interactively. This is very useful for
testing out ideas since the extra work required to create a new
definition is eliminated and the dictionary doesn't become
cluttered with test definitions. Several of the examples
presented in the section are to be executed interactively.
Interactive execution of a program control structure commences
when the final word in the program control structure is entered
(try the examples below).

- 35 -

Conditional Execution

The conditional execution structures allow programs to make
decisions. In the following example, the word decision decides
whether a 5 should be displayed by examining the flag passed to
it:

decision f) (Create a definition named decision
if (Check the flag.)

5 (IF it is true, non-zero, display a 5.

.
)

then (Mark the end of the 'if ..• then' structure.

0 decision 0 is false so the 5 is not displayed.
1 decision 5 1 is true so the 5 is displayed.)

When the flag passed to if is true (non-zero) the code between
the if and the then will be executed. When the flag is false
(0), if will reroute program execution to the code which
immediately follows the then .

The 'if ... then' structure can be extended by inserting an else in
the middle:

decision2
if

5
else

6
then

0 decision2
1 decision2

Definite Loops --

f

6
5

'Do

IF the flag is true, display a five ...

ELSE the flag is false, display a six.

Flag was false so a 6 was displayed.)
Flag was true so a 5 was displayed.)

Loop'

The following interactive example shows a 'do ... loop' being used
to display the numbers from 0 through 9:

10 (Place the limit on the stack.
0 (Place the index on the stack.
do (Start the loop.)

i (This is the code to be executed
(each time through the loop.

loop 012 3 4 5 6 789 (End of the loop.)

Execution of a counted 'do ... loop' always requires the
specification of the number of times the loop is to be executed.
The count is specified by placing two numbers on the stack.
These two numbers are referred to as the loop "limit" and the
loop "index". The number of times the loop will be executed is
determined by subtracting the index value from the limit value.
So, in the above example, the loop will be executed 10 times.

When the word do executes it moves the limit and index values
from the parameter stack to the return stack. The index value

- 36 -

)

will be the top item on the return stack and the limit value will
be the second item on the return stack. do is executed only once
in a 'do •.. loop'. When the word loop executes it subtracts one
from the index value on the return stack and compares the new
index value to the limit value. loop is executed each time
through the loop. When the index value equals the limit value,
the loop is immediately terminated (this is why the limit value,
10, was not displayed).

The word i copies the top item on the return stack and places the
copy on top of the parameter stack. i is normally used during
execution of a 'do ... loop' to get the value of the current loop
index (which is the top item on the return stack during a
'do ... loop'). In the example, i was used to get the current loop
count each time through the loop and . was used to take the
number off of the parameter stack and display it.

Note that the code in a definite loop will always be executed at
least once since the loop termination check occurs at the end of
the loop.

Definite Loops -- 'Do +Loop'

The 'do ... +loop' definite loop structure is used when there is a
need for a counted loop which "counts" by a value other than
one. For example, to display the even numbers between 0 and 10:

10 2 do
i

2

+loop 2 4 6 8

Pass the loop limit and index to do .
Get the current index and display it.)
Place the loop increment value on the)
stack for +loop)

The main difference between 'do ... loop's and 'do ... +loops' is
that +loop is passed the desired increment value for the loop
index. The number of times a 'do ... +loop' will execute is
determined using the following equation (where square brackets
indicate "integer part of It):

[{limit-index)/increment] = number of times loop will be executed

So, the loop above was executed (10-2)/2 = 4 times. +loop also
accepts negative increment values. When a negative increment
value is used, the loop will not terminate until the index
becomes less than the limit so the equation for calculating loop
execution cycles becomes:

[(limit-index)/increment]+l = number of times loop will be executed

10 20 do
i

-2
+loop 20 18 16 14 12 10

- 37 -

A mistake such as will result in a seemingly infinite loop:

o 10 do
i .

3
+loop

(Start at '10' and count to '0'.

The loop will eventually terminate. The initial loop index value
'10' will be continually incremented by 3 until at some point, it
gets so large that it will not be able to be expressed as a
32-bit value. When the index_value reaches this 32-bit "cut-off"
the value will appear to change from a very large postive number
to a very large negative number. This large negative index value
will continue to be incremented by 3 and eventually will reach
zero.

Indefinite Loops

The most common indefinite loop structure is the tbegin ... until'
loop. In a 'begin ... until' loop, the code between the begin
and the until is executed until the flag passed to until is
true (non-zero). If the flag passed to until is false (0),
until will reroute program execution back to the code which
immediately follows the begin. For example, the 'begin ... until'
loop below will not terminate until the user presses the 'a'
key. The example uses the word key ,which has not yet been
discussed, to obtain the user's input and to place the ASCII
value of the character pressed on the parameter stack. Since the
ASCII value for 'a' is 97, a comparison is made to determine
whether the key pressed was the 'at key:

decimal
begin

key 97 =
until

After this example is entered the text will remain highlighted
UNTIL the lowercase 'a' key is pressed.

Placing Conditionally Executed Code in an Indefinite Loop

while is a conditional-test word which may be included in any
indefinite looping structure. while allows code which is to be
conditionally executed to be included in an indefinite loop. If
the flag passed to while is true (non-zero), the code following
the while will be executed. If the flag passed to while is
false (0), then the code after the nearest following while
again or loop will be executed. again always reroutes
program execution back up to the code which immediately follows
the begin

To use the example below, send the underlined text to tForth and
then press the 'a' key six times. Each time the 'a' key is
pressed (after the 'a' key is pressed) the current index value
will be displayed and incremented. Press any other key to

- 38 -

terminate the loop:

decimal
o integer index

begi!)
key 97 =

while

index
1 index +to

again 0 1 2 3 4 5

change to base 10)
Define an integer variable to be
used to hold an index value.)
Start the loop.)
Did the user press the 'a' key?)
WHILE the user did press the 'a')
key execute the following code.)
Display the current index value.)
Increment the index by one)
and go back to the top of the loop.

Any number of while decision points may be inserted into an
indefinite looping structure.

Forced Execution

The forced execution words will immediately and unconditionally
redirect program execution when they are executed.

The Word leave

leave is a forced execution word used to immediately leave from
any definite or indefinite looping structure. When used inside
of a definite looping structure, leave is responsible for
removing the loop limit and index from the return stack:

Note: A "nested" program control structure is a control
structure which contains another program control structure. The
leave example below uses nested control structures; an
'if ... then' structure is used inside of a 'do ... loop' structure.
A control structure may contain any number of nested control
structures. However, words which leave control structures (
leave and while) will only leave from the current control
structure to the next outer control structure.

shortened-loop
10 0 do

i
i 7 >
if

leave
then

loop

We seem to want to run the loop)
10 times. }
Print the current index value.)
Is the loop index greater than 7 ?
If it is...)
leave this loop.)

shortened-loop 0 1 2 3 4 5 6 7 8

leave will always reroute program execution to a point right
outside of the nearest following until again loop
or +loop If leave is used inside a set of nested looping
structures, it will only leave the current loop.

- 39 -

The Word Exi t

exit is a forced execution word which must be used within a colon
definition. Whenever exit is encountered in a colon definition
it will immediately terminate execution of that colon definition
and will redirect program execution back to the word which
originally called the definition:

unfinished
1
2
3
exit
4
5

unfinished 1 2 3

)
(Display a '1'.
(Display a '2'.
(Display a '3'.
(Terminate execution of this definition.
(The '4' will not be displayed.)
(The '5' will not be displayed.)

As soon as the exit in unfinished was reached, execution of
unfinished was terminated.

The Words abort and abort"

abort will cause a Forth system abort. In a Forth system abort
the return stack and parameter stack are cleared and Forth is
restarted. abort may be used interactively or within a colon
definition.

abort" is a version of abort which accepts a flag and, if the
flag is true (non-zero), aborts, issues a beep, and displays an
error message on the "explain" screen ([USE FRONTJ[EXPLAINJ).
The error message for abort" immediately follows abort" and is
terminated with a trailing quote. Note that there must be at
least one space or tab between abort" and the start of the error
message. abort" may only be used within a colon definition:

testabort f
abort" Error Error"

o testabort
1 testabort

Nothing should happen.)
The system should beep and the)
error message "Error Error" should)
be displayed on the explain screen.)

- 40 -

CHARACTER AND STRING I/O

Character input

ascii

ascii is a character manipulation word which returns the ascii
value of the single character which follows it:

ascii s . 115
115 . 115

The ASCII code for an's' is decillial 115.
This is another way to put the ASCII code
for an's' on the stack.)

Note that 'ascii s' has the same effect as '115'. both command
sequences place the decimal ASCII value for's' on the stack.
The '115' is a more meaningful result when it is viewed as the
result of ascii

ascii can be use to make all single character comparisons in
your program much more readable:

115 116 = . 0

ascii s ascii t =

?t

Comparing the ASCII codes for's' and 't')
in an unreadable fashion.)

o (Does the ASCII code for 'Sl equal the
ASCII code for 't' ? The false [OJ flag)
returned shows that they are not equal.)

?t is a character input word which checks to see if any
characters input by the user are available. If the user has
typed a character, a true (non-zero) flag will be returned. If
no user input characters are waiting. a false (0) flag will be
returned. The word keypress below spins in a loop, printing a
message, until the user presses any key:

keypress (
begin

cr

Displays a message until any key is pressed.)

" Press any key to terminate."
?t
until
cr "Done."

keypress
Press any key to terminate.
Press any key to terminate.
Done.

- 41 -

The Word ke~

While ?t only reports on the presence of user input, key is a
character input word which waits until the user presses a key and
then returns the ASCII code for the key pressed. key forces the
system to wait until the user inputs a character. key will be
incorporated into the keypress example to obtain a more specific
response from the user. In the new example, the user must press
a certain key, an's', to terminate the message printing loop,
but can press any other key to print the message out:

keypress Displays a message whenever any key except an
When an's' is pressed, the loop terminates.) 's' is pressed.

begin
cr (Print a carriage return followed

(by the message.)
" Press an's' to stop or any other key to continue."

key ascii s = (Did the user press the's' key?)
until
cr " Stop." redefining keypress

keypress
Press an's' to stop or any other key to continue.
Press an's' to stop or any other key to continue.

Stop.

Note that when this new version of keypress was sent to tForth, a
"redefining keypress" message was issued.

Character Output

emit takes a number and outputs the corresponding ASCII
character. All of the other character output words are built
using emit cr uses emit to output a carriage return and a
linefeed. space uses emit to output a space. The following
demonstration uses cr twice to produce two carriage returns,
uses space twice to produce two spaces, and uses emit three
times to output three asterisks:

demo

demo

cr cr
space space
42 emit 42 emit 42 emit

emit is a vectored output routine. When emit executes it checks
the state of four output device flags. There is a flag for the
screen (crt), the printer (lp), the editor (edde), and the
modem/serial port (ser). If a flag is set, it means that the
corresponding output device is currently enabled. Whenever
emit is used, it must output the character to all output devices
which are currently enabled. Since emit is smart enough to
know how to talk to all of the devices mentioned above, the

- 42 -

programmer does not have to worry about the idiosyncracies of
each device.

String Creation

The string manipulation word " ('quote') will construct
either a temporary or permanent string in memory and will return
the address and length of the string on the stack:

" This is a test." . 31 471930

" will place all characters between itself and the trailing
quote into the string being constructed. Because " is a
Forth word, it must be surrounded on both sides by at least one
space or tab. The text to be included in the string should
immediately follow the " and the space. The text should be
terminated with a closing quote. The closing double quote is
used only as a delimiter, so it does not have to be separated
from the rest of the text. Double quotes may not be used within
the string text.

String Output

type is a string output word which, when passed the address and
length of a string, will output the string to the screen (and/or
any other current devices).

" This is a string." .s type 746BD 25 This is a string.

.s was used in the above example, between the string
construction and type, to show that It does leave the address
and length of the string on the stack for type. type was then
used to output the string to the screen.

String Integers

string is the string-handling equivalent to integer In the
following example the text within the quotes is the string data.
mystring is the name assigned to the string data. string
makes mystring an executable word which will put the address
and length of its associated string data on the stack when
executed.

This is how string is used:

" This is string data." string mystring

This is how the mystring string may be displayed:

mystring typeThis is string data.

- 43 -

An empty string is created when no characters are included
between the quotes (when quote-space-quote is used):

" " string emptystring

Changing String Data

The word "to is used to alter string data. The use of "to is
similar to the use of the integer manipulation word to . "to
is smart enough to handle changing string sizes.

" " string stringinteger

" abcdefg" stringinteger "to

stringinteger type abcdefg

String Input

Create an empty string integer.

Store some text in the string)
integer.)

Display the contents of the)
string integer.)

The tForth word query takes string input from the editor
environment and passes the input to tForth. When query is
executed, it waits until it is passed a string from the editor.
Any string may be passed from the editor to query by selecting
the desired string and pressing [ANSWER] while holding the
[USE FRONT] key down.

This is the stack notation for query

query a n

query returns on the stack the address 'a' and length 'n' of the
string passed to it.

In the example below, query is used to obtain a line of user
input. The address and length of the user's input, returned by
query , are passed on to type so that the input will be
immediately displayed. To use the example below perform the
following steps:

o Send the word stringinput to tForth.

o Enter the text you would like to return to query
In the example, 2 spaces were typed, followed by
the words "Hello there.", followed by 2 more spaces.

- 44 -

o Highlight your text and return the text to query with
the use of [USE FRONT] [ANSWER] .

) stringinput
space
query
type

Put a space in front of the response string.)
Wait for string input.)
Display the input string.)

stringinput Hello there. Hello there.

The first instance of" Hello there. "above was typed in
response to query. The second instance of" Hello there.
was output by stringinput .

- 45 -

tI

NUMERIC I/O AND NUMBER FORMATTING

Numeric input involves the conversion of ASCII strings which
represent numbers to numbers which may be placed on the parameter
stack. Numeric output involves the conversion of numbers to
strings of ASCII characters which may be displayed using the
string I/O words. There are four categories of numeric I/O
words: words used to control the numeric conversion base, words
used to handle numeric input conversion, words used to handle
formatted numeric output, and words used to handle standard
numeric output.

Numeric Conversion Base

Numbers are always
base. The current

converted with respect to the current numeric
number base is controlled by the system

integer base
ten (decimal)
special words

The two most commonly used number bases, base
and base 16 (hexadecimal), may be chosen with the
decimal and hex

The system was in hexadecimal base when these definitions
were defined.)

decimal Oa base to

hex 10 base to

The examples below demonstrate how you may set or change the
current numeric base:

decimal
10 15 20

hex
.s A F 14

2 base to
• S 1010 1111 10100

7 base to
. S 13 21 26

decimal
. 20 15 10

Set the base to decimal.)
Put some numbers on the stack.

Change the base to hexadecimal.)
Display the hexadecimal equivalents
of the numbers. }

Change base to base 2, binary .
Display the binary equivalents
of the numbers.)

Non-standard bases are also allowed .
Display the base 7 equivalents.)

Change the base back to decimal
and remove the numbers from the stack.

Note that both the number input words and the number display
words are affected by the current base setting.

- 46 -

Numeric Input Conversion

The word number takes the address and length of a string, the
desired conversion base, and tries to convert the string to a
number:

decimal
"1234" 10 number -1 1234

" 123X4 " 10 number o

In the examples above, " was used to create a temporary string.
The address and length of the temporary string. and a '10' for
base 10 were passed to number. The '10' was treated as a decimal
'10' since decimal was used above to set the system base to
decimal.

In the first use of number the temporary string contained a
sequence of valid ASCII numerical characters. number was able to
successfully convert the string to a number and returned two
values, a true (non-zero) flag and the converted numerical value,
on the parameter stack.

In the second use of number the temporary string contained an
invalid numerical character (the 'X'). number was not able to
convert the string to a number and returned only one result, a
false (0) flag, on the stack.

Number Output Conversion and Number Formatting

The number formatting words are used to convert binary numbers to
printable strings of ASCII numerals. 128 bytes of a 384-byte
scratch area called 'the pad' (see diagram on the following page)
are used by the number formatting words to hold the output string
as it is being constructed. Executing the word pad will cause
the address of a location 128 bytes into the pad to be placed on
the parameter stack. An integer named hId is used to hold a
pointer to the spot in the string where the next character will
be inserted.

- 47 -

128 bytes

Number Formatting
(decimal)

384 bytes

! ! ! !3!4!i ... ii{.·.iiii.· ; :;;;;.; ••............•.. ··;·,·· •. ·, •.. · •• i ••• ii. illllll;!!;1

r
pad

hid

These are the names and functions of the number formatting words
to be used in the example:

<II (n n)
('less-sharp')

hold

digit

Must always be used at the start of a number
conversion process. Initializes the hId pointer with
the address of pad (the number to be converted, 'n't
should be on the stack, although <# does not use it):

<# pad hId to

c
Lower level word used by # Decrements the hId
pointer by one and then takes the ascii value from the
stack and places it in the next available spot in
the string:

hold
-1
hId

(c
hId

c!
+to Decrement the hld pointer.)

Store ASCII value into string.

nl n2 nl' c)
Lower level word used by # Extracts one digit from
the number being converted 'nl' using the specified base
'n2' and converts the digit to its corresponding ASCII
value. Returns the remainder of the number 'nl" and the
ASCII value 'c' .

(n n'
(' sharp')
Uses digit to extract one digit from the number on top of
the stack {the number being converted} and then uses
hold to] insert the ASCII code for the digit into string
being constructed in the pad:

n n' base digit hold

#> (nl a n2)
('sharp-greater')
Removes the remainder of the number being converted from
the stack (the number should be zero if it was completely
converted), and returns the address 'a' and length 'n2' of
the output string:

#> nl
drop {
hId (
pad (
over {

(

a n2
Drop the remainder.
Put string start address on stack.)
Put end address of string on stack.
Put copy of start address on top.)
Subtract to get string length. }

The simple example below shows how number formatting words could
be used to convert a 3-digit number to a string:

- 49 -

234 <# # # # #> space type 234

The diagram of the pad showed how the example string above
looked while it was under construction. When the diagram was
drawn, only 2 of the 3 digits had been added to the string. Note
that the string is constructed from right to left. The least
significant digits are inserted into the string first, and the
most significant digits last. The hId pointer is always
pointing to the current last character in the string.

The word u. which is used to display unsigned numeric
values, solves the example task in a more generic manner:

hex

u. (n
<# #5

)
#> 'space

FFFFFF34 u. FFFFFF34

type

u. uses #s an extended version of the # formatting word,
to extract all the digits from any size number:

#s (n 0
('sharp-s')

Dot (.)

Continually extracts digits from the number
being converted and inserts the ASCII values
into the string being constructed until the
number being converted is reduced to zero:

#s n
begin

dup
0=

until

o

Get one digit at a time.)
(Copy the remaining value.

Is it zero yet ?)
(Go until the number is O.

The word . , which is used to display unsigned or signed
numerical values, uses the number formatting word sign :

sign (n
If the number on the stack is negative sign
will insert a minus sign (ASCII value = hex 2D)
into the string being constructed in the pad:

sign
0<
if

n

2D hold
then

Is 'n' negative?)

{ If it is, insert a I_'

(cant.)

- 50 -

hex

n
dup
abs
<#

#s
swap
sign

#>
space
t~e

Duplicate number to convert.
Take absolute value of copy.
Start number formatting.)
Convert all of the digits.)

(Put original number on top.
(If negative. insert '-' in string.

End conversion.)

(Display string.

FFFFFF34 . -CC

Note that t which is affected by the sign bit on a number,
displayed the value 'FFFFFF34, in a different manner than u.
did previously.

Inserting Special Characters Into a Formatted String

The following example shows how number formatting can be used to
convert a 6-digit number to a common date format (mm/dd/yy):

Note: It is customary, but not necessary. to use a '$' at the
end of string names and string-handling word names. For
example, dateS is a word which creates and displays formatted
date strings.

date$ n
date format string,

<#

#>

ascii

ascii

space
t~e

/

/

Takes 6-digit number, converts it to mm/dd/yy
and displays string.)

(Start the number conversion process.)
(Convert least significant digit of year.)
(Convert most significant digit of year.)

hold (Insert a '/' in the string.)
(Convert least significant digit of day.)
(Convert most significant digit of day.)

hold (Insert a '/' in the string.)
(Convert least significant digit of month.)
(Convert most significant digit of month.)
(End conversion process.)

Display date string.)

100961 dateS 10/09/61

The date string is constructed from right to left. Note that the
phrase 'ascii / hold' was used in place of the equivalent
phrase '92 hold' for readability.

Storing Formatted Strings in String Variables

The following example shows how a value with any number of digits
can be converted to the United States currency format
($dddd.cc). A string variable is created for use as a storage
for the currency string which can be printed out at a later time:

- 51 -

Note: Since the pad is used as a scratch area by many tForth
words, important data, such as formatted strings, should not be
kept in the pad.

« « string currency$ Create an empty string variable location,)

make currency n Converts a number to $dddd.cc format
string and saves string away in string variable.)

<# (Start number formatting process.)
(Convert least significant 'cents' digit.)
(Convert most significant 'cents' digit.)
ascii hold (Insert decimal point.)
#s (Insert all of the 'dollars' digits.
ascii $ hold (Insert dollar sign.)

#> (End number formatting process.
currency$ "to (Copy string into variable)

(for later use.)

1257595 make currency
currency$ space type $12575.95

The string creating word string and the string operating word "to
were discussed in the section on string I/O .

. r and U.r

.r and u.r are formatted versions of the words and u.
These words print signed and unsigned values, right justified, in
a field with a specified width:

123

fixedfont

signed-aligned
cr

10 .r
123456 10
FFFFFF34 10

signed-aligned
123

(For these words to print with proper)
(alignment in the editor, a non-proportional
(or fixed, font must be used.)
(

cr
. r
. r

)
(Output a carriage return.

Print 123 in 10 char field)
cr (followed by carriage return .
cr ; (Repeat for 2 other numbers .

123456
-CC

unsigned-aligned
cr
123 20 u.r
123456 20 u.r
FFFFFF34 20 u.r

unsigned-aligned
123

123456
FFFFFF34

variablefont

Output a carriage return.)
cr (Print 123 in 20 char field)
cr (followed by carriage return)
cr ; (repeat for 2 other numbers.

To return to a proportional
font, if you'd like.)

- 52 -

LOCAL VARIABLES

A major drawback of the Forth parameter stack is that with
several parameters on the stack, the manipulations required to
get at a certain parameter become cumbersome and the resulting
code unreadable. For example, this is a routine which sums the
numbers between 0 and n where n is an arbitrary limit. In this
routine, the arbitrary limit is reached when the user hits a key:

summation -) n
until the user hits a key.

Spins in a loop, summing the loop count,
Returns the summation on the stack.)

0
0

begin
1+
dup
rot

+

swap
?t
until

drop

summation . 4367490

The initial sum is O.
The initial loopcount is 0.)

Start the loop.)
Increment the loop count.
Copy the loop count.)
Rotate the current sum to the top of)
the stack.)
Add the copy of the loop count to the }
current sum.)
Put the loop count back on top.)
Has the user pressed a key ?)
Go until ?t reports that the)
user has pressed a key.)
Drop the loop count but leave the
summation on the stack.)

The inner loop of the above routine, the words between the
begin and until (two program control structures which will be
explained later), is very difficult to comprehend at first
glance. The stack notation indicates that the routine takes no
inputs and returns one output but it does not provide any
information regarding the use of the stack within the routine.
Even though this example has only a maximum of three items on the
stack, it is very difficult to work through without resorting to
pencil and paper to keep track of the stack usage.

A Description of tForthts Local Variables

In tForth programmers are allowed to create 'local variables',
that is, variables which are valid only during execution of the
word in which they are defined. The main advantage of local
variables is that they help produce more readable code by
eliminating confusing stack manipulations.

This is how local variables are used in a definition:

- 53 -

<name>
local nl
local n2

local ni

The word local is used to create and name a local variable. The
local variable is not initialized to any value. Any number of
local variables may be created in a definition. Since the
variable is a local variable, references to <name>'s local
variables are only valid within <name> None of the words which
call <name> and none of the words which <name> calls can
reference <name>'s local variables.

The next example shows the summation routine after it has been
rewritten to take advantage of local variables:

summation -) n Spins in a loop, summing the loop count,
until the user hits a key. Returns the summation on the stack.

local sum
o sum to

?t

begin

until
sum

1 sum +to

Creating and naming a local variable.
Initializing sum with a zero.)

Increment the contents of sum by one.)

Go until keypress.)
Leave the result on the stack. }

The use of a local variable makes this version of summation
much easier to read and understand.

Local Variable Operators

The two integer operators to and +to are used to change and add
to the contents of local variables. The use of these two
operators is demonstrated in the example above.

- 54 -

THE tFORTH TECHNICAL REFERENCE MANUAL

INTRODUCTION

The tFORTH Technical Reference Manual contains
implementation-specific information about the tFORTH FORTH
implementation. The following topics are covered:

*

*

*

*

*

*

*

*

*

SYSTEM MEMORY USAGE
Includes a ROM/RAM memory map of the entire system
and a close-up memory map of the tFORTH RAM
execution area.

DICTIONARY STRUCTURE
Detailed memory maps showing the layout of the tFORTH
dictionary header and dictionary code areas.

VOCABULARY STRUCTURE
The search order and the active array. open and closed
vocabularies. creating/removing vocabularies and the
extant array.

"RUNNING" tFORTH
How interpret works.

COMPILATION
Structure of a dictionary header and code entry.
Token threading versus address threading.

EXECUTION OF TOKEN THREADED CODE
Names of the various pointers and register usage.
Nested execution levels.

IMPLEMENTATION OF INTEGERS
The 'iv' pointer and integer tables.
System integers.

IMPLEMENTATION OF LOCAL VARIABLES
How local variables are compiled and executed.

IMPLEMENTATION OF PROGRAM CONTROL STRUCTURES
How program control structures are compiled and
how they are interactively executed.

- 55 -

SYSTEM MEMORY USAGE

The System Memory Map on the following page gives a general
overview of the memory layout of the 'V777' system, including
ROM/RAM memory specifications. A second memory map, shown a
couple of pages later, contains a close-up memory map of the
tFORTH RAM area and lists the tFORTH words commonly used to
traverse memory.

ROM

128K of ROM is located starting at address $00000. The lowest lK
bytes in the ROM are used to hold the system reset exception
vector and the rest of the 68000 exception vector table
(exception handling and interrupt handling routines are discussed
later). The ROM'ed tFORTH and 'V777' editor code fill up the
rest of the low memory ROM space.

RAM

The 'V777' system has 256K to 512K bytes of RAM located starting
at address $400000. tFORTH uses half of the RAM area (128K
bytes) for its alterable vocabularies and other dynamic data
areas. The remaining 128K bytes of RAM are used by the editor.
The boundary between these two areas is alterable.

- 56 -

System Memory Map
Addresses in hexadecimal

440000 Last RAM location

I---------------t 420000-43FFFF Editor RAM

410SAO-41 FFFF 'tFORTH'dictionary

I-------------t 40ECOO-410S9F Token table 1-------------1 40A2S0-40EBFF Variable area

J----.;...------------I 400000-40A27F Display memory

100000-1SFFFF Spelling Checker ROM

1------------.;...--.;...-1 040000-043FFF User Dictionary RAM

w ROM

000400-01 FFFF 'tFORTH' editor code
000000-0003FF 68000 Exception Vector Table

RAM

The tForth RAM Memory Map

The following page contains a close-up view of the tFORTH RAM
area.

Display Memory

The first 28K bytes of the tFORTH RAM area is used for display
memory. The V777 screen has 672 pixels horizontally and 344
pixels vertically. ramstart will return the address of the
start of the screen display memory when executed. The first byte
in the display memory area corresponds to the 8 pixels on the far
left of the top line on the screen.

Variable Memory

Following the display memory is the 4-5K area used for array
variables and for the return and parameter stacks. spO will
return the address of the base of the parameter stack when
executed. sp@ returns the address of the top of the parameter
stack when executed.

Token Table

The address of the start of the 2K byte token table is obtained
by asking for the address of the first token in the table:

hex
o +table 40ECOO

The token table contains an ordered list of the addresses of most
of the words in the system. The layout and use of the token
table are explained in the section covering the tFORTH compiler.

The rest of tFORTH's RAM allotment is used by the dictionary.

- 58 -

tForth memory Map (RAM)
Addresses in hexadecimal

top~

appllc ~ I--_______ -...;, __ ~

'tFORTH'
dictionary Available dictionary space

(appllc here -)

here ~ t-------------I

orlgln~

o +table

spo~

41FFFF Last 'tFORTH' location

41 OSAA-41 FFFF 'tFORTH'dictionary

40ECOO-410S9F Token table

Ret u rn stack

Subroutine stack

......... ;";";';';O';;';';';'O';';'"'i 40A2S0-40EBFF Variable area

ramstart~ _______________ 400000-40A27F Display memory

Dictionary

origin will return the address of the start of the tForth
dictionary space when executed. top returns the address of the
first byte BEYOND the end of the tForth dictionary space.

Initially, the tForth dictionary contains three vocabularies of
words. The approximate locations of the header and code areas
(explained later) for each of the three vocabularies are shown in
the diagram. The tForth word here is used to return the address
of the next available byte location in the code area of the
current 'open' vocabulary. applic will return the address of the
next available byte in the header area of the current 'open'
vocabulary (+1). The following calculation is used to determine
the amount of remaining tForth dictionary space:

hex
applic here ok

- 60 -

THE tFORTH DICTIONARY STRUCTURE

As the previous memory map illustrates. the tForth dictionary
space contains two types of data areas: the 'header' area and
the 'code' area. The header area is where the header portions of
all words in a vocabulary are stored. The code area is where the
code portion of all words in a vocabulary is stored. Each
vocabulary is given its own header and code area.

The Dictionary Header Area

The diagram on the following page contains a close-up view of an
dictionary header area. The first four bytes in a dictionary
header area contain a 32-bit value which indicates how many bytes
of individual header entries this header area currently contains.

The first header entry in every vocabulary belongs to an
invisible word used to mark the start of the individual
dictionary header entries. This 'stub' word is 1 character in
length with a name of 'null' . The ASCII code for the null
character is 00. The entry for the stub word is not a complete
dictionary header, it contains only the length byte and the
single character in the name.

The last header entry in every vocabulary belongs to another
invisible word named 'del' (ASCII code = hexadecimal 7F). 'del'
is used to mark the end of the dictionary header entries. The
'del' entry is a complete header entry. The encoded token value
used in the 'del' header entry is the highest possible encoded
token entry.

- 61 -

•
•
•

(up to 32 characters)
•
• •

Charil

2 bytes

Structure of a Dictionary Header

Adding Entries to the Header Area

The dictionary header area grows downward in memory. Any new
entries added to this vocabulary area will be placed between the
'nul' and 'del' header entries (the 'del' header entry is moved
to a lower memory location to accommodate the new entry).

Structure of an Individual Dictionary Header Entry

The structure of a tForth dictionary header entry is shown in the
diagram on the following page. The first two bytes in the header
entry contain an encoded version of the token value assigned to
the word. The third byte in the header structure is a length
byte. The bytes following the length byte contain the ASCII
codes for the characters which make up the word's name.

- 63 -

Header entry
which marks the
end of the
dictionary header
entries for this
vocabulary.

Partial header entry
which marks the
start of the header
structures.

Number of bytes
in the Header Area
(4 byte value).

•
•
•

Hig her Memory

Character in name
(name is 'del').

Highest possible encoded
token value.

Length byte with high bit set
(length = 1).

(header structures for words in this vocabulary)
•
•
•

Length byte with high bit set
(length = 1).

Character in name
(name is 'nul').

