
Technical Docul~nen ta tion
for the Canon Cat Editor

By the Staff of
Inform a tion A ppliance, Inc.

Copyright © 1988
by Information Appliance, Inc.

Copyright Information

Copyright © 1988 by Information Appliance Inc. All Rights Reserved.

LEAP is a registered trademark of Information Appliance Inc.
Information Appliance, Calculation-in-Contexf, and the command
names LEAP AGAIN, DISK and SEND are trademarks of Information
Appliance Inc. Patents Pending.

Canon Cat is a trademark of Canon Inc.

The Cat system is protected by one or more patents pending; all text,
code and circuitry is copyright © 1988 by Information Appliance Inc.

Canon Cat by Jet Raskin, Dr. James Winter, Terry Holmes, Minoru
Taoyama, Jonathan Sand, John Bumgarner, Paul Baker, Jim Straus,
Dave Boulton, Charlie Springer, Scott Kim, Ralph Voorhees, Richard
Kraus, Kouji Fukunaga, Kazuhiro Nakamura, Naohisa SUZUki,
Shigeru Ishida, Susumu Takase.

Manual by David Alzofon, Lori Chavez, Jim Winter, David Caulkins,
Terry Holmes, Minoru Taoyama, Jonathan Sand, John Bumgarner,
Scott Kim.

THIS DOCUMENT IS CONFIDENTIAL AND CONTAINS TRADE SECRETS
AND OTHER PROPRIETARY INFORMATION. ITS DISCLOSURE IS FOR
LIMITED PURPOSES ONLY AND WITHIN A RELATIONSHIP OF TRUST,
AND ITS CONTENTS MAY NOT BE USED. COPIED OR FURTHER
DISCLOSED IN WHOLE OR IN PART WllliOUT THE EXPRESS WRITTEN
P~RMISS!ON OF INFORMATION APPLIANCE INC.

USE OF THE INFORMATION IN THIS DOCUMENT DOES NOT
CONSTITUTE A LICENSE TO USE ANY PROPRIETARY PROPERTY OF
INFORMATION APPLIANCE INC., INCLUDING BUT NOT LIMITED TO
MATERIAL THAT IS PROTECTED BY PENDING OR GRANTED
PATENTS, TRADEMARKS, OR COPYRIGHTS.

THE FUNCTION OF THE SOFr/IIARE DESCRIBED IN n-lIS [)()CUMENT
IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF ANY PROGRAMS
BASED ON THIS DOCUMENT LIES WITH YOU. SHOULD THE
INFORMATION IN THIS DOCUMENT PROVE ERRONEOUS OR
DEFECTIVE, YOU AND NOT INFORMATION APPLIANCE INC. ASSUME
THE ENTIRE RESPONSIBILITY AND EXPENSE FOR ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

About This Manual

This manual includes:
an overview of how each part of the Canon Cat software works
a detailed step-by-step explanation of routines and data structures
a summary of routines and integers

To understand the Cat sofr.Nare, you will also need the tForth Manual.

The software was written in the programming language tForth, a
version of Forth developed at Information Appliance. The sofr.Nare was
developed on early models of the Cat itself. In the production model,
the sofiv.lare is stored in ROM.

Important: This editor features a user interface designed for speed and
ease of use. All modifications and extensions must conform to its
design principles and style in order to maintain user interface integrity.

Devices

Legend
Chapter numb~

Action (cap-USfj Front)

Data structure

Data path

System Overview

Main Flow Commands

Table of Contents

Part I. Editor Basics

The central data structure in the Cat is the
text, which is supported by various pointers
and tables. Characters flow into the text
through the keyboard, and are in turn
displayed on the screen. The screen has
two parts: the text occupies most of the
screen, and the ruler and status line appear
at the bottom.

Part II. Text Commands

The basic commands affect the style of the
text or the position of the cursor. Style and
format commands act on the current
highlight, paragraph or document. Leap and
Drag move the cursor. Copyup duplicates
text onto another disk.

The Undo command is defined as part of
other commands, so does not have a
separate chapter here. The Answer
command is not described in this manual
because it is so rarely used.

Part III. Special Commands

Other commands perform more elaborate
operations on the text, including
communication with external devices. Most
commands maintain their own private data
structures separate from the main text data
structure.

The keyboard routines are described here
instead of in Part I because they are
intimately connected with the Learn
command. Explain, Titles and Set Up write
directly to the screen. Disk, Send and Print
communicate with hardware devices.

Complete Table of Contents

~ Pointers and Data structures 1

~ Text Display 30

~ Ruler/Status Area Display 58

~ The Cursor 72

® What's In the Text 83

® Inserting, Erasing and Copying Text 100

71 Character Style 120
Underline, Bold, Caps

® Paragraph Format 128
Left Margin, Right Margin, Indent, SeVClear Tab,
Paragraph Style, Line Spacing

® Document Commands 148
Document Lock, Local Leap

1J@ Leap 157

1J~ Drag 177

1J~ Copyup 181

~~ The Keyboard Interface and The Learn
Command (including KBI/II) 185

1J~ Sort 212

1J@ Calc 235

~® Spelling Checker 262
Add Spelling, Spell Check Leap

1171 Explain 267

11 ® TItles 269

~® Disk 271

~@ Communications 287
Send, Phone, Send Control

~~ Print 297

~~ Set Up 337

COMPLETE TABLE OF CONTENTS
for

TECHNICAL DOCUMENTATION FOR THE CANON CAT EDITOR

How to Integrate Software Into the Canon Cat
Enabling Forth in the Cat
A Brief Introduction to Forth
Conventions

PART I. EDITOR BASICS (PARTS 1-6)

1. POINTERS AND DATA STRUCTURES

1.0 The Text
1.0.0 What It Is
1.0.1 Where It Is

1.1 Pointers Used to Maintain the Text
1.1.0 The Beginning of the Text Area
1.1.1 The Start of the Gap Region
1.1.2 The Second Partition of Text Data
1.1.3 The Undo, or "Cut" Buffer

i
iii
vi

x

1

2
2
2

4
4
4
7
7

1.2 Control/Format Array 8
1.2.0 Transient Format Information 8
1.2.1 Paragraph Format Information 10
1.2.2 Units Used in the Control/Format Array 11

1.2.2.0 Vertical Positioning Units 11
1.2.2.1 Horizontal Positioning Units 11

1.2.3 Document Format Information 11

1.3 Major Data Structures 13
1.3.0 The Control Table 13
1.3.1 The Window Table 13
1.3.2 The Update Array 15
1.3.3 The Interval Table 15

1.3.3.0 How Control/Format
Information Is Obtained 17
1.3.3.1 More on Intervals 18
1.3.3.2 How the Interval Table Is Used 18
1.3.3.3 The Top Four Intervals 19

1.4 Routines That Affect the Text and Its Pointers 20
1.4.0 Text Maintenance Routines 20
1.4.1 Window Table Routine 20
1.4.2 Update Table Routines 20
1.4.3 Interval Routines 21
1.4.4 Wrap Routines 23
1.4.5 Routines Which Get Specific Control/Format

Information 23

1.5 Pointers and Data Structures Summary
1.5.0 Text Maintenance Integers
1.5.1 Integers Used to Access the
Contents of the #ctrl Array

25
25

26

1.5.2

1.5.3
1.5.4
1.5.5
1.5.6
1.5.7

1.5.1.0 Transient Format
Information Integers
1.5.1.1 Paragraph Format
Information Integers
1.5.1.2 Document Format
Information Integers

Control/Format Array Offsets
1.5.2.0 Line Offsets
1.5.2.1 Format Offsets
1.5.2.2 Document Offsets

Data Structures Integers
Window Table Integers
Interval Table Integers
Wrapping Integers
Unclaimed Intege~

26

26

27

28
28
28
28
28
29
29
29
29

2. TEXT DISPLAY 30

31
31
32
33
33
36
38
39

2.0 A Low-Level
2.0.0
2.0.1
2.0.2

2.0.3
2.0.4

Look At Text Display
Preparing the Text for Display
Special Text Preparation Cases
Editor Character Sets

2.0.2.0 Text Character Set
2.0.2.1 Display Character Set
Screen and Font Dimensions
Drawing Text

2.1 A High-Level Look At Text Display 41

2.2

2.3

2.1.0 Obtaining Display Information 41
2.1.1 Drawing the Display 42
2.1.2 Line Spacing 42
2.1.3 Drawing the Entire Display 45
2.1.4 Drawing Selected Portions of the Display 46
2.1.5 Scrolling the Display 47

Text Display Routines
2.2.0 Low-Level Text Display Routines
2.2.1 Mid-Level Text Display Routines
2.2.2 Utility Words Used by High-Level

Routines
2.2.3 High-Level Text Display Routines

Summary: Integers Used For Text Display
2.3.0 Line Output Buffer Integers
2.3.1 "disp" Integers
2.3.2 Display-Only Characters
2.3.3 Display and Text Characters
2.3.4 Screen Size Integers

- 2 -

49
49
50

Text Display
50
52

54
54
54
55
56
56

., ",

3. RULER/STATUS AREA DISPLAY

3.0 The Ruler Bar
3·0.0
3·0.1

The Ruler Buffer
Displaying the Ruler Bar

3.1 The Status Line
3.1.0 Display of the Status Line
3.1.1 Updating the Current Line Number
3.1.2 Updating the Gas Gauge
3.1.3 Updating the Low Battery Indicator
3.1.4 The Indicator Lights
3.1.5 The Low Battery Light

3.2 Initializing the Ruler/Status Area

3.3 Ruler Display/Update Routines

3.4 Status Line Display/Update Routines

3.5 Ruler/Status Area Initialization

58

59
59
59

61
63
63
63
64
64
65

66

67

68

69

3.6 Summary 70

4.

4.0

4.1

4.2

4.3

3.6.0 Ruler/Status Area Data and Data Structures 70
3.6.1 Offsets into Status Buffer 70
3.6.2 Ruler/Status Screen Positioning Information 70
3.6.3 Ruler/Status Area Update Information 71

THE CURSOR 72

Cursor Routines 73

"Place" Placement Routines 78

Cursor Integers 79

Cursor Placement Integers 81
4.3.0 Integers Which Hold the Current
State of the Editor 81
4.3.1 Integers Which Hold the Previous
State of the Editor 81
4.3.2 Integers Which Hold the Previous
State of the Editor (Used by the
Creeping and Scrolling Routines) 82

- 3 -

5. WHAT'S IN THE TEXT 83

5.0 Standard ASCII Characters and Bare Accent Characters 84
5.0.0 Break Characters 84
5.0.1 Finding Character Data 84

5.1 Overstrike Characters 86

5.2 Text Marker Characters 87
5.2.0 Character Style Markers 87
5.2.1 Gap "Skip" Markers 87
5.2.2 Paragraph Format Packets 89
5.2.3 Manipulating Paragraph Format Packets 89
5.2.4 Document Format Packets 90
5.2.5 Manipulating Document Format Packets 91

5.3 Finding Data in the Text 92

5.4

5·5

Routines Which
5.4.0
5.4.1
5.4.2
5.4.3
5.4.1'
5.4.5
5.4.6

Summary
5·5.0
5.5.1
5.5.2
5.5.3

Interact with the Special Data in the Text
Handling Skip Data
Finding ASCII Data
Finding Data
Analyzing ASCII Data
Handling Attribute Data
Getting Information About Format Packets
Moving Format Packets Around

Break Characters
Text Markers
Character Code Limit Values
Format Packet Values

6. INSERTING, ERASING, AND COPYING TEXT

6.0

6.1

Inserting Text
6.0.0
6.0.1
6.0.2
6.0.3

Erasing Text
6.1.0
6.1.1

Checking the Attribute State
Gathering Characters
Inserting Characters into the Text
Redisplaying the Text

Preparing for Text Removal
Gobbling Text

6.1.1.0 Checking the Selection Length
6.1.1.1 The Relationship Between Break
Characters. Paragraph Format Packets,
and the Text
6.1.1.2 Checking for Format Packets
in the Selection
6.1.1.3 Finishing Up the Gobble
6.1.1.4 Undoing a Gobble
6.1.1.5 Undoing an Ungobble
6.1.1.6 Removing a Selection

- 4 -

93
93
93
94
94
95
95
97

99
99
99
99
99

100

101
101
102
104
105

106
106
107
107

108

111
111
112
112
112

6.2 Copying Text

6.3 Routines Summary
6.3.0 Insert Routines
6.3.1 Erase Routines
6.3.2 Copy Routines

- 5 -

113

114
114
115
118

PART II. TEXT COMMANDS (PARTS 7-12)

7. CHARACTER STYLE: UNDERLINE, BOLD t CAPS

7.0 Preparing to Change the Character Style

7.1 To Style or Not to Style

7.2 Changing the Character Style

7.3 Undoing a Character Style Command

7.4 Routines Summary
7.4.0 Bold and Underline Command Routines
7.4.1 Caps Command Routines
7.4.2 Words That Alter the Character Data

8. PARAGRAPH FORMAT

120

121

122

123

124

125
125
126
127

128

8.0 General Discussion 129
8.0.0 Paragraphs and Paragraph Format Packets 129
8.0.1 The Paragraph Formatting Routines 129

8.1 Four Steps to a New Paragraph Format 131

8.2 Four Steps to a Default Paragraph Format 133

8.3 Obtaining New Format Settings 134
8.3.0 Obtaining a New Line Spacing Setting 134
8.3.1 Obtaining a New Paragraph Style Setting 134
8.3.2 The Vertical Formatting Bar 135
8.3.3 Obtaining a New Left/Right Margin or
Indent Setting 135
8.3.4 Obtaining New Tab Settings 135
8.3.5 Example of a Command That Uses
the Vertical Bar 136

8.4 Paragraph Format Commands Routines Summary 137
8.4.0 Paragraph Format Commands Words 137
8.4.1 Low-Level Paragraph Formatting Words 140
8.4.2 Tab Routines 142

8.5 Paragraph Formatting Integers 145

8.6 Scan Codes for the Paragraph Format Keys 146

8.7 Default Paragraph Format Setting~~ 147

- 6 -

9. DOCUMENT COMMANDS

9.0 The Document Lock Command

148

149

149
150
150

9.0.0 How Document Lock Affects Document
Format and Calc Packets
9.0.1 Undoing the Document Lock Command
9.0:2 Words That Check the Lock State

9.1 The Local Leap Command 151

9.2 Updating Document Format Packets 152

9.3 Routines Summary 153
9.3.0 Locked Document Routines 153
9.3.1 Document Format Packet Update Routines 155

10. LEAP

10.0 The Boyer-Moore Fast String Search Algorithm
10.0.0 The Pattern Table

157

158
159

10.0.1 The Character Equivalence Table
(maptable)
10.0.2 A Step-by-Step Explanation
of the Algorithm
10.0.3 Handling Accent Characters

160

161
163

10.1 The Leap Mechanism 164
10.1.0 Initializing a Leap Operation 164
10.1.1 Leaping Around the Text 164

10.1.1.0 Low-Level Search Routines 165
10.1.1.1 Searching for Single Page Breaks 165

10.1.2 Scroll Again 165
10.1.3 Spell Check Leap Again 166
10.1.4 Search Again 166
10.1.5 Finishing a Leap Operation 166
10.1.6 Shift-Leap Scrolling 166
10.1.7 Creeping 167
10.1.8 Other Leap Terminations 167

10.1.8.0 Highlighting a Selection 167
10.1.8.1 Dragging a Selection 167
10.1.8.2 Successful Spell Check Leap 167
10.1.8.3 Successful Leap 168

10.2 Leap Routines Summary 169

10.3 Leap Integers 176

- 7 -

11. DRAG 177

Drag Rou tines 178

12. COPY-UP 181

12.0 Copy-Up Step-by-Step 182

12.1 Copy-Up Routines 183

- 8 -

PART III. SPECIAL COMMANDS (PARTS 13-22)

13. THE KEYBOARD INTERFACE AND THE LEARN COMMAND 185

13.0 Keyboard Interface Terminology and Data Structures 186
13.0.0 Scanning the Keyboard 186
13.0.1 Keyboard Event Queue 186
13.0.2 Special Keys 189
13.0.3 Keyboard Translation Table 190

13.1 Processing Key Press Information 192
13.1.0 Returning Character Information 192

13.2 Types of Key Information 194
13.2.0 Real Key Information 194
13.2.1 Recorded Key Information 194

13.3 Obtaining Key Information

13.4

13.3.0 The Key-State Environment
13.3.1 Setting Up the Editor Key State
13.3.2 Getting the Character

The Learn
13.4.0
13.4.1
13.4.2
13.4.3
13.4.4
13.4.5
13.4.6

Command
Learn Strings
Important Learn Integers
Recording a Learn Sequence
Terminating a Learn Recording
Phrase Storage
Playing Back a Learn Sequence
Inserting Stored Phreses

13.5 Forth Keyboard Routines Summary
13.5.0 Preparing Keypress Infor ,ation
13.5.1 Obtaining Keypress Information
13.5.2 Autorepeat Routines
13.5.3 Words Which Check and Affect
the Shiftkey and Modifiers States

13.6 Learn Routines Summary

13.7 Keyboard Integers Summary

13.8 Learn Integers Summary

13.9 Learn Strings Creation

- 9 -

196
196
196
197

198
198
198
198
199
199
200
201

202
202
202
203

203

206

208

210

211

14. SORT 212

14.0 Introduction to Records, Fields, and Key Fields 213

14.1 Introduction to the Code for the Sort Command 214

14.2 Finding the Key Field to be Used 215

14.3 Adjusting the Highlighted Text in Size and Content 216

14.4 Constructing a Description of the Highlighted Text 217

14.5 Reordering the Sort Entries 220

14.6 Rearranging the Text to Match the Reordered
Sort Entries

14.7 Undoing the Sort Command

14.8 Sort Routines Summary
14.8.0 Sort Preparation Routines
14.8.1 Low-Level Sort Routines
14.8.2 Sort Comparison Routines
14.8.3 Shuffle Routines
14.8.4 High-Level Sort Routines

14.9 Sort Integers Summary

15. CALC

15.0 Calc Command Glossary

15.1 Structure of Calculations in the Text

15.2 Structure of Compiled Expressions

15·3 Executing
15.3.0
15.3.1
15.3.2
15.3.3
15.3.4
15.3.5
15.3.6
15·3.7

the Calc Command
Recalculation
Calc Command Logic
Pushing (Compiling Expressions)
Operator Precedence
Literals
Names
Operators
Sums

15.3.8 Relative Addressing
15.3.9 Recursive Descent Example
15.3.10 Popping

- 10 -

223

224

225
225
227
228
229
231

233

235

236

242

245

247
247
250
250
251
252
252
252
252

253
254
256

15.4 Arithmetic and Functions
15.4.0 ' The Arithmetic Stack
15.4.1 The Arithmetic Operators
(+. -, *, /, %, and Logical Operators)
15.4.2 Functions -- abs, into sqrt
15.4.3 Relative References and Sums

15.5 Support for Erase, Copy, Document Lock,
Copy-up, Getforward and Receive

15.6 Error Handling

15.7 Layout of the Calc Code

16. SPELLING CHECKER: ADD SPELLING, SPELL CHECK LEAP

16.0 Spell Check Leap

16.1 Add/Delete Spelling

16.2 Spellcode Interface

17. EXPLAIN

Explain Command

18. TITLES

Titles Command

19. DISK

20. COMMUNICATIONS: SEND, PHONE, SEND CONTROL

20.0 Phone Command
20.1 Receive Routines
20.2 Send Command
20.3 Send Control and Send Password Commands
20.4 Communications Routines

- 11 -

257
257

257
258
258

259

260

261

262

263

26"

266

267

268

269

270

271

287

288
289
291
292
293

21. PRINT

21.0 Maintaining Printer Independence

21.1 Printer Command Strings

297

298

299

21.2 Printer "Knowledge" 301

302
302
303
303
303

21·3 Character
21.3.0
21·3.1
21.3.2
21.3.3
21.3.4

Selection
Printer Tables
Handling Character Set Exceptions
Simple Characters
Overstruck Characters
Weird Characters and

the 'weirdprint Execution Vector
21.3.5 Fx80 Character Selection
21.3.6 Daisy Wheel Character Selection
21.3.7 LaserBeam Character Selection
21.3.8 BJ80 Character Selection

303
305
305
305
305

21.4 Print Table Patching 306
21.4.0 Daisy Wheel Print Table Patching 306
21.4.1 BJ80 Print Table Patching 307

21.5 Paper Length 308

21.6 Printing Text 309

21.7 Printing Routines 310
21.7.0 Print Data Tables 310
21.7.1 Daisy Wheel Exception Data Tables 311
21.7.2 Print Table Construction Words (Used
at Compile Time) 312
21.7.3 Basic Printer Driver Words 313
21.7.4 Vertical Paper Motion 315
21.7.5 Character Rendering 317
21.7.6 Horizontal Motion Control 319
21.7.7 Printing a Line of Text 320
21.7.8 Main Print Words 323
21.7.9 Printing Initialization Words 325
21.7.10 Setup Export Words 327
21.7.11 Print Spooling Export Words 328

21.8 Print Strings 330

- 12 -

21.9 Printer Integers 333
333
333
334
334
335
335
335
336
336

22. SETUP

21.9.0 . Printer "Knowledge" Integers
21.9.1 Page Logistics Integers
21.9.2 Print State Integers
21.9.3 Unbuild Integers
21.9.4 Printing Integers
21.9.5 Character Selection Integers
21.9.6 Printer Execution Vectors
21.9.7 Setup Integer
21.9.8 Print Integers (Constant)

337

22.0 Setup Data Structures 338
22.0.0 The Token and Data Vectors 338
22.0.1 The Group Array and Logic Flow in Setup 338
22.0.2 Setup Data Initialization 339
22.0.3 Displayed Screen Data 339
22.0.3 Printer Selection 339
22.0.4 Condensed Printer Setup Groups 339

22.1 Setup Target Compiler Integers and Support 341

22.3 Setup Integers, ROM Arrays and Pointers 341

22.4 Setup Command, Ordinary RAM Vectors 344

22.5 Setup Command. Target Compiler Support 344

22.6 Setup Arrays and Integers
22.6.0 Setup Command ROM Arrays
22.6.1 Setup Command Zero Integers
22.6.1 Setup Command Integers

22.7 The Default Country Setup Data

22.8 Setup Words

- 13 -

345
345
345
346

347

348

HOW TO INTEGRATE SOFTWARE INTO THE CANON CAT

Products designed by Information Appliance Inc. (IAI), such as
the Canon Cat, have a number of unique features. One of them
that directly affects third-party software development is the
principle of editor-based software.

In most microprocessor-based products, the user shifts between
applications by returning to the operating system, indicated by a
menu with a number of choices (or, equivalently, a window with a
number of icons.) Then the user chooses the next application.
Once having entered the application, the user gets the data on
which to work.

In an IAI interface, the data stays in place at all times so that
the user can concentrate on content rather than on the system.
As commands are given, different "applications" come to bear on
the user's text or graphics (there are graphics primitives in the
Cat, although the built-in software does not use them). This is
possible due to our unified data structure which is -- all at the
same time -- a text, a data base, a spreadsheet, and a
programming environment.

The user has a much simpler mental model with the IAI interface
than with traditional products, since invoking an application
looks just like another simple editor command. The user does not
have to work with a number of different editors, one for each
application. This is an improvement over the Macintosh, for
example, in that with the Macintosh model each application must
recreate (using provided routines) an interface that is similar
to that of other applications.

When developing new applications for the Cat, it is easiest, both
on the programmer and the user, to make your application look
just like the existing built-in software. When your application
needs to get information from the user, it generally asks a
question. This can be done by sending the question to the
screen, perhaps surrounded by a few blank lines so that it is
visible. If the user finds that the question has come out in an
awkward place (say, in the middle of a letter), then the user can
always delete the question or move it elsewhere.

A typical question for an accounting package might be:

Name of account?

When this appears, the application should wait for a response to
be sent to it by the ANSWER command (USE FRONT-ERASE). Thus the
user is free to employ any and all the features of the Cat in
creating the answer, for example, they might leap to their
account area, or even change disks or perform a calculation to
find the information they need. The idea here is to leave the
full power of the Cat available at all times.

- i -

When the user has formulated the answer to the question your
application has asked, they highlight it and use the ANSWER
command. At this point, your application is in control again and
can do what it wishes until it asks its next question.

This "loss of control" after a question has been asked will
disturb some designers who are used to a forcefully directed
dialog with the user. However, research has shown that users
work better if they can do tasks at their own speed, and if they
are in control. There is nothing more annoying than a program
that demands an answer and won't let you use the system (say for
looking up a phone number you need right now) until you are
finished answering the computer's question -- a task that might
take a few minutes if you have to look up something that's in a
file cabinet somewhere.

One secret of the Cat's utility is that all abilities are
available simultaneously and instantaneously. If your
application has a number of features or areas, then allow the
user to create a message which activates them when desired (the
messages sent to your application via the ANSWER command, of
course. One set of messages might be: "AR" to activate the
accounts receivable package, "AP" to activate the accounts
payable package, and "GL" to run the general ledger package.
Once in any of these packages, the dialog would work as already
described.

Notice that you do not have to write any I/O editing routines.
You can simply send strings to the screen, and receive strings
(edited by the user). Naturally, your application may need to do
error checking, but when an error is detected, you can just send
a string to the screen with the message, the user can edit their
previous response using the Cat's built-in editor, and resend it
to your application.

Following this protocol will keep the Cat feeling like a Cat, and
will be least disruptive to a user's habits. It is also very
easy and quick to create application interfaces this way.

- ii -

Jef Raskin
13 September 1988

ENABLING FORTH IN THE CAT

Forth is normally hidden away, inaccessible in the Cat. However,
with a simple incantation you can "enable Forth," making it
possible to switch from the Cat's editor to a Forth programming
environment, or to run Forth programs from the Cat's editor with
the ANSWER command. Forth enablement is associated with a given
disk and text. If you enable Forth, record the text, change to a
non-enabled disk, then Forth will no longer be enabled.

Remember to exercise caution whenever Forth has been enabled.
For example, a nonprogrammer may be trapped in Forth if they
accidentally press the key combination SHIFT-USE FRONT-SPACE BAR
while editing the text on a Forth-enabled disk. The key
combination USE FRONT-SEMI-COLON will erase the disk in the drive ---if Forth is enabled. Other pitfalls exist. SO, PROCEED WITH
CAUTION IF YOU ENABLE FORTH. READ THE DISCLAIMER AT THE
BEGINNING OF THE MANUAL.

HOW TO TURN ON FORTH

We will now explain how to turn on Forth, and, equally important,
how to turn it off:

1. To turn on Forth in a Cat, type the following phrase (be sure
to capitalize "E", "F", and "L"):

Enable Forth Language

2. Highlight these three words.

3. Hold down the USE FRONT key and, while holding it, tap the
ANSWER key (ERASE). Then let go. This executes the ANSWER
command, enabling Forth. You are not yet in Forth.

4. Now hold down the USE FRONT key AND the SHIFT key, and, while
holding BOTH keys, tap the SPACE BAR. You are now in the
Cat's Forth editor.

5. Type the following and press the RETURN ke~; (the let ters will
automatically appear in boldface):

-1 wheel! savesetup re

This step allows you to enter Forth simply by pressing
SHIFT-USE FRONT-SPACE BAR from now on.

To enable easy access to Forth with Step 4 only, make some
change to a Setup parameter, then use the DISK command. This
will save the Forth enabling information on the disk.
Whenever you play back this disk, you can then enter Forth
using only the procedure of Step 4.

- iii -

6. To turn off Forth, type the following and press RETURN key:

Forth? off 0 wheel! re

Make some change to a Setup parameter, then use the DISK
command. This restores the Cat to normal operation, meaning
that you will have to start over at step 1 again to invoke
Forth. Normal Cat users will not be trapped in Forth in case
they happen to accidentally press SHIFT-USE FRONT-SPACE BAR.

TALKING TO tFORTH

tForth is hiding in the background of every Cat system. It is
very easy and convenient to communicate with tForth from within
the editing environment.

SENDING COMMANDS TO tFORTH

Once Forth has been enabled (see the previous page), commands and
programs can be sent to tForth from the editor by highlighting
the desired command string or program listing and pressing
[ERASE] while holding the [USE FRONT] key down. tForth's
responses will be printed out in the editor.

All examples in this manual are expected to be typed into the
editor and "sent" to tForth in this manner. All examples
presented are set off from the body of the text by two blank
lines and are indented:

3 dup 3 3

A section of the above example was underlined. In an example,
the underlined sections are the sections of the text which should
be highlighted and passed to tForth by pressing the [USE
FRONT][RETURN] key combination. After the above example was sent
to tForth, tForth responded by printing two 3's on the screen.

USING THE CALC COMMAND TO TALK TO tFORTH

Commands and programs can also be sent to tForth with the use of
the [USE FRONT] [CALC] key combination. When this method is
used, all command strings or program listings sent to tForth must
be preceded by a "]" character:

]3 dup 3 3

The above example produced the same results as the [USE FRONT]
[RETURN] example. The [USE FRONT][CALC] method is not used in
this manual.

- iv -

ERRORS

The [USE FRONT][RETURN] is used to let Forth know it should start
'processing' any highlighted words. If Forth ever has a problem
processing an input, a beep will be issued. To see the error
message press the [EXPLAIN] key while holding the [USE FRONT] key
down. For example, if tForth is sent the following input:

How now brown cow?

it will beep and [USE FRONT][EXPLAIN] will reveal a "can't use"
message. This is the error message which occurs when tForth is
sent a command it does not recognize.

CAUTION: ALWAYS RECORD YOUR EDITOR TEXT ON DISK BEFORE DIRECT
EXECUTION OF tFORTH WORDS. IT IS VERY EASY TO MAKE PROGRAMMING
MISTAKES WHICH COULD PERMANENTLY DAMAGE THE DOCUMENT.

- v -

A BRIEF INTRODUCTION TO FORTH

The Forth language is comprised of many "words" (commands). This
collection of words is referred to as the "Forth dictionary."
The tForth dictionary contains approximately 600 words. The list
below shows a few Forth words and the actions they perform:

emit

+

words

if
then

@

Takes a number and displays the corresponding
ASCII character on the screen.

Adds two numbers together and returns the
result.

Produces a listing of all available words.

Words used to implement the IF ... THEN
program control construct.

Fetches a 32-bit value from memory.

As the list shows, a Forth word can either have the format of a
"normal" word (a sequence of letters), or it can be a punctuation
mark, a sequence of punctuation marks, or a mixture of
punctuation marks and characters. In a Forth program, all words
must be separated from each other by at least one space, tab, or
carriage return. In this document Forth commands will be shown
in boldface. For example:

"The Forth word words will produce a listing of all available
words."

Note: tForth is case-sensitive. This means that tForth thinks a
capital W is different than a lowercase w. Thus tForth will
think Words is a different command than words.

If the pronunciation of a Forth word is unclear, it's first usage
in the text will be followed by the natural language
pronunciation enclosed in quotes and parentheses. For example:

To take a number off of the parameter stack
and display it, use the word ("dot").

EXECUTING A FORTH WORD

Most of the words in the Forth dictionary may be executed
directly and immediately, from the keyboard. The example below
shows how the Forth word emit could be used to display an
asterisk character on the screen. In the example, the underlined
type is used to indicate which commands should be highlighted and
sent to tForth. The normal type is used to show Forth's
responses.

- vi -

ERRORS

The [USE FRONT][RETURN] is used to let Forth know it should start
'processing' any highlighted words. If Forth ever has a problem
processing an input, a beep will be issued. To see the error
message press the [EXPLAIN] key while holding the [USE FRONT] key
down. For example, if tForth is sent the following input:

\

How now brown cow?

it will beep and [USE FRONT][EXPLAIN] will reveal a "can't use"
message. This is the error message which occurs when tForth is
sent a command it does not recognize.

CAUTION: ALWAYS RECORD YOUR EDITOR TEXT ON DISK BEFORE DIRECT
EXECUTION OF tFORTH WORDS. IT IS VERY EASY TO MAKE PROGRAMMING
MISTAKES WHICH COULD PERMANENTLY DAMAGE THE DOCUMENT.

- v -

Note: Do not confuse the underlined commands in the examples
with the underlined Forth words in the text. In the examples the
underlined commands are those commands which should be
highlighted and sent to tForth with the ANSWER command.

42 emit *

emit , as was described above, is a Forth word which will display
the character which corresponds to the ASCII value passed to it.

COMPILING FORTH WORDS

The interactive execution of emit in the previous example did not
cause any code to compiled. The Forth word : ("colon") is 1.,sed
to turn the Forth compiler on:

printstar 42 emit

The above example shows how a new word may be added to the Forth
dictionary. The word which immediately follows (printstar
in the above example) is the name which will be assigned to the
new word. The Forth words following the name and preceding the

will be compiled into the new definition; these are the words
which define the actions of the new word. Since the action words
for printstar are 42 emit, printstar will print an asterisk when
executed. The word; ("semi-colon") is used to turn the compiler
off and return to the interactive execution mode.

Note that in this example, sending the input to Forth did not
cause the asterisk to be displayed. Since the Forth compiler was
"on" when the "42 emit" was typed, the 42 emit was compiled
rather than executed. Forth was able to successfully compile the
new definition so no error beep was issued. Forth is an
"incremental compiler"; code is compiled definition by
definition; compilation is triggered by each reception of a line
of input.

THE FORTH PARAMETER STACK

Forth is a stack-based language. Any Forth word which takes an
input will expect to find its input paramete on the Forth
parameter stack when it executes. Any Forth word which returns a
value will leave the value on the parameter stack when it
completes execution.

The parameter stack, and stacks in general, are functionally
similar to the spring-loaded stack of plates which can be found
at most institutional kitchens. Whenever a plate is taken from
the stack, it is always taken from the top of the stack of
plates. Whenever a plate is added to the stack, it is always
added to the top of the stack of plates. A person who does not
want the steaming hot plate on top of the stack must remove the
top plate before the second plate can be accessed. If no plates
are available, the stack is empty.

- vii -

The Forth parameter stack works the same way as the stack of
plates, except the Forth parameter stack is set up to hold
numeric values rather than plates. Also, just as the kitchen
stack was designed for a certain plate size, the Forth parameter
stack is designed for a certain numeric value size (the plate
size of the tForth parameter stack will be discussed later).

INTERACTING WITH THE PARAMETER STACK

To put a number on the parameter stack, send the number to Forth:

34

To take a number off the parameter stack, use the word drop. To
take a number off the parameter stack and display it, use the
word ("dot") :

34

To place more than one number at a time on the stack, send the
numbers, separated from each other by a space or spaces (so that
Forth knows they are distinct numbers), to Forth:

368

Now there are three numbers on the stack. If. is used, it will
take the top number off the stack and display it. Since the 8
was the last value placed on the stack, it will be the top value
on the stack:

8

To place more than one number on the stack at a time, the numbers
were separated by spaces and sent to Forth. This is the same way
Forth commands (words) work. To take both of the remaining
numbers off the stack, the word . can be used twice on the same
line:

6 3

Forth's response should be read left to right. The 6 is the
result of the first use of The 3 is the result of the second
use of

Note what happens if . is used again:

. 0

You should hear a beep as. tried to remove a value from an
empty stack and Forth responded by displaying a zero, beeping and
issuing a "stack is empty" error message.

- viii -

PASSING PARAMETERS TO FORTH WORDS ON THE STACK

Many Forth words take input parameters from the stack and return
results on the stack. The Forth word + ("plus") is a good
example of such a word:

54+ 9

+ takes two numbers from the stack (the 5 and the 4 in the above
example), adds them together and returns the single number result
on the stack. In the example, . was use to display the result
returned by +

SUMMARY

*

*

*

*

Forth programs are developed by creating new
words out of previously existing words.

The parameter stack is the primary means of
communication among Forth words.

The Forth language does not have many syntax
requirements. This gives the experienced programmer
great control over the computer but can make it
difficult for beginning programmers to locate mistakes.

The interactive abilities of Forth make it a hard-to-beat
debugging environment. Each word can be tested
individually and interactively.

This is the end of our brief introduction to the Forth language.
For more introductory Forth reading, refer to the first chapter
of Starting Forth, by Leo Brodie (Prentice-Hall, Inc., Englewood
Cliffs, NJ 07632, 1981).

- ix -

CONVENTIONS

Convention Meaning

Boldface Forth

Underline Variable

$ Hex

Example

LBPfix

I! choices

$4E

- x -

Meaning of Example

The Forth word "LBPfix"

An as yet
unspecified number
of choices, to be
fixed when the given
operation is carried
out.

"4E" is a hex number.

1. POINTERS AND DATA STRUCTURES

Introduction

The data maintained by the Cat editor is kept in an area called
the text. The addresses of important areas or locations in the
text are kept in many system integers. The basic data structure
used to hold formatting information about the text is called a
control/format array. The three main data structures used to
maintain the text, the #ctrl array, the window table, and the
interval table are each comprised of one or more control/format
arrays.

1.0 THE TEXT

1.0.0 What It Is

The text contains all of the characters, calculations, and
formatting information the user enters into the editing
environment. The text contains several types of organized data:

ASCII character codes
character attribute information
paragraph format information
document format information
calculation data

The editor's only function is to alter, maintain, and display
this data. This section of the manual will discuss the lower
level constructs which allow the editor to function properly and
quickly.

To manage the text within its allocated area of memory, the
editor relies upon many system integers which contain pointers to
key locations in the text. Examples of key locations are

where the text starts and ends
which character in the text the cursor is currently over
where new characters typed in by the user should be inserted.

The editor data structures give meaning to the text data. The
fields in the data structures give the editor information on how
the character data should be displayed.

1.0.1 Where It Is

The text is located in the Cat's RAM space. The current Cat
system has 384K of RAM located starting at address $400,000. The
following diagram (1.1) shows where in the RAM space the text is
located.

- 2 -

1. 1 Cat RAM Allccations

Data Storage

I The Text

t t t
$4COOOO $4200(0 $46CCOO

-3-

1.1 POINTERS USED TO MAINTAIN THE TEXT

The following diagram (1.2) shows a close-up of the text area and
describes some of the pointers used to maintain the RAM text area.

1.1.0 The Beginning of the Text Area

The text system integer holds the address of the very first byte
of text data in the first text partition. The bot, or
beginning-of-text, system integer holds the address of the first
byte of the user's text data. The memory between the two
addresses is used as a buffer zone between the start of the
allocated text area and the start of the actual text data. The
start buffer zone is filled with eight carriage return characters.

1.1.1 The Start of the Gap Region

The text data is broken into two pieces. Sandwiched between them
is a region of memory referred to as the~. All unused space
allocated to text is located in the gap.

The gap system integer holds the address of the start of the
gap. The existence and location of the gap help contribute to
the quick response of the editor in many situations. For
example, the start of the gap is usually adjacent to the
character in the text which is marked with the cursor. This
means new characters typed in can be placed directly into the gap
region and instantly appended to the end of the first partition
of text without any movement of the rest of the text daLa.

The bas, or beginning-of-selection, system integer holds the
address of the first character in the current selection. If the
selection is extended, that is, if more than one character is
highlighted, bas will hold the address of the first highlighted
character in the selection. If the selection is not extended
(one character highlighted), and if the cursor is wide, bos will
hold the address of the character seen in the non-blinking half
of the cursor. When the cursor is narrow, the bos will hold the
address of the character under the narrow cursor. When the
selection is not extended the bas will point to the address of
the last character in the first partition of text data, that is,
the bas pointer and the gap pointer will be right next to each
other (see the following diagram, 1.3).

- 4 -

,
"" ,

low
memory

t t
text bot

12 The Text

... and the pointers used to maintain it.

high

the gap .. .: ______ , ... , -

tt t tt t t
OOsgap lXJJ EDJ beat eat end text

integer name

text
bot
bas
gap
bou
eou
eos

beat
eat

endtext

t
eos

integer contents

address of the absolute start of the RAM text area.
address of start of user texll,;ata.
address of beginning of selection.
address just beyond end of first partition of text.
address of the beginning of the undo buffer.
address of the end of the undo buffer.
address of the end of selection.
address of the beginning of the end (2nd partition) of text.
address of the end of the user text data.
address of the absolute end of the RAM text area.

1.3 Cursor Logistics

Wdecursor:

te~ fling

tt t
OOsgap eos & beat

Narrow cursor:

te~ ting

tt t
tDs gap eos & beat

Extended selection: estin :.

testin m
t t t

In; gap eos & beat

-6-

1.1.2 The Second Partition of Text Data

The start address of the second text partition is held in the
beot, or beginning-of-end-of-text, and eos, or end-of-selection,
system integers. If the cursor is wide, eos will hold the
address of the character under the bl::";lking portion of the
cursor. If the cursor is narrow, eos will hold the address of
the character which immediately follows the narrow cursor. The
words eos and beot hold the same address except while a Leap key
is down and a successful leap is in progress; in other words
while the cursor is no longer where it was when the Leap key was
first helc down (see the following diagram, 1.3).

The eot, or end-of-text, system integer holds the address of the
last byte of user text data in the second text partition. The
endtext system integer holds the address of the last memory
location in the RAM text area. The area between the eat and
endtext pointers forms a buffer area between the end of the
user's text and the absolute end of the RAM text area. The end
text buffer holds 30 carriage return characters.

1.1.3 The Undo, or "Cut" Buffer

The last area of interest in the RAM text area is the
area. The undo buffer is located in the gap region.
address of the undo buffer is kept in the bou, or
beginning-of-undo-buffer, system integer. The eou, or
end-of-undo-buffer, which is defined as

: eou (-> a) beet 4 - ;

undo buffer
The start

is used to find the end of the undo buffer. The undo buffer is
relocated whenever the ees position changes, that is, after a
successful leap or creep. The undo buffer holds information
(text, formatting info) required in order to undo an operation.
Whenever information needs to be placed in the undo buffer the
bou pointer is repositioned so that the undo buffer becomes just
large enough to hold the desired information.

- 7 -

1.2 CONTROL/FORMAT ARRAY

The control/format array is the basic structural unit used in the
Cat editor. A single control/format array holds esize bytes of
formatting information pertaining to a particular line in the
text. The three main data structures used by the editor
(described below) each consist of one or more control/format
arrays.

"
Three basic types of formatting information are kept in the
control/format array:

~ransient format information
paragraph format information
document format information

The structure of a control/format array is shown in the following
diagram (1.4). The names of the fields, their hexadecimal array
offsets (in bytes), and a description of their contents are
listed below.

1.2.0 Transient Format Information

Transient format information is volatile format information which
must be "calculated" each time it is requested. The transient
information in the control/format array can become obsolete as a
result of a single character insertion or deletion. If a
character insertion/deletion moves the cursor to a different line
or page, the line and line start information, or page information
will immediately become invalid. The contents of most of the
transient format information fields are described sufficiently
below. The use of the %spr field is explained in the section on
text display. "Global" means relative the the bot.

Name Offset

%page 00

%pgl 04

%wr 08
%In OC
%ln1 10

%spr 12

Description

The global page number in which this line is
located
The local page number (within the current
document) in which this line is located
Address of the first character in this line
The global line number for this line
The local line number (within the current
page) for this line
Can hold one of four values: O. 1, 2, 3.
Used by the words responsible for displaying
lines of text

0: Display a real line of text
1: Do nothing
2: Display one blank half-line
3: Display one blank half-line

- 8 -

Transient Fonnat
Infonnation

Paragraph Format
Infonnation

Document Fonnat
Infonnation

1.4 Contro/IFormat AlTay

00

02

04

08

OA

OC

OE
OF
10
11
12
13
14

16

2A
2B
2C 1--------1

20
2E 1---------1

.. ::::::·{unused}

30

32

34

Total == 38 hex bytes

%page

%pgl

%wr

%In

%Inl

%spr

%Isp
%oldlsp
%1 eft
%wide
%indent
%iwide

'%just

%tabs

%Iong

%above
%below
%Iock

%ipage

%iprint

1.2.1 Paragraph Format Information

The paragraph format information fields hold values which control
how the characters in the paragraph should be placed on the
screen when they are displayed. A paragraph is a section of text
surrounded by a break, that is, a carriage return, page break, or
document break. For example, the %left field holds the width of
the left margin, expressed in units of half spaces. The display
routines will use the contents of the %left field when they need
to determine where the first character on a line should be placed.

Offset

%lsp 14

%left 15

%wide 16

%indent 17

%iwide 18

%just

%tabs lA

Description

Local line spacing. Can hold one of three
values: 2, 3, 4. Used by the words
responsible for displaying lines of text

2: Single-spaced text
3: 1! spaced text
4: Double-spaced text

Current left margin width, expressed in half
spaces. 0 <= n <= 158

Width of the text area, expressed in half
spaces. 2 <= n <= 160

Indent distance for this line, expressed in
half spaces. 0 <= n <= 158

The width of the text area on an indented
line

Paragraph Style

0: Normal, left-justified, ragged right
1: Right-justified, ragged left
2: Centered, ragged left and right
3: Justified left and right

Two 80-bit bit arrays. The screen is 80
full spaces wide. The state of each bit in
the first bit array indicates whether the
corresponding space on the screen has a tab
associated with it. The second bit array
indicates whether the corresponding space
has a decimal tab associated with it.

- 10 -

1.2.2 Units Used in the Control/Format Array

1.2.2.0 Vertical Positioning Units

All vertical positioning of text is based on the unit of a
half-line. Half-lines are 1/2 the thickness of a line of text.
The Cat editor supports three types of line spacing: single, 1~,

and double. Depending on the line spacing currently selected,
zero, one, or two half-lines will be inserted between each
displayed line.

For example, in single-spaced text each line of text immediately
follows the previous line of text; no half-lines are used in the
display. In ii-spaced text, one half-line is inserted between
each line of text. In double-spaced text, each line of text is
followed by two blank half-lines.

Although the text may not appear to include half-lines -- single
spaced text, for example -- the code always counts in half-lines
when calculating positions in text. This provides fast access to
display information about any point in text, which speeds up
leaping.

The Cat can display 22 lines of text at one time. Since each
line of text is two half-lines wide, the screen can hold 44
half-lines.

1.2.2.1 Horizontal Positioning Units

Spaces and half-spaces determine the horizontal position of
characters. Since the Cat editor uses a non-proportional font,
each character in the character set has the same width, 8
pixels. Thus a half-space is 4 pixels wide. Half-spaces are
often inserted into in order to fully justify text.

1.2.3 Document Format Information

The document format information fields contain information about
the document in which the line is located. Several of the fields
(%above, %below, %iprint) hold information which will determine
the printed appearance of the document. The contents of the
%lock field indicate whether or not the line is alterable. If
the document which contains the line is locked, the line cannot
be altered.

- 11 -

Name Offset

%long 2E

% above 30

%below 31

%lock 32

%ipage 34

%iprint 36

Description

The value stored in %long indicates how long
a page should be before the Cat inserts an
implicit page break. The page length is
expressed in half-lines.

Holds the height of the top margin of a
printed page expressed in half-lines

Holds the height of the bottom margin
expressed in half-lines

If this line is in a locked region, %lock
will hold the ASCII value for the gray lock
character.

First page number in the document

Number of the first printable page in the
document

- 12 -

1.3 MAJOR DATA STRUCTURES

1.3.0 The Control Table

The control table (#ctrl) consists of one control/format array.
The address of the control table is kept in the #ctrl system
integer. The #ctrl is used as a scratch control/format array by
routines which need a temporary location for the storage of
control/format information. Control/format information which
must be saved for future reference is usually moved from the
#ctrl table to one of the other data structures described below.

A backup control table, called the previous control table
(#pctrl), holds the previous contents of the #ctrl table. The
system integer #pctrl holds the address of the control/format
array for the preceding text line. This value is updated each
time the word wrap is executed.

1.3.1 The Window Table

The window table (#wtable)consistE ~f lastline ($4E)
control/format arrays. Each contrG~/format array in the window
table contains formatting information about one half-line
currently displayed on the screen and about the half-lines just
above or just below the top or bottom lines in the display. The
following diagram (1.5) illustrates the connection between the
window table and the text displayed on the screen.

The 79 control/format arrays in the window table are shown on the
right side of the diagram. The display text to which the
control/format arrays correspond are shown on the left side of
the diagram. The number to the left of a displayed line of text
is the number of the window table entry corresponding to the line
of text. The numbers increment by two because two window table
entries are required to represent lines of siDgle-spaced text.
(The display of single-, li, and double-spaced text is covered in
detail in the "Text Display" section of this manual.

The system integers firstseen ($10) and lastseen ($3B) hold the
line numbers of the first and last visible half-lines represented
in the window table. The system integer lastline holds the
number of the last line represented in the window table. The
address of the start of the window table is kept in the #wtable
system integer. The bytes in the window table can be calculated
by lastline*esize:.

- 13 -

firstseen

lastseen

last line

1.5 The VVindow Table

Unes of text represented Cy the
contro~ormat arrays in the
Wrd:J.N t:De:

l. Tha line ef text 1. above
3. ThU line ef text U above
5. ThU line ef text i. aDove , . Thla line ef text 11 aDove
t. Thla 11ne ef t.xt 1. aDove
II. ThU llne e! text 1_ above
O. Thh 11ne ef text U abOVe

ll. Thll1 line e! text 1. en the
13. Thh 11ne of ten 11 011 the
15. Thi_ 11ne of text 1& 011 the
17. Thi. 11ne of text 1& Oll the
It. Th1_ 11ne ot text 18 tllot
11. Thi. llne e! text 11 ell the
10. Thi_ llne of text 1& tM
U. Thi_ llne ef text 1. 011 the
2l. Thl1 llne et text 1. the
23. Thu l1ne ot text 1_ the
25. Thi_ lln. e! text 1. 01'1 the
27. Thil 11ne e! . text i. on the
29. ThU 11n. ef text 1. the
211. ThU 11ne of text 1. on the
20. ThU 11ne ef text i_ en the
2f. Thi. llne ef text l_ en the
3l. Thl. llne ef text 1. tM
33. Thl1 line of text 1& en tllot
35. Thil 11ne of text U 011 tba
n. Thll 11ne of text 1_ on the

tM Icreell.
thoa .creeD.
thoa acreell.
the acr_lI.
the .creell.
the
thoa .creen.

.cr_lI.
IcreeD.
.cr_lI.
IcreeD.
Icr_n.
Icr_D.
acr_n.
IcreeD.
IcreeD.
Icreen.

acr .. eo.
Icre.n.
.creen.
.cr_n.

screen.
screen.
.creen.

Ji; f~U ~iR' 8t tin !l B1!l~~etlJ!rii~n.
3r. T.b.U line of text 1. below the Icreell.
H. Thl1 llne of text i. below the .creen.
U. Thl. line of text 1. bel_ tn. ac.rwen.
45. Thl_ H_ of text 18 bel_ tba ICNeIl.
47. TIIU 11ne of text 18 bel_ tn. acr-II.
U. ThU 11ne of text 1& below tn. acreell.
U. TIIU 11ne of text 11 below the Icreell.

~40. ThU 11ne of text la below the Icreen.
U. Thl. Ilne of text 11 below tn. acreell.

-1'-1-

+-#wtable

ControVformat
arrays:

(2 for ecd1 Una
ofsirg~
text).

1.3.2 The Update Array

The update array is closely related to the window table. The
update array contains a i-byte flag for each half-line
represented in the window array. If a byte contains a non-zero
value, the corresponding half-line in the display requires
refreshing. If the byte contains a zero value, the corresponding
half-line is properly displayed:

When display routines are called to redraw the screen contents,
they will usually check the update array first so that only the
lines which require refreshing are redrawn.

1.3.3 The Interval Table

To allow quick display of any character in the text, the text
data is divided into many equal-sized text intervals. Formatting
information about a line of text within each interval is kept in
a table called the interval table (see diagram 1.6).

Currently the size of a single text interval is $400, or 1024
decimal bytes. Since the entire text size in the editor can be
either 256K or 384K bytes, the interval table will have either
256 or 384 (decimal) entries. Each entry in the interval table
is a control/format array which holds the formatting information
about one line in the corresponding text interval.

- 15 -

-S2

~ .- -

~
~

. --

s
{Q . .,......

-Ib-

1.3.3.0 How Control/Format Information Is Obtained

To get the formatting information which applies to a line in the
text one must step through the text data which contains the
characters for the line, looking for and obtaining the
user-specified formatting information hidden among the characters
(document and paragraph format information set by the following
commands: Line Spacing. Left Margin, Right Margin, Set/Clear
Tab, Indent, and Setup). This process is called wrapping through
the text because the fundamental task is to determine implied
word wrap.

wrap is the editor word which examines a line of text and
produces a set of control/format information for the line. The
word wrap always places its results in the #ctrl array. The word
wrap's default action is to step through one line of text only
and to store the format information found into the #ctrl array.

The word wrap must always start from a location in the text where
the format is known, for example, at the start of a line whose
control/format information is known. The word wrap is supplied
the information about this known line, its start address (found
in the %wr field) and format information, to be held in the #ctrl
array. When wrap finishes, the #ctrl array will contain a
complete set of format information about the line which follows
the line whose format information was passed to wrap in the #ctrl
array. So, given information about a known line in the text,
wrap will return control/format information about the following
line in the text. These default actions of wrap were designed
for stepping through the text, line by line, and producing
control/format information.

The basic steps used by wrap are as follows:

Use the information about the known line to quickly find
the start address of the line which follows the known
line. The line which follows is the line in which we
are interested.

Proceed forward from this new start position and look
for text characters and format information.

Each time a character is encountered, determine the
width of the character and add it to a running total of
the width of all characters on the current line.

If format information is encountered, transfer it to the
#ctrl array.

If the total width ever exceeds the value of #wide, the
end of the line has been found. The algorithm then
moves back to the previous word break. The word before
the last word break will become the last word on the
line.

- 17 -

The word wrap looks in the system integer wraplim to decide when
to stop wrapping through the text. Usually, wraplim contains a
0, which means wrap should only wrap the current text line. If
wraplim contains a non-zero value, it gives the address at or
beyond which wrapping should stop.

Before wrap overwrites the contents of the #ctrl with the newly
found format information, it saves the analogous information for
the previous half-line of text into the #pctrl array.

1.3.3.1 More on Intervals

Keeping the control/format information the editor data structures
updated requires constant use of wrap. The word wrap will obtain
information about a desired line much more quickly if it is
supplied a preceding line position with known format which is
very close to the target line. This is why the interval concept
was developed. The interval table holds control/format
information about many places in the text (see the previous
interval table diagram). If the interval table is currently
updated, one will never have to wrap more than one text interval
in order to find information about any line of text contained in
that interval.

1.3.3.2 How the Interval Table Is Used

When the editor starts, the entire text is word-wrapped to obtain
control/format information about the first line of text in each
text interval so that all of the entries in the interval table
may be filled.

During the use of the editor, the contents of each text interval
will change and the format information in the corresponding
control/format entry in the interval table will become invalid.
Operations which invalidate information in the interval table use
the word killivls to mark the invalid intervals. Since updating
the entire interval table after each editing operation would be
prohibitively slow, the interval table is left in an incomplete
state. A background task, updates information on intervals which
need to be updated. The word fixivl is called each time a
keystroke is not available. This procedure will cause all
intervals to be correct within two seconds, worst case. Only
certain operations, such as leaping, require the entire interval
table to be updated for proper functioning.

- 18 -

The interval table is used to expedite the process of finding
formatting information for selected locations within the text.
The word findchar fills the #ctrl array with the format
information for a specific character in the text. The word
findline fills the #ctrl array with format information for a
specific line in the text. The words nextpage, prevpage,
nextdoc, and prevdoc cause the #ctrl array to be filled with the
format information for the page or document which is before or
after a specified address in the text. All of these words use
the interval table to get format information about a spot close
to their desired destination quickly. Then, wrap word wraps from
the location of known fr-rmat to the desired location in the text.

1.3.3.3. The Top Four Intervals

Four interval table entries have special significance to the
editor:

#1 The first text interval
#2 The interval which contains the start of the gap
#3 The interval which contains the beot
#4 The last text interval (?interval, which contains eot)

It never changes, since the first line in the text cannot change
(it always contains the starting document character). Thus the
state at the start of the text is always known.

The gapivl system integer contains the address of the interval
table entry corresponding to the text interval containing the
start gap address. The beotivl system integer contains the
address of the interval table entry corresponding to the text
interval containing the beet address. These two intervals are
complex intervals since they are separated by the gap and mayor
may not contain complete lines of text. The addresses of these
interval table entries are saved for use by fixivl. If fixivl
has problems fixing an interval table entry, and it notices the
interval it is trying to fix is either gapivl or beotivl, it will
skip over the interval and move on.

- 19 -

1.4 ROUTINES AFFECTING THE TEXT AND ITS POINTERS

1.4.0 Text Maintenance Routines

adjust (al a2 n ->)
(pronounced ah-just'

Adjusts all text pointers which point within the range between
address a1 and a2 by the delta distance~. The pointers affected
are: gap, bou, beot, bos, eos, savebos, extbos. bot, bor, eat,
eor, oldop, oldpop, oldbos, oldeos, oldeos2, oldbos2, and
oldpop2. Also uses realign to adjust the positions of the op and
pop pointers and the contents of the window table.

clearundo (-))
(pronounced cleer' un-doo'

Empties the undo buffer by setting bou pointer equal to the eou
pointer.

eou (-) a)
(pronounced ee' oh yu')

Initials stand for end-of-undo buffer. Calculates and returns
the address of the end of the undo buffer.

realign (a1 a2 n -))
(pronounced ree'ah-line')

Adjusts pointers and data structures which point into the range
of text starting at address a1 and ending at address a2 by the
offset n. The pointers affected by realign are op and pop. The
word realign also affects all information in the window table
entries.

selsize (-) n)
(pronounced sel' sizL

Forth word composed from English words Il sel ec tion-size."
Calculates and returns the size in bytes ~ of the current
selection. The equation gap bas - determines the selection size.

1.4.1 Window Table Routine

seenlines (-) n)
(pronounced seen' lines

Returns the number n of half-lines visible on the display.

1.4.2 Update Table Routines

update! (n -))
(pronounced up'date store'

Sets the update bit in the update array entry which corresponds
to the specified screen line number n.

- 20 -

update? (n -) f)
(pronounced up'date kwes'chun)

Returns a true flag f if the update table entry corresponding to
the specified line ?~ in the window table indicates that the line
requires updating. Also marks that line as n0 longer needing
update.

1.4.3 Interval Routines

badivl -) 0 I If no bad interval entry is found)
-) a -1 I If a bad interval entry is found
pronounced bad' iv'il)

This word stands for "bad interval." Searches through the
interval table looking for the first bad (not updated) interval.
If a bad interval is found, returns the text address which
corresponds to the interval and a true flag. If no bad interval
is found, returns a false flag only.

fixivl (-))
(pronounced fix' iv'il)

Tries to fix one bad interval in the interval table.

goodivl a1 -) a2 }
pronounced gud t iv'il)

Returns the address a2 of the closest up-to-date interval table
entry which precedes to the specified text address al.

hideivls (a1 a2 -))
(pronounced hide iv'ils)

Marks all invalid intervals corresponding to text located within
the specified address range (between a1 and a2) as potentially
valid by clearing the high bit on the %wr field. A potentially
valid interval is an interval whose control/format array has only
incorrect page and line number information.

killivls a1 a2 -))
pronounced kill' iv'ils)

Marks all intervals corresponding to text located within the
specified address range (between a1 and a2) as invalid by setting
%wr as equal to -1 in the corresponding control/format array.

knownplace (a -))
(pronounced nown' plase)

Looks through the interval table to find the interval boundary
closest to and prior to the desired text address~. Loads the
control/format information which corresponds to the interval into
the #ctrl array.

lastknownline (-) n)
(pronounced last' nown line'

Returns the line number of the last displayable line of text
entered by the user.

- 21 -

line>ivl (nl ->)
(pronounced line' to iv'il)

Looks through the interval table to find the interval boundary
preceding the desired line number nl. Loads the control/format
information corresponding to the interval into the #ctrl array.

nearinterval a1 -> a2
pronounced neer' in'ter-vul)

Returns the address a2 of the nearest text location specified by
the interval table which is closest to and prior to the address
al.

nearivl (al -) a2)
(pronounced neer' iv'il)

Returns the address a2 of the closest interval table entry whicH
corresponds to the specified .text address al.

nextivl -) a -1 I If a valid interval is found.)
-) 0 I If a valid interval is not found.)
pronounced nekst' iv'il)

Looks through the interval table to find the address a of the
next valid interval table entry corresponding to an interval
boundary address which is greater than the address found in the
%wr field of the #ctrl array. If a valid interval is found, its
interval table entry address and a true flag are returned. If no
valid interval is found, a false flag is returned.

partknown (a -))
(pronounced part' nown)

Uses hideivls to mark all text intervals between the address a
and the end of text, eat, as partially changed.

previvl -) 8 -1 I If a valid interval is found)
-) 0 I If a valid interval is not found)
pronounced preev' iv'il)

Looks through the interval table to find the address a of a
previous valid interval table entry which corresponds to an
interval boundary address preceding the address found in the %wr
field of the #ctrl array. If a valid interval is found, its
interval table entry address and a true flag are returned. If no
valid interval is found, a false flag is returned.

putivl (-) f)
(pronounced put' iv'il)

Puts the control/format information found in the #ctrl array into
corresponding interval table entry. The address in the %wr field
finds the corresponding interval table entry. A true flag is
returned if all interval table entries contain valid
control/format information.

- 22 -

1.4.4 Wrap Routines

prevwrap (-))
(pronounced preev' rap)

Copies the contents of the previous control array, #pctrl, into
the current control array, #ctrl.

wrap (-) }
(pronounced rap'

Used to recalculate line, page, and document numbers. Performs
one wrap of one half-line each time it is called unless a
non-zero value is stored in wraplimit. Wraps the current line,
that is, the line whose format information is stored in the .
current #ctrl array. If a non-zero value is stored in wraplimit.
it is assumed to be the address at which wrapping should stop.

Since wrap may have to cross the gap, the skip characters
(described in the "What's in the Text" section should be properly
positioned on either side of the gap (that is, preset should be
called before using wrap). wrap does not affect the appearance
of the display, it only affects the contents of the current
line's control/format array (#ctrl).

wrapthru (a -))
(pronounced rap' thru)

Updates the interval table entries, starting with the entry
nearest to the specified text address ~t and ending at the line
following the line containing~. Will fill in the interval table
for all intermediate intervals in the range specified above.

1.4.5 Routines Which Get Specific Control/Format Information

findchar (a -))
(pronounced find' kair)

Fills in the #ctrl array with the control/format information for
the beginning of the line on which the character residing at the
specified address a is located.

findline (n -))
(pronounced find' line)

Fills in the #ctrl array with the control/format information for
the specified line n.

nextdoc (a -))
(pronounced nekst' dok)

Loads the #ctrl array with the control/format information
corresponding to the first character in the document following a.

- 23 -

nextpage (a -))
(pronounced nekst' page)

Loads the #ctrl array with the control/format information
corresponding to the first character in the page following a.

prevdoc (a -))
(pronounced preev' dok)

Loads the #ctrl array with the control/format information
corresponding to the first character in the document preceding a.

prevpage (a -))
(pronounced preev' page)

Loads the #ctrl array with the control/format information
corresponding to the first character in the page preceding a.

