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Specifications 

Tadashi KAWAMURA 
Institute for New Generation Computer Technology 

1-4-28 Mita, Minato-ku, Tokyo 108, Japan 
tkawamur@icot.or.jp 

Abstract 
In this paper, a logic program synthesis method from first 
order logic specifications is described. The specifications 
are described by Horn clauses extended by universally 
quantified implicational formulae. Those formulae are 
transformed into definite clause programs by meaning­
preserving unfold/fold transformation. We show some 
classes of first order formulae which can be successfully 
transformed into definite clauses automatically by un­
fold/fold transformation. 

1 Introduction 

Logic program synthesis based on unfold/fold transfor­
mation [1] is a standard method and has been investi­
gated by many researchers [2, 3, 5, 6, 11, 12, 19]. As 
for the correctness of unfold/fold rules in logic program­
ming, Tamaki and Sato proposed meaning-preserving 
unfold/fold rules for definite clause programs [20]. Then, 
Kanamori and Horiuchi proposed unfold/fold rules for a 
class of first order formulae [7]. Recently, Sato proposed 
unfold/fold rules for full first order formulae [18]. 

In the studies of program synthesis, unfold/fold rules 
are used to eliminate quantifiers by folding to obtain def­
inite clause programs from· first order formulae. How­
ever, in most of those studies, unfold/fold rules were ap­
plied nondeterministically and general methods to derive 
definite clauses were not known. Recently, Dayantis [3] 
showed a deterministic method to derive logic programs 
from a class of first order formulae. Sato and Tamaki [19] 
also showed a deterministic method by incorporating the 
concept of continuation. 

This paper shows another characterization of classes of 
first order formulae from which definite clause programs 
can be derived automatically. Those formulae are de­
scribed by Horn clauses extended by universally quanti­
fied implicational formulae. As for transformation rules, 
Kanamori and Horiuchi's unfold/fold rules are adopted. 
A synthesis procedure based on unfold/fold rules is given, 
and with some syntactic restrictions, those formulae are 
successfully transformed into equivalent definite clause 
programs. This study is also an extension of those by 

Pettorossi and Proietti [14, 15, 16] on logic program 
tr ansforma tions. 

The rest of this paper is organized as follows. Section 
2 describes unfold/fold rules and formalizes the synthesis 
process. Section 3 describes a program synthesis proce­
dure and proves that definite clause programs can be suc­
cessfully derived from some classes of first order formulae 
using this procedure. Section 4 discusses the relations to 
other works and Section 5 gives a conclusion. 

In the following, familiarity with the basic terminolo­
gies of logic programming is assumed[13]. As syntactical 
variables, X, Y, Z, U, V are used for variables, A, B, H 
for atoms and F, G for formulae, possibly with primes 
and subscripts. In addition, 0 is used for a substitution, 
FO for the formula obtained from formula F by applying 
substitution 0, X for a vector of variables and Fa[G'] for 
replacement of an occurrence of subformula G of formula 
F with formula G'. 

2 Unfold/Fold Transformation 
for Logic Program Synthesis 

In this section, preliminary notions of our logic program 
synthesis are shown. 

2.1 Preliminaries 

Preliminary notions are described first. 
A formula is called an implicational goal when it is of 

the form Fl -+ F2, where Fl and F2 are conjunctions of 
atoms. 

Definition 2.1 Definite Formula 
Formula C is called a definite formula when C is of 

the form 
A f- G1 1\ G2 1\ ... 1\ G n (n ~ 0), 

where Gi is a (possibly universally quantified) conjunc­
tion of implicational goals for i = 1,2, ... ,n. A is called 
the head of C, G1 1\ G2 1\ . .. 1\ Gn is called the body of 
C and each G i is called a goal in the body of C. 
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Note that the notion of a definite formula is a restricted 
form of that in [7]. 

A set of definite formulae is called a definite formula 
program, while a set of definite clauses is called a definite 
clause program. We may simply say programs instead of 
definite formula (or clause) programs when it is obvious 
to which we are referring. 

Definition 2.2 Definition Formula 
Let P be a definite formula program. A definite for­

mula D is called a definition formula for P when all the 
predicates appearing in D's body are defined by definite 
clauses in. P and the predicate of D's head does not ap­
pear in P. The predicate of D's head is called a new 
predicate, while those defined by definite clauses in P 
are old predicates. A set of formulae D is called a defi­
nition formula set for P when every element D of D is 
a definition formula for P and the predicate of D's head 
appears only once in D. 

Atoms with new predicates are called new atoms, while 
those with old predicates are called old atoms. 

2.2 Unfold/Fold ~ansformation 

In this subsection, unfold/fold transformation rules are 
shown following [7]. Below, we assume that the logical 
constant i1'ue implicitly appears in the body of every unit 
clause. Further, we assume that a goal is always deleted 
from the body of a definite formula when it is the logical 
constant true, and a definite formula is always deleted 
when some goal in its body is the logical constant false. 

Further, we introduce the reduction of implicational 
goals with logical constant true and false, such as 
,true::::} false, true /\ F ::::} F, and so on. (See [7] for 
details.) Let G be an implicational goal. The reduced 
form of G, denoted by G L is the normal form in the 
above reduction system. 

Variables not quantified in formula F are called global 
variables of F. Atoms appearing positively (negatively) 
in formula F are called positive (negative) atoms of F. 

Definition 2.3 Positive Unfolding 
Let Pi be a program, C be a definite formula in Pi, 

G be a goal in the body of C and A be a positive old 
atom of G containing no universally quantified variable. 
Then, let Go be GA[Jalse] 1 and Cb be the definite for­
mula obtained from C by replacing G with Go. Further, 
let Cl , C2 , ••. ,Ck be all the definite clauses in Pi whose 
heads are unifiable with A, say by mgu's 01 , O2 , ••• , Ok. 
Let Gj be the reduced form of GOj after replacing AOj in 
GO j with the body of CjOj , and Cj be the definite formula 
obtained from COj by replacing GOj in the body with Gj. 
(New variables introduced from Cj are global variables 
of Gj.) Then, Pi+l = (Pi - {C}) u {Cb,C~,c~, ... ,CD. 
Cb, C~, C~, . .. , Ck are called the results of positive un­
folding C at A (or G). 

Example 2.1 Let P be a definite clause program as fol­
lows: 

Cl : list([]). 
C2 : list([XIL]) f- list(L). 
C3 : 0 < suc(Y). 
C4 : suc(X) < suc(Y) f- X < Y. 
C5 : member(U,[UIL]). 
C6 : member(U,[VIL]) f- member(U,L). 

Let C7 be a definition formula for P as follows : 
C7 : less-than-all(X,L) f-

list(L) /\ V Y(member(Y,L) ---t X<Y). 
Suppose that Po = P U {C7 }. Then, by unfolding C7 at 
list(L), program PI = P U {Cs, C9 } is obtained, where 

Cs : less-than~all(X,[]) f- V Y(member(Y,[]) ---t X<Y). 
C9 : less-than-all(X,[ZILJ) f-

list(L) /\ V Y(member(Y,[ZIL]) ---t X<Y). 

Before showing the negative unfolding rule, we intro­
duce the notion of terminating atoms. Intuitively, atom 
A is terminating when every derivation path of A is fi­
nite. See [7] for the precise definition. 

Definition 2.4 Negative Unfolding 
Let Pi be a program, C be a definite formula in Pi, G 

be a goal in the body of C and A be a negative old atom 
of G such that every atom obtained from A by instanti­
ating all global variables in A to ground is terminating. 
Let Cl ; C2 , ••• ,Ck be all the definite clauses in Pi whose 
heads are unifiable with A, say by mgu's Oll ()2, ... ,()k, 

where OJ instantiates no global variable in G. Let Go be 
GA[Jalse] 1 and Gj be the reduced form of G()j after re­
placing AOj in G()j with the body of CjOj. (New variables 
introduced from Ci are universally quantified variables in 
Gi .) Let C f be the definite formula obtained from C by 
replacing G in the body of C with Go /\ Gl /\ ... /\ Gk • 

Then, Pi+l = (Pi - {C} ) U {C f
}. C f is called the results 

of negative unfolding C at A (or G). 

Example 2.2 Let P and PI be programs in Exam­
ple 2.1. By unfolding Cs at member(X,[]), P2 = P u 
{C9 , Cw } is obtained, where 

CIa: less-than-all(X,[]) f- V Y (false ---t X < Y) 1. 
that is, 

CIa: less-than-all(X,[]). 
Further, by unfolding C9 at member(X,[ZIL]), P3 = P U 
{ClQ, Cn } is obtained, where 

Cll : less-than-all(X,[ZIL]) f- list(L) /\ 
V Y(false ---t X<YH /\ 
V Y(true ---t X<ZH /\ 
V Y (member(Y,L) ---t X<YH. 

that is, 
Cll : less-than-all(X,[ZIL]) f- list(L) /\ 

X < Z /\ V Y (rnember(Y,L) ---t X < V). 

Definition 2.5 Folding 
Let Pi be a definite formula program, C be a definite 

formula in Pi of the form A f- K /\ Land D be a definite 



formula of the form B +- K', where K,K' and L are 
conjunctions of goals. Suppose that there exists a sub­
stitution () such that K'() = K holds. Let C' be a clause 
of the form A +- B(), L. Then Pi+1 = (Pi - {C}) U {C'}. 

Note that when applying folding, some conditions have 
to be satisfied to preserve the meanings of programs. See 
[7] for details. 

Example 2.3 Let P and P3 be programs in Exam­
ple 2.2. By folding Cn by C7 , P4 = P U {C1O , C12 } is 
obtained, where 

C12 : less-than-all(X,[Y\L]) +-

X < Y 1\ less-than-all(X,L) 

2.3 Program Synthesis by Unfold/Fold 
Transformation 

In this subsection, our program synthesis problem is for­
malized. Firstly, several notions are defined to formalize 
the program synthesis processes. 

Definition 2.6 Descendant and Ancestor Formula 
Let P be a definite formula program, C be a definite 

formula in P and P' be a definite formula program ob­
tained from P by successively applying positive or nega­
tive unfolding to P. A definite formula C' in P' is called 
a descendant formula of C when . 
( a) C' is identical to C, or 
(b) C' is the result of positive or negative unfolding of 

a descendant formula of C. 
Conversely, C is called an ancestor formula of C'. 

Example 2.4 In Examples 2.1 - 2.3, definite formulae 
C7 , C8 , . .. ,Cn are descendant formulae of C7 . 

Definition 2.7 U-selection Rule 
A rule that determines what transformation should be 

applied to a definite formula program is called a selection 
rule. Let P be a definite formula program and C be a 
definite formula in P. A selection rule R is called a U­
selection rule for P rooted on C when R always selects 
positive or negative unfolding applied to a descendant 
formula of C. C is called the root formula for R (or 
of the transformation.) A definite formula program ob­
tained from P by successively applying transformation 
rules according to R is called a definite formula program 
obtained from P via R. 

Definition 2.8 Closed Program 
Let P be a definite clause program, C be a definition 

formula for P, D be a definition formula set for P and R 
be a U-selection rule for P U {C} rooted on C. Let P' be 
a definite formula program obtained from P U {C} via R. 
P' is said to be closed with respect to triple < P, C, D > 
when every descendant formula C' of C in P' satisfies 
one of the following: 
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(a) C' is a definite clause. 
(b) There exists a goal G consisting of positive atoms 

only in the body of C' such that an old atom in G is 
not unifiable with the head of any definite clause in P'. 

(c) By successively folding C' by clauses in {C} U D, a 
definite clause can be obtained. 

PU {C} is said to be closed with respect to D when there 
exists a closed program with respect to < P, C, D > and 
for every definition formula D in D there exists a closed 
program with respect to < P, D, D U {C} >. 

Example 2.5 Let P and P3 be programs in Exam­
ple 2.2. Then, P3 is closed w.r.t. < P, C7 , 0 >. Further, 
P U {C7 } is closed w.r.t. 0. 

The above framework is an extension of the one shown 
in [8], and also a modification of the one Pettorossi and 
Proietti proposed [14, 15, 16] in their studies of program 
transformation. 

Now, our problem can be formalized as follows: for 
given definite clause program P and definition formula 
C for P, find a finite definition formula set 1) for P such 
that P U {C} is closed with respect to D. 

3 Some Classes of First Order 
Formulae from Which Logic 
Programs Can Be Derived 

In this section, we specify some classes of first order for­
mulae from which definite clause programs can be de­
rived by unfold/fold transformation. 

3.1 A Program Synthesis Procedure 

In this subsection, we show a naive program synthesis 
procedure. In the following, we borrow some notions 
about programs in [15, 16]. We consider definite formula 
(clause) programs with predicate =, which have no ex­
plicit definition in the programs. Predicate = is called 
a base predicate, while other predicates are called de­
fined predicates. Atoms with base predicates are called 
base atoms, while those with defined predicates are called 
defined atoms. Transformation rules can be applied to 
defined atoms only. 

A formula containing base atoms can be reduced by 
unifying arguments of =. When a universally quanti­
fied variable and a global variable are unified, the global 
variable is substituted for the universal one. The above 
reduction is called the reduction with respect to =. We 
assume that no formulae are reduced w.r.t. = unless this 
is explicitly mentioned. 

Further, we assume that the following operations are 
always applied implicitly to the results of positive or neg­
ative unfolding. Goals G is said to be connected when 
at most one universally quantified implicational goal G' 
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appears in G and each atom in G' has common univer­
sally quantified variables with at least one another atom 
in G'. Let C be a definite formula such that all the goals 
in its body are connected. Let C' be one of the results of 
positive or negative unfolding C at some goal. By logical 
deduction, definite formulae CL C~, ... ,C:n (m 2: 1) are 
obtained from C' such that all the goals in the body of 
Cf are connected. (Note that some goal G in the body of 
C' is of the form Fl ---t F2 or Fl V F2 and no universally 
quantified variables appear in both Fl and F2 , C' can be 
split into two formulae by replacing G in C' with ,Fl 

(or F l ) and F2.) 

Before showing our program synthesis procedure, a no­
tion is defined. 

Definition 3.1 Sound Unfolding 
Suppose that positive or negative unfolding is applied 

to a definite formula at atom A. Then, the application 
of unfolding is said to be sound when no two distinct 
universally quantified variables in A are unified when 
reducing the result of unfolding with respect to =. 

Some syntactic restrictions on programs ensure the 
soundness of all possible applications of unfolding. In 
fact, the restriction shown in [3] ensures the soundness. 
However, in the following, we assume that every applica­
tion of unfolding is sound, without giving any syntactic 
restriction, for simplicity. 

Now, we show our program synthesis procedure, which 
is similar to partial evaluation procedures(cf.[9, 10]). 
First, a procedure to synthesize new predicates is shown. 

Procedure 3.1 Synthesis of New Predicates 
Suppose that definite formula program P and definite 
formula C in P of the form A +- Gll G2 , .•• , Gn are 
given. Let G~ be the reduced formula obtained from Gi 

by removing all base atoms and by replacing all univer­
sally quantified variables appearing in every base atom 
with distinct fresh global variables if global variables are 
substituted for them when reducing Gi w.r.t. =. Let Di 
be of the form Hi +- G~ for i = 1,2, ... , n, where Hi is 
an atom whose predicate does not appear in P or Hj for 
i =I- j and whose arguments are all global variables of C 
appearing in Gi. Then, D l ,D2 , ••• ,Dn are returned. 

Note that in Procedure 3.1, C can be folded by 
Dl ,D2 , •.• ,Dn after reducing it w.r.t. = when C is the 
result of sound unfolding, and the result of the folding is 
a definite clause. 

Example 3.1 Let P be a program as follows. 
C l : all-less-than(L,M) +- list(L) 1\ list(M) 1\ 

V U,V (member(U,L) 1\ member(V,M) ---t U < V). 
C2 : member(U,[VIXD +- U = V. 
C3 : member(U,[VIX]) +- member(U,X). 

The definition of '<' is given in Example 2.1. Suppose 
that C's body consists of only one goal. By applying 

positive unfolding and negative unfolding to C succes­
sively, the following formulae are obtained. (The reduc­
tion w.r.t. = is done when no universally quantified vari­
able appears as an argument of =.) 

C4 : all-less-than(O,M) +- list(M). 
Cs : all-less-than([XILJ,M) +- (list(L) 1\ list(M)) 1\ 

(list(L) 1\ list(M) 1\ 

V U,V (U = X 1\ member(V,M) ---t U < V)) 1\ 
(list(L) 1\ list(M) 1\ 
VU,V (member(U,L)l\member(V,M) ---t U < V)). 

Then, by Procedure 3.1, the following new predicates are 
defined from Cs. 

Dl : new1(X,L,M) +- list(L) 1\ Hst(M) 1\ 
V V (member(V ,M) --+ X < V). 

D2 : new2(L,M) +- list(L) 1\ Hst(M) 1\ 
V U,V (member(U,L) 1\ member(V,M) ---t U < V). 

Next, the whole procedure for program synthesis is 
shown. 

Procedure 3.2 A Program Synthesis Procedure 
Suppose that definite clause program P and definition 
formula C for P are given. Let 'D be the set {C}. 
( a) If there exist no unmarked formulae in 'D, then re­

turn P and stop. 
(b) Select an unmarked definition formula D from 'D. 

Mark D 'selected.' Let P' be the set {D}. 
(c) If there exist no formulae in P' which do not satisfy 

conditions (a) and (b) in Definition 2.8; then P := 

PUP' and go to (a). 
(d) Select a definite formula C' from P'. Apply positive 

or negative unfolding to C'. Let CJ, ... , Cn be the 
results. Remove C' from P'. 

(e) Apply Procedure 3.1 to Cl , ... , Cn. Let DJ,"" Dm 
be the outputs. Add Di to 'D if it is not a definite clause 
and there exists no formula in 'D which is identical to D i 
except for the predicate of the head. Fold C1 , •• • , Cn 

by the formulae in 'D and add the results to P'. 
(f) Go to (c). 

Example 3.2 Consider the program in Example 3.1 
again. We see that D2 is identical to C except for the 
predicate of the head. Cs can be folded by D1 and C 
after reduction w.r.t. =. The result is as follows. 

C6 : all-less-than([XIL],M) +- list(L) 1\ list(M) 1\ 
new1(X,L,M) 1\ all-less-than(L,M). 

Similar operations are applied to D 1 , and finally, the 
following clauses are obtained. 

D3 : new1(X,L,D) +- list(L). 
D4 : new1(X,L,[YIM)) +- X < Y 1\ new1(X,L,M). 

Note that Procedure 3.2 does not necessarily derive 
a definite clause program from a definite formula pro­
gram. For example, when the following program is given 
as input, Procedure 3.2 does not halt. 

C1 : p(X,Y) +- p(X,Z) 1\ p(Z,Y) 
C2 : h(X,Y) +- V Z (p(X,Z) --+ p(Y,Z)) 



3.2 Classes of First Order Formulae 

In this section, we show some classes of definite formula 
programs which can be transformed into equivalent def­
inite clause programs by Procedure 3.2. 

Throughout this subsection, we assume that unfolding 
is always applicable to every definite formula at an atom 
when there exist definite clauses whose heads are unifi­
able with the atom. Note that the above assumption 
does not always hold. This problem will be discussed 
in 3.3. 

After giving a notion, we show a theorem which is an 
extension of the results shown in [15]. A simple expres­
sion is either a term or an atom. 

Definition 3.2 Depth of Symbol in Simple Expression 
Let X be a variable or a constant and E be a simple 

expression in which X appears. The depth of X in E, 
denoted by depth( X ,E), is defined as follows. 
(a) depth(X,X) = l. 
(b) depth(X,E) = max{depth(X,ti)IX appears in ti 

for i = 1, ... ,n} + 1, if E is either f(tl, ... ,tn ) or 
p( t l , ... , tn ), for any function symbol f or any predi­
cate symbol p. 

The deepest variable or constant in E is denoted by 
maxdepth( E). 

Theorem 3.1 Let P be a definite clause program. Su'p­
pose that for any definition formula C for P, there exists 
a U-selection rule R for P U {C} rooted on C such that R 
is defined for all descendant clauses of C in which at least 
one defined atom appears. Suppose also that there exist 
two positive integers Hand W such that every descen­
dant clause C' of C in every program P' obtained from 
P U {C} via R satisfies the following two conditions. 
( a) The depth of every term appearing in every goal in 

the body of C' is less than H. 
(b) Let Gl,GZ, ... ,Gn be connected goals inthe body 

of C'. Then, the number of atoms appearing in Gi is 
less than W, for i = 1,2, ... , n. 

Then, there exists a finite definition formula set 1) for P 
such that P U {C} is closed with respect to 1). 

Proof. From hypothesis (a), only a finite number of dis­
tinct atoms (modulo renaming of variables) can appear 
in the goals of all the descendant formulae of C. Then, 
apply Procedure 3.2 to P and C. Note that every goal in 
the body of every descendant formula of C is connected. 
Then, for every goal of every descendant formula of C, 
the number of atoms appearing in the goal is less than 
W, from hypothesis (b). Hence, only a finite number of 
distinct goals can appear in all the descendant formulae 
of C. Thus, we can obtain a finite definition formula 
set 1)0 for P such that there exists a closed program P' 
w.r.t. < P, C, 1)0 >. 

The above discussion holds for all the definition for­
mulae in 1)0, since those formulae are constructed from 
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bodies of the descendant formulae of C. Evidently, only 
a finite number of distinct definition formulae can be de­
fined. Thus, there exists a finite definition formula set 1) 

for P such that P U {C} is closed w.r. t. 1). 0 

Theorem 3.1 shows that Procedure 3.2 can derive a 
definite clause program when (a) a term of infinite depth 
can not appear, or (b) an infinite number of atoms can 
not appear in a connected goal during a transformation 
process. In the following, we show some syntactic restric­
tions on programs which satisfy the above conditions. 

Proietti and Pettorossi showed some classes of definite 
clause programs which satisfy the conditions in Theo­
rem 3.1 in their studies of program transformation [15]. 
We show that some extensions of their results are appli­
cable to our problem. 

The following definitions are according to [15]. The set 
of variables occurring in simple expression E is denoted 
by var(E). 

Definition 3.3 Linear Term Formula and Program 
A simple expression or a formula is said to be linear 

when no variable appears in it more than once. A definite 
formula (clause) is called a linear term formula (clause) 
when every atom appearing in it is linear. A definite 
formula ( clause) program is called a linear term program 
when it consists of linear term formulae (clauses) only. 

A linear term formula (clause) is called a strongly lin­
ear term formula (clause) when its body is linear. A def­
inite formula (clause) program is called a strongly linear 
term program when it consists of strongly linear term 
formulae (clauses) only. 

Note that the following definite clause is not a linear 
term clause. 

member(X,[XIL]). 
However, it is easy to obtain an equivalent linear term 
clause as follows : 

member(X,[YIL])+-- X=Y. 

Definition 3.4 A Relation ~ between Linear Simple 
Expressions 

Let El and Ez be linear simple expressions. When 
depth(X,El)~depth(X,Ez) holds for every variable X in 
var(El)nvar(Ez), we write El ~ Ez. (Both El ~ Ez and 
Ez ~ El hold when var(El)nvar(Ez)= 0. ) 

Definition 3.5 Non-Ascending Formula and Program 
Let C be a linear term formula and H be the head of 

C. C is said to be non-ascending when A ~ H holds 
for every defined atom A appearing in the body of C. A 
linear term program is said to be non-ascending when it 
consists of non-ascending formulae only. 

A definite formula ( clause) is said to be strongly non­
ascending when it is a strongly linear term formula 
(clause) and non-ascending. A definite formula (clause) 
program is said to be strongly non-ascending when it 



468 

consists of strongly non-ascending formulae (clauses) 
only. 

Definition 3.6 Synchronized Descent Rule 
Let P be a linear term program, R be a V-selection 

rule for P and C be any descendant formula of the root 
formula for R. Let AI, A 2, ... ,An be all the atoms ap­
pearing in the body of C. Then, R is called a synchro­
nized descent rule when 
(a) R selects the application of positive or negative un­

folding to C at Ai if and only if Aj :::; Ai holds for 
j = 1, ... , n, and 

(b) R is not defined for C, otherwise. 

Note that synchronized descent rules are not neces­
sarily defined uniquely for given programs and definition 
formulae. 

The following theorem is an extension of the one shown 
in [15, 16]. 

Lemma 3.2 Let P be a non-ascending definite clause 
program, C be a linear term definition formula for P, and 
R be a synchronized descent rule rooted on C. Let p' be 
a program obtained from PU{ C} via R. For each defined 
atom A appearing in the body of every descendant clause 
of C in pI, the following holds : 

maxdepth(A) ~ 
max{maxdepth(B)j B is a defined atom in P U {C}} 

Proof By induction on the number of applications of 
unfolding. 0 

Now we show some classes of definite formula programs 
which satisfy the hypotheses of Theorem 3.1. In the fol­
lowing, for simplicity, we deal with definition formulae 
with only one universally quantified implicational goal 
in the body. The results are easily extended to the defi­
nite formulae with a conjunction of universally quantified 
implicationaJ goals. 

The following results are also extensions of those 
shown in [15]. 

Theorem 3.3 Let P be a strongly non-ascending def­
inite clause program and C be a linear term definition 
formula for P of the form H f- Al /\ VX(A2 ~ A 3 ), such 
that the following hold. 
(a) For every clause D in P of the form HD f- BI /\ ... /\ 

Bn /\ B~ /\ ... /\ E~, where B I , ... ,En are defined atoms 
and B~, ... ,B~ are base atoms, the following hold. 
(a-I) Let tH be any argument of H D . For every argu-

ment ti of B i , if tH contains a common variable with 
ti, then ti is a subterm of tHo 

(a-2) For every argument ti of B i , if ti is a su bterm 
of an argument tH of HD , then no other argument of 
Bi is a subterm of tHo 

(b) There exist two arguments ti and Si of some Ai (ti i 
Si, i = 1,2 or 3) such that the following hold. 

(b-l) There exists an argument tj of Aj (i 1= j) such 
that 

vars( Ai )nvars( Aj )=vars( ti )nvars( t j), and 
. either ti is a subterm of tj, tj is ;1 subterm of ti or 

vars( ti)nvars( tj )=0. 
(b-2) There exists an argument Sk of Ak (k =I i,j) 

such that the same relations as above hold for Si and 

Sk' 

(b-3) Aj contains no common variable with A k . 

Then, there exists a definition formula set 'D for P such 
that P U {C} is closed with respect to 'D. 

Proof Note that there exists an atom A in the body of C 
s.t. an argument of A is a maximal term in the body of 
C w.r.t. subterm ordering relation. Let C' be any result 
of unfolding C at A and G be any connected goal in the 
body of C' of the form FI /\ VX(F2 ~ F3 ), where Fi is a 
conjunction of atoms. Then, from the hypothesis, it can 
be shown that a similar property to hypothesis (b) holds 
for G. Note that the number of implicational goals dose 
not increase by applying positive unfolding and no global 
variables are instantiated by applying negative unfolding. 
Then, again there exists an atom in the body of C' s.t. 
one of its arguments is a maximal term in the body of 
C' w.r.t. subterm ordering relation. By induction on 
the number of applications of unfolding, a synchronized 
descent rule can be defined for every descendant formula 
of C. Then, from Lemma 3.2, the depth of every term 
appearing in every descendant clause of C is bounded. 

Note that the number of different subterms of a term 
is bounded. Then, from the hypothesis, the number of 
atoms appearing in every connected goal in the body of 
every descendant formula of C is bounded. Thus, P and 
C satisfy the hypotheses of Theorem 3.1. Hence, there 
exists a definition formula set 'D for P such that P U {C} 
is closed with respect to 'D. 0 

Note that Theorem 3.3 holds for any nondeterministic 
choice of synchronized descent rules in the above proof. 
Note also that any program can be modified to satisfy 
hypothesis (a) of Theorem 3.3 by introducing atoms with 
= in the body. 

Corollary 3.4 Let P be a strongly non-ascending defi­
nite clause program and pI be a definite clause program 
such that no predicate appears in both P and P'. Let 
C be a linear term definition formula for P U pI of the 
form H f- Al /\ \fX(A2 ~ A 3 ), where the predicates of 
Al and A2 are defined in P and that of A3 is defined in 
P'. Suppose that the following hold. 

(a) Hypothesis (a) of Theorem 3.3 holds for every clause 
Din P. 

(b) There exist arguments tl of Al and t2 of A2 such 
that the following hold. 

(b-l) vars(A1)nvars(A2)=vars( tl)nvars(t2)' 



(b-2) Either tl is a subterm of t z, tz is a subterm of tl 
or vars(tdnvars(tz)=0. 

(c) No variable in A3 is instantiated by applying posi­
tive or negative unfolding to C successively. 

Then, there exists a definition formula set 'D for P U p' 
such that P U p' U {C} is closed with respect to 'D. 

Proof. Suppose that unfolding is never applied at A3 . A 
synchronized descent rule can be defined by neglecting 
A3. Since variables in A3 are never instantiated, no other 
atoms are derived from A3 . Thus, the corollary holds. 0 

In Corollary 3.4, no restrictions are required on the 
definition of A3 • This result corresponds to that in [3]. 
Note that any program can be modified to satisfy hy­
pothesis (c) of Corollary 3.4 by introducing atoms with 
= in the body. 

Example 3.3 The program and the definition formula 
in Example 2.1 satisfy the hypotheses of Theorem 3.3 and 
Corollary 3.4, if clause C5 is replaced with the equivalent 
clause: 

C~: member(U,[V\L]) f- U=V. 
In fact, a definite clause program can be obtained, as 
shown in subsection 2.2. 

Next, we show an extension of the results shown in 
Theorem 3.3. Let P be a non-ascending definite clause 
program and C be a definition formula for P of the form 
H f- A/\ VX(FI -+ Fz), where Ais an atom, and Fl and 
Fz are conjunctions of atoms. Let Di be the definition 
clause for P of the form Hi f- Fi for i = 1,2. If Di 
can be transformed into a set of definite clauses which 
satisfies the hypotheses of Theorem 3.3, by replacing Fi 
with Hi, we can show that P U {C} can be transformed 
into an equivalent definite clause program. 

The above problem is related to the foldability prob­
lem in [16]. The foldability problem is described infor­
mally as follows. Let P be a definite clause program and 
C be a definition clause for P. Then, find program pI 
obtained from P U {C} which satisfies the following: for 
every descendant clause C' of C in pI, there exists an an­
cestor clause D of C' such that C"s body is an instance 
of D's. 

Proietti and Pettorossi showed some classes of definite 
clause programs such that thefoldability problem can be 
solved [16]. We show that their results are also available 
to our problem. 

A definite clause program P is said to be linear recur­
sive when at most one defined atom appears in the body 
of each clause in P. Note that a linear recursive and 
linear term program (clause) is a strongly linear term 
program (clause). 

Lemma 3.5 Let P be a linear recursive non-ascending 
program and C be a non-ascending definition clause for 
P of the form H f- Al /\ Az /\ Bl /\ ... /\ Bn , where Al 
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and Az are defined atoms and B 1 , ••. , Bn are base atoms. 
Suppose that the following hold. 
(a) For every clause D in P of the form HD f- AD /\ 
B~ /\ ... /\ B~, where AD is the only defined atom in 
the body of D, the following hold. 
(a-I) Let tH be any argument of H D . For every ar­

gument tA of AD, if tH contains a common variable 
with t A , then tA is a subterm of tHo 

(a-2) For every argument tA of AD, if tA is a subterm 
of an argument tH of HD, then no other argument of 
AD is a subterm of tHo 

(b) There exist arguments tl of Al and t z of Az such 
that the following hold. 
(b-l) vars(A1)nvars(A2)=vars( t1)nvars( t2)' 
(b-2) Either tl is a subterm of tz, t2 is a subterm of tl 

or vars(t1)nvars(t2 )=0. 
Then, from P U {C}, we can obtain a linear recursive 
non-ascending program which define the predicate of H 
by unfold/fold transformation. 

Proof. As shown in [16], we can get a solution of the 
foldability problem for P and C. Then, obviously, a 
linear recursive program is obtained. 0 

Example 3.4 Let P be a linear recurSIve non­
ascending program as follows. 

C1 : subseq([],L). 
C2 : subseq([X\L],[Y\M]) f- X = Y /\ subseq(L,M). 
C3 : subseq([X\L],[Y\M]) f- subseq([X\L],M). 

Let C be a non-ascending definition clause for P as fol­
lows. 

C: csub(X,Y,Z) f- subseq(X,Y), subseq(X,Z). 
Then, P U {C} can be transformed into a linear recursive 
non-ascending program as follows. 

csub([],Y,Z). 
csub([A\X],[B\Y],Z) f- A = B /\ cs(A,X,Y.Z). 
csub([AIX],[BIYJ,Z) f- csub([AIX]'Y,Z). 
cs(A,X,Y,[BIZ]) f- A = B /\ csub(X,Y,Z). 
cs(A,X,Y,[BIZ]) f- cs(A,X,Y,Z). 

Though Proietti and Pettrossi showed one more 
class [16], we will not discuss this here. 

Now, we get the following theorem. 

Theorem 3.6 Let P be a linear recursive non-ascending 
program and C be a linear term definition formula for 
P of the form H f- Al 1\ VX(A2 1\ B2 ---+ A3 /\ B3), such 
that the following hold. 
(a) Hypothesis (a) of Lemma 3.5 holds for P. 
(b) Let 51 be the set of all the arguments of AI, and 

5 i be the set of all the arguments of Ai and Bi for 
i = 2,3. Then, there exist two terms tj and Sj in 
some 5 j (tj i= Sj,j = 1,2 or 3) such that the following 
hold. 
(b-l) there exists a term t k in 5 k (j i= k) such that 

. vars(5j )nvars(5k)=vars( tj )nvars(tk), and 



470 

. either tj is a subterm of tk, tk is a subterm of tj or 
vars( t j )nvars( tk )=0. 

(b-2) There exists a term Sz of Sz (l i= j, k) such that 
the same relations as above hold for Sj and Sz. 

(b-3) Sk contains no common variable with Sz. 

Then, there exists a definition formula set V for P such 
that P u {C} is closed with respect to V. 

Proof Obvious from Theorem 3.3 and Lemma 3.5. 0 

Note that it is easy to extend the result of Theorem 3.6 
to allow the conjunction of an arbitrary number of atoms 
to appear in the body of the definition formula. Note also 
that it is possible to extend the result to allow arbitrary 
definition of A3 and B3 , in a similar way to Corollary 3.4. 

3.3 Further Consideration about Syn­
tactic Restrictions 

As described in 3.2, the application of unfolding may 
be prohibited in Kanamori and Horiuchi's framework. 
In this subsection, we discuss some methods to avoid 
prohibition, though we do not necessarily give the pre­
cise syntactic restriction. (Due to space limitations, we 
do not refer to the terminating property, though several 
sufficient conditions are known to guarantee it.) 

(1) Universally Quantified Variables Appearing 
in Positive Atoms 

Positive unfolding can not be applied to definite formulae 
at positive atoms with universally quantified variables. 
Thus, we have the following two problems. 
(a) Synchronized descent rules can not be defined when 

universally quantified variables are instantiated by neg­
ative unfolding. 

(b) We can not unfold formulae of the form V X A when 
A is an atom and some variables in X appear in A. 

To avoid case (a), the following restriction is sufficient. 
When applying negative unfolding, no universally quan­
tified variable is instantiated. Though the restriction 
seems to be strong, most of significant examples of pro­
gram synthesis can be dealt with under the restriction. 

Case (b) corresponds to the compilation failure in Sato 
and Tamaki's first order compiler [19]. They restricted 
their language as follows. For every implicational goal 
Fl -7 F2 appearing in a formula, uvar(F1 );2uvar(F2 ) 

holds, where uvar(Fi) means the set of universally quan­
tified variables appearing in Fi . 

The above condition is available for our problem. Note 
that the application of positive unfolding does not af­
fect the condition. When applying negative unfolding at 
atom A in universally quantified implicational goal G, 
the following restrictions are also required. All the uni­
versally quantified variables appearing in A also appear 
in some negative defined atom in each result of negative 

unfolding G, or they are unified with terms consisting of 
constants and global variables by reduction w.r.t. =. 

We believe that techniques such as mode analysis are 
available to guarantee that every applicable negative un­
folding satisfies the above conditions. 

(2) Global Variables Appearing in Negative 
Atoms 

Negative unfolding should be applied without instantiat­
ing global variables. In some cases, this restriction may 
be critical. However, we can deal with most of those 
cases by adding positive atoms to the formula such tha~ 
the globaJ variables can be instantiated by applying pos­
itive unfolding at those atoms. Atoms with predicates 
which specify data types (cf. list) are available. For 
example, with the definitions of 'member' and '<' in Ex­
ample 2.1, negative unfolding can not be applied to the 
definite formula below. 

less-than-all(X,L) +- V Y(member(Y,L) -7 X<Y). 
However, we can apply negative unfolding to the formula 
below, after positive unfolding list(L). 

less-than-all(X,L) +-

list(L) 1\ V Y(member(Y,L) -7 X<Y). 

(3) Sato's Unfold/Fold Transformation 

Recently, Sato proposed unfold/fold transformation rules 
for full first order programs [18]. Their unfolding op­
eration does not require conditions like Kanamori and 
Horiuchi's. On the other hand, more complex condi­
tions are required when applying folding. Thus, when 
we adopt Sato's rules in place of Kanamori and Hori­
uchi's, we need not consider the restrictions discussed 
in (1) and (2) above, while some other difficulties are 
introduced to satisfy the folding conditions. 

4 Discussion 

The work described here is an extension of Pettorossi and 
Proietti's work on program transformation [14, 15, 16]. 
They formalized the successful unfold/fold transforma­
tion in three ways, and showed that the problem of 
whether a given program can be transformed successfully 
or not is unsolvable. They also showed some classes of 
definite clause programs which can be transformed suc­
cessfully. Our results owe much to their work, though 
currently we do not know whether our problem is decid­
able. 

Proietti and Pettorossi also showed that any defi­
nite clause program can be transformed successfully by 
performing suitable generalization of the atoms to be 
folded [15, 16]. However, the generalization technique 
is not available for our problem. Folding by a definition 
formula obtained by generalizing atoms with universally 
quantified variables may not satisfy the conditions for 



folding [7], since universally quantified variables can not 
appear in the head of the formula. 

Proietti and Pettorossi also showed a transformation 
procedure called loop absorption [15, 16]. In this pro­
cedure, they found clause C and its descendant clause 
C' such that C"s body is an instance of C's (or a sub­
set of C"s body is identical to C's bqdy). Then, a new 
definition clause whose body is identical to that of C 
is constructed. They also showed a procedure to elimi­
nate unnecessary variables [17]. We can modify our naive 
procedure described in 3.1 by incorporating the loop ab­
sorption and the elimination of unnecessary variables. 

. Programs obtained by the modified procedure are ex­
pected to be more efficient and have less code than those 
obtained by the naive procedure. 

There have been several studies on logic program syn­
thesis from universally quantified implicational formu­
lae [3, 4, 19]. Our work is closely related to that of 
Dayantis [3]. There, program synthesis was also consid­
ered from formulae of the form H ~ VX(A -+ B). They 
showed that a class of those formulae can be transformed 
into definite clauses by deductive derivation. They also 
discussed the generality of the class using several exam­
ples. Their deductive method is analogous to unfold/fold 
transformation and the derivation processes almost cor­
respond to those by our procedure when our procedure 
does not apply positive unfolding. They also mechanized 
their derivation processes. Our notion of the sound­
ness of the application of unfolding is ensured by part of 
their syntactic restrictions on the arguments of formulae, 
though we have not discussed how this is ensured. How­
ever, the classes we have shown are still wider than those 
they showed after we incorporate those restrictions. 

Sato and Tamaki showed a deterministic algorithm to 
transform logic programs with universally quantified im­
plicational formulae into definite clause programs [19]. 
In their method, unfold/fold transformation is applied 
to universal continuation forms. Their method can be 
applied to a wider class of first order formulas than ours, 
while the results of the compilation are not necessarily 
efficient and the code sizes of those results increase gen­
erally. 

5 Conclusion 

A logic program synthesis method from some classes of 
first order logic specifications have been shown. The 
method is based on unfold/fold transformation. Some 
classes of first order formulae which can be transformed 
into definite clause programs by unfold/fold transforma­
tion have been shown. 
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Abstract 

We present a procedure for partial deduction of logic pro­
grams, based on an automatic unfolding algorithm which 
guarantees the construction of sensibly and strongly ex­
panded, finite SLD-trees. We prove that the partial de­
duction procedure terminates for all definite logic pro­
grams and queries. We show that the resulting program 
satisfies important soundness and completeness criteria 
with respect to the original program, while retaining the 
essentially desired amount of specialisation. 

1 Introduction 

Since its introduction in logic programming by Ko­
morowski ([Komorowski, 1981]), partial evaluation has 
attracted the attention of many researchers in the field. 
Some, e.g. [Venken, 1984], [Venken and Demoen, 1988], 
[Sahlin, 1990], have addressed pragmatic issues re­
lated to the impurities of Prolog. Others were at­
tracted by the perspective of eliminating the over­
head associated with meta interpreters. Some ex­
amples are: [Gallagher, 1986], [Levi and Sardu, 1988], 
[Safra and Shapiro, 1986], [Sterling and Beer, 1989] and 
[Takeuchi and Furukawa, 1986]. Finally, a firm the­
oretical basis for the subject was described in 
[Lloyd and Shepherdson, 1991]. 

Just as in [Bruynooghe et al., 1991a]' we use the 
term "partial deduction" in this paper, rather than 
the more familiar "partial evaluation". Following 
[Komorowski, 1989], we do so because we want to leave 
the latter term for works taking into account the non­
logical features of Prolog and the order in which answers 
are produced. In the present paper, we adhere to the 
viewpoint taken in [Lloyd and Shepherdson, 1991] which 
states that the specialised program should have the same 
answers as the original one. 

*work partially supported by ESPRI'l' BRA COMPULOG 
(project 3012) 

t All authors are supported by the Belgian National Fund for 
Scientific Research. 

Indeed, the authors of [Lloyd and Shepherdson, 1991J 
present important criteria which, when satisfied by the 
specialised program, guarantee this to be the case. A 
partial deduction procedure imposing these criteria, is 
described in [Benkerimi and Lloyd, 1990]. However, ter­
mination of this procedure is not guaranteed, not even 
for definite logic programs. In this paper, we propose 
an alternative method which does terminate for all def­
inite logic programs. A central part of any partial 
deduction procedure is an unfolding algorithm which 
builds the SLD(NF)-trees used as starting point for 
synthesising specialised clauses. In general, termina­
tion of this unfolding process is problematic in its own 
right. In [Bruynooghe et ai., 1991a}, a general crite­
rion for avoiding infinite unfolding is presented. In the 
present paper, we build on those results for formulat­
ing a terminating procedure for partial deduction, re­
specting the soundness and completeness conditions of 
[Lloyd and Shepherdson, 1991]. 

The paper is organised as follows. In section 2, we 
recapitulate (and adapt) some basic concepts in par­
tial deduction from [Lloyd and Shepherdson, 1991], as 
well as the criteria for soundness and completeness pre­
sented there. We sketch the partial deduction method 
from [Benkerimi and Lloyd, 1990] and show an exam­
ple on which the unfolding rules mentioned there do 
not terminate. In section 3, we introduce an au­
tomatic algorithm for finite unfolding, adapted from 
[Bruynooghe et ai., 1991a]. Next, in section 4, our par­
tial deduction procedure is presented. We give an al­
gorithm which implements it and prove its termination. 
Moreover, we prove that the method satisfies the criteria 
introduced in [Lloyd and Shepherdson, 1991]. We also 
show that the intended specialisation is indeed obtained. 
We conclude the paper in section 5 with a short dis­
cussion, including a brief comparison with the approach 
of [Benkerimi and Lloyd, 1990) and some directions for 
further research. 
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2 Partial Deduction 

2.1 Basic concepts, soundness and 
completeness 

We assume familiarity with the basics of logic pro­
gramming. Definitions of the following concepts 
can be found in [Lloyd and Shepherdson, 1991]. and 
[Benkerimi and Lloyd, 1990]: most specificic general­
isation (msg) , incomplete SLD-tree, resultant of a 
derivation, partial deduction for an atom in a pro­
gram, partial deduction for a set of atoms in a pro­
gram, partial deduction of a program wrt a set of 
atoms, independence of a set of atoms, A-closedness 
of a set of formulas, A-coveredness of a program 
and goal. In [Lloyd and Shepherdson, 1991] and 
[Benkerimi and Lloyd, 1990], the definitions are given 
for normal programs and using the term "partial eval­
uation". In the present paper, we restrict ourselves 
to definite programs and goals and, as mentioned 
above, use the term "partial deduction". The n.eces­
sary adaptations are straightforward (as exemplified in 
[Bruynooghe et at., 1991a]). 

We adapt the following theorem from 
[Lloyd and Shepherdson, 1991]. 

Theorem 2.1 Let P be a definite logic program, G a 
definite goal, A a finite, independent set of atoms, and 
pI a partial deduction of P wrt A such that pI U {G} is 
A-covered. Then the following hold: 

• pI U {G} has an SLD-refutation with computed an­
swer () iff P U {G} does. 

• pI U {G} has a finitely failed SLD-tree iff P U {G} 
does. 

In other words, under the conditions stated in this theo­
rem, computation with a partial deduction of a program 
is sound and complete wrt computation with the original 
program. This is clearly a very desirable characteristic 
of any procedure for partial deduction. It is therefore 
important to devise methods for partial deduction that 
ensure the conditions of theorem 2.1 are satisfied. 

In [Benkerimi and Lloyd, 1990], one such method is 
presented. Basically, it proceeds as follows. For a given 
goal G and program P, a partial deduction for Gin P is 
computed. This is repeated for any goal occurring in the 
resulting clauses which is not an instance of one already 
processed. Assuming the procedure terminates, one gets 
in this way a set of clauses S and a set A of partially 
deduced atoms such that S is A-closed. But one also 
wants A to be independent. In order to achieve this, the 
procedure is modified as follows. Whenever a goal occur­
ring in S is not an instance (nor a variant) of one in A, 
but has a common instance with it, the latter is removed 
from A and a partial deduction is computed for their 
msg (which itself is therefore added to A) and added to 

S. The original partial deduction for the removed goal 
is itself also removed from S. The process stops if A be­
comes independent and SA-closed. S can then be used 
to synthesize a partial deduction of P wrt A which sat­
isfies the conditions of theorem 2.1 for any goal G' which 
is an instance of G. 

However, the tactic of taking msgs to make A inde­
pendent causes an unacceptable loss of specialisation in 
the resulting partial deduction. To remedy this, the 
authors of (Benkerimi and Lloyd, 1990] introduce a re­
naming transformation as a pre-processing stage be­
fore running their algorithm. It amounts to duplicat­
ing and renaming the definitions of those predicates, oc­
curring in the original goal G, which are likely to pose 
specialisation problems. The details can be found in 
[Benkerimi and Lloyd, 1990]. 

2.2 Unfolding 

One question is left more or less unanswered until now: 
How to obt~in the (incomplete) SLD-trees used as a basis 
for producing partial deductions? In other words, which 
computation rule should be used for building these trees 
(including the question of deciding when to stop the un­
folding)? [Benkerimi and Lloyd, 1990] mentions 4 cri­
teria and proposes the following one as the best : The 
computation rule Rv selects the leftmost atom which is 
not a variant of an atom already selected on the branch 
down to the current goal. However, this rule fails to 
guarantee the production of finite SLD-trees in all cases . 
We present a counter-example. It is the well-known "re­
verse" program with accumulating parameter . 

Example 2.2 

source program: 
reverse([],L,L). 
reverse([XIXs]'Ys,Zs) ~ reverse(Xs,[XIYs),Zs). 

query: 
~reverse( [1 ,2IXs],[] ,Zs). 

The reader can verify that Rv generates an infinite SLD­
tree. 

Some authors have therefore combined Ru or other 
computation rules with a depth bound: 
(a.o.) [Levi and Sardu, 1988], [Sterling and Beer, 1986], 
[Takeuchi and Furukawa, 1986]. This does of course 

. guarantee finiteness, but it seems a rather ad-hoc so­
lution which does not reflect any properties of the 
given unfolding problem. . We therefore proposed 
an alternative solution in [Bruynooghe et al., 1991a]. 
(An extended version of this paper can be found in 
(Bruynooghe et al., 1991 b] . ) 



3 An .Algorithm for Finite Un­
folding 

In [Bruynooghe et ai., 1991a], a general criterion for 
avoiding infinite unfolding during partial deduction and 
a terminating unfolding algorithm based on it, are pre­
sented. In this section, we introduce a fully auto­
matic version of that algorithm, tuned towards unfold­
ing object-level definite logic programs. A slightly more 
sophisticated approach may be desirable when dealing 
with meta interpreters. We will not address that point 
in the present paper and concentrate on object-level pro­
grams. Although a slightly more accurate presentation of 
the algorithm itself is given, most of what follows now is 
adapted from [Bruynooghe et aI., 1991a]. The interested 
reader is referred to that paper for a full (and more gen­
eral) account with all the technical details on the well­
founded measures underlying our approach. Here, we 
only introduce what is necessary for a good understand­
ing of algorithm 3.6. 

For technical reasons, we will assume a numbering on 
the nodes of an SLD-tree (e.g. left-to-right, top-down 
and breadth-first). We will use the following notation 
for nodes in an SLD-tree: (G, i) where G is a goal of the 
tree having i as its associated number. (The notations 
"( G, i)" and "G" will be used interchangeably, as the 
context requires.) 