"--___________ ---a Lower Memory

2 bytes -----t .. ~

Close-Up of the Dictionary Header Area

The diagram on the following page gives a close-up view of the
length byte in a header entry. Bit 7 is used during dictionary
searches, bit 6 is used to mark IMMEDIATE words, and bit 5 is
reserved for future use. Bits 4 through 0 are used to record the
length of the word's name. Since only 5 bits in the length byte
are available for recording the length of a word's name, only the
first 32 characters in a word's name are significant.

- 65 -

Bits used to record
name length

Reserved

IMMEDIATE Bit

Dictionary Search Bit
(always set)

Structure of the Length Byte

The Dictionary Code Area

The following diagram shows a close-up of the dictionary code
area. 10 bytes of data are located at the start of every tForth
code area. The first two bytes contain an 68000 assembly
language 'JMP (A3)' instruction. The next byte is the actual
token for the VOCAB Jefining word. The byte is a flag which
indicates whether the code space contains an odd or even number
of bytes of code. The next two bytes contain the tier and token
information for the vocabulary to which this code area belongs.
The final four bytes of this 10 byte data structure are used to
hold a 32-bit value which indicates how many bytes of code this
code area currently contains.

Adding Code to the Code Area

As new definitions are added to the system, the code portions of
the new words which belong to this vocabulary will be placed in
succeSSJ.ve memory locations in the code area. The code area size
field will be incremented accordingly as code is added. The code
area grows toward higher memory locations. The odd size flag
will be set whenever the vocabulary is closed if the vocabulary
contains an odd number of code bytes. The words which reopen a
vocabulary will check a vocabulary's odd size flag whenever the
vocabulary is opened.

- 67 -

Number of bytes of code
in this vocabulary's code area

(4 byte value)

Tier token
for this vocabulary

VOCAS token

Token for
this vocabulary.

Odd Size Flag

Hig her Memory

JMP (A3)
'---____________ Lower Memory

2 bytes

Close-Up of the Dictionary Code Area

VOCABULARIES

The words in a FORTH dictionary are usually subdivided into
several smaller groups of words called 'vocabularies'. The 500
or so words in the tForth dictionary are located in four
different vocabularies:

forth vocabulary Contains all of the 'standard' FORTH
FORTH words supported by tForth
and all tForth FORTH extension words.
These words are located in ROM and
may not be altered (the token table
may be 'patched' to point to a new RAM
definition of a ROM word if necessary)

user vocabulary The user vocabulary is used to hold
the user's definitions.

arithmetic Contains the code which corresponds to
vocabulary the user's calculations in the text.

function vocabulary Contains the code which corresponds to
the functions to be used in calculations
in the text.

There is also an invisible vocabulary which is used to hide all
of the editor words.

Vocabularies help arrange the words in the dictionary into
smaller groups of related words. During compilation, the
programmer can help the compiler by specifying in which of the
vocabulary subsets of words the next word, or group of words to
be compiled, is located. This can speed up the compilation
process since the compiler performs less time searching the
dictionary. How to specify a 'vocabulary search order' is
discussed next.

The Vocabulary Search Order

The vocabulary search order determines which of the available
vocabularies in the system are searched whenever the compiler or
interpreter need to find a word. A list of the vocabularies
contained in the current search order is kept in an array named
'active' .

The Word active

active is a tForth word which returns the address of the start of
the active array when executed. The active array is 32 bytes in
length. The first entry in the active array contains the token
corresponding to the vocabulary which is first in the search
order. The second entry in the active array contains the token
corresponding to the second vocabulary in the search order, and
so on. Up to 16 vocabularies may be included in the search order
list at one time. The active array is traversed by find until

- 69 -

either 16 vocabularies are searched or until a word-length
(16-bit) value (hexadecimal FFFF) is encountered.

Specifying the Search Order

A vocabulary may be placed first in the search order by executing
its name. If the vocabulary was already included in the search
order, its token will be moved from its current position in the
active array to the first spot in the array and the rest of the
array will be adjusted to close the gap. If the vocabulary is
new to the search order its token will be inserted at the start
of the array.

Adding New Words to a Vocabulary

New definitions may only be added to the vocabulary which is
currently 'open'. In the tForth RAM Memory Map diagram the
user vocabulary is the current open vocabulary. When a
vocabulary is 'open' there is a memory gap between the top of the
vocabulary's code area and the bottom of the vocabulary's header
area. When new definitions are added to the open vocabulary, the
memory required for the new definition's code and header is taken
from the 'open' pool of memory.

The Word addto

The tForth word addto is used to open a vocabulary:

addto <name>

Only one vocabulary may be open at once. addto will close the
current open vocabulary before it opens the vocabulary specified
by <name>.

The diagram on the following page shows how the vocabulary
closing and opening process works. A vocabulary is closed by
closing the gap between the vocabulary's header and code areas in
memory. A vocabulary is opened by creating a gap between its
code and header areas.

Creating New Vocabularies

The Forth-83 defining word VOCABULARY is used to add new
vocabularies to the system. The following actions are used to
add a new vocabulary:

1. The new vocabulary's header and code are placed in the
header and code areas of the currently open vocabulary
(the new vocabulary's parent vocabulary).

2. The contents of memory between 'applic' and 'top-1' are
shifted downwards by 20 bytes to make room for the 10
bytes of data stored at the start of every dictionary
header area and for the 10 bytes of data stored at the
start of every dictionary code area. (cont.)

- 70 -

Opening and Closing Vocabularies

top
~

appllc

~ ~----~~~~~

here

Available
dictionary space
applic here ~)

~ ~------~----~

origin
~ ~------------~

" addto user"

user vocabulary is open.

top
~

here

Available
dictionary apace

appllc here -)

~

origin

~ ----------------
.. addto arithmetic"

arithmetic vocabulary is open.

top
~

appllc
~

here
~

origin

Available
dictionary space

appllc here -)

~ --------------~

.. addto function "

function vocabulary is open.

3. Finally, the new vocabulary's token and its parent token
are stored in the extant array.

The Extant Array

Each vocabulary in the dictionary has its token and the token of
its parent vocabulary in an array called 'extant'. Each entry in
the extant array is 4 bytes in length and consists of a 2-byte
token for a vocabulary followed by a 2-byte token for the
vocabulary's parent vocabulary. The extant array is 64 bytes
long and therefore has enough room for 16 child-parent vocabulary
pairs. Execution of the word extant will return the address of
the extant array.

The extant array is used by tForth words which must remove
vocabularies from the system.

- 72 -

RUNNING tFORTH

The first part of the tForth technical manual dealt with the data
structures and memory usage and layout of the tForth system.
This part of the technical manual will cover the dynamic
functioning of the tForth system.

The Word quit

The main word which 'runs' FORTH is quit. These are the basic
actions performed by quit :

quit
begin

again

clear the return stack)
get a block of user input text)
interpret the user input text)

tl ok" cr

Clearing the return stack is simply a matter of returning the
return stack pointer to its base position. query, which was
discussed previously in the string I/O section, is used to get a
line of input text from the user. The most important word used
by quit is interpret. interpret is responsible for parsing the
input stream.

The tForth definition for interpret is shown on the following
page. interpret is passed the address and length of the input
text on the parameter stack. In the first two lines of interpret
the end address of the input text is stored in the system integer
limit and the start address of the input text is stored in the
system integer in. The in integer is used to mark interpret's
progress through the input text string.

These are the actions which occur in the main
'begin ... while ... again ' loop in interpret

1. word is used to extract the next word (sequence of
characters delimited by spaces or tabs) from the input text.
word will leave the address of the extracted word in the
system integer str, the length of the extracted word in len ,
reposition the in integer to point to the next character to
be examined in the input text.

- 73 -

interpret
over +
in to
begin

a I
limit

len
while

?stackerr
again

word

locals
if

else

then

if

then

to

begin the interpretation loop)
grab a word from the input text

while the length is nonzero)
is this word a local variable?

doloe
IF it is, perform special local variable
actions, described later)

-1

str
?dup
if

else

then

(if the word is not a local variable,
(try to find it in the dictionary)

len find

(if the word was found in the dictionary ...
0< state nesting or and
if (and if the system is in the

(compiling state, compile the word
compile,

else (otherwise, execute the word)
sw execute sw

then

(if the word was not found in the
(dictionary, try to convert it to a number)
str len base number
if (if it is a number ...

state nesting or
if

and compiling state is on
compile # as a literal

[compile] literal
else

(leave # on param stack
then

else {if its not a #t check for targeting
targeting

then

if
(if targeting is occurring ...
forward

else
(leave the loop and abort)
leave

then

check the parameter stack state)

len abort" can I t use 11 can't use this word

- 74 -

2. If word is able to extract a word from the input text, it
will drop into the while section of the
begin ... while ... again loop. The first test performed in the
while section is a test to see if the extracted word is a
local variable. If the word is a local variable, local
variable type actions occur (described later) and a false (0)
flag is left on the parameter stack. If the word is not a
local variable, a true (nonzero) flag is left on the stack.

3. If the word was not a local variable, interpret checks next
to see if the word can be found in the dictionary using the
current search order. find is used to locate words,
specified by the address and length of their name strings, in
the dictionary. If find finds a word it returns the token
for the word and a true (nonzero) flag on top of the
parameter stack. If the word found is an 'immediate' word
the flag returned will be a '1'. Otherwise, the flag
returned will be a '-1'. If find cannot located a word, it
returns a false (0) flag.

4. If the word was found in the dictionary, interpret must next
decide whether the word should be compiled or executed. Two
tests must be true in order for the word to be compiled.
First, the word found must not be an immediate word. Second,
one or both of the two system integers state or nesting must
contain a nonzero value. If the state system integer
contains a nonzero value it means the system is in the
compilation state. If the nesting system integer contains a
nonzero value it means the system is currently compiling the
temporary code required for interactive execution of program
control structures (discussed later). So, if the word found
is not immediate AND if the system is either compiling real
definitions OR compiling temporary code for interactive
execution of program control structures, the token for word
will be compiled.

5. If the conditions for compilation are not met, execute will
be used to execute the word corresponding to the token.

6. If the extracted word was not found in the dictionary,
interpret will next try to convert the string to a number.
If the string can be converted to a number, and the system is
either in the compiling state OR compiling temporary code,
the number will be compiled into the current definition as a
literal.

7. If the string was converted to a number and the system is not
compiling, the number will be left on the parameter stack.

8. If the extracted word was not a word in the dictionary and
could not be converted to a number interpret will check to
see if the system is currently in the target compiling state
by checking the contents of the targeting system integer for
a nonzero value. If target compilation is occurring (target
compilation will be discussed in a separate document), the

- 75 -

extracted word will be compiled into the target system image
under construction. Otherwise, leave will be used to exit
the loop, interpret will abort , and an error message will be
issued.

Now that the general actions of a running tForth system have been
described, individual aspects may be discussed in detail. The
following aspects of the tForth system will be covered in the
final sections of this technical reference manual:

* The Basics of tForth Compilation

* Execution of Token-Threaded Code

* The Implementation of tForth's Integers

* The Implementation of tForth's Local Variables

* The Implementation of tForth's Program Control Structures

- 76 -

THE BASICS OF tFORTH COMPILATION

Structure of a Dictionary Entry

In the "Under the Hood" chapter of Leo Brodie's book Starting
Forth, the structure of a dictionary entry in an address-threaded
FORTH implementation is described. Since the original
implementation of FORTH. and most FORTH implementations for many
years after, were address-threaded implementations, the
address-threaded model of FORTH is generally considered to be the
'standard'. In recent years, FORTH implementors have devised
many different threading schemes. The token-threading scheme
used in tForth is one of the most popular of the new FORTH
threading schemes due to its conservative use of memory. In this
section, tForth's token threading scheme will be explained by
comparing it with the 'standard' address threading scheme as
described in Starting Forth.

The diagrams on the following page show the dictionary entries
which would be created for the definition below in a 32-bit
address-threaded implementation and in the 32-bit tForth
token-threaded implementation:

newword
3 *

(n -
dup +

Certain areas in the diagrams have been given the following
labels since, according to Starting Forth, all Forth definitions
share these common parts:

DEFINITION
HEADER FIELDS

name field
link field

DEFINITION
CODE FIELDS

code pointer field
parameter field

The 'definition header fields' are used to find definitions in
the dictionary (in order to execute or compile the definition).
The 'definition code fields' are used when a definition is
executed. In the tForth implementation the definition header
fields and the definition code fields are stored in different
memory areas. The token field and the token table, which will be
described in more detail later, are used to link a definition's
header and code fields together.

The 'code pointer' field is used to specify where the 'code' for
the definition is located. The parameter field contains either
data, addresses (in an address threaded implementation), tokens
(in a token threaded implementation), or machine code
instructions.

- 77 -

Dictionary Entries: Address Threaded versus Token Threaded

. newword (-) 3 * dup + . ;

Address Threaded

Definition
Header
Fields:

Definition
Code
Fields:

Token Threaded

Definition
Header
Fields:

Definition
Code
Fields:

lower
memory

higher
memory

lower
memory

higher
memory

lower
memory

higher
memory

limmediate bit

~ 7
,

n
e , w
w • 0

I

r , d

address of literal

00000003

address of ...

address of d up

address of +

address of .

address of ;

dictionary search bit

immediate bit

reserved

~14 ~ II ~ I 7 , n
e , w
w , 0

r I d

JMP (np)

blit token • 03
... token , dup token

+ token I tier1 token
. token '<exit> token

I • 2 bytes--+I

] name field

link field

code field

parameter field

token field

] name field

code field

]parameter field

In an address threaded implementation, the dictionary is
organized into groups of linked lists (one for each vocabulary) .
The 'link' field for each word in the dictionary points to (holds
the address of) the previous dictionary entry in a particular
vocabulary list.

In the tForth implementation, the link field has been eliminated
because the words in each vocabulary are arranged alphabetically.

Examining the Definition Header and Code Areas

The tForth compilation word nt ('n-tick') can be used to find the
address of the definition header for a word:

n ' newword 10 dump
5FFBA 07 2C 87 6E 65 77 77 6F 72 64 7F 7F 81 7F 4E D3 .,.newword N.

The two leftmost bytes are the encoded token value for newword.
The next byte is the length byte for newword's name. The length
byte shows that there are 7 characters in 'newword'. The length
byte looks like '87' because the most significant bit is set for
dictionary searches (described later). The next seven bytes
contains the ASCII codes for the characters in the word newword.
n' can only be used on words in the current open vocabulary.

The tForth compilation word c' ('c-tick') can be used to find the
address of the code for a definition:

c' newword 10 dump
478EC 4E D3 OA 03 77 2D 54 01 OC 10 00 00 00 1A 81 00 N ... w-t

The contents of the code field for newword are located in the two
leftmost bytes in the display. The parameter field contents
occupy bytes 3 through 10 in the display.

Tokens and the Token Table

A token is a one byte number whose value can be any number
between 0 and 255 decimal. Each word in tForth is represented by
either 1 or 2 tokens. The token field in a tForth definition
header contains an encoded version of the definition's token
value. To find the code which corresponds to a particular
definition header, the encoded token value is decoded to its
corresponding token value and then multiplied by four (since each
entry in the table is 4 bytes long) and used as an offset into
the 'token table' (see the diagram on the following page). The
token table is a table which contains the 32 bit code addresses
for all definitions known to tForth.

- 79 -

Tiers:

Token Table

o +tabl~ r-----_
1024 bytes per tier,

tier 0 room for 256, 4 byte
1-------4 token table entries per tier

tier 1

tier 2

tier 3

unused token
table entries

Close up of the start of tier 0:

token 00 entry
token 01 entry
token 02 entry
token 03 entry
token 04 entry
token 05 entry
token 06 entry
token 07 entry
token 08 entry
token 09 entry
token OA entry

code address for 'forth'
code address for 'tier1'
code address for 'tier2'
code address for 'tier3'
code address for 'tier4'
code address for 'tierS'
code address for 'tier6'
code address for 'tier?'
code address for 'tier8'
code address for 'tier9
code address for 'blit'

I 0 +table '
• 1 +table '
• 2 +table '
• 3 +table '
· 4 +table '
• 5 +table '
, 6 +table '
, 7 +table '
, 8 +table '
, 9 +table '
· A +table '

Useful Token-Related Words

The words t ('tick') and ['] ('bracket-tick-bracket') can be used
to find the token value for a word. is used outside of colon
definitions and ['] is used within colon definitions. The word
name will take a token value and display the name of the
corresponding FORTH word. The word encode encodes a token value
(for placement into the token field of a word's header) and the
word decode decodes an encoded token value {so the decoded token
can be used as an index into the token table}. The word +table
takes a decoded token value and returns the address of the
location in the token table where the corresponding code address
is stored.

newword
3AC name

3AC encode
72C decode
3AC +table

46EBO @

c' newword

3AC
newword

72C
3AC
46EBO

478EC

478EC

get newword's token value)
find which FORTH word belongs to)
the token 3AC)
encode the token value }
decode the token value)
get the address of newword's entry in
the token table)
fetch the contents of newword's entry
in the token table: the address where
the code for newword is located.)
compare the address returned by c')
with the address returned above, they)
are the same)

Note that the encoded value of newword's token is the same value
stored in newword's token field (shown above in the n' example).
Also note that the code address returned by c' is the same as the
code address stored in newword's token table entry. (Note, try
using name to determine which FORTH words belong to the tokens in
the parameter field area of the code portion of newword. See the
c' example above.)

Tiers

Since a byte size token can only assume 256 distinct values, the
use of single tokens only would limit the system to a maximum of
256 words. To overcome this -:mitation, the 'tiered' arrangement
shown on the diagram was introduced. Each of the 10 tiers can
hold 256 code addresses. This means the system can potentially
accomodate 256*10=2560 words, although currently there are only
about 1000 words. To locate a code address stored in tiers other
than the base tier (tierO) requires the specification of the tier
level and the token value.

Example: Anatomy of newword

- 81 -

Let's examine the tokens compiled into the newword definition:

C I newword 10 dump
478EC 4E D3 OA 03 77 2D 54 01 OC 10 00 00 00 lA 81 00 N ... w-t

4ED3 Contents of code field, to be discussed later.

OA Token for blit
03 Literal data used by blit
77 Token for *
2D Token for dup
54 Token for +
01 Tier token 1, indicates that the following token value

is located in tier 1 in the token table
OC Token for , located in tier 1
10 Token for <exit>

References to all words except for . were compiled as single-byte
tokens. Words compiled as single byte tokens are located in
tierO in the token table. The word . is located in tierl in the
token table. Words located in tiers other than tierO will be
compiled as 2 byte token combinations. Token values 01 , 02 , 03
, 04 , 05 , 06 , 07 , 08 , and 09 are all 'tier tokens' which
correspond to tier1 , tier2 , tier3 , tier4 , tier5 , tier6 ,
tier7 , tier8 , and tier9 in the token table.

Compilation Size Considerations

The compiled code for newword required 10 bytes of code space and
28 bytes (7 tokens * 4 bytes per token table entry) of token
table space. This means the token threaded version of newword
requires a total of 38 bytes of memory.

In an address threaded version of newword each of the 5 words
referenced by newword would cause a 32 bit, or 4 byte, address to
be compiled. This means the compiled code for an address
threaded version of newword could require up to 24 bytes of code
space (including the space required for the literal data).

If 5 words very similar to newword were to be compiled in the
tForth token threaded system the memory requirements would be 50
bytes of code space (10*5=50) and still only 28 bytes of token
table space for a total of 78 bytes of memory.

The same 5 words compiled in an address threaded system would
require 120 bytes of code space (24*5=120) because in each
definition the complete 4 byte addresses for each referenced word
would have to be compiled.

- 82 -

Overall, tForth's token threaded approach saves code space
because the memory intensive data, the 4 byte code addresses for
each word in the dictionary, are only located in one spot in
memory - in the token table. Each compiled reference to a word
only generates a one or two byte token in the code space. In an
address threaded version the 4 byte code address for a word is
repeated each time a reference to the word is compiled.

The Compilation Process

To study the compilation process, we will reconstruct the tForth
and interpreter's and compiler's actions during compilation of
newword Here, once again, is the definition of newword :

newword n 3 * dup +

For the sake of simplicity, assume the line containing the
defini tion of neh":7ord has just been sent to tForth. The FORTH
interpreter will ;;>tart "walkingtt through the input line,
separating out words (sequences of characters delimited by spaces
or tabs) and executing them. The first word encountered by the
interpreter will be the word : . This is what happens when : is
executed:

1. Calls create. create aligns the here pointer (which
points to the location in the code space where the code
for newword will be placed) on an even word boundary.
Next, create uses word to get the next word from the input
stream, which will be the name to be assigned to the new
definition ("newword", in this case). Finally, create
assigns a token to the new definition and creates a new
dictionary header.

2. Calls].] saves the current contents of the nesting
and state system integers and places zeros in both
integers. The purpose of the nesting system variable will
be discussed later in the technical discussion on program
control structures. state is the system integer used to
record the current 'state' of the system. If state holds
a '0', the system is in the compiling state. If state
holds a '1', the system is in the interpreting state. The
net effect of] is to place the system in the compiling
state.

3. The final important action of : is to lay the first two
bytes of code into the code area for newword. These two
bytes contain the opcode for the assembly language
instruction 'JMP (np)' (4ED3) or, in human language,
"execute the nest code definition". All definitions
created by the defining word: begin with a 'JMP (np) ,
instruction.

- 83 -

At this point, execution of : terminates and control returns to
the interpreter. The interpreter grabs the words 3 t * t dup t +

, and . from the input line. Since the system is now in the
compiling state, due to the actions of] , the the tokens for
these words are compiled rather than executed. The final word on
the input stream is ;. If the definition just compiled contains
local variables, ; will compile the token for <;lp> into the
definition. Otherwise, ; will compile the token for <;>. The
implementation of local variables will be discussed in the
technical discussion on local variables. At this point the
interpreter has reached the end of the input line and newword has
been compiled.

- 84 -

EXECUTION OF TOKEN-THREADED CODE

How is a tForth word executed? Explanation of the tForth
execution process requires that the tForth 68000 register usage
is discussed and that some terminology is established.

tForth Register Usage

tForth uses 10 out of the 16 available 68000 registers to hold
addresses it requires as it operates.

REGISTER SYMBOL

D7

06

D5

D4

A7
A6
A5

A4

bp

iv

sa

ct

sp
rp
ip

nx

A3 np

A2 vp

USAGE

Holds the address of the base of the
token table. "base pointer"
Holds the address where the value of
the current integer is stored.
"integer value"
Holds the address of the start of the
definition currently being executed.
"start address"
Holds the address of the token table
entry for the definition currently
being executed. "current token"
Parameter stack pointer.
Return stack pointer.
Holds the address of the next token to
be executed in the current definition.
"interpretation pointer"
Holds the address of the code for next .
"next pointer"
Holds the address of the code for nest .
"nest pointer"
Holds the address of the run-time code
for integer .

The FORTH instructions generated by the tForth compiler are not
executable 68000 instructions. The tForth compiler creates a
virtual processor, with its own instruction set, which runs on
top of the 68000 microprocessor. Since all 68000 instructions
are at least 2 bytes in length and the tForth tokens are at most
two bytes in length (the most popular tForth words are 1 byte
tokens), the instruction set for this virtual processor allows
tForth to produce more compact code than it would if it always
used the 68000 instruction set. Only the lowest level tForth
words, the code definitions, consist of actual 68000 machine code
instructions.

The Word execute

The word execute is used by interpret to execute FORTH words.
execute executes the word corresponding to the token passed to
it. To demonstrate how tForth words are executed, the steps
taken by execute as it executes the word newword will be examined:

- 85 -

newword (n
3 * dup +
2 newword C

newword 3AC
2

3AC execute C

here is the definition of newword)
once again)
test newword out

get the token for newword
newword expects to be passed a
number on the stack when it executes
use execute to execute newword)

The code area for the newword definition is shown on the
following page. The locations of some of the pointers mentioned
above are shown in the positions they would hold just before the
word newword is executed.

- 86 -

Before execute :

Token
Table

b P + �..___---'

After execute :

ct + a 0+ newword entry

Token
Table

b P ... 1..------'

Before. :

ct newword entry

Token
Table

b P ... 1..------'

Token Threaded Execution

(code area for newword)

I 4 E 03 I OA I 031771201541 0110 C 11 0 I
t

('jmp (np)' instruction)

14E0310Al03177120ls41 0110cI1 01

+ +
a 1 ip

sa

14E0310Al03177120ls41011ocl101

+ +
sa Ip

I J---- delta ip ---... 1

1

2

3
4
5

(6)

(7)

Here is the code definition for execute

code execute (n

;c

sp)+ dO move,

(code which checks to see if the token on the stack)
(belongs to a system integer goes here)
if,

special system integer }
handling code, which will)
be explained in the next)
section, goes here.)

then,

bp .b clr,

bp aO move,

dO aO .w add,
aO aO .w add,
aO aO .w add,

aO al move,

al jmp,

clear the lowest byte of the)
base pointer }
move a copy of the base pointer
to the AO register)
multiply the token value times 4)
and add the result to the copy)
of the base pointer to calculate)
the address of this token's token)
table entry)
put the contents of this token's)
token table entry-the code addr)
for the word corresponding to the)
token-in the Ai register)
jump to the first instruction in the
code area for this word)

The first part of execute checks to see if the token to be
executed belongs to a system integer. Execution of system
integers will be discussed later. The second half of execute
contains the code responsible for the execution of tForth words.
Since newword is not a system integer, the code in the second
half of execute will be used.

In the line marked line (1) above, the lowest order byte of the
base pointer, which points to the start of the token table in
RAM, is cleared. During tForth execution, the lowest byte in the
base pointer is altered (as will be shown later). Clearing the
lowest byte of the base pointer actually puts the base pointer
back in its correct position.

In line (2), a copy of the corrected base pointer is placed in
the AO register.

In line (3), the word length decoded token value is added to the
base pointer address.

In lines (4) and (5) the decoded token value ($3AC for newword)
is added twice to the lower word of the copy of the base
pointer. This has the net effect of multiplying the token value
by 4 (4 bytes per token table entry) and adding the result to the

- 88 -

token table base address. The resulting address in the AO
register is the address of the token table entry for the word to
be executed (the address of newword's token table entry). Note
that all of the addition operators use the '.w' (word length)
suffix so that the upper word of the base pointer address is not
affected by the addition operation.

In line (6) the code address stored in the token table entry (the
code address for newword) is placed in the Al register.

In line (7) prog:caIn execution is vectored to the code area for
newword by means of a 'JMP (Al)' or, "jump to the code for this
word" instruction.

Nesting

As the diagram shows, the first field in newword's code area is a
2-byte code field. The instruction in the code field is a 'JMP
(np)' instruction. newword t and all other tForth definitions
created by the defining word: will have a 'JMP (np)' instruction
in their code field. In tForth the np (A3) register is used to
hold the address of the tForth nesting routine (described
below). The nesting routine is always the first routine run
whenever a colon definition is executed.

In the 68000, each time a 'JSR' (jump to subroutine) instruction
is executed, the address of the instruction at which execution
should resume after the subroutine completes execution (the
address of the instruction which immediately follows the 'JSR'
instruction) is placed on the 68000's system stack. The tForth
processor is similar to the 68000 microprocessor in that 'return
information' is saved away each time a 'jump' down to a lower
level FORTH word occurs. The process of saving FORTH return
information and 'jumping' down to a lower FORTH execution level
is called "nesting" (don't confuse this term with the tForth
system integer named nesting). In FORTH, the nesting process
stops when a directly executable code definition is reached.

The tForth nesting routine is used to make the transition between
tForth execution levels. Each time a tForth word references
another tForth word which is not a code definition, the system
drops down to another execution level ('nests'). Any execution
level can be completely described by two pieces of information:
the delta distance from the start address of the definition
currently being executed (kept in the sa register) to the address
of the token currently being executed (see the diagram), and the
address of the token table entry for the definition currently
being executed (kept in the ct register). Here is a listing of
the tForth nesting routine:

- 89 -

(1)

(2)
(3)

(4)

5

6

(7)

(8)
(9)
(10)
(11)
(12)

frag .nest to (create a code fragment, store the address of)
(the code fragment into the .nest system integer

sa ip .w sub, (calculate the distance between)
(the start of the current code)
(area to the token in the code)
(area which is currently being)
(executed)

ip rp -) .W move, (save this delta away)
ct rp -) .w move, (save the lower word of the

(current token pointer away
a1 2)d ip lea, (put the address of first)

(token to be executed in the)
(lower level definition in the
(instruction pointer)

a1 sa move, (Ai points to the start of the code
(area of the lower level definition

aD ct move, (AD poi~~ts to the token field)
(entry for the lower level defn.)

(*~ the 'next' code fragment starts here **)

ip)+ bp .b move, place the token pointed to by
the ip pointer into the lower byte
of the base pointer)

bp aO move, calculate the address of the)
aO aO .w add, token table entry for the token

aO aO .w add, just fetched)
aO) a1 move, get code addr. from token table
al) jmp, jump to the start of the code)
c; area for the new token)

The nesting routine code performs three functions. In the first
half of the nesting routine, information about the previous
execution level is saved away on the return stack (lines 1-3) and
the current execution level information is set up (lines 4-6).
The second half of the nesting routine (lines 7-12, also known as
the 'next' routine), is responsible for starting the execution
process going at the newly set up execution level (starting with
the first token in the current definition).

At the end of the execute routine (described previously), the Ai
register was left pointing at the code field for newword and the
AO register was left pointing at the token table entry for
newword. The state of these registers is reflected in the
diagram. Discussion of the nesting routine as it relates to
execution of newword will start at line (4) above. In line (4)
the interpretation pointer, 'ip', is set up to point at the first
token in newword's parameter field area. This is accomplished by
using the lea, instruction to add 2 to the address in the Ai
register. The nesting routine assumes that the code field in
tForth is a 2 byte field.

In line (5) newword's code field address is placed in the start
address pointer, 'sa'. In line (6) the address of the token
table entry for newword is placed in the current token pointer,

- 90 -

)
)

'ct'. The 'ct' and 'sa' registers always hold addresses which
pertain to the instruction which is currently being executed, in
this case, newword. At this point, a new execution level has
been completely established and the tokens in newword's code area
may be executed.

The last half of the nesting routine {the next routine} performs
the same functions as the last half of the execute routine
described above. Both sections of code take a token, calculate
its token table entry address, fetch its code address from token
table, and vector execution to the first instruction in the code
area for the token. The only difference between the two pieces
of code is that in execute the token to be executed is passed in
on the parameter stack and in the nesting routine the token to be
executed is pointed to by the interpretation pointer.

Executing a tForth Code Definition

The first token to be executed in newword belongs to blit (token
$OA). blit is a code definition, so the code area for blit
contains machine code:

c' blit 10 dump
11E6 10 1D 48 80 48 CO 2F 00 4E D4 70 00 12 lD 10 lD .. H.H./ .N.p

lOlD ip)+ dO .b move, get the byte value which follows)
the blit token and increment the
ip)

4880 dO .w ext, extend it to a word value)
48co dO .1 ext, extend it to a long value)
2FOO dO sp -) move, push the value on the stack
4ED4 nx) jmp, exit to FORTH)

Code definitions do not cause a change in execution level so the
code field in code definition does not contain a jump to the
nesting routine. The machine code instructions in blit's code
and parameter fields are executed straight through. Since
execution of a code definition did not cause any nesting to
occur, termination of a code definition does not require any
"unnesting". Program execution simply continues with the next
token in the definition. For this reason, a 'JMP {nx} ,
instruction is used at the end of a code definition. This
instruction causes the second half of the nesting routine, the
part of the nesting routine which starts execution of the "next"
token in the definition, to be executed.

During execution of blit the ip was 'bumped' over the byte length
literal data, $03. Therefore, the ip is currently pointing at
the * token. *, dup , and + are also code definitions so this
same cycle (jump to the code address, execute the machine code
instructions, return to next) will be repeated three more times.
Only when the token for tier! is executed does the execution
cycle get more involved.