- 24 -

1.5 POINTERS AND DATA STRUCTURES SUMMARY

1.5.0 Text Maintenance Integers

beot pronounced bee'aht
Beginning of second section of text

bos pronounced bahs'
Beginning of selection

bot (pronounced baht'
Beginning of user-entered text

bou (pronounced bee'oh-;yu
Beginning of undo buffer

endtext (pronounced end' tekst
Address of byte just past absolute end of text

eos (pronounced ee-oh-ess'
Address beyond end of selection

eot (pronounced ee-oh-tee'
Address beyond end of user-entered text

eou pronounced ee-oh-;yu'
End of undo buffer.

gap pronounced~')
Address beyond first partition of text

text pronounced tekst')
Address of absolute start of text area

- 25 -

1.5.1 Integers Used to Access the Contents of the #ctrl Array

1.5.1.0 Transient Format Information Integers

%pg #ctrl + integer

%pgl #ctr1 + integer

%wr #ctr1 + integer

%1n #ctr1 + integer

%ln1 #ctrl + integer

%spr #ctr1 + integer

#pg

#pg1

#wr

#1n

#lnl

#spr

The global page number in
which this line is located

The local page number within
the current document in which
this line is located

Address of the first character
in this line

The global line number for
this line

The local line number for this
line within the current page

Can hold one of four values:
0, 1, 2t or 3. Used by the
words responsible for
displaying lines of text

0: Display 1 half-line
1: Do nothing
2: Display 1 half-line
3: Display 1 half-line

1.5.1.1 Paragraph Format Information Integers

%lsp #ctr1 + integer #lsp

%left #ctr1 + integer #1eft

%wide #ctrl + integer #wide

Local line spacing. Can hold
one of three values: 2, 3. or
4. Used by the words
responsible for displaying
lines of text.

2: Single-spaced text
3: li spaced text
4: Double-spaced text

Current left margin width,
expressed in half spaces.
o <= n <= 158

Width of the text area,
expressed in half spaces.
2 <= n <= 160

%indent #ctrl + integer #indent Indent distance for this line,
expressed in half spaces.
o <= n <= 158

- 26 -

%iwide

%just

%tabs

#ctrl + integer #iwide Remaining width of the text on
an indented line.

#ctrl + integer #just Justification

#ctrl + integer #tabs

/

0: Left-justified
1: Right-justified
2: Center-justified
3: Fully justified

Two 30-bit bit arrays. The
screen is 80 full spaces
wide. The state of each bit
in the first bit array
indicates whether the
corresponding space on the
screen has a tab associated
with it. The second bit array
indicates whether the
corresponding space has a
decimal tab associated with it.

1.5.1.2 Document Format Information Integers

%long

%above

%below

%lock

%ipage

#ctrl + integer #long The value in #long indicates
how long a page can be before
an implicit page break will
occur. The page length is
expressed in half-lines

#ctrl + integer # above Holds the height of the top
margin on a printed page,
expressed in half-lines

#ctrl + integer #below Holds the height of the bottom
margin on a printed page,
expressed in half-lines

#ctrl + integer #lock If this line is locked, will
hold the ASCII value for the
gray lock character

#ctrl + integer #ipage First page number in the
document

%iprint #ctrl + integer #iprint Number of the first printable
page in the document

- 27 -

1.5.2 Control/Format Integer Array Offsets

1.5.2.0 Line Offsets

%page 00
%pgl 02
%wr 04
%In 08
%lnl OA
%spr OC

1·5.2.1 Format Offsets

%lsp OE
%left 10
%wide 11
%indent 12
%iwide 13
%just 14
%tabs 16

1.5.2.2 Document Offsets

%long 2A
% above 2C
%below 2D
%lock 2E
%ipage 30
%iprint 32

1·5·3 Data Structures Integers

#ctrl (pronounced sharp' cee'tee-ar-ell, or
(sharp' kon-troll')

Holds the address of the start of the #ctrl array

#pctrl (pronounced sharp' Eee'kon-troll
Holds the address of an array which holds the previous contents
of the #ctrl array

#wtable pronounced sharE' duh'bl-~u ta~'bl
Holds the address of the start of the window table

#update (pronounced sharE' uE'date)
Holds the address of the start of the update array

#itbl (pronounced sharE' it'a-bl)
Holds the address of the start of the interval array

- 28 -

1.5.4 Window Table Integers

N~e

lastline
firstseen
lastseen
middle
eosline
topline

gapline

Hex Value

$4E
$10
$3B

Description

Last line in window table.
First window table line visible on screen.
Last window table line visible on screen.
Offset to the middle line in the display.
Line in window table containing the eos.
Global line number of the first line in the
window table.
eos line relative to window.

1.5.5 Interval Table Integers

esize
isize

itblsize
beotivl

endtextivl

Hex Value

$38
$400

esize isize *

Description

Size of a control/format array
Size of the text interval represented
by an interval table entry
Size of the interval table
Holds the number of the interval table
entry corresponding to the text
interval containing the beot address
Holds the number of the interval table
entry corresponding to the text
interval containing the end text address

gapivl Holds the number of the interval table
entry corresponding to the text
interval containing the gap

1.5.6 Wrapping Integers

markpoint (pronounced mark' point
Place beyond which to seek pb/ds in wrap

wraplim pronounced rap' lim)
Address of stopping point for wrap

%pwrap pronounced per-sent' peel rap
Previous array wrap address

#nextwr pronounced sharp' nekst' duh'bl-yu art)
Holds the start address of the line which immediately follows the
line whose control/format information is currently stored in the
#ctrl array. This information is meaningful only following a
loadline from window table.

1.5.7 Unclaimed Integers

pagebase pronounced paje' base)

disktext pronounced disk' tekst)
Start of text area on disk.

- 29 -

2. TEXT DISPLAY

Introduction

Text display is both a low-level and a high-level process. The
low-level text display routines must convert encoded text data to
displayable character strings. They must also work within the
limitations of the screen and font sizes, and must actually draw
the character data on the screen. The high-level text display
routines must decide which regions of text are to be displayed
and must be able to locate the formatting information for that
region of text so that the lower-level display routines may be
called upon to display the text.

- 30 -

2.0 A LOW-LEVEL LOOK AT TEXT DISPLAY

The two lowest-level display words in the editor are build and
disp. Both of these words are designed to display one line of
text at a time. build prepares a line of text for display and
disp draws the text on the screen.

2.0.0 Preparing the Text for Display

build converts one line of encoded text data into a displayable
format. build always prepares the current line for display, that
is, the line of text whose formatting information is currently
stored in the #ctrl array. build analyzes the text data starting
at the address found in the %wr field of the #ctrl array and
stops at the address found in the #nextwr system integer. The
#nextwr integer holds the address of the start of the line which
follows the current line. build is probably the most complicated
of the display words because it must understand how the format
information found in the #ctrl array will affect the appearance
of the text on the screen and must be able to describe the
desired text appearance to a lower-level display routine, -disp,
which knows nothing about format codes.

build's output is a character string (four bytes per character)
which build stores in the line input buffer. The address of the
line input buffer is kept in the Ibuff (el-buff) system integer.
Each character in the string is described with four bytes of
information:

byte 1 byte 2 byte 3 byte 4

Byte 1

Extended ASCII value (8th bit is used). Value can be in the range
o to CF. The Cat editor has only one text font, but it can
display the font in two styles: normal and bold. The data which
describes how each character looks on the screen is kept in a
font table. Byte 1 of an Ibuff character description contains a
number which, when multiplied by 16, yields the offset into the
font table.

Byte 2

Modifiers byte. Four bits in this byte are used to specify
special character styles: bold, underlined, dotted-underlined,
inverse-video. Another bit indicates that this character is the
last character to be drawn. The bold bit in byte 2 indicates
which font table -- normal or bold -- should be used. The
settings of the other three style bits determine whether
additional styling data should be applied to the main character
data before it is drawn. The low-level drawing routine -disp

- 31 -

will continue drawing characters on the screen until a modifiers
byte with the stop bit in the modifiers byte set is encountered.
This will be the last character drawn by -disp on that line.

Byte 3

Currently unused

Byte 4

Overstrike character. This character, if any, will be OR'ed over
the main character during display. Byte 4 provides a little more
information on how the character should be drawn on the screen.
If the character is an overstrike character its data will be
merged into the screen display (with the use of an OR operation)
rather than laid over the current screen contents.

2.0.1 Special Text Preparation Cases

As build creates its output string in the line buffer, it must
look for and handle the following special cases:

1. Page breaks or document separators in the text

Page break and document break characters are single-byte
characters in memory. But their screen representations fill
the entire usable width of the screen. Therefore, when build
encounters a page break or document separator character in
the text it must construct the corresponding screen
representation in character form in the lbuff. The screen
representation of a page break or document separator is
composed of many small horizontal line characters, the page
or document number character, and the special underline
character which lies underneath the page or document number
character.

2. Margins, indents, tabs, and text justification

build is responsible for (1) discerning the margin widths,
indent widths, tab placements, and text justification styles
that affect the line of text, and (2) inserting spaces and
half-spaces as necessary to make the text meet the desired
format specifications.

3. Highlighted text

build must check to see if the text being decoded lies within
the current selection range. If it does, build must specify
inverse video for the character being displayed. build must
also handle the characters whose screen appearance is
selection-dependent. For example, if a carriage return is
selected, it is shown as a white arrow on a black background;
if it is not selected it is represented by a white space.

- 32 -

4. Locked regions of text

If the line to be displayed is part of a locked document,
build is responsible for inserting the lock character (a
vertical gray bar on both sides of the screen) into the front
of the display string.

5. Special character styles

If any characters in the line have associated character
styles, build must translate the editor style information to
the disp-format style information.

2.0.2 Editor Character Sets

The following two diagrams, "The Cat Character Set," and liThe Cat
Display Character Set,fl show all characters which build can place
in the lbuff and also shows the decimal and hexadecimal character
codes which have been assigned to the characters.

2.0.2.0 Text Character Set

Only the character codes for characters shown in the Cat text
character set may appear in the text area. Of the characters
shown in the Cat text character set, only those whose character
codes range from $00 to $EF are actual typeable, displayable
characters. The characters with codes in the $09 through $OD
range are not usually visible but they can be entered from the
keyboard.

Note: A universe character, which is one level above the
document character. was included to allow the implementation of
universes, that is, sets of documents. The universe character
is not currently supported.

The character codes in the $EO through $EF range are codes that
can be allowed in the text but cannot be generated directly from
the keyboard.

The skip. paragraph format, calc, and locked calc characters are
special characters which mark the start of a packet of non-text
data within the text area.

The characters corresponding to the character codes in the $E9
through $EF range are modifier characters which indicate that the
character which precedes them in the text has a special display
attribute. that is, the character is underlined, bold,
dotted-underlined, or has some combination of attributes.

- 33 -

The backspace attribute character (character code = $E8) may be
used in the future to allow any character to be used as an accent
for any other character. A backspace attribute character in the
text would indicate that a backspace should be emitted before the
character which precedes the backspace attribute is drawn on the
screen, that is, the character which precedes the backspace
attribute should be laid over the previous character in the
display.

The extend attribute is currently not used or understood.

- 34 -

2- .. 1 "Cat" Character Set
Shaded box = unused, reserved

O~t.IIrI~l" 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

2 3 4 5 6 7 8 9 A B C o ElF

o o

1

2 2

:-:. :'.:'

3 3 3 C S c s o =
4 4 D T d t ~ 2 ~ ~l\

~~=I::
5 5 E U e u B

6 6

9 9 TAB I) 9 I Y 1 Y I · X· ••••••• .- Iii

BARE ACCENTS --------'
OVERSTRIKE CHARACTERS ___ ---J

RESERVED FOR FUlU~..:.....:R.::;:...E _US..:.....:E~ ______ --J

TEXT MARKERS
HIDDEN TEXT OF DATA

-35-

2.0.2.1 Display Character Set

The display character set includes those characters that may
appear in the text display area but whose character codes, in
most cases. do not appear in the data area of the text. The
character codes corresponding to the display characters lie in
the $02 through $lF range. The characters in the display
character set are shown in the diagram on the following page.

Only the following four character codes are allowed to appear in
the text as character data and in the line output buffer as
character display data: tab ($09), document separator ($OB),
page break (OC), and carriage return ($00). The significance of
these four character codes depends on the environment in which
they are found. When these characters are encountered in the
text, they affect the appearance and organization of the text (a
tab indicates a break in a line of text, a carriage return
signifies the start of a new line, etc.). When these characters
are encountered in the line output display buffer, they cause the
visual representations of the characters to be drawn in the
display (a return character code in the line output-buffer causes
the arrow graphic associated with a carriage return to appear on
the screen). The character codes for all other display
characters will never be found in the text data.

The display characters can be divided into four categories:
display characters used to construct implicit/explicit page
breaks lines and document separator lines, display characters
used to represent in-line formatting characters (tab. carriage
return, blanks), the display character used to represent locked
documents, and the display characters used for screen diagnostic
testing.

Page breaks and document separators are composed of up to four
types of display characters:

1. Horizontal line segments that compose the main body of the
page break or document character ($OE, $08, $OC)

2. Special smaller and slightly elevated numbers used for page
numbering ($10-$19)

3. Thin horizontal line segment that goes underneath the page
number ($02, $03, $04)

4. Horizontal line segment used to represent the selected
version of an explicit page break

- 36 -

2-.2.. The Display Character Set

-37-

In-line formatting uses the following display characters:

1. Selected tabs consist of two parts, the horizontal tab tail
($08), and the tab arrowhead ($09).

2. Selected carriage returns use an arrow display character
which points downward and to the left ($OD).

3. Margins, and deselected carriage returns use a mark blank
character ($OA).

4. Deselected tabs use the blank tabspace character ($lC).

Locked documents are displayed with a series of document lock
characters ($07) displayed along the edge of the locked
document. The diagnostic routines use the special diagnostic
display characters ($lE and $lF) for the screen test.

2.0.3 Screen and Font Dimensions

The Cat screen is 672 (decimal) pixels wide by 344 pixels high.
Each character in the eat's non-proportional font is 8 pixels
wide. Therefore, 672/8 = 84 ($54) 8-bit wide characters can fit
side-by-side on the Cat screen. Since a 2-character (=16 pixels)
margin is always used on both sides of the text, a Cat display
line supports 84 - (2 for left margin) - (2 for right margin) =
80 columns of characters.

Each character in the Cat character set fits within a 14-pixel by
8-pixel rectangle. The Cat text display area, which holds 22
lines of single-spaced text and has a 2-pixel high margin both
above and below, is 22 x 14 = 308 + 2 + 2 = 312 pixels high. The
ruler/status display area is 344 - 312 = 32 pixels high.

2 pixels high

22 lines,
14 pixels per line.
= 308 pixels high

2 pixels high

32 pixels high

------------ top margin -------------

text display area

----------- bottom margin

ruler/status area

Total screen height = 2 + 308 + 2 + 32 = 344 pixels

- 38 -

2.0.4 Drawing Text

-disp, disp, and halfdisp are the three words that are ultimately
responsible for redrawing the text portion of the display. The
next section will discuss the routines which draw the ruler and
status portions of the display. -disp, a highly optimized 7 page
assembly language routine, is the word which actually draws text
on the screen. disp sets up the registers used to pass inputs to
-disp. halfdisp is a short, optimized assembly routine used to
draw blank half-lines. These routines have no knowledge of the
encoded format used to store the text data. Therefore, the
structure of the encoded text can change without affecting the
display of the text.

disp passes the following four pieces of information to -disp

1. the address of the normal font data table
2. the address of the bold font data table
3. the address of the line input buffer
4. the address of the location in the display memory where the

text should be drawn.

The addresses of the first three parameters are fixed. disp uses
the screen half-line number passed to it on the stack to
calculate the location in screen memory where -disp should start
drawing.

-disp traverses twice through the lbuff. During the first pass,
-disp performs the following actions:

1. Checks the bold bit in the modifiers byte of the lbuff
character information. If the bit is set, it will use the
bold font table; otherwise it will use the normal font table
for step 2.

2. Loads the character data for the top half of the character
into the data registers. The desired character data is found
by using the character code in byte 1 of the lbuff character
information to form an offset into the font table.

3. Checks the Ibuff character information to see if an
overstrike character is required. If it is, the data for the
top half of the overstrike character is obtained, and AND'ed
with the data in the data registers.

4. Checks the inverse video bit. If it is set, the NOT
operation complements the data in the data registers.

5. Lays the data into screen memory.

- 39 -

During its second pass through the Ibuff disp processes and draws
the lower halves of the characters. -disp's actions during the
second pass are very similar to those described above with one
exception. During the second pass t after any overstrike
character has been handled, -disp also checks the underlined and
dotted underlined bits in the modifiers byte and modifies the
character data accordingly before drawing it on the screen.

- 40 -

2.1 A HIGH-LEVEL LOOK AT TEXT DISPLAY

From a high-level point of view there are two steps required for
text display: (i) the format information for the text to be
displayed must be loaded into the window table. and (2) the lines
represented by the entries in the window table must be displayed.

2.1.0 Obtaining Display Information

In order for any line or lines to be quickly chosen and
displayed. all of the display routines expect control/format
information of text to be displayed to be stored in the window
table. Therefore. before the actual display routines can be
called, format information must be found and placed in the window
table.

loadline and storeline are words which can be used to access and
change selected window table entries. loadline places the format
information found in a specified window table entry in the #ctrl
array. storeline stores the format information found in the
#ctrl array into a specified window table entry.

rewindow completely fills in the contents of the window table.
rewindow is used when the display needs to be completely
recalculated and redrawn. rewindow assumes that the system
integer topline holds the global line number of the first line of
text to be represented in the window table. rewindow finds the
text address of the first character in the topline line and wraps
from that address, using storeline to transfer format information
from the #ctrl array to the window table, until each entry in the
window table is filled up. rewindow also sets the update bit for
each entry in the window table as it goes along:

rewindow (-))
(Install skip markers on both sides of the gap.)
preset
(Load the #ctrl array with format information about the
(line which should appear at the top of the screen.)
topline findline
(Wrap through the text enough times to fill in each entry
(in the window table. Also update the interval table.)
lastline 1+ 0
do

(Store the information which is currently in the #ctrl)
(array into entry i in the window table.)
i storeline
putivl drop
wrap
(Set the update bit for window table entry i.
i update!

- 41 -

2.1.1 Drawing the Display

refresh is the link between the low-level drawing routines build,
disp, and halfdisp and the higher-level display routines. When
called, refresh will check the update bits for all window table
entries and will redraw, with the use of build, disp, and
halfdisp, only those screen half-lines whose update bits are set.

If a higher-level routine wants only selected lines on the screen
redrawn, it will set the update bits which correspond to those
selected lines before calling refresh. If a higher-level routine
wants to completely redraw the screen it will use rewindow before
calling refresh. The definition of refresh, which is fairly
straightforward, is included on the following page.

2.1.2 Line Spacing

rewindow uses wrap to get control/format information about text
to be displayed and storeline to store that control/format
information into the proper entry in the window table. wrap was
designed for this purpose since it pays attention to line spacing
as it goes through the text.

wrap will generate control/format information both for real lines
of text and for display half-lines (if the text is 1~ or
double-spaced). Each time wrap is used, it decrements the
contents of the %spr field of the #ctrl array by one.

If the contents of the %spr are reduced to a negative number as a
result of the operation (the %spr value will go from 0 to -1),
wrap will reset the line spacing by replacing the contents of the
%spr field with the value found in the %lsp field. If the result
of the subtraction is a positive number, wrap will not finish
wrapping the line. Instead, wrap will exit immediately after
only having affected the contents of the %spr field.

refresh differentiates between the window table entries which
represent real text lines and those entries which represent
display half-lines by checking the contents of the %spr field in
the window table entry. If a 0 is in %spr, refresh will display
a line. If a 1 is in %spr, refresh will do nothing. If a 2 or 3
is in %spr, refresh will display a blank half-line.

Each line of single-spaced text is represented by a pair of
window table entries that are identical except for the contents
of the %spr field. The first entry in the pair will have a 1 in
its %spr field. refresh will do nothing when it encounters this
entry. The second entry in the pair will have a 0 in its %spr
field. refresh will draw a line of text when it encounters this
second entry.

- 42 -

: refresh (->)
lastseen 1+ firstseen (Index through all half-lines in the window table.)
do (Does this entry need to be redrawn? Exit if not.) i update?

if
If it does need redrawing. place its format)

i loadline (information in the #ctrl array.)
Check the line spacing state, should this line be drawn? 0 = real line

of text, 1 = do nothing, 3 & 4 = draw blank half-line.}
#spr c@
if (If the first visible line, it must contain a blank half-line.)

firstseen i =
if 0 halfdisp

then (If the #spr contains a number which is greater than one then this
text is It or double-spaced. Insert blank half-lines.)

#spr c@ 1 >
if i 1+ firstseen - halfdisp

then
else
(A printable full line of text cannot begin on the last half-line
position)
lastseen i =
if (Draw the blank halfline at the bottom of the screen.)

i firstseen - halfdisp
else (Construct display output rtring for line and display text.)

build i firstseen - disp
then

then
then

loop ;

- 43 -

-

2.3 Line Spacing

This is single-s paced te Ht.
This is single-spaced te Ht.
This is single-spaced te Ht.
This is single-spaced teHt.

This is 1 1 /2 spaced teHt.

This is 1 1/2 spaced teHt.

This Is 1 1/2 spaced teHt.

This Is 1 1/2 s aced teHt.

This is double-spaced t eHt.

This is double-spaced teHt.

Window Table
Entries:

%spr = 1
%spr = 0
%spr = 1
%spr = a
%spr = 1
%spr = 0
%spr = 1
%spr = 0
%spr = 1

%spr = 0

%spr = 2
%spr = 1
%spr = 0
%spr = 2
%spr = 1
%spr = 0
%spr = 2

. %spr = 1
;: %spr = 0

%spr = 2
%spr = 1
%spr = 0

%spr = 3

%spr = 2
%spr = 1
%spr = 0
%spr = 3
%spr = 2
%spr = 1
%spr = 0
%spr = 3
%spr = 2
%spr = 1
%spr = 0

In li-spaced text. each line of text is represented by three
almost identical window table entries. The first of the three
entries will have a "2" in its %spr field, the second will have a
"1", and the third will have a "0".

In double-spaced text, each line of text is represented with 4
window table entries. The first of the four entries has a "3" in
its %spr field, the second has a "2", the third a "1" and the
fourth a "0".

2.1.3 Drawing the Entire Display

The goal of most of the high-level display routines is to get the
current selection, as delimited by the bas and eos pointers, on
the screen. new-display, eos-display, redisplay, and display are
all display routines which share this goal. new-display and
eos-display cause the entire screen to be redrawn. redisplay and
display only resort to a complete redraw if they-absolutely
must. If possible, redisplay and display will only redraw those
screen half-lines which require updating.

fit-display is the only high-level
care about the current selection.
display a specified region of text
specified screen half-line number.
for fit-display:

display routine which does not
fit-display's job is to
on the screen starting at a

Here is the stack notation

: fit-display (halfline# start-text-rgn end-text-rgn -))

The majority of fit-display's work involves determining which
line number should be displayed at the top of the screen. Once
this number is determined, it is placed in the topline system
integer and rewindow and refresh redraw the display. fit-display
uses findchar to get format information about the two locations
in the text and extracts the line numbers for the two characters
from the format information. Once the start and end text range
line numbers are known, fit-display can determine how many screen
lines the text range encompasses and can position the text range
accordingly.

eos-display uses fit-display to display the current selection
with the selection start line located at a specified screen
half-line position:

eos-display (halfline# -))
bos eos prevchar fit-display

new-display calls eos-display and requests that the current
selection be displayed with the selection start located at the
middle visible line on the screen:

new-display (-)
middle eos-display

- 45 -

2.1.4 Drawing Selected Portions of the Display

display and redisplay try to redraw as few lines as possible.
display checks to see if both the bas and eos are visible in the
screen and. if they are. marks only the bos line for updating and
uses refresh to redraw the line. If the bos and eos are not
visible in the window. display calls upon new-display to
completely redraw the screen:

display (-)
preset

(Is the character before the eos visible?)
eos
if

else

then

prevchar visible?

(Is the bas line represented in the window table?)
bas inwindow
if

(Set the update bit for the bas line.)
update!

then

Redraw the bas line.

Redisplay the entire screen.
new-display

redisplay is designed to be used after a text change has been
made at the gap (which is usually where the cursor or selection
is found). The system integer gapline holds the number of the
screen half-line which contains the gap (actually, the character
which immediately precedes the gap). redisplay tries to redraw
only those lines which could be affected by editing activity at
the gap. The lines most likely to be affected by changes at the
gap are the gapline and the line which precedes the gap line.

Example: Take the case of a character being inserted at
the end of a word which lies at the end of a wrapped line
of text. The insertion could cause the word to be too
large to still fit on its current line and it would have
to be pushed down to the following line (the following
line would then become the gapline). This means that at
least two lines would need to be redrawn: the new
gapline (because a new word was inserted at its start).
and the previous line (because the last word was removed).

- 46 -

If redisplay determines that the editing activity left the
gapline in the window table, it will try to selectively fix the
display. Otherwise. redisplay will call new-display to
completely redraw the window.

To selectively fix the display, redispla~ compares the window
table format information for the gapline, the line which precedes
the gapline, and for the lines which follow the gapline, to the
current format information returned by wrap in the #ctrl array.
If the format information has changed. redisplay places the
correct format information in the window table and sets the
update bit for the line and uses refresh to redraw all changed
lines.

2.1.5 Scrolling the Display

Two words -- scrolldown and scrollback -- scroll the text
downward. Two other words -- scrollup and scrollfwd -- move the
displayed text upward. (Downward means that text line 1 becomes
2, 2 becomes 3, 3 becomes 4, and so forth; upward means the
reverse).

Scrolling involves five steps:

1. If the text is being scrolled, rather than unscrolled.
the information required for undoing the scroll must
be saved away.

2. Check the selection position. If the selection is not on
the top or bottom line of the display, it should be
scrolled along with the text. If the selection is on the
top line when the text is being scrolled up, or is on
the bottom line when the text is being scrolled down,
it should not scroll with the text but should stay
pinned on either the top or bottom line.

3. The contents of the screen, window and update tables must
be shifted downwards or upwards in memory so that one
line of visible text exits the screen in the appropriate
direction.

4. The lines which have been changed as a result of the
scroll must be redrawn.

5. The parameters which will allow the system to undo this
scroll operation must be set up.

scrollfwd and scrollback perform steps 1 and 3 above. If a
scroll-undo operation is not occurring, they will save the
selection/editor state operation into the special set of backup
selection/editor state integers used only by the creeping and
scrolling routines.

- 47 -

Next the selection position is checked. If the scroll operation
would cause the selection to be scrolled out of the display, the
selection will be collapsed and repositioned. If the screen
contents are being scrolled up and the selection is on the top
line of the display, the collapsed selection point will be moved
to the first character on the following line (by altering the
bos, eos, and gap pointers). If the screen contents are being
scrolled down and the selection is on the bottom line of the
display, the collapsed selection point will be moved to the first
character on the preceding line (also by altering bos, eos, and
gap pointers). If the selection is not in danger of being
scrolled off the screen, it will simply be scrolled along with
the line on which it resides.

Scrolling only affects the top or bottom line on the screen. The
screen image and data structures associated with the lines
between the top and bottom lines are shifted, but not changed.
scrolldown and scrollup (used to shift the screen, window table,
and update table data in memory) take advantage of this
characteristic of scrolling and use block moves to shift both the
screen image and the corresponding window and update table entry
data up or down in memory. After scrolldown or scrollup have
finished, scrollfwd and scrollback must only get new information
for, and display, the top or bottom line and the line which
contains the cursor (the gapline).

After scrolldown or scrollup has finished, the scroll operation
is almost complete. Now, scrollback and scrollfwd will
selectively redraw those screen lines that have been altered. If
the screen contents have been scrolled down, new formatting
information has been placed in the firstseen entry in the window
table. scrollfwd will set the update bit which corresponds to
the firstseen line so that it will be redrawn when the screen is
refreshed. If the screen contents have been scrolled uP. new
formatting information has been placed in the lastseen entry in
the window table. scrolldown will set the update bit for the
lastseen line. scrollfwd and scrollback will also both set the
new gapline line number and the update bit which corresponds to
the gapline.

- 48 -

2.2 TEXT DISPLAY ROUTINES

2.2.0 Low-level Text Display Routines

build (-))
(pronounced bild')

Scans through and converts the current line of text (text with
embedded formatting, and other non-printable information) to a
string of printable characters in a format suitable for use by
-disp (ASCII-value byte followed by three bytes of additional
information). The string of printable characters is stored in
the line output buffer lbuff. Any characters which lie within
the current selection are marked as highlighted characters.
Inserts the necessary spaces required for current justification.

The bos (beginning of selection) and eos (end of selection)
pointers should be properly set up prior to the use of build to
ensure that any highlighted characters are properly encoded.

build uses the address stored in the #wr field of the #ctrl
field as the start address for its conversion process and uses
the address found in the #nextwr integer (which should be the
start address of the line which immediately follows the purrent
line) as the end address.

The word loadline, which transfers the contents of the
control/format array for a specified line on the screen into the
#ctrl array (that is, to make a line on the screen a "current"
line), will set up the #nextwr integer contents.

disp (n -))
(pronounced disp')

Draws the line found in the line buffer, lbuff, on the screen at
the half-line n.

-disp (code routine, parameter passed in registers)
(pronounced til'da disp')

The word which actually puts data on the screen. Draws a single
line of characters on the screen each time it is called. The
characters to be drawn are located a buffer whose address is
passed to -disp. Each character to be drawn is represented by
four bytes of information. -disp will continue taking characters
from the buffer and drawing them until i reaches a character
which has the end-of-buffer bit set in its modifiers byte. Does
not check to see if it is printing off the edge of the screen;
this check is the responsibility of the caller.

halfdisp (n -))
(pronounced haff' disp)

Draws a blank half-line on the screen at position n on the screen.

- 49 -

2.2.1 Mid-level Text Display Routines

loadline (n -))
(pronounced lode' line)

Loads the control/format information about the specified line n
in the window table into the current control/format array
(#ctrl). Also sets up the #nextwr integer so that it points to
the start of the line which follows the current line (the line
whose control/format information is stored in the #ctrl array).
build requires that the #nextwr is properly set up.

refresh (-))
(pronounced ree' fresh)

Steps through the update array and redraws any visible half-lines
which have their update bits set. If the half-line has no text,
halfdisp will be used. If the half-line contains text, build
converts the formatted text to character text and disp places the
characters on the screen in the correct line position. When
refresh has finished redrawing selected portions of the screen it
will clear all positions in the update array. refresh can only
be used to redraw lines whose formatting information is ,already
stored in the window table.

rewindow (-) }
(pronounced reel winldoh)

Recompute the window array and mark all of lines for updating.
Completely rebuilds the information in the window table. To
reconstruct the window array rewindow makes the absolute line
number found in the topline system integer the first line in the
window array. Typically called after a situation where the
entire display has been modified. for example, after an Explain
message has completely overwritten the display.

storeline (n -))
(pronounced stor' line)

Stores the current control/format information (found in the #ctrl
array) into the window table field corresponding to the specified
screen line number n.

2.2.2 Utility Words Used by the High-Level Text Display Routines

collapse (-))
(pronounced kah laps')

Uses selected to set the update bits corresponding to all lines
in the display which contain the current selection, then sets the
bos to gap prevchar (which reduces the selection to one
character) and uses refresh to redraw all lines which require
redisplay.

- 50 -

differs? (n -) f)
(pronounced dif'fers kwes'chun)

Returns a true flag if the control/format information which
corresponds to screen line ~ in the window table is different
than the control/format information in the #ctrl array.

inwindow (a -) n f I If flag returned is true.)
(a -) f I If the flag returned is false.
(pronounced in-win'doh)

Returns a true flag if the character residing at the specified
address ~ in the text belongs to one of the lines represented in
the window table. If the flag returned is true, the screen line
number which contains the character will also be returned.

selected (-))
(pronounced se-lek'ted)

Sets the update bits which correspond to the lines in the window
table which contain the current selection so that the next time
the screen is redisplayed the selection will be displayed with
proper highlighting.

stepahead (n1 -) n2)
(pronounced step'a-hed')

Given the screen line number n1 of a line in the window table,
returns the screen line number n2 of the next line in the window
table which contains text. stepahead skips over blank lines and
Udo-nothing" lines.

stepback n1 -) n2)
pronounced step-bak')

Given the screen line number n1 of a line in the window table,
returns the screen line number n2 of the first previous line in
the window table which contains text. stepback skips over blank
lines and "do-nothing" lines.

visible? (a -) f)
(pronounced viz'a-bl kwes'chun)

Returns a true flag if the character residing at the specified
address ~ in the text belongs to a line which is currently
visible on the screen.

- 51 -

2.2.3 High-Level Text Display Routines

bos-display (n -))
(pronounced bahs' dis-play')

Causes the beginning of the current selection to be displayed at
the half-line number n on the screen.

display (-))
(pronounced dis-play')

Completely redraws the display. If the format information about
the selection range is already present in the window table,
refresh redraws only those screen lines which require updating.
If the lines which contain the selection range are not
represented in the window table, new-display completely
recalculates the window table and to completely redisplay the
window contents.

eos-display (n -))
(pronounced eetahs dis-play')

Causes the end of the current selection to be displayed at the
half-line n on the screen.

fit-display (-))
(pronounced fit' dis-play')

new-display -))
pronounced noo' dis-play'

Causes the end of the current selection to be displayed on the
middle line in the display.

redisplay (-))
(pronounced ree'dis-play'

redisplay is a less comprehensive version of display. redisplay
should be used when a partial, rather than a complete display
restoration, is required. redisplay will try to redraw only the
section of the screen which has changed, but will redraw the
entire display if necessary. redisplay wraps the text starting
one line above the line which has changed. redisplay will
continue wrapping and redrawing lines on the screen until it
encounters a line which was not affected by the change.
redisplay was designed for use after insertions and deletions at
the gap have occurred (normal typing input is an example of an
insertion at the gap).

- 52 -

scrollback (-))
(pronounced skrole' bak)

Tries to scroll the lines on the screen down by one line. If
there are previous lines to be displayed, scrollback will first
collapse the selection if it is extended.

Next, the cursor is repositioned to the start of the line
which precedes the line which currently contains the cursor (the
#ctrl array is filled with information about the previous line
and the bas is set to point to the address in the %wr field of
the array). scrolldown is then used to scroll the entire screen
image down.

Finally, the update bits which correspond to the top and
bottom visible lines in the display are set and refresh
redisplays them. The top line requires redisplay because it was
just scrolled in. The bottom line could be left in a half
visible state after the -:roll operation. If this is the case,
refresh will detect it and erase so that it will not be shown
until it completely fits in the display.

scrolldown n -)
pronounced skrole' down)

Used by the higher-level scrolling word scroll back to scroll
those lines which do not require redisplay downward on the
screen. Moves the screen bit image down by ~ lines and moves the
entries in the window table down by ~ entries so that each entry
still corresponds to the proper half-line on the screen. Fills
the invalid entries at the top of the window table with new
format information.

scrollfwd -))
pronounced skrole' for'wurd)

Tries to scroll the lines on the screen up by one line. If there
are subsequent lines to be displayed, scrollup will first
collapse the selection if it is extended. Next, the cursor is
repositioned to the start of the line following the line which
currently contains the cursor (the #ctrl array is filled with
information about the following line and the bos is set to point
to the address in the %wr field of the array). scrollup is then
used to scroll the entire screen image up.

Finally, the update bits which correspond to the top and
bottom visible lines in the display are set and refresh
redisplays them. The bottom line requires redisplay because it
was just scrolled in. The top line couid be left in a
half-visible state after the scroll operation. If this is the
case, refresh will detect it and erase so that it will not be
shown until it completely fits in the display.

scrollup (n -))
(pronounced skrole' up)

Used by the higher-level scrolling word scrollfwd to scroll those
lines which do not require redisplay upward on the screen. Moves
the screen bit image up by ~ lines and moves the entries in the
window table up by ~ entries so that each entry still corresponds
to the proper half-line on the screen. Fills the invalid entries
at the bottom of the window table with new format information.

- 53 -

2.3 SUMMARY: INTEGERS USED FOR TEXT DISPlAY

2.3.0 Line Output Buffer Integers

AO integer &.horiz Number of horizontal
half-spaces on a line.

4 integer Ibufwide Width of a character entry
in the line buffer.

Ibuflen Length of Ibuff. build
sets. print uses)

Ibufwidth The width at the last real
char in Ibuff

bosptr Pointer into lbuff for
bas

eosptr Pointer into Ibuff for
eos

2.3.1 "disp" Integers

0 integer invbit Inverse video bit

,till"
1 integer boldbit

2 integer ulinebit Underline bit

3 integer dlinebit Dotted underline bit

4 integer stopbit When set. marks the end of the
line output buffer contents

7 integer smallbit

01 integer $inv Mask used to check inverse video
bit

02 integer $bold Mask used to check bold bit

04 integer $uln Mask used to check underline bit

08 integer $dln Mask used to check dotted
underline bit

10 integer Send Mask used to check end-of-buffer
data bit

80 integer Shalf Mask used to check half-wide
character bit

- 54 -

2.3.2 Display-Only Characters

02 Thin, horizontal bar which
goes under a document number

03 Thin, horizontal bar which
goes under an explicit page
number

04

07 integer

08 integer

OA integer

DE integer

OF integer

10

11

12

13

14

15

16

17

18

10k

tabO

markbl

- 55 -

Thin, horizontal bar which
goes under an implicit page
number

Gray, vertical, locked text
character

Flat, horizontal part of the
tab arrow

A white space character

Horizontal component used to
construct an implicit page
line

Horizontal component used to
construct selected version
of an explicit page line

Special "0" used for page
numbering

Special "1" used for page
numbering

Special "2" used for page
numbering

Special "3" used for page
numbering

Special "4" used for page
numbering

Special "5" used for page
numbering

Special "6" used for page
numbering

Special "7" used for page
numbering

Special "8" used for page
numbering

19

1C integer tabspace

Special 1t9" used for page
numbering

Blank character which
represents an unselected tab
in the line output buffer

lE Special "H" character used
for diagnostic display
testing

iF Special "#'1 character used
for diagnostic display
testing

2.3.3 Display and Text Characters

09 integer tab1

OB integer ds

OC integer pb

00 integer rtn

2.3.4 Screen Size Integers

50

54

54

54

158

integer

integer

integer

integer

integer

width

/scan

/lscan

active/scan

height

- 56 -

Arrowhead part of the tab
arrow

Text: Document separator
character
Display: Horizontal
component used to construct
a document separation line

Text: Page break character
Display: Horizontal
component used to construct
an explicit page break line

Text: Carriage return
character
Display: Arrow used for
display of selected carriage
return character

Number of bytes in one
display line

Bytes in a scan line

Number of "visible ll bytes in
a scan line

Number of active bytes per
line

Scan lines per display

10 integer bytes/char Bytes in a font table entry

4 integer logbytes/char Since we shift a lot

OE integer scans/char Scan lines per character

/scan integer scans/char*

Bytes/line Bytes in a text line

16 integer lines/screen Lines on screen

OE integer scans/image Height of a character

07 integer tophalf Height/2 of a character

10 integer bytes/image Note: Code assumes this
value!

- 57 -

3. RULER/STATUS AREA DISPLAY

Introduction

The editor ruler/status area is divided into two parts: the
ruler bar and the status line. The status line has four separate
areas:

1. Line number icon
2. Indicator lights
3. Mode icons (paragraph style, line spacing, keyboard 1/11)
4. Gas gauge

The graphics used in the ruler/status area are comprised of
characters from a special ruler font. The routines used to
update and display the ruler/status area are discussed in this
chapter.

- 58 -

3.0 THE RULER BAR

The ruler bar is updated each time through the main editor loop.
The word rule is responsible for updating the ruler bar. It
performs three actions:

1. Decides what the ruler should look like by examlnlng the
current tab, margin, and indent settings, and sets up a
temporary ruler buffer with information about the ruler
appearance. The ruler buffer is similar in function to the
line buffer used for text display.

2. Uses -showrule to draw the ruler bar into a temporary bL_fer

3. Uses -showstatus to display the status line on the screen

The words checkgauge and checkline# are called each time through
the main editor loop to update the gas gauge and line number if
they have changed.

3.0.0 The Ruler Buffer

The ruler buffer is 84 decimal bytes long and is set up in the
track buffer area during execution of rule. Each byte in the
ruler buffer corresponds to one character position on the
screen. The bits in tach byte indicate which types of ruler
items should be included in the ruler display area for each
character position in the ruler buffer. The following types of
items appear in the ruler:

Left margin mark
Right margin mark
Indent mark
Short tick mark
Long tick mark
Decimal tab mark
Normal tab mark

When rule sets up the ruler buffer it first marks the positions
of all of the tick marks, then it marks the left/right margin and
indent marks. Finally, it marks all of the tab stops.

3.0.1 Displaying the Ruler Bar

After the ruler buffer has been set up, rule uses the lower-level
ruler display word -showrule to draw the ruler into the temporary
buffer. The display of the ruler requires three steps:

1. The ruler buffer information is converted to character data
which is laid in bit format into an off-screen buffer.

- 59 -

2. Checks the contents of the system integer blackruler. If
blackruler is true, the ruler should be black. The ruler
image is complemented.

3. The bit-image of the ruler is transferred to the proper
location in the screen memory.

A 65-byte lookup table named rulersmarts converts the byte
information found in the ruler table to the ruler character code
which should be displayed on the screen.

There are characters in the ruler font for each possible
combination of ruler marks which may co-exist in one character
space on the ruler. For example, there can be a left margin
mark, a tick mark, and a tab mark in one character position but
there should never be a left and right margin mark in the same
character position.

Diagram 3.1 shows all the ruler font characters.

-showrule steps through the ruler buffer converting byte codes
into character codes (with the help of the lookup table). The
character code finds the data for the corresponding character in
the ruler font.

Once the data is found, it is drawn into an off-screen display
buffer which is also located in the track buffer area during the
execution of -showrule.

-showrule also draws the lines which surround the ruler bar into
the off-screen buffer. After the ruler has been drawn
off-screen, the image is transferred to the proper location in
screen memory to make it visible.

Note: The ruler is drawn off-screen first because drawing it
directly into screen memory produces too much flicker in the
display.

-showrule is very similar in function to -disp. the routine used
to draw text on the screen. The display of characters in the
ruler font is more straightforward than the display of text
because ruler font characters can have no accents or display
attributes. Because of this a separate routine, -showrule, which
is optimized for fast display, is used instead of the more
general -disp display routine.

- 60 -

3.1 THE STATUS LINE

The status line contains information about the current line
number in the text. the line spacing, justification style, and
keyboard currently in use, and the amount of available memory.

The status line is updated each time through the main editor
loop. The word rule, described, uses the word -showstatus to
update the status line display. The characters in the ruler font
used for the display of the status line are shown in Diagram 3.1,
page.

- 61 -

~OJ _ ~ [!JJ [IJ

w_~~~[iJ

o~ nil III] [c:I] 0lJ
{II] [ih.lJ [OJ [S] [llJ
mE] [UJlI] ~ ~ OJ]
<DJ~[g~DJJ
mEl] [J] m M []]J

= OJ ~ [illilliJ [CliJ []]

~ ED 03 m III] [SJ

~ OJ ~ Lm!!lIJ [g] [WJ
"' EIJ [Jfl m M [!JJ [1J

· EJJ ~ [illilliJ ~ [jJJ ~
M [!]J c=m [III] [WJ ~ ~

N ~ em ~ ~ l:IJJ rIiill'il
-ED CTI m [D] ~ r::::Il
o EJJ OJ ~ [Q1U f(IJ [I]

... L()
o _ N M

-62--

3.1.0 Display of the Status Line

The method used to display the status line is very similar to the
method used to display text. In fact, the low-level screen
display routine -disp draws the status line on the screen. The
main difference between text display and status line display is
that the character information for the status line is kept in a
special buffer called the statbuff (status-buffer).

The information in the status buffer has the same format as the
information in the line output buffer. Each character is
described with four bytes of data (see the discussion of disp in
the "Text Display" chapter.

The status line character information is kept in a separate
buffer so that its entire contents will not have to regenerated
each time through the editor loop. The only data updated by
-showstatus each time through the loop are the paragraph style,
line spacing. and keyboard settings. The new values for these
items is taken from the #ctrl array. The other status line
information, the line number, gas gauge, and indicator lights,
are only updated as necessary.

3.1.1 Updating the Current Line Number

The word checkline# updates the current line number in the status
line. The line number is updated only if required. The system
integer oidini holds the line number currently displayed in the
status line. checkIine# compares the local line number found in
the #ctrl array to the oldini value and, if the line numbers are
different, will directly update the line number information in
the status buffer.

3.1.2 Updating the Gas Gauge

The gas gauge indicates how much memory is available. Free
memory is defined as the space between gap and beat plus the
space between here and applic.

The word checkgauge updates the gas gauge setting. An update is
done only when the change in text is significant enough to be
visible on the gauge. The system integer aldgauge holds the free
memory value used to generate the currently displayed gas gauge
setting. If the gas gauge requires updating, checkgauge will see
to it that the gas gauge information in the status buffer is
altered.

Note: The gas gauge supports two memory sizes, 256K and 384K.
ihe gas gauge gets longer when the system has 384K of RAM. The
length (in pixels) to be used for the gas gauge is determined
during initialization and is stored in the system integer
gaugesize.

- 63 -

3.1.3 Updating the Low Battery Indicator

The low battery user informs the use when his battery is about to
die. An icon is displayed in indicator light 4. whenever the
hardward lowbarrery indica~or is turned on.

checkbattery is called every time through the main loop of the
editor.

3.1.3 The Indicator Lights

The word indicate updates the indicator light data in the status
buffer. The address of the string to be displayed in the light
and the light position to be used is passed to indicate. There
are five available indicator light display positions. A table
called <st~tuslights>, whose address is kept in the statuslights
system integer, holds two pieces of information for each
indicator light: the maximum string length (in characters) which
may be displayed in the light, and the offset into the status
buffer to the display information for the indication light.

A complete list of light positions and the strings which may
appear in the light positions follows:

Light 0 Light 1

Phone LEARN?
symbol LEARN 1

LEARN 2
(etc.)

Light 2

LOCAL

Light 3 Light 4

PRINT (Low Battery Icon)
DISK
BACKUP
CALC
SORT
SEND
ADDSPELL
SPELLCHECK
DELSPELL
FORTH
DISK RECOVERY

Light 0 is used by the Phone command. In the future, other
strings relating to the Phone command may appear in Light
1 {RINGING, BAUD300, etc.}.

Light 1 is used exclusively by the Learn command. Once a number
has been assigned to a Learn sequence, the "?" changes to
a number from 0 to 9.

Light 2 indicates local leaping.
Light 3 is called the "thinking" light. It is used by all

commands which could have a slight response delay,
"FORTH" appears in the thinking light when the Answer
command is used and no query is pending. Two signs,
TARGET and GETFORWARD, are used only during the editor
development cycle.

- 64 -

The following shows a typical use of indicate:

"Sort" 3 indicate rule

" Sort" puts the address of the string to display on the stack.
3 specifies that light 3 should be used. indicate changes the
light 3 display information in the status buffer. rule causes
the ruler bar and status line to be redisplayed.

Here is an example of how an indicator light is turned off:

o 0 3 indicate rule

3.1.5 The Low Battery Light

The low-battery light is not a typical indicator light. It is
triggered by a hardware test rather than by a user command. When
the low battery light comes on, indicate will be used to display
the image of a battery lying on its side.

- 65 -

3.2 INITIALIZING THE RULER/STATUS AREA

The word initruler initializes the status line display. The
system integer goldbytes holds the address of the data for the
default status line display. initruler copies this default data
into the status buffer.

- 66 -

3.3 RULER DISPLAY/UPDATE ROUTINES

rule (code routine, passes parameters in registers
(pronounced rool')

Causes the ruler bar and status line to be redisplayed. Decides
what the ruler bar should look like (based upon the current
margin, indent, and tab settings) and creates an encoded
description of the ruler bar in the status buffer. Uses
-showrule to display the ruler bar and -showstatus to display the
status line.

-showrule (code routine, passes parameters in registers
(pronounced til'da shot rool)

Displays the ruler bar. Takes byte information from the ruler
buffer, converts it to ruler font character information, and draw
an off-screen image of the ruler bar in the track buffer area.
Then transfers the bit image directly to the screen.

- 67 -

3.4 STATUS LINE DISPLAY/UPDATE ROUTINES

bIN (nl -) n2 }
(pronounced beelell sharp')

Does one step of converting a number to a character string.
suppressing zeroes. If nl is non-zero, converts it to its
corresponding ASCII value. If nl is zero, converts it to the
ASCII value for a space. Used by checkIine#.

checkgauge (-) }
(pronounced chek l gaje

Redraws the gas gauge if necessary.

checklineN (-) }
(pronounced chek' line sharp)

If necessary, updates the line number in the status line and the
contents of the oldInl system integer.

indicate (a nl n2 -))
(pronounced in'di-kate'

Places the string located at address ~ of length nl into
indicator light n2 and redisplays the status line.

newgauge? (-) f)
(pronounced noo'gaje kwes'chun)

Checks to see if the gas gauge needs to be redrawn. If it does,
newgauge? returns a tr'ue flag and updates the con ten ts of the
oldgauge system integer.

-showstatus (code routine, parameters passed in registers
(pronounced til'da shot stay'tis)

Updates the paragraph style, line spacing. and keyboard
information in the status buffer and then use~ -disp to redisplay
the status line.

>status (a nl n2 n3 ->)
(pronounced tool stay'tis)

Places the string of information located at address ~, which is
n2 bytes in length, into the status buffer starting at an offset
of nl and uses ~ for the additional information required by disp.

- 68 -

3.5 RULER/STATUS AREA INITIALIZATION

initruler (-))
(pronounced in-itt rootler)

Initializes the oldgauge, oldlnl, and gaugesize system integers
and copies the default status line data to the status buffer.

>lbuff (a1 a2 n -))
(pronounced too elltbuf)

Moves the ~ bytes located starting at address a1 to memory
starting at address a2. Two bytes of zeros are appended to each
two bytes of data transferred so that the final data is in the
4-byte format required by disp.

- 69 -

3.6 SUMMARY

3.6.0 Ruler/Status Area Data and Data Structures

statbuff pronounced stat' buf)
Holds address of display buffer for status line.

rulersmarts (pronounced roo'ler smarts)
Holds address of look-up table for determining ruler display
characters.

statuslights (pronounced stay'tis lites)
Holds address of status lights table.

goldenbytes (pronounced gohl'den bites
Table of status line initialization data.

goldbytes (pronounced gohld' bites
Holds address of status line initialization data.

#goldenbytes (pronounced sharp' gohl'den bites
Holds length of status line initialization data.

#goldenmodes (pronounced sharp' gohl'den modes'
Holds length of mode initialization data.

3.6.1 Offsets Into Status Buffer

indichars pronounced in'di kares')
Holds offset to indicator data in the status buffer.

modechars (pronounced mode' kares)
Holds offset to mode icon data in status buffer.

gaugepos pronounced gaje' pahs)
Holds offset to gas gauge data in status buffer.

3.6.2 Ruler/Status Screen Positioning Information

rulerstart pronounced roo'ler start)
Scan line at which ruler area starts.

ruleredge (pronounced roo'ler edj
Left edge position for ruler/status area.

- 70 -

3.6.3 Ruler/Status Area Update Information

oldlnl pronounced ohld' ell'en-ell'
Holds current line number displayed in status line.

oldgauge (pronounced ohld' gaje)
Holds current gas gauge value displayed in status line.

blackruler (pronounced blak' roo'ler)
Holds flag used to indicate whether ruler area should be
black-on-white or white-an-black

- 71 -

4. THE CURSOR

Introduction

The cursor has two parts, a blinking cursor and a solid
highlight. Each part serves a specific purpose. The cursor
always shows where the next typed character will appear; the
highlight always shows what will be removed when the Erase key is
pressed. In a sense, the two parts are like the two ends of a
pencil (one is for writing, the other for erasing) .

The cursor may appear in five different states:

1. Wide. The normal state when typing text; last typed
characters appears in the highlight. blinking cursor
indicates position where the next character will appear.

2. Narrow. Appears after leaping or creeping; cursor and
highlight on same character, indicating that typing or
erasing will take place at the location

3. Extended. Appears when both Leap keys are pressed; highlight
covers more than one character

4. Split. Occurs when user leaps after extending highlight; the
extended highlight remains where it is, the blinking cursor
finds the new target, wherever it is in the text

5. Expanded -- occurs when the user extends the highlight (by
pressing both Leap keys) during a leap; no blinking cursor in
this state

The cursor routines are used by almost all of the different
editor commands. They allow the cursor to be positioned relative
to displayed text. They also give information about the cursor
(state, size of selection, location), and blink the cursor or
cause it to disappear altogether (as when it is expanded). All
of the cursor routines and their associated system integers are
gathered here for easy reference.

- 72 -

4.0 CURSOR ROUTINES

blink (-))
(pronounced blink')

If cursorblock holds a "0", which means the cursor is allowed to
blink, blink will cause the cursor to flash. If the cursor is
currently on, if cursors tate holds a "-1", <cursoroff> will be
used to hide the cursor. If the cursor is currently off, if
eursorstate holds a "0", <eursoron> will be used to show the
cursor. The number of ticks until the next blink, either ontime
(=$19), or off time (=$19) is stored in the bticks system
integer. If the text is clean (saved or just played back with no
changes yet), the ticks value is divided by four to speed up the
cursor blink rate.

cursorline -) n)
pronounced kur'sir lyne)

Checks the character the cursor is currently over (uses the
contents of the cpos system integer) and the cursor state (checks
the contents of the estate system integer) to determine which
line the cursor is on relative to the current line. Returns the
relative line offset between the current line and the line
holding the cursor. If the cursor is split, it will always be on
the current line and a line offset of 0 will be returned. If the
cursor is narrow and on a page break preceded by a break, the
cursor is on the previous line and a line offset of -1 is
returned. 1-f the cursor is wide and on a page break, then the
cursor is on the next line and a 1 is returned.

cursoroff (-))
(pronounced kur'sir off)

Forces the cursor off and leaves the cursor in a deactivated
state. A false flag is placed in cursorblock to deactivate the
cursor. If the cursor is currently on, <cursaroff) hides the
cursor.

<cursoroff) (- >)
(pronounced brak'it kur'sir off)

Turns the cursor off. Puts a false flag in cursorstate to set
the cursor state to off. Converts the pixel position of the
cursor (held in the ex and ey system integers), to a position
expressed in half-characters and half-lines. If cy = -1, this is
a Signal to not display the cursor. Restores image of character
where blinking cursor was put.

Next, checks rulerblink? to see if the ruler cursor was also
being flashed. If it was, <cursoroff> removes the ruler cursor
by filling the ruler cursor area in with the current ruler
background color.

- 73 -

cursoron (-))
(pronounced kur'sir ahn)

Forces the cursor on and leaves the cursor in an activated
state. If the cursor is currently visible, if the cursor?
integer holds a true flag, and the cursor is currently off,
<cursoron) will be used to show the cursor and a false flag will
be placed in cursorblock to activate the cursor.

<cursoron) (-) }
(pronounced brak'it kur'sir ahn)

Turns cursor on. Puts a true flag in cursorstate to set cursor
state to on. If cy = -1, this is a signal to not display the
cursor. Converts the pixel position of the cursor, held in the
cx and cy system integers, to a position expressed in
half-characters and half-lines.

Saves the bits which will be under the cursor in the
cursorbuf memory buffer. Checks cwidth to see if the cursor is
wide or narrow. Gets the proper cursor image either from
ncursorimage (narrow-cursor-image) or wcursorimage
(wide-cursor-image), masks out the areas of the cursor not needed
(so that the character shows through the cursor), and draws the
cursor image on the screen.

Next, checks rulerblink? to see if the ruler cursor should
be flashed. If so, gets the height of the ruler cursor from
hrulercursor and the current ruler color from blackruler (to
determine the color for the ruler cursor) and draws the cursor in
the ruler area.

?expanded (-) f)
(pronounced kwes'chun eks-pand'ed)

Checks the contents of the estate system integer. If estate
holds a "3", if the cursor is expanded, a true flag is returned.

extend (-))
(pronounced eks-tend')

Checks to see if the cursor is currently extended. If it is not,
the selection is extended. First, extend checks to make sure the
selection start and end points are in the right order. If the op
is located before the beot the selection will be extended to the
left. The bos is set equal to the op, the eos is already
properly pOSitioned. If the op is located after the beot the
selection beginning and end points must be reversed. The eos is
set to op nextchar, the op is set equal to the bos and the gap is
adjusted in response to the new eos position. Now that the
pointers are properly positioned, the text is redisplayed to show
the extended cursor position. forceop is turned on so that the
op will follow the next character typed.

?extended (-) f)
(pronounced kwes'chun eks-tend'ed)

Checks the contents of the estate system integer. If estate
holds a "2", if the cursor is extended, a true flag is returned.

- 74 -

extendedcursor (-»)
(pronounced eks-tend'ed kur'sir)

Uses wideeursor to make the cursor wide, and places a "2" in
estate to specify an extended cursor.

findnarrow (-))
(pronounced fynd t nair'roh)

Sets ex and ey for a narrow cursor. Uses eursorline to find the
relative line position of the cursor. If a narrow cursor is not
on the current line, then it must be on the end of the previous
line. If the narrow cursor is on the previous line, stepbaek
gets control/format information about the previous line.

The value of ey expressed in half-lines is calculated by
using inwindow to get the text line number in which the cursor is
located, and then subtracting firstseen from the text line number
to calculate the screen half-line number on which the cursor
resides. If the ey position indicates that the cursor is visible
in the window, loadline and build builds the character display
version of the line in the line output buffer, and findwidC-:
calculates the width of the entire line in order to set ex.

The cursor width is set to the width of the last character
in the line. If the narrow cursor is on the current line, or if
the narrow cursor becomes positioned above the top of the window.
findsplit sets ex and ey.

findspli t (-))
(pronounced fynd' split)

Sets ex and ey for either a split cursor or for a narrow cursor
positioned in the middle of a line or above the top of the window.

Saves the screen line number which contains the cursor in
ey. Checks to see if the cursor is on a page break character.
If it is on a page break, the cursor ex is set so that the cursor
is placed at the indent and ewidth is set to narrow.

Otherwise, the cursor is on a normal character. findwidth
finds the horizontal position at which the cursor should be
placed and getwidth determines how wide the cursor must be to
cover the character which it is over.

findwide (-))
(pronounced fynd' wyde)

Sets ex and ey for a wide cursor. If the entire wide cursor is
located on the current line, inwindow finds the line number which
contains the cursor, and then firstseen is subtracted from the
screen line number to calculate ey expressed in half-lines. If
the end of selection is not off the end of the line (?) the value
in the eosptr finds the width of the character under the blinking
portion of the cursor (ewidth), and the x position of the cursor
(ex). If the end of selection is at the end of the line. the
cursor width is always set to wide and cx is set to the width of
the entire line.

If the entire cursor is not on the current line, then it
must be located at the start of the following line. If the
following line is a page break, the cursor will be placed at the
indent (ex = #indent) and the cursor width will be set to wide
(ewidth = 1). Otherwise, the cursor is positioned either at the

- 75 -

indent (if a valid character lies at the indent), or, if there is
not a valid character at the indent, over the first valid
character encountered.

findwidth (a -) n)
(pronoun red fynd' width)

Given the address of a charticter in the line output buffer,
findwidth will calculate the widths of characters in the line
output buffer up to and including the specified character and
will return the result, expressed in half-character widths, on
the parameter stack.

fixeursor (-))
(pronounced fiks' kur'sir

Checks to see if the cursor has gone off the bottom of the
display: ey seenlines 2- >. If it has, the screen is scrolled
up until the line the cursor is on is at the bottom of the
display and the screen display is refreshed.

getwidth (a -) n)
(pronounced get' width)

Given a pointer a to a character in the line output buffer,
returns the width of the character expressed in half-characters.
The result can only be "1" (one half-character) or "2" (two
half-characters) .

narroweursor (-))
(pronounced nair'roh kur'sir)

Tries to force the cursor to a narrow state. If the cursor is
located right after the start of a locked range of text, or if
it's on the first character in the local leap range, bor, it is
not allowed to be made narrow, so widecursor makes it wide.
Otherwise, estate is set to 0 to indicate a narrow cursor, cpos
is positioned at eos prevehar, and findnarrow sets the cursor's
cx and cy position.

narroweursor? -) f)
pronounced nair'roh kur'sir kwes'chun)

Checks the contents of the cstate system integer. If estate
holds a "0", if the cursor is narrow, a true flag is returned.

real? c -) f
pronounced reel' kwes'chun)

Returns a true flag if the character "c" is a character which may
appear in the text ($OB<=char<=$OD or $20<=char<=$DF).

- 76 -

resetcursor (-))
(pronounced ree'set kur'sir)

Repositions the cursor according to the cursor state. If estate
is negative, splitcursor positions the split cursor. If estate
is "0" narroweursor positions the narrow cursor. If estate is
"1" wide cursor positions the wide cursor. If estate is "2",
extendedcursor positions the extended cursor.

?split -) f
pronounced kwes'ch~n split)

Checks the contents of the estate syst~m integer. If estate
holds a "-1", if the cursor is split, a true flag is returned.

spliteursor (-))
(pronounced split' kur'sir)

Puts a "_ll1 in estate to indicate a split cursor and uses
findsplit to set up cx and ey for the split cursor.

widecursor -)

pronounced wyde' kur'sir)
Tries to force the cursor to a wide state. If the end of
selection is located right at the end of a locked range of text
or on the last character in a leap range ear, it is not allowed
to be wide, so narroweursor makes it narrow. Otherwise, estate
is set to 1 to indicate a wide cursor, cpos is positioned at eos
prevehar, and findwide sets the cursor ex and cy position.

wideeursor? -) f }
pronounced wyde' kur'sir kwes'chun)

Checks the contents of the estate system integer. If estate
holds a "1", meaning the cursor is wide, a true flag is returned.

- 77 -

4.1 ttPLACE" PLACEMENT ROUTINES

pushpos (-) nl n2 n3 n4 n5 n6)
(push-position)
(pronounced push' pawz)

Push the contents of the key integers which define the editor's
state onto the parameter stack. The integers pushed are: OPt

pop, bos t estate t eas, and gapline.

savepos (-)
(pronounced save' pawz)

Saves the contents of the key editor state integers into a backup
set of integers. The backup state integers are named: oldop,
oldpop, oldbos, oldcstate, oldeos, and oldtopline.

savepos2 (-))
(pronounced save' pawz too)

Saves the contents of the current editor state integers in a
special set of backup state integers used only by the creep and
scroll routines. The names of these special backup state
integers are: oldop2, aldpop2, oldbas2, oldestate2, oldeos2, and
oldtopline2.

swappos (-))
(pronounced swap' pawz)

Returns the screen to the way it was before all operations other
than a scroll or a creep. Swaps the contents of the backup
editor state integers with the contents of the current editor
state integers.

swappos2 (-))
(pronounced swop' pawz too)

Returns the screen to the way it was before a scroll or a creep.
Swaps the saved and current state variables for the editor.