We first define a weight-function on terms. It counts 
the number of functors in its argument. 

Definition 3.1 Let Term denote the set of terms in the 
first order language used to define the theory P. We 
define 1.1 : Term ~ IN as follows: 

If t = f( tll ... , t n ), n > 0 
then It I = 1 + Itll + ... + Itnl 
else It I = 0 

It is then possible to introduce weight-functions on 
atoms. 

Definition 3.2 Let p be a predicate of arity nand S= 
{al,"" am}, 1 ~ ak ~ n, 1 ~ k ~ m, a set of argument 
positions for p. We define 1.lpls : {AlA is an atom with 
predicate symbol p} ~ IN as follows: 

Ip(tll' .. ,tn)lpls = Itall + ... + Itam I 
The next two definitions introduce useful relations on 

literals and goals in an SLD-tree. 

Definition 3.3 Let (G,i) = ((~AI, ... ,Aj, ... ,An),i) 
be a node in an SLD-tree T, let R( G) = Aj be the 
call selected by the computation rule R, let H ~ 
Bll ... ,Bm be a clause whose head unifies with Aj 
and let (J = mgu(Aj, H) be the most general uni­
fier. Then (G, i) has a son (G' , k) in T, (G' , k) = 
(( ~All"" Aj - I , Bll ···, Bm, Aj+l,';" An)(J, k). We 
say that BI(J, ... , Bm(J in G' are direct descendents of Aj 
in G and that Aj in G is a direct ancestor of BI(J, . .. , Bm(J 
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in G'. 
The binary relations descendent and ancestor, defined on 
atoms in goals, are the transitive closures of the direct de­
scendent and direct ancestor relations respectively. For 
A an atom in G and B an atom in G', A is an ancestor 
of B is denoted as A >pr B ("pr" stands for proof tree). 

Notice that we also speak about one goal G' being an an­
cestor (or descendent) of another goal G. This terminol­
ogy refers to the obvious relationships between goals in 
an SLD-tree and should not be confused with the proof­
tree based relationships between literals, introduced in 
the previous definition. The following definition does 
introduce a relationship between goals, based on defini­
tion 3.3. 

Definition 3.4 Let G and G' denote two different nodes 
in an SLD-tree T. Let R be the computation rule used 
in T. Then G' covers G iff 

1. R( G') and R( G) are atoms with the same predicate 

2. R( G') >pr R( G) 

Notice that G' covers G implies that G' is an ancestor of 
G. 

We need one more piece of terminology. 

Definition 3.5 Let G and G' denote two different nodes 
in an SLD-tree T. We call G' the youngest covering an­
cestor of G iff 

1. G' covers G 

2. For any other node Gft such that Gil covers G, we 
have that Gil covers G' 

We are now finally able to formulate the following al­
gorithm: 

Algorithm 3.6 

Input 
a definite program P 
a definite goal ~A 

Output 
a finite SLD-tree T for P U {+-A} 

Initialisation 
T := {( +-A,l)} 
Pr:= 0 
Terminated := 0 
Failed:= 0 
For each recursive predicate pin in P and 
for the derivation D in T: 

SplD := {l, ... , n} 

While there exists a derivation D in T such that 
D f/. Terminated do 

Let (G, i) name the leaf of D 
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Select the leftmost atom p( t 1 , ..• ,tn ) in G 
satisfying the following condition: 
If p is recursive and there is 

a youngest covering ancestor (G', j) of (G, i) in D 
then IR(G')lp,Sp,D new > Ip(t 1 , ..• , tn)lp,Sp,D new where 

Sp,Dnew = Sp,D \ Sp,Dremove and 
Sp,Dremove = 
{ak E Sp,D IIp(t1, ... , tn)lp,{ak} > IR(G')lp,{ak}} 

If such an atom p( t1 , ••. ,tn ) can be found 
then 

R(G) :=P(tl, ... ,tn) 
Let Derive( G, i) name the set of all derivation steps 
that can be performed 
If Derive( G, i) = 0 
then 

Add D to Terminated and Failed 
else 

Let Descend(R(G), i) name the set of 
all pairs ((R(G), i), (BO,j)), where 

- B is an atom in the body of a clause 
applied in an element of Derive( G, i) 

- 0 is the corresponding m.g. u. 
- j is the number of the corresponding 

descendent of (G, i) 
Expand D in T with the elements of Derive( G, i) 
Add the elements of Descend( R( G), i) to Pr 
For every newly created extension D' of D and 
for every recursive predicate q in P: 

else 

if q = p and (G, i) has a covering ancestor in D 
then Sq,D' := Sq,Dnew 

else Sq,D' := Sq,D 

Add D to Terminated 

Endwhile 

We have the following theorem. 

Theorem 3.7 Algorithm 3.6 terminates. If a definite 
program P and a definite goal -A are given as inputs, 
its output T is a finite (possibly incomplete) SLD-tree for 
P U {-A}. 

Proof The theorem is an immediate consequence of 
proposition 3.1 in [Bruynooghe et al., 1991aJ. 0 

Example 3.8 The SLD-tree generated by algorithm 3.6 
for the program and the query from example 2.2, are 
depicted in figure 1. ("reverse" has been abbreviated to 
"rev" .) 

4 Combining These Techniques 

4.1 Introduction 

In the previous section, we introduced an algorithm for 
the automatic construction of (incomplete) finite SLD­
trees. In this section, we present sound and complete 

... rev([l,2IXsJ,[],Zs) 

... rev([2IXs],[1],a) 

.... rev(Xs,[2,1],Zs) 

Zs=[2.1] ~ Xs=[X'IXs'] 

xs=[/ ~ 

o .... rev(Xs',[X',2,l],a) 

Figure 1: The SLD-tree for example 3.8. 

partial deduction methods, based on it. Moreover, these 
methods ar.e guaranteed to terminate. The following ex­
ample shows that this latter property is not obvious, even 
when termination of the basic unfolding procedure is en­
sured. We use the basic partial deduction algorithm from 
[Benkerimi and Lloyd, 1990], together with our unfold­
ing algorithm. 

Example 4.1 For the reverse program with accumulat­
ing parameter (see example 2.2 for the program and the 
starting query), an infinite number of (finite) SLD-trees 
is produced (see figure 2). This behaviour is caused by 
the constant generation of "fresh" body-literals which, 
because of the growing accumulating parameter, are not 
an instance of any atom that was obtained before. 

In [Benkerimi and Lloyd, 1989], it is remarked that a so­
lution to this kind of problems can be truncating atoms 
put into A at some fixed depth bound. However, this 
again seems to have an ad-hoc flavour to it, and we there­
fore devised an alternative method, described in the next 
section. 

4.2 An algorithm for partial deduction 

We first introduce some useful definitions and prove a 
lemma. 

Definition 4.2 Let P be a definite program and p a 
predicate symbol of the language underlying P. Then a 
pp' -renaming of P is any program obtained in the fol­
lowing way: 

• Take P together with a fresh-duplicate-copy of 
the clauses defining p. 

• Replace p in the heads of these new clauses by some 
new (predicate) symbol pi (of the same arity as p). 



• Replace p by p' in any number of goals in the bodies 
of (old and new) clauses. 

___ rev([1,2IXs],[],Zs) 

~ rev([2IXs],[1],Zs) 

--- rev(Xs,[2,1],Zs) 

Zs=[2,1] ~XS=[X'IXS'] Xs=[Y ~ 

o .... rev(Xs',[X',2,1],Zs) 

.... rev(Xs',[X',2,l],Zs) 

o --- rev(Xs",[X",X',2,1],Zs) 

--- rev(Xs",[X",X',2,1],Zs) 

Figure 2: An infinite number of (finite) SLD-trees. 

Lemma 4.3 Let P be a definite program and Pr a pp'­
renaming of P. Let G be a definite goal in the language 
underlying P. Then the following hold: 

• Pr U {G} has an SLD-refutation with computed an­
swer e iff P U {G} does. 

• Pr U {G} has a finitely failed SLD-tree iff P U {G} 
does. 

Proof There is an obvious equivalence between SLD­
derivations and -trees for P and Pr • 0 

Definition 4.4 Let P be a definite program and p a 
predicate symbol of the language underlying P. Then 
the complete pp' -renaming of P is the pp'-renaming of P 
where p has been replaced by p' in all goals in the bodies 
of clauses. 

Our method for partial deduction can then be formu­
lated as the following algorithm. 

Algorithm 4.5 

Input 
a definite program P 
a definite goal ~A =~p(tl, .. . , tn ) 

in the language underlying P 
a predicate symbol p', of the same arity as p, 
not in the language underlying P 

Output 
a set of atoms A 
a partial deduction P/ of Pr , 

the complete pp'-renaming of P, wrt A 

Initialisation 
Pr := the complete pp'-renaming of P 
A := {A} and label A unmarked 

While there is an unmarked atom B in A do 
Apply algorithm 3.6 with Pr and ~B as inputs 
Let TB name the resulting SLD-tree 
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Form PrB, a partial deduction for B in Pr , from TB 

Label B marked 
Let AB name the set of body literals in Pr B 
For each predicate q appearing in an atom in AB 

Let msgq name an msg of all atoms having q 
as predicate symbol in A and AB 
If there is an atom in A having q as predicate 
symbol and it is less general than msgq 

then remove this atom from A 
,If now there is no atom in A having q as 
predicate symbol 

then add msgq to A and label it unmarked 
Endfor 

Endwhile 
Finally, construct the partial deduction P/ of Pr wrt A: 
Replace the definitions of the partially deduced 
predicates by the union of the partial deductions Pr B 

for the elements B of A. 

We illustrate the algorithm on our running example. 

Example 4.6 

complete renaming of the reverse program: 
reverse( [] ,L,L) . 
reverse([X\Xs]'Y s,Zs) ~ reverse'(Xs,[X\Y s]'Zs). 
reverse'([],L,L ). 
reverse'([X\Xs],Y s,Zs) ~ reverse'(Xs,[X\Ys],Zs). 

partial deduction for ~reverse([1,2\Xs],[],Zs): 
reverse( [1 ,2], [], [2,1]). 
reverse([1,2,X\Xs]'[],Zs) ~ reverse'(Xs,[X,2,1],Zs). 

partial deduction for ~reverse'(Xs,[X,2,1 ]'Zs): 
reverse'( [] ,[X,2,1] ,[X,2,1]). 
reverse'( [X'\Xs], [X,2,1] ,Zs) ~ 

reverse'(Xs, [X',X,2, 1 ],Zs). 

msg of reverse'(Xs,[X,2,1]'Zs) and 
reverse'(Xs,[X',X,2,1 ],Zs): reverse'(Xs,[X,Y,Z\Y s],Zs) 
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partial deduction for +--reverse'(Xs,[X,Y,ZIYs}'Zs): 
reverse'( [J ,[X, Y,ZIY sJ ,[X,Y,ZI Y sJ). 
reverse'([X'IXs],[X,Y,ZIY s],Zs) +--

reverse'(Xs ,[X' ,X, Y,Z IY s] ,Zs). 

resulting set A: 
{reverse([1 ,2IXs] ,[J,Zs ),reverse'(Xs,[X,Y,ZIY s],Zs)} 

resulting partial deduction: 
reverse( (1,2],[J ,[2,1]). 
reverse((1 ,2,XIXs],[J ,Zs) +-- reverse'(Xs,[X,2,1]'Zs). 
reverse'( [], [X, Y,ZIY s] ,[X,Y,Z IY s]). 
reverse'([X'IXs],[X,Y,ZIY s],Zs) +--

reverse'( Xs, [X' ,X, Y,Z IY s J ,Zs). 

We can prove the following interesting properties of 
algorithm 4.5. 

Theorem 4.7 Algorithm 4.5 terminates. 

Proof Due to space restrictions, 
(Martens and De Schreye, 1992]. 

we refer to 
o 

Theorem 4.8 Let P be a definite program, A 
p( i 1 , .•• , in) be an atom and p' be a predicate symbol 
used as inputs to algorithm 4.5. Let A be the (finite) set 
of atoms and P/ be the program output by algorithm 4.5. 
Then the following hold: 

• A is independent. 

• For any goal G =+--Al, . .. , Am consisting of atoms 
that are instances of atoms in A, P/ U {G} is A­
covered. 

Proof 

• We first prove that A is independent. 
From the way A is constructed in the For-loop, it 
is obvious that A cannot contain two atoms with 
the same predicate symbol. Independence of A is 
an immediate consequence of this. 

• To prove the second part of the theorem, let Pr * be 
the subprogram of P/ consisting of the definitions 
of the predicates in P/ upon which G depends. We 
show that Pr * U {G} is A-closed. 
Let A be an atom in A. Then the For-loop in algo­
rithm 4.5 ensures there is in A a generalisation of 
any body literal in the computed partial deduction 
for A in Pr'. The A-closedness of P/ U {G} now 
follows from the following two facts: 

1. Pr ' is a partial deduction of a program (Pr ) wrt 
A. 

2. All atoms in G are instances of atoms in A. 

o 

Corollary 4.9 Let P be a definite program, A = 
p( i 1 , •.• , in) be an atom and p' be a predicate symbol 
used as inputs to algorithm 4.5. Let A be the set of 
atoms and P/ be the program output by algorithm 4.5. 
Let G =+--Al, ... , Am be a goal in the language under­
lying P, consisting of atoms that are instances of atoms 
in A. Then the following hold: 

• P/ U {G} has an SLD-refutation with computed an- . 
swer () iff P U {G} does. 

• P/ U {G} has a finitely failed SLD-tree iff P U {G} 
does. 

Proof The corollary is an immediate consequence of 
lemma 4.3 and theorems 2.1 and 4.8. 0 

Proposition 4.10 Let P be a definite program and A 
be an atom used as inputs to algorithm 4.5. Let A be 
the set of atoms output by algorithm 4.5. Then A E A. 

Proof A is put into A in the initialisation phase. From 
definition 4.4, it follows that no clause in Pr contains a 
condition literal with the same predicate symbol as A. 
Therefore, A will never be removed from A. 0 

This proposition ensures us that algorithm 4.5 does 
not suffer from the kind of specialisation loss mentioned 
in section 2.1: The definition of the predicate which ap­
pears in the query +--A, used as starting input for the 
partial deduction, will indeed be replaced by a partial 
deduction for A in P in the program output by the al­
gorithm. 

Finally, we have: 

Corollary 4.11 Let P be a definite program, A = 
p( i 1 , ... , in) be an atom and p' be a predicate symbol 
used as inputs to algorithm 4.5. Let P/ be the program 
output by algorithm 4.5. Then the following hold for any 
instance A' of A: 

• P/ U {+--A'} has an SLD-refutation with computed 
answer () iff P U {+--A'} does. 

• P/ U {+--A'} has a finitely failed SLD-tree iff P U 
{ +-- A'} does. 

Proof The corollary immediately follows from corol­
lary 4.9 and proposition 4.10. 0 

Theorem 4.7 and corollary 4.11 are the most impor­
tant results of this paper. In words, their contents can 
be stated as follows. Given a program and a goal, algo­
rithm 4.5 produces a prograrri which provides the same 
answers as the original program to the given query and 
any instances of it. Moreover, computing this (hopefully 
more efficient) program terminates in all cases. 



5 Discussion and Conclusion 

In [Lloyd and Shepherdson, 1991], important criteria en­
suring soundness and completeness of partial deduc­
tion are introduced. In the present paper, we started 
from a recently proposed strategy for finite unfolding 
([Bruynooghe et al., 1991a]) and developed a procedure 
for partial deduction of definite logic programs. We 
proved this procedure produces programs satisfying the 
mentioned criteria and, in an important sense, showing 
the desired specialisation. Moreover, the algorithm ter­
minates on all definite programs and goals. 

The unfolding method as it is presented in section 3 
was proposed in [Bruynooghe et al., 1991a]' but appears 
here for the first time in this detailed and automati­
sable form, specialised for object level programs. It 
tries to maximise unfolding while retaining termination. 
We know, however, of two classes of programs where 
the first goal is not achieved. First, meta programs 
require a somewhat more refined control of unfolding. 
This issue is addressed in [Bruynooghe et ai., 1991a]. 
We refer the interested reader to that paper (or to 
[Bruynooghe et al., 1991b]) for further comments on this 
topic. Second, (datalog) programs where the information 
contained in constants appearing in the program text 
plays an important role, are not treated in a satisfactory 
way. Further research is necessary to improve the unfold­
ing in this case. (A combination of our rule with the Rv 
computation rule seems promising.) As far as the used 
unfolding strategy does maximise unfolding, however, it 
probably diminishes or eliminates the need for dynamic 
renaming as proposed in [Benkerimi and Hill, 1989]. 

We now compare briefly algorithm 4.5 with the par­
tial deduction procedure with static renaming presented 
in [Benkerimi and Lloyd, 1990]. First, we showed above 
that our procedure terminates for all definite programs 
and queries while the latter does not. The culprit 
of this difference in behaviour is (apart from the un­
folding strategy used) the way in which msg's are 
taken. We do this predicatewise, while the authors of 
[Benkerimi and Lloyd, 1990] only take an msg when this 
is necessary to keep A independent. This may keep more 
specialisation (though only for predicates different from 
the one in the starting goal), but causes non-termination 
whenever an infinite, independent set A is generated (as 
illustrated in example 4.1). Observe, moreover, that we 
have kept a clear separation between the issues of control 
of unfolding and of ensuring soundness and complete­
ness. The use of algorithm 3.6 - or further refinements 
(see above) - guarantees that all sensible unfolding -
and therefore specialisation - is obtained. The way in 
which algorithm 4.5, in addition, ensures soundness and 
completeness, takes care that none of the obtained spe­
cialisation is undone. Therefore, it does not seem worth­
while to consider more than one msg per predicate. Note 
that one can even consider restricting the partial deduc-
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tion to the predicate in the starting query and simply 
retaining the original clauses for all other predicates in 
the result program. This can perhaps be formalised as a 
partial deduction where only a 1-step trivial unfolding is 
performed for these predicates. 

Next, the method in [Benkerimi and Lloyd, 1990] is 
formulated in a somewhat more general framework than 
the one presented here. A reformulation of the latter 
incorporating the concept of L-selectability and allow­
ing more than one literal in the starting query seems 
straightforward. However, a generalisation to normal 
programs and queries and SLDNF-resolution while re­
taining the termination property, is not immediate. In 
e:g. [Benkerimi and Lloyd, 1990], it is proposed that 
during unfolding, negated calls can be executed when 
ground and remain in the resultant when non-ground. 
This of course jeopardises termination, since termina­
tion of "ordinary" ground logic program execution is not 
guaranteed in general. One solution is restricting at­
tention to specific subclasses of programs (e.g. acyclic 
or acceptable programs, see [Apt and Bezem, 1990], 
[Apt and Pedreschi, 1990]). Another might be to use an 
adapted version of our unfolding criterion in the evalu­
ation of the ground negative call, and to keep the lat­
ter one in the resultant whenever the SLD(NF)-tree pro­
duced is not a complete one. Yet a third way might be 
offered by the use of more powerful techniques related to 
constructive negation (see [Chan and Wallace, 1989]). 

Finally, [Gallagher and Bruynooghe, 1990] presents 
another approach to partial deduction focusing both on 
soundness and completeness and on control of unfolding. 
The main difference is the control of unfolding by a con­
dition based on maximal deterministic paths, where our 
approach is based on maximal data consumption, moni­
tored through well-founded measures. 
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Abstract 

We extend the notions 'recurrency' and 'acceptability' 
of a logic program, which were respectively defined in 
the work of M. Bezem and the work of K. R. Apt and 
D. Pedreschi, and which were shown to be equivalent 
to respectively termination under an arbitrary computa­
tion rule and termination under the Prolog computation 
rule. We show that these equivalences still hold for the 
extended definitions. The main idea is that instead of 
measuring ground instances of atoms, all possible calls 
are measured (which are not necessarily ground). By 
doing so, a more practical technique is obtained, in the 
sense that "more natural" measures can be used, which 
can easily be found automatically. 

1 Introduction 

In the last few years, a strong research effort in the field 
of logic programming has addressed the issue of termina­
tion. From the more theoretical point of view, the results 
obtained by Vasak and Potter [1986]' Baudinet [1988]' 
Bezem [1989], Cavedon [1989], Apt and Pedreschi [1990], 
and Bossi et ai. [1991] have provided several frameworks 
and basic techniques to formulate and solve questions 
regarding the termination of logic programs in semanti­
cally clear and general terms. Other researchers, such 
as Ullman and Van Gelder [1988], Plumer [1990], Wang 
and Shyamasundar [1990], Verschaetse and De Schreye 
[1991], and Solm and Van Gelder [1991] have provided 
practical and automatable tecliniques for proving the ter­
mination of logic programs with respect to certain classes 
of queries at compile time. 

In this paper, we propose an extension of the theo­
retical frameworks for the characterisation of terminat­
ing programs and queries proposed in [Bezem 1989] and 
[Apt and Pedreschi 1990]. The framework does not only 
provide slightly more general results, but also increases 
the practicality of the techniques in view of automation. 

·Supported by the National Fund for Scientific Research. 
tSupported by ESPRIT BRA COMPULOG project nr. 3012. 

Let us recall some definitions from [Bezem 1989] in 
order to explain our motivation and the intuition behind 
our approach. 

Definition 1.1 (see [Bezem 1989]; Definition 2.1) A level 
mapping for a definite logic program P is a mapping 
1.1: Bp -+ IN. 

Definition 1.2 (see [Bezem 1989]; Definition 2.2) A 
definite logic program P is recurrent if there exists a 
level mapping 1.1, such that for each ground instance 
A-B l , ••. , Bn of a clause in P, IAI > IBi!, for each 
i = 1, .. . ,n. 

Definition 1.3 (see [Bezem 1989]; Definition 2.7) A defi­
nite logic program P is terminating if all SLD-derivations 
for (P, -G), where G is a ground goal, are finite. 

One of the basic results of [Bezem 1989] is that a pro­
gram is recurrent if and only if it is terminating. Al­
though this result is very interesting from a theoretical 
perspective, it is not a very practical one in terms of au­
tomated detection of terminat.ing programs and queries. 
The problem comes from the fact that the definition of 
recurrency requires that the level mapping "compares" 
the head of each ground instance of a clause with ev­
ery corresponding atom in the body and imposes a de­
crease. Intuitively, what would be preferable is to obtain 
a well-founding based on a measure function (or level 
mapping), which only decreases on each recursive call to 
a same predicate. This corresponds better to our intu­
ition, since nontermination (for pure logic programs) can 
only be caused by infinite recursion. 

As we stated above, the problem is not merely related 
to our intuition on the cause of nontermination, but more 
importantly to the practicality of level mappings. Con­
sider the following example. 

Example 1.4 

p(O)· 
p([ HIT)) - q([HIT)), p(T). 

q( []). 
q([HIT)) - q(T). 
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It is not possible to take as level mapping a function 
that maps ground instances p(:e) and q(:e) to the same 
level, namely list-length(:e) if :e is a ground list, and 0 
otherwise. Instead, the definition of recurrency obliges 
us to take a level mapping that has a "unnatural" offset 
(1 in this case). 

Ip(:e)1 
Iq{:e )1 

list-length(:e) + 1 
list-length(:e ). 

In a naive attempt to improve on the results of 
[Bezem 1989], one could try to start from an adapted 
definition for a recurrent program, in which the relation 
IAI > IBil would only be required if A and Bi are atoms 
with the same predicate symbol. However, the equiv­
alence with termination would immediately be lost -
even for programs having only direct recursion - as the 
following example shows. 

Example 1.5 

appenci([), L, L). 
appenci((HIS], T, [H/uD - append(S, T, U). 

p([HITJ) - append(X, Y, Z), peT). 

An "extended" notion of recurrency, where the level 
mapping only relates the measure of ground instances of 
the recursive calls, would hold with respect to the level 
mapping: 

Ip(:e )1 
lappenci(:e, y, z)1 

list-length(:e ) 
list-length(:e) . 

On the other hand, the program is clearly not terminat­
ing - if it would be terminating, then we would have 
shown that append/3 terminates for a call with all three 
arguments free. 

The heart of the problem is that in the definition of 
recurrency, the level mapping is used for two quite dis­
tinct purposes at the same time. First, the level mapping 
does ensure that on each derivation step, the measure of 
a recursive descending call is smaller than the measure of 
the ancestor call (or at least: for each ground instance of 
such a derivation step). Second, since we are only given 
that the top level goal is ground (or, in a more general 
version of the theorem, bounded) - but we have no in­
formation on the instantiation of any of the descending 
calls - the level mapping is also used to ensure that we 
have some upper limit on the measures for the calls of 
the (independent) recursive subcomputation evoked by 
the original call. In the current definition, this is done 
by imposing that the level also decreases between a call 
and its descendants that are not related through recur­
sion. 

The way in which we address the problem here, differs 
from the approach in [Bezem 1989] in three ways: 

1. We first compute all atoms that call occur as calls 
during any SLD-derivation for the top-level goal( s) 
under consideration. 

2. We use an extended notion oflevel mapplllg, defined 
on all such atoms - not only the growld ones. 

3. We have an adapted definition of recurrency, with 
as its most important features: 

(a) the condition IAI > IBil is not imposed 011 

growld instances of a clause, but instead, 011 

each instance obtained after unification with a 
(possible) call, 

(b) "the decrease IAI > IBil is only imposed if A 
and Bi are calls to the same predicate symbol. 
(This is for direct recursion - in the context of 

. indirect recursion, the condition is more com­
plex). 

One of the side effects of taking this approach is 
that there is no more necessity to start the analysis 
for one ground or bounded goal. The technique works 
equally well when we start from any general set of 
atoms. The additional advantage that we gain here is 
that in practice, we are usually interested in the ter­
mination properties of a program with respect to some 
call pattern. Such call patterns can always be speci­
fied in terms of abstract properties of the arguments in 
the goals through mode information, type lllformation 
or combined (rigid or integrated) mode and type infor­
mation (see [Janssens and Bruynooghe 1990)). Any such 
call pattern corresponds to a set of atoms in the con­
crete domain, and can therefore be analysed with our 
approach. 

The paper is organised as follows. In the next sec­
tion we extend the equivalence theorem of [Bezem 1989] 
in the way described above. In section 3 we take 
a completely similar approach to extend results of 
[Apt and Pedreschi 1990] on left termination. In sec­
tion 4, we illustrate the improved practicality of 
the new framework. We also indicate how some 
simple extensions are likely to provide full theoreti­
cal support for the automated technique proposed in 
[Verschaetse and De Schreye 1991]. 

All proofs have been omitted from the paper. They 
can be found in [De Schreye and Verschaetse 1992J. 

2 Recurrency with respect to a 
set of atoms 

We first introduce some conventions and recall some 
basic terminology. Throughout the paper, P will de­
note a definite logic program. The extended Her­
brand Universe, Up, and the extended Herbrand Base, 
Bffi, associated to a program P, were introduced ill 



[Falaschi et al. 1989]. They are defined as follows. Let 
Termp and Atomp denote the sets of respectively all 
terms and all atoms that can be constructed from the 
alphabet underlying to P. The variant relation, de­
noted ~, defines an equivalence. Up and BP are re­
spectively the quotient sets Termp / ~ and Atomp / ~. 
For any term t (or atom A), we denote its class in U: 
(B~) as {(A). There is a natural partial order on Up 
(and BP), defined as: s S; [if there exist represen­
tants s' of sand t' of [in Termp and a substitution 
0, such that s' = t'O. Throughout the paper, 5 will de­
note a subset of B~. We define its closure under < as: 
5 e = {A E Bffi \ :3B E 5 : A S; B}. -

Definition 2.1 P is terminating with respect to S if for 
any representant A' of any element A of 5, every SLD­
tree for (P, ~ A') is finite. 

Denoting the classical notion of a Herbrand Base (of 
ground atoms) over P as B p, then with the terminology 
of [Bezem 1989] we have: 

Lemma 2.2 P is terminating if and only if it is termi­
nating with respect to B p. 

Lemma 2.3 If all SLD-derivations for (P, ~A) are finite, 
and 0 is any substitution, then all SLD-derivations for 
(P, ~AO) are finite. 

From lemma 2.3 it follows that in order to verify def­
inition 2.1 for a set 5 ~ B:, it suffices to verify the 
finiteness of the SLD-trees for (P, ~A) for only one rep­
resentant of each element in ..1. It also follows that P is 
terminating with respect to a set 5 ~ B~ if and only if it 
is terminating with respect to 5 e • In fact, given that P 
terminates with respect to 5, it will in general be termi­
nating with respect to a larger set of atoms than those in 
se. It is clear that if all SLD-trees for (P, ~A) are finite, 
and if H ~Bl' ... , Bn is a clause in P, such that A and 
H unify, then all SLD-trees for (P, ~BiO), i = 1, ... , n, 
where 0 = mgu(A, H), are finite. We can characterise 
the complete set of terminating atoms associated to a 
given set S as follows. 

Definition 2.4 For any T ~ B~, define Tp-l(T) = 
{BiO E Bffi \ A' is a representant of A E T, H 
~ Bl"'" Bn is a clause in P, 0 = mgu(A', H) and 
1 ~ i ~ n}. 

Denote 1ts = {T E 2B~ \ 5 e ~ T}. 1t s is a complete 
lattice with bottom element se. 

Definition 2.5 Rs : 1is -+ 1is : Rs(T) = T U Tp-l(Tr. 

Lemma 2.6 Rs is continuous. 

As a result, the least fix-pohl.t for Rs is Rs Tw. 
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Lemma 2.7 P is terminating with respect to 5 if and 
only if P is terminating with respect to RsTw. 

As a result of our construction (in fact: as the very 
purpose of it), RsTw contains every call in every SLD­
tree for any atomic goal of S. Formally: 

Proposition 2.8 Let call( P, 5) denote the set of all 
atoms B, such that B is the subgoal selected by the 
computation rule in some goal of some SLD-tree for a 
pair (P, ~A), with A the representant of an element of 
S. Then, call(P, 5) ~ RsTw. 

We now introduce a variant of the definition of a level 
mapping, where the mapping is defined on equivalence 
classes of calls. 

Definition 2.9 (level mapping) 
A level mapping with respect to a set 5 ~ Bffi is a function 
\.\ : RsTw -+ IN. A level mapping \.\ is called rigid 

i!J:.or all A E Rs jw and for any substitution 0, IAI = 
IAOI, i.e. the level of an atom remains invariant under 
substitution. 

With slight abuse of notation, we will often write I A I, 
where A is a representant of A E Bffi. The associated 
notion of recurrency with respect to 5 will not be de­
fined on ground instances of clauses, but instead OIl all 
instances (H ~Bl"'" Bn}e of clauses H ~Bl"'" En of 
P, such that 0 = mgu(A, H), where A is a representant 
of an element of Rs Tw. The definition in [Bezem 1989J 
does not explicitly impose a decrease of the level map­
ping at each inference step. The level mapping's values 
should only decrease for ground instances of clauses. By 
considering more general instances of clauses (as above), 
we can explicitly impose a decrease of the level mapping's 
value during (recursive) inference steps. As a result, the 
adapted level mapping no longer needs to perform dif­
ferent functionalities at once, and we can concentrate on 
the real structure of the recursion. 

Now, concerning this recursive structure, there are a 
number of different possibilities for a new definition of 
recurrency, depending on how we aim to deal with indi­
rect recursion. In order not to confuse all issues involved 
we first provide a definition for programs P, relying onI; 
on direct recursion. 

Definition 2.10 A (directly recursive) program P is re­
current with respect to S, if there exists a level mapping 
1.1 with respect to 5, such that: 

• for any A' representant of A E Rs jw, 

• for any clause H ~Bl"'" Bn in P, such that 
mgu( A', H) = 0 exists, 

• for any atom Bi, 1 S; i S; n, with the same predicate 
symbol as H: IA'I > IBiOI. 
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What is expressed in this definition is that for any two 
recursively descending calls with a same predicate sym­
bol in any SLD-tree for (represent ants of) atoms in S, 
the level mapping's value should decrease. This condi­
tion has the advantage of being perfectly natural and 
therefore, of being easy to verify in an automated way. 
The only possible problem in view of automation is that 
it requires the computation of Rsiw. But, this problem 
is precisely the type of problem that can easily be solved 
(or approxinlated) through abstract interpretation (see 
section 4). 

In the presence of indirect recursion, we need a more 
complex definition, that deals with the problem that a re­
cursive call with a same predicate symbol as an ancestor 
call may only appear after a finite number of inference 
steps (instead of in the body of the particular instance 
of the applied clause). Tlus can be done in several ways. 
We first provide a defuution related to the concept of a 
resultant of a finite (incomplete) derivation. Based on 
tIus definition, we prove the equivalence with ternuna­
tion. After that, we provide a more practical condition, 
of which definition 2.10 is an obvious instance for the 
case of direct recursion. 

First, we need some additional terminology. 

Definition 2.11 Let A be an atom and (Go = - A), 
G l , G2 , ••• , Gn , (n > 0), a finite, incomplete SLD­
derivation for (P, _A). Let 01 , ••• , On be the cor­
responding sequence of substitutions, and let 0 = 
0102 ", On and Gn = -BI , ••• , Bm. With the ter­
minology of [Lloyd and Shepherds on 1991] we say that 
AO-B1 , • •• , Bm is the resultant of the derivation. 

Definition 2.12 A resultant AO-B1 , ••• , Bm of a 
derivation (Go = -A), G l , ..• , Gn , is a recursive resul­
tant for A if there exists i (1 ::; i ::; m), such that Bi has 
the same predicate symbol as A. 

Definition 2.13 (recurrency wrt a set of atoms) 
A program P is recurrent with respect to S, if there exists 
a level mapping, 1.1, with respect to S, such that: 

• for any A' representant of A E Rs iw, 

• for any recursive resultant A'O-B l , ... , B m, for A', 

• for any atom Bi , 1 ::; i ::; m, with the same predicate 
symbol as A': IA'I > IBil. 

Proposition 2.14 If P is recurrent with respect to S, 
then P terminates with respect to S. 

Just as in the framework of Bezem, the converse state­
ment holds as well. 

Theorem 2.15 
P is recurrent with respect to S if and only if it is ter­
minating with respect to S. 

One of the nice consequences of this result is that we 
can now relate the concept of a recurrent program in the 
sense of [Bezem 1989] to recurrellCY with respect to a set 
of (ground) atoms. 

Corollary 2.16 P is recurrent if and only if it is recur­
rent with respect to B p • 

It may seem surprising to the reader that two appar­
ently very different notions such as recurrency and recur­
rency with respect to B p coincide. It is our experience 
from our work in termination of wlfolding in the context 
of partial deduction ([Bruynooghe et ai. 1991]) that this_ 
is not unusual. The reason is that conditions occurring 
in these contexts require the 11 existence 11 of some well­
founded measure. The specific properties of such mea­
sures can take totally different form without loosing the 
termination property. The only real difference lies in the 
practicality. 

We conclude the section by introducing a condition 
that implies definition 2.13. This condition has the ad­
vantage over definition 2.13 that it does not rely on the 
verification of some property for each of a potentially 
infinite number of recursive resultants. Instead it only 
requires such a verification for a finite number of clauses, 
which can be characterised through the minimal, cyclic 
collections of P. 

Definition 2.17 (minimal cyclic collection) 
A minimal cyclic collection of P is a finite sequence of 
clauses of P: 

such that: 

• for each pair (i -=f j), the heads of the clauses, Ai 
and A j , are atoms with distinct predicate symbols, 

• Ai and Ai have the same predicate symbols (1 < i :::; 
m), 

• A~+l has the same predicate symbol as AI' 

Only a finite number of minimal cyclic collections exists. 
They can easily be characterised and computed from the 
predicate dependency graph for P. 

Proposition 2.18 
Let S ~ B~ and 1.1 a rigid level mapping with respect to 
S, such that for any minimal cyclic collection of P (after 
standardizing apart), 



and for any AI,"" Am E Rsjw, with A~, ... , A~ as 
their respective representants, and 0i = mgu(Ai, An, 
(1 :::; i :::; m), the following condition holds: 

{ 

IA~Oll ~ IA~I } 

IA~Om-ll > IA~I 
JJ-

IA~I > IA:n+lOml· 
Then, P is recurrent with respect to 5. 

The conditions in proposition 2.18 seem rather unnat­
ural at first sight and need some clarification. First, ob­
serve that in the case of direct recursion - except for the 
rigidity of the level mapping - the conditions coincide 
with those of definition 2.10. 

For the case of indirect recursion, the conditions that 
one would intuitively expect, are that for each minimal 
cyclic collection 

Al - BL···,A~, ... ,B~I 

Am - Bi,···, A:n+l , ... , B;:'m 

and each A~ representant of Al E Rs jw, such that 0 = 
mgu(A~, Ad and Oi = mgu(AL Ai), 1 < i :::; m, exist and 
are consistent, we have 

IA~I > IA~+1001" ·Oml· 
The problem is that such a condition is not correct. Con­
sider the clauses: 

p(a,[_IX]) +- p(b,X). (ell) 
p( b, X) +- q(a, [_IX]). (el2) 
q(b,X) +- p(a, [_IX]). (el3) 
q(a, [_IX]) +- q(b, X). (cl4) 

There are 4 associated minimal collections: ( cll ), 
(cl2,cl3), (cl3,cl2) and (cl4). Consider for instance 
the derivation +-p(a, [_, _]), +-p( b, [_]), +-q(a, [_, _]), 
-q( b, [-]), -p( a, [-, _D. 

The problem is caused by resultants associated to 
derivations that start with a clause from one minimal 
cyclic collection - say (cl2) in the collection ( cl2 ,cl3) -
then shift to applying another collection, (cl4), and only 
after this resume the first collection and apply clause 
(cl3). The head of the third clause, q( b, X), does not 
unify with q(a, [_IX']), and therefore, the condition on 
the cycle (cl2,cl3) can not be applied. 

So, we have to impose th; condition in proposition 
2.18. It states that, even if the next call in the traversal 
of a mininlal collection (An is not really related - as 
an instance - to a call we obtained earlier (A~ei-l)' but 
if - through the intermediate computation in another 
minimal collection - the level between these two has 
decreased anyway, then the final conclusion bet.ween the 
original call to the collection and the indirectly depend­
ing one must still hold. We will not discuss the condition 
any further here, but we will return to its practicality in 
section 4. 
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3 Acceptability with respect to 
a set of atoms 

All definitions and propositions from the previous sec­
tion can be specialised for the Prolog computation rule. 
Following [Apt and Pedreschi 1990], we call an SLD­
derivation that uses Prolog's left-to-right computation 
rule, an LD-derivation. 

Definition 3.1 (left termination wrt 5) Let 5 be 
a subset of B:. A program P is left-terminating with 
respect to 5 if for any representant A of any element of 
5, every LD-derivation is finite. 

Recall definitions 2.4 and 2.5. The motivation behind 
these definitions was finding an overestimation of all calls 
that are possible in any SLD-derivation using an arbi­
trary computation rule. The fact that no fixed compu­
tation rule is used, forces us to take the closure under all 
possible instantiations in definition 2.5, and hence Rs j w 
contains in general a lot more calls than can really occur 
when a particular computation rule is chosen. 

In this section, we focus our analysis on computations 
that use Prolog's left-to-right computation rule. There­
fore, adapted definitions of the Tp-

1 and Rs functions are 
needed. 

Definition 3.2 For any T ~ Bffi, define: Ppl(T) = 
{BieO'l ... O'i-l E Bffi I A' is a representant of A E T, 
H +- B1, ... , Bn is a clause in P, e = mgu(A', H), 1 ~ 
i ~ n, :30'1, ... , O'i-l, such that Vj = 1, ... , i-I: O'j is an 
answer for (P, +-BjOO'l .. , O'j-t)}. 

The answer substitutions O'j are computed using LD­

resolution. Let 1it;r denote {T E 2B~ I 5 ~ T}. 

Definition 3.3 Rt;r : 1it;r -t 1i~-r : RZ;r (T) = T u 
Ppl(T) 

In a completely analogous way as in the previous sec­
tion, we find that R~-r is continuous. Hence, the least fix 
point R~-r j w contains all atoms that can possibly occur 
as a call when P is executed under the Prolog computa­
tion rule, and when a representant of an element from 5 
is used as query. 

Level mappings are now defined on RZ;r. Recursive re­
sultants are constructed using the left-to-right computa­
tion rule. This allows us to consider only recursive resul­
tants of the formp(sl,"" sn)-p(t 1 , ••• , tn), B 2 ,···, Bm· 
The analogue of recurrency with respect to a set 5 of 
atoms, is acceptability with respect to 5. 

Definition 3.4 (acceptability wrt a set of atoms) 
A program P is acceptable with respect to 5, 
if there exist.s a level mapping 1.\ with respect 
to 5, such that for any p( S 1, ... , Sn), represen­
tant of an element in R~-r j w, and for any recur­
sive resultant P(Sl,"" sn)e-p(t 1 , ••• , tn), B2,.··, Em: 
Ip(sl,,,,,sn)1 > Ip(t1, ... ,tn)l· 
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Theorem 3.5 
P is acceptable with respect to S if and only if it is left­
terminating with respect to S. 

As in section 2, we provide a more practical, sufficient 
condition. The result is completely analogous to propo­
sition 2.18. 

Proposition 3.6 
Let S ~ B: and 1.1 a level mapping with respect to 5, 
such that for any minimal cyclic collection of P (after 
standardizing apart), 

Al ~ Bf, ... , BlI ' A~, ... , B~I 

and for any AI' ... ' Am E R~-r jw, with A~, ... , A~ 
as their respective representants, and with OJ 
mgu(Aj, Ai) (1 ~ j ~ m) and crt is a computed an­
swer substitution for (P, '--B~8jcr{ ... crtl) (1 ~ k ~ ij), 
the following condition holds: 

{ 
IA~81 cr~ ... crI

I 
I ~ IA~I 

IA~8m-1 cr~-1 ... crr:-=~ I > IA~I 
.lJ-

IA~I > IA~+1emcri·· ·cr7:l, 
Then, P is acceptable with respect to 5. 

} 

4 Practicality and automation 

A fully automated technique needs to address the follow­
ing issues: 

• safe approximations of Rs j w and R~-r j w must be 
computed, 

• precise and natural level mappings are needed, and 

• the condit.ions in propositions 2.18 and 3.6 must be 
automatically verifiable. 

For left termination, there is one extra issue: 

• some properties of the answer substitutions for the 
atoms in R~-r jw are needed; ill particular, after ap­
plication of a computed answer substitution we want 
an estimation of the relationship between the sizes 
of the argwnents of the atoms in R~-rjw. 

Concerning the first issue, observe that in practice, the 
sets of atoms S in the framework are likely to be specified 
in terms of call patterns over some abstract domain. The 
framework contains no implicit restriction on the kind of 
abstractions that are used for this purpose. They could 
be either expressing mode or type information, or even 
combined mode and type information - as in the rigid 

or integrated types of (Janssens and BruYllooghe 1990]. 
Abstract interpretation can be applied to automati­
cally infer a safe approximation of Rs jw or R~-r jw (see 
[Janssens and Bruynooghe 1990]). 

Automated techniques for proving termination use 
various types of norms. A norm is a mapping 11.11 : U: ---+ 

IN. Several examples of norms can be found in the lit­
erature. When dealing with lists, it is often appropriate 
to use list-length, which gives the depth of the rightmost 
branch in the tree representation of the term. A more 
general norm is term-size, which counts the number of 
function symbols in a term. Another frequently used 
norm is term-depth, which gives the maximum depth of 
(the tree representation of) a term. 

However, we restrict ourselves to semi-linear norms, 
which were defined in [Bossi et al. 1991]. 

Definition 4.1 (semi-linear norm) 
A norm 11.11 is semi-linear if it satisfies the folowing con­
ditions: 

• IIVII = 0 if V is a variable, and 

• IIf(t l , ..• , in)11 = c+lltil /1+·· ·+1 Itj", II where c E IN, 
1 ::; i l < ... < im ~ nand c, i l , ••• , im depend only 
on fin. 

Examples of semi-linear norms are list-length and 
term-size. 

As was pointed out in [Bossi et al. 1991), proving ter­
mination is significantly facilitated if the norm of a term 
remains invariant under substitution. Such terms are 
called rigid. 

Definition 4.2 (rigid term; see [Bossi et al. 1991]) 
Let 11.11 be a (semi-linear) norm. A term t is rigid with 
respect to 11.11 if for any substitution cr, IItcrll = Iltll. 

Rigidity is a generalisation of groundnessj by using this 
concept it is possible to avoid restricting the definition of 
a norm to ground terms only, a restriction that is often 
found in the literature. 

Given a semi-linear norm and a set of atoms S, a very 
natural level mapping with respect to S can be associated 
to them. 

Definition 4.3 (natural level mapping) 
Given is a semi-linear norm 11.11 and a set of atoms s. 
1.lnat' the natural level mapping induced by S, is defined 
as follows: Vp(t l , • .. ,in) E Rs jw: 

Ip(t l , .•• , tn)lnat :EiEllitill, if I :;t: 0 
= 0 otherwise, 

with 1= {i I Vp(Ul,.'.'U n ) E RsTw: Ui is rigid}. 

Let us illustrate the practicality of such mappings -
and of the framework itself - with some examples. 



Example 4.4 
Reconsider example 1.4 from the introduc tion. Assume 
that S = {p(:u) I :u is a nil-terminated list}. Let 11.11, be 
the list-length norm. The argument positions of all atoms 
in Rs j ware rigid under this norm. So, Ip(:u) I nat = 1I:v II, 
and Iq(:z: )Inat = 1I:z:II,. The program is directly recursive, 
so that it suffices to verify the conditions of definition 
2.10. 

For the clause p([HIT])+-q([HIT]),p(T) and for each 
call p(:u) E Rsjw, with 0 = mgu(:u, [HIT]), we have 
Ip(:u)lnat > Ip(T)Olnat' By the same argunlent, the con­
dition on the clause q{[HIT])+-q(T) holds as well. Thus, 
the program is recurrent with respect to S under the 
natural, list-length level mapping with respect to S. 

As a second example, we take a program with indirect 
recursion. It defines some form of well-formed expres­
sions built from integers and the function symbols + /2, 
*/2 and -/1. 

Example 4.5 

e{X + Y) +- f(X), e(Y). (ell) 
e(X) +- f(X). (cZ2) 

f(X * Y) +- g(X), f(Y). (d3) 
f(X) +- g(X). (el4) 

g(-(X)) +- e(X). (cZS) 
g(X) +- integer(X). (d6) 

The obvious choice for a level mapping for this program is 
term-size. However, the program is not recurrent in the 
sense of [Bezem 1989] with respect to this norm. Since it 
is clearly terminating, a level mapping exists. The most 
natural mapping (in the sense of [Bezem 1989]) we were 
able to come up with is: 

le{:u)1 3 x term-size(:v)+2 
If(:z:)1 = 3 x term-size(:u) + 1 
Ig(:u)1 = 3 x term-size(:z:). 

In the context of our framework, consider the set S = 
{e(:u) I :u is ground}. Through abstract interpretation, 
we can find that Rs j w ~ B p. 

Let 11.ll t be the term-size norm. Again, the argument 
positions of all atoms in Rs jw }tore rigid (even ground) un­
der this norm. Thus, le(:u)lnat = 1I:z:llp If(:z:)lnat = 11:vll t 
and Ig(:z:)lnat = 11:ull t . The program contains essentiallyl 
6 minimal, cyclic collections: (cll), (el3), (ell, cl3, clS ), 
(ell, cl4, elS ), (cl2, cl3, clS ), (cl2, cl4, clS ). 

Let us consider, as an example, the third collection: 

e(X + Y) +- f(X), e(Y). 
f(X' * Y') +- g(X'), f(Y'). 
g( -(X")) +- e(X"). 

1 Since collections are sequel\ces of clauses, cyclic permutatiol\s 
should be considered as well. 
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Assume that e(:z:), f(y) and g(z) are any atoms with 
ground terms :v, y and z, and that: 

Ol = mgu(e(:u), e(X + Y)) 
()2 = mgu(f(y), f(X' * yI)) 
()3 = mgu(g(z), g( -(X"))). 

Also assume' that If(X)Oll :2: If(y)1 and Ig(X')021 :2: 
Ig(z )1· We then have le(:u)1 > If(X)Oll :2: If(y)1 > 
Ig(X')021 :2: Ig(z)1 > le(X")031, so that le(x)1 > 
le(X")031, and the conditions of proposition 2.18 (for the 
third cycle) are fulfilled. All other cycles can be verified 
in a similar way. The conclusion is that the program is 
recurrent with respect to S and the very natural term­
size level mapping. 

In the context of left termination, definition 4.3 can be 
adapted to produce equally natural level mappings with 
respect to a set S. Obviously, Rs jw should be replaced 
by R~-rjw. In the context of left termination there is 
an extra issue, namely, (an approximation of) the set of 
possible answer substitutions for an atom is needed. The 
next example illustrates how this is handled. 

Example 4.6 

p([],O)· 
p([HIT], [GIS]) +- d(G, [HIT], U),p(U, S). 

d(H, [HIT], T). 
d(G, [HIT], [HIU]) +- d(G, T, U). 

Assume that S = {p(:u, y) I :u is a nil-terminated list and 
y is free}. Notice that Rs j w contains the set {p( x, y) I :z: 

and yare free variables}. We are not able to define a level 
mapping on Rs jw that can be used to prove recurrency 
with respect to S. This is not surprising, since P is not 
terminating with respect to S. 