- 91 -

Tier Tokens

The tForth interpreter steps through tForth definitions executing
a single byte token at a time. The interpreter does not know how
to execute 2 byte tokens. Single byte execution works fine with
tokens numbered OO-FF hex (the tokens located in tierO of the
token table). But what about the tokens in the rest of the
tiers? Tokens in the other tiers would have token numbers like
$123, $4AO, or $5FF. These numbers cannot be expressed as single
byte values. The 'tier words', tier! through tier9 (which have
token numbers $01 through $09 and are located in tier 0) are
special versions of execute which know how to execute words
represented by tokens located in tiers 1 through 9, respectively.

The token for the word . is located in tier 1 of the token
table. References to . are compiled as a two-byte sequence: '01
OC' (see the previous diagram of the code area for newword). The
'01' is the tier! tier token. tier! 'knows' that the token which
immediately follows it in memory, the 'OC't is a token table
entry number offset into tier 1 of the token table (rather than
an actual token table entry number). This token table entry
number offset must be added to the base token number for its tier
to calculate an actual token entry number. For example, the base
token number for tier 1 is $100 (for tier 2 it is $200, for tier
3 it is $300, etc). The actual token table entry number for.
would then be: $100 + $OC = $10C. Once a tier word has
determined the actual token table entry number for a token, the
token's token table entry address can be calculated and the code
corresponding to the token can be executed.

All of the 'tier words' are code definitions. The code
definition for tier1 is listed below:

- 92 -

(1)

(2)

3)
(4
(5
(6

7

code tier1 (
.tbl 100 + #n dO move, (put address of base of token

table, plus 100 hex which is the)
first token value in tier1, in the
dO register)

ip) + dO .b m('~e, (get the next token, the token for ,
$OC, and place in the lowest byte of the)
value in the dO register. now the lowest)
12 bits of the dO register contain $10e)(

dO aO move, move the dO to the AO register)
aO aO .w add, calculate the address of the token table)

c'

aO aO .w add, entry for)
aO) a1 move, fetch the code address for from

token table entry)
al jmp, jump to ts code area)

When a tier token is executed it first adds the base token number
for its tier to the base address of the token table (line 1
below, the system integer .thl holds the token table address).
Next, the token table entry offset into the tier (i.e. the token
value which immediately follows the tier token in the
definition's code area, SOC in this example) is added to the
previous result (line 2) . The last 5 lines of code in tier1 are
used to calculate the address of the token table entry in tier 1
for . , to get the code field address for . , and to vector
program execution to the code area for . :

Words whose tokens are located in tiers 1 through 9 are compiled
as a two byte token sequence. To conserve program space, the
words in tForth have been arranged so that the most often used
words are located in tierO.

Nesting Down a Level

Here is a listing of the code area for

20 dump

IS

3E30
3E40

4E D3 2D 57 01 04 01 06 31 01 08 01 07 01 01 24
10 FF 4E D3 01 04 01 06 01 07 01 01 24 10 20 lF

N. -W .••• 1 .•.... $
•• N ••••••••• $. .

2D name dup
57 name abs
0104 name <#
0106 name #s
31 name swap
0108 name sign
0107 name #>
0101 name space
24 name type
10 name <exit>

is a colon definition so its code field contains a 'jump to
the nesting routine' instruction. Execution of the nesting code
will cause a change in execution level to occur. A change in
execution level at this point means that the system will stop

- 93 -

)

)

(

executing tokens in newword and will start executing tokens in .

Let's follow the transition between execution levels (refer back
to the listing of the nesting code fragment).

Line 1: The delta between the start address of newword's code
area, held in the sa register, and the address of the
token to be executed next, held in the ip register, is
calculated and the result is left in the ip register.

Line 2: The word length delta value is store in the return stack.

Line 3: The lower word of the token table entry address for
newword is saved on the return stack.

Line 4: Put the address of the first token in . in the ip
register.

Line 5: Put the code field address of . in the sa register.

Line 6: Put the address of the token table entry for . in the ct
register.

Line 7: Fetch a copy of the first token in . , put the byte
length token value in the bp register, and bump the ip
pointer ahead one byte.

Lines 8-12: Calculate the token table entry address for the
token and vector program execution to the token's code
area.

Un-Nesting

When . has completed execution, the final word to be executed in
newword is <exit> (also called <;». <exit> takes two word
length pieces of 'return' information off of the return stack and
restore the execution-related registers so that execution may
continue at a previous execution level. Here is the listing for
<exit> :

- 94 -

code <exit>
rp) +

rp)+

ct a1

a1

aO sa

next;

Parameter:
ct .w move,

aO .w move,

move,

sa move,

0 xl}d ip lea,
(
(

Return: nl n2
replace the lower word of the
current token table entry)
address with the lower word of)
of the token table address being
used at the previous execution)
level)
remove the delta ip value from
the return stack)
move the new token table entry
address to the a1 register)
put the code field address found
in the new token table field into)
the sa register)

(add the code field address to the
delta ip value and place the)
resulting address in the ip reg.

Since newword was executed interactively using execute, the
above use of <exit> will 'unnest' and allow execution of the main
loop in quit, the 'interpret loop', to continue.

- 95 -

THE IMPLEMENTATION OF INTEGERS

Important Integer-Related Registers

There are two registers which are directly related to the
functioning of tForth's integers: the 'iv' and the 'vp' register
(see below). The exact usage of these registers will be
explained later in this section.

REGISTER SYMBOL

D6 iv

A2 vp

Creating Integers

USAGE

Holds the address where the value of
the current integer is stored.
"integer value"
Holds the address of the run-time code
for integer .

The defining word integer is used to create new integers.
integer is a defining word because it creates named (words with
dictionary headers) child words and assigns run-time actions (the
run-time action of a child word created by integer is to place
its value on the stack) to the child word. Here is the
definition of integer :

integer
create

4ED2 w,

12 integer fred
fred . 3B1

Compile time: n I Run-time: n)
(create a dictionary header for the)
(new integer)
(lay a 'jump to the address stored in
(the vp register' instruction in the code
(field of the child words code area)
(lay the 4 byte initial value for the integer
(into memory immediately following the)
('jump' instruction)

create a new integer named fred)
this is the token assigned to fred

c' fred 10 dump (display the contents of fred's code area)
47938 4E D2 00 00 00 12 31 84 66 72 65 64 07 32 83 6A N 1.fred.2.j

test1 fred (use fred in a colon definition

show how a reference to fred is)
c' test1 10 dump (compiled into a colon definition)

4793E 4E D3 03 BiOi OC 10 00 6B 81 00 07 36 85 64 6F N ••••••• k ... 6.do

In the first example above integer was used to create a new
integer named fred Then,' was used to check the token
number assigned to fred Finally, c' was used to display
the code area for fred The code area for fred contains a
'4ED2', or "jump to the address in the vp (a2) register" and the
4 byte value, '00000012', of fred

- 96 -

1

2

3

4
5
6
7
8
9

The second example above uses fred inside of a simple colon
definition and then displays the contents of the colon
definition's code area. The code area dump shows that integer
references are compiled the same way as a references to other
colon definitions are compiled, the token for the integer is laid
into the code area of the colon definition.

Execution of Words Created By integer

The discussion of the tForth execution process showed that every
colon definition contains a two byte machine code instruction, a
"jump to the address in the np (a3) register (opcode = 4ED3)", in
its code field. During execution of colon words, execution of
this special instruction would cause the tForth nesting routine
to be run.

The execution process for integers is very similar to the
execution process for colon definitions. The vp, or a2, register
in the V777 system is used to hold the address of the code
fragment shown below. Whenever the token corresponding to an
integer is executed, program execution will be vectored to the
code field in the integer's code area. This will cause the 'JMP
(vp)' instruction to be executed and the code below will be run:

frag .ramint to (n
2 #n a1 addq, 'point' a1 at the parameter field/

data for the integer)
a1 sp -} move, push the integer's data on the)

parameter stack)
a1 iv move, put the address of the integer's

data in the iv register)
ip) + bp .b move, keep tForth execution going)
bp aD move, by causing the next token in)
aD aD .w add, the word which 'called' the)
aD aD .w add, integer to be executed ...)
aD) a1 move,
a1) jmp,

;c

When execution of the .ramint code fragment starts, the a1
register will be pointing to the code field for the integer (see
the diagram on the following page). This position of the a1
register was described in detail in the section on the execution
of token threaded code. In line 1 of the integer code above the
address in the a1 register is repositioned so that it points at
the start of the parameter field in the integer's code area. As
the diagram show' the parameter field in an integer's code area
is four bytes long and holds the current value of the integer.
In line 2, the familiar run-time action of integers is
performed: the integer's value is placed on the parameter
stack. In line 3, the address where the integer's value is
stored is placed in the iv register. Lines 4 through 9 are
identical to the last 6 lines in the nesting routine. These
lines are responsible for causing the next token in test1 ,the
token for , to be executed.

- 97 -

Integers Execution

(code area for test1)

(Ijmp (np)' instruction) -+1 4ED31 031811 0110cl1 0 I

(code area for fred)

('jmp (vp)' instruction) -+1 4ED21 00 I 001001121

t t
a 1 a 1 '

t
iv

How the Integer Operators Work

Here is the code definition for and an example usage of to

code to nl n2)
iv aD move, (put the address of the integer's data

(in the aD register)
4 #n sp addq, (drop the top item, n2 - the integer's

(current value, from the param stack
sp)+ aD move, (store the new value, nl, into the)

(integer's storage location)
next;

5 fred to

to should always be executed immediately after an integer (or a
local variable) name has been executed. After an integer is
executed, the integer's value will be on top of the stack and the
address of the integer's storage location will be in the iv
register. Since to is also passed the new desired value for the
integer, there will be two items on the stack when to is
executed, the current integer value will be on top of the stack
and the desired new value will be second on the stack.

In the first line of to the address of the integer's storage
location is moved into the aO register. In the second line the
integer's current value is dropped from the stack. In the third
line the new value on top of the stack is stored into the
integer's storage location.

+to is very similar to to

code +to
iv aD

4 #n

sp)+
dO aD

next;

4 fred

nl n2
move,

sp addq,

dO move,
) add,

+to

put the address of the integer's storage)
location in the aO register)
drop the current integer value from the
parameter stack)
put the increment value in the dO reg)
add the increment value to the current)
value of the integer)

addr is even simpler than to

code addr {
iv sp }

next;

n a
move, (

{
{
(

put the address of the integer's storage)
location in the top position on the param)
stack, write over the integer's current)
value)

- 99 -

System Integers

tForth and V777 system integers, integers which are used during
operation of tForth or the editor, are implemented and executed
in a completely different manner than integers created with the
use of integer .

The first difference between system integers and regular integers
is that system integers are not created with integer. System
integers are created with a special integer creation word which
is not available for use in the editing environment. A second
difference is that the values of system integers are located in a
special 'tiered' integer data table. The final difference is
that system integers have dictionary header entries for their
names but do not have any corresponding dictionary code areas.
The reasons for these differences are described below.

The System Integer Tier Table

The diagram on the following page shows how the system integer
tier table is arranged. The tiered integer table is very similar
to to the tiered tok ,'1 table. The system integer table has 9
tiers, numbered 0 through 8. Each tier is 256 (decimal) bytes in
size (each tier in the token table is 1024 bytes in size). 64
4-byte system integer values can be stored in each tier (64*4=256
bytes). The system integer table can hold a maximum of 576
(64*9=576) system integer values.

- 100 -

System Integer Table

Tiers:

+
$100

i
$200

i
$300

i
$400

i
$500

i
$600

i
$700

i
$800

i

tier 0 256 bytes per tier,
(1 BXX tokens) room for 64,4 byte

1-------1 system integer
tier 0 values per tier

(1 CXX tokens)

tier 0
(1 DXX tokens)

tier 0
(1 EXX tokens)

tier 0
(1 FXX tokens)

tier 0
(20XX tokens)

tier 0
(21 XX tokens)

tier 0
(22XX tokens)

:{\»tl~fg?:?\\ unused system
.:.{E8~t9~~fl§} integer entries

Close up of the start of system integer tier 0:

token 1 BOO entry
token 1 B04 entry
token 1 B08 entry
token 1 BOC entry
token 1 B1 0 entry
token 1814 entry
token 1 B18 entry
token 1B1C entry
token 1820 entry
token 1 B24 entry
token 1 B28 entry

value for 'here'
value for 'base'
.....
.....
....
.....
.....
....
.....
.....
.....

fooiIIIl._-- 4 bytes ----I~.,.

offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset

= $00
= $04
= $08
= $OC
= $10
= $14
= $18
= $1C
= $20
= $24
= $28

System Integer Token Assignments

The value of the system integer here is located in the very first
position in the system integer table. The value of the system
integer base is located in the second position in the system
integer table. The memory dump below shows how references to
system integers are compiled into colon definitions:

test2 a n here base

c' test2 10 dump
47940 4E D3 lB 00 lB 04 10 00 6B 81 00 07 36 85 64 6F N k ... 6.do

System integers are always compiled as a 2 byte token sequence
(even if the system integer is located in tier 0 of the system
integer table). here has been assigned the tokens 'lB' and
'00'. base has been assigned the tokens 'lB' and '04'. Token
values 'lB' through '22' hex are assigned to the lower level
system integer execution words intO through intS. The system
integer execution words perform functions which are analogous to
those performed by the tier words (tier! through tier9)
discussed in the tForth execution section. Here is the
definition of the system integer execution word intO :

code intO (n
.int 000 +

#n iv move,

ip

iv
aO

next;

) +

aO
)

iv .b

move,
sp -)

add the offset to system integer tier 0,)
which is zero, to the base address of the)
system integer table)
put the address of the start of system
integer tier 0 in the iv register)

move,
(get this system integer's offset into tier a)
(and add it to the address in the iv register)
(to determine the address of this system)
(integer's entry in the system integer table)
(put a copy of the iv in the aO register)

move, (fetch the system integer's data from its)
(entry in the system integer table)

intO uses a very simple equation to calculate the address of a
system integer's storage location in the system integer table.
The offset to tier 0 in the system integer table is added to the
base address of the system integer table (obtained by executing
the word .int , which is not available for use in the editor
environment). The offset to tierO is 0, the offset to tier 1 is
100 hex, the offset to tier 2 is 200 hex, etc. The system
integer's offset into a particular tier in the table is added to
the base address of its tier to calculate the exact address of
its table entry. When a reference to a system integer is
compiled the first byte ('lB' through '22') is the token for the
system integer execution word which corresponds to the integer's
tier and the second byte ('00' for here and '04' for base) is
the offset from the start of the tier to the integer's storage
location.

- 102 -

Execution of System Integers

The word execute contains special prOV1S1ons for the execution of
system integers. Here is the top half of the execute routine
listed previously:

code execute
sp)+ dO
\int 8 shl
#n dO .w

nc if,

then,

.int

#n dO

dO iv
iv aO
aO)
next,

n
move,

cmp,

\int 8

add,

move,
move,

sp -)

get the token from the stack)
form the value t1BOO' hex)
if the token value is greater than
or equal to 1BOO then the token)
belongs to a system integer)

shl (subtract 1BOO from the base
(address of the integer table)
(now add the token value to the)
(previous result to calculate the
(address of the integer's storage
(location)

move,
fetch the system integer's value
and place it on the parameter)
stack)

If execute is passed the token value for a system integer, it
performs the system integer functions immediately (place the
system integer value on the stack and place the address of the
system integer storage location in the iv register).

- 103 -

THE IMPLEMENTATION OF LOCAL VARIABLES

The word test3 below is a simple example word which demonstrates
the usage of tForth local variables. In test3 three local
variables, named 'one' , 'two' • and 'three' t are created and
then referenced. The dump of the code area for test3 will be
used as a reference during this discussion of the implementation
of local variables:

test3 r n2 n3
local one local two local three create 3 local variables
1 one to put a 1 in one)
2 two to put a 2 in two)
3 three to put a 3 in three

c' test3 20 dump
478DO 4E D3 14 OC 41 15 4F OA 02 16 4F OA 03 13 08 4F
478EO 11 OC 13 08 11 OC 00 00 00 3A 81 00 07 36 85 64

N ••• A.O ... O •••. 0
......... : ... 6.d

4ED3

14 OC
41 15 4F
OA 02 16 4F
OA 03 13 08 4F

11 OC

This is the machine code instruction compiled at
the start of all colon definitions.
Token for <locals> ,data for <locals>
Tokens for 1 (puts a '1' on the stack), <locO>
Tokens for blit data for blit <loc1>
Tokens for blit ,data for blit <local>
for <local> to
Token for <;lp> data for <;lp>

Execution of Words Which Contain Local Variables

This section will briefly discuss how words which contain local
variables are executed. test3 will be used as an example.

The declaration of the first local variable in a word causes the
token for the word <locals> to be compiled. The byte location
which immediately follows <locals> is used to hold data used by
<locals>. The listing below shows the run-time actions of
<locals> :

code

next,

<locals>
o #n dO
ip)+ dO

moveq,
.b move,

dO rp sub,

clear the dO register)
get the byte of data which
immediately follows <locals>)
create a local variable storage)
area on the return stack)

At execution time, <locals> is responsible for initializing the
storage area to be used by the local variables used in the
definition. The storage space for local variables is located on
the return stack. When <locals> is executed, it subtracts the
byte value which immediately follows it in memory, the byte value
indicates how much local variable storage is required by this
definition, from the current return stack pointer address (see
the diagram on the following page).

- 104 -

to
to
data

Local Variable Return Stack Usage

higher memory

lower memory

storage for
3rd local variable
created ("three")

offset = 8 -+ 1--____ --1

storage for
2nd local variable

created ("two")
offset = 4 ~ 1--____ ---1

storage for
1 st local variable
created ("one")

offset = 0 ~ "-____ ----' ~ new rp

r-2byleS ~

This repositioning of the return stack pointer creates a "hole"
in the return stack which will be used as the local variable
storage area while the definition executes. The contents of the
local variable storage area are not initialized to any value.
Since test3 uses 3 local variables, which each require 4 bytes of
storage, a 12 decimal byte storage location is set aside on the
return stack.

The next 3 tokens in test3 will place a '1' into the one local
variable. '41' is the token for the word l. 1 will put a '1'
on top of the parameter stack when executed. '15' is the token
for the local variable word (locO>. The run-time actions of
<locO> are:

code <locO) n
rp iv move,

rp sp -} move,

next;

put the address of the storage
location for the first local)
variable in the iv register)
put the contents of the first)
local variable on top of the)
param stack)

one was the first local variable declared in test3. The
storage location for the first local variable is always located
at an offset of 0 from the top of the return stack. Local
variables act like integers. When a local variable is executed,
its contents are placed on the parameter stack and the address of
its storage location is placed in the iv register. Because local
variables act like integers, the word to • whose token will be
executed next, will be able to store the value '1' into the local
variable's storage location. The diagram reflects the effects of
the execution of these three tokens.

The next line to be executed is '2 two to'. The corresponding
4 tokens to be executed are 'OA 02 16 4F'. 'OA' is the token for
blit. When blit is executed it will place the byte length data
which immediately follows it in memory (the '02') on the
parameter stack. '16' is the token for the local variable word
<lac!>. These are the run-time actions of <locl> :

code <locl> (n
rp 4)d aO lea, get the address of the second

storage location in the local
variable storage area)

aO sp -} move, put the contents of the 2nd)
storage location on the stack

aO iv move, put the address of the 2nd)
storage area in the iv register

next;

The second local variable decJ.>Lred in a definition is always
given storage at an offset of 4 bytes from the top of the return
stack. Aside from the use of a different offset, the actions of
<locl> are very similar to those of (locO>. The contents of the

- 106 -

second storage location are placed on the parameter stack and the
address of the second storage location is placed in the iv
register.

The next line of code to be executed is '3 three to'.
tokens for this line are 'OA 03 13 08 4F'. The fDA 03'
3 to be placed on the parameter stack during execution.
is the token for the local variable word <local> :

The
causes a
The '13'

code <local>
a #n
ip)+

rp iv

iv aO
aO)

next;

n
iv moveq,
iv .b move,

add,

move,
sp -} move,

clear the iv register)
put the byte of data which
immediately follows <local>
into the iv register)
calculate the address of this)
local variable's storage location
and leave it in the iv register)

put the contents of the local)
variable's storage location on)
the parameter stack)

The third local variable, and all subsequent local variables
declared in a definition, have the offset to their storage
location on the return stack compiled into the definition
immediately after the token for <local> 0 The storage location
for the three local variable is located at an offset of '8' from
the top of the return stack. The first two local variables
declared in a definition use special words (<locO> and <loc!»,
which take advantage of fast addressing modes, to access their
contents. The contents of all other local variables are accessed
using the more generic word <local> 0

The final two tokens in test3 , '11 OC', are used to clean up
after, and terminate execution of test3 '11' is the token
for <;lp> ,which is the special version of <;> compiled when
a word which contains local variables is being terminated:

code <;lp>
a #n
ip) +

dO rp
rp) +

rp) +

ct a1
a1)
aO sa
next;

(
dO moveq,

dO ob move,

add,
ct oW move,
aO .w move,
move,

sa move,
a xl)d ip lea,

- 107 -

find out how much local variable
space this definition used)
reclaim the return stack space }
take the return information off }
of the return stack and use it)
to restore the ip and sa registers
used during the previous)
execution level)

When a word which uses local variables is compiled, the last byte
in the word's code area will contain a byte value which indicates
how much local variable storage the word uses during execution.
<;lp> uses this data to reclaim the return stack space when the
word has completed execution.

Compilation of Words Which Contain Local Variables

local is the main word responsible for the creation of local
variables:

local }
locals 0= have any local variables been created }

yet? if not, perform these special local
variable initialization processes ...)

then
tokens
locals
word

applic OA localvoc to
emptyvoc OA + localvoc OA cmove
compile <locals>
here location to
o c, (compile a 'spacer' byte)

>r
tokens to

save tokens value away
put return stack offset into tokens
get name for this local variable)

localvoc addr str len assign (create header entry and)
(put offset in token field)

4 locals +to (increment offset)
r> tokens to immediate (restore tokens value

locals is the system integer used to keep track of how much local
variable storage space is required for the definition currently
being compiled (the colon definition defining word will
always set the contents of locals to zero at the start of
compilation of a new colon definition). When compilation of a
colon definition terminates, locals will hold a value which
specifies the complete local variable return stack storage
requirements of the definition. During compilation of a colon
definition, the value in locals is used to determine the return
stack offset for the local variable currently being declared.

When local is used to create a local variable, its first action
is to check the current value of locals. If locals contains a
zero, it means that local is being asked to create the first
local variable for a definition. The creation of the first local
variable for a definition requires that the special 'first-local'
initialization code, contained between the if and then in the
definition of local, must be executed. This special
'first-local' initialization code performs the following
functions:

1. Constructs an empty, temporary vocabulary, which is
invisible to the rest of the system, and places it
immediately below the current location of applic
(see the "Opening and Closing Vocabularies" diagram).

- 108 -

2. Stores the address of this special vocabulary in the
system integer localvoc

3. Compiles the token for the word <locals> into the
definition currently being created.

4. Compiles a byte length 'spacer' (with a value of 0)
into the definition. This spacer area will later be
used to hold a value which indicates how much
local variable storage is required by this definition.
The address of the spacer location is stored in the
system integer location

This initialization code is performed only when the first local
variable is created for a definition. The rest of the code in
the local definition performs the normal functions of local

1. assign is used to create a dictionary header entry
(str and len hold the address and length of the
name for the local variable) for the local variable
in the special local variable vocabulary.

2. The contents of the locals integer are incremented
by four to indicate that four more bytes of local
variable storage space are required for this definition.

The Words assign, tokens, and recycledtoken

Local variables do not have any associated code area because the
words <locO> <loci> and <local> are used to perform
the run-time actions of local variables. For this reason, the
token field in a local variables header field is not used in a
standard manner. Rather than holding an encoded token value, the
token field in a local variable dictionary header is used to hold
the offset to the local variablets storage location on the return
stack.

To use the token field in this non-standard manner, local must
perform some non-standard manipulations of the contents of the
tokens system integer. tokens holds the next token value
available for assignment to a new definition. The word assign
is used by local to create a dictionary header entry for the
local variable in the special, invisible dictionary header area.
To fill in the token field of the dictionary entry assign calls
recycledtoken recycledtoken must perform four tests before
it can decide which token value to return to assign

1. Is the system is undergoing target compilation?
If it is, recycledtoken will return the current value of
tokens to assign (the next token value available for
assignment) and then will increment the tokens value by one.

2. Is the value in tokens greater than the value in ramtokenO?
The system integer ramtokenO holds the token value of the
first word in the dictionary which is not a rom word. If the

- 109 -

value in tokens is greater than the ramtokenO value, the
system is attempting to add a new word to the dictionary.
Rather than immediately returning and telling assign to assign
the value in tokens to the new definition, recycledtoken
will first check all of the previously assigned ram token entries
(starting at the ramtokenO entry and continuing to on to the
last known assigned token table entry, the entry corresponding
to the token value which is one less than the value in tokens
to see if any of the entries have been freed up due to the
removal of a word from the system (if a token has been freed,
its corresponding token table entry will hold the code address
of the word freetoken). If a token in this region is available
for re-use, recycledtoken will return its value to assign
otherwise, it will go ahead and return the value in tokens

3. Are all available token table entries in the token table in use?
If the value in tokens corresponds to a token table entry
which would not fall within the known token table area, no
more tokens are available for assignment to new words, the
dictionary is full. recycledtoken should return a '0' if this
situation occurs (although it seems to return a '-1' in the
current listing).

4. Is the system trying to use the token field in a non standard
manner?
Tokens assigned to words in the roms cannot be purged or
reassigned. Therefore, if the current value in tokens is less
than the token value found in ramtokenO ,the system is
trying the dictionary header fields in some non-standard
manner (as is the case with local variable headers where the
token field in the header entry is used to hold the local
variable's execution time return stack offset). In this case,
recycledtoken will immediately return whatever value is
currently in tokens to assign

The listing for recycledtoken is shown on the following page.
The word i' ('integer-tick') is a target compiler word which
returns the storage address for the system integer whose name
immediately follows it. The word tc' ('tee-see-tick') is a
target compiler word which returns the code address for the word
whose name immediately follows it. endtable is the system
integer which holds the address of the end of the token table.

recycled token (token
i' tokens dl move, get current contents of tokens
it ramtokenO dO move, get value of ramtokenO)
tc' freetoken #n d3 move, get code address for freetoken
i' targeting tst, if targeting is on, return and)
1 ne bra, increment tokens)

- 110 -

dO dl
1 It

dO dl
1 #n

begin,

dl nt

cmp,
bra,

sub,
dO subq,

1 #n dO addq,
bp d2 move,
d2 .b clr,

dO d2 add,
d2 d2 .w add,

d2 d2 .w add,
d2 aO move,
aO) d3 cmp,

eq if,
dO sp -)
next,

then,

-until,

move,

i' end table dl move,

aO dl cmp,

It if,
-1 #n sp -) move,

else,
d3 aO move,

1 :1 it tokens #n aO move,
aO) sp -) move, (
1 #n aO) addi, (

then,
next;

tokens value - ramtokenO value
if tokens value is less than)
ram tokens value, return and)
increment tokens)
tokens value - ramtokenO value

look for a token to be recycled)
check all token table entries)
from the start of the token table
to the entry corresponding to)
token value in tokens)
is the execution address of)
freetoken in any of the token
table entries?)

aO holds token table entry addr)
does entry hold freetoken's code)
address?)
if so, recycled the token
by returning its value to assign

used recycled token)

check all token table entries
until the token table entry)
corresponding to the vallIe in
tokens is reached)

get the address of the end of
the token table)
has search reached the end of
the table?)

out of tokens, return O?)

put the address of freetoken
in this token's entry)

(return the value in tokens
new token)
increment tokens)

local takes advantage of the relationship between tokens and
assign Before local uses assign t it saves away the
current value of tokens and places the current value of
locals (which holds the return stack offset for the current
locill variable) into tokens The largest possible return
stack offset which would be stored into tokens would be 252
decimal because only 64 local variables are allowed per colon
definition. The current value of ramtokenO is approximately
939 decimal. Therefore, when assign is used by local ,it
does not assign a new token for the local variable. Instead,
assign places the offset found in tokens directly into the

- 111 -

token field. After local has used assign, the previous value of
tokens is restored.

At the end of compilation of the first line in test3 (the line
where all the local variable declarations are made) the test3
code area would look like this:

4ED3 14 00

4ED3 This is the machine code "jump to the nesting routine"
instruction which is compiled at the start of all colon
definitions.

14 This is the token for <locals>
00 This is a hole which will be filled in later with the value

which indicates how much local variable storage is used
by this definition.

The locals system integer would hold a 12 decimal at this point
because 3 local variables, which each require 4 bytes of storage,
were declared for this definition. The location integer would
hold the address of the spacer, and the localvoc integer would
hold the address of the temporary dictionary header area where
the special local variable headers are located. The token field
for one would hold a '0' since its storage location is located
at an offset of 'a' on the return stack. The token field for
two would hold a '4' because its storage area is second on the
return stack and the token field for three would hold an '08'.

The Word doloe

The remaining lines of test3 contain references to the newly
created local variables. As interpret 'processes' these
remaining lines (please refer the previous discussion on 'Running
tForth), it is constantly using the word doloc to see if the
word just encountered is the name of a local variable. Here is
the listing for doloc

code doloc
localvoc

if
loops

if

f
str len

+ ?dup

dup 4 =

if
drop
compile

else

<find> can this word be found in the
local variables vocabulary?)

if so, have any local variables)
or *loops* been used yet in this)
definition)

if they have, was this the second
local variable created in this }
definition?)

(if it is the second, compile a)
<loci> (special, fast local variable)

(reference)

compile <local> otherwise, compile the normal
local variable reference) c,

- 112 -

then
else

compile <locO>

then
drop 0

then

if this was the first local variable)
created for this definition compile)
a special, fast, local variable)
reference)

return a false flag to indicate)
that doloc handled this word)
so the word needs no further)
processing by interpret)

In the first line, doloc uses <find> to check the special
local variable vocabulary to see if the name specified by the
string address and length found in str and len is the name of
a local variable. This is the stack notation for <find>

<find> vocabaddr str len
vocabaddr str len

addr token trueflag I If found
addr falseflag I If not found.

The flag returned by <find> is checked first by doloc to see
if the word was the name of a local variable. If the word is the
name of a local variable doloc checks the token value, or for a
local variable, the return stack offset (the reasons for the
reference to the loops system integer will be explained in the
next section on the implementation of program control
structures). If the offset is 0, doloc 'knows' that the first
local variable declared is being referenced so it branches down
and compiles the token for <locO>. If the offset is 4, the
second local variable declared is being referenced so the token
for <locl> is compiled. If the offset is greater than 4, the
token for <local> ,and the byte length offset, are compiled.

Terminating the Compilation of a Word Which Contains Local
Variables

The word compiles the final two tokens in test3 , '11' and
'DC', and backfills the spacer left in test3

)
locals loops + ?dup if locals contains a nonzero)

value then this word uses local)
variables)

if
compile
c,

else
compile

<;lp>

<;>

if it does, compile the token for)
followed by the amount of return)
stack storage space required)

if this word doesn't use local)
variables compile the token for)
the normal colon definition)
termination word)

(continued)

- 113 -

then
state off return to the interpretation state)

locals
if

then

if this word used local variables

locals location c! (store the amount of storage
(space required in the spacer)
(location)

locals off immediate

- 114 -

IMPLEMENTATION OF PROGRAM CONTROL STRUCTURES

The lists below show all tForth words involved with program
control structures. The first list below shows all of the low
level program control primitives which define the run-time
actions of the program control words:

<Obran>
<leave>
<leavel>

<bran>
<Oleave>
<Oleavel>

<loop>
<branl>
<do>

< + loop>
<Obranl>

The next group of words are those which execute during
compilation and cause the words listed above to be compiled:

back
?pairs {loop} {while} nest
unnest if else then
do loop + loop begin
again until while leave

Execution of Program Control Structures

'begin ... until' loops

The memory dump below shows the code area for the definition
pcsl t which contains a simple 'begin ... until' loop control
structure:

pcsl
begin

until
?t

c ' pcsl 10 dump
478EA 4E D3 B3 18 FE 10 07 36 85 64 6F 7A 65 6E 07 31 N 6.dozen.l

4ED3
B3
18 FE
10

'jump to the nesting routine' machine code instruction
token for ?t
token for <Obran> data for <Obran>
token for <;>

Note that begin does not cause any tokens to be compiled. During
compilation, begin leaves its address on the stack so that the
until or again which will eventually follow can determine how far
back they must branch during execution. This delta backwards
jump distance is compiled into the definition immediately after
the token for the low level conditional branching primitive
<Obran> ('bracket-zero-bran'). The diagram on the following page
gives a pictorial representation of pes! .