- 78 -

4.2 CURSOR INTEGERS

blinktime (pronounced blink' tyme)
Holds the number of ticks until the next blink.

bosptr pronounced boss' pee' tee arr
Holds the offset into the line output buffer to the bos character

cpos (pronounced see' pawz)
Holds the text address of the character over which the cursor is
currently positioned

cursor? (pronounced kurtsir kwes'chun)
Holds a flag that, if true, means the cursor is visible

cursorblock (pronounced kurt sir blok)
System integer controlling the blinking of the cursor. If
cursorblock holds a true flag, the cursor will not blink.

cursorbuf (pronounced kur'sir buff)
System integer holding the address of the memory buffer used to
hold the bit image of the screen contents currently under the
cursor.

cursors tate { pronounced kur'sir stayt')
System integer which holds the flag which represents the current
state of the cursor. A true flag means the cursor is on
(blinking) and a false flag means the cursor is off (not
blinking).

cwidth (pronounced see' width)
Holds the current width of the cursor expressed as: #half-spaces
- 1. A value of 0 means the cursor is one half-space wide and a
value of 1 means the cursor two half-spaces wide (full-width).

ex (pronounced see' eks)
Holds the horizontal position of the cursor expressed in pixels

ey (pronounced see' whye)
Holds the vertical position of the cursor expressed in half-lines

eosptr (pronounced ee' oh ess pee' tee arr
Holds the offset into the line output buffer to the eos
character, placed by build if character was in last built line

hrulercursor (pronounced aytch' roo'ler kur'sir)
Holds the height of the ruler cursor expressed in pixels

neursorimage pronounced enn' kur'sir im'ij
Cursor image for narrow cursor

off time (pronounced off' tyme)
How long to wait after turning cursor on (19 ticks)

- 79 -

on time (pronounced on' t:t:me)
How long to wait after turning cursor off (19 ticks)

rulerblink? (pronounced roo'ler blink kwes'chun
Holds a true flag if the ruler cursor should be flashed

wcursorimage (pronounced du'bl-yu kur'sir im'ij
Cursor image for wide cursor

- 80 -

4.3 CURSOR PLACEMENT INTEGERS

4.3.0 Integers Which Hold the Current State of the Editor

bos (pronounced bee' oh ess)
Holds the address of the beginning of the selection (listed
previously)

estate (pronounced see l stayt)
Holds the current state of the cursor: split (negative), narrow
(0), wide (1), or extended (2), or expanded (3)

eos (pronounced eel oh ess)
Holds the address of the first character beyond the selection
(listed previously)

gapline pronounced gap I lyne)
Holds the number of the screen half-line in which the gap is
located (actually, where the "gap 1-", or gap prevchar is located)

op (pronounced oh l pee)
Holds the address of the old cursor place

p (pronounced pee'
Means "place"

po (pronounced peel oh)
Means "pointer"

pop (pronounced peel oh pee)
Holds the address of the previous old cursor place

4.3.1 Integers Which Hold the Previous State of the Editor

These integers, which represent a snapshot of the text as it was
when the last operation began, must be remembered in order to
undo an operation. Except for the prefix old, they are the same
as the integers defined on page.

oldop
oldpop
oldbos
oldestate
oldeos
oldtopline

- 81 -

4.3.2 Integers Which Hold the Previous State of the Editor
(Used by the Creeping and Scrolling Routines)

oldop2
oldpop2
oldbos2
oldcstate2
oldeos2
oldtopline2

- 82 -

5. WHAT'S IN THE TEXT

Introduction

This section explains what types of data are stored in the text and
which editor Forth words may be used to locate and analyze the different
types of data. The structure and locations of overstrike char& ters,
character style bytes, paragraph format packets and document format
packets are discussed.

- 83 -

5.0 STANDARD ASCII CHARACTERS AND BARE ACCENT CHARACTERS

Characters in the Cat character set which may be typed (see
following diagram) have character codes ranging from $09 to $C8.
In the editor, any byte data which has a value of $CF or less is
assumed to be a byte of character data.

The characters with codes from $00 to &lastasc ("last-ASCII!! $AF)
are considered to be a part of the extended ASCII character set.
The characters with codes from $00 to &lastchr ("last-character,!!
$BF), which include all of the ASCII characters plus a few accent
characters which may be typed individually (bare accents),
represent all characters which may be individually typed and
displayed on the keyboard.

5.0.0 Break Characters

A "break" character is any character that can cause a new
paragraph to be formed in the text. Carriage returns, document
separators, and page breaks are all classified as break
characters are all classified as break characters.

Four words find break characters in the text: firstbreak,
lastbreak, nextbrk, and prevbrk. firstbreak and lastbreak search
a specified text region and return either the address of the
first or last break character in the region. nextbrk and prevbrk
return the address of the break character which either follows or
precedes the break character located at a specified address.

There is also a word called break? which analyzes a character
code input to determine whether or not the character code is a
break character.

5.0.1 Finding Character Data

Because the text contains more than just character data, special
words are included for moving from character data byte to
character data byte in the text. prevchar takes the address of a
character in the text and returns the address of the previous
character in the text. nextchar takes the address of a character
in the text and returns the address of the next character in the
text. If prevchar or nextchar encounter a character with an
overstrike in the text, they will always return the address of
the overstruck character and never the address of the overstrike
character (overstrike characters are not independent
characters). Both of these words have the ability to recognize
and skip over any non-character data they might encounter.

- 84 -

5,/ "Cat" Character Set
Shaded box = unused, reserved

D;~UE41" 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

3 F
HEXl-

• OECIIUL a
... VAlUE 2 E 7 I B 9 I A 5 6 B c o

o o

2 2 " 2

3 3

4 4

5

6 6

,- 7 7

8 8

9 9 TAB I) 9

10 A *
11 B +

:: L \ 1 I 'n £ Y.; c·.·. '= fn
12 c <

BARE ACCENTS _____J

OVERSTRIKE CHARACTERS
RESERVED FOR FUTU::......;,..;:_R-=-E_U_SE _______ ---'
TEXT MARKERS
HIDDEN TEXT OF DATA

-85-

5.1 OVERSTRIKE CHARACTERS

The characters with codes from &firstacc ("first-accent," $CO) to
&lastacc ("last-accent," $CF) are special overstrike (or accent)
characters which are treated specially both in the text and on
the display.

Overstrike characters are treated specially because, although
they can be typed from the keyboard, they cannot be independently
displayed on the screen; they must always be displayed with (on
top of) another character. Overstrike characters do not exist
independently in the text either, they are always associated with
the character they accent. The character code for the overstruck
character is combined with the character code for the overstrike
character to form a 2-byte character code in the text (the
overstrike character code always follows the overstruck character
code). For example, the character ~ with an accent grave II'!!

character over it, would be represented in the text with code for
a "u", $75, and the code for an "~tI, $CO, that is, $75CO.

Note: The double underline ($C4) is a special exception to the
above description of the treatment of overstrikes. The only
character the double underline may combine with is the permanent
space character ($93). In fact, whenever a double underline is
typed, it is automatically combined with the permanent space
character. This means that the double underline will always
appear to be one of tLe standard, typeable characters to the
user. In the text, however, the double underline is really
viewed as a permanent space character ($93) which is overstruck
with a double underline accent character.

The word accentable? will check a character code to determine
whether the corresponding character is a character which may be
accented (overstruck). A carriage return is an example of a
character which cannot be overstruck. Any character with a
character code between and including $20 and $AF can accept an
overstrike character.

The word accent will take the address of a character in the text
and, if the character has an overstrike character associated with
it, will return the address of the overstrike character.

Note: Many of the overstrike characters have normal character
counterparts known as "bare accents". A bare accent character
looks like an overstrike character but can be independently typed
by the user and causes only a single-byte character code to be
placed in the text. The character codes for bare accent
characters start at $80 and go up to $88.

- 86 -

\ filii'

5.2 TEXT MARKER CHARACTERS

The codes from &firstcmd (first-command, $EO) to &lastcmd
(last-command, $EF) correspond to text marker characters used to
mark packets of character, paragraph, or calculation data in the
text. The codes from &.firsthid (ltfirst-hidden,1I $FO) to $FF are
all used to represent data in the text.

Character Style Markers

A Cat character can be displayed with up to four character
styles: plain, bold, underlined, and dotted underlined. Any
combination of these four styles may be used for any character.

If a character has any style associated with it (other than
plain), it will be followed by a byte of style information in the
text. For example, if you were to look at an underlined "a" in
the text you would find a byte-$61 character code value for the
"a" immediately followed by a $E9, which is the style byte value
used for characters that are underlined only.

The character style (attribute) markers have values in the range
from $E9 to $EF. The bit representations for the style marker
values are listed below:

Style Hex Value Binar:r Value

Underline E9 1110 1001
Bold EA 1110 1010
Dotted Underline EC 1110 1100

Underline+Bold EB 1110 1011
Underline+Dotted ED 1110 1101
Bold+Dotted EE 1110 1110
Underline+Bold+Dotted EF 1110 1111

The chart shows that bits #0, 1, and 2 are the real style bits in
the style byte. Bit #0 (the leftmost bit) of the style byte is
the underline bit, bit #1 is the bold bit, and bit 2 is the
dotted underline bit. If a style bit is set (is a 1), the
corresponding character will be displayed with that character
style.

5.2.1 Gap "Skip" Markers

The gap area is a discontinuity in the text data. To let words
which search through the text data know where the gap begins an-=!
ends, special information is stored in the text area on both
sides of the gap. The special information is 4 bytes in length
and contains the following information:

- 87 -

Beginning of gap:

I skip character I offset to the end of the gap

1 byte 3 bytes

End of gap:

offset to the start of the gap skip character

3 bytes 1 byte

Figure 5.2: Skip Information

The skip character is a text marker character with a character
code of $EO. The skip character either follows or precedes three
bytes of offset information. Note that the order of the
information is reversed on the different sides of the gap. The
following memory dumps, executed from within the tForth
environment, show how the skip information looks in memory:

gap 10 dump
43E804 EO 00 46 BD 69 70 20 2B 20 6F 66 66 73 65 74 OD .. F.ip +

offset. ok

beot 10 - 10 dump
442F39 66 66 73 65 74 20 2B 20 73 6B 69 70 00 46 FA EO offset +

skip.F ..

The beot can be computed from the three bytes following the skip
marker at the gap using the following formula:

gap + 4 + offset = beot

The gap can be computed from the three bytes preceding the skip marker
at the beet by the following formula:

gap = beot - 1 - offset

Where offset is defined as the number represented by the three
bytes shown in Figure 5.2.

When routines encounter a skip character while looking through
the text data, they need to know how to get over to the other
side of the gap. Two assembly language subroutines are available
for this purpose: -sk) (skip-to-beot) and -sk< (skip-to-gap).
Both routines should be accessed with the 68000 JSR
(jump-to-subroutine). Given the address of a skip character in
the text, these routines will extract the offset from the skip
information and will return the address of the other side of the
gap.

- 88 -

5.2.2 Paragraph Format Packets

A paragraph is any sequence of non-break characters surrounded on
both sides by break characters (described in 5.0.0), Paragraph
format data describes the style (margins, tabs, indents,
justification, and line spacing) in which the paragraph of text
should be displayed. Paragraph format packets immediately
following a carriage return, page break, or document separator
affect the formats of all subsequent paragraphs until another
format packet is encountered by the word wrap algorithm.

A format packet contains data from the paragraph format
information section of the control/format array in a simple
encoded form. Each nibble ($x) of data in the paragraph format
section is combined with a nibble with all bits set ($F) to form
a byte of encoded format packet data ($Fx). The format packet
data is marked in the text with a preceding paragraph format
marker whose character code value is $E2.

The character code values for the format marker character -- and
for all bytes of data in the format packet -- are greater than
the highest allowable value for character data, so that neither
the format marker nor the packet data will be treated as
character data.

The following table illustrates the structure of a paragraph
forma t packe t :

o
1-2
3-4
5-6
7-8

9-10
11-13
13-14
15-16
17-56

Field Use

$E2: paragraph format marker character
Line space setting
Unused
Left margin setting
Line width
Indent setting
Width of indented line
Justification type {O-3)
Unused
Tab settings

5.2.3 Manipulating Paragraph Format Packets

brk+ pronounced bee' arr kay plus
findpkt pronounced fynd' pak'it }
fpkt? pronounced eff' pak'it kwes'chun
All of these words are used to find or identify format packets in
the text.

copypkt
movepkt
rotatepkts
swappkt

pronounced kah'pee pak'it)
pronounced moov' pak'it)
pronounced roh'tayt pak'its
pronounced swop' pak'it)

- 89 -

All of these words are used to move and insert format packets in
the text.

makepkt (pronounced mayk ..;ck' it
Takes the paragraph formatting inforruation from the #ctrl array,
nibble-encodes the information, and places the new format packet
at a specified location in the text. getpkt performs the
converse action. It decodes the data in the format packet at a
specified location in the text and places the information in the
proper fields in the #ctrl array.

pktbytes (pronounced pak'it byts
Examines a region of the text and returns the total number of
bytes of format data in the region. This is usually used to
determine how large the undo buffer needs to be in order to hold
packet information required for any future undo operation.
savepkts and swappkts transfers format packets back and forth
between the undo buffer and the text.

samepkt? (pronounced saym' pak'it kwes'chun
Compares two format packets to determine if they are the same.

5.2.4 Document Format Packets

A document is any sequence of non-document characters which is
surrounded on both sides by document separator characters.
Document format data describes the printed and display appearance
of the pages in the document (number of lines per page, number of
blank lines above the top line 011 the page and below the bottom
line on the page) and whether the document is alterable.
Document format packets are located in the text immediately after
the document separator character which marks the start of the
document they affect.

A document format packet contains data from the document format
information section of the control/format array in a simple
encoded form. Each nibble ($x) of data in the document format
section is combined with a nibble with all bits set ($F) to form
a byte of encoded document format packet data ($Fx). Every
document separator character in the text is followed by a packet
of document format data.

The following table illustrates the structure of a document
format packet:

- 90 -

o
1-2
3-4
5-6

7
8-10

11-13

Field Use

$08: document separator character
Page length in half-lines
Half-lines above first printed line on page
Half-lines below last printed line on page
Locked document byte
Initial page in document
First page number to print

5.2.5 Manipulating Document Format Packets

dpktbytes (pronounced dee' pak'it byts)
Examines the text region between the start address a1 and the end
address a2 and returns the total number of bytes ~ of document
format information found in the region. This is usually used to
determine how large the undo buffer needs to be in order to hold
the document packet information required for any future undo
operation. savedpkts and swapdpkts transfers document format
packets back and forth between the undo buffer and the text.

makedpkt (pronounced mayk' dee' pak'it
Makes a new document forlliat packet using the current document
formatting information found in the #ctrl array and places it at
a specified location in the text. getdpkt decodes a document
format packet in the text and places the information in the
relevant fields in the #ctrl array. getdocpkt is a special
version of getdpkt which transfers document format information
from the set up (user configuration) variables to the #ctrl array

nextdsorcalc pronounced nekst dee' ess or kalk')
This word, which means next-document-separator-or-calc-marker,
locates document format packets in the text.

- 91 -

5.4 ROUTINES THAT INTERACT WITH SPECIAL DATA IN THE TEXT

5.4.0 Handling Skip Data

Ask> (pronounced kair'it ess' kay gray'ter)
$aO: Address of skip character in the text. Given the address
of the skip character which lies at the start of the gap region,
Ask> will extract the offset to the other side of the gap from
the skip information, add the offset to the gap start address,
and return the address of the beet.

Ask< (pronounced kair'it ess' kay less')
aO: Address of skip character in the text. Given the address of
the skip character which lies at the end of the gap region, -sk(
will extract the offset to the start of the gap from the skip
information, add the offset to the gap end address, and return
the address of the start of the gap.

5.4.1 Finding ASCII Data

firstbreak (a1 a2 -> a3-or-O)
(pronounced furst l brayk

Searches the text in the region which starts at address a1 and
ends at address a2. Returns the address of the first break
character encountered. Returns a "0'1 if no break is encoun tered.

lastbreak (a1 a2 -> a3-ur-O)
(pronounced last' brayk

Searches the text in the region which starts at the address a1
and ends at the address a2. Returns the address of the last
break character encountered. Returns a tlO" if no break is
encountered.

nextbrk (a1 -> a2-or-O)
(next-break)
(pronounced nekst' brayk)

Given the address of a location in the text, a1, returns the
address of the next successive break found in the text. A "011
will be returned if no successive break is found.

nextchar a1 -> a2)
pronounced nekst' kair)

Returns the text address a2 of the character which comes after
the character at the address a1.

Anextchar (Uses the AO and DO registers.)
(pronounced kairt~c nekst' kair)

Lower-level subroutine used by nextchar. Returns the text
address of the character which comes after the character whose
address is in the AO register.

- 93 -

prevbrk (a1 -) a2-or-Q)
(pronounced preev' brayk)

Given the address of a location in the text, a1, returns the
address of the first previous break found in the text. A "O!!
will be returned if no previous break is found.

prevchar al -) a2 }
pronounced preev' kair)

Returns the text address a2 of the character which comes before
the character at the address al.

-prevchar (Uses the AO and DO registers.)
(pronounced kair'it preev' kair)

Lower-level subroutine used by prevchar. Returns the text
address of the character which comes before the character whose
address is in the AO register.

5.4.2 Finding Data

nextmatch n a -) at)
pronounced nekst' matsh)

Searches forward in the text, starting from address ~, until the
next occurrence of the byte value ~ is encountered. The address,
~', which contains the first occurrence of the byte value is
returned on the stack. nextmatch will skip over the gap if
encoun tered '.

Warning: There are no boundaries on a nextmatch search. It will
continue forever if the specified byte data value is not found.

prevmatch n a -) a' }
pronounced preev' matsh)

Searches backwards in the text, starting from address ~, until
the first previous occurrence of the byte value n is
encountered. The address a' which contains the first previous
occurrence of the byte value is returned on the stack. prevrnatch
will skip over the gap if encountered.

Warning: There are no boundaries on a prevrnatch search. It will
continue forever if the specified byte data value is not found.

5.4.3 Analyzing ASCII Data

accent a -) a'-or-O)
pronounced ak'sent

Given the address a of a character in the text, returns either
the address at of the accent character associated with the
original character, or "0" if the original character does not
have an accent.

- 94 -

accentable? (c -) f)
(pronounced ak-sent'-a-bul)

Returns a true flag if the character code c is able to receive an
accent ($20<=character code<=$AF).

break? (c -) f)
(pronounced brayk' kwes'chun)

Returns a true flag if the character f is a character which would
cause a new paragraph (a document separator, page break, or
carriage return).

page? (c -) f)
(pronounced payj kwes'chun)

Returns a true flag if the character f is a page break character.

5.4.4 Handling Attribute Data

attribable? (c -) f)
(pronounced at-trib'a-bl kwes'chun)

Returns a true flag if the character f can have an attribute
(underlined, boldfaced, etc.). Characters with character codes
in the range $20<=code<=$AF can accept attribute data.

attribute a -) n-or-O
pronounced at'tri-bute

Given the address ~ of a character in the text, returns either
the attribute byte ~ for the character, or, if 0 if the character
does not have an attribute associated with it.

bare? (c -) f
(pronounced bair' k"es' chun)

Returns a true flag if the character c is a bare accent character.

5.4.5 Getting Information About Format Packets

brk+ (al -) a2 }
(pronounced brayk ' plus)

Given al, the address of a break character, returns a2, the first
byte beyond the break character where a format packet may be
found.

Adfmt (pronounced kair'it dee for'mat)
aO: Address in text where a document format packet is located.
Decodes a document format packet in the text and places the
format information in the #ctrl array.

- 95 -

,III"

dpktbytes (a1 a2 -> n)
(pronounced dee' pak'it byts)

Examines the text region between the start address a1 and the end
address a2 and returns the total number of bytes ~ of document
format information found in the region. This is usually used to
determine how large the undo buffer needs to be in order to hold
the document packet information required for any future undo
operation. savedpkts and swapdpkts transfers document format
packets back and forth between the undo buffer and the text.

findpkt (a1 a2 -> a3)
(pronounced fynd' pak'it)

Searches the text range starting at address a1 and ending at
address a2 and returns the address ~ of the first paragraph
format packet found. If no packet is found. ~ will be O.

Afmt> (pronounced kair'it for'mat gray'ter
aD: Address in text where format packet is located. Decodes a
format packet in the text and places the format information in
the #ctrl array. Leaves aO pointing just beyond the packet.

fpkt? (a - > f)
(pronounced eff' pak'it kwes'chun)

Returns a true flag if a paragraph format packet follows the
break character located at the address a.

getdocpkt (->)
(pronounced get' dank' pak' it)

Transfers document format information from the Setup array to the
#ctrl array.

getdpkt (a ->)
(pronounced get' dee' pak'it)

Loads the information from the document format packet located at
address a in the text into the #ctrl array.

getpkt (a -))
(pronounced get' pak'it)

Decodes the format packet located at address a in the text and
places the format information in the #ctrl array.

nextdsorcalc (a1 a2 -) a3)
(pronounced nekst' dee-ess' or kalk')

Looks through the text region starting at address a1 and ending
at address a2. Returns the address of the first document
separator or Calc marker encountered, if any. If no document
separator or Calc marker is found, return the end address of the
region.

pktbytes (a1 a2 -) n)
(pronounced pak'it byts)

Examines the text region starting at address a1 and ending at
address a2 and returns the total number of bytes n of format
information found in the region.

- 96 -

samepkt? (a1 a2 -) f)
(pronounced saym' pak'it kwes'chun)

Compares the paragraph format packets located at addresses a1 and
a2 in the text and returns a true flag if they are the same.

5.4.6 Moving ~ormat Packets Around

copypkt (a1 a2 -))
(pronounced kah'pee pak'it)

Copies the contents of the first paragraph format packet found on
or after the text source address a1 over the contents of the
first paragraph format packet found on or after the text
destination address a2.

makedpkt a -)
pronounced mayk dee'pak'it)

Encodes the document format information found in the #ctrl array
and places the resulting document format packet at the specified
address a in the text.

makepkt (a -))
(make-packet)
(pronounced mayk pak'it)

Encodes the format information found in the #ctrl array and
places the resulting encoded format packet at the specified
address a in the text.

makespace (a n -) at)
(pronounced mnyk' spays)

Tries to create a hole in the text at address a of size ~ bytes.
If there is not enough room, an error message is issued. If
there is enough room t makespace moves the text around, adjusts
the text pointers, and returns the address where the desired
space is located (the initial address could have been altered due
to text movement).

maxundo -) n)
pronounced maks' un'doo)

Returns the maximum capacity of the undo buffer expressed in
bytes.

movepkt (a1 a2 -))
(pronounced moov' pak 1 it)

Creates a paragraph format size opening in the text at the
destination address a2 and moves the paragraph format packet
located in the text at address a1 into the opening.

rotatepkts a1 a2 a3 -))
pronounced roh'tayt pak'its)

Rotates the contents of the three paragraph format packets
located in the text at addresses a1 (=packet 1), a2 (=packet 2),
and ~ (=packet 3). The rotation order is: packet 1 > packet 2
t packet 2) packet 3, packet 3) packet 1.

- 97 -

savedpkts (->)
(pronounced sayv' dee'pak'its

Move all document format packets located between the address
found in the system integer prepkt and the start of the gap into
the undo buffer.

savepkts (->)
(pronounced sayv' pak'its)

Move all format packets located between the address found in the
system integer prepkt and the start of the gap into the undo
buffer.

swapdpkts (-))
(pronounced swop' dee' pak'its)

Swap all document format packets located in the text between the
address found in the system integer prepkt and the start of the
gap with the document packets in the undo buffer.

swappkt (a1 a2 -))
(pronounced swop' pak'it)

Checks to see if there are paragraph format packets at the text
addresses a1 and a2. If there are paragraph format packets at
both locations, swaps th8 contents of the packets. If there is
only a paragraph format packet at one of the locations, inserts a
copy of the packet which does exist into the text at the location
which did not contain a format packet.

<swappkt> (a1 a2 -))
(pronounced brak'it swop' pak'it)

Swaps the contents of the paragraph format packet lying after the
break located at address a1 with the contents of the paragraph
format packet lying after the break located at address a2.

swappkts (-))
(pronounced swop' pak'its)

Swap all format packets located between the address found in the
system integer prepkt and the start of the gap with the
corresponding format packets in the undo buffer.

- 98 -

5.5 SUMMARY

5.5.0 Break Characters

$OB integer ds Document separator character code.

$OC integer pb Explicit page break character code.

$OD integer rtn Return character code

5.5.1 Text Markers

$EO integer &skip Skip the gap

$E2 integer &fmt Format packet code

$E4 integer &calc Calculation packet code

$E5 integer &lockedcalc Locked calculation packet code

$E8 integer &attr Character attribute code. Used
in arithmetic code words

$EC integer &dln Dotted underline code used in
arithmetic code words

5.5.2 Character Code Limit Values

$AF integer &lastasc

$BF integer &lastchr

$CO integer &firstacc

$CF integer &lastacc

$EO integer &firstcmd

$EF integer &lastcmd

$FO integer &firsthid

5.5.3 Format Packet Values

$39 integer pktsize
Size of a paragraph format packet in the text, including format
character

$OE integer dpktsize
Size of a document format packet in the text, including document
separator character

- 99 -

6. INSERTING, ERASING, AND COPYING TEXT

Introduction

Inserting (typing), erasing, and copying are the three most basic
Cat editing operations. The inserting routines must decide what
styles, if any, should be given to new characters being entered
into the text. The insert routines will gather characters in the
gap area until they get a chance to insert the block of
characters into the text. The copy routines copy the current
selec)n and insert the copied characters into the text. The
copying process is very similar to the text insertion part of the
typing process. The erase routines will either erase forward, or
backward or will erase an extended selection from the text
depending upon the cursor state when Erase is used.

- 100 -

6.0 INSERTING TEXT

Characters typed at the Cat keyboard do not go directly to the
editor. The interrupt routine responsible for scanning the
keyboard array places key/character information in a low-level
key event queue each time a key or keys is detected going up or
down. When the editor is ready to receive characters it uses
Forth keyboard I/O words to obtain key/character data from the
queue. The Cat keyboard interface and the Forth words used to
handle keyboard input are discussed in Chapter 13.

Insert (with a capital "I") is the editor word which takes typed
character input and implaces it in the text. The three main
functions of Insert -- gathering characters, inserting characters
into the text, and redisplaying the text -- are discussed below.

6.0.0 Checking the Attribute State

Before Insert actually places characters in text. it must be
determine whether special character modifiers are needed. If
there are any attributes common to the nearest printing
characters on both sides of the insertion point. all inserted
characters will inherit those attributes. Printing characters
include all characters excepting break characters and tabs. If
any such attribute is on only one side of the insertion point,
the inserted material will not inherit that attribute.

The attributes associated with the characters on both sides of
the insertion point are AND'ed together to obtain the attribute
value for the new character. The result of ANDing together two
completely different attribute values -- bold and underline. for
example -- is 0 or $E8. If Insert finds either of these results,
the new character will not be assigned an attribute. If the
resulting value is other than 0 or $E8. it will be used as the
attribute value for the new character.

As an example, imagine that the cursor is wide and a new
character is to be inserted between an underlined character and
an underlined, boldface character. When the underline attribute
value, $E9, and the underlined-bold attribute value. $EB are
AND'ed together, the resulting value is $E9, the underlined
attribute value. Since this value is not 0 or $E8. the new
character, and all subsequent characters placed between the
original attribute-determining characters, will be given the
underline attribute.

The following code excerpt from Insert shows the attribute
assignment decision process:

- 101 -

\ ..,

beet narrowcursor? (look for attributes beginning at insertion point
if prevchar then dup (if cursor is narrow, step back one character
begin dup c@ pb rtn (skipping all break characters)
inrange while nextchar again (forward to printable character)
attribute swap (find attribute here and swap for insertion point again
begin prevchar dup c@ pb rtn (skip all break characters)
in range 0= until (scan backwards for first printable character)
attribute and (find attribute here, then AND with other attribute
dup e8 = (if no common attribute bits)
if drop 0 then attrib to (mark for "no attribute"

6.0.1 Gathering Characters

Insert uses continueinsert? (which uses the lower-level Forth
word <?k» to obtain characters from the keyboard event queue.
Insert will not terminate execution until the event queue is
completely empty. This ensures that all input characters will
enter text as quickly as the previously entered characters can be
displayed. As the characters are received (and assigned
attributes if necessary), they are placed temporarily in the gap,
immediately after the skip information. A local variable pointer
named ttplace" keeps track of the offset into the gap to the
position where the next received character should be placed.

Before each character is placed in the gap area, Insert uses the
word enoughtext to check the amount of available gap space.
There must be at least enough room for current temporary
insertion string and for a document format packet (in case the
next character received is a document separator character) for
Insert to proceed:

place gap -
dpktsize +

enough text not
if

then

2drop
noerror error
leave

length of the current insertion string
the most gap space which could be)
required by the next character)
if there is not enough text, error)

- 102 -

If there is enough room, Insert will analy...:e the character just
received to determine how to handle it. There are six possible
types of characters Insert will have to handle:

1. Accented characters (two bytes)
2. Accented character with an attribute (three bytes)
3. Document separator characters (dpktsize +1 bytes)
4. Normal character preceded by a bare accent character (two

bytes)
5. Normal character with attribute (two bytes)
6. Normal character (one byte)

Accented characters are easy to recognize because their character
value is greater than $FF, the maximum value which may be
expressed with 1 byte. When an accented (2-byte) character is
encountered, it is stored (using wI) at the location currently
pointed to by the place pointer. If the accented character is to
receive an attribute, the accent part of tne accent character is
bumped over by one byte and the attribute value is inserted
between the main character and its accent character.

Whenever a document separator character is encountered, a
document format packet must be created and inserted. makedpkt
constructs a document format packet in the gap using the document
formatting information currently found in the #ctrl array. A
page break character is also inserted in the temporary gap string
immediately after the document format packet.

If the character was not an accented character or document
separator character, it must be a normal character represented by
as a single byte. It is inserted, using c!, in the gap at the
location pointed to by place. If the normal character is a
character that can receive an accent and if the character which
precedes the normal character in the gap is a bare accent
character, the normal character and the bare accent character
will be swapped and changed into a standard, accented (2-byte)
character:

swap c@ accentable?
place prevchar c@ bare?
and
if

else

place prevchar dup
c@
place c@
rot c!

OF and CO or
place ct

Can this character receive an accent?)
Is previous character a bare accent?)
If both of these cases is true ...)

Duplicate address of bare accent.
Fetch the bare accent.)
Fetch the character to be accented.
Store the character to be accented in
the location where the bare accent was.)
Turn bare accent into a normal accen t.)
Store it immediately after the main)
character.)

- 103 -

If the normal character is not turned into an accent character,
Insert will check to see if the character should receive an
attribute. If the character can and should receive an attribute,
the attribute value will be stored in the gap area immediately
behind the character. If the character does not receive an
attribute, Insert's character handling process is completed. The
place pointer will be properly incremented and continueinsert?
will be used to check for the availability of more characters.

continueinsert? will return 8 true flag and a character code if a
valid insertable character is available. If no valid character
is available, a false flag will be returned, and the Insert
character handling loop will be terminated, and the process of
inserting the temporary character string into the text will be
started.

6.0.2 Inserting Characters Into the Text

The word insertblock inserts the characters in the gap into the
text. Before inserting the string into the text, insertblock
checks for the following cases:

Locked t~xt
Empty text
Not enough room for insertion string
Extended selection

If the text is locked, or if there is not enough room for the
insertion, an error message is issued and no text is inserted.
If the text is empty, the editor is initialized using initedde
before the insertion. If the cursor is extended, it will be
collapsed before the insertion.

If the string is to be inserted, it will be placed either before
or after the bas character. Since any extended selections were
collapsed, the bos character will be the character located
immediately before the start of the gap. If the cursor is
narrow, or if the eos character is the last character in a range
of locked text, AND if the bas character is not a bare accent
character, the string will be inserted before the bos character.
This means that the bas character must become the eos character
and be moved to the other side of the gap:

narrowcursor?
eos eor = or
gap prevchar c@ bare? not and
if

Make bas character the eos character
and move it to the other side of the gap.

then

- 104 -

After the above test has been made, and the gap moved if
necessary, the string is ready to be inserted. The selection is
reset if necessary and the string is inserted starting at the gap
location. If the character immediately before the gap was a bare
accent, and if the first character in the inserted string is a
character which may accept an accent, the two characters are
swapped and turned into a real accented character pair. The gap
position is incremented to just beyond the end of the inserted
string and the text is marked as dirty.

6.0.3 Redisplaying the Text

After the text has been inserted, the bas pointer is reset:

gap prevchar bas to

the screen contents are redrawn as necessary:

redisplay

and the cursor is set to the wide cursor state.

- 105 -

6.1 ERASING TEXT

The Erase command is associated with the Erase key. Erase always
removes whatever character or characters are in the highlight and
no others, with one exceptional case noted below.

Backward erase: This is a form of character-by-character erasure
which resembles backspacing on a typewriter. When the cursor is
wide before an erasure, it will be wide on the character
preceding the erased selection afterward. Thus the wide cursor
removes text to its left or backward a character at a time.

Forward erase or "gobble": This, too, is a form of
character-by-character erasure, useful in removing text to the
cursor'f right. If the cursor is narrow, Erase removes the
character immediately underneath it, then replaces the missing
character with the next character to the right. The cursor
doesn't change or move, so, with repeated applications, it
appears to be standing still while "gobbling" the text to its
right.

Extended erase: When the highlight is extended, all the
highlighted characters will be erased. The cursor will be left
wide on the character preceding the erased selection.

Erase turnaround: The first or last document break in the text
or local leap region are exceptional cases. If Erase is invoked
when the cursor is on the first document character in the text
(or local leap region), that character will not be erased. but
the cursor will become narrow on the next character forward. If
the cursor is on the last document break in the text (or leap
region), that character is not erased, but the cursor becomes
wide on the character immediately preceding it. This is called
erase turnaround because it switches a forward-erasing cursor to
backward-erase, and vice versa.

6.1.0 Preparing for Text Removal

Before text can be removed, three tests must be made:

1. Is the selection within a valid text range?
2. Is the selection within a locked range of text?
3. Does Erase undo preparation need to be performed?

- 106 -

trimselection makes sure the selection lies within a valid text
range. If the user has used the Local Leap keys to reduce their
working text area to a subset of the entire text, erasures can
only occur within the local leap region of text. A local leap
region of text will always be bounded on both sides by document
characters. trimselection checks to see if the current selection
flows over or includes either of the bounding document separator
characters for the current local leap region and "trims" away any
part of the selection which does not lie inside of the local leap
region. If the entire selection lies outside of the local leap
region, trimselection will return a false flag to indicate that
the Erase operation cannot continue.

Next, Erase checks to see if any part of the selection lies in a
locked region of text. If any part of the selection is locked,
the Erase operation is aborted, a warning beep is sounded, and an
Explain message is made available.

If the first two tests above were passed, the Erase operation
will occur. First though, Erase checks to see if any undo
preparation is required. If the previous operation was not an
Erase operation, undo preparation must be performed. This
involves clearing out the undo buffer (with clearundo), saving
the current cursor state (with savepos), and clearing the
contents of the format packet scratch area (by filling workpkt
with zeros). If the previous operation was Erase, these undo
preparations will have already been performed.

Now we're ready to Erase. The text is marked as dirty
(dirtytext? on) and the state of the cursor is checked. If the
cursor is narrow, gobble will be used. Otherwise,
removeselection will be used to remove text.

6.1.1 Gobbling Text

6.1.1.0 Checking the Selection Length

gobble is the word used to remove the selection under the narrow
cursor. The k :hle below shows the possible contents and lengths
of a selection under a narrow cursor:

Selection

Normal Character

Accented Character

Attributed Character

Accented attributed
Character

Selection Contents (Size)

ASCII code (1 byte)

ASCII code for character plus
ASCII COG: for accent (2 bytes)

ASCII code for character plus
code for attribute (2 bytes)

ASCII code for character, plus
code for attribute, followed by
ASCII code for accent

- 107 -

Carriage return

Document Separator

ASCII code for CR plus paragraph
format packet (1 + paragraph
format packet length)

ASCII code for document separator
plus document format packet plus
paragraph format packet. (1 +
document format packet length +

paragraph format packet length)

gobble checks for a selection length of less than 1 byte. The
only time a narrow cursor's selection length can be less than 1
byte is when the narrow cursor is positioned over the last
document character in the text. Since the last document
character cannot be erased, gobble responds to this situation by
moving the bos back by one character and resetting the cursor to
a wide state. That way, if the ERASE key is pressed again, the
erasing will proceed backwards in the text, away from the end of
the text document character. After the bos has been
repositioned, redisplay redraws the necessary parts of the text:

selsize 1 <
if

then

eos prevchar bos to
redisplay
widecursor
exit

Is the selection length less than 1?)

Move the bos back by one character.)
Redraw the screen contents.)
Make the cursor wide instead of narro\!;'.
Exit gobble immediately.)

6.1.1.1 The Relationship Between Break Characters, Paragraph
Format Packets, and the Text

As you may recall from the section Gil "What I s In the Text, II

paragraph format packets can only reside next to break characters
(carriage return, page break or document separator) in the text.
A paragraph format packet controls the appearance of all text
following it up to the next occurrence of a break character
followed by a paragraph format packet. A paragraph format
packet, and the break character immediately following the text
which the paragraph format packet controls, are invisibly linked
to each other. The diagram on the following page illustrates
this relationship between paragraph format packets, break
characters, and the text. As you can see, the paragraph format
packet and its associate break character lie on opposite ends of
the text they control.

The confusing part about this arrangement is that when a break
character is selected, any paragraph format information following
it is also included in the selection. But the paragraph format
information following a break character is not the paragraph

- 108 -

format information with which the break character is associated,
it is the paragraph format information which controls the
following paragraph!

As an example, refer to the left portion of diagram 6.1 on the
following page. The carriage return following paragraph "1" has
been selected for erasure. This means that both carriage return
"1" and paragraph format packet "2" are included in the
selection. We cannot simply dispose of the selection (paragraph
format packet "2" is not associated with carriage return "1"),
nor can we remove only the carriage return (paragraph format
packets must always be located after a break character). The
solution is to remove carriage return "1" and to move paragraph
format packet "2" immediately after the previous break character
in the text, carriage return "0".

In this example, since the carriage return being removed (#1) was
also associated with a paragraph format packet (#1), paragraph
format packet "2" will be moved into the location previously
occupied by paragraph format packet "1" (which becomes invalid
once its corresponding carriage return is erased). If carriage
return 1 had not been associated with a paragraph format packet,
paragraph format packet "2" would still have been moved after
carriage return "0". Th8 difference is that in the second case a
space would have to made in the text after carriage return "0"
for the insertion of paragraph format packet "2".

- 109 -

6.1 Gobbling a Carriage Return
(and replacing its associated format packet)

::::::::::::::;:::::::::::::;:::::::::::::::::.::::::::~;;:::: "::::;::::.:::.::::::::::::;::::::{:::::.::.:.: ... -

:'::i:'~'···
";,:·:·:r?~~{:;·:····:f}~{{{;~:::)::)(»)~-::::;:;:::::~/::-:.:-:.:.:.: :.: :. ,"",
}~.... A¥l~I1fI'V\I¥i'\;~wPW'Ilo'VYI"'"

Carriage return 1 is tied to
paragraph format packet 1
which controls the appearance
of paragraph 1. If carriage
return 1 is removed,
paragraph format packet 1
must be replaced with the
next successive paragraph
format packet, packet 2.

-110-

o~

~

~

~1~1E2J

f::):::: /
:-: .. :;.>:.>:-:.:-,<-: .. :':';';':-:';':<';':':':-:':':-:':':',-:':-:':-'"

..•.. :),.:::'.~.,.:

.: .. , :: :. :::::::::::::',:::::::,:::;:;:::

............ ~ •.•••
-:-:';':':':':-:-, :.:.;.:.:.: ... :-:.:.: :::;: .. :;:;:;:::::::<;.':.>:;::::::::;::>-.- ... -.
. '.:.>:-:.:-:-:: , : .. : :-.... -: ... :-: .. :>:.::::;:::;:::::.: :::;:::::::-:-::>:.:::<

":\:;::\;:::,::;:::::::::::::::::,.:::: .. :..". : :.: ... :-;. ... :-: .. ;:::.:::::::.:::::-::::-:::::::»:::;. :-:-.. ;.

..)::.:.'~

:'::·~:··::::::,li:::::i::,(:·'·«'··«·<
...•...•.......• '.,• ::.:y::<,•• < •••••• :\ ... : •• , •• : ~

After carriage return 1 and
paragraph format packet 1
have been removed, the
previous paragraph 1 text
is merged with the paragraph
2 text. This larger paragraph
2 is controlled by paragraph
format packet 2.

6.1.1.2 Checking for Format Packets in the Selection

Once gobble has checked the selection length, it uses pktbytes to
check for paragraph format packets in the selection. The value
returned by pktbytes, which is the number of paragraph format
packet data bytes found in the specified region, is stored in the
system integer fmtchrs. If the selection does contain paragraph
format information, gobble is about to erase a break character.
This means the break character, and its associated paragraph
format packet, if any, must be removed and the paragraph format
packet contained in the selection must be moved to a location
immediately after the previous break character. This is the code
that handles paragraph format packets in selections to be gobbled:

bos gap pktbytes dup fmtchrs to (Any format packets in selection?)
if

then

workpkt @ 0=
if

bos find char
workpkt makepkt

then

Save the current paragraph format
packet state in the workpkt.)

Does the break being removed have an associated format packet?)
Remember, the packet associated with the break being removed v,'i 11
be located after the previous break in the text.)

bos prevbrk dup fpkt? 0=
if

brk+ pktsize makespace 1-

then

If not, make room after the)
previous break for the insertion
of a format packet.)

(Place a copy the packet contained in the selection after the)
(previous break in the text.)
bos swap copypkt

Note that if the scratch ~orkpkt contains no data, the state of
the paragraph which the break character follows is calculated and
stored in the workpkt.

6.1.1.3 Finishing Up the Gobble

Once any format packets have been handled, gobble is almost
finished. findcalc and linkcalc find any Calc packets in the
selection and to append them to a linked list (see the Calc
discussion). killivls marks all intervals which correspond to
the selection for updating. partknown marks the second text
partition -- all text after the selection -- as partially valid.
movetext appends the selection to the end of the current undo
buffer contents. The first character after the selection, the

- 111 -

character at the beot location, is moved to the front of the gap
and is made the bos character -- it becomes the next character
under the narrow cursor {gobble is marching forward in the
text}. aftererase redraws the display. narrowcursor keeps the
cursor narrow and ungobble is set as the undo operation for
gobble.

6.1.1.4 Undoing a Gobble

ungobble is the undo operation for gobble. ungobble takes text
out of the undo buffer and places format packets back in the text.

If the workpkt contains paragraph format information, and the
previous break in the text contains a format packet, the format
packet in the workpkt is copied over the format packet at the
previous break. If the previous break does not contain a format
packet, no action is taken. Next, findcalc and unlinkcalc unlink
all of the Calc packets which were linked by Erase (or regobble,
see below). killivls marks all intervals which correspond to the
selection for updating. partknown marks the second text
partition, all text after the selection, as partially valid.

Now the contents of the undo buffer must be moved back into the
text at the bas position. This is a three step process. First,
the current bas character must be moved to the other side of the
gap. Second, the first character in the undo buffer must be
moved from the undo buffer to a location right before the front
of the gap. Finally, the rest of the characters in the undo
buffer must be moved to the far side of the gap. After these
movements occur, the character before the gap is made the bos
character and the first characte~ after the gap is made the beot
character.

The remaining operations of ungobble involve using clearundo to
clear the undo buffer, using aftererase to redraw the display,
using narrowcursor to set the cursor to a narrow state, and
setting regobble as the undo operation.

6.1.1.5 Undoing an Ungobble

regobble is the undo operation for ungobble. The first time the
Undo key is pressed after an ERASE operation, an ungobble
occurs. ungobble and regobble will alternate with each
subsequent press of the Undo key. ungobble will always place
everything in the undo buffer back into place in the text and
regobble will always place the entire selection into the undo
buffer.

6.1.1.6 Removing a Selection
If the cursor is wide or extended when Erase is used, all text
within the selection will be removed. The cursor moves backwards
in the text when Erase is used in this manner. The two words
used to implement this type of erasing are <removeselection> and
removeselection. See the definitions of these words for further
information.

- 112 -

6.2 COPYING TEXT

The Copy command is very similar to the part of Insert which
actually places a small section of text into the larger text
area. The words used to implement the Copy command are Copy,
insertcopy, (insertcopy>, and Uncopy.

Copy makes a copy of the current selection and tries to insert
the copy into the text immediately after the end of the
selection. Copy first checks the beginning and end of the
selection to handle selections which may start or end on Calc
packets or which lie at the beginning or end of a Leap range.
After the selection endpoints have been adjusted, Copy checks to
see if a valid selection is still left and exits if not.
selected redisplays the adjusted selection. Copy also checks to
make sure there is enough room for the selection and exits if
not. At this point, the procedure used to copy the selection
depends upon whether the selection to be copied lies within a
locked document. If the selection is not locked, insertcopy
places a copy of the selection in the gap, immediately after the
skip information. insertcopy is then used to insert the copy
into the text, immediately before the gap.

If the selection is fully or partially locked, the copy must be
placed immediately after the last document in the locked region.
Copy checks to see where the last locked document ends and checks
to see if there is any unlocked text following the last document.

Once the destination for the copied text is determined,
insertcopy places a copy of the ~election in the gap. killivls
marks all intervals in the insertion area as altered.
insertblock actually inserts the copy int0 the text.

- 113 -

6. 3 ROUTINES SUMMARY

6.3.0 Insert Routines

continueinsert? -) c -1) if key is available
-) 0) if key is not available
pronounced kahn-tin'yu in'surt kwes'chun)

Fetches a key from the keyboard queue. If the key is not a
special key, a true flag and the key information are returned on
the stack.

enoughtext (nl -) f I if result is true)
(nl -) n2 f I if result is false)
(pronounced e-nuff t tekst')

enough text checks the amount of memory available for text
insertion (that is, the amount of room in the gap) to see if
there is enough room for nl bytes to be inserted into the text.
If there is enough room, a true (non-zero) flag is returned. If
there is not enough room, the number of available bytes (n2) and
a false flag (0) are returned. enoughtext uses this basic
equation to determine the amount of available gap memory:

available gap memory = bou gap 4

Insert (c -))
(pronounced in-sert')

Inserts characters into the text until there are no characters
left to insert.

insertblock (a n -))
(pronounced in-sert' blok')

Inserts the string at address ~ of length ~ into the text. The
text is inserted starting at the gap location. Before inserting
the text, insertblock checks for a locked text or an empty text.
If the text is locked, an error message will be :Lssued and no
characters will be inserted. If the text is empty, the editor
will be initialized before the insertion. If the string is
inserted, the text will be marked as changed.

resetselection? (-) f)
(pronounced ree'set sa-lek'shun kwes'chun)

Returns the flag held in the forceop integer and then places a 0
in forceop. If the flag is true, typing should force movement of
the Ope

- 114 -

6.3.1 Erase Routines

aftererase (-)
(pronounced af'tur ee-rays')

Checks to see if the line which contains the first break before
the bos is visible in the window. If it is, aftererase
selectively updates the window table entries for the lines
between and including the previous break line and the gapline.
Later when redisplay is used, only these selectively updated
lines will be redrawn. Otherwise, if the previous break line is
not in the window, gapline is set to zero to cause redisplay to
completely recalculate and redraw the window contents.

Erase (-))
(pronounced ee-rays')

Erase is the word executed when the ERASE key is pressed. Erase
puts the %erase value in the curop system integer to identify
itself as the current operation. trimselection ensures a valid.
erasable selection exists and lockedtext? makes sure the
selection is not part of a locked portion of text. Next. Erase
checks to see if the undo buffer has already been initialized for
an erase operation. If the value in curop (%erase) is equal to
the value in lastop then the last operation was an erasure and
the undo buffer does not require initialization. Otherwise,
clearundo clears the undo buffer, savepos saves the current
cursor state, and the work packet, workpkt, is filled with
zeroes. This is a signal that the format state preceding the
selection has not been calculated yet. After Erase has checked
and handled any undo initialization required, the text is marked
as dirty. Now Erase must determine which type of erase operation
should be performed. If the cursor is narrow, gobble erases
forward in the text. If the cursor is not narrow,
removeselection removes whatever characters are in the current
selection. After the correct text has been erased, the locations
of the op and pop are checked. If either of them point into the
gap area, they are changed to point to the current bos location.

gobble (-))
(pronounced gah'bl)

Used by Erase when the cursor is narrow. If there is no text in
the selection when gobble is called, the cursor must be at the
end of text. The bos is set to eos prevchar, the text is
redisplayed, the cursor is set to wide, and gobble is exited. If
there is valid text, gobble next checks for format packets in the
selection. If there are format packets, and the workpkt is
empty, the state at the bos creates a format packet in the
workpkt. This occurs only the first time in a series of erase
operations to optimize for speed. Then, the break prior to the
selection start is checked for a format packet. If the prior
break has no format packet, a space is created for the insertion
of a format packet. Then, the format packet in the selection is
copied over the format packet or format packet space at the
previous break location. gobble then uses killivls to mark all
intervals corresponding to the text range between bos and gap as
invalid, uses partknown to mark all intervals corresponding to

- 115 -

all text after beot as partially known, moves the selection to
the undo buffer, sets up the next character in the text as the
new selection, uses aftererase to redraw the display, leaves the
cursor narrow, and sets ungobble as the undo operation.

move text (a1 a2 n ->)
(pronounced moov' tekst)

In general, movetext removes the text region which starts at
address a1 and is g bytes in length from the text and insert it
into the text starting at address a2. movetext is primarily used
for moving selections, which start at the bos location, to and
from the undo buffer, which starts at the bou location.

If text is not being moved between the bos and bou
locations, movetext will first use enoughtext to make sure there
is enough room for the move operation. If the destination
address is in the second text partition, movetext will move
enough text to create a hole which is g bytes in size, just
before the destination address and then will update all pointers
affected by the text movement. If the destination is in the first
text partition, room for the new text is created by moving the
gap pointer position ahead by g bytes.

Now that space has been created for the text, move moves the
text into place. Next, movetext takes care of closing up the
hole created in the text when the source text was removed. If
the source text was located in the second text partition move
closes up the hole and all pointers affected are updated. If the
source text was in the first text partition the h 1e is closed up
by simply reducing the gap pointer by n bytes. preset resets the
gap skip markers.

regobble (->)
(pronounced ree'gah'bl

The undo operation for ungobble.

removeselection (-»
(pronounced ree-moov' sa-lek'shun)

First uses <removeselection> to check the selection, link the
calcs in the selection, and tc handle any format packets in the
selection. If <removeselection> returns the false flag that
indicates that the erase process should continue, removeselection
will move the selection to the undo buffer, set bos and cpos
equal to gap prevchar to reset the selection start, use
aftererase to redraw the display, set the cursor to a widecursor,
and make restoreselection the undo operation.

<removeselection> (-> f)
(pronounced brak'it ree-moov' sa-lek'shun)

Lower-level word called by removeselection. Returns a true flag
if there is no valid text to erase or a false flag if the erase
process should continue. <removeselection> first checks to see
if there is any text in the selection. If there is text, but no
text in the selection, then the cursor must be at the beginning
of text. The cursor is made narrow and placed just after the
bot, the text is redisplayed, and <removeselection> is exited.
If the text and selection are both empty, the cursor is made

- 116 -

wide, placed at the beginning of the text, the text is
redisplayed, and ~removeselection> is exited. If the text or
selection are not empty, <removeselection> links all Calc packets
in the selection and checks to see if the selection contains any
format packets. If there are no format packets in the
selection, killivls marks the intervals corresponding to the bos
through gap region for updating and partknown marks all of the
text past the beot as partially known and <removeselection> is
exited. If there is a format packet in the selection,
<removeselection> exchanges the last format packet in the
selection with the packet at the first break before the
selection. The format packet at the first break before the
selection is saved in the workpkt scratch area. All intervals
corresponding to the bos prevbrk through gap region are marked
for updating and all text past the beot is marked as partially
known.

restoreselection (-»
(pronounced ree-, ... -"r' sa-lek'shun)

This is the undo operation for removeselection. restoreselection
moves the text in the undo buffer back into the text starting at
the gap location and increments the gap and bou pointers by
ubufsize bytes. If <removeselection> saved a packet in workpkt,
restoreselection will place it back in the text after the break
which immediately precedes the selection start. clearundo clears
the undo buffer, the workpkt area is filled with zeros, all Calc
packets in the selection are unlinked, all intervals between the
break before the selection start and the selection end are marked
for updating, the text after the beot is marked as partially
known, the selection moved back into the text is reselected, the
text is redisplayed, the cursor ~s made extended, and
removeselection is set as the undo operation.

trimselection (-) f)
(pronounced trim' sa-lek'shun)

If the selection begins on the document character that lies at
either the start or end of the current local leap range,
trimselection will "trim" the selection by bumping the start
and/or end of selection forward/backward by one character. This
is because the document characters which start and end the local
leap range are not allowed to be erased or copied. Used by
Erase. Returns a true flag if there is still a valid selection
after trimming and a false flag if the selection contains no
valid characters. If the only two characters in the selection
region are the two document characters which mark the beginning
and end of the current leap range, trimselection will return a
false flag to indicate that there are no valid characters in the
selection.

- 117 -

ungobble (->)
(pronounced un'gah'bl)

ungobble is the undo operation for gobble. ungobble first looks
in workpkt to see if gobble removed a format packet. If workpkt
holds a non-zero value, there is a format packet which needs to
be put back into the text. If the first break before the bos has
a format packet, the packet saved in workpkt will be copied over
the current packet. If the prior break has no format packet, no
action is taken. Next, unlinkcalc unlinks all selected Calc
packets that must be placed back in the text (which currently
resides in the undo buffer).

6.3.2 Copy Routines

Copy -)
pronounced kah'pee)

Makes a copy of the current selection and tries to insert the
copy into the text immediately after the end of the selection.
Copy first checks the beginning and end of the selection to
handle selections which may start or end on Calc packets or which
lie at the beginning or end of a Leap range. After the selection
endpoints have been adjusted, Copy checks to see if a valid
selection is still left and exits if not.

selected redisplays the adjusted selection. Copy also
checks to make sure there is enough room for the selection, and
exits if not. At this point the procedure used to copy the
selection depends on whether the selection to be copied lies
within a locked document. If the selection is not locked,
insertcopy places a copy of the selection in the gap. immediately
after the skip information.

insertcopy is then used to insert the copy into the text,
immediately before the gap_ If the copy contains any paragraph
formatting information, the format at the start of the copy must
be preserved. If the break just before the copy contains a
paragraph format packet, its contents are changed to match the
formatting of the original. If the previous break has no format
packet, a packet is inserted. If the selection is fully or
partially locked, the copy must be placed immediately after the
last document in the locked region.

Copy checks to see where the last locked document ends and
whether there is any unlocked text following the last document.
If there is no unlocked text after the locked range, Copy issues
an error and exits. If there is an unlocked area after the
locked range, Copy proceeds with the copy process.

insertcopy places a copy of the selection in the gap.
killivls marks all intervals in the insertion area as altered.
insertblock inserts the copy into the text, immediately before
the gap, which has been repositioned to right after the locked
text region.

Now, Copy takes care of preserving formats. A format packet
which reflects the original format of the text following the
locked text region is created and either copied over a format
packet that is before the copy or is incerted after the first
break before the copy.

- 118 -

Likewise, a format packet which reflects the format at the
beginning of the original selection is either copied over the
first format packet after the copy or is inserted after the first
break after the copy. <swappkt> is then used to swap the two
packets so that both the copy and the text after the copy have
the correct format.

After the copy has been inserted into the text, the text and
cursor are redisplayed, and Uncopy is set as the undo operation.
Copy of unpocketed definitions (calc pocket) omits the expression
starting at the colon to avoid duplicate definitions. Copy of
pocketed calc pockets copies only surface text result and removes
the dotted underline.

(insertcopy> (a1 a2 a3 -> a1' a2')
(pronounced brak'it in-sert' kah'pee)

Tries to copy the text bytes in the range from address a1 to
address ~ to memory starting at address a2. The copy process
will stop if either (1) a document separator character is
encountered, (2) a Calc packet is encountered, (3) the end
address ~ is reached. The current locations of the source
address a1' and destination address a2' are returned when
<insertcopy> terminates.

insertcopy (a1 a2 n -> a2')
(pronounced in-sert' kah'pee)

Copies the ~ bytes located starting at address a1 to address a2.
Uses the lower level word <insertcopy> repeatedly to actually
move the data. If <insertcopy> returns without having moved all
of the data, then either a document separator or Calc token was
encountered. If a document separator character was encountered,
getdpkt reads the contents of the packet into the #ctrl array.

The markbl value is stored in the #lock field to
specifically mark the document as unlocked. makedpkt is then
used to insert the modified document format packet into the copy
and <insertcopy> is called again to continue moving the data
after the document separator. If a Calc token was encountered,
copypocket copies the Calc packet and <insertcopy) is called to
continue moving the data after the Calc packet. insertcopy will
continue calling <insertcopy> until all data has been moved. The
address of the end of the copy is returned.

Un copy (-))
(pronounced un'kah-pee)

Uncopy uses <removeselection> to remove the copy, fixes the gap
pointer, marks the text as dirty, makes Copy the undo operation,
and redraw the display.

- 119 -

7 . CHARACTER STYLE COMMANDS

Introduction

Three character style commands are available on the Cat: Bold,
Underline, and Caps. All three affect the characters in the
current selection. Bold and Underline affect the style/attribute
byte which mayor may not be associated with any character in the
text (see "What 1 s in the Text"). The Caps command affects only
the ASCII value for the character.

- 120 -

7.0 PREPARING TO CHANGE THE CHARACTER STYLE

Before any actions affecting the text are taken, the character
style commands (Boldt Under, Caps) use extend to extend the
selection and lockedsel to check whether the selection lies in a
locked document. If any part of the selection lies in a locked
document, the operation is aborted.

After extending the selection and checking for locked text, the
character style commands use these texts to see if undo
preparation actions need to be taken. If any test is true, the
character style commands will not initialize the undo buffer:

1. Is Uncformat the current undo operation?

If Uncformat is the current undo operation, it means the user
is trying to undo the affect of a previous character style
command execution. The original selection affected by the
character style command is already in the undo buffer. Undo
buffer initialization is not required.

2. Does the undo buffer contain text or data?

If the undo buffer contains text or data, if ubufsize returns
a undo buffer length which is greater than zero, the undo
buffer should not be initialized.

3. Is the Use Front key currently up?

If the Use Front key is up, ~hen the Undo key -- rather than
the [Use FrontJ-[Character Style Command] key combination -
was used to execute this character style command. The
original selection affected by the character style command is
already in the undo buffer. Undo buffer initialization is
not required. When a series of character style changes have
been made, Undo will undo all of them, returning the text to
the state it was in prior to any changes.

If undo preparations are required, ~arundo will be used to
clear out the undo buffer, selsize needtext will be used to check
for memory availability, and cformatl will be used to copy the
current, unstyled selection to the undo buffer.

- 121 -

. -

7.1 TO STYLE OR NOT TO STYLE

All of the character style commands are toggle commands. Each
time a character style command is executed, it must either style,
or unstyle the current selection. The action taken depends on
the answers to the following questions:

Should the selection be styled?

Each of the character format commands analyzes the contents
of the selection to determine if the selection should be
styled or unstyled.

The Bold and Underline commands check the following cases:

1. Can any of the characters in the selection receive an
attribute?

2. Are there any characters in the selection which do not
already have the chosen character style?

If all printable characters in the selection are already bold or
underlined when the command is given, the bold or underline
attribute is removed from all of them. If any of the printable
characters in the selection are not bold or underlined, they will
become so when the command is given, that is, the attribute will
be added to· those characters and the rest will remain unchanged .
Break characters and tabs do not take character attributes, and
so are unaffected. Spaces are considered printing characters and
do take character attributes.

The Caps command performs one test: Are there any lowercase
characters in the selection?

If so, the entire selection should be capitalized. If all
alphabetical characters are capitalized, they will be made
lowercase.

This logic does not apply in the case of a Learn command. If a
Learn replay is in progress, the selection will always be styled
on the first execution of the command, regardless of the
foregoing set of rules.

To understand why, imagine the following scenariG: During the
recording of a Learn sequence you press [Use FrontJ-[BoldJ. The
Cat assumes that your intention was to make the selected text
bold, no matter what. By suspending the rule about making
completely bold text plain, the Cat prevents you from
inadvertently changing some previously bolded text into the
opposite of what you intended when you designed the Learn
sequence.
The only way to cause a character format command to unstyle the
text in a Learn sequence is to press the command key twice when
you are recording the Learn sequence.

- 122 -

7 . 2 CHANGING THE CHARACTER STYLE

Adding a character style attribute to each character in the
selection is a four-step process:

1. Determine how much extra memory will be required for the new
attribute bytes.

extramods looks through the selection and returns a count of
how many new attribute bytes will be required.

2. Check memory availability.

There must be enough room in the gap for both the characters
in the current selection and for all of the new attribute
data.

3. Move the selection into the gap area.

4. Move the selection, with new attributes installed, back into
the text. The phrase:

gap extrasize + 5 + bos &uln movewith

will move the selection characters, one-by-one, back into the
text and will add the underline attribute to each character
which requires it.

Removing a character style attribute from each character in the
selection is a three-step process:

1. Check memory availability. There must be enough room in the
gap for a copy of the selection.

2. Move the selection into the gap area.

3. Move the selection (with the attribute removed) back into the
text.

The phrase gap 5 + bos selsize $uln movenotwith will move the
selection characters, one-by-one, back into the text and will
remove the underline attribute from each character which
possesses it. If the only attribute the character has is the
underline attribute, movenotwith will remove the entire attribute
byte.

The words uppercase and lowercase are used by Caps to capitalize
or lowercase the characters in a selection.

- 123 -

7. 3 UNDOING A CHARACTER STYLE COMMAND

All of the character style commands set Uncformat as their undo
operation.

Uncformat uses cformat3 to swap the current selection with the
contents of the undo buffer, to set the new bou and bos values,
to mark the intervals corresponding to the selection are for
updating, and to redraw the display with the help of cformat2.
Uncformat sets itself as the undo operation.

- 124 -

7.4 ROUTINES SUMMARY

7.4.0 Bold and Underline Command Routines

attribregion (a n1 n2 -) f)
(pronounced atftrib ree'jin)

Returns a true flag if any attributable character within the
region of text of length n1 which starts at address a does not
yet have the attribute n2.

Bold -)

pronounced bohld')
Checks the current selection. The bold attribute will be removed
from all characters in the selection if
a. None of the characters in the selection can receive an attribute. OR
b. If all of the characters in the selection already have the bold

attribute, AND
c. The current operation is the same as the last operatic'}, OR
d. A Learn activity is not occurring
The bold attribute will be added to all characters in the
selection if
a. Any characters in the selection can receive an attribute,

AND
b. If there are characters in the selection that aren't bold,

OR
c. The current operation is not the same as the last operation,

AND
d. A Learn activity is occurring.

Bold copies the current selection to the gap, then copies the
selection back to the text, and inserts the bold character
attribute at the same time. If the selection lies within a
locked area of text or if there is not enough memory to create a
copy of the selection, the operation will be aborted. If the
selection is not already extended, it will be extended before the
operation continues.