However, program P is left terminating with respect 
to S. We prove this by showing that P is accept­
able with respect to S. The set R~-r Tw is the union 
of {p(;z:, y) I x is a nil- terminated list and y is free} 
and {d(:v, y, z) I :v and z are free variables and y is a 
nil- terminated list}. This can be found by using ab­
stract interpretation. Since there is only direct recur­
sion in program P, it suffices to show that: (1) for 
any p(:v,y) E R~-rTw, ip(:v,y)1 > Ip(U,S)Oo-\, where 
o = mgu(p(:v, y), p([HIT], [GIS])) and 0- is a computed 
answer substitution for (P, +- d(G, [HIT], U)O), and (2) 
for any d(:v,y,z) E R~-rjw, Id(x,y,z)1 > Id(G,T,U)01, 
where () = mgu(d(x,y,z),d(G,[HIT],[HIU])). 

Now, in practice, the statement "0- is a computed an­
swer substitution for (P, +- d( G, [HIT], U)O)" can be 
replaced by "11[HIT]fJo-lll = 11U()0-11, + I". This latter 
statement is a so-called linear size relation, which ex­
presses a relation between the norms of the arguments 
of the atoms in the success set of the program. Alterna­
tively, it can also be interpreted as a (non-Herbralld) 
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model of the program. For more details we refer to 
[Verschaetse and De Schreye 1992], where we describe 
an automated technique for deriving linear size relations. 

By taking this information into account, and by taking 
Ip(;e, y)1 = II:ell , for any p(;e, y) E R~-" jw -notice that ;z; 

is rigid with respect to 11.11, - we find: Ip(;e, y)1 = II;ell, = 
II[HIT]Oll, = II [HIT]Oo-lI, = II UOo-lI, + 1 > 11U00-1I, = 
Ip(U, 5)00-1· 

The second inequality, Id(;e, y, z)1 > Id(G, T, U)oI, is 
more easy to prove. TIns time, the list-length of the 
second argument can be taken as level mapping. Since 
both inequalities hold, we can conclude that the program 
is acceptable with respect to the set of atoms that is 
considered. 

Automatic verification of the conditions for recurrency 
and acceptability is handled by reformulating them into 
a problem of checking the solvability of a linear system of 
inequalities. This part of the work is described in more 
detail in [De Schreye and Verschaetse 1992]. 

References 

[Apt and Pedreschi 1990] K. R. Apt and D. Pedreschi. 
Studies in pure Prolog: termination. In Proceedings 
Esprit symposium on computational logic, pages 150-
176, Brussels, November 1990. 

[Baudinet 1988] M. Baudinet. Proving termination 
properties of Prolog programs: a semantic approach. 
In Proceedings of the 3rd IEEE symposium on logic 
in computer science, pages 336-347, Edinburgh, July 
1988. Revised version to appear in Journal of Logic 
Programming. 

[Bezem 1989] M. Bezem. Characterizing termination of 
logic programs with level mappings. In Proceedings 
NACLP'89, pages 69-80,1989. 

[Bossi et al. 1991] A. Bossi, N. Cocco, and M. Fabris. 
N onns on terms and their use in proving universal 
termination of a logic program. Technical Report 
4/29, CNR, Department of Mathematics, University 
of Padova, March 1991. 

[Bruynooghe et ai. 1991] M. Bruynooghe, D. De Schr­
eye, and B. Martens. A general criterion for avoiding 
infinite unfolding during partial deduction of logic pro­
grams. In Proceedings ILPS'91, pages 117-131, San 
Diego, October 1991. MIT Press. 

[Cavedon 1989] L. Cavedon. Continuity, consistency, 
and completeness properties for logic programs. In 
Proceedings ICLP'89, pages 571-584, June 1989. 

[De Schreye and Verschaetse 1992] D. De Schreye and 
K. Verschaetse. Termination analysis of definite logic 

programs with respect to call patterns. Techni­
cal Report CW 138, Department Computer Science, 
K.U.Leuven, January 1992. 

[Falaschi et al. 1989] M. Falaschi, G. Levi, M. Martelli, 
and C. Palamidessi. Declarative modeling of the oper­
ational behaviour of logic languages. Theoretical Com­
puter Science, 69(3):289-318,1989. 

[Janssens and Bruynooghe 1990] 
G. Janssens and M. Bruynooghe. Deriving descrip­
tions of possible values of program variables by means 
of abstract interpretation. Technical Report CW 107, 
Department of Computer Science, K.U .Leuven, Mardi 
1990. To appear in Journal of Logic Progranulling, ill 
print. 

[Lloyd and Shepherdson 1991] J. W. Lloyd and J. C. 
Shepherdson. Partial evaluation in logic programming. 
Journal of Logic Programming, 11(3 & 4):217-242, Oc­
tober/November 1991. 

[Plumer 1990] L. Plumer. Termination proofs for logic 
programs. Lecture Notes in Artificial Intelligence 446. 
Springer-Verlag, 1990. 

[Sohn and Van Gelder 1991] K. Sohn and A. Van 
Gelder. Termination detection in logic programs us­
ing argument sizes. In Proceedings 10th symposium on 
principles of database systems, pages 216-226. Acm 
Press, May 1991. 

[Ullman and Van Gelder 1988] J. D. Ullman and A. Van 
Gelder. Efficient tests for top-down termination of 
logical rules. Journal A CM, 35(2):345-373, April 1988. 

[Vasak and Potter 1986] T. Vasak and J. Potter. Char­
acterisation of terminating logic programs. In Pro­

ceedings 1986 symposium on logic programming, pages 
140-147, Salt Lake City, 1986. 

[Verschaetse and De Schreye 1991] K. Verschaetse and 
D. De Schreye. Deriving termination proofs for logic 
programs, using abstract procedures. In Proceedings 
ICLP'91, pages 301-315, Paris, June 1991. MIT Press. 

[Verschaetse and De Schreye 1992] K. Verschaetse and 
D. De Schreye. Automatic derivation of linear size re­
lations. Technical Report CW 139, Department Com­
puter Science, K.U.Leuven, January 1992. 

[Wang and Shyamasulldar 1990] B. Wang and R. K. 
Shyamasundar. Towards a characterization of ter­
mination of logic programs. In Proceedings of inter­
national workshop PLILP'90, Lecture Notes in Com­
puter Science 456, pages 204-221, Linkoping, August 
1990. Springer- Verlag. 



PROCEEDINGS OF THE INTERNATIONAL CONFERENCE 
ON FIFTH GENERATION COMPUTER SYSTEMS 1992, 
edited by ICOT. © ICOT, 1992 489 

Automatic Verification of GHC-Programs: 

Termination 
Lutz Pliimer 

Rheinische 'Friedrich-Wilhelms-UniversiHit Bonn, Institut fiir Informatik III 
D-5300 Bonn 1, Romerstr. 164 

lutz@uran.infonnatik.uni-bonn.de 

Abstract 

We present an efficient technique for the automatic genera­
tion of tennination proofs for concurrent logic programs, 
taking Guarded Hom Clauses (GHC) as an example. In con­
trast to Prolog's strict left to right order of evaluation, termi­
nation proofs for concurrent languages are complicated by a 
more sophisticated mechanism of sub goal selection. We in­
troduce the notion of directed GHC programs and show that 
for this class of programs goal reductions can be simulated 
by Prolog-like derivations. We give a sufficient criterion for 
directedness. Static program analysis techniques developed 
for Prolog can thus be applied, albeit with some important 

modifications. 

1. Introduction 

With regard to termination it is useful to distinguish between 
two types of software systems or programs: transformational 
and reactive [HAP85]. A transformational system receives 
an input at the beginning of its operation and yields an output 
at the end. If the problem at hand is decidable, termination of 
the process is surely a desirable property. Reactive systems, 
on the other hand, are designed to maintain some interaction 
with their environment. Some of them, for instance op­
erating systems and database management systems, ideally 
never terminate and do not yield a fmal result at all. Based on 
the process interpretation of Hom clause logic, concurrent 
logic programming systems have been designed for many 
different applications including reactive systems and trans­

formational parallel systems. While for some of them termi­
nation is not a desirable property, for others it is. In this pa­
per we discuss how automatic termination proofs for concur­
rent logic programs can be achieved automatically. 

Automatic proof techniques for pure Prolog programs 

have been described in several papers including [ULG88] 
and [PLU90a]. Prolog is characterized by a fixed 
computation rule which always selects the leftmost atom. 
Deterministic sub goal selection and strict left to right order of 
evaluation cannot be assumed for the concurrent languages. 

Static program analysis techniques, which are well estab­

lished for sequential Prolog, such as abstract interpretation, 

inductive assertions and termination proof techniques, sub­
stantially depend on the strict left to right order of evaluation 
in most cases and thus cannot easily be applied to concurrent 
languages. Concurrent languages delay sub goals which are 
not sufficiently instantiated. Goals which loop forever when 
evaluated by a Prolog interpreter may deadlock in the context 
of a concurrent language. These phenomena may suggest 
that termination proofs for concurrent logic programs require 
a different approach. This paper, however, shows that 
techniques which have been established for pure Prolog are 
still useful in the context of concurrency. 

Our starting point is the question under which conditions 
reductions of a concurrent logic program can be simulated by 
Prolog-like derivations. We take Guarded Hom Clauses 
(GHC, see [UED86]) as an example, but our results can 
easily be extended to other concurrent logic programming 

languages such as PARLOG, (Flat) Concurrent Prolog or 
FCP(:). Our basic assumptions are the restriction of unifica­
tion to input matching, nondetenninistic sub goal selection 
and resuming of sub goals which are not sufficiently instan­
tiated. Since we consider all possible derivations, the commit 
operator does not need special attention. 

In general simulation is not possible: if there is a GHC­
derivation of g' from g, g' cannot necessarily be derived 
with Prolog's computation rule. 

One could now try to augment simulation by program 
transfonnation. Let, for instance, P' be derived from P by 
including all clause body permutations. Although P' may be 

exponentially larger than P, there are still derivations which 
are not captured. 

Example 1.1: 
Program: p f- q,r. q f- s,t. r f- u,v. 

s. v. 
Goal: f- p 

This goal can be reduced to f- t,u by nondeterministic 
subgoal selection, but not by a Prolog like computation, 
even after adding the following clauses: 

p f- r,q. q f- t,s. r f- v,u. 

The reason is that in order to derive f- t,u, the subderiva­
tions of f- q and f- r have to be interleaved. 
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The question arises whether there is an interesting sub­
class for which appropriate simulations can be defmed. Such 
a class of programs will be discussed in Section 3. The main 

idea is to assume that if a sub goal p may produce some 

output on which evaluation of another sub goal q depends, 
then p is smaller w.r.t. some partial ordering. Whether a 
program maintains such a property, which we will call di­
rectedness, is undecidable. We will then introduce the 
stronger notion of well-formedness which can be checked 
syntactically. Well-formedness is related to directionality, 
which is discussed in [GRE87]. Well-formedness is suffi­
cient but not necessary for directedness, and it will tum out 

that quite a lot of nontrivial programs (including for instance 

systolic programs as discussed in [SHA87a] and most of the 

examples given in [TIC91]) fall into this category. In Section 
5 we will demonstrate how termination proof techniques 

which have been established for pure Prolog can be 
generalized such that they apply to well-formed GHC 
programs. 

The rest of this paper is organized as follows. Section 2 
provides basic notions. Section 3 introduces the notion of di­
rected programs and shows that this property is undecidable. 

It provides the notion of well-formedness and shows that it 
is sufficient for directedness. Section 4 discusses oriented 

and data driven computation and shows that after some sim­
ple program transformation derivations with directed GHC­
programs can be simulated by Prolog-like derivations. 

Using the notion of S-models introduced in [FLP89], Sec­

tions 5 and 6 show how termination proofs can be achieved 
automatically. 

2. Basic Notions 

We use standard notation and terminology of Lloyd [Ll087] 
or Apt [APT90]. Following [APP90] we will say LD-reso­
lution (LD-derivation, LD-refutation LD-tree) for SLD-reso­

lution (SLD-derivation, SLD-refutation SLD-tree) with the 

leftmost selection rule characteristic for Prolog. 

Next we define GHC programs following [UED87] and 
[UED88]. 

A GHC program is a set of guarded Hom clauses of the 
following form: 

(m >0, n> 0) 

where H, GI, ... ,Gm and BI, ... ,Bn are atomic formulas. H 
is called a clause head, the Gi's are called guard goals and 

the Bi's are called body goals. The part of a clause before 'I' 
is called a guard, and the part after 'I' is called a body. One 
predicate, namely '=', is predefmed by the language. It uni­
fies two terms. 

Declaratively, the commitment operator 'I' denotes con­
junction, and the above guarded Hom clause is read as "H is 

implied by Gl, ... ,Gm and Bt. ... ,Bn". The operational se­

mantics of GHC is given by parallel input resolution re­
stricted by the following two rules: 

Rule of Suspension: 

• Unification invoked directly or indirectly in the guard of a 
clause C called by a goal G (Le. unification of G with the 
head of C and any unification invoked by solving the 
guard goals of C) cannot instantiate the goal G. 

• Unification invoked directly or indirectly in the body of a 
clause C called by a goal G cannot instantiate the guard of 

C or G until C is selected for commitment. 

Rule of Commitment: 

• When some clause C called by a goal G succeeds in 
solving (see below) its guard, the clause C tries to be se­

lected for subsequent execution (Le., proof) of G. To be 
selected, C must first confirm that no other clauses in the 
program have been selected for G. If confirmed, C is se­

lected indivisibly, and the execution of G is said to be 
committed to the clause C. 

An important consequence is that any unification intended 
to export bindings to the calling goal must be specified in the 

clause body and use the predefmed predicate '='. 

The operational semantics of GHC is a sound - albeit not 
complete - proof procedure for Hom clause programs: if 
~ B succeeds with answer substitution S, then V(BS) is a 
logical consequence of the program. 

Subsequently, we may fmd it convenient to denote a goal 
g by the pair <G;S>, i.e. g = GS. A single derivation step 
reducing the i-th atom of G using clause C and applying mgu 
S' is denoted by <G;S> -7 i;C <G';SS'>. Subscripts may 
be omitted. 

3. Directed Programs 

An annotation dp for an n-ary predicate symbol p is a func­

tion from {l, ... ,n} to {+,-} where '+' stands for input and 

'-' for output. We will write p(+,+,-) in order to state that 

the first two arguments of p are input and the last is output 
A goal atom A generates (consumes) a variable v if v oc­

curs at an output (input) position of A. A is generator for B, 

if some variable v occurs at an output position of A and at an 
input position of B; in this case, B is consumer of A. 

Let r denote a tuple of terms. A derivation <per);£> -7* 

<G;S::> respects the input annotation of p if vS = v for every 

variable v occurring at an input position of per). 

A goal is directed if there is a linear ordering among its 
atoms such that if Ai is generator for Aj then Ai precedes Aj 

in that ordering. A program is directed, if all its derivations 

respect directedness, i.e., all goals derived from a directed 
goal are directed. Note that directedness of a goal is a static 



property which can be checked syntactically. Directedness of 
a program, however, is a dynamic property. 

Theorem 3.1: It is undecidable, whether a program is di­
rected. 

Proof: Let tM(X) be a directed GHC simulation of a Turing 
machine M for a language L which binds X to halt if and 
only if M applied to the empty tape halts. Such a simulation 
is for instance described in [PLU90b]. Next consider the 
following procedures PM and q: 

PM(X,Y) f- tM(A), q(A,X,Y). 
q(halt,X,X). 

and the (directed) goal 
f- r(X,Y), s(Y:Z), PM(X,Z), 

The following annotations are given: 
tM(-)· q(+,-,-). PM(-'-)' r(+,-). s(+,-). 

If M halts on the empty tape, tM(A) will bind A to 'halt', 
PM(X,Y) will identify X and Y and thus the given goal can 
be reduced to the undirected goal f- r(X,Y), s(Y,X). 
Decidability of program directedness would thus imply solv­
ability of the halting problem: contradiction. • 

Next we introduce the notion of well-formedness of a 
program w.r.t. a given annotation and show that this prop­
erty is sufficient for directedness. 

A goal is well-Jormed if it is directed, generators precede 
consumers in its textual ordering, and its output is unre­
stricted. Output of a goal is unrestricted if all its output ar­
guments are distinct variables which do not occur (i) at an 
output position of another goal atom and (ii) at an input po­
sition of the same atom. 

A program P is well-formed if the following conditions 
are satisfied by each clause H f- Glo ... ,Gm I Blo ... ,Bn in P: 

• f- Blo ... ,Bn is well-formed 
• the input variables of H do not occur at output positions 

of body atoms. 

The predicate '=' has the annotation '- = -'. It is conve­
nient to have two related primitives: '==' (test) and '¢::' 

(matching) which have the same declarative reading as '=' 
but different annotations, namely '+ == +' and '- ¢:: +'. 

Note that the goal f- r(X,Y),s(Y,Z), PM(X,Z) is not 
well-fonned because its output is restricted: Z has two output 
occurrences. 

The next example is taken from [UED86]: 

Example 1: Generating primes 

primes(Max,Ps). +- true I 
gen(2,Max,Ns),sift(Ns,Ps). 

gen(N ,Max,Ns) +- N ~ Max I Nl <= N + 1, 
gen(Nl,Max,Nsl), Ns <=[N/Nsl}. 

gen(N,Max,Ns) +- N > Max I Ns <= [J. 
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sift([PjXs},Zs) +- filter(P,Xs,Ys),sift(Ys,Zsl), 
Zs <= [P/Zsl}. 

sift([} ,Zs) +- Zs <= [J. 

filter(P,[X/Xs},Ys) +- X mod P == 0 I filter(P ,xs,Ys). 
filter(P,[X/Xs},Ys) +- X mod P :f: 0 I filter(P ,xs,Ysl), 

Ys <= [XIYsl]. 
filter(P,[J,Ys) +- Ys <= [J. 

primes(+,-). gen(+,+,-). sift(+,-). filter(+,+,-). 

The call primes(Max,Ps) returns through Ps a stream of 
primes up to Max. The stream of primes is generated from a 
stream of integers by filtering out the multiples of primes. 
For each prime P, a filter goal filter(p,Xs,Ys) is generated 
which filters out the multiples of P from the stream Xs, 
yielding Y s. 

In this example all input terms are italic and all output 
terms are bold. It can easily be seen that this program is 
well-formed. 

Another example for a well-formed program is quicksort. 
The call qsort([HIL],S) returns through S an ordered version 
of the list [HIL]. To sort [HIL] L is split into two lists Ll and 
~ which are itself sorted by recursive calls to qsort. 

Example 2: Quicksort 
qt: qsort([J,L) 

<12: qsort([H/L},S) 

f- L ¢:: [J. 

f- split(L,H,A,B), 
qsort(A,At ), qsort(B,Bt), 
append(A1,[HIB 1}'S), 

sl: split([J ,x,Lt,~) f- L t ¢::: [J, L2 ¢:: [J. 

~: split([X/Xs} ,y,Lt ' ,~) f- X 5 Y I 
split(Xs,Y,Ll'L2), 

L t '¢::: [XIL1}· 

~: split([X/Xs},y,Lt,~') f- X > Y I split(Xs,Y,Lt ,L2), 

Ll' ¢:: [X/L2]· 

al: append([] ,L1,Ll) 

a2: append([H/Ll] ,L2,L3) 

split(+,+,-,-). qsort(+,-). 

f- Ll ¢::: L l' 

f- append(Ll,L2,L3'), 

L3 ¢::: [H/LJ '}. 

append(+,+,-). 

Theorem 3.2: Let P be a well-formed program, g a well­
formed goal and g -7 * g' a GHC-derivation. Then g' is 
well-formed. 

Proof: See [PLU92]. 

Well-formed programs respect input annotations: 

1beorem 3.3: Let <p(t),E>-7* <G';9> be a derivation and v 

an input variable of p(~). Then v9 = v. 

Proof: Goal variables can only be bound by transitions ap­
plying '=' or '¢::', since in the other cases matching substi­
tutions are applied. Since both arguments of '=' are output, 
and '¢::' also binds only output variables, input variables 
cannot be bound. • 
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4. Oriented and Data Driven Computations 

Our next aim is to show that derivations of directed pro­
grams can be simulated by derivations which are similar to 
LD-derivations. In this context we fmd it convenient to use 
the notational framework of SLD-resolution and to regard 
GHC-derivations as a special case. 

We say that an SLD-derivation is data driven, if for each 
resolution step with selected atom A, applied clause C and 
mgu 8 either C is the unit clause (X = X ~ true.) or C is 
B f- BI, ... ,Bn and A = B8. Data driven derivations are the 
same as GHC derivations of programs with empty guards. 
The assumption that guards are empty is without loss of 
generality in this context 

Next we consider oriented computation rules. Oriented 
computation rules are similar to LD-resolution in the sense 
that goal reduction strictly proceeds from left to right. They 
are more general since the selected atom is not necessarily 
the leftmost one. However, if the selected atom is not 
leftmost, its left neighbors will not be selected in any future 
derivation step. 

More formally, we define: A computation rule R is 
oriented, if every derivation <Go;€> ~ ... <Gj;8i> ~ .. , via 
R satisfies the following property: If in Gi an atom Ak is 
selected, and Aj (j < k), is an atom on the left of Ak , no 
further instantiated version of Aj will be selected in any 
future derivation step. 

Our next aim is to show that, for directed programs, any 
data driven derivation can be simulated by an equivalent data 
driven derivation which is oriented. To prove the following 
Lheorem, we need a slightly generalized version of the 

switching lemma given in [LL087]. Here g ~i;C;9 g'de­
notes a single derivation step where the i-th atom of g is re­
solved with clause C using mgu 8. 

Lemma 4.1: Let gk+2 be derived from gk via 

gk ~i;ck+l;ek+l ghl ~j;Ck+2;~+2 gk+2 . Then there is a 
derivation gk ~j;Ck+2·;ek+t' gk+I' ~j;Ck+1';9k+2' gk+2' such 
that gk+2' is a variant of gk+2 and Ck+I', Ck+2' are variants 
of Ck+2 and ChI. 

Proof: [LL087] The difference between this and Lloyds 
version is that the latter refers to SLD-refutations, while ours 
refers to (possibly partial) derivations. His proof, however, 
also applies to our version. • 

Theorem 4.2: Let P be a directed program and <Go;€> a 
directed goal. Let D = <Go;€>~ ... <Gk;8k> be a data driven 
derivation using the clause sequence CI, ... ,Ck. Then there is 
another data driven derivation D': <Go;€>~ ... <Gk';8k'> 
using a clause sequence Cjl', ... ,Cjk' , where <i1, ... ,ik> is a 
permutation of <l .... ,k>, each Ci' is a variant of Ci and 

Gk'8k' is a variant of Gk8k, and D' is oriented. 

Proof: Let gj be the first goal in D where orientation is vio­
lated, i.e. there is the following situation: 

gj : <Bl, ... ,R, ... ,R', ...... ;8j> 

gj: <Bl, ... ,R, ......... ;8j> 

R' is selected in gi and R is selected in g .. Now we 
switch subgoal selection in g·-l and g. ani get a new 
d

. . J J 
envatlOn D*. In D* we look again for the first goal 

violating the orientation. After a finite number of iterations, 
we arrive at a derivation D' which is oriented. It remains to 
be shown that D* (and thus D') is still data driven. 

Note that up to gj-l both derivations are identical. Above, 
the switching lemma implies that, from gj+ lon, the goals of 
D' are variants of those of D. 

Now let Q be the selected goal of Gj-l. Since orientation 
is violated for the first time in G., Q is to the right of R. (If 
. . J 
I = J - I then Q = R', and otherwise j-l would have the first 
violation of orientation.) Since gj-l = <Gj-l;8j-l> is directed, 
Q8~-1 is not a generator of R8j_1 and thus R8j_l and R8j are 
vanants. Let H be the head of the clause applied to resolve R 
in <Gj;8j>. Since D is data driven, R8j_1 = Hcr for some cr, 
and so R8j = Hcr' for some cr'. Thus D' is data driven .• 

Corollary 4.3: Let P be a directed program and g a di­
rected goal. Then g has an infmite data driven derivation if 
and only if it has an infinite data driven derivation which is 

oriented. 
According to Corollary 4.3, in our context it is suffIcient 

to consider data driven derivations which are oriented. Such 
derivations are still not always LD-derivations since the se­
lected atom is not necessarily leftmost. If it is not, however, 

its left neighbors will never be reactivated in future deriva­
tion steps; thus w.r.t. termination they can simply be 
ignored. The same effect can be achieved by a simple 
program transformation proposed in [FAL88]: 

Pro(P) = {p(X) f- I p is an n-ary predicate appearing 
in the body or the head of some clause of P 
and X is an n-tuple of distinct variables} 

Parto{P) = p u Pro(P) 

Simulation Lemma 4.4: Let D = Go ~ ... Gi-l ~ Gi be 
an oriented SLD-derivation of Go and P where 
Gi-l = f- Bl, ... ,Bj ... ,Bn and 
Gi = f- (Bl, ... ,Bj_l,Ci+,Bj+l, ... ,Bn>8i· 
Cj + is the body of the Cj applied to resolve Bjo Then there is 
an LD-derivation 
D' = Go ... ~ ... Gk-l'-7Gk' with Part.o{P), where 
Gk-t' = f- Bj ... ,Bn and 
Gk' = f- (Ci+,Bj+l ... ,Bn)8i: 

Proof: Whenever an atom B is selected in D which is not 
the leftmost one, first the atoms to the left of B are resolved 



away in D' with clauses in PrG(P), and then D' resolves B in 

the same way as D .• 

An immediate implication is the following: 

Theorem 4.5: If g has a non-terminating data driven ori­

ented derivation with P, then it has a nonterminating LD­

derivation with Parto(P). 

The converse, however, is not true. Consider, for 

instance, the quicksort example from above, extended by the 

following clauses 

qo: qsortL,..). 
so: splitL,_,_,_). 
ao: appendL,_,..). 

While the LD-tree for f- qsort([2,1],x) is finite in the 
context of the standard deftnition of qsort, it is no longer true 

for the extended program. Consider the following infinite 

LD-derivation: 

by so: 

by q2: 
by so: 

+- qsort([2,1],X) 
+- split([1],2,A,B), qsort(A,A1)' 
qsort(B,Bt), append(A1,[HIB 1],S). 
+- qsort(A,A 1)' 
qsort(B,Bt), append(A1,[HIB 1],S). 
+- splitL,_,_,_) •... 
+- qsortL,_), ... 

This derivation, however. is not data driven: resolving 

qsort(A,A1) in the third goal with qZ yields an mgu which is 

not a matching substitution. 

For data driven LD-derivations we get a stronger result: 

Theorem 4.6: There is a nonterminating data driven ori­
ented derivation for g with P if and only if there is a non­

terminating data driven LD-derivation for g with Parta(P). 

Proof: The only-if part is implied by the simulation lemma. 

For the if-part, consider a nonterminating. data driven LD­
derivation D. By removing all applications of clauses in 

Pro(P), one gets another derivation D'. D' is a nonterminat­

ing data driven oriented derivation. • 

Restriction to LD-derivations which are data-driven 

enlarges the class of goal/program pairs which do not loop 

forever. In the general case, termination of quicksort 

requires that the first argument is a list. Termination of 

append requires that the first or the third argument is a list. 

Restriction to data-driven LD-derivation implies that no 
queries of quicksort or append (and many other procedures 

which have finite LD-derivations only for certain modes) 

loop forever. However, goals like +- append(X.Y,z) or +­

quicksort(A,B) deadlock immediately. 

5. Termination Proofs 
In this section. we will give a sufficient.condition for termi­

nating data driven LD-derivations. We will concentrate on 

programs without mutual recursion. In [PLU90b] we have 
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demonstrated how mutual recursion can be transformed into 
direct recursion. We need some further notions. 

For a set T of terms, a norm is a mapping 1...1: T ~ N. 
The mapping II.. .II: A ~ N is an input norm on (annotated) 

atoms, if for all B = p(tl, ... ,trJ. II B II = Lie I I ti I, where I 
is a subset of the input arguments of B. 

Let P be a well-formed program without mutual recur­

sion. P is safe. if there is an input norm on atoms such that 

for all clauses c = Bo f- Bl, ... ,Bh ... ,Bn the following 
holds: If Bi is a recursive literal (Bo and Bj have the same 

predicate symbol), cr a substitution the domain of which is a 

subset of the input variables of Bo and 8 is a computed 

answer for f- (Bl, ... ,Bj-l)cr, then IIBocr811 > IIBicr811. 

We can now state the following theorem: 

Theorem 5.1: If P is a safe program and G = +- A is well­

formed, then all data driven LD-derivations for G are fmite. 

PROOF: By contradiction. Assume that there is an infmite 

data driven LD-derivation D. Then there is an infinite subse­

quence D' of D containing all elements of D starting with the 
same predicate symbol p. Let di and di+ 1 be two consecutive 

elements of D' and 

di = +- P(tl, ... ,tr), .. . 

di+1 = +- p(t't. ... ,t'r), .. . 
and = 

P(Sl, ... ,Sr) +- B}, ... ,Bk,P(S'l, ... ,S'r), ... 

be the clause applied to resolve the ftrst literal of di, 8j the 

corresponding mgu. Then there is a computed answer 

substitution 8' for +- (Bl, ... ,Bk)8i such that p(t'l, ... ,t'r) = 
p(s' 1 •••• ,S'r)8i8 '. 

Since D is data driven, 8j is a matching substitution, i.e. 

p(t., ...• ft.) = p(t., ... ,tr)8i. Since P is well-formed, Theorem 

3.3 further implies p(t ..... ,tr) = p(t ..... ,tr)8j8'. We also 
have p(tl, .. .,lr)8j8' = p(Sf, ... ,Sr)8i8'. 

Since P is a safe program 

IIp(Sl, ... ,sr)8i8'1I > IIp(S'l, ... ,s'r)8j8'1I and thus 

IIp(tl, ... ,tr)8j8'1I> IIp(t' ..... 't'r)8j8'11. Since the range of 
11 ... 11 is a well-founded set, D' cannot be infinite. 

Contradiction .• 

The next question is how termination proofs for data 

driven LD-derivations can be automated. In [PLU90b] and 
[PLU91], a technique for automatic termination proofs for 

Prolog programs is described. It uses an approximation of 

the program's semantics to reason about its operational 

behavior. The key concept are predicate inequalities which 

relate the argument sizes of the atoms in the minimal 

Herbrand model of the program. Now in any program 

Parto(P) for every predicate symbol p occurring in P there is 

a unit clause p(X). Thus the minimal Herbrand model Mp of 

P equals the Herbrand base Bp of P, a semantics which is 
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not helpful. To overcome this difficulty, we will consider S­

models which have been proposed in [FLP89] in order to 

model the operational behaviour of logic programs more 

closely. The S-model of a logic program P can be character­

ized as the least fixpoint of an operator Ts which is defmed 
as follows: 

Ts(I) = (B I 3 Bo ~ Bt. ... ,Bk in P,3 BI', ... ,Bk' e I, 

30= mgu«BI, ... ,Bk),(BI', ... ,Bk' », 
and B = BoO}. 

We need some notions defmed in [BCF90] and [PLU91]. 

Let.1 be a mapping from a set of function symbols F to N 

which is not zero everywhere. A norm I ... I for T is said to 

be semi-linear if it can be defmed by the following scheme: 

I t I 0 if t is a variable 

I t I = .1(0 + Lie I I ti I ift= f(tt. ... to), 
w here I ~ {1, ... ,n} and I depends on f. 

A subterm lj is called selected if i e I. 

A term t is rigid w.r.t. a norm I ... I if I t I = I tS I for all 

substitutions S. Let t[v(i)~s] denote the term derived from t 
by replacing the i-th occurrence ofv by s. An occurrence v(i) 
of a variable v in a term t is relevant w.r.t. I ... I if 

I t[v(i)~s] I '# I t I for some s. Variable occurrences which 
are not relevant are called irrelevant A variable is relevant if 

it has a relevant occurrence. Rvars(t) denotes the multiset of 

relevant variable occurrences in the term t. 

Proposition 5.2: Let t be a term, tS be a rigid term and V 

be the multiset of relevant variable occurrences in t. Then for 

a semi-linear norm 1...1 we have ItSI = Itl + Lve V IvSl 
Corollary 5.3: ItS I ~ It I. 

Proof: [PL U91] 

For an n-ary predicate p in a program P, a linear predicate 
inequality Lip has the form Lie I Pi + c ~ L je J Pj, where I 
and J are disjoint sets of arguments of p, and c, the offset of 

Lip, is either a natural number or 00 or a special symbol like 

y. I and J are called input resp. output positions of p (w.r.t. 

Lip). 

Let Ms be the S-model of P. LIp is called valid (for a 

linear norm 1. . .1) ifp(tl, ... ,to) e Ms implies Lie I llil+ c ~ 

Lje J Itjl. 

Let A = P(tl, ... ,tn). With the notations from above we 

further define: 

F(A,Llp) = Lie I Ittl- Lje J Itjl + c. 

Vin(A,Llp) = u rvars(ti) 

V out(A,LIp) = u rvars(tj) 

Fin(A,Llp) = Lie I llil 

Fout(A,Llp) = LjeJ Itjl 

F(A,LIp) is called the offset of A w.r.t. Lip. 

Theorem 5.4: Let Lie I Pi + c ~ L je J Pj be a valid linear 
predicate inequality, G = ~ p(t ..... ,tn)o, a well-formed goal, 

V and W the multisets of relevant input resp. output variable 

occurrences of P(tl, ... ,trJ and S a computed answer for G. 

Then the following holds: 

i) Lie I IliaSI + c ~ L je J IljO'SI. 

ii) LveV I vaS I + F(p(tl, ... ,tn),Llp ~ 

Lwe w IwO'S I . 

Proof: According to [FLP89], p(t ..... ,trJO'S is an instance 

of an atom p(s ..... ,SO> in the S-model Ms of P. Since the 

output of G is unrestricted, tjO'S = Sj for all je J. Proposition 
5.2 implies ItiO'SI ~ Itil for all ie I. Thus 

Lie I ItiO'SI ~ Lie I I Si I and Lje J Itj0'81 = L je J I Sj I 
which proves the first part of the theorem. The second part is 

implied by Prop. 5.2. • 

Theorem 5.4 gives a valid inequality relating variables oc­
curring in a single literal goal. Next we give an algorithm for 

the derivation of a valid inequality relating variables in a 
compound goal. 

Algorithm 5.5 goal_inequality(G ,LI,U, W,.d,b) 

Input: A well-formed goal G = +- B ..... ,Bo, a set LI 
with one inequality for each predicate in G, and 
two multisets U and W of variable occurrences. 

Output: A boolean variable b which will be true if a valid 
inequality relating U and W could be derived, and 
an integer 11 which is the offset of that ineqUality. 

begin 

M :=W;.1 :=0; V:= U; 
For i := n to 1 do: 

IfM () Vout(Bi,Llp):F. 0 then 

M:= (M\ Vout(Bi,Llp» u (Vio(Bi,Llp)\ V); 
V := V\ Vio(Bi,Llp); 
11 := 11 + F(Bj,Llp). fi 

If M = 0 then b:= true else b:= false fi 
end. 

Next we show that the algorithm is correct: 

Theorem 5.6: Assume that the inequalities in LI are valid 

and b is true, (J is an arbitrary substitution such that GO' is 
well-formed and S is a computed answer substitution for 

GS. Then Lvev IV(JSI+ 11 ~ LweW'wO'SI holds. 

Proof: See [PLU92]. 

Algorithm 5.5 takes time O(m) where m is the length of G. 

[PLU90b] gives an algorithm for the automatic derivation 

of inequalities for compound goals based on andlor-dataflow 

graphs which has exponential -runtime in the worst case. 

Algorithm 5.5 makes substantial use of the fact that G is 

well-formed: each variable has at most one generator; which 

makes the derivation of inequalities detenninistic. 



6. Derivation of inequalities for S-models 

In Aection 5 it has been assumed that linear inequalities are 

given for the predicates of a program P. We now show how 

these inequalities can be derived automatically. We assume 
that P is well-fonned and free of mutual recursion. Let P<1t q 

if P '# q and p occurs in one of the clauses defining q. 
Absence of mutual recursion in P implies that <1t defmes a 

partial order which can be embedded into a linear order. 

Thus there is an enumeration {Pl, ... ,Pn} of the predicates of 

p such that Pi ~ Pj implies i < j. We will process the predi­
cates of P in that order, thus in analyzing p we can assume 

that for all predicates on which the definition of p depends 

valid inequalities have already been derived. Note that a 
trivial inequality with offset 00 always holds. 

Let in(A) and out(A) denote the sets of input resp. output 

variables of an atom or a set of atoms according to the anno­

tation of the given programs. 

Algorithm 6.1: predicate_inequalities(P ,LI): 

Input: A well-fonned program P defming Plo ... ,Pn. 

Output: A set LI of valid inequalities for the predicates of P. 

begin 
LI:= 0 
For i:= 1 to n do: 

begin 
Let Cl, ... ,Cm be the clauses defining Pi, 
Let M, N be the input resp. output arguments of Pi, 
li := LJ1E M lpJ11 + 'Y ~ LVE Nlpvl. 
hi:= true. 
For j:= 1 to m do: 
begin 

Let cJ be Bo ~ Bh ... ,Bk. 
goal_mequality( (+- B 1 , .•. ,B k), 

LIu{li} ,Vin(Bo),Vout(Bo), 6i,bJ 
c:= 6i + Fout(Bo,li) - Fin(Bo,li). 
Wi := hi 
If c contains '00' then Wi := Wi" false 

(*) elseif c is an integer then Wi :=Wi A (y ~ c) 
(**) elseif c = y + dAd ~ 0 then Wi := Wi " true 

else if c = y + d " d > 0 then Wi := Wi " false 
(***) elseif c = k * 'Y + n" k> 1, 

then Wi := Wi A (y S n/(I-k). 
end 
If Wi is satisfiable then let 8i be the smallest value for 

'Y which satisfies Wi 
else let ~i be '00'. 
Replace 'Y in li by ~. 
LI := LI u {li} 

end 
end 

Theorem 6.2: The inequalities derived by the algorithm 

are valid. 

Proof: By induction on the number of predicates n in P. 

The case n = 0 is immediate. For the inductive case, assume 
that the derived inequalities for the predicates Pt. ... ,Pn-l are 
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valid. Let 10 be the minimal S-model of P restricted to the 

predicates Ph ... ,Pn-l. In the context of the program which 

consists of the defmition of Pn only, let T? = 10 and ~ = 
.Ts('I71

). Its limes equals the minimal S-modelofP 

restricted to the predicates Pl, ... ,Pn. Now we have to show 
that the inequality li derived for Pn is valid w.r.t ~ . The 

. proof is now by induction on m. The case m = 0 is implied 

by the induction assumption on n. Assume that the theorem 

holds for n - 1. We have to show that the inequality for Pn 

holds for the elements of~. Now lett B E ~ and 
Bo ~ Bh ... ,Bk be the clause applied to derive B. We have 
B = BoO, where 0 is a computed answer substitution for 

~ Bh ... ,Bk, which is a well-fonned goal. Let V = in(Bo) 

and W = out(BO>. Let LI be the set of inequalities derived by 
Algorithm 6.1, and A be the result of calling 
goal_inequality«+- Blo ... ,B0,LI,V,W, A, hi). Theorem 5.6 

and the induction assumption imply 

(:t:) LVE vivOI + A ~ LWE w lwei 

Since B = BoO, we have Fin(B,li) = Fin(Bo,li) + LVEVlvel 

and Fout(B,li) = Fout(Bo,li) + LWE w1wel. Let a be the 
offset of Ii. We have to show 

(:t::t:) Fin(B,li) + a. ~ Fout(B,li). 

If bi is false or 6 is 00, we are done since in that case a is 00. 

Three more cases remain. (*) and (**) immediately imply 

(:t::t::t:) a. ~ 6 + Fout(Bo,li} - Fin(Bo,li). 

(***) implies a. ~ n/(I-k) and thus a ~ n + k*a for some n 

such that n + k*a. = 6 + Fout(Bo,li) - Fin(Bo,li}. Again 
(:t::t::t:) follows. (:t:) and (:t::t::t:) together now imply (:t::t:). • 

Note that Algorithm 6.1 again has run-time complexity 

O(n), where n is the length of the given program P. 

Algorithm 6.1 is not yet able to derive PI ~ P2 for a unit 

clause like p(X,Y) with mode(p(+,-». This inequality, how­
ever, holds since in a well-fonned goal the output argument 

of p will always be unbound. To overcome this difficulty, 

we assume that before calling predicate_inequalities(p ,LI), P 
will be transfonned to P' in the following way: 

Defme freevars(Bo +- Bl, ... ,BJ = 

(out(Bo) \out(B ..... ,BJ) u in(Bl, ... ,BJ \ in(Bo». 
Now for the clause c = Bo +- Bl, ... ,Bn in P let freevars(c) 

= {Yl, ... ,Ym }. Replace c by Bo +- q(Yl, ... ,Ym>,Bl, ... ,Bn 
where a new predicate q is defmed by the unit clause 

q(XJ, ... ,xm> with mode(q{+, ... ,+». Note that, after that 

transformation, P' is well-fonned if P is well-formed, and if 

an inequality is valid for P' it is valid for P as well. In the 

example mentioned above, input for Algorithm 6.1 will be 

the program P = (q(X). ,p(X, Y) ~ q(Y)} and the output 

will be (0 ~ qt, PI ~ P2). 

Another improvement can be made by considering subsets of 

the input arguments in order to achieve stronger inequalities. 

This, however, makes the algorithm less efficient. 
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7. Example 

We finally discuss how, with the techniques given so far, it 

can be shown that the GHC program for quicksort specified 

in Section 3 tenninates for arbitrary goals. 

Corollary 4.3 and Theorem 4.5 imply that is suffices to 

consider data-driven LD-derivations of the extended program 

for qsort including the clauses SO, ao and qo. According to 

Theorem 5.1 we only have to show that the three predicates 

of the program are safe. This is easy to show for split and 

append. In fact these procedures are structural recursive. It 
is more difficult to prove of qsort because in q2 both 

recursive calls contain the local variables A and B. For this 

reason we need a linear predicate inequality for split which 

has the form splitt + "( ~ Split3 + Split4. After the 
transforamtion mentioned at the end of the last paragraph So 
will have the following fonn: 

so: split(L1,L2,L3,L,J f- q(L3' L,J 

Now SO and S1 give 'Y ~ 0 (case * in Algorithm 6.1), while S2 
and S3 give 'true' (case **). Thus we get splitt + 0 ~ Split3 + 
split4. In order to prove safety of qsort, we only have to 

consider q2. Using this inequality Algorithm 5.5 

immediately shows IIqsort([HIL],s)811 > IIqsort(A,A1)811 and 

IIqsort([HIL],S)81 > IIqsort(B,B1)811 for all answer 
substitutions 8 for split(H,L,A,B). Thus qsort is safe. 
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Abstract 

Approaches to learning by examples have focused 011 gener­
ating general knowledge from a lot of examples. In this paper 
we describe a new learning method, called analogical gener­
alization, which is capable of generating a new rule which 
specifies a given target concept from a single example and 
existing rules. Firstly we formulate analogical generalization 
based on the similarity between a given example and existing 
rules from the logical viewpoint. Secondly, we give a new pro­
cedure of inductive learning with analogical generalization, 
called ANGEL. The procedure consists of the following five 
steps: (1) extending a given example, (2) extracting atoms 
from the example and selecting a base rule out of the set of 
existing rules, (3) generalizing the extracted atoms by means 
of the selected rule as a guide. (4) replacing predicates, and 
(5) generating a rule. Through the experiment for the system 
for parsing English sentences, we have clarified that ANGEL 
is useful for acquiring rules on knowledge based systems. 

1 Introduction 

Machine learning has a great contribution to improving per­
formance through automated knowledge acquisition and re­
finement, and so far, various types of machine learning 
paradigms have been considered. In particular, learning from 
examples, which can form general knowledge from specific 
cases given as input examples, has been well studied and a 
lot of concerned methods have been proposed[Mitchell1977, 
Dietterich and Michalski 1983, Ohkawa et al. 1991]. 

Generally, in learning from examples, we have to give a 
lot of examples to the learner. Why are so many examples 
required? We think the reason for this is that the bias for 
restricting the generalization is relatively weak, because it is 
independent of the domain. Hov?ever, when a human being 
acqt~ires new knowledge, he would not always require a lot of 
examples. As the case may be, he can learn from one exam­
ple. We think tbis is because h~ decides a strong bias for the 
gencralization according to the domain, and generalizes the 
examples based on the bias, That is, in order to generalize a 
few examples appropriately, a strong bias which depends on 
the domain is indispensable. 

It is necessary to consider how the strong bias should 
be provided. Let us recall the behavior of a human being 
again. ·When c.cquiring new knowledge, he often utilizes sim­
ilar knowledge which is already known. In other words, the 

existence of similar knowledge may help for him to associate 
new knowledge. This process is called analogy. Analogy is 
considered promising to realize learning from a few examples. 
Since analogy will be regarded as one of the most effective 
way for restriction on generalization, modeling its process 
will make it possible to provide a domain dependent bias. 

In this paper, we propose a new learning method, called 
ANGEL (ANalogical GEneraLization), which is capable of 
generating a new rule from a single example. In ANGEL, 
both the rules and the examples are represented as logical for­
mulas. We introduce the notion of analogy[Winston 1980], 
namely, the similarity between the example and the exist­
ing rules as the bias for the generalization[Mori et al. 1991]. 
The similarity is determined by comparing the atoms of both 
the example and the existing rules. Based on the siIl'Jlarity, 
firstly, ANGEL extracts atoms from the example and selects 
a rule out of the existing rules; next, it generates a new rule 
by generalizing the extracted atoms by means of the selected 
rule as a guide. 

The next section describes the definition of analogical gen­
eralization. In this section we consider analogical generaliza­
tion from the logical viewpoint. Section 3 gives the procedure 
of ANGEL which is a method for learning based on analogi­
cal generalization. In this section, we also give consideration 
to the experimental result oflearning by ANGEL. Finally in 
section 4, we clarify the originality of ANGEL through its 
comparison to other related ·works. 

2 Analogical generalizat.ion 

To represent knowledge, we use the form which conforms 
to first order predicate logic. Two kinds of forms, called a 
fact and a rule, are provided. A fact is represented as an 
atom, while a rule is represented as a Horn clausc, which is 
expressed in the form of 

where cx,/31, ... ,/3n are atoms. Letting l' be a rule cx f-­

/31,'" ,/3n, we denote the consequence of rule r, namely cx, by 
cons( r), and denote the premise of rule r, namely /31, ... ,/3n, 
by prem(r). 

The underlying notion of analogical generalization is that 
a new rule is generated by generalizing an input example, 
which consists of facts, based on the similarity between the 
example and the existing rules. Before formulating analogical 
generalization, we define the similarity between two atoms, 



498 

and next formalize the similarity between two finite sets of 
atoms. 

2.1 Similarity between two atoms 

First, we define some basic notations. A substitution is a 
finite set of the pair v It, where v is a variable, t is a term, 
and the variables are distinct. Let {} = {VI/tb ... , vn/tn} 
be a substitution and e be an expression, which is either a 
literal or a conjunction or disjunction of literals. Then e{} is 
the expression obtained from e by replacing each occurrence 
of the variable Vi in e by the term ti. If S is a finite set 
of expressions and {} is a substitution, SO denotes the set 
{e{} leE S}. 

Let {} be a substitution and S be a finite set of atoms. If S{} 
is a singleton, S is unifiable by {} and we write unifiable(S). 

Now, we give the following two functions, and define the 
similarity between atoms by means of these functions. Let 
R be a set of existing rules, and Q and Q' be atoms. 

Definition 1 ( R-deducible set ) 

~(R, Q) ~ {fi I R U {Q} /- fi,fi is an atom}. 

Definition 2 (R-similar set ) 

W(R, Q, Q') ~ {fi I fi E ~(R, Q), 3fi' E ~(R, QI), 

unifiable ({fi, fi/})}. 

R-deducible set means all of newly obtained information 
when a certain fact has been known. Thus the intuitive 
meaning of R-similar set is newly obtained information in 
common when each of two distinct facts has been known. 
Therefore we can say that R-similar set represents the rele­
vance between two facts under the background knowledge. 

Definition 3 (Similarity between atoms) Let Q, QI 

and Q2 be atoms. If the following relation holds, Q is more 
similar to Q2 than QI with respect to R. 

And if the following holds, the similarity between Q and 
QI is equal to the similarity between Q and Q2 with 
respect to R. 

Since R-similar set reflects the relevance between two given 
facts, the similarity between a certain fact and two distinct 
facts can be evaluated in terms of the subsumption relation 
between R-similar sets reasonably . 

For example, let RI be a set of rules shown as follows. 

RI = {parent(x,y) f- father(x,y), 
parent(x,y) f- mother(x,y), 
family( x, y) f- parent ( x, y), 
family(x, y) f- brother(x, y), 
hates( x, y) f- kills( x, y), 
hates(x, y) f- hurts(x, y), 
hates(x, y) f- strikes(x, y)} 

Let us consider the similarity of father(x, y) to 
mother(Jim,Betty) and brother(Tom,Joe). For each atom, 
the following R-deducible sets are derived as 

<p(RI, father(x, y)) = {father(x, y),parent(;, y), family(x, y)} 
<P(RI' mother( Jim, Betty)) 

= {mother( Jim, Betty), parent ( Jim, Betty), 
family(Jim,Betty)} 

<p(RI, brother(Tom, Joe)) 
= {brother(Tom, Joe), family(Tom, Joe)}. 