- 115 -

A 'begin ... until' Loop

pcs1 (-) begin 7t until

4 E D 3 83 I 18 FE (-2) 10

4 E D 3 I ?t I <Obran> t ~ <;>

r- 6------1

Here is the listing for <Obran>

code <Obran> (f
sp)+ tst,
eq if,

ip dO .b move,
dO .w ext,
dO .1 ext,
dO ip add,

next,
then,
1 #n ip addq,

next;

test the flag on the stack)
if the flag is zero execute the
following instructions)
get the byte branch data)
extend it to word length)
extend it to long word length
add the delta distance to the
current instruction pointer)
address, execution will resume)
at the new address)
exit)

flag was true, leave the loop)
and continue execution at the)
token which immediately follows
the byte branch data)

<Obran> is a conditional branching primitive because it will only
cause a branch under certain conditions. During execution,
<Obran> checks the flag passed to it on the parameter stack. If
the flag is false (0), a program branch will occur. Branching in
high level tForth code involves modifying the instruction pointer
(ip) so that it points at a different section of code. <Obran>
uses the byte length data which immediately follows it in memory
to determine the destination point for the branch. To calculate
the destination address, the byte data is added to the address
currently in the ip register. Before the byte data is added to
the ip address, it is sign-extended to a long word.

If the flag passed to <Obran> is true (nonzero), a program branch
will not occur. The code between the if, and then, above,
the code responsible for performing the branch, is not executed.
Instead, the code which follows the then, is executed. This
code adds 1 to the instruction pointer so that the byte branch
data is skipped. When a true flag is passed to <Obran> ,the
instruction pointer will be left pointing to the token which
immediately follows the branch data.

During execution of pes! , <Obran> will check the flag left on
the stack by?t If the flag is true (nonzero), the jump back
to the beginning point will be skipped and execution will
continue immediately outside of the loop. If the flag is false
(0), the branch back to the start of the loop will be taken.

- 117 -

begin ... while ... again Loops

The definition pcs2 below contains a 'begin ... while ... again' loop:

pcs2 (n
begin

while

again
drop

dup 1- swap

dup .

begin. ••)
duplicate the number on top of
the stack, subtract 1 from the
duplicate, swap the values)
while the value is not zero ...)
duplicate it and display it)
back to the top ...)
drop the seed)

c' pcs2 10 dump
478FO 4E 03 20 3B 31 18 06 20 01 OC 17 F7 2F 10 6E 07 N.-;l .. - /.n.

4E03 'jump to the nesting routine t machine code instruction
20 3B 31 tokens for dup 1- swap
18 06 token for <Obran> data for <Obran>
20 01 OC tokens for dup
17 F7 token for <bran> data for <bran>
2F token for drop
10 token for <; >

When while is used in a begin loop it also causes the low level
word <Obran> to be compiled (see the diagram on the following
page). If the flag passed to <Obran> at execution time is
false (0), the branch out of the loop ('<Obran> deltal') will be
taken. If the <Obran> flag is true (nonzero), the code which
immediately follows rhe <Obran> data, the code between the
while and the agaL, ,will be executed.

The again causes a new unconditional branching primitive,
<bran> ('bracket-bran'), to be compiled:

code <bran>
ip)
dO .w
dO .1
dO ip

next;

(
dO .b
ext,
ext,
add,

)
move, get the byte delta branching data

extend to a word delta value)
extend to a long word delta value
add the delta offset to the)
instruction execution address to)
calculate the address at which)
execution should continue after)
the branch)

Execution of <bran> will always cause a branch in execution to
occur. The delta branch distance to be used for the branch is
located in byte in memory which immediately follows the <bran>
token. <bran> sign extends the byte value to a long word value
and adds the sign extended value to the instruction pointer
address to calculate the destination address for the branch.

- 118 -

A 'begin ... while ... again' Loop

pcs2 (-) begin dup 1 - swap while dup until drop

[{: 0 3 I 20 38 31 18 06 20 01 DC 17 I F7 (-9) I 2F 1 D

I _
4 E 0 3

l-------.6.1 .. I

~ ~~-----------------~2--------------------l

if ... else ... then Conditonal Structures

The word pes3 uses the 'if ... else ... then' program control
structure:

pcs3 f
if if the flag is true ...

3 ... display a 3)
else otherwise ...)

5 display a 5)
then and always display a 7)

c' pcs3 10 dump
478FE 4E D3 18 07 OA 03 01 OC 17 05 OA 05 01 OC 10 07 N •••••••••••••••

4ED3
18 07
OA 03
01 OC
17 05
OA 05
01 OC
10

'jump to the nesting routine' machine code instruction
token for <Obran> ,data for <Obran>
token for blit ,data for blit
token for
token for <bran>
token for blit
token for

token for <;>

data for <bran>
data for blit

The diagram on the following page demonstrates how the
'if ... else ... then' structure works. The'if ... else ... then'
structure uses the familiar <Obran> and <bran> branching
primitives. if causes a conditional forward branch to be
compiled. If the flag passed into pes3 is true (nonzero), the
first branch shown in the diagram will not be taken and the code
between the if and the else will be executed. else causes
the unconditional <bran> instruction to be compiled. The
<bran> instruction terminates execution of the code between the
if and the else and unconditionally reroutes program execution
to the code which follows the then

If the flag passed into pes3 is false (0), the first branch in
the diagram will be taken and program execution will be rerouted
to the code which immediately follows the '<bran> delta2' tokens
compiled by else .

- 120 -

An 'if ... e/se ... then' Loop

pcs2 (-) if 3 else 5 then

4 E 0 3 I 18 =r- O]-r OA I---o3~I 01 OC 17 05 OA 05 I 01 OC-
m I -10

4 E 0 3

t----t--- ~ 2 ~

1------------A 1 .1

do ... loop and do ... +loop Control Structures

The pcs4 definition below uses the 'do ... loop' program control
structure:

pcs4 10 0 do i drop loop

c' pcs4 10 dump
4790E 4E D3 OA 10 40 OD 39 2F OE 10 7A 65 6E 07 31 84 N ... @.9/ .. zen.l.

4ED3
OA 10
40
OD
39 2F
OE
10

'jump to the nesting routine' machine code instruction
token for blit ,data for blit
token for 0
token for <do>
tokens for
token for
token for

i
<loop>
<;>

drop

The 'do ... loop' structure does not required the compilation of
branching data. The branching data used by a 'do ... loop' is
passed on the stack at execution time. This is the code
definition for <do> ('bracket-do'):

code <do> nl n2
ip rp -) move, save branching data, the address of the)

start of the 'do ... loop , , on the ret. stack
sp)+ dO move, get the start value for the loop)
sp)+ dl move, get the limit value for the loop)
dl rp -) move, move the limit value to the return stack)
dl dO sub, calculate the number of times the loop

should be executed: start - limit , a
negative value)

dO rp -) move, move the loop count to the return stack
next;

During execution, the <do> program control primitive takes two
numbers from the parameter stack, the loop limit and start value,
and places three items on the return stack, the start loop
address, the loop limit value, and the negative loop count. The
values on the return stack are used by the corresponding <loop>
('bracket-loop') or <+loop> ('bracket-pIus-loop'). The listing
for <loop> is

code <loop>

)
)

1 #n rp addi, Increment the negative loop count by 1)
eq if,

6 #n
6 #n
next,

then,

rp addq,
rp addq,

get rid of the 12 bytes of loop)
info on the return stack)

rp 8)d ip move, fetch the address of tl start)
of the 'do ... loop' out of the)
return stack frame and place)
the address in the ip register)

next;

- 122 -

<loop>'s first action is to subtract one from the number on top
of the return stack, the loop count. If the loop count has
reached zero, the code between the if, and the then, ,which
is responsible for removing the 12 bytes of data placed on the
return stack by <do> from the return stack, is executed. If
the loop count has not reached zero the code which follows the
then, ,which gets the address left on the return stack by
<do> and places it in the ip register, is executed. The address
left on the return stack by <do> is the address of the start of
the 'do ... loop'. Placing this address in the ip register causes
program execution to be rerouted back to the start of the
'do ... loop'. A picture of the pcs4 execution time return stack
frame and code area are shown on the following page.

- 123 -

~ ~

m m

0 0

c..u c..u

"C
(')
UJ
~

.-

---...
0

0

a.
0

c. ...
o

"'C

o
o

"'C

):.

a:
0 · · ·
0
-g

Using while in do ... loops

The word while can be used in either the begin looping structure
or in the do looping structure. When while was used in a begin
loop above, it caused the (Obran> conditional branching primitive
to be compiled. Since a conditional exit from a 'do ... loop' is
more involved than a conditional exit from a begin loop (the
return stack must be cleaned up when exiting a 'do ... loop', see
the listing for <loop>), while will compile a different
conditional branching primitive when used inside of a
'do ... loop'. pcs5 shows how while could be used in a 'do ... loop'
program control structure:

pcs5 (
10 0

while

loop

do
i 6 <

i .

go from 0 to 10)
is the current loop index less than 6?)
while it is less than 6 ...)
print the current loop index)

c' pcs5 20 dump
47918 4E D3 OA OA 40 OD 39 OA 06 74 26 05 39 01 OC OE
47928 10 66 72 65 64 07 32 83 6A 6F 65 07 2C 84 70 63

N ••• @ • 9 .. t& . 9 ...
. fred. 2 . joe. , . pc

4ED3 'jump to the nesting routine' machine code instruction
OA OA 40
OD

token for blit data for blit token for 0
token for
tokens for
token for
tokens for
token for
token for

<do>
39 OA 06 74
26 05

i blit data for blit
<Oleave> ,data for <Oleave>
i

token for

39 01 OC
OE <loop>
10 <;>

The word <Oleave> ('bracket-zero-leave') is compiled when a
conditional exit out of a 'do ... loop' structure is required.
<Oleave> ,like <Obran> and <bran> ,expects a byte of
branch data to immediately follow it in memory (see the diagram
on the following page). If the flag passed to <Oleave> is true
(nonzero), this byte of data will be skipped over (see the last
line in the <Oleave> code definition below) and the code which
immediately follows the branch data will be executed (the code
between the while and the loop in the pcs5 example). If
the flag passed to <Oleave> is false (0), the code between the
if, and the then, below will be executed. This code adds the
byte branch data to the instruction pointer, to calculate the
branch destination address, and then removes the 12 bytes of
looping information from the return stack. In the pcs5
example, the branch destination is the code which lies just
outside of the 'do ... loop' control structure.

- 125 -

<

A do ... while ... loop structure

: pcs5 10 o do 6 < while loop

4ED3

4ED3 01 oc

.6.1 ...

code <Oleave> (f)
sp)+ dO move, (get flag from the parameter stack)
eq if,

ip dO
(

.b
if the flag is false, a branch will occur

move (get the byte length branch
(offset from the next byte)
(location in memory)

dO ip tdd, (calculate the destination address
(for the branch)

next;

then,

6 #n rp
6 #n rp
next,

1 #n ip addq,

add, (remove 12 bytes of information
add, (from the return stack)

('bump' the ip pointer)

leave'ing From Program Control Structures

The word leave is used to exit immediately and unconditionally
from the current 'begin' or 'do .•. loop' program control
structure. When leave is used inside of a begin loop it compiles
the unconditional branching primitive <bran>. When leave is
used inside of a 'do ... loop' however, it must use the special
<leave> unconditional branching primitive:

pcs6
10

(
o do

i 7
if

then
leave

perform this loop ten times)
does the loop index equal 7?)

if it does, leave this loop

loop if it doesn't, loop back to the top of)
the loop)

c' pcs6 20 dump
4792A 4E D3 OA 10 40 OD 39 OA 07 70 18 03 25 02 OE 10 N ... @.9 .. p .. % ...

4ED3 t jump to the nesting routine' machine code instruction
OA 10 40 token for blit , data for blit , token for 0
OD token for <do>
39 OA 07 70 tokens for i and blit data for blit , token
18 03 token for <Obran> , data for <Obran>
25 02 token for <leave> , data for <leave>
OE token for <loop>
10 token for <;>

Here is the listing for <leave>

code <leave>
0 #n
ip)
dO ip

6 #n
6 #n

next;

(
dO moveq,
dO .b move,

add,

rp addq,
rp addq,

get the branch data)
calculate the branch destination
address)
remove the 12 bytes of)
'do ... loop' data from the stack)

- 127 -

for =

<leave> points the instruction pointer at the first instruction
outside of the 'do ... loop' and clears the 12 bytes of 'do ... loop'
data from the return stack.

The diagram on the following page illustrates the execution
process for pcs6. If the flag passed to <Obran> is false (0),
the <Obran> branch will occur and the instruction pointer will be
routed past the <leave> token to the (loop> token. If the flag
passed to <Obran) is true (nonzero), the <Obran> branch will be
skipped over and the <leave> branch will occur. Execution of the
<leave> token will cause the instruction pointer to be altered to
point at the <;> token, which is the first token outside of the
current 'do ... loop'.

- 128 -

A Note About Long Branches

In the examples above, the compiled branch data used by the
branching primitives words was 1 byte in length. This means that
these primitives may only be used to branch to locations that are
within 256 bytes of the start location for the branch. <branl>

<Obranl> <leavel> t and <Oleavel> are versions of the
branching primitives described above which support the use of
longer branch distances. Each of these 'long' versions of the
branching primitives will be followed in memory by 2 bytes of
branching data. Therefore, the long forms of the branching
primitives support branches to locations which are up to 32K
bytes away from the branch start address.

The listing for the <Obranl> primitive should adequately
demonstrate the functioning of all of the long branching
primitives:

code <Obranl> (f
sp) + dO move,
ne if,

2 #n ip
next,

then,
ip)+ dO .b
8 #n dO .w

ip dO .b

dO .1 ext,

dO ip add,
next;

addq,

move,
lsI,

move,

get the flag from the stack
if the flag is false ...)
... skip over the 2 byte)
branch data)

if the flag is true get the 1st
byte of the branch data and)
shift it into the 2nd byte of
the dO register)
get the second byte of the
branch data and put it in the
least significant byte of dO,)
now the 2 bytes of branch data)
are in the lower 2 bytes of the)
dO register)
extend the branch dat~' to a
long word)
add the branch data to the)
instruction pointer)

The main difference between the short and long versions of the
branching primitives is that the long versions work with two byte
branching data and the short versions work with one byte
branching data.

Interactive Execution of Program Control Structures

When a program control structure, or a set of nested program
control structures, is executed interactively (when it is used
outside of a colon definition) execution will commence as soon as
the outermost program control structure is closed. For example,
the interactive execution of a single level 'do ... loop' would
begin as soon as the closing loop is entered. Interactive
execution of a 'do ... loop' nested within an 'if ... else ... then'
program control structure would begin as soon as the then which
closes the outer 'if ... then' structure is entered.

- 130 -

A do ... if ... leave then ... loop

pcs6 1 0 o do 7 = I f leave then loop

4ED3

4 E 03 OA OA I 40 00 39 I OA 07 70 1 8 I 03 I 25 02 OE -, 10

During the interactive use of program control structures, the
system goes into a 'temporary compilation' state. Code is
compiled in the code area of the dictionary until the outermost
control structure is closed. As soon as the outermost control
structure is closed, the temporary code is moved from the
dictionary to an interactive program control structure execution
buffer and executed. The address of the interactive execution
buffer is kept in the system integer execbuf

tForth uses two system integers to determine if program control
structures are being used interactively, nesting and state
nesting is used to hold a count of how many program control
structures have been nested inside of the outermost structure.
Each time a word which starts a program control structure (if

do begin) is used, the contents of the nesting system
integer are incremented by one. Each time a word which ends a
program control structure (then loop +loop again ,
until) is used, the contents of the nesting system integer are
decremented by one. If program control structures are used
correctly, nesting should always hold a zero when the outermost
structure is closed.

state is used to keep track of whether the system is in the
interpretation or compiling state. If state holds a zero, the
system is in the interpretation state. Whenever the nesting
integer holds a nonzero value while the state integer holds a
zero, the system is performing the temporary compilation required
for the interactive execution of program control structures.

nest

As the definition of nest shows, execution of nest will
always cause the nesting contents to be incremented by one.
If nest is used when both the nesting and state integers
hold a zero, it means that temporary compilation of a program
control structure has just started. In this situation, nest
will save the address of the start of the temporary compiled code
in the bound system integer and then will compile the 2 byte
machine code instruction which tells the system to 'jump to the
nesting routine' (during program execution) at the start of the
temporary code (please do not confuse the nesting system
integer used by the program control structures with the nesting
routine used during the execution of token threaded code).

- 131 -

nest (
nesting state or 0=

if

here bound to

4ED3 Wt

then
1 nesting +to

unnest

check the values of nesting
and state)
if both nesting and state are
0, we are starting the compilation
of a control structure which is to
be executed interactively)
save away the address of the)
start of the interactive code)
lay down a 'jump to the nesting
routine' instruction at the start
of the interactive code)

always increment the contents of
the nesting system integer)

unnest is the complement of the word nest

unnest
local oldhere
local size
-1 nesting +to
nesting state or
if

(decrement the nesting value)
0=

{ if the contents of nesting have
(been reduced to zero and the)

then

(system is in the interpretation)
(state, it's time to execute the)
(temporary control structure code)

[compile] exit
bound oldhere to (get

(the
here oldhere size

oldhere execbuf size

oldhere here to

execbuf

size execbuf +to

goto

size negate execbuf
(
(

- 132 -

the address of the start of
temporary code)
to (determine the size

(of the temporary)
(code)

cmove { move the code to
(the execution)
(buffer)

move the here pointer back so
the temporary code will be)
overwritten in the dictionary)
get the address of the execution
buffer)
temporarily move the start of the }
execution buffer to the location)
just past the current temporary)
code)
execute the code at the execbuf
address, the temporary code)
+to (set the start address of)
the execution buffer back to its
original address)

unnest will always decrement the contents of the nesting system
integer. Then, if nesting has been reduced to zero and state
holds a zero, the code between the if and the then in
unnes t wiL:_ see to it that the temporary code is executed. Note
that after the code has been copied up to the execution buffer
the here pointer is moved back to the position it held before
the start of the temporary compilation process. This ensures
that the code area does not become cluttered with unused code.

goto is used by unnest to directly execute the code located
starting at the execution buffer address:

goto (
[I]

temp

a
temp

)
+table borrow temp's token table entry

put the address of the code to)
be executed in its token table }
field)
now execute temp

The code which temp points to must end with a next in order to
properly terminate execution.

Compilation of Program Control Structures

The if ... then Control Structure

Here is the definition of the word if

if a n
nest
compile <Obran>
here

o c,
2

immediate

add one to the nesting level)
compile the <Obran> token)
return the address where <Obran>'s
branch data should be located)
reserve a spot for <Obran>'s data)
2 means 'if ... then' structure)
immediate means if is executed)
at compile time)

if increments nesting , compiles the token for <Obran> , and
compiles a byte length zero spacer in the location where
<Obran>'s data will later be placed. if leaves the address of
the <Obran> data location and a 2 on the parameter stack during
compilation. The 2 indicates that the next piece of data on the
parameter stack belongs to an 'if ... then' control structure.

else is used to mark the end of the if code and the start of
the else code in an 'if ... else ... then' program control
structure. else has three compile time duties. First it must
verify that if was used previously. To perform this function
else searches through the parameters on the stack. If it
encounters a '4', which identifies while or leave data, it
moves both the identifier and the associated data over to the
return stack. As soon as else has removed all while or
leave data from the parameter stack it expects to find the '2'

- 133 -

which identifies if data. If else does not find the '2' 'if'
data identifier at this point, a program control structures pair
mismatch has occurred and the system will abort.

Once else has found the if identifier it can perform its
remaining two duties. First, else must compile an
unconditional branching primitive «bran» and a byte-length '0'
branch data spacer at the end of the if code. At execution
time, this unconditional branch will terminate execution of the
if code by routing execution past the else code to the code
which immediately follows the then (see the previous diagram
for pcs3). Next, else must calculate and backpatch the branch
data for if so that the if branch points to the start of the
else code. Because else did find the '2' on the stack, it
knows that the next address on the stack is the if data, the
address where the if branching data should be stored. else
uses back to calculate the distance between this data location
and the start of the else code and to insert the delta branch
distance into the <Obran> data spot:

back a
over calculate delta distance here

dup -80 7F inrange not make sure data is in the byte
range)

abort" use long branch"
swap c!

abort if delta is too large
store delta in correct spot

else's final actions are to leave the address of its branch data
location and a '2' 'if .. else .. then' control structure identifier
on the parameter stack, and then to transfer any data left on the
return stack back to the parameter stack. Here is the definition
of else :

else a
0 >r
begin

dup
while

>r
again

2 ?pairs

compile

back
here 1-

begin
r>

while
r>

again

n

4 =

>r

<bran> a

2

?dup

immediate

c,
(
(
(
(

put a marker on the return stack
move all the leave and while
data from the parameter stack)
to the return stack)

(was there an if which matches
(this else?)
{ compile an unconditional branch

and a byte length spacer }
backpatch the previous if data)
leave the address of the else)
data and the 'if ... then' identifier

move all of the leave and while
data back to the parameter stack)

- 134 -

then is a simpler version of else. then is only responsible for
checking for a previous if or else and backfilling the delta
branch data for the previous if or else. then will also use
back to take the data address left on the stack by if or else and
to calculate the delta branch distance. If an else was used
last, back will fill in the data for the <bran> token. If an if
was used last, back will fill in the data for the (Obran> token.
Since then closes the 'if ... then' and 'if ... else ... then'
program control structures, it uses unnest :

then a
0 >r
begin

dup
while

r>
again

2 ?pairs
back

begin
r>

while
r>

again
unnest

immediate

n

4 =

r>

?dup

put a marker on the return stack)

move all of the leave and while data
from the parameter stack to the return)
stack)

check for an 'if ... else ... then' pair match
backpatch the previous if or else)
branching data)

move all of the leave and while data)
back to the return stack)

we've just closed a program control)
structure so unnest ...)

The do ... loop Control Structure

Return Stack Usage

During the compilation of colon definitions, the system integer
loops is used to keep track of the 'do ... loop' return stack
usage for the definition. Whenever a 'do ... loop' is started, 12
decimal is added to the contents of loops (each 'do .. loop' uses
12 bytes of return stack space during execution: 4 for the
'do ... loop' start address, 4 for the limit value, and 4 for the
loop count value). Whenever a 'do ... loop' is terminated, 12
decimal is subtracted from the contents of loops •

The 'do ... loop' return stack usage is monitored because two other
words, doloc and exit are very return-stack-usage dependent.
doloc ,described previously, is the word responsible for
compiling references to local variables. Local variable storage
space is kept on the return stack and is located using an offset
from the current top of the return stack.

Although each local variable "tells" doloc what its storage
location offset into the return stack should be, doloc will
check the contents of loops to determine if the offset needs to
be adjusted to account for extra 'do ... loop' data which will be
on the return stack (see the listing for doloc in the technical
local variable discussion) at execution time.

- 135 -

exit is a word which may be used at any time to unconditionally
terminate execution of the current colon definition. If the
colon definition uses local variables or 'do ... loops', exit is
responsible for proper clean-up of the return stack so that the
return information required upon exit from the definition may be
accessed.

exit
locals loops +

?dup
if

does this word use the return)
stack? }

(if it does, compile a special form
compile <exitlp> (of exit which knows how to)

(clean up the return stack)
c,

else
compile <exit>

then immediate

do , loop t and + loop

(compile the number of return)
(stack bytes which are used by)
(this word)

otherwise, compile the normal }
exit)

The word do performs four compile time actions. First, since it
is a word which starts a new program control structure, it uses
the word nest Second, since it requires 12 decimal bytes of
return stack storage space, it increments the contents of loops
by 12. Next, it compiles the token for <do> Finally, it
places the contents of the nestype system integer on the
parameter stack, places the 'do ... loop' identifier, '3', on the
parameter stack, and places a '-1' in nestype

nestype is a system integer which holds a value which
distinquishes between 'do ... loops' (-1) and 'begin' loops (0).
Since 'do ... loops' and 'begin' loops perform many similar compile
time activities, tForth conserves code space by sharing compiling
words between the two control structures. Since the shared words
must still perform some loop-specific actions, the nestype
integer is used to indicate which type of loop is currently being
compiled.

loop and + loop

{loop} is used by all program control words which terminate
program control structures (loop +loop again until
). {loop} is passed two parameters, the structure identifier
value for the type of structure being compiled (3 for
'do ... loops' and 1 for 'begin' loops), and the token for the
control structure primitive compiled by the word which called
{loop} (loop compiles <loop> +loop compiles <+loop>
again compiles <bran> until compiles <Obran>). The
structure identifier value is stored in the system integer
tempO The token value is stored in the system integer temp1
(because the program control structures compiling words make

- 136 -

extensive use of the return stack they cannot use local
variables). The main actions of both loop and +loop are
performed by the shared compiling word {loop} as follows:

loop nl n2 n3
tempO to
templ to
o >r
begin

dup 4 =
while

n4
(get the token from the stack)
(get the identifier from the stack)
(put a marker on the return stack)

move all of the leave and while
data to the return stack)

again

swap
>r >r

swap the data during transfer so
that the identifier is on top of the
address)

or

temp1
tempO

tempO
temp1

if

then

?pairs
c,

['J <bran>
['] <Obran>

here c,

nestype to

begin

while

again

r>

here r@
r> c!

=
=

check for a pair mismatch)
compile the token for this type
of looping structure)

(again compiles a <bran>
(until compiles a <Obran>

is this an again or until?)
if it is, fill in the required)
branch data)

restore the previous nestype
value, left on the stack by either
do or begin)

is there any leave or while
data on the return stack?)
if there is, calculate and backfill
the leave or while branching)
data)

After {loop} moves all leave and while data to the parameter
stack it compares the structure identifier passed in on the
parameter stack to the structure identifier stored in tempO to
see if a pair mismatch has occurred. If all control structures
are matched up properly {loop} will compile the token held in
temp! and, if the token compiled was the token for <bran> or
<Obran> , the delta branch data will be calculated and compiled.
Next, the loop type is restored by storing the loop type value
left on the stack by a previous do or begin into nestype .

The final action of {loop} involves backfilling the delta
branch data information for all unresolved leave and while
tokens. Both leave and while compile branches to a location
just outside of the current program control structure. Since
this location cannot be determined until the program control
structure has been closed, {loop} f which is only called by
words which close program control structures, is used to perform
this function.

- 137 -

)
)

begin, again, until

begin is a much simpler version of do:

begin an)
nest (indicate that a new program control)

(structure is being compiled)
here 1 (leave the address of the start of the)

('begin' loop code and a 'begin' loop)
(identifier)

o nestype to (store the 'begin' loop type identifier
(into nestype)

immediate

begin calls nest t leaves the address of the start of the 'begin'
loop and a '1' to identify the 'begin' data, and sets nestype
to 'ot (identifies 'begin' type loops).

again and until are also very straightforward control structure
operators. again always takes an unconditional branch back to
the start of the loop:

again n a
1
['J <bran>

{loop}
unnest

immediate

)
(pass the 'begin' structure identifier ...)
(and the token for the primitive compiled)
(by again ...)
(... to {loop})
(this is the end of the structure so unnest)

again expects the 'begin' structure identifier and the address of
the start of the 'begin' loop to be somewhere on the parameter
stack when it is called. again will pass an additional 'begin'
structure identifier, '1', and the token for the unconditional
branching primitive <bran> to {loop} {loop} will compile
the <bran> token, and calculate and compile the delta distance
between the <bran> token and the start of the 'begin' loop.

The only difference between until and again is that until
causes a conditional branch to the start of the loop to be
compiled:

until n a
1
['J <Obran>
{loop}
unnest

while and leave

while and leave are used to conditionally or unconditionally exit
from the current loop control structure:

while ()
[,] <Obran> while compiles <Obran) if it is used)

- 138 -

['J <Oleave>

{while}
immediate

leave
['] <bran>

['J <leave>

{while}
immediate
{while} (n1 n2

nestype (
if (

swap (
then (
drop (
c, (
here 4 (

(
(

OCt (

(

inside of a 'begin' loop)
while compiles <Oleave> if it is used)
inside of a 'do' loop)
{while} makes the decision)

leave compiles <bran> if it is used)
inside of a 'begin' loop)
leave compiles <leave> if it is used)
inside of a 'do' loop)
{while} makes the decision)

is this a 'begin' loop or a 'do' loop?)
if its a 'do' loop, dispose of the second
token on the stack. the second token)
is the token to be used inside of 'begin'
loops)
compile the remaining token)
leave the address of the branching data)
for the compiled branching primitive and)
leave a while / leave data identifier)
compile a byte length spacer for the)
while or leave data)

If while or leave are used inside of a 'begin' loop either a
conditional or unconditional branch out of the loop will be
compiled. If while or leave are used inside of a 'do' loop a
conditional or unconditional branch out of the loop with return
stack clean up will be compiled. The word {loop}, described
above, is used to backfill the branching data for while and leave

Some Notes on Initial Program Control Structures

Any number of tForth control structures may be nested within a
program control structure. The program control structures
described only support branches up to 256 bytes in length (short
branches). They are currently being modified to support branches
which are up to 32K bytes in length (word branches). See below.

Program Control Structures Which Support Byte and Word Length
Branching

These 13 words are used to implement the new program control
structures:

if backelse

{while2}
{loop2}

{elsethen} else then

while
until

leave
again loop +loop

- 139 -

if ... else ... then Control Structure Words

Only the 'if ... else ... then' program control words can cause code
movement to occur. The word if will always leave a single byte
spacer for its associated data. If ~lse or then later
determine that the code between the if and the else ,or
between the if and the then take up more than 7F hex bytes,
the if data space will have to be expanded to word length. The
code between the if and else or between the else and then
will have to shifted one byte towards higher memory. if
temporarily stores the byte length hexadecimal code FF in its
data area during compilation. This code is used to inform else
and then that the data are belongs to an if.

The new version of if is very similar to the previous version.
The only difference is that the new version leaves a hex FF,
rather than a a, in its byte length data area.

else always leaves a 2-byte spacer for its associated data. else
temporarily stores the offset back to the if data in this 2-byte
space during compilation. If the offset back to the if data area
is short, the first byte in the else data area will be the
hexidecimal code FE and the second byte will be the byte length
offset. If the if offset is long, greater than 7F hex bytes, the
entire word offset is stored in the else data area. If else
determines that the offset back to the if data is greater than
hex 7F bytes, it will shift the code between the if and else by
one byte to make room for 2 bytes of if data, store the word
length delta branching distance in the enlarged if data area, and
will change the <Obran> instruction compiled by if to a <Obranl>
instruction.

If then is used after if , with no intermediate else , then
performs functions which are very similar to else. If the
distance between the if and the then is less than 7F hex bytes,
then will simply store the delta distance in the if data area.
If the distance is greater than 7F hex bytes, then will shift the
code between the if and the then up in memory by one byte, store
the word length delta branching distance in the if data area, and
will replace the <Obran> token with the token for <Obranl>.