Under -)

pronounced un'der)
Checks the current selection. The underline attribute will be
removed from all characters in the selection if:

a. None of the characters in the selection can receive an
attribute, OR

b. If all of the characters in the selection already have the
underline attribute, AND

c. The current operation is the same as the last operation, OR
d. A Learn activity is not occurring

- 125 -

The underline attribute will be added to all characters in the
selection if:

a. Any characters in the selection can receive an attribute, AND
b. If there are not-underlined characters in the selection, OR
c. The current operation is not the same as the last operation,

~D

d. A Learn activity is occurring.

Under copies the current selection to the gap, then copies the
selection back to the text and inserts the underline character
attribute at the same time. If the selection lies within a
locked area of text or if there is not enough memory to create a
copy of the selection, the operation will be aborted. If the
selection is not already extended, it will be extended before the
operation continues.

7.4.1 Caps Command Routines

cap region a n -) f
pronounced kapt reetjin }

Returns a true flag if a lowercase character is found in the
region of text of length ~ which starts at address ~ in the text.

lowercase a n -))
pronounced later kays)

Changes the ~ characters located in memory starting at address a
to lowercase.

Upper -)
(pronounced up'per)

Checks the current selection. All characters in the selection
will be capitalized if:

a. The selection contains one or more lowercase letters, OR
b. The current operation is not the same as the last operation,

~D

c. A Learn activity is occurring

All characters in the selection will be changed to lowercase if:

a. The selection contains only capital letters, OR
b. The current operation is the same as the last operation, AND
c. A Learn activity is not occurring

The routines uppercase and lowercase capitalize or lowercase the
selection.

uppercase a n -)
pronounced up'per kays)

Capitalizes the n characters located in memory starting at
address a.

- 126 -

7.4.2 Words That Alter the Character Data

extramods a nl -) n2
pronounced eksttra mahds')

Examines the nl bytes of text starting at address a and returns a
count n2 of how many characters within the range can be modified
(can be underlined or boldfaced).

movewith al a2 nl n2 -) a3)
pronounced moov with t)

Moves the nl bytes of text starting at address a1 to memory
starting at address a2 and inserts the desired modifier
information n2 after each character which can accept a modifier.
Returns the address of the end of the newly modified selection.

movenotwith a1 a2 n1 n2 -) a3
pronounced moov naht' with

Moves the n1 bytes of text starting at address a1 to memory
starting at address a2. If a character has the modifier n2, the
modifier is removed. If n2 was the only modifier appended to a
character, the entire modifier byte is removed. Returns the
address of the end of the newly modified selection.

cformatl -)

pronounced see fort mat wuhn)
"Character-format-one" prepares a selection for character
modification. By repositioning the bOll pointer, expands the undo
buffer so that it is just large enough to hold the current
selection. Moves the selection to the undo buffer.

cformat2 a -))
pronounced see for/mat too)

Refreshes the selection after the characters in the selection
have been modified. Updates the gap system integer with the
address ~ which lies just after the last modified character.
Recalculates the control/format information for those lines in
the window record (which were affected by the character
modification). Uses refresh to redraw the changed lines. Sets
the cursor to "wide."

cformat3 -)

pronounced see for'mat three)
Places the modified selection text found in the undo buffer back
in its previous spot in the text and uses cformat2 to update the
display area containing the new text.

Uncformat -)

pronounced un' see for'mat)
Calls cformat3 and makes itself the undo operation.

- 127 -

8. PARAGRAPH FORMAT COMMANDS

Introduction

There are six paragraph formatting operations:

Left Margin
Right Margin
Indent
Paragraph Style
Line Spacing
Set/Clear Tabs

The shifted versions of these six, which restore the default
setting for the corresponding format operation, make a total of
12. Each operation changes either all paragraph format packets
in the current selection or, if there is no selection, just the
paragraph format packet which controls the paragraph which
contains the cursor. The text is redisplayed to show the affects
of the new paragraph format.

- 128 -

B.O GENERAL DISCUSSION

In order to change a particular aspect of a paragraph's format,
the corresponding field in the paragraph format packet which
controls the paragraph must be changed and the display updated.
The table below shows which paragraph format information fields
in a control/format array are affected by each paragraph
formatting command:

Paragraph Format
Operation

Line Spacing
Left Margin
Right Margin
Indent
Paragraph Style
Set/Clear Tabs

Field in Paragraph Format
Packet

%lsp
%left, &wide
%wide, %iwide
%indent, %iwide
%just
%tabs

The six paragraph formatting commands are linked together so that
as long as the Use Front key is held down several paragraph
format commands may be used in succession without forcing the
user to rehighlight the selection after each individual
operation. When several commands are used in this manner, a
single press of the Undo key will undo the effects of all of the
commands.

8.0.0 Paragraphs and Paragraph Format Packets

A paragraph is defined as a group of characters which starts with
the first character after a break character and ends with the
following break character. The paragraph format packet which
defines the format for a paragraph of text is located before the
first character in the paragraph, immediately after the break
character located at the end of the previous paragraph. Thus,
when the format of a paragraph is changed, the previous paragraph
format packet must be found and updated. If a paragraph does not
have its own paragraph format packet, it is controlled by the
first previous paragraph format in the text.

8.0.1 The ?aragraph Formatting Routines

There are two versions of each of the six main paragraph
formatting functions. The main version sets a format to the
user's specifications; the default version restores the default
settings for the particular format operation.

- 129 -

Main Version

Indent
Justify
Left
Right
Spacing
Tabs

Default Version

Defindent
Defjustify
Defleft
Defright
Defspacing
Deftabs

A table listing the default paragraph format settings for each
country is included at the end of this section.

- 130 -

8.1 FOUR STEPS TO A NEW PARAGRAPH FORMAT

The definition for the main version of the paragraph style
command provides a general outline of the four steps required to
change a paragraph format.

Step 1: Preparing the selection

All of the paragraph formatting operations use preform for
selection preparation purposes. preform checks for a locked
selection and loads the current control/format information into
the #ctrl array.

Step 2: Getting the new format setting

There are two methods used to determine new settings. The
paragraph style and line spacing operations each allow only a
small, fixed set of possible choices. Each time one of these
operations is invoked it presents the user with the next
available choice in its set.

A new left/right margin, indent, or tab setting is chosen by
the user with the aid of a graphical positioning tool. The
listing below shows how the Justify command, a command with a
fixed set of possible choices, performs step 2.

Step 3: Saving the selection information

The new format setting(s) was determined in Step 2. In Step 3,
the new setting information is stored into the appropriate field
in the ##ctrl array.

Step 4: Updating the Text and the Display

In Step 4, the formatting operations use reform to complete the
formatting operation. In the exar'le below, the token of
fixjustify, which transfers the value previously stored in the
%just field of the ##ctrl array to the %just field of the #ctrl
array, is passed to reform. reform executes fixjustify, creates
a paragraph format packet using the new paragraph format
information in the #ctrl array, replaces all paragraph format
packets in the selected area with the new format packet, and
causes the screen to be redisplayed.

The words fixspacing, fixindent, fixleft, fixright, and
fixtabs perform functions similar to fixjustify for the other
formatting operations.

- 131 -

Justify -)
preform
#just c@ 2+
dup 4=
if

then
dup 5 =
if

then

drop

drop 0

1

##ctrl %just + ct

['J fixjustify reform

1. Prepare for formatting operation
2. Calculate new format setting)
Determine what the new value for the)
paragraph style should be.)

(3. Save new setting(s) info.)
(Store the new value in the %just
(field of the ##ctrl array.)
(4. Update the text and selection

- 132 -

8.2 FOUR STEPS TO A DEFAULT PARAGRAPH FORMAT

The definition for the default version of the paragraph style
command provides a general outline of the four steps required to
change a paragraph format.

Defjustify, the default version of Justify, stores the default
paragraph style setting found in an array of default paragraph
format settings, in the ##ctrl, and then uses reform to finish
the reformatting job. The default paragraph format settings are
found in the #defaults array.

Oefjustify -»
preform
#defaults %just + c@
##ctrl %just + c!
['J fixjustify reform

(1. Prepare for formatting operation.)
(2. Calculat~ new format setting.)
(3. Save new setting(s) information.
(4. Redisplay the selection.)

- 133 -

8.3 OBTAINING NEW FORMAT SETTINGS

The methods each paragraph format command uses to determine the
user's new desired format setting are described below.

8.3.0 Obtaining a New Line Spacing Setting

The editor can handle three different line spacing settings:

Line Spacing

Single-spaced
1i-spaced
Double-spaced

Field Value

2
3
4

Spacing calculates a new line-space setting by (1) obtaining the
current line spacing value from the %lsp field in the #ctrl
array, (2) adding 1 to the value, (3) subtracting 3 from the
result if it is equal to 4.

8.3.1 Obtaining a New Paragraph Style Setting

The editor supports four paragraph styles:

Paragraph Style

Left-justified
Right-justified
Centered
Fully justified

Description Field Value

Justified left margin, ragged right 0
Justified rig~t margin, ragged left 1
Ragged left and right margin 2
Justified left and right margin 3

The paragraph style icons in the ruler display area are arranged
from left to right as follows: Left-justified, Centered,
Right-justified, Fully justified.

When multiple selections of the paragraph style command are used.
the icon highlight should flow smoothly from left to right.
without skipping any icons. This means the %just field must be
fed the following sequence of values: 0, 2, 1. 3 (refer to the
table above).

So, to calculate a new paragraph style value. Justify (1) obtains
the current paragraph style value from the %just field of the
#ctrl array, (2) adds 2 to the value, and (3) if the result is 4
(invalid) sets the result to 1, or, if the result is 5 (nvalid) t

sets the result to O.

- 134 -

8.3.2 The Vertical Formatting Bar

The left/right margin, indent, and tab commands use a graphical
aid -- a vertical formatting bar -- to help the user select new
settings. After the user chooses one of these commands, the
vertical bar appears on the screen in a command-specific location.

At this point the command will wait in a loop, moving the
vertical bar according to the user's inputs, until either an
invalid key is pressed or until the Use Front key is released.
An invalid key is any other paragraph formatting command key
aside from the command key which caused the loop to be entered.
So, as long as the Use Front key is depressed and an invalid key
is not entered, the vertical bar will remain on the screen and
the command word will be watching for positioning directions.

8.3.3 Obtaining a New Left/Right Margin or Indent Setting

If the left/right margin or indent commands are chosen, the word
marginloop will be used for vertical bar positioning. While
marginloop runs, it watches for presses of either Leap key. When
the left or right Leap key is pressed, the vertical bar is moved
one ruler increment to the left or right, selected fields in the
#ctrl array are updated, and the ruler is redrawn to reflect the
new left/right margin or indent position.

When the Left Margin command is used, the %left, %wide, %indent,
and %iwide fields must be updated after each movement of the
vertical bar. When the Right Margin command is used, the %wide
and %iwide fields must be updated after each vertical bar
movement. When the Indent command is used, the %indent and
%iwide fields must be updated with each movement.

8.3.4 Obtaining New Tab Settings

When the tab command is chosen, the word tabloop is used for
vertical bar positioning. While tabloop runs, it watches for six
keys, and begaves as follows when they are pressed:

Left Leap

Right Leap

Tab

Action

Vertical bar moves one ruler increment to the left.

Vertical bar moves one ruler increment to the right.

May either set, change, or remove a tab at the
current Shift-Tab vertical bar location. The %tabs
field in the #ctrl array is updated and the ruler
redrawn.

- 135 -

Space The vertical bar is positioned at the next tab stop
to the right of its current position. If there are
no tabs to the right, the vertical bar will wrap
around to the leftmost tab stop. If there are no
tabs at all, the vertical bar will not be moved.

Erase All of the tab stops ~re removed.

8.3.5 Example of a Command That Uses the Vertical Bar

The definition of Left shows the construction of a paragraph
format command which uses the vertical format bar for new format
selection:

: Left -»)
preform
%setl curop to

2
#left c@ #wide c@ + 2/
#indent c@ 2/ 2+
initset

marginloop

1. PREPARE FOR FORMATTING OPERATION.
Set the current operation.)
uses curop to check for valid keys
received.)
leftmost position for vertical bar)
rightmost position for vertical bar)
initial position for vertical bar)
Initialize integers used by)
marginloop.)

Watch while the user chooses their
settings.)

#indent c@ ##ctrl %indent + c!
#left c@ ##ctrl %left + c!

Place new format info
in ##ctrl array.)

[t] fixindent reform; (Update the text and display.

Refer to the routines summary, for more information on words used
in the above listing.

- 136 -

8.4 PARAGRAPH FORMAT COMMANDS ROUTINES SUMMARY

8.4.0 Words Used by Paragraph Format Commands

Defindent -)

pronounced deff' in-dent)
Moves the default indent data from the #defaults table to the
##ctrl array and uses reform to reformat the entire selection
according to the default indent setting.

Defjustify -))
pronounced deff' jus'ti-fy }

Moves the default paragraph style data from the #defaults table
to the ##ctrl array and uses reform to reformat the entire
selection according to the default paragraph style setting.

Defleft -))
pronounced deff' left)

Moves the default left margin data from the #defaults table to
the ##ctrl array and uses reform to reformat the entire selection
according to the default left margin setting.

Defright -))
pronounced deff' ryt)

Moves the default right margin data from the #defaults table to
the ##ctrl array and uses refonn to reformat the entire selection
according to the default right margin setting.

Defspacing -))
pronounced deff' spay'sing)

Moves the default line spacing data from the #defaults table to
the ##ctrl array and uses reform to reformat the entire
selection according to the default line spacing setting.

Deftabs -))
pronounced deff' tabs)

Moves the default tab setting data from the #defaults table to
the ##ctrl array and uses reform to reformat the entire selection
according to the default tab settings.

fixindent -))
pronounced fiks' in-dent)

Transfers the contents of the %indent field in the ##ctrl field
to the %indent field in the #ctrl array. Defindent and Indent
pass the token of fixindent to reform which executes it once at
each format packet location in the effectively modified range of
text.

fixjustify -))
pronounced fiks' jus-ti-fy)

Transfers the contents of the %just field in the ##ctrl field to
the %just field in the #ctrl array. Defjustify and Justify pass
the token of fixjustify to reform which executes it once at each
format packet location in the effectively modified range of text.

- 137 -

fixleft (-»)
(pronounced fiks' left)

Transfers the contents of the %left field in the ##ctrl field to
the %left field in the #ctrl array. Defleft and Left pass the
token of fixleft to reform which executes it once at each format
packet location in the effectively modified range of text.

fixright (-»)
(pronounced fiks' ryt)

Transfers the contents of the %right field in the ##ctrl field to
the %right field in the #ctrl array. Defright and Right pass the
token of fixright to reform which executes it once at each format
packet location in the effectively modified range of text.

fixspacing (-))
(pronounced fiks' spay-sing)

Transfers the contents of the %lsp field in the ##ctrl field to
the %lsp field in the #ctrl array_ Defspacing and Spacing pass
the token of fixspacing to reform which executes it once at each
format packet location in the effectively modified range of text.

fixtabs (-»)
(pronounced fiks' tabs)

Transfers the contents of the %tabs field in the ##ctrl field to
the %tabs field in the #ctrl array. Deftabs and Tabs pass the
token of fixtabs to reform which executes it once at each format
packet location in the effectively modified range of text.

Indent -))
pronounced in'dent)

Sets the current operation to %seti. Uses initset to set the
iposit integer to the current indent location (#indent
half-spaces), the rbound integer to the current right margin
location (#left+#wide half-spaces), the lbound integer to two
half-spaces, and then sits in a loop, marginloop, and moves the
indent line around while the user selects a new indent position.
When the user has finished setting the indent position, Indent
moves the new user indent data to the ##ctrl array and uses
reform to reformat the entire selection according to the new
indent setting.

Justify -))
pronounced jus'ti-fy }

The paragraph style field in a control/format array, %just, can
accept four values: 0 for Left-Justified, 1 for Right-Justified,
2 for Centered, and 3 for Fully Justified. This field cycles
between values in the following order:

Before ...
o -)
2 -)
1 -)
3 -)

After ...
2
1
3
o

- 138 -

The new value is placed in the %just field of the ##ctrl field.
reform reformats the entire selection according to the new
paragraph style setting.

Left (-»)
(pronounced left')

Sets the current operation to %setl. Uses initset to set the
iposit integer to the current left margin location (#left
half-spaces), the rbound integer to the current right margin
location (#left+#wide half-spaces), the lbound integer to two
half-spaces and then sits in a loop, marginloop, and moves the
left margin line around while the user selects a new left margin
position. When the user has finished setting the left margin,
Left moves the new user left margin data to the ##ctrl array and
uses reform to reformat the entire selection according to the new
left margin setting.

Right (-»)
(pronounced ryt')

Sets the current operation to %setr. Uses initset to set the
iposit integer to the current right margin location (#left+#wide
half-spaces), the rbound integer to &horiz half-spaces, the
lbound integer to either the left margin location (#left
half-spaces) or the indent location (#indent half-spaces) ,
whichever is greater, and then sits in a loop, marginloop, and
moves the right margin line around while the user selects a new
right margin position. When the user has finished setting the
right margin, Right moves the new user right margin data to the
##ctrl array and uses reform to reformat the entire selection
according to the new right margin setting.

Spacing (-»)
(pronounced spay'sing)

The line-spacing field in a control/format array, %lsp, can
accept three values: t12" for Single-spaced text, "3" for
ii-spaced text, and tt4 t1 for double-spaced text. The table below
shows before and after values:

Before ...
2 -)
3 -)
4 -)

After ...
3
4
2

Each time Spacing is executed, it takes the contents of the %lsp
field in the #ctrl array and transforms it according to the
pattern shown in the table above. The new value is stored in the
%lsp field of the ##ctrl field. reform then reformats the entire
selection according to the new line spacing setting.

Tabs (-»)
(pronounced tabs')

Sets the current operation to %sett. Uses initset to set the
iposit integer to the ruler increment loca'ion closest to the
current cursor position, the rbound integer to 0 half-spaces, the
lbound integer to a half-spaces. It then sits in a loop,

- 139 -

'-

tab loop , and moves the vertical tab line around as the user sets
up tab stops. When the user has finished setting tab stops, Tabs
moves the new user tab data to the ##ctrl array and uses reform
to reformat the entire selection according to the new user tab
settings.

8.4.1 Low-Level Paragraph Formatting Words

#defaults (-) a)
(pronounced sharp' dee'falts)

Pushes the address ~ of a table of default paragraph format
settings on the stack.

pformatl (-) f»)
(pronounced pee' for'mat wun')

Prepares the selection for a paragraph formatting operation by
implacing paragraph format packets at the start and end of the
selection, if necessary. A false flag means the operation was
successful; a true flag means an error occurred. The steps in
the execution of this word are as follows:

1. Checks to see if there is enough room in the undo buffer to
hold at least two paragraph format packets which the Cat
needs to change the format state before and after the
affected region. If there isn't enough room, pformatl exits
immediately and returns a true flag.

2. The format state before and after the selection must be found
and saved so that it may be restored after the text in the
selection has been formatted. The current state after the
selection (which was previously found by preform) is saved
into the workpkt scratch area.

To find the previous format state, prevbrk and brk+ find
the address of the firs~ break (or first paragraph format
packet) before the bas position, or before the bos nextchar
position if the cursor is wide. The address is saved in the
prepkt system integer.

To find the format state after the selection, nextbrk
and brk+ find the address of the first break (or paragraph
format packet) after the beot prevchar position, or after the
beot prevchar prevchar position if the cursor is is narrow.
The address is stored in the postpkt system integer.

3. Now pformatl checks both prepkt and postpkt to see whether
they contain addresses of breaks or format packets. The
address belongs to a paragraph format packet if the first
byte at the address contains the paragraph format packet
identification marker, &fmt.

If the preceding break is not followed by a format
packet, prepkt prevchar findchar gets the previous formatting
state information and prepkt pktsize makespace makepkt
encodes the information and insert the resulting format
packet after the break.

If the succeeding break is not followed by a format
packet, postpkt prevchar findchar gets the formatting state

- 140 -

information for the text which follows the selection and
postpkt pktsize makespace postpkt to postpkt makepkt encodes
the formatting information and to insert the resulting format
packet after the break.

pformat2 n ->)
pronounced pee' for'mat too')

Executes the token ~ to modify the paragraph format data
structure fields affected by the current formatting operation,
and causes the text to be redisplayed.

Uses killivls to mark all intervals between prepkt and
postpkt beot max for updating. Uses partknown to mark all
intervals between postpkt beat max and the end of text as
intervals whose interval table data is mostly correct.

Next, pformat2 spins in a loop, finding paragraph format
packets in the selection and updating specific fields in the
format packet by executing the token provided.

After the format packets have been updated, pformat2 finds
the best way ~o redisplay the newly formatted text, trying to
keep the end of the selection on the screen, if not on the same
line on the screen.

If the entire selection fits in the window, refresh
selectively redraws the window contents. Otherwise, new-display
completely redraws the window contents. The text is marked as
dirty and the selection is reduced to the single character at the
beginning of the selection.

preform -))
pronounced pree ' form)

Performs preparation tasks before the start of a paragraph
formatting operation. Uses lockedsel to see if the current
selection lies within a locked region of text. If it does, the
operation i aborted. Loads control/format information which
corresponds to the beot address, if the cursor is wide, or the
beot prevchar address if the cursor is not wide, into the #ctrl
array.

reform n -»)
pronounced ree-form')

The main word used by the paragraph formatting operations. Uses
pformatl to prepare the selection for formatting. If the
Use Front key is not currently pressed or if the last operation
was not a paragraph formatting operation (%pfmt, %setl, %seti,
%setr, or %sett), reform performs these undo preparations:

1. Checks for enough memory for the undo buffer
2. Saves copies of all format packets in the selection in the

undo buffer, and uses savepos to save the current current
state of the editor.

3. reform turns the ufpressed? system integer off, uses pformat2
to update the text and redraw the display, sets unformat as
the undo operation, sets %pfmt as the current operation, and
uses rule to update all of the paragraph format indicators in
the ruler display.

4. Now reform waits in a loop to see what operation, if any, the

- 141 -

user will perform next.
5. As soon as the Use Front key is released or a non-special key

is pressed, reform exits the loop and examines the key press
scan code data.

6. If the keyboard information indicates that another paragraph
format operation is to be performed next, reform will leave
tLe selection extended so that the next operation acts upon
the same selection. Otherwise, reform collapses the
selection before returning.

unformat ->)
pronounced un' for'mat)

This is the undo operation for reform. Uses swappkts to exchange
the format packets saved by reform in the undo buffer with the
packets in the text which were changed by reform. Marks all
interval entries which correspond to the changed region of text
for updating and all intervals beyond postpkt beot max as
partially known intervals (same as pformat2). Swaps the contents
of the oldbos and bos, and the oldcstate and estate, then uses
eos-display to redisplay the text, and resetcursor to fix up the
cursor.

8.4.2 Tab Routines

add tab n f -))
pronounced add' tab)

Adds a tab of type I, where I = -1 means decimal tab, and f
means normal tab to the #ctrl tab array at position n.

del tab n ->)
pronounced dell' tab

1

Deletes the tab at position n in the tab array from the #ctrl tab
array.

getkey -> f)
pronounced get' kee)

Used by tabloop and marginloop to get the keys used for user
specification of new tab, margin, or indent settings (to move the
left/right margin line>, indent line, and tab line around).
Returns a true flag if a valid key was pressed. A valid key is
any Use Front key combination which is (a) not a paragraph format
command key combination, or (b) is equal to the paragraph format
command key which caused getkey to be called.

initkey (-»
(pronounced in-it' kee)

Stores a $FF in the lastkey system integer.

initset nl n2 n3 -))
pronounced in-it' set)

Initializes the system integers used during the setting of tabs,
left margin, right margin, or indent. Sets the value of iposit
to ~, rbound to n2, and lbound to~. Stores a 0 in the first
four bytes of the vtbuff. Uses repos to position the ve~<tical

- 142 -

tab line at the location specified by iposit and uses initkey to
set the initial lastkey value to $FF.

margin loop -)

pronounced mar'jin loop)
This is the loop used to help the user specify a new left margin,
right margin, or indent position. While the Use Front key is
held down and while getkey returns a true flag (indicating that a
valid margin/indent positioning key has been pressed), marginloop
checks for the occurrence of two keys: the left and right Leap
keys. If the left Leap key is pressed, repos positions the
vertical tab line one ruler increment to the left. If the right
Leap key is pressed, repos positions the vertical tab line one
ruler increment to the right.

nextab (n1 -) n2 f I If the next tab is found.)
(n -) 0 If no next tab is found.)
(pronounced neks' tab)

Looks through the %tabs field in the #ctrl array for a tab stop
that is to the right of the specified ruler position~. If there
are no tab stops to the right of the specified position, nextab
starts looking again starting from the left margin. If no tab is
found, a "0" is returned. If a decimal tab is found, a "-1" is
returned. If a normal tab is found, a "1" is returned.

repos n -)
pronounced ree'pohs)

Repositions the vertical tab line at position ~ (specified in
units of whole spaces) and updates the necessary fields in the
#ctrl array. If left is the current operation, repos will update
the contents of the #left, #wide, #indent, and #iwide fields. If
Indent is the current operation repos will update the contents of
the #indent and #iwide fields. If Right is the current operation
repos will update the contents of the #wide and #iwide fields.

tabloop -)

pronounced tab'loop)
This is the loop used to help the user specify new tab settings.
While the Use Front key is held down and while getkey returns a
true flag (indicating that a valid tab positioning key has been
pressed), tabloop checks for the occurrence of five keys: the
left Leap key, the right Leap key, the Tab key, the Space Bar,
and the Erase key. If a left Leap key is pressed, repos
positions the vertical tab line one ruler increment to the left.
If a right Leap key is pressed, repos pOSitions the vertical tab
line one ruler increment to the right. If the Tab key is
pressed, tabloop will either add a tab (addtab), or delete
(deltab) or change (nextab) the tab at the current vertical tab
line position. If the Space Bar is pressed. repos will be used
to position the tab line at the next tab stop location. If the
Erase key is pressed, all tabs are removed.

- 143 -

unvtline -)

pronounced un' vee tee lyne)
Restores the bytes under the vertical screen line used for tab
setting, left margin, right margin, and indent positioning. The
saved copies of the image underneath the vertical line are stored
in the vtbuff. The first 4-byte location in the vtbuff holds the
byte position where the first saved byte image should be placed.

vtline n -)
pronounced vee' tee lyne)

Places a full-screen vertical line at byte position ~ on the
screen. Saves copies of the image bytes under the vertical line
in the vtbuff memory buffer. The byte position ~ is saved in the
first byte of the vtbuff.

- 144 -

8.5 PARAGRAPH FORMATTING INTEGERS

lastkey (pronounced last' kee)
Holds the previous key processed in formatting loop

1 bound (pronounced ell' bownd)
Holds the left boundary for the vertical format line

posit (pronounced pahz-it)
Holds the instantaneous position, in pixels, of the vertical line

rbound (pronounced arr' bownd
Holds the right boundary for the vertical format line

thiskey (pronounced this' kee
Holds the key most recently processed in the formatting loop

vbheight pronounced vee' bee hyte
Holds the height of the vertical tab line expressed in pixels.
vbheight is defined as: scans/image lines/screen *

vtbuff pronounced vee' tee buff)
Holds the address of the buffer used to hold the bits behind the
vertical tab line. The size of the buffer is vbheight 6 +.

- 145 -

8.6 SCAN CODES FOR THE PARAGRAPH FORMAT KEYS

Paragraph Format Function Scan Code Character

Paragraph Style $02 t
Line Spacing SOB u
Indent $29
Right Margin $31
Set/Clear Tab $32 tab
Left Margin $38 \

- 146 -

8.7 DEFAULT PARAGRAPH FORMAT SETTINGS

Default Paragraph Settings

7
73

Left Margin
Right Margin
Paragraph Style
Line Spacing
Indent

Left Justified
Single-spaced
o

Default Tab Settings

Countr:t Tab
Code Countr:t Stops

00 USA 13,18,28,38,48,58

01 Canada 13,18,28,38,48,58

02 United Kingdom 13,22,32,42,52,58

03 Norway 13,18,28,38,48,58

04 France 12,22,32,42,52,62

05 Denmark 13,18,28,38,48,58

06 Sweden 13,18,28,38,48,58

07 Japan 13,18,28,38,48,58

08 West Germany 11,17,27,37,47,57

09 Netherlands 13,18,28,38,48,58

OA Spain 17,27,37,47,57,67

OB Italy 13,18,28,38,48.58

OC Latin America 13,18,28,38,48,58

OD South Africa 13,18,28,38,48.58

OE Switzerland 13,18,28,38,48.58

OF ASCII 13,18,28,38,48,58

- 147 -

'-

9. DOCUMENT COMMANDS

Introduction

The Cat has two commands which operate on whole documents only:
Document Lock and Local Leap. The words used to implement these
commands are discussed here.

- 148 -

9.0 THE DOCUMENT LOCK COMMAND

The Document Lock command locks and unlocks the text of a
document or a contiguous set of documents. When a document is
locked, no changes can be made to it. A one-character wide gray
bar is displayed along both edges of a locked document.

DocLock

DocLock is the word used to implement the Document Lock command.
The actions of the Document Lock command are based on the current
selection. Since attribute information about a locked document
is kept in the document format packet, only whole documents can
be locked.

The first action of DocLock is to expand the region defined by
the current selection to the smallest region which contains both
the entire selection and a whole number of documents. The
documents in this expanded region are the documents that will be
affected by the Document Lock command.

If the new region contains an unlocked document, or a combination
of locked and unlocked documents, DocLock will lock the entire
region. If all documents in the new region are unlocked. DocLock
will lock them all. Similarly, if all documents in the new
region are locked, Doc Lock will unlock them.

9.0.0 How Document Lock Affects Document Format and Calc Packets

Two items in a document are affected by the lock state of the
document: document format packets and Calc packets.

If a document is locked, its #lock field will contain the value
10k. If a document is unlocked, its #lock field will contain the
value markb1. 10k and markbl are two Cat display characters.
10k corresponds to a gray box character which is the width and
height of one character. markb1 is a white space character which
is the width and height of one character. When text is
displayed. the value in the #lock field is always placed in the
first and last character position of each line of text. This
explains why a locked document always has a one-character wide
gray bar along the left and right edges of the screen display
area.

If a Calc packet is locked, it is marked by a &lockedcalc token
in the text. If a Calc packet is unlocked, it is marked by a
&ca1c token in the text. This indicates to the Calc command that
the results should not be changed in the text.

- 149 -

9.0.1 Undoing the Document Lock Command

Before changing a document's lock state, DocLock saves the
document's current lock state, as found in the #lock field of the
document's document format packet, in the undo buffer. When
undoclock undoes a DocLock operation, it uses the saved state to
determine whether a particular document, and any Calc packets in
the document, should be locked or unlocked.

9.0.2 Words That Check the Lock State

The words lockedtext1, lockedsel, and lockedrange? check the lock
state at a particular location in the text. lockedsel checks for
a locked selection range, lockedtext? checks for a locked
character, and lockedrange? checks for a locked range of
characters.

- 150 -

9 . 1 THE LOCAL LEAP COMMAND

Local Leap, a toggle command, defines the range over which the
Leap command can operate. The word local/global implements Local
Leap.

If Local Leap is used when the current range of leap is the
entire text, local/global will shrink the Leap range to the
smallest whole document range which entirely contains the current
selection. This means that a partially highlighted document will
be included in the new local leap region.

If Local leap is used when the current Leap range is restricted,
that is, when it does not include the entire text, local/global
will expand the leap range to include the entire text.

bar (beginning-of-range) and eor (end-of-range) are the two
system integers used to hold the start and end addresses of the
current leap range. Whenever local/global expands or reduces the
leap range, it also adjusts the op and pop pointers to fit within
the newly defined leap range.

The undo operation for local/global is undolocal/global.

- 151 -

9.2 UPDATING DOCUMENT FORMAT PACKETS

The word redoc can be used to integrate document format
information specified by the Setup command into all document
format packets contained within the current selection range.

- 152 -

9. 3 ROUTINES SUMMARY

9.3.0 Locked Document Routines

Doc lock -)

pronounced dahk' lahk)
Locks or unlocks all documents contained within the current
selection, or which contain the current selection. Currently
only whole document(s) may be locked/unlocked. DocLock's first
action is to define the range of text to be locked/unlocked. The
first document separator located before the start of the
selection will be used as the start of the locked/unlocked range,
and the first document separator located af-=er the end of the
selection will be used as the end of the locked/unlocked range.

Next, DocLock must determine whether the range of text
should be locked or unlocked. If any of the documents within the
range are currently locked, DocLock will unlock all documents in
the range. Otherwise. all documents in the range will be
locked. The exception to this rule occurs when DocLock is used
for the first time during a prerecorded Learn sequence. If this
is the case, the documents in the range will always be forced to
the locked state.

Now DocLock may begin the locking/unlocking process. It
steps through the range looking for all occurrences of Calc
packets and document format packets. If a Calc packet is to be
locked, a &lockedcalc token will be placed in the packet.
Otherwise, a &calc token will be placed in the packet. If a
document format packet is encountered, getdpkt reads its contents
into the #ctr1 array and the current value of its #lock field is
stored in the undo buffer. Then, the #lock value is changed to
either 10k (if the document is being locked) or markbl (if the
document is being unlocked), and makedpkt writes out the changed
document format packet.

After all Calc and document format packets have been
properly updated, the undo operation is set to undoclock, all
intervals which correspond to the affected range are marked as
changed, the display is redrawn to show or hide the lock bars,
and the text is marked as dirty.

lockedrange? a1 a2 -) f
pronounced lahkt' raynj kwes'chun)

Checks to see if any characters in the range specified by the
addresses a1 and a2 lie in a locked region of text. If they do,
a true flag is returned.

lockedsel -) f
pronounced lahkt' sell)

Checks to see if the selection lies within locked range of text,
or contains a locked range of text. An abort message is issued
if it does.

- 153 -

lockedtext? (a -) f)
(pronounced lahkt' tekst kwes'chun)

Uses findchar to read the control/format information for the
character at address ~ into the #ctrl array. Then checks the
contents of the %lock field to see if the character lies in a
region of locked text. If the text is locked, a true flag is
returned.

undoclock -)

pronounced un I dahk lahk)
The undo operation for DocLock. undoclock's first action is to
define the range of text to be locked/unlocked. The first
document separator located before the start of the selection will
be used as the start of the locked/unlocked range and the first
document separator located after the end of the selection will be
used as the end of the locked/unlocked range.

Now undoclock may begin the locking/unlocking process.
undoclock steps through the range looking for all occurrences of
Calc packets and document format packets. If a document format
packet is encountered, the previous value of the packet's #lock
field is obtained from the undo buffer and sets a local
lock/unlock flag.

getdpkt reads the packet contents into the #ctr1 array and
the current value of its #lock field is stored in the undo
buffer. Then, the #lock value is changed to either 10k (if the
document is being locked) or markbl (if the document is being
unlocked), and makedpkt writes out the changed document format
packet.

If a Calc packet is to be locked, a &lockedcalc token will
be placed in the packet. Otherwise, a &calc token will be placed
in the packet.

After all Calc and document format packets have been
properly updated, the undo operation is set to undoclock, all
intervals which correspond to the affected range are marked as
changed, the display is redrawn to show or hide the lock bars.
and the text is marked as dirty.

- 154 -

Local Leap Routines

adjustleaprange (-)
(pronounced a-just' leep raynj

Shrinks the allowable leap range according to the current
selection. The start of the leap range is set to the first
document break before the start of the selection; the end of the
leap range is set to the first document break after the end of
the selection.

checklocallight -)
pronounced chek lo'kil lyte)

Checks the current leap range and sets the LOCAL indicator light
accordingly. If leaping over the entire text range is currently
possible (bor bot = eor eot = and), the LOCAL indicator is turned
off. Otherwise, the "LOCAL" string is displayed in the indicator.

local/global -)

pronounced lo'kil slash glo'bil)
Toggles between local and global leaping. The current bor and
eor values are saved in the undo buffer. The undo operation is
set to undolocal/global. If the leap range is currently fully
expanded, or if this is the first use of local/global in a
prerecorded Learn sequence, then adjustleaprange shrinks the leap
area to the smallest allowable leap range which contains the
current selection. Otherwise, the leap r8J'f-Te is fully expanded
by setting bor bot = and eor eot =. The o~ and pop values are
adjusted to fall within the new local leap area, checklocallight
handles the LOCAL indicator light. and the text is marked as
dirty.

undolocal/global -)
pronounced un-doo' lo'kil slash glo'bil)

Undo operation for local/global. The current bor and eor values
are swapped with the bar and eor values saved in the undo buffer,
the op and pop values are adjusted to fit within the new leap
range, checklocallight handles the LOCAL indicator light, and the
text is marked as dirty.

9.3.1 Document Format Packet Update Ro~'tines

findds a1 a2 -) a3-or-O
pronounced fynd' dee ess

Searches through the range of text which starts at address a1 and
ends at address a2 for the first occurrence of a document
separator character. If a document separator character is found
in the specified text range, its address, ~, is returned.
Otherwise, a 0 is returned. Used by redoc.

- 155 -

redoc -)

pronounced reel dahk)
Updates all document format packets in the current selection.
For each document format packet encountered, getdpkt places its
current document state information into the #ctrl array and then
getdocpkt updates the document state information with values from
the set-up version of the document format information. makedpkt
writes the updated document information in the #ctrl array back
over the original format packet. After all document format
packets have been updated, the affected intervals are marked as
changed and the text is redisplayed.

- 156 -

10. LEAP

Introduction

The leap mechanism, which makes use of the two Leap keys (Leap
Forward and Leap Backward), performs six basic operations:

1. Cursor placement (leaping from place to place in the text)
2. Display scrolling (using Shift-Leap)
3. Creeping (tapping a Leap key to move the cursor forward or

backward character-by-character)
4. Spell Check Leap (pressing Undo while holding a Leap key down)
5. Text selection (press both Leap keys to select)
6. Text movement (dragging)

Three of these operations are repeatable: Leap (Leap Again
appears on the fronts of the Lea;> keys), Scrc .. l, and Spell Check
Leap.

The routines used to implement the leap mechanism are primarily
text search routines. In order to place the cursor at the
string-specified location in the text, the Leap routines must be
able to find the strings in the text which match the user's leap
string. An optimized text string search algorithm called the
Boyer-Moore algori thm is used by t~:, "eap search rou tines to
achieve maximum Leap performance.

- 157 -

10.0 THE BOYER-MOORE FAST STRING SEARCH ALGORITHM

The Boyer-Moore algorithm, by eliminating the need to look at
each successive character in order to find an occurrence of a
particular character sequence in the text, provides an optimal
method for performing fast string searches.

When presented with a character from the text, the algorithm
determines the distance to the next significant character
position. The characters between the current character and the
next significant character need not be analyzed and are skipped.
To make decisions about significant character positions, the
algorithm depends upon information from a preconstructed pattern
table, discussed next.

- 158 -

10.0.0 The Pattern Table

The pattern table is a 256-byte table. There is one byte-length
entry in the table for each of the 256 possible ASCII
characters. The pattern table is constructed prior to the start
of a search with buildtable. The data required to build the
pattern table are

1. the address of the character string (pattern) being searched
for

2. the length of the pattern
3. the direction of the search

The address of the pattern table is kept in the ptable integer.
The address of the pattern string is kept in the pattern integer,
and the length of the pattern is kept in the patlen integer. If
a forward search is being used, the direction integer will hold a
true flag.

The data to be used for this discussion are shown below. We are
searching for the 3 character string "hij". The text we are
searching through contains the first 16 characters of the
alphabet:

Pattern: hij

Pattern Length: 3

Text Being Searched: abcdefghijklmnop

Search Direction: Forward (start-of-text to end-of-text)

Given this information, buildtable will construct the pattern
table shown below. Note that the entries for all characters not
included in the pattern contain either a 3 (the length of the
pattern) or a "1". In a forward search, if a character is the
first character in the pattern, its entry will hold the value
length-1. In this case, ~ is the first character in the pattern
so its entry contains "3-1=2". The second character in the
pattern, i, receives length-2 or 3-2=1. The last character in
the pattern, which turns out to be the most important character
in a forward Boyer-Moore search, receives the value FF.

- 159 -

Second
hex

digit
o
1
2
3
4
5
6
7
8
9
A
B
C
o
E
F

Pattern Table for a Forward Search for the String "hijll:

First Hex Digit -)
o 1 234

3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1

3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1

3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1

3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3
1 1
1 1
1 1
1 1
1 1

5

3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1

6

3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1

7

3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1

8

3
3
3
3
2
3
2
3
3
3
3
1
1
1
1
1

9

3
3
3
3
1
3
1

3
3
3
3
1
1
1
1
1

A B

3 3
3 3
3 3
3 3
FF 3
3 3
FF 3
3 3
3 3
3 3
3 3
1 1
1 1
1 1
1 1
1 1

10.0.1 The Character Equivalence Table (maptable)

c

3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1

o

3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1

E

3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1

F

3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1

Note that "h" and "H" receive the value ~ in the pattern table.
This is because a leap to a lowercase "h" should find both upper
and lowercase "h". When buildtable creates the pattern table it
refers to a table of character equivalents (shown below). The
address of the character equivalence table is kept in the
maptable integer. This is another 256-byte table. Each entry in
this table contains the ASCII cede for the character, if any,
that is considered to be equivalent to the character to which the
entry corresponds. In general, the uppercase version of any
character is considered to be equivalent to its lowercase
version. The converse is not true. The search used by Leap is
not case-sensitive unless the Shift key is pressed along with a
character. If the Shift key is pressed and a character key is
struck, the character will be considered to be strictly
uppercase. If a character has no equivalent, its entry in the
maptable will contain a O.

- 160 -

Character Equivalence Table:

Second First Hex Digit ->
hex 0 1 2 3 4 5 6 7 8 9 A 8 C 0 E F

digit
0 0 0 93 0 0 70 0 0 87 0 0 0 0 0 0 0
1 0 0 0 0 61 71 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 62 72 0 0 0 91 0 0 0 0 0 0
3 0 0 0 0 63 73 0 0 84 0 0 0 0 0 0 0
4 0 0 0 0 64 74 0 0 0 0 0 0 0 0 0 0
5 0 0 a a 65 75 0 a a 0 0 0 0 0 0 0
6 0 0 a a 66 76 a a a a a a 0 0 0 0
7 a 0 0 a 67 77 0 0 0 a a 0 0 0 0 0
8 a 0 0 a 68 78 a a 89 a 0 0 0 0 0 0
9 0 0 0 a 69 79 0 0 0 0 0 0 0 0 0 0
A 0 0 0 0 6A 7A 0 a 0 0 0 0 0 0 0 0
B a 0 a a 6B a a 0 a a a a 0 0 0 0
C OB 0 0 0 6c 0 0 0 0 0 0 0 0 0 0 0
D a 0 0 0 6D 0 a a 8c 0 0 0 0 0 0 0
E a 0 a 0 6E 0 a 0 a 0 0 0 0 0 0 0
F a 0 a 0 6F 0 a a 86 0 0 0 0 0 0 0

10.0.2 A Step-by-Step Explanation of the Algorithm

Pattern: hij
Text Being Searched: abcdefghijklmnop

1. The search starts, more or lass, at the current cursor
position.

abcdefghijklmnop

2. Since our string is three characters long, the first
character to be examined by the search routines will be the
third character in the text, the c.

abcdefghijklmnop

3. The ptable data for the character ~ determines the location
of the next character to check. The entry for c in the
ptable contains a 3.

- 161 -

What we know at this point:

We know that c is not the last character in the pattern because
its ptable entry does not contain a $FF.

Since we are on the third character in our text and it is not the
last character in the pattern, there is no way any of the
characters we skipped over could contain the pattern.

Because we do know that we could not have skipped over a possible
match, we can skip ahead another full pattern length number of
characters (3).

4. The next character we encounter is an f.

abcdefghijklmnop

Its ptable entry contains a 3 also. For the same reasons
described in Step 3 above, we will skip ahead another three
character positions.

5. The next character we encounter is an i.

abcdefghijklmnop

The entry for i in the ptable contains a 1. Whenever the
search routines encounter an i, which is the next to last
character in the pattern, they must be sure to check the
character which follows the i.

6. After advancing by one character, we encounter a 1.

abcdefghijklmnop

1 1S the last character in the pattern because its ptable
entry contains a $FF. Now the search routine knows it has a
possible match. Only at this point will it take the time to
explicitly compare each character in the pattern with the
possible match in the text.

7. The text string matches the pattern so the search is
finished. The cursor is placed over the h.

If a normal search -- a "compare-each-character-in-the-text-to
the-pattern" search -- had been used, eight character comparisons
would have been performed before the match was located. With the
Boyer-Moore method, only three numeric comparisons and two
character comparisons were required. On the negative side, the
Boyer-Moore search does require extra time to create the ptable.
As the length of the search pattern increases, the speed of the
Boyer-Moore search surpasses the speed of the conventional string
search, even when the table-building time is taken into account.

- 162 -

10.0.3 Handling Accent Characters

In the ptable you will notice that all of the entries from $80 up
contain a 1. In this range the only entries which correspond to
characters found in the text are the entries $80 -) $B8 and $CO
-) $C8. These are the entries for the accent characters. As you
may recall from previous explanations of accents and accented
characters, an accented character such as ~ is stored as a 2-byte
value in the text. The first byte holds the character code for
the main character, the ~, and the second byte holds the code for
the accent.

The search routines will only pay attention to the main
characters in the text unless an accent is specifically included
in the pattern. If the search routine happens to land on the
data for - part of ~t the 1 in the ptable entry will cause the
search to be advanced by one, effectively skipping over the
accent character. This means that both the word "Canada" and
"Canada" will be found with the pattern "can."

If the more specific pattern "can" is used, only "Canada" will be
found by the search routines.

- 163 -

10.1 THE LEAP MECHANISM

The word called when either Leap key is pressed or another key is
pressed while a Leap key is down is do-lex. Since many
operations are supported by the Leap mechanism, do-lex has the
responsibility of deciding which of them it should perform.

10.1.0 Initializing a Leap Operation

The first action of do-lex is to check the contents of the
lexxing integer to see if a leaping operation is already in
progress. If leaping is not already in progress, init-lex
performs general leaping preparations.

During leaping, all characters typed are considered to be
lowercase unless they are deliberately typed while the Shift key
is down. The Lock key has no effect, and the Lock light is
turned off during leaping. The previous state of the Lock key is
saved in the oldshiftlock integer. savepos saves the state of
the current cursor-state integers. newlex and lexxing are turned
on to indicate that a new Leap is being initiated and that
leaping is occurring. matched is turned off to indicate that a
match has not yet been found. leftlex? is turned on if the left
Leap key, Leap Backward, is pressed. The p (place) integer is
set to point at the end of the current selection. The extbos and
savebos integers are prepared in case a drag operation occurs.

10.1.1 Leaping Around the Text

Whenever a character is pressed while a Leap key is down, do-lex
is called with the character on the stack. If the character is
not a special key character, the word searching will be used to
try to build up the pattern and start the search.

If the character passed to searching corresponds to the Undo key,
and pattern holds a -2 value or a new leap operation has just
started, searching is being asked to pass control to the Spell
Check Leap command. Therefore searching discards the character
and calls spellcheckleap.

First, searching must use the character to update the pattern.
If the character corresponds to the Erase key, pattdel will be
used to remove a character from the end of the pattern. If the
character is any other text character, pattadd will be used to
append the character to the current pattern. pattadd is smart
enough to handle accent-character merging (like Insert). pattadd
contains a begin ... again loop and, once called, will continue
calling <?k) and adding or deleting characters from the pattern
until no valid characters are available. This means that if the
pattern is typed quickly, some intermediate character patterns
may not be searched.

- 164 -

Once pattadd completes, the ptable is built and the search is
started. If a single-character pattern occurs, searching will
resort to the use of a standard string comparison search. The
search for a repeated single character pattern is the worst case
search on the Cat.

When the search has completed, end-search updates the cursor
position and display if necessary.

10.1.1.0 Low-Level Search Routines

Text searches on the Cat will wrap around from the starting
search position to the end of the text, then to the start of the
text and back to the start position, if necessary.

The low-level routines used to perform the searching are
<search<> , <search», search<, and search>. The word <search<>
searches in a forward direction through a specified range of
text. The word <search» searches in a backward direction
through a specified range of text. None of these four routines
are aware of the gap area and are able to skip over it. The
words search< and search> are slightly higher level search words
which directly use <search<> and <search».

10.1.1.1 Searching for Single Page Breaks

Page-to-page leaping using a pattern consisting of a single page
break is a special case because the cursor stops on both explicit
and implicit page breaks. This is unusual because implicit page
breaks have no corresponding character in the text and would not
normally be found using the leap search algorithm described
previously.

This special leap case is handled within search> and search<. If
these routines find that the pattern contains only a single page
break character, they will use the page routines page? and
prevpage to find the next implicit or explicit page break.

Although these page break searches are not as optimized as the
Boyer-Moore search, the largest area they will be asked to search
is approximately 2K bytes, the maximum amount of data which can
be held on a single page.

10.1.2 Scroll Again

If do-lex detects that the key passed to it corresponds to a
Use Front key (which indicates that a repeat operation is being
requested), it will first check to see if pattern holds a -1. If
pattern does hold a -1, lex-scroll will be used to scroll the
screen once and do-lex will then terminate execution. As
described in finish-lex, whenever the display contents are
scrolled up or down by holding down a Shift key and pressing a
Leap key, a 4-byte -1 value will be placed in the pattern
integer. If do-lex receives a Use Front key press, it will know

- 165 -

that it should repeat the scrolling operation.

Before do-lex terminates execution, autorepeating will be turned
on for the [Use FrontJ-[Leap key] combination so that the screen
will scroll continually as long as Use Front and Leap are pressed.

10.1.3 Spell Check Leap Again

If pattern holds a -2 value when a Use Front key press is passed
to do-lex, it means a Spell Check Leap command is being
repeated. The first time Spell Check Leap is used, it stores a
-2 into pattern. do-lex will turn on the SPELLCHECK indicator
light and call spellcheckleapagain. After autorepeating is
turned on for the [Use Front]-[Spell Check Leap] key combination,
do-lex will be exited.

10.1.4 Search Again

If a Use Front key press is received, and pattern contains none
of the special flag values described above, do-lex knows that it
is being asked to repeat a search for the current leap pattern.
The ptable will be constructed for the current pattern and
research performs the searching.

10.1.5 Finishing a Leap Operation

After checking for the start of a new leap operation, do-lex
performs an opposite test and checks for the termination of a
leap operation. If neither the left nor the right Leap key, nor
the left nor the right Use Front keys are down, leaping is
terminating and finish-lex is executed.

finish-lex will restore the previous Shift Lock key state,
re-enable the cursor, and set the lexxing integer to false in
order to indicate that leaping is no longer occurring. Next,
finish-lex must determine which type of leap operation is being
completed.

10.1.6 Shift-Leap Scrolling

If newlex is true {new leap operation}, matched is false (no
pattern was successfully matched during this leap operation). and
a Shift key is down, finish-lex is being executed because Shift
and Leap were pressed and released. The termination of Leap
under these conditions will cause lex-scroll to be executed and a
-1 to be placed in pattern. This makes lex-scroll the current
Leap-repeat command.

- 166 -

10.1.7 Creeping

Creeping, or character-by-character cursor movement, takes place
when a Leap key is pressed and released without a pattern being
entered. Internally, if newlex is true (a new leap operation
begun), matched is false (no pattern was successfully matched),
and a Shift key is not down, finish-lex must be being executed.
This will cause lex-tap to be executed. No flag will be placed
in pattern because creeping is not a repeatable leap operation.
lex-tap will cause the cursor to creep (move) one character
position to the right or left.

10.1.8 Other Leap Terminations

If newlex is false (not a new leap operation) or matched is true
(successful search), then finish-lex was called because either:

1. The Leap keys were used to highlight a selection and now they
are being released.

2. The Leap keys were used to choose a new location for a
section of text and are now being released so the drag
operation can be performed.

3. A successful Leap or Spell Check Leap is finished; or ...

4. An unsuccessful Leap or Spell Check Leap is finished.

10.1.8.0 Highlighting a SelectiJn

If finish-lex is called when the selection is expanded,
leave-extended ensures that the newly highlighted selection is
left highlighted, and then finish-lex is exited.

10.1.8.1 Dragging a Selection

If finish-lex is called when the cursor is either split or
extended, dragging is desired. If the drag destination location
is still within the highlighted text to be moved, the text cannot
be dragged and the selection is collapsed and a narrow cursor is
placed at the drag destination. If the drag destination is
valid, drag moves the text and finish-lex is exited.

10.1.8.2 Successful Spell Check Leap

If finish-lex is executed when pattern contains a -2, a
successful Spell Check Leap has finished. p is saved in pop and
the op is set to point to the end of the misspelled word so that
if the user presses both Leap keys, the misspelled word will be
selected and could be conveniently added to the user dictionary
with Add Spelling.

- 167 -

10.1.8.3 Successful Leap

If finish-lex is executed when pattern did not contain -2, a
successful Leap has finished. The cursor state integers are
updated.

- 168 -

10.2 LEAP ROUTINES SUMMARY

advanceptr a n -) at
pronounced add-vans' poynt'er)

Uses nextchar to advance the address ~ by ~ text character
positions. ~ must be a positive value. The new address ~t is
returned on the stack. This word adjusts the starting point of
searches.

build table (a n f -)
(pronounced bild' tay'bl)

Builds the 256-byte Boyer-Moore search table used during leap
searches. ~ is the address of the string to be searched for. ~

is the length of the string and f is a flag which indicates the
search direction. If the flag is true, the search will proceed
forward in the text.

First, buildtable will fill all table entries between offset
$00 and $BO with the length ~ of the string. All entries from
offset $BO to $FF will be filled with $01. Next, buildtable will
selectively alter the entries corresponding to characters found
in the search string. If the search is a forward search, the
first character in the string, and all equivalent characters (as
determined by the maptable) will be given the value n-1. The
second character will be given the value n-2 and so on. The last
character in the string will be given the special value $FF.

If the search is a backward search, the last character in
the string, and all equivalent characters (as determined by the
maptable will be give the value n-1. The second to last
character will be given the value n-2 and so on. For information
on the use of this table, refer to the discussion of the Leap
search algorithm in this chapter.

do-lex c -)
pronounced door leks)

The word called when a Leap key is pressed. Since the Leap keys
are used for several types of operations, do-lex must coordinate
all these operations. The cases do-lex must handle are
1. The first detection of a Leap key
2. The release of all Leap keys
3. The pressing of both Leap keys (highlights a selection)
4. When a new character has been added to the search pattern
5. [Use FrontJ-[LeapJ scrolling
6. Creeping
7. Spell Check Leaping
8. Re-searching for a previous pattern (Leap Again while the

Leap key is down or when it has been released and then
pressed again)
If (1) occurs, init-lex will be used to initiate a new leap

operation. If neither the left nor the right Leap key nor a
Use Front key is down, (2) has occurred. The character c will be
discarded, finish-lex will be used to terminate the leap, scroll.
or creep, and do-lex will be exited. If (2) didn't occur, the
%lex value is placed in the curop integer to indicate that Leap
is the current operation. If (3) occurs, both Leap keys are do~n

- 169 -

and the cursor is not split, the character ~ will be discarded,
the selection will be expanded, and do-lex will be exited. If
(3) didn't occur, direction is set to -1 for forward leap, or 0
for backward leap. If c is a break or printable ASCII character,
(4) searching will add the character to the leap pattern and
search through the text. If the character is a Use Front key
downstroke, then do-lex is being asked to repeat a previous
action. If do-lex is being asked LO repeat an action for the
first time (newlex holds a true flag), do-lex will set newlex to
false. Now, do-lex will check to see if (5) is occurring. If
the first four bytes of pattern hold a -1, this is a signal that
scrolling was the last operation, so do-lex will execute
lex-scroll, then terminate. A -2 in pattern means case (6) is
occurring. do-lex will turn on the SPELLCHECK indicator light,
call spellcheckagain to handle the request, check for a panic key
and set autorepeat accordingly, and then will terminate
execution. If none of the other cases are occurring, do-lex is
being asked to repeat the search of a normal leap string. The
selection, if any, will be collapsed, start-search will be used
to prepare fJr the repeat search, autorepeat is properly set up
r~r the search, buildtable creates the Boyer-Moore table for the
search, and research performs the search.

end-search a -) f
pronounced end' sertch)

Terminates a Leap or drag operation. The address ~ on the stack
is the result returned by the leap search routines. A copy of
this value is placed in the matched integer. If this address is
non-zero, a leap string match was found in the text. end-search
will reposition the cursor position cpos to ~ if it is non-zero
or to gap prevchar (the original leap start position) if ~ is
zero. Then, if the cursor state was not extended or split, as it
would be if a drag operation were being performed, the bos will
be updated with the new cursor position and eos will be updated
with the bos nextchar address. The screen display is updated and
the cursor is set to a narrow state. Finally, if matched
indicates that the pattern was not matched by the Leap search
routines and a Learning operation is occurring (either recording
or playing back), end-search will abort the Learn operation.
end-search performs other actions related to the dragging of
text. These actions will be discussed in the following section
on dragging.

finish-lex -)

pronounced fin'ish leks)
This routine is called when a leap operation is completed, that
is, when all the Leap and Use Front keys are released.
Shift Lock is restored to the state it was in before a Leap key
was pressed, the cursor will be reenabled, and the lexxing
integer will be set to false to indicate that leaping is no
longer occurring.

Next, finish-lex determines which type of leap operation is
being completed. If newlex is true and matched is false, then
finish-lex is executing a scroll if a Shift key is down, or creep
if a Shift key is not down. If newlex is false or matched is

- 170 -

true, then finish-lex was called because either (1) the Leap keys
were used to highlight a selection and now they are being
released, (2) the Leap keys were used to choose a new location
for a section of text and are now being released so the drag
operation can be performed, (3) a successful Leap or Spell Check
Leap is finished, or (4) an unsuccessful Leap or Spell Check Leap
is finished.

If (1) has occurred, leave-extended ensures that the newly
highlighted selection is left highlighted and then finish-lex is
exited.

If (2) has occurred, the drag destination location is still
within the highlighted text to be moved, the selection is
collapsed and a narrow cursor is placed at the drag destination.
If the drag destination is valid, drag moves the text and
finish-lex is exited.

If (3) has occurred, and the search pattern contains a -2, a
successful Spell Check Leap has finished. p is saved in pop and
the op is set to point to the end of the misspelled word so that
if the user presses both Leap keys, the misspelled word will be
selected and could be conveniently added to the user dictionary
with ADD SPELLING.

If (3) occurred and the search pattern did not contain -2, a
successful Leap has finished. The previous old selection range.
marked by the op and pop integers. is updated. The current op
value is placed in pop and the current p value is placed in op.
The forceop integer is set to true and unmove is set as the undo
operation.

If the bos lies within the current leap range, the cursor is
set to narrow. If the bos is at the start of the leap range, the
cursor is set to wide.

If (4) occurred, clearlearn aborts any Learn activity and
the cursor is reset to its pre-Leap state.

init-lex -)

pronounced in-it' leks)
Performs initialization at the start of a new leap operation.
The state of the shiftlock key is saved and then the shiftlock is
turned off. The undo buffer is cleared if the previous operation
was not an uncreep or unscroll. savepos saves the state of the
current cursor state integers. newlex and lexxing are turned on
to indicate that a new Leap is being initiated and that leaping
is occurring. matched is turned off to indicate that a match has
not yet been found. leftlex? is turned on if tht left Leap key
(Leap backwards) is pressed. The current beot prevchar address
is saved in the p and savebos integers. The current bos address
is saved in the extbos integer.

leave-extended -)
pronounced leev' eks-tend'ed)

Leaves a leap operation with the cursor extended.

lex-scroll -)

pronounced leks' skroll)
This word is called when the [Shift]-[Leap key] combination is
used. Depending on which Leap key is pressed, lex-scroll will

- 171 -

scroll 1, 1t, or 2 lines of text off the top or bottom of the
screen (depending on the Line Space setting). lex-scroll will
store a -1 in pattern to indicate to do-lex that the last
operation was a scroll. %scroll will be placed in the curop
integer and forceop will be turned on to indicate that the op
should be advanced when the next key is typed.

lex-tap -)

pronounced leks' tap)
Tries to advance the cursor forward or backward by one
character. If the current undo operation is not uncreep (if we
are not undoing a previous lex-tap), the undo buffer is cleared
and cursor state information is saved. Next, lex-tap checks the
current cursor state and advances the cursor accordingly. If ~he
cursor is extended and the left Leap key is pressed, tapmove wlll
be used to collapse the cursor on the first character of the
selection. The cursor will be narrow. The previous end of the
extended selection (eos prevchar) will be saved in the op
integer. If the cursor is extended and the right Leap key is
pressed, the cursor will be collapsed on the last charactpr in
the selection. The cursor will be wide. The previous start of
the extended selection (bas) will be saved in the op integer.
Otherwise, if the cursor is not extended, lex-tap will make the
cursor narrow if necessa~y and then will use tapmove to move the
narrow cursor one character to the left or right.

pattadd c -)
pronounced pat' add)

Adds the ch~racter ~ to the existing pattern pointed to by the
address in the pattern system integer. Before adding the
character to the pattern, pattad1 checks to make sure the
addition of the character will not cause the string to become
longer than the maximum allowable leap string length (patternsize
= 256 bytes). If there is enough room, and the character value
is greater than $ff, wI places the character into the string. If
the character value is less than $ff, c! places the character in
the string. If the character is a single byte value, pattadd
will also check to see if the current character is an accentable
character which is preceded in the string by a bare accent
character. If so, the 2 characters will be swapped to form a
single accented character. After the character is added, the
pattern length, kept in patlen, is incremented by one. Before
terminating execution, pattadd will use <?k) to see if another
key has become available. If a key is available and a Leap key
is down, and the key is not a special key or Undo or Erase,
pattadd will immediately add the character to the leap string
pattern. pattadd will continue adding characters to the leap
string until <?k) indicates that no more characters are available.

pattdel -)

pronounced pat'dell)
Removes a character from the leap string pattern by decrementing
the contents of the patlen integer bv one. pattdel will only
decrement patlen if patlen holds a c~n-zero value.