R-shnilar sets of father(x,y) for mother(Jim,Betty) and 
brother(Tom, Joe) are as follows. 

'!F(RI, father(x, y),mother( Jim, Betty)) 
= {parent(x,y),family(x,y)} 

'!F(RI' father(x, y), brother(Tom, Joe)) = {family(x, y)} 

Accordingly father(x, y) is more similar to 
mother(Jim, Betty) than brother(Tom, Joe) with respect to 
RI. This result matches our intuition very well. 

2.2 Similarity between two finite sets of atoms 

The siInilarity between two finite sets of atoms is determined 
by the similarity between elements of each set. In this case, 
we also have to consider the matching between atoms in each 
set. We begin with the definition of correspondence between 
two sets of atoms. 

Definition 4 (Correspondence) Let A and B be finite 
sets of atoms. Correspondence 'P of A to B is defined as 
follows, 

1. 'P is a relation on A and B. 

2. There is a substitution {} and for all (Q, fi) E 'P{}, 

aritY(Q) = arity(fi), 

arg(Q, n) = arg(fi, n) (n = 1,2, ... ), 

where al'itY(Q) indicates the number of arguments of Q, 
and arg(Q,n) indicates the value ofn-th argument ofQ. 

3. For all Q E A, the~e is an atom fi such that (Q, fi) E 'P. 
A nd for all fi E B, there is an atom Q such that (Q, fi) E 

'P. 

For example, let Al and BI be sets of atoms shown as 
follows. 

Al = {father(x, y), kills(y,z)} 
BI = {mother(Jim, Betty),hurts(Betty, Jim)} 

In this case, two correspondences 'PI, 'P2 of Al to BI are 
obtained. 

<fil = {(father(x, y),mother(Jim, Betty)), 
(kills(y, z ),hurts(Betty, Jim))} 

<fi2 = {(father(x, y),hurts(Betty, Jim)), 
(kills(y, z), mother( Jim, Betty))} 

Definition 5 (Precedence of correspondence) 
Let A and B be sets of atoms, 'PI and 'P2 be two distinct 
correspondences of A to B. Then 



• For all ex in A, ex is similar to f31 such tha.t (ex, f3I) E <PI 
than f32 such that (ex, (32) E <P2, or the similarity between 
ex and f3I is eq'ual to the similarity between ex and f32 with 
respect to R, and 

• There exists ex in A, which is similar to f3I such that 
(ex, f3d E <PI than f32 such that (ex, (32) E <P2, with respect 
to R, 

if and only if we say that correspondence <PI precedes 
<P2 with respect to R. For a correspondence <P of A to 
B, if there is no correspondence that precedes <p, we call <P a 
maximally preceding correspondence of A to B with 
'respect to R. 

Maximally preceding correspondence represents the 
matching between the most similar atoms in two sets of 
atoms with binding variables consistently. 

In the above example, <P1 precedes another corre­
spondence, namely, <P2, with respect to R I , because 
father(x, y) is more similar to mother(Jim, Betty) than 
hurts(Betty, Jim) and likewise kills(y, z) is more similar 
to hurts(Betty, Jim) than mother(Jim,Betty). Therefore 
<P1 is a maximally preceding correspondence of Al to BI with 
respect to RI. 

Definition 6 (Similarity between sets of atoms) _ 
Let A, A', Band C be sets of atoms, <P B be a maximally 
preceding correspondence of A to B with respect to Rand 
<PC be a maximally preceding correspondence of A' to C with 
respect to R. Then 

• For all ex in AnA', ex is similar to f3 B such that (ex, f3 B) E 
<P B than f3c such that (ex, f3c) E <Pc, or the similarity 
between ex and f3 B is equal to the similarity between ex 
and /3c with respect to R, and 

• The1'e exists ex in A n A', which is similar to /3 B such 
that (ex,/3B) E <PB than f3c such that (a,f3c) E <Pc, with 
respect to R, 

if and only if we say that the similarity between A and B 
is stronger than the similarity between A' and C with 
respect to R, denoted by 

[A: B] !):. [A' : C]. 

Now, we assume C I is the foll~wing set of atoms. 

C1 = {brother(Tom,Joe), strikes(Joe,Mark)} 

A maximally preceding correspondence of Al to C I with 
respect to Rl is shown as 

{(fathe:!"(x, y), brother (Tom, Joe», 
(kills(y,z),strikes(Joe,Mark»}, 

and therefore, 
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2.3 Formulation of analogical generalization 

In this section, we proceed to formulate analogical general­
ization, First we give a logical consideration on analogical 
generalization under five conditions to generate a rule, dis­
cussing these conditions briefly. 

Let r be a, non-ground atom which represents a target 
concept, and E be an example, that is, a set of ground atoms 
which is relevant to the target concept. In this case a non­
ground atom is an atom containing variables and a ground 
atom is an atom containing no variable. We assume that 
E contains r', called target instance, such that unifiable( {r, 
r'}). Let E' be a set given by removing target instance r' 
from E, and E" be a set of ground atoms deduced by RUE. 
Analogical generalization is formulated as follows. 

Definition 7 (Analogical generalization) Given 
R,E,r, and if 

RU E' if r', 
then generating a rule l' such that 

RUE' U {1'} f- r', 

RUE' U {1'} is consistent, and 

l' satisfies the following five conditions, 

is cdled analogical generalization. 

• Selection condition 
There is a substitution B such that 

11(1'}O ~ E", 

cons(1')B = r', 

(1) 

(2) 

(3) 

( 4) 

where 11(1') denotes a set of all atoms that constitute 1'. 

• Similarity condition 
There is a rule 1" (E R), provided that 

1. There is a correspondence ofII(r') to II(7')O, which 
contains (cons(1"), r') 1. 

2. For an arbitrary set of atoms A(~ E"), the follow­
ing relation does not hold. 

R 
[II(1") : A] >- [II(1") : II(1')O]. 

3. For an arbitrary rule 1'" (E R) and an arbitrary set 
of atoms A(~ E"), the following relation does not 
hold. 

R 
[A: II(1'")] >- [II(r)O : II{1")]. 

• Significance condition 
For a r1..lle 1" which satisfies similarity condition 2, letting 
<P be a correspondence ofII{1") to II(1')B, 

U 'J!(R, a,(3) t- 0. 
(a,j3)E'P 

l(} indicates the same substitution in selection condition. 
2'vVe call r' a base rule. 
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• Genemlity condition 
For a base rule r', letting 'P be a correspondence of II (r') 
to II(r) , 

v(a,/3) E 'P, arg(a,n) = arg(/3,n) (n = 1,2, ... ) . 

• Applicability condition 
For a base rule r', let 'PI be a correspondence of II( 1,1) 
to II{r)O. Let i{)2 be a correspondence of II(r') to 
A{ ~ E") which contains 7', provided that i{)2 contains 
(cons{r'), 7'). For all a E II{r'), ifRU{a} 1/ /32 or 
{a} I- /32 such that (a, (32) E 'P2, R U {/3d 1/ /32 or 
/31 = /32 such that (a, (31) E 'PI has to holds. 

Since there are, in general, many rules satisfying the equa­
tion (2) and (3), we have introduced the five conditions as 
constraints for the rule r. 

Selection condition means that the rule r is generated mak­
ing use of predicates which are used for representing given 
examples and existing rules. 

Similarity condition is a condition for the purpose of gen­
erating a rule which is similar to an existing rule. A base 
rule, which is the most similar rule to a given example in ex­
isting rules, is selected appropriately due to this condition. 
Moreover, it guarantees that, with respect to the similarity, 
relevant atoms are extracted from the example for the se­
lected base rule. That is, this condition is regarded as a bias 
depending on the domain specific knowledge. 

Similarity condition is a condition for checking the valid­
ity of a ba.se rule based on a relative comparison of the sim­
ilarities between a base rule and an example, while signifi­
cance condition investigates absolutely the relevance between 
a base rule and an example by means of R-similar set. Rules 
not satisfying significance condition should be regarded as 
absurd rules. 

Generality condition removes constants which occur in an 
example from the generated rule. It aims at the versatility 
of the generated rule. 

If an atom a forms a rule rand R U {a} is able to deduce 
another atom a', a rule formed by an atom a' instead of a 
also satisfies the equation (2) and (3). In this case, the latter 
rule is more applicable than the former. Applicability condi­
tion guarantees the most applicable rule can be adopted. 

3 ANGEL 

3.1 Procedure 

This section presents ANGEL in detail. If the set of exist­
ing rules R, an example E and target concept 7 are given, 
ANGEL generate a new rule by means of analogical general­
ization. We show the overview of ANGEL in Figure l. 

If R consists of recursive rules, R-deducible set will be infi­
nite. Then, we assume R has no recursive rule for computing 
the similarity between atoms practically. 

The procedure of ANGEL consists of five steps: (1) ex­
tending an example, (2) extracting atoms from the example 
and selecting a base rule out of the set of existing rules, (3) 
generalizing the extracted atoms, (4) replacing predicates, 

r: 't f- ~1 , ... , ~n 

[E : example J <'imilariV 
't : target 

concept 

Figure 1: Overview of ANGEL 

and (5) generating a rule. We show briefly each step as be­
low. 

STEPl Extending an example 
Generate a set of ground atoms which are deduced by 
RUE and denote it by E. If an atom a( E E) can be 
deduced by R U {a'} (a' =1= a, a' E E), remove the atom 
a from E. 

STEP2 Extracting atoms and selecting a base rule 
For each rule r' E R, make correspondences ofII{r') to A 
which is an arbitrary subset of E. At this time, cons{r') 
will certainly correspond to the target instance. If a set 
A'(=I= A) such that, 

[II{r') : A'] ~ [IT{r') : AJ, 

A'~E 

does not exist, regard the correspondence of IT{r') to 
A as a candidate of useful correspondence; otherwise 
abandon the set A. Note that once abandoned sets for 
a certain rule are never adopted for other rules. 

For all candidates of useful correspondences, evaluate 
the similarities between subsets of an example and rules. 
And if a correspondence of A' to II(r") such that, 

[A' : IT{r")] ~ [A: IT{r')], 

A'~E, 

r" E R 

does not exist, adopt the correspondence of A to II{r') 
as a useful correspondence. 

STEP3 Generalizing atoms 
Generalization is performed by turning constants to 
variables. As a result of STEP2, there is at least one 
useful correspondence 'P of IT(r'), in which r' is selected 
out of R, to A, which is a subset of E. Now, turn con­
stants in atoms in the set A to variables which occur at 
the same position of IT(r') according to the correspon­
dence 'P. 



STEP4 Replacing predicates 
For each pair of atom (a, 13) in <p which is a useful cor­
respondence of II(1") to A, if iJ!(R, 13) contains an atom 
which consists of the same predicates as a, replace the 
predicate of 13 with the predicate of a. Otherwise, let S 
be a set of atoms in iJ!(R, 13) provided that none of whose 
predicates occurs in iJ!(R, a). Replace the predicate of 
13 with the predicate of ,( E S) such that 

STEPS Generating a rule 
Finally, generate a new rule l' in which con5(1') consists 
of the atom which is generalization of the target instance 
and p1'em{1') consists of the atoms which are generaliza­
tions of the atoms in the set A except the target instance. 

3.2 Examples and discussions 

In this section, we present the two examples of learning by 
ANGEL. And we clarify the effectiveness of ANGEL by con­
sidering the experimental results. 

First, we show a simple example in order to follow the 
behavior of ANGEL. A set R2 which consists of seven existing 
rules defines relations of family. El is an example for the 
target concept "grandmother(5, t)". 

R2 = {grandfather(x,z) +- parent(x,y),father(y,z), 
uncle(x, z) +- parent(x,y), brother(y, z), 
cousin(x,y) 

+- parent(x, v), parent(y, w), brother( v, w), 
parent (x, y) +- mother(x, y), 
parent(x, y) +- father(x, y), 
family(x, y) +- parent(x, y), 
family(x, y) +- brother(x, y)} 

El = {grandmother(Peter, Mary), 
mother(Paul, Mary), 
father(Peter, Paul), 
mother(Peter, Lucy), 
likes(Paul, Mary), 
engineer(Peter) , 
student (Paul)} 

... (d) 

... (1'2) 

... (1'3) 

... (1'4) 
,'" (1'5) 
' .. (1'6) 
... (1'7) 

If El is given, ANGEL starts to extend the example. In 
this case, since no atom has been deduced, the extension of 
El is El itself. 

In STEP2, candidates of useful subsets of El are found for 
the rule 1'1 as follows. 

{grandmother(Peter~ Mary), 
father(Peter, Paul), 
mother(Paul, Mary)} 

{grandmother(Peter , Mary), 
father(Peter, Paul), 
likes(Paul,Mary)} 

In these sets, since the relation 

R2 
[II(1'1) : 51] »- [II(d) : 52] 

... (sl) 

... (s2) 

holds, the set 52 is abandoned. As a result, only 51 are 
adopted as the useful set of atoms. Likewise, sl is adopted 

Sal 

for the rule 1'2. And no set of atoms is adopted for other 
rules 1'3 '" 1'7. 

Next, the similarity between II(1'1) and II(1'2) is evaluated. 
As a result, the rule 1'1 is adopted as a useful rule, because 
the relation 

R2 
[81 : II(rl)] »- [ 81 : II(1'2)] 

holds. 
In STEP3, the generalization will be accomplished. Now, 

there have been the following correspondences of II(d) to 
51. 

{(grandfather(x, z), grandmother(Peter, Mary)), 
(parent(x, y), father(Peter, Paul)), 
(father(y, z),mother(Paul, Mary))} 

Therefore, the set of generalized atoms are obtained as fol­
lows. 

{grandmother(x, z), father(x, y), mother(y, z)} ... (sl') 

Next, in STEP4, predicates in sl' are replaced with 
more applicable one. In this case, predicate father in 
81' is replaced with predicate parent, because predicate 
parent occurs in iJ!(Rz, father(x, y)). While predicate 
mother in 81' is not replaced, because predicate father 
never occurs in iJ!(Rz,mother(y,z)) and atom mother(y,z) 
is the only one atom in iJ!(R2,mother(y,z)) except atoms in 
iJ!(R2' father(y, z)). As a result of the replacement of pred­
icates, a set of atoms are modified as 

{grandmother(x, z), parent(x, y), mother(y, z)}. '" (sl") 

In STEP5, finally, according to the above set sl", the fol­
lowing new rule is generated and added to R2. 

grandmother(x, z) +- parent(x, y), mother(y, z) '" (1'8) 

The rule 1'8 satisfies the requirement for analogical gener­
alization given at Definition 7, and it is just appropriate rule 
about the target concept. In this case, good learning has 
been performed, because the rule which is closely similar to 
the rule for target concept is in the existing knowledge base. 

In rule based systems, generally, the lack of rules causes ei­
ther interruptions or mistakes on inference. ANGEL is useful 
for such a situation, because it is possible to continue infer­
ence by generating new rules from given examples. 

N ext we show an example of acquiring rules for the system 
for parsing simple English sentences. The target system is 
capable of parsing English sentences by means of syntactic 
rules shown as Figure2. In this system a sentence is treated 
as a list. For example the sentence "The sun rises in the 
east" is represented as the list, 

And 

[the, sun, rises, in, the, east] 

noun_phrase([the,sun,rises,in,the,east] , 
[rises,in,the,east]) 

indicates that [the, sun] is noun phrase. The system exam­
ines whether or not a given sentence is grammatically valid 
by a backward chaining inference by means of the syntax 
rules. 
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sentence( s, e) +- noun_phrase(s, vt}, verb_phrase( VI, e). 
sentence( s, e) +- noun_phrase(s, VI), verb_phrase (VI , V2), 

prepositionaLphrase(V2' e). 
sentence(s, e) +- present_progressive(s, e). 
sentence( s, e) +- present_passive_voice(s, e). 
sentence(s, e) +- present_perfect(s, e). 
noun_phrase(s, e) +- determiner(s, vt}, noun (VI , e). 
noun_phrase(s, e) +- noun(s, e). 
prepositionaLphrase(s,e) +- preposition(s, VI), 

noun_phrase ( VI' e). 
verb_phrase(s,e) +- verb(s, e). 
verb_phrase(s, e) +- verb(s, Vt}, noun_phrase (VI , e). 
present_progressive(s, e) +- noun_phrase(s, VI)' 

present.-BE(VI, v2),present_participle(v2, e) 
present_progressive(s, e) +- noun_phrase(s, vt}, 

present.-BE(VI, V2), present_participle(v2, V3), 
noun_phrase (V3, e) 

verb(s,e) +- BE(s,e). 
verb(s,e) +- main_verb(s,e). 
verb( s, e) +- present_verb( s, e). 
verb(s,e) +- past_verb(s,e). 
BE(s,e) +- present.-BE(s,e). 
BE( s, e) +- past_BE( s, e). 
mainserb( s, e) +- presentJllain_verb(s, e). 
main_verb( s, e) +- pastJllain_verb( s, e). 
present_verb(s, e) +- present.-BE(s, e). 
past_verb( s, e) +- past.-BE( s, e). 
present_verb( s, e) +- pre s ent...main_verb ( s, e). 
past_verb( s, e) +- pastJllain_verb( s, e). 
auxiliary _verb( s, e) +- present_auxiliary serb( s, e). 
auxiliary_verb(s, e) +- past_auxiliary_verb(s, e). 
participle( s, e) +- present_participle( s, e). 
participle(s, e) +- past_participle(s, e). 
determiner(s,e) +- THE(s,e). 
noun(s,e) +- SUN(s,e). 
noun( s, e) +- EAST( s, e). 
noun(s,e) +- DOOR(s,e). 
noun(s,e) +- HER(s,e). 
noun(s,e) +- HE(s,e). 
noun(s,e) +- I(s,e). 
noun(s,e) +- HOMEWORK(s,e). 
presentJllain_verb(s, e) +- HAVE(s, e). 
present...main_verb(s, e) +- RISES(s, e). 
present_auxiliary_verb(s, e) +- HAVE(s, e). 
present.-BE(s,e) +- IS(s,e). 
past_participle(s,e) +- CLOSED(s,e). 
past_participle(s, e) +-- RESPECTED(s, e). 
past_participle(s, e) +- FINISHED(s, e). 
preposition(s,e) +- IN(s,e). 
preposition(s,e) +-BY(s,e). 

Figure 2: A part of rules in existing knowledge base 

As Figure2 indicates, initially, the rule to define syntax 
about the present passive voice is insufficient. Then we have 
tried to generate a lacking rule by ANGEL. 

For the target concept "present_passivELvoice(s, e)", we 
have given the following example E2 to ANGEL. 

E2 = {present_passive_voice([the,door,is,closed], []), 
THE([the,door,is,closed] , [door,is,closed]), 
DOOR([door,is,closed],[is,closed]), 
IS([is,closed] ,[closed]), 
CLOSED([closed],[])} 

Firstly, the _given example E2 has been extended to the 
following set E2 • 

E2 = {present.,passive_voice([the,door,is,closed], []), 
THE([the,door,is,closed],[door,is,closed]), 
DOOR([door,is,closed],[is,closed]), 
IS([is,closed], [closed]), 
CLOSED([closed],[]), 
noun_phrase([the,door,is,closed], [is,closed]), 
sentence([the,door,is,closed],[closed])} 

Then, the useful correspondence has been found as follows 
by using a rule for "present_progressive" as a base rule. 

{(present_progressive(s, e), 
present_passive_voice([the,door,is,closed] ,[]»), 

(noun_phrase ( s, VI), 
noun_phrase([the,door,is,closed],[is,closed]»), 

(present.-BE(VI, V2), IS( [is, closed] , [closed]»), 
(present_participle ( V2, e ),CLOSED( [closed] , []»)} 

As a result, we have confirmed that ANGEL generates the 
following one rule successfully. 

present_passive_voice(s,e) +- noun_phrase(s,vt}, 
present.-BE(vt, V2), 
past_participle( V2, e) ... (r9) 

The generated new rule r9 is added to the knowledge base. 
Again we have given an example sentence "A mouse is 

caught by a cat." for the same target concept. 
In this case, two distinct rules rIO and rll are generated 

by using the identical base rule in the existing knowledge 
base. 

present_passive_voice(s,e) +- noun_phrase(s,vl), 
- present.-BE(v}, V2), 

past_participle(v2, V3), 
prepositional_phrase(v3,e) 

present_passi ve_voice( s, e) +- sentence( s, VI), 
participle(VI, V2), 
preposition(V2, V3), 
noun_phrase(V3, e) 

. .. (rIO) 

···(rll) 

Like the above, ANGEL sometimes generates several rules 
for one example. It is now important to examine whether 
each of the generated rules is appropriate. For instance, The 
rule rIO is a suitable rule, whereas the rule rll is obviously 
strange. The reason for this is none ofthe rules in the existing 
knowledge base are really similar to the given example. Since 
atom nOUll_phrase(v3, e) in selected base rule 

present_progressi ve( s, e) +- noun_phrase ( s, VI)' 
present.-BE( VI, V2), 
present_participle(v2, V3), 
noun_phrase (V3' e) 



corresponds to atom prepositionaLphrase{v3, e) in the 
rule r10 and atom noun_phrase {V3, e) in the rule rll 
(namely, the given example is regarded as the sentence con­
sisting of some phrases and noun_phrase), the similarity be­
tween the base rule and the rule r 11 are stronger than the 
one between the base rule and the rule r10 in respect of these 
atoms. 

Next, we have supplied a sentence "He was killed by them. 
" to attempt to generate a rule for another target concept 
past_passive_voice{s, e). ANGEL could generate a new 
rule r 12 by employing a rule r 10 generated just now. 

past_passive_voice(s, e) ~ noun_phrase(s, VI), 
past.J3E( V}, V2), 

past_participle(V2, V3), 
prepositionaLphrase(v3, e) 

... (r12) 

In this case, since an appropriate base rule, which does 
not exist initially, has occurred in knowledge base, a good 
rule is generated accurately by selecting it. ANGEL is capa­
ble of growing knowledge base gradually by employing rules 
generated by ANGEL itself as base rules. 

Let us discuss the computational complexity of ANGEL. 
In order to evaluate the similarity between atoms, ANGEL 
has to compute deductive closures of each of the atoms. And 
the similarities between atoms in arbitrary correspondences 
have been estimated to find the most suitable pair of the 
atoms in the given example and the base rule. Therefore, 
procedure of ANGEL may be expensive as a whole, although 
hypothesis space to be considered is small. In fact, as a 
result ofimplementing ANGEL on Sun SPARC Station2 with 
SICStus Prolog, it took a few minutes to generate a ;English 
syntax rule. 

The approach evaluating similarities between atoms based 
on their deductive closures is theoretically interesting, but it 
may not be practical. For the purpose of practical learning, 
some restrictions on either forms of the background knowl­
edge or the hypothesis language are required like Muggleton's 
GOLEM[Muggleton 1990]. We think we will have to improve 
the practicability of ANGEL in the near future. 

4 Related works 

In this section, we characterize ANGEL from a viewpoint of 
general machine learning framework. 

ANGEL belongs to the category of learning from exam­
ples, in the sense that it generates new rules by generalizing 
given examples. In inductive learning methods, generally, 
pre-defined generalization rules are used for generalizing ex­
amples. ANGEL also uses three kinds of generalization rules 
corresponding to dropping condition rule, turning constants 
to variables rule and constructive generalization rule based 
on logical implications [Michalski 1983], all of them are con­
sidered as the primary generalization rules in learning from 
examples. However, ANGEL differs from the ordinary in­
ductive learning methods in using the existing rules as the 
bias. That is, ordinary inductive learning uses no existing 
rules, even if so, it uses them for the constructive induction. 
On the other hand, ANGEL employs the similarity between 
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the existing rules and the given example in order to drop 
conditions, so it can reduce the hypothesis space extremely. 

ANGEL is related to inductive logic programming (ILP), 
because it generates rules represented as Horn clauses by 
induction. ILP is also capable of learning new rules with 
reference to existing rules. Both Muggleton and Bun­
tine's CIGOL[Muggleton and Buntine 1988] and Wirth's 
LFP2[\Virth 1989], which are typical examples of ILP sys­
tem, use operators based on inverting resolution to aug­
ment incomplete clausal theories. The difference between 
these systems and ANGEL is the way of employing existing 
background knowledge. That is, in both of their systems, 
background knowledge is not employed as biases at all. In 
fact, rules can be acquired under no background knowledge. 
Therefore the interaction between user and system is in­
evitable in their systems to derive reasonable rules. Whereas, 
ANGEL employs background knowledge as a bias. A given 
example is generalized through mapping a structure of a rule 
in existing knowledge base. It provides a strong restriction 
for induction and serves to generate a few useful new rules. 

ANGEL evaluates a similarity between existing rule and a 
given example to learn a new rule. Therefore it can also be 
regarded as a kind of method for learning by analogy. Davies 
and Russell [1987] have defined, in their paper, reasoning by 
analogy as the process of inferring that a property Q holds of 
a particular situation T (called the target) from the fact that 
T shares a property P with another situation S (called the 
source) that has property Q. In analogy, it is very important 
to match between the target and the source. Similarly, in 
ANGEL, the matching between existing rules and a given 
example, which is called correspondence in this paper, must 
be found successfully. Now we compare ANGEL with several 
methods with respect to the way of matching. 

Haraguchi and Arikawa [1986] have formalized the reason­
ing by analogy on a deduction system. In their method, 
the domain for reasoning is represented by a set of definite 
clauses, and the similarity between objects is defined as the 
identity of predicates. Therefore the matching is performed 
by pairing the atoms which are described with the same pred­
icate. On the other hand, ANGEL finds a correspondence 
between atoms based on their similarities, that is, it will not 
require identity of predicates. And it enables ANGEL to 
generate completely novel rules. 

Recently, Arima [1991] has analyzed analogy from the 
point of logical relevance. His formulation is based on the 
idea as follows. 

1. The property to be projected from the source to the 
target must be justified. 

2. The similarities, which means the properties shared by 
both the source and the target, should be formed by the 
minimum justifications. 

Unlike ANGEL, the shared ~properties must be represented 
by the same predicates both with the source and with the 
target. 

Gentner [1983] has also developed a method, called Struc­
ture Mapping, for the matching between the target and the 
source. In her method, first an atom is matched with an­
other atom, when both of them are described with the same 
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predicates, and next, the object in each atom is matched. 
And the process of the matching is repeated based on newly 
matched objects. ANGEL is similar to Structure Mapping, 
because the matching between atoms is achieved based on 
the matched objects. However, there are the following two 
differences between them. 

1. Although Structure Mapping requires the identity to 
several kinds of predicates (e.g. greater, cause, etc.) 
in order to match between atoms, ANGEL will not re­
quire the identity of predicates at all. 

2. In Structure Mapping, the similarity between descrip­
tions is defined by the identification of predicates and 
the number of matched descriptions. On the other hand, 
in ANGEL, it is defined as the subsumption between 
deductive closures of atoms based on the logical consid­
eration. 

ANGEL is also related to both the explanation-based 
learning (EBL)[Mitchell et al. 1986] and Russell's single­
instance generalization (SIG)[Russell 1987], because all of 
them are capable of learning from one example and back­
ground knowledge. However, EBL has to need completeness 
for background knowledge, so rules produced by EBL are lim­
ited to ones which are deducible from background knowledge. 
In this sense, EBL cannot generate really new rules. SIG re­
quires weak background knowledge, called determinations, 
in stead of complete one. That is, it can learn rules under 
comparatively insufficient background knowledge in contrast 
to EBL. Properly new rules cannot, however, be generated, 
because it does not deal with non-deductive reasoning. 

5 Conclusion 

This paper has described an approach to learning from an 
example by analogical generalization. 

The notable features of ANGEL are shown as follows. 

1. ANGEL is able to generate a new rule from a given single 
example by analogical generalization. 

2. A similarity between an existing rule and an example 
can be evaluated a similarity between atoms forming 
each of them. 

3. A similarity between atoms is defined based on the sub­
sumption relation between deductive closures of atoms, 
and it enables to compute similarities formally. 

Through the experiment for the domain of parsing English 
sentences, we have confirmed that ANGEL is useful for ac­
quiring knowledge on knowledge based systems. 

In this paper, from the inductive learning point of view, 
we have highlighted the method to generate a new rule from 
a given example. The definition of similarity introduced here 
is not specific for inductive learning. We plan to apply this 
idea to other various reasoning paradigms (e.g. ordinaryana­
logical reasoning, deductive reasoning and so on) to improve 
performance and applicability of them. 

This work was supported partly by the Grant-in-Aid for 
scientific research from the Ministry of Education. 
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Abstract: This paper treats a general type of analog­
ical reasoning which is described as follows: when two 
objects, B (thebase) and T (the target), share a prop­
erty S (the similarity), it is conjectured that T satisfies 
another property P (the projected property) which B sat­
isfies as well. 

Through a formal analysis of this type of analogy, a 
logical relation is explored which is necessarily satisfied 
by the tuple, T, B, S, P, under an axiom, A. Unlike pre­
vious studies on analogy, this work does not give any 
particular assumption a priori to the tuple. 

By the analysis, it is shown to be reasonable that ana­
logical reasoning is possible only if a certain form of rule, 
called the analogy prime rule, is a deductive theorem of 
a given theory, and that, from the rule. together with 
two particular conjectures, an analogical conclusion is 
derived. Also, a candidate is shown for a non-deductive 
inference system which can yield both conjectures. 

1 Introduction 

When we explain a process of reasoning by analogy, we 
may say, "An object T is similar to another object B 
in that T shares a property S with Band B satis­
fies another property P. Therefore, T also satisfies P". 
We may express this more formally using the following 
schema. 

S(B) 1\ P(B) 
S(T) 
P(T) 

Here, T will be called the target, B the base, S the sim­
ilarity between T and B, and P the projected property. 

The above description of the process of analogy is, 
however, insufficient. Researchers studying analogy have 
come to recognize the necessity of revealing some implicit 
condition which influences the process but does not ap­
pear in the above schema. The importance of this has 
already been discussed enough in [3]. The implicit con­
dition to be satisfied by appropriate analogical factors, 

T. B, S. and P. can, formally, be characterized only by 
a given theory (axiom), written as A. The objective of 
this paper is to explore the particular relation of analogy 
which T. B, S, P and A necessarily satisfy. 

In the study of analogy, the following have been central 
problems: 

1) what object should be selected as a base w.r.t a tar­
get, 

2) which property is significant in analogy among prop­
erties shared by two objects, and 

3) what property is to be projected w.r.t. a certain sim­
ilarity. 

Many significant works have been vigorously conducted 
on these problems, though they were only partially suc­
cessful in answering these questions. that is, by giving in­
tuitive and strong assumptions a priori. In many works. 
a base case was assumed to be given W.r. t. a target case 
[4, 11, 10]. In almost all works, the important similar­
ity (or similarity measure) was defined a priori indepen­
dently of what property was projected [20, 6, 10, 7, .5]. 
In logical works [8, 5], especially in [3], nice logical rela­
tions among the analogical factors could be seen. though 
they, like others, were given without sufficient examina­
tions which would show why and how their relations were 
necessary. 

Unlike previous studies on analogy, this work does not 
give any particular assumption a priori to the analogical 
factors. Clarifying the relation between the factors, T, 
B, S, P and A, will be enough to answer the above 
three problems once and for all. The relation shown by 
this paper is a general solution for them and might show 
how useful a formal treatment is in analyzing analogical 
behavior. 

First, through a logical analysis of analogy, it is shown 
to be reasonable that, when an analogical inference is 
done under a theory A, a particular form of rule must 
be a logical conclusion (a theorem) of A and that ana­
logical inference is accomplished by two particular types 
of (generally non-deductive) conjectures. Then. a non­
deductive inference is proposed, which is shown to be an 
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adequate candidate to yield the conclusions of both these 
conjectures. 

2 A Logical Analysis 

2.1 Preparations 

In this paper, we use standard formal logic and notations, 
while defining the following. An n-ary predicate U is 
generally expressed by AXQ, where x is a tuple of n object 
variables, Q is a formula in which no object variables 
except variables in x occur free. If t is a tuple of n terms, 
U (t) stands for the result of replacing each occurrence of 
(elements of) x in Q with (each corresponding element 
of) t simultaneously. For any formulas A and F, when 
A f- F and If F (that is, F is not valid), we say F is a 
genuine theorem of A and express it simply as A f-F. 

We will use a closed formula of first order logic A for a 
theory, (generally n) terms T for a tar-yet and (generally 
n) terms B for a base. A property is expressed by a pred­
icate, for instance, a similarity and a p1'Ojected pr~perty 
are expressed by predicates, Sand P respectively. 

2.2 Approach To A Seed of Analogy 

We can understand analogical reasoning as follows: 

(1) Example-based Information: 
"An object, x' (corresponding to a base), satisfies 
both properties Sand P (3x'.(S(x') 1\ P(x')))." 

(2) Similarity-based Information: "Another object, 
x (corresponding to a target), satisfies a shared 
property S with x' (S(x))." 

(3) Analogical Conclusion: "The object ,r would sat­
isfy the other property P (P(x))." 

Then, 

.• Analogical reasoning is to reason (3) from A 
together with (1)+(2)." (A) 

Let this understanding be our starting point of analy­
SIS. 

As analogy is not, generally, deductive, this starting 
point may, unfortunately, be expressed only as follows. 
In the notation of proof theory, 

A,3x'.(S(x') 1\ P(x'»,S(x) If P(x). (1) 

As analogy, however, infers P(x) from the premises, it 
implies that some knowledge is assumed in the premise 
part of (1). Let the assumed knowledge be F(x), provid­
ing that it depends on the x in general. That is, 

A,3x'.(S(x') 1\ P(x')),S(x),F(x) f- P(x). (2) 

Thus, the essential information newly obtained by anal­
ogy is F( x) in the above rather than the explicit pro­
jected property P. Making J (x) staud for the (,Oll­

j unction of the example-based information and F ( x). the 
above meta-sentence is transformed equivalently to 

A f- Vx.(J(x) 1\ S(x) :::> P(x)). (3) 

because A is closed. This implies that a rule must be 
a theorem of A and that the rule concludes any object 
which satisfies J(x) to satisfy P when it satisfies S. Once 
J ~s satisfied, (by reason of (S(x) :> 'P(x)),) the analog­
ical conclusion ("an object satisfies P") can be deduced 
from the similarity-based information ("the object sat­
isfies S). For this reason, this rule will be called the 
analogy prime rule (it will be specified in more detail 
later), J will be called the analogy justification. 

Moreover, it is improbable that the analogy prime rule 
is a valid formula, because, if so, any pair of predicates· 
can be an analogical pair of a similarity and a projected 
property independently of A. Thus, the analogical prime 
rule must be a genuine theorem of A, 

A ~Vx.(J(x) 1\ S(x) :::> P(x)). (4) 

Consequently, an object T which satisfies S is concluded 
to satisfy P from an analogy prime rule by analogical 
reasoning that assumes that T satisfies the analogy jus­
tification (J(T)). That is, our starting point (A) can be 
specified from two aspects. 

"An analogical conclusion can be obtained from 
an analogy prime rule together with example­
based information and similarity-based informa­
tion." (B) 

"A non-deductive jump by analogy, if it occurs, 
is to assume that the analogy justification of the 
prime rule is satisfied." (C) 

In the following part of this paper, the analogy jus­
tification and non-deductivity will be further explored . 
Before beginning an abstract discussion, it may be use­
ful to see concrete examples of analogical reasoning. The 
next section introduces ·'target" examples of analogical 
reasoning to be clarified here. 

2.3 Examples 

Examplel: Determination Rule[3]. "Bob's car 
(CBob ) and Sue's car (CSue ) share the property of being 
1982 Mustangs (Mustang). We infer that Bob's car is 
worth about $3500 just because Sue's car is worth about 
$3500. (We could not, however, infer that Bob's car is 
painted red just because Sue;s car is painted red.)" 
Example-based Information: 

Model(Csue , Mustang) 1\ Value(Csue ,$3500), (5) 



Similarity-based Information: 

M odel( CBob, Mustang), (6) 

Example2: Brutus and Tacitus [1]. ~~ Brutus feels 
pain when he is cut or burnt. Also, Tacitus feels pain 
when he is cut. Therefore, if Tacitus is burnt. he will 
feel pain." 
Example-based Information: 

(Suffer(Brutus, Cut) =:l FeeIPain(Brutus)) (7) 

I\(Suffer(Brutus,Burn) =:l FeeIPain(Brutus)) (8) 

Similarity-based Information: 

Suffer(Tacitus, Cut) =:l FeeIPain(Tacitus) (9) 

Example3: Negligent Student l
. "When I discov­

ered that one of the newcomers (5tudentT) to our lab­
oratory was a member of an orchestra club (Orch), re­
membering that another student (5tudentB) was a mem­
ber of the same club and he was often negligent of study 
(Study), I guessed that the newcomer would be negligent 
of study, too." 
Exa.mple-based Information: 

Member ...of(StudentB, Orch) 

I\N egligenLof(StudentB, Study) (10) 

Similarity-based Information: 

Member_of(StudentT,Orch) (11) 

2.4 Logical Analysis: a rule as a seed 
of analogy 

In treating analogy in a formal system, as the informa­
tion of a base object being Sand P is projected into 
a target object, it is desirable to treat such properties 
as objects so that we can avoid the use of second or­
der langua.ge. As an example, the fact that Bob's car is 
a Mustang is represented by "Model(CBob , Mustang)" 
rather than simply as "Mustang(CBob )". In the remain­
ing part, we rewrite S(x) to ~(x, S) and P(x) to I1(x, P). 
~ will be called a similar attribute, II will be a projected 
attribute,S as an object will be a similar attribute value, 
and P as an object will be a projected attribute value. 
Then, (4) is rewritten 

.A ~'v'x,s,p.(J(x,s,p) 1\ I:(x,s) =:l II(x,p)), (12) 

considering the most general case that the analogy jus­
tification J depends on all of these factors. 

Again, when 3-tuple < object: X, similar attribute 
value: 5, projected attribute value: P > satisfies the 
analogy justification J, object X is conjectured to sat­
isfy the projected property AX .I1( x, P) (analogical con­
clusion) just because X has the similarity Ax.~(x, 5). 

lThe author thanks Satoshi Sato (Hokuriku Univ.) for showing 
this challenging example. 
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That is, J (x, s, p) can be considered a condition. where 
x could be concluded to be p from x being s by analogical 
reasoning. 

Now, recalling that an analogical conclusion is ob­
tained from the analogy prime rule with example-based 
information and similarity-based information, consider 
what information can be added by the information in 
relation to the analogy prime rule. 

1) Example-based Information: This shows that 
there exists an object as a base which satisfies a 
similarity and a projected property ( :l.T'.(~(;r'. S) 1\ 

I1(x'. P)) ). It seems to be adequate that the base. 
B. satisfying ~(x', S) can also be derived to sat­
isfy I1(:r'. P) from the prime rule. because B can be 
considered a target which has similarity S. That is. 
3-tuple < B, S, P > satisfies the analogy justifica­
tion. Consequently, from arbitrariness in selection 
of an object as a base in this information, what is 
obtained from this information is :lx'. J(x', S, P). 

2) Similarity-based Information: This shows that 
an object as a target, T, satisfies the same prop­
erty S in the above. Just by this fact, an analogical 
conclusion is obtained, by assuming that the object 
satisfies J by some conjecture. That is, there ex­
ists some attribute value p' and 3-tuple < T, S. p' > 
satisfies J (:lp'. J(T,5,p')). 

3) Analogical Conclusion: With the above two 
pieces of information, an analogical conclusion. "T 
satisfies I1(x, P)", is obtained from the analogy 
prime rule. Therefore. such 3-tuple < T. S, P > 
satisfies J ( J(T, S, P) ). 

In the above discussion, T, 5, and P are arbitrary. 
Therefore. the following relation about the analogy jus­
tification turns out to be true: 

Vx.s,p.( :Jx'.J(x',s,p) 1\ :Jp'.J(x,s,p') 

=:l J(x,s,p) ). (13) 

(13) is able to represent it equivalently as follows: 

J(x,s,p) = Jatt(s,p) 1\ Jobj(X,S), (14) 

where both Jatt and Jobj are predicates, that is, each of 
them has no free variables other than its arguments . 

The point shown by this result is that any analogy 
justification can be represented by a conjunction in which 
variable .T and variable p occur separately in different 
conjuncts. 

By (12) and (14), the analogical prime rule can be 
defined as follows. 

Definition 1 Analogy Prime Rule 
A l'ule is called an analogy prime l'ule w.r.t. 
< E(x, s); I1(x,p) >, if it has the following form: 
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VX,s,p.(Jatt(s,p) 1\ Jobj(;r,S) 1\ L;(x,s):) II(.1:,p)), (15) 

where Jatt , Jobj . 2: and II are predicates. (That is. each of 
Jatt(s,p), Jobj(J',s), ~(J:,s) and II(x,p) is a forrn.ula in 
which no variablt other than its arguments occm's free.) 
o 

In (15), Jatt(s,p) will be called the attribute justifica­
tion and J obj ( X , s) will he called the object justification. 

Also, by the above discussion, the following two con­
jectures can be considered as causes which make analogy 
non-dedu~tive . 

• Example-based Conjecture (EC): An object 
shows a existing concrete combination of a similar­
ity and a projected property. This specializes the 
prime rule and allows it to be applicable to a simi­
lar object. Assuming some generally non-deductive 
inference system under A, "~A" (we will propose 
such a system later), 

3x.(L;(x,S) 1\ II(x,P)) f'vA Jatt(S,P). (16) 

• Similarity-based Conjecture (SC): Just" be­
cause an ob jed satisfies S', application of the spe­
cialized prime rule to the object is allowed. 

L;(x, S) r-- A Jobj(X, S). (17) 

In case that the attribution justification (Jatt ( s, p)) 
is a valid formula, example-based information becomes 
unnecessary in yielding analogical conclusion. Thus, it 
could, in general, be essential in analogical reasoning to 
guess Jatt(s,p) which is not a valid formula. The ob­
jectjustification (Jobj (x,.5)) is, still, important in another 
sense, because it can be considered to express a really sig­
nificant similarity. It is not an unusual case when a really 
significant similarity is not observable. Consider a case 
of Example 2. Having a nervous system will be a suffi­
cient condition for an object to feel pain. thus, whether 
an object has a nervous system is a significant factor in 
making a conjecture on feeling pain. In this case, how­
ever, we could, without dissection. not obtain a direct 
evidence which shows that Tacitus and Btutus have ner­
vous systems, while we obtain only a circurnstantial evi­
dence that the both feel pain when they are cut. Thus, 
the similarity-based conjecture is to guess such a really 
significant but implicit similarity, the object justification 
(Jobj ( x, s)), from an observed similarity ~(x, s). 

To summarize, a logical analysis of analogy could draw 
conclusions as follows. 

Analogical reasoning is possible only if a certain ana­
logical prime rule is a genuine theorem of a given theory 

and the process of analogical reasoning can be divided 
into the following 3 steps: 1) the attribute justification 
part of the rule is satisfied by EC from example-based in­
formation. 2) the object justification part of the rule is 
satisfied by SC from similarity-based information, and, 
3) from similarity-based information and the analogy 
prime rule specialized by the two preceding steps, an 
analogical conclusion is obtained by deduction. 

A question remains unclear, that is, what inference 
is EC and what SC? Though we cannot identify the 
mechanism underlying each of the conjectures, we can 
propose a (generally) non-deductive inference system as 
their candidates. The next section shows this. 

3 Non-deductive Inference for 
Analogy 

This section explores a type of generally non-deductive 
inference by which a conjecture G is obtained from a 
given theory A with additional information K. 

Generally speaking, what properties should be satis­
fied by a, generally, non-deductive inference? It might 
be desirable that a non-deductive inference satisfies at 
least the following conditions. First, it should subsume 
deduction, that is, any deductive theorem is one of its 
theorems, because any deductive conclusion would be 
desirable. Secondly, any conclusion obtained by it must 
be able to be used deductively, that is, from such a con­
clusion, it should be possible to yield more conclusions 
using, at least, deduction. And, thirdly, any conclusion 
obtained must be consistent with given information. We 
define a class of inference systems which satisfy the above 
three conditions. 

Definition 2 An inference system under a theory A 
(written ~A) is deductively expansible if the following 
conditions are satisfied. For any set of sentences A and 
f{ and any sentences G and H, 

i) Subsuming deduction: 

if A, f{ f-- G then K ~A G. 

ii) Deductive usefulness: 

if f{ ~A G and A,K,G f-- H. then K ~A H. 

iii) Consi.5tency: 

if K ~A G and AUK Z.5 consistent, then 
AuK U {G} is consistent. 

The following inference system is an example of a de­
ductively expansible system. 



Definition 3 G is a conjecture from A based on J{ by 
(atomic) circumstantial reasoning (written J{ ~~ G) 2. 

iff 

i) A,K r G, or 

ii) A,E r G 
if there exists a minimal set of atomic formulas3 E 
s.t. A, E r K. and Au Eis consistent if 
AUK is consistent4 . 

Proposition 1 
If K ~A G and K, G r.-~ H, then I{ r.-A H. 

Corollary 1 If K r.-: G. then K ~A G. 

Corollary 1 shows that circumstantial reasoning is de­
ductively expansible, and proposition 1 (together with 
the corollary) shows that inference done by multiple ap­
plications of circumstantial reasoning is also deductively 
expansible. 

Circumstantial reasoning (K ~: G) implies a very 
general and useful inference class in that so many types 
of inference used in AI can be considered as circumstan­
tial reasoning. Deduction and abduction, for example, 
are obviously circumstantial reasoning. Moreover, if we 
loosen the condition "atomic formulas" to "clauses", in­
ductive learning from examples is the case where A is 
empty in general, K is "examples" and G is inductive 
knowledge obtained by "learning,,5 6 

Now, we assume that both EC and SC are circumstan­
tial reasoning, but based on different information. Then, 
we can see analogical reasoning in more detaiL 

Let an analogy prime rule w.r.t. < ~(x,s);II(x,p) > 
be a theorem of A. Then, when example-based informa­
tion, ~(B, S) /\ II(B, P), is introduced, by circumstan­
tial reasoning from the prime rule, some justifications are 
satisfied, that is, 

'L-(B,S) 1\ II(B,P) r-: Jatt(S,P) 1\ Jobj(B,S), (18) 

which concludes a specialized prime rule, 

2Circumstantial reasoning is essentially equivalent to "abduc­
tion" + deduction [13, 15]. However, "abduction" has many defi­
nitions and various usages in different contexts, so we like to intro­
duce a new term for the type of inference in Definition 3 to avoid 
confusion. 

3 Atoms, that is, formulas which contain only one predicate 
symbol. 

4If there exists such a minimal set of atomic formulas E, the 
case ii) involves the case i) apparently. Thus, the case i) can often 
be neglected in a usual application, for instance, if J{ is a universal 
formula which has the form I:tx.F(x), where F is quantifier-free. 
Note that a clause is universal. 

5In this case, G = E in Definition 3, which implies that G is a 
minimal set to explain "example" J{. Indeed, such minimality is 
very common in this field. . 

6Such a unified aspect of various reasoning in AI was pointed 
out by Koich Furukawa (lCOT) in a private discussion and a sim­
ilar and more intuitive view can be seen in [5]. 

509 

V:l' . ( Job j ( X , 5') 1\ ~ ( x , 5') :) IT ( x , P ) ) . ( 19) 

Even if similarity-based information 2:,(T, S) is intro­
duced. to obtain analogical conclusion II(T, P) by cir­
cumstantial reasoning, some information apart from the 
prime rule turns out to be needed in A. And, both EC 
and SC are generally needed to accomplish analogical 
reasoning. which implies that multiple application of cir­
cumstantial reasoning is necessary. Even in such a case, 
circumstantial reasoning remains worthwhile (Proposi­
tion 1). 

4 Classification of Analogy and 
Examples 

Each EC and SC has two cases; a deductive one and 
a non-deductive one. According to this measure, ana­
logical inference can be divided into 4 types. A typical 
example is shown in each class and explored. 

4.1 deductive EC + deductive SC 

Typical reasoning of this type was proposed by T .Davies 
and S.Russell [3J. They insisted that, to justify an ana­
logical conclusion and to use information of the base case. 
a type of rule, called a dete1'mination rule, should be a 
theorem of a given theory. The rule can be written as 
follows: 

Vs.p.( 3x'.('L-(x',s) 1\ II(x',p)) 

:) Vx.('L-(x,s) :) IT(.1',p)) ) (20) 

Example 1 (continued). In this example, the follow­
ing determination rule is assumed to hold under A. 

Vs,p.( 3x'.(Model(x',.s) 1\ ~raiue(;r',p)) 

:) Vx.(Model(x,s) :) l/alue(;r.p)) ) (21) 

This rule is an analogy prime rule. because 

Jobj(X,s) = 2:,(;1'.8) = Model(x.8), 
Jatt(s,p) = (:lx. Model(x,s) /\ Falue(x.p)), 
II(x,p) = Falue(x.p). 

Moreover, 

EC: 
Model(Csue , Mustang) 1\ Faiue(Csue , $3500) 

f- Jatt (Mustang,$3500), (22) 

SC: 

This illustrates that reasoning based on determination 
rules belongs to the "deductive EC + deductive SC" type 
and that it can also be done by circumstantial reasoning. 
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4.2 deductive EC 
SC 

+ non-ded uctive 

This type of analogical reasoning was explored by the au­
thor [1]. It was concluded that, once we assumed the fol­
lowing two premises for analogical reasoning, it seemed 
to be an inevitablt conclusion that analogical reasoning 
which infers P(T) from S'(T), S(B), and P(B) satisfies 
the illustrative criter'ion. And if an inference system sat­
isfies the criterion, the system is called an illustrative 

analogy. 