If then is used after else it will first calculate the distance
between the start of the else data area and the then destination
point. If this distance is short, then will store the byte
length branching distance in the first byte of the two byte else
data area and then will move the code between the else and the
then down in memory by one byte to recover the second unused byte
of the else data area. Before performing this code movement,
then will snake back up to the if data area, using the offset
stored temporarily in the else data area, and reduce the if
branching distance by one byte (since the start of the else code
is to be moved down in memory by one byte). If the distance
between the else and then is long, then will store the word
length delta branching distance directly in the word length else
data area and will change the <bran> token to a <branl> token.

- 14a -

{elsethen}

Since else and then perform many similar functions, a common
lower level word {elsethen} has been defined to conserve program
space. {elsethen} performs three major actions. First, it
transfers all of the leave and while data to the return stack.
Next, it takes care of all if or else backpatching and code
movement. Finally, it takes the leave and while data off of the
return stack and adjusts the addresses as necessary. The
backpatching code will return a '+1' value if the code had to be
moved towards higher memory, a '-1' if the code had to be moved
towards lower memory, or a '0' if the code was not moved.
{elsethen} will use this value when it adjusts the leave and
while addresses. {elsethen} is passed a flag which tells it which
conditional word, else or then , is using it.

backelse

backelse is a word used by {elsethen} when backpatching else data
is required.

begin and do Loop Structures

The words begin , again , until , loop , and +loop have only been
modified so that they use the newer versions of the words
{while} and {loop}.

while and leave now always use a 2-byte branching distance.
until and again will use either a byte or 2 byte branching
distance.

Size Considerations

There are currently approximately 160 uses of while and 20 uses
of leave in the Cat code. Use of these new program control
structures will cause these words to use 3 bytes of code space
each rather than the 2 bytes of code space they each used
previously so the code space will increase by 180 bytes.

The code used to implement these new versions of the control
structures is 280 bytes larger than the older control structures
code.

Therefore, these modifications will cause the Cat program to take
up 480 more bytes of program space.

- 141 -

THE tFORTH 68000 ASSEMBLER

INTRODUCTION

This section of the manual will explain the syntax and usage of
the tForth 68000 assembler. The architecture, addressing modes,
and instruction set of the 68000 microprocessor will be discussed
briefly. For more detailed information on the 68000
microprocessor please refer to the Motorola Microprocessor
Reference Manual, 4th Edition.

Any differences between the standard Motorola-format 68000
assembler syntax, as presented in the examples in the Motorola
Microprocessor Reference Manual, hereafter referred to as the
M68000 manual, and the syntax required by the tForth assembler
will be noted in the text.

- 142 -

BRIEF OVERVIEW OF THE 68000 MICROPROCESSOR

Internally, the 68000 has 32-bit data and address paths.
Externally the 68000 has 16 data lines and 24 address lines. The
24 external address lines allow the 68000 microprocessor to
directly access 16 megabytes of address space.

Execution Environment

The 68000 executes in one of two 'modes': user mode and
supervisor mode. "Cat" code always executes in supervisor mode.
In user mode a program is only allowed to execute a subset of the
available 68000 program instructions. The prohibited
instructions are those which are usually used by systems level
software.

The diagram on the following page shows that eight 32-bit data
registers, eight 32-bit address registers, a 32-bit stack
pointer, a 32-bit program counter, and a 8-bit condition code
register are available during user mode program execution.

In supervisor mode the 32-bit supervisor stack pointer and the
16-bit status register (an extension of the 8-bit condition code
register) are also available.

Data Registers

Each data register supports data operands of 1, 8, 16, or 32
bits. Byte operands occupy the low order 8 bits, word operands
the low order 16 bits, and long word operands the entire 32
bits. The least significant bit is addressed as bit zero; the
most significant bit is addressed as bit 31. When a data
register is used as either a source or destination operand, only
the appropriate low order portion is changed; the remaining
high-order portion is neither used nor changed (i.e. if a data
register is used to hold a byte sized operand, only the lower 8
bits of the data register are affected by the operation).

Address Registers

All address registers and both stack pointers are 32 bits wide
and hold full 32 bit addresses. Address registers do not support
byte sized operands. Therefore, when an address register is used
as a source operand, either the low order word or the entire long
word operand is used depending upon the operation size. When an
address register is used as the destination operand, the entire
register is affected regardless of the operation size.

- 143 -

User
Programmer
Execution
Environment:

Supervisor
Programmer
Execution
Environment:

68000 Execution Environment

31 1615 87 0

DO

01

02

03

04

05

06

07

31 1615 87 0
...... ; I AD

~============================~ I A 1
~===========================

A2
~============*=============~
I> : A3

I .. : A4
~==============~============~ II AS
~====~======:=============~ I ~~;..;.;...;.;...~~:·_··:··.~ __ ~_~I A6

_1~::··:~~~~ __ ~,._·.~ _____ ~ __ ~~IA7

Data
Registers

Address
Registers

User Stack
Pointer (USP)

C C R Condition
Code Register

31 1615 87 0

[:~;~r~~.~~~::.:··:::::~::::::.::?::·:::~).J:::;~.:·~::::::.:~:~:~:.::.:::::.::.:j.:.~~'::~::'~~':::::::~.:::::·~:~::::;:·:·:·.::·::;::.:::::.;:::::::;::::!r::;::::;::!:.!~'::::;:::';:!:':::::.:::."::':::::::~::'::~:: i;:.i:::·~i:··~1 A 7 '

15 87 0

I~·::·:;;:;:;:·:::::::::::·::::···.:·:·"::;.::~:;::::;:·;::·.::~~:~j~~j~:j~iljjjEI:jjllll:ll:~!~jfjj:f:1 S R

Supervisor
Stack Pointer

Status
Register

THE 68000 INSTRUCTION SET

The 68000 instruction set allows the following eight types of
operations to be performed:

OPERATION INSTRUCTION (tFORTH ASSEMBLER)

Data Movement exg,
unlk,
moveq,
swap,

Integer Arithmetic add,
addq,
cmpa,
ext,
neg,
subi,
tas,

Logical and,
ori,
not,

Shift and Rotate asr,
lsI,
ror,

Bit Manipulation bchg,
btst,

Binary Coded Decimal abed,

Program Control bra,

System Control

jmp,
rtr,

rte,
trapv,

lea, link,
movem, movep,
move, pea,

addx, addi,
clr, cmp,
divs, divu,
muls, mulu,
negx, sub,
subq, subx,
tst,

andi, or,
eor, eori,

asl, lsr,
roxr, roxl,
ror,

bclr, bset,

sbcd, nbcd,

bsr, dbra,
jsr, rtd,
rts, set,

reset, stop,
chk, trap,

Note: The 68000 instruction names used in the tForth assembler
are very similar to those presented in the M68000 manual. The
only differences are that in the tForth assembler the instruction
names must be written in lowercase and must be immediately
followed by a comma.

- 145 -

USING THE tFORTH ASSEMBLER

tForth Assembler Syntax

The tForth assembler, unlike the Motorola assembler, uses a
postfix syntax. This means the operands precede the instructions,

sp)+ dO
<operands>

.1 move,
<instruction>

(or, more specifically)

sp) +

<source>
dO .1 move,

<destination> <instruction>

the register/data specifications precede the address mode
specification,

sp) +
<register/data specification> <address mode specification>

and the instruction size precedes the instruction:

.1
<size>

Code Definitions

move,
<instruction>

In most FORTH implementations, a FORTH definition is composed of
intermediate threading information (FORTH instructions) instead
of directly executable machine code instructions. The term 'code
definition' is used to refer to those definitions which consist
of machine code instructions.

The word code is used to create named tForth assembly
definitions. code (i) creates a name in the dictionary for <name>
(so that the code definition can be found in the future), (ii)
tells the system that all subsequent words should be compiled
rather than executed, (iii) and puts the assembler vocabulary
asm68 (the vocabulary which contains all of the assembler
instructions) first in the search order.

Here is an example of a tForth code definition:

code swap (n1 n2 n2 n1 I Swaps the top two stack items.
sp) + dO move, (take n2 off of the stack and put)

(it in the dO register)

)

sp) + d1 move, (take n1 off of the stack and put)
(it in the d1 register)

dO sp -) move, (put the contents of the dO
(register on the stack)

d1 sp -) move, (put the contents of the d1
(register on the stack)

next; (end this assembly routine)

- 146 -

The standard formats for a code definition are:

code <name> next;
code <name> next, next, next;

code <name> ;c
code (name> next, next, ;c

The word next; ('next-semi-colon') inserts an instruction into
the code definition which during execution will (i) help the
interpreter switch between the execution of machine language
instructions and the exection of FORTH instructions, (ii) check
the return stack to make sure it has not been corrupted, and
(iii) remove asm68 from the search order. next; and next,
('next-comma', described below) are used in code definitions that
are called from FORTH and return to FORTH when they terminate
execution.

The word next, is used when more than one exit from a code
definition is required. next, is similar to next; in that it
also inserts a 'return to FORTH' instruction into the code
definition being constructed. next, does not check the return
stack or remove the assembler vocabulary from the search order.

The word ;c ('semi-colon-c') is used in code definitions which
do not exit at the end or in code definitions which should not
return to FORTH after execution of the code definition terminates
(perhaps a code definition which is called from another code
definition instead of called from FORTH). ;c (i) checks the
return stack and (ii) removes the assembler vocabulary from the
search order. The word next: is defined:

next;
next,
;c

compile an 'exit to FORTH' instruction
check the stack and deactivate asm68

Creating Unnamed Assembly Code Fragments

The tForth assembler also includes provisions for the creation of
assembly language code fragments. A code fragment is an assembly
language routine which has no dictionary entry, and thus cannot
be referenced by name. A common format for the use of code
fragments is shown below:

frag (integername> to c;

frag puts the address where the first instruction in the code fragment
will be located on the stack. The sequence '(integername> to', although
not required, is usually used to save the address of the code fragment
away for future reference. c; is used to terminate a code fragment.

Note: A tForth code definition (a set of assembly language
instructions) must always be preceded by either code or .frag
and must always be followed by either next; or ;c

- 147 -

SPECIFYING ASSEMBLER OPERANDS

A complete assembler instruction consists of a 68000 assembly
instruction and the source and/or destination operand on which
the instruction will operate. A complete assembler source or
destination operand consists of a register or data specification
and an addressing mode specification.

Register Specification

The following symbols are used in source and destination operands
for register specification in both the tForth assembler and in
the M68000 manual:

SYMBOL

an
dn
rn
pc
sr
ccr
sp
usp
ssp

d8
d16
d32
xxxx
addr16
addr32

MEANING

Address register, 'n' specifies the register number
Data register, 'n' specifies the register number
Address or data register, 'n' specifies register #
Program counter
Status register
Condition code half of status register
Active stack pointer (user or supervisor)
User stack pointer
Supervisor stack pointer

8 bit displacement {-80 ... 7F hex}
16 bit displacement (-8000 ... 7FFF hex)
32 bit displacement (-8000000 ... 7FFFFFFF hex)
Number, size determined by instruction size.
16 bit address.
32 bit address.

SPECIAL NOTE: During execution, tForth uses certain 68000
registers for special purposes. For code readability, the
following registers have been assigned special symbols which are
recognized by the tForthassembler (the usage of these registers
is explained in more detail in, the compilation discussion
included in the technical reference section of this manual):

REGISTER SYMBOL CONTENTS
d7 bp Address of the base of the token table.
d6 iv Address of the value of the current integer.
d5 sa Zeroth nesting starting address.
d4 ct Address of the current token.
a7 sp Parameter stack pointer.
a6 rp Return stack pointer.
a5 ip Interpretation pointer.
a4 nx Next pointer.
a3 np Nest pointer.
a2 vp Pointer to the code for integer

- 148 -

1.
2.
3.
4.

5·

6.

7.

8.
9.
10.

11.

12.

In the swap code definition presented at the start of this
discussion the symbols 'dO' and 'dl' were used to specify data
register zero and data register one and the symbol 'sp' was used
to specify the stack pointer (the parameter stack pointer in
tForth) .

Address Modes

Address modes are used to specify the location of instruction
operands or data to the microprocessor. The 68000 supports 12
address modes. The table below lists each of the 12 address
modes and the Motorola and tForth assembler syntax used for each
address mode:

MOTOROLA SYNTAX

Dn
An
(An)
(An)+

- (An)

d16(An)

d8(An,Rn.W)
d8(An,Rn.L)
xxx.W
xxx.L

d16(PC)

d16(PC,Rn.W)
d16(PC,Rn.L)

#xxxx

Examples

tFORTH SYNTAX

dn
an
an)
an)+

an -)

an d16)d

an rn.w d8 xw)d
an rn.l d8 xl)d
addr16
addr32
d16 pc)d

rn.w d16 pc,xw)d
rn.l d16 pc,xl)d
xxxx #n

DESCRIPTION

Data register direct.
Address register direct.
Address register indirect.
Address register indirect
with postincrement.
Address register indirect
with predecrement.
Address register indirect
with displacement.
Address register indirect
with index.
Absolute short address.
Absolute long address.
Program counter with
displacement.
Program counter with index.

Immediate data.

Since the 68000 'move' instruction allows its source operand to
be specified with the use of any of the address modes listed
above, it is a good instruction to use when providing examples of
the usage of the address modes (the source operand is the
leftmost operand in the tForth assembler syntax):

Address mode #1: dO sp)+ .1 move,
Address mode #2: aO sp) + .1 move,
Address mode #3: aO) sp)+ .1 move,
Address mode #4: aO }+ sp }+ .1 move,
Address mode #5: aO -) sp }+ .1 move,
Address mode #6: aO 4)d sp)+ .1 move,
Address mode #7: aO d2 4 xW)d sp) + .1 move,
Address mode #8: 7ceO sp) + .1 move,
Address mode #9: 420000 sp)+ .1 move,
Address mode #10: 4eOO pc)d sp)+ .1 move,
Address mode #11: d4 7F8 pc,x1)d sp)+ .1 move,
Address mode #12: 400 #n sp }+ .1 move,

- 149 -

Address modes 1 and 2 are 'register direct addressing modes'.
These addressing modes are used when the operand is in either an
address or data register.

Address modes 3 through 7 are 'memory address modes'. These
address modes are used when the operand is located somewhere in
memory. These address modes are evaluated to produce the address
in memory where the operand is located.

Address modes 8 and 9 are used when the address of the operand is
specified explicitly to the instruction.

Address modes 10 and 11 are special versions of the 'memory
address modes'. Although they function similarly to address
modes 6 and 7, are put in a special class because it is
assumed that these:lddressing modes will be used to access
locations in the program code area rather than in the program
data area.

Address mode 12 is used when the operand is specified explicitly
to the instruction.

For more detailed information on how address modes are evaluated,
please refer to the 'Program/Data References' (section 2.7) of
the M68000 manual.

Address Mode Categories

Certain 68000 instructions can only use a subset of the available
addressing modes. On the individual instruction glossary pages
in the M68000 manual, the following classifications are used to
categorize the addressing modes which a particular instruction
may use:

1. DATA ADDRESSING ADDRESS MODES
If an effective address mode may be used to refer to
data operands, it is considered a data addressing
effective address mode.

dn an)
an)+ an -)
an d16)d an rn.w d8 xw)d
an rn.l d8 xl)d addr16
addr32 d16 pc)d
rn.w d16 pc,xw)d rn.l d16 pc,xl)d
xxxx #n

- 150 -

2. MEMORY ADDRESSING ADDRESS MODES

If an effective address mode may be used to refer to
memory operands, it is considered a memory addressing
effective address mode.

an) an)+
an -) an d16)d
an rn.w d8 xW)d an rn.l d8 xl)d
addr16 addr32
d16 pc)d rn.w d16 pc,xw)d
rn.l d16 pc,xl)d x.xxx #n

3. ALTERABLE ADDRESSING ADDRESS MODES
If an effective address mode may be used to refer to
alterable (writable) operands, it is considered an
alterable addressing effective address mode.

dn an
an) an) +

an -) an d16 }d
an rn.w d8 xw)d an rn.l d8 xl)d
addr16 addr32

4. CONTROL ADDRESSING ADDRESS MODES
If an effective address mode may be used to refer to
memory operands without an associated size, it is
considered a control addressing effective address mode.

an
an rn.w
addr16
d16 pc)d
rn.l d16

Operand Size

d8 xW)d

pc,l)d

an d16
an rn.l
addr32
rn.w d16

)d
d8 xl)d

pc,xw}d

The size of the operand to be used by a 68000 instruction can be
specified with the use of the assembler words.b .w, and
.1 .b means the source and destination operands are 1 byte
in size. .w means the source and destination operands are 2
bytes in size. .1 means the source and destination operands are
4 bytes in size. If no operation size is specified, the
assembler assumes the operands are 4 bytes in size.

HOW OPERAND SIZE AFFECTS REGISTER OPERATIONS

dO di .b move, Move the lowest order byte of
register dO to register di.)

dO di .w move, Move the lowest order word of
register dO to dl.)

dO dl .1 move, Move the entire 4 bytes in register dO
to register dl.)

dO di move, Same as I .1 move, I)

- 151 -

)

How QEerand Size Affects Memor~ QEerations

a1) dl .b move, (Move the byte of data located at
(address a1 into the lowest order
(byte of register dl.)

a1) dl . w move, { Move two bytes of data into register dl .
(The byte at address a1 goes into the)
(second lowest order byte in d1 and the)
(byte a address a1+1 goes into the lowest
(order byte of d1.)

a1) d1 .1 move, (Move the four bytes located in memory)
(starting at address a1 into the dl)
(register. The byte at al goes into the
(highest order byte of dl and the byte)
(at address a1+3 goes into the lowest)
(order byte of dl.)

- 152 -

STRUCTURED ASSEMBLY LANGUAGE PROGRAMMING SUPPORT

The tForth assembler allows special versions of the conditional
and indefinite looping high-level FORTH program control
structures to be included in assembly language code definitions.
The assembler versions of the program control structures make
decisions based on the microprocessor condition code state.

The Condition Code Register

The 'condition code register' (ccr), which is located in the
lower order byte of the status register (see diagram on the
following page), holds the condition code information. The 5
bits which represent the five possible condition codes (negative,
zero, overflow, carry, and extend) are also shown. Certain 68000
instructions modify the condition codes to reflect the outcome of
their operation. The condition codes can be combined, or used
individually, to perform the following conditional tests:

tFORTH CONDITION CODE SYMBOL CONDITIONAL TEST

tr always true
nt always not true or false
hi high
Is low or same
nc carry clear, no carry
cs carry set
ne not equal
eq equal
nv overflow clear, no overflow
vs overflow set
pI plus
mi minus
ge greater or equal
It less than
gt greater than
Ie less or equal

- 153 -

Status Register

System Byte .1-- User Byte

15 13 10 8 4 0

I T ~ S ~ 12111 110 ~ X I N I z I v I c I

Trace Mode J

Condition
Codes:

Supervisor
---~

State

Interrupt =========::L..J Mask

Extend _____________ ---1

Negative -----------------

Zero ----------------~

Overflow ------------------...-1
C~----------------------------

Using Conditional Test Structures in Assembly Language Words

The 'if ... else ... then' conditional program control structure has
the following format when used in code definitions:

cc if,
cc if,

then,
else then,

The 'cc' is used to denote a condition code symbol. The word @
which is used to fetch a four byte value from a memory

address, is a tForth code definition which uses the 'if, ... then,'
assembly language program control structure:

code @ (a
sp) aD
aD dO

1 #n dO

cs if,

aD) +

aD) +
aD) +
aD) +

next,
then,

aD sp

next;

n
move,

.w move,

.b lsr,

sp)
sp 1
sp 2
sp 3

.b
)d .b
)d • b
)d . b

move,

put address in the aD register)
move the lower word of the address
into the dO register)
shift the least significant bit out of
the dO register and into the condition
code 'carry' bit)
IF the bit was a '1', the address was)
odd so the long word must be fetched)
one byte at a time)

move, (if the condition was met)
move, (these instructions will be
move, (executed.)
move,
(intermediate exit to FORTH)
(if the condition was not met above)
(the next instruction will be executed
(move 4 bytes at once since data is on
(even byte address)
(check return stack, deactivate
(asm68 , and exit to FORTH)

All of the FORTH comparison operators also use the 'if, ... then,'
assembly language conditional program control structure. Here is
the code definition for the word max

code max (n1 n2 n3 Compare n1 to n2, return the greater.
sp) + dO move, get parameter 'n2')
sp) do cmp, subtract n2 - n1)
gt if, IF the condition codes indicate that

n2 is greater than nl, put n2 in }
the top stack position)

dO sp move,
then, otherwise, leave n1 on top of stack)

next; terminate code definition)

- 155 -

Using Indefinite Loop Structures in Assembly Language Words

The assembly language versions of the indefinite looping program
control words are used as follows:

begin, again,
begin, cc while, [leave,] again,

begin, [leave,] cc until,
begin, cc while, [leave,] cc until,

begin, [leave,] dn cc -until,
begin, cc while, [leave,] dn cc -until,

The words in square brackets ([]) denote optional program
control words which may be used. All of these constructs, except
for the 'begin, ... dn cc -until' construct, should be familiar.
-until, is a special assembly language program control word
which utilizes the 68000 'DBcc' (decrement and branch)
instruction. -until, takes two inputs, a data register
specification and a condition code specification. Each time
through the loop, if the condition is NOT met, the contents of
the specified data register will be decremented. A -until,
loop will continue until either the count in the data register
reaches -1, or until the condition is met.

The tForth word fill uses a -until, loop:

code fill (a n b
sp) + dO move,
sp)+ d1 .w move,
sp)+ d2 .w move,
sp)+ aO move,
0 .b bra,
begin,

begin,

dO aO)+
o :1

d2 nt
-until,

d1 nt
-until,

next;

.b move,

put fill char in the dO register }
put high word of count in dl register)
put low word of count in d2 register }
put address in aO register)
one-time branch down to the label '0'
perform outer loop until the upper)
word of the count is reduced to -1)
perform inner loop until the lower)
word of the count, in d2, is -1)

(create a label #0, discussed below

fill code definition demonstrates that assembly language program
control structures may be nested. fill used nested loops
because the 'DBcc' instruction can only work with a 16 bit count
value in the data register. The nested loops allow the user to
pass a 32 bit count value to fill Since the nt condition
code always evaluates to false, the -until, loop never
terminates due to the condition code. When the nt condition code
is used in an -until, loop, the loop will only terminate when
the count in the data register is reduced to -1.

- 156 -

Labels

Ten local labels are allowed within a single code definition.
Labels are defined using :1

o :1
3 :1
9 :1

Labels are defined in the code definition at the spot which the
label should mark. In the definition of fill above, a label
was placed inside of the inner 'begin, ... -until,' loop.

The number passed to :1 is used to identify the label. Label
numbers must be between 0 and 9. Three 68000 instructions may be
passed label numbers: bra, bsr" and cc bra,

2 :1 d3 clr, 2 bra, unconditional branch back to)
the clr, instruction located
label 2)

at

2 :1 d3 clr, 2 eq, bra, conditional branch back to the
clr, instruction, branch only
occurs if the condition is met

2 :1 d3 elr, 2 bsr, unconditional branch to a)
subroutine)

)

2 bra, 2 :1 d3 elr, forward and backward branching are)
allowed)

- 157 -

THE movem, INSTRUCTION

The 68000 movem, instruction is used to move multiple values to
and from registers at once. For example, to move several
registers onto the parameter stack:

(regs d4 d5 d6 d7 a3 a4 a5 a6 to) sp -) movem,

To restore the contents of the registers from the parameter stack:

(regs d4 d5 d6 d7 a3 a4 a5 a6 from) sp }+ movem,

- 158 -

tFORTH ASSEMBLER WORDS

These are the available tForth assembler words (all are located
in the asm68 vocabulary) :

#n (regs))+)d
-) -until, .b .1 .w
:1 ;e aO a1 a2
a3 a4 a5 a6 a7
abed, add, adda, addi, addq,
addx, again, and, andi, asl,
asr, behg, bclr, begin, bp,
bra, bset, bsr, btst, cer
ehk, clr, cmp, cmpa, cmpi,
cmpm, es ct dO d1
d2 d3 d4 d5 d6
d7 dbra, divs, divu, else,
ear, eori, eq exg, ext,
from) ge gt hi if,
ip iv jmp, jsr, Ie
lea leave, link, Is lsI,
lsr, It mi move, movem,
movep, moveq, muls, mulu, nbed,
ne ne neg, negx, next,
nap, not, np nt nv
nx or, ori, pe)d pe,xl)d
pe,xw)d pea, pI reset, rol,
ror, roxl, roxr, rp, rtd,
rte, rtr, rts, sa sbed,
set, sp, sr stop, sub,
suba, subi, subq, subx, swap,
tas, then, to) tr trap,
trapv, tst, unlk, until, usp
vp vs while, xl)d xw)d

- 159 -

GLOSSARY (tFORTH KERNEL WORDS ARRANGED BY FUNCTION)

ARITHMETIC OPERATORS

*

*/

*/mod

+

-1

/

/mod

o

1

(nl n2 n3
(t times')
Multiplies nl*n2 and leaves the 32-bit result on top of
the stack.

nl n2 n3 n4
('times-divide')
First, nl is multiplied by n2, leaving a 64-bit intermediate
result on the stack. The intermediate result is then divided
by n3, leaving the 32-bit quotient, n4, on the stack. The 64-bit
intermediate result allows this operation to respond with
greater precision than the equivalent sequence: nl n2 * n3 / .

nl n2 n3 n4 n5
('times-divide-mod')
First, nl is multiplied by n2, leaving a 64-bit intermediate
result on the stack (the intermediate result occupies two
stack positions). The intermediate result is then divided by
n3, leaving the 32-bit remainder, n4, and the 32-bit quotient, n5.
on the stack.

(n1 n2 n3
('plus')
Adds n1 plus n2 and leaves the 32-bit result on the stack.

nl n2 n3
('minus')
Subtracts nl minus n2 and leaves the 32-bit result on the stack.

-1
('minus-one t)

Puts the commonly used constant value '-1' on top of the
parameter stack.

(nl n2 n3
('divide')
Divides nl by n2 and leaves the 32-bit quotient on the stack.

(nl n2 - n3 n4
(t divide-mod')
Divides nl by n2 and leaves the 32-bit remainder, n3, and the
32-bit quotient, n4, on the stack.

o
(t zero')
Puts the commonly used constant '0' on top of the parameter
stack.

1
Puts the commonly used constant '1' on top of the parameter
stack.

- 160 -

1+

1-

2*

2+

2-

2/

abs

mod

negate

shl

shr

urn *

(nl n2
(, one-plus')
Adds one to the number on top of the stack.

(nl n2
('one-minus')
Subtracts one from the number on top of the stack.

(nl n2
('two-times')
Multiplies the number on top of the stack by two.

{nl n2
(, two-plus I)

Adds two to the number on top of the stack.

(nl n2
('two-minus')
Subtracts two from the number on top of the stack.

(nl n2
(, two-divide')
Divides the number on top of the stack by two.

(n lnl
('absolute')
Returns the absolute value of the number on top of the stack.

n1 n2 n3
nl is divided by n2 and the 32-bit remainder, n3, is left on
top of the stack.

n -n
Returns the two's complement of n, i.e. n is subtracted
from zero (O-n).

(n1 n2 n3
('shift-left')
Shifts the bits in 'nl' 'n2' bits to the left. Leaves the 32-bit
result, 'n3', on the parameter stack.

(nl n2 n3
('shift-right')
Shifts the bits in 'nl' 'n2' bits to the right. Leaves the 32-bit
result, 'n3', on top of the parameter stack.

(u1 u2 u3
(t u-m-times ')
Multiplies the unsigned values ul*u2 and returns the 32-bit
unsigned result, u3, on top of the stack.

- 161 -

urn/mod (ul u2 u3 u4
('u-m-divide-mod')
The 32-bit unsigned value ul is divided by the 32-bit unsigned
value u2. The 32-bit unsigned remainder, u3,and the 32-bit
unsigned quotient, u4, are left on top of the stack.

- 162 -

LOGIC OPERATORS

and

not

or

xor

nl n2 n3)
Performs a bit-by-bit logical and using nl and n2. returns the
32-bit result (n3) on the parameter stack. The FORTH code
definition for and is shown below:

code and (nl n2
sp)+ dO move.

dO sp and~

next;

nl n2

n3)
{ take the 32-bit value [n2] off
(the top of the parameter stack

- (and put in the dO register.)
(perform an and operation.)
(using the 32-bit value on top of)
(the stack [nl] and the value in)
(the dO register [n2]. replace)
(the value on top of the stack)
(with the result)
(return)

Takes the ones complement of the 32-bit value on top of the
parameter stack. Returns the 32-bit result on top of the
parameter stack. The FORTH code definition for not is
shown below:

code not
sp

next;

nl
not,

nl n2 n3)

n2
take the ones complement of)
the 32-bit value on top of the
parameter stack.)
return }

Performs a bit-by-bit logical or using nl and n2. Returns the
32-bit result (n3) on the parameter stack. The FORTH code
definition for or is shown below:

code or (nl n2 n3
sp)+ dO move.

dO sp or.

next;

nl n2 n3

)
(take the 32-bit value [n2J off
(the top of the parameter stack
(and put in the dO register.)
(perform an or operation.)
(using the 32-bit value on top of)
(the stack [nlJ and the value in)
(the dO register [n2J. replace)
(the value on top of the stack)
(with the result)
(return)

Performs a bit-by-bit logical xor using nl and n2. Returns the
32-bit result on the parameter stack. The FORTH code definition
for xor is shown below:

- 163 -

code xor nl n2 n3
sp)+ dO move,

dO sp ear,

next;

take the 32-bit value [n2] off
the top of the parameter stack
and put in the dO register.)
perform an exclusive or operation.
using the 32-bit value on top of)
the stack [n1] and the value in)
the dO register [n2]. replace)
the value on top of the stack }
with the result)
return }

- 164 -

COMPARISON OPERATORS

0<

0=

<

=

<

<>

inrange

max

min

u<

(n f)
('zero-less-than')
Returns a true (-1) flag if n is less than zero.

n f)
(, zero-equal')
Returns a true (-1) flag if n is equal to zero.

(nl n2 f
(, less-than')
Returns a true (-1) flag is nl is less than n2.

(nl n2 f
('equal')
Returns a true (-1) flag if nl is equal to n2.

(nl n2 f
('greater-than')
Returns a true (-1) flag if nl is greater than n2.

(nl n2 f
(t not-equal')
Returns a true (-1) flag if nl is not equal to n2.

nl n2 n3 f)
Returns a true (-1) flag if the value nl is greater than or
equal to the lower limit n2 and less than or equal to the upper
limit n3 (i.e. n2 < nl < n3).

nl n2 n3
Compares nl and n2 and returns the greater value.

nl n2 n3
Compares nl and n2 and returns the lesser value.

(ul u2 f
(t u-less- than')
Returns a true (-1) flag if the unsigned value ul is less than
the unsigned value u2.

- 165 -

STACK MANIPULATION OPERATORS

.S

2drop

2dup

>r

?dup

?stack

?stackerr

()
(' dot-s')
Prints a nondestructive display of the number of items on the
parameter stack:

3 5 4 .S 3 5 4 ok

nl n2
Discards the top two items on the parameter stack. The FORTH
code definition for 2drop is shown below:

code 2drop nl n2
8 #n sp addq, increment the parameter stack)

pointer by 8, i.e. skip over the
top two items on the stack and)
point at the previous item)

next;

nl n2 nl n2 nl n2
Duplicates the top two items on the parameter stack. Leaves
the duplicates on top of the parameter stack. The FORTH code
definition of 2dup is shown below:

code 2dup (nl n2 nl n2 nl n2
sp 4)d sp -) move, (put a copy of the second

(32-bit value on the stack
(on top of the stack)

sp 4)d sp -) move, (do the same thing again.
next;

(nl return stack: nl
('to-r')
Removes nl from the parameter stack and places it on the
return stack.

n n n) or 0 0
('question-dupe')
Duplicates the value on top of the stack if it is nonzero.

