
I0T19R4600T .. &

I0T19R470
0T

..
ORION'" processor

Hardware ·
user's Manual

, INC

IDT79R4600™ and
IDT79R4 700 ™

RIse Processor

Hardware User's Manual

Revision 2.0

April 1995

Integrated Device Technology, Inc.

Table of Contents

Integrated DevIce Technology. Inc.

Overview

Introduction
Features
Device Overview
Pipeline Overview
CPU Register Overview
CPU Instruction Set Overview

Data Fonnats and Addressing
Coprocessors (CPO-CP2)

System Control Coprocessor, CPO
Floating-Point Co-Processor
Floating-Point Units

Virtual to Physical Address Mapping
Joint TLB
Instruction TLB
Data TLB

Cache Memory
Instruction Cache
Data Cache
Write buffer
R4600jR4700 Clocks

System Interface
Comparison ofR4600jR4700 and R4400

CPU Instruction Set Summary

Introduction
CPU Instruction Formats
Load and Store Instructions

Scheduling a Load Delay Slot
Defining Access Types

Computational Instructions
64-bit Virtual Address Operations with 32-bit operands
Cycle Timing for Multiply and Divide Instructions

Jump and Branch Instructions
Overview of Jump Instructions
Overview of Branch Instructions

Special Instructions
Exception Instructions
Coprocessor Instructions

iii

Chapter 1

1-1
1-3
1-4
1-4
1-5
1-6

1-13
1-15
1-15
1-18
1-18
1-19
1-19
1-20
1-20
1-20
1-20
1-20
1-21
1-21
1-22
1-23

Chapter 2

2-1
2-1
2-2
2-2
2-2
2-4
2-4
2-4
2-5
2-5
2-5
2-5
2-5
2-5

Table of Contents Table of Contents

The CPU Pipeline

Introduction
CPU Pipeline Operation
CPU Pipeline Stages

11 - Instruction Fetch, Phase one
21 - Instruction Fetch, Phase two
lR - Register Fetch, Phase one
2R - Register Fetch, Phase two
lA - Execution, Phase one
2A - Execution, Phase two
ID - Data Fetch, Phase one
2D - Data Fetch, Phase two
1 W - Write Back, Phase one
2W - Write Back, Phase two

Branch Delay
Load Delay
Interlock and Exception Handling

Exception Conditions
Stall Conditions
Slip Conditions

R4600 /R4 700 Write Buffer

Memory Management

Translation Lookaside Buffer (TLB)
Hits and Misses
Multiple Matches

Address Spaces
Virtual Address Space
Physical Address Space
Virtual-to-Physical Address Translation
32-bit Virtual Address Translation
64-bit Virtual Address Translation
Operating Modes
User Mode Operations

32-bit User Mode (useg)
64-bit User Mode (xuseg)
Supervisor Mode Operations
32-bit Supervisor Mode, User Space (suseg)
32-bit Supervisor Mode, Supervisor Space (sseg)
64-bit Supervisor Mode, User Space (xsuseg)

Chapter 3

3-1
3-1
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-2
3-3
3-3
3-3
3-4
3-4
3-5
3-6
3-7
3-8
3-9

Chapter 4

4-1
4-1
4-1
4-1
4-1
4-2
4-2
4-3
4-3
4-4
4-4
4-5
4-6
4-6
4-7
4-7
4-7
4-7 64-bit Supervisor Mode, Current Supervisor Space (xsseg)

64-bit Supervisor Mode, Separate Supervisor Space (csseg) 4-8
4-8 Kernel Mode Operations

32-bit Kernel Mode, User Space (kuseg)
32-bit Kernel Mode, Kernel Space 0 (ksegO)
32-bit Kernel Mode, Kernel Space 1 (ksegl)
32-bit Kernel Mode, Supervisor Space (ksseg)
32-bit Kernel Mode, Kernel Space 3 (kseg3)
64-bit Kernel Mode, User Space (xkuseg)
64-bit Kernel Mode, Current Supervisor Space (xksseg)
64-bit Kernel Mode, Physical Spaces (xkphys)
64-bit Kernel Mode, Kernel Space (xkseg)
64-bit Kernel Mode, Compatibility Spaces

(cksegl:0, cksseg, ckseg3)

Iv

4-10
4-10
4-10
4-10
4-11
4-11
4-11
4-12
4-12

4-12

Table of Contents

System Control Coprocessor
Format of a TLB Entry
CPO Registers
Index Register (0)
Random Register (1)
EntryLoO (2), and EntryLo 1 (3) Registers
PageMask Register (5)
Wired Register (6)
EntryHi Register (CPO Register 10)
Processor Revision Identifier (PRId) Register (15)
Config Register (16)
Load Linked Address (LLAddr) Register (17)
Cache Tag Registers [TagLo (28) and TagHi (29)]
Virtual-to-Physical Address Translation Process
TLB Misses
TLB Instructions

CPU Exception Processing
How Exception Processing Works
Exception Processing Registers

Context Register (4)
Bad Virtual Address Register (BadVAddr) (8)
Count Register (9)
Compare Register (11)
Status Register (12)
Status Register Format
Status Register Modes and Access States
Status Register Reset
Cause Register (13)
Exception Program Counter (EPC) Register (14)
XC on text Register (20)
Error Checking and Correcting (ECC) Register (26)
Cache Error (CacheErr) Register (27)

Table of Contents

4-12
4-13
4-15
4-16
4-16
4-17
4-17
4-18
4-18
4-19
4-19
4-20
4-21
4-22
4-23
4-23

Chapter 5
5-1
5-1
5-2
5-3
5-3
5-3
5-4
5-4
5-6
5-6
5-7
5-8
5-9
5-9

Error Exception Program Counter (Error EPC) Register (30)
5-10
5-11
5-12
5-12
5-12
5-13
5-13
5-13
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-19
5-20
5-21
5-22
5-23
5-24
5-25

Processor Exceptions
Exception Types
Reset Exception Process
Cache Error Exception Process
Soft Reset and NMI Exception Process
General Exception Process
Exception Vector Locations
Priority of Exceptions

Reset Exception
Soft Reset Exception
Nonmaskable Interrupt (NMI) Exception
Address Error Exception
TLB Exceptions
TLB Refill Exception
TLB Invalid Exception
TLB Modified Exception
Cache Error Exception
Bus Error Exception
Integer Overflow Exception
Trap Exception

v

Table of Contents Table of Contents

System Call Exception
Breakpoint Exception
Reserved Instruction Exception
Coprocessor Unusable Exception
Floating-Point Exception
Interrupt Exception
Exception Handling and Servicing Flowcharts

Floating-Point Unit
Overview

The R4600/R4700 Floating-Point Coprocessor
FPU Features
FPU Programming Model
Floating-Point General Registers (FGRs)
Floating-Point Registers
Floating-Point Control Registers

Implementation and Revision Register, (FCRO)
Control/Status Register (FCR3 1)
Accessing the Control/Status Register
IEEE Standard 754
Control/Status Register FS Bit
Control/Status Register Condition Bit
Control/Status Register Cause, Flag, and Enable Fields
Cause Bits
Enable Bits
Flag Bits
Control/Status Register Rounding Mode Control Bits

Floating-Point Formats
Binruy Fixed-Point Format
Floating-Point Instruction Set Overview

Floating-Point Load, Store, and Move Instructions
Transfers Between FPU and Memory
Transfers Between FPU and CPU
Load Delay and Hardware Interlocks
Data Alignment
Endianness
Floating-Point Conversion Instructions
Floating-Point Computational Instructions
Branch on FPU Condition Instructions
Floating-Point Compare Operations

FPU Instruction Pipeline Overview
Instruction Execution
Instruction Execution Cycle Time
Instruction Scheduling Constraints
FPU Multiplier Constraints
FPU Adder Constraints
Resource Scheduling Rules

vi

5-26
5-27
5-28
5-29
5-30
5-31
5-32

Chapter 6

6-1
6-1
6-2
6-2
6-2
6-3
6-3
6-4
6-4
6-6
6-6
6-6
6-6
6-6
6-6
6-6
6-7
6-7
6-7
6-9

6-10
6-11
6-11
6-11
6-12
6-12
6-12
6-12
6-12
6-12
6-12
6-13
6-13
6-14
6-15
6-15
6-15
6-15

Table of Contents

Floating-Point Exceptions
Exception Types
Exception Trap Processing
Flags
FPU Exceptions
Inexact Exception (I)
Invalid Operation Exception (V)
Division-by-Zero Exception (Z)
Overflow Exception (0)
Underflow Exception (U)
Unimplemented Instruction Exception (E)
Saving and RestOring State
Trap Handlers for IEEE Standard 754 Exceptions

Processor Signal Descriptions
Introduction
System Interface Signals
Clock/ Control Interface Signals
Interrupt Interface Signals
JTAG Interface Signals
Initialization Interface Signals

Inltlallzation Interface
Introduction
Functional Overview
Reset and Initialization Signal Descriptions
Power-on Reset

Cold Reset
Warm Reset

Initialization Sequence
Boot-Mode Settings

Clock Interface
Introduction
Signal Terminology
Basic System Clocks

MasterClock
MasterOut
SyncIn/SyncOut
PClock
SClock
TClock
RClock

System Timing Parameters
Alignment to SClock
Alignment to MasterClock
Phase-Locked Loop (PLL)

PLL Components and Operation
Passive Components

Connecting Clocks to a Phase-Locked System
Connecting Clocks to a System without Phase Locking

Connecting to a Gate-Array Device
Connecting to a CMOS Logic System

vii

Table of Contents

Chapter 7
7-1
7-2
7-2
7-3
7-3
7-3
7-4
7-4
7-4
7-5
7-5
7-6

Chapter 8
8-1
8-2
8-3
8-4
8-4
8-5

Chapter 9
9-1
9-1
9-1
9-3
9-3
9-3
9-4
9-6

Chapter 10

10-1
10-1
10-1
10-1
10-2
10-2
10-2
10-2
10-2
10-2
10-3
10-3
10-3
10-3
10-4
10-4
10-5
10-6
10-6
10-8

Table of Contents Table of Contents

Cache Organization. Operation and Coherency

Introduction
Memory Organization
Overview of Cache Operations
R4600/R4700 Cache Description

Cache Line Size
Cache Organization and Accessibility
Organization of the Primary Instruction Cache (I-Cache)
Organization of the Primary Data Cache (D-Cache)
Accessing the Primary Caches

Cache States
Primary Cache States

Cache Line Ownership
Cache Write Policy
Cache State Transition Diagrams
Cache Coherency Overview

Cache Coherency Attributes
Uncached
Noncoherent
Cache Operation Modes

R4600/R4700 Processor Synchronization Support
Test-and-Set
Counter
Load Linked and Store Conditional
Examples Using LL and SC

System Interface

Introduction
Terminology
System Interface Description

Interface Buses
Address and Data Cycles
Issue Cycles
Handshake Signals

System Interface Protocols
Master and Slave States
Moving from Master to Slave State
External Arbitration
Uncompelled Change to Slave State

Processor and External Requests
Rules for Processor Requests
Processor Requests
Processor Read Request
Processor Write Request

External Requests
External Read Request
External Write Request
Read Response

viii

Chapter 11

11-1
11-1
11-2
11-2
11-2
11-2
11-3
11-3
11-5
11-5
11-6
11-6
11-6
11-7
11-7
11-7
11-8
11-8
11-8
11-8
11-8
11-9

11-10
11-11

Chapter 12
12-1
12-1
12-1
12-2
12-2
12-3
12-4
12-4
12-5
12-5
12-5
12-5
12-6
12-6
12-7
12-8
12-8
12-9

12-10
12-10
12-10

Table of Contents Table of Contents

Handling Requests
Load Miss
No-Secondary-Cache Mode - Load Miss
Store Miss
No-Secondary-Cache Mode - Store Miss
Store Hit
No-Secondary-Cache Mode - Store Hit
Uncached Loads or Stores
CACHE Operations
Load Linked/Store Conditional Operation

Processor and External Request Protocols
Processor Request Protocols

Processor Read Request Protocol Steps
External Instruction Read Response Time

Instruction Read Latency Steps for System Clock
Notes on the Instruction Read Latency Steps:

Example of Instruction Block Read With Zero Wait State
External Data Read Response Time

Data Read Latency Steps for System Clock
Notes on the Data Read Latency Steps:

Example of Data Single Read With Zero Wait State
External Cycles for Read Latency

Processor Write Request Protocol
Processor Request and Flow Control
External Request Protocols

External Arbitration Protocol
External Read Request Protocol
External Null Request Protocol
External Write Request Protocol

Read Response Protocol
Data Rate Control

Read Data Pattern
Write Data Transfer Patterns
Independent Transmissions on the SysAD Bus
System Interface Endianness

System Interface Cycle Time
Release Latency

System Interface Commands and Data Identifiers
Command and Data Identifier Syntax
System Interface Command Syntax
Read Requests
Write Requests
Null Requests
System Interface Data Identifier Syntax
Noncoherent Data
Data Identifier Bit Definitions

System Interface Addresses
Addressing Conventions

Subblock Ordering
Example of Sequential Ordering
Example of Subblock Ordering

Processor Internal Address Map

12-11
12-11
12-12
12-12
12-12
12-13
12-13
12-13
12-13
12-14
12-14
12-14
12-15
12-16
12-17
12-17
12-17
12-17
12-18
12-18
12-18
12-18
12-19
12-22
12-23
12-24
12-24
12-25
12-26
12-27
12-29
12-29
12-30
12-31
12-31
12-31
12-32
12-32
12-32
12-33
12-33
12-34
12-36
12-36
12-36
12-37
12-38
12-38
12-38
12-39
12-39
12-42

Table of Contents

R4600/R4700 Processor Interrupts

Introduction
Hardware Interrupts
NonmaskabIe Interrupt (NMI)
Asserting Interrupts

R4600/R4700 Error Checking

Introduction
Error Checking in the Processor

Types of Error Checking
Parity Error Detection
Error Checking Operation
System Interface
System Interface Command Bus

Summary of Error Checking Operations

CPU Instruction Set DetaUs

Introduction
Instruction Classes
Instruction Formats
Instruction Notation Conventions

Instruction Notation Examples
Load and Store Instructions
Jump and Branch Instructions
Coprocessor Instructions
System Control Coprocessor (CPO) Instructions
CPU Instruction Opcode Bit Encoding

FPU Instruction Set DetaUs
Introduction
Instruction Formats

Floating-Point Loads, Stores, and Moves
Floating-Point Operations

Instruction Notation Conventions
Instruction Notation Examples

Load and Store Instructions
Computational Instructions
FPU Instruction Opcode Bit Encoding

cache Operations Timing

Introduction
Caveats About Cache Operations
Cache Operations Tables
Details on the FilCI Equation

Standby Mode Operation

Entering Standby Mode

Coprocessor 0 Hazards

Table of Contents

Chapter 13

13-1
13-1
13-1
13-1

Chapter 14

14-1
14-1
14-1
14-1
14-2
14-2
14-2
14-3

Appendiz:A

A-I
A-I
A-2
A-2
A-4
A-4
A-5
A-6
A-6

A-151

Appendiz: B

B-1
B-1
B-3
B-4
B-4
B-4
B-5
B-6

B-45

Appendiz: C

C-l
C-l
C-l
C-3

Appendiz: D

D-l

Appendiz: E

List of Tables

Integrated DevIce Technology. Inc.

Number

Table 1.1
Table 1.2

Table 1.3

Table 1.4

Table 1.5
Table 1.6
Table 1.7
Table 1.8
Table 1.9

Table 1.10

Table 1.11

Table 1.12
Table 1.13

Table 1.14
Table 1.15

Table 1.16

Table 1.17
Table 1.18

Table 1.19
Table 1.20

Table 1.21

Table 1.22

Table 1.23

Table 1.24

Table 1.25

Table 2.1
Table 2.2
Table 3.1
Table 3.2

Table Title Page

CPU Instruction Set: Load and Store Instructions 1-7
CPU Instruction Set: Arithmetic Instructions

(ALU Immediate)
CPU Instruction Set: Arithmetic

(3-0perand, R-Type)
CPU Instruction Set: Multiply and Divide

Instructions

1-7

1-8

CPU Instruction Set: Jump and Branch Instruction
CPU Instruction Set: Shift Instructions

1-8
1-8
1-9
1-9
1-9

Instruction Set: Coprocessor Instructions
CPU Instruction Set: Special Instructions
MIPS 2jMIPS 3 Additional: Load and Store

Instructions
MIPS 2jMIPS 3 Additional: Arithmetic

Instructions (ALU Immediate)
MIPS 2jMIPS 3 Additional: Multiply and

Divide Instructions
MIPS 2jMIPS 3 Additional: Branch Instructions
MIPS 2jMIPS 3 Additional: Arithmetic

Instructions (3-operand, R-type)
MIPS 2jMIPS 3 Additional: Shift Instructions
MIPS 2jMIPS 3 Additional: Exception

Instructions
MIPS 2 jMIPS 3 Additional: Coprocessor

Instructions
CPO Instructions
System Control Coprocessor (CPO) Register

Definitions
Floating-Point Latency Cycles
System Interface Comparison Between R4400 PC

and R4600jR4700
Cache Comparison Between R4400 PC and

R4600jR4700
TLB Comparison Between R4400 PC and

R4600jR4700
Pipeline Comparison Between R4400 PC and

R4600jR4700
Coprocessor 0 Comparison Between R4400 PC

and R4600jR4700
Coprocessor 1 Comparison Between R4400 PC

and R4600jR4700
Byte Access within a Doubleword
Multiply jDivide Instruction Cycle Timing
Pipeline Exceptions
Pipeline Interlocks

1-10

1-10

1-10
1-11

1-11
1-11

1-12

1-12
1-12

1-17
1-18

1-23

1-24

1-25

1-25

1-26

1-26
2-3
2-4
3-6
3-6

List of Tables List of Tables

Number Table Title Page

Table 4.1 32-bit and 64-bit User Mode Segments 4-5
Table 4.2 32-bit and 64-bit SupeIVisor Mode Segments 4-7
Table 4.3 32-bit Kernel Mode Segments 4-10
Table 4.4 64-bit Kernel Mode Segments 4-11
Table 4.5 Cache ability and Coherency Attributes 4-12
Table 4.6 TLB Page Coherency (C) Bit Values 4-15
Table 4.7 Index Register Field Descriptions 4-16
Table 4.8 Random Register Field Descriptions 4-17
Table 4.9 Mask Field Values for Page Sizes 4-17
Table 4.10 Wired Register Field Descriptions 4-18
Table 4.11 PRId Register Fields 4-19
Table 4.12 Config Register Fields 4-20
Table 4.13 Cache Tag Register Fields 4-21
Table 4.14 TLB Instructions 4-23
Table 5.1 CPO Exception Processing Registers 5-2
Table 5.2 Context Register Fields 5-2
Table 5.3 Status Register Fields 5-5
Table 5.4 Cause Register Fields 5-7
Table 5.5 Cause Register ExcCode Field 5-8
Table 5.6 XC on text Register Fields 5-9
Table 5.7 ECC Register Fields 5-10
Table 5.8 CacheErr Register Fields 5-11
Table 5.9 Exception Vector Base Addresses 5-14
Table 5.10 Exception Vector Offsets 5-14
Table 5.11 Exception Priority Order 5-14
Table 5.12 List of Exception Flowcharts 5-32
Table 6.1 Floating-Point Control Register ASSignments 6-4
Table 6.2 FCRO Fields 6-4
Table 6.3 Control/Status Register Fields 6-5
Table 6.4 Rounding Mode Bit Decoding 6-7
Table 6.5 Equations for Calculating Values in Single and

Double-PreciSion Floating-Point Format 6-8
Table 6.6 Floating-Point Format Parameter Values 6-9
Table 6.7 Minimum and Maximum Floating-Point Values 6-9
Table 6.8 Binary Fixed-Point Format Fields 6-9
Table 6.9 FPU Instruction Summary: Load, Move and

Store Instructions 6-10
Table 6.10 FPU Instruction Summary: Conversion Instruc-

tions 6-10
Table 6.11 FPU Instruction Summary: Computational

Instructions 6-11
Table 6.12 FPU Instruction Summary: Compare and Branch

Instructions 6-11
Table 6.13 Mnemonics and Definitions of Compare

Instruction Conditions 6-13
Table 6.14 Floating-Point Operation Latencies 6-14
Table 7.1 Default FPU Exception Actions 7-2
Table 7.2 FPU Exception-Causing Conditions 7-3
Table 8.1 System Interface Signals 8-2
Table 8.2 Clock/ Control Interface Signals 8-3
Table 8.3 Interrupt Interface Signals 8-4
Table 8.4 JTAG Interface Signals 8-4
Table 8.5 Initialization Interface Signals 8-5
Table 8.6 R4600 /R4 700 Processor Signal Summary 8-6

xii

List of Tables List of Tables

Number Table TiUe Page

Table 9.1 R4600 /R4 700 Processor Signal Summary 9-2
Table 9.2 Boot-Mode Settings 9-7
Table 11.1 Cache States 11-6
Table 11.2 Coherency Attributes and Processor Behavior 11-8
Table 12.1 Load Miss to Primary Cache 12-11
Table 12.2 Store Miss to Primary Cache 12-12
Table 12.3 System Interface Requests 12-14
Table 12.4 Transmit Data Rates and Patterns 12-30
Table 12.5 Release Latency for External Requests 12-32
Table 12.6 Encoding of SysCmd(7:5) for System Interface

Commands 12-33
Table 12.7 Encoding of SysCmd(4:3) for Read Requests 12-34
Table 12.8 Encoding of SysCmd(2:0) for Block Read

Request 12-34
Table 12.9 Doubleword. Word. or Partial-word Read Re-

quest Data Size Encoding of SysCmd(2:0) 12-34
Table 12.10 Write Request Encoding of SysCmd(4:3) 12-35
Table 12.11 Block Write Request Encoding of SysCmd(2:0) 12-35
Table 12.12 Doubleword. Word. or Partial-word Write

Request Data Size Encoding of SysCmd(2:0) 12-35
Table 12.13 External Null Request Encoding of

SysCmd(4:3) 12-36
Table 12.14 Processor Data Identifier Encoding of

SysCmd(7:3) 12-37
Table 12.15 External Data Identifier Encoding of

SysCmd(7:3) 12-38
Table 12.16 Sequence of Doublewords Transferred Using

Subblock Ordering: Address 102 12-40
Table 12.17 Sequence of Doublewords Transferred Using

Subblock Ordering: Address 112 12-40
Table 12.18 Sequence of Doublewords Transferred Using

Subblock Ordering: Address 012 12-40
Table 12.19 Partial Word Transfer Byte Lane Usage 12-41
Table 14.1 Error Checking and Correcting Summary for

Internal Transactions 14-3
Table 14.2 Error Checking and Correcting Summary for

External Transactions 14-3
Table Al CPU Instruction Operation Notations A-3
Table A2 Load and Store Common Functions A-4
Table A3 Access Type Specifications for Loads/Stores A-5
Table B.1 Valid FPU Instruction Formats B-2
Table B.2 Logical Negation of Predicates by Condition

True/False B-3
Table B.3 Load and Store Common Functions B-5
Table B.4 Format Field Decoding B-6
Table B.5 Floating-Point Instructions and Operations B-7
Table C.1 Primary Data Cache Operations C-2
Table C.2 Primary Instruction Cache Operations C-3
Table E.3 Coprocessor 0 Hazards E-1

xiii

List of Tables List of Tables

ziv

------ - ----

List of Figures

Integrated DevIce Technology. Inc.

Number Figure Title Page

Figure 1.1 R4600/R4700 Block Diagram 1-4
Figure 1.2 R4600/R4700 CPU Registers 1-5
Figure 1.3 CPU Instruction Formats 1-6
Figure 1.4 Big-Endian Byte Ordering 1-13
Figure 1.5 Little-Endian Byte Ordering 1-13
Figure 1.6 Little-Endian Data in a Doubleword 1-14
Figure 1.7 Big-Endian Data in a Doubleword 1-14
Figure 1.8 Big-Endian Misaligned Word Addressing 1-15
Figure 1.9 Little-Endian Misaligned Word Addressing 1-15
Figure 1.10 R4600/R4700 CPO Registers 1-16
Figure 1.11 Typical System Block Diagram 1-22
Figure 2.1 CPU Instruction Formats 2-1
Figure 3.1 Instruction Pipeline Stages 3-1
Figure 3.2 CPU Pipeline ActMties 3-3
Figure 3.3 CPU Pipeline Branch Delay 3-4
Figure 3.4 CPU Pipeline Load Delay 3-4
Figure 3.5 Correspondence of Pipeline Stage to Interlock

Condition 3-5
Figure 3.6 Exception Detection 3-7
Figure 3.7 Data Cache Miss 3-8
Figure 3.8 Instruction cache miss 3-9
Figure 4.1 Overview of a Virtual-to-Physical Address

Translation 4-2
Figure 4.2 32-bit Virtual Address Translation 4-3
Figure 4.3 64-bit Virtual Address Translation 4-4
Figure 4.4 User Mode Virtual Address Space 4-5
Figure 4.5 Supervisor Mode Virtual Address Space 4-6
Figure 4.6 Kernel Mode Address Space 4-9
Figure 4.7 CP9 Registers and the TLB 4-13
Figure 4.8 Format of a TLB Entry 4-14
Figure 4.9 Fields of the PageMask and Entry Hi

Registers 4-14
Figure 4.10 Fields of the EntryLoO and EntryLo

Registers 4-15
Figure 4.11 Index Register 4-16
Figure 4.12 Random Register 4-16
Figure 4.13 Wired Register Boundary 4-18
Figure 4.14 Wired Register 4-18
Figure 4.15 Processor Revision Identifier Register

Format 4-19
Figure 4.16 Conftg Register Format 4-19
Figure 4.17 LLAddr Register Format 4-21
Figure 4.18 TagLo and TagHi Register (P-cache)

Formats 4-21
Figure 4.19 TLB Address Translation 4-22

List of Figures List of Figures

Number Figure Title Page

Figure 5.1 Context Register Format 5-2
Figure 5.2 BadVAddr Register Format 5-3
Figure 5.3 Count Register Format 5-3
Figure 5.4 Compare Register Format 5-3
Figure 5.5 Status Register 5-4
Figure 5.6 Cause Register Format 5-7
Figure 5.7 EPC Register Format 5-8
Figure 5.8 XContext Register Format 5-9
Figure 5.9 ECC Register Format 5-10
Figure 5.10 CacheErr Register Format 5-10
Figure 5.11 ErrorEPC Register Format 5-12
Figure 5.12 Reset Exception Processing 5-12
Figure 5.13 Cache Error Exception Processing 5-13
Figure 5.14 Soft Reset and NMI Exception

Processing 5-13
Figure 5.15 General Exception Processing (Except Reset,

Soft Reset, NMI, and Cache Error) 5-13
Figure 5.16 General Exception Handler (RW) 5-33
Figure 5.17 General Exception Servicing GUide-

lines(SW} 5-34
Figure 5.18 TLB/XfLB Miss Exception Handler (RW) 5-35
Figure 5.19 TLB /XfLB Exception Servicing Guide-

lines(SW} 5-36
Figure 5.20 Cache Error Exception Handling (RW)

and Servicing Guidelines (SW) 5-37
Figure 5.21 Reset, Soft Reset & NMI Exception Handling

(RW) and Servicing Guidelines (SW) 5-38
Figure 6.1 FPU Functional Block Diagram 6-1
Figure 6.2 FPU Registers 6-3
Figure 6.3 Implementation/Revision Register 6-4
Figure 6.4 FP Control/Status Register Bit Assignments 6-5
Figure 6.5 Control/Status Register Cause, Flag, and

Enable Fields 6-5
Figure 6.6 Single-Precision Floating-Point Format 6-7
Figure 6.7 Double-Precision Floating-Point Format 6-8
Figure 6.8 Binary Fixed-Point Format 6-9
Figure 6.9 FPU Instruction Pipeline 6-13
Figure 7.1 Control! Status Register Exception/Flag/Trap /

Enable Bits 7-1
Figure 8.1 R4600/R4700 Processor Signals 8-1
Figure 9.1 Power-on Reset 9-4
Figure 9.2 Cold Reset 9-5
Figure 9.3 Warm Reset 9-6

List of Figures List of Figures

Number Figure Title Page

Figure 10.1 Signal Transitions 10-1
Figure 10.2 Clock-to-Q Delay 10-1
Figure 10.3 Processor Clocks, PClock-to-SClock

Division by 2 10-3
Figure 10.4 PLL Passive Components 10-4
Figure 10.5 R4600/R4700 PLL Network 10-5
Figure 10.6 R4600/R4700Processor Phase-Locked

System 10-6
Figure 10.7 Gate-Array System Without Phase Lock,

Using the R4600/R4700 Processor 10-7
Figure 10.B Gate Array and CMOS System Without

Phase Lock, Using the R4600/R4700
Processor 10-9

Figure 11.1 Logical Hierarchy of Memoty 11-1
Figure 11.2 Cache Support in the R4600/R4700 11-2
Figure 11.3 R4600/R4700 Primary I-Cache Line

Fonnat 11-3
Figure 11.4 R4600/R4700 B-Word Primary Data Cache

Line Fonnat 11-4
Figure 11. 5 Primary Cache Data and Tag Organization 11-5
Figure 11.6 Primary Data Cache State Diagram 11-7
Figure 11.7 Synchronization with Test-and-Set 11-9
Figure 11.B Synchronization Using a Counter 11-10
Figure 11.9 Test-and-Set using LL and SC 11-11
Figure 11.10 Counter Using LL and SC 11-12
Figure 12.1 System Interface Buses 12-2
Figure 12.2 State of RdRdy* Signal for Read Requests 12-3
Figure 12.3 State ofWrRdy'" Signal for Write Requests 12-3
Figure 12.4 System Interface Regtster-to-Regtster

Operation 12-4
Figure 12.5 Requests and System Events 12-6
Figure 12.6 Back-to-Back Write Cycle Timing

(R4000 compatible mode) 12-7
Figure 12.7 Processor Requests 12-7
Figure 12.B Processor Request 12-B
Figure 12.9 External Requests 12-9
Figure 12.10 External Request 12-9
Figure 12.11 Read Response 12-11
Figure 12.12 Processor Read Request Protocol 12-16
Figure 12.13 Uncached Read-External Cycles 12-1B
Figure 12.14 Processor Read Cycle 12-19
Figure 12.15 Processor Noncoherent Word Write

Request Protocol 12-20
Figure 12.16 Write re-issue 12-20
Figure 12.17 Pipelined Writes 12-21
Figure 12.1B Processor Noncoherent Block Write

Request Protocol 12-22
Figure 12.19 Delayed for the Assertion of WrRdy* 12-23

List of Figures List of Figures

Number Figure Title Page

Figure 12.20 Two Processor WIite Requests. Second WIite
Arbitration Protocol for External Requests 1 2-24

Figure 12.21 External Read Request. System Interface in
Master State 12-25

Figure 12.22 System Interface Release External Null
Request 12-26

Figure 12.23 External Write Request. with System
Interface initially Master State 12-27

Figure 12.24 Processor Word Read Request. followed by a
Word Read Response 12-28

Figure 12.25 Block Read Response With Zero Wait
State 12-29

Figure 12.26 Block Read Transaction With One Wait
State 12-29

Figure 12.27 Read Response. Reduced Data Rate, System
Interface in Slave State 12-30

Figure 12.28 System Interface Command Syntax Bit
Definition 12-33

Figure 12.29 Read Request SysCmd Bus Bit Definition 12-33
Figure 12.30 WIite Request SysCmd Bus Bit Definition 12-34
Figure 12.31 Null Request SysCmd Bus Bit Definition 12-36
Figure 12.32 Data Identifier SysCmd Bus Bit Definition 12-36
Figure 12.33 RetIieving a Data Block in Sequential

Order 12-39
Figure 12.34 RetIieving Data in a Subblock Order 12-39
Figure 13.1 Interrupt Register Bits and Enables 13-1
Figure 13.2 R4600jR4700 Interrupt Signals 13-2
Figure 13.3 R4600jR4700 Nonmaskable Interrupt

Signal 13-2
Figure 13.4 Masking of the R4600jR4700 Interrupts 13-3
Figure A.l CPU Instruction Formats A-2
Figure B.l Load and Store Instruction Format B-5
Figure B.2 Computational Instruction Format B-6
Figure B.3 Bit Encoding for FPU Instructions B-45

xviii

Overview Chapter 1

Integrated DevIce Technology. Inc.

Introduction
The IDT79R4600 (R4600) and IDT79R4700 (R4700) support a wide

variety of processor-based applications. Because of their low power
consumption, coupled with high performance, they are well suited for a
wide variety of embedded applications, including laser printers,
X-terminals, internetworking equipment, imaging eqUipment, and high­
end video games. The R4600 and R4700 are also well-suited to high­
performance desktop applications such as Windows™ NT desktop and
notebook systems, and 3-D workstations.

Compatible with the IDT79R4400PC family for both hardware and
software, the R4600 and R4700 will serve in many of the same
applications, but in addition support low-power operation for applications
such as notebook computers.

Floating Point
The R4700 has improved FPA multiply operations. All other features of

the R4700 are the same as those in the R4600. In this manual, these two
products are referred to collectively as the R4600/R4700, except when
information pertains only to one of them. In that situation they are
referred to individually.

Secondary Cache
The R4600/R4700 does not provide integrated secondary cache and

multiprocessor support as found in the R4000SC and R4000MC, but it is
simple to build an external secondary cache. For most embedded
applications, however, the large on-chip, two-way set associative caches
make this unnecessary.

Performance
The R4600 /R4 700 brings R4000SC performance levels to the R4000PC

package, while at the same time providing lower cost and lower power. It
does this by providing larger on-chip caches that are two-way set
associative, fewer pipeline stalls, and early restart for data cache misses.
The result is higher performance than for an R4000 at the same frequency
and for the same system latencies (exact figures are system dependent).

Upward CompatibiHty
The R4600/R4700 provides complete upward application-software

compatibility with the IDT79R3000 family of microprocessors, including
the IDT79R3000A and the lOT RISController™ family (IDT79R30xx family)
as well the IDT79R4000 family of microprocessors. Microsoft
Windows™NT and UNISOFT Unix™ V.4 operating systems insure the
availability of thousands of applications programs, geared to provide a
complete solution to a large number of processing needs. An array of
development tools facilitates the rapid development of R4600/R4700-
based systems, enabling a wide variety of customers to take advantage of
the MIPS Open Architecture philosophy.

Together with the R4400, the R4600/R4700 provides a compatible,
timely, and necessary evolution path from 32-bit to true, 64-bit
computing. The original design objectives of the R4000 clearly mandated
this evolution path; the result is a true 64-bit processor fully compatible
with 32-bit operating systems and applications.

The R4600/R4700 enables 32-bit applications to access 64-bit compute
power painlessly. The software tools support a wide variety of models,
including 32-bit address and data, 64-bit address and data, and 32-bit
address/64-bit data. 32-bit address/data enables applications to be
migrated without "cleaning up" some software.

1 - 1

OVerview Chapter 1

The R4600jR4700 offers high-perfonnance. large caches. and MMU and
FPA functions to these systems. For desktop systems. the R4600jR4700
supports a full migration to 64-bit. allowing 64-bit systems to execute true
64-bit or older 32-bit applications. For embedded applications. the power
and bandwidth of 64-bit data types can be used without the memory
expansion of 64-bit addressing.

The list on the following page summarizes the R4600jR4700 features.
For a feature-by-feature comparison with the R4000. refer to the tables
beginning on page 1-23.

1-2

OVerview

Features
• True 64-bit microprocessor

- 64-bit integer operations
- 64-bit floating-point operations
- 64-bit registers
- 64-bit virtual address space

• High-performance microprocessor
- For R4600: 133 peak MIPS at 133MHz

For R4700: 175 peak MIPS at 175MHz
- For R4600: 44 peak MFLOP/s at 133MHz

ForR4700: 87 peakMFLOP/s at 175MH

Chapter 1

- For R4600: 109 SPECint92 and 83 SPECfp92 at 150Mz
For R4700: 132 SPECint92 and 94 SPECfp92 at 175Mz

- Large two-way set associative caches on-chip

• Improved FPA multiply performance (R4700 only)
- 1 mul. 1 add every 4 clock cycles

• High level of integration
- 64-bit integer CPU
- 64-bit floating-point unit
- 16KB instruction cache; 16KB data cache
- Flexible MMU with large TLB

• Low-power operation
- 3.3V or 5V power supply options
- For R4600: 25mW /MHz internal power dissipation

(2.5W @ 100MHz. 3.3V)
For R4700: 24mW /MHz internal power dissipation

(2AW @ 100MHz. 3.3V)
- Standby mode reduces internal power to 400mW

• Fully software compatible with R4000 Processor Family

• Standard operating system support includes:
- Microsoft Windows NT
- UNISOFT Unix™ System VA
- JMI C-executive
- VXWorks

• Available in 179-pin PGA or 208-pin MQUAD

• Input and output clock frequency:
- Input clock at one-half pipeline frequency
- Output clock is a programmable divisor of the pipeline frequency
- Selectable bus frequency
- Ratios of 1/2 ... 1/8 of pipeline rate

• 64GB physical address space

• Processor family for a wide variety of applications
- Desktop workstations and PCs
- Deskside or departmental servers
- Routers
- High-performance embedded applications
- Notebooks

• Large number of development tools. including:
- Cross compilers
- Logic models
- Logic analyzer support

1-3

Overview Chapter 1

Device Overview
The R4600/R4700 family brings a high-level of integration designed for

high-performance and high-bandwidth computing. The key elements of
the R4600/R4700 are briefly described below. An overview of these blocks
is found here, with more detailed information on each block presented in
subsequent chapters.

Figure 1.1 shows a block level representation of the functional units
within the R4600/R4700.

Data Tag A
DataSet A Instruction Set A

DTlB Physical

I Store Buffer Data Tag B
I

I 1)\ r- .----
"- SysAD "-

T w Instruction Select

\11 Write Buffer Address Buffer Instruction Register

Read Buffer Instruction Tag A I II
ITLB Physical

Data Set B Instruction Set B
Instruction Tag B

DBus \
I II' IBus I'

Control I
\ W Taa \ AuxTaa \11 W II

Floating-point

i
load Aligner

Register File JolntTlB Integer Register File (Q

UnpackerlPacker E • ..
'E 'I OVA

C') Integer/Address Adder
0 0 a 0 Data TlB Virtual

Floating-point 'E Coprocessor 0 [
AddlSublCvtlDivlSqrt ! ShlfterlStore Aligner

Integer Divide c logic Unit
i
.2 PC Incrementer LL.

Floatlng-polntllnteger r-- SystemlMemory Branch Adder Multiply Control
Instruction TlB Virtual

IVA
Phase lock loop, Clocks Program Counter

Figure 1.1 R4600/R4700 Block Diagram

Pipeline Overview
The R4600/R4700 uses a 5-stage pipeline similar to the IDT79R3000.

The simplicity of this pipeline allows the R4600 /R4 700 to be lower-cost
and lower-power than super-scalar or super-pipelined processors. Unlike
the R3000, the R4600/R4700 does virtual-to-physical translation in
parallel with cache access. This allows the R4600/R4700 to operate at over
twice the frequency of the R3000 and to support a larger TLB for address
translation.

Compared to the 8-stage R4000 pipeline, the R4600/R4700 is more
efficient (requires fewer stalls). This is because the branch and load latency
for the R4600/R4700 is shorter than for the R4000 (both are 2 cycles for
the R4600/R4700 but are 3 and 4 cycles respectively for the R4000).

1-4

Overview

63

Chapter 1

The internal pipeline of the R4600/R4700 processor operates at twice
the frequency of the master clock, as discussed in Chapter 3. The
processor achieves high throughput by pipelining cache accesses,
shortening register access times, implementing virtual-indexed primary
caches, and allowing the latency of certain functional units to span more
than one pipeline clock cycles.

Refer to Chapter 3 for a detailed discussion of the CPU pipeline
operation, including descriptions of the delay instructions, interruptions
to the pipeline flow caused by interlocks and exceptions, and the R4600/
R4700 implementation of a store buffer. Refer to Chapter 6 for a detailed
discussion of the FPU pipeline.

CPU Register Overview
The R4600 /R4 700 has thirty-two general purpose registers. These

registers are used for scalar integer operations and address calculation.
The register file consists of two read ports and one write port, and is fully
bypassed to minimize operation latency in the pipeline.

Figure 1.2 shows the R4600/R4700 CPU registers.

General Purpose Registers
o Multiply and Divide Registers

63 0
rO

I HI I
63 0

r1

r2

I LO I •
•
•
•

Program Counter
r29 63 0

r30 I PC I
r31

FIgure 1.2 R4600/R4700 CPU Regt.ten

Two of the CPU general purpose registers have assigned functions:
• rO is hardwired to a value of zero, and can be used as the target reg­

ister for any instruction whose result is to be discarded. rO can also
be used as a source when a zero value is needed.

• r31 is used as an impliCit return destination address register by the
JAL and BAL series of instructions.

The CPU has three special purpose registers:
• PC - Program Counter register
• HI - Multiply and Divide register higher result
• W - Multiply and Divide register lower result

The two Multiply and Divide registers (HI, W) store:
• the product of integer multiply operations, or
• the quotient (in W) and remainder (in HI) of integer divide operations.

The R4600 /R4 700 processor has no Program Status Word (PSW) register
as such; this is covered by the Status and Cause registers incorporated
within the System Control Coprocessor (CPO). CPO registers are described
later in this chapter.

1-5

OVerview Chapter 1

CPU Instruction Set Overview
Each CPU instruction is 32 bits long. As shown in Figure 1.3. there are

three instruction fonnats:
• immediate (I-type)
• jump (J-type)
• register (R-type)

31 26 25 21 20 16 15 0

I-Type (Immediate) I Op I rs I rt I immediate I
31 26 25 0

J-Type (Jump) I Op
I

target I
31 26 25 21 20 16 15 11 1 0 6 5 0

R-Type (Register) I Op I rs rt I rd I sa funct I
Figure 1.3 CPU Instruction Formats

Each fonnat contains a number of different instructions. which are
described further in this chapter. Fields of the instruction fonnats are
described in Chapter 2.

Instruction decoding is simplified by limiting the number of fonnats to
these three. This limitation means that the more complicated (and less
frequently used) operations and addressing modes can be synthesized by
the compiler. using sequences of these same simple instructions.

The instruction set can be further divided into the following groupings:
• Load and Store instructions move data between memory and general

registers. They are all immediate (I-type) instructions. since the only
addressing mode supported is base register plus 16-bit. signed imme­
diate offset.

• Computational instructions perfonn arithmetic. logical. shift. multi­
ply. and divide operations on values in registers. They include register
(R-type. in which both the operands and the result are stored in reg­
isters) and immediate (I-type. in which one operand is a 16-bit imme­
diate value) fonnats.

• Jump and Branch instructions change the control flow of a program.
Jumps are always made to a paged. absolute address fonned by com­
bining a 26-bit target address with the high-order bits of the Program
Counter (J-type fonnat) or register address (R-type fonnat). Branches
have 16-bit offsets relative to the program counter (I-type). Jump And
Link instructions save their return address in register 31.

• Coprocessor instructions perfonn operations in the coprocessors.
Coprocessor load and store instructions are I-type.

• Coprocessor 0 (system coprocessor) instructions perfonn operations
on CPO registers to control the memory management and exception
handling facilities of the processor and the standby mode for power
management. These are listed in Table 1.17.

• Special instructions perfonn system calls and breakpoint operations.
These instructions are always R-type.

• Exception instructions cause a branch to the general exception-han­
dling vector based upon the result of a comparison. These instruc­
tions occur in both R-type (both the operands and the result are
registers) and I-type (one operand is a 16-bit immediate value) for­
mats.

1-6

Overview Chapter 1

Chapter 2 provides more detail about these instructions, and Appendix
A gives a complete description of each.

Table 1. 1 through Table 1.16 list CPU instructions common to MIPS
R-Series processors, along with the level in which they first appeared. The
last column in each table refers to the MIPS ISA level in which the
instruction first appeared. Table 1. 17 lists CPO instructions.

OpCode Description MIPS ISA Levell

LB Load Byte I

LBU Load Byte Unsigned I

LH Load Halfword I

LHU Load Halfword Unsigned I

LW Load Word I

LWL Load Word Left I

LWR Load Word Right I

SB Store Byte I

SH Store Halfword I

SW Store Word I

SWL Store Word Left I

SWR Store Word Right I

Note: IFor Tables 1.1 through 1.17 this column refers to the level in which the
instruction first appeared.

Table 1.1 CPU Instruction Set: Load and Store Instructions

OpCode Description MIPS ISA Level

ADDI Add Immediate I

ADDIU Add Immediate Unsigned I

SLTI Set on Less Than Immediate I

SLTIU Set on Less Than Immediate I
Unsigned

ANDI AND Immediate I

ORl OR Immediate I

XORl Exclusive OR Immediate I

LUI Load Upper Immediate I

Table 1.2 CPU Instruction Set: Arithmetic Instructions (ALU Immediate)

1-7

Overview Chapter 1

OpCode Description MIPS ISA Level

ADD Add I

ADDU Add Unsigned I

SUB Subtract I

SUBU Subtract Unsigned I

SLT Set on Less Than I

SLTU Set on Less Than Unsigned I

AND AND I

OR OR I

XOR Exclusive OR I

NOR NOR I

Table 1.3 CPU InStruCtiOD Set: Arithmetic (3-operand. R-Type)

OpCode Description MIPS ISA Level

MULT Multiply I

MULTU Multiply Unsigned I

DN Dtv1de I

DNU Dtv1de Unsigned I

MFHI Move From HI I

MTHI Move To HI I

MFLO Move From W I

M1LO Move To LO I

Table 1.4 CPU InstrUctiOD Set: Multiply and Divide InstructioDs

OpCode Description MIPS ISA Level

J Jump I

JAL JumpAndLlnk I

Table 1.5 CPU InStructiOD Set: Jump and Branch InstructioD

1-8

Overview Chapter 1

OpCode Description MIPS ISA Level

JR Jump Register I

JALR Jump And Link Register I

BEQ Branch on Equal I

BNE Branch on Not Equal I

BLEZ Branch on Less Than or Equal to Zero I

BGTZ Branch on Greater Than Zero I

BLTZ Branch on Less Than Zero I

BGEZ Branch on Greater Than or Equal to Zero I

BLTZAL Branch on Less Than Zero And Link I

BGEZAL Branch on Greater Than or Equal to Zero I
And Link

Table 1.15 CPU Instruction Set: Jump and Branch Instruction

OpCode Description MIPS ISA Level

SLL Shift Left Logical I

SRL Shift Right Logical I

SRA Shift Right Arithmetic I

SLLV Shift Left Logical Variable I

SRLV Shift Right Logical Variable I

SRAV Shift Right Arithmetic Variable I

Table 1.6 CPU Instruction Set: Shift Instructions

OpCode Description MIPS ISA Level

LWCz Load Word to Coprocessor z I

SWCz Store Word from Coprocessor z I

MTCz Move To Coprocessor z I

MFCz Move From Coprocessor z I

CTCz Move Control to Coprocessor z I

CFCz Move Control From Coprocessor z I

COPz Coprocessor Operation z I

BCzT Branch on Coprocessor z True I

BCzF Branch on Coprocessor z False I

Table 1.7 Instruction Set: Coprocessor Instructions

OpCode Description MIPS ISA Level

SYSCALL System Call I

BREAK Break I

Table 1.8 CPU Instruction Set: Special Instructions

1-9

OVerview Chapter 1

OpCode Description MIPS ISA Level

LD Load Doubleword III

LDL Load Doubleword Left III

LDR Load Doubleword Right III

LL Load Linked II

LLD Load Linked Doubleword III

LWU Load Word Unsigned III

SC Store Conditional II

SCD Store Conditional Doubleword III

SD Store Doubleword III

SDL Store Doubleword Left III

SDR Store Doubleword Right III

SYNC Sync II

Table 1.9 MlPS 2/MlPS 3 Additional: Load and Store Insuuctions

OpCode Description MIPS ISA Level

DADDI Doubleword Add Immediate III

DADDIU Doubleword Add Immediate III
Unsigned

Table 1.10 MIPS 2/MIPS 3 Additional: Arithmetic Instructions (ALU Immediate)

OpCode Description MIPS ISA Level

DMULT Doubleword Multiply III

DMULTU Doubleword Multiply Unsigned III

DDN Doubleword Divide III

DDNO Doubleword Divide Unsigned III

Table 1.11 MIPS 2/MIPS 3 Additional: Multiply and Divide Instructions

1-10

Overview Chapter 1

MIPS ISA Level
OpCode Description

BEQL Branch on Equal Likely II

BNEL Branch on Not Equal Likely II

BLEZL Branch on Less Than or Equal to Zero II
Likely

BGTZL Branch on Greater Than Zero Likely II

BLTZL Branch on Less Than Zero Likely II

BGEZL Branch on Greater Than or Equal to Zero II
Likely

BLTZALL Branch on Less Than Zero And Link II
Likely

BGEZALL Branch on Greater Than or Equal to Zero II
And Link Likely

BCz1L Branch on Coprocessor z True Likely II

BCzFL Branch on Coprocessor z False Likely II

Table 1.12 MIPS 2/MIPS 3 Additional: Branch Instructions

OpCode Description MIPS ISA Level

DADD Doubleword Add III

DADDU Doubleword Add Unsigned III

DSUB Doubleword Subtract III

DSUBU Doubleword Subtract Unsigned III

Table 1.13 MIPS 2/MIPS 3 Additional: Arithmetic Instructions
(3-operand. R-type)

OpCode Description MIPS ISA Level

DSLL Doubleword Shift Left Logical III

DSRL Doubleword Shift Right Logical III

DSRA Doubleword Shift Right Arithmetic III

DSLLV Doubleword Shift Left Logical Variable III

DSRLV Doubleword Shift Right Logical Variable III

DSRAV Doubleword Shift Right Arithmetic Variable III

DSLL32 Doubleword Shift Left Logical + 32 III

DSRL32 Doubleword Shift Right Logical + 32 III

DSRA32 Doubleword Shift Right Arithmetic + 32 III

Table 1.14 MIPS 2/MIPS 3 Additional: Shift Instructions

1-11

OVerview Chapter 1

OpCode Description MIPS ISA Level

TGE Trap if Greater Than or Equal II

TGEU Trap if Greater Than or Equal Unsigned II

TLT Trap if Less Than II

TLTU Trap if Less Than Unsigned II

TEg Trap if Equal II

1NE Trap if Not Equal II

TGEI Trap if Greater Than or Equal Immediate II

TGEIU Trap if Greater Than or Equal Immediate II
Unsigned

TLTI Trap if Less Than Immediate II

TLTIU Trap if Less Than Immediate Unsigned II

TEgI Trap if Equal Immediate II

1NEI Trap if Not Equal Immediate II

Table 1.15 MIPS 2/MIPS 3 Additional: Exception Instructions

OpCode Description MIPS ISA Level

DMFCz Doubleword Move From Coprocessor z II

DMTCz Doubleword Move To Coprocessor z II

LDCz Load Double Coprocessor z II

SDCz Store Double Coprocessor z II

Table 1.16 MIPS 2/MIPS 3 Additional: Coprocessor Instructions

OpCode Description MIPS ISA Level

DMFCO Doubleword Move From CPO III

DMTCO Doubleword Move To CPO III

MTCO Move to CPO I

MFCO Move from CPO I

TLBR Read Indexed TLB Entry I

TLBWI Write Indexed TLB Entry I

TLBWR Write Random TLB Entry I

TLBP Probe TLB for Matching Entry I

CACHE Cache Operation R4xxxonly

ERET Exception Return R4xxxonly

WAIT Enter Standby mode R46000nly

Table 1.17 CPO Instructions

1-12

OVerview Chapter 1

Data Formats and Addressing
The R4600jR4700 processor uses four data fonnats: a 64-bit

doubleword, a 32-bit word, a 16-bit halfword, and an 8-bit byte. Byte
ordering within each of the larger data fonnats-halfword, word,
doubleword-can be configured in either big-endian or little-endian order.
Endianness refers to the location of byte 0 within the multi-byte data
structure. Figures 1.4 and 1.5 show the ordering of bytes within words and
the ordering of words within multiple-word structures for the big-endian
and little-endian conventions.

When the R4000 processor is configured as a big-endian system, byte 0
is the most-significant (leftmost) byte, thereby providing compatibility with
MC 68000' and IBM 370' conventions. Figure 1.4 shows this configuration.

Higher Word Bit,#
Address Address 31 24 23 1615 8 7 01

D
12 12 II 13 II 14 II 15 I
8 8 II 9 II 10 II 11 I
4 4 II 5 II 6 II 7 I

Lower 0 0 II 1 II 2· II 3 I Address

Figure 1.4 Big-Endian Byte Ordering

When configured as a little-endian system, byte 0 is always the least­
significant (rightmost) byte, which is compatible with iAPX' x86 and DEC
VAX' conventions. Figure 1.5 shows this configuration.

Higher Word
Bit #

131
I

Address Address 24 23 1615 8 7 01

D
12 I · ..• ·t~·1I1A ···11 13 11 12 I
8 I , .:11 ,II to· ·11' 9, ·11· e I
4 I i II 6 11, •• · 5 II 4 I

Lower 0
Address I 3 It 2 II 1 II 0 I

Figure 1.5 Uttle-Endian Byte Ordering

In this text, bit 0 is always the least-significant (rightmost) bit; thus, bit
designations are always little-endian (although no instructions explicitly
designate bit positions within words).

Figures 1.6 and 1.7 show little-endian and big-endian byte ordering in
doublewords.

1-13

Overview Chapter 1

Most-significant byte Least-significant byte

B~: ~ j") 551r ~4~tt' 5 4"if/2If'snt32 l~i; ·It{
I, I 1,1 ~

Halfword Byte ~

Bit # 17 6 5 4 3 2 1 0 I
[JOEJEJEJ[J]OO

Bits in a Byte

Figure 1.6 Little-Endian Data in a Doubleword

Most-significant byte Least-significant byte

B~:: 153)5jl:5It~1I4\ 4OJ,....r9~3~· -,3""11,-31""'4"""' ••. ~~4"'.lIr2,-35"""" _w-."o,....rd~,..,,81~~ --'<---.

1-1 _-,-, _----'I ,--I --.-, --' ~
Halfword Byte ~

Bit#1765 432 1 01

D: . 0-DO' rlf'lDr:l ::. ." : : LJU : LJ
Bits in a Byte

Figure 1.7 Big-Endian Data in a Doubleword

The CPU uses byte addressing for halfword, word, and doubleword
accesses with the following alignment constraints:

• Halfword accesses must be aligned on an even byte boundary
(0, 2, 4 ...).

• Word accesses must be aligned on a byte boundary divisible by four
(0, 4, 8 ...).

• Doubleword accesses must be aligned on a byte boundary divisible by
eight (0, 8, 16 ...).

The following special instructions load and store words that are not
aligned on 4-byte (word) or 8-word (doubleword) boundaries:

LWL LWR SWL SWR
LDL LDR SDL SDR

These instructions are used in pairs to provide addressing of misaligned
words. Addressing misaligned data incurs one additional instruction cycle
over that required for addressing aligned data. This extra cycle is because
of an extra instruction for the "pair" (e.g., LWL and LWR fonn a pair). Also
note that the CPU moves the unaligned data at the same rate as a
hardware mechanism.

1-14

Overview Chapter 1

Figures 1.8 and 1.9 show the access of a misaligned word that has byte
address 3.

Higher
Address Bit#

I

D
131 24 23 1615 8 7 01
I 4 :11 5 '·11 . {$ II I
I II II II 3 I

Lower
Address

Figure 1.8 Blg-Endian Misaligned Word Addressing

Higher
Address Bit #

I

D
131 24 23 1615 8 7 01
I II 6 II 5 .' II: 4 l
! 3 II

"
II I

Lower
Address

Figure 1.9 Little-Endian WsaUgned Word Addressing

Coprocessors (CPO-CP2)
The MIPS ISA (MIPS III) for the R4600jR4700 (and R4000jR4400)

defines three coprocessors (designated CPO through CP2):
• Coprocessor 0 (CPO) is incorporated on the CPU chip and supports

the virtual memory system and exception handling. CPO is also re­
ferred to as the System Control Coprocessor.

• Coprocessor 1 (CPt) is incorporated on the R4600jR4700, and imple­
ments the MIPS floating-point instruction set.

• Coprocessor 2 (CP2) is resexved for future use.
CPO and CPl are described in the sections that follow.

System Control Coprocessor, CPO
CPO translates virtual addresses into physical addresses and manages

exceptions and transitions between kernel, supervisor, and user states.
CPO also controls the cache subsystem, as well as providing diagnostic
control and error recovery facilities.

CPO is also used to control the power management for the R4600j
R4700. This is the standby mode and it can be used to reduce the power
consumption of the internal core of the CPU. The standby mode is entered
by executing the WAIT instruction with the SysAD bus idle and is exited by
any interrupt. This feature is discussed in Appendix G.

1-15

OVerview Chapter 1

The CPO registers shown in Figure 1.10 and described in Table 1.18 on
page 1.17 manipulate the memory management and exception handling
capabilities of the CPU.

Note: Access to reserved or undefined CPO register results are unde­
fined. An exception mayor may not result.

Register Name Reg. # Register Name Reg. #

Inaex 0 Config 16

Ranaom 1 LLAddr 17

EntryLoo 2 18

3 19

4 20

5 21

Wirea 6 22

7 ~ 23

8 ~ 24

9 25

10 26

11 27

12 28

13 29

14 30

15 31

• Exception Processing D Memory Management ~ Reserved

Figure 1.10 R4600/R4700 CPO Registers

1-16

Overview Chapter 1

Number Register Description

0 Index Programmable pointer into '!LB array

1 Random Pseudorandom pointer into '!LB array (read only)

2 EntryLoO Low half of '!LB entry for even virtual page (VPN)

3 EntryLoI Low half of '!LB entry for odd virtual page (VPN)

4 Context Pointer to kernel virtual page table entry (PTE) for 32-
bit address spaces

5 PageMask TLB Page Mask

6 Wired Number of wired '!LB entries

7 - Reserved

8 BadVAddr Bad virtual address

9 Count Timer Count

10 EntryHi High half of '!LB entry

11 Compare Timer Compare

12 SR Status register

13 Cause Cause of last exception

14 EPC Exception Program Counter

15 PRld Processor Revision Identifier

16 Config Configuration register

17 LLAddr Load Linked Address

18 - 19 - Reserved

20 XContext Pointer to kernel virtual PTE table for 64-bit address
spaces

21-25 - Reserved

26 ECC Secondary-cache error checking and correcting (ECC)
and Primary parity

27 CacheErr Cache Error and Status register

28 TagLo Cache Tag register

29 TagHi Cache Tag register

30 ErrorEPC Error Exception Program Counter

31 - Reserved

Table 1.18 System CODtrol Coprocessor (CPO) Register DefinitioDs

1-17

Overview Chapter 1

Floating-Point Co-Processor
The R4600/R4700 incorporates an entire floating-point co-processor on

chip, including a floating-point register file and execution units. The
floating-point co-processor fonns a "seamless" interface with the integer
unit, decoding and executing instructions in parallel with the integer unit.
The R4700 enhances the FPA implemented in the original R4600, resulting
in an improved peak MFLOP rate.

Floating-Point Units
The R4600/R4700 floating-point execution units supports single and

double precision arithmetic, as specified in the IEEE Standard 754. The
execution unit is broken into a separate multiply unit and a combined
add/convert/divide/square root unit. Overlap of multiplies and add/
subtract is supported. The multiplier is partially pipelined, allowing a new
multiply to begin every 6 cycles for the R4600, and every 4 cycles for the
R4700.

As in the R3010 and R4000, the R4600/R4700 maintains fully precise
floating-point exceptions while allowing both overlapped and pipelined
operations. Precise exceptions are extremely important in mission-critical
environments, such as ADA, and highly desirable for debugging in any
environment.

The floating-point unit's operation set includes floating-point add,
subtract, multiply, divide, square root, conversion between fixed-point and
floating-point fonnat, conversion among floating-point fonnats, and
floating-point compare. These operations comply with the IEEE Standard
754.

Table 1.19 shows the latenCies of some of the floating-point instructions
in internal processor cycles. Due to pipelining, repeat rates may be higher.
Also note that many operations are autonomous and can go in parallel.

Operation Single Precision Double Precision

ADD 4 4

SUB 4 4

MUL R4600: 8 R4600: 8
R4700: 4 R4700: 5

DIV .32 61

SgRT 31 60

CMP 3 3

FIX 4 4

FWAT 6 6

ABS 1 1

MOV 1 1

NEG 1 1

LWCI, LDCI 2 2

SWC1, SDCI I I

Table 1.19 Floating-Point Latency Cycles

1-18

OVerview Chapter 1

Virtual to Physical Address Mapping
The R4600 JR4 700 provides three modes of operation:
• user mode
• supe~sormode
• kernel mode

This mechanism is aVailable to system software to provide a secure
environment for user processes. Bits in a status register determine the
mode of operation. In the user mode, the R4600jR47oo provides a single,
uniform virtual address space of 256GB (2GB when Status. UX = O).

When operating in the kernel mode, four distinct virtual address spaces,
totalling 1024GB (4GB when Status.KX = a), are simultaneously available
and are differentiated by the high-order bits of the virtual address.

The R46oojR4700 processors also support a supe~sor mode in which
the virtual address space is 256.5GB (2.5GB when Stauts.SX = a), divided
into three regions based on the high-order bits of the virtual address.

When the R4600jR47oo uses 64-bit virtual addresses, the address
space layouts are an upward compatible extension of the 32-bit virtual
address space layout. A detailed description of the addressing is given in
Chapter 4.

JointTLB
For fast virtuaI-to-physical address decoding, the R4600jR4700 uses a

large, fully associative TLB which maps 96 Virtual pages to their
corresponding physical addresses. The TLB is organized as 48 pairs of
even-odd entries, and maps a virtual address and address space identifier
into the large, 64GB physical address space.

Two mechanisms are provided to assist in controlling the amount of
mapped space, and the replacement characteristics of various memory
regions. First, the-page size can be configured, on a per-entIy basis, to map
a page size of 4KB to 16MB (in multiples of 4). A CPO register is loaded with
the page size of a mapping, and that size is entered into the TLB when a
new entIy is written. Thus, operating systems can provide special purpose
maps; for example, a typical frame buffer can be memory mapped using
only one TLB entIy.

The second mechanism controls the replacement algorithm when a TLB
miss occurs. The R46oojR47oo provides a random replacement algorithm
to select a TLB entIy to be written with a new mapping; however, the
processor provides a mechanism whereby a system specific number of
mappings can be locked into the 1LB, and thus avoid being randomly
replaced. This faCilitates the design of real-time systems, by allowing
deterministic access to critical software.

The joint TLB also contains information to control the cache coherency
protocol for each page. Specifically, each page has attribute bits to
determine whether the coherency algorithm is: uncached, non-coherent
write-back, non-coherent write-through write-allocate, non-coherent
write-through no write-allocate, sharable, exclusive, or update. Non­
coherent write-back is typically used for both code and data on the R4600 /
R47oo; the write-through modes support more efficient frame buffer
accesses than the R4000 family. The coherent modes are supported for
R4000 compatibility and generate different transaction types on the
system interface; cache coherency is not supported however.

1-19

OVerview Chapter 1

Instruction TLB
The R4600/R4700 also incorporates a 2-entry instruction TLB. Each

entry maps a 4KB page. The instruction TLB improves performance by
allowing instruction address translation to occur in parallel with data
address translation. When a miss occurs on an instruction address
translation, the least-recently used ITLB entry is filled from the JTLB. The
operation of the ITLB is invisible to the user.

Data TLB
The R4600/R4700 also incorporates a 4-entry data TLB. Each entry

maps a 4KB page. The data TLB improves performance by allowing data
address translation to occur in parallel with data address translation.
When a miss occurs on an data address translation, the DTLB is filled from
the JTLB. The DTLB refill is pseudo-LRU: the least recently used entry of
the least recently used half is filled. The operation of the DTLB is invisible
to the user.

Cache Memory
In order to keep the R4600/R4700's high-performance pipeline full and

operating effiCiently, the R4600/R4700 incorporates on-chip instruction
and data caches that can be accessed in a single processor cycle. Each
cache has its own 64-bit data path and can be accessed in parallel. The
cache subsystem provides the integer and floating-point units with an
aggregate bandwidth of 1.6GB per second at a system clock frequency of
50MHz.

Furthermore, the large, Two-way set associative caches increase
emulation performance of DOS and Windows 3.1 applications when
running under Windows NT.

Instruction Cache
The R4600/R4700 incorporates a two-way set associative on-chip

instruction cache. This virtually indexed, physically tagged cache is 16KB
in size and is protected with word parity.

Because the cache is virtually indexed, the virtual-to-physical address
translation occurs in parallel with the cache access, thus further
increasing performance by allowing these two operations to occur
simultaneously. The tag holds a 24-bit physical address and valid bit. and
is parity protected.

The instruction cache is 64-bits wide, and can be refilled or accessed in
a single processor cycle. Instruction fetches require only 32 bits per cycle,
for a peak instruction bandwidth of 700 MB/sec @ 175MHz. Sequential
accesses take advantage of the 64-bit fetch to reduce power dissipation.
and cache miss refill writes 64 bits per cycle to minimize the cache miss
penalty. The line size is eight instructions (32 bytes) to maximize
performance.

Data Cache
For fast, single cycle data access, the R4600/R4700 includes a 16KB on­

chip data cache that is two-way set associative with a fixed 32-byte (eight
words) line size. Both the D-cache and the I-cache can be accessed each
pipeline cycle; thus. the data bandwidth is 1400 MB/sec @ 175 MHz, in
addition to the 700 MB/sec instruction bandwidth.

The data cache is protected with byte parity and its tag is protected with
a single parity bit. It is virtually indexed and physically tagged to allow
simultaneous address translation and data cache access

1-20

OVerview Chapter 1

The nonnal write policy is writeback, which means that a store to a cache
line does not immediately cause memoI)' to be updated. This increases
system perlonnance by reducing bus traffic and eliminating the bottleneck
of waiting for each store operation to finish before issuing a subsequent
memoI)' operation. Software can however select write-through on a per­
page basis when it is appropriate, such as for frame buffers.

Associated with the Data Cache is the store buffer. When the R4600j
R4700 executes a Store instruction, this single-entI)' buffer gets written
with the store data while the tag comparison is perlonned. If the tag
matches, then the data is written into the Data Cache in the next cycle that
the Data Cache is not accessed (the next non-load cycle). The store buffer
allows the R4600jR4700 to execute a store eveI)' processor cycle and to
perform back-to-back stores without penalty.

Write buffer
Writes to external memoI)', whether cache miss writebacks or stores to

uncached or write-through addresses, use the on-chip write buffer. The
write buffer holds up to four 64-bit address and data pairs or 1 cache line
to be written back. The entire buffer is used for a data cache write back and
allows the processor to proceed in parallel with memoI)' update. For
uncached and write-through stores, the write buffer significantly increases
performance over the R4000 family of processors.

R4600/R4700 Clocks
The R4600jR47oo has a number of clocks for the user. First, there is

the pipeline clock, PClock. This clock is used for the pipeline and pipeline
related functions internal to the R4600jR47oo. It is two times the
MasterClock frequency. The next clock is the system interface clock,
SClock. This is also an internal clock and is used to sample data at the
system interlace and to clock data into the processor system interface
output registers. The SClock is a divided version of the PClock. The divisor
is selected at boot time.

There are three external clocks. (Some outputs are replicated to minimize
loading.) The MasterOut is at the same frequency as MasterClock and can
be used to clock certain external logic. The other clocks are used by the
external agent. These are the TClock, Transmit clock, and the RClock,
Receive clock. The TClock is used to clock the output registers (signals
transmitted to the R4600 jR4 700) of the external agent and is at the same
frequency as SClock. The RClock is used to clock the input register (signals
received from the R4600jR4700) of the external agent. It is also at the
same frequency as the SClock but its phase leads the SClock and TClock
by 25%. The R46oojR4700 implements an on-chip PLL to eliminate the
effects of clock skew.

1- 21

Overview

R4600

Chapter 1

System Interface
The R4600/R4700 supports a 64-bit system interface that is compatible

with the R4000PC system interface. This interface operates from two
clocks provided by the R4600/R4700, TClock(l:O) and RClock(l:O), at a
division of the pipeline clock.

The interface consists of a 64-bit Address/Data bus with 8 check bits
and a 9-bit command bus. In addition, there are 8 handshake signals and
6 interrupt inputs. The interface has a simple timing'specification and is
capable of transferring data between the processor and memory at a peak
rate of 400MB/sec at 50MHz.

Figure 1.11 shows a typical system using the R4600/R4700. In this
example there is DRAM, a boot EPROM and an optional secondary cache.

. :::'.' Address
~ ~ L2

":"'.

Boot DRAM C~ch~··
ROM (SOns)

. -

OptiooaJ • Control
~ ~. r-- -

,~
,.:, .. :,~ .. ,.

~~:
SCSI ENEl l' " ", . .. co·

1 'co, •• ,., -,-- -r--

,~
•.• :j I,·co·::::. j~ " ~:

. ,.,:
64 64 It~ 16 32

"
,f , ,

~ .. - Memory I/C ~ l' " .. 64
Controller -- po

- .. - ,.
9 .. ,.
2 --
11

Figure 1.11 Typical System Block Diagram

1-22

OVerview

Item

I/O

Package

JTAG

Block transfer sizes

Sclock divisor

Non-block writes

Serial configuration

Chapter 1

Comparison of R4600/R4700 and R4400
This section compares features of the R4600 /R4 700 to the earlier R4400

PC. Table 1.20 to Table 1.26 highlight some of the differences between the
R4600/R4700 and the R4400 PC. This list is not exhaustive.