Premise 1: "Analogy is done by projecting properties 
(satisfied by a base) from the base onto a target." 

Premise 2: "The target is not a special object." 

Premise :2 is also assumed in this paper, it is translated 
into an arbitrary selection of a target object. Premise 
1 was translated as follows: J(B), (where J is the jus­
tification in (4) and B stands for a base object) must 
be a theorem of A, because it is essential in analQgical 
reasoning to project J(B) onto a target object T. That 
is, the non-deductive part in this reasoning is just SC 
which conjectures the property of the target object, and 
EC must be deductive. 

Example 2 (continued). By illustrative analogy, a 
target is conjectured to satisfy properties used in an 
explanation of why a base satisfies a similarity. In 
this example, to explain the phenomena of the base 
case, "Brutus feels pain when he is cut or burnt", the 
following sentences must be in A. 

'ix,i.( Nervous_Sys(x) 1\ Destructive(i) 1\ Suffer(x,-i} 

:::> FeelPain(x) ), (24) 

I\N ervousSys(Brutus) (25) 

I\Destructive(Cut) 1\ Destructive(Burn) (26) 

From (24), the following follows: 

'ix,s,p.( Nervous_Sys(x) 

I\Destructive( s) 1\ Destructive(p) 

I\(Suffer(x,s) :::> FeelPain(x)) 

:::> (Suffer(x,p) :::> FeelPain(x)) ), (27) 

which is an analogy prime rule, that is, 

Jobj(x,s) = Nervous_Sys(x), 
Jatt ( s, p) = Destructive( s) 1\ Destructil'e(p), 
E(x,s) = Suffer(x,s)::) FeeIPain(x), 
IT(x,p) = Suffer(x,p) ::) FeelPain(x). 

Jatt ( Cut, Burn) ("Both cut and burn are destruc­
tive") is a deductive theorem of A and a non-deductive 
conjecture, Jobj(Tacitus, Cut) ("Tacitus has a ner­
vous system"), is obtained by circumstantial reasoning 
from (24) based on the similarity-based information, 
Suf fer(Tacitus, Cut) ::) FeelPain(Tacitus). 

4.3 non~deductive EC + deductive 
SC 

As far as the author knows, this type of analogy has never 
been discussed. Example:3 seems to show this type of 
analogy. 

Example 3 (continued). First, let us consider what 
we know from example-based information in this case. 
From the fact that a student (StudentB) was a mem­
ber of the same club (Orch) and often neglected study 
(Study), we could find that "the orchestra club keeps 
its members very busy (BusyClub(Orch))" and that 
"activities of the club are obstructive to one's study 
(Obstructive_to( Orch, Study))". This implies that we 
knew some causal rule like "If it is a busy club and its 
activities are obstructive to something, then any member. 
of the club neglects the thing." 

'ix,.s,p.( BusyClub(s) 1\ Obstructive_to(p,s) 

I\M ember_of(x, s) 

:::> NegligenLof(x,p) ) 

Using this rule, we found the above information. 

(28) 

Thus. the above rule is assumed to be a theorem of 
A. BusyC lube Orch) and Obstructive_toe Orch, Study) 
are non-deductive conjectures and it can be obtained by 
circumstantial reasoning based on the above rule which 
is just an analogy prime rule, as follows: 

Jobj(x,s) = E(x,s) = Member_of(x,s), 
Jatt ( s, p) = BusyC lube s) 1\ Obstructive_to(p, s), 
IT(x,p) = Negligent-of(x,p). 

4.4 non-dedtlCtive EC + 
deductive SC 

nOD-

As an example of this type, we can take Example 2 again. 
We might know neither "Brutus has a nervous system" 
nor "Both cut and burn are destructive", which corre­
sponds to the case that (25) and (26) are not in A (nor 
any deductive theorem of A) in the previous Example 2. 
However, by circumstantial reasoning from (24) based on 
example-based information (" Bru t us feels pain when he 
is cut or burnt"), "Both cut and burn are destructive" 
(and "Brutus has a nervous system") can be obtain~d, 
and based on similarity-based information ("Tacitus feels 
pain when he is cut"), "Tacitus has a nervous system", a 
really significant but implicit similarity, is obtained sim­
ilarly to the previous exampie. Consequently, the ana­
logical conclusion ("Tacitus would feel pain when he is 
burnt") is derived from (27) (or (24)) together with the 
above conjectures. 



5 Conclusion and Remarks 

• Through a logical analysis of analogy, it is shown 
to be reasonable that analogical reasoning is pos­
sible only if a certain analogy primt rult is a de­
ductive theorem of a given theory. From the rule. 
together with an example-based conjecture and a 
similarity-based conjecture, the analogical conclusion 
is derived. A candidate is shown for a non-deductive 
inference system which adequately yields both con­
jectures. 

• Results shown here are general and do not depend 
on particular pragmatic languages like the purpost 
predicate [10] nor on some numeric similarity mea­
sure [20]. These results can be applied to any normal 
deductive data bases (DDB) which consist of logical 
sentences. 

Application of this analogical reasoning to DDB 
may be one of the most fruitful. It is. generally 
speaking, very difficult to build a DDB which in­
volves perfect knowledge about an item. Analogi­
cal reasoning will increase the chance of answering 
queries adequately, even when its deductive opera­
tion fails to answer. In a DDB, it is very common 
to see inheritance rules and transitivity( -like) rules, 
which have the form of the analogy prime rule, for 
instance, 

Gran-pa(x, y) : -Parent(x,z),Parent(z, y). (29) 

This is an analogy prime rule w .1'. t. < 
Parent(z, y); Gran_pa(x, y) > (z is a variable for the 
similar attribute value and x is a variable for the 
projected attribute value). Assume that a query 
"7 -Gran_pa(x, Tom)" is given to a database A which 
involves the above rule and the following facts: 

Parent(Sue, Tom). 

Gran_pa( John, Bob). 

Parent( Sue, Bob). 

(30) 

(31) 

(32) 

The database cannot answer the query q.eductively, 
because it does not know who is a parent of Sue. 
If the database uses the proposed type of analogi­
cal reasoning, it is able to guess Gran_pa( John, Tom) 
from Bob's case just because Tom is similar to Bob in 
that their parents is the same. 

Interestingly, a method which discovers an analogy 
prime rule from knowledge data-base CYC is ex­
plored independently [1 7]. Such methods make ana­
logical reasoning more common in DDB. 

• By the side effect of this analysis. it becomes 
possible to compare analogy with other reason­
ing formally which have been studied vigorously 
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in the area of artificial intelligence. Analogi­
cal reasoning differs from other reasoning, ab­
ductivt and deductive, in that analogical reason­
ing actually uses example-based information (the 
base information). Consider the difference from. 
this time. abduction in the above database case. 
Even if the database uses (ordinal) abductive rea­
soning in the query, it cannot specify an ade­
quate grandparent of Tom. the possible answer 
will be x s.t. Gran_pa(x, Tom), Parent(x, Sue), 
(:3z. )(Parent(x, z), Parent(z. Tom)), or Sue assum­
ing Parent(Sue, Sue), etc [2. 14, 18. 9]. The reason 
for this failure is that abduction tries to explain only 
the target case. 

Moreover. comparing with enumerative induction 
and cast-based reasoning (eBR) in which the use 
of examples are essential similarly to analogical rea­
soning, analogical reasoning has a salient feature in 
more strongly depending on a background knowl­
edge (a given theory). Analogy can be seen as a 
singh instance generalization as Davies and Russell 
pointed out [3]. Take an example, Example 3. From 
the analogy prime rule (28) and example-based in­
formation of an base case (StudentB), some non­
deductive inference (ex. circumstantial reasoning) 
yields a more specified analogy prime rule, 

'v'x.( Member_of(x,Orch) 

:::J NegligenLof(x,Study) ), (33) 

which is a generalization of the example-based in­
formation, 

Member _of(StudentB, Orch) 

AN egligenLof(StudentB, Study). (34) 

We should note that, in the process of this single 
instance generalization, an analogy prime rule in a 
background knowledge is used as an intermediary, 
and it might be considered the reason why analogy 
seems more plausible than a simple single instance 
generalization such that it yields (33) just from (34). 

In the research offormal inductive inference [16, 12], 
a back ground knowledge does not play such an im­
portant role. So, plenty of examples are needed un­
til a plausible conclusion is obtained. Concerning 
eBR [19], though it uses base cases like analogi­
cal reasoning and, in order to retrieve their base 
cases, it uses an index which corresponds to the 
similarity S, the index is assumed to be given in 
spite of using background knowledge. Intuitively 
speaking, these methods will be very useful when 
a background knowledge is rather poor or difficult 
to formulate. and when the background knowledge 
is extremely strong or able to be formulated per­
fectly. deduction will be most usefuL on the other 
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hand, the proposed type of analogy will be useful 
when rather strong and difficult to formulate. 

• An implementation system for this type of analogy 
has been developed. Given a theory A, a target 
T and a prqjected attribute II(x,p) (from a query, 
"? - II( T, p)"), this system finds a base B, a simi­
larity E(x, S) and a projected property II(x, P) (ie. 
"II(T, P)" is the answer of the query) by the process 
with backtracking, according to the following steps: 

1) Find a separate rule SepR s.t. A f- SepR, 
where SepR = II(x,p) :- Gatt(s,p),Gobj(X,S). 

2) Take a similar attribute E(:r,s) 
s.t. E(x,s) rv~ Gobj(X,S). 

3) Obtain the similar attribute value S 
by the side effect of a proof A f- :ls.E(T,s). 

4) Retrieve a base B and obtain the projected 
attribute value P 
by the side effect of a proof 
A f- ::Jx,p.(E(x, S) 1\ II(x,p)). 

Here, a separate rule (w.r.t. II(x,p)) is a Horn clause 
in which the head is II(x,p), and any variable of x 
and any variable of p does not appear in the same 
conjunct in the body. This system guesses success­
fully for the examples shown here, though each of 
them is translated into a set of Horn clauses. 

Significant restrictions are needed on the time com­
plexity of this process. Details of this system will 
be reported elsewhere. 
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Appendix 

Proposition 1. 
If K r.- A G and K, G r.-:t H, then K r.- A H. 

Proof of Pr<?position 1. 
For any formula G, if K r.- A G and K, G r.-: H. we 
write K r.-~ H. 

i) Subsuming deduction: 
if A, K f- H then 
(proof) 

K r.-~ H. 

K r.-A K. 
A,K f- H 
Therefore, 

(from subsuming deduction of '"r.-A ") 

=} K r.-: H. (from Definition :3 i)) 

K r--~ H. 

ii) Deducti ve usefulness: 
if K r.-~ H and A, K. H f- L. then K ~~ L. 
(proof) 
A. I{. H f- L {::} A f- K A H => L 
For any formula G s.t. K r.- A G and K. G ~~ H. 

case-i) A, K. G f- H (from K, G r.-~ H ) 
From the premises. A. K. G f- L. 
Therefore. K. G r.-: L. (from Definition :3 i)) 

case-ii) otherwise. for some minimal set of atomic 
formulas E S.t. A. E f- K A G. 
A. E f- K A H. (from]{, G ~~ H) 

Therefore. A, E f- L. 
Thus. K. G r.-: 1. 

Thus K. G ~~ 1. 

iii) Consistency: 
if K r.-~ H and AUK is consistent, then 
AuK U {H} is consistent. 
(proof) 
Au J{ is consistent. 
=} Au J{ u {G} is consistent. (from J{ ~A G) 
=} Au E is consistent. (from J\'. G ~~ H) 
=} Au]{ u {E}. (because A. E f- J{ A H) 

Corollary 1. 
If 1{ r.-~ G. then K ~A G. 

Proof of Corollary 1. 
K ~~ K (from subsuming deduction) 
If K ~A K and K. K ~~ G, then J{ ~A G. (from 
Proposition 1) 
Therefore. 

If K ~~ G, then K ~A G. 
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Abstract 

If realistic systems are to be successfully modelled and 
diagnosed using model-based techniques, a more 
expressive language than classical logic is required. In 
this paper, we present a definition of diagnosis which 
allows the use of a nonmonotonic construct, negation as 
failure, in the modelling language. This definition is 
based on the generalised stable model semantics of 
abduction. 

Furthermore, we argue that, if negation as failure is per­
mitted in the modelling language, the distinction 
between abductive and consistency-based diagnosis is 
no longer clear. Our definition allows both forms of 
diagnosis to be expressed in a single framework. It also 
allows a single inference procedure to perform abduc­
tive or consistency-based diagnoses, as appropriate. 

1 Introduction 

Many different definitions of diagnosis have been used 
in an attempt to formalise and automate the diagnosis 
process. In the so-called 'logical' approach, two frame­
works, namely the consistency-based [Reiter 1987] and 
abductive [Cox and Pietrzykowski 1986], have attracted 
a lot of attention. Typically, the modelling language 
used in these frameworks is first order logic (or some 
subset of it). In this paper we present a unified frame­
work for diagnosis which brings together these two 
styles of diagnosis, as well as providing a non-monot­
onic modelling language. 

We were primarily motivated by the need to incorporate 
negation asfailure, the non-monotonic construct in 
logic programming, into the modelling language. We 
first show the need for this construct through some 
examples, and then argue that the incorporation of 
negation as failure in the modelling language necessi­
tates the inclusion of both consistency-based and 
abductive diagnosis within the same framework. We 
then present our unified framework, which allows nega­
tion as failure in the modelling language and naturally 
incorporates both abductive and consistency-based 
diagnosis. We then show that in the special cases, our 

approach reduces to pure consistency and pure abduc­
tive diagnosis, i.e. it is a generalisation of both styles. 

Our work is similar in spirit to the work of Console and 
Torasso, [1990],[1991], but goes beyond it in many 
ways. We will compare our approach to that of Console 
and Torasso in a later section. Our proposed framework 
is based on the Generalised Stable Model semantics 
[Kakas and Mancarella 1990a] of generalised logic pro­
grams with abduction, strengthening the link between 
logic programming and diagnosis first explored in [Esh­
ghi 1990]. 

2 Consistency-based and abductive 
approaches to diagnosis 

In both consistency-based and abductive approaches, a 
set of axioms SO (called the system description) models 
the system under investigation, and a set of abnormality 
assumptions Ab={ab1 ,ab2, ... abn} represents the possible 
underlying causes of failure. A set of statements, Obs, 
represents observations of the behaviour of the system 
which are to be explained. 

In the consistency-based approach, a diagnosis is a set 
of abnormality assumptions, L\, such that 

(1) SOuOBSuL\u{ -,abkl abkE Ab-L\} is consistent. 

The consistency-based approach focuses primarily on a 
model of the system's correct behaviour. When the 
abnormality assumptions relate to the failure of the 
components of the system, it attempts to find a set of 
normality and abnormality assumptions which can be 
assigned to the system's components to give a theory 
consistent with the observations. 

In the abductive approach, a diagnosis is a set of abnor­
mality assumptions, L\, such that 

(2) SOuL\ ~ OBS 

SOuL\ is consistent. 

The abductive approach primarily models the behaviour 
of a failing system, by using fault models in the system 
description, SO. The diagnosis process consists of look-
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cl' d1 

Figure 1: A pre-charged line 

ing for a set of abnormality assumptions which, when 
adopted, will logically predict the observed faulty 
behaviour given the system description and the context 
of the observation. 

In both approaches, a diagnosis 8 is defined to be mini­
mal if there is no other diagnosis, 8', which is a proper 
subset of 8. 

3 The Diagnosis Problem 

The system description used in model-based diagnosis 
takes one of two forms. It is either a causal model, or a 
model consisting of the system's structure and the be­
haviour of individual components. In general, work on 
abductive diagnosis has focused on the former, while 
work on consistency-based diagnosis has focused on the 
latter. 

For the purposes of this paper, we adopt a specification 
of a diagnosis problem based on those used in [deKleer 
and Williams 1987] and [Reiter 1987], which uses a 
component-based approach. However, the results hold 
equally for a causal model-based approach, and for this 
reason, we adopt slightly more general language in the 
definition. 

Definition: 

A diagnosis problem consists of a triple, <SO, OBS, C> 
where; . 

(i) The system description, SO, specifies the behaviour 
of the system. 

(ii) The observation set, OBS, specifies a set of observa­
tions of the system as unit clauses. 

(iii) C consists of constants,"'cj, which represent causal 
clusters within the system. 

Causal clusters are groups of causes of abnormal system 
behaviour which it makes sense to consider together. 
Each cause, n, within the cluster, ch is modelled in SD 
with two clauses; 

eJfects_of_cause_n f-ab(cj, n). 

ab(Cj) f-ab(cj, n). 

Furthermore, if so desired, we can define emergent prop­
erties of the system which occur when none of the causes 

in cluster Cj are present, the 'good behaviour model' of 
this cluster; 

good_behaviour _model f-not ab( Cj). 

In the component-based approach, Cj represents a com­
ponent, and each cause in cluster S represents a possible 
fault model of the component. Note that the effects of a 
cause need not be defined deterministically. For exam­
ple, the 'arbitrary behaviour' mode of a component, pro­
posed in [deKleer and Williams 1989], is consistent with 
any behaviour of the component, but predicts nothing. 

The logical language adopted to represent SO can vary 
with the definition of diagnosis adopted. In this paper, 
we focus on two possible languages; classical logic, as 
adopted by Reiter [1987], and hom clauses with nega­
tion as failure, as used in the logic programming com­
munity. 

4 The need for negation as failure in the 
system description 

The desire to integrate consistency-based and abductive 
diagnosis was motivated primarily by the need to in­
clude negation as failure in our models. The following 
two examples illustrate this need: 

RAM modelling 

In order to model the behaviour of a random access 
memory cell, we needed an axiom that says: the content 
of a cell at time T is X if X was written to this cell at time 
T, and no other write operation has been performed be­
tween T and T. The most straightforward way of writing 
this is as the clause 

contents(Cell, X. T) f- written(Cell, X, I'), 
T<T, 
not over-written(Cell,I',T). 

over-written(Cell,T,T) f- written(Cell,X,T"), 
T<T"<T. 

This is an instance of the 'frame-problem' being solved 
through negation-as-failure, as explored in [Shanahan 
1989]. If we don't use negation as failure, or some othel 
non-monotonic device, we need to have axioms which 
allow us to derive -.over-written(Cell,T',T) for all cells and 
all time instants, which is very inefficient both in terms 
of speed of inference and storage required. 
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Pre-Charged Lines 

A common technique used in the computer industry to 
implement data buses is the pre-charged line. Devices 
communicate with one another using transmitters and 
receivers, all connected to a common line whose value 
floats to 1 when no transmitter is transmitting. (There are 
n lines for an n-bit wide data bus. Here we concentrate 
on one line). 

Physically, a value of 1 corresponds to high voltage, and 
a value of 0 to low voltage. In order to give the line its 
pre-charged value, it is connected to the positive power 
line by means of a pull..;up resistor. Figure 1 gives a sche­
matic of a typical pre-charged line. 

To transmit a 0, a transmitter on a line pulls the line to 
low. Since lines are pre-charged, transmitting a 1 does 
not involve any action by the transmitter. (Obviously, 
there is a bus protocol to determine which transmitter, if 
any, is transmitting at any given time. Here we ignore 
protocol issues.) 

The behaviour of pre-charged lines is best modelled by 
a default reasoning mechanism. The default value of a 
line is assumed to be 1 unless it can be proved to be O. 
Using negation-as-failure, we could represent this as: 

received_value(Line,O) ~ driven_value(Line,O). 
received_value(Line,1) ~ not driven_value(Line,O). 
driven_value(Line,O) ~ connected(Line,output(X)), 

trasmits(X,O). 
The alternative, avoiding the use of negation-as-failure, 
would be to have an axiom such as: 

,driven_value(Line,O) ~ 
VX(connected(output(X),Line)~ ,transmits(X,O)). 

However, in order to prove VX(connected(output(X),­
Line)~ ,transmits(X,O)), we would need closure axioms 
exhaustively enumerating all the transmitters on the 
line, which would be both cumbersome to write and 
inefficient to reason with. 

Full details of this modelling problem are given in [Esh­
ghi and Preist 1992]. 

5 Negation As Failure blurs the distinction 
between abductive and consistency-based 
diagnosis 

Conceptually, the processes behind abductive and con­
sistency-based diagnoses are quite different. In consist­
ency-based diagnosis, one removes normality 
assumptions until the theory regains consistency. In 
abductive diagnosis, one adds abnormality assumptions 
until the specified bad observations are provable in the 
theory. 

However, by moving to a nonmonotonic theory, we can 
use the same process to perform both styles of diagnosis. 
We use negation as failure to represent the good behav­
iour of a cluster as its default behaviour; 

behaviour ~ not ab(c) 

In a situation where the system is malfunctioning, and in 
the standard consistency-based approach we would de­
rive an inconsistency by adding normality assumptions, 
we would get an inconsistency without adding any as­
sumptions. This is because the negation as failure results 
in clusters defaulting to their 'good' behaviour model. 
Furthermore, the theory can be restored to consistency 
by adding abnormality assumptions, as in abduction, 
rather than by removing normality assumption as in the 
standard consistency-based approach. 

It is exactly because of this effect that an abductive 
framework can be used to represent both consistency­
based and abductive diagnoses. A similar approach to 
representing a component's good behaviour as its de­
fault behaviour was introduced in the context of the 
Nonmonotonic ATMS, in [Dressler 1990]. 

If we are to use negation as failure in the system descrip­
tion, as we argued we need to do in many instances, it is 
necessary to integrate abductive and consistency-based 
approaches. This is because, in a logic with negation as 
failure, consistency-based and abductive diagnoses are 
the dual of each other. By passing through a negation, 
you pass from a consistency-based problem to an abduc­
tive problem, or vice-versa. To see this, let us consider 
some simple examples; 

a) Consistency-Based diagnosis 

so: obs ~ not 9 

9 ~ ab(c) 

OBS: ,obs 

In a consistency-based diagnosis, we attempt to restore 
consistency by making assumptions so as to 'not-prove' 
a certain proposition which contradicts with the integ­
rity constraints. In the case of the above example, we 
wish to not-prove obs. However, to do this, we must 
prove the negated goal, g. Hence we want an abductive 
diagnosis of the obserVation, g. 

b) Abductive diagnosis 

so: obs ~ not 9 

9 ~ ab(c) 

OBS: obs 

In an abductive diagnosis, we wish to make assump­
tions so as to prove a certain proposition which is 
required to be true by the integrity constraints. In the 
above example, we wish to prove obs. However, to do 
this, we must fail to prove the negated goal, g. Hence, 
we want a consistency-based diagnosis for the observa­
tion -.g. 

Thus a diagnostic problem of one sort may have a diag­
nostic problem of the other sort embedded in it. So, 
when the modelling language includes negation as fail­
ure, abductive and consistency-based diagnosis cannot 



be considered in isolation from each other. It is this that 
led us to formulate this integration. 

6 The Generalised Stable Model Semantics 
for Abduction 

Various semantics have. been proposed for abduction, 
both formally and informally. Originally, an abductive 
explanation for an observation was informally defined 
as a set of assumables which, when added to a theory, al­
lowed proof of the observation. This was then formal­
ised to give a metalevel definition of abduction in [Esh­
ghi and Kowalski 1989]. 

Console et al. [1990] have used the completion seman­
tics to give a semantics to abduction in horn clause the­
ories. Recently, they have extended it to cover hierarchi­
cal logic programs [Console et al. 1991]. 

The semantics of abduction which we have chosen to 
use, however, is that provided by Kakas and Mancarella 
[1990a]. By extending the stable model semantics of 
logic programs [Gelfond and Lifschitz 1988], they give 
a semantics for abduction which holds for arbitrary gen­
erallogic programs with integrity constraints. 

Here, we briefly recall their definitions; 

Definition 1 

An abductive framework is a triple <p,A,le> where 

1) P is a set of clauses of the form H f-- L l> .. ,Lk kO 
where H is an atom and Li is a literal. 

2) A is a set of predicate symbols, the abducible predi­
cates. The abducibles, Ab, are then all ground atoms with 
predicate symbols in A. 

3) IC, the integrity constraints, is a set of closed formu­
lae. 

Hence an abductive framework extends a logic program 
to include integrity constraints and abducibles. The se­
mantics of this framework is based on the stable model 
semantics for logic programs; 

Definition 2 

Let P be a logic program, and M a set of atoms from the 
Herbrand base. Define PM to be the set of ground horn 
clauses formed by taking grdund(P), in clausal form, and 
deleting; 

(i) each clause that has a negative literal--.l in its body, 
and 1 EM. 

(ii) all negative literals --.1 in the body of clauses, where 
1 eM. 

M is a stable model for P if M is the minimal model of 

PM' 

This definition is extended to give a semantics to abduc­
tive frameworks. 
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Definition 3 

Let <P,A,IC> be an abductive framework, and L\ k atom­
seA) be a set of abducibles. Then the set M(L\) of ground 
atoms is a generalised stable model (GSM) for <p,A,le> 

iff it is a stable model for the logic program PuL\, it is a 
model for th~ integrity constraints Ie, and L\=AnM(L\). 

The above definition is an extension of that in [Kakas 
and Mancarella 1990a] to allow abducibles to appear in 
the head of a clause. As a result of this, the set of abduc­
ibles chosen as generators can be smaller than L\, the set 
of abducibles true in the generalised stable model. 

A unit clause, q, representing an observation, has an ab­
ductive explanation with hypothesis set ~ if there exists 
a generalised stable model, M(L\), in which q is true. 

Equivalently, we can say that q has an abductive expla­
nation, L\, within the abductive framework <P ,A,le> if the 
abductive framework <p,A,le+q> has a generalised sta­
ble model M(L\). Having q in the integrity constraints im­
poses the condition that q must be true in the generalised 
stable model, and hence must follow from the logic pro­
gram together with the set of abducibles chosen. 

7 Generalised Stable Models and Diagnosis 

The generalised stable model semantics for abduction 
can be applied to diagnosis by mapping a diagnosis 
problem, <SD, aBS, C>, with multiple observations, onto 
an abductive framework as follows; 

Represent the system description, SD, as a logic 
program with integrity constraints, <P,IC>. The 
integrity constraints will usually contain sen­
tences stating that observation points cannot 
take multiple values at a given time. 
Let the abducibles represent the causes within 
the clusters, {ab(ci.n)1 ciE C}, hence A = 

{ab(X,N)}. 

Intuitively, given an observation set aBS, represented 
by a set of unit clauses, we have a choice of how to use 
it. We either wish to predict it, giving an abductive diag­
nosis, or make assumptions to restore the theory to con­
sistency, giving a consistency-based diagnosis. By 
adding aBS to the integrity constraints, only models in 
which the observations are true, and hence explained by 
the system description together with selected abduci­
bles, are legal generalised stable models. Hence we get 
an abductive diagnosis. If, instead, we add aBS to the 
logic program representing the system description, then 
a set of assumptions can only be made if they are con­
sistent with the observations; i.e. the observations, sys­
tem description and assumptions cannot derive 
anything which violates the integrity constraints. This 
will give us consistency-based diagnoses. Furthermore, 
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we can partition OBS into two sets, and predict some 
observations, OBSp, while maintaining consistency with 
others, OBSe. We do this by placing OBSp in the integ­
rity constraints, and OBSe in the logic program. 

This allows us to give a definition of unified diagnosis 
as follows; 

Definition 4 

Let <SO,OBSp,OBSe,C> be a diagnosis problem, where; 

SO is a logic program with integrity constraints, <P,IC>. 

OBSp is the set of observations to be predicted by diag­
noses. 

OBSe is the set of observations which diagnoses need to 
be consistent with. 

C is the set of causal clusters in the system. 

Then; 

d is a GSM-diagnosis of <SO,OBSp,OBSe,C> iff there is 
a generalised stable model, M(d), of the abductive 
framework <PuOBSe.A,ICuOBSp>' 

where A = {ab(C,N)} represents the set of possible root 
causes of misbehaviour in SO. 

To demonstrate this, we consider a simple example 
from the medical domain, that of pericardiai tampon­
ade. The heart consists of two parts, the myocardium is 
the muscle which beats, while the pericardium is the 
protective sac which surrounds this muscle. If this sac is 
pierced, instantaneous pain occurs, which can subside 
fairly quickly. However, blood slowly flows into the 
pericardium over a period of time, increasing the pres­
sure on the myocardium. Later, the myocardium will 
become so compressed that blood does not flow round 
the arteries, even though the myocardium itself is func­
tioning perfectly. 

The model of this phenomenon is given below. For sim­
plicity, we treat time discretely, in units of hours. 

pulse_ok(T) f- normaLcardiac_contraction(T), 
not hearCcompressed(T). 

no-pulse(T) f- hearCcompressed(T) . 

hearCcompressed(T) f- ab(pericardium,pierced(T)), 
T<T-10. 

normaLcardiac_contraction(T) f-

not ab(myocardium,failure(T», 
T<T. 

ab(myocardium, failure(T». 

We give the pericardium the possible failure cause 
'pierced' at a given time, while the myocardium simply 
suffers a 'failure' of some sort. The latter is consistent 
with any behaviour of the myocardium, but only pre-

dicts a bad ecg trace. 

The above clauses form the logic program part of SO.In 
addition, we need the integrity constraints, IC. These 
simply state which observations conflict with each 
other; 

-,(pulse_ok(T) & no.J)Ulse(T». 
-,( ecg_ bad(T) & ecg-9QOd(T». 

Assume we have the observation, ooJ>Ulse(12). Let us 
consider the generalised stable models of <P,A,IC>. 

If we place the observation in the logic program as a 
unit clause, any set of abducibles can be assumed as 
long as they do not violate the integrity constraints - i.e. 
they must not generate a stable model in which pul­
se_ok(12) is true. If we assume nothing, the resulting 
stable model contains pulse_ok(12) as true, resulting in a 
conflict. There are two possible (minimal) ways to 
restore consistency. We can assume ab(myocardium,fail­
ure(1 0» 1, and cease to contain normaLcardiac_contrac­
tion(12) in the stable model. Alternatively, we assume 
ab(pericardium,pierced(2» 1, which predicts heart com­
pression at time 12. The resulting stable model will 
therefore not contain pulse_ok(12), and so be a legiti­
mate generalised stable model of <Pu{noJ)ul­
se(12)},A,IC>. 

If, instead, we place the observation in the integrity 
constraints, Ie, we are restricted to stable models which 
contain nOJ)ulse(12). In this case, only by assuming 
ab(pericardium,pierced(2» do we generate a stable model 
which contains nOJ)ulse(12). As this also satisfies IC, it 
is a legitimate GSM for <P,A,ICu{noJ)ulse(12)}>. 

Hence, by making a choice of where to place the obser­
vation, we can generate either consistency-based or 
abductive diagnoses. Furthermore, if we have a second 
observation, ecg-1)ood(12), we can choose to treat it in a 
different way from the first. Let OBSp = {noJ)ulse(12)} 
and OBSe = {ecQ-1)ood(12)}. In this case, the only (mini­
mal) GSM of <PuOBSe.A,ICuOBSp> is that generated 
by ab(pericardium, pierced(2». However, if we swap 
OBSp and OBSe, the only (minimal) GSM is that gener­
ated by ab(myocardium, failure(10». 

Note how the model uses negation-as-failure to handle 
the frame problem. If we used classical negation 
instead, it would be necessary to have extra clauses to 
predict nOCheart_compressed at all relevant times, 
resulting in a larger, less understandable, and less effi­
cient model. 

8 Abductive and consistency-based 
diagnosis as special cases 

If we restrict our attention to the traditional definitions 
of diagnosis, we can show that our definition is equiva­
lent to these under certain conditions. 

1 Or, of course, at any other appropriate time instant. 



8.1 Abductive Diagnoses as Generalised 
Stable Models 
If all the observations are to be predicted in the abduc­
tive sense, and the system description contains only 
hom clauses, our definition of diagnosis reduces to the 
standard definition of abduction given in section 1. This 
is achieved as follows: 

Given an abductive diagnosis problem <SO.OBSp.C>, 
where SO is a hom-clause theory, divide the system 
description into a set of definite clauses, P, and a set of 
denials, O. Let A be the set of abducibles. 

It is easy to show that abductive diagnoses of SO 
according to formula (2) correspond to generalised sta­
ble models of the framework <P.A.ICuOBSp>' 

8.2 Consistency-Based Diagnoses as 
Generalised Stable Models 
For a certain class of theories, namely almost-horn the­
ories, we show that our definition of diagnosis is equiv­
alent to the traditional definition of consistency-based 
diagnosis given in [Reiter 1987]. An almost-hom theory 
is a theory in which negation is used only to represent 
the negation of certain predicates. In the context of our 
theorem, these correspond to the abnormality assump­
tions. 

Definition 5 

A clause is said to be almost-Horn with respect to A, if, 
when in disjunctive normal form, it contains at most 
one positive literal with a predicate symbol not in A. 

Theorem 

Let <SO. OBSc'C> be a consistency-based diagnosis 
problem, with SO a theory which is almost-hom with 
respect to A={ab}. 

Then define the logic program with integrity con­
straints, SO·=<P.IC>, as follows; 

Let aj E atoms{A), and P. qj ~ atoms{A). 

1. For every clause of the form 
pr -,al,-,a2 ... -,ak.ak+l .... am.ql,q2 ... 'qn in SO, there is a 
program clause 

pr not al,not a2 ... not ak.ak+l .... am.q1,q2, .. 'qn in P. 

2. For every clause of the fctrm 
alva2 ... vakv-,ak+lv ... v-,am-,q1v-,q2v .. v-,qn in SO there is 
an identical clause in IC. 

Then; 

o is a consistency-based diagnosis of <SO. OBSc.C> 
according to formula (1) 

¢:> D is a GSM-diagnosis of <SO'. 0. OBSc.C> 

The proof of this theorem is available in an extended 
version of this paper, available from the authors. 

This theorem shows that, if negation is used only to rep-
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resent the normality assumptions in the system, -,ab, 
then the nonmonotonic definition of diagnosis given by 
us is equivalent to the monotonic definition given in 
[Reiter 1987]. However, if negation is used elsewhere 
in the theory, the two definitions diverge. The classical 
consistency-based definition requires explicit represen­
tation of all negative information. The GSM-diagnosis, 
however, will make the closed-world assumption, and 
assume information is false unless it can be proved oth­
erwise. 

9 Comparison with Console & Torasso [2] 

Console & Torasso have defined a framework for a gen­
eral abduction problem. This framework allows a spec­
trum of diagnosis styles to be represented within it, 
including the pure consistency-based and abductive 
styles described above. 

They divide the observations into two sets. One set, 
OBSa' is to be explained by the assumptions, while the 
other set, OBSe, must be consistent with the assump­
tions. They then define two sets; 

r=OBSa· 

'I' = { -,f{x) I f{Y)E OBSeo x:;t:y} 

A diagnosis is then a set of abducibles which, when 
added to the theory, allows prediction of all observa­
tions in r, and is consistent with the negative literals in 
'1'. 

Our definition is more powerful in several ways. 

It extends the definition of Console and Toras­
so from hom-clause theories to general logic 
programs with integrity constraints. This gives 
a sophisticated and expressive language for 
modelling, which includes negation as failure. 
The inclusion of the consistency-based obser­
vations in the object level, rather than their ne­
gations in the integrity constraints, means that 
these can be used easily during inference. This 
can reduce the time to find a conflict, by using 
'backwards simulation' of components. In 
some cases, such as the example documented in 
[van Soest et al. 1990] , certain diagnoses can­
not be found without access to the observations 
in this way. 

Within this framework, it is possible to define 
minimal diagnoses model-theoretically. We 
will expand on this in section 10. 

Placing the consistency-based observations at the object 
level potentially gives us more efficient inference. 
However, to do this in the context of joint diagnoses can 
lead to problems. 

It may be possible to conclude that an abductive obser-
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vation is true, based on the adding of a consistency­
based observation to the theory alone; 

SD: obs1 -7obs2 

OBSa :obs2 

OBSc:obs1 

By adding obs1 to the system description, we can con­
clude that obs2 is true. Whether this is legitimate 
depends on how we interpret the consistency-based 
obselVations. If we consider them true, but not neces­
sarily explainable, then this is legitimate. This is the 
case in Reiter's formalisation of diagnosis, and also in 
the case of the setting factors of Reggia et al. [1983]. 
However, if we consider them not necessarily true, 
merely not false, then this is unacceptable. In such cir­
cumstances, it is necessary to restrict the model so that 
consistency-based obselVations do not appear in the 
body of clauses, or use the approach proposed by Con­
sole and Torasso. 

10 Minimality 

We now focus attention on component-based diagnosis, 
and consider the problem of minimal diagnoses. We 
wish to restrict our attention to those diagnoses which 
contain a minimal number of failing components. 

To do this, we introduce minimal generalised stable 
models; 

Definition: 

A general stable model, M(.1), for an abductive frame­
work,<P,A,IC>, is minimal if there is no other GSM, 
M(.1'), such that.1'c.1. 

Hence, a minimal general stable model contains a mini­
mal set of assumptions which allow the consequences of 
the logic program P to satisfy the integrity constraints, 
IC. Note that, because abductive frameworks are non­
monotonic, this does not imply that any superset of .1, <1>, 

will have a GSM, M(<1». 

If, in our diagnosis framework, we have a 1-1 corre­
spondence between a hypothesised failed component 
and an abducible being assumed in the abductive frame­
work, then minimal general stable models will corre­
spond to minimal diagnoses. To do this, we must impose 
two restrictions on the relationship between the frame­
works; 

(i) There must be no abducible representing the correct 
behaviour of a component. This must instead be a de­
fault behaviour which is used in the absence of abduci­
bles referring to the faulty behaviour of a component. 

(ii) It must be illegal to make more than one assumption 
about a component's behaviour at a time. 

Note that the second condition does not force fault 
modes to be mutually exclusive in real-life, merely that 

they must be mutually exclusive logically. This can eas­
ily be achieved by adding an integrity constraint forbid­
ding a component to have two modes; 

false ~ ab(ci,mjl)' ab(ci,mj2), mjl"",mj2. 

The framework provided by Console and Torasso satis­
fies the second of these conditions, but not the first. Be­
cause they work in a monotonic framework, it is not pos­
sible to represent the correct behaviour of a component 
as the default behaviour; instead, it must be explicitly as­
sumed that a component behaves correctly. 

As a result of this, they must specify a semantic minimi­
sation criterion; a diagnosis is minimal if it contains a 
minimal set of abducibles corresponding to faulty be­
haviour. We, however, can specify a model theoretic cri­
terion; 

A diagnosis, .1, is minimal if its corresponding GSM, 
M(.1), is a minimal GSM. 

11 Calculating Diagnoses 

By providing a uniform model-theoretic framework for 
consistency-based, abductive and joint diagnoses, we 
have also provided a method for a uniform implenienta­
tion. We simply need an algorithm for generating the 
minimal generalised stable models of an abductive 
framework, and we can use this for performing a variety 
of diagnosis tasks. . 

Much work has been carried out on the generation of 
stable models, and several efficient algorithms exist. 
However, as general stable models are a newer innova­
tion, these results have yet to be fully exploited and 
extended to the GSM case. Currently, the state of the art 
in GSM generation is provided by Satoh and Iwayama 
[1991]. This work, however, has the drawback that it 
does not produce minimal GSMs. 

Traditionally, in the abductive community, top-down 
algorithms have been used which tend to generate mini­
mal solutions, as they avoid making irrelevant assump­
tions. (e.g. [Cox and Pietrzykowski 1986] [Kakas and 
Mancarella 1990b]) However, non-minimal abductive 
diagnoses are still acceptable in the model-theoretic 
semantics, and can be generated by the algorithms. 
Similarly, in the diagnosis community, generation of 
minimal diagnoses has tended to be a consequence of 
the algorithm selected (e.g. the ATMS in [deKleer and 
Williams 1987]) rather than a model-theoretic restric­
tion. 

However, Eshghi [1990] proposes an alternative 
approach. He generates a theory in which minimal diag­
noses correspond exactly to the stable models of the 
theory. This means that non-minimal diagnoses are 
excluded by the semantics, rather than the algorithm. 
By extending these results beyond the almost-horn case, 
we are able to transform an abductive framework into a 



logic program. The stable models of this logic program 
correspond exactly to the minimal generalised stable 
models of the abductive framework. This means that 
minimality is brought into the theory as a necessary 
property of each solution, rather than being a selection 
criterion between solutions. This work is currently in 
progress. 

As a result of this, a wider variety of literature can be 
used to select appropriate and efficient algorithms, 
rather than being restricted to algorithms which have 
been developed specifically for the task of diagnosis. 

12 Conclusions 

By moving to a nonmonotonic logical framework, it is 
possible to bring abductive and consistency-based diag­
nosis together, and use the same inference method to 
perform both. We have done this by using generalised 
stable models to provide the semantics, which provides 
us with a rich and expressive modelling language. It 
also gives a link between diagnosis and logic program­
ming, allowing application of theoretical and practical 
logic programming results to the domain of diagnosis. 
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Abstract 

A forward-chaining hypothetical reasoner with the 
assumption-based truth maintenance system (ATMS) 
has some advantages such as avoiding repeated proofs. 
However, it may prove subgoals unrelated to proofs of 
the given goal. To simulate top-down reasoning on 
bottom-up reasoners, we can apply the upside~down 
meta-interpretation method to hypothetical reasoning. 
Unfortunately, when programs include negative clauses, 
it does not achieve speedups because checking the consis­
tency of solutions by negative clauses should be globally 
evaluated. This paper describes a new transformation 
algorithm of programs for efficient forward-chaining hy­
pothetical reasoning. In the transformation algorithm, 
logical dependencies between a goal and negative clauses 
are analyzed to find irrelevant negative clauses, so that 
the forward-chaining hypothetical reasoners based on the 
upside-down meta-interpretation can restrict consistency 
checking of negative clauses to those relevant clauses. 
The transformed program has been evaluated with a 
logic circuit design problem. 

1 Introduction 

Hypothetical reasoning [Inoue 88] is a technique for prov­
ing the given goal from axioms together with a set of hy­
potheses that do not contradict with the axioms. Hypo­
thetical reasoning is related to abductive reasoning and 
default reasoning. 

A forward-chaining hypothetical reasoner can be con­
structed by simply combining a bottom-up reasoner 
with the assumption-based truth maintenance system 
(ATMS) [de Kleer 86-1] (for example [Flann et al. 87, 
Junker 88]). We have implemented a forward-chaining 
hypothetical reasoner [Ohta and Inoue 90], called APRI­
COT /0, which consists of the RETE-based inference 
engine [Forgy 82] and the ATMS. With this architec­
ture, we can reduce the total cost of the label compu­
tations of the ATMS by giving intermediate justifica­
tions to the ATMS at two-input nodes in the RETE­
like networks. On the other hand, hypothetical rea-

soning based on top-down reasoning has been proposed 
in [Poole et al. 87, Poole 91]. Compared with top-down 
(backward-chaining) hypothetical reasoning, bottom-up 
(forward-chaining) hypothetical reasoning has the ad-' 
vantage of avoiding duplicate proofs of repeated subgoals 
and duplicate proofs among different contexts. Bottom­
up reasoning, however, has the disadvantage of proving 
unnecessary sub goals that are unrelated to the proofs of 
the goal. 

To avoid the disadvantage of bottom-up reasoning, 
Magic Set method [Bancilhon et al. 86] and Alexander 
method [Rohmer et al. 86] have been proposed for de­
ductive database systems. Recently, it is shown that 
Magic Set and Alexander methods are interpreted as 
specializations of the upside-down meta-interpretation 
[Bry 90). The upside-down meta-interpretation has been 
extended to abduction and deduction with non-Horn 
clauses in [Stickel 91]. His abduction, however, does not 
require the consistency of solutions. 

Since the consistency requirement is crucial for some 
applications, we would like to make programs in'dude 
negative clauses for our hypothetical reasoning. When 
programs include negative clauses, however, the upside­
down meta-interpretation method does not achieve 
speedups because checking the consistency of solutions 
by ,negative clauses should be globally evaluated. 

We' present a new transformation algorithm of pro­
grams for efficient forward-chaining hypothetical reason­
ing based on the upside-down meta-interpretation. In 
the transformation algorithm, logical dependencies be­
tween a goal and negative clauses are analyzed to find 
irrelevant negative clauses, so that the forward-chaining 
hypothetical reasoners based on the upside-down meta­
interpretation can restrict consistency checking of nega­
tive clauses to those relevant clauses. The transformed 
program has been evaluated with a logic circuit design 
problem. 

In Section 2, our hypothetical reaso~ing is defined with 
the default proofs [Reiter 80T. In Section 3, the outline 
of the ATMS is sketched. Section 4 shows the basic algo­
rithm for hypothetical reasoning based on the bottom-up 
reasoner MGTP [Fujita and Hasegawa 91) together with 



the ATMS. Section 5 presents two transformation algo­
rithms based on the upside-down meta-interpretation. 
One is a simple transformation algorithm, the other is 
the transformation algorithm with the abstracted depen­
dency analysis. We have implemented the hypothetical 
reasoner and these program transformation systems, and 
Section 6 shows the result of an experiment for the evalu­
ation of the transformed programs. In Section 7, related 
works are considered. 

2 Problem Definition 

In this section, we define our hypothetical reasoning 
based on a subset of normal default theories [Reiter 80]. 
A normal default theory (D, W) and a goal G are given 
as follows: 

• W: a set of Horn clauses. 

A Horn clause is represented in an implicational 
form, 

(1) 

or 
(2) 

Here, ai (1 ~ i ~ nj n 2:: 0) and /3 are atomic 
formulas, and 1.. designates falsity. Function sym­
bols are restricted to O-ary function symbols. All 
variables in a clause are assumed to be universally 
quantified in front of the clause. Each Horn clause 
has to be range-restricted, that is, all variables in 
the consequent /3 have to appear in the antecedent 
a1 /\ •.. /\ an. A Horn clause of the form (2) is called 
a negative clause. 

• D: a set of normal defaults. 

A normal default is an inference rule, 

a:/3 

73' (3) 

where a, called the prerequisite of the normal de­
fault, is restricted to a conjunction a1 /\ ... /\ an of 
atomic formulas and /3, called its consequent, is re­
stricted to an atomic formula. Function symbols are 
restricted to O-ary function symbols. All variables in 
the consequent /3 have to appear in the prerequisite 
a. A normal default with free variables is identified 
with the set of its ground instances. The normal 
default can be read as " if a and it is consistent to 
assume /3, then infer /3". 

• goal G: a conjunction of atomic formulas. 

All variables in G are assumed to be existentially 
quantified. 
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Let ~ be the set of all ground instances of the normal 
defaults of D. A default proof [Reiter 80] of G with re­
spect to (D, W) is a sequence ~o" .. ,~k of subsets of 
~ if and only if 

1. WU CONSEQUENTS(~o) f- G, 
2. for 1 ~ i ~ k, 

Wu CONSEQUENTS(~i) f­
PREREQUISITES(~i_1)' 

3. ~k = 0, 
4. WUUf=oCONSEQUENTS(~i) is consistent, 

where 
PREREQUISITES(~i_d == /\ a 

for (a : /3//3) E ~i-1 and 

CONSEQUENTS(~i) == {/3 I (a: /3//3) E ~d· 

A ground instance GO of the goal G is an answer to G 
from (D, W) if 

k 

W U U CONSEQUENTS(~i) F GO, 
i=O 

where the sequence ~o"'" ~k is a default proof of 
G with respect to (D, W). If GO is an answer to 
G from (D, W), 0 is an answer substitution for G 
from (D, W). A support for an answer GO from 
(D, W) is Uf=o CONSEQUENTS(~i)' where the se­
quence ~o" .. ,~k is a default proof of GO with respect 
to (D, W). For an answer GO from (D, W), the mini­
mal supports for GO from (D, W), written as MS(GO), 
is the set of minimal elements in all supports for GO from 
(D, W). The solution to G from (D, W) is the set of all 
pairs (GO, MS(GO)), where GO is an answer to G from 
(D, W) and MS(GO) is the minimal supports for GO. 
The task of our hypothetical reasoning is defined to find 
the solution to a given goal from a given normal default 
theory. 

3 ATMS 

The ATMS [de Kleer 86-1] is used as one component of 
our hypothetical reasoner. The following is the outline 

. of the ATMS. 
In the ATMS, a ground atomic formula is called a da­

tum. For some datum N, r N designates an assumption. 
The ATMS treats both 1.. and r N as special data. The 
ATMS represents each datum as an ATMS node: 

(datum, label, justifications). 

Justifications correspond to ground Horn clauses and are 
incrementally input to the ATMS. Each justification is 
denoted by: 
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where Ni and N are data. Each datum Ni is called an 
antecedent, and the datum N is called a consequent. In 
the slot justifications, the ATMS records the set of an­
tecedents of justifications whose consequents correspond 
to the datum. 

Let H be a current set of assumptions. An assumption 
set E ~ H is called an environment. When we denote 
an environment by a set of assumptions, each assumption 
fN is written as N by omitting the letter f. Let J be a 
current set of justifications. An environment E is called 
nogood if JuE derives .1-. The label of the datum N is the 
set of environments {E1 ,···, Ej, ... , Em} that satisfies 
the following four properties [de Kleer 86-1]: 

1. N holds in each E j (soundness), 

2. every environment in which N holds is a superset of 
some Ej (completeness), 

3. each Ej is not nogood (consistency), 

4. no Ej is a subset of any other (minimality). 