(f)
('question-stack')
Checks the status of the parameter stack. A false (0) flag
will be returned if the stack is ok. A -1 will be returned if
the stack is empty (if a stack underflow condition exists)
and a 1 will be returned if the stack is full.

('question-stack-error)
()
Uses ?stack to check for stack underflow or overflow. If one
of these conditions has occurred ?stackerr will issue an
appropriate error message and abort.

- 166 -

)

depth

drop

dup

i

over

r>

r@

rot

swab

n
Returns the number of items on the stack.

nl
Discards the top item from the stack. The FORTH code definition
for drop is shown below:

code drop
4 #n

next;

nl

nl
sp addq,

nl nl

increment the parameter stack pointer)
by four. i.e. skip over the top item on
the stack and point at the previous
item)

Duplicates the value on top of the parameter stack. Leaves the
copy on top of the stack. The FORTH code definition for dup
is shown be~ow:

code dup
sp)

next;

n

nl nl nl
sp -} move. move a copy of the 32-bit

value on top of the)
stack, onto the stack)
return)

Puts a copy of the top item on the return stack on top of the
parameter stack. During execution of a do ... loop, the top item
on the return stack is the index for the current loop.

nl n2 nl n2 n1)
Places a copy of the second item on the stack on top of the stack.

(n I return stack: n
('r-from')
Transfers the top item on the parameter stack to the top of
the return stack.

(n)
('r-fetch')
Puts a copy of the top item on the return stack on top of the
parameter stack. r@ performs the same function as i but r@
is normally used outside of 'o ... loops.

(nl n2 n3 n2 n3 nl
('rate')
Rotates the third item on the stack to the top of the stack.

nl n2
Exchanges the lower two bytes of the top value on the stack.
Example:

hex
12345678 swab

- 167 -

swap n1 n2 n2 n1
Exchanges the top two items on the parameter stack. The FORTH
code definition for swap is shown below:

code swap (n1 n2 n2 n1
sp)+ dO move. (take n2 off the stack)

(and place in the dO register
sp)+ d1 move, (take n1 off the stack)

(and place in the d1 register
dO sp -) move, (put n2 on the stack)
d1 sp -} move, - (put n1 on top of the stack)

next; (return)

- 168 -

INTEGER AND LOCAL V ARIABl ' ih'ORDS

+to

<locO>

<locl>

<local>

<locals>

addr

intO

(nl n2
('plus-to')
Format: n1 <integer or local variable name> +to
Adds nl to the current value of the integer or local variable
specified by name. +to discards the value of the integer or
local variable. n2. which was place on the stack when the
name of the integer or local variable was executed and
uses the address in the iv register (see the integer section
in the Technic~l Reference Manual for more information)
to find the location where the current value of the integer
or local variable is stored.

n)
('brae-lac-zero')
A special fast word used to access the first local variable
on the return stack. Moves a copy of the return stack pointer
into the iv register and then places a copy of the item on top
of the return stack, the contents of the first local variable,
on top of the parameter stack.

(n)
('brac-loc-one 1)

A special fast word used to access the second local variable
on the return stack. Moves a copy of the return stack pointer 4+
into the iv register and then places a copy of the second item
on the return stack, the contents of the second local variable,
on top of the parameter stack.

n
Generic word used to access the third, and all subsequent local
variables on the return stack. Uses the offset pointed to by
the ip register to index into the return stack to find the
contents of the desired local variable. Puts the address of
the local variable in the iv register and puts the value of
the local variable on top of the parameter stack.

First local variable word compiled into a tForth word which
uses local variables. Creates a storage area on the return
stack which the local variables will use to temporarily
hold their values.

(n a
(' adder')
Format: <name of integer> addr
Returns the address of the storage location for the integer
specified by name.

n
Runtime code for integers located in integer tier O. Puts the
address of the integer's storage location in the iv register and
places the current value of the integer on top of the parameter
stack.

- 169 -

inti

int2

int3

int4

int5

int6

local

off

on

to

n
Runtime code for integers located in integer tier 1. See intO.

n
Runtime code for integers located in integer tier 2. See intO.

n
Runtime code for integers located in integer tier 3. See intO.

n
Runtime code for integers located in integer tier 4. See intO.

n
Runtime code for integers located in integer tier 5. See intO.

n
Runtime code for integers located in integer tier 6. See intO.

Format: local <name for local variable)
Creates a named local variable. The local variable is not
initialized to any value. Executing the name of the local
variable will place the value of the local variable on top
of the parameter stack.

n
Format: <name of local variable or integer) off
Sets the value of the local variable or integer specified by
name to zero. The value of the integer or local variable
placed on the parameter stack when the local variable or
integer name was executed is discarded.

n
Format: <name of local variable or integer) on
Sets the value of the local variable or integer specified by
name to negative one. The value of the integer or local variable
placed on the parameter stack when the local variable or
integer name was executed is discarded.

nl n2
Format: nl <name of local variable or integer) to
Replaces the current value of the integer or local variable
specified by name with the 32-bit value nl. The value placed
on the stack when the local variable or integer name was
executed is discarded.

- 170 -

MEMORY OPERATORS

+1

-?&set

O?&set

@

and!

c!

c@

(n a
('store')
Stores the 32-bit value n into memory starting at address a.

(n a)
('plus-s tore I)

Adds the 32-bit value n to the 32-bit value located in memory
starting at address a. The 32-bit value located in the memory
location is replaced with the 32-bit addition result.

(a f)
('minus-test-and-set')
Sets the sign bit on the byte located in memory starting at
address a. This makes the byte a negative value. If the byte
was already d negative value before -?&set , a true (-1) flag
is returned. If the byte was a positive value, a false (0) flag
is returned. The 68000 'TAS'. 'test and set', instruction is
used to implement this function. The 'TAS' instruction is special
because it was designed such that the microprocessor cannot
interrupt it between the testing and setting parts of its operation.

(a f)
('zero-test-and-set')
Clears the sign bit on the byte located in memory starting at
address a. This makes the byte a positive value. If the byte
was already a positive value before O?&set , a true (-1) flag
is returned. If the byte was a negative value, a false (0) flag
is returned. The 68000 'TAS' instruction is used to implement
this function (see -?&set).

(a n
('fetch t)

Places a copy of the 32-bit value located in memory starting
at address a on top of the parameter stack.

(b a
(, and-store')
Performs a bit-by-bit logical AND operation using b and the
byte located in memory starting at address a. The byte length
result is stored into memory at address a.

(b a
(t c-store')
The least significant 8 bits of the 32-bit value, b, on the
parameter stack are stored into to memory starting at address a.

(a b
(, c-fetch')
Places the 8-bit value located in memory starting at address a
in the least significant byte of a 32-bit value on top of the
parameter stack. The upper three bytes (24 bits) are set to zero.

- 171 -

cmove

dump

fill

move

not!

or!

tip

w!

w@

Kor!

(a1 a2 u
(I c-move ')
Moves the u bytes located starting at the source address a1
to the memory location starting at destination address a2.
The general format is: 'source address' 'destination address'
'number of bytes to move' cmove.

addr len

a u b
Replaces the u bytes located in memory starting at address a
with the byte value b. The general format is! 'start address'
'count' 'fill character' fill.

a1 a2 u
Special version of cmove.

(a)
(I not-s tore')
Takes the one's complement of the 8 bits of data located in
memory starting at address a. The byte length result is stored
into memory at address a.

(b a)
('or-store')
Performs a bit-by-bit logical OR operation using b and the
byte located in memory starting at address a. The byte length
result is stored into memory at address a.

a
Performs a byte write operation to the specified address.
Used for toggling soft switches.

(w a)
(I word-s tore')
The least significant 16 bits of the 32-bit value, b, on the
parameter stack are stored into to memory starting at address a.

(a w)
('word-fetch')
Places the 16-bit value located in memory starting at address a
in the least significant word of a 32-bit value on top of the
parameter stack. The upper 2 bytes (16 bits) are set to zero.

b a)
('exclusive-or-store')
Performs a bit-by-bit logical XOR operation using b and the
byte located in memory starting at address a. The byte length
result is stored into memory at address a.

- 172 -

PROGRAM CONTROL STRUCTURES

+loop

<+loop>

<Obran>

<Obranl>

<Oleave>

<Oleavel>

Compiling: (
(' plus-loop')
Executing: (n
Format: do n +loop
Program control structure used to implement definite loops.
During execution, +loop adds 'n' to the current loop index.

(n)
('brae-pIus-loop')
Run-time code for +loop. Adds the decrement value 'n' to
the current loop count and then decides whether the loop
should be continued or terminated.

f
('brac-zero-bran')
Run-time conditional branching primitive. A branch will occur
if the flag passed to <Obran> is false (zero). Can only
handle short (-81<n<80 hex) branching distances. Used by
while, until, and if.

(f)
('brac-zero-bran-long')
Run-time conditional branching primitive. A branch will occur
if the flag passed to <Obranl> is false (O). Can be used for
short and word (-8001<n<8000 hex) branching distances. Used by
while, until, and if.

f }
('brac-zero-Ieave')
Run-time code used to conditionally leave from a 'do ... loop'
or 'do ... +loop' program control structure. The branch out of
the program control structure will occur if the flag passed to
<Oleave> is false (O). Can only be used to branch forward
short distances (n<80 hex). Currently, all leave and while
branches use the long version of <Oleave>. Also cleans up
the return stack by reclaiming all of the return stack space
used by the loop. Used to by used by while.

(f)
('brac-zero-leave-long')
Run-time code used to conditionally leave from a 'do ... loop'
or 'do ... +loop' program control structure. The branch out of
the program control structure will occur if the flag passed to
<Oleavel> is false (O). Can be used to branch forward word
length distances (-8001<n<8000 hex). Also cleans up the
return stack by reclaiming all of the return stack space used
by the loop. Used by while.

- 173 -

<abort tt >

<bran>

<branl>

<do>

<leave>

<loop>

<quit>

(fan)
('brac-abort-quote')
Run-time code used by abort". Expects to be passed the
address 'a' and length 'n' of an error message string and a
flag 'f' indicating whether or not the message should be
displayed in the explain screen.

()
('brac-bran')
Run-time unconditional branching primitive. Always causes
a branch to occur. Can only handle short (-81<n<80 hex)
branching distances. Used by again and else.

()
('brac-bran-long')
Run-time unconditional branching primitive. Always causes
a branch to occur. Can handle short <-81<n<80 hex) and
word (-8001<n<8000) length branching distances. Used by
leave and else.

(n1 n2
('brae-do')
Run-time code for do. Expects to be passed a loop index,
n2, and limit, nl, on the parameter stack. Takes both values
off of the parameter stack and then pushes first the limit onto
the return stack and then the count (limit-index).

()
('brae-leave')
Run-time code used to unconditionally leave from a 'do ... loop'
or 'do ... +loop' program control structure. Can only be used to
branch forward short distances (n<80 hex). Currently, all
leave and while branches use the long version of <leave>.
Also cleans up the return stack by reclaiming all of the return
stack space used by the loop. Used by leave.

()
('brae-loop')
Run-time code for loop. Subtracts one from the value on
top of the return stack (the count value for a 'do ... loop') and
then checks to see if the count has reached zero. If the
count has reached zero, <loop> removes the limit and count
from the return stack and terminates the loop by allowing
program execution to continue on the the code which follows
the 'do ... loop'. If the count has not reached zero, ttjumps"
back to the code which immediately follows the do.

()
('brae-qui t t)

Low-level word used by quit.

- 174 -

again

abort It

begin

do

else

execute

exit

Format: begin ... again
Used to implement endless loops. All code between the begin
and again will be executed endlessly (leave, while, and
exit can be used to terminate 'begin ... again' endless loops).

(f)
(t abort-quote t)
Format: f abort" ccc"
If the flag passed to abort" is true (nonzero), a forced
system abort process will occur. A beep will be issued, the
message between the quotes will be displayed on the explain
screen, the parameter stack will be cleared, and quit will be
executed (to start FORTH running again). abort" must be
used within a colon definition.

Format: begin again
begin until
Used to mark the start of an endless or indefinite program loop.

Compiling:
Executing: nl n2
Format: nl n2 do loop
nl n2 do n3 +loop
Marks the start of a definite program loop. During execution,
do takes the index tn2' (start count) and limit 'nl' (end count)
for the loop from the parameter stack and transfers the limit
and the loop count (limit-index) to the return stack.

Compiling:
Executing: f
Format: if else then
Inner decision point in the 'if ... else ... then' conditional program
control structure. During execution, if the flag passed to
else is true (nonzero), the code between the else and the
then will be executed. Otherwise, program execution will
continue on to the code which immediately follows the then.

n
Executes the word corresponding to the token 'n' passed on
the stack. Example:

.s execute empty

Immediately and unconditionally terminates execution of the
current definition and transfers control to the definition which
contains the current definition.

- 175 -

if

interpret

Compiling:
Executing: f
Format: if then
if else then
Marks the start of the 'if .•• then' or 'if ... else ..• then'
conditional program control structures. During execution, if the
flag passed to if is true {nonzero}, the code between the if
and the then, or the code between the if and the else will
be executed. Otherwise, program execution will be routed to
the code which immediately follows the then (if the 'if ... then'
structure is being used) or to the code between the else
and the then (if the 'if ••. else ..• then' structure is being used).

a I
interpret is the main word involved in the running FORTH.
interpret performs the following actions:

1. Takes as inputs the address and length of a block of user
input text.

2. Advances through the text, word by word. The word word
is used to isolate individual input "words" (a sequence of
characters surrounded by spaces or tabs). Each time word
is used it will return the address and length of the next
word in the input text block to interpret. The in system
variable is used to mark word's progress through the input
text.

3. Next, interpret passes the address and length returned by
word to find. find will check to see if the string
represented by the address and length contains the name
of a word which can be found in the dictionary using the
current vocabulary search order. If the system is in the
compiling state, the word will be compiled into the definition
currently being constructed. If the system is not in the
compiling state, the word will be executed immediately
(using execute).

4. If the string represented by the address and length does
not contain the name of a FORTH word, interpret will pass
the string address and length to number. number will
try to convert the string to a number. If the number
conversion process is successful and the system is in the
compiling state, the converted number will be compiled as
a literal into the definition currently being compiled. If
the system is not in the compiling state, it will be placed
immediately on the parameter stack.

5. If the string cannot be found in the dictionary, and cannot
be converted to a number, interpret will issue an error
message to indicate that it does not recognize the input.

6. If there is more user input text to process, interpret will
repeat the steps above. If the user input text has been
exhausted, interpret will terminate execution and let
quit (the word which calls interpret) get more user input.

- 176 -

leave

loop

nest

quit

then

Immediately and unconditionally reroutes program execution
out of the current "looping" program control structure.
May be used in 'begin' loops or in 'do' loops.

Format: do loop
Marks the end of the 'do ... loop' definite loop program control
structure. During execution, loop will decrement the loop
count by one and compare the new count to zero. If the count
has reached zero, loop will terminate the loop by routing
program execution to the code which immediately follows it.
Otherwise, loop will route program execution back to the
code which immediately follows do.

)
Used by all words which start program control structures.
If a program control structure is being used interactively,
nest compiles an assembly language "jump to the nesting routine"
instruction, records the address of the instruction, and
increments the nesting level by one. This address will be used
later when the temporarily compile code must be moved to the
execution buffer for immediate execution. If a program control
structure is not being used interactively, nest will simple
increment the nesting level, stored in the system integer
nesting, by one. See unnest.

quit is the word which runs FORTH. Clears the return stack
and puts the system in the interpreting state. After quit is
executed the system will be waiting for user input
to interpret and execute. A high-level definition of quit is:

quit (
begin

again

clear the return stack)
get a block of user input text)
interpret the user input text)

." ok" cr
(do this endlessly)

Format: if then
if else then

Marks the end of the 'if ... then' or 'if ... else ... then' conditional
program control structures.

- 177 -

unnest

until

while

{loop}

{while}

()
Used by all words which end program control structures.
Decrements the nesting system integer by one and, if
nesting has been reduced to zero and the system is not in
the compilation state, moves the temporarily compiled
program control structure code up to the execution buffer
and causes it to be executed immediately. If the system
is in the compilation state, unnest simple decrements
nesting by one.

f
Format: begin f until
Conditional exit/branching word used at the end of the
'begin ... until' indefinite loop program control structure.
If the flag passed to until is true (nonzero), until will
terminate execution of the loop by allowing program execution
to continue on to the code which immediately follows itself.
If the flag is false (0), until will reroute program execution
back to the code which immediately follows the begin.

Compiling:
Executing: f
Format: begin while (... while again

begin while (... while until
do while (while loop
dO while (while +loop

Inner decision/branching point in the 'begin ... until' ,
'begin ... again', 'do ... loop', or 'do ... +loop' program control
structures. During execution, if the flag passed to while is
true (nonzero), the code between the while and the next while
until, again, loop, or +loop will be executed. If the
flag is false, while will immediately reroute program execution
out of the current loop (to the code which follows the next
until, again, loop, or +loop).

(n1 n2)
('curly-loop')
Shared routine used by the loop termination words loop, +loop
until and again. Used during compile time to compile the
lower level branching primitives used by the loop termination words
and to resolve and compile the delta branching distances used by
the lower level branching primitives.

()
('curly-while')
Shared routine used by the words used to exit from loop program
control structures: while and leave. Compiles the lower
level branching primitive used by the exit word and reserves a
two byte space for the delta branch distance used by the branching
primitive

- 178 -

CHARACTER I/O WORDS

tt

"to

+bit7

-trailing

Compile time:
Run-time: - addr len
(t quote')
Format: tI ccc"
When used during compilation, lays the string between quotes,
and the runtime code <") , into the definition being compiled.
At run time the address and length will be left on the parameter
stack. When used interactively leaves the string characters in
the ttib' and returns the address and length on the stack.
The first " must be surrounded on both sides by at least one
space or tab. Caution: Always double-check for the presence
of the closing". If the closing" is missing, the compiler
will continue appending program text into the string being
constructed in the definition until either the dictionary fills up
or until some other error message is generated.

(addrl nl addr2 n2
('quote-to')
Format: " ccc" <string name> "to
Stores the string specified by the address and length (addr1
and n1) into the string integer specified by name. The address
and length (addr2 and n2) of the current string stored in the
string integer, which were placed on the stack when the name
of the string integer was executed, are discarded. "to adjusts
the string integer's storage area size to accomodate the length
of the new string data.

)
(' paren ')
Format: (ccc
(is the FORTH commenting word. All characters between the
starting left paren and the closing right paren are considered
to be comments and are ignored by the FORTH compiler. (must
be surrounded on both sides by at least 'me space or tab.
Comments may not be nested, i.e., don't use parentheses within
comment statements.

(char char'
(I plus-bi t-7')
Sets the seventh bit in the character byte.

addr len addr len'
('minus-trailing')
Strips the trailing spaces from the string located at address

- 179 -

"

<">

<"to>

<demit>

<remit>

<word>

ascii

becomes

check

()
(, dot-quote I)

Format: "ccc"
May be used interactively or compiled into a definition. The
compile-time action of " is to lay the string between quotes
into the definition being compiled. The run-time action of "
is to type the string between quotes out to the current output
device. The " must be surrounded by at least one space or
tab. Example:

" Hello" Hello used interactively

SayHi (
SayHi Hello again.

" Hello again." ; (compiled into a)
(definition.)

(addr len
(I brae-quote')
<"> is the run-time code for the word "
and length of the string on the stack.

(addrl nl addr2 n2 -> addr3 n3
('brac-quote-to')
Run-time code for "to .

(char x y)
('brac-display-emit')

Pushes the address

Draw the character at position x,y on the screen.

char
('brac-raw-emit')
Raw emit to the screen.

addrl addr2 addr3 n addr4
(I brae-word I)

Lower level routine used by word. Looks for the next word
in the input stream which is surrounded by at least one space.
Takes the start address, addrl; and end address, addr2; of a
region of text to search. Returns the address where the next
search should commence, addr3; the length of the word found,
n; and the address where the word found is located, addr4.

n
Format: ascii <char>
Returns the ASCII value of the single character which
immediately follows it.

addr n
Format: <string integer name> check
Prints the ASCII values for each character in the string currently
stored in the string integer specified by name. If the string
integer is empty, an error message is displayed.

- 180 -

cr

crlfscroll

ctl

demit

eemit

emit

key

pemit

rub

scanfor

space

spaces

()
('c-r')
Emit a carriage return/linefeed to the current active output
devices.

Emit a carriage return and linefeed. Also blank the new
line out and scroll if necessary.

()
('control')
Format: ctl <char>
Turns the character which immediately follows it into a
control character by setting the three most significant bits
in the character byte to zero.

(c)
('display-emit')
Emit the character to the screen. If the character is a
cr perform a carriage return/linefeed and scroll if necessary.
If the character is the 'del' (delete) character erase the
previous character on this line (if any).

(c)
('editor-emit')
Emit the character to the editor.

c
Output the character to all active output devices. The
allowable output devices are the screen (see demit),
the parallel port (see pemit), the editor (see eemit),
and the serial port (see semit).

c
Waits until a printable character (8<ascii code<80 hex) is typed
at the keyboard. Returns the ASCII value of the character
on the stack.

(char)
('parallel-emit')
Send the character out through the parallel port.

Erase the previous character on the current line (if any).

c
Looks for the next word in the current input stream which
is surrounded by the delimiter character, c. Sets the in,
str, and len system variables.

Emit a space to the current active output devices.

n
Emit 'n' spaces to the current active output devices.

- 181 -

word
J]
]

Looks for the next word in the current input stream which
is surrounded by at least one space. Sets the in, str, and
len system variables accordingly.

- 182 -

NUMERIC I/O WORDS

#>

#s

.r

<#

{nl n2
('sharp')
Format: n <# # #>
Extracts the lowest order digit from the number on top of the
stack and inserts it into the formatted numeric string being
constructed in the pad.

(nl a n2)
('sharp-greater')
Format: n <# #>
Removes the number from the top of the stack and returns
the address and length of the formatted numeric string which
has been constructed in the pad {prepares the formatted
numeric string for type}.

(n 0
('sharp-sl)
Format: n <# #s #>
Calls # until the number on top of the stack has been reduced
to zero.

(n
('dot')
Prints the signed value on top of the stack followed by a
trailing space. The definition of . provides a good example
of the use of the pictured numeric output operators:

with
n

1 trailing
dup
abs
<#

#>
t~e

space

(n w
('dot-r')

Output n
space.)

#s

swap
sign

(
(
(
(
(
(
(
(
(
(
(

as a signed or unsigned number

duplicate the number)
get absolute value of number
start number formatting ...)
convert all digits in number to)
ascii characters and insert in)
the string)
check the sign of the original number
if it was negative, insert a '-' here)
clean up stack, set stack for type)
display the string)
follow numeric string by one space)

Prints the signed value In' in a field which is 'w' spaces wide.

(n - n)
('less-sharp')
Format: n <# #>
Marks the start of a pictured numeric conversion process.
The words #, #>, #s, <N, hold, and sign are all
used to construct the formatted string in the pad.

- 183 -

decimal

digit

hex

hold

number

sign

u.

u.r

}
Selects base ten (decimal) as the base used for all numeric
input/output conversions.

nl n2 n3 c
Extracts the least significant digit from the number, nl, on the
stack (using the specified base, n2) and leaves ascii value for
the digit, c, and the remaining number, n3 on the stack. digit
performs the following actions: 1. takes the number nl from the
stack and divides it by the base, n2 2. leaves the quotient of the
division, n3, and the ASCII value of the remainder, c, on top of
the stack.

Selects base sixteen (hexadecimal) as the base used for all
numeric input/output conversions.

c }
Format: <# ascii c hold #>
Inserts the character (represented by the ASCII value) on top
of the stack into the formatted numeric string currently being
constructed in the pad.

a nl n2 - f I If conversion is not successful.)
a nl n2 n3 f I If conversion is successful.)

Converts the string of length nl located starting at address a
to a number, n3, using base n2. If the string-to-number
conversion is successful, the converted number and a true
(-1) flag will be left on the stack. If the string-to-number
conversion is not successful (non-numeric characters in the
string) a false (0) flag will be left on the stack.

(n
If the number on top of the stack is negative, sign will
insert a minus sign into the formatted numeric string being
constructed in the pad.

n
Prints the unsigned value on top of the stack followed by
a trailing space.

n w
Prints the unsigned value 'n' in a field which is 'w' spaces wide.

- 184 -

DEFINING WORDS

<string>

array

integer

string

vocabulary

(addr len
(t brac-s tring')
Run-time code for string integers created with the defining
word string. Pushes the address and length of the string
stored in the string integer on the stack.

()
('colon')
Format: <name> ... words ...
Defining word used to create new definitions. Puts the system
in the compiling state, creates a new dictionary header using
<name>, sets the smudge bit in the dictionary header so the
definition will not be visible until completed. All words between
the <name> and the ; will be compiled into the definition.
The run-time action of words created by : is to execute the
words which comprise the definition.

Compiling: n
Execu ting: a
Format: n array <arrayname>
During compile-time, array allocates 'n' bytes in the dictionary
for an array of data and creates a header to mark the start of
the data area. The run-time action of the child words created
by array is to push the address of the start of the array data
area on the stack.

64 array message
message . 293036

Compiling: n
Executing: n
Format: n integer <integername>
At compile-time integer creates a named 4-byte data location
and initializes the location with the value 'n'. The run-time
action of the child words created by integer is to push the current
contents of their 4-byte storage location on the stack.

Compiling: a n
Executing: a n
Format: " ccc" string <stringname>
At compile-time string creates a named, multi-byte string storage
area in the dictionary and initializes the storage area with the
characters between the quotes. The runtime action of the child
words created by string is to push the address and length of the
the string currently stored in the string storage area on the stack.

Format: vocabulary <vocabname>
Create a new but inactive vocabulary. The name for the new
vocabulary will reside in the vocabulary which was open when
the new vocabulary was created. When the child word created
by vocabulary «vocabname» is executed, it will place itself
first in the vocabulary search order.

- 185 -

DICTIONARY MANAGEMENT WORDS

<add to>

<becode>

<behead>

<bevoc>

<csize>

(n)
('brac-addto')
Close the current open vocabulary and open the vocabulary
specified by the token 'n'.

(n)
('brac-becode')
Remove the code corresponding to the token 'n'.

(a)
(, brac - behead')
Remove the header located at address 'a'.

(n
('brac-bevoc')
Completely eliminate the vocabulary specified by the token 'n'.

a n
('brae-code-size')
Returns the code size 'n't in bytes, of the word whose code
is located at address 'a'.

<deactivate> (n)

<empty>

<eta>

<purge>

add to

behead

('brae-deactivate')
Removes the vocabulary specified by the token 'n' from the
current search order (removes its token from the 'active'
array, see active).

(n)
('brae-empty')
Purges all words from the vocabulary specified by the token 'n'.

a n - 0 I If token 'n' is not found.)
a1 n - a2 I If token 'n' is found.)

Takes the vocabulary address 'a1' and the encoded token
value 'n' and, if successful, returns the encoded token address.

(n)
('brae -purge')
Removes the word corresponding to the token 'n' from the
dictionary.

Format: addto <vocab-name>
Opens the vocabulary whose name immediately follows addto.

Format: behead <name>
Remove the header of the definition whose name immediately
follows behead.

- 186 -

bevoc

createvoc

csize

deactivate

empty

emptyvoc

eta

existing

forth

invoc

n~e

Format: oevoc <name of vocabulary>
Removes the vocabulary specified by name, and all words in
the vocabulary, from the dictionary.

a1 n
Create an empty vocabulary using the image of an empty
vocabulary located starting at address 'al' and assign it
the token 'n'. Return address 'a2' is unused.

n
('code-size')
Format: csize <name>
Returns the code size of the word specified by <name>.

Format: Jeactivate <vocab-name)
Removes the vocabulary whose name immediately follows
deactivate from the current search order.

Purges all words from the current vocabulary. The words
in the forth vocabulary cannot be purged.

addr
Returns the address of the 18 decimal byte image of an
empty vocabulary.

token addr f
Tries to return the address of the token table entry for the
token. If successful returns the token table entry address
and a true (nonzero) flag. Otherwise, returns a false (0)
flag.

Displays the names of and parents of all existing
vocabularies.

)
This is the main 'tFORTH' vocabulary. It contains all of the
'standard' FORTH words supported by 'tFORTH' and all of
the 'tFORTH' FORTH extension words. Execution of forth
will cause the forth vocabulary to become the first
vocabulary in the search order (its token will be placed first
in the 'active' array).

a n
Returns the token 'n' of the vocabulary which contains
address 'a'.

n
Print the name of the definition which corresponds to the
token 'n'.

- 187 -

purge

recycle

retop

safety

searched

Format: purge <name>
Removes the word specifed by <name> from the dictionary.

n)
Reclaims the token table space for the token 'n'.

a
Lower level word used to open a vocabulary. Moves
the upper half of the dictionary up so that the new top
of dictionary is at address 'a'.

a
Reclaim the token table space for the token whose header
is located at address 'a'.

Display the vocabulary search order.

setcodesize)

vocab

vocab?

vopen

words

Set the code size field for the current open vocabulary.
Set the odd size flag if necessary.

Move the current execution vocabulary to the top of the
search order by placing its token at the start of the
active array.

token f
Returns a true (nonzero) flag if the token on top of the
stack it the token for a vocabulary. Returns a false (0)
flag otherwise.

token addr
Returns the address of the opening point for the
vocabulary which corresponds to the token.

Displays a list of all words in the vocabulary which is
first in the search order.

- 188 -

COMPILATION WORDS

tcsp

+ table

<;>

<;lp>

()
('store-csp')
Used to save the return stack pointer value away before a
compilation process occurs.

(token
('tick t)

Format: <name>
Returns the token for <name>:

words lA5 ok

(n)
(' comma t)
Lays the 32-bit value 'n' into the next free location in the
code area. The here pointer always points at the next free
location in the code area. The here pointer is incremented by
4 bytes.

(n a)
('plus-table')
Takes a token table entry number and calculates and returns
the address of the corresponding token table entry field.

(, semi -colon')
Used to terminate colon definitions. If the colon definition does
not use local variables, ; causes the word <;> to be compiled
into a definition. If the colon definition does use local
variables, ; causes the word <;lp> to be compiled into a
definition.

Parameter: (Return: nl n2
('brac-semi ')
Run-time word compiled by ; . Pops two word length return
values off of the return stack. The first value popped, 'n2',
is used to reconstruct the ip register. The second value
popped is used to reconstruct the ct register.

('brac-semi-Iocal')
Run-time exit word compiled at the end of colon definitions
in which local variables are used. Compiled by ; . Pops two
word length return values off of the return stack (see <;>)
and then reclaims all return stack local variable storage.

- 189 -

<find>

?csp

?pairs

align

allot

assign

backelse

a1 a2 nl a2 f If not found
a1 a2 n1 a3 n2 t I If found

Searches for the name specified by the string at address 'a2'
of length 'nl' in the vocabulary which starts at address 'al'.
If the word is found in the vocabulary, <find> will return the
dictionary header address 'a3' for the word, the token for the
word 'n2' and a true flag (nonzero). If the word is not found
in the vocabulary <find> will return the original name string
address 'a2' and a false (zero) flag.

()
(t question-csp t)

Compares the current return stack pointer to the return stack
value saved away previously in the csp system integer. If the
two addresses are not equal the system will abort with an
" unpaired" message. The return stack pointer address is saved
away at the start of the compilation of a colon definition (in :)
and is checked at the end of compilation (by;).

()
('question-pairs')
Checks for properly paired conditional statements. Aborts
and issues an error message if it senses an improperly paired
conditional.