- 172 -

. .",.

pbpat (-) f
(pronounced pee-bee' pat)

Returns a true flag if the leap string pointed to by pattern
contains only pagebreak characters. Returns a false flag if an:,,:
character in the leap string is not a page break character. This
special pattern leaps to the end or start of the leap region.

research -)

pronounced ree'serch }
This word is executed when the Leap Again command
([Use Front]-[Leap])repeatedly searches for a previously
specified pattern. If a forward search is being used. research
must double-check its current position before starting the
search. If the cursor is currently sitting on the pattern and a
forward search for the pattern is started, the search routines
will endlessly find the pattern at the start position. In this
case, the start position must be advanced by patlen before the
search begins. The text is then searched back to the start
position if necessary. If a backward search is used. research
does not have to worry about the start position. The text is
searched towards the start of text and back to the start position
if necessary.

search< a1 a2 -) a3-or-O
pronounced serch bak'wurd

High-level leap search word. Searches backward through the range
of text which starts at address a1 and ends at address a2 looking
for a string in the text which matches the leap string whose
address is in the pattern system integer. If the search range is
invalid (if the end address is greater than the start address) or
if there is no leap string to match (patlen = 0), will place a
zero on the stack and exit immediately. If the pattern contains
a single page break character, the words page? and prevpage find
the next page break in the text. Otherwise, <search» performs
the search. If <search» cannot match the pattern, pbpat sees if
the pattern contains any page break characters. If it does, leap
matches the last or first document break in the current leap
region.

search> (a1 a2 -> a3-orO
(pronounced serch for'wurd

High-level leap search word. Searches forward through the range
of text which starts at address a1 and ends at address a2 looking
for a string in the text which matches the leap string whose
address is in the pattern system integer. If the search range is
invalid (if the end address is less than the start address) or if
there is no leap string to match (patlen = O), will place a zero
on the stack and exit immediately. If the pattern contains a
single page break character, the words page? and prevpage find
the next page break in the text. This is how implicit page
breaks can be matched. Otherwise, <search>< performs the
search. If <search>< cannot match the pattern, pbpat is used to
see if the pattern contains any page break characters. If it
does, leap matches the last or first document breaks in the
current leap range

- 173 -

<search<> a1 a2 -) a3-or-O)
pronounced brak'it serch bak-wurd)

Searches backward through the range of text which starts at
address a1 and ends at address a2 looking for a string in the
text which matches the leap string whose address is in the
pattern system integer, and the length is in patlen. If a
matching text string is found, the address ~ of the string is
returned on the stack. Otherwise, zero is returned. <search<>
uses the Boyer-Moore table pointed to by the ptable system
integer to locate potential matches and then performs a string
comparison to explicitly validate the match.

<search» a1 a2 -) a3-or-O
pronounced brak'it serch for'wurd)

Searches forward through the range of text which starts at
address a1 and ends at address a2 looking for a string in the
text which matches the leap string whose address is in the
pattern system integer, and the length is in patlen. If a
matching text string is found, the address ~ of the string is
returned on the stack. Otherwise, zero is returned. <search<>
uses the Boyer-Moore table pointed to by the ptable system
integer to locate potential matches and then performs a string
comparison to explicitly validate the match.

searching c -)
pronounced serch'ing)

Searches for the current leap pattern in the text. If the key is
the Undo key and pattern holds a -2 (Spell Check Leap occurring)
or newlex is true, the character will be dropped, only
spellcheckleap will be executed. If the key is the Erase key and
newlex is true, the character is dropped and searching is exited
since it cannot search for an erase character. If newlex is true
(new leap occurring) or pattern holds a -1 (previous operation
was a [Shift]-[Leap] scroll), newlex is set to false and the old
pattern is omitted (starting fresh).

Now searching is almost ready to start the search. unexpand
collapses the selection and start-search prepares for the
search. If the character was an erase character, the last
character is removed from the search pattern and the search start
point is set to just after the current cursor position. If the
character was not an erase character it is appended to the search
pattern and the search start point is set to just after the
cur "ent cursor posi tion.

Now that the pattern has been checked and adjusted,
buildtable builds the pattern-specific Boyer-Moore search table.
Now the search occurs. If a forward search is used, the second
half of the text is searched first, then, if necessary, the first
half of the text is searched.

start-search -)

pronounced start' serch }
Prepares for the start of a search operation. If the cursor is
extended or split, the contents of savebos are moved to bos and
bos nextchar is moved into eos. Even if the selection is

- 174 -

extended, the eos and bas must temporarily point to the last
character before the gap for the search algorithms to work
correctly. Otherwise, start-search performs no actions.

tapmove a -)
pronounced tap'moov)

Tries to move the cursor to text position~. If the text
position is not within the current leap range, tapmove is
exited. Otherwise, the eos is set to ~, bas is set to eos
prevchar, the gap is adjusted, the display is fixed, the cursor
is set to narrow at the new position, and forceop is set to true.

uncreep -)
pronounced un'creep)

Executes (uncreep>. Used to undo a series of creep operations.

(uncreep> -)
pronounced brak'it un-creep)

Tog~~es the effect of a series of lex-tap operations. Uses
swappos2 to swap the saved contents of the cursor state integers
with the current cursor state integers. The next time the cursor
is drawn, the previous cursor state (as represented by the saved
cursor state integer values) will be reflected. Adjusts the
gapline if necessary and sets itself as the undo operation.

unmove -) n1 n2 n3 n4 n5 n6
pronounced un'moov)

Uses pushpos to push the contents of the current cursor state
integers onto the stack, and then swappos to swap the contents of
the current cursor state integers (on the stack) with the
previous cursor state values. Tne undo buffer is cleared an
unmove sets itself as the undo operation.

unscroll -)
pronounced un'skroll)

Executes (uncreep>. Used to undo a series of scroll operations.

- 175 -

10.3 LEAP INTEGERS

direction (pronounced dy-rek'shun)
Equal to -1 for forward leap; equal to 0 for backward leap

leftlex? (pronounced left'leks
Remembers the value of direction during a series of scroll-again
or creep-again operations

lexxing (pronounced lek'sing)
Holds a true flag if leaping is occurring

maptable (pronounced map' tay'bl
Holds a pointer to a table which maps invalid text characters to
their valid text equivalents

matched (pronounced match't)
Holds either the address of a leap string match in the text or 0
if a leap string was not matched

newlex (pronounced noo'leks)
Holds a true flag if this a new leap operation; set by init-lex

oldshiftlock (pronounced ohld' shift-lahk
Holds the saved state of the Shift Lock key during a leap
operation

patlen pronounced pat' len)
Holds the length of the current leap string

pattern pronounced pat'turn)
Holds a pointer to the current leap string characters

patternsize (pronounced pat'turn syze)
Holds the maximum length of a leap string pattern (256)

ptable (pronounced pee' tay'bl)
Holds a pointer to the 256-byte Boyer-Moore search table

savebos (pronounced sayv' boss)
Holds a saved copy of the bas pointer during a leap operation

- 176 -

11. DRAG

Introduction

The drag routines move sections of text to different locations
within the text. To move a section of text, the user (a) selects
the section of text to be moved, and (b) uses the leap mechanism
to move the cursor to the desired destination locatioh for the
text. When the user releases the Use Front and Leap keys, the
text will be moved from ~he old to new location. Be sure to read
the Chapter on leaping before reading about drag.

- 177 -

DRAG ROUTINES

drag -)

pronounced drag')
drag is the word called by the Leap routine finish-lex when
leaping is terminated and an extended selection exists. drag
will first check to see if the drag destination location, found
in the savebos system integer, lies within a locked region of
text. If so, the original, highlighted selection is redisplayed
if necessary and the operation is aborted. Otherwise, start-drag
is executed.

start-drag prepares the selection and destination location
for a drag operation. The flag returned by save-drag, which
indicates whether format packets must be adjusted, is stored in a
local variable. If the destination location is currently
represented in the window table, the screen line number in which
the destination is located is saved in another local variable.
The purpose of this is to maintain the screen position of the
destination point, if possible. If the destination is not
represented in the window table, this local variable will be set
to O.

Next, drag checks to see where the destination location is
relative to the selection location (the gap). If the destination
is before the gap, drag-forward implements the drag. If the
destination lies after the gap, drag-backward is used. Both
drag-forward and drag-backward are passed the size of the piece
of text they will have to move in order to implement the drag
operation.

After the text has been moved and the text pointers
readjusted, drag uses preset to fix the gap skip markers and then
passes the local packet and text-in-window flag to end-drag (see
the individual descriptions of drag-backward and drag-forward for
more information).

Finally, undrag is set as the undo operation and the
dirtytext? integer is turned on.

drag-backward n -)
pronounced drag bak'wurd)

Used to drag a selection to a destination in the second text
partition. The value passed to drag-backward is the size of the
text between the beet and the drag destination location, which is
the amount of text which will have to be moved to insert the
selection at the destination. All intervals between the bos and
destination are marked for updating and all intervals after the
destination are marked as partially known.

Next, the selection text is moved into place. If the system
has enough room, the selection is moved forward size bytes; then
the text between the beet and destination is moved into place,
right before the new selection location. If the system does not
have enough room to perform this straightforward text movement, 8

series of reverse operations will be used to reposition the text.
drag will reposition the text pointers after drag-backward

completes. The old bas location will be saved in the pop
integer. bas size + will be saved in the op integer. The gap,

- 178 -

beot, and extbos integer contents will all be decremented by
"size" bytes.

Before:
<--size--)

_________ ~ __ xl _______ I ____________ _

bos gap beot dest

After:
<--size--)

-------1 xxxx 1---------
bos gap beot dest

drag-forward n -)
pronounced drag for'word)

Drags a selection to a destination in the first text partition.
The value passed to drag-forward is the size of the text between
the destination and the bos location, which is the amount of text
which will have to be moved to insert the selection at the
destination. All intervals between the destination and beat are
marked for updating and all intervals after the beat are marked
as partially known. Next, the selection text is moved into
place. If the system has enough room, the "size" bytes between
the destination location and the selection start are moved right
before the beot. Then the selection text is moved back to the
destination location. If the system does not have enough room to
perform this straightforward text movement, a series of reverse
operations will be used to reposition the text. drag will
reposition the text pointers after drag-forward completes. The
old beot address will be saved in the pop integer. The old
savebos (destination) address will be saved in the op integer.
The gap, beot, and extbos integer contents will all be
incremented by size bytes.

Before: <--size--)
_____________ X_x_x_xl ________________________ __

dest bos gap beot

After: <--size--)
XXXX I ------------------ ------------ -----------------
dest bas gap beot

end-drag f n -)
pronounced end' drag)

Fixes up format packets if necessary and redisplays the text in
the window if necessary. The selection which was dragged is left
highlighted.

- 179 -

start-drag -) f
pronounced start' drag)

Prepares the selection and the destination location for a drag
operation. If necessary, start-drag adjusts the destination
location, trims the selection to be dragged, and adjusts
selection format packets.

A selection cannot be dragged to the backward side of the
first document separator (savebos bar = cannot be true). If this
case exists, the savebos location is incremented by one so that
it will be located just past the first document separator
character.

Nor can the first document separator be dragged with a
selection. If the first document separator character is included
in a selection, bos bar =, the bos will be incremented by one so
that the first document separator is not included in the
selection.

Similarly, the last document separator cannot be dragged
with a selection. If the last document separator character is
included in a selection to be dragged, eos eor =, the eos will be
decremented by one so that the last document separator character
is not included in the selection.

Next, start-drag deals with format packets. If there are no
format packets or breaks in either the selection to be dragged or
the piece of text which will be moved to execute the drag, format
packets do nOL need to be adjusted and start-drag will complete
execution.

If all of the above cases are not true, start-drag will
check the break immediately before the selection and the last
break in the selection. If either of these breaks does not have
an associated format packet, start-drag will make one and implace
it in the text.

start-drag will also save the formatting state at the
destination location in the workpkt if the formatting cases were
not all true. The flag returned by start-drag is true if the
format packets had to be checked.

undrag -)

pronounced un'drag)
Uses drag to redo the drag operation in the reverse order.
Restores the screen to the way it looked before the drag began,
that is, the way it looked before the user pressed the Leap key.
The pop contents are moved into savebos before the new drag
operation is performed. The window is redisplayed as necessary.

- 180 -

12. COpyup

Introduction

The copy-up routines allow the user to transfer text from one
disk to another. Copyup is not an explicit command executed by
the user. To transfer text, the user selects the section of text
to be transferred, places the destination disk in the disk drive,
and uses [Use FrontJ-[DiskJ to load the contents of the
destination disk into memory.

During the loading process, the disk code will notice that the
previous text contained selected text. The selected text will be
put in safe place during loading of the new text and will be
inserted into the new text at the current cursor location once
the new text has been loaded.

- 181 -

12.0 COPYUP STEP-BY-STEP

The user has saved the current text and left a portion or all of
it highlighted. They put a new disk in the drive and use the
Disk command, indicating that they want to copy up the
highlighted text into the new universe that is loading.

First, the size of the selection and the ID block of the
destination are checked to make sure the selection will fit into
the new universe. If there will not be enough room, an error is
indicated.

If there is enough room to accommodate the new text, the
selection needs to be split out of the current text. This is
done by attaching a format packet to the beginning and the
selection moved to a safe place. Since the new text will be
loaded in sequentially and then unpacked to give us our complete
text, the end of the text area is used as a safe place.

Communicating text from one universe to another is a bit tricky
(a universe is all the text associated with one disk). It uses a
special area of memory which is not part of the saved image and
not overwritten during the loading of a new universe. An
indicator is kept in this area that tells the Cat whether a
copyup was performed, and, if so, where the old text is loaded.

After the new universe is loaded in and running, the Cat checks
the special indicator. If it says there is extra text, a special
unpack routine opens the text while swapping the saved text at
the end of memory into the new gap. When that is done, the new
selection is allowed to merge into the new universe.

- 182 -

12.1 COpyup ROUTINES

copyup -)
pronounced kah'pee up)

If the user saves the text on the screen, leaving all or a
portion of it highlighted, then puts a new disk (with its own
universe) in the drive, and uses the Disk command, copyup will be
executed. copyup transfers a copy of the currently highlighted
text into the text about to be loaded into memory. If the entire
on-screen text is highlighted, it can be dirty (not saved) and
copyup will still take place.

The text copied up will be inserted into the new text,
starting at the current cursor location in the new text. copyup
will save a copy of the highlighted text in a safe space (at
ramend) before the process of moving the new text into memory
begins. copyup performs seven actions:

1. If the disk in the drive (which contains the new text to be
loaded in) is locked, a copyuplock error will be issued.

2. The size of the highlighted selection (gap bos -> size to) is
determined.

3. If the selection contains a break, the selection size is
incremented (pktsize 2* size +to) to account for packets
which will be inserted into the selection to preserve the
format of the selection during the move.

4. If there will not be enough room to hold the selection during
the loading of the new text, a nocopyuproom error will be
issued.

5. If the selection contains a break, format packets are
inserted into the selection as necessary.

6. The selection is moved up to a safe position near the end of
RAM memory.

7. The location of the safe selection is stored in the copyuptr
system integer.

move&adjusttext a1 a2 -)
pronounced moov' and a-just' tekst)

Moves and compresses/expands the current text area to a new
region of memory which starts at address a1 and ends at address
a2. After the text has been moved, text will be located at
address a1 and endtext will be located at address a2. All of the -- --
affected text pointers are adjusted accordingly and the interval
table is updated. Used by the disk code as it prepares to move
text to and from disk.

- 183 -

unpackcopiedup a1 a2 a3 ->
pronouncec: un-pak I kah I peed up)

Used to merge text saved by copyup into the text of the new
disk. unpackcopiedup first checks to make sure there is enough
room in the new text for the copied-up selection. If so, the
copied-up text will be moved temporarily to the end of the text.
Then the copied-up text is moved into the undo buffer and the
text is moved around to make room for the copied up text.

If any of format packets need to be adjusted/inserted in the
copied up text, the adjusting/inserting is performed while the
copied up text is in the undo buffer.

After the copied-up text is ready. insertblock inserts the
copied-up text into the new text at the current cursor location.
Any Calc packets in the copied-up text are adjusted, the text is
redisplayed, the undo buffer is cleared, and removeselection is
set as the undo operation.

- 184 -

13. THE KEYBOARD INTERFACE AND THE LEARN COMMAND

Introduction

There are two possible sources of key events in the Cat system.
Real key events generated directly from the keyboard are spotted
by the interrupt service routine, which is responsible for
scanning the keyboard anG reporting keyboard state changes as key
events which are added to the key event queue. Recorded key
events are generated when a recorded Learn sequence is played
back. Only the lowest-level Forth keyboard I/O words know the
difference between real and recorded key events. This section
discusses the terminology and data structures associated with the
Cat keyboard interface, the Forth words involved with key press
handling, and the close tie between the keyboard interface and
the Learn command.

- 185 -

13.0 KEYBOARD INTERFACE TERMINOLOGY AND DATA STRUCTURES

13.0.0 Scanning the Keyboard

At the lowest level of the keyboard interface is the keyboard
interrupt service routine. Every time the timer interrupt goes
off, the keyboard is scanned to see if it has changed since the
last timer interrupt. Part of the code fragment used to service
a Levell interrupt is responsible for polling the keyboard.

During the keyboard polling process, eight bytes of information
are received. These eight bytes of data are placed in an 8-byte
buffer whose start address is stored in the tempkey integer.
This is the current keyboard scan information. The information
received during the previous polling process is stored in another
8-byte buffer whose start address is stored in the newkey integer.

Each time the keyboard service routine is called, it polls the
keyboard and compares the information received to the information
received during the last execution of the service routine. If
the information in the tempkey and newkey buffers is the same,
the service routine will take no action. Only when the tempkey
and newkey buffers hold ~ifferent information, which indicates
that a change in the state of the keyboard has occurred, does the
keyboard service routine report a keypress to the rest of the
system.

When a change in keyboard state occurs, the eight bytes of
information in tempkey are transferred to the newkey buffer and
one byte of scan information, condensed down from the eight bytes
of information actually received, is placed into the keyboard
event queue.

13.0.1 The Keyboard Event Queue

The keyboard event queue is a $20-hex-byte circular queue (see
diagram 13-1). The start address of the queue memory is located
at an offset in the system. status vector. The two pointers used
to maintain the circular queue are kept in the inptr and outptr
system integers. When the keyboard service routine adds an event
byte to the queue, the byte is placed in the address pointed to
by inptr and then the inptr address is incremented by one. When
an event byte is removed from the queue, the byte is taken from
the address pointed to by outptr and then the outptr address is
incremented by one.

The word inptr always points to the next available location in
the queue and Qutptr always points to the next available event
byte in the queue. If inptr and outptr hold the same address,
the queue is empty. The information is the number of the scanned
key in the range of 0 to 63 and a bit (128) saying if the key was
going up or down. Each entry in the keyboard event queue is one
byte long.

- 186 -

'-

13.1 The Keyboard Event Queue

Points to the next
key event code which
will be taken from
the queue.

out pt r

32-byte
circular

keyboard event
qusue

Points to where
next key event code
will be inserted.

~ inptr

li ~I--_----1 byte ------~

7 6 5

Unused t ~~

"-
Key up/down flag -

4 3 2 1

t
Scancode returned
by keyboard interupt
service routine.

~ 187-

0

/

13.2 Keyboard Translation Table Entries

Normal ASCII Character.

15 870

00

Character with a SpeciaJ Accent:

'SpEri3r'

bare accent code

overstrike char code

I ASClicme ~

ASCIICa:Je

I Sp3:)aJ Key Nurrber I

Special Key Numbers:
a KB1/2
1 Left Shift Key
2 Right Shift Key
3 Caps Lock Key
4 Left Use-Front Key
5 Right Use-Front Key
6 Left Leap Key
7 Rig ht Leap Key

-/68-

13.0.2 Special Keys

A special key is one that does not generate a character code. A
special key will either affect the way subsequent key presses
will be interpreted or will cause an editing command to be
executed. The special keys on the Cat keyboard are listed below:

KB-I/II (this is really an imaginary key)
Left Shift
Right Shift
Shift Lock
Left Use Front
Right Use Front
Left Leap (Leap Backward)
Right Leap (Leap Forward)

Up/down state information about the special keys is kept in two
8-bit bit arrays. One bit array is held in the shiftstate system
integer and the other is kept in the modifiers system integer.

Note: In reality, shiftstate should be called specialstate
because its contents actually represent the current states of all
of the special keys, not just the state of the Shift keys.

Each bit in the bit array represents one of the eight special
keys. These are the bit assignments:

7 6 5 4 3 2 1 o

KB-II
Left Shift

Right Shift
Shift Lock

Left Use Front
Right Use Front

Left Leap
Right Leap

Figure 13.2: Bit Assignments in a Special Key Bit Array

The shiftstate bit array always represents the actual physical
state of the special keys, with one exception. The Shift Lock
bit is not cleared until a key-up event for either the left or
right Shift key is received. Normally, a special key bit is
cleared as soon as a key-up event for that special key is
received. Also, KB-I/II is not set or cleared by the low-level
representation, but is lit by the KB-I/II command.

- 189 -

The modifiers bit array holds the state of the special keys as
viewed by the editor. The modifiers array will be the same as
the shifts tate array except during the playback of Learn
sequences. During Learn playbacks, the modifiers array will be
artificially altered to simulate the pressing and releasing of
special keys. At the end of a Learn sequence, the contents of
the shiftstate array, which always holds the current physical
states of the special keys, is copied into the modifiers integer.

13.0.3 Keyboard Translation Table

The Cat editor supports the keyboard layouts of 17 different
countries. All of the keyboards have essentially the same number
of keys arranged in similar layouts. It is only the assignment
of character to key which varies from country to country.

The keyboard service routine returns position-specific
information about a keypress, that is, which key was pressed. A
keyboard translation table translates key position information to
character information for any keyboard layout. There is a
keyboard translation table for each of the 17 keyboard
configurations supported. Every translation table consists of
four subtables. The first subtable contains the data for
characters found on the unshifted version of KB-I, the second
contains the character data for the shifted version of KB-I. the
third contains data for the unshifted version of KB-II, and the
fourth contains data for the shifted version of KB-II.

There are 59 keys on the USA Cat's keyboard (other layouts may
have 61). Each subtable contains 64 16-bit character data
entries, one for each key on the keyboard with a few entries left
blank. The following diagram shows how each translation table,
and the subtables within, are arranged:

Offset Translation Table Subtables

$00 -)
KB-I, non-shifted character data

$40 -)
KB-I, shifted character data

$80 -)
KB-II, non-shifted character data

$CO -)
KB-II, shifted character data

Figure 13.3: Layout of a Keyboard Translation Table

- 190 -

The scan code returned in the lower six bits of the event code is
actually the offset into a translation table subtable to the
desired character data. The translation table used by a
particular Cat is determined by a software switch. The
translation table subtable used is determined by information
found in the current shiftstate bit array.

The data entries in the keyboard translation table are two bytes
each. If the upper byte contains a 00. indicating that the lower
byte is the character to be returned. If the upper byte contains
a $FF. it indicates that this key is a modifier type key and the
type of modifier is in the lower byte. (This is the same as the
bit position in the shiftstate array.) If the upper byte is
something else. it is assumed the two bytes are two separate
characters to be returned. This is most commonly used for
accented characters. The accent byte ($CO-$CF) is in the upper
byte. and the real character is in the lower byte.

- 191 -

13.1 PROCESSING KEYPRESS INFORMATION

do-event is the Forth word which removes the next available event
code from the event queue and translates the key scan code
information in the event code to keyboard-specific character
information. If the event code does not reflect a change in
state of one of the special keys, do-event uses the following
algorithm to find the character information which corresponds to
the event queue information:

1. First, do-event checks to see if any of the shift key bits in
the shiftstate array are set.

The state of the special keys determines how the character
information is treated. If a Shift key bit is set, $40 is added
to the scan code offset. This bumps the offset into the shifted
portions of the character data (see the translation table
diagram) .

2. Next, the state of the KB-I/II bit is checked.

If the KB-I/II bit is set, if Keyboard II is selected, $80 is
added to the scan code offset. This bumps the offset into the
keyboard II part of the translation table.

Now that the subtable to be used has been determined, do-event
can index into the subtable, using the offset in the scancode
information, and fetch the two bytes of translation table
character data.

If the key event code does correspond to a special key change in
state, do-event will alter the shiftstate information. A special
key-down event will usually cause the special key's corresponding
bit in the shiftstate array to be set. The exceptions are (1) a
Shift Lock key-down event is not accepted when a Use Front key is
down, and (2) a left or right Shift key-down event will cause the
Shift Lock bit to be cleared in addition to the left or right
Shift key bit being set. A special key-up event will clear the
special key's corresponding bit in the shiftstate array. The
exception is that Shift Lock key-up events are ignored.

13.1.0 Returning Character Information

When do-event has completed execution, 32 bits of character
information will be stored in the kval (key-value) system integer
and a true ("character available !") flag will be stored in the
kstat (key-status) system integer. The character information
returned in kval has the following format:

- 192 -

o shifts tate I data from translation table I

31 24 23 16 15 o

Figure 13.5: Format of the Character Information Returned in kval

If a key-up event for a nonspecial key is received, and the new
translation table character data is the same as the current
character data found in kval, (if the nonspecial key currently
held down is being released) autorepeating will be disabled.

Before do-event finishes it will check the Shift Lock bit and
turn the Shift Lock light on or off.

- 193 -

13.2 TYPES OF KEY INFORMATION

Key information can come from two sources, tl~e keyboard even t
queue, or a prerecorded Learn string in playback. Key
information from the event queue is called real key information,
because it was generated directly from the keyboard.

13.2.0 Real Key Information

The Forth words «?k» and @k check for and obtain real keypress
information. «?k» spins in a loop caJling do-event until a key
event is returned (until the kstat integer contains a true flag)
or until the event queue is empty (?ev checks for an empty event
queue). «?k» returns a true flag if new key information is
available (in kval).

@k is used after it is determined that real key information is
available. @k turns autorepeating on if the character is not a
special key, sets up the next autorepeat time, stores a false
flag in kstat (indicating that the current character is no longer
available), and returns just the character value on the stack,
which is the lower byte of the translation table data found in
kval.

13.2.1 Recorded Key Information

The words playback? and playback are the Learn equivalents to
«?k» and @k.

playback? returns a true flag if the character information for a
prerecorded key event is available. The contents of the
learnbuff and learning? system integers determine whether a Lean1
sequence is being played back. learnbuff will return a true flag
if any type of Learn operation, recording or playing back, is
occurring. learning? will hold a true flag if a Learn sequence
is currently being recorded and a false flag if a Learn c. equence
is being played back. If these integers indicate that a Learn
playback is occurring, and if there are still characters in the
string which must be played back, playback? will return a true
flag.

- 194 -

If a prerecorded character is available, playback obtains the
prerecorded character information. A character entry in a Learn
string contains essentially the same data found in the kval
integer. The difference is that scancode information is placed in
the upper byte:

scancode shiftstate data from translation table

31 24 23 16 15

Figure 13.6: Format of a Character Entry in a Learn String

playback unpacks the key event information recorded in the Learn
string. The actual character data, the data from the translation
table, is returned on the stack. To simulate the environment in
which the key was originally typed, the scancode and shiftstate
information is placed in the corresponding key-state system
integers.

- 195 -

o

13.3 OBTAINING KEY INFORMATION

<?k) is the main Forth word used to check for available keypress
information of any type, real or recorded. If a real key is not
available, <?k) will check for a recorded key. If either type of
key is available, <?k) will set up a duplicate version of the
key-state environment and will return a true flag. If no key is
available, a false flag is returned. If <?k> returns true, <key>
can be used to get the actual key that would be returned.

13.3.0 The Key-State Environment

Complete information about a key press is stored in two sets of
system integers. Both sets hold equivalent information:

kval
kstat
shifts tate

< - >
< - - - - >
< - - - - >

char
char?
modifiers

The integers on the left have already been introduced. kval,
kstat, and shiftstate always contain current key information
about the most recent keyboard keypress. The integers on the
right contain key information which corresponds to the state of
the keyboard as viewed by the editor. Usually char, char?, and
modifiers contain the same information as their left column
counterparts. During the playback of Learn sequences however,
the integers on the right will be deliberately modified by the
Learn routines.

When playback of a Learn sequence terminates, the contents of the
integers on the left are copied into the integers on the right to
restore order to the system.

13.3.1 Setting Up the Editor Key State

The word !char (store-char) is used by <?k> to set up the editor
version of the key-state information. !char is very similar in
function to do-event, except

1. do-event is an assembler routine, while !char is written in
Forth.

2. lchar is passed translation table data on the stack, while
do-event obtains the translation table data itself.

3. If !char receives special key event inlcrmation, it will
alter the special key bit array kept in tho modifiers system
integer instead of the shiftstate bit array.

4. !char returns character information in the char and char?
system integers instead of in the kval and kstat integers.

- 196 -

13.3.2 Getting the Character

If (?k> indicates that a character is available, (key> gets the
character and, if a Learn sequence is being recorded, appends the
key information to the Learn string. <key> spins in a loop until
<?k> indicates that a key of any type is available. When a key
is available, <key> takes the character value from char, leaves
it on the stack, and sets the char? flag to false to indicate
that this key is no longer available.

- 197 -

13.4 THE LEARN COMMAND

The Learn command records sequences of keypresses which may be
played back at a later time. Since the playback and recording of
Learn strings is connected to the keyboard interface at a very
low level, the rest of the system never needs to be concerned
with the actual source of key information received. As far as
the rest of the system is concerned, there is always a typist at
the keyboard.

13.4.0 Learn Strings

The Cat system can store up to ten Learn sequences at once. The
Learn sequences -- actually just strings composed of 4-byte
packets of keypress information -- are stored in ten string
variables named learnO, learn!, etc. A 20-byte table in memory
holds the ten 2-byte tokens for each of the Learn string
variables. Execution of the word learnstrings will place the
address of this table on the stack.

13.4.1 Important Learn Integers

learnbuff returns a true flag if any type of Learn operation -
recording or playing back -- is occurring. learning? holds a
true flag if a Learn sequence is currently being recorded, and a
false flag if a Learn sequence is being played back. curlearn
holds the number of the Learn string currently being played back
or recorded. learnpos holds the offset into the current Learn
string to either the next keypress to be played back (during
playback) or to the location where the next keypress information
received will be stored (during recording). maxlearn holds the
maximum allowable length of a Learn string (4096 bytes).

This value can be changed to allow for longer Learn strings if
needed. The actual maximum is the minimum of the current
maxlearn and the total free space left in the system. That is.
if there isn't enough room to set up a record buffer of maxlearn
bytes, the buffer will be set to whatever is available.

13.4.2 Recording a Learn Sequence

[Use FrontJ-[LearnJ is pressed to initiate the recording of a
Learn sequence. When [Use FrontJ-[LearnJ is pressed, the word
Learn is executed. Learn will perform one of two actions.

If Learn is executed when no Learn activity is currently
occurring (learnbuff holds a zero), Learn will first use indicate
to display the "Learn 7" indicator light. Next. Learn mus t w'ai t
in a loop until it receives the digit that indicates to which
Learn string the upcoming Learn sequence should be assigned.

- 198 -

If the next keypress received does not correspond to a digit
(O-9), Learn will turn the indicator light off and terminate
execution. If a digit is received, Learn uses showlearn to
replace the tt?" in the indicator light with the number received,
and newlearn sets the system up for Learn string recording.
newlearn places the chosen Learn string number in curlearn, tries
to expand the chosen Learn string to the maximum allowable Learn
string length, sets learnpos (the offset into the Learn string)
to zero, turns learning? on (to indicate that recording is
occurring), and turns learnbuff on (to indicate that a Learn
activity is occurring).

Now the system is ready to record any subsequent keypress
information received. Whenever <key> obtains keypress
information, the last word it executes is record. record checks
the learning? and learnbuff integers to see if recording is on.
If recording is on, and if there is enough room in the Learn
string for one more keypress entry, record will store the current
scancode contents in the upper byte of the current keypress
information and will place all four bytes in the next position in
the current Learn string.

13.4.3 Terminating a Learn Recording

A Learn recording terminates when the user presses
[Use FrontJ-[LearnJ again. If a Learn activity is occurring when
Learn is executed, Learn will terminate recording with the use of
clearlearn. clearlearn turns the indicator light off and uses
clr-kbd to clean up. If recording is on, clr-kbd will reduce the
current Learn string size to its actual size, will transfer the
contents of shiftstate to modifiers (to synchronize the two
special key-bit arrays), will turn learning? and learnbuff off,
will make sure that any leaping activities properly terminate
(with the use of finish-lex), and will use rule to redraw the
ruler-bar/status area. If the selection is not extended at this
point, Learn will terminate execution and recording will be
stopped. Learning will also be terminated if another Learn is
played back.

13.4.4 Phrase Storage

The Learn command also supports phrase storage. If the selection
is extended and the Learn string is empty when a recording is
terminated, the selected phrase will be stored in the current
Learn string, with a 4-byte zero header, before Learn terminates
execution. When the Learn string is played back, it will cause
the stored phrase to be placed in the text starting at the
current cursor location.

- 199 -

To store a phrase, the user must

1. Highlight it.
2. Start the recording as described above.
3. Continue holding the Use Front key and, immediately after

specifying the Learn string number, press [Learn] again.
This second press of [Learn] will cause Learn to be
executed. (The Use Front key cannot be released in between
uses of [Learn] or the phrase will not be recorded.)

Learn will not~ that recording is on and will stop recording in
the manner de&...;ribed above. Next, if the current Learn string is
empty, and if the selection is extended, Learn will proceed with
the phrase storage process.

First, the phrase will be temporarily stored in the gap area
while Learn checks to see if a format packet needs to be inserted
into the phrase. Learn will check to see if there is enough room
in the gap for the selection and a paragraph format packet. If
there is enough room, a 4-byte zero flag followed by the
selection text will be placed in the gap. Next, Learn checks to
see if a format packet should be inserted into the phrase. If a
format packet is requred, Learn inserts one in the correct
position. Finally, the phrase string is moved into the current
Learn string and execution of Learn terminates.

13.4.5 Playing Back a Learn Sequence

To initiate playback of any of the recorded Learn sequences, the
user holds down the Use Front key, and, while holding it down,
presses the digit key associated with the Learn string.

This passes the number of the desired Learn st lng to lrncmd and
executes it. If a Learn sequence is currently being recorded,
the current Learn string is closed down (reduced to its proper
length). After lrncmd has terminated any recordings in progress,
it uses showlearn to display the string number of the Learn
sequence selected for playback and uses newplayback to initiate
playback of the selected string.

newplayback sets the current Learn striug and checks the contents
of the first four bytes in the current Learn string. If the
first four bytes hold a zero, the Learn string holds a phrase.
The handling of stored phrases is discussed below. If the Learn
string does not hold a phrase, newplayback puts the system in the
playback state by clearing all bits in the modifiers bit array,
setting the offset into the Learn string, learnpos, to zero,
turning learning? off to indicate that playba~k is occurring, and
turning learnbuff on to indicate that a Learn activity is
underway. Now, when <?k) is asked for key information, it will
return playback characters until all characters in the Learn
string have been played back.

- 200 -

13.4.6 Inserting Stored Phrases

If a Learn string with a stored phrase is selected for playback,
newplayback will insert the phrase into the text at the gap and
will adjust the format packets as necessary.

- 201 -

13.5 FORTH KEYBOARD ROUTINES SUMMARY

13.5.0 Preparing Keypress Information

!char
pronounced star' kair)

do-event (
(pronounced doo' ee-vent'

do-event is the only Forth keyboard I/O word to interact directly
with the keyboard event queue. It does four things:

1. Gets the next keyboard event from the event queue and adjusts
the queue accordingly

2. Gets the translated value of the event code from the keyboal~d
codes table

3. Uses the translated value to set up the data to be returned
in kval

4. Puts a true flag in the system integer kstat to indicate that
key information is available

?kval pronounced kwes'chun kay vall)

13.5.1 Obtaining Keypress Information

?ev f)
pronounced kwes'chun e-vent')

Returns a true flag if there is key event information in the
keyboard event queue. If the inptr and output contain different
addresses, the queue is not empty.

«?k» f)
pronounced brak'it brak'it kwes'chun kay)

Returns a true flag if a real key event, from the event queue, is
available.

<?k) (f)
(pronounced brak'it kwes'chun kay)

Returns a true flag if a character is available, either a real
character from the event queue or a simulated character from a
Learn sequence.

?k (f)
(question-key)
(pronounced kwes'chun kay)

If a nonspecial key is down returns a true flag and disposes of
the key. This and key are used by the underlying Forth language
and are never used by the editor.

- 202 -

@k char)
pronounced fetsch' kay)

Fetches the key data for the next available character from kval
and, if the character is not a special character, enables
autorepeating. Sets up the next autorepeat time in ktime and
turns kstat off. Only called when a key is available.

(key> (c)
(bracket-key)
(pronounced brak'it ki)

Waits in a loop until a character is available, gets the
character data from char, and puts a false flag in char? to
indicate that the character has been taken. If the system is
currently recording, records the character.

key c)
pronounced ki)

Waits in a loop until a nonspecial key is available. Returns the
ASCII code (0<=code<=$7F) for the key.

?t f
pronounced kwes'chun tee)

Polls the keyboard for an ASCII keypress value (0<=value<=$7F).
Returns a true flag if an ASCII key was available. The key is
discarded.

13.5.2 Autorepeat Routines

?auto f)
pronounced kwes'chun aw'toe)

Returns true flag if it is time to autorepeat a character. If
the number of ticks has exceeded the next scheduled autorepeat
time, stored in kticks, it is time to repeat.

clear-auto
pronounced cleer' dash aw'toe)

Disables autorepeating for the last key returned by storing a
false (0) flag in auto.

set-auto
pronounced set' dash aw'toe)

Turns on autorepeating. Stores a true flag in auto and
calculates and stores the next scheduled time for an autorepeat
in kticks.

13.5.3 Words That Check and Affect the shiftkey and modifiers
States

?ctl (f
(pronounced kwes'chun see' tee ell)

Returns a true flag if the editor thinks one of the Use Front
keys is down.

- 203 -

down? n f
pronounced down' kwes'chun)

Returns a true flag if bit ~ in the modifiers bit array is set.
Since each bit in the modifiers array corresponds to one of the
special keys, this routine checks whether a certain special key
is considered to be down.

: down? (n - f)
1 swap
shl

Kbl/2

modifiers
and

0=
0=

Put bit number on top.)
Shift the "1" into the)
specified bit position.)

Isolate the specified
bit position in the)
modifiers or)
shiftstate bit array.

Return true flag if bit
was set.)

pronounced kee'bord wun' slash too')
Checks the state of the KB-II bit in the modifiers bit array. If
the bit is set, the KB-II bit is cleared in both the modifiers
and shiftstate bit arrays, and vice versa.

?kb2 (f)
(pronounced kwes'chun kee'bord too')

Returns a true flag if the editor thinks the KB-I/II is down,
that is, that KB-II is currently in use.

?keystep f)
pronounced kwes'chun kee'step)

If a space is currently available, waits in a loop for the next
real key event. Returns a true flag if a carriage return becomes
available.

?lex f)
pronounced kwes'chun leks)

Returns a true flag if the editor thinks the left Leap key is
down.

?rex (f)
(pronounced kwes'chun reks)

Returns a true flag if the editor thinks the right Shift key is
down.

?shift (f)
(pronounced kwes'chun shift)

Returns a true flag if the editor thinks one of the Shift keys is
down.

- 204 -

?shifted f)
pronounced kwes'chun shift'ed)

Returns a true flag if the editor thinks one of the Shift keys,
or the Shift Lock key is down.

?shiftlock (f)
(pronounced kwes'chun shift lahk)

Returns a true flag if the editor thinks the Shift Lock key is
down, that is, if Shift Lock is currently in effect.

sync-shiftkeys
pronounced sink' dash shift' kees)

Puts a copy of the special key-bit vector in shiftstate in
modifiers.

toshiftlock f
pronounced too shift' lahk)

If the flag is true, the Shift Lock bit in the s~ecial key bit
vector found in modifiers will be set and the Shift Lock light
turned on. If the flag is false, the Shift Lock bit in the
special key bit vector in modifiers will be cleared and the Shift
Lock light will be turned off. If a Learn is not currently being
played back, the newly modified modifiers value will be copied
into shiftstate.

- 205 -

13.6 LEARN ROUTINES SUMMARY

O-cmd
l-cmd
2-cmd
3-cmd
4-cmd
5-cmd
6-cmd
7-cmd
8-cnid
9-cmd

pronounced wun' kom-mand, too' kom-mand, ...)
One of these words will be executed if -- while the Use Front key
is held down -- the user presses [Learn] and then a digit key.
All of the "n-cmd" words pass a buffer number to lrncmd and cause
a Learn sequence to be recorded or played back.

clr-kbd
pronounced kleer' kee-bord)

Ends playback of a Learn recording or Learn playback session.
Copies the special key-bit array settings found in shiftstate to
modifiers and places false flags in the learning? and learnbuff
system integers.

#key? n f)
pronounced sharp kee' kwes'chun)

Compares the scancode of the character most recently received to
the scancodes for the numbers 0 through 9. Returns a true flag
if the scancode corresponds to a number. Learn uses #key? to get
the number which is to be assign8d to the Learn sequence about to
be recorded.

Learn
pronounced lern

Stops a Learn recording or playback and sets the appropriate flag.

learnsize n)
pronounced lern'syze)

Returns the maximum number of bytes available for storage of a
Learn sequence. Checks to see if maxlearn bytes are available.

learnstrings
pronounced lern'strings)

Returns the address of a la-entry array of Learn string tokens.

lrncmd n
pronounced lern kom'mand)

Starts recording a Learn using buffer ~, or plays back the Learn
sequence located in the n buffer.

newlearn n
pronounced noo'lern)

Performs all the initialization required prior to the stal _ of a
Learn recording.

- 206 -

newplayback n
pronounced noo' play bak)

Performs the initialization required before a Learn string can be
played back.

numberkeys a)
pronounced num'ber kees)

Pushes the address of a lO-byte array of the scancodes
corresponding to the digits 0 through 9. Used by the word #key?

?panic f)
pronounced kwes'chun pan'ik)

Checks to see if the user has panicked and pressed a key in order
to stop the playback of a Learn sequence. The first time the
user hits a panic key. a true flag is stored in the panicked
system integer. This flag will not be cleared until the panic
condition is handled by some other part of the system.

If a panic key is not currently available. the current panic
state flag. stored in panicked, will be returned. If a panic key
is available, a true value will be OR'ed with the current panic
state value. The use of the OR operation ensures that the panic
state will never be accidently cleared. A special key going up
is not considered a valid panic key event.

If a special key going up is encountered, the special key's
corresponding bit in the modifiers bit array will be cleared.

playback c)
pronounced play' bak)

Returns the next Learn sequence character to be played back.

playback? (f)
(pronounced play' bak kwes'chun)

Returns a true flag if there is a Learn sequence character to
play back.

record c c)
pronounced ree kord')

Records the character c in the current Learn string.

setlearn n
pronounced set' lern)

The n is the string number to be used for the current Learn
recording. Checks to see that the number is within the allowable
range of Learn string numbers. If it is, the string number is
stored in the curlearn system integer.

showlearn n -
pronounced sho' lern)

Causes the Learn indicator light to be displnyed with the string
"LEARN (#n)" listed in the indicator.

thislearn an)
pronounced this' lern

Returns the address a and length ~ of the current Learn string.

- 207 -

13. 7 KEYBOARD INTEGERS SUMMARY

auto (pronounced aw'toe)
Holds a flag indicating whether or not autorepeating is on.

cbuff (pronounced see'buff)
Integer used to hold the start address of the $20-byte circular
event queue.

char (pronounced kair
Logical version of kval. Holds the next key value that should be
passed to the editor.

?char (pronounced kwes'chun kair)
Logical version of kstat. Holds a flag indicating whether or not
the editor should be told that a key is available.

inptr (pronounced in' point'er)
Keyboard buffer pointer. inptr holds address where next key code
should be inserted into buffer.

kcodes (pronounced kay' kohds)
Holds a pointer to the keyboard translation table.

kstat (pronounced kay'stat)
Holds a flag set up by do-event which indicates whether key
information is currently available.

kticks
Autorepeat timer.

(pronounced kay'tiks

kval (pronounced kay'vall
Holds key value returned by do-event.

modifiers (pronounced mahd'i-fy-ers
Holds a bit vector of the imagined special keys (as affected by
Learn) .

Qutptr (pronounced owt' point'er)
Keyboard buffer pointer. outptr holds address from which next
requested key code should be taken.

scancode (pronounced skann' kohd)
Holds just the scan code portion of the event byte from the last
keyboard event processed.

shiftstate (pronounced shift' stayt)
Holds a byte-long bit vector which represents the current
physical states of the special keys.

ticks (pronounced tiks
Time ticks.

- 208 -

timeD (pronounced tyme zeer'oh)
Holds number of ticks between autorepeats (30).

time! (pronounced tyme' wun)
Holds number of ticks between autorepeats (10).

- 209 -

13.8 LEARN INTEGERS SUMMARY

curlearn (pronounced kurt lern)
Holds offset into the Learn strings table to the current Learn
string.

learnbuff (pronounced lern' buff)
Holds a flag which tells the keyboard whether a Learn-related
operation is underway.

learning? (pronounced lern'ing kwes'chun)
Holds a flag which is true when a Learn sequence is being
recorded.

learnpos (pronounced lern'paws)
Holds offset into the current Learn string.

#learns (pronounced sharp'lerns)
Holds the maximum allowable number of Learn strings.

maxlearn (pronounced maks'lern)
Holds the maximum allowable length of a Learn string.

panicked { pronounced pan'ickt
Holds a flag which indicates whether the user has panicked and
pressed a key in order to terminate playback of a Learn sequence.

- 210 -

13.9 LEARN STRINGS CREATION

learnO <string> [0
learn1 <string> [0
learn2 <string> [0
learn3 <string> [0
learn4 <string> [0
learn5 <string> [0
learn6 <string> [0
learn7 <string> [0
learn8 <string> [0
learn9 <string> [0

code learnstrings a nx) jsr, ;c

t' learnO w, an array of Learn string tokens)
t' learn! w,
t' learn2 w,
t' learn3 w,
t' learn4 w,
t' learn5 w,
t' learn6 w,
t' learn7 w,
t' learn8 w,
t' learn9 w,

- 211 -

14. THE SORT COMMAND

Introduction

The Sort command allows the user to sort a highlighted selection
of text into ascending or descending alphabetical or numerical
order. Part 14.0 provides an introduction to some important
terms and concepts. Then the five steps needed to carry out a
Sort operation are discussed:

Finding the key field to be used in sorting

Adjusting the highlighted text in size and
content so that it has only complete records

Constructing a description of the highlighted
text (making a linked list of sort entries)

Reordering the sort entries

Rearranging the text to match the reordered
sort entries

- 212 -

Part

14.2

14.3

14.4

14.5

14.6

14.0 INTRODUCTION TO RECORDS, FIELDS AND KEY FIELDS

Records

The items the Cat rearranges when it does a sorting operation are
called records. Example records might be the lines in a
single-column list, or the rows in a table with multiple
columns. The Cat can also sort paragraphs, or names and
addresses in an address list.

A record is like an index card. Shuffling index cards puts them
in a new order, but it doesn't change what's written on each
index card. Similarly, records change order when they are
sorted, but the sequence of characters and the arrangement of
text inside of each record does not change.

A record begins and ends with a record separator. Record
separators are defined with the Setup command as one, two, or
three break characters. Break characters include carriage
returns, page breaks, and document separators. Any combination
of consecutive break characters in the appropriate number
constitutes a record separator.

Fields

Each record contains zero or more fields. For example, the zip
code and last name parts of an address would be separate fields.
Each column in a table is a separate field.

A field begins and ends with one or more field separators. Any
tab or break character constitutes a field separator. The first
character in a record separator is also a field separator.

Key Fields

Sort focuses on a key field when it rearranges records that
contain more than one field.

For example, if addresses are being sorted by zip code, then the
zip code is the key field. After sorting, the addresses will be
arranged according to zip code, with the lowest zip code at the
top of the list and the highest at the bottom. As a result of
placing the addresses in ascending numerical order according to
zip codes, the last names will not necessarily be in alphabetical
order.

Another example: If a four-column table is sorted according to
the list of words in the third column, the third column is the
key field. Sorting rearranges the records (rows) so that the
third column will be in alphabetical order. As a result of
placing the third column in alphabetical order, the other three
columns are not likely to follow any particular order.

- 213 -

-

14.1 INTRODUCTION TO THE CODE FOR THE SORT COMMAND

When the Sort command is given, the word aSort is executed.
aSort -- shown below -- rearranges the highlighted text in
ascending order (A to Z, 0 to 9):

: aSort I ascending sort descending off sort ;

The word dSort is executed when the user holds down the Shift key
when giving the Sort command. dSort rearranges the text in
descending order (Z to A, 9 to 0):

: dSort (-- I descending sort descending on sort ;

Each of these words calls sort (shown below). sort contains
almost the entire process of the Sort command:

: sort (--)
indsort rule
presort
if buildlist

o sorttop quicksort drop
sort top shuffle
pop op to display

else nosort error
gap prevchar dup bos <>
if bos op to then
bos to redisplay

then widecursor
forceop on
fixcursor
o 0 3 indicate rule

- 214 -

Turn the "SORT" light on)
Prepare the selection)
Build the initial sort list
Sort the list)
Shuffle the records into place
Redraw the screen contents)
Warn user)

Deselect and prepare for reselect
Show collapsed highlight
Set cursor to wide)
Further typing marked for select

Turn the SORT light off)

14.2 FINDING THE KEY FIELD TO BE USED IN SORTING

Before invoking the Sort command, the user specifies the records
to be sorted and the key field to be used. All the records
touched by the highlight will be sorted, while the field in which
the highlight ends will be the key field. For example, if a
four-column table is highlighted with the highlight ends in
column 3 of the last record, the records (lines of ttle table)
will be sorted so as to arrange column 3 in alphabetical or
numerical order.

After turning the "SORT" sign on in the ruler, sort calls presort
(shown below), which first checks to see whether the selection
contains a locked region of text. If it does, sorting stops and
the Cat beeps.

: presort -- flag \ prepare selection for sorting)
(preceding breaks are left alone by sorting)
(number of highlighted fields in last recc~d becomes keyfield,
{ except that if cursor follows at least sGI'tbreaks breaks
(then the keyfield is 0, highlight is trimmed or enlarged)
(so that it ends in sortbreaks breaks)

showmove? off
bos pop to undop off
selected lockedsel
bos nextchar gap> if 0 exit
adjustleadingbrks
gap findfield dup tab# to
0< if 0 exit then
adjustrailingbrks dup
if drop adjustformats -1 then

Then, within presort, the phrase

gap findfield dup tab# to
0< if 0 exit then

move&adjtext won't display

see if selec on is locked
then

establish sorting column)
nothing to sort)

counts the fields between the end of the last record and the last
character in the highlight, including the field that contains the
last highlighted character. This number is stored in the
variable tab# for use throughout the remainder of the Sort
operation.

If the highlight ends on the last character of a record
separator, the first (leftmost) field in the record will be used
as the key field, and tab# will be set to zero. findfield will
return a -1 if there aren't enough records to sort. in which case
sorting stops and the Cat beeps. Within presort, the phrase

bos nextchar gap> if 0 exit then

determines whether the highlight contains more than one
character. If it doesn't, sorting stops and the Cat beeps.

- 215 -

14.3 ADJUSTING THE HIGHLIGHTED TEXT IN SIZE AND CONTENT SO THAT
IT CONTAINS ONLY COMPLETE RECORDS

Within presort, the word adjustleadingbrks trims any break
characters from the beginning of the selection so that the
highlight begins at the beginning of the record in which it is
situated. If the highlight doesn't begin at the beginning of a
record, nothing is done.

Later in presort, the word adjustrailingbrks modifies the end of
the highlight so that it ends on the final break character of a
record separator. If there aren't enough break characters
between the end of the highlight and the end of the text (or the
end of the local leap region of text), extra carriage returns
will be added.

Finally, the word adjustformats in presort ensures that the
format of the text following the sorted text does not change.
This is necessary because a record in the highlighted text might
hold the format packet used by the unselected text which
follows. If this record should be sorted into a different
location in the text, it would take the format packet with
causing the unsorted text below to receive a new, and possibly
unexpected format.

To eliminate this problem, a copy of the last format packet in
the selected text is saved just after the gap. After the text
has been sorted and rearranged, the saved format packet will be
placed after the last record in the newly sorted text.

After presort has been executed, the selection must be checked
once more to make sure that presort's selection trimming hasn't
eliminated the selection.

- 216 -

14.4 CONSTRUCTING A DESCRIPTION OF THE HIGHLIGHTED TEXT
A LINKED LIST OF SORT ENTRIES

Rather than sorting and rearranging the records in the text area,
buildlist constructs a description of the highlighted text, and
lets quicksort sort the description instead. This description
consists of a sort entry for each record. A sort entry
(described below) is rsize (decimal 22) bytes long and ccntains
information about the corresponding record in the text and
pointers into it. These sort entries are constructed just below
the end of the gap. The figure below shows the contents of
memory after the sort entry table has been constructed:

sort table
+-+-+-+-+

+--- text ---+---+----+--+---+ gap 111213141+---- text ----+
+-+-+-+-+

bas gap bosl eosl

Figure 14. Sort Table With Four Entries

To illustrate the details of the sort table entries and to serve
as an example throughout the rest of this chaper, the record list
below will be sorted:

cat
dog
zebra
bird
fish
ant
lizard
fly
mosquito

Figure 14. A Record List Before Sorting

The structure of a sort entry that has just been built is shown
in the table below. There are seven fields altogether:

1 record-address field (4 bytes)
1 key field offset (2 bytes)
2 length fields (2 bytes each)
3 link fields (4 bytes each)

The first column in this table is the address at which the sort
entry begins.

- 217 -

list slink ulink olink record len off flen first 10 bytes

43C792 43C77C 410270 43C77C 42F5B6 4 0 3 cat.dog.zebra.bi
43C77C 43C766 43C792 43C766 42F5BA 4 0 3 dog.zebra.bird.f
43C766 43C750 43C77C 43C750 42F5BE 6 0 5 zebra. bird. fish.
43C750 43C73A 43C766 43C73A 42F5C4 5 0 4 bird.fish.ant.li
43C73A 43C724 43C750 43C724 42F5C9 5 0 4 fish.ant.lizard.
43C724 43C70E 43C73A 43C70E 42F5CE 4 0 3 ant.lizard.fly.m
43C70E 43C6F8 43C724 43C6F8 42F5D2 7 0 6 lizard.fly.mosqu
43c6F8 43C6E2 43C70E 43C6E2 42F5D9 4 0 3 fly.mosquito. " .
43c6E2 o 43c6F8 o 42F5DD 9 0 8 mosquito

Table: Sort Table Entries Before Sorting

The sort entries can be displayed with the word slist, which is
left in the Cat ROM for debugging and for use with this reference
manual.

The following table was generated by highlighting the original
sort list (above), exiting to Forth with
[Use Front]-[Shift]-[Space], and typing the phrase

presort buildlist re

Then the word slist was typed, highlighted, and executed.

The addresses will of course be different for you. In this
example, the end of the gap is 43C7A8, the first byte past the
last sort table entry.

The record address field (recaddr) contains the address of the
beginning of the record corresponding to the sort entry. The
record length field (reclen) contains the number of bytes in that
record. The key field offset (foffset) contains the number of
bytes from the beginning of the record to the beginning of the
key field for that record. The field length (flen) contains the
number of bytes in the key field.

The link fields provide three different orderings for the
records. Each link field contains either an address pointing to
the beginning of another sort entry or a zero.

One of the three link fields from all of the sort entries taken
together comprise a chain. The 5~stem integer sorttop points to
the first sort entry in the sorted (or unsorted) chain. Within
that entry, the slink field points to the second entry, and so on
until -- within the last entry -- the slink field contains a zero.

- 218 -

Of the three link fields (slink, ulink and olink), only the slink
and ulink fields are modified by quicksort. The olink fields
hold the original sort order and aren't changed. The slink
fields will contain the sorted order when quicksort is finished.
The ulink fields will always hold the reverse order used by
quicksort (with the slink fields) for quickly getting around in
the list.

Initially the olink and slink fields will hold the same
addresses. After sorting has completed, the olink fields will be
unchanged but the slink fields will contain the sorted order.

The system integer bosl, or bottom of sort list, points to the
bottom of the sort entry table. The system integer eosl, or end
of sort list, points to the top of the sort entry table. These
values aren't changed by quicksort, since they may be needed by
undosort afterward.

Note that in Table 14. sorttop and eosl point to 43C792, the
first sort entry just before the end of the gap and corresponding
to the first record in the highlight. bosl points to 43C6E2, the
first sort entry after the beginning of the gap and corresponding
to the last record in the highlight.

The sort list is built at the end of the text gap. immediately
below the undo buffer. For records in typewritten order in text,
the corresponding sort entries are created in reverse typewritten
order. The sort entry which corresponds to the record at the
beginning of the highlighted text just below the undo buffer lies
at the end of the sort list and is pointed to by eosl.

To build the sort list, buildlist starts at the beginning of the
selected text and moves forward, isolating records in the text.
Each time a record is found, newnode allocates gap memory for
another sort entry. In order to sort successfully, there must
always be enough memory in the gap to hold the largest record in
the text selection. newnode checks to make sure this memory
requirement is met; if not, it stops.

After newnode has allocated memory for the new entry. buiIdIist
fills in all fields in the entry (see Table 14.).

- 219 -

14.5 REORDERING THE SORT ENTRIES

The sorting routines can sort records into ascending or
descending order, according to the value of the flag in the
descending system integer. If the flag is zero, the records are
arranged in ascending order. Otherwise, they are sorted into
descending order. The state of descending is determined by
whether the Shift key is used when invoking the Sort command:

[Use Front]-[,]
[Use FrontJ-[ShiftJ-[,]

descending is zero
descending is non-zero

After the record list is sorted into ascending order, it looks
like this:

ant
bird
cat
dog
fish
fly
lizard
mosquito
zebra

The word quicksort is the main sorting word. If the selection
contains more than seven records, quicksort uses a recursive
algorithm to sort the records. Selections which contain less
than seven records will be sorted with the simpler sorting
algorithm performed by the word selectionsort.

Working with seven or fewer records, selectionsort scans them
with scansublist, looking for the record that belongs at the
beginning. Using insertrec -- a highly optimized code word -
selectionsort moves this record to the beginning. It then scans
all of the records (including the one it just moved) for another
record that belongs at the beginning. If another record isn't
found, it is satisfied taht the fi~st record has been found. It
then does the same thing for the all the remaining records
excepting the first until they are all in the correct order.

quicksort counts ",_'ecords first to make sure that it has more than
seven. If it has seven or less, it calls selectionsort and then
returns to sort. If not, it divides the records into three
groups: two equally long sublists (upper and lower) and a
solitary record between them (pointed to by the integer focal).

It scans the upper list (again using scansublist) for records
that sort below focal, and the lower list for records that belong
above focal. It moves each record that it finds between focal
and the opposite list. After it is done. the record which focal
points to is properly located between two smaller unsorted
lists. It passes each of these lists, beginning with the upper
one, to quicksort -- a recursive call.

- 220 -

The comparisons used by the Sort routines are not strict ASCII
string comparison algorithms. If a corresponding series of
characters (subfields) in two strings being compared contains
digits, the series of characters will be compared as numerical
values (as opposed to plain ASCII codes).

This means that certain kinds of lists, such as parts lists,
which usually have fields containing alphabetic characters as
well as digits, will sort into the expected order. Consider the
following list of parts numbers for the Cat.

Original List Strict ASCII Sorted Order Cat Sorted Order

7404 7404 74LS14
74LS274 7406 74LS24
74LS138 74LS138 74LS138
74LS24 74LS14 74LS274
74LS14 74LS24 7404
7406 74LS274 7406

Figure 14. Parts List for the Cat

This non-ASCII ordering is accomplished through the use of a
translation table called sortmap.

The main comparison word used by the sorting routines is $<.
This word breaks each key field into numeric subfields and
alphabetic subfields. When two subfields are compared, $< first
determines what kind they are. If they are both numeric, it
calls comparenumbers. If either one or both are alphabetic, it
calls comparestrings.

Each of the latter two words is a rather large code word. Of the
two, comparenumbers is far more complex because of the need ~o

sort outlines, inventories, addresses, names, and financial
statements.

After rearranging the entries in the sort entry table to reflect
the ascending sort order, it will look like the table below:

- 221 -

list slink ulink olink record len off flen first 10 bytes

43C792 43C77C 43C750 43C77C 42F5B6 4 0 3 cat.dog.zebra.bi
43C77C 43C73A 43C792 43C766 42F5BA 4 0 3 dog.zebra.bird.f
43C766 o 43c6E2 43C750 42F5BE 6 0 5 zebra.bird.fish.
43C750 43C792 43C724 43C73A 42F5c4 5 0 4 bird.fish.ant.li
43C73A 43C6F8 43C77C 43C724 42F5C9 5 0 4 fish.ant.lizard.
43C724 43C750 410270 43C70E 42F5CE 4 0 3 ant.lizard.fly.m
43C70E 43c6E2 43C6F8 43c6F8 42F5D2 7 0 6 lizard.fly.mosqu
43c6F8 43C70E 43C73A 43c6E2 42F5D9 4 0 3 fly. mosqui to
43C6E2 43C766 43C70E o 42F5DD 9 0 8 mosqui to

Table: Sort Table Entries After Sorting

These sort entries can be displayed with the word olist, a word
left in the Cat ROM for debugging and for use with this reference
manual. The following table was generated by highlighting the
original sort list in Figure 14, exiting to Forth
([Use Front]-[Shift]-[Space]), and typing the phrase

presort buildlist 0 sort top quicksort drop re

Then typing, highlighting and executing the word:

olist

The addresses will of course be different for you.

sorttop points to 43C724. the sort entry pointing to the record
"ant" and the first record in tht.3 newly sorted order. Within
that sort entry, the slink field points to 43C750, the sort entry
which points to the record "bird".

Within that sort entry, the slink field points to 43C792. which
is the sort entry pointing to the record "cat". The last sort.
entry in this chain -- at 43C766, pointing to the record "zebra"
-- has in its slink field the valuE?jf zero, the end of the chain.

Comparing this table to 14. we note that only the slink and ulink
fields have changed. Also, eosl still points to 43C792. the
first sort entry, which corresponds to the first record in the
highlight, and bosl still points to 43C6E2, the last sort entry,
corresponding to the last record in the highlight.

- 222 -

14.6 REARRANGING THE TEXT TO MATCH THE REORDERED SORT ENTRIES

After the sorting routines have positioned the slink pointers to
reflect the sorted order for the records, the records must be
"shuffled" into place by the word shuffle.

sort passes shuffle the address (stored in sorttop) of the sort
entry corresponding to the first record in the sorted order.
Beginning with this record, shuffle works its way down the slink
pointers, and appends a copy of each corresponding text record to
the end of the sorted list being constructed at the beginning of
the gap.

Ideally, if enough memory is available in the gap, the entire
body of sorted text records will be constructed in the gap area
before being moved back into the correct position in the text.

If there isn't enough memory in the gap, as many text records as
will fit will be placed in the gap in the proper order. Those
text records in the text that have not yet been moved into the
gap will be pushed up in memory towards the gap, overwriting all
the records which have already moved into the gap or into their
proper place in the text. Then the sorted records in the gap
will be moved into the opening created. This process will be
repeated as often as necessary.

preshuffle and postshuffle take care of format anu display
details.

- 223 -

14.7 UNDOING THE SORT COMMAND

Since shuffling is the first Sort activity that actually alters
the text, the undo operation is set only after shuffling has been
completed.

The undo operation for sort is undosort. undosort goes through
the sort list and swaps all olink pointers with the slink
pointers and then uses shuffle to place the text records back in
their original order. undosort also rehighlights the selection
so that the selection will be exactly as it was before the sort
operation was started.

: undosort (-
indsort rule
undop off pop bos to
eosl swaplinks shuffle
pop op to extend
[I] redosort undop to
fixcursor
o 0 3 indicate rule:

Undoing undosort

Turn "SORT" light on

Swap all olinks with slinks
Extend the selection)
Set redosort as the undo op

Turn "SORT" light off)

The undo operation for undosort is redosort. redosort swaps the
olinks and slinks again (so that the sorted order list uses the
slink field again) and then uses shuffle to put the text back
into its sorted order.