R4400PC R4600/R4700

R4400: TIL compatible R4600/R4700: TIL-compatible (5V ±O.5%)
RV4400: LV CMOS RV4600/RV4700: LVCMOS (3.3V±O.3V)

179-pin ceramic PGA same and 208-pin MQUAD

yes no (serial out connected directly to serial in)

16B or32B 32B

2,3,4.6,8 2,3,4,5.6,7.8

max throughput of 4 sclock cycles two new system interface protocol options
that support 2 sclock cycle throughput
(remains 4 in compatibility mode)

as described in R4000 User's Guide different, as described in Table 9.2 on
page 9-7

Address bits 63 .. 56 on reads and zero bits 19 .. 12 of virtual address
writes

Uncached and write-through uncached stores are buffered in 1- uncached and write-though stores buffered
stores entIy uncached store buffer (write in 4-entIy write buffer

through not possible)

SysADC parity only same

SysADC for non-data cycles parity zero

SysCmdP parity zero

Parity error during writeback use Cache Error exception output bad parity

Error bit in data identifier of Bus Error if error bit set for any dou- only check error bit of first doubleword; all
read responses bleword other error bits ignored

Parity error on read data Bus Error if parity error in any dou- bad parity written to cache; take Cache
bleword Error exception if bad parity occurs on dou-

blewords that the processor is waiting for

Block writes 1-2 null cycles between address and o cycles between address and data
data

Release after Read Request variable latency o latency

SysAD value for x cycles of write- data bus undefined data bus maintains last D cycle value
back data pattern

SysAD bus use after last D cycle data bus undefined trailing x cycles (e.g. DDxxDDxx, not
of write back DDxxDD) follow rule in entIy immediately

preceding

Output slew rate dynamic feedback control simple CMOS output buffers with 2-bit
static strength control

100ut output output slew rate control feedback driven HIGH, do not connect
loop output (reserved for future output)

lOIn input output slew rate control input should be driven high
(reserved for future input)

GrpRunB output do not connect same
(reserved for future output)

GrpStallB input should be connected to VCC same
(reserved for future input)

FaultS output pin indicates compare mismatch driven HIGH, do not connect
(reserved for future output)

Table 1.20 System Interface Comparison Between R4400 PC and R4600/R4700

1-23

Overview Chapter 1

Item R4400PC R4600/R4700

Cache Sizes 16KB Instruction cache. 16KB Data 16KB Instruction cache. 16KB Data
cache cache

Cache Line Sizes software selectable between 16B and fixed at 32B
32B

Cache Index vAddr13 .. 0 vAddr12 .. 0

Cache Tag pAddr35 .. 12 same

Cache Organization direct mapped 2-way set associative

Data cache write policy write-allocate and write-back write-allocate or not based on TLB
entry. write-through or not based on
TLBentry

Data cache miss stall, output address. copy dirty data to same. with FIFO to select the set to
writeback buffer. refill cache. output refill
writeback data

Data order for block sub-block ordering same
reads

Data order for block sequential same
writes

Instruction cache miss restart after all data received and writ- same
restart ten to cache

Data cache miss restart restart after all data received and writ- restart on first doubleword. send sub-
ten to cache sequent doublewords to response

buffer

Instruction Tag 2-bit cache state I-bit cache state

Cache miss overhead 5-8 cycles 3 cycles

Instruction cache parity 1 parity bit per 8 data bits 1 parity bit per 32 data bits

Data cache parity 1 parity bit per 8 data bits same
Table 1.21 Cache Comparison Between R4400 PC and R4600/R4700

1-24

Overview Chapter 1

Item R4400PC R4600/R4700

Instruction virtual 2-entry I'ILB same
address translation

I'ILB miss 1 cycle penalty, refilled from J'ILB, 1 cycle on branch, Jump, and ERET, 2
LRU replacement cycles othelW1se, refilled from J'ILB,

LRU replacement

Data VIrtual address done directly in J'ILB 4-entry D'ILB
translation

DTI..Bmiss n.a. 1 cycle penalty, refilled from JTI..B,
pseudo-LRU replacement

J'ILB 48 entries of even/ odd page pairs, fully same
associative

Page size 4KB, 16KB, ... , 16MB same

Multiple entry match sets TS in status and disables TLB no damage for multiple match; no
in J'ILB until Reset to prevent damage detection or shutdown implemented

Virtual address size VSIZE = 40 same

Physical address size PSIZE = 36 same
Table 1.22 TLB Compari8oD BetweeD R4400 PC and R4800/R4700

Item R4400PC R4600/R4700

ALU latency 1 cycle 1 cycle

Load latency 3 cycles 2 cycles

Branch latency 4 cycles (2 cycle penalty for taken 2 cycles (no penalty for taken
branches) branches)

Store buffer (not write 2 doublewords 1 doubleword
buffer)

Integer multiply integer multiply hardware, 1 cycle to done in floating-point multiplier, 4
issue cycles to issue

Integer dMde done in integer datapath adder, slips done in floating-point adder, 4 cycles to
until done issue

Integer multiply HIGH and LOW available at the same LOW available one cycle before HIGH
time

Integer dMde HIGH and LOW available at the same HIGH available one cycle before LOW
time

HIGH and LOW hazards yes, HIGH and LOW written early in no, HIGH and LOW written after W
pipeline

MFHI/MFLO latency 1 cycle 2 cycles

SLLV, SRLV, SRAV 2 cycles to issue 1 cycle to issue

DSLL, DSRL, DSRA, 2 cycles to issue 1 cycle to issue
DSLL32, DSRL32,
DSRA32, DSLLV,
DSRLV, DSRAV

Table 1.23 PlpeliDe Comparl8OD BetweeD R4400 PC aDd R4800/R4700

1-25

Overview Chapter 1

Item R4400PC R4600/R4700

WatchLo, WatchHi implemented unimplemented (no watch registers)

Config as described in R4000 User's Guide subset

Status as described in R4000 User's Guide, noTS orRP
but RP not functional

Low-power standby no WAIT instruction disables internal
mode clock, freezing pipeline and other state;

resume on interrupt

MFCO/MTCO hazard only hazardous for certain cpO register always hazardous -- detected and 1-
combinations cycle slip inserted

EntryLoO, EntryLol as described in R4000 User's Guide two new cache algorithms added to C
~ field for non-coherent write-through

TagLo, TagHi, ECC, R4400SC bits implemented but mean- Only bits meaningful on R4400 PC
CacheErr ingless implemented

TagLo as described in R4000 User's Guide bits 5 .. 3 read/writeable but otherwise
unused, bit 2 used for F bit

Exceptions as described in R4000 User's Guide VCEI, VCED, and WATCH exceptions
(VCEI and VCED not possible) not implemented

Index CACHE ops use vAddr13 .. 4 to select line use vAddr13 to select set, vAddr12 .. 5 to
I Fill CACHE op select line of set

Index Store Tag CACHE Status.CE Ignored TagLo.P stored if Status.CE set
op

PRId Imp = Ox04 R4600: Imp = 0x20
R4700: Imp = 0x21

Table 1.24 Coprocessor 0 Comparison Between R4400 PC and R4600/R4700

Item R4400PC R4600/R4700

Possible exception stall only for operands that can cause some simplifications in detection hard-
exceptions ware

Floating-point divide separate divide unit done in floating-point adder

Floating-point square done in floating-point adder same
root

Converts to/from 64-bit uses unimplemented for integer oper- handles full 64-blt operands and
integer ands/results with more than 53 bits of results

precision

Floating-point registers Status.FR enables all 32 floating point same
registers

FCRO Imp = Ox05 R4600: Imp = 0x20
R4700: Imp = Ox21

Table 1.25 Coproce88or I Comparison Between R4400 PC and R4600/R4700

1-26

Integrated DevIce Technology. Inc.

CPU Instruction Set
Summary

Introduction

Chapter 2

This chapter is an overview of the central processing unit (CPU)
instruction set: refer to Appendix A for detailed descriptions of indMdual
CPU instructions.

An oveIView of the floating-point unit (FPU) instruction set is in
Chapter 6: refer to Appendix B for detailed descriptions of individual FPU
instructions.

CPU Instruction Formats
Each CPU instruction consists of a single 32-bit word. aligned on a word

boundary. There are three instruction formats-immediate (I-type), jump
(J-type). and register (R-type)-as shown in Figure 2.1. The use of a small
number of instruction formats simplifies instruction decoding (thus higher
frequency operations) and allowing the compiler to synthesize more
complicated (and less frequently used) operations and addressing modes
from these three formats as needed.

I-Type (Immediate)
31 26 25 21 20 16 15 0

I °e I rs I rt I immediate I
J-Type (Jump)

31 26 25 0

I °e I tar~et I
R-Type (Register)

31 2625 21 20 16 15 1110 6 5 0

I °e I rs I rt I rd I sa I funct I

Figure Legend:
op 6-bit operation code
rs 5-bit source register specifier
rt 5-bit target (source/destination) register or branch condition
immediate I6-bit immediate value. branch displacement or address

displacement
target 26-bit jump target address
rd 5-bit destination register specifier
sa 5-bit shift amount
funct 6-bit function field

Figure 2.1 CPU Instruction Formats

In the MIPS architecture. coprocessor instructions are implementation­
dependent: refer to Appendix A for details of individual Coprocessor 0
instructions.

2-1

CPU Instruction Set Summary Chapter 2

Load and Store Instructions
Load and store are immediate (I-type) instructions that move data

between memory and the general registers. The only addressing mode that
load and store instructions directly support is base register plus 16-bit
signed immediate offset.

Scheduling a Load Delay Slot
A load instruction that does not allow its result to be used by the

instruction immediately following is called a delayed load instruction. The
instruction slot immediately following this delayed load instruction is
referred to as the load delay slot.

In the R4600/R4700 processor, the instruction immediately following a
load instruction can request the contents of the loaded register, however,
in such cases, hardware interlocks insert additional real cycles.
Consequently, scheduling load delay slots can be desirable, both for
performance and R-Series (e.g., R305l) processor compatibility. However,
the scheduling of load delay slots is not absolutely required.

Defining Access Types
Access type indicates the size of an R4600/R4700 processor data item

to be loaded or stored, set by the load or store instruction opcode. Access
types are defined in Appendix A.

Regardless of access type or byte ordering (endianness), the address
given specifies the low-order byte in the addressed field. For a big-endian
configuration, the low-order byte is the most-significant byte; for a little­
endian configuration, the low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address,
define the bytes accessed within the addressed doubleword, which is
shown in Table 2.1 on page 2-3.

2-2

CPU Instruction Set Summary Chapter 2

Only the combinations shown in Table 2.1 are pennissible; other
combinations cause address error exceptions. See Appendix A for
individual descriptions of CPU load and store instructions.

Access Type
Mnemonic
(Value)

Septlbyte (6)

Sexttbyte (5)

Qutntlbyte (4)

Word (3)

Trtplebyte (2)

Halfword (1)

Byte (0)

Low Order Bytes Accessed
Address
Bits

2 1 o

000

000

001

000

010

000

o 1 1

000

100

000

001

100

1 0 1

000

010

100

1 1 0

000

001

010

o 1 1

100

101

1 1 0

1 1 1

Big endian
(63----------31----------0)

Byte

Little endian
(63----------31----------0)

Byte

Table 2.1 Byte Access within a Doubleword

2-3

CPU Instruction Set Summary Chapter 2

computational Instructions
Computational instructions can be either: 1) in register (R-type) format.

in which both operands are registers, or 2) in immediate (I-type) format, in
which one operand is a I6-bit immediate.

Computational instructions perform the following operations on register
values:

• arithmetic
• lOgical
• shift
• multiply
• dMde
These operations fit in the following four categories of computational

instructions:
• ALU Immediate instructions
• three-Operand Register-Type instructions
• shift instructions
• multiply and divide instructions

64-bit Virtual Address Operations with 32-bit operands
Operands to 32-bit operand opcodes must be in sign-extended form. 32-

bit operand opcodes include all non-doubleword operations, such as: ADD,
ADDU, SUB, SUBU, AD 01 , SLL, SRL, SRA, SLLV, etc. The result of
operations that use incorrect sign-extended 32-bit values is unpredictable.

Cycle Timing for Multiply and Divide Instructions
MFHI and MFLO instructions (deSCribed in Appendix A) are interlocked

so that any attempt to read them before prior multiply or divide
instructions complete delays the execution of these instructions until the
prior instructions finish.

Table 2.2 gives the number of processor cycles (PCycles) required to
resolve an interlock or stall between various multiply or divide
instructions, and a subsequent MFHI or MFW instruction.

Instruction R4600 R4700

MULT 10 8

MULnJ 10 8

DN 42 42

DIVU 42 42

DMULT 12 10

DMULTIJ 12 10

DDN 74 74

DDIVU 74 74

Table 2.2 Multiply /Divide IDatruCtiOD Cycle Tlmlug

For more information about computational instructions, refer to the
indMdual instruction as deSCribed in Appendix A.

2-4

CPU Instruction Set Swnmary Chapter 2

Jump and Branch Instructions
Jump and branch instructions change the control flow of a program. All

jump and branch instructions occur with a delay of one instruction: that
is. the instruction immediately following the jump or branch (this is known
as the instruction in the delay slotj always executes while the target
instruction is being fetched from storage.

Overview of Jump Instructions
Subroutine calls in high-level languages are usually implemented with

Jump or Jump and Link instructions. both of which are J-type
instructions. In J-type fonnat. the 26-bit target address shifts left 2 bits
and combines with the high-order 4 bits of the current program counter to
fonn an absolute address.

Returns. dispatches. and large cross-page jumps are usually
implemented with the Jump Register or Jump and Link Register
instructions. Both are R-type instructions that take the 32-bit or 64-bit
byte address contained in one of the general purpose registers.

For more infonnation about jump instructions. refer to the individual
instruction as described in Appendix A.

Overview of Branch Instructions
All branch instruction target addresses are computed by adding the

address of the instruction in the delay slot to the I6-bit offset (shifts left
2 bits and is sign-extended to 32 bits). All branches occur with a delay of
one instruction.

If a conditional branch likely is not taken. the instruction in the delay
slot is nullified. For regular conditional branches. the delay slot is always
executed.

For more infonnation about branch instructions. refer to the individual
instruction as described in Appendix A.

Special Instructions
Special instructions allow the software to initiate traps; they are always

R-type. For more infonnation about special instructions. refer to the
individual instruction as described in Appendix A.

Exception Instructions
Exception instructions are extensions to the MIPS ISA. For more

infonnation about exception instructions. refer to the indiVidual
instruction as described in Appendix A.

Coprocessor Instructions
Coprocessor instructions perfonn operations in their respective

coprocessors. Coprocessor loads and stores are I-type. and coprocessor
computational instructions have coprocessor-dependent fonnats.

Individual coprocessor instructions are deSCribed in Appendices A (for
CPO) and B (for the FPU. CPI).

CPO instructions perform operations specifically on the System Control
Coprocessor registers to manipulate the memory management and
exception handling facilities of the processor. Appendix A contains details
of the CPO instructions.

2-5

CPU Instruction Set Summary Chapter 2

2-6

The CPU Pipeline Chapter 3

Integrated Device Technology, Inc.

Introduction
This chapter describes the basic operation of the CPU pipeline, which

includes descriptions of the delay instructions (instructions that follow a
branch or load instruction in the pipeline), interruptions to the pipeline
flow caused by interlocks and exceptions, and R4600/R4700
implementation of an uncached store buffer. The FPU pipeline is described
in a later chapter.

CPU Pipeline Operation
The R4600/R4700 uses a 5-stage pipeline similar to the R3000. The

simplicity of this pipeline allows the R4600/R4700 to be lower cost and
lower power than super-scalar or super-pipelined processors. Unlike the
R3000, the R4600 /R4 700 does virtual to physical translation in parallel
with cache access. This allows the R4600/R4700 to operate at over twice
the frequency of the R3000 and to support a larger TLB for address
translation.

Compared to the 8-stage R4000 pipeline, the R4600/R4700 is more
efficient (requires fewer stalls).

Once the pipeline has been filled, five instructions are executed
simultaneously. Figure 3.1 shows the five stages of the instruction
pipeline; the next section describes the pipeline stages.

10 11 21 1R 2R 1A 2A 10 2D 1W 2W

-
11 I 21 _ 1A 2A 10 -

-
lone cycle I

... ~

Figure Legend

11-1 R Instruction cache access 2R Instruction decode

21 Instruction virtual to physical address translation in ITLB 1A-2A Integer add, logical, shift

2A-2D Data cache access and load align 1A Data virtual address calculation

10 Data virtual to physical address translation in DTLB 2A Store align

10-20 Virtual to physical address translation in JTLB 1A Branch decision

2R Register file read 2W Register file write

2R Bypass calculation

Figure 3.1 IDstructiOD Pipeline Stag_

3-1

The CPU Pipeline Chapter 3

CPU PipeUne Stages
This section describes each of the phases of the five pipeline stages.

Each stage has 2 phases:
• 1 I - Instruction Fetch. Phase one
• 21 - Instruction Fetch. Phase two
• lR - Register Fetch. Phase one
• 2R - Register Fetch. Phase two
• lA - Execution. Phase one
• 2A - Execution. Phase two
• ID - Data Fetch. Phase one
• 2D - Data Fetch. Phase two
• 1 W - Write Back. Phase one
• 2W - Write Back. Phase two

11 - Instruction Fetch, Phase one
During the 11 phase the instruction address translation begins in the

ITLB.

21 - Instruction Fetch, Phase two
During the 21 phase. the instruction cache fetch begins and the

instruction address translation in the ITLB continues.

lR - Register Fetch, Phase one
During the lR phase. the following occurs:
• The instruction cache fetch finishes.
• The instruction cache tag is checked against the page frame number

obtained from the ITLB.

2R - Register Fetch, Phase two
During the 2R phase. the following occurs:
• The instruction decoder decodes the instruction.
• Any required operands are fetched from the register file.
• Make a decision to either issue or slip (for an interlock condition).
• For a branch. the branch address is calculated.

lA - Execution, Phase one
During the lA phase. one of the following occurs:
• Any result from the A or D stages are bypassed.
• The arithmetic logic unit (ALU) starts the integer arithmetic. logical or

shift operation.
• The ALU calculates the data virtual address for load and store in­

structions.
• The ALU detennines whether the branch condition is true.

2A - Execution, Phase two
During the 2A phase. one of the following occurs:
• The integer arithmetic. logical or shift operation will complete.
• A data cache access will start.
• Store data is shifted to the specified byte position(s).
• The data virtual to physical address translation in the DTLB will start.

ID - Data Fetch, Phase one
During the ID phase. one of the following occurs:
• The data cache access will continue.
• The data address translation in the DTLB completes.
• The virtual to physical address translation in the JTLB will start.

3-2

The CPU Pipeline

Clock

Stage

ICD

11LBM

ITC

IDEe

EX2

DVA

DCM

JTLBI

DTLBM

DTC

DCW

Chapter S

2D • Data Fetch, Phase two
During the 2D phase, one of the following occurs:
• The data cache access will finish and the data is shifted down and ex-

tended.
• The virtual to physical address translation in the JTLB will finish.
The data cache tag is checked against the PFN from the DTLB or JTLB
for any data cache access.

lW • Write Back, Phase ODe
This phase is used internally by the processor to resolve all exceptions,

in preparation for the register file write.

2W • Write Back, Phase two
For regtster-to-register and load instructions, the result is written back
to the register file during the 2W stage. Branch instructions perform no
operation during this stage.
Figure 3.2 shows the activities occurring during each ALU pipeline

stage, for load, store. and branch instructions.

11 21 lR 2R 1A 2A 1D 2D lW 2W

Instruction cache address decode ICA Instruction cache array access

Instruction address translation 11LBR Instrustion address translation read
match

Instruction tag check RF Register operand fetch

Instruction decode EXl Operation stage 1

Operation stage 2 WB Write back to register me

Data virtual address calculation DCAD Data cache address decode

Data cache array access DCLA Data cache load align

Address translation in JTLB stage 1 JTLB2 Address translation in JTLB stage 2

Data address translation match DTLMR Data address translation read

Data tag check SA Store align

Data cache wrtte BAC Branch address calculation

FIgure 3.2 CPU PipeUne Activities

s-s
-~~~---_ .. _""., .. -- --..... .

The CPU Pipeline

One Cycle

Chapter 3

Branch Delay
The CPU pipeline has a branch delay of one cycle and a load delay of one

cycle. The one-cycle branch delay is a result of the branch decision logic
operating during the IA pipeline phase of the branch instruction. This
allows the branch target address calculated in the previous phase to be
used for the instruction access in the following II phase. The pipeline will
begin the fetch of the branch path as well as the fall-through path in the
cycle following the delay slot. After the branch decision is made. the
processor will continue with the fetch of either the branch path (for a taken
branch) or the fall-through path (for the non-taken branch).

Figure 3.3 illustrates the branch delay.

One Cycle lone Cycle

l~ranch"l
Delay

One Cycle One Cycle

*Branch and fall-through address calculated
** Address selection made

Figure 3.3 CPU Pipeline Branch Delay

Load Delay
The completion of a load at the end of the 2D pipeline phase produces

an operand that is available for the IA pipeline phase of the instruction
following the load delay slot.

Figure 3.4 shows the load delay of one pipeline cycle.

One Cycle lone Cycle lone Cycle lone Cycle lone Cycle I

Figure 3.4 CPU Pipeline Load Delay

3-4

The CPU Pipeline Chapter 3

Interlock and Exception Handling
Smooth pipeline flow is interrupted when cache misses or exceptions

occur, or when data dependencies are detected. Interruptions handled
using hardware, such as cache misses, are referred to as interlocks, while
those that are handled using software are called exceptions.

There are two types of interlocks:
• stalls, which are resolved by halting the pipeline
• slips, which require the back end of the pipeline to advance while the

front end of the pipeline is held static
At each cycle, exception and interlock conditions are checked for all

active instructions.
Because each exception or interlock condition corresponds to a

particular pipeline stage, a condition can be traced back to the particular
instruction in the exception/interlock stage, as shown in Figure 3.5. For
instance, a Reserved Instruction (RI) exception is raised in the execution
(A) stage.

Pipeline Stage
State

I R A D W

Stall ITM ICM DCM

CPE

I R A D W

Slip LDI

MDSt

FCBsy

I R A D W

Exceptions ITLB IBE RI DBE

IPErr CUn NMI

BP Reset

SC DPErr

DTLB OVF

TLBMod Trap

Intr

Figure 3.5 Correspondence of Pipeline Stage to Interlock Condition

For a description of the pipeline interlocks and exceptions listed in
Figure 3.5, refer to Table 3.1 and Table 3.2, which follow.

3-5

--- .~-.. -- .-.. ----,---.-

The CPU Pipeline Chapter 3

Table 3.1 and Table 3.2 describe the pipeline interlocks and exceptions
listed in Figure 3.5.

Exception Description

ITLB Instruction Translation or Address Exception

Intr External Interrupt

IBE Instruction Bus Error

RI Reserved Instruction

BP Breakpoint

SC System Call

CUn Coprocessor Unusable

IPErr Instruction Parity Error

OVF Integer Overflow

FPE FP Interrupt

ExTrap EX Stage Traps

D1LB Data Translation or Address Exception

1LBMod 1LB Modified

DBE Data Bus Error

DPErr Data Parity Error

NMI Non-maskable Interrupt (or Soft Reset)

Reset Reset

Table 3.1 PipeUne Exceptions

Interlock Description

ITM Instruction 1LB Miss

ICM Instruction Cache Miss

CPE Coprocessor Possible Exception

DCM Data Cache Miss

LDI Load Interlock

MDSt Multiply /DMde Start

FCBsy FP Coprocessor Busy

Table 3.2 PipeUne Interlocks

Exception Conditions
When an exception condition occurs, the relevant instruction and all

those that follow it in the pipeline are cancelled. Accordingly, any stall
conditions and any later exception conditions that may have referenced
this instruction are inhibited; there is no benefit in servicing stalls for a
cancelled instruction.

3-6

The CPU Pipeline

11

12

Chapter 3

When an exceptional condition is detected for an instruction, the
R4600/R4700 will kill it and all following instructions. When this
instruction reaches the W stage, the exception flag causes it to write
various CPO registers with the exception state, change the current PC to
the appropriate exception vector address and clear the exception bits of
earlier pipeline stages.

This implementation allows all preceding instructions to complete
execution and prevents all subsequent instructions from completing. Thus
the value in the EPC is sufficient to restart execution. It also ensures that
exceptions are taken in the order of execution; an instruction taking an
exception may itself be killed by an instruction further down the pipeline
that takes an exception in a later cycle.

Figure 3.6 shows the exception detection procedure (e.g., a reserved
instruction exception).

13 Kill

Exception Vector

Exception Vector Address

Figure 3.6 Exception Detection

Stall Conditions
Stalls are used to stop the pipeline for conditions detected after the R

pipe-stage. When a stall occurs, the processor will resolve the condition
and then the pipeline will continue.

3-7

The CPU Pipeline

R

Chapter 3

Figure 3.7 shows a data cache miss stall.

CD G) CD G)
t t t t

A D W w I- --I w w W

R A D D I- --I D D D W

R A A 1 •• ·1 A A A D W

R R 1 • • ·1 R R R A D W

~
Detect Cache Miss
Start moving dirty cache line data to write buffer
Get first doubleword into cache and restart pipeline
Load remainder of cache line into cache

Figure 3.7 Data Cache Mis.

The data cache miss is detected in the D pipe stage. If the cache line to
be replaced is dirty - the W bit is set - the data is moved to the internal
write buffer in the next cycle. The first doubleword of data is returned to
the cache in 3 and the pipeline will then restart. The remainder of the
cache line is returned in the subsequent cycles. The data to be written
back will be returned to memory some time after the entire new cache line
is returned.

Slip Conditions
During the 2R and lA pipe-stages, internal logic will determine whether

it is possible to start the current instruction in this cycle. If all of the source
operands are aVailable (either from the register file or via the internal
bypass logic) and all the hardware resources necessary to complete the
instruction will be available at the necessary time(s), then the instruction
"issues"; otherwise, the instruction will "slip". Slipped instructions are
retried on subsequent cycles until they issue. The backend of the pipeline
(stages D and W) will advance normally during slips in an attempt to
resolve the conflict. "NOPS" will be inserted into the bubble in the pipeline.
Instructions killed by branch likely instructions, ERET or exceptions will
not cause slips.

3-8

The CPU Pipeline

---.----~---------~.

Chapter 3

Figure 3.8 shows an instruction cache miss.

CYCLE Issue Issue Slip Slip Slip Slip Issue Issue Issue

~
:8

QU
()

E I D I w
~ -
~

A D W

~
~ R A D W

p..,

*NOP R A D W

*NOP R A D W

*NOP R A D W

*NOP I R A D W

R R R R R I A D W

(f) ct ct
I R A D W

~ Detect Cache Mlss
2 Get entire cache line into cache
3 Continue pipeline

*NOP - Inserted NOP instructions

Figure 3.8 Instruction cache min

Instruction cache misses are detected in R as shown in Figure 3.8 and
the pipeline slips in its A stage. There can never be a writeback required
for an instruction cache miss since dirty data can never exist in the I
cache. Writes are not allowed to the I cache. Note that early restart is not
employed for instruction cache misses, the requested cache line will be
loaded into the cache in its entirety and, after that, the pipeline will restart.

R4600/R4700 Write Buffer
The R4600jR4700 contains a write buffer to improve the performance

of writes to the external memory. Writes to external memory, whether
cache miss writebacks or stores to uncached or write-through addresses,
use this on-chip write buffer. The write buffer holds up to four 64-bit
address and data pairs.

For a cache miss write-back, the entire buffer is used for the write-back
data and allows the processor to proceed in parallel with the memory
update. For uncached and write-through stores, the write buffer
uncouples the CPU from the write to memory allowing increased
performance over the R4000 family of processors. If the write buffer is full,
additional stores will stall until there is room for them in the write buffer.

3-9

The CPU Pipeline ChapterS

S-10

Memory Management Chapter 4

Integrated Device Technology. Inc.

The R4600/R4700 processor provides a full-featured memory
management unit (MMU) which uses an on-chip Translation Lookaside
Buffer (TLB) to translate virtual addresses into physical addresses.

This chapter describes the processor virtual and phySical address
spaces, the virtual-to-physical address translation, the operation of the
TLB in making these translations, and those System Control Coprocessor
(CPO) registers that provide the software interface to the TLB.

Translation Lookaside Buffer (TLB)
Mapped virtual addresses are translated into physical addresses using

an on-chip TLB.l The TLB is a fully associative memory that holds 48
entries, which provide mapping to 48 odd/even page pairs (96 pages).
When address mapping is indicated, each TLB entry is checked
simultaneously for a match with the virtual address that is extended with
an ASID stored in the EntryHi register.

The address mapped to a page ranges in size from 4Kbytes to 16Mbytes,
in multiples of 4-that is, 4K, 16K, 64K, 256K, IM,4M, 16M.

Hits and Misses
If there is a virtual address match, or hit, in the TLB, the physical page

number is extracted from the TLB and concatenated with the offset to form
the physical address (see Figure 4.1).

If no match occurs (TLB miss), an exception is taken and software refills
the TLB from the page table reSident in memory. Software can write over
a selected TLB entry or use a hardware mechanism to write into a random
entry.

Multiple Matches
The R4600/R4700 does not provide any detection or shutdown

mechanism for multiple matches in the TLB. There is no damage possible
from this condition. The result is undefined for this condition. Software is
expected never to allow this to occur.

Address Spaces
This section describes the virtual and physical address spaces and the

manner in which virtual addresses are converted or "translated" into
physical addresses in the TLB.

Virtual Address Space
The processor virtual address can be either 32- or 64-bits wide,

depending on mode of operation (user, supervisor or kernel) and the
setting of the corresponding extended address bit in the Status register
(ux. SX and KX).

• For the extended address bit = 0, addresses are 32-bits wide.
• For the extended address bit = I, addresses are 64-bits wide.
Both 32-bit and 64-bit address wrap in the same way. For example, in

64-bit mode Oxffffffffffffffff will wrap to OxOOOOOOOOOOOOOOOO. While the
R4400 slipped on shift of >32-bit or other shift variables, the R4600/
R4700 does not.

1. There are virtual-to-physical address translations that occur outside of the TLB.
For example, addresses in ksegO and kseg1 spaces are unmapped translations. In
these spaces the physical address is OXOOOO 0000 0 II VA[28:0]

4-1

Memory Management Chapter 4

Figure 4.1 shows the translation of a virtual address into a physical
address.

1. Virtual address (VA) represented by the
virtual page number (VPN) is compared
with tag in TLB.

Offset

2. If there is a match, the page frame
number (PFN) representing the upper
bits of the physical address (PA) is
output from the TLB.

3. The Offset, which does not pass through rr===========,---r;;±;;;;;;;;;;;;;;;11
the TLB, is then concatenated to the PFN. PFN Offset I

Figure 4.1 Overview of a Virtual-to-Physica1 Address TranslatiOD

As shown in Figure 4.2 and Figure 4.3, the virtual address is extended
with an 8-bit address space identifier (ASID), which reduces the frequency
of TLB flushing when switching contexts. This 8-bit ASID is in the CPO
EntryHi register, descdbed later in this chapter. The Global bit (G) is in the
EntryLoO and EntryLol registers, descdbed later in this chapter.

Physical Address Space
Using a 36-bit address, the processor physical address space

encompasses 64Gigabytes. The section following descdbes the translation
of a virtual address to a physical address.

Vlrtual-to-Physlcal Address Translation
Converting a virtual address to a physical address begins by compadng

the virtual address from the processor with the virtual address in the TLB;
there is a match when the virtual page number (VPN) of the address is the
same as the VPN field of the entry, and either:

• the Global (G) bit of the TLB entry is set, or
• the ASID field of the virtual address is the same as the ASID field of

the TLB entry.
This match is referred to as a TIB hit. If there is no match, a TLB Miss

exception is taken by the processor and software is allowed to refill the TLB
from a page table of virtual/physical addresses in memory.

If there is a virtual address match in the TLB, the physical address is
output from the TLB and concatenated with the Offset, which represents
an address within the page frame space. The Offset does not pass through
theTLB.

Virtual-to-physical translation is descdbed in greater detail throughout
the remainder of this chapter; Figure 4.19 on page 22 is a flow diagram of
the process.

The next two sections descdbe the 32-bit and 64-bit address
translations.

4-2

-----~-~~-

Memory Management Chapter 4

39

I

32-bit Virtual Address Translation
Figure 4.2 shows the virtual-to-physical-address translation of a 32-bit

virtual address.
• The top portion of Figure 4.2 shows a virtual address with a 12-bit. or

4Kbyte. page size. labelled Offset The remaining 20 bits of the ad­
dress represent the VPN. and index the IM-entIy page table.

• The bottom portion of Figure 4.2 shows a virtual address with a 24-
bit. or 16Mbyte. page size. labelled Offset The remaining 8 bits of the
address represent the VPN. and index the 256-entry page table.

Virtual Address with 1M (~) 4-Kbyte pages

3231 2928

2O~~'M;:"
12 11

ASID OJ] •• ·u I
8 !o

Offset

12

o

Bits 31, 30 and 29 of the vi rtual

Offset passed
unchanged to
physical

emory address select user, supervisor, 36-bit Physical Address
or kernel address spaces. ...--............,~~--J-~~~..,........,..,.:,.,._~..,....,.....,.............."..,....,.....Ic.......-.~~_.......,

39

.$ ·0·

;.1" PFN .1 Offset .•

~ Offset passed
unchanged to
physical

~ memory r------- "\
32~28 2423 o

ASID Offset I
8 8 24

8 bits - 256 pages

Virtual Address with 256 (28)16-Mbyte pages

Figure 4.2 32-blt Virtual Addre .. Traaa1atioD

64-bit Virtual Address Translation
Figure 4.3 on page 4 shows the vtrtual-to-physical-address translation

of a 64-bit virtual address. This figure illustrates the two extremes in the
range of possible page sizes: a 4Kbyte page (12 bits) and a 16Mbyte page
(24 bits).

• The top portion of Figure 4.3 shows a virtual address with a
12-blt. or 4Kbyte. page size. labelled Offset The remaining 28 bits of
the address represent the VPN. and index the 256M-entIy page table.

• The bottom portion of Figure 4.3 shows a virtual address with a 24-
bit. or 16Mbyte. page size. labelled Offset The remaining 16 bits of
the address represent the VPN. and index the 64K-entIy page table.

4-3

Memory Management

71

ASID

8

Chapter 4

Virtual Address with 256M (228) 4-Kbyte pages

64 636261 4039

~I ·····.···'0:or4·.··· . 0·: .. :·· .. ···:····· .. · .. ·

24

Virtual-to-physical
translation in TLB

28 bits = 256M pa.~es 12 11

Offset

12

o

I
\.~---., --==-~)

Y Offset passed

Bits 62 and 63 of the virtual 36-bit Physical Address
~

unchanged to
physical
memory

address select user, supervisor,
or kernel address spaces.

PFN I Offset 1 .••

71

,Joffset passed
unchanged to
physical
memory

--------~--------~ Virtual Address with 'K (216)16-Mbyte pages '\

64 6362 61 4039 2423 0

ASID

8 24 16 24
16 bits = 64K pages

Figure 4.3 64-bit Virtual Addres. Tran.lation

Operating Modes
The processor has three operating modes that function in both 32- and

64-bit operations:
• Usermode
• Supervisor mode
• Kernel mode
These modes are deSCribed in the next three sections.

User Mode Operations
In User mode. a single. uniform virtual address space-labelled User

segment-is available; its size is:
• 2 Gbytes (231 bytes) for Status.UX = 0 (useg)
• 1 Tbyte (240 bytes) for Status.UX = 1 (xuseg)

4-4

Memory Management Chapter 4

Figure 4.4 shows the User mode virtual address space.

32-bit* 64-bit
Ox FFFF FFFF Ox FFFF FFFF FFFF FFFF

Address Address
Error Error

Ox 8000 0000 Ox 0000 0100 0000 0000

2GB 1 TB
Mapped

useg
Mapped

xuseg

Ox 0000 0000 Ox 0000 0000 0000 0000

Note: *For 32-bit virtual addresses. bit 31 is sign-extended through bits 63:32.
Failure (i.e .. bit 31 = 1) results in an Address Error exception.

Figure 4.4 User Mode Virtual Address Space

The User segment starts at address 0 and the current active user
process resides in either useg (32-bit virtual addressing) or xuseg (in 64-
bit virtual addressing). The TLB identically maps all references to useg/
xuseg from all modes. and controls cache accessibility.

The processor operates in User mode when the Status register contains
the following bit-values:

• KSUbits = 102

• EXL=O
• ERL=O
In conjunction with these bits. the UX bit in the Status register selects

between 32- or 64-bit User virtual addressing as follows:
• when UX = O. 32-bit useg space is selected
• when UX = 1. 64-bit xuseg space is selected
Table 4.1 lists the characteristics of the two user mode segments. useg

andxuseg.

Address Bit Status Register Segment Address Range Segment Size
Values

32-bit
A(31) = 0

64-bit
A(63:40) = 0

Name
Bit Values

KSU EXL ERL UX

102 0 0 0 useg OxOOOO 0000 2 Gbyte
through (231 bytes)
Ox7FFFFFFF

102 0 0 1 xuseg OxOOOO 0000 0000 0000 1 Tbyte
through (240 bytes)
OxOOOO OOFF FFFF FFFF

Table 4.1 32-bit and 64-bit User Mode Segments

32-bit User Mode (useg)
In User mode. when Status.UX = O. User mode virtual addressing is

compatible with the 32-bit addressing model shown in Figure 4.4. and a 2-
Gbyte user address space is aVailable. labelled useg.

4-5

Memory Management Chapter 4

All valid User mode virtual addresses have their most-significant bit
cleared to 0; any attempt to reference an address with the most-significant
bit set while in User mode causes an Address Error exception.

In 32-bit User mode virtual addressing, the TLB refill exception vector is
used for TLB misses.

The system maps all references to useg through the TLB, and bit
settings within the TLB entry for the page determine the cacheability of a
reference.

64-bit User Mode (xuseg)
In User mode, when Status.UX =1, User mode virtual addressing is

extended to the 64-bit model shown in Figure 4.4, and a I-Tbyte user
address space is available, labelled xuseg.

All valid User mode virtual addresses have bits 63:40 equal to 0; an
attempt to reference an address with bits 63:40 not equal to 0 causes an
Address Error exception.

The extended addressing TLB refill exception vector is used for TLB
misses.

Supervisor Mode Operations
Supervisor mode is designed for layered operating systems in which a

true kernel runs in R4600 /R4 700 Kernel mode, and the rest of the
operating system runs in Supervisor mode.

The processor operates in Supervisor mode when the Status register
contains the following bit-values:

• KSU= 012

• EXL= 0
• ERL= 0
In conjunction with these bits, the SX bit in the Status register selects

between 32- or 64-bit Supervisor mode virtual addressing:
• when SX = 0, 32-bit supervisor space virtual addressing is selected
• when SX = I, 64-bit supervisor space virtual addressing is selected
Figure 4.5 shows Supervisor mode address mapping. Table 4.2, which

follows the figure, lists the characteristics of the supervisor mode
segments; descriptions of the address spaces follow.

Ox FFFFFFFF

Ox EDXl <XXX>

Ox ClXX) <XXX>

Ox PfJXJ <XXX>

Ox 8XX) <XXX>

32-bit*

Address
error

0.5GB
Mapped
Address

error
Address

error

2GB
Mapped

sseg

suseg

Ox FFFF FFFF FFFF FFFF

Ox FFFF FFFF EDXl <XXX>

Ox FFFF FFFF ClXX) <XXX>

Ox 4(XX) 0100 <XXX> <XXX>

Ox 4(XX) <XXX> <XXX> <XXX>

Ox <XXX> 0100 <XXX> <XXX>

Ox o:ro <XXX> Ox o:ro <XXX> <XXX> <XXX>

64-bit

Address
error

0.5GB
Mapped
Address

error

I1B
Mapped

Address
error

I1B
Mapped

Note: *In 32-bit virtual addressing. bit 31 is sign-extended through bits
63:32. Failure results in an Address Error exception.

Figure 4.5 Superrisor Mode Virtual Address Space

4-6

csseg

xsseg

xsuseg

Memory Management Chapter 4

Status Re,tster

Bit Values
Address Bit Segment Segment

Values KSU EXL ERL SX Name Address Range Size

32-bit 012 0 0 0 suseg OxOOOO 0000 2 Gbytes
A(31) = 0 through (231 bytes)

Ox7FFFFFFF

32-bit 012 0 0 0 sseg OxCOOO 0000 512 Mbytes
A(31:29) = 11~ through (229 bytes)

64-bit
A(63:62) = 002

64-bit
A(63:62) = 012

64-bit
A(63:62) = 112

OxDFFFFFFF

012 0 0 1 xsuseg OxOOOO 0000 0000 0000 IThyte
through (240 bytes)
OxOOOO OOFF FFFF FFFF

012 0 0 1 xsseg Ox4000 0000 0000 0000 IThyte
through (240 bytes)
Ox4000 OOFF FFFF FFFF

012 0 0 1 csseg OxFFFF FFFF COOO 0000 512 Mbytes
through (229 bytes)
OxFFFF FFFF DFFF FFFF

Table 4.2 52-bit and 84-bit SuperviBor Mode Segments

32-bit Supervisor Mode, User Space (suseg)
In Supervisor mode, when Status.SX = 0 and the most-significant bit of

the 32-bit virtual address is set to 0, the suseg virtual address space is
selected; it covers the full 231 bytes (2Gbytes) of the current user address
space. The virtual address is extended with the contents of the 8-bit ASIO
field to form a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 and runs
through Ox7FFF FFFF.

32-bit Supervisor Mode, Supervisor Space (sseg)
In Supervisor mode, when Status.SX = 0 and the three most-significant

bits of the 32-bit virtual address are 1102, the sseg virtual address space
is selected; it covers 229-bytes (512Mbytes) of the current supervisor
address space. The virtual address is extended with the contents of the 8-
bit ASIO field to form a unique virtual address.

This mapped space begins at virtual address OxCOOO 0000 and runs
through OxDFFF FFFF.

54-bit Supervisor Mode, User Space (xsuseg)
In Supervisor mode, when Status.SX = 1 and bits 63:62 of the virtual

address are set to 002, the xsuseg virtual address space is selected; it
covers the full 240 bytes (1 Tbyte) of the current user address space. The
virtual address is extended with the contents of the 8-bit ASID field to form
a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 0000 0000
and runs through OXOOOO ooFF FFFF FFFF.

54-bit Supervisor Mode, Current Supervisor Space (xsseg)
In Supervisor mode, when Status.SX = 1 and bits 63:62 of the virtual

address are set to 012, the xsseg current supervisor virtual address space
is selected. The virtual address is extended with the contents of the 8-bit
ASID field to form a unique virtual address.

This mapped space begins at virtual address Ox4000 0000 0000 0000
and runs through OX4OO0 OOFF FFFF FFFF.

4-7

Memory Management Chapter 4

64-bit Supervisor Mode, Separate Supervisor Space (csseg)
In Supervisor mode, when Status.SX = 1 and bits 63:62 of the virtual

address are set to 112, the csseg separate supervisor virtual address space
is selected. Addressing of the csseg is compatible with addressing sseg in
32-bit mode. The virtual address is extended with the contents of the 8-
bit ASID field to form a unique virtual address.

This mapped space begins at virtual address OxFFFF FFFF COoo 0000
and runs through OxFFFF FFFF DFFF FFFF.

Kernel Mode Operations
The processor operates in Kernel mode when the Status register

contains one of the following values:
• KSU= 002

• EXL= 1
• ERL= 1
In conjunction with these bits, the KX bit in the Status register selects

between 32- or 64-bit Kernel mode addressing:
• when KX = 0, 32-bit kernel space virtual addressing is selected
• when KX = 1, 64-bit kernel space virtual addressing is selected
The processor enters Kernel mode whenever an exception is detected

and it remains in Kernel mode until an Exception Return (ERET)
instruction is executed. The ERET instruction restores the processor to
the mode existing prior to the exception.

Kernel mode virtual address space is divided into regions differentiated
by the high-order bits of the virtual address, as shown in Figure 4.6.

4-8

-~~--- ~~~~~~~-

Memory Man.,ement Chapter 4

32-bit* 64-bit
Ox FFFF FFFF Ox FFFF FFFF FFFF FFFF O.5GB

Ox EDOO 0000

Ox CODO 0000

O.5GB
Mapped

O.5GB
Mapped

kseg3 Ox FFFF FFFF moo 0000

Ox FFFF FFFF COOO 0000
ksseg

Ox FFFF FFFF AOOO 0000

Mapped

O.5GB
Mapped
O.5GB

Unmap'ped
Uneaelied

ckseg3

cksseg

cksegl

O.5GB O.5GB

Ox AOOO 0000

Unmapped
Uncached

ksegl Ox FFFF FFFF 8000 0000
Unma~ped

Cae ed

Address

cksegO

O.5GB Ox CODO DOFF 8000 0000 error

Ox 80000000

Unmapped
Cached

ksegO

Ox COOO 0000 0000 0000
Mapped xkseg

Unmapped xkphys
Ox 8000 0000 0000 0000

Address
Ox 4000 0100 0000 0000 error

2GB

Mapped
kuseg

Ox 4000 0000 0000 0000

1 TB
Mapped

xksseg

Address
Ox 0000 0100 0000 0000 error

1 TB

Ox 00000000
Mapped xkuseg

Ox 0000 0000 0000 0000

Note: "'In 32-bit virtual addressing. bit 31 is sign-extended through bits 63:32. Failure
results in an Address Error exception.

Figure 4.8 Kernel Mode Address Space

4-9

~~~~------- --~-------------------- --- --------



Memory Management Chapter 4 

Table 4.3 lists the characteristics of the 32-bit kernel mode segments, 
and Table 4.4 lists the characteristics of the 64-bit kernel mode segments 

Address Bit Status Register Is Segment Address Range Segment 
Values One Of These Values Name Size 

KSU I EXL I ERL KX 

A(31) = 0 0 kuseg OxOOOO 0000 2 Gbytes 
through (231 bytes) 
Ox7FFFFFFF 

A(31:29) = 10~ 
KSU=O~ 

0 ksegO Ox8000 0000 512 

or through Mb~es 
Ox9FFFFFFF (22 bytes) 

A(31:29) = 1012 
EXL= 1 0 kseg1 OxAOOO 0000 512 

through Mb~es or OxBFFFFFFF (22 bytes) 

A(31:29) = 1102 ERL=1 0 ksseg oxeooo 0000 512 
through Mb~s 
OxDFFFFFFF (22 bytes) 

A(31:29) = 1112 0 kseg3 OxEOOO 0000 512 
through Mb~es 
OxFFFFFFFF (22 bytes) 

Table 4.3 32-bit KerDel Mode SegmeDts 

32-bit Kernel Mode, User Space (kuseg) 
In Kernel mode, when Status.KX = 0, and the most-significant bit of the 

virtual address, A31, is cleared, the 32-bit kuseg virtual address space is 
selected; it covers the full 231 bytes (2 Gbytes) of the current user address 
space. The virtual address is extended with the contents of the 8-bit ASID 
field to form a unique virtual address. 

32-bit Kernel Mode, Kernel Space 0 (ksegO) 
In Kernel mode, when Status.KX = 0 and the most-significant three bits 

of the virtual address are 1002, 32-bit ksegO virtual address space is 
selected; it is the current 229-byte (512-Mbyte) kernel physical space. 

References to ksegO are not mapped through the TLB; the physical 
address selected is defined by subtracting Ox8000 0000 from the virtual 
address (physical address = OxOOOO 0000 0 I I VA[28:0J). 

The KO field of the Corifig register, described in this chapter, controls 
cache ability and coherency. 

32-bit Kernel Mode, Kernel Space 1 (ksegl) 
In Kernel mode, when Status.KX = 0 and the most-significant three bits 

of the 32-bit virtual address are 1012, 32-bit ksegl virtual address space 
is selected; it is the current 229-byte (512Mbyte) kernel physical space. 

References to ksegl are not mapped through the TLB; the physical 
address selected is defined by subtracting 0xA000 0000 from the virtual 
address (physical address = OxOOOO 0000 0 I I VA[28:0J). 

Caches are disabled for accesses to these addresses, and physical 
memory (or memory-mapped I/O device registers) are accessed directly. 

32-bit Kernel Mode, Supervisor Space (Jesseg) 
In Kernel mode, when Status.KX = 0 and the most-significant three bits 

of the 32-bit virtual address are 1102 , the ksseg virtual address space is 
selected; it is the current 229-byte (512Mbyte) supervisor virtual space. 
The virtual address is extended with the contents of the 8-bit ASID field to 
form a unique virtual address. 

4-10 



Memory Management Chapter 4 

32-bit Kernel Mode, Kernel Space 3 (ksegS) 
In Kernel mode, when Status.KX = 0 and the most-significant three bits 

of the 32-bit virtual address are 1112 , the kseg3 virtual address space is 
selected; it is the current 229_byte (512Mbyte) kernel virtual space. The 
virtual address is extended with the contents of the 8-bit ASID field to form 
a unique virtual address. 

Address Bit Status Register Is Segment Address Range Segment 
Values One Of These Values Name Size 

KSU 1 EXL I ERL KX 

A(63:62) = O~ 1 xkuseg OxOOOO 0000 0000 0000 1 'Ibyte 
through (240 bytes) 
OxOOOO OOFF FFFF FFFF 

A(63:62) = 012 1 xksseg Ox4000 0000 0000 0000 1 'Ibyte 
through (240 bytes) 
Ox4000 OOFF FFFF FFFF 

A(63:62) = 1~ KSU = 002 1 xkphys Ox8000 0000 0000 0000 8236-byte 

or 
through spaces 
OxBFFF FFFF FFFF FFFF 

A(63:62) = 112 EXL= 1 1 xkseg OxCOOO 0000 0000 0000 244 bytes 
through 

or OxCOOO OOFF 7FFF FFFF 

A(63:62) = 112 ERL=1 1 cksegO OxFFFF FFFF 8000 0000 512 
A(61:31) =-1 through Mbr.es 

OxFFFF FFFF 9FFF FFFF (22 bytes) 

A(63:62) = 112 1 cksegl OxFFFF FFFF AOOO 0000 512 
A(61:31) = -1 through Mbr.es 

OxFFFF FFFF BFFF FFFF (22 bytes) 

A(63:62) = 112 1 cksseg OxFFFF FFFF COOO 0000 512 
A(61:31) =-1 through Mbr.es 

OxFFFF FFFF DFFF FFFF (22 bytes) 

A(63:62) = 112 1 ckseg3 OxFFFF FFFF EOOO 0000 512 
A(61:31) =-1 through Mbr.es 

OxFFFF FFFF FFFF FFFF (22 bytes) 

Table 4.4 64-bit Kernel Mode Segments 

54-bit Kernel Mode, User Space (xkuseg) 
[n Kernel mode, when Status.KX = 1 and bits 63:62 of the 64-bit virtual 

address are 002 , the xkuseg virtual address space is selected; it covers the 
current user address space. The virtual address is extended with the 
contents of the 8-bit ASID field to form a unique virtual address. 

As a special feature for the ECC handler, if the ERL bit of the Status 
register is set, the user address region becomes a 231-byte unmapped, 
uncached space. This allows the ECC exception code to operate uncached 
using rO as a base register. 

54-bit Kernel Mode, Current Supervisor Space (xksseg) 
In Kernel mode, when Status.KX = 1 and bits 63:62 of the 64-bit virtual 

address are 012 , the xksseg virtual address space is selected; it is the 
current supervisor virtual space. The virtual address is extended with the 
contents of the 8-bit ASID field to form a unique virtual address. 

4-11 



Memory Management Chapter 4 

64-bit Kernel Mode, Physical Spaces (xkphys) 
In Kernel mode, when Status.KX = 1 and bits 63:62 of the 64-bit virtual 

address are 102, the xkphys virtual address space is selected; it is a set of 
eight 236_byte kernel physical spaces. Accesses with address bits 58:36 
not equal to 0 cause an address error. 

References to this space are not mapped; the physical address selected 
is taken from bits 35:0 of the virtual address. Bits 61:59 of the virtual 
address specify the cacheability and coherency attributes, as shown in 
Table 4.5. 

Value Cacheability and Coherency Attributes Starting Address 
(61:59) 

a Cacheable, noncoherent, write-through, no Ox8000 0000 0000 0000 
write allocate 

1 Cacheable, noncoherent, write-through, write Ox8800 0000 0000 0000 
allocate 

2 Uncached 0x9000 0000 0000 0000 

3 Cacheable, non coherent 0x9800 0000 0000 0000 

4-7 Reserved OxAOOO 0000 0000 0000 

Table 4.5 Cacheability and Coherency Attributes 

64-bit Kernel Mode, Kernel Space (xkseg) 
In Kernel mode, when Status.KX = 1 and bits 63:62 of the 64-bit virtual 

address are 112 , the address space selected is one of the following: 
• kernel virtual space, xkseg, the current supervisor virtual space; the 

virtual address is extended with the contents of the 8-bit ASID field to 
form a unique virtual address 

• one of the four 32-bit kernel compatibility spaces, as described in the 
next section. 

64-bit Kernel Mode, CompatibiHty Spaces (cksegl:0, cksseg, ckseg3) 
In Kernel mode, when Status.KX = 1, bits 63:62 of the 64-bit virtual 

address are 112 , and bits 61:31 of the virtual address equal "-1", the lower 
two bytes of address, as shown in Figure 4.6, select one of the following 
512-Mbyte compatibility spaces. 

• cksegO. This 64-bit virtual address space is an unmapped region, 
compatible with the 32-bit address model ksegO. The KO field of the 
Corifig register, described in this chapter, controls cache ability and 
coherency. 

• cksegl. This 64-bit virtual address space is an unmapped and un­
cached region, compatible with the 32-bit address model kseg 1. 

• cksseg. This 64-bit virtual address space is the current supervisor 
virtual space, compatible with the 32-bit address model ksseg. 

• ckseg3. This 64-bit virtual address space is kernel virtual space, 
compatible with the 32-bit address model kseg3. 

System Control Coprocessor 
The System Control Coprocessor (CPO) is implemented as an integral 

part of the CPU, and supports memory management, address translation, 
exception handling, and other privileged operations. CPO contains the 
registers shown in Figure 4.7 plus a 48-entry TLB. The sections that follow 
describe how the processor uses each of the memory management-related 
registers. 

Each CPO register has a unique number that identifies it; this number 
is referred to as the register number. For instance, the Page Mask register 
is register number 5. 

4-12 



Memory Management 

EntryHi 
10* 

EntryLoO 
2* 

EntryLo1 
3* 

~ 
~ 

1* 

Chapter 4 

47 r------------------, 

I Random I 

TLB 

("Safe" entries) 
(See Random Register, 
contents of TLB Wired) 

o 127 0 

Page Mask 

5* 

~ 
L....::...J 
~ 
~ 

Config 
16* 

LLAddr 
17* 

~-... [JEJagLo CJ:lagHi 
28* . 29* 

O Used with memory 
management system. 

Note: "Register number 

Figure 4.7 CPO Registers and the 11..B 

Format of a TLB Entry 

Used with exception 
processing. See 
Chapter 5 for details. 

Figure 4.8 shows the TLB entIy fonnats for both 32- and 64-bit virtual 
addressing. Each field of an entIy has a corresponding field in the EntryHi, 
EntryLoO, EntryLol, or PageMask registers, as shown in Figure 4.9 and 
Figure 4.lO; for example the Mask field of the TLB entIy is also held in the 
PageMask register. 

4-13 



Memory Management Chapter 4 

64-bit Virtual Addressing 
255 217 216 205 204 96 

I 0 I MASK I 0 I 
39 12 13 

191 190 189 168 167 141 140139 136 135 128 

256-bitTLB I R I 0 I VPN2 IGI 0 I ASIO I 
entry in 64-bit 2 22 27 4 8 
virtual addressing 

31 

64-bit 
VA 

127 

I 
63 

I 

o 
7 

94 93 70 69 67 66 65 64 

0 I 
34 

PFN I C 101 viol 
24 3 1 1 1 

30 29 6 5 3 2 1 0 

0 I 
34 

PFN I C 101 viol 
24 3 1 1 1 

Figure 4.8 Format of a TLB Entry 

The fonnat of the EntryHt. EntryLoO, EntryLol, and PageMask registers 
are nearly the same as the TLB entIy. The one exception is the Global field 
(G bit), which is used in the TLB, but is reserved in the EntryHi register. 
Figure 4.9 and Figure 4.10 describe the TLB entIy fields that are shown in 
Figure 4.8. 

25 24 
PageMask Register 

13 12 o 
MASK I o I 

12 13 

Mask .... Page comparison mask. 
0 ........... Reserved. Must be written as zeroes, and returns zeroes when read. 

63 62 61 

FILL 
2 22 

EntryHi Register 

40 39 

VPN2 
27 

13 12 8 7 

I 0 ASIO 

5 8 

o 

I 
VPN2 .... Virtual page number divided by two (maps to two pages). 
ASID ..... Address space 10 field. An 8-bit field that lets multiple processes share the TLB; each 

process has a distinct mapping of otherwise identical virtual page numbers. 
R .......... Region. (00 ~ user, 01 ~ supervisor, 11 ~ kernel) used to match vAddr63 ... 62 
Fill ........ Reserved. Returns zero when read, ignored on writes. 
0 ........... Reserved. Must be written as zeroes, and returns zeroes when read. 

Figure 4.9 Fields of the PageMask and Entrym Registers 

4-14 



Memory Management Chapter 4 

EntryLoO and EntryLo1 Registers 

63 30 29 6 5 321 0 
64-bit I 0 I PFN I C IOIVIG I VA 

34 24 3 1 1 1 
63 30 29 6 5 321 0 

64-bit I 0 I PFN I C IOIVIG I VA 
34 24 3 1 1 1 

PFN ...... Page frame number; the upper bits of the physical address. 
C .......... Specifies the TLB page coherency attribute; see Table 4.6. 
0 .......... Dirty. If this bit is set, the page is marked as dirty and, therefore, writable. This bit is 

actually a write-protect bit that software can use to prevent alteration of data. 
v ........... Valid. If this bit is set, it indicates that the TLB entry is valid; otherwise, a TLBL or TLBS 

miss occurs. 
G .......... Global. If this bit is set in both LoO and Lol, then the processor ignores the ASID during 

TLB lookup. 
0 ........... Reserved. Must be written as zeroes, and returns zeroes when read. 

Figure 4.10 Fields of the EntryLoO and EntryLoI Registers 

The TLB page coherency attribute (C) bits specify whether references to 
the page should be cached; if cached, the algorithm selects between several 
coherency attributes. Table 4.6 shows the coherency attributes selected 
by the C bits. 

C(5:3) Value Page Coherency Attribute 

0 Cacheable, noncoherent, wrtte-through, no wrtte allocate 

1 Cacheable, non coherent, wrtte-through, wrtte allocate 

2 Uncached 

3 Cacheable, noncoherent, wrtte-back 

4-7 Reserved 

Table 4.6 TLB Page Coherency (C) Bit Values 

CPO Registers 
The following sections deSCribe the CPO registers (shown in Figure 4.7 

on page 13) that are assigned specifically as a software interface with 
memory management (each register is followed by its register number in 
parentheses) . 

• Index register (CPO register number 0) 
• Random register (1) 
• EntryLoO (2) and EntryLol (3) registers 
• PageMask register (5) 
• Wired register (6) 
• EntryHi register (10) 
• PRId register (15) 
• Corifig register (16) 
• LLAddr register (17) 
• TagLo (28) and TagHi (29) registers 

4-15 



Memory Management Chapter 4 

Index Register (0) 
The Index register is a 32-bit. read/write register containing six bits to 

index an entry in the TLB. The high-order bit of the register shows the 
success or failure of a TLB Probe (TLBP) instruction. 

The Index register also specifies the TLB entry affected by TLB Read 
(TLBR) or TLB Write Index (TLBWI) instructions. 

Figure 4.11 shows the format of the Index register; Table 4.7. which 
follows the figure. describes the Index register fields. 

Index Register 

31 30 6 5 

I pi 0 
I Index 

25 6 

Figure 4.11 Index Register 

Field Description 

P 
Probe failure. Set to 1 when the previous TLBProbe 
(TLBP) instruction was unsuccessful. 

Index 
Index to the TLB entry affected by the TLBRead and 
TLBWrite instructions 

0 
Reserved. Must be written as zeroes, and returns 
zeroes when read. 

Table 4.7 Index Register Field Descriptions 

Random Register (1) 

0 

I 

The Random register is a read-only register of which six bits index an 
entry in the TLB. This register decrements as each instruction executes. 
and its values range between an upper and a lower bound. as follows: 

• A lower bound is set by the number ofTLB entries reserved for exclu­
sive use by the operating system (the contents of the Wired register). 

• An upper bound is set by the total number of'ILB entries. Thus the 
upper bound is 47 (The TLB entries are number from 0 to 47). 

The R4600/R4700 implements this register differently from the 
R4000: The R4000 counts both valid and invalid instructions. while the 
R4600 /R4 700 counts only valid instructions. 

The Random register specifies the entry in the TLB that is affected by the 
TLB Write Random instruction. The register does not need to be read for 
this purpose; however. the register is readable to verify proper operation of 
the processor. 

To simplify testing. the Random register is set to the value of the upper 
bound upon system reset. This register is also set to the upper bound 
when the Wired register is written. 

Figure 4.12 shows the format of the Random register; Table 4.8 on 
page 17 deSCribes the Random register fields. 

Random Register 
31 650 

o I Random I 
26 6 

Figure 4.12 Random Register 

4-16 



Memory ManagemeDt Chapter 4 

Field Description 

Random TLB random index 

0 Reserved. Must be written as zeroes, and returns zeroes when read. 

Table 4.8 Random Regleter Field Descriptions 

EntryLoO (2), and EntryLol (3) Registers 
The EntryLo register consists of two registers that have identical 

fonnats: 
• EntryLoO is used for even virtual pages. 
• EntryLol is used for odd virtual pages. 
The EntryLoO and EntryLol registers are read/write registers. They 

hold the phySical page frame number (PFN) of the TLB entIy for even and 
odd pages, respectively. when perfonning TLB read and write operations. 
Figure 4.10 on page 15 shows the fonnat of these registers. 

PageMask Register OS) 
The PageMask register is a read/write register used for reading from or 

writing to the TLB; it holds a comparison mask that sets the variable page 
size for each TLB entIy, as shown in Table 4.9. 

TLB read and write operations use this register as either a source or a 
destination; when virtual addresses are presented for translation into 
physical address, the corresponding bits in the TLB identify which virtual 
address bits among bits 24: 13 are used in the comparison. 

When the Mask field is not one of the values shown in Table 4.9, the 
operation of the TLB is undefined. 

Page Size 

4 Kbytes 

16 Kbytes 

64 Kbytes 

256 Kbytes 

IMbyte 

4 Mbytes 

16 Mbytes 

Bit 

22222 1 1 1 1 111 
4 3 210 9 8 7 6 543 

·0·. ·0: :: 0: ,"{}: . 0': O· 0 ':·0.: Al·",.O·.··O· 0-
.": :.- . ::'" .: .. :.: ..... :-. .. '.::.: ,-,:,,:,: 

.. ;}>;" ,:':tt .. ; .. {} . o. ·"0:·:, 0·: :,(l ::.~.O;,~ 1 1 1 1 

, O. ·'·:-0 () 0, ~: ·:··0 1 1 1 1 1 1 

0 0 0 {} 1 1 1 1 1 1 1 1 

·0 0 1 1 1 1 1 1 1 1 1 1 

1 1 -1 1 1 1 1 1 1 1 1 1 

Table 4.9 Mask Pield Values for Page Sizes 

4-17 



Memory Management Chapter 4 

Wired Register (6) 
The Wired register is a read/write register that specifies the boundary 

between the wired and random entries of the TLB. as shown in Figure 4.13. 
Wired entries are nonreplaceable entries. which cannot be overwritten by 
a TLB write random operation. Random entries can be overwritten. 

TLB 
.------..... 47 

t 
Range of Random entries 

i 1-____ ...... 4f--Wired 
- ..... ---- Register 

Range of Wired entries , 
~---·o 

Figure 4.13 Wired Register Boundary 

The Wired register is set to 0 upon system reset. Writing this register 
also sets the Random register to the value of its upper bound (see Random 
register. above). Figure 4.14 shows the fonnat of the Wired register; 
Table 4.10. which follows the figure. describes the register fields. 

Wired Register 
31 6 5 0 

0 I Wired I 
26 6 

Figure 4.14 Wired Register 

Field Description 

Wired TLB Wired boundary (the number of wired TLB entries) 

0 
Reserved. Must be written as zeroes, and returns zeroes 
when read. 

Table 4.10 Wired Register Field Descriptio .. 

EntryHi Register (CPO Register 10) 
The EntryHi register holds the high-order bits of a TLB entry for TLB 

read and write operations. 
The EntryHi register is accessed by the TLB Probe. TLB Write Random. 

TLB Write Indexed. and TLB Read Indexed instructions. 
Figure 4.9 shows the fonnat of this register. 
When either a TLB refill. TLB invalid. or TLB modified exception occurs. 

the EntryHi register is loaded with the virtual page number (VPN2) and the 
ASID of the virtual address that did not have a matching TLB entry. (See 
Chapter 5 for more information about these exceptions.) 

4-18 



Memory Management Chapter 4 

Processor Revision Identifier (PRId) Register (15) 
The 32-bit, read-only Processor Revision Identifier (PRIdJ register 

contains infonnation identifying the implementation and revision level of 
the CPU and CPO. Figure 4.15 shows the format of the PRId register; 
Table 4.11 describes the PRId register fields. 

Field 

Imp 

Rev 

31 

o 
16 

PRld Register 

1615 

I Imp 

8 

87 

I Rev 

8 

Figure 4.15 Processor Revision Identifier Register Format 

Description 

Implementation number R4600: Imp = Ox20 
R4700: Imp = Ox21 

Revision number 

o 

I 

0 Reserved. Must be written as zeroes, and returns zeroes when read. 

Table 4.11 PRld Register Fields 

The low-order byte (bits 7:0) of the PRId register is interpreted as a 
revision number, and the high-order byte (bits 15:8) is interpreted as an 
implementation number. The implementation number of the R4600/ 
R4700 processor is 0x20. The content of the high-order halfword (bits 
31:16) of the register are reserved. 

The revision number is stored as a value in the form y.x, where y is a 
maj or revision number in bits 7:4 and x is a minor revision number in bits 
3:0. 

The revision number can distinguish some chip reviSions, however there 
is no guarantee that changes to the chip will necessarily be reflected in the 
PRId register, or that changes to the revision number necessarily reflect 
real chip changes. For this reason, these values are not listed and software 
should not rely on the revision number in the PRId register to characterize 
the chip. Certain attributes, such as cache size, are independent of 
implementation number. 

Config Register (I6) 
The Corif'lfJ register specifies various configuration options selected on 

R4600/R4700 processors; Table 4.12 lists these options. 
Some configuration options, as defined by Config bits 31 :3, are set by 

the hardware during reset and are included in the Corif'lfJ register as read­
only status bits for the software to access. The KO field is the only read/ 
write field (as indicated by Config register bits 2:0) and controlled by 
software; on reset these fields are undefined. 

Figure 4.16 shows the format of the Config register; Table 4.12, which 
follows the figure, describes the Corif'lfJ register fields. 

Config Register 
31 30 28 27 24 2322 2120 19 18 17 16 15 14 13 12 11 9 8 6 5 4 3 2 o 

I 
342112111111331113 

Figure 4.16 Config Register Format 

4-19 

---------- -_. 



Memory Management Chapter 4 

Field Description 

System clock ratio: 
o ~ processor clock frequency divided by 2 
1 ~ processor clock frequency divided by 3 
2 ~ processor clock frequency divided by 4 

EC 3 ~ processor clock frequency divided by 5 
4 ~ processor clock frequency divided by 6 
5 ~ processor clock frequency divided by 7 
6 ~ processor clock frequency divided by 8 
7 Reserved 

Writeback data rate: 
O~DDDD Doubleword every cycle 
1 ~DDxDDx 2 Doublewords every 3 cycles 
2~DDxxDDxx 2 Doublewords every 4 cycles 
3~DxDxDxDx 2 Doublewords every 4 cycles 

EP 4 ~ DDxxxDDxxx 2 Doublewords every 5 cycles 
5 ~ DDxxxxDDxxxx 2 Doublewords every 6 cycles 
6 ~ DxxDxxDxxDxx 2 Doublewords every 6 cycles 
7 ~ DDxxxxxDDxxxxx 2 Doublewords every 7 cycles 
8 ~ DxxxDxxxDxxxDxxx 2 Doublewords every 8 cycles 
9 -15 Reserved 

BigEndianMem 
BE o ~ Little endian 

1 ~ Big endian 

IC 
Primary I-cache Size (I-cache size = 2lZ+1C bytes). In the R4600/R4700 
processor, this is set to 16 Kbytes (Ie = 010) 

DC 
Primary D-cache Size (D-cache size = 21Z+OC bytes). In the R4600/R4700 
processor, this is set to 16 Kbytes (DC = 010) 

IB 
Primary I-cache line size 

1 ~ 32 bytes (8 Words) 

DB Primary D-cache line size 
1 ~ 32 bytes (8 Words) 

KO ksegO coherency algorithm (see EntryLoO and EntryLol registers) 

Others Reserved. Returns indicated values when read. 

Table 4.12 Codg Register Fields 

Load Linked Address (LLAddr) Register (I 7) 
The read/write Load Linked Address (LIAddr) register contains the 

physical address read by the most recent Load Linked instruction. 
This register is for diagnostic purposes only. and serves no function 

during normal operation. 
Figure 4.17 shows the format of the LIAddr register; PAddr represents 

bits of the physical address. PA(35:4). 

4-20 



Memory Management Chapter 4 

llAddr Register 
31 o 

PAddr(35:4) I 
32 

Figure 4.17 ILAddr Register Format 

Cache Tag Registers [TagLo (28) and TagHi (29)) 
The TagLo and TagHi registers are 32-bit read/write registers that hold 

the primary cache tag and parity during cache initialization, cache 
diagnostics, or cache error processing. The Tag registers are written by the 
CACHE and MTCO instructions. 

The P field of these registers is ignored on Index Store Tag operations. 
Parity is computed by the store operation. 

The Windows NT Operating System uses the TagLo cpO register to savel 
restore gp registers in the TLB refill exception handler. Thus, all 32 bits 
must be present, even though they have no use for the primary purpose of 
TagLo .. 

Figure 4.18 shows the format of these registers for primary cache 
operations. Table 4.13 lists the field definitions of the TagLo and TagHi 
registers. 

31 8 7 6 5 320 

Taglo PTaglo I PState I RWNT I F I 0 I P I 
24 2 3 1 1 1 

31 o 
TagHi o I 

32 

Figure 4.18 TagLo and TagHi Register (p-cacbe) Formats 

Field Description 

PTagLo Specifies the physical address bits 35:12 

PState Specifies the primary cache state 

P Specifies the primary tag even parity bit 

F The FIFO bit used to implement FIFO refill of the cache 

RWNT Read/Write bits required for Windows NT 

0 Reserved. Must be written as zeroes; returns zeroes when read 

Table 4.13 Cache Tag Register Fields 

4-21 



Memory Management Chapter 4 

Virtual-to-Physical Address Translation Process 
Duling virtual-to-physical address translation, the CPU compares the 

8-bit ASIO (if the Global bit, G, is not set) of the virtual address to the ASIO 
of the TLB entry to see if there is a match. 

The following comparison is also made: 
• For the 64-bit virtual addresses, the highest 15-to-27 bits (depending 

upon the page s1ze) of the virtual address are compared to the con­
tents of the TLB virtual page number. 

If a TLB entry matches, the physical address and access control bits (C, 
D, and V) are retrieved from the matching TLB entry. While the Vbtt of the 
entry must be set for a valid translation to take place, it is not involved in 
the determination of a matching TLB entry. 

Figure 4.19 illustrates the TLB address translation process. 

Exception 

No 

Note: For valid address space 
see the section in this chapter 
that describes Operating Modes. 

No 

Yes 

Exception 

Figure 4.19 '1'LB Addreu TranBlatioD 

4-22 



Memory Management Chapter 4 

TLB Misses 
If there is no TLB entry that matches the virtual address. a TLB miss 

exception occurs. If the access control bits (D and V) indicate that the 
access is not valid. a TLB modification or TLB invalid exception occurs. If 
the C bits equal 0102 • the physical address that is retrieved accesses main 
memory. bypassing the cache. 

TLB Instructions 
Table 4.14 lists the instructions that the CPU provides for working with 

the TLB. See Appendix A for a detailed description of these instructions. 

Op Code Description of Instruction 

TLBP Translation Lookaside Buffer Probe 

TLBR Translation Lookaside Buffer Read 

TLBWI Translation Lookaside Buffer Write Index 

TLBWR Translation Lookaside Buffer Write Random 

Table 4.14 11.B Instructions 

4-23 



Chapter 4 

4-24 



Integrated Device Technology. Inc. 

CPU Exception 
Processing 

Chapter 5 

This chapter describes the CPU exception processing, including an 
explanation of exception processing, followed by the fonnat and use of 
each CPU exception register. 

The chapter concludes with a description of each exception's cause, 
together with the manner in which the CPU processes and services these 
exceptions. For information about Floating-Point Unit exceptions, see 
Chapter 7. 

How Exception Processing Works 
The processor receives exceptions from a number of sources, including 

translation lookaside buffer (TLB) misses, arithmetic overflows, I/O 
interrupts, and system calls. When the CPU detects one of these 
exceptions, the normal sequence of instruction execution is suspended 
and the processor enters Kernel mode (see Chapter 4 for a description of 
system operating modes). 

The processor then disables interrupts and forces execution of a 
software exception processor (called a handler) located at a fixed address. 
The handler may save the context of the processor, including the contents 
of the program counter, the current operating mode (User or Supervisor), 
and the status of the interrupts (enabled or disabled). This context would 
be saved so it can be restored when the exception has been serviced. 

When an exception occurs, the CPU loads the Exception Program 
Counter (EPC) register with a location where execution can restart after the 
exception has been serviced. The restart location in the EPC register is the 
address of the instruction that caused the exception or, if the instruction 
was executing in a branch delay slot, the address of the branch instruction 
immediately preceding the delay slot. 

The registers described later in the chapter assist in this exception 
processing by retaining address, cause and status information. 

For a description of the exception handling process, see the description 
of the individual exception contained in this chapter, or the flowcharts at 
the end of this chapter. 

Exception Processing Registers 
This section describes the CPO registers that are used in exception 

processing. Table 5.1 on page 5-2 lists these registers, along with their 
number-each register has a unique identification number that is referred 
to as its register number. For instance, the ECC register is register number 
26. The remaining CPO registers are used in memory management. as 
described in Chapter 4. 

Software examines the CPO registers during exception processing to 
determine the cause of the exception and the state of the CPU at the time 
the exception occurred. The registers in Table 5.1 are used in exception 
processing, and are described in the sections that follow. 

5-1 



CPU Exception Processing Chapter 5 

Register Name Reg. No. 

Context 

BadVAddr (Bad Virtual Address) 

Count 

Compare register 

Status 

Cause 

EPC (Exception Program Counter) 

XContext 

ECC 

CacheErr (Cache Error and Status) 

ErrorEPC (Error Exception Program Counter) 

Table 5.1 CPO Exception Processing Registers 

Context Register (4) 

4 

8 

9 

11 

12 

13 

14 

20 

26 

27 

30 

The Context register is a read/write register containing the pOinter to an 
entry in the page table entry (PTE) array; this array is an operating system 
data structure that stores virtual-to-physical address translations. When 
there is a TLB miss, the CPU loads the TLB with the missing translation 
from the PTE array. Normally, the operating system uses the Context 
register to address the current page map which resides in the kernel­
mapped segment, kseg3. The Context register duplicates some of the 
information provided in the BadVAddr register, but the information is 
arranged in a form that is more useful for a software TLB exception 
handler. Figure 5.1 shows the format of the Context register; Table 5.2, 
which follows the figure, deSCribes the Context register fields. 

63 

Field 

BadVPN2 

PTEBase 

Context Register 
23 22 

PTE Base I BadVPN2 

41 19 

Description 

4 3 o 
o I 
4 

This field is written by hardware on a miss. It contains 
the virtual page number (VPN) ofthe most recent virtual 
address that did not have a valid translation. 

This field is a read/write field for use by the operating 
system. It is normally written with a value that allows 
the operating system to use the Context register as a 
pointer into the current PTE array in memory. 

Table 5.2 Context Register Fields 

The 19-bit BadVPN2 field contain&bits 31: 13 of the virtual address that 
caused the TLB miss; bit 12 is excluded because a single TLB entry maps 
to an even-odd page pair. For a 4-Kbyte page size, this format can directly 
address the pair-table of 8-byte PTEs. For other page and PTE sizes, 
shifting and masking this value produces the appropriate address. 

5-2 



CPU bceptioD Proceuin, Chapter 5 

Bad Virtual Address Register (BadVAddr) (8) 
The Bad Virtual Address register (BadVAd.cb1 is a read-only register that 

displays the most recent virtual address that caused one of the following 
exceptions: Address Error (e.g., unaligned access), TLB Invalid, 1LB 
Modified, TLB Refill, Virtual Coherency Data Access, or Virtual Coherency 
Instruction Fetch. 

The processor does not write to the BadVAddr register when the EXL bit 
in the Status register is set to a 1. 

Figure 5.2 shows the fonnat of the BadVAddrregister. 

BadVAddr Register 
63 o 

Bad Virtual Address I 
64 

Figure 15.2 BaclVAddr Register Fonut 
Note: The BadVAddr register does not save any infonnation for bus 

errors, since bus errors are not addressing errors. 

Count Register (9) 
The Count register acts as a timer, incrementing at a constant rate-half 

the maximum instruction issue rate-whether or not an instruction is 
executed, retired, or any forward progress is made through the pipeline. 

This register can be read or written. It can be written for diagnOStiC 
purposes or system initialization; for example, to synchronize processors. 

Figure 5.3 shows the fonnat of the Count register. 

Count Register 
31 o 

Count I 
32 

Compare Register (11) 
The Compare register acts as a timer (see also the Count register); it 

maintains a stable value that does not change on its own. 
When the value of the Count register equals the value of the Compare 

register, interrupt bit IP(7) in the Cause register is set. This causes an 
interrupt as soon as the interrupt is enabled. 

Writing a value to the Compare register, as a side effect, clears the timer 
interrupt. 

For diagnostic purposes, the Compare register is a read/write register. 
In normal use however, the Compare register is write-only. Figure 5.4 
shows the fonnat of the Compare register. 

Compare Register 
31 o 
~----------------------~I 

Compare • 

32 

Figure 15.4 Compare Register Fonut 

5-3 

~~~~~~-~------'--'----- ----- ----


CPU Exception Processing Chapter 5

Status Register (12)
The Status register (SR) is a read/write register that contains the

operating mode, interrupt enabling, and the diagnostic states of the
processor. The following list deSCribes the more important Status register
fields; Figure 5.5 show the fonnat of the entire register, including
descriptions of the fields. Some of the important fields include:

• The 8-bit Interrupt Mask (IM) field controls the enabling of eight inter­
rupt conditions. Interrupts must be enabled before they can cause the
exception, and the corresponding bits are set in both the Interrupt
Mask field of the Status register and the Interrupt Pending field of the
Cause register. For more infonnation, refer to the Interrupt Pending
(IP) field of the Cause register. IM[l:O) are the masks for the two soft­
ware interrupts while IM[7:2) correspond to Int[5:0).