Aligns the here pointer to an even address boundary.

n
Tries to allocate tn' bytes in the code area of the currently
open vocabulary. If no vocabularies are currently open, or if
'n' bytes are not available in the open vocabulary, the system
will abort. allot allocates space by adding 'n' to the address
stored in the here system integer.

al a2 n
Assigns a token to and builds a header for a new definition in
the vocabulary specified by the address 'a1' using the name
located at the address 'a2' with the length 'n'.

n1 n2 n1)
Used by then to backpatch a forward else branch offset.
If the delta branch distance is short (-81<delta<80), the code
between the else and the then will be shifted one byte
towards lower memory and the shift distance, -1, will be
returned as the second item on the stack, n2. If the delta
branch distance is word length (-8001<delta<8000) no code
movement will occur and a shift distance of 0 will be returned
as the 'n2' parameter.

- 190 -

blit

c'

c,

compile,

create

decode

diff?

doloc

(n)
(• byte-Ii teral •)
Code definition which transfers the byte-length literal value
pointE·d to by the instruction pointer to the parameter stack
and increments the instruction pointer by one byte. Used by
literal.

(a)
(. c-tick')
Format: c' <name>
Returns the address of the code field (code area) of the
definition specified by <name>.

(c)
('c-comma')
Compiles the byte length value tc' into the next available
location in the code area (at the address pOinted to by the
here pointer.)

(n)
('compile-comma')
Lays the token value passed on the stack into the dictionary
at the current here address. Checks the size of the value.
If the token value is greater than $100 (bigger than one byte),
compile will w, the token value into the dictionary. If the
token value is less than $100, compile will use c, to place
the token into the dictionary.

Format: create <name>
Assigns a token to and creates a header entry for <name) in
the current open vocabulary.

n token
Takes the encoded token number from the top of the stack,
decodes it, and returns the decoded token number on top of
the stack.

al a2 n -) 0 I If strings match
al a2 n -) a3 -1 I If strings don't match

Compares the first 'n' characters in the strings located at
addresses 'a1' and 'a2 t . If the first tn' characters in the
two strings match, a false (0) flag is returned. If the first
'n t characters in the two strings do not match, a true (-1)
flag and a pointer to the first dissimilar character in the
first string (the string pointed to by 'al'), 'a3', is returned.

f
Used by interpret. Only used within a colon definition.
Checks to see if the word just extracted from the input stream
belongs to a local variable. If the word is the name of a local
variable, compiles the code which will place the value of the
local variable on the stack during execution into the definition
and returns a false (0) flag. If the word is not the name of a
local variable, returns a true (nonzero) flag.

- 191 -

encode

find

fnderr

forward

free token

immediate

lit

literal

n'

nl n2
Takes the decoded token number from the top of the stack,
encodes it, and returns the encoded token number on top of
the stack.

a nl n2 true I If found in search order
a nl -> false 1 If not found in search order

Searches the through the dictionary (uses the current search
order) looking for the definition whose name matches the name
at the address 'a' with length 'nl'. If a match is found, find
will return a true (nonzero) flag and the token which
corresponds to the definition. If a match is not found, find
will return a false (O) flag. find uses the lower level word
<find> .

()
(, find-error t)

Prints a "can't find" error and aborts.

Prints an "unassigned token" message and aborts.

)
Sets the immediate bit (bit 6) of the most recently defined
colon definition so that whenever the word is encountered
during compilation, it will be compiled rather than executed.
The address of the header entry for the most recently defined
colon definition is kept in the newest system integer.

n
Code definition which transfers the long-word (32-bit) literal
value pointed to by the instruction pointer to the parameter
stack. The instruction pointer, ip, is incremented by by 4 bytes.
Used by literal.

(n
literal is used to compile constant data into a definition.
literal will also compile the token of a word which will push
the constant data onto the parameter stack when the definition
is later executed. If the value can be represented with one byte
of data, literal will compile the tokE for blit into the new
definition. If the value can be represented with two bytes
of data, literal will compile the token for wlit into
the new definition. If the value can only be represented with
4 bytes of data, literal will compile the token of lit into the
new definition.

a)
('n-tick ')
Format: n' (name)
Returns the address of the dictionary header area for the
word specified by <name>.

- 192 -

raddr a
Copies the return information stored on the return stack.
Uses the return information to calculate the address \/lhere
the next token to be executed in the definition at th8 next
higher execution level is located (calculates the previous
location of the ip pointer). Used by compile.

recycledtoken

same?

stub

w.

wlit

[

[,]

[compile]

(token
recycled token checks to see if any previously assigned tokens
are now available for re~assignment. If a previously assigned
token is available, recycledtoken will return the token value
on the stack. If no previously assigned tokens are available
a token value of 0 will be returned.

al a2 n -> f)
Returns a true (nonzero) flag if the first 'n' characters
in the strings located at 'al' and 'a2' are the same.

Format: stub <name>
Uses create to assign a token to and create a dictionary
header for <name>. Stores a 0 in <name)l s token table entry so
<name> will not have any corresponding code area.

(w)
('w-comma')
Stores the word length value 'w' into the next available spot
in the code area of the currently open vocabulary.

(n
('w-lit')
Code definition which transfers the word-length (16-bit) literal
value pointed to by the instruction pointer to the parameter
stack and increments the instruction pointer by two bytes. Used
by literal.

()
('left-bracket')
Turns the FORTH compiler on.

(token)
('brac-tick-brac')
Format: <name> ['J <definition-name>
['] must be used within a colon definition. ['] will return the
token for the definition whose name immediately follows it
in the colon definition.

test (
test lA5 ok

['J words

('brac-compile-brac')
Compiles the token of the word which immediately follows
it into the definition currently being constructed.

- 193 -

] ()
('right-bracket')
Turns the FORTH compiler off.

,

- 194 -

DISK I/O WORDS (HIGH-LEVEL)

tptr

<load>

n delta >
Store the value n into the save block area.

n)
Reads block 'n' from disk into memory and interprets its
contents.

<rblock> addr b# flag
Read block number 'b' into the buffer located at address
'addr'. If no error occurs during read, the flag returned will
be false (0) .

. <wblock> addr b# f)
Write the block of data contained in the buffer located at
address 'addr' to block number 'b' on the disk. If no error
occurs during the write operation the flag returned will be
false (0).

?diskerror n
?diskerror will take the error code from the parameter stack,
analyze it, and print an error message which tells the user
what type of disk error occurred.

@ptr delta ptr
Get a pointer from the system id area.

block n
Tries to read the contents of block number 'n' on the
disk into the block buffer in memory. If block 'n' has
already been read into the block buffer, block will
do nothing. If block 'n' is not currently in the block
buffer, block will read the contents of block 'n' into
the buffer and overwrite the current block buffer contents.

copy n1 n2 n3

copyO>O

doff

don

driveO

drivel

ebuf

Copy blocks number 'nl' through 'n2' to the blocks starting at
block number 'n3'.

nl n2 n3
Copy blocks number 'n1' through 'n2' from the source disk to
the blocks starting at block number 'n3' on the destination
disk.

Tries to turn the disk drives on.

- 195 -

format

idblock

load

rblock

rblocks

recal

rsector

rtrk

save?

sideD

sidel

thru

vsector

wblock

wblocks

wsector

wtrk

Formats a disk using the IAr disk format.

(f)
Read one of the two edde (i/o flag) id blocks. The flag returned
will be true (nonzero) if an error occurs during the read.

b

(addr b
Reads block # 'b' from disk to the RAM buffer located
starting at address 'addr'.

(n b n m
Read 'n' blocks, starting at block number 'b', from disk into
memory starting at the current location of the here pointer.

a sector# errorcode

a track errorcode)

Aborts if the disk is write-protected

bi b2
Loads block number 'bl' through block number 'b2' from disk.

a sector# errorcode)

addr b)
Write the block of data located in RAM starting at address
'addr' to block number 'b' on the disk.

n b n b
Write 'n' blocks, starting with block 'b', to disk from memory
starting at the address of the here pointer.

addr sector# errorcode

addr track errorcode

- 196 -

DISK I/O WORDS (LOW-LEVEL)

. <restore>

. <save>

<rdata>

<rheader>

<rsector>

<step>

<traekdump>

<vdata>

<vseetor>

<wdata>

<wsector>

Restore subroutine .

Save subroutine address.

(d2 = -1 if invalid crc or data field not found)
(d3 = low word is crc read. high word is crc calculated
(a6 = address of rbyte)
(a5 = address of disk status register
(a4 = disk data register address)
(a3 = eRC table address)
(a2 = return address)
(a1 = buffer address)

d2 = returns with the address of info or -1 if not found.
a6 = address of rbyte)
a5 = address of disk status register
a4 = disk data register address)
a3 = CRe table address)
a2 = return address)

a n n

Step the drive head with interrupts off. Saves and restores
the status register.

d2 = -1 if invalid erc or data field not
d3 = low word is cre read. high word is
a6 = address of rbyte)
a5 = address of disk status register
a4 = disk data register address)
a3 = ere table address
a2 = return address)
a1 = buffer address)

a n n

a1 = pointer to data)
a2 = return address)

)

a3 = pointer to crc table
a4 = pointer to disk data register
a6 = pointer to wbyte routine)

found)
cre calculated

)

Writes a data field onto the disk using the table pointed to by
the contents of the A5 register.

a n n

- 197 -

<wtrack>

7diskrdy

7trkO

?wprot

ere

eretable

iai-trk

rbyte

II'

rheader

rtrack

stepin

stepout

trackdump

whyte

wsync

wtrack

-rimage
-wimage

a1 = pointer to data)
a2 = return address)
a3 = pointer to crctable
a4 = pointer to disk data register
a5 = pointer to format information
a6 = pointer to whyte)
d2 = starting address information)

Writes one track of data to the disk.

f
Returns a true (-1) flag-if the disk is ready.

f
Returns a true (-1) flag if on track O.

f
Returns a true (-1) flag if write protected.

nl n2 n3

a3 =
a4 =
d3 =

Writes

pointer to crctable)
pointer to disk data register)
contains the current crc value)
a byte of data to the disk.

- n)

ann n

Set dir signal to step in.

a3= pointer to crctable)
a4 = pointer to disk data register)
dO = the byte to he written with upper bits =0)
d3 = contains the current crc value)

Writes a byte of data to the disk.

(dO = number of times to be written
(a4 = pointer to disk data register
Write n bytes of zeros to the disk.

a n
Write track using rAr format to disk.

- 198 -

CRT DISPLAY WORDS

cIs

page

setcur

window

voff

von

)
Clear the display screen.

Positions the cursor in the first column of the first row on the
screen (in the upper left hand corner).

(
If the screen is the current output device t clears the screen and
places the cursor in the upper left corner of the screen.

x y)
Position the curs on at x,y.

n
Set FORTH's bottom display line to 'n' where l<=n<=lD.

Turn the video display off.

Turn the video display on and off t decide in high level.

- 199 -

SOUND GENERATOR WORDS

beep (
Make a beep.

ringoff)
Turns off timer interrupts.

thp n)
Set up sound generator frequency.

toff
Turn sound generator off.

ton
Turn sound generator on.

tone pitch duration
Emit sound with the specified pitch for the specified duration.
The duration is specified in ticks.

- 200 -

KEYBOARD WORDS

!char

<?k>

«?k»

<key>

?auto

?ctl

?ev

char
Takes a character, as returned by <?k) , stores the character
code in the system integer char t and stores a true (nonzero)
value in the system integer char? (to indicate that a character
is available. If the character is one of the "special"
keys on the keyboard (KB1/2 , left shift , right shift , caps
lock , left use-front , right use-front , left leap or right leap)
tchar will perform some special tests before storing the
character code in char. If the special key is going down while
one of the use-front keys is already down, and the special key is
not the caps lock key, the special key will be marked as "down" in
the modifiers array. If the special key is a caps lock key, the
state of the modifiers array will not be affected. If the special
key is going down while neither use-front key is down, the special
key is marked as "down" in the modifiers array and, if the special
key is one of the shift keys, the caps lock key is marked as "up"
(off). If the special key is going up and it is a caps lock key,
the state of the 'modifiers array is not changed. If the special
key is going up and it is not a caps lock key, it is marked as
"up" in the modifiers array. The final special key test checks to
see if the caps lock key is currently down. If it is, the LED on
the caps lock key will be lit. Otherwise, the LED will be unlit.

f)
Uses «?k» to see if a key is available and returns a true
(nonzero) flag if a character is available.

flag
Returns a true (nonzero) flag if a key is available. First,
checks to see if a key is currently available. If a key
is already available, will exit immediately and return a true
(nonzero) flag. If a key is not currently available, will spin
in a loop calling do-event until either a key is available or
until there are no more key events in the event loop.

char
Get a key, set char? to zero to indicate that no keys are
currently available, and, if the system is in the middle of
recording a learn sequence, record the character.

f
Returns a true (nonzero) flag if it is time to autorepeat
the current character.

f
Returns a true (nonzero) flag if one of the USE FRONT keys is
currently down.

f
Returns a true (nonzero) flag if the keyboard event queue is not
empty, if keyboard events are available.

- 201 -

" IJIII1'

?k

?kstat

?kval

?lex

?panic

?rex

?shift

?t

f
Return a true (nonzero) flag if the current character is nota
special key.

n)
Returns the keyboard status.

c)
Returns the character code stored in char. Used to "peek" at
the current character without affecting its current character
status.

f
Returns a true (nonzero) flag if the left leap key is
currently down.

f
Returns a true (nonzero) flag if the user hits the panic stop
key.

f
Returns a true (nonzero) flag if the the right leap key is
currently down.

f
Returns a true (nonzero) flag if either of the SHIFT keys is
down.

f
Returns a true (nonzero) flag if a character is currently
available. The character is consumed by ?t .

@k c
Returns the next 'physical' character (the character code as
returned by do-event).

clear-auto)
Turn off autorepeating.

clear-special

clr-kbd

(
Clears out the shift state array to indicate that all of the
special keys are up.

()
End playback of a learn sequence.

- 202 -

do-event

down?

keyboardoff

keyboardon

playback?

playback

record

set-auto

Removes a key event from the keyboard event queue and converts
the event code into offset. The offset is used to index into a
table which converts key press information into character
information. Stores the character information into the system
integer kval and stores a true (nonzero) flag into the system
integer kstat to indicate that a key is available. If the
character is one of the special keys, performs tests and actions
similar to those performed by tchar (except do-eventts actions
affect the shifts tate array instead of the modifiers array).

n f
Checks to see if the special key corresponding to the number
'n' is currently down. Returns a true (nonzero) flag if the
key is down.

Turn keyboard scan off.

Turn keyboard scan on.

f
Returns a true (nonzero) flag if there is a character to play
back.

c
Return the next character to be played back.

c c
Insert the character in the learn string currently being
recorded.

Turn on autorepeating for the last key returned.

sync-shiftkeys

thislearn

(
Store the actual physical states of the special keys, as
stored in the system integer shiftstate , into the modifiers
system integer.

addr n
Return the address and length of the current learn string.

- 203 -

MODEM AND SERIAL I/O WORDS (HIGH-LEVEL)

squish

talk

thres.43

thres.48

tt.disable

tt.enable

by tel byte2 byte3 byte4 longword
Uses the lowest order byte from each of the four values
on the stack to create one longword (32-bit) which is
returned on the stack. The byte taken from the value
on top of the stack will end up in the most-significant
byte position of the longword and the byte taken from
the fourth value on the stack will end up in the least
significant byte position.

Connect phone to line.

Set energy detect threshold to -43 dBm.

Set energy detect threshold to -48 dEm.

Disable touchtone encoder.

()
Enable touch tone encoder.

txcr.disable
(
Disable modem carrier.

txcr.enable (
Enable modem carrier.

valid. tone. table
(

wordlen n
Sets the number of bits per word.

<dial> (addr len
Dial the string pointed to by l addr' and 'len'.

char> tone char
Send DTMF if valid tone found.

char>pulses char
Send pulses.

dialchar char)
Dials an ASCII char.

getover

getport# n

- 204 -

initmodem
Reset the modem.

initphone
Initialize the modem and phone ACIA.

initrs232
Initialize the serial port.

port>mem (addr len)
Get a string of stuff into memory.

pulses (n
Send 'n' pulses.

send. tone n
'n' is the row/col data. Send a 50 ms DTMF.

- 205 -

MODEM AND SERIAL I/O WORDS (LOW-LEVEL)

<box> xl yl x2 y2 flag -

<line> xl yl x2 y2 flag -

<point> x y flag -

analog. loop. off
(
Disable analog loopback.

analog . loop . on
(
Enable analog loopback.

digital.loop.off
(
Disable digital loopback.

digital.loop.on
(
Enable digital loopback.

filter. high
Set filter for normal operation.

filter. low (

init.ph.acia

modem.ans

Set filter for call progress detection.

(
Set hpne UART to '1200 baud, 8 data bits, 1 stop bit,
and no parity.

Set to answer mode.

modem.fsk ()
Set to 300 bits per second (bps) FSK.

modem.orig
Set to originate mode.

modem.psk ()
Set to 300 bits per second (bps) PSK.

mute
Mute phone.

offhook
Place the phone off hook.

onhook
Place the phone on hook.

- 206 -

ph.rx byte
Receiv.e a byte from the telephone's rs232 port.

ph.tx (byte
Send a byte to the telephone's rs232 port.

pll.fast ()
Set PLL to fast response.

pll.slow ()
Set PLL to slow response.

row/col. table
(

scrambler. disable
(
Disable modem scrambler.

scrambler. enable
()
Enable modem scrambler.

ser.rx byte
Receive a byte from the rs232 port.

ser.tx byte
Send a byte to the rs232 port.

spl.off
Set pin 13 low.

spl.on
Set pin 13 high.

sp2.off
Set pin 16 low.

sp2.on
Set pin 16 high.

- 207 -

t;

"

tFORTH SYSTEM INTEGERS

active

applic

auto

base

blk

bound

cbuff

char

char?

clockO

clock!

crt

csp

Holds the address of the 'active' vocabulary array.

Holds the address of the next available location in the
header area of the current open vocabulary.

Holds the number used to indicate the numeric base currently
being used for all number I/O.

During the interactive execution of program control structures,
bound is used to hold the start address of the program control
structures code which is to be executed interactively.

Holds the address of the keyboard input circular buffer.

Used to hold the return stack pointer which is saved away
before compilation and checked after compilation.

diskerror# Holds the most recent disk error number.

drive Holds the number used to specify the drive type.

dticks Holds count for the disk countdown timer.

edde

end table

execbuf

extant

gticks

gvect

here

I/O flag. If true (nonzero) output should be sent to the
editor.

Holds the end address of the RAM token table.

Holds the address of the vocabulary 'extant' array.

Holds count for a general countdown timer.

Used as a general execution vector.

Holds the address of the next available location in the
code area of the current open vocabulary.

- 208 -

hId

in

During number formatting, holds the current offset into the
string being constructed in the pad.

Pointer used to mark word's progress through the input stream.
in always holds the address of the next byte to be examined by
word in the input stream.

intexecvecs Interrupt execution vectors.

inuse

itx

jdn

kev

kstat

kval

last4thline

lasttok

len

limit

locals

localvoc

location

loops

lp

maxblks

Holds the address of the current input text.

Holds the length of the word most recently extracted from the
inpu t stream by word .

Used to hold the end address of the block of text to be
examined by the word interpret.

Used during the compilation of local variables to keep track of
the amount of local variable return stack storage space which
is required by the definition currently being compiled. Used
primarily by the words doloc , local , and ; .

Holds the address of the temporary hidden vocabulary used
to hold the names of local vocabularies.

Used during the compilation of local variables to hold the
address of the special, invisible vocabulary used to hold the
names of the local variables used by the word currently
being compiled.

System integer used during the compilation of a 'do' loop
program control structure to hold the amount of return stack
space currently required by the definition being created.
Used primarily by the words do t loop t +loop , doloc ,
and , .

I/O flag. If true (nonzero) output should be sent to the
line printer.

- 209 -

modifiers

nesting

nestype

newest

origin

pad

panicked

ramend

rams tart

System state flag, if true (nonzero) the system is in a
temporary compiling state (for interactive execution of
program control structures). If false (0) the system is in
the interpreting state.

The nestype system integer is used to hold a flag which,
during the compilation of program control structures, holds
a '_1' if the program control structure currently being compiled
is a 'do' loop or holds a '0' if the program control structure
being compiled is a 'begin' loop. Used by the compiling word
{while}

Holds the header address of the most recently defined colon
definition.

Holds the address of the start of the 'tFORTH' dictionary.

Holds the address of a location 128 (decimal) bytes from the
start of a 384 (decimal) byte scratch location. The pad area
is used by the number formatting operators and by the editor
[CALC] function.

Holds the address of the end of RAM memory.

Holds the address of the start of RAM memory.

ringsoundaddr

savenest

saves tate

scontcopy

screen

screensize

ser

Holds the address of a general ring sound routine.

Holds the address of the start of display memory.

I/O flag. If true (nonzero) output should be sent to the
serial port.

soundaddr Holds the address of a general sound routine .

soundcount Holds general sound count.

spO Holds the address of the base of the parameter stack.

special Holds the address of the keyboard 'special' array.

- 210 -

state

str

strings

targeting

ticks

tokens

top

vdelay

vticks

x

y

System state flag, if true (nonzero) system is in the compiling
state. If false (0) the system in the interpreting state.

Each time word gets the next word frc:"o input string, it
places the address of the character string in the str system
integer. See the description for the system integer len also..

Flag. If true (nonzero) target compilation is occurring.

Holds time ticks.

One of two system integers used to help in the assignment of
tokens to new words (lasttok is the other system integer used
for this purpose). See the techical discussion on local
variables.

Holds the address which is one byte beyond the top of
ttFORTH' memory.

Holds the value used to specify how long the video screen
should stay 'on' on an unused terminal.

Holds count for the video countdown timer.

Holds 'tFORTH's column output position.

Holds 'tFORTH's row output position.

- 211 -

!char

!csp

tptr

tt

"to

II

II>

lis

tFORTH GLOSSARY
(Alphabetic Listing)

(n a
(t store t)
Stores the 32-bit value n into memory starting at address a.

char
Takes a character returned by (?k> , stores the character
code in the system integer char, and stores a true (nonzero)
value in the system integer char? to indicate that a character
is available.

()
(' store-csp')
Saves return stack pointer during compilation.

n delta
Store the value n into the save block area.

Compile time:
('quote')
Run-time: - addr len)
Format: tt ccc"
Compiling, lays the string between quotes, and the runtime
code (">, into the definition being compiled. At runtime the
address and length will be left on the parameter stack.

addrl nl addr2 n2 (I quote-to')
Format: tt ccc" <string name> "to
Stores the string specified by the address and length (addrl
and nl) into the string integer specified by name. addr2 and
n2 are discarded.

(nl n2
(' sharp')
Format: n <# # #>
Extracts the lowest order digit from the number on top of the
stack and inserts it into the formatted numeric string being
constructed in the pad.

(nl a n2)
('sharp-greater')
Format: n <# #>
Prepares a formatted numeric string for type.

(n 0
('sharp-s ')
Format: n <# #s #>
Calls 1/ until the number on top of the stack has been reduced
to zero.

- 212 -

*

+

+!

+bit7

+ loop

+ table

+to

(token
('tick')
Format: <name>
~eturns the token for <name>:

()
('paren')
Format: (ccc
All characters between the starting left paren and the closing
right paren are considered to be comments and are ignored by
the FORTH compiler.

(nl n2 n3
('times')
Multiplies nl*n2 and leaves the 32-bit result n3.

(nl n2 n3
(t plus')
Adds nl plus n2 and leaves the 32-bit result n3.

(n a)
('plus-s tore')
Adds the 32-bit value n to the 32-bit value located in memory
starting at address a. Memory at a is modified.

(char char'
('plus-bi t-7 t)

Sets the seventh bit in the character byte.

Compiling:
('plus-loop')
Executing: (n
Format: do n +loop
Program control structure used to implement definite loops.
During execution, +loop adds tnt to the current loop index.

(n a)
('plus-table')
Converts a token table entry number to the token table entry
fields address.

(nl n2
('plus-to')
Format: nl <integer or local variable name> +to
Adds nl to the current value of the integer or local variable
specified by name.

(n)
(t comma')
Lays the 32-bit value tn' into the next free location in the
code area. The here pointer always points at the next free
location in the code area. The here pointer is incremented by
4 bytes.

- 213 -

-1

-trailing

-use rounded

tt

",
.r

.s

/

/mod

o

0<

(n1 n2 n3
('minus')
Subtracts n2 from n1 and leaves the 32-bit result on the stack.

(-1)
(t minus-one')
Puts the constant value '_1' on top of the parameter stack.

(addr len addr len'
('minus-trailing')
Strips the trailing spaces from the string located at address.

(n
('dot')
Prints the signed value on top of the stack followed by a
trailing space. Prints in the current radix.

()
(, dot-quote')
Format: "ccc"
May be used interactively or compiled into a definition. The
compile-time action of ." is to lay the string between quotes
into the definition being compiled. The run-time action of ."
is to type the string between quotes out to the current output
device.

(n w
(' dot-r')
Prints the signed value 'n' in a field which is 'w' spaces wide.

()
(' dot-s t)

A nondestructive display of the items on the parameter stack.

(n1 n2 n3
('divide')
Divides n1 by n2 and leaves the 32-bit quotient on the stack.

{ n1 n2 - n3 n4
('divide-mod')
Divides n1 by n2 and leaves the 32-bit remainder, n3, and the
32-bit quotient, n4, on the stack.

o
(t zero')
Puts the constant '0' on top of the parameter stack.

n f)
('zero-less-than')
Returns a true (-1) flag if n is less than zero.

- 214 -

0=

1

1+

1-

2*

2+

2-

2/

2drop

2dup

3dup

(n f)
('zero-equal')
Returns a true (-1) flag if n is equal to zero.

1
Puts the constant '1' on top of the parameter stack.

(nl n2
(, one-plus t)

Adds one to the number on top of the stack.

nl n2
('one-minus')
Subtracts one from the number on top of the stack.

(nl n2
('two-times')
Multiplies the number on top of the stack by two.

(nl n2
('two-plus')
Adds two to the number on top of the stack.

(nl n2
('two-minus')
Subtracts two from the number on top of the stack.

(nl n2)
(I two-divide')
Divides the number on top of the stack by two.

(nl n2
('two drop t)

Discards the top two items on the parameter stack.

nl n2 nl n2 nl n2
(' two dup')
Duplicates the top two items on the parameter stack.

(nl n2 n3 nl n2 n3 nl n2 n3
(, three-dup')
Duplicates the top three items on the parameter stack.

()
(I colon')
Format: <name> ... words ...
Defining word used to create new definitions. Puts the system
in the compiling state, creates a new dictionary header using
<name>, sets the smudge bit in the dictionary header so the
definition will not be visible until completed.

- 215 -

<

<">

<"to>

<II

<+loop>

<Obran>

<Obranl>

<Oleave>

<Oleavel>

()
(' semi-colon t)

Used to terminate colon definitions. If the colon definition does
not use local variables, causes the word <;> to be compiled
into a definition. If the colon definition does use local
variables, ; causes the word <;lp> to be compiled into a
definition.

(n1 n2 f
(, less-than')
Returns a true (-1) flag is nl is less than n2.

(addr len
('brae-quote')
<"> is the run-time code for the word "
and length of the string on the stack.

(addr1 n1 addr2 n2 -> addr3 n3
('brac-quote-to')
Run-time code for "to .

n - n
(, less-sharp')
Format: n <# #>

Pushes the address

Marks the start of a pictured numeric conversion process.

(n)
('brac-plus-loop')
Run-time code for +loop .

(f)
('brac-zero-bran')
Run-time conditional branching primitive. A branch will occur
if the flag passed to <Obran> is false (zero). Can only
handle short (-81<n<80 hex) branching distances. Used by
while, until, and if.

(f)
('brac-zero-bran-long')
Run-time conditional branching primitive. A branch will occur
if the flag passed to <Obranl> is false (0). Can be used for
short and word (-8001<n<8000 hex) branching distances. Used
by while , until, and if .

f
('brac-zero-leave')
Run-time code used to conditionally leave from a 'do ... loop'
or 'do ... +loop' program control structure.

f)
('brac-zero-leave-long')
Run-time code used to conditionally leave from a 'do ... loop'
or 'do ... +loop' program control structure.

- 216 -

<;>

<;lp>

«?k»

<>

<?k>

<abort">

<addto>

<avg>

<becode>

<behead>

<bevoc>

<bran>

Parameter:
('brae-semi')
Return: (nl n2
Run-time word compiled by t •

()
('brac-semi-Iocal')
Run-time exit word compiled at the end of colon definitions
in which local variables are used. Compiled by ; .

(flag)
('brac-brac-question-k')
Returns a true (nonzero) flag if a key:!"s available.

{ n1 n2 f
('not-equal')
Returns a true (-1) flag if n1 is not equal to n2.

(f)
('brac-question-k')
Uses «?k» to see if a key is available and returns a true
(nonzero) flag if a character is available.

(fan)
('brac-abort-quote')
Run-time code used by abort" .

(n)
(t brac-addto')
Close the current open vocabulary and open the vocabulary
specified by the token 'n'.

n)
('brac-becode')
Remove the code corresponding to the token 'n'.

(a)
('brae-behead')
Remove the header located at address 'a'.

(n)
(I brac-bevoc')
Completely eliminate the vocabulary specified by the token In'.

()
(I brae-bran')
Run-time unconditional branching primitive. Always causes
a branch to occur. Can only handle short (-81<n<80 hex)
branching distances. Used by again and else.

- 217 -

•

<branl>

<csize>

()
('brac-bran-long')
Run-time unconditional branching primitive. Always causes
a branch to occur. Can handle short <-81<n<80 hex) and
word (-8001<n<8000) length branching distances. Used by
leave and else .

(a n)
('brac-code-size')
Returns the code size 'n', in bytes, of the word whose code
is located at address 'a'.

<deactivate>
('brac-deactivate')

<demit>

<do>

<empty>

<eta>

<exit>

<exitlp>

<find>

(n)
Removes the vocabulary specified by the token 'n' from the
current search order (removes its token from the 'active'
array, see active).

(char x y)
('brac-display-emit')
Draw the character at position x,y on the screen.

(nl n2
('brae-do')
Run-time code for do .

n)
('brae-empty')
Purges all words from the vocabulary specified by the token t n '.

(a n - 0 I If token 'n' is not found.)
- a2 I If token 'n' is found. } (a1 n

Takes the
value tn'

vocabulary address 'al' and the encoded token
and, if successful, returns the encoded token address.

(, brac-exi t ')

('brac-exi t-Ip')

(a1 a2 n1
(a1 a2 n1
('brae-find')

a2
a3

f
n2 t

If not found
I If found

Searches for the name specified by the string at address 'a2'
of length 'nl' in the vocabulary which starts at address 'al'.
If the word is found in the vocabulary, <find> will return the
dictionary header address 'a3' for the word, the token for the
word 'n2' and a true flag (nonzero). If the word is not found
in the vocabulary <find> will return the original name string
address 'a2' and a false (zero) flag.

- 218 -

<key>

<leave>

<leavel>

<load>

<locO>

<loc1>

<local>

<locals>

<loop>

<purge>

<quit>

(char)
('brae-key')
Get a key, set char? to zero to indicate that no keys are
currently available, and, if the system is in the middle of
recording a learn sequence, record the character.

()
(' brae-leave')
Run-time code used to unconditionally leave from a 'do ... loop'
or 'do ... +loop' program control structure.

(n)
(t brae-load')
Reads block 'n' from disk into memory and interprets its
contents.

(n)
('brac-Ioc-zero')
A special fast word used to access the first local variable
on the return stack.

(n)
('brac-Ioc-one')
A special fast word used to access the second local variable
on the return stack.

(n)
('brae-local')
Generic word used to access the third, and all subsequent local
variables on the return stack.