If the label of a datum is not empty, the datum is be­
lieved; otherwise it is not believed. A basic algorithm 
to compute labels [de Kleer 86-1] is as follows. When 
a justification is incrementally input to the ATMS, the 
ATMS updates the labels relevant to the justification in 
the following procedure. 

Step 1: Let L be the current label of the consequent 
N of the justification and Li be the current label 
of the i-th antecedent Ni of the justification. Set 
L' = L U {x I x = Ui:l Ej , where Ei E Ld. 

Step 2: Let L" be the set obtained by removing no­
goods and subsumed environments from L'. Set the 
new label of N to L". 

Step 3: Finish this updating if L is equal to the new 
label. 

Step 4: If N is -1, then remove all new nogoods from 
labels of all data other than -1. 

Step 5: Update labels of the consequents of the 
recorded justifications which contain N as their an­
tecedents. 

4 Hypothetical Reasoner with 
ATMS and MGTP 

The MGTP [Fujita and Hasegawa 91] is a model gener­
ation theorem prover for checking the unsatisfiability of 
a first-order theory P. Each clause in P is denoted by: 

where ai(l :S; i :S; n;n ~ 0) and {3;(1 ~ j ~ m;m ~ 0) 
are atomic formulas and all variables in {31 V ... V {3m 
have to appear in al 1\ ... 1\ an. Each clause in P is 

. translated into a KL1 [Ueda and Chikayama 90] clause. 
Then, model candidates are generated from the set of 
KL1 clauses. The MGTP works as a bottom-up reasoner 
on the distributed-memory multiprocessor called Multi­
PSI. 

As shown in Figure 1, we can construct a hypotheti­
cal reasoner by combining the MGTP with the ATMS. 
The normal default theory (D, W) i~ translated into a 
program P, 

P == { al 1\ ... 1\ an ---+ assume({3) I 
(al 1\ ... 1\ an : {3 / {3) ED} U W, 

where assume is a metapredicate not appearing any­
where in D and W. 

Infer~nce Engine Justifications 
ATMS 

MGTP Beliefs 

Figure 1: Forward-Chaining Hypothetical Rea­
soner with ATMS and MGTP 

proced ure R( G, P) : 
begin 

Bo:= 0; 
Jo := { (:::} {3) I (---+ {3) E P } 

U { (f.6 :::} {3) I (---+ assume({3)) E P }; 
s:= 0; 
while Js -1= 0 do 

begin 
s := s + 1; 
Bs := UpdateLabels(Js_1 , AT MS); 
Js := GenerateJustifications(Bs, P, B s- 1 ) 

end; 
Solution := 0; 
for each () such that G() E Bs do 

begin 
LGe := GetLabel(G(),ATMS); 
Solution := Solution U {(G(), LGe)} 

end; 
return Solution 

end. 

Figure 2: Reasoning Algorithm with ATMS and 
MGTP 

The reasoning procedure R(G,P) for the MGTP with 
the ATMS is shown in Figure 2. The reasoning proce-



dure consists of the part for UpdateLabels - Generate­
Justifications cycles and the part for constructing the 
solution. The UpdateLabels - GenerateJustifications cy­
cles are repeated while Is is not empty. The ATMS 
updates the labels related to a justification set l s- 1 

given by the MGTP. The ATMS returns the set Bs 
of all the data whose labels are not empty after the 
ATMS has updated labels with Is-I. The procedure 
U pdateLabels( Is-I, AT M S) returns a believed data set 
Bs. The MGTP generates each set Is of justifications 
by matching elements of Bs with the antecedent of ev­
ery clause related to new believed data. The procedure 
Generate1ustifications(Bs , P, B s - 1 ) returns a new jus­
tification set Is. If any element in (Bs \ B s- 1 ) can match 
an element of the antecedent of any (0'.1 I\. ... I\. an ~ X) 
in P and there exists a ground substitution ~ for all ai 

such that ai~ E B s , then Is is as follows. 

• (al~'···' an~, f,Bu ~ f3~) E Is if X = assume(f3). 

The procedure GetLabel(GO,ATMS) returns the label 
of GO and is used in constructing the solution. Note 
that the label of GO corresponds to the minimal sup­
ports for GO. The hypothetical reasoner with the ATMS 
and the MGTP can avoid duplicate proofs among differ­
ent contexts and repeated proofs of subgoals. However, 
there may be a lot of unnecessary proofs unrelated to the 
proofs of the goal. 

5 Upside-Down 
Meta-Interpretation 

5.1 Simple Transformation Algorithm 

Bottom-up reasoning has the disadvantage of proving 
unnecessarily subgoals that are not related to proofs of 
the given goal. We introduce a simple transformation 
of a program P on the basis of the upside-down meta­
interpretation for speedups of bottom-up reasoning by 
incorporating goal information. A bottom-up reasoner 
interprets a Horn clause 

in such a way that the fact f3~ is derived if facts 
al~,· .. ,an~ are present for some substitution~. On 
the other hand, a top-down reasoner interprets it in such 
a way that goals al~,·· . ,an~ are derived if a goal f3~ 
is present, and fact f3~ is derived if both a goal f3~ and 
facts al~,···, an~ are present. We transform the Horn 
clause 

into 
goal(f3) ~ goal(ai) 

for every ai (1 ~ i ~ n) and 

goal(f3) I\. al I\. ... I\. an ~ 13, 
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then a bottom-up reasoner can simulate top-down rea­
soning. Here, goal is a metapredicate symbol which does 
not appear in the original program P. After some facts 
related to the proofs of the goal have derived with the 
upside-down meta-interpretation, those facts may derive 
contradiction with bottom-up interpretation of the orig­
inal program. Thus, we transform each negative cla~se 

into 

and 
~ goal(ai) 

for every ai (1 ~ i ~ n). This means that every subgoal 
related to negative clauses is evaluated. 

Note that (goal(f3) ~ goal(ai)) or (~ goal(ai)) may 
not be satisfy the range-restricted condition. We have 
some techniques which make every clause in transformed 
programs range-restricted. Here, we take a very simple 
technique in which only the predicate symbols are used 
as the arguments of the metapredicate goal. When, is 
an atomic formula, we denote by 1 the predicate symbol 
of ,. The algorithm T1 as shown in Figure 3 transforms 
an original program P into the program P in which the 
top-down information is incorporated. The solution to 
G from T1 (G, P) is always the same as the solution to G 
from P because all subgoals related to negative clauses 
as well as the given goal are evaluated and every label of 
goal (;8) for any atomic formula 13 is {0}. 

For example, consider a program, 

Pb = { ~ penguin(a), 
penguin(X) ~ bird(X), 
bird(X) ~ assume(fly(X)), 
fly(X) I\. notfly(X) ~ .1.., 
penguin(X) ~ notfly(X) }. 

By the simple transformation algorithm, we get 

T1(fly, 
{ 

u { 

Pb) = 
goal(penguin) ~ penguin(a), 
goal(bird) I\. penguin(X) ~ bird(X), 
goal(bird) ~ goal(penguin), 
goal(fly) I\. bird(X) ~ assume(fly(X)), 
goal(fly) ~ goal(bird), 
fly(X) I\. notfly(X) ~ .1.., 
~ goal(fly), 
~ goal(notfly), 
goal(notfly) I\. penguin(X) ~ notfly(X), 
goal(notfly) ~ goal(penguin) } 
~ goal(fly) }. 
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Next, consider the goal bird(X). Then, the transformed 
program Tl(bird, Pb) is the program 

Tl(bird, Pb) = { ... } U {-+ goal(bird) }, 

where only the last element (-+ goal(Jly)) of Tl(Jly, Pb) 

is replaced with (-+ goal(bird)). Even if the goal 
is bird(X), both goal(Jly) and goal(notfly) are eval­
uated because { ... } includes (-+ goal(Jly)) and (-+ 

goal(notfly)) for the negative clause. Then, the compu­
tational cost of R( bi rd (X), Tl (bi rd, Pb)) is nearly equal 
to the cost of R(Jly(X),Tl(Jly,Pb)). 

procedure Tl(C, P) : 
begin 

P:= 0; 
for each (al 1\ ... 1\ an -+ X) E P do 
begin 

if X =..L then 
begin 
P : = P U {al 1\ ... 1\ an -+ ..L}; 
for j := 1 until n do 
P := P U {-+ goal(aj)} 

end 
else if X = assume(,8) then 

begin 
P := P U {goal(fJ) 1\ al 1\ .. . 1\ an -+ assume(,8)}; 
for j:= 1 until n do 

P := P U {goal(fJ) -+ goal( aj)} 
end 

else if X =,8 then 
begin 
P := P U {goal(fJ) 1\ al 1\ ... 1\ an -+ ,8}; 
for j:= 1 until n do 
P := P U {goal(fJ) -+ goal(aj)} 

end 
end; 

P := P U {-+ goal( C)}; 
return P 

end. 

Figure 3: Simple Transformation Algorithm Tl 

5.2 Transformation Algorithm with 
. Abstracted Dependency Analysis 

In this subsection, we describe a static method to find 
irrelevant negative clauses to evaluation of the goal. If 
we can find such irrelevant negative clauses, for every 
antecedent ai of each irrelevant clause, we do not need to 
add (-+ goal(ai)) into the transformed program. We try 
to find them by analyzing logical dependencies between 

the goal and each negative clause at the abstracted level. 
We do not care about any argument in the abstracted 
dependency analysis. 

When, is an atomic formula, we denote by the propo­
sition i the predicate symbol of ,. For each negative 
clause C, the proposition false(C) is used as the iden­
tifier of C. For every (a -+ ass u me (,8) ), fJ is called an 
assumable-predicate symbol. For any environment E, its 
abstracted environment (denoted by E) is { f,B I f j3 E E}. 
The abstracted justifications with respect to P is defined 
as: 

J=. {(al, .. ·,an,f,a=}fJ) I 
(al 1\ ... 1\ an -+ assume(,8)) E P} 

U {( aI, ... , an =} fJ) I (al 1\ ... 1\ an -+ ,8) E P} 
U {(a!"", an =} false(C)) I 

C = (al 1\ ... 1\ an -+ ..L), C E P}. 

Let .ii be the set of propositions appearing in J. Note 
that .ii consists of all predicate symbols in P and all 
f alse( C) for C E P. For each proposition N in .ii, we 
compute a set of abstracted environments on which N 
depends. Now, we show an algorithm to compute the 
set of abstracted environments. This algorithm is ob­
tained by modifying the label-updating algorithm shown 
in Section 3. The modified points are as follows. 
1. Replace Step 2 with 

Step 2': Set the new label of N to L'. 
2. Remove Step 4. 
Every proposition in .ii is labeled with the set of ab­
stracted environments obtained by applying the modi­
fied algorithm to the abstracted justifications J. This 
label is called the abstracted label of the proposition. 
The system to compute the set of abstracted environ­
ments for each proposition is called an abstracted depen­
dency analyzer. The reasons why we have to modify the 
label-updating algorithm are as follows. Firstly, in the 
abstracted justifications, every 1. is replaced with the 
proposition false(C) for the negative clause C, so that 
each abstracted label is always consistent. Thus, we do 
not need Step 4. Secondly, each abstracted label may 
not be minimal because we replace Step 2 with Step 2'. 
Suppose that every abstracted label is minimal. Then, 
the theorem we present below may not hold. For exam­
ple, let 

Pe = { -+ p(a), -+ p(b), -+ q(b), q(X) -+ t(X), 
p(X) -+ assume(r(X)), 
p(X) -+ assume(s(X)), 
r(a) -+ g, r(X) 1\ s(X) -+ g, 
r(X) 1\ s(X) 1\ t(X) -+ 1. } . 

Consider the problem defined with the goal 9 and Pe. 
The abstracted label of 9 is { {r }, {r, s} } . The abstracted 
label of the negative clause is {{ r, s}}. The abstracted 
environment {r, s} cannot be omitted for 9 although the 
set of minimal elements in the abstracted label of 9 is 
{{r}}. 



procedure T2(G, P) : 
begin 

P:= 0; 
J:= 0; 
k:= 0; 
for each (al /\ ... /\ an -t X)E P do 
begin 

if X = l.. then 
begin 

k := k + 1 
P:= P U {al/\···/\ an -t l..}; 
J := J U {(aI,···, an =;. false(k))}; 

end 
else if X = assume(,8) then 

begin 

P:=PU 
{goal(j3) /\ al /\ ... /\ an -t assume(,8)}; 

J := J U {(al,···, an, rj3 =;. j3)}; 
for j:= 1 until n do 

P := P U {goal(j3) -t goal(aj)} 
end 

else if X =,8 then 
begin 
p := P U {goal(j3) /\ al /\ ... /\ an -t ,8}; 
J := J U {(al,···, an =;. j3)}; 
for j:= 1 until n do 

P := P U {goal(j3) -t goal(aj)} 
end 

end; 
UpdateAbstractedLabels(J, ADA); 
La := GetAbstractedLabel( G, ADA); 
for i:= 1 until k do 

begin 
Li := GetAbstractedLabel(false(i) , ADA); 
for each Ea E La do 

for each Ei E Li do 
if Ei ~ Ea then 

for (aI,···, an =;. f alse( i)) E J do 
for j := 1 until n do 
P := P U {-t goal(aj)} 

end; 
P := P U {-t goal(G)}; 
return P 

end. 

Figure 4: Transformation Algorithm T2 with Ab­
stracted Dependency Analysis 

527 

Theorem: Let P be a normal default theory and G 
a goal, J the abstracted justifications with respect to 
P , L(G) the abstracted label of G , L(false(C)) the 
abstracted label of f alse( C) where C E P. If no element 
in L(false(C)) is a subset of any element in L(G), then 
the solution to G from P is equivalent to the solution to 
G from P \ {C}. 

Sketch of the proof: Let C be (a -t l..) and pI 
be P \ {C}. Assume that ()m is any answer substitution 
for G from pI and ak is any answer substitution for a 
from P'. Let MS(aak) be the minimal supports for aak 
from pI and M S( G()m) be the minimal supports for G()m 
from P'. Suppose that no element in L(false(C)) is a 
subset of any element in L(G). From the supposition and 
similarity between ATMS labels and abstracted labels, 
no element in MS(aak) is a subset of any element in 
MS(GOm ). Therefore, the solution to G from pI U {C} 
is the same as the solution to G from P'. • 

On the basis of the theorem, we can omit consis­
tency checking for a negative clause C if the condition 
of the theorem is satisfied. The transformation algo­
rithm T2(G, P) with the abstracted dependency analysis 
is shown in Figure 4 for the program P and the goal G. 
In Figure 4, U pdateAbstractedLabels( J, AD A) denotes 
the procedure which computes abstracted labels from ab­
stracted justifications J with the abstracted dependency 
analyzer ADA, and GetAbstractedLabel(G, ADA) de­
notes the procedure which returns the abstracted label of 
G from the abstracted dependency analyzer ADA. The 
procedure transforms an original program into the pro­
gram in which the top-down information is incorporated 
and consistency checking is restricted to those negative 
clauses relevant to the given goal. 

Consider the same example Pb, shown in the previ­
ous subsection, in case that the goal is bird(X). The 
abstracted justifications Jb is 

{ (=;. penguin), (penguin =;. bird), (bird,r f1y =;. fly), 
(fly,notfly =;. false(l)), (penguin =;. notfly) }. 

As the result of the abstracted dependency analysis, 
the abstracted label of false(l) is {{fly}} and the ab­
stracted label of bird is {0}. Then, no element in the 
abstracted label of f alse(l) is a subset of any element in 
the abstracted label of bird, so that we do not need to 
evaluate this negative clause. As a consequence, we have 
the transformed program: 

T2(bird, 
{ 

u { 

Pb) = 
goal(penguin) -t penguin(a), 
goal(bird) /\ penguin(X) -t bird(X), 
goal(bird) -t goal(penguin), 
goal(fly) /\ bird(X) -t assume(fly(X)), 
goal(fly) -t goal(bird), 
fly(X) /\ notfly(X) -t .1, 
goal(notfly) /\ penguin(X) -t notfly(X), 
goal(notfly) -t goal(penguin) } 
-t goal(bird) }. 
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Since the transformed program does not include (---+ 
goal(Jly)) and (---+ goal(notfly)), the reasoner can omit 
solving both the goal fly(X) and the goal notfly(X). 

6 Evaluation with Logic Design 
Problem 

We have taken up the design of logic circuits to calcu­
late the greatest common divisor (GCD) of two integers 
expressed in 8 bits by using the Euclidean algorithm. 
The solutions are circuits calculating GCD and satisfying 
given constraints on area and time [Maruyama et al. 88]. 
The program Pd contains several kinds of knowledge: 
datapath design, component design, technology map­
ping, CMOS standard cells and constraints on area and 
time [Ohta and Inoue 90]. The design problem of calcu­
lators for GCD includes design of components such as 
subtracters and adders. 

Table 1 shows the expermental result, on a Pseudo­
Multi-PSI system, for the evaluation of the transformed 
programs. The run time of a program P for a goal G 
is denoted by TR(G,p). The predicate symbol G of each 
goal G is adder (design of adders), subtracter (design of 
subtracters) or cGCD (design of calculators for GCD). 
The run time TR(G,Pd) of each goal G is equal to the others 
on the original program Pd' 

T bl 1 R a e : un T' lme 0 fP rogralll 
Goal G TR(G,Pd) [s] TR(G,P1 ) [s] T R (G,P2) [s] 
adder 10.7 17.5 0.4 

subtracter 10.7 17.3 0.6 
cGCD 10.7 17.3 16.8 

Let PI be the simple transformed program of Pd' The 
experiment on the simple transformation time shows that 
it takes 6.35 [s] for making PI from Pd. However, the run 
time TR(G,Pl) for each goal G is nearly equal to the oth­
ers because constraints on area and time of the GCD 
calculators are represented by negative clauses. Even if 
we want to design adders or subtracters, the hypotheti­
cal reasoner cannot avoid designing GCD calculators for 
consistency checking. 

Let P2 be the transformed program with the ab­
stracted dependency analysis. The experiment on the 
transformation time with the abstracted dependency 
analysis shows that it takes 6.63 [s] for making P2 from 
Pd. The transformation time with the abstracted de­
pendency analysis is a little bit longer (0.28 [s]) than 
the simple transformation time. When G is adder or 
subtracter, the run time TR(G,P2 ) is much shorter than 
the run time for the design of GCD calculators. This is 
because the program can avoid consistency checks for 
negative clauses representing constraints on area and 

time of the GCD calculators when the design of adders 
or the design of subtracters is given as a goal. The re­
sult show that each total of the transformation time with 
abstracted dependency analysis and the run time of the 
transformed program is shorter than the run time of the 
original program when the problem does not need the 
whole of the program. 

7 Related Work 

The algorithm for first-order Horn-clause abduction with 
the ATMS is presented in [Ng and Mooney 91]. The sys­
tem is basically a consumer architecture [de Kleer 86-3] 
introducing backward-chaining consumers. The algo­
rithm avoids both redundant proofs by introducing the 
goal-directed backward-chaining consumers and dupli­
cate proofs among different contexts by using the ATMS. 
Their problem definition is the same as [Stickel 90], 
whose inputs are a goal and a set of Horn clauses without 
negative clauses. When there are negative clauses in the 
program, they briefly suggest that forward-chaining con­
sumer can be used for each negative clause to check the 
consistency. On the other hand, since we only simulate 
backward-chaining by the forward-chaining reasoner, we 
do not require both types of chaining rules. Moreover, 
we see that when the program includes negative clauses, 
it is sometimes difficult to represent the clauses as a set 
of consumers. For example, suppose that the axioms are 

{a---+c, b---+d, cAd---+g, c---+e, d---+f, eAf---+~} 

and the goal is g. Assume that the set of consumers is 

{(c ~ a), (d ~ b), (g ~ c, d), 
(e ~ c), (J ~ d), (e,f =* ~)}, 

where ~ means a backward-chaining consumer and 
=* means a forward-chaining consumer. Then, we 
get the solution {(g, {{g}, {a, b}, {a, d}, {c, b}, {c, d}})}. 
However, the correct solution is {(g, {{g}})} because 
{a, b}, {a, d}, {c, b} and {c, d} are nogood. To guaran­
tee the consistency when the program includes negative 
clauses, for every Horn clause, we have to add the corre­
sponding forward-chaining consumer. Such added con­
sumers would cause the same problem as the program 
that appeared in using the simple transformation algo­
rithm. 

In [Stickel 91], deduction and abduction with the 
upside-down meta-interpretation are proposed. This ab­
duction does not require the consistency of solutions. 
Furthermore, rules may do duplicate firing in different 
contexts since it does not use the ATMS. This often 
causes a problem when it is applied to practical programs 
where heavy procedures are attached to rules. 

Another difference between the frameworks of 
[Ng and Mooney 91, Stickel 91] and ours is that their 



frameworks treat only hypotheses in the form of nor­
mal defaults without prerequisites, whereas we allow for 
normal defaults with prerequisites. 

8 Conclusion 

We have presented a new transformation algorithm of 
programs for efficient forward-chaining hypothetical rea­
soning based on the upside-down meta-interpretation. In 
the transformation algorithm, logical dependencies be­
tween a goal and negative clauses are analyzed at ab­
stracted level to find irrelevant negative clauses, so that 
consistency checking of negative clauses can be restricted 
to those relevant clauses. It has been evaluated with a 
logic circuit design problem on a Pseudo-Multi-PSI sys­
tem. 

We can also apply this abstracted dependency anal­
ysis to transformed programs based on Magic Set and 
Alexander methods. Our dependency analysis with only 
predicate symbols may be extended to an analysis with 
predicate symbols and their some arguments. 

Acknowledgments 

Thanks are due to Mr. Makoto Nakashima of JIPDEC 
for implementing the ATMS and combining it with the 
MGTP. We are grateful to Prof. Mitsuru Ishizuka of the 
University of Tokyo for the helpful discussion. We would 
also like to thank Dr. Ryuzo Hasegawa and Mr. Miyuki 
Koshimura for providing us the MGTP, and Dr. Koichi 
Furukawa for his advise. Finally, we would like to ex­
press our appreciation to Dr. Kazuhiro Fuchi, Director 
of ICOT Research Center, who provided us with the op­
portunity to conduct this research. 

References 

[Bancilhon et al. 86] F. Bancilhon, D. Maier, Y. Sagiv 
and J.D. Ullman, Magic Sets and Other Strange 
Ways to Implement Logic Programs, Proc. of ACM 
PODS, pp.I-15 (1986). 

[Bry 90] F. Bry, Query evaluation in recursive databases: 
bottom-up and top-down reconciled, Data fj 

Knowledge Engineering, 5, pp.289-312 (1990). 

[de Kleer 86-1] J. de Kleer, An Assumption-based TMS, 
Artificial Intelligence, 28, pp.127-162 (1986). 

[de Kleer 86-2] J. de Kleer, Extending the ATMS, Arti­
ficial Intelligence, 28, pp.163-196 (1986). 

[de Kleer 86-3] J. de Kleer, Problem Solving with 
the ATMS, Artificial Intelligence, 28, pp.197-224 
(1986) 

[Flann et al. 87] N.S. Flann, T .G. Dietterich and 
D.R. Corpron, Forward Chaining Logic Program-

529 

ming with the ATMS, Proc. of AAAI-87, pp.24-29 
(1987). 

[Forgy 82] C.L. Forgy, Rete: A Fast Algorithm for the 
Many Pattern/Many Object Pattern Match Prob­
lem, Artificial Intelligence, 19, pp.17-37 (1982). 

[Fujita and Hasegawa 91] H. Fujita and R. Hasegawa, 
A Model Generation Theorem Prover in KLI Us­
ing a Ramified-Stack Algorithm, Proc. of ICLP '91, 
pp.494-500 (1991). 

[Inoue 88] K. Inoue, Problem Solving with Hypothetical 
Reasoning, Proc. of FGCS '88, pp.1275-1281 (1988). 

[Junker 88] U. Junker, Reasoning in Multiple Contexts, 
GMD Working Paper No.334 (1988). 

[Maruyama et al. 88] F. Maruyama, T. Kakuda, Y. Ma­
sunaga, Y. Minoda, S. Sawada and N. Kawato, co­
LODEX: A Cooperative Expert System for Logic 
Design, Proc. of FGCS '88, pp.1299-1306 (1988). 

[Ng and Mooney 91] H.T. Ng and R.J. Mooney, An Ef­
ficient First-Order Abduction System Based on the 
ATMS, Technical Report AI 91-151, The University 
of Texas at Austin, AI Lab. (1991). 

[Ohta and Inoue 90] Y. Ohta and K. Inoue, A Forward­
Chaining Multiple-Context Reasoner and Its Appli­
cation to Logic Design, Proc. of IEEE TAl, pp.386-
392 (1990). 

[Poole et al. 87] D. Poole, R. Goebel and R. Aleliunas, 
Theorist: A logical Reasoning System for Defaults 
and Diagnosis, N. Cercone and G. McCalla (Eds.), 
The Knowledge Frontier: Essays in the Represen­
tation of Knowledge, Springer-Verlag, pp.331-352 
(1987). 

[Poole 91] D. Poole, Compiling a Default Reasoning Sys­
tem into Prolog, New Generation Computing, 9, 
pp.3-38 (1991). 

[Reiter 80] R. Reiter, A Logic for Default Reasoning, Ar­
tificial Intelligence, 13, pp.81-132 (1980). 

[Rohmer et al. 86] J. Rohmer, R. Lescoeur and 
J.M. Kerisit, The Alexander Method - A Tech­
nique for The Processing of Recursive Axioms in 
Deductive Databases, New Generation Computing, 
4, pp.273-285 (1986). 

[Stickel 90] M.E. Stickel, Rationale and Methods for Ab­
ductive Reasoning in Natural~Language Interpreta­
tion, Lecture Nodes in Artificial Intelligence, 459, 
Springer-Verlag, pp.233-252 (1990). 

[Stickel 91] 
M.E. Stickel, Upside-Down Meta-Interpretation of 
the Model Elimination Theorem-Prover Procedure 
for Deduction and Abduction, ICOT Technical Re­
port TR-664, ICOT (1991). 

[Ueda and Chikayama 90] K. Ueda and T. Chikayama, 
Design of the Kernel Language for the Parallel In­
ference Machine, The Computer Journal, 33, 6, pp. 
494-500 (1990). 



PROCEEDINGS OF THE INTERNATIONAL CONFERENCE 
ON FIFTH GENERATION COMPUTER SYSTEMS 1992, 
edited by ICOT. © ICOT, 1992 

530 

Logic Programming, Abduction and Probability 

David Poole 
Department of Computer Science, 

University of British Columbia, 
Vancouver, B.C., Canada V6T lZ2 

poole@cs.ubc.ca 
telephone: (604) 822 6254 

fax: (604) 822 5485 

Abstract 

Probabilistic Horn abduction is a simple frame­
work to combine probabilistic and logical rea­
soning into a coherent practical framework. 
The numbers can be consistently interpreted 
probabilistically, and all of the rules can be in­
terpreted logically. The relationship between 
probabilistic Horn abduction and logic pro­
gramming is at two levels. At the first level 
probabilistic Horn abduction is an extension of 
pure Prolog, that is useful for diagnosis and 
other evidential reasoning tasks. At another 
level, current logic programming implementa­
tion techniques can be used to efficiently imple­
ment probabilistic Horn abduction. This forms 
the basis of an "anytime" algorithm for esti­
mating arbitrary conditional probabilities. The 
focus of this paper is on the implementation. 

1 Introduction 

Probabilistic Horn Abduction [Poole, 1991c; Poole, 
1991b; Poole, 1992a] is a framework for logic-based ab­
duction that incorporates probabilities with assump-· 
tions. It is being used as a framework for diagnosis 
[Poole, 1991c] that incorporates both pure Prolog and 
Bayesian Networks [Pearl, 1988] as special cases [Poole, 
1991b]. This paper is about the relationship of proba..; 
bilistic Horn abduction to logic programming. This sim­
ple extension to logic programming provides a wealth of 
new applications in dia&nosis, recognition and evidential 
reasoning [Poole, 1992aJ. 

This paper also presents a logic-programming solution 
to the problem in abduction of searching for the "best" 
diagnoses first. The main features of the approach are: 

• We are using Horn clause abduction. The proce­
dures are simple, both conceptually and computa­
tionally (for a certain class of problems) .. We de­
velop a simple extension of SLD resolution to im­
plement our framework. 

• The search algorithms form "anytime" algorithms 
that can give an estimate of the conditional proba­
bility at any time. We do not generate the unlikely 
explanatiolls unless we Ileed Lo. 'vVe have a boulld on 

the probability mass of the remaining explanations 
which allows us to know the error in our estimates. 

• A theory of "partial explanations" is developed. 
These are partial proofs that can be stored in a pri­
ority queue until they need to bf further expanded. 
We show how this is implemented in a Prolog inter­
preter in Appendix A. 

2 Probabilistic Horn abduction 

The formulation of abduction used is a simplified form 
of Theorist [Poole et al., 1987; Poole, 1988] with prob­
abilities associated with the hypotheses. It is simpli­
fied in being restricted to definite clauses with simple 
forms of integrity constraints (similar to that in [Goebel 
et al., 1986]). This can also be seen as a generalisa­
tion of an ATMS [Reiter and de Kleer, 1987] to be non­
propositional. 

The language is that of pure Prolog (i.e., definite 
clauses) with special disjoint declarations that specify a 
set of disjoint hypotheses with associated probabilities. 
There are some restrictions on the forms of the rules and 
the probabilistic dependence allowed. The language pre­
sented here is that of [Poole, 1992a] rather than that of 
[Poole, 1991c; Poole, 1991b]. 

The main design considerations were to make a lan­
guage the simplest extension to pure Prolog that also 
included probabilities (not just numbers associated with 
rules, but numbers that follow the laws of probability, 
and so can be consistently interpreted as probabilities 
[Poole, 1992al). \Ve are also assuming very strong in­
dependence assumptions; this is not intended to be a 
temporary restriction on the language that we want to 
eventually remove, but as a feature. We can repre­
sent any probabilistic information using only indepen­
dent hypotheses [Poole, 1992a]; if there is any depen­
dence amongst hypotheses, we invent a new hypothesis 
to explain that dependency. 

2.1 The language 

Our language uses the Prolog conventions, and has the 
same definitions of variables, terms and atomic symbols . 

Definition 2.1 A definite clause is of the form: a. 
or (l t- al 1\ .. . 1\ (In. where (l a.nd each (li are a.tomic 
symbols. 



Definition 2.2 A disjoint declaration is of the form 

disjoint([hl : PI, .. " hn : Pn]). 

where the hi are atoms, and the Pi are real numbers 
o :::; Pi :::; 1 such that PI + ... + Pn = 1. Any variable 
appearing in one hi must appear in all of the hj (i.e., the 
hi share the same variables). The hi will be referred to 
as hypotheses. 

Definition 2.3 A probabilistic Horn abduction 
theory (which will be referred to as a "theory") is a col­
lection of definite clauses and disjoint declarations such 
that if a ground atom h is an instance of a hypothesis 
in one disjoint declaration, then it is not an instance of 
another hypothesis in any of the disjoint declarations. 

Given theory T, we define 

FT the facts, is the set of definite clauses in T together 
with the clauses of the form 

false f- hi 1\ h j 

where hi and h j both appear in the same disjoint 
declaration in T, and i f. j. Let Ff be the set of 
ground instances of elements of FT. 

HT to be the set of hypotheses, the set of hi such that 
hi appears in a disjoint d~claration in T. Let Hfr 
be the set of ground instances of elements of HT. 

PT is a function Hfr .- [0,1]. PT(hD = Pi where h~ is a 
ground instance of hypothesis hi, and hi : Pi is in a 
disjoint declaration in T. 

Where T is understood from context, we omit the sub­
script. 

Definition 2.4 [Poole et at, 1987; Poole, 1987] If 9 is 
a closed formula, an explanation of 9 from (F, H) is a 
set D of elements of H' such that 

• F U D 1= 9 and 
• F U D ~ false. 

The first condition says that D is a sufficient cause for 
g, and the second says that D is possible. 

Definition 2.5 A minimal explanation of 9 is an ex­
planation of 9 such that no strict subset is an explanation 
of g. 

2.2 Assumptions about the rule base 

Probabilistic Horn abduction also contains some as­
sumptions about the rule base. It can be argued that 
these assumptions are natural, and do not really restrict 
what can be represented [Poole, 1992a]. Here we list 
these assumptions, and use them in order to show how 
the algorithms work. 

The first assumption we make is about the relationship 
between hypotheses and rules: 

Assumption 2.6 There are no rules with head unifying 
with a member of H. 

Instead of having a rule implying a hypothesis, we 
invent a new atom, make the hypothesis imply this atom, 
and all of the rules imply this atom, and use this atom 
instead of the hypothesis. 
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Assumption 2.7 (acyclicity) If F' is the set of ground 
instances of elements of F, then it is possible to assign 
a natural number to every ground atom such that for 
every rule in F' the atoms in the body of the rule are 
strictly less than the atom in the head. 

This assumption is discussed in [Apt and Bezem, 
1990]. 

Assumption 2.8 The rules in F' for a ground non­
assumable atom are covering. 

That is, if the rules for a in F' are 

a f- BI 
a f- B2 

a f- Bm 

if a is true, one of the Bi is true. Thus Clark's completion 
[Clark, 1978] is valid for every non-assumable. Often we 
get around this assumption by adding a rule 

a f- some_other _reason_for_a 

and making "some_other _reason_for _a" a hypothesis 
[Poole, 1992a]. 

Lemma 2.9 [Console et al., 1991; Poole, 1988] Under 
assumptions 2.6, 2.7 and 2.8, if expl(g, T) is the set of 
minimal explanations of 9 from theory T: 

9 v 
eiEexpl(g,T) 

Assumption 2.10 The bodies of the rules in F' for an 
atom are mutually exclusive. 

Given the above rules for a, this means that 

Bi 1\ Bj => false 

is true in the domain under consideration for each i =1= j . 
We can make this true by adding extra conditions to the 
rules to make sure they are disjoint . 

Lemma 2.11 Under assumptions 2.6 and 2.10, mini­
mal explanations of atoms or conjunctions of atoms are 
mutually inconsistent. 

See [Poole, 1992a] for more justification of these as­
sumptions. 

2.3 Probabilities 

Associated with each possible hypothesis is a prior prob­
ability. We use this prior probability to compute arbi­
trary probabilities .. 

The following is a corollary oflemmata 2.9 and 2.11 

Lemma 2.12 Under assumptions 2.6, 2.7, 2.8, 2.10 
and 2.13, iJ expl(g, T) is the set oj minimal explana­
tions oj conjunction oj atoms 9 Jront probabilistic IIorn 
abduction theory T: 

P(g) 
p L "~(9 ,T) e;) 

2:= P(ei) 
eiEexpl(g,T) 
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Thus to compute the prior probability of any 9 we sum 
the probabilities of the explanations of g. 

To compute arbitrary conditional probabilities, we use 
the definition of conditional probability: 

P( 1{3) = P( a: 1\ {3) 
a: P({3) 

Thus to find arbitrary conditional probabilities 
P(a:\{3), we find P({3), which is the sum of the explana­
tions of {3, and P( a:1\{3) which can be found by explaining 
a: from the explanations of {3. Thus arbitrary conditional 
probabilities can be c9mputed from summing the prior 
probabilities of explanations. 

It remains only to compute the prior probability of 
an explanation D of g. We assume that logical depen­
dencies impose the only statistical dependencies on the 
hypotheses. In particular we assume: 

Assumption 2.13 Ground instances of hypotheses 
that are not inconsistent (with FT) are probabilistically 
independent. That is, different disjoint declarations de­
fine independent hypotheses. 

The hypotheses in a minimal explanation are always 
logically independent. The language has been carefully 
set up so that the logic does not force any dependencies 
amongst the hypotheses. If we could prove that some 
hypotheses implied other hypotheses or their negations, 
the hypotheses could not be independent. The language 
is deliberately designed to be too weak to be able to state 
such logical dependencies between hypotheses. 

Under assumption 2.13, if {hI, .. " hn } are part of a 
minimal explanation, then 

n 

IT P(hi ) 

1=1 

To compute the prior of the minimal explanation we mul­
tiply the priors of the hypotheses. The posterior proba­
bility of the explanation is proportional to this. 

The following is a corollary of lemmata 2.9 and 2.11 

Len1l1.la 2.14 Under assumptions 2.6, 2.7, 2.8, 2.10 
and 2.13, if exp/(g, T) is the set of all minimal expla­
nations of 9 from theory T: 

peg) 
P C'YCg'T) ei

) 

L P(ei) 
eiEexpl(g,T) 

2.4 An example 

In this section we show an example that we use later in 
the paper. It is intended to be as simple as possible to 
show how the algorithm works. 

Suppose we have the rules and hypotheses: 

rule«a b, h». 
rUle«a q,e». 
rule( (q h». 
rule«q b,e». 
rule«h b, f». 

rule«h :- c, e». 
rule«h :- g, b». 
disjoint([b:O.3,c:O.7]). 
disjoint([e:O.6,f:O.3,g:O.1]). 

There are four minimal explanations of a, namely 
{e,e}, {b,e}, {j,b} and {g,b}. 

The priors of the explanations are as follows: 

P(c 1\ e) = 0.7 x 0.6 = 0.42. 

Similarly P(bl\e) = 0.18, P(J 1\ b) = 0.09 and P(gl\b) = 
0.03. Thus 

pea) = 0.42 + 0.18 + 0.09 + 0.03 = 0.72 

There are two explanations of e 1\ a, namely {c, e} and 
{b, e}.Thus pee 1\ a) = 0.60. Thus the conditional 
probability of e given a is P(ela) = 0.6/0.72 = 0.833. 

What is important about this example is that all of 
the probabilistic calculations reduce to finding the prob­
abilities of explanations. 

2.5 Tasks 

The following tasks are what we expect to implement: 

1. Generate the explanations of some goal (conjunction 
of atoms), in order. 

2. Determine the prior probability of some goal. This 
is implemented by enumerating the explanations of 
the goal. 

3. Determine the posterior probabilities of the expla­
nations of a goal (i.e., the probabilities of the expla­
nations given the goal). 

4. Determine the conditional probability of one for­
mula given another. That is, determining P(a:I{3) 
for any a: and {3. 

All of these will be implemented by enumerating the 
explanations of a goal, and estimating the probability 
mass in the explanations that have not been enumer­
ated. It is this problem that we consider for the next few 
sections, and then return to the problem of the tasks we 
want to compute. 

3 A top-down proof procedure 

In this section 'we show how to carry out a best-first 
search of the explanations. In order to do this we build 
a notion of a partial proof that we can add to a priority 
queue, and restart when, necessary. 

3.1 SLD-BF resolution 

In this section we outline an implementation based on 
logic programming technology and a branch and bound 
search. 

The implementation keeps a priority queue of sets 
of hypotheses that could be extended into explanations 
("partial explanations"). At any time the set of all the 
explanations is the set of already generated explanations, 
plus those explanations that ca.n be generated from the 
pa.rtial explanations in the priority queue. 



Q:= {(g <-- g, {})}; 
II := {}; 
repeat 

choose and remove best (g <-- C, D) from Q; 
if C = true 

then if good(D) then II := II U {D} endif 
else Let C = a A R 

for each rule(h <-- B) where mgu(a, h) = 0 
Q := Q U {(g <-- BAR, D) O} ; 

if a E Hand good( {a} U D) 
then Q := Q U {(g <-- R, {a} U D)} 

endif 
endif 

until Q = {} 
where good(D) == (Vd1 ,d2 E D fJ1J E NG3cjJ (d1 ,d2 ) = 1JcjJ) 

A (fJ7r E II, 3cjJ D ~ 7rcjJ) 

Figure 1: SLD-BF Resolution to find explanations of 9 
in order. 

Definition 3.1 a partial explanation is a structure 

(g <-- C, D) 

where 9 is an atom (or conjunction of atoms), C is a 
conjunction of atoms and D is a set of hypotheses. 

Figure 1 gives an algorithm for finding explanations of 
q in order of probability (most likely first). At each step 
we choose an element 

(g <-- C, D) 

of the priority queue Q with maximum prior probability 
of D. 

We have an explanation when C is the empty conjunc­
tion (represented here as true). In this case D is added 
to the set II of already generated explanations. 

Otherwise, suppose C is conjunction a A R. 
There are two operations that can be carried out. The 

first is a form of SLD resolution [Lloyd, 1987], where for 
each rule 

h <-- b1 A ... A bn 

in F, such that h and a have most general unifier 0, we 
generate the partial explanation 

(g <-- b1 A ... A bn A R, D) 0 

and add it to the priority queue. 
The second operation is used when a E H. In this 

case we produce the partial explanation 

(g <-- R, {a} U D) 

and add it to Q. We only do this if {a} U D is consistent, 
and is not subsumed by another explanation of q. Here 
we assume the set N G of pairs of hypotheses that ap­
pear in the same disjoint declaration (corresponding to 
nogoods in an ATMS [Reiter and de Kleer, 1987]). Un­
like in an ATMS this set can be built at compile time 
from the disjoint declarations. 

This procedure will find the explanations in order of 
likelihood. Its correctness is based on the meaning of a 
partial explanation 
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Definition 3.2 A partial explanation (g <-- C, D) 1S 

valid with respect to (F, H) if 

FF=DAC~g 

Lemma 3.3 Every partial explanation m the queue Q 
is valid with respect to (F, H). 

Proof: This is proven by induction on the 
number of times through the loop. 

It is trivially true initially as q ~ q for any q. 

There are two cases where elements are added 
to Q. In the first case (the "rule" case) we know 

by the inductive assumption, and so 

F F= (DARAa=?-g)O 

We also know 

F F= (B =?- h)O 

As a() = h(), by a simple resolution step we have 

F F= (D A R A B =?- g)O. 

The other case is when a E H. By the induction 
step 

F F= D A (a A R) =?- 9 

and so 

F F= (D A a) A R ~ g 

If D only contains elements of H and a is an el­
ement of H then {a}UD only contains elements 
of H. 0 

It is now trivial to show the following: 

Corollary 3.4 Every element of II in figure 1 is an ex­
planation of q. 

Although the correctness of the algorithm does not 
depend on which element of the queue we choose at any 
time, the efficiency does. We choose the best partial ex­
planation based on the following ordering of partial ex­
planations. Partial explanation (gl <-- C1, D 1) is better 
than (g2 <-- C2, D2) if P(D1) > P(D2). It is simple to 
show that "better than" is a partial ordering. \"'hen we 
choose a "best" partial explanation we choose a minimal 
element of the partial ordering; where there are a number 
of minimal partial explanations, we can choose anyone. 
When we follow this definition of "best", we enumerat.e 
the minimal explanations of q in order of probability. 

3.2 Our example 

III this section we show how the simple example in Sec­
tion 2.4 is handled by the best-first proof process. 

The following is the sequence of values of Q each time 
through the loop (where there are a number of mini­
mal explanations, we choose the element that was added 
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last): 

{(at-a,U)} 
{(a t- b /\ h, U) , (a t- q /\ e, U)} 
{(a t- q /\ e, U), (a t- h, {b})} 
{(a t- h /\ e, U), (a t- b /\ e /\ e, U), (a t- h, {b})} 
{(a t- b /\ I /\ e, {}) , (a t- C /\ e /\ e, U) , 

(a (- 9 /\ b /\ e, {}), (a t- b /\ e /\ e, U), (a t- h, {b})} 
{{a (- c /\ e /\ e, {}) , (a t- 9 /\ b /\ e, U) , 

(a (- b /\ e 1\ e, U), (a (- 1/\ e, {b}), (a (- h, {b})} 
{(a (- 9 /\ b /\ e, {}) , (a (- b 1\ e /\ e, {}) , (a t- e /\ e, {c}) , 

(a (- 11\ e, {b}), (a (- h, {b})} 
{(a (- b 1\ e 1\ e, {}), (a (- e 1\ e, {c}) , (a (- 1/\ e, {b}) , 

(a (- h, {b}) , (a t- b /\ e, {g})} 
{ (a t- e /\ e, {c}) , (a t- e /\ e, {b}) , (a t- I /\ e, {b}) , 

(a (- h, {b}), (a t- b /\ e, {g})} 
{(a (- e, {e,c}), (a t- e /\ e,{b}), (a t- 1/\ e, {b}), 

(a (- h, {b}), (a t- b /\ e, {g})} 
{(a (- true, {e, c}), (a t- e /\ e, {b}) , (a t- 1/\ e, {b}), 

(a (- h, {b}), (a (- b /\ e, {g})} 

Thus the first, and most likely explanation is {e, c}. 

{(a (- e 1\ e, {b}) , (a (- 1/\ e, {b}), (a (- h, {b}), 
(a (- b /\ e, {g})} 

(a (- I /\ e, {b}), (a (- h, {b}), (a (- e, {e, b}), 
{(a (- b /\ e, {g})} 

{ (a t- h, {b }) , (a (- e, { e, b}) , (a (- b /\ e, {g}) , 
(a (- e, {I, b})} 

{(a (- b /\ I, {b}), (a (- c /\ e, {b}), (a (- 9 /\ b, {b}) , 
(a t- e, {e, b}), (a (- b /\ e, {g}) , (a (- e, {I, b})} 

{(a t- I, {b}), (a t- c /\ e, {b}), (a t- 9 /\ b, {b}), 
(a t- e, {e, b}), (a t- b /\ e, {g}) , (a (- e, {I, b})} 

{(a t- c /\ e, {b}) , (a (- 9 /\ b, {b}) , (a t- e, {e, b}) , 
(a t- b /\ e, {g}) , (a (- true, {I, b}), (a (- e, {I, b})} 

Here the algorithm effectively prunes the top partial 
explanation as (c, b) forms a nogood. 

{(a (- 9 /\ b, {b}), (a (- e, {e,b}), (a t- b /\ e, {g}), 
(a t- true, {I, b}), (a t- e, {I, b})} 

{(a - e, {e, b}) , (a - b /\ e, {g}) , (a t- true, {I, b}) , 
(a t- e, {I, b}), (a t- b, {g, b})}} 

{(a - t1'ue, {e, b}), (a (- b /\ e, {g}), (a (- true, {I, b}), 
(a - e, {I, b}), (a (- b, {g, b})} 

We have now found the second most likely explana­
tion, namely {e, b}. 

{(a - b /\ e, {g}), (a t- true, {I, b}), (a - e, {I, b}), 
(a - b, {g, b})} 

{(a (- true, {I, b}), (a (- e, {I, b}), (a - e, {g, b}), 
(a-b,{g,b})} 

We have thus found the third explanation {I, b}. 

{(a (- e, {I, b}), (a (- e, {g, b}), (a (- b, {g, b})} 
{(a - e, {g, b}), (a (- b, {g, b})} 
{(a - b, {g, b})} 
{(a -true,{g,b})} 

The fourth explanation is {g, b}. There are no more 
partial explanations and the process stops. 

4 Discussion 

4.1 Probabilities in the queue 

We would like to give an estimate for P(g) after having 
generated only a few of the most likely explanations of g, 
and get some estimate of our error. This problem reduces 
to estimating the probability of partial explanations in 
the queue. 

If (g (- C, D) is in the priority queue, then it can pos­
sibly be used to generate explanations D I , ... , Dn. Each 
Di will be of the form D U D~. We can place a bound on 
the probability mass of all of the Di, by 

P(D I V .. · V Dn) = P(D /\ (D~ V ... V D~» 

::; P(D) 

Given this upper bound, we can determine an upper 
bound for P(g), where {el," . , en} is the set of all min­
imal explanations of g: 

P(g) P(el V e2 V ... V en) 
peel) + P(e2) + .,. + peen) 

( L p(ei») + ( L p(ej)~ 
ei found ej to be generated ) 

We can easily compute the first of these sums, and can 
put upper and lower bounds on the second. This means 
that we can put a bound on the range of probabilities of 
a goal based on finding just some of the explanations of 
the goal. Suppose we have goal g, and we have generated 
explanations II. Let 

PIT = L P(D) 
DeIT 

PQ = L P(D) 
D:{g<-C,D}eQ 

where Q is the priority queue. 
vVc then have 

PIT ::; peg) ::; PIT + PQ 

As the computation progresses, the probability mass 
in the queue PQ approaches zero l and we get a better 
refinement on the value of P(g). This thus forms the 
basis of an "anytime" algorithm for Bayesian networks. 

4.2 Conditional Probabilities 

We can also use the above procedure to compute condi­
tional probabilities. Suppose we are trying to compute 
the conditional probability P( aLB). This can be com­
puted from the definition: 

P( 1,8) = P( a /\ ,8) 
a P(,8) 

We compute the conditional probabilities by enumer­
ating the minimal explanations of a/\,8 and,8. Note that 
the minimal explanations of a 1\,8 are explanations (not 

1 Note that the estimate given above does not always de­
crease. It is possible that the error estimate increases. [Poole, 
1992b] considers cases where convergence can be guaranteed. 



necessarily minimal) of (3. We can compute the explana­
tions of a 1\ (3, by trying to explain a from the explana­
tions of (3. The above procedure can be easily adapted 
for this task, by making the task to explain (31\ a, and 
making sure we prove (3 before we prove a, so that we 
can collect the explanations of (3 as a we generate them. 
Let pf3 be the sum of the probabilities of the explana­
tions of (3 enumerated, and let pcx/l.f3 be the sum of the 
explanations of a 1\ (3 generated. 