• The 4-bit Coprocessor Usability (CU) field controls the usability of 4
possible coprocessors. Regardless of the CUO bit setting. CPO is al­
ways usable in Kernel mode. For all other cases, an instruction for or
access to an unusable coprocessor causes an exception.

• The 9-bit Diagnostic Status (DS) field (Status[24:16]) is used for self­
testing, and checks the cache and virtual memory system.

• The Reverse-Endian (RE) bit, bit 25, reverses the endianness of the
machine. The processor can be configured as either little-endian or
big-endian at system reset. This selection is always used in Kernel
and SupeIVisor modes, and also in User mode when the RE bit is O.
Setting the RE bit to 1 inverts the User mode endianness.

Status Register Format
Figure 5.5 shows the fonnat of the Status register. Table 5.3, which

follows the figure, describes the Status register fields.

1+------ OS ------J~
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 8765432 o

1M

8

Figure 5.5 Status Register

5-4

CPU Exception Processing Chapter 5

Field Description

CU Controls the usability of each of the four coprocessor unit numbers. CPO is always usable
when in Kernel mode, regardless of the setting of the CUo bit.

1 -+ usable o -+ unusable

FR Enables additional floating-point registers
o -+ 16 registers 1 -+ 32 registers

RE Reverse-Endtan bit, valid in User mode.

BEV Controls the location of TLB refill and general exception vectors.
0-+ normal 1-+ bootstrap

SR 1-+ Indicates a soft reset or NMI has occurred.

CH Hit (tag match and valid state) or miss indication for last CACHE Hit Invalidate, Hit Write
Back Invalidate, Hit Write Back, or Hit Set Virtual for a primary cache.

o ~miss 1 -+ hit

CE Contents of the ECC register set or modify the check bits of the caches when CE = 1; see
deSCription of the ECC register.

DE Specifies that cache parity errors cannot cause exceptions.
o -+ parity remains enabled 1 -+ disables parity

0 Reserved. Must be written as zeroes, and returns zeroes when read.

1M Interrupt Mask: controls the enabling of each of the external, internal, and software inter-
rupts. An interrupt is taken if interrupts are enabled, and the corresponding bits are set in
both the Intenupt Mask field of the Status register and the Interrupt Pending field of the Cause
register. IM[7:2] correspond to interrupts Int[5:0] and IM[l :0] to the software interrupts.

o -+ disabled 1-+ enabled

KX KX controls whether the TLB Refill Vector or the XILB Refill Vector address is used for TLB
misses on kernel addresses

o -+ TLB Refill Vector 1 -+ XILB Refill Vector

SX Enables 64-bit virtual addressing and operations in Supervisor mode. The extended-address-
ing TLB refill exception is used for TLB misses on supervisor addresses.

0-+ 32-bit 1 -+ 64-bit

UX Enables 64-bit virtual addressing and operations in User mode. The extended-addressing TLB
refill exception is used for TLB misses on user addresses.

o -+32-bit 1 -+ 64-bit

KSU Mode bits
102 -+ User 012 -+ Supervisor O~ -+ Kernel

ERL Error Level
o -+ normal 1 -+ error

EXL Exception Level
o -+ normal 1 -+ exception

Note: When going from 0 to 1, IE should be disabled (0) first. This would be done when pre-
paring to return from the exception handler, such as before executing the ERET instruction.

IE Interrupt Enable
o -+ disable interrupts 1 -+ enables interrupts

Table 5.3 Status Register Fields

5-5

CPU Exception Processing Chapter 5

Status Register Modes and Access States
Fields of the Status register set the modes and access states described

in the sections that follow.

Interrupt Enable: Interrupts are enabled when all of the following
conditions are true:

• IE= 1
• EXL= 0
• ERL= 0
If these conditions are met, the settings of the 1M bits identify the

interrupt.
Note: Setting the IE bit may be delayed by up to 3 cycles. If performing

nested interrupts, re-enable the IE bit first.

Operating Modes: The following CPU Status register bit settings are
required for User. Kernel. and SupeIVisor modes (see Chapter 4 for more
information about operating modes).

• The processor is in User mode when KSU = 102, EXL = 0, and ERL = O.
• The processor is in SupeIVisor mode when KSU = 01 2• EXL = O. and

ERL= O.
• The processor is in Kernel mode when KSU = 002, or EXL = 1, or ERL

=1.
32- and 64-bit Virtual Addressing: The following CPU Status register

bit settings select 32- or 64-bit virtual addressing for User and SupeIVisor
operating modes. Enabling 64-bit virtual addressing permits the execution
of 64-bit opcodes and translation of 64-bit virtual addresses. 64-bit virtual
addressing for User and SupeIVisor modes can be set independently but is
always used for Kernel mode.

• The KX field controls whether the TLB Refill Vector or the XTLB Refill
Vector address is used forTLB misses on Kernel addresses. 64-bit op­
codes are always valid in Kernel mode.

• 64-bit addressing and operations are enabled for SupeIVisor mode
when sx= 1.

• 64-bit addressing and operations are enabled for User mode when UX
=1.

Kernel Address Space Accesses: Access to the kernel address space is
allowed when the processor is in Kernel mode.

Supervisor Address Space Accesses: Access to the supeIVisor address
space is allowed when the processor is in Kernel or SupeIVisor mode, as
deSCribed above in the paragraph titled Operating Modes.

User Address Space Accesses: Access to the user address space is
allowed in any of the three operating modes.

Status Register Reset
The contents of the Status register are undefined at reset. except for the

following bits - ERL and BEV = 1.
The SR bit distinguishes between Reset and Soft Reset (Nonmaskable

Interrupt INMI]).

5-6

CPU Exception Processing Chapter 5

Cause Register (13)
The 32-bit read/write Cause register describes the cause of the most

recent exception.
Figure 5.6 shows the fields of this register; Table 5.4, which follows the

figure, describes the Cause register fields. A 5-bit exception code (~cCode)
indicates the cause of the most recent exception, as listed in Table 5.5 on
page 5-8.

All bits in the Cause register, with the exception of the [P(1 :0) bits, are
read-only; IP(1 :0) are used for software interrupts.

Cause Register

31 30 29 28 27 16 15 876 2 1 0

I B~ 01 CE
1 o~< 1

IP
101

Exc
101 Code

2 12 8 1 5 2

Figure 15.6 Cause Kepter Format

Field Description

BD Indicates whether the last exception taken occurred in a branch delay slot.
1 ~ delay slot
O~normal

CE Coprocessor unit number referenced when a Coprocessor Unusable excep-
tion is taken.

IP Indicates an interrupt is pending.
1 ~ interrupt pending
o ~ no interrupt

ExcCode Exception code field (see Table 5.5 on page 5-8)

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 15.4 Cause Register Fielda

5-7
--- -~~--------~------

CPU Exception Processing Chapter 5

Exception Mnemonic Description

Code
Value

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16-31

Int Interrupt

Mod TLB modIfication exception

TLBL TLB exceptIon Ooad or instruction fetch)

TLBS TLB exception (store)

AdEL Address error exceptIon Ooad or instruction fetch)

AdES Address error exception (store)

IBE Bus error exception (instruction fetch)

DBE Bus error exception (data reference: load or store)

Sys Syscall exceptIon

Bp Breakpoint exception

RI Reserved instructIon exception

CpU Coprocessor Unusable exception

OV ArIthmetIc OVerflow exceptIon

Tr Trap exception

- Reserved

FPE Floating-PoInt exception

- Reserved

Table 5.5 Cause Register ExcCode Field

Exception Program Counter (EPC) Register (14)
The Exception Program Counter (EPC) is a read/write register that

contains the address at which processing resumes after an exception has
been seIViced.

For synchronous exceptions, the EPC register contains either:
• the virtual address of the instruction that was the direct cause of the

exception, or
• the virtual address of the immediately preceding branch or jump in­

struction (when the instruction is in a branch delay slot, and the
Branch Delay bit in the Cause register is set).

The processor does not write to the EPC register when the EXL bit in the
Status register is set to a 1.

Figure 5.7 shows the format of the EPC register.

EPC Register
63 o

EPC I
64

Figure 5.7 EPC Register Format

5-8

CPU Ezcoption Processing Chapter 5

XConten Register (20)
The read/write XContext register contains a pOinter to an entry in the

page table entry (PTE) array, an operating system data structure that
stores virtual-to-physical address translations. When there is a TLB miss,
the operating system software loads the TLB with the missing translation
from the PTE array. The XContext register duplicates some of the
information provided in the BadVAddrregister, and puts it in a form useful
for a software TLB exception handler.

The XContext register is for use with the XTLB refm handler, which loads
TLB entries for references to a 64-bit address space, and is included solely
for operating system use. The operating system sets the PTE base field in
the register, as needed. Normally, the operating system uses the XContext
register to address the current page map, which resides in the kemel­
mapped segment ksegS.

Figure 5.8 shows the format of the XContext register; Table 5.6, which
follows the figure, describes the XContext register fields.

63

PTEBase

31

XContext Register

3332 3130

I R I BadVPN2

2 27

Figure 5.8 XCODtezt Regiater Format

4 3 0

I 0 I
4

The 27 -bit BadVPN2 field has bits 39: 13 of the virtual address that
caused the TLB miss; bit 12 is excluded because a single TLB entry maps
to an even-odd page pair. For a 4-Kbyte page size, this format may be used
directly to address the pair-table of 8-byte PTEs. For other page and PTE
sizes, shifting and masking this value produces the appropriate address.

Field Description

BadVPN2 The Bad Virtual Page Number/2 field is written by hardware on a
miss. It contains the VPN of the most recent invalidly translated vir-
tual address.

R The Region field contains bits 63:62 ofthe virtual address.
002 = user
012 = supervisor
112 = kernel.

PTEBase The Page Table Entry Base read/write field is normally written with
a value that allows the operating system to use the Context register
as a pointer into the current PTE array in memory.

Table 5.6 XCODtezt Regiater Fielda

Error Checking and Correcting (ECC) Register (26)
The 8-bit Error Checking and Correcting (ECC) register reads or writes

primary-cache data parity bits for cache initialization, cache diagnostiCS,
or cache error processing. (Tag parity is loaded from and stored to the
TagLo register.)

The ECC register is loaded by the Index Load Tag CACHE operation.
Content of the ECC register is:

• written into the primary data cache on store instructions (instead of
the computed parity) when the CE bit of the Status register is set

• substituted for the computed instruction parity for the CACHE oper­
ation Fill

To force a cache parity value use the Status CE bit and the ECC register.

5-9

CPU Exception Processing Chapter 5

Figure 5.9 shows the fonnat of the ECC register; Table 5.7. which follows
the figure. describes the register fields.

ECC Register
31 8 7 o

o I ECC

24 8

Field Description

ECC
An 8-bit field specifying the parity bits read from or
written to a primary cache.

0
Reserved. Must be written as zeroes, and returns
zeroes when read.

Table 5.7 ECC Register Fields

Cache Error (CacheErr) Register (27)
The 32-bit read-only CacheErr register processes parity errors in the

primary cache. Parity errors cannot be corrected.
The CacheErr register holds cache index and status bits that indicate

the source and nature of the error; it is loaded when a Cache Error
exception is asserted. When a read response returns with bad parity this
exception is also asserted.

Figure 5.10 shows the fonnat of the CacheErr register; . which follows
the figure. describes the CacheErr register fields.

CacheErr Register

31 30 29 28 27 26 25 24 23 22 21 3 2 o

I ER I EC I ED I ET I Esl EE I EB I 0 I 0 I 0 I Sldx I I Pldx I
11111111 19 o 2

5-10

CPU Exception Processing Chapter 5

Field

ER

EC

ED

ET

ES

EE

EB

SIdx

Pldx

0

Description

Type of reference
o ~ instruction
1 ~data

Cache level of the error
O~primary
1 ~reserved

Indicates if a data field error occurred
o ~no error
1 ~error

Indicates if a tag field error occurred
o ~no error
1 ~ error

Indicates the error occurred accessing processor-manag~d resources, in response to an external
request.

o ~ internal reference
1 ~ external reference

Since the R4600/R4700 doesn't have any external events that would look in a cache (which is
the only processor-managed resource), this bit would not be set under normal operating
conditions.

Set if the error occurred on the SysAD bus.

Taking a cache error exception sets / clears this bit.

Set if a data error occurred in addition to the instruction error (indicated by the remainder of
the bits). If so, this requires flushing the data cache after fixing the instruction error.

Physical address 21:3 of the reference that encountered the error.

The address may not be the same as the address of the double word in error, but it is sufficient
to locate that double word in the secondary cache.

Virtual address 13:12 of the double word in error.

To be used with SIdx to construct a virtual index for the primary caches. Only the lower two
bits (bits 1 and 0) are vAddr; the high bit (bit 2) is zero.

Reserved. Must be written as zeroes, and returns zeroes when read.

Table 5.8 CacheErr Register Fields

Error Exception Program Counter (Error EPC) Register (30)
The ErrorEPC register is similar to the EPC register, except that ErrorEPC

is used on parity error exceptions. It is also used to store the program
counter (PC) on Reset, Soft Reset. and nonmaskable interrupt (NMI)
exceptions.

The read/write ErrorEPC register contains the virtual address at which
instruction processing can resume after servicing an error. This address
can be:

• the virtual address of the instruction that caused the exception
• the virtual address of the immediately preceding branch or jump in­

struction, when this address is in a branch delay slot.
There is no branch delay slot indication for the ErrorEPC register.

5-11

CPU Exception Processing Chapter 5

Figure 5.11 shows the format of the ErrorEPC register.

ErrorEPC Register

63 o
ErrorEPC I

64

Figure 5.11 ErrorEPC Register Format

Processor Exceptions
This section describes the processor exceptions-it describes the cause

of each exception, its processing by the hardware, and servicing by a
handler (software). The types of exception, with exception processing
operations, are described in the next section.

Exception Types
This section gives sample exception handler operations for the following

exception types:
• reset
• soft reset
• nonmaskable interrupt (NMI)
• cache error
• remaining processor exceptions
When the EXL bit in the Status register is 0, either User or Supervisor

operating mode is specified by the KSU bits in the Status register. When
the EXL bit or the ERL bit is a 1, the processor is in Kernel mode.

When the processor takes an exception, the EXL bit is set to 1, which
means the system is in Kernel mode. After saving the appropriate state, the
exception handler typically resets the EXL bit back to 0. When restoring
the state and restarting, the handler sets the EXL bit back to 1.

Returning from an exception, also resets the EXL bit to ° (see the ERET
instruction in Appendix A).

In the following sections, sample hardware processes for various
exceptions are shown, together with the servicing required by the handler
(software) .

Reset Exception Process
Figure 5.12 shows the Reset exception process .

• r;Vrldafined ••..•.•• :: ••...•. : •. : ..• : •.. :. ..: •..• :.<:. ..: •. ::. .:
: :····~~S:~ TLBENTRIf;~1... •• : ... :.. .•• ..: ...•.... : .: .: .: : ... :<. . :!n··.

cOOfj9~-:OH:EC II EP 1100000000 If SEU 110: II 010 II OHfli1111IU)tlundefin~··
Ert6~pc~ Fl{)•.•;. :.

SR +-SRa1:2~:l11 110110 II SR19:S II 111 SR1~d· : ..
PC ~ OXFFFFFtFfBFCOOOOO::

Figure 5.12 Reset Ez:ceptioD Processing

5-12

CPU Exception Processing Chapter 5

Cache Error Exception Process
Figure 5.13 shows the Cache Error exception process.

;·T:~ ~i'lror!;PC' ~ PC:· . :: .. ; ... ; .. :.; ·:·t···:·.:·· :.. :: :
': : Cadle£rr:+.-";-i:Bdf!(nl--l~D If I;T -II ES lI.ee.·II.·ea·u fi5:.: :::. ::
..)~~:f"'''SR~i'i~:~I!';~·:i1SR~:o.·: :: ::; :::.;< :: :-: .. : .. ::: ; ... :::;: : ::. . .. : ..
: .. ··tum·· =Tthen·· r ~t:i$tM··BEV··bit Setting··~r·: 22.. ::. : :.:...

. . ·PO ~ OxFFFFFFFf:8FCO ~o + Ox100 r acee6s:b96t;;'PROM a~a */
else :
. :];)C:~,&XFJ:FFj*FF AOOO OQOO -+ OxlOO r :access·main ~atea */ .. -..

..

Figure 5.13 Cache Euor Exception ProceuiDg

Soft Reset and NMI Exception Process
Figure 5.14 shows the Soft Reset and NMI exception process.

::::T::::SFrorEPC +- pc .. ~: .. ;: j~:: .. :.::::.:(:. . :: .. : .. , .. :: : :
SR +-::SR$13 lI:tlHrJl:1 U.SR19;SU 1 II SRt-:o· . . :: ...

.. .. :PC··F.:~F FFFF·BFCOQOOQ .. :: : : .. :::: .. ::: . ;.::::::,. :;.::
. :.-::.":" .- .":::::': .. : ... - _ ' -

Figure 5.14 Soft Reset and NMI Exception Processing

General Exception Process
Figure 5.15 shows the process used for exceptions other than Reset, Soft

Reset, NMI, and Cache Error.

~:T:·:Ca~~~:·8i:ti~:~ji(9$~id)1:2 n:~~~i~~:.!(bj!.·:tx~~JrQi·~:t :
. : : if: $Bii;i ,tHhett·:·:::-::· ... r:·syst~. i.iitl$,~:fQr SUp'~r ~,Wi.h ·oo·~ent" exceptiOn·:-, .

.. ... :: .'::EPC=~ PC . : : .::~:,:: ,.:~ :::: ,: ...

j(·<··~;~:~~1~:lt:f.:J(sRO:l/:::::······ . ..~ .. :.:- : ::: .. : : ;::.i.:.::·· . :

. if::~:·;~d::ther(; .:.: : .. :'l~:WtvU}tttb4J~~Fa.V bit s~~g -t :.:: .. :::. ;:: :: ... : :::.:. : ... : .. : ;. : ..
. : .. ::;:;:PC·.~ OXFFFF FFFF·~rp~::Q200· + vector r· access·to·~~aspaoe.·1 ... : :.: ...

:::~·~::;:·?~9:F~@,;,fff:~I?~:.~:~·+.V~~··.· r~~·to:·~~ ~~.·:~I :.: .. :.;: .. : . ::~.:
. : :.~~:::~:.~.:{::::: .. ;:.<~ ::.:~.:.: : ... ;:.: : ::<:.;:.::.(.. :.::::.:;:::.:?/:. :/ ;>;::: .. ;:. :.:: .:< .. :: .. :~:': .. ::.:;- , .. :.:::::.: .. : , ... ~ ;:: : .. :: .:: ,: .. ;.:

- - -.-: :-: :: :~:-"- :-:.::::- .. -.-: : _._.' .. '. -:- -.. :: -. ": ;.::; .::::

Figure 5.15 General Exception Proceulng (Except Reset, Soft Reset,l'OII,
and Cache Euor)

Exception Vector Locations
The Reset, Soft Reset, and NMI exceptions are always vectored to

location OxFFFF FFFF BFCO 0000 (virtual address), corresponding to
ksegO.

Addresses for all other exceptions are a combination of a vector offset
and a base address. The base address is detennined by the BEVbit of the
Status register, as shown in Table 5.9.

5-13

CPU Exception Processing Chapter 5

1

2

3

4

5

6

7

8

Table 5.10 shows the vector offset that is added to the base address to
create the exception address.

BEV R4600/R4700 Processor Vector Base Cache Error Base

0 OxFFFF FFFF 8000 0000 OxFFFF FFFF AOOO 0000

1 OxFFFF FFFF BFCO 0200 OxFFFF FFFF BFCO 0200

Table 5.9 Exception Vector Base Addresses

As shown in Table 5.9, when BEV = 0, the vector base for the Cache
Error exception changes from ksegO (OxFFFF FFFF 8000 0000) to ksegl
(OxFFFF FFFF AOOO 0000).

When BEV = 1, the vector base for the Cache Error exception is OxFFFF
FFFF BFCO 0200. This is an uncached and unmapped space, allowing the
exception to bypass the cache and TLB.

Exception
R4600/R4700 Processor

Vector Offset

TLB refill, EXL = 0 OXOOO

XTLB refill, EXL = 0 (X = 64-bit TLB) Ox080

Cache Error OxlOO

Others Ox180

Table 5.10 Exception Vector Offsets

Priority of Exceptions
The remainder of this chapter describes exceptions in the order of their

priority, as shown in Table 5.11. While more than one exception can occur
for a single instruction, only the exception with the highest priority is
reported.

Exception Priority

Reset (highest priority) 9 Integer overflow, Trap, System Call, Break-
point, Reserved Instruction, Coprocessor
Unusable, or Floating-Point Exception

Soft Reset 10 Address error - Data access

Nonmaskable Interrupt (NMI) 11 TLB refill - Data access

Address error - Instruction fetch 12 TLB invalid - Data access

TLB refill - Instruction fetch 13 TLB modified - Data write

TLB invalid - Instruction fetch 14 Cache error - Data access

Cache error - Instruction fetch 15 Bus error - Data access

Bus error - Instruction fetch 16 Interrupt (lowest priority)

Table 5.11 Exception Priority Order

Generally speaking, the exceptions described in the folloWing sections
are handled ("processed") by hardware; these exceptions are then serviced
by software.

5-14

CPU Exception Processing Chapter 5

Reset Exception
This section explains the Reset exception.

Cause
The Reset exception occurs when the ColdReset* 1 signal is asserted and

then deasserted. This exception is not maskable.

Processing
The CPU provides a special exception vector for this exception of:

OxFFFF FFFF BFCO 0000
The Reset vector resides in unmapped and uncached CPU address

space, so the hardware need not initialize the TLB or the cache to process
this exception. It also means the processor can fetch and execute
instructions while the caches and virtual memory are in an undefined
state.

The contents of all registers in the CPU are undefined when this
exception occurs, except for the following register fields:

• In the Status register, SR is cleared to 0, and ERL and BEVare set to
1. All other bits are undefined.

• The Random register 1s initialized to the value of its upper bound.
• The Wired register 1s initialized to O.
• Some of the Corifig Register bits are initialized from the boot-time

mode stream.
Reset exception processing is shown in Figure 5.12 on page 12.

Servicing
The Reset exception is seIViced by:
• initializing all processor registers, coprocessor registers, caches, and

the memory system
• performing diagnostic tests
• bootstrapping the operating system

1. In the following sections (and throughout this manual) a signal followed by an
asterisk, such as Reset*, is low active.

5-15
-------~-~------~~-----------

CPU Exception Processing Chapter 5

Soft Reset Exception
This section explains the Soft Reset exception.

Cause
The Soft Reset exception occurs in response to the Reset* input signal,

and execution begins at the Reset vector when Reset* is deasserted. This
exception is not maskable.

Processing
The Reset exception vector is used for this exception, located within

unmapped and uncached address space so that the cache and TLB need
not be initialized to process this exception. When a Soft Reset occurs, the
SR bit of the Status register is set to distinguish this exception from a Reset
exception.

The primary purpose of the Soft Reset exception is to reinitialize the
processor after a fatal error during nonnal operations. Unlike an NMI, all
cache and bus state machines are reset by this exception. Like Reset, it
can be used on the processor in any state: the caches, TLB, and nonnal
exception vectors need not be properly initialized. Soft Reset preserves the
state of the caches and memory system, while resetting the bus state and
cache state machine.

When this exception occurs, the contents of all registers are preserved
except for:

• ErrorEPC register, which contains the restart PC
• ERL bit of the Status register, which is set to 1
• SR bit of the Status register, which is set to 1
• BEVbit of the Status register, which is set to 1
Because the Soft Reset can abort cache and bus operations, cache and

memory state is undefined when this exception occurs.
Soft reset exception processing is shown in Figure 5.14 on page 13.

Servicing
The Soft Reset exception is serviced by saving the current processor

state for diagnostic purposes, and reinitial1zing for the Reset exception.

5-16

CPU Exception Processing Chapter 5

Nonmaskable Interrupt (NMI) Exception
This section explains the Nonmaskable Interrupt exception.

Cause
The Nonmaskable Interrupt (NMI) exception occurs in response to the

falling edge of the NMI pin, or an external write to the Int*[6] bit of the
Interrupt register.

Unlike all other interrupts, this interrupt is not maskable; it occurs
regardless of the settings of the EXL, ERL, and the IE bits in the Status
register.

Processing
The Reset exception vector is used for this exception. This vector is

located within unmapped and uncached address space so that the cache
and TLB need not be initialized to process an NMI interrupt. When an NMI
exception occurs, the SR bit of the Status register is set to differentiate this
exception from a Reset exception.

Because an NMI can occur in the midst of another exception, it is not
normally possible to continue program execution after servicing an NMI.

Unlike Reset and Soft Reset, but like other exceptions, NMI is taken only
at instruction boundaries. The state of the caches and memOIY system are
preserved by this exception.

To terminate a pending read that has hung the best approach is to
return a bus error. However, !fyou wish to use a CPU exception to indicate
a hung read, Soft Reset is preferable to NMI.

When this exception occurs, the contents of all registers are preserved
except for:

• ErrorEPC register, which contains the restart PC
• ERL bit of the Status register, which is set to 1
• SR bit of the Status register, which is set to 1
• BEV bit of the Status register, which is set to 1
NMI exception processing is shown in Figure 5.14 on page 13.

Servicing
The NMI exception is serviced by saving the current processor state for

diagnostic purposes, and reinitializing the system for the Reset exception.

5-17

CPU Exception Processing Chapter 5

Address Error Exception
This section explains the Address Error exception.

Cause
The Address Error exception occurs when an attempt is made to execute

one of the following:
• load or store a doubleword that is not aligned on a doubleword

boundary (except for use of special instruction)
• load. fetch. or store a word that is not aligned on a word boundary

(except for use of special instruction)
• load or store a halfword that is not aligned on a halfword boundary
• reference the kernel address space from User or Supervisor mode
• reference the supervisor address space from User mode
This exception is not maskable.

Processing
The common exception vector is used for this exception. The AdEL or

AdES code in the Cause register is set. indicating whether the instruction
(shown by the EPC register and BD bit in the Cause register) caused the
exception with an instruction reference. load operation. or store operation.

When this exception occurs. the BadVAddr register retains the virtual
address that was not properly aligned or referenced protected address
space. The contents of the VPN field of the Context and EntryHi registers
are undefined. as are the contents of the EntryLo register.

The EPC register contains the address of the instruction that caused the
exception. unless this instruction is in a branch delay slot. If it is in a
branch delay slot. the EPC register contains the address of the preceding
branch instruction and the BD bit of the Cause register is set as indication.

Address Error exception processing is shown in Figure 5.15 on page 13.

Servicing
Typically the process executing at the time is handed a segmentation

violation signal. This error is usually fatal to the process incurring the
exception.

To resume execution. the EPC register must be altered so that the
unaligned reference instruction does not re-execute; this is accomplished
by adding a value of 4 to the EPC register (EPC register + 4) before
returning.

If an unaligned reference instruction is in a branch delay slot.
interpretation of the branch instruction is required to resume execution.

5-18

CPU Exception Processing Chapter 5

TLB Exceptions
This section explains the 11.B Exceptions. For specifics on the

exceptions listed here, refer to the following three subsections.
Three types of 11.B exceptions can occur:
• 1LB Refill occurs when there is no TLB entry that matches an at­

tempted reference to a mapped address space.
• 1LB Invalid occurs when a virtual address reference matches a 11.B

entIy that is marked invalid.
• TLB Modtfted occurs when a store operation virtual address reference

to memory matches a TLB entIy which is marked valid but is not dirty
(the entIy is not writable).

The following three subsections describe the TLB exceptions.

TLB Refill Exception
This subsection explains the TLB refill exception.

Cause
The TLB refill exception occurs when there is no TLB entIy to match a

reference to a mapped address space. This exception is not maskable.

Processing
There are two special exception vectors for this exception; one for

references to 32-bit virtual address spaces, and one for references to 64-
bit virtual address spaces. The UX, SX, and KX bits of the Status register
determine whether the user, supervisor or kernel address spaces
referenced are 32-bit or 64-bit spaces. All references use these vectors
when the EXL bit is set to 0 in the Status register. This exception sets the
TLBL or TLBS code in the ExcCode field of the Cause register. This code
indicates whether the instruction, as shown by the EPC register and the
BD bit in the Cause register, caused the miss by an instruction reference,
load operation, or store operation.

When this exception occurs, the BadVAddr, Context. XContext and
EntryHi registers hold the virtual address that failed address translation.
The EntryHi register also contains the ASID from which the translation
fault occurred. The Random register normally suggests a valid location in
which to place the replacement TLB entIy. The contents of the EntryLo
register are undefined. The EPC register contains the address of the
instruction that caused the exception, unless this instruction is in a
branch delay slot, in which case the EPC register contains the address of
the preceding branch instruction and the BD bit of the Cause register is
set.

TLB Refill exception processing is shown in Figure 5.15 on page 13.

Servicing
To service this exception, the contents of the Context or XContext register

are used as a virtual address to fetch memory locations containing the
physical page frame and access control bits for a pair of TLB entries. The
two entries are placed into the EntryLoO/EntryLol register; the EntryHi
and EntryLo registers are written into the TLB.

It is possible that the virtual address used to obtain the physical address
and access control information is on a page that is not resident in the TLB.
This condition is processed by allowing a 1LB refill exception in the TLB
refill handler. This second exception goes to the common exception vector
because the EXL bit of the Status register is set.

5-19

CPU Exception Processing Chapter 5

TLB Invalid Exception
This subsection explains the TLB invalid exception.

Cause
The TLB invalid exception occurs when a virtual address reference

matches a TLB entry that is marked invalid (TLB valid bit cleared). This
exception is not maskable.

Processing
The common exception vector is used for this exception. The TLBL or

TLBS code in the ExcCode field of the Cause register is set. This indicates
whether the instruction, as shown by the EPC register and BD bit in the
Cause register, caused the miss by an instruction reference, load
operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and
EntryHi registers contain the virtual address that failed address
translation. The EntryHi register also contains the ASID from which the
translation fault occurred. The Random register normally contains a valid
location in which to put the replacement TLB entry. The contents of the
EntryLo registers are undefined.

The EPC register contains the address of the instruction that caused the
exception unless this instruction is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

TLB Invalid exception processing is shown in Figure 5.15 on page 13.

Servicing
A TLB entry is typically marked invalid when one of the following is true:
• a virtual address does not exist
• the virtual address exists, but is not in main memory (a page fault)
• a trap is desired on any reference to the page (for example, to main­

tain a reference bit or during debug)
After servicing the cause of a TLB Invalid exception, the TLB entry is

located with TLBP (TLB Probe), and replaced by an entry with that entry's
Valid bit set.

5-20

CPU Exception Processing Chapter 5

TLB Modified Exception
This subsection explains the TLB modified exception.

Cause
The TLB modified exception occurs when a store operation virtual

address reference to memory matches a TLB entry that is marked valid but
is not dirty and therefore is not writable. This exception is not maskable.

Processing
The common exception vector is used for this exception, and the Mod

code in the Cause register is set.
When this exception occurs, the BadVAddr, Context, XContext and

EntryHi registers contain the virtual address that failed address
translation. The EntryHi register also contains the ASID from which the
translation fault occurred. The contents of the EntryLo registers are
undefined.

The EPC register contains the address of the instruction that caused the
exception unless that instruction is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

TLB Modified exception processing is shown in Figure 5.15 on page 13.

Servicing
The kernel uses the failed virtual address or virtual page number to

identify the corresponding access control information. The page identified
mayor may not permit write accesses: if writes are not permitted, a write
protection violation occurs.

If write accesses are permitted, the page frame is marked dirty/writable
by the kernel in its own data structures. The TLBP instruction places the
index of the TLB entry that must be altered into the Index register. The
EntryLo register is loaded with a word containing the physical page frame
and access control bits (with the D bit set), and the EntryHi and EntryLo
registers are written into the TLB.

5-21

CPU Exception Processin, Chapter 5

Cache Error Exception
This section explains the Cache Error exception.

Cause
The Cache Error exception occurs when a primary cache parity error is

detected. This exception is maskable by the DE bit of the Status register.

Processing
The processor sets the ERL bit in the Status register. saves the exception

restart address in ErrorEPC register. and then transfers to a special vector
in uncached space:

If the BEV bit = O. the vector is OxFFFF FFFF AOOO 0100.
If the BEV bit = 1. the vector is OxFFFF FFFF BFCO 0300.
No other registers are changed.

Cache Error exception processing is shown in Figure 5.13 on page 13.

Servicing
All errors should be logged. To correct cache parity errors the system

uses the CACHE instruction to invalidate the cache block. overwrites the
old data through a cache miss. and resumes execution with an ERET.

Other errors are not correctable and are likely to be fatal to the current
process.

5-22

CPU Exception Processing Chapter 5

Bus Error Exception
This section explains the Bus Error exception.

Cause
A Bus Error exception is raised by board-level circuitIy for events such

as bus time-out, backplane bus parity errors, and invalid physical memory
addresses or access types. This exception is not maskable.

A Bus Error exception occurs only when a cache miss refill, uncached
reference, or unbuffered write occurs synchronously; a Bus Error
exception resulting from a buffered write transaction must be reported
using the general interrupt mechanism.

Processing
The common interrupt vector is used for a Bus Error exception. The IBE

or DBE code in the ExcCode field of the Cause register is set, signifying
whether the instruction (as indicated by the EPC register and BD bit in the
Cause register) caused the exception by an instruction reference, load
operation, or store operation.

The EPC register contains the address of the instruction that caused the
exception, unless it is in a branch delay slot, in which case the EPC register
contains the address of the preceding branch instruction and the BD bit of
the Cause register is set. Bus Error processing is shown in Figure 5.15 on
page 13.

Servicing
The physical address at which the fault occurred can be computed from

information available in the CPO registers.
• If the IBE code in the Cause register is set (indicating an instruction

fetch reference), the virtual address is contained in the EPC register.
• If the DBE code is set (indicating a load or store reference), the in­

struction that caused the exception is located at the virtual address
contained in the EPC register (or 4+ the contents of the EPC register
if the BD bit of the Cause register is set).

The virtual address of the load and store reference can then be obtained
by interpreting the instruction. The physical address can be obtained by
using the TLBP instruction and reading the EntryLo register to compute
the physical page number.

The process executing at the time of this exception is handed a bus error
signal, which is usually fatal.

5-23

CPU Exception Processing Chapter 5

Integer Overflow Exception
This section explains the Integer Overflow exception.

Cause
An Integer Overflow exception occurs when an ADD, ADOI, SUB, DADO,

DADDI or DSUB1 instruction results in a 2's complement overflow. This
exception is not maskable.

Processing
The common exception vector is used for this exception, and the OV

code in the Cause register is set.
The EPC register contains the address of the instruction that caused the

exception unless the instruction is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

Integer Overflow exception processing is shown in Figure 5.15 on
page 13.

ServiCing
The process executing at the time of the exception is handed a floating­

point exception/integer overflow signal. This error is usually fatal to the
current process.

1. See Appendix A for instruction description.

5-24

CPU Exception Processing Chapter 5

Trap Exception
This section explains the Trap exception.

Cause
The Trap exception occurs when a TGE. TGEU. TLT. TLTU. TEQ. TNE.

TGEI. TGEUI. TLTI. TLTUI. TEQI. or TNEI l instruction results in a TRUE
condition. This exception is not maskable.

Processing
The common exception vector is used for this exception. and the Tr code

in the Cause register is set.
The EPC register contains the address of the instruction causing the

exception unless the instruction is in a branch delay slot. in which case
the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

Trap exception processing is shown in Figure 5.15 on page 13.

Servicing
The process executing at the time of a Trap exception is handed a

floating-point exception/integer overflow signal. This error is usually fatal.

1. See Appendix A for instruction description.

5-25

CPU Exception Processing Chapter 5

System call Exception
This section explains the System Call exception.

Cause
A System Call exception occurs during an attempt to execute the

SYSCALL instruction. This exception is not maskable.

Processing
The common exception vector is used for this exception, and the Sys

code in the Cause register is set.
The EPC register contains the address of the SYSCALL instruction

unless it is in a branch delay slot, in which case the EPC register contains
the address of the preceding branch instruction.

If the SYSCALL instruction is in a branch delay slot, the BD bit of the
Status register is set; otherwise this bit is cleared.

System Call exception processing is shown in Figure 5.15 on page 13.

Servicing
When this exception occurs, control is transferred to the applicable

system routine.
To resume execution, the EPC register must be altered so that the

SYSCALL instruction does not re-execute; this is accomplished by adding
a value of 4 to the EPC register (EPC register + 4) before returning.

If a SYSCALL instruction is in a branch delay slot, a more complicated
algorithm, beyond the scope of this description, may be required.

5-26

CPU Exception Processing Chapter 5

Breakpoint Exception
This section explains the Breakpoint exception.

Cause
A Breakpoint exception occurs when an attempt is made to execute the

BREAK instruction. This exception is not maskable.

Processing
The common exception vector is used for this exception. and the BP code

in the Cause register is set.
The EPC register contains the address of the BREAK instruction unless

it is in a branch delay slot. in which case the EPC register contains the
address of the preceding branch instruction.

If the BREAK instruction is in a branch delay slot. the BD bit of the
Status register is set. otherwise the bit is cleared.

Breakpoint exception processing is shown in Figure 5.15 on page 13.

Servicing
When the Breakpoint exception occurs. control is transferred to the

applicable system routine. Additional distinctions can be made by
analyzing the unused bits of the BREAK instruction (bits 25:6). and
loading the contents of the instruction whose address the EPC register
contains. A value of 4 must be added to the contents of the EPC register
(EPC register + 4) to locate the instruction if it resides in a branch delay
slot.

To resume execution. the EPC register must be altered so that the
BREAK instruction does not re-execute; this is accomplished by adding a
value of 4 to the EPC register (EPC register + 4) before returning.

If a BREAK instruction is in a branch delay slot. interpretation of the
branch instruction is required to resume execution.

5-27

CPU Exception Processing Chapter 5

Reserved Instruction Exception
This section explains the Reserved Instruction exception.

Cause
The Reserved Instruction exception occurs when one of the following

conditions occurs:
• an attempt is made to execute an instruction with an undefined major

opcode (bits 31 :26)
• an attempt is made to execute a SPECIAL instruction with an unde­

fined minor opcode (bits 5:0)
• an attempt is made to execute a REGIMM instruction with an unde­

fined minor opcode (bits 20: 16)
• an attempt is made to execute 64-bit operations in 32-bit virtual ad­

dressing when in User or Supervisor modes
64-bit operations are always valid in Kernel mode regardless of the value

of the KX bit in the Status register.
This exception is not maskable.
Reserved Instruction exception processing is shown in Figure 5. 15 on

page 13.

Processing
The common exception vector is used for this exception, and the RI code

in the Cause register is set.
The EPC register contains the address of the reserved instruction unless

it is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction.

Servicing
No instructions in the MIPS ISA are currently interpreted. The process

executing at the time of this exception is handed an illegal instruction/
reserved operand fault Signal. This error is usually fatal.

5-28

CPU Exception Processing Chapter 5

Coprocessor Unusable Exception
This sections explains the Coprocessor Unusable exception.

Cause
The Coprocessor Unusable exception occurs when an attempt is made

to execute a coprocessor instruction for either:
• a corresponding coprocessor unit that has not been marked usable,

or
• CPO instructions, when the unit has not been marked usable and the

process executes in User mode.
This exception is not maskable.

Processing
The common exception vector is used for this exception, and the CPU

code in the Cause register is set. The contents of the Coprocessor Usage
Error field of the coprocessor Control register indicate which of the four
coprocessors was referenced. The EPC register contains the address of the
unusable coprocessor instruction unless it is in a branch delay slot, in
which case the EPC register contains the address of the preceding branch
instruction.

Coprocessor Unusable exception processing is shown in Figure 5.15 on
page 13.

Servicing
The coprocessor unit to which an attempted reference was made is

identified by the Coprocessor Usage Error field, which results in one of the
following situations:

• If the process is entitled access to the coprocessor, the coprocessor is
marked usable and the corresponding user state is restored to the co­
processor.

• If the process is entitled access to the coprocessor, but the coproces­
sor does not exist or has failed, interpretation of the coprocessor in­
struction is possible.

• If the BD bit is set in the Cause register, the branch instruction must
be interpreted; then the coprocessor instruction can be emulated and
execution resumed with the EPC register advanced past the coproces­
sor instruction.

• If the process is not entitled access to the coprocessor, the process ex­
ecuting at the time is handed an illegal instruction/privileged instruc­
tion fault Signal. This error is usually fatal.

5-29

CPU ExceptioD Processing Chapter 5

Floating-Point Exception
This sections explains the Floating-Point exception.

Cause
The Floating-Point exception is used by the floating-point coprocessor.

This exception is not maskable.

Processing
The common exception vector is used for this exception, and the FPE

code in the Cause register is set.
The contents of the Floating-Point Control/Status register indicate the

cause of this exception.
Floating-Point exception processing is shown in Figure 5.15 on page 13.

Servicing
This exception is cleared by clearing the appropriate bit in the Floating­

Point Control/Status register.
For an unimplemented instruction exception, the kernel should emulate

the instruction; for other exceptions, the kernel should pass the exception
to the user program that caused the exception.

5-30

CPU Exception Processing Chapter 5

Interrupt Exception
This sections explains the Interrupt exception.

Cause
The Interrupt exception occurs when one of the eight interrupt

conditions is asserted. The significance of these interrupts is dependent
upon the specific system implementation.

Each of the eight interrupts can be masked by clearing the
corresponding bit in the Int-Mask field of the Status register, and all of the
eight interrupts can be masked at once by clearing the IE bit of the Status
register.

Processing
The common exception vector is used for this exception, and the Int code

in the Cause register is set.
The IP field of the Cause register indicates current interrupt requests. It

is possible that more than one of the bits can be simultaneously set (or
even no bits may be set if the interrupt is asserted and then deasserted
before this register is read).

Interrupt exception processing is shown in Figure 5.15 on page 13.

Servicing
If the interrupt is caused by one of the two software-generated

exceptions (SWI or SWO), the interrupt condition is cleared by setting the
corresponding Cause register bit to O.

If th e interrupt is hardware-generated, the interrupt condition is cleared
by correcting the condition causing the interrupt pin to be asserted.

NOTE: due to the write buffer, a store to an external device will not
necessarily occur until after other instructions in the pipeline finish. Thus,
the. user must ensure that the store will occur before the return from
exception instruction (ERET) is executed otherwise the interrupt may be
serviced again even though there should be no interrupt pending.

5-31

CPU Exception Processin, Chapter 5

Exception Handling and Servicing Flowcharts
The remainder of this chapter contains figures of flowcharts for the

exceptions described in Table 5.12, and guidelines for their handlers.

Fiame Description

Figure 5.16, General exceptions and their exception handler
Figure 5.17

Figure 5.18, 1LB/X1LB miss exception and their exception handler
Figure 5.19

Figure 5.20 Cache error exception and its handler

Figure 5.21 Reset, soft reset and NMI exceptions, and a guideline to
their handler.

Table 5.12 List of EzceptioD Flowcharts

Generally speaking, the exceptions are handled by hardware (HW), and
then the exceptions are serviced by software (SW).

5-32

CPU Exception Processing

EXL
(SR1)

=0

Set FP Control Status Register
Enhi ~ VPN2, ASIO
Context ~ VPN2
Set Cause Register
EXCCode, CE

Yes

Chapter 5

Comments

*FP Control Status Register is only set
if the respective exception occurs.
EnHi, XlContext are set only for
TLB- Invalid, Modified,
& Refill exceptions

Check if exception within
another exception

=1.-----+---------,

=1

BadVA is set only for
TLB- Invalid, Modified,
Refill- and VCEOII exceptions
Note: not set if Bus Error
Exception

Processor forced to Kernel Mode
& interrupt disabled

=0 (nonnal) =1 (bootstrap)

PC ~ OxFFFF FFFF 8000 0000
+ 180

PC ~ OxFFFF FFFF BFCO 020
+ 180

(unmapped, uncached) (unmapped, cached)

To General Exception Servicing Guidelines

Exceptions other than Reset, Soft Reset, NMI, Cache Err or first-level TLB miss
Note: Interrupts can be masked by IE or IMs

Figure 5.16 General Exception Handler (HW)

5-33

CPU Exception Processing

MFCO -
XlContext
EPC
Status
Cause

MTCO-
(Set Status Bits:)
KSU f- 00
EXLf- 0
&IE=1

Check CAUSE REG. & Jump to
appropriate Service Code

,--------------
, Service Code

EXL= 1

MTCO-

EPC
STATUS

ERET

,

Comments

• Unmapped vector so TLBMod, TLBlnv,
TLB Refill exceptions not possible

• EXl=1 so Interrupt exceptions disabled

• as/System to avoid all other exceptions

·Only CacheErr, Reset, Soft Reset, NMI
exceptions possible.

Chapter 5

(optional - only to enable Interrupts while keeping Kemel Mode)

• After EXL=O, all exceptions allowed.
(except interrupt if masked by IE or 1M
and CacheErr if masked by DE)

• ERET is not allowed in the branch delay slot of
another Jump Instruction

• Processor does not execute the instruction which is
in the ERErs branch delay slot

• PC f- EPC; EXL f- 0

• LLbitf- 0

Figure 5.17 General Exception Servicing GuideUne& (SW)

5-34

CPU Exception Processing

Yes

Enhi ~ VPN2, ASIO
Context ~ VPN2
Set Cause Reg.

Enhi ~ VPN2, ASIO
Context ~ VPN2
Set Cause Reg.

EXCCode, CE and
Cause bit 31 (BO) ~ 1

Set BadVA
EPC~ (PC- 4)

=0 (nonnal)

EXCCode, CE and
Cause bit 31 (BO) ~ 0

Check if exception within
another exception

=1

N

Points to General Exception

Processor forced to Kernel Mode &
interrupt disabled

= 1 (bootstrap)

(Base is sign extended for 64 bits)
r-::"PC~~-0-x-'::F-::::FF:::F:-IF=-=F:-::Fc::"F-80-0-0"':'0-OO-0""" r-P-C-~-Ox-F=F==F=F-=F=FF=F~B=F::-:C-0-0-20-0"

+ Vec.Off. + Vec.Off.
(unmapped, cached) (unmapped, uncached)

To TLB/XTLB Exception Servicing Guidelines

Figure 5.18 TLB/XTLB Mi •• Exception Handler (HW)

5-35

------"'~, ~""-, -,.'----

Chapter 5

CPU Exception Processing

MFCO -

CONTEXT

Service Code

'-------1-------'

ERET

5-36

Comments

* Unmapped vector so TLBMod, TLBlnv,
TLB Refill or VCEP exceptions
not possible

* EXL=1 so Interrupt exceptions disabled

• OS/System to avoid all other exceptions

·Only Cache Err, Reset, Soft Reset, NMI
exceptions possible.

Chapter 5

• Load the mapping of the virtual address in Context Reg.
Move it to ENLO and Write into the TLB

• There could be a TLB miss again during the mapping
of the data or instruction address. The processor will
jump to the general exception vector since the EXL is 1.
{Option to complete the first level refill in the general
exception handler or ERET to the original instruction
and take the exception again}

• ERET is not allowed in the branch delay slot of
another Jump Instruction

• Processor does not execute the instruction which is

in the ERET's branch delay slot

• PC f- EPC; EXL f- 0

• LLbit f- 0

CPU Exception Processing

Note: Can be masked/disabled by DE (SR16) bit = 1

~ Yes
J: -m
.5
=s c
CU
J:
c
.2
CI...
CD

~
W ... e ...
w

CD
.s:.
u

=0 (normal) cu
0

Service Code

I L-----1------J
~

Instr. in
Br. Diy. Slot?

No

=1 (bootstrap)
BEV

Comments

• Unmapped Uncached vector so
TLB related & Cache Error Exception not possible

• ERL=1 so Interrupt exceptions disabled

• as/System to avoid all other exceptions

·Only Reset, Soft Reset, NMI
exceptions possible.

• ERET is not allowed in the branch delay slot of
another Jump Instruction

• Processor does not execute the instruction which is
in the ERETs branch delay slot

• PC ~ ErrorEPC; ERL ~ 0

• LLbit~ 0

5-37

Chapter 5

CPU Exception Processing Chapter 5

Soft Reset or NMI Exception Reset Exception

Status:

BEV~ 1
SR~ 1

ERL~ 1

1 NMI Service Code
1
1

L---r ----
~

(Optional)

Random ~ TLBENTRIES - 1
Wired~ 0
Config ~ Update(31:6)11 Unclef(S:O)

Status:

BEV~1

SR~O

ERL~ 1

PC ~ OxFFFF FFFF BFCO 0000

Yes NMI?

No

=1

Note: There is no indication from the
processor to differentiate between
NMI & Soft Reset;
there must be a system level indication.

-------., r------ - - - - --I

Soft Reset Service Code
1 1

1
1

• 1
Reset Service Code 1

1 1 1
- - - - - - - - - - - - - - - ~ 1- ____________ 1

Figure 5.21 Re.et. Soft Re.et a: NlID Exception Handling (BW) and Servicing
GuideUne. (SW)

5-38

Floating-Point Unit Chapter 6

Integrated DevIce Technology. Inc.

This chapter describes the R4600 and R4700 floating-point unit (FPU)
features, including the programming model, instruction set and formats,
and the pipeline.

The FPU, with associated system software, fully conforms to the
requirements of ANSI/IEEE Standard 754-1985, IEEE Standardfor Binary
Floating-Point Arithmetic. In addition, the MIPS architecture fully supports
the recommendations of the standard and precise exceptions.

Overview
The FPU operates as a coprocessor for the CPU (it is assigned

coprocessor label CPl), and extends the CPU instruction set to perform
arithmetic operations on floating-point values.

The R4600/R4700 Floating-Point Coprocessor
The R4600/R4700 incorporates an entire floating-point coprocessor on

chip, including a floating-point register file and execution units. The
floating-point coprocessor forms a seamless interface with the integer unit,
decoding and executing instructions in parallel with the integer unit. In
comparison to the R4600, the floating point coprocessor of the R4700 has
improved floating multiply operations.

The R4600/R4700 uses the floating-point unit to perform integer
multiply and divide, and results are placed in the HI and LO registers. The
values can then be transferred to the general purpose register file using the
MFHI/MFLO instructions. The R4700 performs an integer multiply faster
than the R4600 by 2 clock cycles, but it takes the same number of clock
cycles for integer division. The R4700 improves the multiply compared to
the R4600 by performing a single-precision multiply in 4 clock cycles, and
a double-precision multiply in 5 clock cycles.

Figure 6.1 illustrates the functional organization of the FPU.

Data Cache
FCU

/64 + Control
/ /64

FP Bypass
Pipeline Chain

FP Add/Sub,
CvtlDiv/Sqrt FP/lnt Mul

Int Div

3' /64,

/64

,¥4.l4 64 J4
.... 1--" /

FP Reg File ..
Figure 6.1 FPU Functional Block Diagram

6-1

Floating-Point Unit Chapter 6

FPU Features
This section briefly describes the operating model, the load/store

instruction set. and the coprocessor interface in the FPU. A more detailed
description is given in the sections that follow.

• Full 64-bit Operation. When the FR bit in the CPU Status register
equals O. the FPU is configured for sixteen 64-bit registers for double­
precision values or thirty-two 32-bit registers for single-precision val­
ues. When the FR bit in the CPU Status register equals 1. the FPU is
configured for thirty-two 64-bit registers. Each register can hold sin­
gle- or double-precision values. The FPU also includes a 32-bit Con­
trol/ Status register that provides access to all IEEE-Standard
exception handling capabilities.

• Load and Store Instruction Set. Like the CPU. the FPU uses a load­
and store-oriented instruction set. with single-cycle load and store
operations. Overlap of multiply and add is supported.

• Tightly Coupled Coprocessor Interface. The FPU resides on-chip to
form a tightly coupled unit with a seamless integration of floating­
point and fixed-point instruction sets.

FPU Programming Model
This section deSCribes the set of FPU registers and their data

organization. The FPU registers include Floating-POint General Purpose
registers (FORs) and two control registers: Control! Status and
Implementation/ Revision.

Floating-Point General Registers (FGRs)
The FPU has a set of Floating-Point General Purpose registers (FORs) that

can be accessed in the following ways:
• As 32 general-purpose registers (32 FGRs). each of which is 32-bits

wide when the FR bit in the CPU Status register equals 0; or as 32 gen­
eral-purpose registers (32 FGRs). each of which is 64-bits wide when
FR equals 1. The CPU accesses these registers through move. load.
and store instructions.

• As 16 floating-point registers (see the next section for a description of
FPRs). each of which is 64-bits wide. when the FR bit in the CPU Sta­
tus register equals O. The FPRs hold values in either single- or double­
precision floating-point fonnat. Each FPR corresponds to adjacently
numbered FGRs as shown in Figure 6.2 on page 6-3.

• As 32 floating-point registers (see the next section for a description of
FPRs). each of which is 64-bits wide. when the FR bit in the CPU Sta­
tus register equals 1. The FPRs hold values in either single- or double­
precision floating-point fonnat. Each FPR corresponds to an FGR as
shown in Figure 6.2.

6-2

Floatin,-Point Ualt Chapter 6

Floating-Point Floating-Point Floating-Point Floating-Point
Registers (FPR) General Purpose Registers Registers (FPR) General Purpose Registers

(FR = 0) 31 (FGR) 0 (FR = 1) 63 (FGR) 0

FPRO

FPR2

•
•
•

FPR28

FPR30

{(least) FGRO

(most) FGR1 {(-l FGR2

(most) FGR3

•
•
• {(_l FGR28

(most) FGR29

(least) FGR30

(most) FGR31

FPRO

FPR1

FPR2

FPR3

•
•
•

FPR28

FPR29

FPR30

FPR31

FGRO

FGR1

FGR2

FGR3

• • •
FGR28

FGR29

FGR30

FGR31

ControVStatus Register

Floating-Point
Control Registers

(FCR)
ImplementationlRevision Register

31 FCR31 o

Floating-Point Registers
The FPU provides:

31 FCRO 0

I I

• 16 Floating-Point registers (.PPRs) for Status.FR = O. or
• 32 Floating-Point registers (.PPRs) for Status.FR = 1.
These 64-bit registers hold floating-point values during floating-point

operations and are physically fonned from the General Purpose registers
(FGRs). When the FRbit in the Status register equals 1. the .PPRreferences
a single 64-bit FGR.

The .PPRs hold values in either single- or double-precision floating-point
fonnat. If the FR bit equals O. only even numbers (the least register. as
shown in Figure 6.2) can be used to address .PPRs. When the FR bit is set
to a 1. all.PPRregister numbers are valid.

If the FR bit equals 0 during a double-precision floating-point operation.
the general registers are accessed in double pairs. Thus. in a double­
precision operation. selecting Ftoating-Point Register 0 (.PPRO) actually
addresses adjacent Floating-Point General Purpose registers FGRO and
FGRI.

Floating-Point Control Registers
The FPU has 32 control registers (FCRs) that can only be accessed by

move operations. The FCRs are described below:
• The ImplementattDnl Revision register (FeRO) holds reviSion infonna­

tion about the FPU.
• The Controll Status register (FCR31) controls and monitors excep­

tions. holds the result of compare operations. and establishes round­
ingmodes.

• FCRI to FCR30 are reserved.

6-9

Floating-Point Unit Chapter 6

Table 6.1 lists the assignments of the FCRs.

FCRNumber Use

FCRO Coprocessor implementation and revision register

FCRI to FCR30 Reserved

FCR3l Rounding mode, cause, trap enables, and flags

Table 6.1 Floating-Point Control Register Assignments

Implementation and Revision Register, (FCRO)
The read-only Implementation and Revision register (FCROl specifies the

implementation and revision number of the FPU. This information can
determine the coprocessor revision and performance level, and can also be
used by diagnostic software.

Figure 6.3 shows the layout of the register; Table 6.2, which follows the
figure, describes the Implementation and Revision register (FCROl fields.

Implementation/Revision Register (FeRO)

31 16 15 87 o

o Imp Rev I
16 8 8

Figure 6.3 Implementation/Revision Register

Field Description

Imp Implementation number R4600: Ox20
R4700: Ox2l

Rev ReviSion number in the form ofy.x

0 Reserved.

Table 6.2 FCRO Fields

The revision number is a value of the form y.x, where:
• y is a major revision number held in bits 7:4.
• x is a minor revision number held in bits 3:0.
The revision number distinguishes some chip revisions; however, there

is no guarantee that changes to the chip are necessarily reflected by the
revision number, or that changes to the revision number necessarily reflect
real chip changes. For this reason revision number values are not listed,
and software should not rely on the revision number to characterize the
chip.

Control/Status Register (FCR31)
The Control/Status register (FCR31) contains control and status

information that can be accessed by instructions in either Kernel or User
mode. FCR31 also controls the arithmetic rounding mode and enables
User mode traps, as well as identifying any exceptions that may have
occurred in the most recently executed instruction, along with any
exceptions that may have occurred without being trapped.

6-4

Floating-Point Unit

31

I

Chapter 8

Figure 6.4 on page 6-5 shows the format of the Control/Status register,
and Table 6.3, which follows the figure, describes the Control/Status
register fields. Figure 6.5 on page 6-5 shows the Control/Status register
Cause. Flag. and Enable fields.

Control/Status Register (FCR31)

25 24 23 22 18 17 12 11 7 6 2 1 0
Cause Enables Flags I RM I 0 FS C 0 EVZOUI VZOUI VZOUI

7 5 6 5 5 2

Figure 6.4 FP Control/Status Register Bit Assignments

Field Description

FS When set. denormallzed results are flushed to 0 instead of causing
an unimplemented operation exception.

C Condition bit. See deSCription of Control/Status register Condition
bit.

Cause Cause bits. See Figure 6.5 and the description of Con troll status
register Cause. Flag. and Enable bits.

Enables Enable bits. See Figure 6.5 and the description of Controll Status
register Cause. Flag. and Enable bits.

Flags Flag bits. See Figure 6.5 and the description of Control/Status reg-
ister Cause. Flag, and Enable bits.

RM Rounding mode bits. See Table 6.4 on page 7 and the deSCription
of Controll Status register Rounding Mode Control bits.

Table 6.3 Control/Status Register Fields

Bit # 17 16 15 14 13 12
Cause

IE I V Z 0 U Bits
I I I I I

Bit # 11 10 9 8 7

I I
Enable

V Z 0 U Bits
I I I I I

Bit # 6 5 4 3 2

I V I Z 0 U I
Flag
Bits

Inexact Operation
Underflow

Overflow
Division by Zero

Invalid Operation

Unimplemented Operation

Figure 6.5 Control/Status Register Cause, Flag, and Enable Fields

8-5

Floating-Point Unit Chapter 6

Accessing the Control/Status Register
When the Control/Status register is read by a Move Control From

Coprocessor 1 (CFCl) instruction, all unfinished instructions in the
pipeline are completed before the contents of the register are moved to the
main processor. If a floating-point exception occurs as the pipeline
empties, the FP exception is taken and the CFC 1 instruction is re-executed
after the exception is serviced.

The bits in the Control/Status register can be set or cleared by writing to
the register using a Move Control To Coprocessor 1 (CTCl) instruction.
CTCI is not issued until all previous floating-point operations are
complete.

IEEE Standard 754
IEEE Standard 754 specifies that floating-point operations detect

certain exceptional cases, raise flags, and can invoke an exception handler
when an exception occurs. These features are implemented in the MIPS
architecture with the Cause, Enable, and Flag fields of the Control/Status
register. The Flag bits implement IEEE 754 exception status flags, and the
Cause and Enable bits implement exception handling.

Control/Status Register FS Bit
When the FS bit is set, denormalized results are flushed to 0 instead of

causing an unimplemented operation exception.

Control/Status Register Condition Bit
When a floating-point Compare operation takes place, the result is

stored at bit 23, the Condition bit, to save or restore the state of the
condition line. The C bit is set to 1 if the condition is true; the bit is cleared
to 0 if the condition is false. Bit 23 is affected only by compare and Move
Control To FPU instructions.

Control/Status Register Cause, Flag, and Enable Fields
Figure 6.5 on page 6-5 illustrates the Cause, Flag, and Enable fields of

the Control/Status register.

Cause Bits
Bits 17:12 in the Control/Status register contain Cause bits, as shown

in Figure 6.5 on page 6-5, which reflect the results of the most recently
executed instruction. The Cause bits are a logical extension of the CPO
Cause register; they identify the exceptions raised by the last floating-point
operation and raise an interrupt or exception if the corresponding enable
bit is set. If more than one exception occurs on a single instruction, each
appropriate bit is set.

The Cause bits are written by each floating-point operation (but not by
load, store, or move operations). The Unimplemented Operation (E) bit is
set to a 1 if software emulation is required, otherwise it remains O. The
other bits are set to 0 or 1 to indicate the occurrence or non-occurrence
(respectively) of an IEEE 754 exception.

When a floating-point exception is taken, no results are stored, and the
only state affected is the Cause bits. Exceptions caused by an immediately
previous floating-pOint operation can be determined by reading the Cause
field.

Enable Bits
A floating-point operation that sets an enabled Cause bit forces an

immediate exception, as does setting both Cause and Enable bits with
CTCl. The floating-point exception or interrupt is enabled when the
corresponding enable be is set.

There is no enable for Unimplemented Operation (E). Setting
Unimplemented Operation always generates a floating-point exception.

6-6

Floating-Point Unit Chapter 6

Before returning from a floating-point exception, or doing a CTC 1,
software must first clear the enabled Cause bits to prevent a repeat of the
interrupt. Thus, User mode programs can never observe enabled Cause
bits set; if this information is required in a User mode handler, it must be
passed somewhere other than the Status register.

For a floating-point operation that sets only unenabled Cause bits, no
exception occurs and the default result defined by IEEE 754 is stored. In
this case, the exceptions that were caused by the immediately previous
floating-point operation can be determined by reading the Cause field.

Flag Bits
When an exception case is detected and the exception Enable is not set,

the corresponding flag bit is set. If an exception is taken, none of the flag
bits are modified. Note however that system software may set the flag bits
before invoking a user exception handler.

The Flag bits are cumulative and indicate that an exception was raised
by an operation that was executed since they were explicitly reset. Flag bits
are set to 1 if an IEEE 754 exception is raised, otherwise they remain
unchanged. The Flag bits are never cleared as a side effect of floating-point
operations; however, they can be set or cleared by writing a new value into
the Status register, using a Move To Coprocessor Control instruction.

Control/Status Register Rounding Mode Control Bits
Bits 1 and 0 in the Control/Status register constitute the RoWl.ding Mode

(RMJ field.
As shown in Table 6.4, these bits specify the rounding mode that the

FPU uses for all floating-point operations.

Rounding Mnemonic Description
Mode RM(1:0)

0

1

2

3

RN Round result to nearest representable value;
round to value With least-signtficant bit 0 when
the two nearest representable values are equally
near.

RZ Round toward 0: round to value closest to and not
greater in magnitude than the infinitely preCise
result.

RP Round toward +00: round to value closest to and
not less than the tnfinttely precise result.

RM Round toward - 00: round to value closest to and
not greater than the infinitely precise result.

Table 6.4 Rounding Mode Bit Decoding

Floating-Point Formats
The FPU performs both 32-bit (single-precision) and 64-bit (double­

precision) IEEE standard floating-point operations. The 32-bit single­
preciSion format has a 24-bit signed-magnitude fraction field (f+s) and an
8-bit exponent (e), as shown in Figure 6.6.

31 30

e
Exponent

8

23 22

f
Fraction

23

Figure 6.6 SiDgle-PrecisioD FloatiDg-Point Format

6-7

o

Floating-Point Unit

63

Chapter 6

The 64-bit double-precision format has a 53-bit signed-magnitude
fraction field ([+5) and an II-bit exponent. as shown in Figure 6.7.

62 52 51 o

e f
Exponent Fraction I

11 52

Figure 6.7 Double-PrecisioD Floating-Point Format

As shown in the above figures. numbers in floating-point format are
composed of three fields:

• sign field. 5
• biased exponent. e = E + bias
• fraction. j=.b1b2 bp-l
The range of the unbiased exponent E includes every integer between

the two values Emin and Emax inclusive. together with two other reserved
values:

• Emin -1 (to encode ±O and denormalized numbers)
• Emax +1 (to encode ±. and NaNs (Not a Number))
For single- and double-precision formats. each representable nonzero

numerical value has just one encoding.
For single- and double-precision formats. the value of a number. v. is

determined by the equations shown in Table 6.5.

No. Equation

(1) if E = Emax+ 1 and f~ O. then v is NaN, regardless of s

(2) if E = Emax+1 and f = 0, then v= (_1)8 00

(3) if Emin s; E S; Emax, then v = (-1)82E(1.~

(4) if E = Emin-1 and f ~ 0, then v= (-1)82Emin(0.~

(5) if E = Emin-1 and f = 0, then v= (-1)80

Table 6.5 EquatiODs for Calculating Values tD Single and
Double-PreclsioD Floating-Point Format

For all floating-point formats. if v is NaN. the most-significant bit of j
determines whether the value is a signaling or quiet NaN: v is a Signaling
NaN if the most-significant bit ofjis set. otherwise. v is a quiet NaN.

6-8

Floating-Point Unit Chapter 6

defines the values for the fonnat parameters. Minimum and maximum
floating-point values are given in Table 6.7.