()
('brae -locals')
First local variable word compiled into a tForth word which
uses local variables.

()
('brae-loop')
Run-time code for loop.

(n)
('brae-purge')
Removes the word corresponding to the token 'n' from the
dictionary.

()
('brae-qui t')
Low-level word used by quit.

- 219 -

<rblock>

<step>

<string>

<sum>

< sumrounded >

<wblock>

<word>

>

=

>r

7auto

(addr b# flag
(I brac-r-block')
Read block number 'b' into the buffer located at address
'addr'. If no error occurs during read, the flag returned will
be false (0).

()
(' brae-step t)

Step the drive head with interrupts off. Saves and restores
the status register.

(addr len
(' brae-string')
Run-time code for string integers created with the defining
word string. Pushes the address and length of the string
stored in the string integer on the stack.

(a n f)
{'brac-write-block'}
Write the block of data contained in the buffer located
at address 'a' to block number 'n' on the disk.
If no error occurs during the write operation the flag
returned will be false (0).

(addrl addr2 addr3 n addr4
('brae-word')
Lower-level routine used by word.

(nl n2 f
(, greater-than')
Returns a true (-1) flag if nl is greater than n2.

nl n2 f
('equal')
Returns a true (-1) flag if nl is equal to n2.

(nl return stack: nl
('to-r')
Removes n1 from the parameter stack and places it on the
return stack.

(f)
('question-auto')
Returns a true (nonzero) flag if it is time to autorepeat
the current character.

- 220 -

?csp ()
('question-csp')
Compares the current return stack pointer to the return stack
value saved away previously in the csp system integer. If the
two addresses are not equal the system will abort with an
"unpaired" message.

?ctl f }
('question-control')
Returns a true (nonzero) flag if one of the use-front
keys is currently down.

?diskerror (n)
{'question-disk-error'}
?diskerror will take the error code from the parameter stack,
analyze it, and print an error message which tells the user
what type of disk error occurred.

?dup (n n n) or 0 0
('question-dupe')
Duplicates the value on top of the stack if it is nonzero.

?ev (f)
('question-event')
Returns a true (nonzero) flag if the keyboard event queue
is not empty, if keyboard events are available.

?k (f)

?keystep

?kval

?lex

?pairs

?panic

(, ques tion-key')
Return a true (nonzero) flag if the current character is not
a special key.

(c)
('key-value')
Returns the character code stored in char. Used to "peek"
at the current character without affecting its current character
status.

(f)
('question-left-leap')
Returns a true (nonzero) flag if the left leap key is currently
down.

('question-pairs')
Checks for properly paired conditional statements. Aborts
with an error message if conditionals are improperly paired.

f
('question-panic')
Returns a true flag if the user hit the panic stop key.

- 221 -

?rex

?shift

?stack

?stackerr

?t

@

@k

@ptr

aabs

abort

abort"

abs

addr

(f)
('question-right-Ieap')
Returns a true flag if the the right leap key is down.

(f)
('question-shift')
Returns a true flag if either of the shift keys is down.

(f)
('question-stack')
Checks the status of the parameter stack. A false (0) flag
will be returned if the stack is ok.

()
('question-stack-error)
Uses ?stack to check for stack underflow or overflow.

(- f)
('question-terminal')
Returns a true (nonzero) flag if a character is currently
available. The character is consumed by ?t .

(a n
(t fetch')
Places a copy of the 32-bit value located in memory starting
at address a on top of the parameter stack.

(c)
(, fetch-key')
Returns the next 'physical' character (the character code as
returned by do-event).

(n a)
('fetch-pointer')
Get a pointer from the system id area.

(f)
(, abort-quote')
Format: f abort" cecil
If the flag passed to abort" is true (nonzero), a forced
system abort process will occur.

(n Inl
(I absolute')
Returns the absolute value of the number on top of the stack.

(<name> - a
('adder')
Format: <name of integer> addr
Returns the address of the storage location for the integer
specified by name.

- 222 -

add to

afilter

again

aint

align

allot

and

and!

arithmetic

array

ascii

assign

asqrt

backelse

becomes

Format: addto <vocab-name>
Opens the vocabulary whose name immediately follows addto .

Format: begin. . . again
Used to implement endless loops.

()
Aligns the here pointer to an even address boundary.

n
Tries to allocate 'n' bytes in the code area of the currently
open vocabulary.

nl n2 n3)
Performs a bit-by-bit logical AND using nl and n2. Returns the
32-bit result (n3) on the parameter stack.

(b a)
(I and-store')
Performs a bit-by-bit logical AND operation using b and the
byte located in memory starting at address a. The byte at
address a is modified.

Name of the vocabulary in which the basic arithmetic functions
are located.

Compiling: n
Executing: a
Format: n array <arrayname>
Create an array of length n and name <arrayname>. Later use
of <arrayname> will return the address of the start of the array.

n
Format: ascii <char>
Returns the ascii value of <char>.

al a2 n
Assigns a token to and builds a header for a new definition
in the vocabulary specified by the address 'al' using the name
located at the address 'a2' with the length 'n'.

nl n2 nl
Used by then to backpatch a forward else branch offset.

- 223 -

beep

begin

begin

behead

bevoc

blit

block

ct

c'

c@

call

check

(
Make a beep.

Format: begin again

until
Used to mark the start of an endless or indefinite program loop.

Format: behead <name>
Remove the header of the definition whose name immediately
follows behead .

Format: bevoc <name of vocabulary>
Removes the vocabulary name and all its words.

(n)
(, byte-Ii teral ')
Byte length version of lit.

n
Tries to read block 'n' into memory. If block 'n' has
already been read into the block buffer, block will do
nothing.

{ b a
('c-store')
The least significant 8 bits of the 32-bit value, b, on the
parameter stack are stored into memory starting at address a.

(a)
('c-tick')
Format: c' <name>
Leaves the address of the code field of <name> .

(c)
(, c-comma ')
Compiles the byte value 'c' into the next available
location in the code area.

(a b
('c-fetch')
Places the 8-bit value from address a on the stack.

a n
Format: (string integer name> check
Prints the ascii values for each character in the string
currently stored in the string integer specified by name.
If the string integer is empty, an error message is displayed.

- 224 -

clear-auto)
Turn off autorepeating.

clr-kbd ()
('clear-keyboard')
End playback of a learn sequence.

cIs ()

cmove

compile

compile,

copy

copyO> 0

cr

create

createvoc

crlfscroll

csize

(, clear-screen')
Clear the display screen.

al a2 u
(' c-move')
Moves the 'u' bytes located starting at the source address
'al' to the destination address 'a2'.

(n)
('compile-comma')
Lays the token value passed on the stack into the dictionary
at the current here address.

nl n2 n3
Copy blocks number 'nl' through 'n2' to the blocks starting
at block number 'n3'.

nl n2 n3
Copy blocks number 'nl' through 'n2' from the source disk to
the blocks starting at block number 'n3' or the destination disk.

()
('c-r')
Emit a carriage return/linefeed.

Format: create <name>
Assigns a token to and creates a header entry for <name> in
the current open vocabulary.

a1 n a2
Create an empty vocabulary using the image of an empty vocabulary
located starting at address 'a1' and assign it the token 'n'.
Returned address 'a2' is unused.

Emit a carriage return and linefeed. Blank the new line out and
scroll if necessary.

n)
('code-size')
Format: csize <name>
Returns the code size of the word specified by <name> .

- 225 -

ctl

deactivate

decimal

decode

demit

depth

diff?

digit

do

do-event

doff

doloe

()
(, control')
Format: ctl <char>
Make <char> a control character.

Format: deactivate <vocab-name)
Removes the vocabulary whose name immediately follows
deactivate from the current search order.

()
Set the base to ten.

n1 n2
Turns an encoded token number into a decoded token number.

(c)
(t display-emi t t)

Emit the character to the screen. If the character is a
cr perform a carriage return/linefeed and scroll if necessary.
If the character is .the 'del' (delete) character erase the
previous character on this line (if any).

n)
Returns the number of items on the stack.

al a2 n -> 0 I If strings match
a1 a2 n -> a3 -1 1 If strings don't match

Compares the first 'n' characters in the strings located at
addresses 'al' and 'a2'.

nl n2 n3 c
Extracts the least significant digit from the number, nl, on
the stack (using the specified base, n2) and leaves ascii value
for the digit, c, and the remaining number, n3 on the stack.

Compiling: {
Executing: (nl n2

n2 do loop
n3 +loop

Format: nl
n1 n2 do
Marks the start of a definite program loop.

Removes a key event from the keyboard event queue and converts
the event code into offset. The offset is used to index into a
table which converts key press information into character
information.

Tries to turn the disk drive(s) off.

(f)
(t do-local')
Used by interpret. Checks to see if the word just extracted
from the input stream belongs to a local variable.

- 226 -

don

down?

drop

dump

dup

ebuf

eemit

else

Tries to turn the disk drive(s} on.

n f }
Checks to see if the special key corresponding to the number
'n' is currently down. Returns a true (nonzero) flag if the key
is down.

n1 }
Discards the top item from the stack.

an}
Displays the contents of 'n' bytes of memory starting at
address 'a'.

nl nl n1
Duplicates the value on top of the stack.

(c)
(, edi tor-emi t ')
Emit the character to the editor.

Compiling:
Executing: f
Format: if else then
Inner decision point in the 'if ... else ... then' conditional program
control structure.

emit (c)

empty

emptyvoc

encode

error

eta

exa

Output the character to all active output devices.

Purges all words from the current vocabulary. The words in
the forth vocabulary cannot be purged.

addr
Returns the address of the 18 decimal byte image of an empty
vocabulary.

nl n2
Takes the decoded token number from the top of the stack,
encodes it, and returns the encoded token number on top of
the stack.

n a f
Tries to return the address of the token table entry for the
token. If successful returns the token table entry address and
a true (nonzero) flag. Otherwise, returns a false (0) flag.

- 227 -

execute

existing

exit

fill

find

finish-lex

fnderr

format

forth

forward

free token

froom?

function

get{

getphrase

goto

hex

n)
Executes the word corresponding to the token 'n' passed on
the stack.

Displays the names of and parents of all vocabularieE".

Terminates execution of the current definition and transfers
control to the definition which contains the current definition.

a u b
Format: 'start address' 'count' tfill character' fill
Replaces the u bytes located in memory starting at address a with
the byte value b.

a nl n2 true 1 If found in search order
a nl -) false 1 If not found in search order

Searches the through the dictionary (uses the current search
order) looking for the definition whose name matches the name
at the address 'a' with length 'nl'.

()
(, find -error I)

Prints a "can't find" error and aborts.

Formats a disk using the IAI disk format.

This is the main tFORTH vocabulary. It contains all of the
'standard' FORTH words supported by tFORTH and all of the
tFORTH FORTH extension words. Execution of forth will cause
the forth vocabulary to become the first vocabulary in the
search order.

Prints an "unassigned token" message and aborts.

Selects base sixteen (hexadecimal) as the current radix.

- 228 -

hidden
Vocabulary which contains all of the editor words.

hold c)

home

i

idblock

if

iDlDediate

inrange

intO

inti

int2

int3

Format: <# ascii c hold #>
Inserts the character (ascii value) on top of the stack into the
formatted numeric string currently being constructed in the pad.

Positions the cursor in the first column of the first row on the
screen (in the upper left hand corner).

n
Puts a copy of the top item on the return stack on top of the
parameter stack. During execution of a do ... loop, the top item on
the return stack is the index for the current loop.

(f)
Read one of the two edde id blocks. The flag returned will be
true (nonzero) if an error occurs during the read.

Compiling:
Executing: f
Format: if then
if else then
Marks the start of the 'if ... then' or 'if ... else ... then'
conditional program control structures.

Sets the 'immediate' bit (bit 6) of the most recently defined
colon definition so that whenever the word is encountered
during compilation, it will be compiled rather than executed.

nl n2 n3 f
Returns a true (-1) flag if the value nl is greater than or equal
to the lower limit n2 and less than or equal to the upper limit n3
(i.e. n2 < nl < n3).

(n)
(t int-O')
Runtime code for integers located in integer tier O.

(n)
('int-l ')
Runtime code for integers located in integer tier 1. See intO.

(n)
(' int-2')
Runtime code for integers located in integer tier 2. See intO.

(n)
('int-3')
Runtime code for integers located in integer tier 3. See intO.

- 229 -

int4

int5

int6

int7

int8

integer

(n)
(t int-4')
Runtime code for integers located in integer tier 4. See intO.

(n)
(' int-5')
Runtime code for integers located in integer tier 5. See intO.

(n)
(' int-6 t)

Runtime code for integers located in integer tier 6. See intO.

(n)
(t int-7')
Runtime code for integers located in integer tier 7. See intO.

(n)
(tint-8')
Runtime code for integers located in integer tier 7. See intO.

Compiling: n
Executing: n
Format: n integer <integername>
At compile-time integer creates a named 4-byte data location
and initializes the location with the value 'n'. The run-time
action of the child words created by integer is to push the
current contents of their 4-byte storage location on the stack.

interpret a I
interpret parses words in the input stream and either executes
them (if they are executable Forth words), places them on the
stack (if they or numbers), or aborts if it does not know what
to do with the word.

interpretphrase

invoc

ioff

ion

key

learnstrings

a n
Returns the token 'n' of the vocabulary which contains address 'a'.

Turns interrupts off.

Turns interrupts on.

c)
Waits until a printable character (8<ascii code<7F) is typed at
the keyboard. Returns the ascii value of the character on the
stack.

- 230 -

leave

lit

literal

load

local

loop

max

min

mod

move

ms

n'

Immediately and unconditionally reroutes program execution out of
the current "looping" program control structure. May be used in
'begin' loops or in 'do' loops.

n
Code definition which transfers the long-word (32-bit) literal
value pointed to by the instruction pointer to the parameter
stack. The instruction pointer, ip, is incremented by 4 bytes.
Used by literal .

(n
literal is used to compile constant data into a definition.
literal will also compile the token of a word which will push
the constant data onto the parameter stack when the definition is
later executed.

(n)
Loads block 'n' from the disk.

Format: local <name for local variable>
Creates a named local variable. The local variable is not
initialized to any value. Executing the name of the local
variable will place the value of the local variable on top of
the parameter stack.

Format: do loop
Marks the end of the 'do ... loop' definite loop program control
structure.

n1 n2 n3
Compares nl and n2 and returns the greater value.

nl n2 n3
Compares nl and n2 and returns the lesser value.

(nl n2 n3)
n1 is divided by n2 and the 32-bit remainder, n3, is left on
top of the stack.

al a2 u)
Special version of cmove .

n
Wait 'n' milliseconds.

(a)
('n-tick')
Format: n' <name>
Returns the address of the dictionary header area for the
word specifiec by <name>.

- 231 -

name

needforth

needte"xt

negate

nest

nip

noop

no room

not

not!

number

numerical

oddadjust

off

on

open?

n)
Print the name of the definition which corresponds to
the token 'n'.

n -n
Returns the two's complement of n, i.e. 'n' is subtracted from
zero (O-n).

)
Used by all words which start program control structures.

(n1 n2
Takes the ones complement of the 32-bit value on top of the
parameter stack. Returns the 32-bit result on top of the
parameter stack.

a)
('not-s tore')
Takes the one's complement of the 8 bits of data located in
memory starting at address a. The byte length result is stored
into memory at address a.

a n1 n2
a n1 n2

Converts the
to a number,

n

- f I If conversion is not successful.)
n3 f I If conversion is successful.)

string of length n1 located starting at address a
n3, using base n2.

Format: <name of local variable or integer) off
Sets the value of the local variable or integer specified by
name to zero. The value of the integer or local variable
placed on the parameter stack when the local variable or
integer name was executed is discarded.

n
Format: <name of local variable or integer) on
Sets the value of the local variable or integer specified by
name to negative one.

- 232 -

or

or!

outofroom

over

packforth

page

pemit

playback

playback?

purge

quit

r>

r@

nl n2 n3)
Performs a bit-by-bit logical or using nl and n2.
Returns the 32-bit result (n3) on the parameter stack.

(b a)
(t or-store t)

Performs a bit-by-bit logical OR operation using b and the
byte located in memory starting at address a. The byte length
result is stored into memory at address a.

nl n2 nl n2 nl)
Places a copy of the second item on the stack on top of the stack.

(
If the screen is the current output device, clears the screen
and places the cursor in the upper left corner of the screen.

(char)
('parallel-emit')
Send the character out through the parallel port.

c
Return the next character to be played back.

f
Returns a true (nonzero) flag if there is a character to play
back.

Format: purge <name>
Removes the word specifed by <name> from the dictionary.

{
quit is the word which runs FORTH. Clears the return stack and
puts the system in the interpreting state. After quit is
executed the system will be waiting for user input for user input
to interpret and execute.

(n I return stack: n
('r-from')
Transfers the top item on the parameter stack to the top of
the return stack.

(n)
('r-fetch t)

Puts a copy of the top item on the return stack on top of the
parameter stack. r@ performs the same function as i but r@
is normally used outside of do ... loops.

- 233 -

raddr

ramchecksum

recal

record

recycle

(a)
('return-address')
Copies the return information stored on the return stack.
Uses the return information to calculate the address where the
next token to be executed in the definition at the next higher
execution level is located (calculates the previous location of
the ip pOinter). Used by compile.

n
Recalibrate the disk drive to track O.

c c
Insert the character in the learn string currently being recorded.

n)
Reclaims the token table space for the token 'n'.

recycled token

restore

retop

ringoff

romchecksum

rot

rpJ

rub

safety

same?

(token
recycled token checks to see if any previously assigned tokens
are now available for re-assignment.

a
Lower level word used to open a vocabulary. Moves the upper half
of the dictionary up so that the new top of dictionary is at
address 'a' .

)
Turns off timer interrupts.

(nl n2 n3 n2 n3 nl
(' rate')
Rotates the third item on the stack to the top of the stack.

Erase the previous character on the current line (if any).

a)
Reclaim the token table space for the token whose header
is located at address 'a'.

al a2 n -) f)
Returns a true (nonzero) flag if the first 'n' characters in the
strings located at 'al' and 'a2' are the same.

- 234 -

save?

scanfor

searched

5emit

set-auto

{ }
('save-question-mark')
Aborts if the disk is write-protected.

(c)
Looks for the next word in the current input stream which is
surrounded by the delimiter character, c. Sets the in , str ,
and len system variables.

()
Display the vocabulary search order.

(c
(, serial-emi t ')
Emit the character to the serial port.

Turn on autorepeating for the last key returned.

setcodesize (
Set the code size field for the current open vocabulary.
Set the odd size flag if necessary.

setcur x y

shl

shr

sideD

side!

sign

spY

sp@

space

Position the cursor at x,y.

(nl n2 n3
('shift-left')
Shifts the bits in 'nl' 'n2' bits to the left. Leaves the 32-bit
result, 'n3', on the parameter stack.

(nl n2 n3
('shift-right')
Shifts the bits in 'nl' 'n2' bits to the right. Leaves the 32-bit
result, 'n3', on top of the parameter stack.

Select side O.

Select side 1.

n
If the number on top of the stack is negative, sign will insert
a minus sign into the formatted numeric string being constructed
in the pad .

Emit a space to the current active output devices.

- 235 -

spaces

stepin

stepout

string

stub

sw

swab

swap

(n
Emit 'n' spaces to the current active output devices.

()
Set drive to step in.

Set drive to step out.

Compiling: a n
Executing: a n
Format: " ccc" string <stringname>
At compile-time string creates a named, multi-byte string
storage area in the dictionary and initializes the storage area
with the characters between the quotes. The run-time action
of the child words created by string is to push the address
and length of the string currently stored in the string storage
area on the stack.

Format: stub <name>
Uses create to assign a token to and create a dictionary
header for <name>. Stores a 0 in <name>t s token table entry so
<name> will not have any corresponding code area.

nl n2
Exchanges the lower two bytes of the top value on the stack.

nl n2 n2 nl
Exchanges the top two items on the parameter stack.

sync-shiftkeys

temp

then

thislearn

thp

thru

()
Store the actual physical states of the special keys, as
stored in the system integer shiftstate , into the modifiers
system integer.

Format: if then
if else then
Marks the end of the tif ... then' or 'if ... else ... then' conditional
program control structures.

a n
Return the address and length of the current learn string.

(n
Set up sound generator frequency.

nl n2
Loads block number 'nl' through block number 'n2' from disk.

- 236 -

tier

tip

to

toff

ton

tone

type

U.

U.r

U<

unnest

unpackforth

until

user

The first byte of a multi-byte token is called a tier. The
tiertokens have to be in order. Every 256 definitions in the
dictionary takes up a new tier in the token table. Those tiers are
named tier1 tier2 tier3 up to tier9 (10 times 256 words in the
dictionary). tier is never executed alone.

a
Toggles memory or I/O port location.

n1 n2
Format: n1 <name of local variable or integer) to
Replaces the current value of the integer or local variable
specified by name with the 32-bit value nl. The value placed
on the stack when the local variable or integer name was executed
is discarded.

Turn sound generator off.

Turn sound generator on.

nl n2
Emit sound with the pitch 'n1' for the duration 'n2'.
The duration is specified in ticks.

(a n
Types the 'n' characters located in memory starting at address
'a' out to the current output device.

n
Prints the unsigned value on top of the stack followed by a
trailing space.

n w
Prints the unsigned value 'n' in a field which is 'w' spaces wide.

(ul u2 f
('u-less-than')
Returns a true (-1) flag if the unsigned value ul is less than
the unsigned value u2

)
Used by all words which end program control structures.

f
Format: begin f until
Conditional exit/branching word used at the end of the
'begin ... until' indefinite loop program control structure.

Vocabulary to which all user defined words are added.

- 237 -

vocab

vocab?

vocabulary

voff

von

vopen

w!

w@

wblock

wblocks

Move the current execution vocabulary to the top of the search
order by placing its token at the start of the active array.

n f
Returns a true (nonzero) flag if the token on top of the stack it
the token for a vocabulary. Returns a false (0) flag otherwise.

Format: vocabulary <vocabname>
Create a new, but inactive, vocabulary.

()
(, video-off')
Turn the video display off.

()
('video-on')
Turn the video display on and off.

n a
Returns the address of the opening point for the vocabulary
which corresponds to the token.

{ w a }
('word-store')
The least significant 16 bits of the 32-bit value, b, on the
parameter stack are stored into to memory starting at address a.

w)
(t w-comma')
Stores the word length value 'w' into the next available spot
in the code area of the currently open vocabulary.

(a w)
('word-fetch')
Places the 16-bit value located in memory starting at address a
in the least significant word of a 32-bit value on top of the
parameter stack. The upper 2 bytes (16 bits) are set to zero.

(addr b)
(, wri te-block t)

Write the block of data located in RAM starting at address 'addr'
to block number 'b' on the disk.

(n1 n2 n3 n4
{ 'wri te-blocks ' }
Write 'nl' blocks, starting with block 'n2', to disk from memory
starting at the address of the here pointer.

- 238 -

while

window

wlit

word

words

wtrack

xor

xorl

[

[']

Compiling:
Executing: f
Format: begin while (.•• while again
begin while { while} until
do while {while loop
dO while (while + loop
Inner decision/branching point in the 'begin ..• until' ,
'begin ••• again', 'do ..• loop', or 'do ••• +loop' program control
structures.

{ n
Set FORTH's bottom display line to 'n' where l<=n<=lD.

{ n
('w-lit')
Code definition which transfers the word-length (16-bit) literal
value pointed to by the instruction pointer to the parameter
stack and increments the instruction pointer by 2 bytes. Used
by literal.

)
Looks for the next word in the current input stream which is
surrounded by at least one space. Sets the in, str,
and len system variables accordingly.

Displays a list of all words in the vocabulary which is first in
the search order.

(an)
('wri te-track')
Write track using rAr format to disk.

n1 n2 n3)
Performs a bit-by-bit logical xor using n1 and n2.
Returns the 32-bit result on the parameter stack.

(b a
('exclusive-or-store')
Performs a bit-by-bit logical XOhperation using b and the
byte located in memory starting at address a. The byte length
result is stored into memory at address a.

()
(, left-bracket')
Turns the FORTH compiler on.

(token)
('brac-tick-brac')
Format; <name>
['] must be used within
token for the definition
in the colon definition.

['] <definition-name>
a colon definition. ['] will return the
whose name immediately follows it

- 239 -

[compile] ()
('brac-compile-brac')
Compiles the token of the word which immediately follows
it into the definition currently being constructed.

] ()
('right-bracket')
Turns the FORTH compiler off.

{elsethen} ('curly-else-then')
Lower-level compiling word used by else and then.

{loop} (n1 n2)
(t curly-loop')
Shared routine used by the loop termination words loop ,
+ loop , until and again.

{while} ()
('curly-while')
Shared routine used by the words used to exit from loop
program control structures: while and leave.

- 240 -

active

applic

auto

base

blk

bound

cbuff

char

char?

clockO

clock!

crt

tFORTH SYSTEM INTEGERS
(Alphabetical Listing)

Holds the address of the 'active' vocabulary array.

Holds the address of the next available location in the
header area of the current open vocabulary.

Holds the number used to indicate the numeric base currently
being used for all number I/O.

During the interactive execution of program control structures,
bound is used to hold the start address of the program control
structures code which is to be executed interactively.

Holds the address of the keyboard input circular buffer.

csp Used to hold the return stack pointer which is saved away
before compilation and checked after compilation.

diskerror# Holds the most recent disk error number.

drive Holds the number used to specify the drive type.

dticks Holds count for the disk countdown timer.

edde

end table

execbuf

extant

gticks

gvect

here

I/O flag. If true (nonzero) output should be sent to the
editor.

Holds the end address of the RAM token table.

Holds the address of the vocabulary 'extant' array.

Holds count for a general countdown timer.

Used as a general execution vector.

Holds the address of the next available location in the
code area of the current open vocabulary.

- 241 -

, .,

hId

in

During number formatting, holds the current offset into the
string being constructed in the pad.

Pointer used to mark word's progress through the input stream.
in always holds the address of the next byte to be examined by
word in the input stream.

intexecvees Interrupt execution vectors.

inuse

itx

jdn

kev

kstat

kval

last4thline

lasttok

len

limit

locals

loealvoe

location

loops

Ip

maxblks

Holds the address of the current input text.

Holds the length of the word most recently extracted from the
inpu t stream by word.

Used to hold the end address of the block of text to be
examined by the word interpret .

Used during the compilation of local variables to keep track of
the amotmt of local variable return stack storage space which
is required by the definition currently being compiled. Used
primarily by the words doloe, local, and ; .

Holds the address of the temporary hidden vocabulary used
to hold the names of local vocabularies.

Used during the compilation of local variables to hold the
address of the special, invisible vocabulary used to hold the
names of the loca.l variables used by the word currently
being compiled.

System integer used during the compilation of a 'do' loop
program control structure to hold the amount of return stack
space currently required by the definition being created.
Used primarily by the words do , loop ~ +loop , doloe ,
and ; •

I/O flag. If true (nonzero) output should be sent to the
line printer.

- 242 -

modifiers

nesting

nestype

newest

origin

pad

panicked

ramend

rams tart

System state flag, if true (nonzero) the system is in a
temporary compiling state (for interactive execution of
program control structures). If false (0) the system is in
the interpreting state.

The nestype system integer is used to hold a flag which,
during the compilation of program control structures, holds
a '-1' if the program control structure currently being compiled
is a 'do' loop or holds a '0' if the program control structure
being compiled is a 'begin' loop. Used by the compiling word
{while} .

Holds the header address of the most recently defined colon
definition.

Holds the address of the start of the 'tFORTH' dictionary.

Holds the address of a location 128 (decimal) bytes from the
start of a 384 (decimal) byte scratch location. The pad area
is used by the number formatting operators and by the editor
[CALC] function.

Holds the address of the end of RAM memory.

Holds the address of the start of RAM memory.

ringsoundaddr
Holds the address of a general ring sound routine.

savenest

saves tate

scontcopy

screen Holds the address of the start of displayme'ni'bry.

screensize

ser I/O flag. If true (nonzero) output should be sent to the
serial port. ' ,

soundaddr Holds the address of a general sound routine .-"

soundcount Holds general sound count.

spO Holds the address ,of the base of the parameter stack.

special Holds the address of the keyboard 'special' array.

- 243 -

state

str

strings

targeting

ticks

tokens

vdelay

vticks

x

. .,
y

System state flag t iI': true (nonze~6r system is in the compiling
state. If false (~) the system in the interpreting state.

Each time word gets 'the next word from the input string, it
places the address of the character string in the str system
integer. See the description for the system integer len also.

Flag. If true (nonzero) target compilation is occurring.

Holds time ticks.

One of two system integers used to help in the assignment of
tokens to new words (lasttok is the other system integer used
fer this purpose). See the techical discussion on local
variables.

Holds the address which is one byte beyond the top of
'tFORTH' memory.

Holds the value used to specify how long the video screen
should stay 'on' on an unused terminal.

Holds count for the video countdown timer.

Holds 'tFORTH's column output position.

Holds 'tFORTH's row output position.

-'-,-"

-244 -

"?'d~J)~&fiP~~.~ .. ")D~F~tilliG W9~DS

Defining words are t~~;<~ost powe'~f~l':'~o;:-the"'Forth words because
they allow the. programmer ~tp>"create Jlew ~forth words. The,
defining words which .. hav~,:been.;, used, 'so rai; '(although they'weren' t
categorized as defining,wordsprevio:us'Iy) are : , integer"
string, and Vocabulary .' .. --f . '.

CREATING NEW DEFINING WORDS
I

The words <builds and does> are used to create new Forthdefinfng
words. The word does> (described in "Starting Forth") w~s not
included in tForth since the ability to create new defining words
was not required in the Cat system. However, the second listing
in the appendix shows three words which, when included,in' the'
tForth dictionary, add the ability to create defining w~ids to
the Cat system.

The format for creating defining words with these extensJ9n words
is:

<name>
<builds
does>

... compile time actions .. .

... execution time actions .. .

(Note that in Chapter 11 of "Starting Forth" the word create is
used in place of the word <builds.) Here is how the 'characters'
example found on page 293-295 of "Starting Forth" could be
implemented using <builds and does>

characters n
<builds

does>

dup ,

allot

dup
4 +

swap @

20 characters me
me 20 479AO

)
(Creates a new dictionary entry.)
(Compile the count into the first.
(Position in the child word's.)
(Parameter field for future)
(reference.)
(Allocate count bytes in the code)
(area for the string characters.)
(Marks the beginning of the run-)
(time code, leaves the parameter)
(field address of the child word)
(on the stack at run-time.)
(Copy the parameter field address.
{ Advance the address past the }
(four byte count value to the)
(actual start of the string.)
(Swap the string address with the
(count addr and fetch the count)
(value from the count address.)

- 245 -

hex

When the child word created by characters (me in the above
eXB~ple) is executed, it returns the length of its character
array and the address of its character array on the stack.

Defining the word words:

o integer doesptr (hblds the address of where to patch token)

<builds (
create
4ED3 w,

create the new name)
it will do a nest)

here doesptr to
o w~ (

(remember where the token should go)
and make space for it)

(does» (
raddr
W@

terminate this word and get token addr)
find the compiled token)

does> (

doesptr wI and back patch it)

recycled token (allocate a token)
dup -1 =

abort" out of tokens"
dup 100 <

(and test it first)

abort" must
lasttok to
compile <does»
lasttok w,
align

be a 2 byte token"
{ remember which token it was
{ compile the runtime version of does>
(and the token for the does> code)
(align here pointer on even address)

+table! (and store address of does> part
(nest the does part)

in table here lasttok
4ED3 w,
compile raddr (so doesn't return and so data address is

(on stack)

immediate

test n n addr \ compiles an array with n entries.
runtime takes an entry number and returns the addr for it)

<builds 4 • allot (allocate space)
does>

swap
4 • +

calculate address

- 246 -