Thus given our estimates of P( a 1\ (3) and P((3) we 
have 

pcx/l.f3 pcx/l.f3 + PQ 
pf3 + PQ :::; P(al(3) :::; pf3 

The lower bound is the case where all of the partial de­
scriptions in the queue go towards worlds implying (3, 
but none of these also lead to a. The upper bound is the 
case where all of the elements of the queue go towards 
implying a, from the explanations already generated for 
(3. 

4.3 Consistency and subsumption checking 

One problem that needs to be considered is the prob­
lem of what happens when there are free variables in 
the hypotheses generated. When we generate the hy­
potheses, there may be some instances of the hypotheses 
that are inconsistent, and some that are consistent. We 
know that every instance is inconsistent if the subgoal is 
subsumed by a nogood. This can be determined by sub­
stituting constants for the variables in the the subgoal, 
and finding if a subset unifies with a nogood. 

We cannot prune hypotheses because all instance is in­
consistent. However, when computation progresses, we 
may substitute a value for a variable that makes the par­
tial explanation inconsistent: This problem is similar to 
the problem of delaying negation-as-failure derivations 
[Naish, 1986], and of delaying consistency checking in 
Theorist [Poole, 1991a]. We would like to notice such 
inconsistencies as soon as possible. In the algorithm of 
Figure 1 we check for inconsistency each time a par­
tial explanation is taken off the queue. There are cases 
where we do not have to check this explicitly, for exam­
ple when we have done a resolution step that did not 
assign a variable. There is a trade-off between checking 
consistency and allowing some inconsistent hypotheses 
on the queue2

• This trade-off is beyond the scope of this 
paper. 

Note that the assumptions used in building the system 
imply that there can be no free variables in any explana­
tion of a ground goal (otherwise we have infinitely many 
disjoint explanations with bounded probability). Thus 
delaying subgoals eventually grounds all variables. 

4.4 Iterative deepening 

In many search techniques we often get much better 
space complexity and asymptotically the same time com­
plexity by using an iterative deepening version of a 
search procedure [Korf, 1985]. An iterative deepening 
version of the best-first search procedure is exactly the 

2We have to check the consistency at some time. This 
could be as late as just before the explanation is added to II. 
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same as the iterative deepening version of A * with the 
heuristic function of zero [Korf, 1985]. The algorithm of 
procedure 1 is given at a level of abstraction which docs 
not preclude iterative deepening. 

For our experimental implementations, we have used 
an interesting variant of iterative deepening. Our queue 
is only a "virtual queue" and we only physically store 
partial explanations with probability greater than some 
threshold. We remember the mass of the whole queue, 
including the values we have chosen not to store. When 
the queue is empty, we decrease the threshold. We can 
estimate the threshold that we need for some given accu­
racy. This speeds up the computation and requires less 
space. 

4.5 Recomputing subgoals 

One of the problems with the above procedure is that 
it recomputes explanations for the same subgoal. If s is 
queried as a subgoal many times then we keep finding 
the same explanations for s. This has more to do with 
the notion of SLD resolution used than with the use of 
branch and bound search. . 

We are currently experimenting with a top-down pro­
cedure where we remember computation that we have 
computed, forming "lemmata". This is similar to the use 
of memo functions [Sterling and Shapiro, 1986] or Earley 
deduction [Pereira and Shieber, 1987] in logic program­
ming, but we have to be very careful with the interac­
tion between making lemmata and the branch and bound 
search, particularly as there may be multiple answers to 
any query, and jllst because we ask a query docs not 
mean we want to solve it (we may only want to bound 
the probability of the answer). 

4.6 Bounding the priority queue 

Another problem with the above procedure that is not 
solved by lemmatisation is that the bound on the prior­
ity queue can become quite large (i.e., greater than one). 
Some bottom-up procedures [Poole, 1992b], can have an 
accurate estimate of the probability mass of the queue 
(i.e., an accurate bound on how much probability mass 
could be on the queue based on the information at hand). 
See [Poole, 1992b] for a description of a bottom-up pro­
cedure that can be compared to the top-down procedure 
in this paper. In [Poole, 1992b] an average case analysis 
is given on the bottom-up procedure; while this is not 
an accurate estimate for the top-down procedure, the 
case where the bottom-up procedure is efficient [Poole, 
1992b] is the same case where the top-down procedure 
works well; that is where there are normality conditions 
that dominate the probability of each hypothesis (i.e., 
where all of the probabilities are near one or near zero). 

5 COHlparison with other systen1S 

There are many other proposals for logic-based abduc­
tion schemes (e.g., [Pople, 1973; Cox and Pietrzykowski, 
1987; Goebel et ai., 1986; Poole, 1987]). These, however, 
consider that we either find an arbitrary explanation or 
find all explanations. In practice there are prohibitively 
many of these. It is also not clear what to do with all 
of the explanations; there are too many to give to a 
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user, and the costs of determining which of the expla­
nations is the "real" explanation (by doing tests [Sattar 
and Goebel, 1991]) is usually not outweighed by the ad­
vantages of finding the real explanation. This is why 
it is important to take into account probabilities. We 
then have a principled reason for ignoring many expla­
nations. Probabilities are also the right tool to use when 
we really are unsure as to whether something is true or 
not. For evidential reasoning tasks (e.g., diagnosis and 
recognition) it is not up to us to decide whether some 
hypothesis is true or not; all we have is probabilities 
and evidence to work out what is most likely true. Simi­
lar considerations motivated the addition of probabilities 
to consistency-based diagnosis [de Kleer and Williams, 
1989]. 

Perhaps the closest work to that presented here is that 
of Stickel [Stickel, 1988]. His is an iterative deepening 
search for the lowest cost explanation. He does not con­
sider probabilities. 

6 U sing existing logic programming 
technology 

In this section we show how the branch and bound search 
can be compiled into Prolog. The basic idea is that when 
we are choosing a partial explanation to explore, we can 
choose any of those with maximum probability. If we 
choose the last one when there is more than one, we 
carry out a depth-first search much like normal Prolog, 
except when making assumptions. We only add to the 
priority queue when making assumptions, and let Prolog 
do the searching when we are not. 

6.1 Remaining subgoals 

Consider what subgoals remain to be solved when we are 
trying to solve a goal. Consider the clause: 

h f- b1 /\ b2 /\ ••• /\ bm . 

Suppose R is the conjunction of subgoals that remain 
to be solved after h in the proof. If we are using the 
leftmost reduction of subgoals, then the conjunction of 
sub goals remaining to be solved after subgoal bi is 

bi+1 /\ ... /\ bm /\ R 

The total information of the proof is contained in the 
partial explanation at the point we are in the proof, i.e., 
in the remaining subgoals, current hypotheses and the 
associated answer. The idea we exploit is to make this 
set of subgoals explicit by adding an extra argument to 
each atomic symbol that contains all of the remaining 
subgoals. 

6.2 Saving partial proofs 

There is enough information within each subgoal to 
prove the top level goal it was created to solve. When we 
have a hypothesis that needs to be assumed, the remain­
ing subgoals and the current hypotheses form a partial 
explanation which we save on the queue. We then fail 
the current subgoal and look for another solution. If 
there are no solutions found (i.e., the top level computa­
tion fails), we can choose a saved subgoal (according to 
the order given in section 3.1), and continue the search. 

Suppose in our proof we select a possible hypothesis 
h of cost P( {h}) with U being the conjunction of goals 
remaining to be solved, and T the set of currently as­
sumed hypotheses with cost peT). We only want to 
consider this as a possible contender for the best solu­
tion if P( {h} U T) is the minimal cost of all proofs being 
considered. The minimal cost proofs will be other proofs 
of cost peT). These can be found by failing the current 
subgoal. Before we do this we need to add U, with hy­
potheses {h} U T to the priority queue. When the proof 
fails we know there is no proof with the current set of 
hypotheses; we remove the partial proof with minimal 
cost from the priority queue, and continue this proof. 

We do a branch and bound search over the partial 
explanations, but when the priorities are equal, we use 
Prolog's search to prefer the last added. The overhead on 
the resolution steps is low; we only have to do a couple 
more simple unifications (a free variable with a term). 
The main overhead occurs when we reach a hypothesis. 
Here we store the hypotheses and remaining goals on 
a priority queue and continue or search by failing the 
current goal. This is quick (if we implement the priority 
queue efficiently); the overhead needed to find aU proofs 
is minimal. 

Appendix A gives code necessary to run the search 
procedure. 

7 Conclusion 

This paper has considered a logic programming approach 
that uses a mix between depth-first and branch-and­
bound search strategies for abduction where we want 
to consider probabilities, and only want to generate the 
most likely explanations. The underlying language is 
a superset of pure Prolog (without negation-as-failure), 
and the overhead of executing pure Prolog programs is 
small. 

A Prolog interpreter 

This appcndix gives a brief overvicw of a lncta­
interpreter. Hopefully it is enough to be able to build 
a system. Our implementation contains more bells and 
whistles, but the core of it is here. 

A.l Prove 

prove(G, To, T1 , Go, G1 , U) 

means that G can be proven with current assumptions 
To, resulting in assumptions Tl, where Gi is the proba­
bility of Ii, and U is the set of remaining subgoals. 

The first rule defining prove is a special purpose rule 
for the case where we have found an explanation; this 
reports on thc answer found. 

prove(ans(A),T,T,C,C,_) :- !, 
ans(A,T,C). 

The remaining rules are the real definition, that follow 
a normal pattern of Prolog meta-interpreters [Sterling 
and Shapiro, 1986]. 

prove(true,T,T,C,C,_) :- !. 
prove((A,B),TO,T2,CO,C2,U) :- !, 



prove(A,TO,Ti,CO,Ci,(B,U», 
prove(B,Ti,T2,Ci,C2,U). 

prove(H,T,T,C,C,_) :­
hypothesis(H,PH), 
member(H, T), ! . 

prove(H,T,[HIT],C,Ci,U) 
hypothesis(H,PH), 
\+ (( member(Hi,T), makeground((H,Hi», 

nogood(H,Hi) », 
Ci is C*PH, 
add_to_PQ(process([HITJ,Ci,U», 
fail. 

prove(G,TO,Ti,CO,Ci,U) :­
rul(G,B), 
prove(B,TO,Ti,CO,Ci,U). 

A.2 Rule and disjoint declarations 

We specify the rules of our theory using the declaration 
rule(R) where R is the form of a Prolog rule. This asserts 
the rule produced. 

rule((H :- B» :- !, 
assert(rul(H,B». 

rule(H) :­
assert(rul(H,true». 

The disjoint declaration forms nogoods and declares 
probabilities of hypotheses. 

:- ope 500, xfx, : ). 
disjoint( [J). 
disjoint([H:PIRJ) 

assert(hypothesis(H,P», 
make_disjoint(H,R), 
disjoint(R). 

make_disjoint(_,[]). 
make_disjoint(H,[H2: _ I RJ) 

assert(nogood(H,H2», 
assert(nogood(H2,H», 
make_disjoint(H,R). 

A.3 Explaining 

To find an explanation for a subgoal C we execute 
explain( C). This creates a list of solved explanations 
and the probability mass found (in "done"), and creates 
an empty priority queue. 

explain(G) :-
assert(done([J,O», 
initQ, 
ex ( (G, ans (G) ) , [J ,1) , ! • 

exeC, D, C) tries to prove C with assumptions D such 
that probability of Dis C. If G cannot be proven, a par­
tial proof is taken from the priority queue and restarted. 
This means that ex( C, D, C) succeeds if there is some 
proof that succeeds. 

ex (G, D , C) :-
prove(G,D,_,C,_,true). 

ex(_,_,_) :­
remove_from_PQ(process(D,C,U»,!, 
ex(U,D,C). 
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We can report the explanations found, the estimates 
of the prior probability of the hypothesis, etc, by defin­
ing ans(C, D, C), which means that we have found an 
explanation D of C with probability C. 
ans ( G, [J , _ ) :-

llriteln( [G, I is a theorem. ,]), ! . 
ans(G,D,C) :-

allgood(D), 
qmass (QM) , 
retract(done(Done,DC», 
DCi is DC+C, 
assert(done([expl(G,D,C)IDone],nCi», 
TC is DCi + QM, 
llriteln(['Probabilityof I,G, 

,= [1,DCi,',I,TC,IJ']), 
Pri is C / TC, 
Pr2 is C / DCi, 
llriteln( ['Explanation: I ,nJ), 
llriteln(['Prior = I,CJ), 
llriteln(['Posterior = [',Pri,', I,Pr2, IJIJ). 

more is a way to ask for more answers. It will take 
the top priority partial proof and continue with it. 

more :- ex(fail,_,_). 

A.4 Auxiliary relations used 

The following relations were also used. They can be 
divided into those for managing the priority queue, and 
those for managing the nogoods. 

We assume that there is a global priority queue into 
which one can put formulae with an associated cost and 
from which one can extract the least cost formulae. We 
assume that the priority queue persists over failure of 
subgoals. It can thus be implemented by asserting into 
a Prolog database, but cannot be implemented by carry­
ing it around as an extra argument in a meta-interpreter 
[Sterling and Shapiro, 1986], for example. We would like 
both insertion and removal from the priority queue to be 
carried out in log n time where n is the number of ele­
ments of the priority queue. Thus we cannot implement 
it by having the queue asserted into a Prolog database 
if the asserting and retracting takes time proportional 
to the size of the objects asserted or retracted (which it 
seems to in the implementations we have experimented 
with). 

Four operations are defined: 

initQ 

initialises the queue to be the empty queue, with zero 
queue mass. 

add_to_PQ(process(D, C, U)) 

adds assumption set D, with probability C and remain­
ing subgoals U to the priority queue. Adds C to the 
queue mass. 

remove_from_PQ(process(D, C, U)) 

if the priority queue is not empty, extracts the ele­
ment with highest probability (highest value of C) from 
the priority queue and reduces the queue mass by C. 
remove_!1'om_PQ fails if the priority queue is empty. 

qmass(l\l) 
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returns the sum of the probabilities of elements of the 
queue. 

We assume the relation for handling nogoods: 

allgood(L) 

fails if L has a subset that has been declared nogood. 
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Abstract 

Equality can be added to logic programming by llsing 
surface deduction. Surface deduction yields interpreta­
tions of unification failures in terms of residual hypothe­
ses needed for unification to succeed. It can therefore 
be used for abductive reasoning with equality. In sur­
face deduction the input clauses are first transformed to 
a flat form (involving no nested terms) and symmetrized 
(if necessary). They are then manipulated by binary 
resolution, a restricted version of factoring and compres­
sion. The theoretical properties of surface deduction, 
including refutation completeness and weak deductive 
completeness properties (relative to equality), are estab­
lished in [Cox et al. 1991]. In this paper we show that 
these properties imply that an enhancement of surface 
deduction will yield all parsimoniolls hypotheses when 
used as an abductive inference engine. The character­
ization of equational implication for goal clauses given 
in [Cox et al. 1991] is shown to yield a uniquely defined 
equationally equivalent residuum for every goal clause. 
The residuum naturally represents the corresponding ab­
ductive hypothesis. An example illustrating the use of 
surface deduction in abductive reasoning is presented. 

1 Introduction 

In abductive reasoning, the task is to explain a 
given observation by introducing appropriate hypotheses 
([Cox and Pietrzykowski 1987], [Goebel 1990]). Most 
presentations of abduction do not include reasoning with 
equality, nor do they allow the introduction of equal­
ity assumptions to explain an observation. A notable 
exception is E. Charniak's work on motivation analy­
sis [Charniak 1988]. Charniak allows the introduction of 
certain restricted equality assumptions to determine mo­
tivations for observed actions. He shows that the intro­
duction of such equality assumptions is required to suc­
cessfully abduce motivations. In this paper we consider 
the problem of abductive reasoning with Horn clauses in 
the presence of equality. We show that surface deduc­
tion has the necessary properties for use in an abductive 

inference system provided that the input theory contains 
the function substitutivity axioms. 

In the presence of equality, an abduction problem 
consists of a theory T and a formula 0 (the observation). 
An explanation of (0, T) is a formula E consistent with 
T such tha.t E together with T equationally implies O. 
We will assume that 0 and E are existentially quantified 
conjunctions of facts and that T is a Horn clause theory. 

One way to obtain an explanation E, given an obser­
vation 0 and a theory T, is to deduce -,E from T and 
-,0. Since explanations with less irrelevant information 
are preferred (the pa1'simony principle), it is sufficient to 
deduce a clause -,E' such that -,E' implies -,E. Intu­
itively, E' is at least as good an explanation as E (see 
Section 4). It follows that a deduction system adequate 
for abductive reasoning should satisfy a weak deductive 
completeness: If the theory T implies a non-tautological 
clause -,E, then we must be able to deduce a clause -,E' 
from T such that -,E' implies -,E. In the absence of 
equality, SLD-resolution (see [Lloyd 1984]) satisfies this 
condition. 

The problem of introducing equality to Horn clause 
logic has been well-studied, see [Holldobler 1989] for an 
excellent overview. The simplest approach to this prob­
lem involves adding the equality axioms (which are Horn 
clauses) to the set of input clauses. However, unre­
stricted use of these axioms results in inefficiency. Fur­
thermore, this approach does not yield any insights into 
the degree to which the equality axioms are needed. 
Paramodulation and other term rewriting systems do 
not explicitly introduce new equality assumptions into 
derivations and therefore do not satisfy the weak deduc­
tive completeness condition. Other approaches, such as 
the ones in [van Emden and Lloyd 1984] and extended 
in [Hoddinott and Elcock 1986] using the homogeneous 
form of clauses, require restricting the form of the input 
theory. Here, we use the results of [Cox et al. 1991] to 
show that if equality is introduced to Horn clause logic 
via surface deduction with the function substitutivity ax­
ioms, then all preferred explanations for an abduction 
problem ca.n be obta.ined. The need for axioms of equal­
ity other than function substitutivity is thus eliminated. 
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In surface deduction, a set of input clauses is first 
transformed to a flat form and symmetrized. The deduc­
tion then proceeds using linear input resolution for Horn 
clauses (see [Lloyd 1984]) together with a limited use of 
factoring and a new rule called compression. The addi­
tional deduction rules are equivalent to those restricted 
uses of the reflexivity axiom (x ~ x :-) which preserve 
flatness. They are required only at the end of a deduc­
tion. 

A clause is flat if it has no nested functional expres­
sions, and every variable which appears immediately to 
the right of an equality symbol (~) appears only in such 
positions. A stronger version of flatness requires that in 
addition the clause is separated. This means that every 
variable appears at most once in any given literal and has 
only one occurrence inside a functional or relational ex­
pression. Symmetrization affects only those clauses with 
equalities in their heads (see Section 3). 

The idea of using flattening to add equality to the­
orem proving is due to [Brand 1975] and is applied 
to logic programming in [Cox and Pietrzykowski 1986] 
where surface deduction is defined. Flattening is 
closely related to narrowing. In narrowing the pro­
cess of flattening is implicit in the deduction rules. 
The relationship between the two methods is exam­
ined in [Bosco et al. 1988]. Separation of terms is im­
plicit in the transformations to the homogeneous forms 
of [Hoddinott and Elcock 1986]. The symmetrization 
method used here is similar to the one introduced in 
[Chan 1986] and does not increase the number of clauses 
in the theory. 

In [Cox et al. 1991] it is shown that surface deduction 
satisfies a weak deductive completeness provided that the 
input clauses are first transformed to separated form. As 
an application of this result, equational implication for 
goal clauses is found to have a simple syntactic charac­
terization analogous to subsumption. 

Once an explanation E is obtained by surface deduc­
tion, in what form should E be presented? For example 
if ,E (the actual clause deduced) is given by 

:- x ~ a, y ~ b, y ~ c, 

then :- y ~ b, y ~ c is equationally equivalent to ,E. 
Therefore the atom x ~ a is irrelevant and should be 
removed. In Section 4 it is shown that the cha.racter­
ization of equational implication for goal clauses given 
in [Cox et al. 1991] implies that for every goal clause G 
there is a uniquely defined equational residuum RES( G) 
which cannot be further reduced without weakening 
the corresponding explanation. The notion of equa­
tional residuum is related to that of prime implicates 
used in switching theory [Kohavi 1978], truth mainte­
nance systems [Reiter and de Kleer 1987] a.nd diagnoses 
[de Kleer et al. 1988]. RES( G) is an equational prime 
implicate of a flattening of C. 

In Section 2 the terminology is established; in Sec­
tion 3 surface deduction is defined and the completeness 
results needed for abductive reasoning are given. In Sec­
tion 4 the formalism of abductive reasoning with surface 
deduction is discussed; and finally in Section 5 an exam­
ple is presented of an abductive problem solved by using 
surface deduction. 

2 Preliminaries 

Familiarity with logic programming is assumed (see 
e.g. [Lloyd 1984]). As in [Holldobler 1990], let ~ denote 
the equality predicate symbol. The usual equality sym­
bol = is used exclusively for syntactic equality. If L is 
an atom and C = {Ml , ... , Aln} is a set of atoms, then 
L :- C denotes the Horn clause L V ,Ml V ... ,Mn. In 
this expression, L is the head and G is the body of the 
clause. A clause of the form :- C is a goal clause. The 
atoms of C are the subgoals of :- G. A clause of the form 
L:- is a fact. If C l , ... ,Gn are sets of atoms and G is 
the union of the Gi , then L :- C l , ... , Cn means L :- C. 
\i\/hen possible, set notation is omitted for one-element 
sets. 

If OP is an operation which maps clauses to clauses 
and A is a set of clauses, then OP(A) = {OP(G) ICE 
A}. Let (Y be a substitution. If Xi(Y = ti for i = 1, ... ,n 
and X(Y = x for all other variables, then (Y is denoted by 
{Xl f- t}, ... Xn f- t n }. A substitution (Y is variable-pure 
iff X(Y is a variable for every variable x. 

The expression 'most general unifier' is abbreviated 
by 'mgu'. An equality is an atom of the form s ~ t. Let 
['; be the set of equality axioms other than x ~ x :-. If 
A and B are sets of clauses, then A satisfies (or implies) 
B iff every model of A is a model of B. A equationally 
satisfies (or implies) B iff A u ['; u {x ~ x :- } satisfies B. 
A and Bare (equationally) equivalent iff each (equation­
ally) satisfies the other. A is equationally inconsistent iff 
A equationally implies the empty clause. 

3 Surface Deduction 

In surface deduction, a refutation of a set of input clauses 
proceeds by first transforming the input clauses to a flat 
form and then refuting the result using resolution, fac­
toring and compression. The transformation subsumes 
the equality axioms other than reflexivity. The rules of 
factoring and compression subsume reflexivity. 

Definition. Let C be a clause and t a term. An occur­
rence of t on the left-hand side (right-hand side) of an 
equality t ~ s (s ~ t) in C is a root (surface) occurrence 
of t in C. Every other occurrence of t is an internal oc­
currence of t. The term t is a root term of C iff it has 
a root occurrence in G. Surface and internal terms are 
defined analogously. 



Definition. A clause C is flat iff 

(i) every atom of C is of the form P(x}, ... , xn ), 

x == f(XI,''''X n ) or x == y, and 
(ii) no surface variable of C is a root or internal 
variable of C. 

Definition. Let C be a Horn clause. An elementary 
flattening of C is obtained by either 

or 

(i) replacing some of the non-surface occurrences 
of a non-variable term t by a new variable y and 
adding the equality y == t to the body, 

(ii) replacing some of the surface occurrences of a 
root or internal variable x of C by a new variable 
y and adding the equality x == y to the body. 

An elementary flattening of the set of clauses A is ob­
tained by replacing a clause in A by an elementary flat­
tening of that clause. 

Modifying a clause C by successive elementary flat­
tenings eventually results in a flat clause (a flattening of 
C) which cannot be flattened any further (Theorem 2 
of [Cox and Pietrzykowski 1986]). 

Definition. Let C be a clause. Then FLAT( C) denotes 
a (arbitrary but fixed) flattening of C. 

For any set of clauses A, FLAT(A) is equationally 
equivalent to A. In [Cox et al. 1991] it is shown that for 
refutation completeness the transformation FLAT sub­
sumes the substitutivity axioms but not transitivity and 
symmetry. 

In order to subsume transitivity and symmetry, we 
need another transformation. 

Definition. Let C be a clause with an equality in its 
head. Then C is symmetric iff C is of the form 

x == u :- x == v, s == v, y == u, y == t, 111 

for some terms sand t and set of atoms 111, where x, y, 
u and v do not occur in M, s or t. The set of clauses A 
is symmetrized iff every clause C of A with an equality 
in its head is symmetric. 

Definition. Let C be a Horn clause. If C does not 
have an equality in its head or if C is symmetric, then the 
symmetrization SYM( C) of Cis C. If C is not symmetric 
and of the form s == t :- 111, then SYM (C) is given by 

x == u :- x == v, s == v, y == 1l, Y == t, 111. 

Note that if A is a set of Horn clauses, then SYM(A) 
is equationally equivalent to A, and if A is flat, then 
SYM(A) is flat. In [Cox et al. 1991] it is shown that 
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the transformation SYM subsumes transitivity and sym­
metry. In order to subsume substitutivity, transitivity 
and symmetry, the transformations SYM and FLAT are 
composed. 

Flattening and symmetrization followed by SLD­
resolution using resolution with x == x :- as an additional 
deduction rule is refutation complete for logic program­
ming with equality. However, weak deductive complete­
ness is not satisfied [Cox et al. 1991]. In order to obtain 
weak deductive completeness an additional transforma­
tion is required. 

Definition. A positive (negative) root occurrence of 
the term t in the clause C is a root occurrence in the 
head (body) of C. 

Definition. The flat clause C is separated in the vari­
able x iff 

(i) every literal of C has at most one occurrence of 
x, 

(ii) C has at most one internal occurrence of x, and 

(iii) if x has an internal occurrence in C, then x has 
a negative root occurrence in C. 

The clause C is separated iff C is separated in all its 
variables. 

If A is a set of separated flat Horn clauses, then 
SYM( A) is separated. Separated clauses can be obtained 
from a given fla.t clause by using the transformation SEP: 

Definition. Let C be a flat clause and x a variable. 
The clause SEP( C) is the separated flat clause obtained 
by applying the following transformation to C: For every 
variable x such that C is not separated in x, replace each 
internal occurrence of x by a new variable Xi and add 
the equalities x == y, Xl == y, x2 == y, ... to the body of C 
(where y is a new surface variable). 

The rules of factoring and compression used in surface 
deduction are: 

(i) Root factoring. The clause C, is a root factor of C 
iff C, is obtained by factoring two equalities of C 
with the same root variable. 

(ii) Surface facto1'ing. The clause C' is a surface factor 
of C iff C, is obtained by factoring two equalities 
of C with the same surface term. 

(iii) Root compression. The clause C, is a root compres­
sion of C iff C' is obtained by removing an equality 
x == t from the body of C, where x has only one 
occurrence in C. 

(iv) Surface compression. The clause C' is a surface 
compression of C iff C' is obtained by removing an 
equality x == y from the body of C, where y has 
only one occurrence in C. 
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A compression is a root or surface compression. A com­
pression of a clause C is a clause C' obta.ined [rom C by 
a sequence of applications of compression rules. 

The soundness of root and surface factoring and 
compression (in the presence of equality) is shown 
in [Cox and Pietrzykowski 1986]. Observe that binary 
resolution, surface and root factoring and compres­
sion preserve flatness. The relationship between fac­
toring, compression and resolution with the reflexiv­
ity axiom is determined by the following result (proved 
implicitly in [Cox and Pietrzykowski 1986] and explic­
itly in [Cox et al. 1991]; see also [Hoddinott and Elcock 
1986]): 

Theorem 3.1 Let ;- C be a fiat goal clause. If ;- c' 
is a fiat goal clause obtained from ;- C by a sequence 
of binary resolutions with x ~ x ;-, then ;- C' can be 
obtained from ;- C by a sequence of root and sU1face 
facto rings and compressions. 

Definition. Let A be a set of fiat I-lorn clauses. The 
flat goal clause C is S -deducibl e from A iff C can be 
obtained from A by a sequence of binary resolutions, 
surface and root factorings and compressions. Note that 
we can assume that the deduction is linear. A is S­
refutable iff the empty clause is S-deducible from A. 

To state the weak deductive completeness result for 
flat, separated and symmetrized clauses, we need the 
transformation defined next. 

Definition. Let :- C be a fiat goal clause. Then :- C 
is 1'educed iff :- C has no surface variables and no two 
equalities of :- C have the same right-hand sides. A fla.t 
reduced clause REDU( :- C) is obtained from :- C by 
factoring equalities with identical right-hand sides un­
til all right-hand sides are distinct, and by removing 
all remaining equalities with surface va.ria.bles by surfa.ce 
compression. Note that for every fla.t goal clause :- C, 
REDV( :- C) is equationally equivalent to :- C. 

Theorem 3.2 [Cox et al. 1991] Let ;- C be a goal 
clause and A a set of Horn clauses which includes 
the function substitutivity axioms. Then A equa­
tionally implies ;- C iff the1'e is a fiat goal clause 
;- C' such that for some variable-pure substitution (J", 

:- C'O"" ~ REDU(FLAT( ;- C)) and ;- C, is S-deducible 
from SYM(SEP(FLAT(A))). 

As an application of this result, the following theorem 
is proved in [Cox et al. 1991]: 

Theorem 3.3 Let :- A and ;- B be goal clauses. Then 
:- A equationally implies ;- B iff there is a variable-pure 

substitution 0"" such that a compression of FLAT( :- A)O"" 
is included in REDU(FLAT( ;- B)). 

Definition. Let :- C be a goal clause. An equa­
tional residuum of :- C is a minimal subclause of 
REDU(FLAT( :- C)) which is equationally equivalent to 
:-C. 

Every equational residuum of :- C is equationally 
equivalent to :- C. The fact that every subclause of a 
reduced clause is reduced implies that if :- C' is an equa­
tional residuum of :- C, then :- C' is reduced. The next 
theorem shows that the equational residuum is unique. 

Theorem 3.4 [Cox et al. 1991] Let ;- A' and ;- B' be 
equational 1'esidua of the goal clauses ;- A and :- B re­
spectively. Then ;- A is equationally equivalent to :- B 
iff ;- A' is a variant of ;- B'. 

4 Abduction USIng Surface De­
duction 

An existential conjunction of facts is a conjunction of 
facts with all its free variables quantified existentially. 
The abduction problem for Horn clause logic with equal­
ity can be stated as follows: 
Abduction Problem: An abduction problem is a pair 
(A, 0), where A is a theory of Horn clauses and 0 (the 
observation) is an existential conjunction of facts. An 
explanation of the abduction problem (A,O) is an ex­
istentia.l conjunction of facts E consistent with A such 
that E and A equationally imply O. 

Let -,0 and -,E denote the disjunctions of the nega­
tions of the constituent facts of 0 and E respectively. 
Since E and A equationally imply 0 iff -,0 and A equa­
tionally imply -'E, a solution to an abduction problem 
can be obtained by deducing a clause C from A and -,0, 
and negating C to obtain E. 

In general, it is desirable for an explanation E of 
an abductive problem (A,O) to have certain additional 
properties (see [Cox and Pietrzykowski 1987]). For ex­
ample, an explanation E should not contain any facts 
not required to yield the observation from A (the par­
simony principle). Thus if E and E' are explanations 
of (A, 0) and E equationally implies E', E' is preferred 
over E. (Here 'preferred' is to be understood as 'at least 
as good as'.) 

For abduction, a desirable property of a deduction 
system is that for every explanation E of an abductive 
problem (A, 0), one can obtain an explanation preferred 
over E. The weak completeness result of Theorem 3.2 
implies that surface deduction with separated clauses 
and the function substitutivity axioms has this property. 

Theorem 4.1 Let (A,O) be an abductive problem, 
whe're A contains the function substitutivity ax­
ioms. Then for every explanation E of (A,O), 
there is an explanation E' preferred over E such 



that ,E' is S-deducible from SYM(SEP(FLAT(A))) U 
{SEP(FLAT( ,O))}. 

Proof. This follows by Theorem 3.2 and the fact that 
-,0 is a goal clause, so that it does not need to be sym­
metrized. • 

Fortunately, it appears that the function substitutiv­
ity axioms are rarely needed in abductive problems when 
using surface deduction with separated clauses. 

Flattenings of a clause can be viewed as alternate 
representations of the clause's term structure and are 
therefore essentially equivalent. Without loss of general­
ity we restrict our attention to explanations E such that 
-,E is flat (flat explanations). 

If E and E' are explanations of (A, 0) such that E 
equationally implies E' but is not equationally equiva­
lent to E', then E' is strictly preferred over E. Given 
an explanation E of (A, 0) there are many equationally 
equivalent existential conjunctions of facts, all of which 
are also explanations of (A,O). The preference criteria 
introduced so far do not distinguish among equationally 
equivalent explanations. Using the intuition that a "sim­
pler" explanation should be preferred, we give a stronger 
definition of preference: 

Definition. Let E and E' be flat explanations. Then 
E' is strictly preferred over E iff either E equationally 
implies E' but is not equivalent to E', or E is equation­
ally equivalent to E' and E' has fewer atoms. 

Given these preference criteria, we have the following 
theorem which determines the most preferred flat expla­
nation among equationally equivalent ones: 

Theorem 4.2 For any explanation E, if E' is the nega­
tion of the equational residuum of -,E, then E' is the 
unique most preferred flat explanation among flat expla­
nations equationally equivalent to E. 

Proof. Let :- A be a flat clause equationally equiva­
lent to ,E. If :- A is not reduced, then REDU( :- A) 
has fewer atoms than :- A and the corresponding expla­
nation is therefore strictly preferred. Assume that :- A 
is reduced. If the equational residuum of :- A is not 
given by :- A, then the equational residuum of :- A has 
fewer atoms than :- A, so that the corresponding expla­
nation is strictly preferred. The result now follows by the 
uniqueness theorem for equational residua, Theorem 3.4. 

• 

5 An Application 

Examples from the domain of story comprehension and 
motivation analysis which demonstrate the need for the 
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inclusion of equality in abductive reasoning are given 
in [Charniak 1988]. Here we give an example from a 
different domain. 

Consider the following (imaginary, but realistic) sit­
uation. A researcher X experimentally determines the 
value of a quantity associated with a physical object (e.g. 
the mass of an isotope of an element) and sends us the 
result. We have independently obtained a value for the 
same quantity (by theory and/or experiment) and our 
value differs from X's value. We believe our value to 
be correct and we would like to explain the discrepancy. 
\Ve do not know the exact means by which X's value 
was obtained, but we know what kinds of experimental 
apparatus X might have used. One kind of apparatus 
(type A) is notorious for a hard- to-control drift in the 
settings which results in a systematic bias in the read­
ings. Thus we can explain the discrepancy between our 
and X's values by hypothesizing that X used apparatus 
of type A with a systematic bias equal to the difference 
between the two values. 

The situation is formalized as follows: Let T A(x) 
mean that x is an apparatus of type A. Let Vt(y) be the 
true value of quantity y, Vm(z,y) the value of quantity 
y measured in experiment z, A(u) the apparatus used in 
experiment u and B( x) the systematic bias of apparatus 
x. The quantity measured by X is q, and the experi­
ment performed by X is given the name e. With these 
definitions, our knowledge T consists of the clauses 

Tl: Vt(q)~O:-

T2: Vm(XI' x2) 
TA(A(XI)) 

T3: Xl ~ 0 + Xl :-

where knowledge about other types of apparatus and the­
orems about real numbers other than T3 have been omit­
ted. The observation 0 is given by 

0: Vm(e,q)~2:-

The first task is to obtain a flattening of T and the 
negation of the observation: 

ITl: Xl == 0 :- Xl == Vt(x2), X2 == q. 

IT2: X4 ~ Xs + X6:- T A(X3)' X6 ~ B(X3)' X4 -
Vm(XI,X2), Xs ~ Vt(x 2), X3 ~ A(xl )· 

IT3: Xl ~ x2 + Xl :- X2 ~ O. 

fO: :- Xl == 2, Xl ~ Vm(X2' X3), X2 ~ e, X3 ~ q. 

The clauses ITl and fO are separated. Separated 
clauses for IT2 and IT3 are given by 

sIT2: 

sIT3: 

X4 ~ Xs + x6:- T A(X3), X6 ~ B(X7)' X3 ~ XS, 
X7 ~ XS, X4 ~ Vm(xI' X2), Xs == Vt(XlO), X2 ~ 
Xg, XlO ~ Xg, X3 ~ A(xu ), Xl ~ X12, Xu ~ X12' 

Xl ~ X2 + X3 :- X3 == X4, Xl == X4, X2 ~ O. 
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All clauses of T have equalities in their heads and 
need to be symmetrized. The fully transformed set of 
clauses is given by 

TI': X3 ~ X4:- X3 ~ X s , Xl ~ Xs, X6 ~ X 4 , X6 ~ 0, 
Xl ~ Vt(X2), X2 == q. 

T2': X l3 ~ X I4 :- XI3 ~ XIS' X 4 - XIS, X16 - X 14 ' 

Xl6 == Xs + X6, T A(x3 ), X6 ~ B(X7), X3 ~ Xs, 

X7 ~ Xs, X4 == Vm(XI,X2), Xs ~ Vt(XlO), X2 ~ 
X9, XlO ~ X9, X3 == A(xu), Xl ~ X12, Xu ~ X12' 

T3': Xs == X6:- Xs ~ X7, Xl ~ X7, Xs ~ X6, Xs ~ 

X2 + X3, X3 == X4, Xl == X.j, X2 ~ 0. 

0': 

The negation of the desired explanation can now be 
deduced from 0'. In the deduction below, the literals 
involved in each step are underlined. As is usually the 
case, the function substitutivity axioms are not needed. 

0' 

res. with T2' 

surf. fact. fol­
lowed by root 
fact. and compr. 

res. with TI' 

surf. fact. and 
compr. 

res. with T3' 

:- Xl ~ 2, Xl ~ Vm(X2' X3), X2 ~ 
e, X3 ~ q. 

:- Xl ~ XIS, X7 ~ XIS, '&19 ~ 2, 
Xl9 ~ Xs + X9, T A(x6 ), Xg ~ 
B(XlO), X6 ~ Xu, XlO ~ xu, 

X 7 ~ Vm(x4' x s ), :rs == Vt(X I3 ), 
...:.. 

Xs - X12, Xl3 X12, X6 -

A(X14)' X4 ~ XIS, X14 ~ XIS' 

Xl ~ Vm(X2' X3), X2 ~ e, X3 ~ q. 

:- Xl9 ~ 2, Xl9 ~ Xs + X9, T A(X6), 

X9 ~ B(XlO), X6 ~ X11, :rlO ~ Xll, 

Xs ~ Vt(x I3 ), :r3 ~ :r I2 , X l3 ~ X12 ' 

X6 ~ A(X I4 ), X2 ~ XIS' X 14 ~ XIS' 

X2 ~ e, X3 == q. 

:- X l9 ~ 2, x l9 ~ Xs + Xg, TA(X6), 

X9 ~ B(XlO), X6 ~ :1.:u, XlO ~ X11' 

Xs ~ X24, X20 ~ X24, X2S ~ Vt(X I 3), 

X25 == 0, X 20 ~ Vt(X21 ), X21 ~ q, 
X3 ~ X12' X l3 ~ x 12 ' X6 ~ A(x14 ), 

x 2 ~ XIS, X l 4 ~ XIS, X2 == e, X3 ~ q. 

:- X l9 == 2, X I9 ~ Xs + X g , T A(x6 ), 

X9 ~ B(xlO)' X6 ~ :r11 , XlO ~ Xu, 

Xs ~ X24, X20 ~ X2.j, X20 ~ 0, X20 ~ 
Vt(X3), X6 ~ A(x14 ), X2 ~ XIS, 

Xl4 == XI5, X2 ~ e, X3 ~ q. 

X3I, X32 ~ Xs + Xg, X32 == X26 + X27, 

X27 ~ X2S' X 2S ~ X2S' :1.: 26 ~ 0, 
T A(X6)' X9 ~ B(XlO)' X6 ~ X 11 , 

XlO ~ Xu, Xs ~ X24, X20 ~ X24, 

X20 == 0, X20 ~ Vt(X3), X6 ~ A(x14 ), 

X2 ~ X15, X14 ~ XIS' :/:2 == e, X3 ~ q. 

root fact., surf. 
fact. and compr. 

root fact., surf. 
fact., and compr. 

res. with TI' 

surf. fact., root 
fact. and compI'. 

.- X19 ~ 2, X19 ~ X31, X25 ~ X31, 

X9 ~~25 == X2S, TA(X6), X9 ~ 
B(XlO), X6 == Xu, XlO ~ Xu, Xs ~ 0, 
Xs ~ Vt(x 3 ), X6 == A(X I4), X2 -

XIS' X l4 ~ X 15 ' X 2 ~ e, X3 ~ q. 

:- X9 ~ 2, T A(X6)' X9 ~ B(xlO), 

X6 ~ Xu, XlO == Xu, Xg ~ 0, Xg ~ 

Vi(X3), X6 ~ A(XI4)~~ XIS, 

Xl4 ~ X15, X2 ~ e, X3 ~ q. 

:- X9 == 2, T A(X6), X9 ~ B(XlO), 

X6 ~ X11' XIO ~ Xu, Xs ~ X21, 

X 17 ~ X 21 ' X22 == 0, X l 7 ~ Vt(XIg), 

XIS ~ q, Xg ~3)' X6 ~ A(X I4 ), 

X2 ~ XIS, Xl4 ~ XI5, X2 ~ e, X3 ~ q. 

:- X9 ~ 2, T A(X6), X9 ~ B(XlO), 

X6 ~ Xu, XlO ~ Xu, X6 ~ A(XI4), 

X2 == XI5, Xl4 == XI5, X2 ~ e, X3 == q. 

reduction to the :- X6 == A(X2), X2 == e, T A(X6), 

min. residuum Xg ~ B(X6), X9 ~ 2. 

The last clause is the negation of the desired expla­
nation. Note how two resolutions with TI' were used to 
simulate symmetry. 

6 Conclusion 

From a theoretical perspective, surface deduction is very 
appealing in its simplicity. We have seen how (at least 
in theory) surface deduction can be applied in situations 
such as abductive reasoning where deduction rather than 
refutation is the primary goal. 

If the equality theory of interest contains function 
substitutivity, a problem with using surface deduction 
for abduction is that in general the function substitutiv­
ity axioms are still required. Current research indicates 
that to a large extent, the function substitutivity axioms 
can be ignored in abductive problems when using surface 
deduction with symmetrized, separated and flat clauses. 
VVe do not know any practical example where this is not 
the case. 

From a practical point of view, one of the frequently 
recognized problems with flattening the clauses of the 
input theory is that one loses most of the advantages of 
unification, particularly if the input theory contains few 
equalities. One can regain some of these advantages in 
practice by interpreting the set of equalities in the body 
of a clause as a directed graph or hypergraph (with arcs 
from the root variables to the surface terms) which de­
fines the set of possible definitions of the main terms 
and variables of the clause. Such a directed graph gen­
eralizes the usual tree representation of terms. Unifi­
cation and more generally term rewriting can then be 
replaced by (hyper)graph rewriting rules. To implement 



this idea, the deduction procedures must be substa.ntially 
enhanced. The types of graph rewriting rules and graph 
representations needed require further research. 

The preference criteria for explanations given in Sec­
tion 4 are very weak. However, we believe that no matter 
what preference criteria are used, RES( C) is at least as 
good an explanation as C. One of the most important 
problems in abductive reasoning is to determine stronger 
preference criteria to avoid combinatorial explosion. 
These issues are discussed in [Poole and Provan 1990]. 

Many ofthe results used in this paper can be general­
ized to arbitrary clauses so that the restriction of abduc­
tive reasoning to Horn clause theories ca.n be removed. 
These generalizations will be the topic of a forthcoming 
paper. 
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Abstract 
This paper presents a form of reasoning called 

"hypothetico-deduction", that can be used to address 
the problem of multiple explanations which arises in 
the application of abduction to knowledge assimilation 
and diagnosis. 

In a framework of hypothetico-deductive reasoning 
the knowledge is split into the theory T and observable 
relations S which may be tested through experiments. 
The basic idea behind the reasoning process is to 
formulate and decide between alternative hypotheses. 
This is performed through an interaction between the 
theory and the actual observations. The technique 
allows this interaction to be user mediated, permitting 
the acquisition of further information through 
experimental tests. Abductive explanations which have 
all their empirical consequences observed are said to be 
"fully corroborated". 

We set up the basic theoretical framework for 
hypothetico-deductive reasoning and develop a 
corresponding proof procedure. We demonstrate how 
hypothetico-deductive reasoning deals with one of the 
main characteristics of common-sense reasoning, 
namely incomplete information, through the use of 
partial corroboration. We study the extension of basic 
hypothetico-deductive reasoning applied to theories 
that incorporate default reasoning as captured by 
negation-as failure (NAF) in Logic Programming. This 
is applied to the domain of Temporal Reasoning, where 
NAP is used to formulate default persistence. We show 
how it can be used successfully to tackle typical 
problems in this domain. 

1 Motivation 
Abduction is commonly adopted as an approach to 

diagnostic reasoning [Reggia & Nau, 1984], [Poole, 
1988]. However, there are frequently many possible 
abductive explanations for a given observation. This is 
the problem of "multiple explanations". In order to 
choose between these explanations it becomes 
necessary to collect more information. Consider the 
Crime Detection example formalized below (Theory 
Tl). 

Suppose we arrive at the scene of the crime and the 
first observation we make is that someone is dead. We 
seek an explanation for this on the basis of the theory 
Tl above. Suppose we accept that there are only three 
possible causes of death: being strangled, being 
stabbed, or drinking arsenic (these are technically 
known as the abducibles). Simple abduction starting 
from the observation "dead" yields precisely these three 
possible explanations. In order to choose between these 

multiple explanations, we need to collect more 
information. For example, if we examined the corpse 
and discovered that there were marks on the neck, we 

Theory Tl 

strangled ~ dead strangled ~ neck_marks 

blood_loss ~ dead stabbed ~ blood_loss 

poisoned ~ dead drunk_arsenic ~ poisoned 

might take this as evidence for the first explanation 
over the others. Moreover, we know that drinking 
arsenic also has the consequence of leaving the victim 
with a blue tongue, so we might like to look for that. 

One approach to deciding between multiple 
explanations is through the performance of crucial 
experiments ([Sanar & Goebel, 1989]): pairs of 
explanations are examined for contradictory 
consequences, and an experiment is performed which 
refutes one of them whilst simultaneously 
corroborating the other. With n competing 
explanations we must thus perform at most (n-l) 
crucial experiments . 

The crucial experiment approach is, however, unable 
to choose between explanations when they fail to have 
contradictory consequences or when they have 
contradictory consequences that are not empirically 
determinable (e.g. Tychonic and Copernican world 
systems). In our example, for instance, the explanations 
"strangled" and "stabbed" are not incompatible. It is 
possible that the victim was both strangled and stabbed. 
As result, there can be no crucial experiment that will 
decide between the two. However, further evidence 
might lead us to accept one explanation, whilst 
tentatively rejecting the other. For example, knowledge 
that the person exhibits marks on the neck supports the 
"strangled" hypothesis. In fact we have all the 
theoretically necessary observations to conclude that 
the victim was strangled. On the other hand, the 
"stabbed" hypothesis implies "blood_loss", which if not 
observed might lead us to favour the "strangled" 
explanation. Note that later evidence of blood loss 
would lead us to return to the "stabbed" hypothesis (in 
addition to "strangled"). From our viewpoint, crucial 
experiments are the speCial case of general 
hypothetico-deductive reasoning when an hypothesis is 
refuted whilst simultaneously corroborating a second. 

The process of hypothetico-deductive reasoning 
allows the formation and testing of hypotheses within 
an interactive framework which is applicable to a wide 
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class of applications and is implementable using 
existing technology for resolution. 

The technique of hypothetico-deductive reasoning 
has its origin in the Philosophy of Science. It was 
primarily proposed by opponents of Scientific 
Induction. Its notable contributors were Karl Popper 
([Popper, 1959],[Popper, 1965]), and Carl Hempel 
[Hempel, 1965]. In its original context, hypothetico­
deduction is a method of creating scientific theories by 
making an hypothesis from which results already 
obtained could have been deduced and which entails 
new predictions that can be corroborated or refuted. It 
is based on the idea that hypotheses cannot be derived 
from observation, but once formulated can be tested 
against observation. 

The hypothetico-deductive mechanism we formulate, 
resembles this method in having the two components of 
hypothesis formation and corroboration. It differs from 
the accepted usage of the term in philosophy of science 
by the status of the hypothesis formation component. 

In the philosophy of the process of hypothesis 
formation is equivalent to theory formation: a creative 
process in which a complete theory is constructed to 
account for the known observations. By contrast, the 
method we describe here starts with a fixed generalized 
theory which is assumed to be complete and correct. 
The task is to construct some hypotheses which when 
added to the theory have the known observations as 
logical consequences. The process is more akin to that 
used by an engineer when they apply classical 
mechanics to a particular situation: they don't seek a 
new physical theory, but rather a set of hypotheses 
which would explain what they have observed. Since, 
for us, hypothesis formation can be mechanized, we do 
not have to tackle the traditional issues of the 
philosophy of science concerning the basis of theory 
formation. We thus avoid (like Poole before us [Poole, 
1988, p.28]) one of the most difficult problems of 
science. 