Format
Parameter

Single Double

f 24 53

Emu +127 +1023

Emin -126 -1022

Exponent bias +127 +1023

Exponent width in bits 8 11

Integer bit hidden hidden

Fraction width in bits 24 53

Format width in bits 32 64

Table 6.6 Floating-Point Format Parameter Values

Type Value

Float Minimum 1.40 129846e-45

Float Minimum Norm 1. 17549435e-38

Float Maximum 3.40282347e+38

Double M1n1mum 4.9406564584124654e-324

Double Minimum Norm 2.22507385850720140-308

Double Maximum 1. 7976931348623157e+308

Table 6.7 Minimum and Mazimum Floating-Point Value.

Binary Fixed-Point Format
Binary fixed-point values are held in 2's complement format. Unsigned

fixed-point values are not directly provided by the floating-point
instruction set. Figure 6.8 illustrates binary fixed-point fonnat; Table 6.8,
which follows the figure, lists the binary fixed-point fonnat fields.

31 30 o

Integer I
31

Figure 6.8 Binary Fbted-Point Format

Field Description

sign sign bit

integer integer value

Table 6.8 Biaary Fbted-Point Format Field.

6-9

Floating-Point Unit Chapter 6

Floating-Point Instruction Set Overview
All FPU instructions are 32-bits long, aligned on a word boundary. They

can be divided into the following groups:
• Load, Store, and Move instructions move data between memory, the

main processor, and the FPU General Purpose registers.
• Conversion instructions perform conversion operations between the

various data formats.
• Computational instructions perform arithmetic operations on float­

ing-point values in the FPU registers.
• Compare instructions perform comparisons of the contents of regis­

ters and set a conditional bit based on the results.
• Branch on FPU Condition instructions perform a branch to the spec­

ified target if the specified coprocessor condition is met.
Table 6.9 through Table 6.12 list the instruction set of the FPU. A

complete description of each instruction is provided in Appendix B.
In the instruction formats shown in Table 6.9 through Table 6.12, the

jmt appended to the instruction opcode specifies the data format: s
specifies single-precision binary floating-point, d specifies double­
precision binary floating-point, and w specifies binary fixed-point.

OpCode Description

LWCI Load Word to FPU

SWCI Store Word from FPU

LDCI Load Doubleword to FPU

SDCI Store Doubleword From FPU

MTCI Move Word To FPU

MFCI Move Word From FPU

CTCI Move Control Word To FPU

CFCI Move Control Word From FPU

DMTCI Doubleword Move To FPU

DMFCI Doubleword Move From FPU

Table 6.9 FPU Instruction Summary: Load. Move and Store Instructions

OpCode Description

CVT.S.fmt Floating-point Convert to Single FP

CVT.D.fmt Floating-point Convert to Double FP

CVT.W.fmt Floating-point Convert to Single Fixed Point

ROUND.w.fmt Floating-point Round

TRUNC.w.fmt Floating-point Truncate

CEIL.w.fmt Floating-point Ceiling

FLOOR.w.fmt Floating-point Floor

Table 6.10 FPU Instruction Summary: Conversion Instructions

6-10

Floating-Point Unit Chapter 6

OpCode Description

ADD.fmt Floating-point Add

SUB.fmt Floating-point Subtract

MUL.fmt Floating-point Multiply

DN.fmt Floating-point DMde

ABS.fmt Floating-point Absolute Value

MOV.fmt floating-point Move

NEG.fmt Floating-point Negate

SQRT.fmt Floating-point Square Root

Table 6.11 FPU IDatruction S1llDllllllY: Computational Instructions

OpCode Description

C.cond.fmt Floating-point Compare

BClT Branch on FPU True

BClF Branch on FPU False

BClTL Branch on FPU True Likely

BClFL Branch on FPU False Likely

Table 6.12 FPU Instruction Sumauuy: Compare and Branch IDatructioDB

Floating-Point Load. Store. and Move Instructions
This section discusses the manner in which the FPU uses the load, store

and move instructions listed in Table 6.9 on page 10; Appendix B provides
a detailed description of each instruction.

Transfers Between FPU and Memory
All data movement between the FPU and memory is accomplished by

using one of the following instructions:
• Load Word To Coprocessor 1 (LWCI) or Store Word To Coprocessor 1

(SWC 1) instructions, which reference a single 32-bit word of the FPU
general registers

• Load Ooubleword (LOC 1) or Store Ooubleword (SOC 1) instructions,
which reference a 64-bit doubleword.

These load and store operations are unformatted; no format conversions
are performed and therefore no floating-point exceptions can occur due to
these operations.

With the LOCI and SOCI instructions the R4600/R4700 floating-point
unit can take advantage of the 64-bit wide data cache and issue a
coprocessor load or store double-word instruction with every cycle.

Transfers Between FPU and CPU
Oata can also be moved directly between the FPU and the CPU by using

one of the following instructions:
• Move To Coprocessor 1 (MTC 1)
• Move From Coprocessor 1 (MFC 1)
• Ooubleword Move To Coprocessor 1 (OMTC 1)
• Ooubleword Move From Coprocessor 1 (OMFC1)
Like the floating-point load and store operations, these operations

perform no format conversions and never cause floating-pOint exceptions.

6-11

Floating-Point Unit Chapter 6

Load Delay and Hardware Interlocks
The instruction immediately following a load can use the contents of the

loaded register. In such cases the hardware interlocks, requiring
additional real cycles; for this reason, scheduling load delay slots is
desirable, although it is not required for functional code.

Data Alignment
All coprocessor loads and stores reference the following aligned data

items:
• For word loads and stores, the access type is always WORD, and the

low-order 2 bits of the address must always be O.
• For doubleword loads and stores, the access type is always DOUBLE­

WORD, and the low-order 3 bits of the address must always be O.

Endianness
Regardless of byte-numbering order (endianness) of the data, the

address specifies the byte that has the smallest byte address in the
addressed field. For a big-endian system, it is the leftmost byte; for a little­
endian system, it is the rightmost byte.

Floating-Point Conversion Instructions
Conversion instructions perform conversions between the various data

formats such as single- or double-precision, fixed- or floating-point
formats. Table 6. 10 on page 10 lists conversion instructions; Appendix B
gives a detailed description of each instruction.

Floating-Point Computational Instructions
Computational instructions perform arithmetic operations on floating­

point values, in registers. Table 6.11 on page 11 lists the computational
instructions and Appendix B provides a detailed description of each
instruction. There are two categories of computational instructions:

• 3-0perand Register-Type instructions, which perform floating-point
addition, subtraction, multiplication, division, and square root.

• 2-0perand Register-Type instructions, which perform floating-point
absolute value, move, and negate.

Branch on FPU Condition Instructions
Table 6.12 on page 11 lists the Branch on FPU (coprocessor unit 1)

condition instructions that can test the result of the FPU compare (C.cond)
instructions. Appendix B gives a detailed description of each instruction.

Floating-Point Compare Operations
The floating-point compare (C.fmt.cond) instructions interpret the

contents of two FPU registers ({s, ft) in the specified format (fint) and
arithmetically compare them. A result is determined based on the
comparison and conditions (cond) specified in the instruction.

Table 6.12 on page 11 lists the compare instructions; Appendix B gives
a detailed description of each instruction. Table 6.13 on page 13 lists the
mnemonics for the compare instruction conditions.

6-12

Floating-Point Unit Chapter 6

lIIDemoDic

F

UN

EQ

UEQ

OLT

ULT

OLE

ULE

SF

NGLE

SEQ

NGL

LT

NGE

LE

NGT

DeflDltlOD MDemonic DefinitioD

False T True

Unordered OR Ordered

Equal NEg Not Equal

Unordered or Equal OLG Ordered or Less Than or Greater Than

Ordered Less Than UGE Unordered or Greater Than or Equal

Unordered or Less Than OGE Ordered Greater Than

Ordered Less Than or Equal UGT Unordered or Greater Than

Unordered or Less Than or Equal OGT Ordered Greater Than

signaling False ST Signaling True

Not Greater Than or Less Than or Equal GLE Greater Than, or Less Than or Equal

signaling Equal SNE Signaling Not Equal

Not Greater Than or Less Than GL Greater Than or Less Than

Less Than NLT Not Less Than

Not Greater Than or Equal GE Greater Than or Equal

Less Than or Equal NLE Not Less Than or Equal

Not Greater Than GT Greater Than

I

Table 6.13 MDemoaica and De1laitiolUl of Compare Instruction ConditiolUl

FPU Instruction PipeUne Overview
The FPU provides an instruction pipeline that parallels the CPU

instruction pipeline. It shares the same five-stage pipeline architecture
with the CPU (see Chapter 3).

Instruction Execution
Figure 6.9 illustrates the 5-stage FPU pipeline. This is the same as that

of the integer pipeline but allows for the longer execution times of the
floating-point instructions.

..

11 I 21 I lRI 2RI lAI 2A1 10120 jWl::~
".-.-...... :.:

I 111 21 I lRI 2RI lAI 2A. U~r2D 1Wl2WI
:.-..

• -' 0-

I 11 I 21 I 1RI2R .::lA:fl~: 10120llWI2WI
.......... : .

. :::.
::-:"':"::-.::.

I 111 21 ·1RTZR 1AI 2AI 101 2DI1WI2WI
..
..

-:.-

·:U::F:)~l: lRI 2Rl1Al 2A!10120!lWI2WI
..

IOneCycl~

Figure 6.9 FPU Instruction Pipeline

6-13

Floating-Point Unit Chapter 6

Figure 6.9 on page 6-13 assumes that one instruction is completed
every PCycle. Most FPU instructions, however, require more than one cycle
in the EX stage. This means the FPU must stall the pipeline if an
instruction execution cannot proceed because of register or resource
conflicts.

Floating-point operations proceed in parallel with non-floating-point
operations. Floating-point operations are not allowed to overlap each
other, with two exceptions:

• An add operation may start 2 cycles after the start of a multiply and
thus will be completely overlapped by the multiply.

• A multiply operation may overlap for up to 2 cycles, as follows:
R4600: A new multiply may start 6 cycles after another multiply.
R4700: A new multiply may start 4 cycles after another multiply

(for both single and double precision).
Non-floating-point operations as well as other integer operations may be

executed in parallel with the floating-point operations. All of this is
handled automatically by internal hardware in the R4600/R4700.

Instruction Execution Cycle Time
Unlike the CPU, which executes almost all instructions in a single cycle,

more time may be required to execute FPU instructions.
Table 6.14 gives the minimum latency of each floating-point operation.

Operation Pipeline Cycles Operation Pipeline Cycles

Single Double Single Double

ADD.fmt 4 4 BC1T 1

SUB.fmt 4 4 BC1F 1

MUL.fmt BC1TL 1
R4600 8 8
R4700 4 5

DIV.fmt 32 61 BC1FL 1

SQRT.fmt 31 60 LWC1, LDCl 2

ABS.fmt 1 1 SWC1, SDCl 1

MOV.fmt 1 1 TRUNC.W.fmt 4 4

NEG.fmt 1 1 MTC1, DMTCI 2

ROUND.W.fmt 4 4 MFC1, DMFCI 2

CEIL.W.fmt 4 4 CTCI 3

FLOOR.W.fmt 4 4 CFCI 2

CVT.S.fmt (aJ 4 eMP 3 3

CVT.D.fmt 2 (aJ FIX 4 4

CVT.W.fmt 4 4 FLOAT 6 6

C.fmt.cond 3 3

Note: (al These operations are illegal.

Table 6.14 Floating-Point Operation Latencies

6-14

Floating-Point Unit Chapter 6

Instruction Scheduling Constraints
The FPU resource scheduler on1y issues instructions to the FPU op units

(adder and multiplier) when no hardware use conflicts will occur. In
addition, some overlap possibilities are disallowed to keep the scheduler
simple (and/or increase performance).

FPU Multiplier Constraints
The FPU multiplier is partially pipelined in the R4600, allowing a new

multiply to begin every 6 cycles. It is more fully pipelined in the R4700,
allowing a new multiply to begin every 4 cycles.

FPU Adder Constraints
The FPU scheduler may issue an add operation (ADD.fmt or SUB.fmt) 2

cycles after a multiply (MUL.fmt).

Resource Scheduling Rules
The FPU Resource Scheduler issues instructions while adhering to the

rules described below. These scheduling rules optimize op unit executions;
if the rules are not followed, the hardware interlocks to guarantee correct
operation.

DIV.(S,D) can start only when all of the following conditions are met in
the lA phase.

• The adder is idle (division is performed in the adder).
• The multiplier is idle.
MUL.(S,D) can start only when all of the following conditions are met in

the IA phase.
• The multiplier is one of the following:

- idle.
- Started execution at least 6 cycles earlier on the current multiply

• The adder is idle.
SQRT.(S,D) can start when the following conditions are met in the IA

phase.
• The adder is idle.
• The multiplier must be idle.
CVT .fmt instructions can only start when all of the following conditions

are met in the IA phase.
• The adder is idle.
• The multiplier is idle.
ADD.(S,D) or SUB.(S,D) can start only when all of the following

conditions are met in the IA phase.
• The adder is idle
• The multiplier is either:

- idle.
- started execution of the current multiply at least 2 cycles earlier.

NEG.(S,D) or ADS.(S,D) can start only when all of the following
conditions are met in the IA phase.

• The adder is idle.
• The multiplier is idle.
C.COND.(S,D) can start only when all of the following conditions are met

in the lA phase.
• The adder is idle.
• The multiplier is idle.

6-15

Floating-PoiDt UDit Chapter 6

6-16

Floating-Point Exceptions Chapter 7

Integrated DevIce Technology. Inc.

This chapter describes FPU floating-point exceptions, including FPU
exception types, exception trap processing, exception flags, saving and
restoring state when handling an exception, and trap handlers for IEEE
Standard 754 exceptions.

A floating-point exception occurs whenever the FPU cannot handle
either the operands or the results of a floating-point operation in its normal
way. The FPU responds by generating an exception to initiate a software
trap or by setting a status flag.

Exception Types
The FP Control/Status register described in Chapter 6 contains an

Enable bit for each exception type; exception Enable bits determine
whether an exception will cause the FPU to initiate a trap or set a status
flag.

• If a trap is taken, the FPU remains in the state found at the beginning
of the operation and a software exception handling routine executes.

• If no trap is taken, an appropriate value is written into the FPU des-
tination register and execution continues.

The FPU supports the five IEEE Standard 754 exceptions:
• Inexact (I)
• Underflow (U)
• Overflow (0)
• Division by Zero (Z)
• Invalid Operation (V)
cause bits, Enables, and Flag bits (status flags) are used.
The FPU adds a sixth exception type, Unimplemented Operation (E).

This exception indicates the use of a software implementation. The
Unimplemented Operation exception has no Enable or Flag bit; whenever
this exception occurs, an unimplemented exception trap is taken.

Figure 7.1 illustrates the Control/Status register bits that support
exceptions.

Bit 117 16 15 14 13 12
Cause IE I V z 0 U Bits

I I I I I
Bit 111 10 9 8 7

I I
Enable

V Z 0 U Bits
I I I I I

Bit I 6 5 4 3 2

I V z 0 U I
Flag
Bits

Inexact Operation
Underflow

Overflow
Division by Zero

Invalid Operation
Unimplemented Operation

7-1

Floating-Point Exceptions Chapter 7

Field

I

U

0

Z

V

Each of the five IEEE Standard 754 exceptions (y, Z, 0, U, I) is
associated with a trap under user control, and is enabled by setting one of
the five Enable bits. When an exception occurs and its corresponding
Enable bit is not set, both the corresponding Cause and Flag bits are set.
When an exception occurs and its corresponding Enable bit is set, the
corresponding Cause bit is set and the subsequent exception processing
allows a trap to be taken.

Exception Trap Processing
When a floating-point exception trap is taken, the Cause register

indicates the floating-point coprocessor is the cause of the exception trap.
The Floating-Point Exception (FPE) code is used, and the Cause bits of the
floating-point Control/Status register indicate the reason for the floating­
point exception. These bits are, in effect, an extension of the system
coprocessor Cause register.

Flags
A Flag bit is provided for each IEEE exception. This Flag bit Is set to a

1 on the assertion of its corresponding exception, with no corresponding
exception trap signaled.

The Flag bit is reset by writing a new value into the Status register; flags
can be saved and restored by software either individually or as a group.

When no exception trap is signaled, the floating-point coprocessor takes
a default action, providing a substitute value for the exception-causing
result of the floating-point operation. The particular default action taken
depends upon the type of exception. Table 7.1 lists the default action
taken by the FPU for each of the IEEE exceptions.

Description Rounding Default action
Mode

Inexact exception Any Supply a rounded result

Underflow except10n Any Take unimplemented unless FCSR.FS b1t is set.

Overflow exception RN Modify overflow values to 00 with the sign of the
intermed1ate result

RZ Modify overflow values to the format's largest finite
number with the s1gn of the intermediate result

RP Modify negat1ve overflows to the format's most nega-
tive finite number; modify positive overflows to + 00

RM Modify positive overflows to the format's largest
finite number; mod1fy negative overflows to - 00

DMsion by zero Any Supply a properly s1gned 00

Invalid operation Any Supply a quiet Not a Number (NaN)

Table 7.1 Default FPU Exception .Actions

The FPU detects the eight exception causes internally. When the FPU
encounters one of these unusual situations, it causes either an IEEE
exception or an Unimplemented Operation exception (E).

7-2

Floating-Point Exceptions Chapter 7

lists the exception-causing conditions of the IEEE Standard 754.

FPAlntemal IEEE Trap Trap Notes
Result Standard 754 Enable Disable

Inexact result I I I Loss of accuracy

Exponent overflow O,la 0,1 0,1 Normalized exponent> Emu
Division by zero Z Z Z Zero is (exponent = Enun-l, mantissa = 0)

Overflow on convert V E E Source out of integer range

Signaling NaN source V V V Signaling NaN source produces quiet NaN result

Invalid operation V V V 0/0, etc.

Exponent underflow U E E Normalized exponent < Emm
Denormalized source None E E Exponent = E-l and mantissa <> 0

Note: aThe IEEE Standard 754 specifies an inexact exception on overflow only if the overflow trap is disabled.

Table 7.2 FPU EzceptiOD-CausiDg CODditions

FPU Exceptions
The following sections describe the conditions that cause the FPU to

generate each of its exceptions, and details the FPU response to each
exception-causing condition.

Inexact Exception (I)
The FPU generates the Inexact exception if the rounded result of an

operation is not exact or if it overflows. The FPU usually examines the
operands of floating-point operations before execution actually begins, to
detennine (based on the exponent values of the operands) if the operation
can possibly cause an exception. If there is a possibility of an instruction
causing an exception trap, the FPU uses a coprocessor stall to execute the
instruction.

It is impossible, however, for the FPU to predetennine if an instruction
will produce an inexact result. If Inexact exception traps are enabled, the
FPU uses the coprocessor stall mechanism to execute all floating-point
operations that require more than two cycles. Since this mode of execution
can impact perfonnance, Inexact exception traps should be enabled only
when necessary.

Trap Enabled Results: If Inexact exception traps are enabled, the result
register is not modified and the source registers are preserved.

Trap Disabled Results: The rounded or overflowed result is delivered to
the destination register if no other software trap occurs.

InvaHd Operation Exception (V)
The Invalid Operation exception is signaled if one or both of the

operands are invalid for an implemented operation. When the exception
occurs without a trap, the MIPS ISA defines the result as a quiet Not a
Number (NaN). The invalid operations are:

• Addition or subtraction: magnitude subtraction of infinities, such as:
(+ 00) + (- 00) or (- 00) - (- 00)

• Multiplication: 0 times 00, with any signs
• Division: 0/0, or 00/00, with any signs
• Comparison of predicates involving < or > without?, when the oper­

ands are unordered
• Any arithmetic operation on a signaling NaN. A move (MOV) operation

is not conSidered to be an arithmetic operation, but absolute value
(ABS) and negate (NEG) are considered to be arithmetic operations
and cause this exception if one or both operands is a signaling NaN.

• Square root: ""x, where x is less than zero

7-3

Floating-Point Exceptions Chapter 7

Software can simulate the Invalid Operation exception for other
operations that are invalid for the given source operands. Examples of
these operations include IEEE Standard 754-specifted functions
implemented in software, such as Remainder: x REM y, where y is 0 or x
is infinite; conversion of a floating-point number to a decimal format whose
value causes an overflow, is infinity, or is NaN; and transcendental
functions, such as In (-5) or cos-1(3). Refer to Appendix B for examples or
for routines to handle these cases.

Trap Enabled Results: The original operand values are undisturbed.
Trap Disabled Results: The FPU sets the Invalid Operation Exception

flag and a quiet NaN is delivered to the destination register.

Division-by-Zero Exception (Z)
The DMsion-by-Zero exception is signaled on an implemented dMde

operation if the dMsor is zero and the dividend is a finite nonzero number.
Software can Simulate this exception for other operations that produce a
signed infinity, such as In(O), secbt/2), csc(O)' or 0-1.

Trap Enabled Results: The result register is not modified, and the
source registers are preselVed.

Trap Disabled Results: The result, when no trap occurs, is a correctly
signed infinity.

Overflow Exception (0)
The Overflow exception is signaled when the magnitude of the rounded

floating-point result, with an unbounded exponent range, is larger than
the largest finite number of the destination format. (This exception also
sets the Inexact exception and Flag bits.)

Trap Enabled Results: The result register is not modified, and the
source registers are preselVed.

Trap Disabled Results: The result, when no trap occurs, is determined
by the rounding mode and the sign of the intermediate result.

Underflow Exception (U)
Two related events contribute to the Underflow exception:
• creation of a tiny nonzero result between ±2Emin which can cause

some later exception because it is so tiny
• extraordinary loss of accuracy during the approximation of such tiny

numbers by denormalized numbers.
IEEE Standard 754 allows a variety of ways to detect these events, but

requires they be detected the same way for all operations.
Tinniness can be detected by one of the following methods:
• after rounding (when a nonzero result, computed as though the expo-

nent range were unbounded, would lie strictly between ±2Emin)
• before rounding (when a nonzero result, computed as though the ex­

ponent range and the precision were unbounded, would lie strictly be-
tween ±2Emin).

The MIPS architecture requires that tininess be detected after rounding.
Loss of accuracy can be detected by one of the following methods:
• denormalization loss (when the delivered result differs from what

would have been computed if the exponent range were unbounded)
• inexact result (when the delivered result differs from what would have

been computed if the exponent range and precision were both un­
bounded).

The MIPS architecture requires that loss of accuracy be detected as an
inexact result.

Trap Enabled Results: When an underflow trap is enabled, underflow
is signaled when tininess is detected regardless of loss of accuracy. If
underflow traps are enabled, the result register is not modified, and the
source registers are preselVed.

7-4

Floating-Point Exceptions Cbapter 7

Trap Disabled Results: When an underflow trap is not enabled and
FCSR.FS is clear, then take an unimplemented exception. When an
underflow tra~ is not enabled and FCSR.FS is set, raise Inexact and return
either 0 or ±2 min, as appropriate for the current rounding mode.

Unimplemented Instruction Exception (E)
Any attempt to execute an instruction with an operation code or format

code that has been reserved for future definition sets the Unimplemented
bit in the Cause field in the FPU Control/Status register and traps. The
operand and destination registers remain undisturbed and the instruction
is emulated in software. Any of the IEEE Standard 754 exceptions can
arise from the emulated operation, and these exceptions in turn are
Simulated.

The Unimplemented Instruction exception can also be signaled when
unusual operands or result conditions are detected that the implemented
hardware cannot handle properly. These include:

• Denormaljzed operand
• Quiet NaN operand
• Underflow
• Reserved opcodes
• Unimplemented formats
• Conversion of a floating-point number to a fixed point format when an

overflow occurs or the source operand value is Infinity or a NaN.
• Operations which are invalid for their format (for instance, cvr.S.S)
Denormaljzed and NaN operands are only trapped if the instruction is a

convert or computational operation. Moves and compares do not trap if
their operands are either denormaljzed or NaNs.

The use of this exception for such conditions is optional; most of these
conditions are newly developed and are not expected to be widely used in
early implementations. Loopholes are provided in the architecture so that
these conditions can be implemented with assistance provided by
software, maintaining full compatibility with the IEEE Standard 754.

Trap Enabled Results: The original operand values are undisturbed.
Trap Disabled Results: This trap cannot be disabled.

Saving and Restoring State
Sixteen or thirty-two doubleword coprocessor load or store operations

save or restore the coprocessor floating-point register state in memory.
The remainder of control and status information can be saved or restored
through Move To/From Coprocessor Control Register instructions, and
saving and restoring the processor registers. Normally, the Control/ Status
register is saved first and restored last.

When the coprocessor Control/Status register (FCR31) is read, and the
coprocessor is executing one or more floating-point instructions, the
instruction(s) in progress are either completed or reported as exceptions.
The architecture requires that no more than one of these pending
instructions can cause an exception. Information indicating the type of
exception is placed in the Control/Status register. When state is restored,
state information in the status word indicates that exceptions are pending.

Writing a zero value to the Cause field of Control! Status register clears
all pending exceptions, permitting normal processing to restart after the
floating-point register state is restored.

The Cause field of the Control! Status register holds the results of only
one instruction; the FPU examines source operands before an operation is
initiated to determine if this instruction can possibly cause an exception.
If an exception is possible, the FPU executes the instruction in stall mode
to ensure that no more than one instruction (that might cause an
exception) is executed at a time.

7-5

Floating-Point Exceptions Chapter 7

Trap Handlers for IEEE Standard 754 Exceptions
The IEEE Standard 754 strongly recommends that users be allowed to

specify a trap handler for any of the five standard exceptions that can
compute; the trap handler can either compute or specify a substitute
result to be placed in the destination register of the operation.

By retrieving an instruction using the processor Exception Program
CoWlter (EPC) register, the trap handler determines:

• exceptions occurring during the operation
• the operation being performed
• the destination format
On Overflow or Underflow exceptions (except for conversions), and on

Inexact exceptions, the trap handler gains access to the correctly rounded
result by examining source registers and simulating the operation in
software.

On Overflow or Underflow exceptions encountered on floating-point
conversions, and on Invalid Operation and Divide-by-Zero exceptions, the
trap handler gains access to the operand values by examining the source
registers of the instruction.

The IEEE Standard 754 recommends that, if enabled, the overflow and
underflow traps take precedence over a separate inexact trap. This
prioritization is accomplished in software; hardware sets the bits for both
the Inexact exception and the Overflow or Underflow exception.

7-6

Processor Signal
Descriptions

Chapter 8

Integrated Device Technology. Inc.

CD
()

{g
CD -c

~ -c
0
0
~
()
0
U

CD
aJo
a5~
~...,

Introduction
This chapter describes the signals used by and in conjunction with the

R4600/R4700 processor. The signals include the System interface, the
Clock/Control interface, the Interrupt interface, the Joint Test Action
Group (JTAG) interface, and the Initialization interface.

Signals are listed in bold, and low active signals have a trailing asterisk
- for instance, the low-active Read Ready signal is RdRdy*. The signal
description also tells if the signal is an input (the processor receives it) or
output (the processor sends it out).

Figure 8.1 illustrates the functional groupings of the processor signals.

2
TCloek(1 :0) .. t. 72

RCloek(1 :0) .. , I

MasterCloek ~

MasterOut ...
SyneOut ..
Syneln •
IOOut ..
lOin •
Fault* ..
VeeP ~

VssP •

JTDI ~

JTDO ..
JTMS •
JTCK •

64

8

9
\

R4600/
R4700
Logic
Symbol

6

SysAD(63:0)

SysADC(7:0)

SysCmd(8:0)

SysCmdP

Validln*

ValidOut*

Ext Rqst*

Release*

RdRdy*

WrRdy*

ModeCloek

ModelN

VCCOk

Cold Reset*

Reset*

E
CD

!

c
.Q CD co ()
N co
='t: co CD .- -.t:: C
£-

J c.~
Int(S:O)* e{g

NMI* 22 cc

e 8.1 R4600 R4700 Processor S

8-1

Processor Signal Descriptions Chapter 8

System Interface Signals
System interface signals provide the connection between the R4600j

R4700 processor and the other components in the system. Table 8.1 lists
the system interface signals.

Name Definition Direction Description

ExtRqst* External request Input An external agent asserts EztRqst* to
request use of the System interface. The pro-
cessor grants the request by asserting
Release*.

Release* Release Interface Output In response to the assertion ofEztRqst* or a
CPU read request, the processor asserts
Release*, signalling to the requesting device
that the System interface is available.

RdRdy* Read ready Input The external agent asserts RdRdy* to indi-
cate that it can accept a processor read
request.

SysAD{63:0) System address/ Input! A 64-bit address and data bus for communi-
data bus Output cation between the processor and an external

agent.

SysADC{7:0) System address/ Input! An 8-bit bus containing check bits for the
data check bus Output SysADbus.

SysCmd{8:0) System com- Input! A 9-bit bus for command and data identlfter
mand/data Identi- Output transmission between the processor and an
tier external agent.

SysCmdP System com- Input! A single, even-parity bit for the SysCmd bus.
mand/data identi- Output
tier bus parity

ValidIn* Valid Input Input The external agent asserts ValidIn* when it
Is driving a valid address or data on the
SysAD bus and a valid command or data
identlfter on the SysCmd bus.

ValidOut* Valid output Output The processor asserts ValidOut* when it is
drtving a valid address or data on the SysAD
bus and a valid command or data identlfter
on the SysCmd bus.

WrRdy* Write ready Input An external agent asserts WrRdy* when it
can accept a processor write request.

Table 8.1 System IDterface Signals

8-2

Processor Signal Descriptions Chapter 8

Clock/Controllnterface Signals
The Clock/Control interface signals make up the interface for clocking

and maintenance.
Table 8.2 lists the Clock/Control interface signals.

Name Definition Direction Description

IOOut I/O output Output Reserved for future output.
Always High.

lOIn I/O input Input Reserved for future input.
Should be driven High.

MasterClock Master clock Input Master clock input that estab-
lishes the processor operating
frequency. It is 1/2 the pipeline
frequency.

MasterOut Master clock out Output Master clock output aligned with
MasterClock.

RClock(l:O) Receive clocks Output Two identical receive clocks that
establish the System interface
frequency.

SyncOut Synchronization Output SyncOut must be connected to
clock out Syncln through an interconnect

that models the interconnect
between MasterOut, TClock,
RClock, and the external agent.

SyncIn Synchronization Input Synchron1zation clock input.
clock in

TClock(l:O) Transmit clocks Output Two identical transmit clocks
that establish the System inter-
face frequency.

Fault* Fault Output Reserved for future output.
Always High.

VceP Quiet V cc for PLL Input Quiet Vec for the internal phase
locked loop.

VssP Quiet Vss for PLL Input Quiet Vss for the internal phase
locked loop.

Table 8.2 Clock/Control Interface Signals

8-3

----- .----.- ~-..

Processor SI,..al Descriptions Chapter 8

Interrupt Interface Signals
The Interrupt interface signals make up the interface used by external

agents to interrupt the R4600jR4700 processor. Six hardware interrupts
(IDt~(5:0)) and one NMI are available on the R4600jR4700. Table 8.3 lists
the Interrupt interface signals.

Name Definition Direction Description

Int*(5:0) Interrupt Input SiX general processor interrupts, bit-wise ORed

NMI*

Name

JTDI

JTCK

JTDO

JTMS

with bits 5:0 of the interrupt register.

Nonmaskable Input Nonmaskable interrupt, ORed with bit 6 ofthe
interrupt interrupt register.

Table 8.3 IDteJTUpt Interface 8igDals

JTAG Interface Signals
The R4600 /R4 700 does not implement JTAG. The signals are provided

for compatibility with existing R4xOOPC designs.
Table 8.4 lists the JTAG interface signals.

Definition Direction Description

JTAG data in Input Connected directly to J'IDO. No JTAG imple-
mented. Should be pulled High.

TAG clock input Input Unused input. Should be pulled High.

JTAG data out Output Connected directly to JTDI. If no external
scan used, this is a no connect.

JTAG command Input Unused input. Should be pulled High.

Table 8.4 JTAG Interface Signals

8-4

Processor Signal Descriptions Chapter 8

InitiaUzation Interface Signals
The Initialization interface signals make up the interface by which an

external agent initializes the processor operating parameters. Table 8.5
lists the Initialization interface signals.

Name Definition Direction Description

ColdReset* Cold reset Input This signal must be asserted for a
power on reset or a cold reset. The
clocks SClock, TClock, and
RClock begin to cycle and are syn-
chronized with the deasserted edge
of ColdReset*. ColdReset* must
be deasserted synchronously with
MasterClock.

ModeClock Boot mode clock Output Serial boot-mode data clock output;
runs at the Master Clock frequency
dMded by 256: (MasterClockl
256).

ModeIn Boot mode data in Input Serial boot-mode data input.

Reset* Reset Input This signal must be asserted for any
reset sequence. It can be asserted
synchronously or asynchronously
for a cold reset, or synchronously to
initiate a warm reset. Reset* must
be deasserted synchronously with
MasterClock.

VCCOk Vcc Is OK Input When asserted, this signa1lndicates
to the processor that Vee> Veemin
for more than 100 milliseconds and
will remain stable. The assertion of
VCCOk initiates the initialization
sequence.

Table 8.5 Initialization Interface Signals

8-5

Processor Signal Descriptions Chapter 8

Table 8.6 lists the R4600jR4700 processor signals and their possible
states.

Asserted Reset
Description Name I/O State 3-8tate State

System address/data bus SysAD(63:0) I/O High Yes a

System address / data check bus SysADC(7:0) I/O High Yes a

System command/data identifier bus SysCmd(8:0) I/O High Yes a

System command/data identifier bus parity SysCmdP I/O High Yes a

Valid input Validln'" I Low No NA

Valid output VaUdOut'" 0 Low Yes b

External request ExtRqst'" I Low No NA

Release interface Release'" 0 Low Yes b

Read ready RdRdy'" I Low No NA

Write ready WrRdy'" I Low No NA

Interrupts Int"'(5:0) I Low No NA

Nonmaskable interrupt NMI'" I Low No NA

Boot mode data in Modeln I High No NA

Boot mode clock ModeClock 0 High No d

JTAG data in JIDI I High No NA

JTAG data out JIDO 0 High Yes b

JTAG command JTMS I High No NA

JTAG clock input JTCK I High No NA

Transmit clocks TClock(l:O) 0 High Yes c

Receive clocks RClock(l :0) 0 High Yes c

Master clock MasterClock I High No NA

Master clock out MasterOut 0 High Yes c

Synchronization clock out SyncOut 0 High Yes c

Synchronization clock in SyncIn I High No NA

I/O output 100ut 0 High Yes b

I/O input lOin I High No NA

Vcc is OK VCCOk I High No NA

Cold reset ColdReset'" I Low No NA

Reset Reset'" I Low No NA

Fault Fault'" 0 Low Yes b

Key to Reset State Column:
a All I/O pins (SysADI63:0], SysADCI7:0]' etc.) remain 3-stated until the Reset* signal deasserts.
b All output only pins (VaiidOut*. Release*, etc.). except the clocks, are 3-stated until the ColdReset*

signal deasserts.
c All clocks, except ModeClock, are 3-stated until VCCOk asserts.
d ModeClock is always driven.
NA Not applicable to input pins.

Table 8.6 R4600jR4700 Processor Signal Summary

8-6

Initialization Interface Chapter 9

Integrated Device Technology, Inc.

Introduction
This chapter describes the R4600jR4700 Initialization interface. This

includes the reset signal description and types, initialization sequence,
with signals and timing dependencies, and boot modes, which are set at
initialization time.

Signal names are listed in bold letters-for instance the signal VCCOk
indicates the Vcc voltage is stable. Low-active signals are indicated by an
asterisk at the end of the name, as in ColdReset*.

Functional Overview
The R4600jR4700 processor has the following three types of resets.

Refer to Figure 9.1 on page 9-4, Figure 9.2 on page 9-5, and Figure 9.3 on
page 9-6 for timing diagrams of these resets.

• Power-on reset: Starts when the power supply is turned on and
completely reinitializes the internal state machine of
the processor without saving any state infonnation.

• Cold reset: Restarts all clocks, but the power supply remains
stable. A cold reset completely reinitializes the
internal state machine of the processor without
saving any state infonnation.

• Warm reset: Restarts processor, but does not affect clocks. A
warm reset preserves the processor internal state.

These resets use the VCCOk, ColdReset*, and Reset* input signals,
which are summarized in the next subsection. Descriptions of each type
of reset operation is deSCribed

The Initialization interface is a serial interface that operates at the
frequency of the MasterClock divided by 256 (i.e. MasterClockj256). This
low-frequency operation allows the initialization infonnation to be stored
in a low-cost EPROM or PLD.

Reset and Initialization Signal Descriptions
This section deSCribes the three reset Signals, VCCOk, ColdReset*, and

Reset*, and the two initialization signals, ModeIn and ModeClock.
VCCOk: When asserted l , VCCOk indicates to the processor that the 5.0

(3.3) volt power supply (Vcc) has been above 4.75 (3.0) volts for
more than 100 milliseconds (ms) and is expected to remain
stable. The assertion of VCCOk initiates the reading of the
boot-time mode control serial stream. This is described in the
subsection "Initialization Sequence" on page 9-4.

ColdReset*: The ColdReset* signal must be asserted (low) for either a
power-on reset or a cold reset. The clocks SClock, TClock, and
RClock begin to cycle and are synchronized with the
de-asserted edge (high) of ColdReset*. ColdReset* must be
de-asserted synchronously with MasterClock.

Reset*: The Reset* signal must be asserted for any reset sequence. It
can be asserted synchronously or asynchronously for a cold
reset, or synchronously to initiate a warm reset. Reset* must
be de-asserted synchronously with MasterClock.

Modeln: Serial boot mode data in.
ModeClock: Serial boot mode data out. at the MasterClock frequency

divided by 256 (MasterClock/256).

1. Asserted means the signal is true, or in its valid state. For example, the low­
active Reset* signal is said to be asserted when it is in a low (true) state; the
high-active VCCOk signal is true when it is asserted high.

9-1

Initialization Interface Chapter 9

Table 9.1 lists the processor signals and their possible states.

Description Name I/O Asserted State S-8tate Reset State

System address/data bus SysAD(63:0) I/O High Yes a

System address/data check bus SysADC(7:0) I/O High Yes a

System command/data identifier bus SysCmd(8:0) I/O High Yes a

System command/data identifier bus parity SysCmdP I/O High Yes a

Valid input ValidIn'" I Low No NA

Valid output VaI1dOut'" 0 Low Yes b

External request ExtRqst'" I Low No NA

Release interface Release'" 0 Low Yes b

Read ready RdRdy'" I Low No NA

Write ready WrRdy'" I Low No NA

Interrupts Int"'(5:0) I Low No NA

Nonmaskable interrupt NMI'" I Low No NA

Boot mode data in Modeln I High No NA

Boot mode clock ModeClock 0 High No d

JTAG data in JIDI I High No NA

JTAG data out JIDO 0 High Yes b

JTAG command JTMS I High No NA

JTAG clock input JTCK I High No NA

Transmit clocks TClock(l :0) 0 High Yes c

Receive clocks RClock(l:O) 0 High Yes c

Master clock MasterClock I High No NA

Master clock out MasterOut 0 High Yes c

Synchronization clock out SyncOut 0 High Yes c

Synchronization clock in Syncln I High No NA

I/O output IOOut 0 High Yes b

I/O input lOIn I High No NA

Vcc is OK VCCOk I High No NA

Cold reset ColdReset'" I Low No NA

Reset Reset'" I Low No NA

Fault Fault* 0 Low Yes b

Key to Reset State Column:
a All I/O pins (SysAD(63:0(. SysADC(7:0). etc.) remain 3-stated until the Reset* signal deasserts.
b All output only pins (ValfdOut*. Release"'. etc.). except the clocks. are 3-stated until the ColdReset* signal

deasserts.
c All clocks. except ModeClock. are 3-stated until VCCOk asserts.
d ModeClock is always driven.
NA Not applicable to input pins.

Table 9.1 R4600/R4700 Processor Signal Summary

9-2

Initialization Interface Chapter 9

Power-on Reset
Figure 9.1, Figure 9.2, and Figure 9.3 illustrate the power-on, wann,

and cold resets.
This is the sequence for a power-on reset:
1. Power-on reset applies a stable Vcc of at least 4.5 (3.0) volts from the

5.0 (3.3) volt power supply to the processor. During this time, VCCOk is
deasserted, ColdReset* and Reset* are asserted and the MasterClock
input oscillates.

2. After at least 100 ms of stable Vcc and MasterClock, the VCCOk
signal is asserted to the processor. The assertion of VCCOk begins the
initialization of the processor. After the mode bits have been read in, the
processor allows its internal phase locked loops to lock, stabilizing the
processor internal clock, PClock, the SyncOut-SyncIn clock path
(described in Chapter 10), and the master clock output, MasterOut.

3. ColdReset* is asserted for at least 64K (or 216) MasterClock cycles
after the assertion of VCCOk. Once the processor reads the boot-time
mode control serial data stream. ColdReset* can be deasserted.
ColdReset* must be deasserted synchronously with MasterClock.

4. The deasserted edge ofColdReset* synchronizes the edges ofSClock.
TClock, and RClock (to all processors, if in a multiprocessor system).

5. After ColdReset* is deasserted synchronously and SClock, TClock.
and RClook have stabilized. Reset* is deasserted to allow the processor to
begin running. (Reset* must be held asserted for at least 64 MasterClock
cycles after the deassertion of ColdReset*.) Reset* must be deasserted
synchronously with MasterClook.

Note: ColdReset* must be asserted when VCCOk asserts. The behavior of the
processor is undefined if VCCOk asserts while ColdReset* is deasserted.

Cold Reset
A cold reset can begin anytime after the processor has read the

initialization data stream. causing the processor to start with the Reset
exception.

A cold reset requires the same sequence as a power-on reset except that
the power is presumed to be stable before the assertion of the reset inputs
and the de assertion ofVCCOk.

To begin the reset sequence. VCCOk must be deasserted for a minimum
of 100 ms before reassertion.

Warm Reset
To execute a wann reset, the Reset* input is asserted synchronously

with MasterClock. It is then held asserted for at least 64 MasterClock
cycles before being de asserted synchronously with MasterClock. The
processor internal clocks. PClook and SClock, and the System interface
clocks. TClock and RClook. are not affected by a wann reset. The boot­
time mode control serial data stream is not read by the processor on a
warm reset. A wann reset forces the processor to start with a Soft Reset
exception.

The master clock output, MasterOut, generates any reset-related
signals for the processor that must be synchronous with MasterClock.

After a power-on reset. cold reset, or wann reset. all processor internal
state machines are reset, and the processor begins execution at the reset
vector. All processor internal states are preserved during a wann reset,
although the precise state of the caches depends on whether or not a cache
miss sequence has been interrupted by resetting the processor state
machines.

9-3

Initialization Interface Chapter 9

Vee

MasterClock
(MClk) -

VCCOK

ModeCloclL

ModeIn

ColdReset*_

Reset*

MasterOut_

SyncOut _

Initialization Sequence
The boot-mode initialization sequence begins immediately after VCCOk

is asserted. As the processor reads the serial stream of 256 bits through
the ModeIn pin, the boot-mode bits initialize all fundamental processor
modes. (The signals used are described in Chapter 8).

This is the initialization sequence:
1. The system deasserts the VCCOk signal. The ModeClock output

is held asserted.
2. The processor synchronizes the ModeClock output at the time

VCCOk is asserted. The first rising edge of Mode Clock occurs at least 256
MasterCiock cycles after VCCOk is asserted. There could be more clock
cycles due to internal delays on the VccOK Signal. Mer the first rising
edge, each additional rising edge will be 256 master clock cycles.

3. Each bit of the initialization stream is presented at the ModeIn pin
after each rising edge of the ModeClock. The processor samples 256
initialization bits from the ModeIn input.

.C!: lOOms

.TDS

.TDS

Undefined

Undefined

256 MCIk cycles

.C!: 64K MCIk cycles

,.,
I I,

'.J

I
'.J

TDS

---JV\---
-. ____________ J ----FV\---TClock Undefined

RClock - - - - - - - - - - - - _I
Undefined \---JV\ ---

Figure 9.1 Power-on Reset

9-4

Initialization Interface

Vee

MasterClock -­
(MClk) -

VCCOK

ModeCloclL

ModeIn

ColdReset*_

Reset*

TCloek
n _______ _
I \ Undefined

256 MCIk cycles

~ 64K MCIk cycles

RCloek = 1\ -Undefined -I

Figure 9.2 Cold Reset

9-5

Chapter 9

~TDS

\:---}\J\----

Initialization Interface

Vcc

MasterClocl(- -
lMClk) -

VCCOK

ModeCloclL

Chapter 9

._(\--{\--- ----J\J\---.

Modeln ______________ -+-_______ 4-________ _

ColdReset":-

Reset*

MasterOuL

SyncOut_

TClock

TDS

;'\----------------­
;'\-----------------

TDS

~ 64 MCIk cycles

---.J\J\ ------------.
.---J\J\-------------

;'\- --- ----- --------. ----J\J\ -- ----- ------

RClock =;'\----------------~---~-------------

Figure 9.3 Warm Reset

Boot-Mode Settings
Unlike the R4000, the speed of the R4600/R4700 output drivers is

statically controlled at boot time.
Table 9.2 lists the processor boot-mode settings. The following rules

apply to the boot-mode settings listed in the table:
• Bit 0 of the stream is presented to the processor when VCCOk

is first asserted.
• Selecting a reserved value results in undefmed processor behav­

ior.
• Bits 19 to 255 are reserved bits.
• Zeros must be scanned in for all reserved bits.

9-6

Initialization Interface Chapter 9

Serial Value Mode Settina Serial Value Mode Setting
Bit Bit

0 Reserved (must be zero) 9:10 Non-block Write: Selects the manner in
which non-block writes are handled, bit 10
is most significant

1:4 XmitDatPat: System interface data rate for 0 R4xOO compatible
block writes only (bit 4 most significant)

0 DDDD 1 Reserved

1 DDxDDx 2 Pipe11ned Writes

2 DDxxDDxx 3 Write re-issue

3 DxDxDxDx 11 TmrlntEn: Disables the timer interrupt on
Int*(5)

4 DDxxxDDxxx 0 Enabled Timer Interrupt

5 DDxxxxDDxxxx 1 Disabled Timer Interrupt

6 DxxDxxDxxDxx 12 Reserved (must be zero)

7 DDxxxxxxDDxxxxxx 13:14 Drv_Out: Output driver slew rate control.
Bit 14 is most significant. Affects onlyout-
puts that are not clocks.

8 DxxxDxxxDxxxDxxx 10 100% strength (fastest)

9-15 Reserved 11 83% strength

5:7 SysCkRatio: PClock to SClock divisor, fre- 00 67% strength
quency relationship between SClock, RClock,
and TClock and PClock, bit 7 most sIgnificant.

0 Divide by 2 01 50% strength (slowest)

1 Divide by 3 15 Tclock[O):

2 Divide by 4 (0) Enabled. [I) Disabled.

3 Divide by 5 16 Tclock[l):

4 Divide by 6 (0) Enabled. [I) Disabled.

5 Divide by 7 17 Rclock[O):

6 Divide by 8 (0) Enabled. [II Disabled.

7 Reserved 18 Rclock[l):

8 EndBIt: Specifies byte ordering (0) Enabled. (1) Disabled.

0 Little-endlan 19:255 Reserved (must be zero)
ordering

1 Big-endian
ordering

Table 9.2 Boot-Mode Settings

9-7

Initialization Interface Chapter 9

9-8

Clock Interface Chapter 10

Integrated DevIce Technology. Inc.

Introduction
This chapter describes the clock signals ("clocks") used in the R4600/

R4700 processor and the processor status reporting mechanism.
The subject matter includes basic system clocks, system timing

parameters, connecting clocks to a phase-locked system, connecting
clocks to a system without phase locking, and processor status outputs.

Signal Terminology
The following terminology is used in this chapter (and book) when

describing signals:
• Rising edge indicates a low-to-high transition.
• Falling edge indicates a high-to-Iow transition.
• Clock-to-Q delay is the amount of time it takes for a signal to move

from the input of a device (clock) to the output of the device (Q).

Figure 10.1 and Figure 10.2 illustrate these terms.

single clock cycle ," .. , 2
,

? ~\ I
high-to-Iow
transition low-to-high

transition

Figure 10.1 SigDal TraneitioDS

data in

Figure 10.2 Clock-to-Q Delay

Basic System Clocks

3

\

Q

Clock-to-Q
delay

,

I

data out

4

\

The various clock signals used in the R4600/R4700 processor are
described below, starting with MasterClock, upon which the processor
bases all internal and external clocking. Note: All output clocks will have
approximately a 50% duty cycle ± the jitter and any difference in rise and/
or fall times.

MasterClock
The processor bases all internal and external clocking on the single

MasterClock input signal. The processor generates the clock output
signal, MasterOut, at the same frequency as MasterClock and aligns
MasterOut with MasterClock, if SyncIn is properly connected to
SyncOut.

10 -1

Clock Interface Chapter 10

MasterOut
The processor generates the clock output signal, MasterOut, at the

same frequency as MasterClock and aligns MasterOut with MasterClock,
if SyncIn is properly connected to SyncOut. MasterOut clocks certain
external logic, such as the reset logic.

SyncIn/SyncOut
The processor generates SyncOut at the same frequency as

MasterClock and aligns Syncln with MasterClock.
SyncOut must be connected to Syncln either directly, or through an

external buffer. The processor can compensate for both output driver and
input buffer delays (and, when necessary, delay caused by an external
buffer according to the connections of TClock and RClock to the rest of
the system) when aligning Syncln with MasterClock. Figure 10.8 on
page 10-9 gives an illustration of SyncOut connected to SyncIn through
an external buffer.

PClock
The processor generates an internal clock, PClock, at twice the

frequency of MasterClock and precisely aligns every other rising edge of
PClock with the rising edge of MasterClock.

All internal registers and latches use PClock, which is the pipeline clock
rate.

SClock
The R4600jR4700 processor divides PClock by 2, 3, 4, 5, 6, 7 or 8,

programmed at boot-mode initialization to generate the internal clock
signal, SClock. The processor uses SClock to sample data at the system
interface and to clock data into the processor system interface output
registers.

The first rising edge of SClock, after ColdReset* isdeasserted, is
aligned with the first rising edge of MasterClock.

TClock
TClock (transmit clock) clocks the output registers of an external agent,

and can be a global system clock for any other logic in the external agent.
TClock is identical to SClock. The edges of TClock align precisely with

the edges of SClock and TClock can also be aligned with MasterClock,
when SyncIn is properly connected to SyncOut.

RClock
The external agent uses RClock (receive clock) to clock its input

registers. The processor generates RClock at the same frequency as
SClock, although RClock leads TClock and SClock by 25 percent of
SClock cycle time.

10-2

Clock Interface Chapter 10

Figure 10.3 shows the clocks for a PClock-to-SClock division by 2.

Cycle 2 3 4
I

\ ~ MasterClock I y I I \ , ,
k tMCkH!ah :),

I

:E tMCkLow J I

I I

: IE
tMqkP J

I

MasterOut I } I I \
I

PClock ~
I I I

SClock } I ~ I I } ~

\
I

\ TClock I \ I ~ I
I I

RClock \ I / \ / \ / \ /
SysAD Driven -.JJ D 0 D 0 D '0 D

~ ~
~

SysAD Received ~ '[§J '[§J '[§J 'Ii
-J ~s
~ ~H

Figure 10.3 Processor Clocks, PClocll:-to-SClocll: DivisioD by 2

System Timing Parameters
As shown in Figure 10.3, data provided to the processor must be stable

a minimum of tDS nanoseconds (ns) before the rising edge of SClock and
be held valid for a minimum of tDH ns after the rising edge of SClock.

Alignment to SClock
Processor data becomes stable a minimum of tDM ns and a maximum of

too ns after the rising edge of SClock. This drive-time is the sum of the
maximum delay through the processor output drivers together with the
maximum clock-to-Q delay of the processor output registers.

Alignment to MasterClock
Certain processor inputs (specifically VCCOk, ColdReset*, and Reset*)

are sampled based on MasterClock, while others are output based on
MasterClock. The same setup, hold, and drive-off parameters, tDs, tDH'
tDM' and tDO' shown in Figure 10.3, apply to these inputs and outputs, but
they are measured relative to MasterClock instead of SClock.

Phase-Locked Loop (PLL)
The processor aligns SyncOut, PClock, SClock, TClock, and RClock

with internal phase-locked loop (PLL) circuits that generate aligned clocks
based on SyncOut/SyncIn. By their nature, PLL circuits are only capable
of generating aligned clocks for MasterClock frequencies within a limited
range.

10-3

-~------~--~-~~-~--- -~---- --- _. -

Clock Interface Chapter 10

Clocks generated using PLL circuits contain some inherent inaccuracy,
or jitter; a clock aligned with MasterCloek by the PLL can lead or trail
MasterCloek by as much as the related maximum jitter specified in the
data sheet.

PLL Components and Operation
The passive components required for the Phase Locked Loop circuit are

contained in the packages for the R4600 and R4700. There are no required
external passive components.

Passive Components
The Phase Locked Loop circuit requires several passive components for

proper operation, which are connected to PLLCapO, PLLcapl, VeeP, and
VssP, as illustrated in Figure 10.4.

R4600/R4700

R

C3

R

Figure 10.4 PLL Passive Components

C2

Note: C1, C2, C3, Rs
and Ls are Board Caps

It is essential to isolate the analog power and ground for the PLL circuit
(VeeP/VssP) from the regular power and ground (Vee/Vss). Initial
evaluations have yielded good results with the following values:

R 5 ohms

C1 1 nF
C2 = 82 nF
C3 = 10 J..lF
Cp 470 pF

Since the optimum values for the filter components depend upon the
application and the system noise environment, these values should be
conSidered as starting pOints for further experimentation within your
specific application.

10-4

Clock Interface

ColdResetB

MasterIn

Chapter 10

Figure 10.5 shows the internal PLL and clock distrtbution network of the
R4600jR4700 .

....... -...•. --.--.--.... -.. --................. " .. --..................... --... _

+2 >-------1 PLL 1 / 1-'2::,:F'--_--I
Clock i-='----l

,...---1 Doubler 2F +9011

Dummy
Input
Buffer

PLL2/ 2F
Clock t-=:""---I

Doubler 2F +9011

PLLoff.----'

r=~_~P,C=I=ock(2m
Clock
Distrtbutlon
Tree

Pigure 10.5 R4800jR4700 PLL Network

Connecting Clocks to a Phase-Locked System
When the processor is used in a phase-locked system. the external agent

must phase lock its operation to a common MasterClock. In such a
system. the delivery of data and data sampling have common
characteristics. even if the components have different delay values. For
example. transmission time (the amount of time a signal takes to move from
one component to another along a trace on the board) between any two
components A and B of a phase-locked system can be calculated from the
following equation:

Transmission Time = (SClock period) - (tDO for A) - (tDS for B) -
(Oock Jitter for A Max) - (Oock Jitter for B Max)

-10-5

Clock Interface Chapter 10

Figure 10.6 shows a block-level diagram of a phase-locked system using
the R4600jR4700 processor.

MasterClock

R4600/R4700 External Agent

MasterClock r- MasterClock

SysCmd SysCmd

SysAD SysAD

SyncOut

0 Syncln

RClock I-

TClock I-

Figure 10.6 R4600!R4700Processor Phase-Locked System

Connecting Clocks to a System without Phase Locking
When the R4600jR4700 processor is used in a system in which the

external agent cannot lock its phase to a common MasterClock, the
output clocks RClock and TClock can clock the remainder of the system.
Two clocking methodologies are described in this section: connecting to a
gate-array device or connecting to discrete CMOS logic devices.

Connecting to a Gate-Array Device
When connecting to a gate-array device, both RClock and TClock are

used within the gate-array. The gate array internally buffers RClock and
uses this buffered version to clock registers that sample processor
outputs.

These sampling registers should be immediately followed by staging
registers clocked by an internally buffered version of TClock. This buffered
version of TClock should be the global system clock for the logic inside the
gate array and the clock for all registers that drive processor inputs.
Figure 10.7 on page 7 is a block diagram of this circuit.

Staging registers place a constraint on the sum of the clock-to-Q delay
of the sample registers and the setup time of the synchronizing registers
inside the gate arrays, as shown in the following equation:

Clock-to-Q Delay + Setup of Synch Register:::;; 0.25 (RClock period)
- (Max Clock Jitter for RClock)
- (Max Delay Mismatch for Clock Buffers on RClock and TClock)

10-6·

Clock Interface Chapter 10

F1gure 10.7 is a block diagram of a system without phase lock, using the
R4600/R4700 processor with an external agent implemented as a gate
array.

MasterClock
1---------------------------
I Sampling Staging

R . R .
I Gate egl~ ~Ister
I Array
I

R4600/R4700 I
I

MasterClock l- I
I -> r-r>

SysCmd I -- ""-
I

I -
SysAD I

I
I L-<t

SyncOut
IJ

I I

Syncln I < r--
I --I
I

RClock
I

TClock
r-

;---

- < r--
"-

- r-
- CE

I
I > f-~ I -
I Samp~ "S. taglng
I Register Register
I -
I CE
I

~ I --
I
I < r--I --L _________________________ _

Figure 10.7 Gate-Array System Without Phase Lock. Velag the
R4800/R4:700 Proceuor

In a system without phase lock, the transmission time for a signal from
the processor to an external agent composed of gate arrays can be
calculated from the following equation:

Transmission Time = (75 percent of TClock period) - (too for R4600/R47(0)
+ (Min External Clock Buffer Delay)
- (External Sample Register Setup Time)
- (Max Clock Jitter for R4600/R4700 Internal Clocks)
- (Max Clock Jitter for RClock)

10-7

Clock Interface Chapter 10

The transmission time for a signal from an external agent composed of
gate arrays to the processor in a system without phase lock can be
calculated from the following equation:

Transmission Time = (TClock period) - (tDS for R4600/R4700)
- (Max External Clock Buffer Delay)
- (Max External Output Register Clock-to-Q Delay)
- (Max Clock Jitter for TClock)
- (Max Clock Jitter for R4600 jR4700 Internal Clocks)

Connecting to a CMOS Logic System
The processor uses matched delay clock buffers to generate aligned

clocks to external CMOS logic. A matched delay clock buffer is inserted in
the SyncOut/SyncIn alignment path of the processor, skewing SyncOut,
MasterOut, RClock, and TClock to lead MasterClock by the buffer delay
amount, while leaving PClock aligned with MasterClock.

The remaining matched delay clock buffers are available to generate a
buffered version of TClock aligned with MasterClock. Alignment error of
this buffered TClock is the sum of the maximum delay mismatch of the
matched delay clock buffers, and the maximum clock jitter of TClock.

As the global system clock for the discrete logic that forms the external
agent. the buffered version of TClock clocks registers that sample
processor outputs, as well as clocking the registers that drive the processor
inputs.

The transmission time for a signal from the processor to an external
agent composed of discrete CMOS logic devices can be calculated from the
following equation:

Transmission Time = (TClock period) - (tDa for R4600/R4700)
- (External Sample Register Setup Time)
- (Max External Clock Buffer Delay Mismatch)
- (Max Clock Jitter for R4600 jR4700 Internal Clocks)
- (Max Clock Jitter for TClock)

10-8

Clock Interface Chapter 10

Figure 10.8 is a block diagram of a system without phase lock,
employing the R4600 /R4 700 processor and an external agent composed of
both a gate array and discrete CMOS logic devices.

MasterClock
r- -

I
I
I I--

R4600/R4700 I

MasterClock I -~ r-->
r- I "- '-

SysCmd
I r-
I Contr SysAD I

-<;J-- Gate I - Array SyncOut tJ I

Sync In I <l-
I "-

01

I

RClock ~
I
I

TClock
IV -
I
I
I
I -
I r--<-
I -------- ___ W!!_

r-- 4r
Sample
Registers I CEI I CE.

I I I

I Memory

Figure 10.8 Gate Array and CMOS System Without Phase Lock, Us­
lug the R4600/R4700 Processor

The transmission time for a signal from an external agent composed of
discrete CMOS logic devices can be calculated from the following equation:

Transmission Time = (TClock period) - (tDS for R4600/R4700)
- (Max External Output Register Clock-to-Q Delay)
- (Max External Clock Buffer Delay Mismatch)
- (Max Clock Jitter for R4600/R4700 Internal Clocks)
- (Max Clock Jitter for TClock)

In this clocking methodology, the hold time of data driven from the
processor to an external sampling register is a critical parameter. To
guarantee hold time, the minimum output delay of the processor, tDM,

must be greater than the sum of the following:

Min hold time for the external sampling register
+ max clock jitter for R4600/R4700 internal clocks
+ max clock jitter for TClock
+ max delay mismatch of the external clock buffers

10-9

Clock Interface Chapter 10

10-10

t;J Cache OrganizatioD, Chapter 11
Operation and Coherency

Integrated Device Technology. Inc.

Introduction
This chapter describes in detail the cache memory: its place in the

R4600/R4700 memory organization and individual operations of the
primary cache.

This chapter uses the following terminology:
• The primary cache may also be referred to as the P-cache.
• The primary data cache may also be referred to as the D-cache.
• The primary instruction cache may also be referred to as the I-cache.
These terms are used interchangeably throughout this book.

Memory Organization
Figure 11.1 shows the R46oo/R4700 system memory hierarchy. In the

logical memory hierarchy, caches lie between the CPU and main memory.
They are designed to make the speedup of memory accesses transparent
to the user. Each functional block in Figure 11.1 has the capacity to hold
more data than the block above it. For instance, physical main memory
has a larger capacity than the primary cache. At the same time, each
functional block takes longer to access than any block above it. For
instance, it takes longer to access data in main memory than in the CPU
on-chip registers.

.. ,' .. ". ,",' .::. : .:,.;: ,', ;', ::~':

,~ ~, ,.
R46001R4700

I Registers I I Registers I
..

I~che D-cache

... -

:;. :. Prim;ary Cacha

~
o
E
CD

:::E

Faster Access Increasing Data
Time Capacity

Figure 11.1 Logical Hiuarchy of Memory

The R4600/R47oo processor has two on-chip primary caches: one holds
instructions (the instruction cache), the other holds data (the data cache).

11-1

-~-------"- .•. - .,--~-.---." '~'.

Cache Organization. Operation and Coherency Chapter 11

Overview of Cache Operations
As described earlier. caches provide fast temporary data storage. and

they make the speedup of memory accesses transparent to the user. In
general. the processor accesses cache-resident instructions or data
through the following procedure:

1. The processor. through the on-chip cache controller. attempts to
access the next instruction or data in the primary cache.

2. The cache controller checks to see if this instruction or data is present
in the primary cache.

• If the instruction/data is present. the processor retrieves it. This is
called a primary-cache hit.

• If the instruction/data is not present in the primary cache. it is re­
trieved as a cache line from memory and is written into the primary
cache.

3. The processor retrieves the instruction/data from the primary cache
and operation continues. For a data cache miss. the processor can restart
the pipeline after the first doubleword (the one at the miss address) is
retrieved and continues the cache line refill in parallel.

It is possible for the same data to be in two places simultaneously: main
memory and the primary cache. This data is kept consistent through the
use of either a write-back or a write-through methodology. For a write-back
cache. the modified data is not written back to memory until the cache line
is replaced. In a write-through cache. the data is written to memory as the
cached data is modified (with a possible delay due to the write buffer).

R4600/R4700 Cache Description
This section deSCribes the organization of on-chip primary caches. As

Figure 11.1 on page 1 shows. the R4600/R4700 contains separate primary
instruction and data caches.

Figure 11.2 provides block diagrams of the R4600/R4700 memory
model.

Main Me~~~ "k/ .. ::
............... :: .. : .. :":-.

Figure 11.2 Cache Support in the R4600/R4700

Cache Line Size
A cache line is the smallest unit of information that can be fetched from

memory to be filled into the cache. A primary cache line is 8 words in
length. and is represented by a single tag.

Upon a cache miss in the primary cache. the missing cache line is
loaded from memory into the primary cache.

cache Organization and Accessibility
This section deSCribes the organization of the primary cache. including

the manner in which it is mapped. the addressing used to index the cache.
and composition of the cache lines. The primary instruction and data
caches are indexed with a virtual address (VA).

11-2

~-~--~- ------------

Cache Organization. Operation and Coherency Chapter 11

Organization of the Primary Instruction cache (I-Cache)
Each line of primary I-cache data (although it is actually an instruction.

it is referred to as data to distinguish it from its tag) has an associated 28-
bit tag that contains a 24-bit physical address. a single valid bit. a reseIVed
bit. a single parity bit and the FIFO replacement bit. Word parity is used
on I-cache data.

The R4600 /R4 700 processor primary I -cache has the following
characteristics:

• two-way set associative
• indexed with a virtual address
• checked with a physical tag
• organized with 8-word (32-byte) cache line.
Figure 1l.3 shows the format of a primary I-cache line.

27 26 25 24 23 o
PTag

24
65 64 63 o

PTag Physical tag (bits 35:12 of the physical address)
DataP Data

V Valid bit
DataP Data

F FIFO Replacement Bit. Complemented on refill. DataP Data

P Even parity for the PTag and V fields DataP Data

DataP Even parity; 1 parity bit per word of data 2 64

Data Cache data

Figure 11.3 R4600/R4700 Primary I-Cache Line Format

Organization of the Primary Data cache (D-Cache)
Each line of primary D-cache data has an associated 30-bit tag that

contains a 24-bit physical address. 2-bit cache line state. a write-back bit.
a parity bit for the physical address and cache state fields. a parity bit for
the write-back bit and the FIFO replacement bit.

The R4600 /R4 700 processor primary D-cache has the following
characteristics:

• write-back or write-through on a per-page basis
• two-way set associative
• indexed with a virtual address
• checked with a physical tag
• organized with 8-word (32-byte) cache line.

11-3

Cache Organization. Operation and Coherency

Figure 11.4shows the fonnat of a primary D-cache line.

29 28 27 26 25 24 23

2
71

F FIFO Replacement Bit

W' Even parity for the write-back bit

DataP

DataP

DataP

DataP

8

PTag

24
6463

W Write-back bit (set if cache line has been written)

P Even parity for the Prag and CS fields

CS PrimaI)' cache state:
o = Invalid, 1 = Shared,
2 = Clean Exclusive, 3 = Dirty Exclusive

Prag Physical tag (bits 35: 12 of the physical address)

DataP Even parity for the data; I-bit per byte

Data Cache data

Data

Data

Data

Data

64

Figure 11.4 R4800/R4700 8-Word Primary Data Cache Line Format

Chapter 11

o

o

In the R4600jR4700, the W (write-back) bit, not the cache state,
indicates whether or not the primary cache contains modified data that
must be written back to memory.

Note: There is no hardware support for cache coherency. Thus the only
cache states used are Dirty Exclusive and Invalid.

11-4

--- - --~ ~-~-~- -~ -~- - ~------ - ---- -- ~-~ -- ----- ---

Cache Organization. Operation and Coherency Chapter 11

Accessing the Primary Caches
Figure 11.5 shows the virtual address (VA) index into the primary

caches. Each instruction and data cache size is 16 Kbytes.

Data

Tags

Tag line VA(12:5)

J I Data line

I VA(12:5)

I I I I

I
w W State Tag P

v
64

Data

Figure 11.5 Primary Cache Data and Tag Organization

Cache States
The terms below are used to describe the state of a cache line:
• Exclusive: a cache line that is present in exactly one cache in the sys­

tem is exclusive. This is always the case for the R4600jR4700. All
cache lines are in an exclusive state.

• Dirty: a cache line that contains data that has changed since it was
loaded from memory is dirty.

• Clean: a cache line that contains data that has not changed since it
was loaded from memory is clean.

• Shared: a cache line that is present in more than one cache in the
system. The R4600jR4700 does not provide for hardware cache co­
herency. This state should never happen in normal operations.

The R4600jR4700 only supports the four cache states as shown in
Table ILIon page 6. The only states that will occur in the R4600jR4700.
under normal operations are the Dirty Exclusive and Invalid states.

Note: Even though valid data is in the Dirty Exclusive state, it may still
be consistent with memory. One must look at the dirty bit, W, to determine
if the cache line is to be written back to memory when it is replaced.

11-5

Cache Organization. Operation and Coherency Chapter 11

Cache Line
State

Invalid

Shared

Clean Exclusive

Dirty Exclusive

Each primary cache line in the R4600 /R4 700 system is in one of the
states described in Table 11.1.

Description

A cache line that does not contain valid information must be marked invalid, and cannot
be used. A cache line in any other state than invalid is assumed to contain valid informa-
tion.

A cache line that is present in more than one cache in the system is shared. This state will
not occur for normal operations.

A clean exclusive cache line contains valid information and this cache line is not present
in any other cache. The cache line is consistent with memory and is not owned by the pro-
cessor (see "Cache Line Ownership" on page 6 in this chapter). This state will not occur
for normal operations.

A dirty exclusive cache line contains valid information and is not present in any other
cache. The cache line mayor may not be consistent with memory and is owned by the
processor (see "Cache Line Ownership" on page 6 in this chapter). Use the W bit to deter-
mine if the line must be written back on replacement.

Table 11.1 Cache States

Primary cache States
Each primary data cache line is normally in one of the following states:
• invalid
• dirty exclusive
Each primary instruction cache line is in one of the following states:
• invalid
• valid

cache Line Ownership
The processor is the owner of a cache line when it is in the dirty

exclUSive state and is responsible for the contents of that line. There can
only be one owner for each cache line.

The ownership of a cache line is set and maintained through the rules
described below.

• A processor assumes ownership of the cache line if the state of the
primary cache line is dirty exclusive.

• A processor that owns a cache line is responsible for writing the cache
line back to memory if the line is replaced during the execution of a
Write-back or Write-back Invalidate cache instruction if the line is in
a write-back page. The Cache instruction is explained in Appendix A.

• Memory always owns clean cache lines
• The processor gives up ownership of a cache line when the state of the

cache line changes to invalid.
Therefore, based on these rules and that any valid data cache line is in

the Dirty Exclusive state (under normal operating conditions), the
processor is conSidered to be the owner of the cache line.

Cache Write Policy
The R4600/R4700 processor manages its primary data cache by using

either a write-back or a write-through policy on a per-page basis. In a
write-back cache, the data is not written back to memory until the cache
line is replaced. A write-through policy means the store data is written to
the cache and to memory. The write of the data to memory may not occur
at the same time as the write to cache due to the write buffer.

For a write-back entry, if the cache line is valid and has been modified
(the Wbit is set), the processor writes this cache line back to memory when
the line is replaced, either in the course of satisfying a cache miss or during
the execution of a Write-back or Write-back Invalidate CACHE instruction.

11-6

Cache Organization. Operation and Coherency Chapter 11

For a write-through entry, whenever a store hits in the cache line, the
data is also written to memory via the write buffer. The store will not set or
clear the W bit for a write-through cache line. This is to allow a different
virtual address that maps to the same physical address and with a write­
back policy to still set the W bit. For a miss to a write-through line, the
action taken will be determined by the write-allocation policy. For a write­
allocate entry, the cache line is first retrieved from memory and the store
will then continue. A no write-allocate entry will just post the write to the
system interface, via the write buffer, in the same manner as an uncached
write.

When the processor writes a cache line back to memory, it does not
ordinarily retain a copy of the cache line, and the state of the cache line is
changed to invalid. However, there are exceptions. For example, the
processor retains a copy of the cache line if a cache line is written back by
the Hit Write-back cache instruction. If the W bit is set, the cache line is
written back and the W bit is cleared. The processor signals this line
retention during a write by setting SysCmd(2) to aI, as described in
Chapter 12.

Cache State Transition Diagrams
The following sections describe the cache state diagrams that illustrate

the cache state transitions for the primary cache. Figure 11.6 shows the
state diagram of the primary cache.