(-: redosort
indsort rule
o sparepkt t

(indicate sorting)

undop off pop bos to
sorttop swaplinks shuffle
display widecursor forceop on
o 0 3 indicate rule;

fixcursor

- 224 -

14.8 SORT ROUTINES SUMMARY

14.8.0 Sort Preparation Routines

adjustformats (
(pronounced a-just'for'mats)

Copies the last format packet in the highlighted text (if it
exists) to the end of the selection so that shuffle can heal the
format of the paragraph following the selection when it is
finished shuffling records.

adjustleadingbrks (
(pronounced a-just'leed'ing-brakes

Moves the beginning of the highlight past any leading break
characters.

adjustrailingbrks (- flag
(pronounced a-just'trale'ing-brakes)

The end of the selection either (1) contains sortbreak
consecutive break characters, (2) more than sortbreak consecutive
break characters, or (3) less than sortbreak consecutive break
characters. In case (2) the end of the highlighted text is moved
backward until condition (1) is met. In case (3) the text after
the highlight is scanned for the next set of sortbreak
consecutive break characters, to which point in text the
highlight is extended. If there exists no such set of break
characters, the highlight is extended to the end of text and
enough break characters are added there.

buiIdIist a
pronounced bild'list)

Builds the original sort list and sets up the bosl
(bottom-of-sort-list) and eosl (end-of-sort-list) system
integers. newnode allocates memory for each new list entry and
checks for out-of-memory errors. nextrecord isolates text
records within the text selected for sorting. nextfield finds
the key field in the record. Each entry built will have its
slink, olink, recaddr, reclen, foffset, and flen fields
initialized. The address of the first sort entry created is
placed in the eosl integer and the address of the last entry
placed in the bosl integer. Returns the address of the top of
the last sort entry.

findfield a n
pronounced fined'feeld

Establishes the sorting column or key field within the record
list that is about to be sorted. Looks backwards from the
address of the end of selection, ~, to find the first previous
break, that is, the position just before the start of the last
record in the highlighted selection. Then steps forward from the
start of the last record, keeping a count of how many fields in
the last record are highlighted. Returns the column number, or
field number, within the record which is to be sorted on. If the
entire last record is highlighted, the first field in the record

- 225 -

(n = 0) is the sort field.

newnode n a a1 flag
pronounced noo'node

Tries to allocate memory for a new sort entry for the sort list.
newnode is passed the size ~ of the largest text record
encountered so far and the pointer ~ to the start of the last
record in the sort list being constructed.

If there is not enough memory in the gap tc accommodate both
the new sort entry and the text for the largest record, newnode
will abort with a ttNo room." error message. If newnode is being
asked to allocate memory for the first sort entry, ~ will be 0
and newnode will initialize the list pointer by positioning it at
the first even address which is rsize bytes (the size of a sort
entry) below the start of the undo buffer. Otherwise, newnode
decrements the pointer address by rsize bytes, stores the address
of the previous sort entry in the olink field of the entry just
created, and returns the new pointer address (which is now the
last sort entry in the list).

A flag is also returned: true, if the sort entry just
created was the first sort entry; false, if not.

nextfield a1 a2
pronounced next'feeld

Given an address a1 of a character in a text record, returns the
address a2 of the end of the field in which the character
resides. nextfield searches forward from a1 looking for the
first occurrence of a tab character (tabs are field delimiters).
The search progresses byte-by-byte through the record. If a skip
character is encountered, nextfield will skip across the gap and
continue searching. Note: this wakes for a long search if there
are no subsequent tabs.

nextrecord a1 a2
pronounced next're-kord

Takes the address a1 of a character in the highlighted selection
to be sorted and returns the address a2 of the end of the record
to which the character belongs (of the last break character). A
real end-of-record must have sortbreaks break characters in
series. nextrecord uses nextbrk to finoi the next occurrence of a
break character and nextchar to make sure the required number of
break characters follow the first break characters.

presort flag)
pronounced pree'sort)

Prepares the highlighted selection for sorting. Uses findfield
to establish the sorting column. Makes sure that the selection
does not include the beginning and ending document separator
characters, does not include a trailing page break or document
separator character, and that the selection does end with
sortbreaks break character. If the selection does not end on a
break character, it is extended to include the rest of the
current line, including the break character at the end it.

- 226 -

prevpkt? a a1
pronounced preev'pak'it-kwes'tchin-mark

Looks at the character immediately before the character located
at address ~ in the text. If the previous character is a break
character with a format packet following, the address a1 of the
start of the format packet is returned. Otherwise, the address
a1 of the previous character is returned.

14.8.1 Low-Level Sort Routines

countlist a1 a2 n
pronounced kownt'list

a1 and a2 are the addresses of two sort table entries. countlist
will return the total number of sort entries n between them,
inclusive.

getstring a1 a2 n
pronounced get'string

a1 is the address of a sort table entry. getstring returns the
address a2 and length ~ of the key field within the record to
which the sort entry corresponds.

insertrec record pointer lowerbound prevrecord
pronounced in'sert-reck)

record, pointer, lowerbound, and prevrecord are all addresses of
sort table entries. insertrec modifies the sort table entries so
that the entry pointed to by record follows the one pointed to by
pointer and precedes the one that used to follow pointer.
prevrecord is the sort entry pointing to the record that the one
pointed to by record used to fol:ow. lowerbound is used when
record is the last record in the sort table.

prevrec record prevrecord
pronounced preev'reck)

record is the address of a sort entry. prevrec returns the
address prevrecord of the entry whose sort position is
immediately before it (this is another entry whose link field
points to record. A zero is returned if no entry can be found
whose link field points to record.

quicksort (bottom top - newbottom
(pronounced kwik'sort)

bottom is the address of the sort entry at the bottom of the
chain to be sorted. top is the address of the sort entry at the
top of the chain to be sorted. The contents of the slink and
olink fields, in the region of the table beginning at top and
ending at bottom, will be modified so that the links will be in
sorted order. newbottom is the address of the sort entry at the
bottom of the modified list. See Part 14.5, "Reordering the Sort
Entries," for a more detailed description.

- 227 -

scansublist record bottom top direction pointer
pronounced skan-sub'list)

The sort entries in the part of the table beginning with top and
ending with bottom are compared with record. pointer is the
record that will come after record in the search order.
direction is the search order direction, zero means sorting in
descending order and record is alphabetically larger than pointer.

selectionsort bottom top - bottom
pronounced see-leck'shun-sort

As with quicksort, described above, selectionsort modifies the
part of the sort table between top and bottom, inclusive, so that
the entries are in sort order. See the Part 14.5, "Reordering
the Sort Entries," for a more detailed description.

14.8.2 Sort Comparison Routines

$ < "a1 a1 ' a2 a2 ' f
pronounced string' less than

Compares the two strings which start at addresses a1 and a2, and
end at address a1' and a2'. The string is analyzed to determine
whether a numerical or string comparison algorithm should be
used. The flag will hold one of three values when completed:

Value

-1
o
1

Meaning

String 2 is greater than string 1.
The two strings are equal.
String 1 is greater than string 2.

checksigns al a2 a1 a2 f1 f2
pronounced chek' synes)

Checks to see if the numbers found in the strings located at a1
and a2 are negative. If the value for string 1 is a negative
number (contains a - sign), fl will be a true flag. Likewise, if
string 2 is a negative number, f2 will be a true flag. The
original addresses are left on the stack, untouched.

comparestrings a1 a1' a2 a2' a1 a2 f
pronounced kom-payr strings)

Compares the two strings which start at addresses a1 and a2, and
end at address al' and a2'. The flag will hold one of three
values when completed:

Value

-1
o
1

Meaning

String 2 is greater than string 1.
The two strings are equal.
String 1 is greater than string 2.

- 228 -

comparenumbers al all a2 a2' a1 a2 f
pronounced ~k~o=m_-~p=a~y~r_'-=n=u=ID_-=b=e~r=s)

Compares the two numbers held in strings which start at addresses
al and a2 and end at address all and a2'. The flag will hold one
of three values when completed:

Value

-1
o
1

Meaning

Number 2 is greater than number 1.
The two numbers are equal.
Number 1 is greater than number 2.

@digit {a c f
(fetch-digit)
(pronounced fetch' dij'it)

Extracts the next character from the string at address a and
returns it on the stack. If the character is a digit or decimal
point, the flag returned is true.

signed? a1 a1' a2 a2' f
pronounced synd' kwes'chun

Takes passed the start addresses, a1 and a2, and end addresses,
a1' and a2', of the two strings being compared. A true flag is
returned if at least one of the strings is a signed number (digit
preceded by a + or - sign) and if the other string is at least a
number (a digit, comma, or decimal point).
These are examples of signed numbers: -3, -3az t +3 , +3az ,
+.abz , -,e.
These are examples of numbers: 3, 3xyz , 3333 . ,ac , .r .

14.8.3 Shuffle Routines

adjustsortlist delta top
pronounced a-just-sort-list

Adjust the sort table entries beginning with the first one
(pointed to by top) to reflect that the text to which they refer
was moved by delta bytes, up or down. This word is called by
both preshuffle and postshuffle, which in turn is called by
shuffle.

largestrec a1 a2 a2'
pronounced larj'est-rek

Returns the address a2' of the sort entry which corresponds to
the text record which has the largest text record address
(recaddr) that is still less than the text record address found
in the sort entry found at address a2 (the sort entry at a2 acts
as an upper limit for the search). Used by moveunsorted. when
there isn't enough rOOID, to determine the next record to be moved
out of the area into which the next sorted record will be put.

- 229 -

move record flag dest record dest' record'
pronounced moov-re-kord)

Moves the text record corresponding to the sort entry at address
record to the destination address dest (usually somewhere in the
gap) and returns the address of the next entry in the sort list.
record't and the properly incremented destination address,
dest'. If flag is true, the text record is moved below the
destination address (its last byte will be the byte just before
dest) , otherwise the text is moved above dest (its first byte
will be at dest). The new address of the first byte of the
record so moved is stored into the recaddr field in its
corresponding sort entry.

move records source dest count top
pronounced moov-re-kordz)

Moves count number of bytes of text records, located in memory at
address source (usually at the gap), into the text, starting at
address dest. Before the records are moved. the recaddr fields
in the corresponding sort entries are updated with the new text
addresses. This ensures that the sort table entries will
accurately reflect where the records are because undosort will
need this information.

moveunsorted top
pronounced moov-un-sort-id)

Called when the gap has filled up during the shuffling process.
moveunsorted is passed the address top of the first of the sort
entries whose corresponding text records have not yet been placed
in their new sorted positions in the text. moveunsorted collects
all of these unpositioned text records together just below the
gap. This allows shuffle to con~inue to place the pro[,'rly
arranged text records (which have accumulated in the gap) into
the resulting empty region and thereby free up the gap area for
further shuffling.

postshuffle top prevpointer
pronounced post-shuh-full

After a sorting operation, the op will be positioned on the last
break character in the sort selection. If there was a format
packet associated with this last break (the workpkt area will
contain a saved format packet) the saved packet is placed back in
the text. The gap interval is marked as completely changed, all
intervals in the second partition of text are marked as partially
changed, the entire contents of the window table is recalculated
and the display redrawn, the gap, bos, and eos are reset,
undosort is established as the undo operation, and the text is
marked as dirty.

- 230 -

preshuffle top
pronounced pree-shuh-full }

First preshuffle checks to make sure there is enough room for the
shuffling operation. This is done by examining the length of
every record in the sort list beginning with the one pointed to
by top. preshuffle then checks to see if there is a format
packet associated with the last break in the selection. If there
is, the format packet is copied into workpkt (the scratch format
area) temporarily.

shuffle top
pronounced shuh-full)

shuffle rearranges the text records to match the sorted order
specified in the sort list located at the address top. If enough
memory is available, the entire sorted body of text records will
be constructed in the gap area before being moved back into the
correct position in the text. Otherwise, as many records as will
fit will be placed into the gap in the proper order. The text
records in the text which have not yet been moved into the gap
will be collected just below the gap. Any original records which
have already been moved into the gap, or into their proper place
in the text, will be overwritten during this operation since they
are no longer needed. The sorted records in the gap will be
moved into the opening created. This process will be repeated as
often as necessary. preshuffle and postshuffle take care of
format and display details.

14.8.4 High-Level Sort Routines

aSort ()
(ascending-sort)
(pronounced aa-sort

descending is set to false (causing an ascending sort) and sort
is called.

dSort
(descending-sort)
(pronounced dee-sort

descending is set to true (causing a descending sort) and sort is
called.

redosort
pronounced re-doo-sort)

"Un-does" the effect of an undosort operation. swaplinks
reverses the contents of the olink and slink fields in all of the
sort table entries and then shuffle rearranges the records in the
text according to the new data in the sort lis t. The "Sort "
indicator light is turned on before the redo operation starts and
is turned off after the redo operation ends. shuffle sets the
word undosort as the undo operation for redosort.

- 231 -

sort
pronounced sort)

Sorts the records in the current highlighted selection in
ascending or descending order (the flag in the descending system
integer controls the sort order). presort adjusts the boundaries
of the selection as necessary before sorting and then buildlist,
quicksort, and shuffle perform the main sorting tasks. The
"Sort" indicator light is turned on at the start and off at the
end of the sorting operation.

swaplinks (a a
(pronounced swap-leenks

Given the address of the top of a sort table entry list, ~,
swaplinks swaps the contents of olink and slink fields in each
sort entry.

undosort
pronounced un-doo'sort)

"Un-does" the effect of a sort operation. swaplinks reverses the
contents of the olink and slink fields in all sort entries in the
sort list and then shuffle rearranges the records in the text
according to the new data in the sort list. The selection is
re-highlighted (as it was just before sort was used), The "Sort"
indicator light is turned on before the undo operation starts and
off again after the undo operation ends. The word redosort is
established as the undo operation.

- 232 -

14.9 SORT INTEGERS SUMMARY

bosl (pronounced bee-oh-ess-ell)
The address of the bottom sort entry position (the sort entry
which is located lowest in memory).

descending (pronounced dee-sen-deeng
A flag which controls the sort order. A true flag causes a
descending sort and a false flag causes an ascending sort.

eosl pronounced ee-oh-ess-ell)
The address of ending sort entry position (the sort entry which
is located highest in memory). This is also the beginning of the
sort list before it is sorted.

flen pronounced eff-len)
The offset to a 2 byte field in each sort entry, containing the
length of the key field for the corresponding record.

foffset (pronounced eff-off-set)
The offset to a 2 byte field in each sort entry, containing the
offset within a text record of the start of the key field within
that record.

lip (pronounced ell-eye-pee)
Lower insertion pointer. During quicksort and selectionsort,
this integer points to the sort entry before which the next
record will be inserted.

lpp (pronounced ell-pee-pee)
Lower partition pointer. During quicksort and selectionsort,
this integer points to the last in the sublist of sort entries
being sorted.

olink (pronounced a-link)
The offset to a 4 byte link field in a sort entry, containing the
address of the next sort entry in the original order.

recaddr pronounced rek-ad-der)
The offset to a 4 byte field in a sort entry. containing text
record address.

reclen (pronounced rek-len)
The offset to a 2 byte field in a sort entry. containing the
length of the corresponding text record.

•
rsize (pronounced arr-size
The size of a sort entry ($16).

sortbreaks (pronounced sort-brakes
The number of breaks used to separate records (1, 2 or 3). It is
set by the Setup command.

- 233 -

sortmap (pronounced sort-map)
The address of the sort table used by comparestrings and
comparenumbers.

tab# (pronounced tab-num-ber)
The number of tabs preceeding the key field within the current
record.

ulink (pronounced yoo-link)
The offset to a 4-byte link field in a sort entrYt containing
reverse order. This is used by prevrec and insertrec.

upp (pronounced yoo-pee-pee)
Upper partition pointer. During quicksort and selectionsort.
this integer points to the first in the sublist of sort entries
being sorted.

sorttop (pronounced sort-top)
The address of the first record in the sorted order list.

- 234 -

15. CALC

Introduction

The Calc command evaluates expressions and insert the evaluated
results in the text. The expressions used by the Calc command
are ordinary text typed by the user. After evaluation they
remain stored t but hidden from view in a data structure called a
pocket. Pockets contain the source code for the expression and a
Forth token. The Forth ~oken is executed by the Forth
interpreter to evaluate the expression. The expression stored in
the pocket can easily be retrieved by the user.

- 235 -

15.0 CALC COMMAND GLOSSARY

The special terms used in the description of the calculation
package are defined below.

answer field In a compiled expression, 12 bytes are reserved to
contain the answer. The first time a compiled expression is
executed during the second pas::. of recalc (q. v.), the answer
is copied to the answer field. Later executions of that
expression don't actually execute the expression; they use the
already computed answer stored in the answer field.

arithmetic Stack Arithmetic is performed on the arithmetic
stack rather than the Forth data stack. The arithmetic stack
uses 12-byte stack elements containing 11 bytes of BCD digits
and a tag byte, rather than the 32-bit binary numbers used by
the Forth data stack.

attribute byte A byte that follows a character and indicates
that the character will be displayed with some special
characteristic, such as underlining. The attribute byte
allows the description of three attributes: boldface,
underline, and dotted underline. All answers and popped
expressions used by the Calc command have dotted-underline
attribute bytes. Answers and popped expressions may also be
underlined or bolded.

autopush Pushing two or more highlighted expressions with a
single use of the Calc command. In order to make the
calculation package easier to use, several expressions can be
popped, edited, then highlighted and pushed all at once in
succession, or autopushed. Autopushing takes place in two
steps: The edited expressions are compiled during pass 1 and
the edited source code is hidden during pass 3 (see recalc).

bit flags The flags that store state information about the
compiled expression and the result associated with it. Each
compiled expression includes five bit flags in its data
structure.

calctoken Pockets in the text always begin with a calctoken
(stored as an E4 in text), which makes them easily
identifiable. Thus the three scan passes of Calc can simply
look for calctokens to find all the pockets in the text.

column From the user's point of view, a column is a vertical
grouping of numbers at the same tab stop (decimal tab in the
case of numbers). "Column" means something more specific to
the Calc package.

The column of a value in a horizontal row of numbers is
determined by counting tab characters, starting from the
previous return character. Columns 1 and 2. for example, have
one tab character between them; thus column 3 is after the
second tab character, and so on.

- 236 -

A user's interpretation of a table of numbers will agree
with the Calc command's interpretation as long as the tabbing
for each column is the same.

An error in interpretation might arise, for example, if D

number is long enough to cause a tab field to overflow. In
that case the next number in the row will have fewer tabs to
its left than the numbers above and below it in the same
column. This might mean that a number that appeared to the
user to be in column 3 might be in column 2 as far as the Calc
command was concerned.

Another example occurs when a return has been left out.
In that case, a number in one column may have more tabs
between it and the previous return than the numbers
immediately above. A number that appears to be in column 3
might be in column 6 as far as Calc was concerned.

Despite some slight possibilities for misinterpretation,
columnar calculations work very well when tabbing is done with
care.

compiling Compiling is the process of converting the expression
that the user types into a compiled expression that can be
executed by the Forth interpreter.

dotted underline A dot~ed underline is an attribute associated
with the characters in a result. The dotted underline
distinguishes numerals that result from calculations from
numerals that result merely from typing.

element An entry on the arithmetic stack.

encoding The process of converclng a normal byte into two
hidden bytes in the text. Hidden bytes always have their four
high-order bits set; the low nibble contains one nibble from
the byte being encoded. When an expression is pushed, the
token of the compiled expression is encoded, as is the source
text of the expression.

execution During recalc (q.v.), the token associated with each
result is executed. The execution calculates the value for
that result.

expression An arithmetic statement that can be compiled and
executed to produce a result.

Forth dictionary The data structure used by Forth to store
Forth code that is ready to be executed.

hidden text Text that has been encoded and is stored in the
text. Hidden text is never displayed.

- 237 -

locked calctoken When a region of text is locked, all the
calctokens in the region are converted to locked calctokens.
Locked calctokens have the value E5, so the three recalc
passes (which look for calctokens valued E4) do not find
locked calctokens. As a result, these results are not
recalculated.

named references An expression that has been given a name. For
example, 2+3 can be named cat (highlight and Calc cat:2+3).
The name cat can appear in other expressions. For example,
cat*5 produces the result 25.00.

NaN Not a number. The value NaN (displayed as >?????) is
returned bJ any operation that has an overflow -- division by
0, for example. If one of the inputs to an operator is NaN,
the result returned by that operator will be NaN. Thus once a
result is NaN, then any other results dependent on that result
(either by a named reference or a relative reference) will
also return NaN.

number formatting The way numbers are punctuated. The Calc
package supports several types of number formatting. Every
third digit to the left of the decimal point may be set off by
a comma, period, or apostrophe, the decimal point may be
displayed, and the precision (number of digits to the right of
the decimal point) may also be adjusted.

Number punctuation and decimal point can be adjusted to
meet local customs as well. In the USA, for example, a comma
punctuates the numbers to the left of the decimal, and a
period marks the decimal point. In Europe, .

The number of digits to ~he right of the decimal point is
set initially using the Setup command. Once a result is
generated, the user controls the precision by deleting
characters or adding O's at the end of a result.

operand Elements of an expression used as input values for
operators. Operands may be literals (numbers), named
references, or other expressions.

operators Elements of an expression that specify the
calculation to be performed. Operators may be unarYt taking
take only one operand (- and % for example), or they may be
binary, taking two operands (+, -, *, I, and the logical
operators).

orphans Answer digits that have become separated from their
result because the user has edited the text. This can happen
by dragging around a result or by deleting the pocket
associated with a result (by deleting the first answer
digit). Orphans are dotted underlined, but the next execution
of recalc that ends normally (that is without error or
interruption) will remove the dotted underlines, turning the
orphans into ordinary text.

- 238 -

overflow A result which is too large (more than 12 digits to
the left of the decimal point) to be represented in the number
system used by the Calc package. An overflow is represented
by NaN (q.v.). NaN is represented in a number as a bit in the
tag byte (q.v.). Since overflows are the only cause of NaN's,
the NaN bit in the tag byte is also referred to as the
overflow bit.

passes The process of recalculation (q.v.) requires three scans
through the entire text. These scans are called passes. An
integer called pass stores the value of the current pass (1,
2, or 3).

placemarker A special result which is inserted into the text by
precalc. It remembers the location of the gap so that the
cursor can be returned to the gap when Calc finishes. Since
Calc can increase or decrease the size of the text (by
pushing, popping, or computing answers with a different number
of digits), the text pointers are not valid at the end of
Calc. Since the placemarker locates the gap, it can be used
to adjust all the pointers to their appropriate values when
Calc finishes.

pocket The part of a result that is hidden (that is the part
that is stored in the text as encoded bytes). The pocket
contains the encoded token and the encoded expression.

pointer field Part of the data structure in a compiled
expression. Pass 1 fills in the pointer field with the
address of the calctoken associated with the compiled
expression.

popping Bringing a copy of the hidden expression out of hiding
and into the visible text. A popped expression follows the
last answer digit and is preceded and followed by an underline
character. The entire result from the first answer digit to
the last underline character has a dotted underlined. Once an
expression is popped, it can be edited. The next recalc
(q.v.) will automatically push any popped expressions.

precision The number of answer digits to the right of the
decimal point (adjustable from 0 to 10 digits). The answer
stored in the answer field of the compiled expression always
has 10 digits to the right of the decimal point. so
calculations that depend on this result will always have the
full precision available to them.

punctuation Numbers may be punctuated at every third digit to
the left of the decimal point. Commas, periods, or
apostrophes may be used.

pushing Converting an expression into a result and hiding the
expression under the result (see pocketing). The expression
is highlighted and the Calc command given, which compiles the
expression, encodes the token and the expression, pushes them,

- 239 -

and produces the result.

recalc The routine that calculates all expressions and updates
all results. Each time the Calc command is used, recalc
performs three passes through the text, examining and
processing all expressions.

redefinerror A token used by copy-up, getforward, and receive
to indicate to recalc that the hidden expression associated
with a particular pocket must be compiled during pass 1. It
is used in cases where the compiled expression is not
available {whenever the Forth part of Calc is separated from
the text part, specifically the three cases mentioned} to
recreate the compiled expression.

reference counts A count of how many times a name is referred
to in the text contained in the compiled part of all named.
Used in order to permit forward references. If the reference
count ever reaches 0, the name, token, and compiled expression
can be recycled.

relative reference An expression that refers to a number or
expression located elsewhere in a table. This allows the user
to combine numbers from two (or more) locations and leave the
result at a third location. The relative reference shows the
row and column of the number referred to. For example, [2 3J
is a relative reference indicating a number 2 columns to the
right and 3 rows up.

result The in-text data structure generated by Calc. A result
consists of answer digits and a pocket. Results have dotted
underlining (q.v.).

row A row is a horizontal line of text in a table. Relative
address and the sum operators make use of this concept.

While the user tends to see each line of text in a table
as a new row, the Calc package determines the address of a row
by scanning for return characters. Consequently, if a line in
a table does not end with a return, the user's interpretation
of a table's structure will not correspond with the Calc
package's interpretation (see discussion in "column").

Page characters and document characters terminate row
counting. For example, when sum encounters a page character,
it quits adding new elements to the sum, even if there are
more numbers just before the page character.

skip markers Markers located at the beginning and end of the
gap. The markers start with the value "EO" and are followed
by a 3-byte offset that holds the number of bytes to the next
character in the text.

token Forth is token-threaded and executes tokens. The token
refers to code via one level of indirection through the token
table, a table of addresses that relate tokens to code
addresses. The calculation package uses the Forth data

- 240 -

structures to calculate answers. Each result has an
associated token which binds the result to its corresponding
compiled (and hence executable) expression via the token table.

uNaN Means "undefined -- not a number. II uNaN is simlar to NaN
in that it propagates to subsequent calculations. But instead
of being generated by an overflow, it is generated by an
unresolved forward reference. uNaN is represented in a number
by a bit in the tag byte called the uNaN bit. It is displayed
as ??????

- 241 -

15.1 STRUCTURE OF CALCULATIONS IN THE TEXT

Although calculation results look like ordinary text, they have a
very different structure. The first difference is that the
calculation data structure is stored in two places: the compiled
code that produces the result is stored in the Forth dictionary
while the answer and source expression are stored in the text.
The data structure in the text is called the result. The data
structure in the Forth dictionary is called the compiled
expression and is uniquely identified by the token.

A result has a rather complicated structure. It has four main
components, (1) the first answer digit, (2) the token, (3) the
hidden expression, and (4) the trailing answer digits. The first
digit is the only component that is always visible (an answer
always has at least 1 digit). The token is executed to calculate
the answer. The expression is kept in text so that it can be
reviewed or modified. The trailing digits are the remaining
digits in the answer. Thus, the hidden information (the token
and the hidden expression) is stored in the text between the
first digit of the answer and the remaining answer digits. The
hidden information is called a pocket.

Thus a result is stored in text as follows:

+---------------------+--------------------------+--------------+--------------
digit token expression digits

+---------------------+--------------------------+--------------+--------------
(------ the pocket -------------)

Each of these main components have smaller components:

+---+------+----------+
I # I attr I [accent] I
+---+------+----------+

digit +-----------+---+---+---+--+
I calctoken I encoded token I
+-----------+---+---+---+--+

token +---+- - - -+--+
I hidden chars I
+---+- - - -+--+

expression
+---+------+----------+
I # I attr I [accent] I
+---+------+----------+

digits

- 242 -

A digit is composed of two (and sometimes three bytes if the user
has added accented characters). The first byte is the ASCII code
for the visible number. The second byte is an attribute code,
with a value between hex EC and EF, indicating which type of
emphasis, along with dotted underlining, is applied to the
character in the display. Dotted underlining is displayed on the
screen but not printed. A third byte is associated with the
character if it is accented.

+----+------+--------+
I 34 I EC (C6)
+----+------+--------+

digit

The token component is five bytes long, beginning with a unique
byte value E4, called a calctoken. The first byte in a pocket is
always a calctoken, so pockets can be found in the text by
searching for calctokens. The next four bytes contain a two byte
token encoded so that all the high nybbles have the hex value F.
For example the token 0418 is stored as the encoded value
FOF4F1FB. This encoding hides the token and prevents LEAP from
landing on it. In locked documents, the calctoken is replaced
with the value locked calctoken (which has the unique value E5).
The locked calctoken won't be found when searching for
calctokens, so pockets preceded by a locked calctoken won't be
executed.

+------------+---+--+--+---+

E4 I FO F4 Fi FE I
+------------+---+--+--+---+

token

When an expression is pushed, a copy of the source text is hidden
by encoding it in the same way as is the token. Each byte is
divided into nybbles, and each nybble stored in the low nybble of
a byte with the high nybble of hex value F.

+---+- - - -+--+

I hidden chars I
+---+- - - -+--+

expression

The trailing digits are constructed in exactly the same manner as
the first digit. The pocket is attached to the first digit, so
when the first digit is erased or moved the pocket goes with it.
The trailing digits can be separated from the first one and in
that condition are called orphans.

+----+----+------

I 37 I EC I (C6)
+----+----+------

digits

- 243 -

The placemarker structure is a result consisting of a single
pound sign (#) with no trailing digits and hidden expression
consisting of two question marks (??). The placemarker marks the
location of the gap during the execution of recalc.

+----+------+-----------+---+--+--+---+---+--+--+---+
I 23 I EC E4 I FO F2 F3 F6 I F3 FF F3 FF I
+----+------+-----------+---+--+--+---+---+--+--+---+

digit calc token hidden token hidden expression = ??

- 244 -

15.2 STRUCTURE OF COMPILED EXPRESSIONS

When an expression is pushed, Forth code is generated, the
execution of which computes the a~swer, which is placed into the
text. All Forth words begin with a jump to the nest
subroutine, which is compiled as "$4ED3", a machine code
instruction that performs an indirect jump through register A3.
The function of nest is to begin interpretation of the Forth
word, starting at the next token in the word.

checkanswer is the first word executed by all compiled
expressions and is followed by several data structures. These
data structures hold information which improve calculation speed,
and minimize usage of memory.

+-------------+-----------------+---------+--------+
I checkanswer I bitflags & refs I pointer I answer I
+-------------+-----------------+---------+--------+

2 bytes 2 4 12

There are 5 bitflags: answered, popped, autohide, comma, and
discrepancy. The answered flag is set when the answer field (see
below) is valid. The popped flag is set when a copy of the
hidden expression is displayed. The autohide flag is set by
autopush once the surface expression has been successfully
compiled. The comma flag is set when the result is to have
commas to mark the thousands places. The discrepancy flag is set
when autopush successfully compiles and cleared during pass 3.
This bit is used by the next execution of recalc to force
recompilation of the pocket in case pass 3 was not completed due
to an error or user interrupt.

+----------+--------+----------+-------+-------------+-----------+
I

answered I popped I autohide I comma I discrepancy I ref
count

+----------+--------+----------+-------+-------------+-----------+
value:
7 - 0

80 40 20 10 8

The remalnlng 11 bits (low 3 bits in this byte and 8 bits in the
next byte) are only used if the definition is named. They 3re
for the number of named (as opposed to relative addressed)
references to this definition (2,047 maximum - 07ff hex). The
reference count determines how many other expressions refer to
this expression. The use of the reference count is discussed
below in connection with "forwarderror".

- 245 -

-

During pass1 the pointer field is filled with the location in the
text of the calctoken within the result. It is used by sum and
relative addressing to extract approprir '.:e values from the
surrounding text.

The answer field (which is identical in size and structure to
elements on the arithmetic stack) begins with a one byte tag
field, which includes the sign bit, undefined bit, and overflow
bit. The remaining 11 bytes hold the answer.

+------+------+-----+
I sign I uNeN I NaN I
+------+------+-----+

value: 80 40 20

The rest of the compiled expression comes after the answer
field. checkanswer advances the ip around the data structure so
execution will commence with the rest of the compiled expresson.
The token for "placeanswer" terminates all pushed definitions;
its function is similar to ";" in normal Forth definitions.

"Executing the Calc command -- Pushing," describes the contents
of compiled expressions in more detail.

- 246 -

15.3 EXECUTING THE CALC COMMAND

15.3.0 Recalculation

Recalculation occurs when the Calc command is given and there is
nothing to push (either nothing is selected or what is selected
contains only popped pockets) or when all pl~shing is completed.
Recalculation is performed by the word recalc. The basic
function of recalc is to scan the text three times locating all
the calctokens in the text, executing the associated compiled
expressions and updating all answers in the text.

When recalc begins, the location of the gap is indicated by the
blinker, with all text pointers set correctly. The execution of
recalc performs its function in the following order:

1. Compress the gap -- precalc

In normal text operations, the gap begins and ends with a special
byte sequence called the skip marker. Since recalc scans the
text three times, any efficiency matters a great deal. To make
scanning faster, before the first scan, the placemarker is placed
at the end of the gap, overwriting the skip marker. Then all the
text before the gap is moved up against the placemarker. Thus
the gap is compressed to 0 and both skip markers are removed.
Since there is now no gap in the text, scanning the text for
calctokens consists of simply looking at the next byte to see if
it is a calctoken; there is no need to take the gap or its
associated skipmarkers into account.

The placemarker will be executed during all passes of recalc,
however, it doesn't do anything except during the third pass,
when it removes itself and stores its position in the integer
"marker".

Two other optimizations are made to make scanning the text
faster. First, since a calctoken is always associated with an
encoded token (which takes 4 bytes to store in the text) and at
least one expression byte (encoded as two hidden bytes), scanning
the text can proceed by checking every 6th character to see if it
is >EF and then, if it is, determine whether it is part of a
result by scanning backwards for the calctoken. This makes it
faster to scan the text since not as many bytes must be
examined. This speedup is only used during pass 1 and pass 2.
During pass 3, each byte is scanned so that orphans can be turned
into plain text.

The other optimization is that a special pocket is located after
the end of the text. Every time a calctoken is encountered, a
test is made to determine whether it is beyond the end of text
(eot). If it is, the scan is terminated.

- 247 -

2. Recalc Pass 1 -- ascanl

During the first scan the pointer fields in each compiled
expression are filled in with the location of the calctoken in
the text. This pointer value will be used during pass 2 to
evaluate sums and relative expressions. During pass 1 the answer
bit flag in each expression is cleared. If the expression was
popped (the poppedflag was set), the surface expression is
compared to the hidden expression and if they are different,
autopush is called. If autopush isn't called, the rest of the
compiled expression is skipped.

Autopush, compiles the surface expression, replacing the old
compiled expression with the new one, and executes the new
compiled expression. Autopush also sets the autohide and
discrepancy bits. The newly compiled expression affects the
Forth area not the text.

3. Recalc Pass2 -- ascan2

During the second scan, each calctoken is executed and
placeanswer copies the result of the execution from the
arithmetic stack into the answer field and sets the answer bit.
Since the compiled expressions are simply Forth code which is
executed, executing a token will in turn execute all tokens used
in that word. Thus a commonly used name could be executed many
times during pass2. The first time a token is executed, the
answer bit is set. The second time it is called, it isn't
executed; rather, check answer copies the answer from the answer
field into the arithmetic stack and skips the rest of the
compiled expression.

During this pass, one function of checkanswer is to push the
address contained in the pointer field onto the return stack.
Placeanswer Sums and relative references use the pointer field
which locates the pocket in the text. For those named
expressions that contain a sum or a relative reference and are
themselves refered to only by name, there is no other means of
knowing their location in the text. Since pass 2 doesn't insert
or delete anything in the text, the pointer field is valid during
all of pass 2.

4. Recalc Pass 3 -- tscan and textify

During the third scan all the answers are updated. Several kinds
of information are incorporated into the answers extracted from
the answer field. The result may have been edited, popped,
orphaned, or moved up against another result (by dragging,
copying, or deleting). All of this information is taken into
account when updating an answer.

The number of digits to the right of the decimal point can be
decreased all the way to zero (including and even limited to the

- 248 -

removal of the decimal point). A decimal point can be added.
Zeroes can be added to the right of a decimal point. The new
precision is determined by scanning for a decimal point (dotted
underlined or not) and then counting how many digits (including
only dotted underlined digits or zeroes) there are to the right
of it.

Commas can be added anywhere in an answer (although to C dnt, it
must have been inserted after the first digit and before the last
one). This comma is removed and one is inserted to indicate the
thousands, millions, and trillions places, if they exist. The
commabit is set, so that even if there aren't enough digits to
the left of the decimal point during this recalc, if there are
enough later on, commas will automatically be inserted.

If the autohide bit is set, the hidden expression is discarded
and replaced by surface expression. All surface expressions are
discarded.

An orphaned result is merely one in which the first digit (and
its associated pocket) has been removed (either by dragging,
deleting, or copying). In these cases the attribute characters
are simply removed from the digits.

If two results are contiguous, pass 3 will insert a tab
character. Unfortunately, if the expression associated with the
result on the right uses a sum or a relative reference, pass 2
will have used an invalid location in the text and generated an
erroneous answer. Because of this, (only for versions 2.00 and
later) a flag is set and after pass 3 is done, recalc is begun
again.

When the placemarker is executed during pass 1 or 2, it does
nothing. During pass 3. it removes itself from the text and
stores its location into the integer "marker"; this will be the
new location for the cursor.

5. Uncompressing the gap -- aftercalc and showcalc

Once pass three is done, the location of the new cursor is in the
integer marker. 1he text before this location is shifted back
down to the beginning of the text area. The structures which
support display of text (the interval and window tables) are
updated and the text displayed on the screen.

6. Interrupting recalc (manually or through error handling)

If recalc is interrupted or an error occurs during any of the
passes, special routines restore the text to a displayable
condition.

7. Inserting tabs causes another recalc (not available until
version 2.00)

- 249 -

15.3.1 Calc Command Logic

When the user gives the Calc command ([Use FrontJ-[CalcJ), the
result depends on the location and state of the cursor in the
text. The Calc comma~d logic decides which operation (pushing,
popping, or recalc) to perform. The structure of the decisions
performed by the Calc command logic is as follows:

Highlight Extended?
Yes: Does the highlight contain a result?

Yes: is everything popped?
Yes: recalc

No: multipop
No: does the highlight contain dotted underlines?

Yes: push redefinition, recalc
No: insert tab, push (new expression), recalc

No: Is the cursor on a result?
Yes: is that result already popped?

Yes: recalc
No: pop

No: recalc

The highest level of the Calc command is the word Calc. The word
getselect figures out whether the highlight is extended and if it
is, sets pointers into the selection. If the highlight is
extended, the word pushlmultipop is executed which handles the
highest Yes clause above. If the highlight is not extended, the
word poplrecalc is executed which handles the highest No clause
above.

15.3.2 Pushing (Compiling Expressions)

The operation of compiling an expression in the text into a
result (an answer plus a pocket) is called pushing. When the
Calc logic will determine that pushing is needed when the
highlight is extended and there are no calctokens in the
highlighted text.

The highlight may contain one or more expressions. If the
highlight contains more than one expression, the individual
expressions must be separated by separator characters: tab,
return, page or document characters. As each expression is
identified, that expression is pushed and its answer displayed,
resulting in a display that is "animated" showing the progress of
pushing.

Pushing consists of several parts:

1 - Scanning the highlighted text -- parser

The highlighted text is scanned looking for items to be
compiled. Separator characters are skipped, and individual items
that can be compiled (literals, names. :, the operators, and the
functions) are identified and passed to the recursive descent

- 250 -

compiler.

2 - Compiling the code

The recursive descent compiler takes the items that were
identified by the parser and generates the actual Forth code for
the compiled expression. A recursive descent compiler is used
because the system supports operator precedence. The operator
precedence is described below, and the next section of this
manual describes the operation of a recursive descent compiler.
When the recursive descent compiler completes compiling an
expression, it checks next item produced by the parser. If the
parser has reached the end of the highlight or is on a separator
character, then the expression has compiled correctly. The
compilation completes (by putting the placeanswer code at the end
of the compiled expression) and inserts the dummy result.

3 - Inserting a dummy result

Once the expression is compiled, a dummy result in inserted in
the text. This result contains the encoded token and expression
corresponding to the just-compiled expression, but the answer is
set to 0 (in the default case 0.00 since the default precision is
2 digits). The dummy result is not displayed.

4 - Computing the immediate result -- immediacy

Once the dummy result has been inserted in the text, the
immediate value of the result is calculated and displayed. This
is done by inserting a placemarker (serves the same purpose as
the stop marker that terminates the recalc passes through the
entire text) in the gap right after the dummy result and then
setting pass to 2 and executing ascan2, followed by setting; s
to 3 and executing textify (which inserts the new result intG the
text). Finally, appropriate interval table and window table
operations are performed to permit display of the intermediate
result. This is what causes multipush to "animate" the display:
each intermediate result is displayed as multipush pushes a
pocket.

5 - Executing recalc when pushing is complete

When all pushing is complete, recalc is begun, which updates all
values in the entire text as well as making sure that the
immediate values calculated for the just-pushed expressions are
correct.

~5.3.3 Operator Precedence

When compiling, the operators are not executed in left-to-right
order, rather they are executed according to the operator
precedence described below:

highest

- 251 -

lowest

real number, named reference
parenthetical expression
negative (and positive)
logical negate
percent
exponentiation
multiplication, division
addition, subtraction
logical operations (excluding negate)

The next section describes the actual code that is compiled for
various expressions and parts of expressions that the user may
enter.

15.3.4 Literals

A single value operand is compiled as an inline literal following
the token for alit (arithmetic literal). For a comprehensive
example, an expression containing only the constant 50 will look
like:

+-------------+------+------+---------------------------+-------------+
I checkanswer I data I alit I tagO000000000500000000000 I placeanswer 1
+-------------+------+------+---------------------------+-------------+

15.3.5 Names

Named references are compiled as the token of the name found in
the arithmetic vocabulary. Such named references can be used as
an operand in further computations or returned as the answer.

+-------+
I token t

+-------+

15.3.6 Operators

Most operators remove two operands from the stack. They are
compiled in reverse polish order (like an HP calculator)
following two operands (or equivalent). The result can be used
as an operand in further computations.

+---------+---------+----------+
I operand t operand I operator I
+---------+---------+----------+

15.3.7 Sums

sum (or avg) , which use the pointer field, compile r@ and <sum>
(or <avg». r@ places the address of the flag bits byte onto the

- 252 -

stack. <sum> uses this address to fetch the pointer field, which
serves as the starting point for adding vertically. The result
returned by <sum> can be used as an operand in further
computations.

+----+-------+
I r@ I <sum> I
+----+-------+

15.3.8 Relative Addressing

Relative addressing uses two single byte literals to specify the
relative position of the value to be extracted from the text.
The vertical coordinate is placed on the stack first. The result
returned by <reI> can be used as an operand in further
computations.

+------+---+------+---+----+-------+
I blit I y I blit I x I r@ I <rel> I
+------+---+------+---+----+-------+

Forward references

Forward references are references to names whose expressions do
not exist. They can be created either by using a name in an
expression b"efore the name is defined (by pushing an express ion
with that name), or by deleting a named pocket to which other
expressions refer.

When pushing an expression, if a named operand doesn't yet
exist (a forward reference), a dummy definition is created whose
token is compiled into the new expression's code. The dummy
definition is assigned the non-existent operand's name and
consists of the token for "forwarderror" followed by a 2 byte
reference field (initialized with 1 reference). Since no other
information is required, this terminates the definition. A dummy
definition returns the value uNaN (displayed in the text as
"??????") to all expressions which refer to it. An encoded
token in the text never points directly to a dummy definition.

+--------------+------------+
I forwarderror I references I
+--------------+------------+

Other expressions may also use the same nonexistent name. When
this happens, the same token (for the dummy definition) is used
and the reference count in the dummy definition is incremented by
1.

Later, the user may create a definition for the non-existent
name. When this happens, a normal compiled expression (beginning
with checkanswer, containing the data structure, code, and ending
wi th r,laceanswer) is compiled and the reference field from the
dummy definition is copied into the new compiled expression and

- 253 -

(nnn>

num
var

(log>
(fac>
<pro>
<exp>

<val>
<trm>

incremented by 1 (a named pocket uses its compiled expression at
least once). The same token points to this new code and the
dummy definition is removed. All previously compiled references
to the dummy definition now automatically refer to the newly
compiled expression, thereby resolving the forward reference.

When a named pocket is deleted, its reference count is
decremented by one. If there are no references to it, the
referenced count will be zero, in which case the compiled
expression, name, and token are recovered. If the reference
count isn't zero, there are still references to that name. In
this case the code is recovered but the name and token are
preserved and a dummy definition is created and the reference
count is copied to it.

15.3.9 Recursive Descent Example

The following is an example of a recursive descent compiler that
works with a syntax that is similar to the syntax of the Cat Calc
command. It is simplified to reduce the size of the example.
For this example, the precedence is:

() (parentheses), numbers, variables, and unary + and -
A (exponentiation)
* or /
+ or -
& or @ (and or or)

means "is defined as"
means Hor" as in se,t:>arating choices

means "repeat this definition zero or more times but with a loop"
means Hnnn is defined here"

-
· .-

-
· .-

-
· .-

other characters are literals
is a sequence of digits
is a variable

(fac> & (fae> <fac> @ <fae>
(pro> + <pro> <pro> - <pro>
(exp> * <exp> <exp> / (exp>
<val> A <val> <val>

<fac>
<pro)
<exp>

(if you allow 2 A 3 A 5, otherwise <exp>
+ <trm> I - <trm> I <trm>
num I var (<log>)

- 254 -

<val> A <val>) -

So, to compile: 3+4*5

Begin by examining the 3. and begin at the top of the first
routine.
log calls fac
fac calls pro
pro calls exp
exp calls val
val says first item isn't + or - so calls trm
trm says first item is a number. It removes the number from the
input stream and compiles the 3. Then it returns to val.
val returns to exp
exp says next item isn't A so returns to pro
pro says next item isn't * or / so returns to fac
fac says item is + so it remembers the operator and calls pro
again.
pro calls exp
exp calls val
val says current item isn't + or - so it call~ trm
trm recognizes the number so it compiles the 4 and returns
val returns to exp
exp says next item isn't A s, returns to pro
pro recognizes the * so it remembers it and calls exp again
exp calls val
val doesn't recognize + or - so it calls trm
trm recognizes the number so compiles the 5 and returns to val
val returns to exp
exp doesn't see - so returns to pro
pro has finished one part of definition so compiles * and doesn't
recognize another * or / so returns to rac
fac has finished one part of definition so compiles + and doesn't
recognize another + or - so returns to log.
log doesn't see & or @ so returns to who called it.
main says that the input stream is empty so exp was successfully
compiled. (if anything left. the expression was ill formed).

We compiled 3 4 5 * + (which is the correct RPN form of the
expression) .

Now, to write one of these words is very simple. Take pro for
example:

pro ::= exp * exp ... I exp / exp ... I exp

All choices start with exp so it knows it mu~ call expo Then it
checks the input stream for either a * or /. If found it is
working on either choice 1 or 2. If not, it was choice 3 and it
is complete, just return. If it was choice 1 or 2. remember the
operator and call exp again. After it has returned compile the
operator and check for a * or / again. If not the choice is
complete so return. Otherwise do again. So, the word looks like:

- 255 -

: pro (--)
local operator
exp

a place to hold the operator)
all choices start with this)
a way to do ...) begin

item dup ascii * =
swap ascii 1 = or

while item operator to
parsenext

(is current item * or I?)
(if so, save it)
(and remove it from input stream
(if it was then call exp again) exp

operator ascii * =
if [compile] f* else [compile]

again ;

15.3.10 Popping

{ now compile appropriate operation
fl then

When the Calc logic determines that one or more pockets must be
popped, it pops the pockets one at a time, thereby "animating"
popping in a manner similar to the animation produced by
multipush.

Popping consists of three parts:

1 - Move the gap to to the end of a result

First the gap is moved to the end (tLJt is one character after)
the last answer digit of the result to be popped. This makes it
possible to use the gap as a work area to insert the popped
expression.

2 - Pop the expression into the Jap

Next the hidden expression is unhidden and moved to the gap as a
sequence of dotted underlined characters. This operation takes
place in several steps. First the gap is checked to make sure
that there is enough room for the popped expression. Next the
leading underline character is inserted into the gap. Then the
dotted underlined expression is inserted into the gap. Finally a
trailing underline character is inserted into the gap.

3 - Display the popped result

The interval table and window table are updated as required and
the newly popped expression is displayed.

When the display of the popped result is completed, the next
result to be popped is searched for. Thus, each result is popped
individually, resulting in an animated display.

- 256 -

15.4 ARITHMETIC AND FUNCTIONS -- ARITHMETIC OPERATORS

The arithmetic performed by the calculation package is fixed
point BCD with 12 digits to the left of the decimal point and 10
digits to the right. Arithmetic is performed on the arithmetic
stack using special arithmetic operators and functions, as
opposed to using the Forth data stack and the normal Forth
arithmetic operators and functions. Thus when an expression is
compiled, the Forth words used in the compiled expression are
arithemtic words rather than the ususal Forth words. This
section describes the arithmetic words.

15.4.0 The Arithmetic Stack

The first set of words to be described are the words that
manipulate the arithmetic stack. These words are similar to the
words that manipulate the Forth data stack, but since they
operate on the arithmetic stack, all words are preceded by the
letter a.

The words are:

alast, adrop, anew, NaN, uN aN , adup, aswap, aaver, arat

The words are mostly familiar. alast prepares the stack for a
new entry by adjusting the stack pointer. anew clears the
arithmetic stack. NaN and uNaN put those values on the top of
the arithmetic stack.

15.4.1 The Arithmetic Operators
(+, - *, It %, and Logical Operators)

The next set of words are the acutal operators used to perform
operations on the arithmetic stack.

The words are:

a-, a+ These words perform subtraction and addition. They
consume two stack entries and produce one entry (the result).

aneg Negates the top stack entry.

a*, al Multiplies or divides the top two stack entries. The
consume two stack entries and produce one entry (the result).

a% Multiplies the top stack entry by .01.

a<, a>. a=, a-, al t and a& Used to perform the logical
operations provided by the calculation package.

- 257 -

In addition to these words, there are a variety of support words
used to implement these words. All words associated with
arithmetic and the arithmetic stack are located on pages 1 to 12
of the Disk C side 1 listing.

15.4.2 Functions -- abs, int, sqrt

When the user specifies a function in an expression, the
following words are compiled into compiled expressions:

aabs Takes the absolute value of the top stack entry.

aint Zeroes the fractional part of the top stack entry.

asqrt Takes the square root of the top stack entry.

These functions are compiled by words that appear in the function
vocabulary. The compiling words in the function vocabulary are
the same as what the user uses in the expression: abs for
absolute value, int for integer value, and sqrt for square root.

The recursive descent compiler detects these function names and
compiles the appropriate token from the above list into the
compiled expression.

15.4.3 Relative References and Sums

When the user specifies a relative reference or sum (or average)
in an expression, the following words are compiled into the
compiled expression:

<sum>, <sumdispIay>, <avg> Expects an address on the stack.
This is the location of the calctoken (in the text) of the result
containing the sum or average.

<reI>, <reldisplay> Also expects an address on the stact which
points to the calctoken (in the text) of the result containing
the relative reference. In addition, the stack contains numbers
that are the x and y offsets referred to by the relative
reference.

All five routines return a value on the arithmetic stack. If the
referred cell does not contain a number, NaN is returned,
otherwise the number is the result of the selected calculation.

These functions are compiled by words that appear in the function
vocabulary.

The recursive descent compiler detects these function names and
compiles the appropriate token from the above list into the
compiled expression.

- 258 -

15.5 SUPPORT FOR ERASE, COPY, DOCUMENT LOCK, COPY-UP,
GETFORWARD, AND RECEIVE

Other commands in the system may sometimes have to handle
results. This section describes the associated support routines
provided by the Calc package.

Erase When a result is erased, the reference counts in the
dependent expressions must be reduced accordingly.

Since erasing can be undone, this adjustment is divided into two
pieces. During Erase, a linked list of the tokens associated
with the results being erased is created (performed by
linkcalc). The next use of the Calc command descends the linked
list and adjusts the reference counts of the affected words in
the remainder of the system, and recovers the Forth dictionary
space formerly occupied by the erased results (performed by
removecal cs) .

If the erasing is undone, the results in the undo buffer are
removed from the linked list (performed by unlinkcalc). The
results from several consecutive erasures can be accumulated in
the linked list.

~ When the Copy command detects a calctoken (value E4) it
calls copypocket, which copies the result in one of three ways.
If the result hasn't been popped the answer is copied as plain
text (the pocket and the dotted underlines are stripped from the
new copy).

If the result is popped, the result is copied "active" in one of
two ways. If the expression is not named, the entire result is
copied unchanged except that the token is changed to
redefinerror. If the expression is named, the encoded token is
changed to "redefinerror" and only the name of the expression is
copied (the rest of the expression is discarded, including the
colon). The task of redefinerrror is either to compile the
expression from the surface text or, if one doesn't exist there.
from the hidden expression.

Document Lock When a document is lockeQ~ any calctokens in the
document {bytes whose value is E4} are changed to locked
calctokens (value E5). When the document is unlocked, the
reverse is done. Since this operation is so simple no special
support is provided by the Calc package.

copy-up, getforward and receive In all of these c.ases. the tex t
containing results is separated from the associated compiled
expressions (in the Forth dictionary). The encoded token is
changed to "redefinerror" (explained aoove under Copy).

- 259 -

15.6 ERROR HANDLING

Since recalc compresses the text while it is executing. the text
is in an abnormal state and cannot be used by the editor. If an
error is detected while recalc is executing, the text must be
returned to its normal state before control is returned to the
editor.

On the other hand, if an error is detected while compiling. the
Forth dictionary is in an abnormal state and must be returned to
its normal state before control is returned to the editor.

Both types of errors set a variable aerror# to a value to
indicate which type of error was detected and prepare an Explain
message.

To aid in the debugging process, the error numbers have the
following interpretations:

Non-Aborting Errors

30
31

Meaning

element is too large or too precise
sumcount won't convert to arithmetic ,ack

Aborting Errors

29

33
34
35
36
37
38
39
40
44
45
46
47
48
49
50
51
52
54
55

Meaning

running out of text space

missing operator (add op char to op+tokens)
number too large or too precise to compile
too many parentheses
out of dictionary room
number syntax error
more than 2 or less than 1 coordinate
no delimiter
naming collision with a copied up expression
stack underflow or overflow
can't find
out of tokens
name is too long
accented character in expression
name already exists
attempt to use a reserved (function) name
syntax error?
attempt to push result
no opening paren in use
closing without opening parenthesis

- 260 -

Word

<sum>. <reI>
<avg>

Word

tscan,
recalc.
pushpocket
compileop
allot#
numerical
numerical
numerical
relative
getphrase
redefinerror
ainterpret
"
"
acreate
ainterpret
acreate
acreate
clause
compileop
get(
buildbody

15.7 LAYOUT OF THE CALC CODE

Disk A Side 0 Page 3

Disk C side 1 Pages 1-12
" Pages 13-24

placeanswer
" Pages 24-25

remove-word
" Page 26
" Pages 26-36
" Pages 37-48
" Pages 48-52
" Pages 53-55

- 261 -

Functions

Arithmetic code
recalc t checkanswer,

Recycling tokens t

Error handling
Compiling
Calc command logic
Relative references
Support of Erase, Copy,
COPY-UPt etc.

16. SPELL CHECK LEAP, ADD SPELLING, DELETE SPELLING

Introduction

Canon has supplied a block of code that supports the spelling
verification commands. This document describes the interface
routines used with Canon's spelling code.

- 262 -

16.0 SPELL CHECK LEAP

The Spell Check Leap function is performed by two words called by
the Leap code. The word spellcheckleap is used when the user has
just pressed the Spell Check Leap key. The word
spellcheckleapagain is called when the user uses the Leap Again
command.

These two words check which Leap key is pressed to determine
which direction to check for misspelled words. If the Leap
Forward key is pressed, the scan starts at the first word after
the gap, loops around the end of text to the beginning of text,
and ends by checking the word at the gap_ If the Leap Backward
key is pressed, the scan S,3rts by checking the word at the gap
and then scans backward, looping around to the end of text and
ending at the first word after the gap. If no misspelled words
are found, the gap is not moved.

The scanning is accomplished by using the code words nextsep,
nextsep?, prevsep, nextnosep, and prevnosep. For example, when
scanning forward, the pattern of calls is this: Find the end of
the word containing the cursor {if any} by using nextsep? Then
loop, finding the beginning of the next word with nextnosep and
then the end of the word with nextsep. Once the beginning and
end of the word have been found, use the word translate to
convert the,word from the Cat character set to the spelling
checker character set. Finally, call spellcheck, which uses the
Canon-supplied code and dictionary to determine whether the word
exists.

If the word doesn't exist, it is scanned for hyphens. If any are
found, each hyphenated part is passed to the spelling checker.
If all the parts are found, the word scanning continues,
otherwise, the word is considered misspelled.

Misspelled words are displayed by placing the cursor on the first
character (using movegap) and updating the screen. op is
adjusted so that pressing both Leap keys will highlight the
misspelled word.

There are two tables used by the spelling code. The table
spellchars is used by the scanning words (nextsep, etc.) to
identify separator characters (which appear as an ff in the
table) and valid characters (any other value).

spellchars is also used by translate to conver~- the Cat character
codes to character codes that can be used by the spelling
checker. This is done by a two-step process. First the
character being translated is used as an index into spellchars.
If the corresponding byte in spellchars contains a 0, the
character is discarded and translation proceeds. If the byte
contains a 1, further translation is required. Finally, if the
byte contains any other value, that value is the translated value
of the character.

- 263 -

If the byte in the spellchars table contains a 1, then a second
table. spellaccents is used. This table allows the code to take
the 2-byte sequence used by the Cat for accented characters into
the 1 byte code used by the spelling checker.

The gap may break the word located at the gap into two pieces.
The character at the gap is spell checked at either the beginning
or end of the scan, depending on which way the leap is
proceeding. When the word at the gap is translated, a special
word, translategap is used.

- 264 -

16.1 ADD/DELETE SPELLING

Add/Delete spelling commands scan the text using the same
scanning words used by Spell Check Leap. The high-level words
for these two commands are addspelling and deletespelling. When
the command begins, if the highlight is extended, it is increased
in size so that entire words are always added to the dictionary.
Then the word translate translates each word in the highlight.
When the word is translated, it is spellchecked. The result of
the spellcheck avoids adding words that are in the ROM dictionary
to the RAM dictionary. Also, words that do not exist do not need
to be deleted. Thus the following tests are used:

spellcheck result:
addspelling:
deletespelling:

exists
noop
deletespell

doesn't exist
addspell
noop

Add Spelling and Delete Spelling can be undone. The undop for
one is the other (that is the undo for add spelling is delete
spelling).

- 265 -

svram
svromO
svbuf

svwork

16.2 SPELLCODE INTERFACE

Canon has supplied a block of code to access the spelling
dictionary. The code is simply copied into the ROM and there are
5 interface routines that make it easy to execute the various
spelling routines from Forth. The interface routines are:

spellcheck
addspell
deletespell
initdictionary
emptycheck

spellcode+2
spellcode+6
spellcode+a
spellcode+e
spellcode+12

These routines use several data structures:

The address of the SV RAM.
The address of the SV ROM.
The address of a 64 byte RAM buffer used to pass the word to be
spellchecked.
The address of a 256 byte RAM buffer used by the spelling code

and xplen.

- 266 -

17 . EXPLAIN COMMAND

Introduction

The Explain command provides an on-line manual and explains the
meaning of error beeps. The code operates by displaying an
explanatory message when invoked. When the Use Front key is
released, the screen returns to normal and normal editor
operation resumes.

- 267 -

EXPLAIN COMMAND

The routine error stores the value %explain in the variable
curop. It also sets the variables xplint and xplen. Normal
execution of equit moves curop to lastop in preparation for the
next operation.

The Explain command checks the variable lastop to see if it
contains the value %explain. If it does, the user has requested
explanation of a previous error. In this case, the message
pointed to by xplint (for length xplen) is displayed as long as
the user holds the Use Front key.

If the lastop is not %explain t then xplint and xplen are pointed
to the default message and displayed just like an error message.

While holding the Use Front key, the user can press any other
command key. When this happens, the routine extexpl looks in the
array xplntbl to see if the key corresponds to one of the
extended Explain messages. If it does, that message is displayed.

- 268 -

18. TITLES COMMAND

Introduction

The Titles command displays the contents of the first page of all
documents with an initial page number of less than 1. The Leap
keys can be used to scroll the display up or down one title at a
time if all titles won't fit on the screen at once.

- 269 -

TITLES COMMAND

The Titles command is implemented by a word Titles on disk C side
o page 29. The command operates by blanking the screen. an then
scanning the text for document characters. When it finds a
document character. it checks the variable #ipage (a 16 bit
quantity) to see if the first page is less than 1. If it is,
then all the text between the document character and the first
page break is defined to be the document title.

Once a title has been found. it is displayed on the screen
(including the page break at the end of the title). Then the
process is repeated until either there are no more titles or
there is no more room on the screen.

If there is more than one screenful of titles, pressing either
Leap key will cause the display to scroll by one title at a
time. This is done by picking which title will be at the top of
the screen and then redisplaying the entire screen using the same
procedure described above.

The two Leap keys are key $36 and key $3e, as can be seen in the
code.

When Use Front is released. the original text screen returns.

- 270 -

19. DISK

Introduction

The Disk command controls all operations relating to the disk in
the drive. This includes moving information to and from the
disk, and moving information from one text to another. Having
one Disk command greatly simplifies the user's task. Disk's
built-in safety features protect him or her from destroying text
by trivial error.

By comparing the text in memory to the text on the disk, the Disk
command can determine whether to record the text in memory onto
disk, play back the text recorde~ on the disk t or beep and do
nothing.

Record transfers text in memory onto the disk for safe storage.
Recording removes the last version of the text recorded on that
disk, fully replacing it with the new version.

Playback means copying the information from the disk into the
memory and putting a portion of it on the screen where it can be
seen and worked on. Playback will also copy up the highlighted
portion of the old text and insert it into the new text being
copied from disk to memory.

A beep is a warning sound made by the Cat when recording or
playing back might lose information, such as when the text
on-screen has not been recorded, and the disk in the drive is not
the disk it came from. When there is a beep, the Exp~ ~n screel
describes the problem and suggests a remedy. A beep is issued
and a ruler sign displayed when something unusual has happened.
For example, when the Cat plays back a disk recorded on a
different version of the Cat a DISK TRANSFER sign appears along
with the beep.

- 271 -

19.0 OVERVIEW OF THE DISK COMMAND: RECORD AND PLAYBACK

The Logic of the Disk Connand

The Disk command can examines various bits of information about
the text both in memory and on the disk to determine the action
most likely to satisfy the user. All required information
pertaining to the disk is located in one area of the disk called
the idblock. This is the first structure read from the disk.

Before presenting a detailed discussion of the rules of this
logic, a description of the fundamentals lays the ground work.

What Is Recorded and What Is Not

The text, Forth dictionary (including system integers and token
table), machine state, and display memory are all recorded on
disk. Not recorded on the disk is the memory above ramend (the
end of text memory), including system. status , the disk and print
buffers.

Compression

To reduce the time it takes to record these structures, redundant
space is removed from them during recording. Space is removed
from the text with the word packtext and from the Forth
dictionary with the word packforth. Space is restored during
playback with the words unpacktext and unpackforth,
respectively. All of these words are called from the first half
of <save>.