When an external agent supplies a cache line, it need not return the
initial state of the cache line, for normal operations (see Chapter 12 for a
definition of an external agent). This is because the only read request the
R4600 /R4 700 should issue are for non-coherent data and the lower three
bits for the data identifier are reserved. The initial state will automatically
be set to DE by the R4600/R4700. Otherwise, the processor changes the
state of the cache line during one of the following events:

• A store to a dirty exclusive line remains in a dirty exclusive state.
• The state is changed to invalid for:

- A Cache invalidate operation.
- If the line is replaced

Index Invalidate
Hit Invalidate

Figure 11.6 Primary Data Cache State Diagram

Cache Coherency Overview
Systems using more than one master must have a mechanism to

maintain data consistency throughout the system. This mechanism is
called a cache coherency protocol. The R4600 /R4 700 does not provide
any hardware cache coherency. Cache coherency must be handled with
software.

Cache Coherency Attributes
Cache coherency attributes are necessary to ensure the conSistency of

data throughout the system.

11-7

Cache Organization. Operation and Coherency Chapter 11

Bits in the translation look-aside buffer (lLS) control coherency on a
per-page basis. Specifically, the TLB contains 3 bits per entry that provide
two possible coherency attribute types; they are listed below and described
more fully in the following sections.

• uncached
• noncoherent (includes 3 attribute values)
Table 11.2 summarizes the behavior of the processor on load misses and

store misses for each of the coherency attribute types listed above. The
following sections describe in detail these coherency attribute types

Attribute Type Load Miss Store Miss

Uncached Main memory read Main memory write

Noncoherent Noncoherent read Noncoherent read (write-allocate page)
Main memory write (no write-allocate page)

Table 11.2 Coherency Attributes and Processor Behavior

Uncached
Lines within an uncached page are never in a cache. When a page has

the uncached coherency attribute, the processor issues a doubleword,
partial-doubleword, word, or partial-word read or write request directly to
main memory (bypassing the cache) for any load or store to a location
within that page.

Noncoherent
Lines with a noncoherent attribute type can reside in a cache; a load

miss causes the processor to issue a noncoherent block read request to a
location within the cached page. For a store miss to a write-allocate page,
the processor issues a noncoherent block read request to a location within
the cached page and then does the write-through. If the page has the no
write-allocate attribute, a store miSS will generate a write to the memory as
in the uncached case.

Cache Operation Modes
The R4600/R4700 processor only supports the no-secondary-cache

mode (only uncached and noncoherent coherency attributes are
applicable) of R4xOO operation.

R4600/R4700 Processor Synchronization Support
In a multiprocessor system, it is essential that two or more processors

working on a common task execute without corrupting each other's
subtasks. Synchronization, an operation that guarantees an orderly
access to shared memory, must be implemented for a properly functioning
multiprocessor system. Two of the more widely used methods are
discussed in this section: test-and-set, and counter. Even though the
R4600/R4700 does not support symmetric multi-processing (SMP), these
are useful for multi-master and heterogenous multi-processing.

Test-and-Set
Test-and-set uses a variable called the semaphore, which protects data

from being simultaneously modified by more than one processor. In other
words, a processor can lock out other processors from accessing shared
data when the processor is in a critical section, a part of program in which
no more than a fixed number of processors 1s allowed to execute. In the
case of test-and-set, only one processor can enter the critical section.

11-8

--- ----- --- --~ - -- ------ ----- -- ---- ---

Cache Organization, Operation and Coherency Chapter 11

Figure 11.7 illustrates a test-and-set synchronization procedure that
uses a semaphore; when the semaphore is set to O. the shared data is
unlocked. and when the semaphore is set to 1. the shared data is locked.

No

No

5. Execute critical section
(Access shared data)

Figure 11.7 Synchronization with Test-and-8et

The processor begins by loading the semaphore and checking to see if it
is unlocked (set to 0) in steps 1 and 2. If the semaphore is not O. the
processor loops back to step 1. If the semaphore is O. indicating the shared
data is not locked. the processor next tries to lock out any other access to
the shared data (step 3). If not successful. the processor loops back to step
1. and reloads the semaphore.

If the processor is successful at setting the semaphore (step 4), it
executes the critical section of code (step 5) and gains access to the shared
data. completes its task. unlocks the semaphore (step 6). and continues
processing.

Counter
Another common synchronization technique uses a cOWlter. A cOWlter

is a deSignated memory location that can be incremented or decremented.
In the test-and-set method. only one processor at a time is permitted to

enter the critical section. Using a counter. up to N processors are allowed
to concurrently execute the critical section. All processors after the .Mh
processor must wait until one of the N processors exits the critical section
and a space becomes aVailable.

The counter works by not allowing more than one processor to modify it
at any given time. Conceptually. the counter can be viewed as a variable
that counts the number of limited resources (for example. the number of
processes. or software licenses. etc.).

11-9

Cache Organization, Operation and Coherency Chapter 11

Figure 11.8 shows this process.

FJgure 11.8 Synchronization Using a Counter

Load Linked and Store Conditional
The R4600/R4700 instructions Load Linked (LL) and Store Conditional

(Se) provide support for processor synchronization. These two
instructions work very much like their simpler counterparts, load and
store. The LL instruction, in addition to doing a simple load, has the side
effect of setting a bit called the link bit This link bit forms a breakable link
between the LL instruction and the subsequent se instruction. The se
performs a simple store if the link bit is set when the store executes. If the
link bit is not set, then the store fails to execute. The success or failure of
the se is indicated in the target register of the store.

The link is broken upon completion of an ERET (return from exception)
instruction.

The most important features of LL and se are:
• They provide a mechanism for generating all of the common synchro­

nization primitives including test-and-set, counters, sequencers. etc .•
with no additional overhead.

• When they operate. bus traffic is generated only if the state of the
cache line changes; lock words stay in the cache until some other pro­
cessor takes ownership of that cache line.

11-10

------- -~-------- --- - - ---- - -~~ --------

Cache Organization. Operation and Coherency Chapter 11

Examples Using LL and se
Figure 11.9 shows how to implement test-and-set using LL and SC

instructions.

Loopi. tLr2, (r1)
. . . -

.: . _.'
: .'.. .:: .: .. : ... : .. ' :- .

. " . ::" " :.: :-

ORI r3r2;1:) ..
SEaf3,r2,LQQP ..
NOP ••••

• scrs~(~'1} .
- -- - J

.
:. . :". : "' ""
: . :" .. "".
- -'. ..:." . '.

SEQ r3 0 loop.··
.~()p'.' .. <

"." .. ": ::.~. ".> .. -.:. ;".

SWr2,(r1J .

Figure 11.9 Test-and-8et using LL and se

11-11

Cache Organization. Operation and Coherency Chapter 11

Figure 11.10 shows synchronization using a counter.

···:·I;I~~t'::
::~:~;:::"::.~- : .. ;- ':: ... :: :.

:: :ii·:::·,,~gt;~~~1::, ... ·:::,:::·.;~;:.:::·,::

No
.. :.:' -::

: .. ::,:: : .- ..

'I-oOP~:.'~·~(~:}::""":" '" ··i.::i~~;:.::

..... :.:.
-- : -:.:.

-:' ::.-:":.--.:::::::.:.--.:." ...

Figure 11.10 Counter Usi.., LL and SC

11-12

--~----- - --- -- -----------

System Interface Chapter 12

Integrated Device Technology. Inc.

Introduction
The System interface allows the processor to access external resources

needed to satisfy cache misses and uncached operations, while permit­
ting an external agent access to some of the processor internal resources.

This chapter describes the system interface from the point of view of
both the processor and the external agent.

Terminology
The following tenns are used in this chapter:
An external agent is any logic device connected to the processor, over

the system interface, that allows the processor to issue requests.
A system event is an event that occurs within the processor and

requires access to external system resources.
Sequence refers to the precise series of requests that a processor gener­

ates to service a system event.
Protocol refers to the cycle-by-cycle signal transitions that occur on the

system interface pins to assert a processor or external request.
Syntax refers to the precise definition of bit patterns on encoded buses,

such as the command bus.

System Interface Description
The R4600/R4700 processor supports a 64-bit address/data interface

that can construct a simple uniprocessor with main memory. The System
interface consists of:

• 64-bit address and data bus, SysAD
• 8-bit SysAD check bus, SysADC (even parity only)
• 9-bit command bus, SysCmd
• six handshake signals:

- RdRdy*, WrRdy*
- ExtRqst*, Release*
- ValidIn*, ValidOut*

The processor uses the system interface to access external resources in
order to service processor requests such as cache misses, cache line
write-backs, write-through stores and uncached operations.

12 - 1

------------~~~~---

System Interface Chapter 12

Interface Buses
Figure 12.1 shows the primary communication paths for the system

interface: a 64-bit address and data bus, SysAD(63:0), and a 9-bit
command bus, SysCmd(8:0). These SysAD and the SysCmd buses are
bidirectional; that is, they are driven by the processor to issue a processor
request, and by the external agent to issue an external request (see
"Processor and External Request Protocols" on page 12-14 for more infor­
mation).

A request through the system interface consists of:
• an address
• a System interface command that specifies the precise nature of the

request
• a series of data elements if the request is for a write or read response .

R4600/R4700

,::,;.:

.... : : :
Extemal Agent

SysAD(63:0)

SysCmd(8:0)

Figure 12.1 System lDte.rface Buaea

Address and Data Cycles
Cycles in which the SysAD bus contains a valid address are called

address cycles. Cycles in which the SysAD bus contains valid data are
called data cycles. Validity is determined by the state of the VaOdIn* and
VaHdOut* signals (described in "Interface Buses" on page 12-2),

The SysCmd bus identifies the contents of the SysAD bus during any
cycle in which it is valid. The most Significant bit of the SysCmd bus is
always used to indicate whether the current cycle is an address cycle or a
data cycle.

• During address cycles [SysCmd(8) = 0], the remainder of the SysCmd
bus, SysCmd(7:0), contains a System interface corrunand (the encod­
ing of system interface commands is detailed in "System Interface
Commands and Data Identifiers" on page 12-32).

• During data cycles [SysCmd(8) = 1], the remainder of the SysCmd
bus, SysCmd(7:0), contains a data identifier (the encoding of data
identifiers is detailed later in this chapter).

12-2

System Interface Chapter 12

Issue Cycles
There are two types of processor issue cycles:
• processor read request issue cycles
• processor write request issue cycles.

The processor samples the signal RdRdy* to determine the issue cycle
for a processor read request; the processor samples the signal WrRdy* to
determine the issue cycle of a processor write request.

As shown in Figure 12.2, RdRdy* must be asserted for one clock cycle,
two cycles prior to the address cycle of the processor read request to
define the address cycle as the issue cycle (cycle 5 in Figure 12.2).
RdRdy* does not need to be asserted during the issue cycle.

* Issue

SCycie II , I 2 I 3 I 4 I 5 I 6 I
SClock I
SysAD Bus I
RdRdy* I \ L

Note: RdRdy* must be sampled LOW at the end of cycle 3,
which is marked with an asterisk.

Figure 12.2 State of RdRdy· Signal for Read Requests

As shown in Figure 12.3, WrRdy* must be asserted for one clock cycle,
two cycles prior to the first address cycle of the processor write request to
define the address cycle as the issue cycle (cycle 5 in Figure 12.3).
WrRdy* does not need to be asserted during the issue cycle.

* Issue

SCycle II , I 2 I 3 I 4 I 5 I 6 I
SClock I
SysAD Bus I
WrRdy* I \ L
Note: WrRdy* must be sampled LOW at the end of cycle 3,

which is marked with an asterisk.

Figure 12.3 State of WrRdy· Signal for Write Requests

The processor repeats the address cycle for the request until the condi­
tions for a valid issue cycle are met. After the issue cycle, if the processor
request requires data to be sent, the data transmission begins. There is
only one issue cycle for any processor request.

The processor accepts external requests, even while attempting to issue
a processor request, by releasing the system interface to slave state in
response to an assertion of ExtRqst* by the external agent.

12-3

System Interface Chapter 12

Note that the rules governing the issue cycle of a processor request are
strictly applied to determine the action the processor takes. The
processor either:

• completes the issuance of the processor request in its entirety before
the external request is accepted, or

• releases the system interface to slave state without completing the is­
suance of the processor request.

In the latter case, the processor issues the processor request (provided
the processor request is still necessary) after the external request is
complete. The rules governing an issue cycle again apply to the processor
request.

Handshake Signals
The processor manages the flow of requests through the following six

control signals:
• RdRdy*, WrRdy* are used by the external agent to indicate when it

can accept a new read (RdRdy*) or write (WrRdy*) transaction.
• ExtRqst*, Release* are used to transfer control of the SysAD and

SysCmd buses. EztRqst* is used by an external agent to indicate a
need to control the interface. Release* is asserted by the processor
when it transfers the mastership of the system interface to the exter­
nal agent.

• The R4600/R4700 processor uses ValidOut* and the external agent
uses ValidIn* to indicate valid command/data on the SysCmd/
SysAD buses.

System Interface Protocols
Figure 12.4 shows the system interface operates from register to

register. That is, processor outputs come directly from output registers
and begin to change with the rising edge of SClock. 1

Processor inputs are fed directly to input registers that latch these
input signals with the rising edge of SClock. This allows the system
interface to run at the highest possible clock frequency.

R4600/R4700
r---

• Output data

-~ .."..

r---

Input data

-~
.."..

SClock

Figure 12.4 System Interface Reg:ister-to-Reg:ister Operation

1. SClock is an internal clock used by the processor to sample data at the system
interface and to clock data into the processor system interface output registers;
see Chapter 10 for more details.

12-4

System Interface Chapter 12

Master and Slave States
When the R4600 /R4 700 processor is driving the SysAD and SysCmd

buses, the system interface is in master state. When the external agent is
driving the SysAD and SysCmd buses, the system interface is in slave
state.

In master state, the processor drives the SysAD and SysCmd buses and
will assert the signal ValidOut* whenever these buses are valid.

In slave state, the external agent drives the SysAD and SysCmd buses
and asserts the signal Validln* whenever these buses are valid.

Moving from Master to Slave State
The system interface remains in master state unless one of the following

occurs:
• The external agent requests and is granted the system interface (ex­

ternal arbitration).
• The processor issues a read request and performs an uncompelled

change to slave state.

External Arbitration
The system interface must be in slave state for the external agent to

issue an external request through the system interface. The transition
from master state to slave state is arbitrated by the processor using the
system interface handshake signals ExtRqst* and Release * . This transi­
tion is described by the following procedure:

1. An external agent signals that it wishes to issue an external request
by asserting ExtRqst*.

2. When the processor is ready to accept an external request, it releases
the system interface from master to slave state by asserting Release* for
one cycle.

3. The system interface returns to master state as soon as the issue of
the external request is complete.

This process is described in "External Arbitration Protocol" on page 12-
24.

Uncompelled Change to Slave State
An WlCompelled change to slave state is the transition of the system

interface from master state to slave state, initiated by the processor when
a processor read request is pending. Release* is asserted automatically
after a read request. An uncompelled change to slave state occurs during
the issue cycle of a read request.

After an uncompelled change to slave state, the processor returns to
master state at the end of the next external request. This can be a read
response, or some other type of external request.

An external agent must note that the processor has performed an
uncompelled change to slave state and begin driving the SysAD bus along
with the SysCmd bus. As long as the system interface is in slave state,
the external agent can begin a single external request without arbitrating
for the system interface; that is, without asserting ExtRqst*.

After the external request, the system interface returns to master state.
Whenever a processor read request is pending, after the issue of a read

request, the processor automatically switches the system interface to
slave state, even though the external agent is not arbitrating to issue an
external request. This transition to slave state allows the external agent
to quickly return read response data.

12-5

System Interface Chapter 12

Processor and External Requests
There are two broad categories of requests: processor requests and

external requests. These two categories are described in this section.
When a system event occurs, the processor issues either a single

request or a series of requests-called processor requests-through the
system interface, to access an external resource and service the event.
For this to work, the processor system interface must be connected to an
external agent that is compatible with the system interface protocol, and
can coordinate access to system resources.

An external agent requesting access to a processor status register
generates an external request. This access request passes through the
system interface. System events and request cycles are shown in
Figure 12.5.

R4600/R4700 External Agent

~R~e* .:::: .
• Read .. '.:'

·• .. Write .:. Exf&~~~S
. • Read ,:. ' ..

~_""'I-I-__ :~'~:~'::_' :::.;:.:.::;e' '1::.: :·;·:}.:.;/lE·li;::

.. :: :!3¥s.~.k~~ ..
.. :1iOad:Mlas

. ;; 'st&ediiSs' .

-....

• StOtEdtli:Qn' Write--through
. • Oncach.cH.:.oadlSton).
: 11 C:AC'H~:~~~·: :. : _.

':':.:-:.:."::

Figure 12.5 Requests and System Events

Rules for Processor Requests
The following rules apply to processor requests.
• After issuing a processor read request, the processor cannot issue a

subsequent read request until it has received a read response.
• After the processor has issued a write request in R4xOO compatible

write mode (set at boot time), the processor cannot issue a subsequent re­
quest until at least four cycles after the issue cycle of the write request.
This means back-to-back write requests with a single data cycle are sepa­
rated by two unused system cycles, as shown in Figure 12.6.

• After the processor has issued a write request in either of the two new
write modes, write reissue and pipelined writes, the processor can issue a
subsequent write immediately provided the WrRdy* requirement is meet.
This is discussed in more detail later in this chapter.

12-6

System Interface Chapter 12

SCycie 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1

SClock

SysAD Bus

WrRdy*

Cycles 2 3 4

I~ Data ~Data

1\
Writ;#1

.J '-

W~#2

/ \ /

Figure 12.6 Back-to-Back Write Cycle Timing
(R4000 compatible mode)

Processor Requests
A processor request is a request or a series of requests, through the

system interface, to access some external resource. As shown in
Figure 12.7, processor requests include only reads and writes.

R4600/R4700 Extemal Agent

. . ~ : .": -.
ProceS$()r. Reqi,t~~ ..
. • Read

, ,·,,:.~··,Wri& :.' .'
.. : ."

:.:.; :: .. :";.

Figure 12.7 Processor Requests

Read request asks for a block, doubleword, partial doubleword, word, or
partial word of data either from main memory or from another system
resource.

Write request provides a block, doubleword, partial doubleword, word,
or partial word of data to be written either to main memory or to another
system resource.

Processor requests are managed by the processor in the equivalent of
the R4000jR4400 no-secondary-cache mode.

In no-secondary-cache mode, the processor issues requests in a strict
sequential fashion; that is, the processor is only allowed to have one
request pending at any time. For example, the processor issues a read
request and waits for a read response before issuing any subsequent
requests. The processor submits a write request only if there are no read
requests pending.

The processor has the input signals RdRdy* and WrRdy* to allow an
external agent to manage the flow of processor requests. RdRdy*
controls the flow of processor read requests, while WrRdy* controls the
flow of processor write requests.

The processor request cycle sequence is shown in Figure 12.8.

12-7

System Interface Chapter 12

R46001R4700 External Agent

1. Processor issues read or
write request

2. External system controls
acceptance of requests by
asserting RdRdy* or WrRdy*

Figure 12.8 Proce •• or Requellt

Processor Read Request
When a processor issues a read request. the external agent must access

the specified resource and return the requested data. (processor read
requests are described in this section; external read requests are
described in "External Requests" on page 12-9.)

A processor read request can be split from the external agent's return of
the requested data; in other words. the external agent can initiate an
unrelated external request before it returns the response data for a
processor read. A processor read request is completed after the last word
of response data has been received from the external agent.

Note that the data identifier (see "System Interface Commands and Data
Identifiers" on page 12-32) associated with the response data can signal
that the returned data is erroneous. causing the processor to take a bus
error.

Processor read requests that have been issued. but for which data has
not yet been returned. are said to be pending. A read remains pending
until the requested read data is returned.

In no-secondary-cache mode. the external agent must be capable of
accepting a processor read request any time the following two conditions
are met:

'. There is no processor read request pending.
• The signal RdRdy* has been asserted for one clock cycle. two cycles

before the issue cycle.

Processor Write Request
When a processor issues a write request. the specified resource is

accessed and the data is written to it. (Processor write requests are
described in this section; external write requests are described in
"External Requests" on page 12-9.)

A processor write request is complete after the last word of data has
been transmitted to the external agent.

In no-secondary-cache mode. the external agent must be capable of
accepting a processor write request any time the following two conditions
are met:

• No processor read request is pending.
• The signal WrRdy* has been asserted for one clock cycle. two cycles

before the issue cycle.

12-8

System Interface Chapter 12

The R4600 /R4 700 has added two new modes to enhance the
throughput of non-block writes. These modes allow for 2 cycle throughput
on back-to-back non-block writes. The actual protocol is discussed in the
write protocol section of this chapter. The external agent must be capable
of accepting a processor write request in these modes under the same
conditions as for the R4xOO compatibility mode (except as explained in
the protocol section.

External Requests
External requests include read, write and null requests, as shown in

Figure 12.9. This section also includes a description of read response, a
special case of an external request.

R4600/R4700 External Agent

• External Requests:
.: Read .
• : Wi'it&
·:Null:

Figure 12.9 External Requests

Read request asks for a word of data from the processor's internal
resource.

Write request provides a word of data to be written to the processor's
internal resource.

Null request requires no action by the processor; it provides a mecha­
nism for the external agent to return control of the system interface to the
master state without affecting the processor.

The processor controls the flow of external requests through the arbi­
tration signals ExtRqst* and Release*, as shown in Figure 12.10. The
external agent must acquire mastership of the system interface before it
is allowed to issue an external request; the external agent arbitrates for
mastership of the system interface by asserting ExtRqst* and then
waiting for the processor to assert Release* for one cycle.

R4600/R4700 External Agent

1. External system requests bus
mastership by asserting ExtRqst*

2. Processor grants mastership by
asserting Release"

3. External system issues an
External Request

4. Processor regains bus mastership

Figure 12.10 External Request

12-9

System Interface Chapter 12

Mastership of the system interface always returns to the processor after
an external request is issued. The processor does not accept a subse­
quent external request until it has completed the current request.

If there are no processor requests pending, the processor decides, based
on its internal state, whether to accept the external request, or to issue a
new processor request. The processor can issue a new processor request
even if the external agent is requesting access to the system interface.

The external agent asserts EztRqst* indicating that it wishes to begin
an external request. The external agent then waits for the processor to
signal that it is ready to accept this request by asserting Release*. The
processor signals that it is ready to accept an external request based on
the criteria listed below.

• The processor completes any processor request that is in progress.
• While waiting for the assertion of RdRdy* to issue a processor read

request, the processor can accept an external request if the request is
delivered to the processor one or more cycles before RdRdy* is assert­
ed.

• While waiting for the assertion of WrRdy* to issue a processor write
request, the processor can accept an external request provided the re­
quest is delivered to the processor one or more cycles before WrRdy*
is asserted.

• If waiting for the response to a read request after the processor has
made an uncompelled change to a slave state, the external agent can
issue an external request before providing the read response data.

Enemal Read Request
In contrast to a processor read request, data is returned directly in

response to an external read request; no other requests can be issued
until the processor returns the requested data. An external read request
is complete after the processor returns the requested word of data.

The data identifier (see "System Interface Commands and Data Identi­
fiers" on page 12-32) associated with the response data can signal that
the returned data is erroneous, causing the processor to take a bus error.

Note: The R4600/R4700 does not contain any resources that are
readable by an external read request; in response to an external read
request the processor returns undefined data and a data identifier with
its Erroneous Data bit, SysCmd(5), set.

Enemal Write Request
When an external agent issues a write request, the specified resource is

accessed and the data is written to it. An external write request is
complete after the word of data has been transmitted to the processor.

The only processor resource available to an external write request is the
IP field of the Cause register.

Read Response
A read response returns data in response to a processor read request,

as shown in Figure 12.1l. While a read response is technically an
external request, it has one characteristic that differentiates it from all
other external requests-it does not perform system interface arbitration.
For this reason, read responses are handled separately from all other
external requests, and are simply called read responses. When a read
response comes back with bad parity for the first datum, a cache error
exception results.

12-10

System Interface Chapter 12

R4600/R4700 Extemal Agent

1. Read request

2. Read response

Figure 12.11 Read Response

Handling Requests
This section details the sequence, protocol., and syntax (see "Termi­

nology" on page 12-1 for definitions of these terms) of both processor and
external requests. The following system events are discussed:

• load miss (no-secondary-cache mode)
• store miss (no-secondary-cache mode)
• store hit
• uncached loads/stores
• CACHE operations
• load linked store conditional.

Load Miss
When a processor load misses in the primary cache, before the

processor can proceed it must obtain the cache line that contains the
data element to be loaded from the external agent.

If the new cache line replaces a current cache line with a W bit set, the
current cache line must be written back.

The processor examines the coherency attribute (cache coherency
attributes are described in Chapter 11) in the TLB entry for the page that
contains the requested cache line, and executes the following request:

• The coherency attribute is noncoherent, the processor issues a non­
coherent read request.

Table 12.1 shows the actions taken on a load miss to primary cache.

Page Attribute State of Data Cache Line Being Replaced

Clean/Invalid Dirty (W=I)

Noncoherent NCR NCR/W

NCR Processor noncoherent block read request
NCR/W Processor noncoherent block read request followed by processor

block write request

Table 12.1 Load Miss to Primary Cache

12-11

System Interface Chapter 12

No-Secondary-Cache Mode - Load Miss
In no-secondary-cache mode, if the cache line must be written back on

a load miss, the read request is issued and completed before the write
request is handled. The processor takes the following steps:

1. The processor issues a noncoherent read request for the cache line
that contains the data element to be loaded.

2. The processor then waits for an external agent to provide the read
response.

3. The processor will restart the pipeline after the first doubleword (the
data that missed is fetched first). The rest of the data cache line will be
placed into the cache in parallel.

If the current cache line must be written back, the processor issues a
write request to save the dirty cache line in memory.

Store Miss
When a processor store misses in the primary cache, the processor may

request, from the external agent, the cache line that contains the target
location of the store for pages that are either write-back or write-through
with write-allocate only. The processor examines the coherency attribute
in the TLB entry for the page (TLB page coherency attributes are listed in
Chapter 4) that contains the requested cache line to see if the line is
write-allocate or no-write-allocate.

The processor then executes one of the following requests:
• If the coherency attribute is noncoherent, write-back or noncoherent,

write-through with write-allocate, a noncoherent block read request
is issued.

• If the coherency attribute is noncoherent, write-through with no
write-allocate, the processor issues a non-block write request.

Table 12.1 shows the actions taken on a store miss to the primary
cache.

Page Attribute State of Data Cache Line Being Replaced

Clean/Invalid Dirty (W=I)

Noncoherent, write-back or NCR NCR/W
Noncoherent, write-through with
write-allocate

Noncoherent, write-through with NCW NA
no write-allocate

NCR Processor noncoherent block read request
NCR/W Processor non coherent block read request followed by processor

block write request
NCW Processor noncoherent write request

Table 12.2 Store Mi •• to Primary Cache

No-Secondary-Cache Mode - Store Miss
If the coherency attribute is write-back or write-through with write-allo­

cate, the processor issues a read request for the cache line that contains
the data element to be loaded, then awaits the external agent to provide
read data in response to the read request. Then, if the current cache line
must be written back, the processor issues a write request for the current
cache line. For a write-through, no write-allocate store miss, the
processor issues a write request only.

12-12

System Interface Chapter 12

In no-secondary-cache mode. if the new cache line replaces a current
cache line whose Write back (W) bit is set. the current cache line moves to
an internal write buffer before the new cache line is loaded in the primary
cache.

Store Hit
This section describes store hits in no-secondary-cache mode for both

write-back and write-through lines.

No-Secondary-Cache Mode - Store rut
In no-secondary-cache mode. the action on the system interface will be

determined by whether the line is write-back or write-through. Alilines
that use a write-back policy are set to the dirty exclusive cache state and
there is no bus transactions generated. For lines with a write-through
policy. the store will also generate a processor write request for the store
data.

Uncached Loads or Stores
When the processor performs an uncached load. it issues a nonco­

herent word read request (the actual access can be for a doubleword.
word. partial word or byte. but the request is called a word read request
to differentiate it from the block read request). When the processor
performs an uncached store. it issues a doubleword. partial doubleword.
word. or partial word write request.

The CPU expects valid parity and data in the full SysAD bus (all 64
bits). even if it is looking for less than a double word. Even if you do not
want to return the full double word. you still must tell it not to check the
parity if you are not using all 64 bits. In other words. either return 64
bits with parity. or tell it not to check parity.

All writes by the processor will be buffered from the system interface by
the 4-deep write buffer. The write requests are sent to the system inter­
face when there are no other requests in progress. If the write buffer
contains any entries when a block request is needed. the write buffer is
first flushed before any read request will occur (cache miss or uncached
load).

Both a data cache miss and an uncached data load will flush the write
buffer.

CACHE Operations
The processor provides a variety of CACHE operations to maintain the

state and contents of the primary cache. During the execution of the
CACHE operation instructions. the processor can issue write requests.

12-13

System Interface Chapter 12

Load Linked/Store Conditional Operation
Generally. the execution of a Load Linked/Store Conditional instruction

sequence is not visible at the system interface; that is. no special requests
are generated due to the execution of this instruction sequence.

There is. however. one situation in which the execution of a Load
Linked/Store Conditional instruction sequence is visible. as indicated by
the link address retained bit during a processor read request. as
programmed by the SysCmd(2) bit. This situation occurs when the data
location targeted by a Load-Linked-Store-Conditional instruction
sequence maps to the same cache line to which the instruction area
containing the Load Linked/Store Conditional code sequence is mapped.
In this case. immediately after executing the Load Linked instruction. the
cache line that contains the link location is replaced by the instruction
line containing the code. The link address is kept in a register separate
from the cache. and remains active as long as the link bit. set by the Load
Linked instruction. is set.

The link bit. which is set by the load linked instruction. is cleared by a
change of cache state for the line containing the link address. or by a
Return From Exception.

For more information. refer to Chapter 11. or see the specific Load
Linked and Store Conditional instructions described in Appendix A.

Processor and External Request Protocols
The following sections contain a cycle-by-cycle description of the bus

arbitration protocols for each type of processor and external request.
Table 12.3 lists the abbreviations and definitions for each of the buses
that are used in the timing diagrams that follow.

Scope Abbreviation Meaning

Global Unsd Unused

SysAD bus Addr Physical address

Data<n> Data element number n of a block of data

SysCmd bus Cmd An unspecified system interface command

Read A processor or external read request command

Write A processor or external write request command

SINull A system interface release external null request
command

NData A non coherent data identifier for a data element
other than the last data element

NEOD A noncoherent data identifier for the last data
element

Table 12.3 System Interface Requests

Processor Request Protocols
Processor request protocols described in this section include:
• read
• write
Note: In the timing diagrams. the two closely spaced. wavy vertical

lines (see SCycle 2 in Figure 12.20 on page 12-24) indicate one or more
identical cycles.

12-14

System Interface Chapter 12

Processor Read Request Protocol Steps
The following sequence describes the protocol for a processor read

request (the numbered steps below correspond to the numbers in
Figure 12.12 on page 12-16).

1. RdRdy* is asserted low, indicating the external agent is ready to
accept a read request.

2. With the system interface in master state, a processor read request is
issued by driving a read command on the SysCmd bus and a read address
on the SysAD bus.

3. At the same time, the processor asserts ValldOut· for one cycle,
indicating valid data is present on the SysCmd and the SysAD buses.

Note: Only one processor read request can be pending at a time.
4. The processor makes an uncompelled change to slave state at the

issue cycle of the read request by asserting the Release· signal for one
cycle.

Note: The external agent must not assert the signal ExtRqst· for the
purposes of returning a read response, but rather must wait for the
uncompelled change to slave state. The signal ExtRqst· can be asserted
before or during a read response to perform an external request other than
a read response.

5. The processor releases the SysCmd and the SysAD buses one SCycle
after the assertion of Release·.

6. The external agent drives the SysCmd and the SysAD buses within
two cycles after the assertion of Release·.

Once in slave state (starting at cycle 5 in Figure 12.12), the external
agent can return the requested data through a read response. The read
response can return the requested data or, if the requested data could not
be successfully retrieved, an indication that the returned data is erro­
neous. If the returned data is erroneous, the processor takes a bus error
exception.

Note: The R4600/R4700 only check the error bit for the first
doubleword of read response data, all other error bits are ignored.

12-15

System Interface

SCycie

SClock

SysAD Bus

Chapter 12

Figure 12.12 illustrates a processor read request, coupled with an
uncompelled change to slave state.

Note: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

.. Master~ I .. Slave ..
II I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I
I
I

SysCmd Bus I
ValidOut* I
Validln* I
RdRdy* I~ /
WrRdy* I
Release* I U
Figure Note: Numbers in boxes correspond to numbered steps in preceding text.

~e 12.12 Processor Read Request Protocol

The assertion of Release* indicates either an uncompelled change to
slave state, or a response to the assertion of ExtRqst*, whereupon the
processor accepts either a read response, or any other external request.
If any external request other than a read response is issued, the
processor performs another uncompelled change to slave state after
processing the external request.

The actual read response, where the external agent returns the
requested data, is shown later in this chapter.

External Instruction Read Response Time
The R4600/R4700 accesses the external bus due to instruction cache

miss or an uncached reference. The length of time for an external read is
based on the overhead at the beginning and end of the read along with the
time to drive the address and get the response data.

12-16

System Interface Chapter 12

Instruction Read Latency Steps for System Clock
The read latency for a system clock in the divide-by-two mode is as

follows:
1. The startup overhead is one to two pipeline cycles (PCycle) for the CPU

to transfer the address to the pads to be output. The second PCycle is
needed if the miss is detected on a PCycle not aligned with the rising edge
of SClock.

2. The CPU drives the address on the SysAD bus for two PCycles.
3. The CPU tri-states the SysAD bus for two PCycles.
4. The CPU waits for the main memory to return the data. This is

expressed as n x 2 PCycles.
5. The first double word is driven in the SysAD from the main memory

for two PCycles.
6. The remaining three double words of instruction are driven on

SysAD for 3*2 PCycles.
Notes on the Instruction Read Latency Steps:

a.For instruction misses the pipeline starts after all the instructions are
returned.

b. n is the total number of idle cycles (even between double word
instruction). For zero wait state systems. n = O.

Example of Instruction Block Read With Zero Wait State
The following example shows an instruction block read with a zero wait

state:
StepDescriptionPCycles
1. CPU overhead for cache miss detection: 1-2
2. Address driven on SysAD bus:2
3. SysAD bus tri-stated:2
4. Memory latency to return the data:0*2
5. First double word driven on SysAD bus:2
6. Remaining three instructions returned:2*3=6

Total PCycles:13-14

External Data Read Response Time
The R4600 /R4 700 accesses the external bus due to data cache miss or

an uncached reference. The length of time for an external read is based
on the overhead at the beginning and end of the read along with the time
to drive the address and get the response data.

12-17

System Interface Chapter 12

Data Read Latency Steps for System Clock
The read latency for a system clock in the divide-by-two mode is as

follows:
1. The startup overhead is one to two pipeline cycles (PCycle) for the

CPU to generate the parity for the address to be output. The second PCycle
is needed if the miss is detected or a PCycle not aligned with the rising edge
of SClock.

2. The CPU drives the address on the SysAD bus for two PCycles.
3. The CPU tri-states the SysAD bus for two PCycles.
4. The CPU waits for the main memory to return the data. This is

expressed as n x 2 PCycles where n is the number of SClock cycles for the
first data to be returned in a block read. or the latency for the single read.
For zero wait state memory system n should be zero.

5. The first double word is driven in the SysAD from the main memory
for two PCycles.

6. The end of the overhead is two PCycles: one to transfer the data from
the pads and generate the parity. and one to write to the register (or cache.
if it is cacheable data).

Notes on the nata Read Latency Steps:
a. If n=O and the line being replaced is dirty. the CPU takes one to two

additional PCycles of overhead to move the dirty data into the write
buffer.

b. The additional latency for returning the remaining three data
elements should be added in a similar fashion.

c. If cache line needs to be written back the read request is posted first.
then the write is completed.

Example of Data Single Read With Zero Wait State
The following example shows a data block read with a zero wait state:
StepDescriptionPCycles
1. CPU overhead for cache miss detection: 1-2
2. Address driven on SysAD bus:2
3. SysAD bus tri-stated:2
4. Memory latency to return the data:O*2
5. First double word driven on SysAD bus:2
6. CPU overhead to write the data cache.

do the fixup. and then restart:2
Total PCycles:9-1O

Extemal Cycles for Read Latency
The external cycles to get the response data will look similar to Figure

12.13. For a larger "divide by" it will take longer to get the response data.

PClk 1
SClock 1
SysAD Bus 1](Addr) (Data >-

Figure 12.13 Uncached Read-External Cycles

12-18

System Interface

SCycie

SClock

SysAD Bus

Chapter 12

The same operation is shown in greater detail in Figure 12.14. These
figures assume the following:

1. Data is returned immediately after the Release· is asserted, and after
the bus turn-around cycle (when the CPU tri-states the bus to allow the
external agent to drive it).

2. The data meets the setup and hold requirements for the rising edge
of the SClock that is identified in the preceding and following figures with
an asterisk.

.. Master .1. Slave .1 .. Master •

II 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1

*
1

1

SysCmd Bus 1

ValidOut"

Valid In"

ExtRqst"

Release"

RdRdy"

1

1 U
1

1 LJ
I~

Figure 12.14 Processor Read Cycle

Processor Write Request Protocol
Processor write requests are issued using one of two protocols.
• Doubleword, partial doubleword, word, or partial word writes use a

word 1 write request protocol.
• Block writes use a block write request protocol.

Processor word write requests are issued with the system interface in
master state, as deSCribed in the following steps. Figure 12.15 shows a
processor noncoherent word write request cycle.

1. A processor single word write request is issued by driving a write
command on the SysCmd bus and a write address on the SysAD bus.

2. The processor asserts vandOut*.
3. The processor drives a data identifier on the SysCmd bus and data

on the SysAD bus.
4. The data identifier associated with the data cycle must contain a last

data cycle indication. At the end of the cycle, vandOut* is deasserted.
Note: Timings for the SysADC and SysCmdP buses are the same as

those of the SysAD and SysCmd buses, respectively.

1. Called word to distinguish it from block request protocol. Data transferred can
actually be doubleword, partial doubleword, word, or partial word.

12-19

System Interface Chapter 12

~--------------------Mas~r--------------------~~~ 4

SCycie II I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I
SClock I
SysAD Bus I

,..------.
~OataoX
~

SysCmd Bus I / X Write NEOOX

ValidOut* I , ~ I ~/

Validln* I I

RdRdy* I=><~ ____________ >C
WrRdy* I~
Release* 1---

Figure 12.15 Proceuor Noncoherent Word Write Request Protocol

The R4600/R4700 interface requires that WrRdy* be asserted two
system cycles prior to the issue of a write, for one clock cycle. An external
agent that deasserts WrRdy* immediately upon receiving the write that
fills its buffer will stop a subsequent write for four system cycles in R4000
non-block write compatible mode. This leaves two null system cycles after
a write address/data pair to give the external agent time to stop the next
write. This is illustrated in Figure 12.6 on page 12-7.

An Address/data pair every four system cycles is not sufficiently high
performance for all applications. For this reason, the R4600/R4700
provides two new protocol options that modify the R4000 back-to-back
write protocol to allow an address/data pair every two system cycles. The
first protocol, called write re-issue. allows WrRdy* to be deasserted during
the address cycle and forces a write to be re-issued. The second, called
pipelined writes, leaves the sample point of WrRdy* unchanged and
requires that the external agent accept one more write than the R4000
protocol.

12-20

--- - -~----------

System Interface Chapter 12

The write re-issue protocol is shown in Figure 12.16. Writes issue when
WrRdy* is asserted both two cycles prior to the address cycle and during
the address cycle.

SCycie II I Issue I Ils~8el Ils~8e Ils~8e Ils~8e I Issue I

SClock I

SysAD Bus I ___ ~

SysCmd Bus I ___ ~

WrRdy* 1 ______ --'

n,ure 12.18 Write re-iuue

The pipelined write protocol is shown in Figure 12.17. This protocol
maintains the R4000 write issue rule (issue ifWrRdy* asserted two cycles
prior to the address cycle, for one clock cycle), but simply eliminates the
two null cycles between writes. The external agent is then required to
accept one more write after it deasserts WrRdy*.

SCycle II I Issue I I Issue I Ils~8e Ils~8e Ils~8e I Issue I

SClock I

SysAD Bus 1 ___ _

SysCmd Bus I ___ ~~ Wr~e
WrRdy* I I \L--____ ---

Figure 12.17 PipeJiDed Writes

All three write protocols apply for both single write and block writes.
This means that in pipeline write, for example, a single write can be
followed immediately by a block write that the external agent must
accept.

Processor block write requests are issued with the system interface in
master state, as deSCribed below; a processor noncoherent block request
for eight words of data is illustrated in Figure 12.18 on page 12-22.

1. The processor issues a write command on the SysCmd bus and a
write address on the SysAD bus

2. The processor asserts VaUdOut*.
3. The processor drives a data identifier on the SysCmd bus and data

on the SysAD bus.
4. The processor asserts VaUdOut* for a number of cycles sufficient to

transmit the block of data.
5. The data identifier asSOCiated with the last data cycle must contain a

last data cycle indication.

12-21

System Interface

SCycie

SClock

SysAD Bus

Chapter 12

Figure 12.18 illustrate a processor noncoherent block request for eight
words of data with a data pattern ofDDDD.

~-----------Master------------''' ..
II I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I
I
I

SysCmd Bus I
ValidOut*

Validln*

RdRdy*

WrRdy*

Release*

I .. ~

I @

I=>< >C
I\~
I

Figure 12.18 Processor Noncoherent Block Write Request Protocol

Processor Request and Flow Control
The external agent uses RdRdy* to control the flow of processor read

requests. Figure 12.19 on page 12-23 illustrates this flow control, as
described in the steps below.

1. The processor samples the signal RdRdy* to determine if the external
agent is capable of accepting a read request.

2. The signal WrRdy* controls the flow of a processor write request.
3. The processor does not complete the issue of a read request, until it

. issues an address cycle in response to the request for which the signal
RdRdy* was asserted two cycles earlier.

4. The processor does not complete the issue of a write request until it
issues an address cycle in response to the write request for which the
signal WrRdy* was asserted two cycles earlier.

12-22

System Interface Chapter 12

Figure 12.19 illustrates two processor wrtte requests in which the issue
of the second is delayed for the assertion of WrRdy* .

Note: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

SCycie II 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 1 0 I 11 I 12 I
SClock I
SysAD Bus 1 ___ --1

SysCmd Bus 1 ___ --1 Wr~e

ValidOut*

Validln*

RdRdy*

WrRdy*

Release*

I
I -----~
I=>< ~ >C
I~J ~ I
I

Figure 12.19 Two Processor Write Requests, Second Write Delayed for the Assertion of
WrRdy·

External Request Protocols
External requests can only be issued with the system interface in slave

state. An external agent asserts ExtRqst* to arbitrate (see "External
Arbitration Protocol" on page 12-24) for the system interface, then waits
for the processor to release the system interface to slave state by
asserting Release* before the external agent issues an external request.
If the system interface is already in slave state-that is, the processor has
previously performed an uncompelled change to slave state-the external
agent can begin an external request immediately.

After issuing an external requ~st, the external agent must return the
system interface to master state. If the external agent does not have any
additional external requests to perform, ExtRqst* must be deasserted
two cycles after the cycle in which Release* was asserted. For a string of
external requests, the ExtRqst* signal is asserted until the last request
cycle, whereupon it is deasserted two cycles after the cycle in which
Release* was asserted.

The processor continues to handle external requests as long as
ExtRqst* is asserted; however, the processor cannot release the system
interface to slave state for a subsequent external request until it has
completed the current request. As long as ExtRqst* is asserted, the
string of external requests is not interrupted by a processor request.

This section describes the following external request protocols:
• read
• null
• write
• read response

12-23

System Interface

SCycie

SClock

SysAD Bus

Chapter 12

External Arbitration Protocol
System interface arbitration uses the signals ExtRqst* and Release* as

described above. Figure 12.20 is a timing diagram of the arbitration
protocol, in which slave and master states are shown.

The arbitration cycle consists of the following steps:
1. The external agent asserts ExtRqst* when it wishes to submit an

external request.
2. The processor waits until it is ready to handle an external request,

whereupon it asserts Release* for one cycle.
3. The processor sets the SysAD and SysCmd buses to tri-state.
4. The external agent must begin driving the SysAD bus and the

SysCmd bus two cycles after the assertion of Release * .
5. The external agent de asserts ExtRqst* two cycles after the assertion

of Release * , unless the external agent wishes to perform an additional
external request.

6. The external agent sets the SysAD and the SysCmd buses to tri-state
at the completion of an external request.

The processor can start issuing a processor request one cycle after the
external agent sets the bus to tri-state.

Note: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

~---Master "I~ Slave --.1 1---- Master
II 1213141516171819 10 I 11 I 12 I
I
I

SysCmd Bus I
Validln*

Ext Rqst*

Release*

RdRdy* I~~~/-------------------
Figure 12.20 Arbitration Protocol for EztemaI Requests

External Read Request Protocol
External reads are requests for a word of data from a processor internal

resource, such as a register. External read requests cannot be split; that
is, no other request can occur between the external read request and its
read response.

12-24

System Interface Chapter 12

Figure 12.21 shows a timing diagram of an external read request, which
consists of the following steps:

1. An external agent asserts ExtRqst* to arbitrate for the system
interface.

2. The processor releases the system interface to slave state by asserting
Release* for one cycle and then de asserting Release*.

3. After Release* is deasserted, the SysAD and SysCmd buses are set
to a tri-state for one cycle.

4. The external agent drives a read request command on the SysCmd
bus and a read request address on the SysAD bus and asserts vaUdIn* for
one cycle.

5. After the address and command are sent, the external agent releases
the SysCmd and SysAD buses by setting them to tri-state and allowing the
processor to drive them. The processor, having accessed the data that is
the target of the read, returns this data to the external agent. The
processor accomplishes this by driving a data identifier on the SysCmd
bus, the response data on the SysAD bus, and asserting ValidOut* for one
cycle. The data identifier indicates that this is last-data-cycle response
data.

6. The system interface is in master state. The processor continues
driving the SysCmd and SysAD buses after the read response is returned.

Note: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

External read requests are only allowed to read a word of data from the
processor. The processor response to external read requests for any data
element other than a word is undefined .

....... I-----Master-----1 .. ~I ... Slave -....J 1----- Master -----1 .. ~

SCycie II I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I
SClock I

SysAD Bus 1 _____ -1 r---1

SysCmd Bus 1------1)-__ -'
r----~~----~

ValidOut*

Validln*

ExtRqst*

Release*

Note: The processor does not contain any resources that are readable by an external read
request; in response to an external read request the processor returns undefined data and
a data identifier with its ElToneous Data bit. SysCmd(5). set.

Figure 12.21 External Read Request, System Interface in Master State

External Null Request Protocol
The R4600/R4700 only supports one external null request. A system

interface release external null request returns the system interface to
master state from slave state without otherwise affecting the processor.

12-25

System Interface

SCycie

SClock

SysAD Bus

Chapter 12

External null requests require no action from the processor other than
to return the system interface to master state.

Figure 12.22 show timing diagram of the external null request cycle,
which consist of the following steps:

1. The external agent asserts ExtRqst* to arbitrate for the system
interface.

2. The processor releases the system interface to slave state by asserting
Release*.

3. The external agent drives a system interface release external null
request command on the SysCmd bus, and asserts VaHdIn* for one cycle
to return the system interface back to master state.

4. The SysAD bus is unused (does not contain valid data) during the
address cycle associated with an external null request.

5. After the address cycle is issued, the null request is complete.
For a system interface release external null request, the external agent

releases the SysCmd and SysAD buses, and expects the system interface
to return to master state .

.... -------- Slave .1. Master

"
1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1

1

1 ~
SysCmd Bus 1

-----------------------------~ ~~-----

/~
------------------------------/7L-~ ~----

ValidOut*

Validln*

ExtRqst*

Release*

Figure 12.22 System Interface Release Ezternai Null Request

External Write Request Protocol
External write requests use a protocol identical to the processor single

word write protocol except the VaHdIn * signal is asserted instead of
VaHdOut*. Figure 12.23 on page 12-27 shows a timing diagram of an
external write request, which consists of the following steps:

1. The external agent asserts ExtRqst* to arbitrate for the system
interface.

2. The processor releases the system interface to slave state by asserting
Release*.

3. The external agent drives a write command on the SysCmd bus, a
write address on the SysAD bus, and asserts VaiidIn*.

4. The external agent drives a data identifier on the SysCmd bus, data
on the SysAD bus, and asserts VaHdIn *.

5. The data identifier associated with the data cycle must contain a
coherent or noncoherent last data cycle indication.

6. After the data cycle is issued, the write request is complete and the
external agent sets the SysCmd and SysAD buses to a tri-state, allowing
the system interface to return to master state. Timings for the SysADC
and SysCmdP buses are the same as those of the SysAD and SysCmd
buses, respectively.

12-26

System Interface

SCycie

SClock

SysAD Bus

Chapter 12

External write requests are only allowed to write a word of data to the
processor. Processor behavior in response to an external write request for
any data element other than a word is undefined .

.... ---Master .1..-- Slave --..11 1---- Master • •
II I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 10 I 11 I 12 I
I
I

SysCmd Bus I
ValidOut*

Validln*

Ext Rqst*

Release*

I
I \ [j I
II[] I
I \sU

Figure 12.23 External Write Request. with System Interface iDitiaUy Master State

Read Response Protocol
An external agent must return data to the processor in response to a

processor read request by using a read response protocol. A read
response protocol consists of the following steps:

1. The external agent waits for the processor to perform an uncompelled
change to slave state.

2. The external agent returns the data through a single data cycle or a
series of data cycles.

3. After the last data cycle is issued. the read response is complete and
the external agent sets the SysCmd and SysAD buses to a tn-state.

4. The system interface returns to master state.
Note: The processor always performs an uncompelled change to slave

state in the same cycle that it issues a read request.
5. The data identifier for data cycles must indicate the fact that this data

is response data.
6. The data identifier associated with the last data cycle must contain a

last data cycle indication.
For read responses to non-coherent block read requests (which is the

only read request for normal operations of the R4600/R4700.) the
response data will not need to identify an initial cache state. The cache
state will automatically be assigned as dirty exclUSive by the R4600/
R4700.

The data identifier associated with a data cycle can indicate that the
data transmitted during that cycle is erroneous; however. an external
agent must return a data block of the correct size regardless of the fact
that the data may be in error. The R4600/R4700 only checks the error bit
for the first doubleword of a block. the other error bits for the block of
data are ignored If an initial erroneous data cycle is detected. the
processor takes a bus error at the completion of the data transfer.

12-27

System Interface

SCycie

SClock

SysAD Bus

Chapter 12

Read response data must only be delivered to the processor when a
processor read request is pending. The behavior of the processor is unde­
fined when a read response is presented to it and there is no processor
read pending.

Figure 12.24 illustrates a processor word read request followed by a
word read response. Figure 12.25 illustrates a read response for a
processor block read with the system interface already in slave state.
Figure 12.26 illustrates a block read transaction with one wait state.

Note: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

~---Master .. I... Slave ----l .. ~j._ Master
II I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I
I
I

SysCmd Bus I
ValidOut*

Validln*

Ext Rqst*

Release*

RdRdy*

Figure 12.24 Processor Word Read Request. followed by a Word Read Response

~---Master .. I... Slave ----l .. ~j._ Master
SCycie II I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I
SClock I
SysAD Bus I -----~~~----

ValidOut* I
SysCmd Bus I -----~~
Validln* I \'--___ -----'1
ExtRqst* I
Release* I LJ
RdRdy* I~ 1

Figure 12.25 Block Read Response With Zero Wait State

12-28

System Interface

SCycie

SClock

SysAD Bus

SysCmd Bus I

ValidOut*

Validln*

ExtRqst*

I
I

I

Chapter 12

Master Slave I Master
~.~------------~. I~·~------------------------------~··~

I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I
IL

________ ~~~~c=
___ ~~~~-c=

u

Release* I U
RdRdy* I\~~/_---------------------

Figure 12.26 Block Read Transaction With One Wait State

Data Rate Control
The system interface supports a maximum data rate of one doubleword

per cycle. The data rate the processor can support is directly related to
the rate at which the external agent can accept data.

Read Data Pattern
The rate at which data is delivered to the processor can be determined

by the external agent-for example, the external agent can drive data and
assert VaHdIn * every n cycles, instead of every cycle. An external agent
can deliver data at any rate it chooses, but must not deliver data to the
processor any faster than the processor is capable of receiving it.

The processor only accepts cycles as valid when VaHdIn * is asserted
and the SysCmd bus contains a data identifier. If the external agent
sends more data items then requested (e.g., a fifth doubleword of read
response data with ValidIn* asserted) or the last data (i.e., the fourth
doubleword) of a block read is not tagged as the last data item, it is an
error and the resulting actions of the processor for these cases will be
undefined.

12-29

~-----"~. ~-.~.-.-. -."

System Interface Chapter 12

Figure 12.27 shows a read response with reduced data rate and with
the system interface in slave state.

SCycie II 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I
SClock I
SysAD Bus I _____ ~
SysCmd Bus I _____ ~

ValidOut*

Validln*

Ext Rqst*

Release*

\'---_---11\'---_----'1

Figure 12.27 Read Response, Reduced Data Rate, System Interface in Slave State

Write Data Transfer Patterns
The write data pattern specifies the pattern the R4600jR4700 uses

when writing a block to the external agent. This pattern is specified
through the mode bits.

A data pattern is a sequence of letters indicating the data and unused
cycles that repeat to provide the appropriate data rate. For example, the
data pattern DDxx specifies a repeatable data rate of two doublewords
every four cycles, with the last two cycles unm~ed.

Table 12.4 lists the maximum processor data rate and the data pattern
for each data rate.

Maximum Data Transmit Rate Block writes DataPattem

1 Double/1 SClock Cycle DDDD

2 Doubles /3 SClock Cycles DDxDDx

1 Double/2 SClock Cycles DDxxDDxx

1 Double12 SClock Cycles DxDxDxDx

2 Doubles/5 SClock Cycles DDxxxDDxxx

1 Double/3 SClock Cycles DDxxxxDDxxxx

1 Double/3 SClock Cycles DxxDxxDxxDxx

1 Double/4 SClock Cycles DDxxxxxxDDxxxxxx

1 Double/4 SClock Cycles DxxxDxxxDxxxDxxx

Table 12.4 Transmit Data Rates and Patterns

In Table 12.4 data patterns are specified using the letters D and x; D
indicates a data cycle and x indicates an unused cycle. During the
unused cycles, the data bus will maintain the last data value (D).

12-30

---- ---~-------- -----------------

System Interface Chapter 12

Independent Transmissions on the SysAD Bus
In most applications, the SysAD bus is a point-to-point connection,

running from the processor to a bidirectional registered transceiver
residing in an external agent. For these applications, the SysAD bus has
only two possible drivers, the processor or the external agent.

Certain applications may require connection of additional drivers and
receivers to the SysAD bus, to allow transmissions over the SysAD bus
that the processor is not involved in. These are called independent trans­
missions. To effect an independent transmission, the external agent must
coordinate control of the SysAD bus by using arbitration handshake
signals and external null requests.

An independent transmission on the SysAD bus follows this procedure:
1. The external agent requests mastership of the SysAD bus, to issue an

external request.
2. The processor releases the system interface to slave state.
3. The external agent then allows the independent transmission to take

place on the SysAD bus, making sure that ValidIn* is not asserted while
the transmission is occurring.

4. When the transmission is complete, the external agent must issue a
system interface release external null request to return the system interface
to master state.

System Interface Endianness
The endianness of the system interface is programmed at boot time

through the boot-time mode control interface (see chapter 9, Initialization
Interface), and remains fixed until the next time the processor boot-time
mode bits are read. Software cannot change the endianness of the system
interface and the external system; software can set the reverse endian bit
to reverse the interpretation of endianness inside the processor, but the
endianness of the system interface remains unchanged.

System Interface Cycle Time
The processor specifies minimum and maximum cycle counts for

various processor transactions and for the processor response time to
external requests. Processor requests themselves are constrained by the
system interface request protocol, and request cycle counts can be deter­
mined by examining the protocol. The following system interface interac­
tions can vary within minimum and maximum cycle counts:

• waiting period for the processor to release the system interface to
slave state in response to an external request (release latency)

• response time for an external request that requires a response (exter­
nal response latency).

The remainder of this section deSCribes and tabulates the minimum and
maximum cycle counts for these system interface interactions.

12-31

System Interface Chapter 12

Release Latency
Release latency is generally defined as the number of cycles the

processor can wait to release the system interface to slave state for an
external request. When no processor requests are in progress, internal
activity can cause the processor to wait some number of cycles before
releasing the system interface. Release latency is therefore more specifi­
cally defined as the number of cycles that occur between the assertion of
ExtRqst* and the assertion of Release*.

There are three categories of release latency:
• Category 1: when the external request signal is asserted two cycles

before the last cycle of a processor request.
• Category 2: when the external request signal is not asserted during a

processor request, or is asserted during the last cycle of a processor
request.

• Category 3: when the processor makes an uncompelled change to
slave state.

Table 12.5 summarizes the minimum and maximum release latencies
for requests that fall into categories 1, 2 and 3. Note that the maximum
and minimum cycle count values are subject to change.

Category Minimum PCyc1es Maximum PCyc1es

1 4 6

2 4 24

3 0 0

Table 12.5 Release LateDCY for Elrternal Reque.t.

The differences in the minimum and maximum times are due to
internal conditions not readily observable externally.

System Interface Commands and Data Identifiers
System interface commands specify the nature and attributes of any

system interface request; this specification is made during the address
cycle for the request. System interface data identifiers specify the
attributes of data transmitted during a system interface data cycle.

The follOWing sections deSCribe the syntax, that is, the bitwise encoding
of system interface commands and data identifiers.

Reserved bits and reserved fields in the command or data identifier
should be set to 1 for system interface commands and data identifiers
asSOCiated with external requests. For system interface commands and
data identifiers associated with processor requests, reserved bits and
reserved fields in the command and data identifier are undefined.

Command and Data Identlfier Syntax
System interface commands and data identifiers are encoded in 9 bits

and are transmitted on the SysCmd bus from the processor to an
external agent, or from an external agent to the processor, during address
and data cycles. Bit 8 (the most-significant bit) of the SysCmd bus deter­
mines whether the current content of the SysCmd bus is a command or a
data identifier and, therefore, whether the current cycle is an address
cycle or a data cycle. For system interface commands, SysCmd(8) must
be set to O. For system interface data identifiers, SysCmd(8) must be set
to 1.

12-32

System Interface Chapter 12

System Interface Command Syntax
This section describes the SysCmd bus encoding for system interface

commands. Figure 12.28 shows a common encoding used for all system
interface commands.

8 7 5 4 o

o Request Type Request Specific

Figure 12.28 System Interface Command Syntu Bit Definition

SysCmd(8) must be set to 0 for all system interface commands.
SysCmd(7:5) specify the system interface request type which may be

read. write or null; Table 12.6 lists the encoding ofSysCmd(7:5).
Table 12.6 shows the types of requests encoded by the SysCmd(7:5)

bits.

SysCmd(7:5) Command

0 Read Request

1 Reserved

2 Wrtte Request

3 Null Request

4-7 Reserved

Table 12.6 Encoding of SysCmd(7:5) for System Interface Commands

SysCmd(4:0) are specific to each type of request and are defined in
each of the following sections.

Read Requests
Figure 12.29 shows the format of a SysCmd read request.

8 7 5 4 3 2 1 o

0 000 Read Req~est s~eCifiC
(see tables)

I I

Figure 12.29 Read Request SysCmd Bus Bit Definition

12-33

System Interface Chapter 12

Table 12.7, Table 12.8, and Table 12.9 list the encoding ofSysCmd(4:0)
for read requests.

SysCmd(4:S) Read Attributes

0-1 Reserved

2 Noncoherent block read

3 Doubleword, partial doubleword, word, or partial word

Table 12.7 EncodlDg of SysCmd(4:3J for Read Reque.ts

SysCmd(2) Link Addre .. Retained Indication

0 Link address not retained

1 Link address retained

SysCmd(I:0) Read Block Size

0 Reserved

1 Swords

2-3 Reserved

Table 12.S EDeodi.., of SysCmd(2:0J for Block Read Reque.t

0

1

2

3

4

5

6

7

SysCmd(2:0) Read Data Size

1 byte valid (Byte)

2 bytes valid (Halfword)

3 bytes valid (Tribyte)

4 bytes valid (Word)

5 bytes valid (Qutntlbyte)

6 bytes valid (Sextibyte)

7 bytes valid (Septlbyte)

S bytes valid (Doubleword)

Table 12.9 Doubleword, Word, or Partial-word Read Reque.t Data Size
Encoding of Sy.Cmd(2:0)

Write Requests
Figure 12.30 shows the format of a SysCmd write request.

8 7 5 4 3 2 o

0 010 Write ReJest S~CifiC
(see tables)

I I

Figure 12.30 Write Requeat SysCmd BUB Bit DefiDitlon

12-34

System Interface Chapter 12

Table 12.10 lists the write attributes encoded in bits SysCmd(4:3).
Table 12.11 lists the block write replacement attributes encoded in bits
SysCmd(2:0). Table 12.12 lists the write request bit encoding in
SysCmd(2:0).

0

1

2

3

SysCmd(4:3) Write Attributes

Reserved

Reserved

Block write

Doubleword, partial doubleword, word, or partial word

Table 12.10 Write Request Encoding of SysCmd(4:3)

SysCmd(2) Cache Line Replacement Attributes

0 Cache line replaced

1 Cache line retained

SysCmd(I:0) Write Block Size

0 Reserved

1 8 words

2-3 Reserved

0

1

2

3

4

5

6

7

Table 12.11 Block Write Request Encoding of SysCmd(2:0)

SysCmd(2:0) Write Data Size

1 byte valid (Byte)

2 bytes valid (Halfword)

3 bytes valid (Tribyte)

4 bytes valid (Word)

5 bytes valid (Qulntlbyte)

6 bytes valid (Sextibyte)

7 bytes valid (Septlbyte)

8 bytes valid (Doubleword)

Table 12.12 Doubleword, Word, or Partial-word Write Request Data Size
Encoding of SysCmd{2:0)

12-35

System Interface Chapter 12

Null Requests
Figure 12.31 shows the format of a SysCmd null request.

8 7 5 4 3 2 1 0

0 011 Null Requlst sJecifiC
(see table)

I I

Figure 12.31 Null Request SysCmd Bus Bit DefiDitioD

System interface release external null requests use the null request
command. Table 12.13 lists the encoding of SysCmd(4:3) for external
null requests. SysCmd(2:0) are reserved for both instances of null
requests.

SysCmd(4:3) Null Attributes

0 System Interface release

1-3 Reserved

Table 12.13 Ezternal Null Request Encoding of SysCmd(4:3)

System Interface Data Identifier Syntax
This section defines the encoding of the SysCmd bus for system inter­

face data identifiers. Figure 12.32 shows a common encoding scheme
used for all system interface data identifiers.

8 7 6 5 4 3 2 o

1 Last Resp Good Data Reserved Data Data Data Check

Figure 12.32 Data IcIeDtifier SysCmd Bus Bit DefiDitioD

SysCmd(8) must be set to 1 for all system interface data identifiers.
system interface data identifiers use the format for noncoherent data.

Noncoherent Data
Noncoherent data is defined as follows:
• data that is associated with processor block write requests and pro­

cessor doubleword, partial doubleword, word, or partial word write re­
quests

• data that is returned in response to a processor noncoherent block
read request or a processor doubleword, partial doubleword, word, or
partial word read request

• data that is associated with external write requests
• data that is returned in response to an external read request

12-36

System Interface Chapter 12

Data Identifier Bit Definitions
SysCmd(7) marks the last data element and SysCmd(6) indicates

whether or not the data is response data, for both processor and external
coherent and noncoherent data identifiers. Response data is data
returned in response to a read request.

SysCmd(5) indicates whether or not the data element is error free. Erro­
neous data contains an uncorrectable error and is returned to the
processor, forcing a bus error. The processor delivers data with the good
data bit deasserted if a primary parity error is detected for a transmitted
data item.

SysCmd(4) indicates to the processor whether to check the data and
check bits for this data element.

SysCmd(S) is reserved for external data identifiers.
SysCmd(4:S) are reserved for noncoherent processor data identifiers.
SysCmd(2:0) are reserved for noncoherent data identifiers.
Table 12.14 lists the encoding ofSysCmd(7:S) for processor data identi­

fiers.

SysCmd(7) Last Data Element Indication

0 Last data element

1 Not the .last data element

SysCmd(6) Response Data Indication

0 Data Is response data

1 ·Data Is not response data

SysCmd(5) Good Data Indication

0 Data is error free

1 Data Is erroneous

SysCmd(4:3) Reserved

Table 12.14 Proce.lIOr Data IcleatUler BDcodlDg of SyIICmd(7:3)

12-37

.-----------------~ ~------~-------~~-~

System Interface Chapter 12

Table 12.15 lists the encoding of SysCmd(7:S) for external data identi­
fiers.

SysCmd(7) Last nata Element Indication

0 Last data element

1 Not the last data element

SysCmd(6) Response Data Indication

0 Data Is response data

1 Data Is not response data

SysCmd(5} Good nata Indication

0 Data Is error free

1 Data Is erroneous

SysCmd(4) nata Checking Enable

0 Check the data and check bits

1 Do not check the data and check bits

SysCmd(3) Reserved

Table 12.15 bterDa! nata IdeDtifier EDcoding of SysCmd(7:3)

System Interface Addresses
System interface addresses are full 36-bit physical addresses presented

on the least-significant 36 bits (bits 35 through 0) of the SysAD bus
during address cycles; the remaining bits of the SysAD bus are unused
during address cycles.

Addressing Conventions
Addresses associated with doubleword, partial doubleword, word, or

partial word transactions, are aligned for the size of the data element.
The system uses the following address conventions:

• Addresses associated with block requests are aligned to double-word
boundaries; that is, the low-order 3 bits of address are O.

• Doubleword requests set the low-order 3 bits of address to O.
• Word requests set the low-order 2 bits of address to O.
• Halfword requests set the low-order bit of address to O.
• Byte, tribyte, qUintibyte, sextibyte, and septibyte requests use the

byte address.

Subblock Ordering
The order in which data is returned in response to a processor block

read request is subblock ordering. In subblock ordering, the processor
delivers the address of the requested doubleword within the block. An
external agent must return the block of data using subblock ordering,
starting with the addressed doubleword.

A block of data elements (whether bytes, halfwords, words, or double­
words) can be retrieved from storage in two ways: in sequential order, or
using a subblock order. This section describes these retrieval methods,
with an emphasis on subblock ordering. Note that the R4600jR4700 only
uses subblock ordering for block reads.

12-38

System Interface Chapter 12

Example of Sequential Ordering
Sequential ordering retrieves the data elements of a block in serial, or

sequential, order.
Figure 12.33 shows a sequential order in which DWO is taken first and

DW3 is taken last.

I ~WO.I OW1.J OW2:·:I'DW3 I

~(/ J
taken fourth

DW1
taken second DW2

taken third

Figure 12.33 Retrieving a Data Block in Sequential Order

E:umple of Subblock Ordering
Subblock ordering allows the system to define the order in which the

data elements are retrieved. The smallest data element of a block transfer
for the R4600/R4700 is a doubleword, and Figure 12.34 shows the
retrieval of a block of data that consists of 4 doublewords (the cache line
size is 8 words), in which DW2 is taken first.

octalword

r---------~---------,
quadword

Order of retrieval 2
~

301

DW1
taken fourth DW2

taken first

Figure 12.34 RetdeviDg Data in a Subblock Order

Using the subblock ordering shown in Figure 12.34, the doubleword at
the target address is retrieved first (DW2) , followed by the remaining
doubleword (DW3) in this quadword. Next. the quadword that fills out the
octalword are retrieved in the same order as the prior quadword (in this
case DWO is followed by DW1).

12-39

System Interface Chapter 12

It may be easier way to understand subblock ordering by taking a look
at the method used for generating the address of each doubleword as it is
retrieved. The subblock ordering logic generates this address by
executing a bit-wise exclusive-OR (XOR) of the starting block address with
the output of a bincuy counter that increments with each doubleword.
starting at doubleword zero (002),

Using this scheme. Table 12.16. Table 12.17. and Table 12.18 list the
subblock ordering of doublewords for an 8-word block. based on three
different starting-block addresses: 102• ll2. and 01 2, The subblock
ordering is generated by an XOR of the subblock address (either 102. 112•
or 012) with the bincuy count of the doubleword (002 through 112), Thus.
the third doubleword retrieved from a block of data with a starting
address of 102 is found by taking the XOR of address 102 with the bincuy
count of DW2. 102' The result is 002• or DWO (shown in Table 12.16).

Cycle Starting Block Binary Count Double Word
Address Retrieved

1 10 00 10

2 10 01 11

3 10 10 00

4 10 11 01

Table 12.16 Sequence of Doublewords Transferred Using Subblock
Ordering: Address 102

Cycle Starting Block Binary Count Double Word
Address Retrieved

1 11 00 11

2 11 01 10

3 11 10 01

4 11 11 00

Table 12.17 Sequence of Doublewords Transferred Using Subblock
Ordering: Address 112

Cycle Starting Block Binary Count Double Word
Address Retrieved

1 01 00 01

2 01 01 00

3 01 10 11

4 01 11 10

Table 12.18 Sequence of Doublewords Transferred Using Subblock
Ordering: Address 012

For block write requests. the processor always delivers the address of
the doubleword at the beginning of the block; the processor delivers data
beginning with the doubleword at the beginning of the block and
progresses sequentially through the doublewords that form the block.

12-40

System Interface Chapter 12

Duling data cycles. the valid byte lines depend upon the position of the
data with respect to the aligned doubleword (this may be a byte. halfword.
tIibyte. quadbyte/word. quintibyte. sextibyte. septibyte. or an octalbyte/
doubleword). For example. in little-endian mode. on a byte request where
the address modulo 8 is O. SysAD(7:0) are valid during the data cycles.

Table 12.19 shows the byte lanes used for partial word transfers for
both little and big endian.

Bytes Address SysAD byte lanes used (big endian)

SysCmd(2:0) Mod 8 63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

0 •
1 •
2 •

1 3 •
(000) 4 •

5 •
6 •
7 •
0 • •

2 2 • •
(001) 4 • •

6 • •
0 • • •

3 1 • • •
(010) 4 • • •

5 • • •
4 0 • • • •

(011) 4 • • • •

5 0 • • • • •
(100) 3 • • • • •

6 0 • • • • • •
(101) 2 • • • • • •

7 0 • • • • • • •
(110) 1 • • • • • • •

8 (111) 0 • • • • • • • •
7:0 15:8 23:16 31:24 39:32 47:40 55:48 63:56

SysAD byte lanes used (little endian)

Table 12.19 Partial Word Transfer Byte Lane Usage

12-41

System Interface Chapter 12

Processor Internal Address Map
External reads and writes provide access to processor internal

resources that may be of interest to an external agent. The processor
decodes bits SyaAD(6:0) of the address associated with an external read
or write request to determine which processor internal resource is the
target.

However, the R4600/R4700 does not contain any resources that are
readable through an external read request. Therefore, in response to an
external read request the processor returns undefined data and a data
identifier with its Erroneous Data bit, SysCmd(5), set.

The Interrupt register is the only processor internal resource aVailable
for write access by an external request. The Interrupt register is accessed
by an external write request with an address of OO~ on bits 6:4 of the
SysADbus.

The interrupt register is described in detail in Chapter 13,
"R4600/R4700 Processor Interrupts."

12-42

R4600/R4700 Processor
Interrupts

Chapter 13

Integrated DevIce Technology. Inc.

Introduction
The R4600 /R4 700 processor supports the following interrupts: six

hardware interrupts, one internal "timer interrupt, " two software
interrupts. and one nonmaskable interrupt. The processor takes an
exception on any interrupt.

This chapter describes the six hardware and single nonmaskable
interrupts. A description of the software and the timer interrupts can be
found in Chapter 5. CPU exception processing is also described in Chapter
5. Floating-pOint exception processing is described in Chapter 6.

Hardware Interrupts
The six CPU hardware interrupts can be caused by external write

requests to the R4600/R4700, or can be caused through dedicated
interrupt pins. These pins are latched into an internal register by the rising
edge of SClock.

Nonmaskable Interrupt (NMI)
The nonmaskable interrupt is caused either by an external write request

to the R4600/R4700 or by a dedicated pin in the R4600/R4700. This pin
is latched into an internal register by the rising edge of SClock.

Asserting Interrupts
External writes to the CPU are directed to various internal resources,

based on an internal address map of the processor. When SysAD[6:0) = 0
during an ADDR cycle of external write request, an external write to any
address writes to an architecturally transparent register called the
Interrupt register; this register is available for external write cycles, but not
for external reads.

During a data cycle, SysAD[22: 16) are the write enables for the seven
individual Interrupt register bits (0 = disabled, 1 = enabled) and SysAD[6:0)
are the values to be written into these bits (0 = no interrupt, 1 = interrupt).
This allows any subset of the Interrupt register to be set or cleared with a
single write request. Figure 13.1 shows the mechanics of an external write
to the Interrupt register.

SysAD(6:0) Interrupt Value

SysAD(22:16) Write Enables

o nterrupt register

2 See Figure 13.2
-+- and Figure 13.3.

3

4

5

6

Figure 13.1 Interrupt Register Bits and Enables

13 - 1

-.--.--~-.--.--~-.-.---.---- --~ ---.-~--.
'~--'-----~---'

R4600/R4700 Processor Interrupts Chapter 13

Figure 13.2 shows how the R4600/R4700 interrupts are readable
through the Cause register. The interrupt bits, Int*(5:0), are latched into
the internal register by the rising edge of SClock.

• Bit 5 of the Interrupt register in the R4600/R4700 is ORed with the
Int*(5) pin and then multiplexed with the internal TimerInterrupt
signal. This result is directly readable as bit 15 of the Cause register.

• Bits 4:0 of the Interru.pt register are bit-wise ORed with the current
value of the interrupt pins Int*[4:0] and the result is directly readable
as bits 14: 10 of the Cause register.

...................... ~""" Interrupt register (5:0)

SClock~ 5

Int*(5)

'--~}-------~I~~

'----=Tl-+ ____ -I �p3 ::

L...~~)1__+----------~IP~4l:~~~see
.. Figure 13.4

H---+ __ +-________ --l 1P5 ~

'----j)./--+ __ +--I-________ -IIP6 :!

1-+--l--+--+---+----------l IP7 ~

(Internal
.......... -ti ,.. register)

Cause
register

ORgate D
multiplexer ::f)-

Figure 13.2 R4600/R4700 IDterrupt Signals

Figure 13.3 shows the internal derivation of the NMI signal, for the
R4600/R4700 processor.

The NMI* pin is latched into an internal register by the rising edge of
SClock. Bit 6 of the Interrupt register is then ORed with the inverted value
ofNMI* to fOmI the nonmaskable interrupt. Only the one falling edge of the
latched signal will cause the NMI.

(Internal
register)

SClock

6 Interrupt register (6)

~------------~
NMI

[> D
Inverter OR gate

Figure 13.3 R4600/R4700 NOlUlUlSbble IDterrupt SIgDal

13-2

R4600/R4700 Processor Interrupts Chapter 13

Figure 13.4 shows the masking of the R4600/R4700 interrupt signal.
• Cause register bits 15:8 (IP7-IPO) are AND-ORed with Status register

interrupt mask bits 15:8 (IM7-IMO) to mask indMdual interrupts.
• Status register bit 0 is a global Interrupt Enable (IE). It is ANDed with

the output of the AND-OR logic to produce the R4600/R4700 inter­
rupt signal.

Status register SR(O)

f!}------,
Status register SR(15:8)

IMO

Cause register (15:8)

R4600/R4700
Interrupt

Figure 13.4 Masking of the R4600/R4700 Interrupts

13-3

R4600/R4700 Processor Interrupts Chapter 13

13-4

Integrated DevIce Technology. Inc.

R4600/R4700
Error Checking

Chapter 14

Introduction
This chapter desCribes the Error Checking mechanism used in the

R4600 /R4700 processor.

Error Checking in the Processor
Error checking codes allow the processor to detect and sometimes

correct errors made when moving data from one place to another.
Two major types of data errors can occur in data transmission:
• hard errors, which are pennanent, arise from broken interconnects,

internal shorts, or open leads
• soft errors, which are transient, are caused by system noise, power

surges, and alpha particles.
Hard errors must be corrected by physical repair of the damaged

equipment and restoration of data from backup. Soft errors can be
corrected by using error checking and correcting codes.

Types of Error Checking
The R4600/R4700 uses parity (error detection only).

Parity Error Detection
Parity is the simplest error detection scheme. By appending a bit to the

end of an item of data-called a parity bit-single bit errors can be
detected; however, these errors cannot be corrected.

There are two types of parity:
• Odd Parity adds 1 to any even number of Is in the data, making the

total number of Is odd (including the parity bit).
• Even Parity adds 1 to any odd number of Is in the data, making the

total number of Is even (including the parity bit).
Odd and even parity are shown in the example below:

Data(3:0)
o 0 1 0

Odd Parity Bit
o

Even Parity Bit
1

The example above shows a single bit in Data(3:0) with a value of 1; this
bit is Data(l).

• In even parity, the parity bit is set to 1. This makes 2 (an even num­
ber) the total number of bits with a value of 1.

• Odd parity makes the parity bit a 0 to keep the total number of I-val­
ue bits an odd number-in the case shown above, the single bit Da­
ta(l).

The example below shows odd and even parity bits for various data
values:

Data(3:0)
o 1 1 0
000 0
1 1 1 1
110 1

Odd Parity Bit
1
1
1
o

Even Parity Bit
o
o
o
1

Parity allows single-bit error detection, but it does not indicate which bit
is in error-for example, suppose an odd-parity value of 00011 arrives.
The last bit is the parity bit, and since odd parity demands an odd number
(1,3,5) of Is, this data is in error: it has an even number of Is. However it
is impossible to tell which bit is in error.

14 -1

R4600/R4700 Error Checking Chapter 14

Error Checking Operation
The processor verifies data correctness by using parity as it passes data

from/to the system interface to/from the primary caches.

System Interface
The processor generates correct check bits for doubleword, word, or

partial-word data transmitted to the system interface. As it checks for data
correctness, the processor passes data check bits from the primary cache,
directly without changing the bits, to the system interface.

The processor does not check data received from the system interface for
external writes. By setting the NChck bit in the data identifier, it is possible
to prevent the processor from checking read response data from the
system interface.

For cache refill, if the NChck bit is set, the CPU will generally correct
parity before placing data into the cache. The R4600/R4700 only checks
parity for the first double word returned on a block instruction fetch, that
Is, for the double word that contains the instruction that was missed on
in the cache. This double word is checked just as if it had been read out
of the ICache. This parity check is done as a byte parity check. For single
read, and with the NChck bit set, the CPU will check parity for all 64-hit,
even if the transfer Size is less than that.

When the R4600/R4700 is checking parity it does not actually
regenerate the word parity, but rather turns the byte parity supplied by the
system into word parity. It XORS the bits in groups of four. As a result, if
bad byte parity is supplied by the system. bad word parity will get written
into the cache. This is done to be consistent with what happens in the
DCache.

The processor does not check addresses received from the system
interface and does not generate correct check bits for addresses
transmitted to the system interface.

The processor does not contain a data corrector; instead, the processor
takes a cache error exception when it detects an error based on data check
bits. Software is responsible for error handling.

System Interface Command Bus
In the R4600/R4700 processor, the system interface command bus has

no parity. SysCmdP always drives zero out for CPU valid cycles and is not
checked when the system interface is in slave state.

14-2

R4600/R4700 Error Checking Chapter 14

Summary of Error Checking Operations
Error Checking operations are summarized in Table 14.1 and

Table 14.2.

Primary Cache Primary Cache
Uncached Uncached Load from System Write to System Cache

Bus Load Store Interface Interface Instruction

Processor Data From System Not From System Inter- Checked; Trap Check on
Interface Checked face unchanged on Error cache wrtte-

back; Trap on
Error

System Interface Not Not Not Generated Not Generated Not Generated
Address/Com- Generated Generated
mand and Check
Bits: Transmit

System Interface Not Checked NA Not Checked NA NA
Address/Com-
mand and Check
Bits: Receive

System Interface Checked; From Pro- Checked; Trap on From Primary From Primary
Data Trap on Error cessor Error Cache Cache

System Interface Checked; Generated Checked; Trap on From Primary From Primary
Data Check Bits Trap on Error Error Cache Cache

Table 14.1 Error CbeckiDg and Correcting Summary for Internal Transactions

Read
Bus Request Write Request

Processor Data NA NA

System Interface Address, Command, and Check Bits: Trans- Generated NA
mit

System Interface Address, Command, and Check Bits: Receive Not Checked Not Checked

System Interface Data From Processor Checked; Trap on Error

System Interface Data Check Bits Generated Checked; Trap on Error

Table 14.2 Error CbecldDg and CorrectiDg Summary for External Transactions

14-3

R4600/R4700 Error Checking Chapter 14

14-4

~

tIt
CPU Instruction Set
Details

Appendix A

Integrated Device Technology. Inc.

Introduction
This appendix provides a detailed description of the operation of each

R4600/R4700 instruction. The instructions are listed in alphabetical
order.

Exceptions that may occur due to the execution of each instruction are
listed after the description of each instruction. Descriptions of the
immediate cause and manner of handling exceptions are omitted from the
instruction descriptions in thIs appendix.

Figures at the end of this appendix list the bit encodIng for the constant
fields of each Instruction, and the bit encoding for each individual
Instruction Is included with that instruction.

Instruction Classes
CPU instructions are divided into the following classes:

• Load and Store instructions move data between memory and general
registers. They are all I-type instructions, since the only addressing
mode supported is base register + 16-bit immediate offset.

• Computational instructions perform arithmetic, logical and shift op­
erations on values in registers. They occur in both R-type (both
operands are registers) and I-type (one operand is a I6-bit immediate)
formats.

• Jump and Branch instructions change the control flow of a program.
Jumps are always made to absolute 26-bit word addresses (J-type
format), or register addresses (R-type), for returns and dIspatches.
Branches have I6-bit offsets relative to the program counter (I-type).
Jump and Link instructions save their return address in register 31.

• Coprocessor instructions perform operations in the coprocessors.
Coprocessor loads and stores are I-type. Coprocessor computational
instructions have coprocessor-dependent formats (see the FPU in­
structions in Appendix B). Coprocessor zero (CPO) instructions ma­
nipulate the memory management and exception handling facilities of
the processor.

• Special instructions perform a variety of tasks, including movement
of data between special and general registers, trap, and breakpOint.
They are always R-type.

A-I

'~----- .. -.. -,,-, ~'--, -.-, "",'

CPU Instruction Set Details Appendix A

Instruction Formats
Every CPU instruction consists of a single word (32 bits) aligned on a

word boundary and the major instruction formats are shown in Figure A.I.

I-Type (Immediate)
3r1 ____ 2~6;=25~~2~1r2~0~~16~1~5--------------~0
I op I rs I rt I immediate I

J-Type (Jump)
31 26 25 0
1r--oP-=;I~-----ta-rg-e-t------------~.

R-Type (Register)
31 26 25 21 20 16 15 1110 6 5 0

op I rs rt I rd I shamt I funct I
op 6-bU operation code

rs 5-bU source register specifier

rt 5-bU target (source/destination) or branch condition

immediate 16-bU immediate, branch displacement or address
displacement

target 26-bU Jump target address

rd 5-bU destination register specifier

shamt 5-bU shift amount

funct 6-bU function field

Figure A.I CPU Instruction Formats

Instruction Notation Conventions
In this appendix, all variable subfields in an instruction format (such

as rs, rt, immediate, etc.) are shown in lowercase names.
For the sake of clarity, we sometimes use an alias for a variable subfield

in the formats of specific instructions. For example, we use rs = base in
the format for load and store instructions. Such an alias is always lower
case, since it refers to a variable subfield.

Figures with the actual bit encoding for all the mnemonics are located
at the end of this Appendix, and the bit encoding also accompanies each
instruction.

In the instruction descriptions that follow, the Operation section
deSCribes the operation performed by each instruction using a high-level
language notation.

A-2

CPU Instruction Set Details Appendix A

Special symbols used in the notation are described in Table A.I

Symbol Meaning

~ Assignment.

II Bit string concatenation.

xy Replication of bit value x into a y -bit string. Note: x is always a single-bit

xy:z Selection of bits y through z of bit string x. Little-endian bit notation is always
used. If y is less than z, this expression is an empty (zero length) bit string.

+ 2's complement or floating-point addition.

- 2's complement or floating-point subtraction.

*
2's complement or floating-point multiplication.

div 2's complement integer division.

mod 2's complement modulo.

I Floating-point division.

< 2's complement less than comparison.

and Bit-wise logical AND.

or Bit-wise logical OR.

xor Bit-wise logical XOR.

nor Bit-wise logical NOR.

GPR[x] General-Register x. The content of GPR[O] is always zero. Attempts to alter the
content of GPR[O] have no effect.

CPR[z,x] Coprocessor unit z, general register x.

CCR[z,x] Coprocessor unit z, control register x.

COC[z] Coprocessor unit z condition signal.
BigEndianMem Big-endian mode as configured at reset (0 ~ Little, 1 ~ Big). Specifies the endi-

an ness of the memory interface (see LoadMemory and StoreMemory), and the en-
dian ness of Kernel and Supervisor mode execution.

ReverseEndian Signal to reverse the endianness of load and store instructions in User mode;
effected by setting the RE bit of the Status register. Thus, ReverseEndian may be
computed as (SR25 and User mode).

BigEndianCPU The endianness for load and store instructions (0 ~ Little, 1 ~ Big). In User
mode, this endianness may be reversed by setting SR25. Thus, BigEndianCPU
may be computed as BigEndianMem XOR ReverseEndian.

LLbit Bit of state to specify synchronization instructions. Set by LL, cleared by ERET and
Invalidate and read by SC.

T+r. Indicates the time steps between operations. Each of the statements within a time
step are defined to be executed in sequential order (as modified by conditional and
loop constructs). Operations which are marked T+i: are executed at instruction cy-
cle i relative to the start of execution of the instruction. Thus, an instruction which
starts at time j executes operations marked T +i: at time
i + j. The interpretation of the order of execution between two instructions or two
operations which execute at the same time should be pessimistic; the order is not
defined.

Table A.I CPU Instruction Operation Notations

A-3

CPU Instruction Set Details Appendix A

Instruction Notation Examples
The following examples illustrate the application of some of the

instruction notation conventions:

Example #1:
... GPRfrtl·· ~. ::_%tli\t~. I. I 0.16

Sixteen zero bits are concatenated with an immediate value
(typically 16 bits). and the 32-bit string (with the lower 16 buts
set to zero) is assigned to General-Purpose Register rt.

Example #2:
......

:(1n!ri:le<uatei@l~.J!kI:lmedtatelILO ..
Bit 15 (the sign bit) of an immediate value is extended for
16 bit positions. and the result is concatenated with bits 15
through 0 of the immediate value to fonn a 32-bit sign
extended value.

Load and Store Instructions
In the R4600 /R4 700. as in the case of processors. the instruction

immediately following a load may use the loaded contents of the register.
In such cases. the hardware interlocks. requiring additional real cycles, so
scheduling load delay slots is still deSirable. although not required for
functional code.

Two special instructions are provided in the R4600 /R4 700
implementation of the MIPS ISA, Load Linked and Store Conditional.
These instructions are used in carefully coded sequences to provide one of
several synchronization primitives. including test-and-set. bit-level locks.
semaphores. and sequencers/event counts.

In the load and store descriptions. the functions listed in Table A.2 are
used to summarize the handling of virtual addresses and physical
memory.

Function Meaning

AddressTranslation Uses the 1LB to find the physical address given the virtual
address. The function falls and an exception is taken If the
required translation is not present In the TLB.

LoadMemory Uses the cache and main memory to find the contents of
the word containing the specified physical address. The
low-order two bits of the address and the Access Type field
Indicates which of each of the four bytes within the data
word need to be returned. If the cache is enabled for this
access, the entire word is returned and loaded Into the
cache.

StoreMemory Uses the cache, write buffer, and main memory to store
the word or part of word specified as data In the word con-
taining the specified physical address. The low-order two
bits of the address and the Access Type field Indicates
which of each of the four bytes within the data word
should be stored.

Table A.2 Load and Store Common Functions

A-4

CPU Instruction Set Details Appendix A

As shown in Table A.2, the Access Type field indicates the size of the
data item to be loaded or stored. Regardless of access type or byte­
numbering order (endianness), the address specifies the byte which has
the smallest byte address in the addressed field. For a big-endian
machine, this is the leftmost byte and contains the sign for a 2's
complement number; for a little-endian machine, this is the rightmost
byte.

Access Type Mnemonic Value Meaning

DOUBLEWORD 7 8 bytes (64 bits)

SEPTIBYTE 6 7 bytes (56 bits)

SEXTIBYTE 5 6 bytes (48 bits)

QUINTIBYTE 4 5 bytes (40 bits)

WORD 3 4 bytes (32 bits)

TRIPLEBYTE 2 3 bytes (24 bits)

HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)

Table A.3 Access Type Speciflcations for Loads/Stores

The bytes within the addressed doubleword which are used can be
determined directly from the access type and the three low-order bits of the
address.

Jump and Branch Instructions
All jump and branch instructions have an architectural delay of exactly

one instruction. That is, the instruction immediately following a jump or
branch (that is, occupying the delay slot) is always executed while the
target instruction is being fetched from storage. A delay slot may not itself
be occupied by a jump or branch instruction; however, this error is not
detected and the results of such an operation are undefined.

If an exception or interrupt prevents the completion of a legal
instruction during a delay slot, the hardware sets the EPC register to point
at the jump or branch instruction that precedes it. When the code is
restarted, both the jump or branch instructions and the instruction in the
delay slot are reexecuted.

Because jump and branch instructions may be restarted after
exceptions or interrupts, they must be restartable. Therefore, when a
jump or branch instruction stores a return link value, register 31 (the
register in which the link is stored) may not be used as a source register.

Since instructions must be word-aligned, a Jump Register or Jump
and Link Register instruction must use a register whose two low-order
bits are zero. If these low-order bits are not zero, an address exception will
occur when the jump target instruction is subsequently fetched.

A-5

CPU Instruction Set Details AppendlxA

Coprocessor Instructions
Coprocessors are alternate execution units, which have register files

separate from the cpu. The R4600/R4700 architecture (MIPS III) provides
three coprocessor units, or classes, and these coprocessors have two
register spaces, each space containing thirty-two registers. These registers
may be either 32-bits or 64-btts wide.

• The first space, coprocessor general registers, may be directly loaded
from memory and stored into memory, and their contents may be
transferred between the coprocessor and processor.

• The second space, coprocessor control registers, may only have their
contents transferred directly between the coprocessor and the proces­
sor. Coprocessor instructions may alter registers in either space.

System Control Coprocessor (CPO) Instructions
There are some special limitations imposed on operations involVing

CPO that is incorporated within the CPU. The move to/from coprocessor
instructions are the only valid mechanism for writing to and reading from
the CPO registers.

Several CPO instructions are defined to directly read, write, and probe
TLB entries and to modify the operating modes in preparation for returning
to User mode or interrupt-enabled states.

A-6

CPU Instruction Set Details Appendix A

ADD Add ADD
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL rs rt rd 0 ADD
000000 00000 100000

6 5 5 5 5 6

Format:
ADD rd, rs, rt

Description:
The contents of general register rs and the contents of general register

rt are added to form the result. The result is placed into general register
rd. The operands must be valid sign-extended, 32-bit values.

An overflow exception occurs if the carries out of bits 30 and 31 differ
(2's complement overflow). The destination register rd is not modified when
an integer overflow exception occurs.

Operation:

Exceptions:

T: temp ~ GPR[rs] + GPR[rt]

GPR[rd] ~ (temp31)32 II temP31 .. 0

Integer overflow exception

A-7

CPU Instruction Set Details AppendizA

ADDI Add Immediate ADDI
31 26 25 21 20 16 15 0

I ADDI I
001000

rs
I

rt
I

immediate

6 5 5 16

Format:
ADOI It, rs, immediate

Description:
The IS-bit immediate is sign-extended and added to the contents of

general register rs to fonn the result. The result is placed into general
register rt. The rs operand must be valid sign-extended, 32-bit values.

An overflow exception occurs if carries out of bits 30 and 31 differ (2's
complement overflow). The destination register rt is not modified when an
integer overflow exception occurs.

Operation:

T: temp f- GPR[rs] + (immediate1S)48 I I immediate1s .. 0

GPR[rt] f- (temP31)32 II temP31..0

Exceptions:
Integer overflow exception

A-8

CPU Instruction Set Details Appendix A

ADDIU Add Immediate Unsigned ADDIU
31 26 25

ADDIU

001001

6

Format:

21 20

rs rt

5 5

ADDIU rt. rs, immediate

Description:

16 15 o

immediate

16

The 16-bit immediate is sign-extended and added to the contents of
general register rs to fonn the result. The result is placed into general
register rt. No integer overflow exception occurs under any circumstances.
The rs operand must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADDI instruction
is that ADDIU never causes an overflow exception.

Operation:

T: temp f- GPR[rs] + (immediate15)48 I I immediate15 .. o

GPR[rt] f- (temp31)32 II temP31..0

Exceptions:
None

A-9

CPU Instruction Set Details Appendix A

ADDU Add Unsigned ADDU
31 26 25 21 20 16 15 11 10 6 5 a

SPECIAL rs rt rd a ADDU
000000 00000 100001

6 5 5 5 5 6

Format:
ADDU rd. rs. rt

Description:
The contents of general register rs and the contents of general register

rt are added to fonn the result. The result is placed into general register rd.
No overflow exception occurs under any circumstances. The source
operands must be valid sign-extended. 32-bit values.

The only difference between this instruction and the ADD instruction
is that ADDU never causes an overflow exception.

Operation:

T: temp f- GPR[rs] + GPR[rt]

GPR[rd] f- (temp31)32 II temp31..0

Exceptions:
None

A-lO

CPU Instruction Set Details Appendix A

AND And AND
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL rs rt rd 0 AND
000000 00000 100100

6 5 5 5 5 6

Format:
AND rd. rs. rt

Description:
The contents of general register rs are combined with the contents of

general register rt in a bit-wise logical AND operation. The result is placed
into general register rd.

Operation:

T: GPR[rd] f- GPR[rs] and GPR[rt]

Exceptions:
None

A-ll

CPU Instruction Set Details Appendix A

ANDI And Immediate ANDI
31

I

26 25 21 20 16 15 o

ANDI
I

rs rt
001100

immediate

6 5 5 16

Format:
ANDI rt, rs, immediate

Description:
The I6-bit immediate is zero-extended and combined with the contents

of general register rs in a bit-wise logical AND operation. The result is
placed into general register rt.

Operation:

T: GPR[rt] f- 048 11 (immediate and GPR[rs]15 .. 0)

Exceptions:
None

A-12

CPU Instruction Set Detail. Appendb::A

BCzF Branch On Coprocessor z False BCzF
31 26 25

COPz
0100xx·

6

Format:

5

BCzF offset

Description:

21 20 1615

BCF
00000

5

o

offset

16

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset. shifted left two bits
and sign-extended. If coprocessor zs condition signal (CpCond), as
sampled during the previous instruction, is false, then the program
branches to the target address with a delay of one instruction.

Because the internal condition signal is sampled during the previous
instruction, there must be at least one instruction between this instruction
and a coprocessor instruction that changes the internal condition signal.

Operation:

T -1 : condition f- not COC[z]
T: target f- (offset1s)46 II offset II 02-
T + 1 : if condition then

PC f- PC + target
end if

Note: ·See the table "Opcode Bit Encoding" on next page, or "CPU
Instruction Opcode Bit Encoding" at the end of Appendix A.

Exceptions:
Coprocessor unusable exception

Opcode Bit Encoding:

BCzF Bit # 31302928 27 262524 2322 21 201918 17 16 0

BCOF 1 0 11 1 0 1 0 1 0 1 0 1 0 11 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1

Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0

BC1 FI 0 111 0 1 0 1 0 11 10 11 1 01 0 1 0 1 0 1 0 1 0 1 0 10 1 1

Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0

BC2FI 0111 0 I 0 11 I 0 10 11 1 0 10 1010101 0 I 0 101 1

Opcode I
Coprocessor Unit Number--.J

BC sub-opcode Branch condition

A-IS

CPU InstructioD Set Details AppeDdb:A

BCzFL Branch On Coprocessor z
False Likely BCzFL

31 26 25

COPz
0100 xx·

6

Format:

5

BCzFL offset

Description:

21 20 1615

BCFL
00010

5

o

offset

16

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. If the contents of coprocessor zs condition signal. as
sampled during the previous instruction. is false. the target address is
branched to with a delay of one instruction.

If the conditional branch is not taken. the instruction in the branch
delay slot is nullified.

Because the internal condition signal is sampled during the previous
instruction. there must be at least one instruction between this instruction
and a coprocessor instruction that changes the internal condition signal.

NOTE: *See the table "Opcode Bit Encoding" on next page, or "CPU Instruction
Opcode Bit Encoding" at the end of Appendix A.

Operation:

T-1: condition +- not COC[z]
T: target +- (offset15)46II offset II 02

T +1 : if condition then
PC +- PC + target

else
NullifyCurrentl nstruction

endif

Exceptions:
Coprocessor unusable exception

Opcode Bit Encoding:

BCzFL Bit # 31 30 2928 27 262524 2322 21 20 1918 17 16 0

BCOFL 1 0 11 1 0 1 0 1 0 1 0 1 0 11 1 0 1 0 1 0 1 0 1 0 1 0 11 1 0 I 1
Bit# 31302928 27 262524 2322 21 201918 17 16 0

BC1 Fd 0 11 1 0 1 0 1 0 11 1 0 11 1 0 1 0 1 0 I 0 1 0 1 0 11 I 0 1 1
Bit# 31302928 27 262524 2322 21 201918 1716 0

BC2FL~ I
Opcode ~ BC sub-opcode Branch condition

Coprocessor Unit Number

A-14

CPU Instruction Set netans AppendizA

BCzT Branch On Coprocessor z True BCzT
31 2625 21 20

COPz
01 0 Ox x*

6

Format:

BC
01000

5

BCzT offset

Description:

BCT
00001

5

1615 o

offset

16

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the I6-bit offset, shifted left two bits
and sign-extended. If the coprocessor zs condition signal (CpCond) is
true, then the program branches to the target address, with a delay of one
instruction.

Because the internal condition signal is sampled during the previous
instruction, there must be at least one instruction between this instruction
and a coprocessor instruction that changes the internal condition signal.

Operation:

T -1: condition f- COC[~
T: target f- (offset1s) II offset II 02-
T +1 : if condition then

PC f- PC + target
endif

NOTE: *See the table "Opcode Bit Encoding" on next page, or "CPU Instruction
Opcode Bit Encoding" at the end of Appendix A.

Exceptions:
Coprocessor unusable exception

Opcode Bit Encodlng:

BCzT Bit # 31 30 29 28 27 262524 2322 21 20 1918 17 16 0

BCOT 1 0 11 1 0 1 0 1 0 1 0 1 0 11 1 0 1 0 1 0 1 0 1 0 1 0 1 0 11 1 1

Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0

BC1TI 0111 010 10 11 10 11 I 010 1010 I 0 1 01 0 11 1 I
Bit # 31 30 29 28 27 2625 24 2322 21 20 1918 17 16 0

BC2T~ I
Opcode I BC sub-opcode Branch condition

Coprocessor Unit Number----.J

A-IS

CPU Instruction Set Details AppendizA

BCzTL Branch On Coprocessor z
True Likely BCzTL

31 26 25 21 20 1615 o

I ~oPz
0100xx·

BC
01000

BCTL I
00011

offset

6 5 5 16

Format:
BCzTL offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. If the contents of coprocessor zs condition signal. as
sampled during the previous instruction. is true. the target address is
branched to with a delay of one instruction.

If the conditional branch is not taken. the instruction in the branch
delay slot is nullified.

Because the internal condition signal is sampled during the previous
instruction. there must be at least one instruction between this instruction
and a coprocessor instruction that changes the internal condition signal.

Operation:
T -1: condition ~ COC[~
T: target ~ (offset1S) II offset II 02-
T +1 : if condition then

PC ~ PC + target
else

NullifyCurrentlnstruction
endif

NOTE: "See the table "Opcode Bit Encoding" on next page, or "CPU Instruction
Opcode Bit Encoding" at the end of Appendix A.

Exceptions:
Coprocessor unusable exception

Opcode Bit Encoding:

BCzTL Bit # 31 30 2928 27 262524 2322 21 20 1918 17 16 0

BCOTl 1 0 11 1 0 1 0 1 0 1 0 1 0 11 1 0 1 0 1 0 1 0 1 0 1 0 11 11 I 1
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0

BC1TLI 0111 010 10 11 10 11 1 010 10 10 10 1 0 11 11 1 1
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0 BC2TL_ I

Opcode I BC sub-opcode Branch condition
Coprocessor Unit Number--.--J

A-16

~---~~-~------

CPU Instruction Set Details Appendb:A

BEQ Branch On Equal BEQ
31 26 25 21 20 16 15 o

I BEQ I rs rt
000100

offset

6 5 5 16

Format:
BEQ rs, rt, offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. The contents of general register TS and the contents of
general register rt are compared. If the two registers are equal, then the
program branches to the target address, with a delay of one instruction.

Operation:

Exceptions:
None

T: target +- (offset1s)46 II offset II 02-
condition +- (GPR[rs] = GPR[rt])

T + 1 : if condition then
PC +- PC + target

endif

A-17

CPU Instruction Set Details Appendix A

BEQl Branch On Equal Likely BEQl
31

I

26 25 21 20 16 15 o

BEQl
I

rs
I

rt

I
offset

010100
6 5 5 16

Format:
BEQL rs, rt, offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the I6-bit offset, shifted left two bits
and sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are equal, the target
address is branched to, with a delay of one instruction. If the conditional
branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

T:

T+1:

Exceptions:
None

target f- (offset1s)46 II offset II 02
condition f- (GPR[rs] = GPR[rt])
if condition then

PC f- PC + target
else

NullifyCurrentinstruction
endif

A-IS

CPU Instruction Set Details AppendizA

BGEZ Branch On Greater Than
Or Equal To Zero BGEZ

31 26 25 21 20 16 15 o

REGIMM
I

rs

I
BGEZ offset

000001 00001
6 5 5 16

Format:
BGEZ rs, offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. If the contents of general register rs have the sign bit
cleared, then the program branches to the target address, with a delay of
one instruction.

Operation:

Exceptions:
None

T: target ~ (offset1s)46II offset II 02
condition ~ (GPR[rs]63 = 0)

T + 1: if condition then
PC ~ PC + target

endif

A-19

CPU Instruction Set Details Appendix A

BGEZAL Branch On Greater Than
Or Equal To Zero And Link BGEZAL

31 26 25 21 20 16 15 o

REGIMM rs I ~GEZAL
000001 10001

offset

6 5 5 16

Format:
BGEZAL rs, offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. Unconditionally, the address of the instruction after
the delay slot is placed in the link register, r31. If the contents of general
register rs have the sign bit cleared, then the program branches to the
target address, with a delay of one instruction.

General register rs may not be general register 31, because such an
instruction is not restartable. An attempt to execute this instruction is not
trapped, however.

Operation:

T: target ~ (offset1S)46II offset II 02
condition ~ (GPR[rs]S3 = 0)
GPR[31] ~ PC + 8

T +1 : if condition then
PC ~ PC + target
endif

Exceptions:
None

A-20

CPU Instruction Set Details Appendix A

BGEZALL Branch On Greater Than
Or Equal To Zero
And Link Likely

BGEZALL
31 26 25 21 20 16 15 o

REGIMM
000001

rs BGEZALL
1 001 1

offset

6 5 5 16

Format:
BGEZALL rs, offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset. shifted left two bits
and sign-extended. Unconditionally, the address of the instruction after
the delay slot is placed in the link register, r31. If the contents of general
register rs have the sign bit cleared, then the program branches to the
target address, with a delay of one instruction. General register rs may not
be general register 31, because such an instruction is not restartable. An
attempt to execute this instruction is not trapped, however. If the
conditional branch is not taken, the instruction in the branch delay slot is
nullified.

Operation:

T: target f- (offset1s}46 II offset II 02
condition f- (GPR[rs]63 = O)
GPR[31] f- PC + 8

T + 1: if condition then
PC f- PC + target
else
N u lIifyCurrent Instruction
end if

Exceptions:
None

A-21

CPU Instruction Set Details Appendix A

BGEZL Branch On Greater
Than Or Equal To Zero Likely BGEZL

31 26 25 21 20 16 15 o

I REGIMM
. 000001

rs BGEZL
0001 1

offset

6 5 5 16

Format:
BGEZL rs, offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the I6-bit offset, shifted left two bits
and sign-extended. If the contents of general register rs have the sign bit
cleared, then the program branches to the target address, with a delay of
one instruction. If the conditional branch is not taken, the instruction in
the branch delay slot is nullified.

Operation:

Exceptions:
None

T: target f- (offset1s)46 II offset II 02

condition f- (GPR[rsj63 = 0)
T + 1: if condition then

PC f- PC + target
else

NullifyCurrent Instruction
endif

A-22

CPU Instruction Set Details Appendix A

BGTZ Branch On Greater Than Zero BGTZ
31 26 25

BGTZ
000111

6

Format:

rs

5

21 20

o
00000

5

16 15 o

offset

16

BGTZ rs, offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. The contents of general register rs are compared to
zero. If the contents of general register rs have the sign bit cleared and are
not equal to zero, then the program branches to the target address, with a
delay of one instruction.

Operation:

Exceptions:
None

T: target ~ (offset15)46 II offset II 02
condition ~ (GPR[rs]S3 = 0) and (GPR[rs]"# 064)

T + 1 : if condition then
PC ~ PC + target
end if

A-23

CPU Instruction Set Details Appendb::A

BGTZL Branch On Greater
Than Zero Likely BGTZL

31 26 25 21 20 16 15 o

BGTZL I
010111

rs o
00000

offset

6 5 5 16

Format:
BGTZL rs, offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the I6-bit offset, shifted left two bits
and sign-extended. The contents of general register rs are compared to
zero. If the contents of general register rs have the sign bit cleared and are
not equal to zero, then the program branches to the target address, with a
delay of one instruction. If the conditional branch is not taken, the
instruction in the branch delay slot is nullified.

Operation:

T:

T+1:

Exceptions:
None

target ~ (offset1s)46II offset II 02
condition ~ (GPR[rs1sa = 0) and (GPR[rs]:¢:. 064)
if condition then

PC ~ PC + target
else

NullifyCurrentlnstruction
end if

A-24

CPU Instruction Set Details Appendix A

BLEZ Branch on Less Than
Or Equal To Zero BLEZ

31 26 25

BLEZ
000110

6

Format:

rs

5

21 20 16 15

o
00000

5

BLEZ rs, offset

Description:

o

offset

16

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the I6-bit offset, shifted left two bits
and sign-extended. The contents of general register rs are compared to
zero. If the contents of general register rs have the sign bit set, or are equal
to zero, then the program branches to the target address, with a delay of
one instruction.

Operation:

T: target f- (offset1s)46 II offset II 02
condition f- (GPR[rs]63 = 1) and (GPR[rs] = 064)

T + 1 : if condition then
PC f- PC + target

endif

Exceptions:
None

A-25

CPU Instruction Set Details AppencUzA

BLEZL Branch on Less Than
Or Equal To Zero Likely BLEZL

31 26 25 21 20 16 15 o

I SlEZl
~10110

rs o
00000

offset

6 5 5 16

Format:
BLEZL rs, offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the IS-bit offset, shifted left two bits
and sign-extended. The contents of general register rs is compared to zero.
If the contents of general register rs have the sign bit set, or are equal to
zero, then the program branches to the target address, with a delay of one
instruction.

If the conditional branch is not taken, the instruction in the branch
delay slot is nullified.

Operation:

T: target ~ (otfset1S)46 II offset II 02
condition ~ (GPR[rs]63 = 1) and (GPR[rs] = 064)

T + 1 : if condition then
PC ~ PC + target

else
NullifyCurrentlnstruction

end if

Exceptions:
None

A-26

CPU In.truction Set Detail. AppendlxA

BLTZ Branch On Less Than Zero BLTZ
31 26 25

REGIMM
000001

6

Format:

rs

5

21 20

BLTZ
00000

5

BLTZ rs. offset

Description:

16 15 o

offset

16

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. If the contents of general register rs have the sign bit
set. then the program branches to the target address. with a delay of one
instruction.

Operation:

Exceptions:
None

T: target ~ (offset15)46II offset II 02-
condition ~ (GPR[rs]63 = 1)

T + 1 : if condition then
PC ~ PC + target

endif

A-27

CPU Instruction Set Details AppendbtA

BLTZAL Branch On Less
Than Zero And Link BLTZAL

31

I

26 25 21 20 16 15 o

REGIMM

I
rs

I
BLTZAL

I
offset

000001 10000
6 5 5 16

Format:
BLTZAL rs, offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the IS-bit offset. shifted left two bits
and sign-extended. Unconditionally, the address of the instruction after
the delay slot is placed in the link register, r31. If the contents of general
register rs have the sign bit set, then the program branches to the target
address, with a delay of one instruction.

General register rs may not be general register 31, because such an
instruction is not restartable. An attempt to execute this instruction with
register 31 specified as rs is not trapped, however.

Operation:

Exceptions:
None

T: target ~ (offset1s)46 " offset" 02
condition ~ (GPR[rs]63 = 1)
GPR[31] ~ PC + 8

T + 1 : if condition then
PC ~ PC + target

end if

A-28

CPU Instruction Set Details AppendlxA

BLTZALL Branch On Less
Than Zero And Link Likely BLTZALL

31 26 25 21 20 16 15 o

REGIMM rs I BLTZALL
000001 . 10010

offset

6 5 5 16

Format:
BL TZALL rs, offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the I6-bit offset. shifted left two bits
and sign-extended. Unconditionally, the address of the instruction after
the delay slot is placed in the link register, r31. If the contents of general
register rs have the sign bit set, then the program branches to the target
address, with a delay of one instruction.

General register rs may not be general register 31, because such an
instruction is not restartable. An attempt to execute this instruction with
register 31 specified as rs is not trapped, however. If the conditional
branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

Exceptions:
None

T: target ~ (offset1s)46II offset II 02
condition ~ (GPR[rs]63 = 1)
GPR[31] ~ PC + 8

T + 1 : if condition then
PC ~ PC + target

else
N ullifyCurrent Instruction

end if

A-29

CPU Instruction Set Details Appendix A

BLTZL Branch On Less Than Zero Likely BLTZL
31 26 25 21 20 16 15 o

REGIMM I
000001 _

rs I BLTZL
_ 00010

offset

6 5 5 16

Format:
BLTZ rs, offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. If the contents of general register rs have the sign bit
set, then the program branches to the target address, with a delay of one
instruction. If the conditional branch is not taken, the instruction in the
branch delay slot is nullified.

Operation:

Exceptions:
None

T: target ~ (offset1S)46 II offset II 02
condition ~ (GPR[rs]63 = 1)

T +1 : if condition then
PC ~ PC + target

else
NullifyCurrentlnstruction

endif

A-SO

CPU Instruction Set Details Appendix A

BNE Branch On Not Equal BNE
31 26 25

BNE
000101

6

Format:

21 20

rs

5

BNE rs, rt, offset

Description:

16 15 o

rt offset

5 16

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the IS-bit offset, shifted left two bits
and sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are not equal, then
the program branches to the target address, with a delay of one
instruction.

Operation:

Exceptions:
None

T: target ~ (offset1s)46 II offset II 02
condition ~ (GPR[rs]"# GPR[rt])

T + 1 : if condition then
PC ~ PC + target

endif

A-51

CPU Instruction Set Details Appendix A

BNEL Branch On Not Equal Likely BNEL
31 26 25 21 20 16 15 o

BNEL
I

rs

I
rt offset

010101
6 5 5 16

Format:
BNEL rs, rt, offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are not equal, then
the program branches to the target address, with a delay of one
instruction.

If the conditional branch is not taken, the instruction in the branch
delay slot is nullified.

Operation:

T: target ~ (offset1s)46 II offset II 02
condition ~ (GPR[rsj ~ GPR[rt])

T + 1: if condition then
PC ~ PC + target

else
NullifyCurrenti nstruction

endif

Exceptions:
None

A-32

CPU Instruction Set Details AppendizA

BREAK Breakpoint BREAK
31

SPECIAL
000000
6

Format:

26 25

BREAK

Description:

65

code

20

BREAK
001101

6

o

A breakpoint trap occurs. immediately and unconditionally
transferring control to the exception handler.

The code field is aVailable for use as software parameters. but is
retrieved by the exception handler only by loading the contents of the
memory word containing the instruction.

Operation:

T: BreakpointException

Exceptions:
Breakpoint exception

A-SS

CPU Instruction Set Details Appendix A

CACHE Cache CACHE
31 26 25 21 20 16 15 o

I CACHE base op
101111

offset

6 5 5 16

Format:
CACHE op, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general

register base to fonn a virtual address. The virtual address is translated
to a physical address using the TLB, and the 5-bit sub-opcode specifies a
cache operation for that address.

If CPO is not usable (User or Supervisor mode) the CPO enable bit in the
Status register is clear, and a coprocessor unusable exception is taken.
The operation of this instruction on any operation/cache combination not
listed below is undefined. The operation of this instruction on uncached
addresses is also undefined.

The R4600 /R4 700 uses only the tag comparisons, not the valid bits, to
choose which data it supplies to the instruction unit. This makes it
important that the tags of the A and B sets are never the same.

The Index operation uses part of the virtual address to specify a cache
block, with vAddr13 selecting the set to access.

For a primary cache of 16KB with 32 bytes per tag, vAddr12 .. 5 specifies
the block.

Index Load Tag also uses vAddr4 .. 3 to select the doubleword for reading
parity. When the CE bit of the Status register is set, Hit WriteBack, Hit
WriteBack Invalidate, Index WriteBack Invalidate, and Fill also use
vAddr4 .. 3 to select the doubleword that has its parity modified. This
operation is perfonned unconditionally.

The Hit operation accesses the specified cache as nonnal data
references, and perfonns the specified operation if the cache block
contains valid data with the specified physical address (a hit). If both sets
are invalid or contain different addresses (a miss), no operation is
perfonned.

Write back from a primary cache goes to memory. The address to be
written is specified by the cache tag and not the translated physical
address.

TLB Refill and TLB Invalid exceptions can occur on any operation. For
Index operations (where the physical address is used to index the cache
but need not match the cache tag) unmapped addresses may be used to
avoid TLB exceptions. This operation never causes TLB Modified or Virtual
Coherency exceptions.

Bits 17 .. 16 of the instruction specify the cache as follows:

Code Name Cache

0 I primary instruction

1 D primary data

2-3 NA Undefined

A-34

CPU Instruction Set Details AppendizA

Code

0

0

1

2

3

4

5

5

6

6

Bits 20 .. 18 (this value is listed under the Code column) of the
instruction specify the operation as follows:

Caches Name Operation

I Index Invalidate Set the cache state of the cache block to Invalid.
Index_Invalidate_I writes the physical address of the
cache op into the tag when it clears the valid bit, which
is different from the R4000.

D Index Write- Examine the cache state and W bit of the prlmaly data
Back Invalidate cache block at the index spectfted by the virtual

address. If the state is not Invalid and the W bit is set,
then write back the block to memory. The address to
write is taken from the primary cache tag. Set cache
state of primary cache block to Invalid.

I, D Index Load Tag Read the tag for the cache block at the spectfted index
and place it into the TagLo CPO registers, ignoring par-
ity errors. Also load the data parity bits into the ECC
register.

I, D Index Store Tag Write the tag for the cache block at the specified index
from the TagLo and TagHi CPO registers.

D Create Dirty This operation is used to avoid loading data needlessly
Exclusive from memory when writing new contents into an entire

cache block. If the cache block does not contain the
specified address, and the block is dirty, write it back
to the memory. In all cases, set the cache block tag to
the specified physical address, set the cache state to
Dirty Exclusive.

I, D Hit Invalidate If the cache block contains the spectfted address, mark
the cache block invalid.

D Hit WriteBack If the cache block contains the spectfted address, write
Invalidate back the data if it Is dirty, and ,mark the cache block

invalid.

I F1ll F1ll the primary Instruction cache block from memory.
If the CE bIt of the status register Is set, the contents of
the ECC register is used instead of the computed parity
bits for addressed doubleword when written to the
instruction cache. Uses bit 13 to pick the set.

D Hit WliteBack If the cache block contains the spectfted address, and
the W bit is set, write back the data to memory and
clear the W bIt.

I Hit WliteBack If the cache block contains the specified address, write
back the data unconditionally.

Operation:

T: vAddr +- «offset15)48 II offset15 .. 0) + GPR[base]

Exceptions:

(pAddr, uncached) +- AddressTranslation (vAddr, DATA)

CacheOp (op, vAddr, pAddr)

Coprocessor unusable exception

A-35

CPU Instruction Set Details Appendix A

CFCz Move Control From
Coprocessor CFCz

31 26 25 21 20 16 15 11 10 o

6

CF
00010

5

Format:
CFCz rt, rd

Description:

rt rd

5 5

o
00000

11

The contents of coprocessor control register rd of coprocessor unit z are
loaded into general register rt.

This instruction is not valid for CPO.

Operation:

T: data ~ (CCR[z,rdh1)32 II CCR[z,rd]
T +1: GPR[rt] ~ data

Exceptions:
Coprocessor unusable exception

*Opcode Bit Encoding:

CFC Bit #31 30 29 28 27 26 25 24 23 22 21 0

Z CFC1 r"--I,--~:=I 1:=1 :0 =1 :0 =1 :0 =1 :1::1 :0 =1 =0 =1 =0 :1 =1 :1 =0=1 ==:1
Bit #31 30 29 28 27 26 25 24 23 22 21 0

CFC2Lo 11Eo I 0lQilO 10 1.:11 I oj I
Opcode I Coprocessor Suboperation

Coprocessor Unit Number

A-S6

CPU Instruction Set Details Appendi:a::A

COPz Coprocessor Operation COPz

I

31 26 25 24 o

COpz I co I cofun
01 00 x x* 1

6 1 25

Format:
COPzcofun

Description:
A coprocessor operation is perfonned. The operation may specify and

reference internal coprocessor registers, and may change the state of the
coprocessor condition line, but does not modify state within the processor
or the cache/memory system. Details of coprocessor operations are
contained in Appendix B.

Operation:

T: CoprocessorOperation (z, cofun)

Exceptions:
Coprocessor unusable exception
Coprocessor interrupt or Floating-Point Exception

*Opcode Bit Encoding:

COPz Bit # 31302928 27 2625

COPO I 0 I 1 1 0 1 0 1 0 1 0 11

o
1

Bit # 31 30 29 28 27 26 25 0

COP11 0 11 1 0 1 0 1 0 11 11 1
Bit # 31 30 29 28 27 26 25 o

COP21 0 1 1 1 0 1 0 11 1 0 11 1

~L CO sub-?pcode (see end of Appendix A)
Coprocessor Unit Number

A-S7

CPU Instruction Set Details Appendix A

CTCz Move Control to Coprocessor CTCz
31 26 25 21 20 16 15 11 10 o

COPZ
0100xx*

6

CT rt rd 0
0011 0 000 0000 0000

5 5 5 11

Format:
CTCz rt, rd

Description:
The contents of general register rt are loaded into control register rd of

coprocessor unit z.
This instruction is not valid for CPO.

Operation:

T: data ~ GPR[rtj
T + 1: CCR[z,rdj ~ data

Exceptions:
Coprocessor unusable

NOTE: *See "CPU Instruction Opcode Bit Encoding" at the end of Appendix A.

A-SS

CPU Instruction Set Details AppendizA

DADO Doubleword Add DADO
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL rs rt rd 0 DADO
000000 00000 101100

6 5 5 5 5 6

Format:
DADD rd, rs, rt

Description:
The contents of general register rs and the contents of general register

rt are added to fonn the result. The result is placed into general register rd.
An overflow exception occurs if the carries out of bits 62 and 63 differ

(2's complement overflow). The destination register rd is not modified
when an integer overflow exception occurs.

Operation:

T: GPR[rd] f-GPR[rs] + GPR[rt]

Exceptions:
Integer overflow exception

A-39

CPU Instruction Set Details Appendix A

DADDI Doubleword Add Immediate DADDI
31 26 25 21 20 16 15 o

immediate I DADDI I
. 011000

6 5 5 16

Format:
DADO I It, rs, immediate

Description:
The I6-bit immediate is sign-extended and added to the contents of

general register rs to fonn the result. The result is placed into general
register rt .

.An overflow exception occurs if carries out of bits 62 and 63 differ (2's
complement overflow). The destination register rt is not modified when an
integer overflow exception occurs.

Operation:

T: GPR [rt] f- GPR[rs] + (immediate1s)48 II immediate15 .. 0

Exceptions:
Integer overflow exception

A-40

CPU Instruction Set Details

DADDIU Doubleword Add
Immediate Unsigned

31 26 25 21 20 16 15

DADDIU I ~ n
011001 _

6 5 5

Format:
DADDIU rt. rs. immediate

Description:

AppendizA

DADDIU
o

immediate

16

The I6-bit immediate is sign-extended and added to the contents of
general register rs to fonn the result. The result is placed into general
register rt. No integer overflow exception occurs under any circumstances.

The only difference between this instruction and the DADDI
instruction is that DADDIU never causes an overflow exception.

Operation:

T: GPR [rt] ~ GPR[rs] + (immediate1S)48II immediate1S .. 0

Exceptions:
None

A-41

CPU Instruction Set Details Appendix A

DADDU Doubleword Add Unsigned DADDU
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL rs rt rei 0 DADDU
000000 00000 101101

6 5 5 5 5 6

Format:
DADDU rd, rs, rt

Description:
The contents of general register rs and the contents of general register

rt are added to form the result. The result is placed into general register rd.
No overflow exception occurs under any circumstances.
The only difference between this instruction and the DADD instruction

is that DADDU never causes an overflow exception.

Operation:

T: GPR[reI] ~GPR[rs] + GPR[rt]

Exceptions:
None

A-42

CPU Instruction Set Details Appendix A

DDIV Doubleword Divide DDIV
31 26 25 21 20 16 15 6 5 o

SPECIAL rs rt 0 DDIV
000000 00 0000 0000 011110

6 5 5 10 6

Format:
DON rs, rt

Description:
The contents of general register rs are divided by the contents of

general register rt, treating both operands as 2's complement values. No
overflow exception occurs under any circumstances, and the result of this
operation is undefined when the divisor is zero.

This instruction is typically followed by additional instructions to
check for a zero divisor and for overflow.

When the operation completes, the quotient word of the double result
is loaded into special register W, and the remainder word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results
of those instructions are undefined. Correct operation requires separating
reads of HI or W from writes by two or more instructions.

Operation:

T-2: LO
HI

T-1: LO
HI

T: LO
HI

Exceptions:
None

f- undefined
f- undefined
f- undefined
f- undefined
f- GPR[rs] div GPR[rt]
f- GPR[rs] mod GPR[rt]

A-43

--"--"----

CPU Instruction Set Details Appendbr:A

DDIVU Doubleword Divide Unsigned DDIVU
31 26 25 21 20 16 15 6 5 o

SPECIAL rs rt 0 DDIVU
000000 000000 0000 011111

6 5 5 10 6

Format:
DDIVUrs. rt

Description:
The contents of general register rs are divided by the contents of

general register rt, treating both operands as unsigned values. No integer
overflow exception occurs under any circumstances. and the result of this
operation is undefined when the divisor is zero.

This instruction is typically followed by additional instructions to
check for a zero divisor.

When the operation completes. the quotient word of the double result
is loaded into special register W. and the remainder word of the double
result is loaded into speCial register HI.

If either of the two preceding instructions is MFHI or MFLO. the results
of those instructions are undefined. Correct operation requires separating
reads of HI or W from writes by two or more instructions.

Operation:

T -2: LO f- undefined
HI f- undefined

T -1: LO f- undefined
HI f- undefined

T: LO f- (0 II GPR[rs)) div (0 II GPR[rt))
HI f- (0 II GPR[rs)) mod (0 II GPR[rt])

Exceptions:
None

A-44

CPU Instruction Set Details Appendix A

DIV Divide DIV
31 26 25 21 20 16 15 6 5 o

SPECIAL rs rt 0 DIV
000000 00 0000 0000 011010

6 5 5 10 6

Format:
DNrs, rt

Description:
The contents of general register rs are dMded by the contents of

general register rt, treating both operands as 2's complement values. No
overflow exception occurs under any circumstances, and the result of this
operation is undefined when the divisor is zero.

The operands must be valid sign-extended, 32-bit values.
This instruction is typically followed by additional instructions to

check for a zero divisor and for overflow.
When the operation completes, the quotient word of the double result

is loaded into special register W, and the remainder word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results
of those instructions are undefined. Correct operation requires separating
reads of HI or W from writes by two or more instructions.

Operation:

T-2: LO
HI

T-1: LO
HI

T: q
r

'LO
HI

Exceptions:
None

~ undefined
~ undefined
~ undefined
~ undefined
~ GPR[rsb1 .. 0 div GPR[rtb1 .. 0
~ GPR~~sb1..o mod GPR[rt1s1..o
~ (q31~2 II QS1..0
~ (rS1) II rS1 .. 0

A-45

------------ - ---------

CPU Instruction Set Details AppendizA

DIVU Divide Unsigned DIVU
31 26 25 21 20 16 15 6 5 o

SPECIAL rs rt 0 DIVU
000000 0000000000 011011

6 5 5 10 6

Format:
DNUrs. rt

Description:
The contents of general register rs are divided by the contents of

general register rt. treating both operands as unsigned values. No integer
overflow exception occurs under any circumstances. and the result of this
operation is undefined when the divisor is zero.

The operands must be valid sign-extended. 32-bit values.
This instruction is typically followed by additional instructions to

check for a zero divisor.
When the operation completes. the quotient word of the double result

is loaded into special register W. and the remainder word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO. the results
of those instructions are undefined. Correct operation requires separating
reads of HI or W from writes by two or more instructions.

Operation:

T -2: LO ~ undefined
HI ~ undefined

T -1: LO ~ undefined
HI ~ undefined

T: q ~ (0 II GPR[rs]g1..o) div (0 II GPR[rt]g1..o)
r ~ (0 II ~fR[rs]g1..o) mod (0 II GPR[rt]g1..o)
LO ~ (q31~2 II Q31..0
HI ~ (r31) II r31..0

Exceptions:
None

A-46

----~ ~ -----~~~

CPU Instruction Set Detans Appendix A

DMFCO Doubleword Move From
System Control Coprocessor DMFCO

31 26 25 21 20

co PO DMF
010000 00001

6 5

Format:
DMFCOrt. rd

Description:

16 15

rt ref

5 5

11 10

o
0000000 0000

11

o

The contents of coprocessor register rd of the CPO are loaded into
general register rt.

This operation is defined in kernel mode regardless of the setting of the
Status.KX bit. Execution of this instruction with in supeIVisor mode with
Status.SX = 0 or in user mode with UX = O. causes a reserved instruction
exception. All 64-bits of the general register destination are written from
the coprocessor register source. The operation of DMFCO on a 32-bit
coprocessor 0 register is undefined.

Operation:

T: data ~CPR[O,rd]

T+1: GPR[rt]~data

Exceptions:
Coprocessor unusable exception
ReseIVed instruction exception for supeIVisor mode with Status.SX = 0

or user mode with Status.UX = O.

A-47

CPU Instruction Set Details Appendix A

DMTCO Doubleword Move To
System Control Coprocessor DMTCO

31 26 25 21 20 16 15 11 10 o

CO PO DMT rt rd 0
010000 00101 000 0000 0000

6 5 5 5 11

Format:
DMTCOrt, rd

Description:
The contents of general register rt are loaded into coprocessor register

rd of the cpo.
This operation is defined in kernel mode regardless of the setting of the

Status.KX bit. Execution of this instruction with in supeIVisor mode with
Status.SX = 0 or in user mode with UX = 0, causes a reserved instruction
exception.

All 64-bits of the coprocessor 0 register are written from the general
register source. The operation ofDMTCO on a 32-bit coprocessor 0 register
is undefined.

Because the state of the virtual address translation system may be
altered by this instruction, the operation of load instructions, store
instructions, and TLB operations immediately prior to and after this
instruction are undefined.

Operation:

T: data ~ GPR[rt]

T + 1: CPR[O,rd] ~ data

Exceptions:
Reserved instruction exception for supeIVisor mode with Status.SX = 0

or user mode with Status.UX = o.

A-48

CPU InStructlOD Set Detans I AppeDdizA

DMULT Doubleword Multiply DMULT
31 26 25 21 20 16 15 6 5 o

SPECIAL rs rt 0 DMULT
000000 000000 0000 011100

6 5 5 10 6

Format:
DMULTrs, rt

Description:
The contents of general registers rs and rt are multiplied, treating both

operands as 2's complement values. No integer overflow exception occurs
under any circumstances.

When the operation completes, the low-order word of the double result
is loaded into special register LO, and the high-order word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results
of these instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by a minimum of two other instructions.

Operation:

Exceptions:
None

T-2: LO
HI

T-1: LO
HI

T: t
LO
HI

~ undefined
~ undefined
~ undefined
~ undefined
~ GPR[rs] * GPR[rt]
~te3 .. 0
~ t127 .. 64

A-49

CPU Instruction Set Details Appendix A

DMULTU Doubleword Multiply
Unsigned DMULTU

31 26 25 21 20 16 15 6 5 o

SPECIAL rs rt 0 DMULTU
000000 00 0000 0000 011101

6 5 5 10 6

Format:
DMULTU rs, rt

Description:
The contents of general register rs and the contents of general register

rt are multiplied, treating both operands as unsigned values. No overflow
exception occurs under any circumstances.

When the operation completes, the low-order word of the double result
is loaded into special register W, and the high-order word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results
of these instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by a minimum of two instructions.

Operation:

Exceptions:
None

T -2: LO f- undefined
HI f- undefined

T -1 : LO f- undefined
HI f- undefined

T: t f- (0 II GPR[rs]) * (0 II GPR[rt])
LO f- t63 .. 0
HI f-t127 .. 64

A-50

CPU Instruction Set Details

DSLL Doubleword Shift Left Logical

31 26 25 21 20

SPECIAL
000000

o
00000

6 5

Format:
DSLL rd, rt, sa

Description:

16 15 11 10

rt rd sa

5 5 5

6 5

Appenclb:A

DSLL

DSLL
1 11000

6

o

The contents of general register rt are shifted left by sa bits, inserting
zeros into the low-order bits. The result Is placed in register rd.

Operation:

T: Sf- 0 II sa
GPR[rd] f- GPR[rt](63-iI) .. o II OS

Exceptions:
None

A-51

CPU Instruction Set Details Appendix A

DSLLV Doubleword Shift Left
Logical Variable DSLLV

31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL rs rt rd 0 DSLLV
000000 00000 010100

6 5 5 5 5 6

Format:
DSLLV rd, rt, rs

Description:
The contents of general register rt are shifted left by the number of bits

specified by the low-order six bits contained in general register rs, inserting
zeros into the low-order bits. The result is placed in register rd.

Operation:

T: s ~ GPR[rsls .. o

GPR[rdl~ GPR[rtl(63-s) .. o II OS

Exceptions:
None

A-52

CPU Instruction Set Details

DSLL32
31 26 25

SPECIAL 0

Doubleword Shift Left
Logical + 32

21 20 16 15 11 10

rt rd
000000 00000

6 5 5 5

Format:
DSLL32 rd. rt. sa

Description:

AppencUzA

DSLL32
6 5 o

sa DSLL32
1 1 1 100

5 6

The contents of general register rt are shifted left by 32+sa bits.
inserting zeros into the low-order bits. The result is placed in register rd.

Operation:

T: s~ 111 sa

GPR[rd]~ GPR[rt](63-S) .. O II OS

Exceptions:
None

A-53

--_ ... __ - ._---------- ._------- _. ----

CPU Instruction Set Detail. Appendb::A

DSRA Doubleword
Shift Right Arithmetic DSRA

31

I

26 25 21 20 16 15 11 10 6 5 0

SPECIAL
I

0

I
rt

I
rd

I
sa

I
DSRA

I 000000 00000 111011
6 5 5 5 5 6

Format:
DSRA rd, rt, sa

Description:
The contents of general register rt are shifted right by sa bits, stgn­

extending the high-order bUs. The result is placed in register rd.

Operation:

T: s+-O \I sa
GPR[rd] +- (GPR[rt]63)S \I GPR[rt] 63 .. s

Exceptions:
None

A-54

CPU InStructiOD Set Detans AppeDdizA

DSRAV Doubleword Shift Right
Arithmetic Variable DSRAV

31 26 25 21 20 16 15 11 10 6 5 a

SPECIAL rs rt rei a DSRAV
000000 00000 010111

6 5 5 5 5 6

Format:
DSRAV rd, rt, rs

Description:
The contents of general register rt are shifted right by the number of

bits specified by the low-order six bits of general register rs, sign-extending
the high-order bits. The result is placed in register rd.

Operation:

T: Sf- GPR[rs1s..o

GPR[rd] f- (GPR[rt]S3)S II GPR[rt]S3 .. s

Exceptions:
None

A-55

CPU Instruction Set Details Appenclb:A

DSRA32 Doubleword Shift Right
Arithmetic + 32 DSRA32

31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL 0 rt rd sa DSRA32
000000 00000 111111

6 5 5 5 5 6

Format:
DSRA32 rd. rt. sa

Description:
The contents of general register rt are shifted light by 32+sa bits. sign­

extending the high-order bits. The result is placed in register rei

Operation:

T: S f-1 II sa
GPR[rd] f- (GPR[rt]63)$ II GPR[rt] 63 .. $

Exceptions:
None

A-56

CPU Instruction Set Details

DSRL Doubleword
Shift Right Logical

31 26 25 21 20 16 15 11 10

SPECIAL
000000

6

o
00000

5

Format:
DSRL rd. rt. sa

Description:

rt rei

5 5

6 5

sa

5

AppencUzA

DSRL

DSRL
111010

6

o

The contents of general register rt are shifted right by sa bits. inserting
zeros into the high-order bits. The result is placed in register rd.

Operation:

T: Sf- 0 II sa

GPR[rd] f- OS II GPR[rt]S3 .. s

Exceptions:
None

A-57

CPU Instruction Set Detail. AppenclizA

DSRLV Doubleword Shift Right
Logical Variable DSRLV

31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL rs rt ref 0 DSRLV
000000 00000 010110

6 5 5 5 5 6

Format:
DSRLV rd, rt, rs

Description:
The contents of general register rt are shifted right by the number of

bits specified by the low-order six bits of general register rs, inserting zeros
into the high-order bits. The result is placed in register rd.

Operation:

T: s ~ GPR[rs]s .. o

GPR[reI] ~ OS II GPR[rt]63 .. s

Exceptions:
None

A-58

CPU Instruction Set Details

DSRL32 Doubleword Shift Right
Logical + 32

31 26 25 21 20 16 15 11 10

SPECIAL 0 rt rd
000000 00000

6 5 5 5

Format:
DSRL32 rd, rt, sa

Description:

Appendix A

DSRL32
6 5 o

sa DSRL32
111110

5 6

The contents of general register rt are shifted right by 32+sa bits,
inserting zeros into the high-order bits. The result is placed in register rd.

Operation:

T: Sf- 1 II sa

GPR[rd] f- OS II GPR[rt]63 .. s

Exceptions:
None

A-59

CPU InstruCtiOD Set Details AppeDdizA

DSUB Doubleword Subtract DSUB
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL rs
I

rt rei o
00000

DSUB
101110 000000

6 5 5 5 5 6

Format:
DSUB rd, rs, rt

Description:
The contents of general register rt are subtracted from the contents of

general register rs to form a result. The result is placed into general
register rd.

The only difference between this instruction and the DSUBU
instruction is that DSUBU never traps on overflow.

An integer overflow exception takes place if the carries out of bits 62
and 63 differ (2's complement overflow). The destination register rd is not
modified when an integer overflow exception occurs.

Operation:

T: GPR[rd] t-- GPR[rs] - GPR[rt]

Exceptions:
Integer overflow exception

A-60

CPU Instruction Set Details Appenclb::A

D SUB U Doubleword Subtract Unsigned DSUBU
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL rs rt rd 0 DSUBU
000000 00000 101111

6 5 5 5 5 6

Format:
DSUBU rd, rs, rt

Description:
The contents of general register rt are subtracted from the contents of

general register rs to form a result. The result is placed into general
register rd.

The only difference between this instruction and the DSUB instruction
is that DSUBU never traps on overflow. No integer overflow exception
occurs under any circumstances.

Operation:

T: GPR[rd] f- GPR[rs] - GPR[rt]

Exceptions:
None

A-61

CPU IDstruction Set Details Appendiz A

ERET Exception Return ERET
31 '26 2524 6 5 o

CO PO co 0 ERET
010000 1 0000000000000000000 011000

6 1 19 6

Format:
ERET

Description:
ERET is the R4600 instruction for returning from an interrupt,

exception, or error trap. Unlike a branch or jump instruction, ERET does
not execute the next instruction.

ERET must not itself be placed in a branch delay slot.
If the processor is servicing an error trap (SR,2 = 1), then load the PC

from the ErrorEPC and clear the ERL bit of the Status register (SR~.
Otherwise (SR,2 = 0), load the PC from the EPC, and clear the EXL bit of the
Status register (SRI)'

An ERET executed between a LL and SC also causes the SC to fail.

Operation:

Exceptions:

T: if SR2 = 1 then
PC +- ErrorEPC
SR +- SR31..3 II 0 II SR1..o

else
PC+- EPC
SR +- SR31..2 II 0 II SRo

endif
LLbit +- 0

Coprocessor unusable exception

A-62

CPU Instruction Set Details Appendix A

J Jump J
31 26 25 o

6

target

26

Format:
J target

Description:
The 26-bit target address is shifted left two bits and combined with the

high-order bits of the address of the delay slot. The program
unconditionally jumps to this calculated address with a delay of one
instruction.

Operation:

T: temp ~ target
T + 1: PC ~ PC63 .. 28 1\ temp II 02

Exceptions:
None

A-53

CPU Instruction Set Details

JAL Jump And Link

31 26 25

JAL
000011

6

Format:
JALtarget

Description:

target

26

AppencUzA

JAL
o

The 26-bit target address is shifted left two bits and combined with the
high-order bits of the address of the delay slot. The program
unconditionally jumps to this calculated address with a delay of one
instruction. The address of the instruction after the delay slot is placed in
the link register. r31.