Playing Back the Text From the Disk

The word <restore> reads useful information from the idblock
(already read from the disk by the Disk command; see "The Logic
of the Disk Command, below). After this, it reads the display
memory, immediately displaying it on the screen. Then it reads
the remaining off-screen contents of the disk into memory.

It then executes the second half of <save> by use of a
non-standard programming method. The entire machine state,
including return stack, program counter and instruction pointer,
is recorded. When it is restored (copied back into memory),
execution resumes where it left off when <save> began writing the
image into memory. This creates an unusual situation.

The same code (in the second half of <save» is used by both save
and <restore>. After a "record" is performed, the contents of
memory are almost the same as when the "record" began. However,
after <restore> is done, the contents of memory have been
completely changed, including any indication that <restore> has

- 272 -

taken place. Both <restore> and the latter half of <save) use
two special memory areas - .scratch and the copy in memory of the
idblock, both located at the end of the display memory - to
distinguish between them. Once the display memory has been read
into memory, it is available for such purposes.

Maintaining Compatibility Across Different Versions

As the Cat program is modified to accomodate various changes, the
text and many of its support structures will not function in a
Cat program version differing from the one that wrote it onto the
disk. However, enough information is recorded on disk in a table
called the idblock so that a special word, getforward, can sort
out the differences and place the text into memory areas
appropriate to the new conditions. This use of getforward to
read one Cat version disk on a different Cat version produces the
DISK TRANSFER ruler sign.

Copying Up

When a part of the text is highlighted before the Disk command is
given, the highlighted text is "copied up" to the new text. This
is done by copying the highlighted text to just below ramend,
reading the disk text in the normal manner and then moving the
highlighted copy into the new gap.

Backing Up

Because the information on the disk is not invulnerable, a simple
method was provided for making several disks with identical
copies of the text in memory. A table called the idtable is
stored on the disk in the idblock. It contains identifying
numbers uniquely associated with the text. idtable is used by
the logic of the Disk command to allow two or more disks to
record the same text. A system integer idadvance causes this
table to be updated in a special way when a backup is recorded.

- 273 -

19.1 THE LOGIC OF THE DISK COMMAND

The Disk command uses text information from both memory and disk
to determine the action most likely to satisfy the user. This
logic is incorporated into the word <Disk), presented below.

Get this information from Canon Cat source disk C, side 1.

Infonnation About the Text in Memory

The word cleantext? examines the system integer dirtytext? and,
with the word allselected determines the extent of the
selection. If all of the text has been selected, the first and
last document characters being optional, allselected returns a
true flag.

dirtytext? contains a false flag immediately after text has been
played back from disk and until the text in memory has been
changed, when it is set to true. All commands except the Print,
Send, Send Control, Local Leap, Document Lock, Titles, Leap.
Spell Check Leap and Explain commands store a true flag in
dirtytext? The only command that sets this integer to "false!!
is the Disk command.

The word emptytext? returns a true flag if there is no text in
memory.

Infonnation About the Text Recorded on the Disk

The word idblock attempts to read a specific structure from the
disk. There are three identical copies of this structure located
on tracks 0, 1 and 59 hex and an attempt is made to read them in
that order. If all three attempts are unsuccessful, the Disk
command can't proceed and a beep is issued with the "NO DISK IN
DRIVE" explain screen.

The word nontextdisk? examines the drive identifier. If this
number is neither 3325 nor 3326. it returns a true flag. If a
true flag is returned, the Disk command responds with a beep and
the "UNRECOGNIZED DISK" explain screen.

The word samedisk? compares the memory idtable describing the
memory text with the one in the idblock it read from the disk.
If they are identical, a "true" flag is returned.

The word backupdisk? also compares these two tables. If the last
~ consecutive numbers in the two tables are identical, a true
flag is returned. The maximum number of identification number
pairs is 32.

- 274 -

THE CONTENTS OF THE 10 BLOCK

This information can be found in the words notepointers and
noteramsize.

0
4
8
c
10
14
18
lC
20
24
28
2C
30
34
38
3C
40
44
48
4c
50
54
58
5C
60
64

66
68

6A
6c
70
74
78
7C

address registers

data registers

xx
xx
xx
xx
xx
xx
xx
xx
xx
sr
-)

-)

xx
xx
xx
xx
xx
xx

(2 bytes) 68008 status register
(2 bytes) drive identifier
(2 bytes) number of tracks to write

- 275 -

--

80
84
88
8e
90
94
98
9C
AO
A4
A8
AC
BO
B4
B8
BC
co
c4
c8
CC
DO
D4
D8
DC
EO
E4
E8
EC
FO
F4
F8
FC

romchecksum
top
current
-)

xx
xx
xx
xx
idadvance
-)

system. status
xx
xx
xx
xx
xx
xx
bot
eat
gap
bou
beat
bos
blackscreen
o
diskbou
text
endtext
disktext
-)

svid
xx

of Forth
vocabulary into which defs. are compiled
end of recorded image

-1 indicates a restore
address (not 0) is a "copyup pointer!!
copy of system.status for .<save>

color of text
?
beginning of undo on disk

beginning of undo on disk
"lockedness lt at blinker location
svram identifiers

- 276 -

100
104
108
10C
110
114
118
11C
120
124
128
12C
130
134
138
13C
140
144
148
14c
150
154
158
15C
160
164
168
16c
170
174
178
17C

-)

-)

idtable begins here (80 bytes long)

idtable ends with this long word

- 277 -

180
184 learnO address
188 -) length
18c learn! address
190 -) length
194 learn2 address
198 -) length
19C learn3 address
lAO -) length
lA4 learn4 address
lA8 -) length
lAC learn5 address
lBO -) length
184 learn6 address
lB8 -) length
1BC learn7 address
lCO -) length
1c4 learn8 address
1c8 -) length
1CC learn9 address
1DO -) length
1D4 xx
1D8 xx
lDC xx
lEO xx
1E4 xx
1E8 xx

\ ., 1EC xx
1FO xx
1F4 xx
1F8 xx
lFC xx
200 xx

- 278 -

Here is an example of the idblock taken from the disk the text
you are reading was once recorded onto:

407600 00 00 11 3E 00 00 6c B4 00 00 04 F2 00 00 04 D8 · .. > .. 1
407610 00 00 04 E6 00 01 B3 8D 00 40 7A E8 00 40 7C FC • •••••••• @z .• @ I.
407620 00 00 00 3E 00 00 FF 11 00 00 00 12 00 00 FF FF · .. > •...........
407630 00 41 26 E8 00 01 B3 74 00 41 OF D4 00 41 05 B3 .A& t. A ... A ..
407640 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ·
407650 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF · ,
407660 FF FF FF FF 20 08 33 26 00 12 FF FF FF FF FF FF ·3&
407670 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ·
407680 01 64 5D 35 00 42 00 00 00 00 00 FB 00 41 5C 20 .dJ5.B A\
407690 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ·
4076AO 00 00 00 00 00 00 00 00 00 45 4c 28 FF FF FF FF .•.•..... EL(....
4076BO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF II

4076CO FF FF FF FF 00 42 00 08 00 45 38 00 00 42 00 6A · B ... E8 .. B. j
4076DO 00 45 33 CD 00 45 33 D1 00 42 00 69 00 00 00 00 · E3 .. E3 .. B . i
4076EO 00 00 00 00 00 41 57 CD 00 42 00 00 00 45 38 20 · AW .. B ... E8
4076FO 00 41 54 00 00 00 00 00 00 04 00 15 FF FF FF FF .AT
407700 51 73 41 E6 00 00 00 00 00 00 00 00 00 00 00 00 QsA
407710 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 • " • iii

407720 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ·
407730 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
407740 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ... It

407750 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ,
407760 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ,

407770 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 • •••••••• , I

407780 00 41 51 7E 00 00 00 00 00 41 51 86 00 00 00 2C · ,A.Q- f'\Q•

407790 00 41 51 BA 00 00 00 00 00 41 51 C2 00 00 00 00 · AQ A.Q
4077AO 00 41 51 CA 00 00 00 00 00 41 51 D2 00 00 00 00 .AQ AQ
4077BO 00 41 51 DA 00 00 00 00 00 41 51 E2 00 00 00 00 · AQ .•.... :\Q

4077CO 00 41 51 EA 00 00 00 00 00 41 51 F2 00 00 00 00 .AQ AQ
4077DO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF • I I ••

4077EO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF • I-

4077FO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF • • • • • • ~ • • • .. 0- • ..

- 279 -

DISK ROUTINES

allselected (-) f)
(pronounced all-se-lec'ted

Returns a "true" for the parameter ufl! if the entire text is
selected.

backup (-))
(pronounced bak'up

Saves on disk but dosn't adavance the id number before saving.

backupdisk? (-) f }
(pronounced bak'up-disk-ques'chun)

Returns a "true" for parameter "fit if the disk is a backup disk
of the disk whose text appears on the screen.

Bdisk -)

pronounced b disk)
Makes a backup disk on drive A, side 0
Makes

Bdiskl (-))
(pronounced b disk 1

Makes a backup disk on drive A, side 1

BdiskB -)

pronounced b disk b
Makes a backup disk on drive B, side 0

BdiskBl -)

pronounced d disk b one)
Makes a backup disk on drive B, side 1

<Bdisk) -)

pronounced bracket b disk)
Root word of Bdisk. Bdiskl, BDiskB and BdiskBl. Makes a backup
disk on the selected disk side.

cleantext? (-) f)
(pronounced cleen'text-ques'chun)

Returns a "true" if the text is clean, or if the entire text is
selected.

copyup (-))
(pronounced kaap'ee-up)

Copy selected text up to new disk if there is enough room and
destination text is unlocked.

Disk (-))
(pronounced disk')

Save, playback or copyup text on disk A, side O.

- 280 -

Diskl (-))
(pronounced disk' one

Save, playback or copyup text on disk A, side 1.

Bdisk (-))
(pronounced bee' disk

Save, playback or copyup text on disk B, side O.

Bdiskl (-))
(pronounced bee' disk one)

Save, playback or copyup text on disk B side 1.

<Disk> (-))
(pronounced bracket disk)

The root word for Disk, Diskl, Bdisk and Bdiskl that performs the
disk function for the selected disk side.

disk>mem (offset track# addr len -- error-flag)
(pronounced disk'-too-mem)

Reads data on disk into memory. Transfers "len" number of bytes
from the disk location specified by the parameters "offset" and
It track# It in to the memory location speci fied by It addr It • The
parameter "errorflag" is the result code of the disk reading. and
signals "no error" or an error of a certain type.

diskaddr (addr -> 0 t)
(pronounced disk-ad'er

Given the address on the stack, calculates the offset and track
number on a disk.

diskcmd? (-) f)
(pronounced disk' com-mand' qwes'chun)

Returns a "true" for the parameter "f" if the last command
executed was the Disk command.

displaydisk (->)
{ pronounced dis-play' disk'

Displays the last screen image recorded on the disk.

driveA (->)
(pronounced drive' ay')

This word is unique to development Cats that have two disk
drives. Selects the "AI! or first drive for all disk operations.

driveB
(pronounced drive bee')

This word is unique to development Cats that have two disk
drives. Selects the "8" or second drive for all disk operations.

emptytext? (-> f)
(pronounced emp'tee text ques'chun)

Returns "true" for the parameter "f" if the text is empty (no
characters in the text other than the initial document
charac ters) .

- 281 -

! id (id -))
(pronounced stor' eye dee

Stores the given i.d. into i.d. table moving the other i.d. 's
down first if idadvance is true.

idblock (-) f)
(pronounced eye dee' block)

Reads the identification block from the disk, returning the
parameter "f", which is the result code of the disk reading, and
signals "no error" or an error of a certain type.

killdisk (-))
(pronounced kill-disk)

Completely erases any information on a disk.

nontextdisk? (-) f)
(pronounced nahn-text' disk kwes'chun

Returns a "true" for parameter "f" if the disk is not
recognizable as a Cat disk.

samedisk? (-) f)
(pronounced same disk ques'chun)

Returns a "true" for parameter "f" if the disk has the same i.d.
number as the disk whose text appears on the screen.

save (-) }
(pronounced sayv'

Do the Disk command save part with a new unique identifier.

save&backup (-))
(pronounced sayv' and baklup

Makes booted disk a backup of this disk.

savenew (-))
(pronounced sayvl noo)

Clear id table and then save.

showdisk (-))
(pronounced sho'disk)

Shows screen from disk until use front key is released.

verify&erase (-))
(pronounced vair-i-fy and ee-rase'

Show screen from disk until use front key is released or until
shift erase is pressed then erase disk.

- 282 -

INITIALIZATION WORDS

cold ->
pronounced cold)

Executes a complete system reset by executing the 68000's reset
instruction which pulls the processor reset line low and resets
all external devices. Because the reset line is connected to the
processor halt line, it also restarts the processor via «cold» ;

<cold> (->)
(pronounced brak'it-cold)

Starts system by executing «cold» then does initialization of
forth and the editor. Exits to the diagnostic code if the
diagnostic switch was pressed. If the diagnostic switch was not
pressed, <cold> looks for a disk and tries to read it if at all
possible. If the disk is readable it is read and the editor is
entered but if no disk is present or the disk is unreadable, it
simply enters the editor.

«cold» (->)
(pronounced brak'it-brak'it-cold')

First code that executes when the power is turned on as its
address is in the 68000'3 startup vector at address 00000004.
Initializes both the hardware and the software environment.
Initializes the hardware using reset. hardware , then clears the
screen. Next, reads the country code of the keyboard and records
it in the system status area. (If the self-test switch is held
down before and during the switching on of power, the system will
checksum the ROMs, beep if an error is detected, and execute a
RAM test.) Then, copies the tokentable into the RAM, initializes
the stacks, sets the processor's internal registers and begins
executing Forth. An entrance near the end of «cold» is common
code for .leve17 to jump into to finish any warm starts and begin
Forth execution.

initialize (-))
(pronounced in-i'sha-lyz)

Initializes Forth, hardware related RAM space, and the editor
variables.

initinterruptvecs (-))
(pronounced in-it' in'ter-rupt' veks)

Target compiler word that stores the interrupt vectors into the
interrupt vector address space.

initkeyboard (->)
(pronounced in-it' kee'bord)

Initializes the autorepeat timers for the keyboard.

- 283 -

.initlist (table - no stack diagram)
(pronounced in-it' list)

A table of 32-bit numbers used to initialize the hardware when
the system powers up. The upper eight bits of the 32-bit value
is the data that is to be written to the address specified by the
lower 24 bits.

initnumbers (-))
(pronounced in-it' num'bers)

Initializes all integers from rom and setting zeroed ones to
zero. It also initializes a few arrays to zero.

initstate (-))
(pronounced in-it' stayt

Initializes the general machine state.

initstrings (-))
(pronounced in-it' strings)

Initialize the RAM strings from ROM and then adjust the affected
token table addresses to point to RAM.

inittables (-))
(pronounced in-it' tay-bls)

Initialize the editor cOillmand table from ROM and clear the disk
id table to zero.

initvocab (-))
(pronounced in-it' vo-cab')

Initialize all of the RAM vocabularies and open the user
vocabulary.

reset.hardware (-»)
(pronounced re'set-hard'ware)

Initializes the hardware according to the data in .initlist.

- 284 -

MAIN DATA STRUCTURES

.s/r (pronounced dot-ess' slash arr)
A 200 byte table is located at the end of the last track
containing the screen image. idblock copies this table into
memory at .s/r for use by save and restore and their respective
support words. It contains enough information to transfer
everything stored on disk back into memory. It is filled in
mostly by notepointers and a bit mor9 by noteramsize, both of
which are called by <save> as its f.:...;:st task, shortly before it
calls .<save>. .<save> then fills it in with information about
the machine state - the address and data registers and the 68008
status register .

. scratch (pronounced dot' scratch)
This is an area of memory that, while saved to disk, is restored
by the word displaydisk, rather than by restore. It communicates
between the first part of save and the last part since neither of
the stacks nor any integers can serve this purpose. This area is
located above the screen and below the area in memory that
becomes the idblock on disk.

system. status pronounced sis-tern dot' sta'tis)
Immediately above the end of the text, and below the track
buffer, this structure holds 80 bytes (7) of information. The
restore value of ramend and trkbuf are located in it.

- 285 -

INTEGERS

idadvance (pronounced eye-dee' add-vanss')
This system integer tells the next invocation of save to shift
all the text checksum numbers in the idtable down by one position
in that table before it stores the current checksum. After the
idblock has been copied from the disk, restore puts a -1 (flag)
into the long word AO bytes from the beginning of the copy in
memory. .<save> (after restore begins executing it) transfers
the contents of this long word to idadvance.

- 286 -

20. SEND, RECEIVE AND PHONE COMMANDS

Introduction

The telecommunication features of the Cat are supported by the
routines described in this section. Also described in this
section are the commands Send, Send Control, Send Password, and
Phone. The receive part of the system (which is automatic and
does not involve a command) is also described.

- 287 -

20.0 THE PHONE COMMAND

The Phone command dials the phone, disconnect the phone at the
end of a call, and establish a data connection. The code that
implements the Phone command is on Disk CO, pages 1-6.

The Phone command itself is on page 4 of Disk CO. The code first
checks to see if the Send command is attached to the serial
port. If it is, the Phone command is disabled and no further
action is taken. The code then checks for an extended selection,
and if the phone is not off-hook, it begins dialing the number
contained in the extended selection. Non-numbers are ignored.

First a message appears in the ruler to indicate that dialing is
taking place. Then the phone is taken off-hook and there is a
2-second wait for the dial tone. Then a begin-again loop that
analyzes the selection is executed. Whenever a number is found,
it is dialed. If the character is underlined, it is pulse
dialed, otherwise it is tone dialed. This loop also puts in 0.5
second waits when it encounters a comma in the selection.

If the Cat is off-hook, and the selection is not extended, then
the Phone command should hang up. It does this by first sending
the ETX string, in the case that the other end is a Cat, and then
drops the line.

If the Cat is not off hook, the Phone command should attempt to
establish a connection. The code first waits for ringing (if
there is any) to stop, since it could damage the circuitry if the
phone were off-hooked while the ring voltage were on the line.
When ringing finishes, the Cat is taken off-hook and an attempt
to establish a carrier via phonetest for up to carriertimeout
seconds is made.

If the Phone command was used, we did not autoanswer, so the
autoanswer flag is reset.

The support routines used by the Phone command are located either
near the Phone command (pages 1-6 of Disk CO), or in the
lower-level support words on Disk AD.

- 288 -

20.1 RECEIVE ROUTINES

Receiving characters is automatic in the Cat, so there is no
"Receive Command." Rather, every cycle through the main loop
checks to see if there is a character ready to receive. The main
loop is called <equit> and it appears on Disk CO, page 51. Near
the end of the routine, a check is made to see if there are any
characters received. If there are, they are inserted into the
text.

The support words ?rxch, rxget, and txchr are the interface
between the high-level send and receive words and the lower-level
routines. Buffering is performed by the low level words, and
?rxch is a flag that indicates there is a character in the rx
buffer. The interface to the Setup command is also performed by
the low-level words, so rxget always gets characters from the
correct port as defined by the Setup command.

If there is a character ready to receive, the word receive is
called. receive first checks if any of the Use Front or Leap
keys are down. If so, receiving will not occur and nothing
happens until all such keys are released. Otherwise it checks
the state of the cattocat? flag and calls the appropriate receive
word: ctocreceive if it is Cat-to-Cat, and <receive> if it is
non-Cat-to-Cat.

<receive> simply gets data from the rx buffer (using rxget) and
inserts it into the text at gap or at op if forceop is on (in the
case where the user has typed). Then the interval table is
adjusted appropriately and the display is refreshed. Finally.
the von timer is reset as if someone had just typed a key.

ctocreceive receives if the system is in Cat-to-Cat mode. This
routine is much more complex than <receive> because it checks the
received characters to make sure that they represent valid
character strings. This checking is ---erformed by the rou tine
verifychar, which breaks the receive, jata down into individual
elements which can be checked sequentially. In order to make
sure that there is a full character plus associated data (for
example, a full format packet or a full calculation expression) .
ctocreceive waits until two valid characters are in the receive
buffer before taking on character out. This is done because the
text would likely be broken if partial hidden text was also in
the text. Also, if the user leapt while in the middle of
receiving hidden text, the hidden text could be in two separate
chunks. This is done because most of the effort required to
verify a character consists of making sure that the hidden
information in the encoded text is correct.

verifychar breaks the received data into characters that will
appear in the text followed by hidden characters. For a break
character, the contents of the format packet (if one exists) are
checked for validity (including reasonable values for margins,
etc.). Document characters are checked for document packets as

- 289 -

well as format packets (if any). The first answer digit of a
Calc pocket is checked for a correct calctoken. The token part
of the pocket is always set to redefineerror. The encoded
expression is checked for bad characters, and if any bad
characters are found, they are replaced with a question mark
(represented as two encoded bytes). Characters are also checked
for correct accents and to make sure that reasonable attribute
bytes are appended.

If an error is found, the bad characters are replaced by question
marks. This can result in a large number of question marks being
inserted in the text. If there is a bad byte in a format packet
all of the hidden characters following will just be discarded.
If two characters have not been received after a one second
timeout, the routine assumes that the end of the transmission has
occurred and attempts to remove the last character from the
buffer and insert it into the text.

- 290 -

20.2 SEND COMMAND

The Send command sends selected (or autoselected) text.
Depending on the setup, it will send surface text only or both
the text and its underlying structure. The Send command code is
on Disk CO, page 49.

The command first tests to make sure whether or not the modem is
selected. If it is not, the code attempts to establish a
connection. Once a connection is established, the sending mode
is checked. If the mode is Cat-to-Cat, then the routine
deepsend, which sends the text and it's structure, is called. If
the mode is not Cat-to-Cat, then a test of the length of the
string sendend$ is made. If this string is length a (that is the
Setup command has selected None for the line-end string). then
the routine unformattedsend is called. This routine sends all
surface characters plus tabs and returns. It does not fill out
the margins or tabs with spaces and it does not send the
underline, bold, or dotted underline status of the selected
text. The contents of pockets or format packets are not sent
either.

If the sendend$ string is not zero length, then the formattedsend
routine is called. This routine fills out the left margin and
tabs with spaces, so a normal terminal at the other end will
receive text that looks formatted like it is on the Cat screen.
The sendend$ string is sent at the end of each line, so each line
will end with a CR or CRLF, depending on the user's choice.

- 291 -

20.3 SEND CONTROL AND SEND PASSWORD COMMAND

The Send Control command sends a control character for each press
of a key as long as the Use Front key is held down. Send
Password simply sends the character typed as long as the Use
Front key is held down. Neither command echoes to the screen.
The code for these two commands is on Disk CO page 50. In
addition. there is an array that insures that Send Control only
sends control characters according to the keyboard map in the
spec. If a key that is not assigned to a control key is pressed,
nothing is sent. Send password simply sends the key that is
pressed. after converting it to an ASCII character using the same
sendtable used by the formatted and unformatted Send words.

- 292 -

20.4 COMMUNICATIONS ROUTINES

connectone (--)
(pronounced con-nekt' tone)

Produces the sound effects and Explain message which indicates
that a connection has been made.

ctocreceive (--)
(pronounced see' to see' ree-seev')

Handles Cat-to-Cat receiving (read the source code for all of the
details, as ctoreceive is fairly complicated and handles many
cases).

deeps end (--)
(pronounced deep' send)

Sends the text and all the underlying structure to another Cat.

externaldial addr len --)
pronounced eks-ter'nul dy'il

Dials the string to an external Hayes-compatible modem.

formattedsend
pronounced for'mat-id send)

Sends the current selection with leading spaces and line endings
at the end of each displayed ~~ne.

hangup (--)
(pronounced hang'up

Hangs up the phone and throws away any extra characters in the
receive buffer.

matchanswerback (-- flag)
(pronounced match an'ser bak)

Checks the incoming stream of characters with the answerback
message. Used when deciding if the Cat is talking to another
Cat. Returns true flag if the answerback message is fully
matched. Otherwise returns a false flag as soon as an error is
detected.

modemconnect? (-- flag)
(pronounced mo'dim kon-nekt' kwes'chun)

True if the Cat is using its internal modem or an external modem
for its communications port.

noreceiving? (-- flag)
(pronounced no ree-seev'ing kwes'chun)

Returns true if no new activity has occurred in the receive
buffer since the last time the variable oldrxptrs was updated.

- 293 -

Phone (--)
(pronounced phone')

The Phone command. Handles all dialing, unhooking, and so forth
of the phone, stemming from the user's commands. (Phonetest
handles the automatic answer and hangup operations.)

phonetest (--)
(pronounced phone' test)

Called every time through the main loop. Checks whether a
carrier is present after dialing, verifies that the carrier is
still present once a connection has been established, and keeps
the call-progress monitoring up to date until a connection is
established. Auto-answers the phone if ringing occurs and hangs
up when thF connection is lost.

receivable? char -- flag
pronounced ree-seev'a-bl kwes'chun)

Performs elementary checking to see if the character is in the
range of legal ASCII that the Cat understands. Returns true if
so.

receive (--)
(pronounced ree-seev')

Called from the main loop every time there are characters that
may potentially be received. Does nothing if a Leap or Use Front
key is down, since it would be confusing to receive while trying
to perform some command or while leaping through the text.
Otherwise it selects the appropriate receive routine.

<receive> (--)
(pronounced brak'it ree-seev')

Handles non-Cat-to-Cat receiving.

receivetable (-- address)
(pronounced ree-seev' tay'bl)

An array used to translate characters coming from an IBM PC-type
character set into the Cat's internal character codes.

Redial (--)
(pronounced ree'dy-il)

Redials the last phone number dialed. Similar to the Phone
command.

resetphonelight (--)
(pronounced ree'set phone' lyte)

Checks the state of the modem and refreshes the indicators in the
ruler.

Send (--)
(pronounced send')

Makes sure there is a connection (or tries to establish one if it
can), then calls the appropriate sending routine.

- 294 -

SendCtrl (--)
(pronounced send kon-troll')

Handles sending control characters. It takes keystrokes until
the Use Front key is released and translates them into control
characters and sends them. Uses the table specialctrl for
translating non-alphabetic characters into control characters.

sendline addr-in-lbuff --)
pronounced send' lyne

Sends a line in the Ibuff, starting at the address, with all the
formatting.

SendPswrd (--)
(pronounced send' pass'wurd)

Works like SendCtrl, but does not translate the characters into
control characters.

sendstring addr len --)
pronounced send' string)

Sends the given string to the appropriate device.

send table (-- address)
(pronounced send' tay'bl)

An array that translates sent characters into the IBM-PC
character set.

setmcdem (flag --)
(pronounced set' mo-dem)

Handles the handshake between two Cats that decides if the other
end is a Cat (to set Cat-to-Cat mode). Returns a "0" if the
other send is not a Cat, otherwi3e returns a "-1".

transend addr --)
pronounced tran'send)

Looks at the character and its accents at the address and
translates and sends the character. Uses sendtable.

unformattedsend (--)
(pronounced un'for-mat-id send)

Sends each character in the selection. Doesn't add any extra
characters. Used if lineend$ is empty.

unhidebyte pronounced un'hyde byte)
verifyaccentable pronounced vair'i-fy ak-sent'i-bl
verifybreak pronounced vair'i-fy brayk')
verifycalc pronounced vair'i-fy kalk')
verifydoc pronounced vair'i-fy dahk')
verifyfmtpkt pronounced vair'i-fy efr-em-tee' pak'it
verifynonaccentable pronounced vair'i-fy non-ak-sent'i-bl)
Used by verifychar to ensure that a range of text is legal and
won't corrupt the editor.

- 295 -

verifychar addr end -- addr' end')
pronounced var'i-fy kair

Takes two addresses and verifies the next character out of the
text. It returns the addresses pointing at a new range that
consists of the old text without the last verified character.
The end may change if some hidden bytes are removed .

- 296 -

21. PRINTING

Introduction

Given the diversity of printers supported by the Cat, the
majority of the print code must be independent of the printer.
When the user selects a printer, the Cat generates a set of
printer command strings. These command strings tell the printer
how to

o perform a carriage return
a feed a sheet of paper out of the printer
a boldface a character
o initialize the printer

and all other required print activities.

Individual printer setup words prepare these strings for the
selected printer. The print code can then communicate with the
printer through the command strings without having to deal with
the idiosyncrasies of each printer.

The other printer-dependent aspect of printing is character
availability. Every printer supports a different character set.
To circumvent this problem, each printer has a printer table
which contains the ASCII codes it requires to print a given
character in the defined Cat printer character set. If a
particular character is not easily supported by a printer, a
special execution vector prints the character in the best
available manner.

- 297 -

21.0 MAINTAINING PRINTER INDEPENDENCE

The Cat supports eleven different printers and typewriters, which
use three different printing technologies. The table below lists
the printers and typewriters supported and the print technology
each printer uses. The printercode is a value used by the print
code to identify the printer currently in use.

~rintercode Printer Name Printer T:i2e

0 Cat180 Daisy wheel
1 VP3103I1 Laser beam
2 New AP Daisy wheel
3 AP400, 500, 550 Daisy wheel
4 AP300, 350 Daisy wheel
5 AP100 Daisy wheel
6 BJ80 Dot matrix
7 Fx80 Dot matrix
8 No printer Not applicable

In order for any new printers/typewriters to be added to the
above list (if necessary), the print code had to be written in a
very printer independent manner. Ideally, the print code should
never have to know which printer it is using. (In reality, a
very small number of these special cases do exist.) The two
areas in which printer independence is a problem are printer
commands and printer character selection.

- 298 -

21.1 PRINTER COMMAND STRINGS

The Cat communicates with a printer through a serial or parallel
link. The data to be printed and the command codes which tell
the printer how to print the data are sent over this link.
Although there is a basic set of commands required to print a
page of text, the codes required to implement these commands are
usually quite different for each printer.

To allow the print code to remain independent of all
printer-specific command codes, a set of printer command strings
are defined -- one for each basic print action required. The
basic Print command string names, and the actions they perform,
are listed below:

backspace" (pronounced bak'spays kwote
Instructs the printer to perform a backspace

-bold" (pronounced dash' bold gwote
Instructs the printer to stop boldfacing characters

+bold" (pronounced plus' bold gwote)
Instructs the printer to boldface all subsequent characters

endline" (pronounced end' line qwote)
Tells the printer what to do when it reaches the end of a line

endprint" (pronounced end' print gwote
Instructs the printer to eject the current page without feeding
in another page

evenhalfspace" (pronounced ee'vin haff' spays gwote)
Tells the printer to move forward one half-space from an even
half-space position

halfline" pronounced haff' lyne gwote)
Instructs the printer to move the paper up one half-line

tuni" (pronounced aytch' em eye gwote
Tells the printer how far to move after printing a character

initprint" (pronounced in-it' print gwote
Initializes the printer

oddhalfspace" (pronounced odd' haff spays gwote)
Tells the printer to move forward one half-space from an odd
half-space position

overs trike tt (pronounced o'ver-stryke gwote)
If the printer knows about overstriking (has the variable
knowsos?) then it will overstrike characters by sending
overstrike" followed by the two characters it wants overstruck

- 299 -

printforward" (pronounced print' for'word gwote)
Tells the printer to print from left to right (forward)

printreverse" (pronounced print' ree-vers' gwote)
Tells the printer to print from right to left (in reverse)

startline" (pronounced start' lyne gwote)
Instructs the printer to prepare to start printing a new line

topofform" (pronounced top-uv-form' qwote)
Instructs the printer to eject the current page and feed in
another

-underline" (pronounced dash' un'der-line gwote
Instructs the printer to stop underlining characters

+underline" (pronounced plus un'der-line gwote
Instructs the printer to underline all subsequent characters

unoverstrike" (pronounced un-o'ver-stryke gwote)
Sent after the two characters that need to be overstruck;
instructs the printer to start moving the carriage again

Whenever a ~rinter is selected by the user, the contents of these
strings are changed. Each printer has a setup word which is
responsible for filling each command string with codes understood
by the printer. These are the names of the printer
initialization words:

Printer

Cat180
LBP8
NewAP
AP400
AP300
AP100
BJ80
Fx80
No printer

Setup Word

cat180setup
Ibp8setup
cat180setup
ap400setup
ap300setup
aplOOsetup
bj80setup
fx80setup
noprintersetup

- 300 -

21 . 2 PRINTER "KNOWLEDGE"

Aside from preparing the command strings for a printer, the
printer setup words also set the contents of the printer integers
which describe what type of activities the printer can perform,
or has "knowledge" of. The main printer knowledge integers are
as follows:

boustrophedon (pronounced boo-stref'a-don)
The printer knows how to print bidirectionally.

knowstof? (pronounced nose' top-uv-form' kwes'chun)
Is the printer aware of form feeds?

knowsbold? (pronounced nose' bold kwes'chun)
Can the printer boldface?

knowsul? (pronounced nose' un'der-lyne kwes'chun)
Can the printer underline?

knowsos? (pronounced nose' o'ver-stryke kwes'chun)
Does the printer prefer overstrike to backspace?

knowshmi? (pronounced nose aytch'em-eye kwes'chun)
Does the printer use Diablo-like HMI setting?

ulinehack? (pronounced un'der-lyne hack' kwes'chun
Translate underlined whitespace to underline characters.

Note: HHMI" stands for "Horizon::al Motion Index." If a printel~
knows about HMI, it is able to adjust the width of a character,
that is, the distance the carriage travels after printing a
character.

- 301 -

21.3 CHARACTER SELECTION

The character sets supported by all of the printers differ both
in content and in the codes used to access a given character.
Printer tables hide these character set differences from the
print code, translating from the Cat printer character set to the
character set supported by an individual printer (see diagram) .
Each printer has its own printer table.

21.3.0 Printer Tables

A printer table has $10A word-length entries. The data in each
entry maps the ASCII code used to represent a character in the
Cat printer character set to the actual printer codes used to
generate the character.

Entries $00 through $lF, which correspond to non-printable
characters, are treated as spaces in the Cat printer character
set. Since all printers use a $20 code to represent a space
character, all of the printer table entries $00 through $lF
consist of a null value in the upper byte and an ASCII space
value in the lower byte: $0020.

Entries $20 through $7E correspond to the characters in the
standard ASCII character set. Most of the printers respect the
standard ASCII character set and use the standard ASCII character
codes to print the characters in this range. For this reason,
most of these entries will consist of a null value in the upper
byte and the corresponding ASCII value in the lower-order byte:
$0041 for the character A.

Entries $7F through $CF are for the characters in the extended
Cat character set. The extended Cat character set contains
special, country-specific characters and accent marks which may
or may not be supported by a particular printer. Even if the
printer supports a character in this range, it is very likely
that the code used to generate the character is different than
the code another printer will use. Therefore the codes found in
the entries in this range tend to vary widely among the different
printer tables. If a character in this range is not supported by
a printer, its corresponding entry in the printer' printer table
will hold a space value, $0020.

Entries $DO through $10A are for printing overstrike combinations
which are directly supported by some p~inters but not actual
characters in the Cat character set. These entries mainly
correspond to the accented vowels and consonants commonly used in
foreign countries, for example, "u" with an umlaut on a German
daisy wheel.

- 302 -

21.3.1 Handling Character Set Exceptions

When print codes are looked up in a printer table during printing
(see print), the contents of the upper byte of the printer table
entry determines how the character will be printed.

21.3.2 Simple Characters

If the upper byte of the entry holds a zero, the character is a
simple character (usually one in the $00 through $7F range). The
lower byte of the entry contains the printer code which will be
sent directly to the printer.

21.3.3 Overstruck Characters

If the upper byte of the entry holds a value which is greater
than $lF, the character is an overstruck character. An
overstruck character cannot be printed directly by the printer,
but it can be constructed using available characters from the
printer.

For example, although the Laser Beam printer cannot directly
print an § with a circumflex accent (Cat character code = $E5),
it can print both the accent and an § separately. To fake this
character, entry $E5 in the Laser Beam print table contains a $82
(the character code for the accent) in the upper byte, and a $45
(character code for an §) in the lower byte.

When an entry with an overstruck character combination is
encountered, the overstrike character is printed first, and then
the main character is printed on top of the overstrike character.

21.3.4 Weird Characters and the 'weirdprint Execution Vector

If the upper byte of the entry holds a value between $01 and $lF,
the character is a weird character. Weird characters cannot be
printed using the normal mechanisms of the print code, so speCial
steps have to be taken. For example. the Laser Beam printer
supports character sets for several different countries. To
reach a character in one of its international chart" '"er sets,
printer codes which tell the printer to use a new c .. ~racter set
must be sent before the weird character can be printed. After
the weird character is printed, more printer codes must be sent
to set the printer back to its main character set.

When the print routines encounter a weird character, they will
execute the routine whose address is found in the 'weirdprint
integer. Each printer has its own weird print routine. The
'weirdprint integer will always hold the address of the weird
print routine for the printer in use.

- 303 -

Figure 21.1 Cat Printer Character Set

- 304 -

21.3.5 Fx80 Character Selection

The weird print routine for an Epson Fx80 printer is called
fxBOmagic. Although the Fx80 printer supports a few different
country character sets, the main character set it prints from is
the USA character set. The fx80magic routine allows the Fx80 to
access characters in its other character sets.

21.3.6 Daisy Wheel Character Selection

A daisy wheel has 96 petals, each holding one character.
Ninety-four of those characters are the ASCII codes $21-7E. To
access the petals associated with ASCII codes $20 and $7F, a
speCial escape sequence must be sent to the daisy wheel printer.
The weird print routine daisymagic allow the daisy wheel printers
to access the two hard-to-reach character petals.

21.3.7 Laser Beam Character Selection

The Laser Beam printer also supports several country character
sets. The countries table lists the codes used to select
different character sets on the Laser Beam printer:

code countries nx jsr, ;c
8701 w, (IBM1)
8702 w, (IBM2)
642 w, (USA)
641 w, (UK)
645 w, (Norway/Denmark
64A w, (Japan)
632 w, (Netherlands)
742 w, (IBM1, low half
652 w, (France)
633 w, (Switzerland)
64B w, (West Germany)
630 w, (Canada)

The Laser Beam weird print routine LBPmagic allows characters
these other character sets to be reached.

21.3.8 BJ80 Character Selection

The BJ80 printer has no weird characters or print routine.

- 305 -

. ,.,

21.4 PRINT TABLE PATCHING

21.4.0 Daisy Wheel Print Table 't-atching

The basic character set for each daisy wheel is defined in the
daisy.printer printer table. Each of the 14 different daisy
wheels has approximately 20-23 characters which are different
from and are used in place of the characters in the basic set.
These daisy wheel specific characters are called "exceptions."
Each daisy wheel has an "exception table" which lists the ASCII
value of each exception character and the data which defines the
replacement character. As an example, let's look at the
exception table for the United States daisy wheel:

code usa.dw nx jsr, ;C
0023 w, 23 c, (sharp sign
003c w, a4 c, (super 2)
003e w, a5 c, (super 3)
0040 'N, 40 c, (@)
005b w, 5b c, (left bracket
005c w, 81 c, (plus/minus)
005d w, 5d c t (right bracket
005e w, 90 c, (degrees)
9061 w, 86 c, (circle-a)
0060 w, 9b c, (cents)
007b w, ac c, (1/4)
007c w, 7c c, (vertical bar)
007d w, ab c, (1/2)
007e w, b4 c, (double underli:'"
007e w, c4 c, (double underliLt': also
0100 w, 94 c, (paragraph)
0101 w, 95 c, (section)
-1 w, (End of USA daisy exceptions.

When usa.dw is executed, the address of the USA daisy wheel
exception table is returned. Each entry in the table is 3 bytes
long. The first two bytes contain the new replacement value
(print code) for a character. The third byte in each entry
contains the printer table offset which is being replaced. The
exception data is terminated with a word-length -1 value.

For example, by referring to the tahle above and the
daisy.printer printer table (in th ource code) we can see that
the default daisy character set would normally cause a space to
be sent to the printer whenever the Cat character code $81 is
printed. When the printer is using the USA daisy wheel, the USA
daisy exception table shows that a $5C code will be installed in
the printer table in position $81, causing a plus/minus sign to
be printed.

- 306 -

The tokens for each of the 14 daisy wheel exception tables are
kept in yet another table, the DW.countries table:

code DW.countries (a nx) jsr, ;c
... , usa.dw w, (offset = 00 \.,.

t' canada.dw w, (offset = 02
t' latin.dw w, (offset = 04
t' norway.dw w, (offset = 06
t' sweden.dw w, (offset = 08
t' holland.dw w, (offset = 10
t' german.dw w, (offset = 12
t' swiss.dw w, (offset = 14
t' france.dw w, (offset = 16
t' uk.dw w, (offset = 18
t' spain.dw w, (offset = 20
t' italy.dw w, (offset = 22
t' special.dw w, (offset = 24
t' japan.dw w, (offset = 26

The DW.countries table selects which daisy wheel exception table
to use based on the print wheel selection given by the user in
the Setup command.

21.4.1 BJ80 Print Table Patching

The bjsecond.dw table contains the character exceptions to the
standard BJ80 printer table. These exceptions are patched over
the standard BJ80 printer table contents if the user chooses
these exceptions through the Setup command.

- 307 -

21 . 5 PAPER LENGTH

Paper lengths vary from document to document, sometimes within a
single selection; the calculations commands used to set the paper
lengths vary from printer to printer. The paper length therefore
has to be set after each document break is sent to the printer.

An execution vector for setting the page length is kept in the
'docbreak integer. Whenever a document break is being output by
the pagebreak routine, the routine whose address is in 'docbreak
is executed to reset the printer's page length/size information.
The four page-length routines shared among all the printers are
as follows:

CATdocbreak
LBPdocbreak
ETWdocbreak

bj80docbreak

Set paper length for some daisy wheel prin tf<'S

Set paper size for LBP printer
Set paper length for 12-steps-per-inch ETW
typewriters
Set paper length for BJ80 and Epson Fx80
printers

- 308 -

21.6 PRINTING TEXT

So far we have described the printing data structures and other
printing terminology. All of the routines and integers used to
implement printing are described in detail in the routines and
integers summary. This section will describe the overall flow of
the Print command so that you will be ab ... 2 to use the printing
routines summary section knowledgeably.

The word called when the Print command is used is Print. Print
uses

pickprinter
makeprinttable

<Print>

to set up the print spooler
to prepare the printer table and patch it if
necessary
to perform the main printing functions

<Print> uses printify to light the "Print" sign on the ruler,
initprinter to initialize various printing integers and «Print»
to perform the actual printing.

«Print» spins in a loop, using printline to print one line at a
time until the entire selection has been printed, or the user
panics, or a page has been printed while "Pause between sheets"
is on. printline uses wrap to step through the text until a line
with displayable text is encountered. When a displayable line is
found, build creates a "disp-format" image of the line of text in
the line output buffer (lbuff).

<printline> steps through the Ibuff image one character at a
time, using unbuild to decompose the character for printing, and
then using render to actually print the character on the page.

render uses print to print a single character printer
independently. <printline> will continue until all characters on
the line have been printed.

printline also checks for page break and document characters. If
a page break or document character is encountered, pagebreak
ejects the current page from the printer and to feed in another
if necessary.

Refer to the individual routines listed above for further
information on the printing process.

- 309 -

21.7 PRINTING ROUTINES

21.7.0 Print Data Tables

BJ80.printer (pronounced bee'jay-ay-tee dot print'er
Printer code table for Bubble Jet printer.

bjsecond.dw (pronounced bee'jay sek'und dot dee du'bl-yu
Character exceptions to the Bubble Jet printer table.

countries (pronounced kun'trees)
Table of country codes used to print "weird" characters on the
Laser Beam printer.

daisy.printer pronounced day'zee dot print'er }
Basic version of a daisy wheel print code table. Since each
daisy wheel contains different characters in different locations,
this table will be copied to RAM and patched whenever a daisy
wheel printer is used.

fx80.printer (pronounced eff'eks ay'tee dot print'er
Printer code table for the Epson Fx80 printer.

LBP.printer (pronounced ell'bee-pee' dot print'er
Printer code table for the Laser Beam printer.

LBPpaper pronounced ell'bee-pee' pay'per
Table of Laser Beam printer paper size information.

Ibpsmarts pronounced ell'bee-pee' smarts)
Table of font and character size information for the Laser Beam
printer.

printers (pronounced print'ers)
Table used to map a particular printercode (numbered from 0-8) ,
to its associated S(ctup word. The printers table contains the
tokens for the routlnes used to set up the printers. setprinter
uses the printercode to index into the printers table, and
executes the token at that offset. The printers table is shown
below:

code printers fiX } jsr, ;c
t' cat180setup w,
t' lbp8setup w,
t' newapsetup w,
t' ap400setup w,
t' ap300setup w,
t' ap100setup w,
t' bj80setup w,
t' fx80setup w,
t' noprintersetup w,

vanilla.unbuild (pronounced vah-nil'la dot un'bild)
Table used to map an overstruck character to its corresponding
offset into the printer table. Used by unbuild.

- 310 -

wheel>country (pronounced weel' too kun'tree
Print wheel selection codes for the AFl00, AP300, and AP400 daisy
wheel printers.

wheel>iso (pronounced weel' too eye'ess-oh)
Print wheel selection codes for the Cat180 and NewAP daisy wheel
printers.

21.7.1 Daisy Wheel Exception Data Tables

afrikaans.dw

canada.dw

france.dw

german.dw

holland.dw

italy.dw

japan.dw

latin.dw

norway.dw

spain.dw

sweden.dw

swiss.dw

uk.dw

usa.dw

OW. countries

South African exceptions to the daisy wheel print
table.

Canadian exceptions to the daisy wheel print table.

French exceptions to the daisy wheel print table.

West German exceptions to the daisy wheel print
table.

Netherland exceptions to the daisy wheel print
table.

Italian exceptions to the daisy wheel print table.

Japanese exceptions to the daisy wheel print table.

Latin American exceptions to the daisy wheel print
table.

Norwegian/Danish exceptions to the daisy wheel
print table.

Spain exceptions to the daisy wheel print table.

Swedish exceptions to the daisy wheel print table.

Swiss exceptions to the daisy wheel print table.

United Kingdom exceptions to the daisy wheel print
table.

USA exceptions to the daisy wheel print table.

Table containing the addresses of the
country-specific daisy wheel exception data:

- 311 -

code DW.countries (a
t' usa.dw w,
t' canada.dw w,
t' latin.dw w,
t' norway.dw w,
t' sweden.dw w,
t' holland.dw w,
t' german.dw w,
t' swiss.dw w,
t' france.dw w,
t' uk.dw w,
t' spain.dw w,
t' italy.dw w,
t' special.dw w,
t' japan.dw w,

nx) jsr. ;c
(offset = 00
{ offset = 02
(offset = 04
(offset = 06
(offset = 08
(offset = 10
(offset = 12
(offset 14
(offset = 16
(offset = 18
{offset 20
(offset = 22
(offset = 24
(offset = 26

21.7.2 Print Table Construction Words (Used At Compile Time)

,accents a n c
pronounced kom'ma ak'sents)

Takes each byte-length character value from the string located at
address ~ of length ~ and lays the value into the printer table
under construction as a two byte, accented value where the upper
byte contains the ASCII code for the accent f. Used to add many
accented characters to a printer table at once.

ch
pronounced see-aytch')

Places a 2-byte value into the dictionary. Takes the next
character from the input stream and lays it into the table being
constructed.

,chars a n
pronounced kom'ma kairs)

Takes each byte length character value from the string located at
address a of length n and lays the value into the printer table
under construction as a 2-byte value (upper byte = 0). Used to
add many characters to a printer table at once.

os
pronounced oh' ess)

Places a 2-byte value into the dictionary. Takes the next two
characters from the input stream and lays them into the table
under construction.

,unbuild n1 a n2 c n3)
pronounced kom'ma un'bild

Used for creating the unbuild table. Takes each byte-length
character value from the string located at address ~ of length
n2, and adds the value ~ as the high-order byte of the word, and
places that value into the unbuild table under construction. A
2-byte printer table offset value is placed into the unbuild
table immediately after the overstruck character. The original
offset value for the string is n1. The offset value is

- 312 -

incremented for each overstruck character placed into the table
and the ending offset value ~ is returned on the stack.

w, t S (n1 n2
(pronounced du'bl-yu-cornmas

Uses w, to lay count n2 occurrences of the value nl into the
dictionary. Used only at compile time.

xxx (
(pronounced tri'pl eks)

Adds the 2-byte value $0020 (lower byte = ASCII code for a space)
to a printer table. Used as a filler for unprintable or unused
characters in a printer table.

21.7.3 Basic Printer Driver Words

backspace
pronounced bak' spays)

Moves the printer carriage backward one space (two half-spaces) .
If the printer carriage was moving to the right, backspace will
cause the carriage to be moved two half spaces to the left and
vice versa.

If the printer doesIl't have a backspace command, backspace
will check the carriage direction and output a $08 (backspace)
ASCII code to the printer if the carriage is moving to the right
and a $20 (space) ASCII code if the carriage is moving to the
left.

If the printer "knows" about backspacing, backspace will
simply send the backspace" printer command string to the printer.

backspace also updates motion two half-spaces backward.

halfspace
pronounced haff' spays)

Tries to move the printer carriage a half-space in the current
carriage direction.

halfspace checks oddhalfspace to see if the next half-space
is an odd half-space. If it is, the oddhalfspace" printer
command string is sent to the printer.

Otherwise, the evenhalfspace" printer command string is sent
to the printer.

Finally, the contents of the oddhalfspace integer are
toggled and motion is updated one half-space forward.

motion (n)
(pronounced mo'shun)

Used to help keep track of print-head location. Adds the
specified motion ~, expressed in half-characters, to the current
contents of the prcol integer. Before prcol is updated, it is
clipped to make sure it lies within the current left and right
margin boundaries.

- 313 -

newhalfline
pronounced noo' haff'lyne

Moves the paper up a half-line. Uses put" to send the halfline"
string to the printer.

newline
pronounced noo' lyne)

Puts the printer carriage physically and logically at the start
of the next line and alters or resets several printer state
integers. The endline" printer command string physically
positions the printer carriage at its new line position. If the
printer cannot print bidirectionally, the carriage must always be
placed at the left edge of the paper; we don't move the carriage
if printing is bidirectional. prcol is the integer used to hold
the current logical horizontal position of the carriage.

newline uses the phrase gutter negate prcol to to set the
logical carriage position to the left margin for nonbidirectional
printers. newline also zeros the contents of the oddhalfspace.
balded, and underlined printer state flags and the proldflags
integer and increments the prline logical vertical page position
integer by two half-lines (since we are moving down to a new
line) .

If underlining or bolding was turned on at the end of the
previous line, newline will send either the -bold" or -underline"
printer command string to the printer to turn the bolding or
underlining off.

paperlength (n
(pronounced pay'per length)

Returns the length (in half-lines) of the paper being used for
printing. paperlength calculates the total length of the paper
using the contents of the #abave. #lon[and #below state
integers and then subtracts the contents of the papershort
integer from the total length to calculate the actual paper
length.

printc c
pronounced print' see)

Higher-level version of the word <printc>. Simulates a bold
character on a printer that doesn't know how to print in
boldface. If the printer does not know ~'W to print in boldface
and a bold character must be printed 9 printc will doublestrike
(print once, backspace, print again) the character ~ to simulate
a bold appearance. Otherwise, the charac -;:,er will be prin ted jus t
once. Updates motion forward by two half-spaces.

printerror
pronounced print' air'ror)

Presents a system error and aborts.

put" a n
pronounced put' kwote)

Sends the string at address ~ of length ~ to the printer. Uses
<printc> to send each character individually.

- 314 -

21.7.4 Vertical Paper Motion

formfeed
pronounced form'feed)

Feeds the current page out of the printer, feeds a new page in if
necessary and possible, and resets the logical printer carriage
positioning integers.

If the printer understands a "top-of-form" command
(knowstof? is true), formfeed checks to see if either the end of
the printable selection has been reached (#nextwr @ gap » or if
the user has prematurely terminated printing (stopprint). If
either of these cases are true, not another page will be printed,
so the endprint" printer command string is sent to the printer to
indicate that the current page should be ejected without feeding
in a new page.

If neither of the cases are true, another page will be
printed. The topofform" printer command string is sent to the
printer to indicate that the current page should be ejected and a
new page should be fed into the printer.

If the printer does not have a "top-of-form" command
formfeed will specifically place the carriage at the first line
past the end of the page.

formfeed's final actions are to reset prcol and prline so
that the carriage is logically positioned at the left edge on
line 0 on the paper. The backwards .; nteger is set to false so
that printing will commence in a lei~ to right direction.

newpage?
pronounced n00' payj kwes'chun)

If necessary, nitializes the physical and logical vertical line
position of the printer carriage for a new page. If a form feed
has just occurred (prline 0= if), newpage? will try to move the
carriage #above half-lines down from the top of the paper.
#above holds the height of the top margin on a printed page,
expressed in half-lines. paperpos "'olds the "top-of-form"
position for a printer, expressed in half-lines. After a form
feed, the carriage will be located paperpos half-lines from the
top of the new sheet of paper.

If the #above position is less than the paperpos position,
the carriage will be left at its current top-of-form position.
If the #above position is greater than the paperpos position,
toline will be used to move the carriage the remaining number of
half lines required to reach the #above position (#above paperpos
-). The prline system integer is initialized to the value held
in #above.

pagebreak.
pronounced payj' brayk)

Outputs a page break on the printer. This involves printing the
page footer if required and possible, performing a form feed, and
resetting document characteristics if necessary. If the single
page printing mode is in use, pageprint sets stopprint to true so
that printing will stop after the current page is printed.

- 315 -

pageprint calculates the page number for this page and
compares it to the page number in the #iprint state integer.
#iprint holds the page number of the first printable page in the
current document. If the calculated page number for the current
page is less than the Niprint page number, pagebreak will not
print the footer. Also, if for some reason the carriage has
already moved below the line on which the footer should be
printed, the footer will not be printed.

Whether or not the footer was printed using printfooter,
pagebreak uses formfeed to eject the paper and then checks the
current character. If the current character is a document
character and there is more text to print, #wr @ nextchar
findchar gets the control variables for the next document; the
document break routine for the printer is executed to set the new
paper length for the document.

pagebreak? f
pronounced payj' brayk kwes'chun)

Returns a true flag if the Ibuff contains either an implicit or
explicit page break representation.

pageNstring a n
pronounced payj' sharp string)

Formats the page number to be printed at the bottom of a page.
Gets the local page number within this document from the #pgl
state integer and adds it to the start page number for this
document, found in the #ipage state integer. to form the page
number for the current page. Uses the basic Forth pictured
numeric output words to create a page number string which
includes the right frill string, the page number (positive or
negative), and the left frill string. Returns the address and
length of the page number string.

printfooter
pronounced print' foot'er)

Prints the page footer line. Moves the carriage to column 0 of
the footer line and prints the leftfoot" string, if any. Then,
uses page#string to calculate and form the page number string and
print" to print it. The page number string is centered over
column 40 of the text. Finally, if a right-hand footer string
(rightfoot") exists, it is also printed. The page number is
always printed in decimal. The current number base is saved and
restored by printfooter.

showpage
pronounced sho' payj)

Uses displaybos to display the end of the page just printed and
checkline# rule to update the ruler display to match the display.

skippage
pronounced skip' payj)

Advances the control variables over the current page break. If
the page break is explicit, Nwr @ nextchar findchar advances over
the page break character. If the break is implicit, and there is
only one character on the next paget printing is terminated.

- 316 -

This is because when an implicit page break is selected the first
character on the page is also selected.

toline n
pronounced too' lyne)

Feeds paper until the carriage is positioned at half-line ~ on
the page. If the carriage is already at or beyond the specified
half-line, toline will do nothing. If an odd half-line is
specified newhalfline moves the carriage 1 half-line and then
newline moves the carriage the remaining number of half-lines in
2 half-line increments.

21.7.5 Character Rendering

Ibuffend a
pronounced ell' buff end

Returns the address of the end of the lbuff.

overstrike c
pronounced oh'ver stryke)

Prints a character without moving the carriage. If the character
is white, overstrike does nothing. If the character is visible.
and the printer knows how to overstrike, the overstrike" and
unoverstrike" printer command strings are used for overstriking.
Otherwise, print prints the character and backspace moves the
carriage back.

print n f
pronounced print'

Prints the character represented by the print code, ~, printer
independently. If the character is a white character that should
be underlined, and the printer chosen does not underline white
characters, an underline character, $5F, is output in place of
the white character.

Otherwise, the print code indexes into the current printer
table to find the 2-byte entry for the character to be printed.
If the first byte of the 2-byte entry is zero, the character is a
simple, standard ASCII character. The ASCII code for this simple
character is taken from the second byte in the entry and printed
using printc.

If the first byte of the 2-byte entry is a non-zero value
greater than $lF, then the character is comprised of two
characters, one overstruck over the other. overstrike is passed
the ASCII code found in the first byte of the 2-byte entry and
printc prints the character corresponding to the ASCII code found
in the 2nd byte of the entry.

If the first byte of the entry is a non-zero value less than
$lF, then the character to be printed is a special character in
the printer's character set which requires printer specific
commands to print. In this case the 'weirdprint vector is
executed to handle printing of the special character.

- 317 -

print" a n
pronounced print' kwote)

Prints the string located starting at address ~ of length ~ to
the printer, printer independently. If the printer was printing
backwards, the backwards integer is set to zero and the
printforward" command string is sent to the printer. Then print
prints the characters in the string one-by-one.

render f
pronounced ren'der)

After unbuild has decomposed the next printable character in the
lbuff, render prints the character. First, render prepares the
printer by checking the underline transition flag pr\uline/ and
the bold transition flag pr\bold/. If either of these flags
indicates that a font style transition is occurring, render will
send the appropriate printer command string to the printer:
+underline" , -underline". +bold" , or -bold". The underlined and
balded integers will be set to true if the character to be
printed is to be bolded or underlined.

If the character is to be underlined and the printer does
not know how to underline, render will use 5f overstrike to
specifically print an underline character in the location where
the real character will be placed. If the prsmall? integer
indicates that the character is a half-wide character, a
half-space will be emitted and the character will not be
printed. If the character is not a small character, the flag on
the stack returned by unbuild, i~ checked.

If the flag indicates that the character to be printed is a
character found in the current printer's printer table, the
character is passed to print for printing (through prchar
print). If the character was no~ found in the printer's
character set, the codes in the upper and lower bytes of the
2-byte printer code are printed separately. one overstruck on top
of the other.

If the code in the upper byte is one of the accent codes in
the range $cO to $cf, render makes an additional check to see if
a short or a tall accent should be used as the overstrike
character. A short accent will be used if the main character to
be printed is a lowercase character.

short? (c f
(pronounced short' kwes'chun)

Returns a true flag if the character c is a lowercase character.

white? (c f
(pronounced whyte' kwes'chun)

Returns a true flag if the character is white. A white character
is a character with an ASCII code less that $21, a permanent
space character {$93}. or an overstrike space character.

- 318 -

21.7.6 Horizontal Motion Control

printblanks n
pronounced print' blanks)

"Prints" !!. half spaces on the current line. Used for carriage
positioning on printers which do not know how to move directly to
a specified horizontal position. If the number of half spaces is
odd, halfspace will be used to print one half space and then spc
print will be used to print the remalnlng even number of half
spaces. two at a time. If!!. is negative, the carriage is not
moved.

seektime nl n2
pronounced seek' tyme)

Given a destination carriage position nl, expressed in
half-characters, seektime returns a simpleminded estimate of the
"time" required to get to that position starting from the current
position by returning the absolute value of the change in
distance between the two locations: (n1) prcol - abs.

tocol n
pronounced too' kall)

Moves the carriage to half-character position ~ on the current
line. If the printer does not know how to print bidirectionally,
the startline" printer command string is sent to the printer to
cause the carriage to be moved to the left margin and ~ half
spaces are "printed" on the current line using printblanks.

If the printer can print bidirectionally, tocol can use one
of two methods to move the carriage to the desired position. If
the knowshmi? integer flag indicates that the printer knows how
to modify the character width (hilli) , tocol will set the character
width to 1 inch, calculate the number of whole inches between the
current carriage position and the destination, and then will
print x spaces, where ~ is the number of whole inches to move.
Each space printed at this point will cause the carriage to move
1 inch in the desired direction.

To move the carriage any remaining distance, tocol sets the
character width to the width of the remainder distance, prints a
space (to move the carriage), sets the character width back to
normal, and then terminates execution. If there is no remainder
distance, if the original distance was a whc e number of inches,
tocol will simply set the character width back to normal and
terminate execution.

If the printer does not know how to modify the character
width, toeo! will try to determine the fastest way to get to the
desired position using only spaces and carriage returns. The two
possibilities are: (1) move the carriage to the left margin with
the use of the startline" printer command string and then space
over to the desired position, or (2) space directly to the
desired position from the current position.

- 319 -

21.7.7 Printing a Line of Text

initprinter
pronounced in-it' print'er)

Initializes the print-time integers: proldflags, backwards,
stopprint, oldcountry, balded, underlined, prcol, prline.

printify
pronounced print'i-fy

Displays "PRINT tt in indicator light 3.

printline fl f2
pronounced print' lyne)

Processes one line of text. printline is passed a flag fl which
indicates whether the line about to be processes is the first
line of text and returns a flag f2 which indicates whether there
are more lines of text left to process.

printline will not start processing the line of text until
the print buffer has more that $200 bytes of available space.
print.buf.free checks the available printer buffer space,

Next, printline checks to see if the user has prematurely
terminated the print command. If the stopprint integer is set to
true, quit.print can stop printing. Also, UnPanicPrint is set as
the undo operation in case the user changes their mind and does
not want to stop the printing.

If printing was not terminated, printline checks the
contents of #spr to determine what type of line is up for
processing. If #spr holds a 2, printline is being asked to print
the blank double half-line which is inserted between lines of
double spaced text. printline will use newline to move the
carriage down two half-lines and wrap twice to decrement the #spr
count to zero.

If #spr holds a 1, printline is being asked to print the
blank single half line which is inserted between lines of it
spaces text. printline will use newhalfline to move the carriage
down 1 half line and wrap to decrement the #spr count to zero.

If #spr holds a 0, printline is being asked to print an
actual line of text. wrap loads the address of the end of the
next line of text into the control variables. This address is
then stored into the #nextwr integer (build needs it) and
prevwrap restores the control variables for the line of text
about to be processed.

build gets an image of the line of text into the Ibuff. If
pagebreak? indicates that the lbuff contains a page break
character, and if the flag passed to printline indicates that
this is the first page break in the printing session, the page
break will be skipped over and ignored (to avoid printing a blank
page at the start of each printing session). Otherwise, if a
page break which is not the first page brea~ is encountered,
pagebreak will be used to eject the current page, and showpage
and skippage will be used to get to the next printable page, if
any.

If the lbuff does not contain a page break, printline
prepares the line for printing. If the line is the first line on
a page, newpage? will set up the page parameters. trimline trims

- 320 -

non-printable characters from the start and end of the Ibuff
string. startline prepares the printer and the printer integers
for printing. If startline indicates that the line contains
printable characters, <printline> prints the line.

newline moves the carriage down by 2 half lines and wrap
updates the control variables. printline's final action is to
check for more text to print and to return a flag which indicates
the outcome of the check.