Operation:

T: temp f- target
GPR[31] f- PC + 8

T + 1 : PC f- PC 63 .. 28 II temp II 02

Exceptions:
None

A-54
~~~~ ~ --~-----



CPU Instruction Set Details Appendix A 

JALR Jump And Link Register JALR 
31 26 25 21 20 16 15 11 10 6 5 o 

SPECIAL rs 0 rd 0 JALR 
000000 00000 00000 001001 

6 5 

Format: 
JALRrs 
JALR rd, rs 

Description: 

5 5 5 6 

The program unconditionally jumps to the address contained in 
general register rs, with a delay of one instruction. The address of the 
instruction after the delay slot is placed in general register rd. The default 
value of rd, if omitted in the assembly language instruction, is 31. 

Register specifiers rs and rd may not be equal, because such an 
instruction does not have the same effect when re-executed. However, an 
attempt to execute this instruction is rwt trapped, and the result of 
executing such an instruction is undefined. 

Since instructions must be word-aligned, a Jump and Link Register 
instruction must specify a target register (rs) whose two low-order bits are 
zero. If these low-order bits are not zero, an address exception will occur 
when the jump target instruction is subsequently fetched. 

Operation: 

T: temp f- GPR [rs] 
GPR[rd] f- PC + 8 

T + 1 : PC f- temp 

bceptions: 
None 

A-65 



CPU Instruction Set Details AppencUxA 

JR Jump Register JR 
31 26 25 2120 65 o 

SPECIAL rs 0 JR 
000000 000 0000 0000 0000 001000 

6 5 15 6 

Format: 
JR rs 

Description: 
The program unconditionally jumps to the address contained in 

general register TS, with a delay of one instruction. 
Since instructions must be word-aligned, a Jump Register instruction 

must specify a target register (TS) whose two low-order bits are zero. If these 
low-order bits are not zero, an address exception will occur when the jump 
target instruction is subsequently fetched. 

Operation: 

T: temp ~ GPR[rs] 
T+1: PC~temp 

Exceptions: 
None 

A-66 



CPUID.~doDSetDeUill. AppeDdizA 

LB Load Byte LB 
31 26 25 21 20 16 15 o 

1 0 ~~ 0 0 I base ~ offset 

6 5 5 16 

Format: 
LB rt, offset(base) 

Description: 
The 16-bit offset is sign-extended and added to the contents of general 

register base to fonn a virtual address. The contents of the byte at the 
memory location specified by the effective address are sign-extended and 
loaded into general register rt. 

Operation: 

T: vAddr ~ «offset1s)4S II offset1S .. 0) + GPR[base] 
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA) 

pAddr ~ pAddrpSIZE _ 1 .. 3 II (pAddr2 .. 0 xor ReverseEndian3) 

mem ~ LoadMemory (uncached, BYTE, pAddr, vAddr, DATA) 
byte ~ vAddr2 .. 0 xor BigEndianCPU3 

GPR[rt] ~ (me""7+8*byte)56 II me""7+8*byte .. s*byte 

Exceptions: 
TLB refill exception 
TLB invalid exception 
Bus error exception 
Address error exception 

A-67 



CPU Instruction Set Detail. AppencUxA 

LBU Load Byte Unsigned LBU 
31 26 25 21 20 16 15 o 

LBU 
100100 

base rt offset 

6 5 5 16 

Format: 
LBU rt. offset(base) 

Description: 
The I6-bit offset is sign-extended and added to the contents of general 

register base to form a virtual address. The contents of the byte at the 
memory location specified by the effective address are zero-extended and 
loaded into general register rt. 

Operation: 

T: vAddr f- «offset15)4s II offset15 .. o) + GPR[base] 

(pAddr. uncached) f- AddressTranslation (vAddr, DATA) 

pAddr f- pAddrpSIZE _ 1 .. 3 II (pAddr2 .. 0 xor ReverseEndian3) 

mem f- LoadMemory (uncached, BYTE, pAddr, vAddr, DATA) 

byte f- vAddr2 .. 0 xor BigEndianCPU3 

GPR[rt] f- 056 II merTl]+8* byte .. S" byte 

Exceptions: 
TLB refill exception 
TLB invalid exception 
Bus error exception 
Address error exception 

A-68 



CPU Instruction Set Details Appendbr:A 

LD Load Doubleword LD 
31 26 25 21 20 16 15 o 

LD base rt offset 
110111 I I 

6 5 5 16 

Format: 
LD rt, offset(base) 

Description: 
The I6-bit offset is sign-extended and added to the contents of general 

register base to form a virtual address. The contents of the 64-bit 
doubleword at the memory location specified by the effective address are 
loaded into general register rt. 

If any of the three least-significant bits of the effective address are non­
zero, an address error exception occurs. 

Operation: 

T: vAddr f- «offset1S)48 II offset1s .. 0) + GPR[base] 
(pAddr, uncached) f- AddressTranslation (vAddr, DATA) 
mem f- LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA) 
GPR[rt] f- mem 

Exceptions: 
TLB refill exception 
TLB invalid exception 
Bus error exception 
Address error exception 

A-69 



CPU Instruction Set Details AppenclizA 

LDCz Load Doubleword To Coprocessor LDCz 

I 

31 26 25 21 20 16 15 o 

LDCz 
I 

base 
I 

rt 
I 

offset 
1101xx· 

6 5 5 16 

Format: 
LDCz rt, offset(base) 

Description: 
The 16-bit offset is sign-extended and added to the contents of general 

register base to form a virtual address. The processor reads a doubleword 
from the addressed memory location and makes the data available to 
coprocessor unit z. The manner in which each coprocessor uses the data 
is defined by the indMdual coprocessor specifications. 

If any of the three least-significant bits of the effective address are non­
zero, an address error exception takes place. 

This instruction is not valid for use with CPO. 
This instruction is undefined when the least-significant bit of the 

rt field is non-zero. 
Execution of the instruction referencing coprocessor 3 causes a 

reserved instruction exception, not a coprocessor unusable exception. 
NOTE: "'See the table "Opcode Bit Encoding" on next page, or "CPU Instruction 

Opcode Bit Encoding" at the end of Appendix A. 

Operation: 

T: vAddr ~ «offset1S)48 II offset1S .. 0) + GPR[base] 
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA) 
mem ~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA) 
COPzLD (rt, mem) 

Exceptions: 
TLB refill exception 
TLB invalid exception 
Bus error exception 
Address error exception 
Coprocessor unusable exception 
Reserved instruction exception (coprocessor 3) 

Opcode Bit Encoding: 

LDCz Bit #31 30 29 28 27 26 
LDC11 1 I 1 I 0 I 1 I 0 I 1 I 

o 
I 

Bit #31 30 29 

LDC21 1 I 1 I 0 I 1 

Opcode 

A-70 

o 
I 



CPU Instruction Set Details AppentiixA 

LDL Load Doubleword Left LDL 
31 26 25 21 20 1615 o 

LDL I base rt 
011010 

offset 

6 

address 8 

address 0 

5 5 16 

Format: 
LOL rt. offset{base) 

Description: 
This instruction can be used in combination with the LOR instruction 

to load a register with eight consecutive bytes from memory. when the 
bytes cross a doubleword boundary. LOL loads the left portion of the 
register with the appropriate part of the high-order doubleword; LOR loads 
the right portion of the register with the appropriate part of the low-order 
doubleword. 

The LOL instruction adds its Sign-extended 16-bit offset to the contents 
of general register base to form a virtual address which can specify an 
arbitrary byte. It reads bytes only from the doubleword in memory which 
contains the specified starting byte. From one to eight bytes will be loaded. 
depending on the starting byte specified. 

Conceptually. it starts at the specified byte in memory and loads that 
byte into the high-order (left-most) byte of the register; then it loads bytes 
from memory into the register until it reaches the low-order byte of the 
doubleword in memory. The least-significant (right-most) byte{s) of the 
register will not be changed. 

register 

before I A I B I c I DIE I FIG I H I $24 

LDL $24,3($0) 

----..-.. after 13 14 15 16 I 7 I FIG I H I $24 

The contents of general register rt are internally bypassed within the 
processor so that no NOP is needed between an immediately preceding 
load instruction which specifies register rt and a following LOL (or LOR) 
instruction which also speCifies register rt. 

No address exceptions due to alignment are possible. 

A-71 



CPU Instruction Set Detail. AppencUzA 

vAddr2 .. 0 

0 
1 
2 
3 
4 
5 
6 
7 

Operation: 

T: vAddr f- ((offset1S)48II offset1S .. 0) + GPR[basej 
(pAddr, uncached) f- AddressTranslation (vAddr, DATA) 
pAddr f- pAddrpSIZE-1 .. 3 II (pAddr2 .. 0 xor ReverseEndian3) 

if BigEndianMem = 0 then 
pAddr f- pAddrpSIZE-1 .. 3 II 03 

endif 
byte f- vAddr2 .. 0 xor BigEndianCPU3 

mem f- LoadMemory (uncached, byte, pAddr, vAddr, DATA) 

GPR[rtj f- mem7+8*byte .. O II GPR[rtjS5-8*byte .. O 

Given a doubleword in a register and a doubleword in memory. the 
operation of LDL is as follows: 

LDL 

C D E F G H 

Memory J K L M N o P 

BigEndianCPU = 0 BigEndianCPU = 1 

d.tination type offset Mtination 
LEM BEM 

PBCDEFGH 0 0 7 I J KLMNOP 
OPCDEFGH 1 0 6 JKLMNOPH 
NOPDEFGH 2 0 5 KL MNOPGH 
MNOPEFGP 3 0 4 LMNOPFGH 
L MNOPFGH 4 0 3 MNOPEFGH 
K L MNOPGH 5 0 2 NOPDEFGH 
J KLMNOPH 6 0 1 OPCDEFGH 
I J KLMNOP 7 0 0 PBCDEFGH 

LEMLittle-endian memory (BigEndianMem = 0) 
BEMBigEndianMem = 1 

type 

7 
6 
5 
4 
3 
2 
1 
0 

TypeAccessType (see Table 2.1 on page 3) sent to memory 
OffsetpAddr2 .. 0 sent to memory 

Exceptions: 
TLB refill exception 
TLB invalid exception 
Bus error exception 
Address error exception 

A-72 

offset 

LEM BEM 

0 0 
0 1 
0 2 
0 3 
0 4 
0 5 
0 6 
0 7 



CPU Instruction Set Details Appendix A 

LOR Load Ooubleword Right LOR 
31 26 25 21 20 16 15 o 

LDR I 
011011 

rt offset 

6 5 5 16 

Format: 
LDR rt. offset(base) 

Description: 
This instruction can be used in combination with the LDL instruction 

to load a register with eight consecutive bytes from memory. when the 
bytes cross a doubleword boundary. LDR loads the right portion of the 
register with the appropriate part of the low-order doubleword; LDL loads 
the left portion of the register with the appropriate part of the high-order 
doubleword. 

The LDR instruction adds its sign-extended I6-bit offset to the 
contents of general register base to form a virtual address which can 
specify an arbitrary byte. It reads bytes only from the doubleword in 
memory which contains the specified starting byte. From one to eight 
bytes will be loaded. depending on the starting byte specified. 

Conceptually. it starts at the specified byte in memory and loads that 
byte into the low-order (right-most) byte of the register; then it loads bytes 
from memory into the register until it reaches the high-order byte of the 
doubleword in memory. The most significant (left-most) byte(s) of the 
register will not be changed. 

address 8 

address 0 

register 

before I A I B I c I DIE I FIG I H I $24 

LOR $24,4($0) 
register 

The contents of general register rt are internally bypassed within the 
processor so that no NOP is needed between an immediately preceding 
load instruction which specifies register rt and a following LDR (or LDL) 
instruction which also specifies register rt 

No address exceptions due to alignment are possible. 

A-73 



CPU Instruction Set Details Appendix A 

vAddr2_0 

0 
1 
2 

3 
4 
5 
6 
7 

Operation: 

T: vAddr f- ((Offset1S)48II offset1S .. 0) + GPR[base] 
(pAddr, uncached) f- AddressTranslation (vAddr, DATA) 
pAddr f- pAddrpSIZE-1..3 II (pAddr2 .. O xor ReverseEndian3) 

if BigEndianMem = 1 then 
pAddr f- pAddr31 .. 311 03 

endif 
byte f- vAddr2 .. 0 xor BigEndianCPU3 
mem f- LoadMemory (uncached, byte, pAddr, vAddr, DATA) 

GPR[rt] f- GPR[rt]S3 .. 64-8*byte II mem63 .. 8*byte 

Given a doubleword in a register and a doubleword in memory, the 
operation of LOR is as follows: 

LOR 
Register A B C D E F G H 

Memory J K L M N o P 

BigEndianCPU = 0 BigEndianCPU = 1 

destination type offset destination type offset 

LEM BEM LEM BEM 

I J KLMNOP 7 0 0 ABCDEFGI 
AI JKLMNO 6 1 0 ABCDEFI J 
ABI JKLMN 5 2 0 ABCDEIJK 
ABCIJKLM 4 3 0 ABCDI JKL 
ABCDI JKL 3 4 0 ABCI JKLM 
ABCDEI JK 2 5 0 ABI JKLMN 
ABCDEFI J 1 6 0 AI JKLMNO 
ABCDEFGI 0 7 0 I J KLMNOP 

LEMLittle-endian memory lBigEndianMem = OJ 
BEMBigEndianMem = 1 

0 
1 
2 

3 
4 
5 
6 
7 

1YpeAccessType (see Table 2.1 on page 3) sent to memory 
OffsetpAddr2 .. 0 sent to memory 

Exceptions: 
TLB refill exception 
TLB invalid exception 
Bus error exception 
Address error exception 

A-74 

7 0 
6 0 
5 0 
4 0 
3 0 
2 0 
1 0 
0 0 



CPU Instruction Set Details Appendix A 

LH Load Halfword LH 
31 26 25 21 20 16 15 o 

LH base rt offset 
100001 I I 

6 5 5 16 

Format: 
LH rt, offset(base) 

Description: 
The I6-bit offset is sign-extended and added to the contents of general 

register base to fonn a virtual address. The contents of the halfword at the 
memory location specified by the effective address are sign-extended and 
loaded into general register rt. 

If the least-significant bit of the effective address is non-zero, an 
address error exception occurs. 

Operation: 

T: vAddr ~ «offset1s)48 II offset1s .. 0) + GPR[base] 
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA) 
pAddr ~ pAddrpSIZE _ 1..3 II (pAddr2 .. 0 xor (ReverseEndian II 0» 
mem ~ LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA) 
byte ~ vAddr2 .. 0 xor (BigEndianCPU2 II 0) 
GPR[rt] ~ (mem1S+S*byte)16II mem1S+S*byte .. S* byte 

Exceptions: 
TLB refill exception 
TLB invalid exception 
Bus error exception 
Address error exception 

A-75 



CPU Instruction Set Details AppendizA 

LHU Load Halfword Unsigned LHU 
31 26 25 21 20 16 15 o 

LHU I base rt 
100101 

offset 

6 5 5 16 

Format: 
LHU rt, offset(base) 

Description: 
The 16-bit offset is sign-extended and added to the contents of general 

register base to fonn a virtual address. The contents of the halfword at the 
memory location specified by the effective address are zero-extended and 
loaded into general register rt. 

If the least-significant bit of the effective address is non-zero, an 
address error exception occurs. 

Operation: 

T: vAddr f- ((offset 1 5)48 II offset15 .. 0) + GPR[base] 
(pAddr, uncached) f- AddressTranslation (vAddr, DATA) 

pAddr f- pAddrpSIZE -1 .. 3" (PAddr2 .. 0 xor (ReverseEndian2 " 0» 
mem f- LoadMernory (uncached, HALFWORD, pAddr, vAddr, DATA) 
byte f- vAddr2 .. 0 xor (BigEndianCPU2 " 0) 
GPR[rt] f- 048 " mem15+8*byte .. 8*byte 

Exceptions: 
TLB refill exception 
TLB invalid exception 
Bus Error exception 
Address error exception 

A-76 



CPU Instruction Set Detans Appendix A 

LL Load Linked LL 
31 26 25 21 20 16 15 o 

LL base rt offset 

I 110000 I I 
6 5 5 16 

Format: 
LL It. offset(base) 

Description: 
The I6-bit offset is sign-extended and added to the contents of general 

register base to form a virtual address. The contents of the word at the 
memory location specified by the effective address are loaded into general 
register rt. The loaded word is sign-extended. 

This instruction impliCitly performs a SYNC operation; all loads and 
stores to shared memory fetched prior to the LL must access memory 
before the LL. and loads and stores to shared memory fetched subsequent 
to the LL must access memory after the LL. The processor begins checking 
the accessed word for modification by other processors and devices. 

Load Linked and Store Conditional can be used to atomically update 
memory locations as shown: 

Ll: 
LL Tl. (TO) 
ADD 1'2. Tl. 1 
SC T2. (TO) 
BEQ T2. O. Ll 
NOP 

This atomically increments the word addressed by TO. Changing the 
ADD to an OR changes this to an atomic bit set. 

This instruction is available in User mode. and it is not necessary for 
CPO to be enabled. 

The operation of LL is undefined if the addressed location is uncached 
and. for synchronization between multiple processors. the operation of LL 
is undefined if the addressed location is noncoherent. A cache miss that 
occurs between LL and SC may cause SC to fail. so no load or store 
operation should occur between LL and SC. otheIWise the SC may never 
be successful. Exceptions also cause SC to fail. so persistent exceptions 
must be avoided. 

If either of the two least-significant bits of the effective address are non­
zero. an address error exception takes place. 

A-77 
_____ e -----------------



CPU Instruction Set Details Appendb::A 

Operation: 

T: vAddr f- «offset15)4S II offset15 .. 0) + GPR[basej 
(pAddr, uncached) f- AddressTranslation (vAddr, DATA) 
pAddr f- pAddrpSIZE-1..3 II (pAddr2 .. 0 xor (ReverseEndian II (2)) 
mem f- LoadMemory (uncached, WORD, pAddr, vAddr, DATA) 
byte f- vAddr2 .. 0 xor (BigEJ1dianCPU II (2) 
GPR[rtj f- (mem31+S.byte) II mem31+S.byte .. S.byte 
LLbit f-1 

SyncOperationO 

Exceptions: 
TLB refill exception 
TLB invalid exception 
Bus error exception 
Address error exception 

A-78 



CPU Instruction Set Detans Appendix A 

LLD Load Linked Doubleword LLD 
31 26 25 21 20 16 15 o 

LLD 
110100 

base rt offset 

6 5 5 16 

Format: 
LLD rt, offset(base) 

Description: 
The I6-bit offset is sign-extended and added to the contents of general 

register base to fonn a virtual address. The contents of the doubleword at 
the memory location specified by the effective address are loaded into 
general register rt. 

This instruction implicitly perfonns a SYNC operation; all loads and 
stores to shared memory fetched prior to the LLD must access memory 
before the LID, and loads and stores to shared memory fetched 
subsequent to the LID must access memory after the LLD. The processor 
begins checking the accessed doubleword for modification by other 
processors and devices. 

Load Linked Doubleword and Store Conditional Doubleword can be 
used to atomically update memory locations: 

LI: 
LLD TI, (TO) 
ADD T2, TI, I 
SCD T2, (TO) 
BEQ T2, 0, LI 
NOP 

This atomically increments the word addressed by TO. Changing the 
ADD to an OR changes this to an atomic bit set. 

The operation of LID is undefined if the addressed location is 
uncached and, for synchronization between multiple processors, the 
operation of LLD is undefined if the addressed location is noncoherent. A 
cache miss that occurs between LLD and SCD may cause SCD to fail, so 
no load or store operation should occur between LLD and SCD, otheIWise 
the SCD may never be successful. Exceptions also cause SCD to fail, so 
persistent exceptions must be avoided. 

This instruction is available in User mode, and it is not necessary for 
CPO to be enabled. 

If any of the three least-significant bits of the effective address are non­
zero, an address error exception takes place. 

A-79 
----------------_.-



CPU IDstruCtiOD Set Detail. AppeDdb:A 

Operation: 

T: vAddr ~ «offset1S)48 II offset1S .. 0) + GPR[base] 
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA) 

mem ~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA) 
GPR[rt] ~ mem 
LLbit ~ 1 
SyncOperation() 

Exceptions: 
TLB refill exception 
TLB invalid exception 
Bus error exception 
Address error exception 

A-SO 



CPU Instruction Set Details Appendb:A 

LUI Load Upper Immediate LUI 
31 26 25 21 20 16 15 o 

LUI 
001111 

o 
00000 

rt immediate 

6 5 5 16 

Format: 
LUI rtf immediate 

Description: 
The 16-bit immediate is shifted left 16 bits and concatenated to 16 bits 

of zeros. The result is placed into general register rt. The loaded word is 
sign-extended. 

Operation: 

T: GPR[rt] f- (immediate1s)32II immediate II 0 

Exceptions: 
None 

A-81 



CPU Instruction Set Details Appendiz: A 

LW Load Word LW 
31 26 25 21 20 16 15 o 

LW base rt offset 
I 100011 I ; ; 

6 5 5 16 

Format: 
LW rt, offset(base) 

Description: 
The I6-bit offset is sign-extended and added to the contents of general 

register base to fonn a virtual address. The contents of the word at the 
memory location specified by the effective address are loaded into general 
register rt The loaded word is Sign-extended. 

If either of the two least-significant bits of the effective address is non­
zero, an address error exception occurs. 

Operation: 

T: vAddr f- «offset1s)48 II offset1S .. 0) + GPR[base] 
(pAddr, uncached) f- AddressTranslation (vAddr, DATA) 

pAddr f- pAddrpSIZE-1 .. 3 II (pAddr2 .. 0 xor (ReverseEndian II 02)) 
mem f- LoadMemory (uncached, WORD, pAddr, vAddr, DATA) 
byte f- vAddr2 .. 0 xor (BigEndianCPU II 02) 
GPR[rt] f- (mem31+8*byte)32 II mem31+8*byte .. 8*byte 

Exceptions: 
TLB refill exception 
TLB invalid exception 
Bus error exception 
Address error exception 

A-S2 



CPU Instruction Set Detail. Appencib: A 

LWCz Load Word To Coprocessor LWCz 
31 26 25 21 20 16 15 o 

LWCz base rt offset 
1 1 00 x x* 

6 5 5 16 

Format: 
LWCz rt, offset(base) 

Description: 
The 16-bit offset is sign-extended and added to the contents of general 

register base to form a virtual address. The processor reads a word from 
the addressed memory location, and makes the data available to 
coprocessor unit z. 

The manner in which each coprocessor uses the data is defined by the 
indMdual coprocessor specifications. 

If either of the two least-significant bits of the effective address is non­
zero, an address error exception occurs. 

This instruction is not valid for use with CPO. 
NOTE: "See the table "Opcode Bit Encoding" on next page, or "CPU Instruction 

Opcode Bit Encoding" at the end of Appendix A. 

Operation: 

T: vAddr ~ «offset1S)48 II offset1S .. 0) + GPR[base} 
(pAddr, uncached)~ AddressTranslation (vAddr, DATA) 
pAddr ~ pAddrpSIZE-1 .. 3 II (pAddr2 .. 0 xor (ReverseEndian II 02» 
mem ~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA) 
byte ~ vAddr2 .. 0 xor (BigEndianCPU II 02) 
COPzLW (byte, rt, mem) 

Exceptions: 
TLB refill exception 
TLB invalid exception 
Bus error exception 
Address error exception 
Coprocessor unusable exception 

Opcode Bit Encoding: 

LWCz Bit #31 30 29 28 27 26 

LWC11 1 I 1 I 0 I 0 I 0 I 1 I 
o 

I 
Bit #31 30 29 28 27 26 o 

LWC21 1 I 1 I 0 I 0 I 1 I 0 I I 
\.... /'----- ~ "V --y--

Opcode Coprocessor Unit Number 

A-SS 



CPU Instruction Set Details Appendix A 

LWL Load Word Left LWL 
31 26 25 21 20 16 15 o 

LWL base rt offset 
I 100010 I I I 

6 5 5 16 

Format: 
LWL rt. offset(base) 

Description: 
This instruction can be used in combination with the LWR instruction 

to load a register with four consecutive bytes from memory. when the bytes 
cross a word boundary. LWL loads the left portion of the register with the 
appropriate part of the high-order word: LWR loads the right portion of the 
register with the appropriate part of the low-order word. 

The LWL instruction adds its sign-extended I6-bit offset to the 
contents of general register base to form a virtual address which can 
specify an arbitrary byte. It reads bytes only from the word in memory 
which contains the specified starting byte. From one to four bytes will be 
loaded. depending on the starting byte specified. The loaded word is sign­
extended. 

Conceptually. it starts at the specified byte in memory and loads that 
byte into the high-order (left-most) byte of the register: then it loads bytes 
from memory into the register until it reaches the low-order byte of the 
word in memory. The least-significant (right-most) byte(s) of the register 
will not be changed. 

memory 
(big-endian) register 

before 1 AlB 1 C 1 0 1 $24 

\ LWL $24,1($0) 

~ after L-I ......;.1--'-......;.2=-...L ______ 3 -,----=0---,1 $24 

The contents of general register rt are internally bypassed within the 
processor so that no NOP is needed between an immediately preceding 
load instruction which specifies register rt and a following LWL (or LWR) 
instruction which also specifies register rt. 

No address exceptions due to alignment are possible. 

A-84 



CPU Instruction Set Details 

Operation: 

T: vAddr f- «offset1S)48II offset1S .. 0) + GPR[base] 
(pAddr, uncached) f- AddressTranslation (vAddr, DATA) 
pAddr f- pAddrpSIZE-1 .. 3 II (pAddr2 .. 0 xor 'ReverseEndian3) 
if BigEndianMem = 0 then 

pAddr f- pAddrpSIZE-1 .. 3 II 03 
end if 
byte f- vAddr1..0 xor BigEndianCPU2 
word f- vAddr2 xor BigEndianCPU 
mem f- LoadMemory (uncached, 0 II byte, pAddr, vAddr, DATA) 
temp f- mem31+32*WOrcl-8*byte .. 32*worclll GPR[rt]23-8*byte .. O 

GPR[rt] f- (temp31)32 II temp 

AppendizA 

Given a doubleword in a register and a doubleword in memory. the 
operation of LWL is as follows: 

LWL 
Register A B C D E F G H 

Memory J K L M N o P 

BigEndianCPU = 0 BigEndianCPU = 1 

vAddr2 .. 0 

0 

1 
2 
3 
4 
5 
6 
7 

destination type offset destination 
LEM BEM 

SSSSPFGH 0 0 7 SSSSI JKL 
SSSSOPGH 1 0 6 SSSSJKLH 
SSSSNOPH 2 0 5 SSSSKLGH 
SSSSMNOP 3 0 4 SSSSLFGH 
SSSSLFGH 0 4 3 SSSSMNOP 
SSSSKLGH 1 4 2 SSSSNOPH 
SSSSJKLH 2 4 1 SSSSOPGH 
SSSSI JKL 3 4 0 SSSSPFGH 

Key to table: 
LEMLittle-endian memory (BigEndianMem = 0) 
BEMBigEndianMem = 1 

type 

3 
2 
1 
0 

3 
2 
1 
0 

TypeAccessType (see Table 2.1 on page 3) sent to memory 
OffsetpAddr2 .. 0 sent to memory 
Ssign-extend of destination31 

Exceptions: 
TLB refill exception 
TLB invalid exception 
Bus error exception 
Address error exception 

A-85 

---- - - - ------- -- . 

offset 

LEM BEM 

4 0 

4 1 
4 2 
4 3 
0 4 
0 5 
0 6 
0 7 



CPU Instruction Set Details Appendix A 

LWR Load Word Right LWR 
31 26 25 21 20 16 15 o 

LWR I 
100110 

base rt offset 

6 

address 4 
address 0 

5 5 16 

Format: 
LWR rt. offset(base) 

Description: 
This instruction can be used in combination with the LWL instruction 

to load a register with four consecutive bytes from memory. when the bytes 
cross a word boundary. LWR loads the right portion of the register with 
the appropriate part of the low-order word; LWL loads the left portion of 
the register with the appropriate part of the high-order word. 

The LWR instruction adds its sign-extended 16-bit offset to the 
contents of general register base to form a virtual address which can 
specify an arbitrary byte. It reads bytes only from the word in memory 
which contains the specified starting byte. From one to four bytes will be 
loaded. depending on the starting byte specified. The loaded word is sign­
extended. 

Conceptually. it starts at the specified byte in memory and loads that 
byte into the low-order (right-most) byte of the register; then it loads bytes 
from memory into the register until it reaches the high-order byte of the 
word in memory. The most significant (left-most) byte(s) of the register will 
not be changed. 

register 

before o $24 
~--~--~--~--~ 

A B c 

LWR $24,4($0) 

~-.. after A B c 4 

The contents of general register rt are internally bypassed within the 
processor so that no NOP is needed between an immediately preceding 
load instruction which specifies register rt and a following LWR (or LWL) 
instruction which also specifies register rt. 

No address exceptions due to alignment are possible. 

A-86 



CPU Instruction Set Detans Appendix A 

vAddr2..o 

0 

1 
2 
3 
4 
5 
6 
7 

Operation: 

T: vAddr +- «offset1S)48II offset1S .. 0) + GPR[base] 
(pAddr, uncached) +- AddressTranslation (vAddr, DATA) 
pAddr +- pAddrpSIZE-1..3II (pAddr2 .. 0 xor ReverseEndian3) 
if BigEndianMem = 1 then 

pAddr +- pAddrpSIZE-31..3 II 03 
endif 
byte +- vAddr1..o xor BigEndianCPU2 
word +- vAddr2 xor BigEndianCPU 
mem +- LoadMemory (uncached, 0 II byte, pAddr, vAddr, DATA) 
temp +- GPR[rtls1..~8*byte .. o II mem31+32*worcl-32*worcl+l3*byte 
GPR[rt] +- (temP31) II temp 

Given a word in a register and a word in memory, the operation ofLWR 
is as follows: 

LWR 
Register I ABC D E F G H 

Memory I J K L M N 0 P 

BigEndianCPU = 0 BigEndianCPU = 1 

destination type offset destination 
LEM BEM 

SSSSMNOP 0 0 4 SSSSEFGI 
SSSSEMNO 1 1 4 SSSSEFI J 
SSSSEFMN 2 2 4 SSSSEIJK 
SSSSEFGM 3 3 4 SSSSI JKL 
SSSSI JKL 0 4 0 SSSSEFGM 
SSSSEI JK 1 5 0 SSSSEFMN 
SSSSEFI J 2 6 0 SSSSEMNO 
SSSSEFGI 3 7 0 SSSSMNOP 

Key to table: 
LEMLittle-endian memory (BigEndianMem = 0) 
BEMBigEndianMem = 1 

type 

0 

1 
2 
3 
0 

1 
2 
3 

TypeAccessType (see Table 2.1 on page 3) sent to memory 
OjfsetpAddr2 .. 0 sent to memory 
Ssign-extend of destination31 

Exceptions: 
TLB refill exception 
TLB invalid exception 
Bus error exception 
Address error exception 

A-87 

offset 

LEM BEM 

7 0 

6 0 

5 0 
4 0 

3 4 
2 4 
1 4 
0 4 



CPU Instruction Set Details Appendix A 

LWU Load Word Unsigned LWU 
31 

I 

26 25 21 20 16 15 o 

LWU 
I 

base 
I 

rt offset 
101111 

6 5 5 16 

Format: 
LWU rt, offset(base) 

Description: 
The I6-bit offset is sign-extended and added to the contents of general 

register base to fonn a virtual address. The contents of the word at the 
memory location specified by the effective address are loaded into general 
register rt. The loaded word is zero-extended. 

If either of the two least-significant bits of the effective address is non­
zero, an address error exception occurs. 

Operation: 

T: vAddr f- «offset1s)48 II offset1s .. o) + GPR[base] 
(pAddr, uncached) f- AddressTranslation (vAddr, DATA) 
pAddr f- pAddrpSIZE-1..3 II (pAddr2 .. 0 xor (ReverseEndian II 02)) 
mem f- LoadMemory (uncached, WORD, pAddr, vAddr, DATA) 
byte f- vAddr2 .. 0 xor (BigEndianCPU II 02) 

GPR[rt] f- 032 II mem31+8*byte .. 8*byte 

Exceptions: 
TLB refill exception 
TLB invalid exception 
Bus error exception 
Address error exception 

A-88 



CPU InStructiOD Set Details AppeDclizA 

MFCO Move From 
System Control Coprocessor MFCO 

31 

- -------

26 25 21 20 16 15 1110 o 

CO PO MF rt rd o 
010000 00000 000 0000 0000 

6 5 5 5 11 

Format: 
MFCO rtf rd 

Description: 
The contents of coprocessor register rd of the CPO are loaded into 

general register rL May be used on both 32-bit and 64-bit CPO registers. 

Operation: 

T: data f- CPR[O,rd] 

T + 1: GPR[rt] f- (data31)32 II data31..0 

Exceptions: 
Coprocessor unusable exception 

A-S9 



CPU Instruction Set Details AppendlzA 

MFCz Move From Coprocessor MFCz 
31 26 25 21 20 16 15 11 10 o 

COPZ MF rt rd 0 
0100xx* 00000 000 0000 0000 

6 5 5 5 11 

Note: *See the table "Opcode Bit Encoding" on next page, or "CPU 
Instruction Opcode Bit Encoding" at the end of Appendix A. 

Format: 
MFCzrt, rd 

Description: 
The contents of coprocessor register rd of coprocessor z are loaded into 

general register rt. 
Execution of the instruction referenCing coprocessor 3 causes a 

reserved instruction exception, not a coprocessor unusable exception. 

Operation: 

T: if rdo = 0 then 
data ~ CPR[Z,rd4 .. 1 II 0]31..0 

else 
data ~ CPR[Z,rd4 .. 1 II 0]63 .. 32 

endif 
T+1: GPR[rt] ~ (data31)32II data 

Exceptions: 
Coprocessor unusable exception 
Reserved instruction exception (coprocessor 3) 

Opcode Bit Encoding: 

28 27 26 25 24 23 22 21 

°LQIk I 0 IE 0 I oj 
Coprocessor Suboperation 

Coprocessor Unit Number 

A-gO 



CPU IDstruction Set Detans Appendb::A 

MFHI Move From HI MFHI 
31 26 25 16 15 1110 6 5 o 

SPECIAL 0 rei 0 MFHI 
000000 00 0000 0000 00000 010000 

6 10 5 5 6 

Format: 
MFHI rd 

Description: 
The contents of special register HI are loaded into general register rd.. 
To ensure proper operation in the event of interruptions. the two 

instructions which follow a MFHI instruction may not be any of the 
instructions which modify the HI register: MULT. MULTU. DN. DIVU. 
MTHI. DMULT. DMULTU. DDN. DDIVU. 

Operation: 

T: GPR[reI] +- HI 

Exceptions: 
None 

A-91 



CPU Instruction Set Details AppenclizA 

MFLO Move From Lo MFLO 
31 26 25 16 15 1110 6 5 o 

SPECIAL 0 ret 0 MFLO 
000000 00 0000 0000 00000 010010 

6 10 5 5 6 

Format: 
MFW rd 

Description: 
The contents of special register W are loaded into general register rd. 
To ensure proper operation in the event of interruptions. the two 

instructions which follow a MFLO instruction may not be any of the 
instructions which modify the W register: MULT. MULTU. DIV. DIVU. 
MTLO. DMULT. DMULTU. DDIV. DDIVU. 

Operation: 

T: GPR[rd) f- LO 

Exceptions: 
None 

A-92 



CPU Instruction Set Details Appendix A 

MTCO Move To 
System Control Coprocessor MTCO 

31 26 25 21 20 16 15 11 10 o 

COPO 
010000 

MT 
00100 

rt rd o 
o 0 0 0 0 0 0 0 0 00 

6 5 5 5 11 

Format: 
MTCO rt, rd 

Description: 
The contents of general register rt are loaded into coprocessor register 

rdofCPO. 
Because the state of the virtual address translation system may be 

altered by this instruction, the operation of load instructions, store 
instructions, and TLB operations immediately prior to and after this 
instruction are undefined. 

Operation: 

T: data f- GPR[rt] 
T +1: CPR[O,rd] f- data 

Exceptions: 
Coprocessor unusable exception 

A-93 



CPU Instruction Set Details Appendb::A 

MTCz Move To Coprocessor MTCz 
31 26 25 21 20 16 15 11 10 o 

COPZ MT rt rd 0 
0100xx* 00100 000 00000000 

6 5 5 5 11 

Format: 
MTCz rt, rd 

Description: 
The contents of general register rt are loaded into coprocessor register 

rd of coprocessor z. Execution of the instruction referencing coprocessor 
3 causes a reserved instruction exception, not a coprocessor unusable 
exception. 

Operation: 

T: data ~ GPR[rth1 .. 0 
T+1: if rdo = 0 

Exceptions: 

CPR[Z,rd4 .. 1 II 0] ~ CPR[z, rd4 .. 1 II 0]63 .. 32 II data 
else 

CPR[z,rd4 .. 1 II 0] ~ data II CPR[Z,rd4 .. 1 II 0131 .. 0 
endif 

Coprocessor unusable exception 
Reserved instruction exception (coprocessor 3) 

*Opcode Bit Encoding: 

MTCz Bit #I 31 30 29 28 

copol 0 I 1 I 0 I 0 I 

27 26 25 24 

o I 0 1 0 I 0 

23 22 21 o 

I 1 I 0 I 0 I I 
Bit #I 31 30 29 28 27 26 25 24 23 22 21 o 

COP11 0 I 1 I 0 I 0 I 01110101110101 I 
Bit #I 31 30 29 28 27 26 25 24 23 22 21 o 

COP2LO ' 1i O I olQilo I 0 ~D 0 I oj 
Opco e Coprocessor Unit Number Coprocessor Suboperation 

I 

A-94 
------- -----



CPU Instruction Set Details AppendJ.zA 

MTHI Move To HI MTHI 
31 26 25 2120 65 o 

SPECIAL rs 0 MTHI 
000000 000 000000000000 010001 

6 5 15 6 

Format: 
MTHI rs 

Description: 
The contents of general register rs are loaded into special register HI. 
If a M1HI operation is executed following a MULT, MULTU, DIV, or 

DIVU instruction, but before any MFLO, MFHI, MTLO, or MTHI 
instructions, the contents of special register W are undefined. 

Operation: 

Exceptions: 
None 

T-2: HI f- undefined 

T-1: HI f- undefined 

T: HI f- GPR[rs] 

A-95 



CPU Instruction Set Details AppencUzA 

MTLO Move To LO MTLO 
31 26 25 2120 65 o 

SPECIAL rs 0 MTLO 
000000 000000000000000 010011 

6 5 15 6 

Format: 
MTLO rs 

Description: 
The contents of general register rs are loaded into special register W. 
If a MTLO operation is executed following a MULT, MULTU, ON, or 

ONU instruction, but before any MFLO, MFHI, MTLO, or MTHI 
instructions, the contents of special register HI are undefined. 

Operation: 

Exceptions: 
None 

T -2: LO f- undefined 

T -1: LO f- undefined 

T: LO f- GPR[rs] 

A-96 



CPU lD_tructlon Set Detail_ Appendb::A 

MULT Multiply MULT 
31 26 25 21 20 16 15 6 5 o 

SPECIAL rs rt 0 MULT 
000000 00 0000 0000 011000 

6 5 5 10 6 

Format: 
MULTrs, It 

Description: 
The contents of general registers rs and rt are multiplied, treating both 

operands as 32-blt 2's complement values. No integer overflow exception 
occurs under any circumstances. The operands must be valid 32-blt, slgn­
extended values. 

When the operation completes, the low-order word of the double result 
Is loaded Into special register W, and the high-order word of the double 
result Is loaded into special register HI. 

If either of the two preceding instructions is MFRI or MFLO, the results 
of these instructions are undefined. Correct operation requires separating 
reads of HI or W from writes by a minimum of two other instructions. 

Operation: 

Exceptions: 
None 

T-2: LO 
HI 

T-1: LO 
HI 

T: t 
LO 
HI 

A-97 

+- undefined 
+- undefined 
+- undefined 
+- undefined 
+- GPRkrsb1 .. 0 * GPR[rtIa1..o 
+- (t31 )32 II t31..0 
+- (tea) II te3 .. 32 

~~~~~~~- - ----... ----~--------~~--~-------


CPU Instruction Set Details Appendix A

MULTU Multiply Unsigned MULTU
31 26 25 21 20 16 15 6 5 o

SPECIAL rs rt 0 MULTU
000000 00 0000 0000 011001

6 5 5 10 6

Format:
MULTUrs, rt

Description:
The contents of general register rs and the contents of general register

rt are multiplied, treating both operands as unsigned values. No overflow
exception occurs under any circumstances. The operands must be valid
32-bit, sign-extended values.

When the operation completes, the low-order word of the double result
is loaded into special register W, and the high-order word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results
of these instructions are undefined. Correct operation requires separating
reads of HI or W from writes by a minimum of two instructions.

Operation:

Exceptions:
None

T-2: LO
HI

T-1: LO
HI

T: t
LO
HI

A-98

~ undefined
~ undefined
~ undefined
~ undefined
~ (0 II ~PR[rsh1..o) * (0 II GPR[rth1..o)
~ (t31)32 II t31..0
~ (t63) II t63 .. 32

CPU Instruction Set Details AppendizA

NOR Nor NOR
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL rs rt rd 0 NOR
000000 00000 100111

6 5 5 5 5 6

Format:
NOR rd, rs, rt

Description:
The contents of general register rs are combined with the contents of

general register rt in a bit-wise logical NOR operation. The result is placed
into general register rd.

Operation:

T: GPR[rd] ~ GPR[rs] nor GPR[rt]

Exceptions:
None

A-99

CPU Instruction Set Details Appendix A

OR Or OR
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL
000000

rs rt rd OR
100101

6 5 5 5 5 6

Format:
ORrd, rs, rt

Description:
The contents of general register rs are combined with the contents of

general register rt in a bit-wise logical OR operation. The result is placed
into general register rd.

Operation:

T: GPR[rd] f- GPR[rs] or GPR[rt]

Exceptions:
None

A-lOO

~------- ---

CPU Instruction Set Details AppendizA

ORI Or Immediate ORI
31 26 25 21 20 16 15 o

ORI I
001101 ~ I rt

immediate

6 5 5 16

Format:
ORI It, rs, immediate

Description:
The I6-bit immediate is zero-extended and combined with the contents

of general register rsin a bit-wise logical OR operation. The result is placed
into general register rt.

Operation:

T: GPR[rt] ~ GPR[rS]63 .. 16 II (immediate or GPR[rs]15 .. 0)

Exceptions:
None

A-IOl
----------- ---

CPU IDstruction Set Details AppendizA

SB Store Byte SB
31 26 25 21 20 16 15 o

5B
101000

base rt offset

6 5 5 16

Format:
SB It, offset(base)

Description:
The IS-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. The least-significant byte of
register rt is stored at the effective address.

Operation:

T: vAddr ~ «offset1S)48 II offset1S .. 0) + GPR[base]

Ezceptions:

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr ~ pAddrpsIZE-1 .. 311 (PAddr2 .. 0 xor ReverseEndian3)

byte ~ vAddr2 0 xor BigEndianCPU3

data ~ GPR[rt]63-8*byte .. O II 08*byte
StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

A-I02

CPU instruction Set Details Appendb:A

sc Store Conditional sc
31 26 25 21 20 16 15 o

SC
111000

base rt offset

6 5 5 16

Format:
SC rt, offset(base)

Description:
The I6-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. The contents of general register rt
are conditionally stored at the memol)' location specified by the effective
address.

This instruction implicitly performs a SYNC operation; loads and
stores to shared memol)' fetched prior to the SC must access memory
before the SC; loads and stores to shared memory fetched subsequent to
the SC must access memory after the SC.

If any other processor or device has modified the physical address
since the time of the previous Load Linked instruction, or if an ERET
instruction occurs between the Load Linked instruction and this store
instruction, the store fails and is inhibited from taking place.

The success or failure of the store operation (as defined above) is
indicated by the contents of general register rt after execution of the
instruction. A successful store sets the contents of general register rt to 1;
an unsuccessful store sets it to O.

The operation of Store Conditional is undefined when the address is
different from the address used in the last Load Linked.

This instruction is available in User mode; it is not necessary for CPO
to be enabled.

If either of the two least-significant bits of the effective address is non­
zero, an address error exception takes place.

If this instruction should both fail and take an exception, the exception
takes precedence.

Operation:

T: vAddr f- «offset1s)4S II offset1s .. 0) + GPR[base]
(pAddr, uncached) f- AddressTranslation (vAddr, DATA)
pAddr f- pAddrpSIZE_1 .. 3 \I (p1~~ .. o xor (ReverseEndian \I 02»
data f- GPR[rt]63-S*byte .. O \I 0
if LLbit then

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
endif
GPR[rt] f- 063 \1 LLbit
SyncOperationO

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

A-lOS

CPU Instruction Set Details Appendix A

SCD Store Conditional Doubleword SCD
31 26 25 21 20 16 15 o

seD
111100

base rt offset

6 5 5 16

Format:
SCD It, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general

register base to fonn a virtual address. The contents of general register rt
are conditionally stored at the memory location specified by the effective
address.

This instruction implicitly perfonns a SYNC operation; loads and
stores to shared memory fetched prior to the SCD must access memory
before the SCD; loads and stores to shared memory fetched subsequent to
the SCD must access memory after the SCD.

If any other processor or device has modified the physical address
since the time of the previous Load Linked Doubleword instruction, or if
an ERET instruction occurs between the Load Linked Doubleword
instruction and this store instruction, the store fails and is inhibited from
taking place.

The success or failure of the store operation (as defined above) is
indicated by the contents of general register rt after execution of the
instruction. A successful store sets the contents of general register rt to 1;
an unsuccessful store sets it to O.

The operation of Store Conditional Doubleword is undefined when the
address is different from the address used in the last Load Linked
Doubleword.

This instruction is available in User mode; it is not necessary for CPO
to be enabled.

If either of the three least-significant bits of the effective address is
non-zero, an address error exception takes place.

If this instruction should both fail and take an exception, the exception
takes precedence.

Operation:

T: vAddr ~ «offset 1 5)48 II offset15 .. 0) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
data ~ GPR[rt]
if LLbit then

StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)
endif
GPR[rt] ~ 063 11 LLbit
SyncOperationO

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

A-I04

CPU Instruction Set Details Appendb::A

so Store Doubleword so
31 26 25 21 20 16 15 o

SD base rt offset

I 1 1 1 1 1 1 I I
6 5 5 16

Format:
SD It, offset(base)

Description:
The I6-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. The contents of general register rt
are stored at the memory location specified by the effective address.

If either of the three least-significant bits of the effective address are
non-zero, an address error exception occurs.

Operation:

T: vAddr ~ «offset1S)48 II offset1S .. 0) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
data ~ GPR[rt]
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

A-I05

CPU Instruction Set Details Appendb:A

SDCz Store Doubleword
From Coprocessor

SDCz
31 26 25 21 20 16 15 o

SOCz rt offset
1 1 1 1 x x*

6 5 5 16

Format:
SDCz rt, offset(base)

Description:
The 16-bit oIfsetts sign-extended and added to the contents of general

register base to form a virtual address. Coprocessor unit z sources a
doubleword, which the processorwrttes to the addressed memory location.
The data to be stored is defined by individual coprocessor specifications.

If any of the three least-significant bits of the effective address are non­
zero, an address error exception takes place.

This instruction is not valid for use with CPO.
This instruction is undefined when the least-significant bit of the rt

field is non-zero.

Operation:

T: vAddr ~ ((offsetlsl48 II offset15 .. ol + GPR[base)
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
data ~ COPzSD(rt),
StoreMemory (uncached, DOUBLEWORD, data, pAddr,
vAddr, DATA)

Note: *See the table in this section under "Opcode Bit Encoding."
Also see "CPU Instruction Opcode Bit Encoding" at the end of Appendix A.

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:

SDCz Bit #31 30 29 28 27 26 o
SOC1 I 1 I 1 I 1 I 1 I 0 I 1 I I

Bit #31 30 29 28 27 26 o

SDC2Ll 11fl 11IQJJ I
SO opcode Coprocessor Unit Number

A-I06

CPU Instruction Set Details AppencUxA

SOL Store Doubleword Left SOL
31 26 25 21 20 16 15 o

SDL base
I

rt
I

offset
101100

6 5 5 16

Format:
SOL rt, offset(base)

Description:
This instruction can be used with the SOR instruction to store the

contents of a register into eight consecutive bytes of memory, when the
bytes cross a doubleword boundary. SOL stores the left portion of the
register into the appropriate part of the high-order doubleword of memory;
SOR stores the right portion of the register into the appropriate part of the
low-order doubleword.

The SOL instruction adds its Sign-extended IS-bit offset to the
contents of general register base to form a virtual address which may
specify an arbitrary byte. It alters only the word in memory which contains
that byte. From one to four bytes will be stored, depending on the starting
byte specified.

Conceptually, it starts at the most-significant byte of the register and
copies it to the specified byte in memory; then it copies bytes from register
to memory until it reaches the low-order byte of the word in memory.

No address exceptions due to alignment are possible.

memory
(big-endian)

register
address 8 8 9 10 11 12 13 14 15

IAIBICIDIEIFIGIHI$24 address 0 0 1 2 3 4 5 6 7
before

SOL $24,1 (SO)

address 8 8 9 10 11 12 13 14 15
after

address 0 0 B C D E F G H

Operation:

T: vAddr f- ((offset15)48II offset 15 .. 0) + GPR[base]
(pAddr, uncached) f- AddressTranslation (vAddr, DATA)
pAddr f- pAddrpSIZE -1 .. 3 II (pAddr2 .. 0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr f- pAddr31 3 II 03
end if ..
byte f- vAddr2 .. 0 xor BigEndianCPU3

data f- 056-8*byte II GPR[rt]63 .. 56-8*byte
Storememory (uncached, byte, data, pAddr, vAddr, DATA)

A-I07

CPU Instruction Set Details AppendbtA

vAddr2 .. 0

0
1
2
3
4
5
6
7

Given a doubleword in a register and a doubleword in memory, the
operation of SDL is as follows:

SDL
Register A B C D E F G H

Memory J K L M N o p

BigEndianCPU = 0 BigEndianCPU = 1
off •• t offset

datination type LEM BEM datination type LEM BEM

I J KLMNOA 0 0 7 ABCDEFGH
I JKLMNAB 1 0 6 I ABCDEFG
I J KLMABC 2 0 5 I J ABCDEF
I J KLABCD 3 0 4 I J KABCDE
I J KABCDE 4 0 3 I J KLABCD
I JABCDEF 5 0 2 I J K L MA B C
I ABCDEFG 6 0 1 I J KLMNAB
ABCDEFGH 7 0 0 I J KLMNOA

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1

7 0
6 0
5 0
4 0
3 0
2 0
1 0
0 0

Type Access1)rpe (see Table 2. I on page 2-3) sent to memory
Offset pAddr2 .. 0 sent to memory

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

A-lOS
~-----

0
1
2
3
4
5
6
7

CPU Instruction Set Details Appendb:A

SDR Store Doubleword Right SDR
31 26 25 21 20 16 15 o

SDR
101101

base rt offset

6 5 5 16

Format:
SOR rt. offset(base)

Description:
This instruction can be used with the SOL instruction to store the

contents of a register into eight consecutive bytes of memory. when the
bytes cross a boundary between two doublewords. SOR stores the right
portion of the register into the appropriate part of the low-order
doubleword; SOL stores the left portion of the register into the appropriate
part of the low-order doubleword of memory.

The SOR instruction adds its Sign-extended I6-bit offset to the
contents of general register base to form a virtual address which may
specify an arbitrary byte. It alters only the word in memory which contains
that byte. From one to eight bytes will be stored. depending on the starting
byte specified.

Conceptually. it starts at the least-significant (rightmost) byte of the
register and copies it to the specified byte in memory; then it copies bytes
from register to memory until it reaches the high-order byte of the word in
memory. No address exceptions due to alignment are possible.

address 8
address 0 1-::-t-:-+'=--t-'::-t--:'+=-+-7+-'="i

SDR $24,4($0)

after address 8
address 0 1-=+=+-:,.-1-:--+--+--+--+--1

Operation:

T: vAddr f- «offset15)48II offset 15 .. 0) + GPR[base]
(pAddr. uncached) f- AddressTranslation (vAddr. DATA)

ReverseEndian3)
pAddr f- pAddrpSIZE _ 1..3 II (pAddr2 .. 0 xor

If BigEndianMem = 0 then
pAddr f- pAddrpSIZE -31 .. 3 II 03

endif
byte f- vAddr1 .. 0 xor BigEnd!anCPU3

data f- GPR[rt]63-8*byte II 08 byte

Given a doubleword in a register and a doubleword in memory. the
operation of SOR is as follows:

A-I09

CPU Instruction Set Details Appendix A

vAddr2 .. o

0

1
2
3
4

5
6
7

SDR
Register A B C D E F G H

Memory J K L M N o P

BigEndianCPU = 0 Big End ian CPU = 1

offset offset
destination type

LEM BEM
destination type LEM BEM

ABCDEFGH 7 0 0 H J KLMNOP
BCDEFGHP 6 1 0 GHKLMNOP
CDEFGHOP 5 2 0 FGHLMNOP
DEFGHNOP 4 3 0 EFGHMNOP
EFGHMNOP 3 4 0 DEFGHNOP
FGHLMNOP 2 5 0 CDEFGHOP
GHKLMNOP 1 6 0 BCDEFGHP
HJKLMNOP 0 7 0 ABCDEFGH

Little-endian memory (BigEndianMem = 0)
BigEndianMem = 1

0 7

1 6
2 5
3 4
4 3
5 2
6 1
7 0

LEM
BEM
Type
Offset

AccessType (see Table 2.1 on page 2-3) sent to memory
pAddr2 .. 0 sent to memory

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

A-110

0

0

0

0

0

0

0

0

CPU Instruction Set Details AppendizA

SH Store Halfword SH
31 26 25 21 20 16 15 o

SH
101001

base rt offset

6 5 5 16

Format:
SH rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general

register base to form an unsigned effective address. The least-significant
halfword of register rt is stored at the effective address. If the least­
significant bit of the effective address is non-zero, an address error
exception occurs.

Operation:

T: vAddr f- «offset1s)48 II offset1s .. 0) + GPR[base]
(pAddr, uncached) f- AddressTranslation (vAddr, DATA)
pAddr f- pAddrpSIZE_1..S11 (pAddr2 .. 0 xor (ReverseEndian2 11 0»
byte f- vAddr2 .. 0 xor (BigEndianCPU2 II 0)
data f- GPR[rt]63-a*byte .. O II 08*byte
StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

A-HI

CPU Instruction Set Detail. AppendizA

SLL Shift Left Logical SLL
31 26 25 21 20

SPECIAL
000000 oogoo I

6 5

Format:
SLL rd, rt, sa

Description:

rt

5

16 15 11 10

ref sa

5 5

6 5

SLL
000000

6

o

The contents of general register rt are shifted left by sa bits, inserting
zeros into the low-order bits.

The result is placed in register rd.
The operand must be a valid sign-extended, 32-bit value.

Operation:

Exceptions:
None

T: Sf- 0 II sa

temp f- GPR[rtla1-s .. 0 II OS

GPR[rd] f- (temp31)32II temp

A-112

CPU Instruction Set Details AppendizA

SLLV Shift Left Logical Variable SLLV
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL rs rt rd 0 SLLV
000000 00000 000100

6 5 5 5 5 6

Format:
SLLV rd, rt, rs

Description:
The contents of general register rt are shifted left the number of bits

specified by the low-order five bits contained in general register TS,

inserting zeros into the low-order bits.
The result is placed in register rd.
The operand must be a valid sign-extended, 32-bit value.

Operation:

T: s ~ 0 II GP[rsI4 .. o

Exceptions:
None

temp ~ GPR[rt](31-S) .. O II OS

GPR[rd] ~ (temp31)32 II temp

A-US

CPU Instruction Set Details Appendix A

SLT Set On Less Than SLT
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL rs rt rd 0 SLT
000000 00000 101010

6 5 5 5 5 6

Format:
SLT rd, rs, rt

Description:
The contents of general register rt are subtracted from the contents of

general register rs. Considering both quantities as signed integers, if the
contents of general register rs are less than the contents of general register
rt, the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd.
No integer overflow exception occurs under any circumstances. The

comparison is valid even if the subtraction used during the comparison
overflows.

Operation:

T: if GPR[rs] < GPR[rt] then
GPR[rd] ~ 063 II 1

else

Exceptions:
None

GPR[rd] ~ 064
endif

A-114

CPU Instruction Set Detail. AppendizA

SLTI Set On Less Than Immediate SLTI
31 26 25 21 20 16 15 o

SLTI
001010

rs rt immediate

6 5 5 16

Format:
SL n rt. rs. immediate

Description:
The I6-bit immediate is sign-extended and subtracted from the

contents of general register rs. Considering both quantities as signed
integers. if rs is less than the sign-extended immediate. the result is set to
one; otherwise the result is set to zero.

The result is placed into general register rt.
No integer overflow exception occurs under any circumstances. The

comparison is valid even if the subtraction used during the comparison
overflows.

Operation:

T: if GPR[rs] < (immediate1S)48II immediate1S .. 0 then
GPR[rd] ~ 063 II 1

else
GPR[rd] ~ 064

endif

Exceptions:
None

A-IllS

.... _-----

CPU Instruction Set Details AppendizA

SLTIU Set On Less Than
Immediate Unsigned SLTIU

31 26 25 21 20 16 15 o

SLTIU I rs rt
001011

immediate

6 5 5 16

Format:
SL TIU rt, rs, immediate

Description:
The I6-bit immediate is sign-extended and subtracted from the

contents of general register rs. Considering both quantities as unsigned
integers, if rs is less than the sign-extended immediate, the result is set to
one; otherwise the result is set to zero.

The result is placed into general register ri.
No integer overflow exception occurs under any circumstances. The

comparison is valid even if the subtraction used during the comparison
overflows.

Operation:

T: if (0 I I GPR[rs~ < 0 I I (immediateH;)48 I I immediate15 .. 0 then
GPR[rd] f- 0 I I 1

else
GPR[rd] f- 064

endif

Exceptions:
None

A-U6

CPU Instruction Set Details Appendix A

SLTU Set On Less Than Unsigned SLTU
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL rs rt rd 0 SLTU
000000 00000 101011

6 5 5 5 5 6

Format:
SLTU rd, rs, rt

Description:
The contents of general register rt are subtracted from the contents of

general register rs. Considering both quantities as unsigned integers, if
the contents of general register rs are less than the contents of general
register rt, the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd.
No integer overflow exception occurs under any circumstances. The

comparison is valid even if the subtraction used during the comparison
overflows.

Operation:

T: if (0 I I GPR[rsNs < 0 I I GPR[rt) then
GPR[rd) ~ 0 I I 1

Exceptions:
None

else
GPR[rd) ~ 064

endif

A-1l7

CPU Instruction Set Details Appendix A

SRA Shift Right Arithmetic SRA
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL 0 rt rd sa SRA
000000 00000 000011

6 5 5 5 5 6

Format:
SRA rd, rt, sa

Description:
The contents of general register rt are shifted right by sa bits, sign­

extending the high-order bits.
The result is placed in register rd.
The operand must be a valid sign-extended, 32-bit value.

Operation:

T: Sf- 0 II sa

temp f- (GPR[rth1)S II GPR[rt] 31 .. s

GPR[rd] f- (temp31)32 II temp

Exceptions:
None

A-US

CPU Instruction Set Detans Appendix A

SRAV Shift Ri ht
Arithmetic tJlariable SRAV

31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL
000000

rs rt rd o SRAV
00000 000111

6 5 5 5 5 6

Format:
SRAV rd. rtf rs

Description:
The contents of general register rt are shifted right by the number of

bits specified by the low-order five bits of general register rs. sign­
extending the high-order bits.

The result is placed in register rd.
The operand must be a valid sign-extended. 32-bit value.

Operation:

T: Sf- GPR[rs]4 .. 0

Exceptions:
None

temp f- (GPR[rth1)S II GPR[rth1..S

GPR[rd] f- (temp31)32 II temp

A-lI9

CPU Instruction Set Details

SRL Shift Right Logical

31 26 25 21 20

I SPECIAL I
. 000000 .

o
00000

6 5

Format:
SRL rd. rtf sa

Description:

16 15 11 10

rt rd

5 5

sa

5

Appendb:A

SRL
6 5 0

SRL
000010

6

The contents of general register rt are shifted right by sa bits. inserting
zeros into the high-order bits.

The result is placed in register rd.
The operand must be a valid sign-extended. 32-bit value.

Operation:

T: Sf- 0 II sa

Exceptions:
None

temp f- OS II GPR[rtls1..S

GPR[rd] f- (temp31)32II temp

A-120

CPU Instruction Set Details AppendizA

SRLV Shift Right Logical Variable SRLV
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL
000000

rs rt ret o SRLV
00000 000110

6 5 5 5 5 6

Format:
SRLV rd, rt, rs

Description:
The contents of general register rt are shifted right by the number of

bits specified by the low-order five bits of general register rs, inserting zeros
into the high-order bits.

The result is placed in register rd.
The operand must be a valid sign-extended, 32-bit value.

Operation:

Exceptions:
None

T: Sf- GPR[rs]4 .. 0

temp f- OS II GPR[rtls1 .. s

GPR[ret] f- (temp31)32 II temp

A-121

--------- ---- ------

CPU Instruction Set Details Appendix A

SUB Subtract SUB
31 26 25 21 20 16 15 11 10 6 5 a

SPECIAL
000000

rs rt rd a
00000

SUB I
100010

6 5 5 5 5 6

Format:
SUB rd, rs, rt

Description:
The contents of general register rt are subtracted from the contents of

general register rs to form a result. The result is placed into general
register rd. The operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the SUBU instruction
is that SUBU never traps on overflow.

An integer overflow exception takes place if the carries out of bits 30
and 31 differ (2's complement overflow). The destination register rd is not
modified when an integer overflow exception occurs.

Operation:

Exceptions:

T: temp f- GPR[rs] - GPR[rt]

GPR[rd] f- (temp31)32 II temP31..0

Integer overflow exception

A-122

CPU Instruction Set Detans Appendix A

SUBU Subtract Unsigned SUBU

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL I rs rt rd 0
I

SUBU
000000 00000 100011

6 5 5 5 5 6

Format:
SUBU rd, rs, rt

Description:
The contents of general register rt are subtracted from the contents of

general register rs to form a result.
The result is placed into general register rd.
The operands must be valid sign-extended, 32-bit values.
The only difference between this instruction and the SUB instruction

is that SUBU never traps on overflow. No integer overflow exception occurs
under any circumstances.

Operation:

T: temp f- GPR[rs] - GPR[rt]

GPR[rd] f- (temp31)32 II temP31..0

Exceptions:
None

A-12S

------ -----.~--------- -----------~

CPU Instruction Set Details Appendb:A

sw Store Word sw
31 26 25 21 20 16 15 o

SW
101011

base rt offset

6 5 5 16

Format:
SW rt, offset(base)

Description:
The IS-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. The contents of general register rt
are stored at the memoty location specified by the effective address.

If either of the two least-significant bits of the effective address are non­
zero, an address error exception occurs.

Operation:

T: vAddr f- ((offset15)48 II offset15 .. o) + GPR[base]
(pAddr, uncached) f- AddressTranslation (vAddr, DATA)
pAddr f- pAddrpSIZE-1..3 II (pAddr2 .. 0 xor (ReverseEndian II 02)
byte f- vAddr2 .. 0 xor (BigEndianCPU II 02)
data f- GPR[rt]63-8*byt& II 08*byte
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

A-I24

---------- -------- ---------~-------~--- --

CPU Instruction Set Details AppendizA

SWCz Store Word From Coprocessor SWCz

I

31 26 25 21 20 16 15 o
SWCZ

I
base

I
rt

I
offset

1110xx'"
6 5 5 16

Format:
SWCz rt. offset(base)

Description:
The IS-bit qffset is sign-extended and added to the contents of general

register base to form a virtual address. Coprocessor unit z sources a word.
which the processor writes to the addressed memory location.

The data to be stored is defined by indMdual coprocessor
specifications.

This instruction is not valid for use with CPO.
If either of the two least-significant bits of the effective address is non­

zero. an address error exception occurs.
Execution of the instruction referencing coprocessor 3 causes a

reserved instruction exception. not a coprocessor unusable exception.

Operation:

T: vAddr f- «offset 1 5)48 II offset15 .. 0) + GPR[base]
(pAddr, uncached) f- AddressTranslation (vAddr, DATA)
pAddr f- pAddrpSIZE-1..3 II (pAddr2 .. 0 xor (ReverseEndian II 02)
byte f- vAddr2 .. 0 xor (BigEndianCPU II (2)
data f- COPzSW (byte,rt)
StoreMemory (uncached, WORD, data, pAddr, vAddr DATA)

Note: ·See the table in this section under "Opcode Bit Encoding."
Also see "CPU Instruction Opcode Bit Encoding" at the end of Appendix A.

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Coprocessor unusable exception
Reserved instruction exception (coprocessor 3)

Opcode Bit Encoding:

SWCz Bit #31 30 29 28 27 26

SWC1 I 1 I 1 I 1 I 0 I 0 I 1 I
o

I
Bit #31 30 29 28 27 26 o

SWC2L 1 11::S 1 1 0 E:[lJ I
SW opcode Coprocessor Unit Number

A-125

CPU Instruction Set Details Appendh::A

SWL Store Word Left SWL
31

I

26 25 21 20 16 15 o

SWL
I

base
I

rt
I

offset
101010

6 5 5 16

Format:
SWL rt, offset(base)

Description:
This instruction can be used with the SWR instruction to store the

contents of a register into four consecutive bytes of memory, when the
bytes cross a word boundary. SWL stores the left portion of the register
into the appropriate part of the high-order word of memory; SWR stores the
right portion of the register into the appropriate part of the low-order word.

The SWL instruction adds its Sign-extended IS-bit offset to the
contents of general register base to form a virtual address which may
specify an arbitrary byte. It alters only the word in memory which contains
that byte. From one to four bytes will be stored, depending on the starting
byte specified.

Conceptually, it starts at the most-significant byte of the register and
copies it to the specified byte in memory; then it copies bytes from register
to metnory until it reaches the low-order byte of the word in memory.

No address exceptions due to alignment are possible.

memory
(big-endian) register

address 4
address 0

ABC I D $24

SWL $24,1($0)

address 4 ~_4_11--_5-+_6-+_C7-11 after __ ~
address O. 0 _ A B .

Operation:

T: vAddr f- «offset15)48II offset 15 .. 0) + GPR[base]
(pAddr, uncached) f- AddressTranslation (vAddr, DATA)
pAddr f- pAddrpSIZE -1..3 II (pAddr2 .. 0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr f- pAddr31..2II 02
endif
byte f- vAddr1 .. 0 xor BigEndianCPU2
if (vAddr2 xor BigEndianCPU) = 0 then

data f- 032 II 024-8*byte II GPR[rt1s1..24-8*byte
else

data f- 024-8*byte II GPR[rt1s1..24-8*byte II 032
endif
StoreMemory(uncached, byte, data, pAddr, vAddr, DATA)

A-126

CPU Instruction Set Details Appendix A

vAddr2 .. 0

0
1
2
3
4
5
6
7

Given a doubleword in a register and a doubleword in memory, the
operation of SWL is as follows:

I
I
I
I
I
I
I
E

SWL
Register A B c D E F G H

Memory J K L M N o P

BigEndianCPU = 0 BigEndianCPU = 1
offset offset

destination type LEM BEM destination type LEM BEM

J KLMNOE 0 0 7 EFGHMNOP
J KLMNEF 1 0 6 I EFGMNOP
J KLMEFG 2 0 5 I J EFMNOP
J KLEFGH 3 0 4 I J KEMNOP
J KEMNOP 0 4 3 I J KLEFGH
J EFMNOP 1 4 2 I J KLMEFG
EFGMNOP 2 4 1 I J KLMNEF
FGHMNOP 3 4 0 I J KLMNOE

LitUe-endian memory lBigEndianMem = 0)
BigEndianMem = 1

3 4
2 4
1 4
0 4
3 0
2 0
1 0
0 0

LEM
BEM
Type
Offset

AccessType (see Table 2.1 on page 2-3) sent to memory
pAddr2 .. 0 sent to memory

0
1
2
3
4
5
6
7

Exceptions:
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

A-127
.------------------------------

CPU Instruction Set Detail. Appendix A

SWR Store Word Right SWR
31 26 25 21 20 16 15 o

SWR
101110

base rt offset

address 4

address 0

address 4

address 0

6 5 5 16

Format:
SWR rtf offset(base)

Description:
This instruction can be used with the SWL instruction to store the

contents of a register into four consecutive bytes of memory. when the
bytes cross a boundary between two words. SWR stores the right portion
of the register into the appropriate part of the low-order word; SWL stores
the left portion of the register into the appropriate part of the low-order
word of memory.

The SWR instruction adds its Sign-extended I6-bit offset to the
contents of general register base to form a virtual address which may
specify an arbitrary byte. It alters only the word in memory which contains
that byte. From one to four bytes will be stored. depending on the starting
byte specified.

Conceptually. it starts at the least-significant (rightmost) byte of the
register and copies it to the specified byte in memory; then copies bytes
from register to memory until it reaches the high-order byte of the word in
memory.

No address exceptions due to alignment are possible.

memory
(big-end ian}

I ~ I ~ I : I : I before

after

A-l28

register

A B C

SWR $24,1($0)

D $24

CPU Instruction Set Details AppencUzA

vAddr2 . .o

0
1
2
3
4
5
6
7

Operation:

T: vAddr +- «offset15)48II offset 15 .. 0) + GPR[base]
(pAddr, uncached) +- AddressTranslation (vAddr, DATA)
pAddr +- pAddrpSIZE _ 1 .. 3 II (pAddr2 .. 0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr +- pAddr31 .. 211 02
endif
byte +- vAddr1..0 xor BigEndianCPU2
if (vAddr2 xor BigEndianCPU) = 0 then

data +- 032 II GPR[rt]31-S"byte .. O II OS"byte
else

data +- GPR[rt1a1-8"byte .. 0 II OS"byte II 032
endif
StoreMemory(uncached, WORD-byte, data, pAddr, vAddr, DATA)

Given a doubleword in a register and a doubleword in memory, the
operation of SWR is as follows:

SWR

C 0 E F G H

Memory J K L M N o P

BigEndianCPU = 0 BigEndianCPU = 1
offset onset

destination type
LEM BEM

destination type LEM BEM

I J KLEFGH 3 0 4 HJ KLMNOP
I J KLFGHP 2 1 4 GHKLMNOP
I J KLGHOP 1 2 4 FGHLMNOP
I J KLHNOP 0 3 4 EFGHMNOP
EFGHMNOP 3 4 0 I J KLHNOP
FGHLMNOP 2 5 0 I J KLGHOP
GHKLMNOP 1 6 0 I J KLFGHP
HJKLMNOP 0 7 0 I J KLEFGH

Little-endian memory lBigEndianMem = 0)
BigEndianMem = 1

0 7
1 6
2 5
3 4
0 3
1 2
2 1
3 0

LEM
BEM
Type
Offset

AccessType (see Table 2.1 on page 2-3) sent to memory
pAddr2 .. 0 sent to memory

Exceptions:
TLB refill exception
TLB invalid exception

- TLB modification exception
Bus error exception
Address error exception

A-129

0
0

0
0
4
4
4
4

CPU Instruction Set Details Appendix A

SYNC Synchronize SYNC
31 2625 6 5 a

SPECIAL a SYNC
000000 0000 0000 0000 0000 0000 001111

6 20 6

Format:
SYNC

Description:
The SYNC instruction ensures that any loads and stores fetched prior

to the present instruction are completed before any loads or stores after
this instruction are allowed to start. Use of the SYNC instruction to
serialize certain memory references may be required in a multiprocessor
environment for proper synchronization. For example:

Processor A Processor B

SW R1, DATA 1 : LW R2, FLAG
LI R2,1 BEQ R2, RO,1B
SYNC NOP
SW R2, FLAG SYNC

LW R1, DATA

The SYNC in processor A prevents DATA being written after FLAG,
which could cause processor B to read stale data. The SYNC in processor
B prevents DATA from being read before FLAG, which could likewise result
in reading stale data. For processors which only execute loads and stores
in order, with respect to shared memory, this instruction is a NOP.

LL and SC instructions implicitly perform a SYNC.
This instruction is allowed in User mode.

Operation:

T: SyncOperationO

Exceptions:
None

A-lSO

CPU Instruction Set Details Appendix A

SVSCALL System Call SVSCALL
31 26 25 6 5 0

.~. ----------

SPECIAL
000000

Code SYSCALL I
001100.

6 20 6

Format:
SYSCALL

Description:
A system call exception occurs, immediately and unconditionally

transferring control to the exception handler.
The code field is available for use as software parameters, but is

retrieved by the exception handler only by loading the contents of the
memory word containing the instruction.

Operation:

T: SystemCallException

Exceptions:
System Call exception

A-lSI

CPU Instruction Set Details AppencUxA

TEQ Trap If Equal TEQ
31 26 25 21 20 16 15 6 5 o

SPECIAL rs rt code TEO
110100 000000

6 5 5 10 6

Format:
TEQ rs, rt

Description:
The contents of general register rt are compared to general register rs.

If the contents of general register rs are equal to the contents of general
register rt. a trap exception occurs.

The code field is available for use as software parameters, but is
retrieved by the exception handler only by loading the contents of the
memory word containing the instruction.

Operation:

Exceptions:
Trap exception

T: if GPR[rs] = GPR[rt] then

TrapException

endif

A-132

----~-~~- ~~ - ~~~-------~

CPU Instruction Set Details

TEQI Trap If Equal Immediate

31 26 25

REGIMM
000001

6

Format:

rs

5

21 20 16 15

TEal
01100

5

TEQI rs, immediate

Description:

immediate

16

Appenclb:A

TEQI
o

The IS-bit immediate is sign-extended and compared to the contents
of general register rs. If the contents of general register rs are equal to the
sign-extended immediate, a trap exception occurs.

Operation:

T: if GPR[rs] = (immediate1S)48II immediate1S .. 0 then

Trap Exception

endif

Exceptions:
Trap exception

A-133

CPU IDstruction Set Details AppendbtA

TGE Trap If Greater Than Or Equal TGE
31 26 25 21 20 16 15 6 5 o

SPECIAL rs
I

rt code TGE
110000 000000

6 5 5 10 6

Format:
TGErs. It

Description:
The contents of general register rt are compared to the contents of

general register rs. Considering both quantities as signed integers. if the
contents of general register rs are greater than or equal to the contents of
general register rt. a trap exception occurs.

The code field is available for use as software parameters. but is
retrieved by the exception handler only by loading the contents of the
memory word containing the instruction. .

Operation:

T: if GPR[rs] ~ GPR[rt] then
Trap Exception

endif

Exceptions:
Trap exception

A-I34

CPU Instruction Set Details Appendix A

TGEI Trap H Greater Than Or Equal Immediate TGEI
31 26 25 21 20 16 15 o

REGIMM rs I TGEI I
000001 .01000

immediate

6 5 5 16

Format:
TGEI rs, immediate

Description:
The 16-bit immediate is sign-extended and compared to the contents

of general register rs. Considering both quantities as signed integers, if
the contents of general register rs are greater than or equal to the sign­
extended immediate, a trap exception occurs.