<printline)
pronounced brak'it print'lyne)

Print a line of text. Steps through the Ibuff using unbuild
until unbuild returns a flag which indicates that the end of the
Ibuff has been reached. Each valid character obtained by unbuild
is printed using render. The definition of <printline> is
: <printline> begin unbuild while render again drop

printposition a1 a2 n1 n2
pronounced print' po-zi'shun)

Converts the starting lbuff print address a1 and the end Ibuff
print address a2 to their corresponding start position n1 and end
position n2 on the current line. The start and end position are
expressed in half-characters.

startline a1 a2 f
pronounced start' lyne)

Checks for a blank line of text, initializes the printlirnit,
printnext and backwards printing integers, and sets the printing
direction. If the starting lbuff print address a1 and the ending
print address a2 are equal, this line is a blank line (no text to
print), and a false flag f is re~urned. If the Ibuff addresses
are not equal, there is text to print.

The address of the first printable lbuff character is placed
in printnext and the address of the last printable lbuff
character is placed in printlimit and a true flag will be
returned when startline completes execution. If the printer can
print bidirectionally, startline checks to see if the carriage is
currently closer to the start column or end column position for
the line. If it is closer to the start position, tocol moves the
carriage to the start column, the printforward" printer command
string is sent to the printer, and the backwards integer is set
to false. If the carriage is closer to the end position, tocol
moves the carriage to the end column, the printbackward" printer
command string is sent to the printer, and the backwards integer
is set to true.

The printnext and printlimit integer contents are switched
if backwards printing is used. If the printer cannot print
bidirectionally, the carriage is moved to the start column
position and the backwards integer is set to false.

trim! a1 a2 a1 a2')
pronounced trim' wun)

Given the addresses of the start (a2) and end (a1) of the Ibuff,
trim! adjusts the start address so that no unhighlighted
characters at the start of the current line are printed.

- 321 -

trim2 a1 a2 a1 a2 t

pronounced trimt too
Given the addresses of the start a2 and end a1 of the lbuff,
trim2 adjusts the start address so that no leading white
characters at the start of the printable section of the current
line are printed. Used after trim!.

trim3 a2 a1 a2 a1 t
pronounced trimt three

Given the addresses of the start a2 and end a1 of the Ibuff,
trim3 adjusts the end address so that no unhighlighted characters
at the end of the current line are printed.

trim4 a2 al a2 al'
pronounced trim' for

Given the addresses of the start a2 and end a1 of the Ibuff,
trim4 adjusts the end address so that no trailing white
characters at the end of the printable section of the current
line are printed. Used after trim3.

trimline
pronounced trimt lyne)

Given a line of text in the Ibuff, trimline determines which
parts of the line can and should be printed and then returns the
addresses of the first Ibuff character a1 and the last Ibuff
character a2 to be printed. Any highlighted character which is
not a leading or trailing white character is a valid printable
character.

unbuild f1 f2)
pronounced untbild)

Takes a single character from the Ibuff, translates it into the
printer character set, and sets up the printer flags. f1
indicates whether the character exists in the printer character
set. f2 indicates whether or not unbuild has reached the end of
the printable characters. If f2 is true, then this character
should be printed; if it is false, the character should not.

unbuild uses the address in printnext to find the next
printable character in the Ibuff. unbuild first checks to see if
the character has any associated overstrike character. If there
is an overstrike character, unbuild will create a word which has
the overstrike character code in the upper byte and the main
character code in the lower byte (same format as a printer table
entry), and will compare the word to the list of overstrike
combinations found in the vanilla.unbuild table. The
vanilla.unbuild table contains all of the overstrike combinations
which are found in the printer character set ($dO - $109).

If the overstrike combination is found in the table, it is
one of the special characters known to some printers, but not
available in the text. The printer character code $dO - $109
which represents the overstrike combination in the printer
character set is placed in the prchar integer and a true f1 flag
is placed on the stack.

- 322 -

If the overstrike combination is not matched, the 2-byte set
of character codes used to represent the character are placed in
prchar and a false f1 flag is placed on the stack.

Next, unbuild checks the character attribute flags which are
associated with each character in the Ibuff and sets the related
printing flags accordingly. The smallbit sets the prsmall?
integer. The invbit sets the printed? integer (only inverted
characters are printed). The ulinebit, boldbit, and dlinebit
check for underline, bold, and dotted underline style transitions.

The current states of these bits are compared with the
character flag bits from the previous character (saved in the
proldflags integer). A change in any of these bits will cause
either the pr\uline/, pr\bold/, or pr\dline/ style transition
integers to be set to true.

Finally, unbuild checks to see if the address in printlimit
has been reached and then increments/decrements the printnext
address by 4, depending upon the current printing direction. A
flag which indicates whether the printlimit has been reached is
placed on the stack.

UnPanicPrint
pronounced un'pan-ik)

Restarts a printing session which was terminated with a panic
stop. Uses restore.print to reset all of the low level print
buffer pointers, extend to re-highlight the unprinted text,
printify to turn the "PRINT" sign on, «Print» to restart and
perform the printing, indicate to turn the "PRINT" sign off, and
o setprinter to select the default printer when finished.
stopprint is set to false.

21.7.8 Main Print Words

AltPrint (
(pronounced ahlt'print)

Word executed when [Use FrontJ-[ShiftJ-[PrintJ is pressed.
Causes the current text selection, if any, to be printed out on
the alternate printer. Since the main printer is always the
default printer, setprinter initializes the alternate printer.
pickprinter and makeprinttable set up the print spooler and
printer table and then <Print> prints the text. After the
completion of printing on the alternate printer setprinter is
used again to initialize the main printer and to make the main
printer the default printer.

KillPrint
pronounced kil'print

Stops the printer spooler. If the print buffer is not empty,
quit.print stops printing and UnPrint is set as the undo
operation.

- 323 -

makeprinttable (
(pronounced mayk' print tay'bl)

If a printer has a non-standard print table (the BJ80 with a
second character set, for example), or a country-specific print
table (any of the daisy wheel printers), makeprinttable creates a
RAM image of the print table in the trkbuf and patches it with an
exception table. patchprint patches the RAM image. The trkbuf
address is stored in the printertable integer.

makeprinttable does nothing if a printer with a standard
print table is being used.

patchprint a
pronounced patch' print)

Used to patch non-standard print tables. The patch data at the
address a patches the print table located at the address
contained in the printertable system integer.

pickprinter
pronounced pik' print'er)

Used to switch the print spooler to the correct printing port.
If there is a selection, and if the printercode and printerport
system integers indicate that a valid printer port has been
selected. pickprinter will direct the print spooler to either the
serial port (with print.serial) or the parallel port (with
print.parallel).

Print (
(pronounced print')

Word executed when [Use FrontJ-[PrintJ is pressed. Causes the
current text selection, if any, to be printed out on the main
printer. Uses pickprinter to se~ up the print spooler,
makeprinttable to make a patched RAM print table image if a
printer with a non-standard print table is being used, and uses
<Print> to print the selection.

<Print>
pronounced brak'it print')

This is the highest level print word, aside from the Print
command itself. Uses printify to turn on the "PRINT" sign and
checks for a printable selection. If there is nothing to print,
KillPrint terminates the command. Otherwise, bos nextchar
findchar sets the control variables for the printable selection,
initprinter performs printer initialization, and «Print»
performs the bulk of the print operations. <Print> is also
responsible for turning the indicator light off after printing
has finished.

«Print»
pronounced brak'it brak'it print}

Performs the bulk of the printing activities. This word was
factored out of <Print> so that UnPanicPrint could be used to
restart printing. «Print» sets undop to zero (no undo
operation) and causes the top of the selection to be displayed.
The control variables are prepared and printline is called
specially to print the first line in the selection (to handle any

- 324 -

initial page breaks). Then printline is called in a loop until
there are no more lines of text to print.

When the printline loop is completed, «Print» checks to
see if printing was prematurely terminated. If it was terminated
prematurely, the first unprinted character is saved in the op and
then the selection is reduced to a cursor at the end of the
selection. If printing was not terminated prematurely. the end
of the original selection is just displayed on the screen. If
necessary, formfeed ejects a partial page.

setprinter f
pronounced set'print'er)

Sets the desired printer, £=0 for the main printer and f=l for
the alternate printer, as the current printer and performs
printer preparation activities for that printer. setprinter
initializes all printer integers and strings which contain values
shared by the majority of the printers and then, using the
printer code for the chosen printer as an index into the printers
table, obtains and executes the token corresponding to the word
which performs printer-specific initialization for the chosen
printer.

UnPrint
pronounced un'print)

Undoes the stopping of the print spooler. Uses restore.print to
reset the print spooler and sets KillPrint as the undo operation.

21.7.9 Printing Initialization Words

aplOOsetup
pronounced ay'pee wun hun'dred set'up

Performs AP100 printer setup procedures.

ap300setup
pronounced ay'pee three hun'dred set'up

Performs AP300 printer setup procedures.

ap400setup
pronounced ay'pee for hun'dred set'up

Performs AP400 printer setup procedures.

apsetup n
pronounced ay'pee set'up)

Performs the printer setup procedures which are common to the
AP300 and AP400 printers. The printer-specific steps/line
parameter, ~, is passed on the stack.

bj80docbreak
pronounced bee'jay ay'tee dahk brayk

Routine which sets the page length for the BJ80 printer.

bj80setup
pronounced bee'jay ay'tee set'up

Performs BJ80 printer setup procedures.

- 325 -

cat180setup
pronounced kat wun-ay'tee set'up)

Performs Cat180 printer setup procedures. Sets the paperpos
integer to 2 (top-of-form position).

CATdocbreak
pronounced kat'doc'brayk)

Routine which sets the paper length for the Cat180 printer.

daisymagic a c
pronounced day'zee ma'jik

Handles weird print for daisy wheel printers.

ETWdocbreak
pronounced ee-tee du'bl-yu dahk' brayk

Routine that sets the paper length for the 12-inch ETW
typewriters (AP100, AP300 and AP400) .

fx80magic a c
pronounced eff'eks ay'tee ma'jik

Handles fancy font switches for the Fx80 printer.

fx80setup
pronounced eff'eks ay'tee set'up

Performs Fx80 printer setup procedures.

Ibp8setup
pronounced ell'bee-pee ayt set'up

Performs LBP printer setup procedures.

LBPdocbreak
pronounced ell'bee-pee dahk' brayk

Routine that sets the paper size for the LBP printer.

LBPmagic a c
pronounced ell'bee-pee ma'jik

Handles the printing of unusual characters on the Laser Beam
printer. Switches to the country whose character set contains
the unusual character, prints the character, and then switches
back to the country character set previously being used.

newapsetup
pronounced noo ay'pee set'up

Performs Cat180 printer setup procedures.

noprintersetup
pronounced no print'er set'up

Does nothing.

setcountry n
pronounced set'kun'tree)

Sets the Laser Beam Printer to a country character set. The
country character code n is obtained from the countries data
table.

- 326 -

21.7.10 Setup Export Words

These words are part of the Setup command code. They communicate
printer settings from the Setup command to the Print command.

printercode n
pronounced print'er kohd)

Returns a code indicating which printer is currently in-use on
the current printer port.

~rintercode Printer Name Printer T:i2e
0 Cat180 Daisy wheel
1 LBP8 Laser Beam
2 NewAP Daisy wheel
3 AP400 Daisy wheel
4 AP300 Daisy wheel
5 APiOO Daisy wheel
6 BJ80 Dot matrix
7 Fx80 Dot matrix
8 No printer N/A

printerinfo nl n2
pronounced print'er in'fo)

Returns information about the printer currently in use. The code
passed in, nit indicates what information is desired. Eight
possible input codes are recogized. The input code, and the
information associated with the code, are listed in the table
below:

- 327 -

Input Code

o

1

2

3

4

6

7

Data Returned

If a daisy wheel printer is in use, returns a
code indicating which wheel is being used. If
a daisy wheel printer is not being used, a flag
indicating whether the underlined code means
underline or italicize is returned.
If a Laser Beam printer is in use, returns a
code indicating which Laser Beam font is being
used (Courier, Gothic, Pica, Elite).
Returns a code which indicates the pitch of the
font currently in use.
0: 10-pitch
1: 12-pitch
2: 15-pitch
Returns the current left margin offset in
characters.
Returns a flag which indicates whether
bidirectional printing is being used.
Returns a true flag if sheet feeding is being
used.
Returns a code which indicates which paper tray
is being used.
0: A
1: B
2: A for first page, B afterward
Returns a flag which indicates whether
single-page printing is being used.

printerport n
pronounced p:int'er port)

Returns a code which indicates which printer port is currently in
use: -1 = parallel; 0 = serial; 1 = no printer port in use.

21.7.11 Print Spooling Export Words

These words are provided by the low-level spooler code. They
send characters to the printer and control the spooling process.

print.buf.free f
pronounced print' dot buff' dot free

Returns the number of free bytes in the print buffer.

print. empty (f
(pronounced print' dot em'tee)

Returns a true flag if the print buffer is empty.

print.parallel
pronounced print' dot pair'al-lel

Switches spooler output to the parallel port.

print. serial
pronounced print' dot seer'ee-il

Switches spooler output to the serial port.

- 328 -

<printc> c
pronounced brak'it print see)

Places a character in the print buffer.

quit. print
pronounced kwit' dot print)

Stops printing in a manner that allows it to be resumed if
necessary.

restore. print
pronounced ree-stor' dot print)

Restores the low level printing state so that printing may be
resumed after a quit. print.

- 329 -

21.8 PRINT STRINGS

backspace" (pronounced bak' spays kwote
Instructs the printer to perform a backspace.

-bold" { pronounced dash' bohld kwote
Contains the commands which instruct the printer to stop
boldfacing all subsequent characters.

+bold" (pronounced plus' bohld kwote
Contains the commands which instruct the printer to boldface all
subsequent characters.

endline" (- an)
(pronounced end' lyne kwote)

String sent when the printer has reached the end of a line. This
string will always contain a linefeed character and, with some
printers, will additionly contain a carriage return.

endprint" (- an)
(pronounced end' print kwote)

String sent when a print job is completed. Tells a printer eject
the current page without feeding in another page.

evenhalfspace" (pronounced ee'vin haff spays kwote
Tells the printer to move forward one half space from its even
half space position.

halfline" (- an)
(pronounced haff' lyne kwote)

String which commands the printer to move the paper up one
half-line.

hmi" pronounced aytch' em eye kwote)
Used as lead-in for setting the pitch.

initprint" - an)
pronounced in-it' print kwote)

String used to initialize the printer. This string is
constructed for the main printer when the Setup command exits or
when the system powers on. The individual printer printer setup
words help construct the string. initprint, which is called by
(Print>, is responsible for sending the initialization string to
the printer.

leftfoot U
(- an)
(pronounced left' fut kwote

String which contains the text for a footer to be placed to the
left of the page number. If this string has a length of zero it
will not be printed.

- 330 -

leftfrill" (- an)
(pronounced left' frill kwote)

String which contains the "frill" mark to be placed to the left
of the page number. The string is initially 2 characters long
and contains a minus sign followed by a space, "- ".

oddhalfspace" (pronounced ahdd half' spays kwote
Tells the printer to move forward one half space from its odd
half space position.

overstrike" (pronounced oh'ver-stryke kwote)
Tells the printer to print the next character in the string
without moving the carriage forward.

printforward" (pronounced print for'wurd kwote)
Tells the printer to print from left to right (forward).

printreverse" (pronounced print ree-vers' kwote)
Tells the printer to print from right to left (in reverse). Only
used when a printer which can print bidirectionally is in use.

rightfoot" - a n
pronounced ryte' foot kwote)

String which contains the text for a footer to be placed to the
right of the page number. If this string has a length of zero,
it will not be printed.

rightfrill" (- an)
(pronounced ryte' frill kwote)

String which contains the "frill" mark to be placed to the right
of the page number. The string lS initially two characters long
and contains a space followed by a minus sign, II _".

startline" (- an)
(pronounced start' lyne kwote)

String sent when the printer should start printing a new line of
text. For those printers which do not automatically perform a
carriage return when they receive a linefeed (in the endlinel!
string), the startline" string will contain a carriage return so
that the printer starts printing on the correct line.

topofform tt (- an)
(pronounced tahp-uv-form' kwote)

String which contains the commands which tell a printer to eject
the current page and feed in another.

+underline" (pronounced plus un'dur-lyne kwote)
Contains the commands which instruct the printer to underline all
subsequent characters.

-underline" (pronounced my'nis un'dur-Iyne kwote)
Contains the commands which instruct the printer to stop
underlining all subsequent characters.

- 331 -

unoverstrike" (pronounced un-oh'vur-stryke kwote
Tells the printer to move forward after it prints the next
character.

userinit" (- an)
(pronounced yu'sir in-it' kwote)

User-specific printer initialization string. Sent to the printer
right after the initprint" is sent. This string is never touched
by the setup commands.

- 332 -

21.9 PRINTER INTEGERS

21.9.0 Printer "Knowledge" Integers

boustrophedon (pronounced boo-stref'a-don
Manual bidirectional printing.

braindamaged pronounced brayn' dam'ijd)
Flags printers that can't reverse directions or print
bidirectionally.

knowstof7 (pronounced nose' tee uv kwes'chun)
Is the printer aware of form feeds?

knowsbold (pronounced nose' bohld)
Can the printer boldface?

knowsul? (pronounced nose' un'dur-lyne kwes'chun)
Can the printer underline?

knowsos? (pronounced nose' o'vur-stryke kwes'chun)
Does the printer prefer overstrike to backspace?

knowshmi? (pronounced nose' aytch' em eye kwes'chun)
Does the printer use a Diablo-like HMI setting?

ulinehack? (pronounced un'dur-lyne hak kwes-chun
Translate underlined white space to underline characters.

21.9.1 Page Logistics Integers

char/inch
Print pitch

(pronounced kair' slash inch')

footpos (pronounced fut'paws
Offset from the bottom-of-page position to the line that holds
the page number

gutter (pronounced gut'ter
Left margin offset in half-characters

oldcountry (pronounced ohld' kun-tree
Holds the primary country code for the Laser Beam printer

paperpos (pronounced pay'per paws)
Location where the paper is in the top-of-form position

papershort (pronounced pay'per short)
Number of lines missing from the page

rightstop (pronounced ryte' stahp
Holds the right-carriage stop information for the Cat180 printer

- 333 -

steps/inch (pronounced steps' slash inch')
Granularity of the HMI setting

steps/line (pronounced steps' slash lyne')
Printer steps per line feed. Set only by typewriters

21.9.2 Print State Integers

backwards pronounced bak'wurds)
Currently printing backwards.

bolded pronounced bohld'ed)
Currently bolding.

oddhalfspace pronounced ahd-haff'spays)
True if the next half-space is odd. Set to false when finished
with a line.

pageprint (pronounced payj'print)
Single page printing flag.

prcol (pronounced print' kahl)
Current print column. prcol = 0 corresponds to ruler column zero.

prline (pronounced print' lyne
Half-line on the current page.

stopprint (pronounced stop' print)
Switch used for an early escape from Print. Used either during
the single-page mode or when the user issues a panic print-stop.

underlined (pronounced un'dur lynde
Currently underlining.

21.9.3 Unbuild Integers

prchar (pronounced print' kair)
Holds either the current print code (number from $000-$109) t or
an unknown 2-byte value from the printer table.

printed? (pronounced print'ed kwes'chun
Is this character part of the selection? That is, is the invert
bit in the Ibuff information for this character on? Only
inverted characters are printed.

proldflags pronounced print' ohld flags)
Ibuff flags byte for the previously printed character.

prsmall? (pronounced print' smahl kwes'chun)
Is this a half-character?

prwhite? (pronounced print whyte kwes'chun)
Is this character white?

- 334 -

pr\bold/ (pronounced print' bak'slash bohld slash)
Is this a bold/normal transition?

pr\uline/ (pronounced print' bak'slash un'dur-lyne slash)
Is this an underlining transition?

stopprint (pronounced stahp' print)
Switch used for an early escape from Print. Used either during
single-page mode or for a panic print-stop.

21.9.4 Printing Integers

printlimit pronounced print' lim'it)
Address of the last Ibuff character to print. Set up by startline

printnext pronounced print' nekst)
Address of the next character to print in Ibuff. This address is
set up by startline and bumped either forward or backward by
unbuild. printnext will be bumped forward if forward printing is
used; it is bumped backward otherwise.

21.9.5 Character Selection Integers

printertable (pronounced print'er tay'bl
Holds the address of the printer table for the printer currently
in use.

printnext pronounced print' nekst)
Address of the next character to print in Ibuff. This address is
set up by startline and bumped either forward or backward by
unbuild. printnext will be bumped forward if forward printing is
used or backward otherwise.

unbuildtable (pronounced un'bild tay'bl)
Contains the address of the vanilla.unbuild table. This table
translates from Ibuff character code to a printer table character
code.

21.9.6 Printer Execution Vectors

'docbreak (pronounced a-pos'tra-fee dahk' brayk)
Holds execution vector for printing document breaks. This vector
is initialized with the token of noop.

'weirdprint pronounced a-pos'tra-fee weerd' print
Holds execution vector which handles printer table values fr; u
$OOxx - $lFxx. This vector is initialized with the token for
printerror.

- 335 -

21.9.7 Setup Integer

whichprinter (pronounced witch' print'er)
Printer usage flag: O=main printer, l=alternate printer. The
printer setup export words, especially printerinfo t check this
integer to determine how they should function.

21.9.8 Print Integers (Constant)

printsize (pronounced print'syze
Size of a print table.

- 336 -

22. SETUP

Introduction

The Setup command adjusts settings for document parameters and
connections to the Cat. The command operates on a data vector
which contains the current settings. This vector is saved in the
battery-backed-up RAM so that the user's settings are preserved
across power off.

- 337 -

GENERAL OPERATION

When the user presses the SETUP command the word Setup is called
by the edde interpreter. The first part of Setup checks and
initializes various things and then the main setup begin loop is
entered. The main loop is a state machine that picks parameters
to use and the next state to execute from the groups ar~ay. This
loop never finishes as the SETUP command exits whenever the user
releases the USE FRONT key and this may occur at any time during
parameter entry. The release of either USE FRONT key is detected
right at the begining of the word scode which then calls
exitsetup, which sets up the Cat via setupcat and returns to the
user.

Setup Data Structures

Setup has three data structures 9 two vectors and a two
dimensional array. The vectors are a matched pair with one
holding executable tokens and the other the setup data. The
array governs the logic flow, screen display lines and indicies
of which series of tokens to execute in the token vector.

The Token and Data Vectors

Setup has two matched vectors of n two byte elements each. The
number of elements in each vector is set by the target compiler
integer setv&tlim. Its value depends on the Cat version software
but is about 144. One vector, called <settokens> , is in ROM and
the other, called setdata, is in RAM. Each screen line of
information in the setup command has a forth word associated with
it and each word's token is in t~e token vector in ROM. The RA~1

vector is matched to <settokens> and holds the corresponding data
for each setup line. Where a setup screen line is a display only
line, setdata has only filler data in that element. When the
user interacts with an executing setup display word, the data
generated goes into the matching location in setdata.

The Groups Array and Logic Flow in Setup

The logic flow in setup is controlled by data in a 5 column by n
row byte array called the groups array. The exact number of rows
depends on the Cat version software but is about 18. The rows in
the groups array contain two kinds of information: what setup
group information to display where and which setup group to go to
next. The display information consists of the first and last
indexes into the matched token/data vectors and the first screen
display line to use for each group of setup information. The
information on which setup to go to next governs the general
logic flow of setup. Most of the information in groups is fixed
at compile time but part of it is set during setup execution
depending on what the user selects.

- 338 -

Setup Data Initialization

During power-up initialization, the information in the data
structures is loaded from battery RAM if the information is
intact and if not, the structures are initialized from ROM.
After each user use of setup, the battery RAM is updated and
verified. The setup data that are saved on disk with every DISK
command may be loaded from a disk if the user requests to do so
via the items on the second setup screen.

Displayed Screen Data

The forth words whose tokens are in <settokens> are executed in
two modes governed by a flag called cflag. If cflag is off
(zero) the words only display their information and if cflag is
on (non-zero) the words display their information in bold font
and can interact with the user to obtain data. Not surprisingly.
most of the words in setup examine or manipulate cflag.

Printer Selection

Each line of the setup screens has a forth word associated with
it, including each one of the eight supported printers. Each of
the eight printers puts Jata in its part of the setdata vector
and the chosen printer's data is moved from setdata to a working
vector by setupcat when setup is left. Because there is only one
working vector, all of the printer choices must accept and store
data in a uniform way. This uniformity is shown (DaveA) below as
a table of printer and data value types.

Condensed Printer Setup Groups

The following columns show the way the setup groups for the eight
supported printers order the data that they obtain from the user
and use to set the printers via the printing word printerinfo.
Each printer uses a subset of the eight data elements assigned to
it in setdata and <settokens> by the target compiler word
setv&ti. The unused elements are filled by setv&ti with the 4
character string none and the token for the Forth no-operation
word noop.

Each of the names of the following words is constructed by a
leading 'm' and then a nemonic for the printer such as 'bjp' for
the BubbleJet Printer and a nemonic for the element name such as
'dw' for daisy wheel. The ninth printer choice, 'No printer', is
not shown below as it has all of its elements set to none and
noop.

The first element is the Daisy Wheel. language or character set.
The second element is the LBP's character font. The third
element is the character pitch. The fourth element is the left
margin offset (gutter in printer talk). The fifth element is
direction for most printers and the portrate/landscape mode for
the LBP (Cat versions 2.00 and later). The sixth element is the
cut sheet feeder. The seventh element is the tray selection for

- 339 -

'-

the larger typewriters. The eight element is the 'pause between
sheets' selection to allow hand feeding of the non-laser printer's.

The word that is set apart in each column is the word for each
printer that stacks the data and token index and turns on the
printer existance flag aprinter. The 'No Printer' word, NON,
stacks the no printer indicies and turns off aprinter via a
seperate word, aptroff.

(Cat180 printer)
: m18dw
none setv&t neap

m18pitch
m18g
m18d
m18csf

nane setv&t noap
m18pbs

CAT180

(AP300 series)
: map3dw
none setv&t noap

map3pitch
map3g
map3d
map3csf
map3tray
map3pbs

AP3

LBP printer)
mlbpl
mlbpcf
mlbppitch
mlbpg
mlbpp/l

none setv&t noop
none setv&t neap
none setv&t noop

: LBP

(APIOO series)
: maplOOdw
none setv&t noap
: maplOOpitch
: maplOOg
none setv&t noop
none setv&t noop
none setv&t noop

maplOOpbs

APIOO

(New AP series)
: mnewapdw
none setv&t noop

mnewappitch
mnewapg
mnewapd
mnewapcsf
mnewaptray
mnewappbs

newAP

(BJ printer)
: mbjpcs
none setv&t noop

mbjppitch
: mbjpg
: mbjpd
none setv&t noap
none setv&t noop

mbjppbs

BJP

- 340 -

(AP400 series)
: map4dw
none setv&t noop

map4pitch
map4g
map4d
map4csf
map4tray
map4pbs

AP4

(Common printer)
: mfxpl
none setv&t noop

mfxpitch
: mfxg
: mfxd
none setv&t noop
none setv&t noop

mfxpbs

Fx80

Setup Target Compiler Integers and Support

Note: Some target compiler integers, arrays and words have the
same name as source code words but they are distinct. Target
compiler names are executed when the target compiler is not
compiling (including between square brackets like [... J) and
source code names are compiled when actually target compiling the
source code.

Setup Integers, ROM Arrays and Pointers

<leapsc pronounced less' leep ess see)
The left Leap key scan code.

APIOOsop (pronounced ay'pee wun hun'dred ess-oh-pee
The code number for the APIOO serial printer. The AP100 is a
serial interface device only.

Cat180pop (pronounced cat' wun-ay'te_epee-oh-pee)
The code number for the Cat180 parallel print~I'. The Cat180 is a
parallel interface device only.

cclim pronounced see-see' lim)
The numerical limit on the number of country codes.

ccwidth pronounced see-see' width)
The width of the country setup information array.

gpwidth (pronounced jee-pee' width)
The width of the groups array.

groupi (pronounced groop' eye)
The index of the group currently on the display.

groupl pronounced groop' ell)
Holds the number of lines in the group currently on the display.

grouplim pronounced groop' lim)
The limit on the number of display groups.

himsetuplim (pronotmced aytch' eye-ern set' up lim)
Hidden internal modem setup size.

leap>sc pronounced leep grayt'er ess-see)
Right leap key scan code.

main/altlim pronounced mayne slash alt'lim
The main or alternate printer vector limit.

setupsc (pronounced set'up ess'see
Setup command key scan code.

setv&ti pronounced set' vee' and tee' eye
The value and token index number.

- 341 -

, .,

setv&tlim pronounced set vee' and tee' lim)
The value and token index limit.

shi pronounced ess' aytch' eye)
Uppermost serial token and data index for the current group.

s10 (pronounced ess' ell' oh)
Lowermost serial token and data index for the current group.

spacesc (pronounced spays' ess see
Space bar scan code.

starti (pronounced start' eye)
Holds the starting index number for this group.

VP3103I1 pronounced vee'pee thir'tee wun' oh three too)
The code number for the Laser Beam printer.

<groups> pronounced brak'it groops
The ROM groups array for initialization of the corresponding RAM
array.

<himsetup> pronounced brak'it a~tch'e~e-em setuE
The hidden internal modem setup ROM address.

<setdata> pronounced brak'it set' da.l-ta
A ROM array holding the default setup state.

<settokens> pronounced brak'it set toh'kins
A ROM array holding the setup to~en list.

The following target compiler integers are pointers and work with
the word in the source cord of the same name without the leading
'p'. These pointers are set by the index stacked by setv&t when
compiling most of the setup display words. The pointers enable
words compiled later to automatically find the appropriate data
in the setdata vector. For this reason, the setup code must be
compiled before any words are compiled that use these pointers to
access setup data.

p#punct p#sortb pap papp pbotmgn pdbotmgn pdecimals pdfirstpage#
pdisplay pdpagelen pdprintpage# pdpx pdtopmgn pemcfc pemct pempro
pemra pemring pems pemspkr perror pfirstpage# pimbpw pimcfc pimct
pimpro pimpty pimra pims pimsb pkeyboard pmp pmpcon ppagelen
pprintpage# ppro pring pspcon pssetup psspell ptab ptimeout ptlt
ptopmgn ptyper

The following Target Compiler integers label data that gets saved
in the svram. The data must be an even number of bytes long.

#defaults (pronounced sharp' dee-falts')
Default format information.

- 342 -

checkspell (pronounced chek' spell)
A flag which is true if there is a spelling checker.

externalmodem (pronounced eks-ter'nul mo'dem)
A flag which is true if there is an external modem.

groups (pronounced groops'
The setup groups array.

himsetup (pronounced aytch'eye-em set'up
Hidden internal modem setup.

kbdI/II (pronounced kay'bee-dee wun' slash two')
Keyboard 1/11 indicator flag.

setdata (pronounced set' day'ta
Start of the setup svram area.

spareflg (pronounced spair eff'ell-jee
Filler to make the number of bytes even.

svid (pronounced ess'vee-eye-dee
Holds the svram version number.

svsetupaltptr (pronounced ess'vee set'up alt pee'tee-arr
The alternate printer direction flag.

svsetupflg (pronounced ess'vee set'up eff'ell-jee
A flag that shows that Setup has been loaded from ROM.

svsetupgutters (pronounced ess'vee set'up gut'ters)
Setup printer gutters (left margin offset) for three pitches.

svsetupmainptr (pronounced ess'vee set'up main pee'tee-arr
The main printer direction flag.

svsetupscmnd (pronounced ess'vee set'up ess com-mand'
A flag that holds the direction for the Send command.

svspare (pronounced ess'vee spair
A filler to make sure that the number of bytes is even.

svspellcs (pronounced ess'vee spell see-ess')
RAM spelling dictionary checksum. This and the following
checksum must come last.

svsetupcs (pronounced ess'vee set'up see-ess')
Setup svram data checksum. This and the preceding checksum must
come last.

- 343 -

Setup Command Ordinary RAM Vectors

altp (pronounced alt' pee
The alternate printer data vector.

idocpkt (pronounced eye' dok paktit
The initial document packet.

mainp (pronounced mayne' pee
The main printer data vector.

oldset pronounced ohld' set)
Holds the old setup state.

Setup Command Target Compiler Support

The following words are defined in the target piler and used
during the compilation of the actual Cat software.

(-))
(pronounced till'da)

The setup string compiling word. It allows strings with quotes
in them, such as - Oh, "blah"}. Not used in 2.00 and higher
versions of the target compiler. Instead. makemsg is used
because it supports multiple languages.

startgroup (-))
(pronounced start' groop)

Starts a display group. Holds the first index number.

setgroup (bg sg dl 1 u -))
(pronounced set' groop

Loads the group array row with the space bar group jump number
(bg), the setup group jump number (sg)t the nominal display line
number (dl) and the lower and upper index range (1 and u).
Increments the group index.

makegroup (bg sg dl -))
(pronounced mayke t groop)

Loads a display group's data. Automatically stores the group
index range in the group array row and then stores the space bar
group jump number (bg), the setup group jump number (sg), and the
nominal display line number (dl), from the stack.

setv&t (n -) i)
(pronounced set vee' and tee')

Puts the token of the following word in the next available place
in settokens. Also sets the corresponding setdata value to the
parameter~. Stacks the vector data index so that it may be
loaded into a pointer or discarded.

- 344 -

SETUP ARRAYS AND INTEGERS

Setup Command ROM Arrays

<groups> (pronounced brak'it groops)
Holds the default groups information.

<himsetup> (pronounced brak'it aytch'eye-em set'up
Holds the hidden internal modem setup default information.

<setdata> (pronounced brak'it set'day-ta
Holds the default setup state.

<settokens> (pronounced brak'it set'toh-kins)
Holds the default setup token list.

Setup Command "Zero" Integers

#autos (pronounced sharp' aw'tohs)
The number of autorepeats that must occur before changing the
rate at which the page numbers are changed on the display.

aprinter (pronounced ay print'er
A flag which indicates whether a printer is attached.

atrib pronounced ah-trib')
A place to assemble display attributes for the displayed
characters.

cflag (pronounced see' flag)
A flag which turns on when it is the user's turn to make a choice
in the Setup menu.

choicelimit pronounced choys' lim-it)
The limit on the number of choices for a particular item on the
Setup menu.

delta# (pronounced del'ta sharp)
The rate change to be applied to changing page numbers when the
number of repeats equal #autos.

exitsc (pronounced eks'it ess-see)
Holds the scancode of the exit key so the group display can
examine it.

group# (pronounced groop' sharp
Holds the current group number.

groupstartl# (pronounced groop' start ell-sharp
The line number to start displaying this group.

hI above (pronounced aytch'ell ah-buv'
The number of half-lines for the top margin.

- 345 -

hlbelow (pronounced aytch'ell below)
The number of half-lines for the bottom margin.

hllong (pronounced aytch'ell long
The number of half-lines for a page.

ipage# (pronounced eye' payj sharp
The initial page number.

iprint# { pronounced eye' print sharp
The initial printing page number.

maxgpline (pronounced macks' jee-pee lyne
The maximum number of group lines for display line erasing.

mingpline (pronounced min' jee-pee lyne)
The minimum number of group lines for display line erasing.

numbr (pronounced num'ber)
Holds the number currently being worked on.

oldend (pronounced ohld' end)
Holds the end of the old display string for erasing the leftover
portion in case the new display string is shorter.

printer pronounced print'er)
The anothergroup number of the main printer.

Setup Command Integers

#halflines { pronounced silarp haff' lynes
The number of half-lines for each paper size.

choicex (pronounced choyss' eks)
The vertical position at which the setup choices will be
displayed.

imdm (pronounced eye' em dee' em)
The internal modem flag.

modm (pronounced em oh dee em)
The modem flag.

none (pronounced nun)
The "not-connected" flag. Means that nothing is connected to the
serial channel being considered.

pprt (pronounced pee' prt)
Parallel port flag.

sprt pronounced ess prt)
Serial port flag.

xmdm (pronounced eks' em dee' em)
External modem flag.

- 346 -

THE DEFAULT COUNTRY SETUP DATA

defcountry (-> addr)
(pronounced deff' kun-try)

The country code default array, an array of 17 rows by 16 bytes
containing country code default information. Each row consists
of 10 bytes of bit information for tabs and then 1 byte each for
the codes for: external modem, paper size, top margin, bottom
margin, number punctuation and one byte for the spelling checker
and keyboard 1/11 flags.

Note: The tab position information is in the bit positions of a
data area tabcount bytes long in data vectors such as #defaults
and ##ctrl which are used by tab words like Tabs, Deftabs and
tabloop. The offset of the tab data area of these arrays is
given by %tabs. The tab positions, starting at text column 1,
start at bit 0 of the first byte in the tab data area and go up
to bit 7 of that byte and then to bit 0 of the byte at the next
higher address and so on. For example, if you execute:

#defaults %tabs + c@ . 21

and, since bits 0 and 5 of the first tab data byte are set, the
first two tab positions would be at text columns 1 and 6. The
first 10 bytes of the tab data area define the normal tab
settings for all 80 columns and the second 10 bytes define the
positions of the decimal tabs for the corresponding 80 columns.

- 347 -

SETUP WORDS

#defaults (-> addr)
(pronounced sharp' dee-faIts)

Gets the address of the format default data in the setup system
area.

<bonw> (->)
(pronounced brak'it bee ahn du'bl-yu)

Sets the text to black-on-white, and the ruler to black.

<choose#> (ali g 10 hi ->)
(pronounced brak'it chooz l sharp

Common code for choosing numbers.

<mbmargin> (i g ->)
(pronounced brak'it em-bee mar'jin

Common code for the bottom margin choice.

<mpagelen> i g -)
pronounced brak'it em payj len)

Common code for page length choice, and for data index i on line g

<mtmargin> (i g ->)
(pronounced brak'it em tee mar'jin

Common code for the top margin choice.

<setline> (n ->)
(pronounced brak'it set' lyne)

Sets the absolute vertical position of the display line to screen
line ~, and the horizontal position of the beginning of the line
to the leftmost column, puts blank characters in the entire
display buffer (lbuff), and remembers the maximum display line
number for later screen clearing.

< wonb > (->)
(pronounced brak'it du'bl-yu ahn bee)

Sets the text to white-on-black, and the ruler to black.

2nybs , # a -> a+2)
(pronounced too' nibs

Makes the second stack item (#) into two nibbles and places it at
address ~, then updates a.

3nybs (# a -> a+3)
(pronounced three nibs)

Makes the second stack item (#) into three nibbles and places it
at address ~, then updates ~.

16bitsignex n -> n')
pronounced siks-teen' bit syne' ee-eks)

Extends the sign of a 16-bit 2's complement number to 32 bits.

- 348 -

70 n -) n-l f)
pronounced kwes'chun zee'ro)

Subtracts 1 from n, returns the result and a false flag if the
result is greater than zero, or returns only a true flag if the
result is zero or less.

altptr (-) addr)
{ pronounced alt' pee-tee-arr

Gets the alternate printer direction address in the setup system
area.

AP3 (-) 1 u)
(pronounced ay pee three')

Stacks the AP300's lower and upper group index range.

AP4 (-) 1 u)
(pronounced ay pee for')

Stacks the AP400's lower and upper group index range.

AP100 (-) 1 u)
(pronounced ay pee wun' hun'dred)

Stacks the APlOO's lower and upper group index range.

aptroff (-))
(pronounced ay-pee-tee arr' off)

Replaceable word to turn the aptr flag off.

BJP -) 1 u)
pronounced bee jay pee)

Stacks the BubbleJet's lower and upper group index range.

boldtolbuf (a 1 y x -))
(pronounced bold too ell buff

Outputs the! character string at ~, starting at the given ~ and
~ screen position, and makes it bold if the user has selected it
with the Space Bar.

bonw -))
pronounced bee ahn du'bl-yu

Sets the text area to black-on-white, the ruler to black and
turns the black screen flag off.

buildnumber (-))
(pronounced bild' num-be~)

Builds up a number such as page number fro;: manipulation of the
Leap key.

CAT180 (-) 1 u)
(pronounced cat' wun ay'tee)

Stacks the Cat180's lower and upper group index range.

checknumber 1 u -))
pronounced chek' num-ber)

If the number being built up isn't within the range 1 to ~. roll
it to the upper or lower limit, whichever is appropriate.

- 349 -

checkspell! (n -))
(pronounced chek' spell store)

Stores ~ in the spelling checker flag in Setup's RAM.

checkspell@ (n -))
(pronounced chek spell fetch)

Fetches n from the spelling checker flag in Setup's RAM.

choicecode (n -))
(pronounced choyss' kode)

Gets a scan code, and, if it is a leap code, adjusts the nth
choice number on the line being selected, rolling the number to
the upper or lower limit when necessary. It saves the scan code
if it is a space or setup code, otherwise it throws it away.

choicedisp (a 1 -))
(pronounced choyss' disp)

Displays the 1 character string on current line and makes it bold
if it is to be a choice.

clearlines (f 1 -))
(pronounced cleer' lynes)

Clears lines f to 1, making them ASCII blanks.

clippage#to (-) 1 u)
(pronounced clip' page sharp' to)

Stacks 1 and~, the two page-number clipping constants.

Defsetup (-))
(pronounced deff' set-up)

Installs the default setup into system RAM and svram.

dispbjgutter (In i -))
(pronounced disp' bee jay gut'ter)

For a given selected pitch (on BubbleJet printer), displays the
left margin offset on line In.

dispcomgutter (In i -))
(pronounced disp com gut'ter)

For a given selected pitch (on the Fx80 printer), displays the
left margin offset on line In.

dispgutter (In i -))
(pronounced disp gut'ter)

For a given selected pitch (for various printers), displays the
left margin offset on line In.

displaygroup (I u -))
(pronounced dis-play' groop)

Executes token indexes I to ~, displaying the information related
to the token.

- 350 -

exitsetup (-))
(pronounced eks'it set-up)

Exits out of setup, checks I/O assignments, and sets up the Cat.

Fx80 -) 1 u
pronounced eff' eks ay'tee)

Stacks the Fx8o's lower and upper group index range.

getdata (k -) addr)
(pronounced get' day-ta)

Get the kth item's address in setdata in the setup system area.

getsetupspell (sef spf -))
(pronounced get set-up spell)

Recovers the setup and spell information from the disk if the
appropriate flag is true.

gpdaddr 0 g -) addr)
pronounced jee pee dee ad'der)

Calculates the group g, offset Q address in the groups array in
the setup system area.

gutters (-) addr)
(pronounced gut'ters)

Calculates the gutter data address in the setup system area.

himsetup (k -) addr)
(pronounced aytch' eye em set'up)

Calculates the ~th item's himsetup data address in the setup
system area.

initsetup (-))
(pronounced in-it' set-up)

Initializes setup from ROM, sets directions and flags, and
calculates data checksum.

initsvram (-))
(pronounced in-it' ess vee ram

Tests svram data, and initializes from the ROM if necessary.

kbdcountry (-) cc)
{ pronounced kay bee dee kun'try

Stacks the decoded country code.

kbdI/II! (n -))
(pronounced kay-bee-dee' wun-slash-too' star)

Stores n in the Keyboard 1/11 flag in Setup's RAM area.

kbdI/II@ (-) n)
(pronounced kay-bee-dee' wun-slash-too' fetch)

Fetches n from the Keyboard 1/11 flag in Setup's RAM area.

LBP (-) 1 u)
(pronounced ell bee pee')

Stacks the LBP's lower and upper group index range.

- 351 -

m#punct (-))
(pronounced em' sharp punct'

Selects the way numbers are punctuated.

m#sortb (-))
(pronounced em' sharp sort bee')

Selects the number of sort breaks.

ml8csf (-))
(pronounced em ay-teen' see ess eff

Selects the new AP printer's cut-sheet feeder option.

ml8d (-))
(pronounced em ay-teen' dee)

Selects the Cat180's printing direction.

ml8dw (-))
(pronounced em ay-teen' dee' du'bl-yu

Selects the Cat180's daisy wheel.

m18g (-))
(pronounced em ay-teen' jee'

Selects the LBP's left margin offset (gutter).

m18pbs (-))
(pronounced em ay-teen' pee bee ess)

Selects Cat180 t s pause-between-sheets.

m18pitch (-))
(pronounced eill ay-teen' pitch

Selects the Cat180's pitch.

mAB (i g -))
(pronounced em ay bee)

Sets the tray for printer i, and displays the tray selection on
line g.

mainptr (-) addr)
(pronounced mayne pee tee arr)

Gets the main printer direction add~ess in the setup system area.

manswer i -))
pronounced em' an'ser)

Displays the number of rings before autoanswer option for index i.

map -)

pronounced em-ay-pee' }
Interacts with the user to select an alternate printer. Doesn't
present the Cat 180 parallel printer. Alters the groups to go to
depending on printer selection.

map3csf (-))
(pronounced em-ay-pee three see ess efr)

Selects the AP300's cut-sheet feeder.

- 352 -

map3d (-))
(pronounced em-ay-pee three dee)

Selects the AP300's print direction.

map3dw (-))
(pronounced em-ay-pee three dee du'bl-~u

Selects the AP300's daisy wheel.

map3g (-))
(pronounced em-ay-pee three jee

Selects the AP300's left margin offset (gutter) .

map3pbs (-))
(pronounced em-ay-pee three Eee bee ess

Selects the AP300's pause-between-sheets option.

map3pitch (-))
(pronounced em-aY-Eee three' Eitch

Selects pitch for the AP300.

map3tray (-))
(pronounced em-ay-pee three tray

Selects the AP300's tray.

map4csf (-))
(pronounced em-ay-pee for see ess eff)

Selects the cut sheet feeder option for the AP4oo.

map4d (-))
(pronounced em-aY-Eee for dee)

Selects print direction for the AP4oo.

map4dw (-))
(pronounced em-ay-pee for dee du'bl-yu

Selects the AP400's daisy wheel.

map4g (-))
(pronounced em-aY-Eee for jee

Selects the AP400's left margin offset (gutter).

map4pbs (-))
(pronounced em-aY-Eee for Eee bee ess)

Selects AP400's pause-between-sheets option.

map4pitch (-))
(pronounced em-aY-Eee for pi, :h

Selects the AP400's pitch.

map4tray (-))
(pronounced em-ay-pee for tray

Selects the AP400's tray.

- 353 -

)

maplOOdw (-))
(pronounced em-ay-pee wun-hun'dred dee du'bl-yu

Selects the AP100's daisy wheel.

maplOOg (-))
(pronounced em-ay-pee wun-hun'dred jee

Selects the AP100's left margin offset (gutter).

maplOOpbs (-))
(pronounced em-ay-pee wun-hun'dred pee bee ess)

Selects APi00fs pause-between-sheets option.

maplOOpitch (-))
(pronounced em-ay-pee wun-hun'dred pitch

Selects the APi00's pitch.

mapc (-))
(pronounced em-ay-pee see)

Selects the alternate printer and the associated setup group.
Executes that setup group which displays that printer's parameter
choices.

mapct (-))
(pronounced em-ay-pee see tee)

Previews the choices for the selected printer followed by the
serial port choices.

mapp (-))
(pronounced em-ay-pee pee)

Interacts with the user to select an alternate printer. Doesn't
present the APi00 serial printer. Alters the groups to go to
depending on printer selection.

mappc (-))
(pronounced em-a~-pee pee see)

Displays the parallel port alternate printer choices.

mappct (-) }
(pronounced em-a~-pee pee see tee)

Previews the choices for the selected printer.

mbjpcs (-))
(pronounced em bee jay pee see ess)

Selects the BubbleJet's character-set.

mbjpd (-))
(pronounced em bee ja~ pee dee)

Selects the BubbleJet's print direction.

mbjpg (-))
(pronounced em bee ja~ pee jee)

Selects the BubbleJet's left margin offset (gutter).

- 354 -

mbjppbs (-))
(pronounced em bee jay pee pee bee ess)

Selects BubbleJet's pause-between-sheets option.

mbjppitch (-))
(pronounced em-bee-jay pee' pitch

Selects the BubbleJet's pitch.

mbotmgn (-))
(pronounced em-bee-oh-tee em-jee-en

Selects the bottom margin.

mdbotmgn (-))
(pronounced em dee bee oh tee em jee en)

Selects the default document's bottom margin.

mdecimals (-))
(pronounced em des-i-muls)

Selects the number of decimal places in calculation results.

mdfirstpage# (-))
(pronounced em dee first payj sharp

Selects the default document's first page number.

mdirection (i g -))
(pronounced em dy-rek-shun)

Sets the printing direction for printer!. and displays on line g.

mdisplay (-))
(pronounced em dis-play

Selects normal or inverted video.

mdpagelen (-))
(pronounced em dee payj' len)

Selects the default document's page length.

mdprintpage# (-))
(pronounced em dee print payj sharp)

Selects the default document's first printed page number.

mdtopmgn (-))
(pronollnced em dee top em jee en)

Selects the default document's top margin.

mDWchoice a 1 x i g -))
pronounced em dee du'bl-yu choyss')

Displays a Daisy Wheel choice for index i. The parameters ~. 1,
~ and g are passed on to boldtolbuf.

merror (-))
(pronounced em air-ror

Selects the way errors are noted.

- 355 -

mfirstpage# (-))
(pronounced em first payj sharp

Gets the first document page number.

mfxd (-))
(pronounced em eff eks dee)

Selects the Fx8o's print direction.

mfxg (-))
(pronounced em eff eks jee)

Selects the Fx8o's left margin offset (gutter).

mfxpbs (-))
{ pronounced em eff eks pee bee ess }

Selects Fx80's pause-between-sheets option.

mfxpitch (-))
(pronounced em eff eks pitch

Selects the Fx8o's pitch.

mfxpl (-))
(pronounced em eff eks pee ell)

Selects the Fx8o's typestyle.

mimab (-))
(pronounced em eye em ay bee)

Enables or disables the internal modem's answerback option.

mimbpw (-))
(pronounced em eye em bee pee du'bl-yu)

Selects the internal modem's numoer of data bits per character.

mimcfc (-))
(pronounced em eye em see err see

Selects the internal modem's communication character set.

mimct (-))
(pronounced em eye em see tee

Selects the internal modem's disconnect time.

mimdpx (-))
(pronounced em eye em dee pee eks)

Selects the communications mode.

mimlt (-))
(pronounced em eye em ell tee

Selects the internal modem's line terminator.

mimpty (-))
(pronounced em eye em pee tee wy

Selects the internal modem's parity.

mimra (-))
(pronounced em eye em arr ay)

Selects the number of rings for the internal modem to answer.

- 356 -

mims (-))
(pronounced em eye em ess)

Displays the title line and selects the internal modem bit rate.

mimsb (-))
{ pronounced em eye em ess bee

Selects the internal modem's number of stop bits per character.

mkeyboard (-))
(pronounced em kee-bord

Selects which keyboard layout to use.

mlbpcf (-))
(pronounced em ell bee pee see eff)

Selects the LBP's character font.

mlbpg (-))
(pronounced em ell bee pee jee

Selects the LBP's left margin offset (gutter).

mlbpl (-))
(pronounced em ell bee pee ell)

Selects the LBP's typestyle.

mlbpp/l (-))
(pronounced em ell bee pee pee slash ell)

Selects the LBP's portrait/landscape printing mode.

mlbppitch (-))
(pronounced eill ell bee pee pitch

Selects the LBP's pitch.

mlineterm (i -))
(pronounced em lyne term)

Displays the line termination option for index i.

mmp (-))
(pronounced em C.L pee)

The main printer selection control word. Adjusts the display
groups to show on the screen, depending on printer choice and
connection.

mmpc' (-))
(pronounced em em pee see

Selects the main printer. Adjusts the token range executed by
mmpct for the selected printer.

mmpcon (-))
(pronounced em em pee con

Selects the main printer connection. Alters the group display
sequence depending on the printer selected. Checks for printers
that are serial or parallel only (skips them if appropriate, and
substitutes the LBP).

- 357 -

mmpet (->)
{ pronounced em em pee see tee

Previews the choices for the selected printer.

mnewapesf (-))
(pronounced em new ay pee see ess eff)

Selects the new AP's cut-sheet feeder option.

mnewapd (-))
(pronounced em noo a;y 2ee dee)

Selects the new AP's print direction.

mnewapdw (-))
{ pronounced em noo a;y 2ee dee du'bl-yu

Selects the new AP's daisy wheel.

mnewapg (-))
(pronounced em noo a;y Eee jee)

Selects the new AP's left margin offset (gutter) .

mnewappbs (-))
(pronounced em noo a;y 2ee pee bee ess)

Selects new Apts pause-between sheets option.

mnewappitch (-))
(pronounced em noo a;y 2ee

Selects the new AP printer's pitch.

mnewaptray (-))
(pronounced em noo a;y Eee

Selects the new AP printer's tray option.

mpagelen (-))
(pronounced em pa;yj len)

Gets the page length for the selected pages.

mpeD -) tal

Eitch

tra;y

pronounced em pee see zeer-oh)
Stacks a and 1, the Cat180 string address and length, and also !.
the token of the word that, when executed, stacks the Cat180
index range.

mpe! (-) tal)
(pronounced em pee see wun)

Stacks ~ and 1, the VP3103II's string address and length, and
also ~, the token of the word that, when executed, stacks the LBP
index range.

mpe2 (-) tal)
(pronounced em pee see too)

Stacks ~ and 1, the new AP printer's string address and length,
and also .!' the token of the word that, when executed, stacks the
newAP index range.

- 358 -

mpc3

Stacks a and
1, the token
index range.

mpc4

Stacks a and
1, the token
index range.

mpc5

Stacks a and
1, the token
index range.

1,
of

1,
of

1,
of

(-) tal }
(pronounced em pee see three)

the AP400's string address and length, and also
the word that, when executed, stacks the AP4

(-) tal)
(pronounced em pee see for)

the AP300's string address and length, and also
the word that, when executed, stacks the AP3

(-) tal)
(pronounced em pee see five)

the AP100's string address and length, and also
the word that, when executed, stacks the AP100

mpc6 (-) tal)
(pronounced em pee see siks)

Stacks ~ and 1, the BubbleJet's string address and length, and
also 1, the token of the word that, when executed, stacks the EJP
index range.

mpcc -) tal)
pronounced em pee see see }

Stacks ~ and 1, the Fx80's string address and length, and also t,
the token of the word that, when executed, stacks the Fx80 inde~
range.

mpcn (-) tal)
(pronounced em pee see en)

Stacks ~ and 1, the "No Printer" string address and length, and
also !, the token of the word that, when executed, stacks the NON
index range.

mpitch (g i -))
(pronounced em pitch)

Displays the three common printer pitches for index i and i 1+.
Displays on group display lines g and ~.

mprintpage# (-))
(pronounced em' print payj' sharp)

Gets the first page number that prints for the document.

mring (-))
(pronounced em ring

Selects the internal modem's ring indicator.

mscdpx (-))
(pronounced em ess see dee pee eks)

Displays the title line and selects the communications mode.

- 359 -

mspbps (-))
(pronounced em ess :eee bee Eee ess)

Sets the serial bit rate.

mspbpw (-))
(pronounced em ess Eee b 2 w)

Sets the number of serial data bits.

mspcon (-))
(pronounced em ess 2ee con

Selects the serial port connection and al ters the group execution
sequence, depending on the choice.

msppty -)

pronounced em ess Eee Eee tee
Sets the serial parity.

msps (-))
(pronounced em ess pee ess)

Previews the serial port setup.

mspsb (-))

a~

(pronounced em ess pee ess bee)
Sets the number of serial stop bits.

mssetup (-))
(pronounced em ess setup)

Selects the option to read the setup data from the disk.

msspell (-))
(pronounced em ess sEell)

Selects the option to read the spelling dictionary from the disk.

mtab (-))
(pronounced em tab)

Enables or disables the Send command answerback.

mtimeout (-))
(pronounced em tyme-out)

Selects the time before the screen goes dark.

mtl t (-))
(pronounced em tee ell tee)

Selects the Send command line terminator and executes the serial
port preview.

mtopmgn (-))
(pronounced em top em jee en)

Gets the top margin for the selected pages.

mtyper (-))
(pronounced em tY2'er)

Selects the typewriter mode.

- 360 -

myesno a 1 x i g -))
pronounced em yes noh)

Displays the yes/no option for index i. The parameters ~, 1, x
and g are passed on to boldtolbuf.

newAP -) 1 u)
pronounced noo ay pee)

Stacks the new AP printer's lower and upper group index range.

NON (-) I u)
(pronounced nahn)

Stacks the non-printer's lower and upper group index range.

numberdisp (-) }
(pronounced num'ber disp

Displays the number in numbr in decimal and in bold on the
current line.

oldsetdata (k -) addr }
(pronounced ohld set' day-ta)

Gets the address of the kth item in the oidset array.

pchoicecode (n -))
(pronounced pee choyss' kode)

Gets a scan code for the parallel printers, and, if it is a leap
code, adjusts the ~th choice number on the line being selected,
rolling the number to the upper or lower limit when necessary.
It saves the scan code if it is a space or setup code, otherwise
it throws it away.

perusecode px n -))
pronounced pa-rooz' kode)

Do choicecode or display the "can't ' .. hange now"
allow choice changing if spooling or off-hook.
message between px and choicex.

presetgplines (-))

message and dontt
Centers the

(pronounced preset jee pee lynes)
Presets the parameters for the maximum and minimum line number
selectors.

printercode (-) code)
(pronounced print'er kode)

Stacks the printer code selected by whichprinter.

printerinfo (n -) v }
(pronounced print'er in'foh)

Stacks the value of printer parameter ~,O<=~<=7. If the 16-bit
value is the last two characters from "none", then it stacks the
ASCII string "none" as a 32-bit integer.

- 361 -

-

printerport (-) fl)
(pronounced print'er port)

Examines whichprinter, returning -1 if it is attached to a
parallel port, a if it is attached to a serial port, and 1 if it
is not connected.

rom>svsetup! (fIg ->)
(pronounced rahm too ess vee set'up stor)

Sets the flag that indicates that the svram has been setup from
ROM.

rom>svsetup? (-) fIg)
(pronounced rahm too ess vee set'up kwes'chun

Returns Ittrue" if the svram data has been setup from ROM.

savesetup (-))
(pronounced sayve' set'up)

Calculates the setup data's checksum and saves the checksum in
the svram.

savespell (-))
{ pronounced sayve spell }

Moves the custom spelling dictionary from svram to a temporary
location, calculates the data checksum there, and then saves the
checksum back in svram.

schoieecode (n -)
(pronounced ess choyss kode)

Gets a scan code for the serial printers, and, if it is a leap
code, adjusts the gth choice number on the line being selected,
rolling the number to the upper or lower limit when necessary.
It saves the scan code if it is a space or setup code, otherwise
it throws it away.

seode -) sc)
pronounced ess kode)

If both Use Front keys are up, sets up the Cat and resumes
operation. Otherwise, it returns with a legal Setup keyboard
scan code.

sendeommand (-) addr)
(pronounced send' kom-mand'

Gets the address of the Send command direction in the setup
system area.

serialport (-) 1 u)
(pronounced seer'i-ul port)

Stacks the lower and upper "Serial Port Setup" group indexes.

set-modem (-))
(pronounced set mo'dem)

Sets the modem parameters from the setup data.

- 362 -

set-serial (-))
(pronounced set seer'i-ul)

Sets the serial port parameters from the setup data.

setblanks (c n -))
(pronounced set blanks)

Sets ~ blanks into line buffer starting at column c.

setdata@ (k -) n)
(pronounced set day'ta fetch

Get the data from item K in the setdata vector.

setline (n -))
(pronounced set lyne)

Sets the relative display line number to ~, sets the horizontal
position to the leftmost and puts blanks in the line buffer,
Ibuff.

Setup (-))
(pronounced set'up)

The highest level setup word. This word is executed by holding
down the Use Front key, and, while holding it, pressing the Setup
key.

setup> temp (-))
(pronounced set'up too temp)

Moves the setup data to a temporary RAM buffer, where it is ready
to write into svram.

setupcat (-)
(pronounced S3t'up cat)

Sets up the Cat with the data from the setup data vector.

setupcs (-) s)
(pronounced set'up see ess)

Fetches the setup data checksum from the system status RAM area.

setx (n -))
(pronounced set eks)

Sets the horizontal place in the line buffer to text columm n.

si()#hl n -) m)
pronounced ess eye to from sharp aytch ell

Converts the number of half-lines to the vector index; also
converts the vector index to the number of half-lines. The
decision is made by examining the parameter~. If O<=~<=7, ~ is
the appropriate number of half-lines and if ~>7. ~ is the
corresponding index.

spellcs (-) s)
(pronounced spell see ess)

Stacks the custom spelling dictionary checksum that was
calculated in the tempoary buffer area.

- 363 -

stype (a 1 -))
(pronounced ess type)

Outputs a string which is 1 characters long. and starts at
address ~, to the display at the current row and column.

svid (-) id
(pronounced ess vee eye-dee)

Stacks the svram data format identification numbers. The
spelling identification number is in the upper 16 bits and the
setup identification number is in the lower 16 bits.

svid t (s -))
(pronounced ess vee eye-dee store)

Stores the saved svram data format identification numbers.

svid@ (-) s)
(pronounced ess vee eye-dee fetch)

Fetches the saved svram data format identification numbers.

svramsetup) temp (-»)
(pronounced ess vee ram set'up too temp

Moves svram setup data to temporary RAM.

svramspel1) temp (-))
(pronounced ess vee ram s2ell too tem2

Moves svram spelling dictionary to temporary RAM.

svsetupcs! (s -))
(pronounced ess vee set'uE see ess store

Stores the svram setup data checksum.

svsetupcs@ (-) s)
(pronounced ess vee set'uE see ess fetch

Fetches the svram setup data checksum.

svspellcs! (s -))
(pronounced ess vee s2e1l see ess store

Stores the svram spelling checksum.

svspellcs@ (-) s)

)

(pronounced ess vee sEell see ess fetch)
Fetches the svram spelling checksum.

temp)setup (-))
(pronounced temp' too set'up)

)

)

Moves setup data from temporary RAM to the system status RAM.

temp) svramse tup (-»)
(pronounced temp' to ess vee ram set'up)

Moves the data in the temporary RAM to the svram setup data area.

temp)svramspell (-»)
(pronounced temp' to ess vee ram spell

Move the temporary RAM to the svram spelling dictionary.

- 364 -

thisdocdata (-))
(pronounced this dok day'ta)

. Initializes certain parameters in Setup from the current
document's data.

tolbuf (a I -))
(pronounced too ell-buff)

Moves the !-byte string at ~ to the line buffer at the current
~,~ location. Advances x as necessary.

topmsg (-))
(pronounced top em ess jee)

Displays the instruction message at the top of the Setup screen.

tromaddr' (-) addr)
(pronounced tee rom ad'der tik)

A vector containing the number of half-lines for each paper size
(computed according to Canon's method).

ultype a I x y -)
pronounced yu ell type)

Outputs the I character string at ~t starting at the current
screen row and column, and underlines it.

wheel! (s -))
(pronounced weel store)

Sets the spare byte in svram.

wheel@ -) s }
pronounced weel fetch)

Fetches the spare byte from svram.

wonb (-))
(pronounced du'bl-yu ahn bee)

Sets the screen to white-an-black; sets the ruler to black, and
turns the black screen flag on.

- 365 -