Operation:

T: if GPR[rs] ~ (immediate15)48II immediate15 .. 0 then
TrapException

endif

Exceptions:
Trap exception

A-ISS

CPU Instruction Set Details Appendb:A

TGEIU Trap If Greater Than Or Equal
Immediate Unsigned TGEIU

31 26 25 21 20 16 15 o

REGIMM rs TGEIU immediate
000001 01001

6 5 5 16

Format:
TGEIU rs, immediate

Description:
The I6-bit immediate is sign-extended and compared to the contents

of general register rs. Considering both quantities as unsigned integers, if
the contents of general register rs are greater than or equal to the sign­
extended immediate, a trap exception occurs.

Operation:

T: if (0 II GPR[rs]) :2: (0 " (immediate1S)48 " immediate1s .. o) then
TrapException

endif

Exceptions:
Trap exception

A-l36
---- ----- ----

----~ -~-

CPU Instruction Set Details AppendlzA

T G E U Trap If Greater Than Or Equal Unsigned TGEU
31 26 25 21 20 16 15 6 5 0

SPECIAL

I
rs rt

I
code TGEU

000000 110001
6 5 5 10 6

Format:
TGEU rs, rt

Description:
The contents of general register rt are compared to the contents of

general register rs. Considering both quantities as unsigned integers, if
the contents of general register rs are greater than or equal to the contents
of general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is
retrieved by the exception handler only by loading the contents of the
memory word containing the instruction.

Operation:

T: if (0 II GPR[rs]) ~ (0 II GPR[rt]) then
Trap Exception

endif

Exceptions:
Trap exception

A-137

CPU Instruction Set Details Appendix A

TLBP Probe TLB For Matching Entry TLBP
31 26 25 24 6 5 o

COPO co 0 TLBP
010000 1 000 0000 0000 0000 0000 001000

6 1 19 6

Format:
TLBP

Description:
The Index register is loaded with the address of the TLB entIy whose

contents match the contents of the EntryHi register. If no TLB entIy
matches, the high-order bit of the Index register is set.

The architecture does not specify the operation of memory references
associated with the instruction immediately after a TLBP instruction, nor
is the operation specified if more than one TLB entIy matches.

Operation:

T: Index~ 1 II 0 31

for i in 0 .. TLBEntries-1

if (TLB[i1167 .. 141 and not (015 II TLB[i1216 .. 205))
= EntryHi39 .. 13) and not (015 II TLB[i1216 .. 205)) and
(TLB[i1140 or (TLB[ih35 .. 128 = EntryHi7 .. 0)) then

Index ~ 026 11 i 5 .. 0
endif

endfor

Exceptions:
Coprocessor unusable exception

A-ISS

CPU Instruction Set Details AppendizA

TLBR Read Indexed TLB Entry TLBR
31 26 25 24 6 5 o

COPO co 0 TLBR
010000 1 0000000 0000 0000 0000 000001

6 1 19 6

Format:
TLBR

Description:
The G bit (which controls ASID matching) read from the TLB is written

into both of the EntryLoO and En1TyLol registers.
The EntryHi and EntryLo registers are loaded with the contents of the

TLB entry pOinted at by the contents of the TLB Index register. The
operation is invalid (and the results are unspecified) if the contents of the
TLB Index register are greater than the number of TLB entries in the
processor.

Operation:

T: PageMask f- TLB[lndexs .. O]2SS .. 192

Exceptions:

EntryHi f- TLB[lndexs .. O]191 .. 128 and not TLB[lndexs .. O]25S .. 192

EntryLo1 f-TLB[lndexs .. oh27 .. 6S II TLB[lndexs .. O]140

EntryLoO f- TLB[lndexs .. O]63 .. 1 II TLB[lndexs .. o1140

Coprocessor unusable exception

A-139

CPU Instruction Set Details Appendix A

TLBWI Write Indexed TLB Entry TLBWI
31 26 25 24 6 5 o

co PO co 0 TLBWI
010000 1 0000000 0000 0000 0000 000010

6 1 19 6

Format:
TLBWI

Description:
The G bit of the TLB is written with the logical AND of the G bits in the

EntryLoO and EntryLol registers.
The TLB entry pointed at by the contents of the TLB Index register is

loaded with the contents of the EntryHi and EntryLo registers.
The operation is invalid (and the results are unspecified) if the contents

oftheTLB Index register are greater than the numberofTLB entries in the
processor.

Operation:

T: TLB[lndeXs .. ol ~
PageMask II (EntryHi and not PageMask) II EntryLo1 II EntryLoO

Exceptions:
Coprocessor unusable exception

A-140

CPU Instruction Set Details Appendix A

TLBWR Write Random TLB Entry TLBWR
31 26 25 24 6 5 o

COPO co 0 TLBWR
010000 1 000 0000 0000 0000 0000 000110

6 1 19 6

Format:
TLBWR

Description:
The G bit of the TLB is written with the logical AND of the G bits in the

EntryLoO and EntryLol registers.
The TLB entry pointed at by the contents of the TLB Random register

is loaded with the contents of the EntryHi and EntryLo registers.

Operation:

T: TLB[Randoms .. o1 f-

PageMask II (EntryHi and not PageMask) II EntryLo1 II EntryLoO

Exceptions:
Coprocessor unusable exception

A-141

-- -- ----~ -----------~~

CPU Instruction Set Details Appendh::A

TlT Trap If Less Than TlT
31 26 25 21 20 16 15 6 5 0

SPECIAL I IS rt
000000 .

code TLT
110010

6 5 5 10 6

Format:
TLTrs, rt

Description:
The contents of general register rt are compared to general register rs.

Considering both quantities as signed integers, if the contents of general
register rs are less than the contents of general register rt, a trap exception
occurs.

The code field is available for use as software parameters. but is
retrieved by the exception handler only by loading the contents of the
memory word containing the instruction.

Operation:

T: if GPR[rs] < GPR[rt] then
TrapException

endif

Exceptions:
Trap exception

A-142

CPU Instruction Set DetaUs Appenclb:A

TLTI Trap If Less Than Immediate TLTI
31 26 25 21 20 16 15 o

REGIMM
000001

rs TLTI
01010

immediate

6 5 5 16

Format:
TLTI rs. hnmediate

Description:
The I6-bit immediate is sign-extended and compared to the contents

of general register rs. Considering both quantities as signed integers. if the
contents of general register rs are less than the sign-extended immediate.
a trap exception occurs.

Operation:

T: if GPR[rs] < (immediate1s)48 II immediate1S .. 0 then
Trap Exception

endif

Exceptions:
Trap exception

A-143

CPU IDstruction Set Detail. Appendix A

T L TI U Trap If Less Than Immediate Unsigned TL TI U
31 26 25 21 20 16 15 o

REGIMM rs TLTIU immediate
000001 01 011

6 5 5 16

Format:
TLTIU rs, immediate

Description:
The 16-bit immediate is sign-extended and compared to the contents

of general register rs. Considering both quantities as signed integers, if the
contents of general register rs are less than the sign-extended immediate,
a trap exception occurs.

Operation:

T: if (0 II GPR[rs]) < (0 II (immediate1S)48 II immediate1s .. o) then
TrapException

endif

Exceptions:
Trap exception

A-I44

CPU Instruction Set Details AppendizA

TLTU Trap If Less Than Unsigned TLTU
31 26 25 21 20 16 15 6 5 o

SPECIAL I
000000 .

rs rt code TLTU
110011

6 5 5 10 6

Format:
TLTUrs, rt

Description:
The contents of general register rt are compared to general register rs.

Considering both quantities as unsigned integers, if the contents of general
register rs are less than the contents of general register rt, a trap exception
occurs.

The code field is available for use as software parameters, but is
retrieved by the exception handler only by loading the contents of the
memory word containing the instruction.

Operation:

T: if (0 II GPR[rs]) < (0 II GPR[rt]) then

TrapException

endif

Exceptions:
Trap exception

A-145

CPU Instruction Set Details Appendix A

TNE Trap If Not Equal TNE
31

I

26 25 21 20 16 15 6 5 o

SPECIAL rs
I

rt

I
code TNE I

110110 000000
6 5 5 10 6

Format:
TNErs, rt

Description:
The contents of general register rt are compared to general register TS.

If the contents of general register TS are not equal to the contents of general
register rt, a trap exception occurs.

The code field is available for use as software parameters, but is
retrieved by the exception handler only by loading the contents of the
memory word containing the instruction.

Operation:

T: if GPR[rs] ¢ GPR[rt] then

Trap Exception

endif

Exceptions:
Trap exception

A-l46

CPU Instruction Set Details Appencliz A

TNEI Trap If Not Equal Immediate TNEI
31 26 25 21 20 16 15 o

REGIMM
000001

rs TNEI
01 1 1 0

immediate

6 5 5 16

Format:
TNEI rs, immediate

Description:
The 16-bit immediate is sign-extended and compared to the contents

of general register rs. If the contents of general register rs are not equal to
the sign-extended immediate, a trap exception occurs.

Operation:

T: if GPR[rs]:t: (immediate1S)48II immediate1S .. 0 then
Trap Exception

endif

Exceptions:
Trap exception

A-147

CPU Instruction Set Details AppencUxA

WAIT Wait WAIT
31 26 25 24 6 5 o

COPO co 0 WAIT
010000 1 000000000000000 0000 100000

6 1 19 6

Format:
WAIT

Description:
The WAIT instruction is used to halt the internal pipeline and thus

reduce the power consumption of the CPU. See Appendix G for more
details.

Operation:

T: if SysAD bus is idle then
StopPipeline

end if

Exceptions:
Coprocessor unusable exception

A-l48

CPU Instruction Set Details

XOR
31 26 25

SPECIAL I
000000 .

6

Format:

21 20

rs

5

XOR rd, rs, rt

Description:

Exclusive Or

16 15

rt rd

5 5

11 10 6 5

o
00000

5

Appendix A

XOR

XOR
100110

6

o

The contents of general register rs are combined with the contents of
general register rt in a bit-wise logical exclusive OR operation.

The result is placed into general register rd.

Operation:

T: GPR[rd] f- GPR[rs] xor GPR[rt]

Exceptions:
None

A-149

CPU Instruction Set Details

XORI Exclusive OR Immediate

31 26 25

XORI
001110

6

Format:

21 20

rs rt

5 5

XORI rt, rs, immediate

Description:

16 15

immediate

16

Appendix A

XORI
o

The I6-bit immediate is zero-extended and combined with the contents
of general register rs in a bit-wise logical exclusive OR operation.

The result is placed into general register rt.

Operation:

T: GPR[rt] ~ GPR[rs] xor (048 II immediate)

Exceptions:
None

A-ISO

CPU Instruction Set Details AppenclixA

CPU Instruction Opcode Bit Encoding
The remainder of this Appendix presents the opcode bit encoding for

the CPU instruction set (ISA and extensions), as implemented by the
R4600/R4700.

Table A.41ists the R4600/R4700 Opcode Bit Encoding.

A-151

CPU lutraction Set Details

28 .. 26
31 .. 29 0

o SPECIAL
1
2
3
4
5
6
7

ADDI
COPO
DADDI

LB
SB
LL
SC

2 .. 0
5 .. 3 0
o
1
2
3
4
5
6
7

20 .. 19 o
1
2
3

~rl

SLL
JR

MFHI
MULT
ADD

*
TGE
DSLL

BLTZ
TGEI

BLTZAL
w

23 .. 21
0
MF
BC

18 .. 16
20 .. 19 0

o
1
2
3

BCF ., ., .,
2 .. 0

5 .. 3 0

I

1
REGIMM
ADDIU
COP1
14~nll

LH
SH

LWC1
SWC1

1 ..
JALR
MTHI

MULTU
ADDU

*
TGEU

*

1
BGEZ
TGEIU

BGEZAL
w

1
DMF .,

BCT ., ., .,

o ~ I TLBR
1
2
3
4
5
6
7

TLBP 1
cp

ERET 1
WAIT I ,
~. ,

Key to Table:

, , , , , , ,

I

2
J

SLTI
COP2
LDL
LWL
SWL

LWC2
SWC2

2
SRL
*

MFLO
DIV
SUB
SLT
TLT

DSRL

2
BLTZL
TLTI

BLTZALL
w

2
CF .,

2

Opcode
3 4

JAL BEQ
SLTIU ANDI .. BEQL
LOR ..
LW LBU
SW SOL

* LLD
* SCD

SPECIAL function
3 4

SRA SLLV
.. SYSCALL

MTLO DSLLV
DIVU DMULT
SUBU AND
SLTU DADO
TLTU TEO
DSRA DSLL32

REGIMM rt
3 4

BGEZL *
TLTIU TEal

BGEZALL
w

w w

COPzrs
3 4 ., MT ., .,

CO

COPz rt
3 4

BCFL I BCTL I ., ., ., ., ., ., ., ., ., .,
CPO Function

2 3 4
ITLBWI I , ,

• , ,
• , , , , ,
• , , , , , , , ,
• , ,

Appenclb:: A

5 6 7
BNE BLEZ BGTZ
ORI XORI LUI

BNEL BLEZL BGTZL .. * *
LHU LWR LWU
SDR SWR CACHE 6
LDC1 LDC2 LD
SDC1 SDC2 SO

5 6 7
* SRLV SRAV

BREAK * SYNC
* DSRLV DSRAV

DMULTU DDIV DDIVU
OR XOR NOR

DADDU DSUB DSUBU .. TNE *
* DSRL32 DSRA32

5 6 7
* .. * .. TNEI *
w w w

w w w

5 6 7
DMT CT ., ., ., .,

5 6 7 ., ., ., ., ., ., ., ., ., ., ., .,
5 6 7 , ITLBWR .1 , , , ~ , , , , , , , , • , , , , , • , , •

* Operation codes marked with an asterisk cause reserved instruction exceptions in all current
implementations and are reserved for future versions of the architecture.

g Operation codes marked with a gamma cause a reserved instruction exception. They are
reserved for future versions of the architecture.

d Operation codes marked with a delta are valid only for R4600 processors with CPO enabled.
and cause a reserved instruction exception on other processors.

f Operation codes marked with a phi are invalid but do not cause reserved instruction
exceptions in R4600 implementations.

TableA.4

A-152

Integrated DevIce Technology. Inc.

FPU Instruction Set
Details

Introduction

Appendix B

This appendix provides a detailed description of each floating-point
unit (FPU) instruction (refer to Appendix A for a detailed description of the
CPU instructions). The instructions are listed alphabetically, and any
exceptions that may occur due to the execution of each instruction are
listed after the description of each instruction. Descriptions of the
immediate causes and the manner ofhandltng exceptions are omitted from
the instruction descriptions in this appendix (refer to Chapter 7 for
detailed descriptions of floating-point exceptions and handling).

Figure B.3 on page B-45 lists the entire bit encoding for the constant
fields of the floating-point instruction set; the bit encoding for each
instruction is included with that individual instruction.

Instruction Formats
There are three basic instruction format types:

• I-Type, or Immediate instructions, which include load and store oper­
ations

• M-Type. or Move instructions
• R-Type. or Register instructions. which include the two- and three­

register floating-point operations.
The instruction description subsections that follow show how these

three basic instruction formats are used by:
• Load and store instructions
• Move instructions
• Floating-Point computational instructions
• Floating-Point branch instructions

Floating-point instructions are mapped onto the MIPS coprocessor
instructions. defining coprocessor unit number one (CPI) as the floating­
point unit.

Each operation is valid only for certain formats. Implementations may
support some of these formats and operations through emulation, but they
only need to support combinations that are valid (marked V in Table B.I).

Combinations marked R in Table B.I are not currently specified by this
architecture. and cause an unimplemented instruction trap. They will be
available for future extensions to the architecture.

B-1

FPU Instruction Set Details Appendix: B

Operation Source Format

Single Double Word Longword

ADD V V R R

SUB V V R R

MUL V V R R

DN V V R R

SQRT V V R R

ABS V V R R

MOV V V

NEG V V R R

TRUNC.L V V

ROUND.L V V

CEIL.L V V

FLOOR.L V V

TRUNC.W V V

ROUND.W V V

CEIL.W V V

FLOOR.W V V

CVT.S V V V

CVT.D V V V

CVT.W V V

CVT.L V V

C V V R R

Table B.l Valid FPU Instruction Formats

The coprocessor branch on condition true/false instructions can be
used to logically negate any predicate. Thus, the 32 possible conditions
require only 16 distinct comparisons, as shown in Table B.2 below.

B-2

FPU Instruction Set Details AppendixB

Condition Relations Invalid
Operation

Mnemonic Code Greater Less Equal Unordered Exception If

True

F

UN

EQ

UEQ

OLT

ULT

OLE

ULE

SF

NGLE

SEQ

NGL

LT

NGE

LE

NGT

Than Than Unordered
False

T 0 F F F F No

OR 1 F F F T No

NEQ 2 F F T F No

OGL 3 F F T T No

UGE 4 F T F F No

OGE 5 F T F T No

UGT 6 F T T F No

OGT 7 F T T T No

ST 8 F F F F Yes

GLE 9 F F F T Yes

SNE 10 F F T F Yes

GL 11 F F T T Yes

NLT 12 F T F F Yes

GE 13 F T F T Yes

NLE 14 F T T F Yes

GT 15 F T T T Yes

Table B.2 Logical Negation of Predicates by Condition True/False

Floating-Point Loads, Stores, and Moves
All movement of data between the floating-point coprocessor and

memory is accomplished by coprocessor load and store operations. which
reference the floating-point coprocessor General Purpose registers. These
operations are unformatted; no format conversions are performed and.
therefore. no floating-point exceptions can occur due to these operations.

Data may also be directly moved between the floating-point
coprocessor and the processor by move to coprocessor and move from
coprocessor instructions. Like the floating-point load and store operations.
move to/from operations perform no format conversions and never cause
floating-point exceptions.

An additional pair of coprocessor registers are available. called
F1oating-Point Control registers for which the only data movement
operations supported are moves to and from processor General Purpose
registers.

B-3

FPU Instruction Set Details Appendix B

Floating-Point Operations
The floating-point unit operation set includes:

• floating-point add
• floating-point subtract
• floating-point multiply
• floating-point divide
• floating-point square root
• convert between fixed-point and floating-point formats
• convert between floating-point formats
• floating-point compare
These operations satisfy the requirements of IEEE Standard 754

requirements for accuracy. Specifically, these operations obtain a result
which is identical to an infinite-precision result rounded to the specified
format, using the current rounding mode.

Instructions must specify the format of their operands. Except for
conversion functions, mixed-format operations are not provided.

Instruction Notation Conventions
In this appendix, all variable subfields in an instruction format (such

asjs.jt. immediate, and so on) are shown in lower-case. The instruction
name (such as ADD, SUB, and so on) is shown in upper-case.

For the sake of clarity, we sometimes use an alias for a variable subfield
in the formats of specific instructions. For example, we use rs = base in
the format for load and store instructions. Such an alias is always lower
case, since it refers to a variable subfield.

In some instructions, the instruction subfields op and junction can
have constant 6-bit values. When reference is made to these instructions,
upper-case mnemonics are used. For instance, in the floating-pOint ADD
instruction we use op = COPl and junction = FADD. In other cases, a
single field has both fixed and variable subfields, so the name contains
both upper and lower case characters. Bit encoding for mnemonics are
shown in Figure B.3 at the end of this appendix, and are also included with
each individual instruction.

In the instruction description examples that follow, the Operation
section describes the operation performed by each instruction using a
high-level language notation.

Instruction Notation Examples
The following examples illustrate the application of some of the

instruction notation conventions:

Example #1:

;: GPRt~j :~]~fu9dtalell 01~; •.

Sixteen zero bits are concatenated with an immediate
value (typically 16 bits), and the 32-bit string (with the lower
16 bits set to zero) is assigned to General Purpose Register rt.

Example #2:
.

... .. • ,. ·1~··; ••• ..•• . ;
(lmt.ne~latelS>:lIltntnedlate15~.{) .

'". ::';';.:.:~ ::-": .~. ~.>.:: L: ' .. "... . :: :;".: ..
Bit 15 (the sign bit) of an immediate value is extended for
16 bit positions, and the result is concatenated with bits 15
through 0 of the immediate value to form a 32-bit sign
extended value.

B-4

FPU Instruction Set Detan. AppendixB

I

Load and Store Instructions
In the R4600 implementation, the instruction immediately following a

load may use the contents of the register being loaded. In such cases, the
hardware interlocks, requiring additional real cycles, so scheduling load
delay slots is still desirable, although not required for functional code.

The behavior of the load store instructions is dependent on the width
of the FGRs.

• When the FR bit in the Status register equals zero, the Floating-POint
General registers (FGRs) are 32-bits wide.

• When the FR bit in the Status register equals one, the Floating-POint
General registers (FGRs) are 64-bits wide.

In the load and store operation descriptions, the functions listed in
Table B.3 are used to summarize the handling of virtual addresses and
physical memoty.

Function Meaning

AddressTranslation Uses the TLB to find the physical address given the virtual
address. The function fails and an exception is taken if
the required translation is not present in the TLB.

LoadMemory Uses the cache and main memory to find the contents of
the word containing the specified physical address. The
low-order two bits of the address and the Access Type field
indicates which of each of the four bytes within the data
word need to be returned. If the cache is enabled for this
access, the entire word is returned and loaded into the
cache.

Store Memory Uses the cache, write buffer, and main memory to store
the word or part of word specified as data in the word con-
taining the specified physical address. The low-order two
bits of the address and the Access Type field indicates
which of each of the four bytes within the data word
should be stored.

Table B.3 Load and Store Common FuDctlODII

Figure B.1 shows the I-Type instruction format used by load and store
operations.

I-Type (Immediate)

31 26 25 21 20 16 15 0

op

I
base

I
ft

I
offset I

6 5 5 16

op is a 6-bit operation code

base is the 5-bit base register specifier

ft is a 5-bit source (for stores) or destination (for loads) FPA register specifier

offset is the I6-bit signed immediate offset

an Store ID8true on Format

B-5

FPU Instruction Set Details Appendix B

I

All coprocessor loads and stores reference aligned-word data items.
Thus. for word loads and stores. the access type field is always WORD. and
the low-order two bits of the address must always be zero.

For doubleword loads and stores. the access type field is always
DOUBLEWORD. and the low-order three bits of the address must always
be zero.

Regardless of byte-numbering order (endianness). the address
specifies that byte which has the smallest byte-address in the addressed
field. For a big-endian machine. this is the leftmost byte; for a little-endian
machine. this is the rightmost byte.

Computational Instructions
Computational instructions include all of the arithmetic floating-point

operations performed by the FPU.
Figure B.2 shows the R-Type instruction format used for

computational operations.

R-Type (Register)

31 26 25 21 20 16 15 11 10 6 5

COP1
I

fmt
I

ft
I

fs
I

fd
I

function

6 5 5 5 5 6

COP 1 is a 6-bit operation code

fmt is a 5-bit format specifier

fs is a 5-bit source 1 register

ft is a 5-bit source2 register

fd is a 5-bit destination register

function is a 6-bit function field

The junction field indicates the floating-point operation to be
performed.

0

I

Each floating-point instruction can be applied to a number of operand
formats. The operand format for an instruction is specified by the 5-bit
format field; decoding for this field is shown in Table B.4.

Code Mnemonic Size Format

16 S single Binary floating-point

17 D double Binary floating-point

18 ReseIVed

19 ReseIVed

20 W single 32-bit binary fixed-point

21 L longword 64-btt binary fixed-point

22-31 ReseIVed

Table B.4 Format Field Decoding

B-6

FPU Instruction Set Detans AppendixB

Table B.5lists all floating-point instructions.

Code Mnemonic Operation
(5: 0)

0 ADD Add

1 SUB Subtract

2 MUL Multiply

3 ON OMde

4 SQRT Square root

5 ABS Absolute value

6 MOV Move

7 NEG Negate

8 ROUND.L Convert to single fixed-point, rounded to nearest/even

9 TRUNC.L Convert to single fixed-point, rounded toward zero

10 CEIL.L Convert to single fixed-point, rounded to +co

11 FLOOR.L Convert to single fixed-point, rounded to,

12 ROUNO.W Convert to single fixed-point, rounded to nearest/even

13 TRUNC.W Convert to single fixed-point, rounded toward zero

14 CEIL.W Convert to single fixed-point, rounded to + 00

15 FLOOR.W Convert to single fixed-point, rounded to - 00

16-31 - ReselVed

32 CVT.S Convert to single floating-point

33 CVT.O Convert to double floating-point

34 - ReselVed

35 - ReselVed

36 CVT.W Convert to 32-bit biruuy fixed-point

37 CVT.L Convert to 64-bit binary fixed-point

38-47 - ReselVed

48-63 C Floating-pointconnpare

Table B.S Floating-Point IIUItructioll8 and OperatiOIl8

In the following pages, the notation FGR refers to the 32 General
Purpose registers FGRO through FGR31 of the FPU, and FPR refers to the
floating-pOint registers of the FPU.

• When the FR bit in the Status register (SR(26)) equals zero, only the
even floating-point registers are valid and the 32 General Purpose reg­
isters of the FPU are 32-bits wide.

• When the FR bit in the Status register (SR(26)) equals one, both odd
and even floating-point registers may be used and the 32 General Pur­
pose registers of the FPU are 64-bits wide.

The following routines are used in the description of the floating-point
operations to retrieve the value of an FPR or to change the value of an FGR:

FPU Instruction Set Details

FR=O

value f- ValueFPR(fpr, fmt)
case fmt of
S,W:
ifFGRo = 0
value f- FGR(fpr)
else
value f- FGR(fpr - 1)
endif
D:
1* undefined for fpr not even * /
value f- FGR(fpr)
end

StoreFPR(fpr, fmt, value):
case fmt of
S,W:
ifFGRo = 0
FGR[fpr] f- FGR[fpr]63 .. 32 I I value
else
FGR[fpr - 1) f- value I I FGR(fpr - Ih1..0
endif
D:
/* undefined for fpr not even * /
FGR(fpr) f- value
end

FR= 1

value f- ValueFPR(fpr, fmt)
case fmt of
S:
value f- FGR[fprh 1..0
D,L:
value f- FGR[fpr)
W:
value f- FGR(fpr)
end

StoreFPR(fpr, fmt, value):
case fmt of
S,W:
FGR(fpr) f- undefined32 I I value
D,L:
FGR(fpr) f- value
end

B-8

AppencUxB

---- -- - -"-~~~--

FPU Instruction Set Details AppendlxB

ABS.fmt Floating-Point ABS.fmt Absolute Value

31

I

26 25 21 20 16 15 11 10 6 5 0

COP1 fmt 0 fs fd ABS
010001 I I 00000 I I I 000101 I

6 5 5 5 5 6

Format:
ABS.fmt fd, fs

Description:
The contents of the FPU register specified by fs are interpreted in the

specified format and the arithmetic absolute value is taken. The result is
placed in the floating-point register specified by fd.

The absolute value operation is arithmetic; a NaN operand signals
invalid operation.

This instruction is valid only for single- and double-precision floating­
point formats. The operation is not defined if bit 0 of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

Operation:

T: StoreFPR(fd, fmt, AbsoluteValue(ValueFPR(fs, fmt)))

Exceptions:
Coprocessor unusable exception
Coprocessor exception trap

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception

B-9

FPU Instruction Set Details AppendixB

ADD.fmt Floating-Point Add ADD.fmt
31

I

26 25 21 20 16 15 11 10 6 5 0

COP1

I
fmt

I
ft

I
fs

I
fd

I
ADD

I 010001 000000
6 5 5 5 5 6

Format:
ADD.fmt fd, fs, ft

Description:
The contents of the FPU registers specified by fs and ft are interpreted

in the specified format and arithmetically added. The result is rounded as
if calculated to infinite precision and then rounded to the specified format
(fint). according to the current rounding mode. The result is placed in the
floating-point register (FPR) specified by fd.

This instruction is valid only for single- and double-precision floating­
point formats. The operation is not defined if bit 0 of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

Operation:

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) + ValueFPR(ft, fmt»

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
Inexact exception
Overflow exception
Underflow exception

B-10

FPU Instruction Set Details Appendix B

BC1F Branch On FPA False
(Coprocessor 1) BC1F

31

I

26 25 21 20 1615 o

COP1

I
BC I og~~o I offset

010001 01000

6 5 5 16

Format:
BCIF offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. If the result of the last floating-point compare is false,
the program branches to the target address, with a delay of one
instruction.

Operation:

T-1: condition ~ not COC[1]
T: target ~ {offset1s)46II offset II 02
T + 1 : if condition then

PC ~ PC + target
endif

Exceptions:
Coprocessor unusable exception

B-11

FPU Instruction Set Details AppendixB

BC1FL Branch On FPU False Likely
(Coprocessor 1) BC1FL

31 26 25 21 20 1615 o

I COP1 I
010001

BC
01000

offset

6 5 5 16

Format:
BC IFL offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended.

If the result of the last floating-point compare is false, the program
branches to the target address, with a delay of one instruction. If the
conditional branch is not taken, the instruction in the branch delay slot is
nullified.

Operation:

T -1: condition f- not COC[1]
T: target f- (offset1s)46 II offset II 02
T + 1 : if condition then

Exceptions:

PC f- PC + target
else

NullifyCurrentlnstruction
endif

Coprocessor unusable exception

B-12

FPU instruction Set Detan. Appendb:B

BC1T Branch On FPU True
(Coprocessor 1) BC1T

31

6

26 25 21 20 1615 o

offset

5 5 16

Format:
BCIToffset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the I6-bit offset, shifted left two bits
and Sign-extended. If the result of the last floating-point compare is true.
the program branches to the target address. with a delay of one
instruction.

Operation:

Exceptions:

T-1: condition ~ COC[1]
T: target ~ (offset15)46 II offset II 02
T +1: if condition then

PC ~ PC + target
endif

Coprocessor unusable exception

B-13

FPU Instruction Set Detail.

BC1TL Branch On FPU True Likely
(Coprocessor 1)

31 26 25 21 20 1615

offset I COP1 BC
010001 01000

6 5 5 16

Format:
BC I TL offset

Description:

ApponelkB

BC1TL
o

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the I6-bit offset. shifted left two bits
and sign-extended.

If the result of the last floating-point compare is true. the program
branches to the target address. with a delay of one instruction. If the
conditional branch is not taken. the instruction in the branch delay slot is
nullified.

Operation:

T-1: condition f- COC[1]
T: target f- (offset1s)46 II offset II 02
T +1 : if condition then

PC f- PC + target
else

NullifyCurrentlnstruction
endif

Exceptions:
Coprocessor unusable exception

B-14

FPU Instruction Set Detans AppendixB

C.cond.fmt
31 26 25 21 20 16 15 11 10 6 5 43 o

I COP1
010001

frnt ft fs condO I
6 5 5 5 5, 2 4

Format:
C.cond.fmt fs, ft

Description:
The contents of the floating-point registers specified by js andjt are

interpreted in the specifiedjonnat and arithmetically compared.
A result is determined based on the comparison and the conditions

specified in the instruction. If one of the values is a Not a Number (NaN),
and the high-order bit of the condition field is set, an invalid operation
exception is taken. After a one-instruction delay, the condition is aVailable
for testing with branch on floating-point coprocessor condition
instructions.

Comparisons are exact and can neither overflow nor underflow. Four
mutually-exclusive relations are possible as results: less than, equal,
greater than, and unordered. The last case arises when one or both of the
operands are NaN; evety NaN compares unordered with everything,
including itself.

Comparisons ignore the sign of zero, so +0 = -0.
This instruction is valid only for single- and double-precision floating­

point formats. The operation is not defined if bit 0 of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

Note: *See "FPU Instruction Opcode Bit Encoding" at the end of
AppendixB.

B-15

FPU Instruction Set Details

Operation:

T: if NaN(ValueFPR(fs, fmt» or NaN(ValueFPR(ft, fmt» then

else

end if

less~false
equal ~ false
unordered ~ true
if cond3 then

signallnvalidOperationException
endif

less ~ ValueFPR(fs, fmt} < ValueFPR(ft, fmt}
equal ~ ValueFPR(fs, fmt} = ValueFPR(ft, fmt)
unordered f- false

condition f- (cond2 and less) or (cond1 and equal) or
(condo and unordered)

FCR[31k3 f- condition
COC[l] f- condition

Exceptions:
Coprocessor unusable
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception

B-16

AppendizB

FPU Instruction Set Details Appencib:: B

CEIL.L.fmt Floating-Point
Ceiling to Long

Fixed-Point Format
CEIL.L.fmt

31 26 25 21 20 16 15 11 10 6 5 o

COP1 fmt 0 fs fd CEIL.L
010001 00000 001010

6 5 5 5 5 6

Format:
CEIL.L.fmt fd. fs

Description:
The contents of the floating-point register specified by fs are

interpreted in the specified source fonnat. jmt. and arithmetically
converted to the single fixed-point fonnat. The result is placed in the
floating-point register specified by fd.

Regardless of the setting of the current rounding mode. the conversion
is rounded as if the current rounding mode is round to +00 (2).

This instruction is valid only for conversion from single- or double­
precision floating-point fonnats. When the FR bit in the Status register
equals one. both even and odd register numbers are valid.

When the source operand is an Infinity. NaN. or the correctly rounded
integer result is outside of _263 to 263_ 1. the Invalid operation exception
is raised. If the Invalid operation is not enabled then no exception is taken
and 263_1 is returned.

Operation:

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt. L))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

B-17

FPU Instruction Set Details AppendixB

CEIL.W.fmt Floating-Point
Ceiling to Single

Fixed-Point Format
CEIL.W.fmt

31 26 25 21 20 16 15 11 10 6 5 o

COP1 fmt 0 fs fd CEIL.W
010001 00000 001110

6 5 5 5 5 6

Format:
CEIL.W.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are

interpreted in the specified source fonnat, ftnt, and arithmetically
converted to the single fixed-point fonnat. The result is placed in the
floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion
is rounded as if the current rounding mode is round to +00 (2).

This instruction is valid only for conversion from a single- or double­
precision floating-point fonnats. The operation is not defined ifbit 0 of any
register specification is set and the FR bit in the Status register equals zero,
since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register
equals one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly
rounded integer result is outside of _231 to 231_ I, the Invalid operation
exception is raised. If the Invalid operation is not enabled then no
exception is taken and 231_1 is returned.

Operation:

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W»

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

B-18

FPU Instruction Set Details AppendixB

CFC1 Move Control Word From FPU
(Coprocessor 1) CFC1

31

I

26 25 21 20 16 15 11 10 0

COP1 CF rt fs 0
010001 00010 I I 0000000 0000

6 5 5 5 11

Format:
CFCI rt, fs

Description:
The contents of the FPU control register fs are loaded into general

register rt.
This operation is only defined whenfs equals 0 or 31.
The contents of general register rt are undefined for time T of the

instruction immediately following this load instruction.

Operation:

T: temp ~ FCR[fsj
T + 1: GPR[rtj ~ (temp31)32 II temp

Exceptions:
Coprocessor unusable exception

B-19

FPU Instruction Set Details AppendixB

CTC1 Move Control Word To FPU
(Coprocessor 1) CTC1

31

I

26 25 21 20 16 15 11 10 0

COP1
I

CT
I

rt

I
fs 0

010001 0011 0 000 0000 0000
6 5 5 5 11

Format:
CTCl rt, fs

Description:
The contents of general register rt are loaded into FPU control register

fs. This operation is only defined whenfs equals 31.
Writing to Control Register 31, the floating-point Control/Status

register, causes an interrupt or exception if any cause bit and its
corresponding enable bit are both set. The register will be written before
the exception occurs. The contents of floating-point control register fs are
undefined for time T of the instruction immediately following this load
instruction.

Operation:

~xceptioDs:

T: temp f- GPR[rtls1 .. o
T + 1: FCR[fs] f- temp

COC[1] f- FCR[31]23

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
Division by zero exception
Inexact exception
Overflow exception
Underflow exception

B-20

FPU Instruction Set Details AppendlxB

CVT.D.fmt Floating-Point CVT D fmt
Convert to Double ••

Floating-Point Format

31 26 25 21 20 16 15 11 10 6 5 o

fmt fs fd I COP1
010001

o
00000

CVT.D
100001

6 5 5 5 5 6

Format:
CVf.D.fmt fd, fs

Description:
The contents of the floating-point register specified by fs is interpreted

in the specified source fonnat,.fint, and arithmetically converted to the
double binaxy floating-point format. The result is placed in the floating­
point register specified by fd.

This instruction is valid only for conversions from single floating-point
fonnat, 32-bit or 64-bit fixed-point fonnat.

If the single floating-point or single fixed-point format is specified, the
operation is exact. The operation is not defined if bit 0 of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

Operation:

T: StoreFPR (fd, 0, ConvertFmt(ValueFPR(fs, fmt), fmt, 0»

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception
Underflow exception

B-21
" ""---------- - "---"""""-"' "'--~-"" "" "~""'~~-~---- ""--" -"""" --- -----------~

FPU Instruction Set Details

CVT.L.fmt Floating-Point
Convert to Long

Fixed-Point Format

AppendixB

CVT.L.fmt

31 26 25 21 20 16 15 11 10 6 5 0

Format:
Cvr.L.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are

interpreted in the specified source format,.fint, and arithmetically
converted to the long fixed-point format. The result is placed in the
floating-point register specified by fd.

This instruction is valid only for conversions from single- or double­
precision floating-point formats.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of _263 to 263_1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 263_1 is returned.

Operation:

T: StoreFPR (fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L»

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

B-22

FPU Instruction Set Details Appendb:B

CVT.S.fmt
Floating-Point

Convert to Single
Floating-Point Format

CVT.S.fmt

31 26 25 21 20 16 15 11 10 6 5 o

fmt fs fd I COP1
010001 I OO~oo I CVT.S

100000
6 5 5 5 5 6

Format:
CVT.S.fmt fd, fs

Description:
The contents of the floating-point register specified by Is are

interpreted in the specified source format,.fmt;. and arithmetically
converted to the single binary floating-point format. The result is placed
in the floating-point register specified by fd. Rounding occurs according to
the currently specified rounding mode.

This instruction is valid only for conversions from double floating-point
format, or from 32-bit or 64-bit fixed-point format. The operation is not
defined if bit 0 of any register specification is set and the FR bit in the
Status register equals zero, since the register numbers specify an even-odd
pair of adjacent coprocessor general registers. When the FR bit in the
Status register equals one, both even and odd register numbers are valid.

Operation:

T: StoreFPR(fd. S, ConvertFmt(ValueFPR(fs, fmt). fmt, 5»

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception
Underflow exception

B-23
------ .. _-- -" ..

FPU Instruction Set Details Appendix B

CVT.W.fmt Floating-Point CVT W f
Convert to • • mt

31

I

Fixed-Point Format

2625 21 20 16 15 11 10 6 5 0

COP1 fmt 0 fs fd CVT.W
010001 I I 00000 I I I 100100 I

6 5 5 5 5 6

Format:
CVf.W.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are

interpreted in the specified source format, fint, and arithmetically
converted to the single fixed-point format. The result is placed in the
floating-point register specified by fd. This instruction is valid only for
conversion from a single- or double-precision floating-point formats. The
operation is not defined if bit 0 of any register specification is set and the
FR bit in the Status register equals zero, since the register numbers specify
an even-odd pair of adjacent coprocessor general registers. When the FR
bit in the Status register equals one, both even and odd register numbers
are valid.

When the source operand is an Infinity or NaN, or the correctly
rounded integer result is outside of _231 to 231_1, an Invalid operation
exception is raised. If Invalid operation is not enabled, then no exception
is taken and 231 _1 is returned.

Operation:

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W»

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

B-24

FPU Instruction Set DetaDs AppendixB

I

DIV.fmt Floating-Point Divide DIV.fmt
31 26 25 21 20 16 15 11 10 6 5 0

COP1 fmt ft fs fd DIV
010001 I I I I I 000011 I

6 5 5 5 5 6

Format:
DN.fmt fd. fs. ft

Description:
The contents of the floating-point registers specified by fs andft are

interpreted in the specifiedformat and arithmetically dMded. The result
is rounded as if calculated to infinite precision and then rounded to the
specified format. according to the current rounding mode. The result is
placed in the floating-point register specified by fd

This instruction is valid for only single or double precision floating­
point formats.

The operation is not defined if bit 0 of any register specification is set
and the FR bit in the Status register equals zero. since the register
numbers specify an even-odd pair of adjacent coprocessor general
registers. When the FR bit in the Status register equals one. both even and
odd register numbers are valid.

Operation:

T: StoreFPR (fd. fmt, ValueFPR(fs, fmt)NalueFPR(ft, fmt»

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
Division-by-zero exception
Inexact exception
Overflow exception
Underflow exception

B-25

FPU Instruction Set Details Appendix B

DMFC1 Doubleword Move From
Floating-Point Coprocessor DMFC1

31 26 25 21 20 16 15 11 10 o

COP1 DMF rt fs 0
010001 00001 000 00000000

6 5 5 5 11

Format:
DMFCI rt. fs

Description:
The contents of register is from the floating-point coprocessor is stored

into processor register rt.
The contents of general register rt are undefined for time T of the

instruction immediately following this load instruction.
The FR bit in the Status register specifies whether all 32 registers of the

R4600 are addressable. When FR equals zero. this instruction is not
defined when the least significant bit of is is non-zero. When FR is set. is
may specify either odd or even registers.

Operation:

Exceptions:

T: if SR26 = 1 then
data f- CPR[1,fs]

else
data f- CPR[1,fs4 .. 1 II 0]

endif

T + 1: GPR[rt] f- data

Coprocessor unusable exception

B-26

FPU Instruction Set Details AppendixB

DMTC1 Doubleword Move To
Floating-Point Coprocessor DMTC1

31 26 25 21 20 16 15 1110 o

COP1 DMT rt fs 0
010001 00101 000 00000000

6 5 5 5 11

Format:
DMTCI rt. fs

Description:
The contents of general register rt are loaded into coprocessor register

Is of the CPl.
The contents of floating-point register Is are undefined for time Tof the

instruction immediately following this load instruction.
The FR bit in the Status register specifies whether all 32 registers of the

R4600 are addressable. When FR equals zero. this instruction is not
defined when the least significant bit of Is is non-zero. When FR equals
one. Is may specify either odd or even registers.

Operation:

T: data f- GPR[rt]

T + 1: if SR26 = 1 then

Exceptions:

CPR[1, fs] f- data
else

CPR[1, fS4 .. 1 II 0] f- data
endif

Coprocessor unusable exception

B-27

FPU Instruction Set Details AppendixB

FLOOR.L.fmt Floating-Point
Floor to Long

Fixed-Point Format

FLOOR.L.fmt

31 26 25 21 20 16 15 11 10 6 5 o

COP1 fmt 0 fs fd FLOOR.L
010001 00000 001011

6 5 5 5 5 6

Format:
FLOOR.L.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are

interpreted in the specified source fonnat, jmt, and arithmetically
converted to the single fixed-point fonnat. The result is placed in the
floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion
is rounded as if the current rounding mode is round to -00 (3).

This instruction is valid only for conversion from single- or double­
precision floating-pOint formats.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of _263 to 263_ 1, the Invalid operation exception
is raised. If the Invalid operation is not enabled then no exception is taken
and 263_1 is returned.

Operation:

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L»

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

B-28

FPU Instruction Set Detalls Appendb::B

FLOOR.W.fmt Floating-Point FLOOR.W.fmt
Floor to Single

Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 o

COP1 fmt 0 fs fd FLOOR.W
010001 00000 001111

6 5 5 5 5 6

Format:
FIpOR.W.fmt fd. fs

Description:
The contents of the floating-point register specified by js are

interpreted in the specified source format. fmt.. and arithmetically
converted to the single fixed-point format. The result is placed in the
floating-point register specified by jd.

Regardless of the setting of the current rounding mode. the conversion
is rounded as if the current rounding mode is round to -00 (RM = 3).

This instruction is valid only for conversion from a single- or double­
precision floating-point formats. The operation is not defined if bit 0 of any
register specification is set and the FR bit in the Status register equals zero.
since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register
equals one. both even and odd register numbers are valid.

When the source operand Is an Infinity or NaN. or the correctly
rounded integer result is outside of _231 to 23C1. an Invalid operation
exception is raised. If Invalid operation is not enabled. then no exception
is taken and 231_1 is returned.

Operation:

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt. W»

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

B-29

FPU Instruction Set Details Appendbr:: B

LDC1 Load Doubleword to FPU
(Coprocessor 1) LDC1

31 26 25 21 20 16 15 o

LDC1 I base ft
11010~

offset

6 5 5 16

Format:
LDC 1 ft, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general

register base to form an unsigned effective address.
When FR = 0, the contents of the doubleword at the memory location

specified by the effective address is loaded into registers ft andft+ 1 of the
floating-point coprocessor. This instruction is not valid, and is undefined,
when the least significant bit ofjt is non-zero.

When FR = 1, the contents of the doubleword at the memory location
specified by the effective address are loaded into the 64-bit register jt of the
floating point coprocessor.

The FR bit of the Status register (SR2sl specifies whether all 32 registers
of the R4600 are addressable. If FR equals zero, this instruction Is not
defined when the least significant bit ofjtis non-zero. If FR equals one,jt
may specify either odd or even registers.

If any of the three least-significant bits of the effective address are non­
zero, an address error exception takes place.

Operation:

T: vAddr ~ ((offset15)48 I I offset15 .. ol + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
data ~ LoadMemory(uncached, DOUBLEWORD, pAddr, vAddr, DATA)
if SR26 = 1 then

CPRll, ft] ~ data
else

CPRll, ft4 .. 1 II 0] ~ data
endif

Exceptions:
Coprocessor unusable
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

B-30

FPU Instruction Set Details AppendizB

LWC1 Load Word to FPU
(Coprocessor 1) LWC1

31 26 25 21 20 16 15 o

LWC1
110001

base ft offset

6 5 5 16

Format:
LWC I ft, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general

register base to fonn an unsigned effective address. The contents of the
word at the memory location specified by the effective address is loaded
into register ft of the floating-point coprocessor.

The FR bit of the Status register specifies whether all 64-bit Ftoating­
Point registers are addressable. If FR equals zero, LWC I loads either the
high or low half of the 16 even Floating-Point registers. If FR equals one,
LWCIloads the low 32-bits of both even and odd Floating-Pofntregisters.

If either of the two least-significant bits of the effective address is non­
zero, an address error exception occurs.

Operation:

T: vAddr f- «offsetl!;)48 I I offset15 .. 0) + GPR[base)
(pAddr, uncached) f- AddressTranslation (vAddr, DATA)
pAddr f- pAddrpSIZE-l .. 3 II (pAddr2 .. o xor (ReverseEndian II 02»
mem f- LoadMemory(uncached, WORD, pAddr, vAddr, DATA)
byte f- vAddr2 .. o xor (BigEndianCPU I I 02)
if SR26 = I then
CPR{I, ft) f- undefined32 II mem31+8*byte .. S*byte
else if fto=O then
CPR[l, f14 .. 1 I I 0) f- CPR[I, f14 .. 1 I I 0)64 .. 32 I I mem31+8*byte .. S*byte
else
CPR{I, ft4 .. 1 I I 0) f- mem31+8*byte .. S*byte I I CPR{I, ft4 .. 1 I I OIsI .. o
endif

Exceptions:
Coprocessor unusable
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

B-31

FPU Instruction Set Details AppencUzB

MFC1 Move From FPU
(Coprocessor 1) MFC1

31 26 25 21 20

COP1 MF
010001 00000

6 5

Format:
MFCI rt, fs

Description:

16 15

rt fs

5 5

11 10

o
0000000 0000

11

o

The contents of register Is from the floating-point coprocessor are
loaded into processor register rt.

The contents of register rt are undefined for time T of the instruction
immediately following this load instruction.

The FR bit of the Status register specifies whether all 32 registers of the
R4600 are addressable. If PH equals zero, MFC 1 loads either the high or
low half of the 16 even Floating-Point registers. If FR equals one, MFCI
stores the low 32-bits of both even and odd Floating-Point registers.

Operation:

T: if SR26 = 1 then
data ~ CPR[1, fs]

else if f80 = 0 then
data ~ CPR[1, fs4 .. 1 II 0]31..0

else
data ~ CPR[1, fs4 .. 1 II 0163 .. 32

endif
T +1: GPR[rt] ~ (data31)32 II data

Exceptions:
Coprocessor unusable exception

B-32

--.--"" _

FPU IIIstruction Set Detans AppendU:B

MOV.fmt Floating-Point Move MOV.fmt
31

I

26 25 21 20 16 15 11 10 6 5 0

COP1 fmt 0 fs fd MOV
010001 I I 00000 I I I 000110 I

6 5 5 5 5 6

Format:
MOV.fmt fd, fs

Description:
The contents of the FPU register specified by fs are interpreted in the

specified format and are copied into the FPU register specified by fd.
The move operation is non-arithmetic; no IEEE 754 exceptions occur

as a result of the instruction.
This instruction is valid only for single- or double-precision floating­

point formats.
The operation is not defined if bit 0 of any register specification is set

and the FR bit in the Status register equals zero, since the register
numbers specify an even-odd pair of adjacent coprocessor general
registers. When the FR bit in the Status register equals one, both even and
odd register numbers are valid.

Operation:

T: StoreFPR(fd, fmt, ValueFPR(fs, fmt»

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception

B-SS

FPU Instruction Set Details Appendix B

MTC1 Move To FPU
(Coprocessor 1) MTC1

31 26 25 21 20 16 15 11 10 o

COP1
010001

MT
00100

rt fs o
0000000 0000

6 5

Format:
MTCI rt, fs

Description:

5 5 11

The contents of register rt are loaded into the FPU general register at
locationfs.

The contents of floating-point register fs is undefined for time T of the
instruction immediately following this load instruction.

The FR bit of the Status register specifies whether all 32 registers of the
R4600 are addressable. If FR equals zero, MTCI loads either the high or
low half of the 16 even Floating-Point registers. If FR equals one, MTC 1
loads the low 32-bits of both even and odd Floating-Point registers.

Operation:

T: data f- GPR[rt131 .. 0
T + 1 : if SR26 = 1 then

Exceptions:

CPR[1, fs] f- undefined32 II data
else if fso=O then

CPR[1, fS4 .. 1 II 0] f- CPR[1, fS4 .. 1 II 0]63 .. 32 II data
else

CPR[1, fS4 .. 1 II 0] f- data II CPR[1, fS4 .. 1 II 0131..0
endif

Coprocessor unusable exception

B-34

FPU Instruction Set netalls Appendb:B

MUL.fmt Floating-Point Multiply MUL.fmt
31

I

26 25 21 20 16 15 11 10 6 5 0

COPl fmt ft fs fd MUL
010001 I I I I I 000010 I

6 5 5 5 5 6

Format:
MUL.fmt fd, fs, ft

Description:
The contents of the floating-point registers specified by js andft are

interpreted in the specifiedjormat and arithmetically multipUed. The
result is rounded as if calculated to infinite precision and then rounded to
the specifiedjormat, according to the current rounding mode. The result
is placed in the floating-point register specified by jd.

This instruction is valid only for single- or double-precision floating­
point formats.

The operation is not defined if bit 0 of any register specification is set
and the FR bit in the Status register equals zero, since the register
numbers specify an even-odd pair of adjacent coprocessor general
registers. When the FR bit in the Status register equals one, both even and
odd register numbers are valid.

Operation:

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) * ValueFPR(ft, fmt))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
Inexact exception
Overflow exception
Underflow exception

B-35

--- -" --~.- .. ------------------------------------

FPU Instruction Set Details AppeDcUxB

NEG.fmt Floating-Point Negate NEG.fmt
31 26 25 21 20 16 15 11 10 6 5 o

fmt fs fd I COP1
~10001 I OO~OO I NEG

000111

6 5

Format:
NEG.fmt fd. fs

Description:

5 5 5 6

The contents of the FPU register specified by js are interpreted in the
specifiedjormat and the arithmetic negation is taken (polarity of the sign­
bit is changed). The result is placed in the FPU register specified by jd.

The negate operation is arithmetic; an NaN operand signals invalid
operation.

This instruction is valid only for single- or double-precision floating­
point formats. The operation is not defined if bit 0 of any register
specification is set and the FR bit in the Status register equals zero. since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one. both
even and odd register numbers are valid.

Operation:

T: StoreFPR(fd. fmt. Negate(ValueFPR(fs, fmt)))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception

B-36

FPU Instruction Set Details AppendizB

ROUND.L.fmt Floating-Point
Round to Long

Fixed-Point Format

ROUND.L.fmt

31 26 25 21 20 16 15 11 10 6 5 o

COP1 fmt 0 fs fd ROUND.L
010001 00000 001000

6 5 5 5 5 6

Format:
ROUND.L.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are

interpreted in the specified source fonnat, fint, and arithmetically
converted to the long fixed-point format. The result is placed in the
floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion
is rounded as if the current rounding mode is round to nearest/even (0).

This instruction is valid only for conversion from single- or double­
precision floating-point fonnats.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of _263 to 263_ 1, the Invalid operation exception
is raised. If the Invalid operation is not enabled then no exception is taken
and 263 -1 is returned.

Operation:

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

B-37

JI'PU Instruction Set Details Appendiz B

ROUND.W.fmt Floating-Point ROUND.W.fmt
Round to Single

31

Fixed-Point Format

2625 21 20 16 15 11 10 6 5 o

COP1 fmt 0 fs fd ROUND.W
010001 00000 001100

6 5 5 5 5 6

Format:
ROUND.W.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are

interpreted in the specified source format, ftnt, and arithmetically
converted to the single fixed-pOint format. The result is placed in the
floating-pOint register specified by fd.

Regardless of the setting of the current rounding mode, the conversion
is rounded as if the current rounding mode is round to the nearest/even
(RM = 0).

This instruction is valid only for conversion from a single- or double­
precision floating-point formats. The operation is not defined if bit 0 of any
register specification is set and the FR bit in the Status register equals zero,
since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register
equals one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly
rounded integer result is outside of _281 to 281 _1, an Invalid operation
exception is raised. If Invalid operation is not enabled, then no exception
is taken and 281 -1 is returned.

Operation:

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W»

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

B-38

I'PU Instruction Set Detan. Appendb:B

SDC1 Store Doubleword from FPU
(Coprocessor 1) SDC1

31 26 25 21 20 16 15 o

SDC1
111101

base ft offset

6 5 5 16

Format:
SDC I ft, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general

register base to form an unsigned effective address.
When FR = 0, the contents ofregtstersft andft+l from the floating­

point coprocessor are stored at the memory location specified by the
effective address. This instruction is not valid, and is undefined, when the
least significant bit offt is non-zero.

When FR = I, the 64-bit register ft is stored to the contents of the
doubleword at the memory location specified by the effective address. The
FR bit of the Status regtster (SR2al specifies whether all 32 registers of the
R4600 are addressable. When FR equals zero, this instruction is not
defined if the least significant bit offt is non-zero. If FR equals one, ft may
specify either odd or even regtsters.

If any of the three least-significant bits of the effective address are non­
zero, an address error exception takes place.

Operation:

T: vAddr ~ (offset 15) 16 II offset15 .. 0) + GPR(base)
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
ifSR26 = I

data ~ CPR(I, ft)
else

data ~ CPR(I, f14 .. 1 II 0)
endif
StoreMemory(uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:
Coprocessor unusable
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

B-39

FPU Instruction Set Details AppendixB

SQRT.fmt Floating-Point
Square Root SQRT.fmt

31 26 25 21 20 16 15 11 10 6 5 o

COP1 fmt 0 fs fd SQRT
010001 00000 000100

6 5 5 5 5 6

Format:
SQRT.fmt fd, fs

Description:
The contents of the floating-point register specified by Js are

interpreted in the specifiedJormat and the positive arithmetic square root
is taken. The result is rounded as if calculated to infinite precision and
then rounded to the specifiedJormat, according to the current rounding
mode. If the value ofJs corresponds to -0, the result will be -0. The result
is placed in the floating-point register specified by Jd.

This instruction is valid only for single- or double-precision floating­
point formats.

The operation is not defined if bit 0 of any register specification is set
and the FR bit in the Status register equals zero, since the register
numbers specify an even-odd pair of adjacent coprocessor general
registers. When the FR bit in the Status register equals one, both even and
odd register numbers are valid.

Operation:

T: StoreFPR(fd, fmt, SquareRoot(ValueFPR(fs, fmt)))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
Inexact exception

B-40

FPU InstructioD Set Detan. AppeDdb::B

SUB.fmt Floating-Point Subtract SUB.fmt
31

I

26 25 21 20 16 15 11 10 6 5 0

COP1 fmt ft fs fd SUB
010001 I I I I I 000001 I

6 5 5 5 5 6

Format:
SUB.fmt fd, fs, ft

Description:
The contents of the floating-pOint registers specified by js andft are

interpreted in the specifiedjormat and arithmetically subtracted. The
result is rounded as if calculated to infinite precision and then rounded to
the specifiedjormat, according to the current rounding mode. The result
is placed in the floating-point register specified by jd.

This instruction is valid only for single- or double-precision floating­
point formats.

The operation is not defined if bit 0 of any register specification is set
and the FR bit in the Status register equals zero, since the register
numbers specify an even-odd pair of adjacent coprocessor general
registers. When the FR bit in the Status register equals one, both even and
odd register numbers are valid.

Operation:

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) - ValueFPR(ft, fmt»

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception
Invalid operation exception
Inexact exception
Overflow exception
Underflow exception

B-41

-----~~"""" .. " ."-" .. "~ _-----------------------

FPU Instruction Set Details AppendixB

SWC1 Store Word from FPU
(Coprocessor 1) SWC1

31 26 25 21 20 16 15 o

SWC1
111001

base ft offset

6 5 5 16

Format:
SWC 1 ft, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general

register base to form an unsigned effective address. The contents of
register jt from the floating-point coprocessor are stored at the memory
location specified by the effective address.

The FR bit of the Status register specifies whether all 64-bit floating­
point registers are addressable.

IfFR = 0, SWCl stores either the high or low half of the 16 even
floating-point registers.

If FR = 1, SWC 1 stores the low 32-bits of both even and odd floating­
point registers.

If either of the two least-significant bits of the effective address are non­
zero, an address error exception occurs.

Operation:

T: vAddr f- «offset15)4s II offset15 .. 0) + GPR[base]
(pAddr, uncached) f- AddressTranslation (vAddr, DATA)
pAddr f- pAddrpSIZE-1..3 I I (pAddr2 .. 0 xor (ReverseEndian II 02))
byte f- vAddr2 .. 0 xor (BigEndianCPU II 02)
if SR26 = 1 then

S"byte data f- CPR[1, ft]63-S"byte .. o II 0
else if fto=O then

else

S"byte data f- CPR[1, ft4 .. 1 II O]63-S"byte .. o II 0

data f- 032-s*byte II CPR[1, ft4 .. 1 II 0] 63 .. 32-S"byte
endif
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:
Coprocessor unusable
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

B-42

FPU Instruction Set Details AppencUxB

TRUNC.L.fmt Floating-Point TRUNC.L.fmt
Truncate to Long

31

Fixed-Point Format

26 25 21 20 16 15 11 10 6 5 o

COP1 fmt 0 fs fd TRUNC.L
010001 00000 001001

6 5 5 5 5 6

Format:
TRUNC.L.fmt fd. fs

Description:
The contents of the floating-point register specified by fs are

interpreted in the specified source format. fint. and arithmetically
converted to the single fixed-point format. The result is placed in the
floating-pOint register specified by fd.

Regardless of the setting of the current rounding mode. the conversion
is rounded as if the current rounding mode is round toward zero (1).

This instruction is valid only for conversion from single- or double­
precision floating-point formats.

When the source operand is an Infinity. NaN. or the correctly rounded
integer result is outside of _263 to 263-1. the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 263-1 is returned.

Operation:

T: StoreFPR(fd. L, ConvertFmt(ValueFPR(fs, fmt), fmt. L»

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

B-48

FPU Instruction Set Details AppendixB

TRUNC.W.fmt Floating-Point TRUNC W fmt
Truncate to Single • •

31

Fixed-Point Format

26 25 21 20 16 15 11 10 6 5 o

COP1 fmt 0 fs fd TRUNC.W
010001 00000 001101

6 5 5 5 5 6

Format:
1RUNC.W.fmt fd. fs

Description:
The contents of the FPU register specified by js are interpreted in the

specified source formatfint and arithmetically converted to the single
fixed-point format. The result is placed in the FPU register speCified by jd.

Regardless of the setting of the current rounding mode. the conversion
is rounded as if the current rounding mode is round toward zero (RM = 1).

This instruction is valid only for conversion from a single- or double­
precision floating-point formats. The operation is not defined ifbit 0 of any
register specification is set and the FR bit in the Status register equals zero.
since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register
equals one. both even and odd register numbers are valid.

When the source operand is an Infinity or NaN. or the correctly
rounded integer result is outSide of _231 to 231_1. an Invalid operation
exception is raised. If Invalid operation is not enabled. then no exception
is taken and 231 -1 is returned.

Operation:

T: StoreFPR(fd. W, ConvertFmt(ValueFPR(fs. fmt), fmt. W))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

B-44

-----~--------- -"

FPU Instruction Set Details

FPU Instruction Opcode Bit Encoding

28 .. 26
31 .. 29 0

o
1
2
3

4
5
6
7

23 .. 21
25 .. 24 0

o
1

2
3

20 .. 19
o
1

2
3

5 .. 3
o
1
2
3

4

5
6

7

MF
BC
S

()

18 .. 16
o
BCF

'Y
'Y
'Y

2 .. 0
o

ADD
ROUND.Ll1

()

0
CVT.S

0
C.F

C.SF

Key to Table:

1

COP1

LWC1
SWC1

1
DMFl1

'Y
D
()

1

BCT

'Y
'Y
'Y

1
SUB

TRUNC.Ll1
()

0
CVT.D

()

C.UN
C.NGLE

Opcode

2 3 4 5

LDC1

SDC1

sub

2 3 4 5

CF 'Y MT DMTl1

'Y 'Y 'Y 'Y
() () W Ln
() () () ()

br
2 3 4 5

BCFL BCTL 'Y 'Y
'Y 'Y 'Y 'Y
'Y 'Y 'Y 'Y
'Y 'Y 'Y 'Y

function
2 3 4 5

MUL DIV SORT ABS
CEIL.Ll1 FLOOR.Ll1 ROUND.W TRUNC.W

() 0 0 0
0 0 0 0
() () CVT.W CVT.Ll1
0 0 0 0

C.EO C.UEO C.OLT C.ULT
C.SEO C.NGL C.LT C.NGE

AppendbtB

6 7

6 7
CT 'Y
'Y 'Y
() ()

() ()

6 7

'Y 'Y
'Y 'Y
'Y 'Y
'Y 'Y

6 7
MOV NEG

CEIL.W FLOOR.W

0 0
0 0
0 ()

0 0
C.OLE C.ULE
C.LE C.NGT

y Operation codes marked with a gamma cause a reserved instruction exception. They are
reserved for future versions of the architecture.

~ Operation codes marked with a delta cause unimplemented operation exceptions in all
current implementations and are reserved for future versions of the architecture.

" Valid when 64-bit operand opcodes are enabled.

FIgure B.S Bit EDcodlDg for FPU IJuItructiOIlll

B-45

"" .. " ,-,,~ "'" -"'-------------------------

FPU Instruction Set Details Appendb::B

B-46

Cache Operations Timing Appendix C

Integrated Device Technology. Inc.

Introduction
This appendix lists cycle operation counts and caveats for R4600j

R4700 cache operations timing.

Caveats About Cache Operations
1. All cycle counts are in processor cycles.
2. All cache ops have lower priority than cache misses, write backs and

external requests. If the write back buffer contains unwritten data when
a cache op is executed, the write back buffer will be retired before the cache
op is begun.

If an instruction cache miss occurs at the same time as a cache op is
executed, the instruction cache miss will be handled first. Cache ops are
mutually exclusive with respect to data cache misses. External requests
will be completed before beginning a cache op.

3. For all data cache ops the cache op machine waits for the store buffer
and response buffer to empty before beginning the cache op. This can add
3 cycles to any data cache op if there is data in the response buffer or store
buffer. The response buffer contains data from the last data cache miss
that has not yet been written to the data cache. The store buffer contains
delayed store data waiting to be written to the data cache.

4. Cache ops of the form ~_ Writeback_xxxxmay perform a write back
which will fill the write back buffer. Write backs can affect subsequent
cache ops, since they will stall until the write back buffer is written back
to memory. Cache ops which fill the write back buffer are noted as
(writeback) in the following tables.

5. All cycle counts are best case assuming no interference from the
mechanisms deSCribed above.

Cache Operations Tables
Table C.I and Table C.2 show data cache and instruction cache opera­

tions information. A detailed explanation of the FilU equation follows
Table C.2.

C -1

Cache Operations Timing AppendixC

Codel Name Number of Cycles

0 Index_ Wrtteback_Invalidate_D 10 cycles if the cache line is clean.
12 cycles if the cache line is dirty
(Wrtteback).

1 Index_Load_Ta~D 7 cycles.

2 Index_Store_Ta~D 8 cycles.

3 Create_Dirty _Exclusive_D 10 cycles for a cache hit.
13 cycles for a cache miss if the cache
line is clean.
15 cycles for a cache miss if the cache
line is dirty (Wrtteback).

4 HiUnvaiidate_D 7 cycles for a cache miss.
9 cycles for a cache hit.

5 HiC Wrtteback_Invalidate_D 7 cycles for a cache miss.
12 cycles for a cache hit if the cache
line is clean.
14 cycles for a cache hit if the cache
line is dirty (Wrtteback).

7 HiC Wrtteback_D 7 cycles for a cache miss.
10 cycles for a cache hit if the cache
line is clean.
14 cycles for a cache hit if the cache
line is dirty (Wrtteback).

Note:
lCode number corresponds to the code column of the CACHE instruction in Appendix A

Table C.I Primary Data Cache Operations

C-2

Cache Operations 11ming AppendizC

Code 1 Name Number of Cycles

0 Index_Invalidate_1 7 cycles.

1 Index_Load_TagJ 7 cycles.

2 Index_Store_Tag_) 8 cycles.

3 n/a n/a

4 HiUnvalidate_1 7 cycles for a cache miss.
9 cycles for a cache hit.

5 FUU Cycle number must be calculated based on the sys-
tem response to a memory access, because FUCI
causes an instruction cache reflll from memory.

This equation yields the number of processor cycles
for a FUU cache op:2

Number_oCcycles_for_a_FUCCCacheOp = 10 + {O
- (SYSDIV .. In + (2 x SYSDIV) +
(ML x SYSDIV) + (D x SYSDIV) S

6 Hie Wrtteback_1 7 cycles for a cache miss.
20 cycles for a cache hit (Wrtteback).

Note:
lCode number corresponds to the code column of the CACHE instruction in Appendix A.
2For definitions and discussion of the FllU equation variables refer to the subsection
~Details of the FllU Equation.· which follows this table.

lJ.rhe term {O .. (SYSDIV - 1) has a value between 0 and (SYSDIV .. 1). depending on the
alignment of the execution of the cache op with the system clock.

Table C.2 Primary IIuItructiOD Cache Operatlo ..

Details on the FUl_I Equation
These are the definitions for the HiCWriteback_I equation in Table C.2:

SYSDIV: Number of processor cycles per system cycle; ranges from
2 - 8.

ML: Number of system cycles of memory latency, defined as
the number of cycles the SysAD bus is driven by the
external agent before the first double word of data
appears.

D: Number of system cycles required to return the block of
data, defined as the number of cycles beginning when the
first double word of data appears on the SysAD bus and
ending when the last double word of data appears on the
SysAD bus, inclusive.

C-3

Cache Operations Timing AppendixC

C-4

Standby Mode Operation AppendizD

Integrated DevIce Technology. Inc.

The R4600/R4700 provides a means to reduce the amount of power
consumed by the internal core when the CPU would otheJWise not be
performing any useful operations. This is known as "Standby Mode" and
is discussed in this appendix.

Entering Standby Mode
To enter Standby Mode, first execute the WAIT instruction. When the

WAIT instruction finishes the W pipe-stage, if the SysAD bus is currently
idle, the internal clocks will shut down, thus freezing the pipeline. The
PLL, internal thner, some of the input pin clocks (Int(5:0)* , NMI*,
ExtRqst*, Reset* and ColdReset*) and the output clocks (TClock(l:O),
RClock(l:O), SyncOut, ModeClock and MasterOut) will continue to run.
If the conditions are not correct when the WAIT instruction finishes the W
pipe-stage (Le., the SysAD bus is not idle), the WAIT is treated as a NOP.

Once the CPU is in Standby Mode, any interrupt, including ElrtRqst* or
Reset*, will cause the CPU to exit Standby Mode.

D -1

Standby Mode Operation AppendixD

D-2

Coprocessor 0 Hazards Appendix: E

Integrated DevIce Technology. Inc.

Operation

MTCO

MFCO

TLBR

TLBWI
TLBWR

TLBP

ERET

CACHE Index Load
Tag

CACHE Index Store
Tag

Instruction fetch

Instruction fetch
exception

Coprocessor usable
test

Interrupt

Load/Store

Load/Store exception

Notes:

This appendix identifies the R4600 and R4700 Coprocessor 0 hazards.
In Table E.l the number of instructions required between instruction A
(which places a value in a CPO register) and instruction B (which uses the
same register as a source) is computed using the following formula:

(destination stage of A) - (source stage of B) - 1

SOURCE DESTINATION
Name Stage Name Stage

gprrt 2 (A) cprrd 4(W)a

cprrd 2 (A) gprrt 4(W)a

Index, TLB 2(A) PageMask, 4(W)
EntryHl,EntryLoO, EntryLo 1

Index or Random, PageMask, 2(A) TLB 3(D)13
EntryHi, EntryLoO, EntryLoI

Page Mask, EntryHi 2 (A) Index 4(W)

EPC or ErrorEPC, 2 (A) Status.EXL, Status.ERL 4(W)'Y
Status.ERL

LLblt 4(W)

TagLo, TagHi, ECC 3 (D)

TagLo, TagHi, ECC 3 (D)

EntryH1.ASID, Status.KSU, Sta- 00)
tus.RE, Config.KOC, TLB

Status.ERL, Status.EXL O(I)y

EPC, Status, Cause 4(W)

BadVAddr, Context, EntryHi 1(1)0

Status.CU, Status.KSU, Sta- l(R)
tus.EXL, Status.ERL

Cause.IP, Status.IM, Status.IE, 2(A)
Status.EXL, Status.ERL

EntryH1.ASID, Status.KSU, Sta- 2(A)
tus.RE, Status.ERL, Status.EXL
Config.KOC, TLB

EPC, Status, Cause, Bad- 4(W)
VAddr, Context, EntryHi

a There must be at least one instruction between a MTCO and a MFCO.
p 1LBW _ instructions will cause a one cycle slip.
'Y Instructions fetches following an ERET will see a change in EXL or ERL in Stage 2 of the ERET in anticipation

of the completion of the ERET. If the ERET does not complete, these instructions are killed before they commit
changes in state other than noted by d. The pipestage corresponding to the stage field is given in parentheses.

Table E.l Coprocessor 0 Hazards

E -1

---_ .. _-. __ ...• -..... --~---~. -.. ----~~- .. ---..

Coprocessor 0 Hazards AppendizE

Certain combinations of instructions are not permitted because the
results of executing such combinations are unpredictable in the face of
the events such as pipeline delays, cache misses, interrupts, and excep­
tions.

Most hazards result from instructions modifying and reading state in
different pipeline stages. Such hazards are defined between pairs of
instructions, not on a single instruction in isolation. Other hazards are
associated with restartability of instructions in the presence of exceptions.

E-2

Integrated
Device Technology, Inc.

2975 Stender Way
P.O. Box 58015
Santa Clara, CA 95052-8015
(408) 727-6116
FAX 408-492-8674

© 1995 Integrated Device Technology, Inc.
Printed in U.S.A.

MAN-RISC-00055