This paper is organized as follows. We first describe 
the reasoning process and present the logical structure 
of the reasoning mechanism, indicating how it relates to 
classical deduction and model theory. Abductive and 
corroborative derivation procedures for implementing 
the reasoning process are then defined through 
resolution. We indicate how this reasoning technique 
relates to current work on abduction and diagnostic 
reasoning, and suggest some possible extensions. We 
illustrate the features and applicability of this reasoning 
method with several examples. We then describe the 
extension of hypothetico-deduction to apply to theories 
which include some form of default reasoning, using 
negation-as-failure as an example. We consider a 
typical application of defaults in causal reasoning, 
namely default persistence, and provide several further 
examples which illustrate this extension. 

2 Hypothetico-deductive Framework 
Suppose we have a fixed logical theory T about the 

world. For example, it might be a medical model of the 
anatomy, or a representation of the connections in an 
electrical network, or a model of the flow of urban 
traffic in Madrid. Let us divide the relations in the 
theory into two categories: empirical and theoretical. 
How we make this distinction will depend on how we 
interpret these relations in the domain for the theory. 
An empirical relation is one which can be (or has been) 
observed. For example, the blood pressure of a patient, 
the status of a circuit-breaker (open or closed), or the 
number of cars passing some point. By contrast, a 

theoretical relation is in principle not observable. 
Examples of theoretical relations might be infection 
with an influenza virus, the occurrence of a short-circuit 
from the viewpoint of a control centre, or the density of 
traffic at some pOint. 

Suppose we want an explanation for G on the basis 
of the theory. By this, what we mean is "what relations 
(we will call them hypotheses) might be true in order to 
have given rise to G?". The answer to this question 
could involve either theoretical or empirical relations. 
In order to be confident that an explanation is the 
correct explanation it is useful to test it. Explanations in 
terms of empirical relations are directly testable. In the 
simplest case we just consider the other observations we 
have already made; in more complicated cases, we may 
need to "go and look" or even perform an 
"experiment". Explanations in terms of theoretical 
relations must be tested indirectly, by deducing their 
empirical consequences. and testing these. 

Unfortunately, not all hypotheses that might give rise 
to the observation G serve as explanations. regardless as 
to whether they pass any tests. Some are too trivial such 
as taking G as an explanation for itself. Others we rule 
out as unsuitably shallow. For example, suppose we 
sought an explanation for the observation "Jo laughed 
at the joke"; one possible hypothesis is because "the 
joke was funny". However, what we really wanted was a 
deeper explanation: Why was the joke funny? We 
therefore designate certain types of hypotheses as 
explanatory (or, more strictly, "abducible"). 

The problem of explanation. as far as we are 
concerned in this paper, is the problem of constructing 
abducible hypotheses which when we add them to T 
will have G as a logical consequence. Furthermore, 
explanations must pass (direct or indirect) tests. 

The process of constructing hypotheses which have 
G as a deductive consequence is an example of 
hypothesis formation. It is this stage that corresponds 
to the "hypothetico-" component of hypothetico­
deductive reasoning. The process of testing an 
explanation is an example of corroboration. It is this 
stage that corresponds to the "deductive" component 
of hypothetico-deductive reasoning. This is because we 
use deduction to determine the empirical consequences 
of a given explanation. The process of hypothetico­
deductive reasoning can now be formulated as the 
construction of an explanation for an observation 
through interleaving hypothesis formation and 
corroboration. 

3 The Hypothetico-deductive 
Mechanism 

Let us consider the mechanism for hypothetico­
deductive reasoning in more detail. To simplify matters 
we shall require that our theory is composed of rules 
and no facts. In logical terms, an hypothesis (and thus 
an explanation) will be a set of ground atomic well­
formed formulae. 

Suppose we have a (usually causal) theory T, an 
observation set 0, a set of abducible atomic formulae A, 
and a particular observation G from 0 which we wish to 
explain. Let 0' = O-G. In addition we define a set S, the 
observables, containing all the formulae that can occur 
in O. 

There are three components to the reasoning 
process: hypothesis formation, hypothesis 
corroboration, and explanation corroboration. In 
outline, we carry out hypothesis formation on G, and 
for each component formula in the resultant 
hypothesis. We repeat this process until all that remains 
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is a set of abducible relations constituting the 
explanation. We also carry out hypothesis 
corroboration at each formation point. Finally we 
reason forwards from the explanation to perform 
explanation corroboration. 

Hypothesis Formation 
From any ground atomic formula F we form an 

hypothesis for that formula. This is done by 
determining which rules in T might allow F as a 
conclusion, and forming an hypothesis from tIle 
antecedents of each such rule (after carrying out the 
relevant substitutions dictated by F). Each hypothesis is 
thus sufficient to allow the conclusion of F. 

Hypothesis Corroboration 
An hypothesis for an observation may contain 

instances of observables defined by S. For each such 
component we check to see whether it is an observation 
recorded in 0'. If it is a member of 0' then it is 
corroborated and we can retain it. However, where any 
component is not corroborated in this fashion, we reject 
the entire hypothesis. 

Explanation Corroboration 
An hypothesis H which is composed entirely of 

instances of abducible predicates defined by A is an 
explanatory hypothesis. To corroborate H, we use T to 
reason forwards from H as an assumption. Each logical 
consequence of H which is also an instance of an 
observable is checked against 0' for corroboration 
(similar to "hypothesis corroboration"). If it does not 
occur in 0' then the original hypothesis H is rejected. If 
all observable consequences are corroborated, then the 
explanation H is said to be corroborated. 

In general, rules may have more than one literal in 
their antecedent. We must also check the satisfaction of 
the other literals in a given rule by reasoning backwards 
until we reach either one of the observations in 0' or 
one of the other explanatory hypotheses. If neither of 
these two situations arise, the rule is discarded from the 
forward reasoning process. 

We make a distinction between corroboration failure, 
where an hypothesis or prediction does not occur in the 
observation set 0', and refutation, where the negation 
of an hypothesis or prediction occurs in 0'. Normally 
the form of ° and T means that refutation is impossible 
(see the next section for details of this form). Later we 
suggest an extension which allows the possibility of 
refutation in addition to corroboration failure. In cases 
where it is natural to apply the closed world assumption 
to 0, these two situations will coincide. 

4 The Logical Structure of 
Hypothetico-deductive Reasoning 

Suppose we have a theory T composed of definite 
Horn clauses and an observation set of ground atomic 
well-formed formulae 0. Let the set of ground atomic 
formulae which can occur in ° be S, the observables. 
Similarly, let us define a set of distinguished ground 
atomic formulae A, the abducibles, in terms of which 
all explanations must be constructed. An explanation 
will be a member of the set A. We will assume that the 
theory T alone does not entail any empirical 
observation without some other empirical input i.e. 
there does not exist any formula <\> such that <\> E Sand 

T 1= <\>. Consider also a ground atomic formula G (a 
member of S) for which we seek an explanation. 

Given the 4-tuplc <T,O,A,S>, a corroborated 
explanation 6. for G, is a set of ground atomic well­
formed formulae, which fulfils all of the following 
criteria: 

(1) Each formula in ~ must be a member of A. 

(2) T v ~ 1= G 

(3) IfT v 6. 1= nand n ~ S ,then n ~ ° 
An explanation set ~ which satisfies (1) and (2) but not 
(3) is said to be uncorroborated. 

This formulation is easily generalized to explanation 
for multiple observations by simply replacing G with a 
conjunction of ground atomic formulae. 

We note that since at this stage we have taken our 
theories to be Horn, a simple extension to hypothetico­
deductive reasoning allows us to distinguish between 
explanation refutation when a prediction is inconsistent 
with observation, and merely the failure of 
corroboration where a prediction is consistent with 
known observations but not present in them. Such an 
extension would allow a hypothetico-deductive system 
to deal with circumstances where our observations 
cannot ever be complete (where we know our fault­
detection system is itself fallible, for instance). We 
could then discard only those explanations that are 
refuted, and order the remaining ones according to 
their degree of corroboration (corresponding to 
Popper's notion of versimilitude, [Popper, 1965]). A 
later section discusses the extension of hypothetico­
deductive reasoning to theories which include ncgation­
as-failure. 

This extended version of hypothetico-deductive 
reasoning is non-monotonic because later information 
might serve to refute a partially corroborated 
explanation. To return to our first example for instance, 
the observation that the victim does not have a blue 
tongue would lead us to reject the hypothesis that they 
had drunk arsenic (even if previously this hypothesis 
had some observational consequences which had been 
observed). 

5 Hypothetico-deductive Proof 
Procedure 

A resolution proof procedure which implements 
hypothetico-deductive reasoning is formally presented 
below. BaSically we define two types of derivation: 
abductive derivation and corroboration derivation 
which are then interleaved to define the proof 
procedure. Abductive derivation corresponds to the 
processes of hypothesis formation and corroboration, 
deriving hypotheses for goals. Corroboration derivation 
corresponds to the process of explanation 
corroboration, deriving predictions from goals. There 
are two different ways to interleave the abductive and 
deductive components of the reasoning mechanism. 
One approach is to derive all the abducible literals in 
the hypothesis for an observation, before any of them 
are corroborated. The second approach attempts 
corroboration as soon as an abducible literal is derived, 
postponing consideration of other (non-abducible) 
literals in the hypothesis. Here we present a proof 
procedure based on the second approach. 

Definition (safe selection rule) 
A safe selection rule R is a (partial) function which, 

given a goal ~ Li, ... , Lk k~l returns an atom Li, 
i=l, ... ,k such that: 

either i) 
or ii) 

Li is not abducible; 
Lj is ground. 



Definition (Hypothetico-deductive proof procedure) 
An abductive derivation from (G I ~ I) to (Gn ~n) 

via a safe selection rule R is a sequence 
(GI ~l), (G2 ~2), ... , (Gn ~n) 

such that for each i> 1 Gi has the form ~ L 1, .. · ,L k> 
R(Gi)=Lj and (Gi+l ~i+r) is obtained according to one 
of the following rules: 

AI) If Lj is neither an abducible nor an observable, 
then Gi+l=C and ~i+l=~i where C is the resolvent 
of some clause in T with Gi on the selected literal 
Lj; 

A2) If Lj is observable, then Gi+l=C and ~i+l=~i 
where C is the resolvent ofC': ~ Ll', ... ,Lj', ... ,Lk' 
with some clause in T on Lj' where ~ LI', ... ,Lj-
l',Lj+l', ... ,Lk' is the resolvent of Gi with some 
clause (ground assertion) Lj' in a on the selected 
literal Lj; 

A3) If Lj is abducible and LjE ~ i, then 
Gi+l= ~LI, ... ,Lj-l,Lj+I, ... ,Lk and ~i+l=~i; 

A4) If Lj is abducible and Lje: ~ and there exists a 
corroboration derivation from ({ Lj} ~iU {Lj}) to 
({} ~') then Gi+l = ~Ll, ... ,Lj-l, Lj+l, ... ,Lk and 
~i+l = ~'. 

Step AI) is an SLD-resolution step with the rules of 
T. In step A2) under the assumption that observables 
and abducibles are disjoint we need to reason backward 
from the true observables in the goal to find 
explanations for them since the definition of an 
explanation requires that it logically implies G in the 
theory T alone without the set of observations O. Step 
A3) handles the case where an abductive hypotheses is 
required more than once. In step A4) a new abductive 
hypotheses is required which is added to the current set 
of hypotheses provided it is corroborated. 

A corroboration derivation from (FI ~l) to (Fn ~n) is 
a sequence 

(FI ~l), (F2 ~2) ... (Fn ~n) to (Fn ~n) 
such that for each i>1 Fi has the form {H~LI, ... ,Lk} U 
Fi' and (Fi+l ~i+l) is obtained according to one of the 
following rules: 

Cl) If H is not observable then Fi+l = C' U Fi' 
where C' is the set of all resolvents of clauses 
in T with H~LI, ... ,Lk on the atom Hand 
~i+l=~i; 

C2) If H is a ground observable, He: a and 
LI, ... ,Lkis not empty then Fi+l = C' U Fi' 

where C' is ~LI, ... ,Lk and ~i+l=~i; IfHeO 

then Fi+l = Fi' and ~i+l=~i. 

C3) If H is a non ground observable, O~ 3 xH and 

L I, ... ,Lk is not empty then Fi+ 1 = C' u Fi' 
where C' is ~LI, ... ,Lk and ~i+l=~i; 

C4) If H is a non ground observable and Lj is any 
non observable selected literal from L I, ... ,Lk 
then Fi+ 1 = C' u Fi' where C' is the set of all 
resolvents of clauses in T U ~i with 
H ~ L 1, ... ,Lk on the selected literal Lj and 
~i+ 1 =~i; If Lj is observable the resolutions 
are done only with clauses in O. 

C5) If H is empty, Lj is any selected literal and Lj 
is not observable then Fi+ 1 = C' u Fi' where 

C' is the set of all resolvents of clauses in T u 
~i with ~ L 1, ... ,Lk on the literal Lj and 

De: C', and ~i+l =~i; If Lj is observable the 
resolutions are done only with clauses in O. 

In step C I) we "reason forward" from the 
conclusion H trying to generate a ground observable at 
the head. Once this happens if this observable is not 
"true" steps C2), C3) give the denial of the conditions 
that imply this observable. Step C4) reasons backward 
from the conditio ns either fail i ng or try i ng to 
instantiate further the observable head. Step C5) 
reasons backward from the denials of steps C2), C3) 
until every possible such backward reasoning branch 
fails. Note that in the backward reasoning steps 
observables are resolved from the observations a and 
not the theory. More importantly notice that we do not 
reason forward from an observable that is true. 

Note that we have included the set of hypotheses ~i 
in the definition of the corroboration derivation 
although this does not get affected by this part of the 
procedure. The reason for this is that more efficient 
extensions of the procedure can be defined by adding 
extra abducible information in the ~ i duri ng the 
corroboration phase e.g.the required absence of some 
abducible A can be recorded by the addition of a new 
abducible A *. 

Theorem 
Let <T,O,A,S> be a Hypothetico-Deductive framework 
and G a ground atomic formula. If (~G {}) has an 

adbuctive derivation to (0, Ll) then the set Ll is a 
corroborated explanation for G. 

Proof (Sketch) 
The soundness of the abductive derivations follows 
directly from the soundness of SLD resolution for 
definite Horn theories as every abductive derivation 
step of this procedure can be mapped into an SLD 
resolution step. To show that the explanation ~ is 
corroborated let AE S be any ground atomic logical 
consequence of T u ~ . Since T u ~ is a definite Horn 
theory A must belong to its minimal model which can 
be constructed in terms of the immediate consequence 
operator 'I[van Emden & Kowalski, 1976] . Hence 

there exists a finite integer n such that A E 'IT v Ll i n 
(0) and A does not follow from T alone by our 
assumption on the form of the theory T . The result 
then follows by induction on the length of the 
corroboration derivation. 

6 Application of Hypothetico­
deductive Reasoning 

In this section we will illustrate hypothetico­
deductive reasoning with some examples. Before this it 
is worth pointing out that existing abductive diagnosis 
techniques (e.g. [Poole et aI., 1987], [Davis, 1984], 
[Cox & Pietrzkowski, 1987], [Genesereth, 1984], 
[Reggia et aI., 1983], [Sattar & Goebel, 1989]) can be 
accommodated within the HD framework. For example 
in the diagnosis of faults in electrical circuits 
hypothetico-deductive reasoning exhibits similar 
behaviour to [Genesereth, 1984], [Sattar & Goebel, 
1989]. 

Problems and domains which are ideally suited to the 
application of hypothetico-deductive reasoning exhibit 
two characteristics. Firstly, they have a large number of 
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possible explanations in comparison to the number of 
empirical consequences of each of those explanations. 
Secondly, they have a minimal amount of observational 
data pertaining to a given explanation so that 
corroboration failure is maximized. 

To illustrate the manner in which general 
hypothetico-deductive reasoning deals with differing 
but compatible explanations, let us consider the 
example of abdominal pain first presented by [Pople, 
1985] and axiomatized in [Sattar & Goebel, 1990]. The 
axioms are reproduced below. To allow the possibility 
of several diseases occurring simultaneously, the three 
expressions which capture the fact that the symptoms 
(nausea, irritation_in_bowel, and heartburn) are 
incompatible, have been omitted. 

Theory T2 

abdominaCpain_symp(X) ~ has_abdominal-pain 

problem_is(indigestion) ~ abdominal_pain_symp(nausea) 

problem_is(dysentry) ~ 
abdominal-pain_symp(irritation_in_bowel) 

problem_is(acidity) ~ abdominal_pain_symp(beartbum) 

Now consider the following observations: 

Observations 0 
has abdominal pain 

abdominal pain symp(nausea) 

Abducibles, 

Observables, S 

A { problem_is(indigestion), 
problem_is(dysentry), 
problem_is(acidity) } 

{has_abdominal_pain, 
abdominal_pain_symp(nausea), 
abdominal_pain_sympCirritation_in_bowel), 
abdominal_pain_symp(heartburn) } 

There are three possible potential explanations for the 
observation "has_abdominal_pain". Since they are not 
mutually incompatible (it is possible to have all three 
diseases, for example), there is no crucial literal which 
can help us distinguish between the three explanations. 
There is thus no "best" explanation from this pOint of 
view. 

From the point of view of hypothetico-deductive 
reasoning however, one of the explanations stands apart 
from the others. On the basis of all the currently 
available evidence "problem_is(indigestion)" is 
completely corroborated. The two remaining 
explanations remain possible but uncorroborated; that 
is to say there is no supplementary evidence in support 
of them. Experiments might be performed (testing for 
"abdominal_pain_symp(irritation_in_bowel)", and 
"abdominal_pain_symp(heartburn)") which could 
corroborate one or both of the others, which would lead 
us to extend our explanation. Since physical 
incompatibilities are rare in common-sense reasoning, 
hypothetico-deductive reasoning has an advantage in 
being able to offer a (revisable) "best" explanation 
based on the currently available evidence, in spite of the 
absence of possible crucial experiments. It is important 
to appreciate that it is usually impractical to simply 
construct the hypotheses by performing abduction on 
.all the observations in 0, since in general there may be 
an extremely large number of them. Moreover, only a 
few may be relevant to the particular observation for 
which we seek an explanation. 

It might be thought that the checking of all the 
observational consequences of some explanation might 
be equally impractical: there might be an infinite 
number of them as well. However, it must be borne in 
mind that we are only considering the representation of 
common-sense; we would normally ensure that there 
are only a small number of observable consequences in 
which we would be interested. We would define our set 
of observables, S, accordingly. So, for instance, in the 
fermentation example below we represent certain 
critical times (often referred to as "landmarks") at which 
we might perform observations. Similarly, in the 
"stolen car" example which we present later, we restrict 
observables to events that occurred at some specific 
pOint in time. 

One application area in which incomplete 
information is intrinsic, is that of temporal reasoning. 
Reasoning about time is constrained by the fact that 
factual information is only available concerning the 
past and the present. By its very nature we must 
perform temporal diagnosis with no knowledge about 
the future states of the systems we are trying to model. 

As an example of temporal diagnosis which 
illustrates this characteristic, consider an industrial 
process involving the fermentation of wine. Suppose we 
are faced with the task of diagnosing whether the 
fermentation process has proceeded normally, or that 
the extremely rare conditions have occurred under 
which we will produce a vintage wine. To do this we 
must carry out a test at some time after the wine­
making process has begun, such as measuring its pH, its 
relative density, or its alcohol content. Suppose further 
that we need to decide on this diagnosis before a certain 
time, e.g. the bottling-time tomorrow. Let us refer to 
some property of the mixture which would be observed 
for vintage wine by the symbol pI, and that for 
ordinary wine as p2. These two properties might be 
entirely compatible: it is perfectly possible for ordinary 
wine to be produced under conditions which exhibit 

. p leas well as p2), but in such a case it is not the fact that 
the mixture is ordinary wine that causes pI to be 
observed. Now suppose we observe p I before the 
bottling time, and suppose there are no further 
observational consequences for the "vintage wine" 
hypothesis that are observable before tomorrow. Then 
the "vintage wine" hypothesis is completely 
corroborated within the defined time-scale. On the 
other hand, the "ordinary wine" hypothesis remains at 
best only partially corroborated. Hypothetico-deductive 
reasoning would then p refe r the "vintage wine" 
hypothesis over the "ordinary wine" one. The 
temporal dimension illustrates the ability of 
hypothetico-deductive reasoning to form diagnoses on 
the basis of incomplete information. Notice that an 
extension of the time scale would revise the status of the 
observable relations and perhaps the "vintage wine" 
hypothesis would become only partially corroborated. 
The application of hypothetico-deductive reasoning to 
the temporal domain will be discussed in more detail in 
the next section as an important special case of the 
integration of hypothetico-deductive reasoning and 
default reasoning. 

7 Hypothetico-deduction with Default 
Theories 

As we discussed above, the aim of hypothetico­
deducti ve reasoning has been to provide a framework 
in which we can tackle one of the main characteristics 
of common sense reasoning, namely incomplete 
information. More specifically it addresses the fact that 



we are often forced to form hypotheses and 
explanations on the basis of liI?ited informati~n. 
Another important form of reas?n~ng t~at deals. wl~h 
the problem of incomplete (or limIted) mformatIOn IS 
default reasoning (see e.g. [Reiter, 1980]). We can then 
enhance the capability of each framework separately to 
deal with this problem of missing information by 
integrating them together into a common framework. 

So far we have only considered the application of 
hypothetico-deduction to classical theQries. In t~s 
section we study its application to default theon~s 
incorporating negation-as-failure (N~) from .Loglc 
Programming. We will then apply this ~daptatIOn of 
hypothetico-deduction to temporal reasomng pr?blemS 
formulated within the event calculus where NAF IS used 
to represent default persistence in time ([Kowalski & 
Sergot, 1987], [Evans, 1989]). . 

The approach we adopt is to conside~ only class~cal 
theories to which non-monotonIC reasonIng 
mechanisms such as default and hypothetico-deductive 
reasoning are applied (in contrast to ~on-monotonic 
logics). The motivation a~ before, IS to. separate 
representation (classical lOgIC) from reasomng .(non­
monotonic). Recent formalizations of the semanUcs of 
negation-as-failure [Eshghi & Kowalski, 1989], [Kakas 
& Mancarella, 1990], [Dung, 1991], [Kakas & 
Mancarella, 1991] have adopted a similar point of vi~w. 
This approach means that hypothetico~deductIve 
reasoning can be applied to default theOrIes of any 
system which separates these two components, e.g. 
circumscription [McCarthy, 1980]. 

Following this work, we associate to any gene~al 
logic program, P, (Horn clauses extended wIth 
negation-as-failure) a classical theory, P', as follows. 
Each negative condition, no~ p, where not de.notes the 
negation-as-failure operator, IS regarde~ ~s a smgle n.ew 
positive atom. This can be made explICIt by. repla~Ing 
each such negative literal, not p, by a syntacuc vanant, 
say p*, to give the Horn theory P'. The model-theoretic 
extension of the new symbol is intended to be the 
complement of the old one, so that we can 0!llit the not. 
To take a more meaningful example we mIght replace 
"not alive" with "dead". These new symbols "p*" 
or "dead" are then defined to be abducible predicates. 
The above authors show that with this view it is possible 
to understand (and generalize) the stable model 
semantics [Gelfond & Lifschitz, 1989] for NAF in logic 
programming. (Note that this is also the approach ta~en 
more generally in [Poole, 1988]. for unders~andmg 
default reasoning through abductIOn by namll1g the 
defaults and considering these as assumptions.) 

We can then apply an adapted formulation of 
hypothetico-deductive reasoning to these. classical Horn 
theories P' corresponding to general lOgIC programs P. 
As above we have a 4-tuple <P',O,A,S> where the set, A, 
of abducibles has been extended with new abducibles 
e.g. "p*", "dead", which name the different NAF 
default assumptions. 

Hence given a 4-tuple <P',O,A,S>, a corroborated 
explanation d for an observation G, is a set of ground 
atomic well-formed formulae, which fulfils all of the 
following criteria: 

(1) Each formula in d is a member of A. 
Let d = dO U dH where dD denotes the subset of 
abducibles corresponding to NAF. 

(2) P' U d 1= G 

(3) If P' U d 1= nand n ~ S , then n ~ 0 

(4) There exists a stable model 1 M of P' U dH U 0 
such that the negations corresponding to dD hold 
in M (Le. are contained in the complement of M). 

This is a direct extension of the previous definition 
of hypothetico-deductive reasoning.. The ext~a 
condition (4) captures the default reasonmg present In 
the theory P (or P'). This is clearly separated in this 
condition although it does play an important role in the 
generation of explanations by rejecting expl.anations 
that do not satisfy it. This has the effect of addmg extra 
abducibles in the d to make it acceptable. For example 
in the theory, 

G ~ p* 
p ~ q* 
q ~ a 

although {p*} is an explanation for G, this is not 
accepted until the abducible "a" .is added ~o it ~hich 
ensures that this default assumptIOn {p*} IS valId. In 
addition condition (4) also ensures that any default 
assumption (abducible) in d is compatible with the 
observations O. Note that we could have chosen to put 
together condi tions (2) and (4) as "G is true in a stable 
model of P U dH" for generating the explanations d, 
and use condition (4) solely for the purpose of 
ensuring that dD are compatible with the observations 
O. 

Although at first sight it might seem appropriate to 
allow default reasoning during the corroboration of an 
explanation this is not the case as indicated by 
condition (3). The reason for this is clear: if we allow it 
then the corroboration process will not be for the 
explanation d alone, but for d plus any additional 
default assumptions made in arriving at the observable 
test. In other words, we would not want to reject an 
explanation ~ by failure to corroborate an observati.on 
that is a not a consequence of ~ alone but of d WIth 
some additional default assumptions. 

Let us now indicate how the proof procedure for 
hypothetico-deductive reasoning, defined earlier, needs 
to be extended to deal with this more general 
formulation where our theories are general logic 
programs. The first thing to notice is that, as indicated 
by condition (3), the corroboration phase of the 
procedure remains unchanged apart from the fact t~at 
it will also be applied whenever a NAP hypotheSIS, 
"p*" (or "not p"), is added to the explan.ation. 
Similarly, the adbuctive derivation phase remall1s as 
before with the set of abducibles enlarged to include 
the NAF default assumptions. 

The main extension of the procedure arises from the 
need to implement the new condition (4). This can be 
done by adopting the abductive proof procedure 
developed in [Eshghi & Kowalski, 1989], [Kakas & 
Mancarella, 1990b], [Kakas & Mancarella, 1990c] for 
NAF which is an extension of SLDNF. A new type of 
derivation, called consistency derivation, is introduced 
interleaved with the abductive phase of the procedure 
whenever a NAF hypothesis, "p*" (or "not p"), is 
required in the explanation. Itsyurpose is to ens~re that 
"p*" (or "not p") is a valId NAF ass~mJ?tIOn by 
checking that p does not succeed. ThIS lI1volves 
reasoning backwards from p in all possible ways and 
showing that each such branch ends in failure. 

During this consistency check for some N AF 
hypothesis, "p*" (or "not p"), it is possible for new 

1 More generally, we can use recent extensions of stable 
models e.g. preferred extensions or stable theories as defined in 
rDun!!. 19911 and rKakas & Mancarella. 19911 resoectivelv. 
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abductive phases to be generated whenever the failure 
of some consistency branch reduces to showing that 
some other NAF default assumption e.g. "q*" (or 
"not q") does not hold in the theory P' u ~. To ensure 
this the procedure starts a new abductive phase to show 
that q holds where it is possible that new hypotheses 
may be added in the explanation if this is needed to 
prove q. Then with this enlarged explanation "q*" (or 
"not q") is not a valid (default) NAF assumption (as q 
holds) and so the original consistency branch can not 
succeed. In the example above the abducible "a" in 
the explanation {p*, a} for G is generated during the 
consistency check of p* (or not p) as described here. 
More details about this extension of the proof 
procedure can be found in the references above. 

8 Application of HD Reasoning to 
Temporal Reasoning 

As an example of the application of the above 
extended hypothetico-deducti ve mechanism, let us 
consider temporal reasoning with the Event Calculus 
[Kowalski & Sergot, 1987] where NAF is used to 
express default persistence in time. 

The Event Calculus represents properties which hold 
over intervals of time. They are initiated and terminated 
by events which happen at particular instances of time. 
NAF is used to conclude that a property is not 
"clipped" or "broken" over an interval of time, 
achieving default persistence. Variants of the two main 
axioms, which define when a property "holds" and 
when a property is "broken", are given below. 

holds-at(p,t2) f- happens-at(e,t 1) " 

initiates(e,p) " 

t1 < t2 " 
not broken-during(p,<t 1 ,t2» 

broken-during(p,<t 1 ,t2» f- happens-at(e,t) " 

terminates(e,p) " 

t1 < t " 
t ~ t2 

The first axiom states that some property p holds at 
any time after an initiating event, provided it is not 
(known to be) broken at some time during the 
intervening time-interval. NAF ensures that we draw the 
conclusion that it isn't broken if we have no evidence 
for it: default persistence. The second axiom states that 
a property is broken during an interval if a terminating 
event happens at some time within that interval. 

Before we can apply HD reasoning to these axioms 
we must carry out the transformation to eliminate the 
NAF. A possible renaming of "not broken-during" is 
"persists" : 

ho1ds-at(p,t2) f- happens-at(e,tl)" 

initiates(e,p)" 

tl < t2 " 
persists(p,<t1 ,t2». 

Before we present a detailed example of the 
application of HD, let us briefly consider how the use 
of a temporal default theory such as the Event Calculus 
does not modify the process of corroboration (we use 
the classical version of the theory), although it does 
modify the process of explanation construction. 

Consider an example in which the walls of a house 
are painted white. Using the Event Calculus, if we 
wished to explain why the walls were white, we would 
hypothesize an event of painting them white. In order 
to corroborate this hypothesis we would look for 
empirical consequences. One possibility might be that 
the paint brush has white paint on it. However this 
prediction involves assuming that the state of "brush­
has-white-paint" persisted since the walls were painted; 
the corroboration is based upon a further 
(uncorroborated!) hypothesis. Moreover, consider the 
consequences of observing that the paint brush has red 
paint on it. Does this refute the explanation that the 
walls are white because they were painted white? 
Obviously not. Under the extended HD scheme we limit 
default reasoning to be a part of the hypothesis 
formation component. Corroboration is straightforward 
classical deduction. This is one of the reasons for 
having to transform the Event Calculus axioms to 
eliminate the NAF. 

Let us consider a more detailed application of 
hypothetico-deductive reasoning to a problem 
formalized in the Event Calculus. We shall take Kautz's 
"stolen car" problem [Kautz, 1986]. The task is to 
explain why a car parked in the morning is miSSing 
when we look for it in the afternoon. In particular, to 
explain when the car was stolen. Kautz's original 
moti vation was to demonstrate that temporal reasoning 
which performed chronological minimization (e.g. 
Shoham's Non-monotonic Logic [Shoham, 1988]) 
would predict that the car was stolen the instant before 
it was found to be missing; which was unsatisfactory. 
From our point of view, the stolen car problem is more 
correctly viewed as an explanation problem in which 
there are several possible competing explanations, 
corresponding to the different times that the car might 
have been stolen. 

In the formalism of the Event Calculus we would 
describe the problem as follows. We know that the car 
was parked at some particular time, say time "I"; and 
we know that it was missing at, say, time "4". We also 
know that stealing initiates the property "missing" and 
terminates "parked": 

i nitiates( e,missing) 

terminates(e,parked) 

type(e,steal) 

type( e,steal) 

Our explanatory task is thus to explain the observation 
"holds-at(missing,4)". We will take the predicates 
"happens-at", "type" and (since it is a default 
relation) "persists" to be abducible. Furthermore, let 
us restrict the abducible "happens-at" events to those 
which happen between time "I" and "4". Our 
observables will be instances of the relation "holds-at" 
which occur at time "4". Using hypothesis formation 
applied to the rule defining "holds-at" we might 
hypothesize: 

{happens-at(e,2), type(e,steal), persists(missing,<2,4»} 

This states that some stealing event happened at time 
"2". Notice that we have to include the persistence 
assumption: if some other event had terminated this 
"missing" state (such as the returning of the car!), then 
this particular stealing event would not be the right 
explanation. 

U sing a discrete representation of time, there is 
another explanation corresponding to a stealing event 
at time "3". Pure abduction is unable to distinguish 
between these two explanations. 



There are two further characteristics of HD to 
demonstrate. Firstly, note that we have to check the 
consistency of the default "persists" hypothesis 
(according to the 4th corroboration requirement). We 
do this by checking that "-broken­
during(missing,<2,4»" holds in the stable model when 
we include all our observations; computationally 
speaking, we must check that "broken­
during(missing,<2,4»" finitely fails. 

The second characteristic is corroboration to choose 
between the two competing explanations. In order to 
describe this aspect, we must elaborate our example 
somewhat. Suppose that we had a car alarm fitted and it 
is not possible to steal the car without setting off the 
alarm. The hypothesis that the car was stolen at time 
"2" would lead us to predict "happens-at(alarm,2)" 
whereas the alternative would predict "happens­
at(alarm,3)". We must extend our definition of 
observables to include "happens-at(alarm, 2)" and 
"happens-at(alarm, 3)", corresponding, say, to 
checking with someone near at what time they heard a 
car alarm start going off. The process of corroboration 
against observations concerning the alarm events 
proceeds as in the unextended version of HD 
reasoning. 

Thus the addition of the appropriate observations for 
the "stolen car" situation allows us to form two 
explanations, one of which we might reject as 
uncorroborated and the other of which might be 
completely corroborated. 

The "bloodless" Yale Shooting problem 
([Morgenstern & Stein, 1988]) - the explanatory 
counterpart to the original Yale Shooting prediction 
problem ([Hanks & McDermott, 1987]) - is of a similar 
form. In this scenario, a gun is loaded, a period of 
waiting ensues, and someone is shot with the gun. They 
are found to be unharmed. The task is to explain how 
this could be so. Pure abduction produces a number of 
explanations in terms of unloading events that must 
have occurred during the period of waiting: one 
explanation for each different possible time of the 
event. Hypothetico-deduction allows the possibility of 
selecting one of the events as preferable on the grounds 
that it has empirical consequences which were observed. 

9 Related and Further Work 
Several authors have developed deductive techniques 

for the generation of hypotheses. In [Cox & 
Pietrzykowski, 1987] hypotheses are constructed from 
the terminal nodes of linear resolution proofs. 
Similarly, [Finger & Genesereth, 1985] perform 
"deductive synthesis" to provide "solutions to design 
problems" by "finding a residue for a given design 
goal"; and [Poole et al., 1987] use linear resolution for 
hypothesis generation implemented in the program 
THEORIST. 

In [Eshghi & Kowalski, 1989], [Kakas & Mancarella, 
1990] Horn clause logic programming is extended to 
include abduction with integrity constraints. The 
approach taken here, differs by the absence of integrity 
constraints although the process of cheCking abducti ve 
hypotheses by regarding them as updates, and 
reasoning forwards to integrity constraints, parallels the 
process of explanation corroboration we describe. 
There are two important differences between the 
application (rather than the technique) of explanation 
corroboration, and the integrity checking process. 
Firstly, we reason forwards to observables rather than 
integrity constraints; and secondly, the set of 
observables can be "dynamic". That is, we may have 

not made all the relevant observations: it may be 
necessary to perform an experiment to determine the 
outcome of corroboration (e.g. through "Query-the­
user" [Sergot, 1983] in the case of an expert system). 
This approach of interactive acquisition of extra 
information to help decide between different 
explanations has been studied in [Kunifuji et aI, 1986] 
in the context of Knowledge Assimilation. However, in 
some domains of application it may be appropriate to 
use integrity constraints first for redUCing the number 
of possible explanations before beginning the 
corroboration of explanations. The mechanisms 
developed in these papers are directly applicable to the 
incorporation of integrity checking in the hypothetico­
deductive proof procedure defined above. 

[Sattar & Goebel, 1989] describes how the 
THEORIST system can be extended through the notion 
of performing crucial experiments [Popper, 1965] 
using "crucial literals" (from [Seki & Takeuchi, 
1985]) to decide between competing explanatory 
hypotheses. As we have mentioned above, this can be 
understood as special case of explanation corroboration 
used to decide between multiple incompatible 
explanations. The relative cost of carrying out the 
experimental tests for corroborating an explanation 
over the Significance of this particular explanation is 
another feature that needs to be taken into account 
when further developing the hypothetico-deductive 
mechanism. For example, in circuit diagnosis [Davis, 
1984] the failures are layered into categories according 
to their likelihood. De Kleer and Williams in [de Kleer 
& Williams, 1987] use probability and information 
theory to propose the next "best" test for localizing the 
fault in the framework of model based diagnosis. These 
techniques can be used to make our corroboration 
more efficient. 

Conclusions 
We have developed a versatile reasoning mechanism 

and proof procedure, based on the notion of 
corroboration, that is applicable to a variety of 
problems and logic-based systems in artificial 
intelligence. It combines the explanatory capability of 
hypothesis formation with the benefits of corroboration 
through deduction for control and testing. 
Hypothetico-deductive re'asoning tackles the problem 
of undesired multiple explanations for an observation. 
It extends the isolated application of deductive and 
abductive reasoning. We have shown how the basic idea 
behind the reasoning process is to formulate and decide 
between alternative hypotheses. This is performed 
through an interaction between the theory and the 
actual observations. A suitable proof procedure for the 
implementation of hypothetico-deduction was 
presented. We have suggested that this form of 
reasoning might benefit for the use of a "query-the­
user" facility. We have demonstrated how hypothetico­
deductive reasoning deals with one of the main 
characteristics of common-sense reasoning, namely 
incomplete information, through the use of partial 
corroboration. Finally we have shown how the 
semantics of hypothetico-deduction can be extended to 
deal with default theories, in particular temporal 
theories such as the Event Calculus which include 
default persistence through the use of negation-as­
failure. We have demonstrated how this extension can 
be applied to deal with Kautz's "stolen car" problem, 
and the "bloodless" counterpart to the Yale Shooting 
Problem. 
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Abstract 

We introduce and study a natural subclass of the locally 
stratified disjunctive logic programs, the class of acyclic 
disjunctive logic programs which extends the class of 
acyclic normal logic programs in [AB]. 

We show that each acyclic disjunctive program P can be 
transformed into an equivalent normal program N(P) where 
the equivalence between P and N(P) means that each 
perfect model of P is a stable model of N (P) and vice 
versa. 

We show that the Eshghi and Kowalski's abductive 
procedure [EK,Dun] is sound with respect to the stable 
semantics of N(P). Thus this procedure can be used as a 
proof procedure for acyclic disjunctive programs. 

We give sufficient conditions for the completeness and 
termination of the abductive procedure. 

1. Introduction 

Let us consider the following example 

Example P: pvq 

The semantics of P is defined by its two minimal models 
{p},{q}. 

Let us translate Pinto N(P): P <-l q 
q <-l P 

N(P) has two stable models {p}, {q}. So P and N(P) are 
equivalent wrt stable semantics. 
/! 

What can we gain from such translation ?? 

The gain is indeed significant. While no proof pro.cedure 
for general disjunctive programs wrt stable s~mantIcs h.~s 
been given so far in the literature, the Esh~hl-Kowal.skl s 
abductive procedure given in [EK] and studied extenSIvely 
in [Dun], is such a one for normal logic programs. Hence 

for those disjunctive programs which can be transformed 
into an equivalent normal programs, the Eshghi-Kowalski's 
abductive procedure can be used as a proof procedure for 
stable semantics. 

Acyclic disjunctive programs constitute such a class of 
programs. Intuitively, an acyclic disjunctive program is a 
program whose atom dependency graph contains no loop. 
The class of acyclic disjunctive programs is a natural 
extension of the class of acyclic normal logic programs in 
[AB]. Similarly to [AB], we will show that several ways to 
define the semantics of logic programs, e.g. the predicate 
completion, perfect model semantics, stable model 
semantics etc., coincide in the case of acyclic disjunctive 
programs. The most striking characterization of acyclic 
disjunctive programs is that each program in this class can 
be transformed into an equivalent normal logic programs 
which them self exhibit a remarkable termination behavior 
as their atom dependency graph does not contain any 
positive loop. This result suggests immediately that the 
abductive procedure can be used as a proof procedure for 
acyclic disjunctive programs. 

The paper is organized as follows: ill the next paragraph~ 
we define the acyclic disjunctive programs. Then in section 
3, we show that each acyclic disjunctive program P can be 
transformed into an equivalent normal program N(P). In 
section 4, we show the soundness of the abductive 
procedure with respect to the stable semantics of N(P). In 
section 5, we give sufficient condition for the completeness 
of the abductive procedure. 

2. Preliminary 

A literal is either an atom or the negation of an atom. A 
disjunctive clause is a clause of the form Al V ... v An <­
Ll""'~ where O<n, O~m and Ai's 3!e atoms and L/s are 
literals. If n=l, then a disjunctive clause is called a normal 
clause. The head and body of a clause C are denoted by 
head(C) and body(C) respectively. Further, pos(C) denotes 
the set of atoms occurring positively in the body of C 
while neg(C) denotes the set of atoms under negation in the 
body of C. A disjunctive program is a fini~e set .of 
disjunctive clauses. Similarly, a normal program IS a fimte 
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set of nonnal clauses. The Herbrand base of a program P 
is denoted by HBp. As usual, a Herbrand interpretation is 
considered as a subset of HBp. The set of all ground 
instances of clauses of a disjunctive program P is denoted 
by Gp. If L is a literal then 1 L denotes the complementary 
of L. If S is a set of literals, then 1 .S = { 1 L I L E S }. 

A disjunctive program P is locally stratified [Prl] if it is 
possible to decompose the Herbrand base of P into disjoint 
sets, called strata Ho,Hl, ... ,Ha" ... ,IIr, ... where a < 't and 't 

is a countable ordinal so that for each ground clause in Gp 

(i) all Ci belong to the same stratum, say ~. 
(ii) all Ai belong to U { Hj I j ~ r } 
(iii) all Bi belong to U { Hj I j < r } 

The intended semantics of a locally stratified disjunctive 
program is captured by its perfect models [Prl,Pr2]. A 
more general approach to semantics of logic programs is 
the stable model semantics [GL] which coincides with the 
perfect model semantics in the class of locally stratified 
programs [GL]. Since the definition of stable model 
semantics is simpler than that of perfect model semantics, 
we choose to work with the fonner in this paper. 

Let M be a Herbrand interpretation of P. The Gelfond­
Lifschitz transfonnation of P wrt M is the program 
GL(P,M) = ( head(C) <- pos(C) ICE Gp and neg(C) n M 
= <I> }. M is a stable model of P iff M is a minimal model 
of GL(P,M) [Pr2,GL]. 

We introduce now the acyclic disjunctive programs. 

Definition 

A disjunctive program P is acyclic if it is possible to 
decompose the Herbrand base of P into disjoint sets, called 
strata Ho,Hl' ... '~' .. where i is a natural number so that for 
each ground clause in Gp 

(i) all Ci belong to the same stratum, say ~. 

(ii) all Ai and Bi belong to U { Hj I j < r } 
II 

Since acyclic programs are locally stratified, their intended 
semantics is the perfect model semantics. 

3. Transforming Acyclic Disjunctive Programs into 
Normal Programs 

Let us introduce some new notations. Let D be a 
disjunction of atoms. D is canonical if the atoms in D are 
pairwise different. For each disjunction D, the canonical 

fonn of D, denoted by can(D), is a disjunction containing 
only distinct atoms in D and is equivalent to D. A 
disjunction D' is a factor of D with most general unifier 
(mgu) e if D' is can(D) and e is the identity substitution 
or there are two or more unifiable atoms in D with mgu e 
and D' is can(De). For example, the disjunction p(x,a) v 
p(b,y) has two factors: one is the disjunction itself and the 
other is p(b,a) with the mgu {b/x,a/y}. 

The normal form of P, written N(P), is constructed as 
follows: 

Let 

A v A/v .. v Ak' is a factor of A1v .. v An 
with mgu e} 

N(P) = U{ N(C) / C E P } 

Example P: p(x,a) v p(b,y) <-

N(P): p(x,a) <- 1 p(b,y) 
p(b,y) <- 1 p(x,a) 
p(b,a) <-

II 

It has been showed [DK] that each minimal Herbrand 
model of a positive disjunctive programs is a model of the 
Clark's completion of N(P). In this chapter, we are 
interested in the more general -question about the 
relationship between the stable models of P and N(P). 

The following theorem shows the equivalence between P 
and N(P) for acyclic disjunctive programs. 

Theorem 1 Let P be an acyclic disjunctive 
program P, and M be a Herbrand 
interpretation of P. Then M is a 
stable model of P iff M is a stable 
model of N(P). 

Proof "=>" Let Q = GL(Gp,M). Since M is a stable model 
of P, M is a minimal model of Q. Since M is a minimal 
model of Q, for each A E M, there is a clause A v Al v .. 
v An <- Body in Q such that for each i: Ai e. M and Body 
is true in M. Hence, for each A E M, there is a clause A 
<- Body' in GN(P) such that Body' is true in M. Thus, there 
exists a clause C' in GL(GN(P),M) such that head(C')=A and 
body(C') is true in M. Since P is acyclic, GL(GN(p),M) is 
acyclic, too. It follows, that M is the least Herbrand model 
of GL(GN(P),M). So M is a stable model of N(P). 

"<=" Let M be a stable model of N(P). Since GL(GN(P),M) 
= GL(N(GL(Gp,M)),M), M is also a stable model of 
N(GL(Gp,M)). Thus M is a minimal model of GL(Gp,M). 
Hence M is a stable model of P. 
II 



Corollary 

II 

Let P be an acyclic disjunctive 
program, N (P) be its normal fann. 
Then a Herbrand interpretation M is 
a perfect model of P iff M is a 
stable model of N(P). 

The following example shows that in general, the above 
theorem does not hold. 

Example Let P: 

N(P): a <- b 
b <- a 
a <-l b 
b <-l a 

a <- b 
b <- a 
avb 

It is clear that P is not acyclic. It is easy to see that N (P) 
has no stable model while the unique minimal model of P 
is {a,b}. 
II 

Since each locally stratified disjunctive program posseses 
at least one perfect model [Prl,Pr2], it is obvious that there 
exists at least one stable model for N(P). So 

Corollary 

II 

If P is acyclic, then N(P) posseses at 
least one stable model. 

The following theorems give important characterizations of 
the normal form of a acyclic disjunctive program. 

Theorem 2 

II 

Theorem 3 

II 

Let P be an acyclic disjunctive 
program. Then each stable model of 
N(P) is a Herbrand model of 
comp(N(P) and vice versa where 
comp(N(P» denotes the Clark's 
predicate completion [Cla,Llo] of 
N(P). 

The three-valued semantics and the 
two-valued semantics of comp(N(P» 
are equivalent in the sense that each 
three-valued model of comp(N(P» 
can be extended into an two-valued 
one. 

Let L be a ground literal. We say that L holds with respect 
to the stable semantics of P, written P h L, if L is true in 
each stable model of P. We say P U {L} is stable­
consistent if there exists one stable model of P in which L 
is true. 

557 

Summary 

Let P be an acyclic disjunctive program, and L be a ground 
literal. 

2) P U {L} is stable-consistent iff 

N(P) U {L} is stable-consistent iff 

comp(N(P» U {L} is consistent. 
II 

The question of basic interest to us now is: 

(*) "Given an acyclic disjunctive program P and a 
ground literal L, is P U {L} stable-consistent ?" 

Eshghi and Kowalski have developed an abductive 
procedure [EK,Dun] which takes as input a query G and a 
normal program P, and delivers as output a set of ground 
negative literals H such that P U H U {G} is stable­
consistent. From the above obtained results, it is clear that 
this abductive procedure can be used as a proof procedure 
for the question (*). 

4. The Eshghi and Kowalski's Abductive Procedure 

Before presenting the formal definition of the abductive 
procedure, let us explain the algorithm informally by an 
example. 

Example P: P <-l q 
q <-l P 

We want to check whether p belongs to some stable model 
of P, i.e. whether P U {p} is stable-consistent. It is clear 
that the SLDNF-resolution will not terminate for this goal 

due to the existence of a negative loop. To avoid getting 
trapped in this loop, the abductive procedure uses a loop 
check by "storing" all "encountered" negative literals in a 
set H. If a selected sub goal belongs to H, then the 
respected goal is simplified by deleting the selected subgoal 
from it. 
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II 

~- P 
I 

<-lq ~------------C~--~~-=~~---~ 
I <-q and 1 q is "stored" in R = h q}. 
I I 

I 

I 

I 
l 

[] 

<,1 P 

I 

I 

fail 

I 
[] 

since 1 q E H 

Let us recall now the fonnal definition of the abductive 
procedure from [EK,Dun]. 

Let P be a nonnal logic program. 

A derivation from (Gl,Hl) to (Gn'~) (wrt P) is a sequence 

such that, for each i, l~i<n, Gi has the fonn <-1,1' where 
(without loss of generality) 1 is selected, and l' is a 
(possibly empty) collection of atoms, ~ is a set of negative 
literals, and 

abl) If 1 is positive 

then Gi+l = C and Ri+l = ~ 

where C is the resolvent of some clause in 
P with the clause Gi on the selected literal 1. 

ab2) If 1 is negative and I E ~ 

then Gi+1 = <-1' and ~+l = ~ 

ab3) If 1 is negative (I = 1 k) and 1 ~ Hi and there 
is a consistency derivation from ({ <-k} ,~ U 
{I}) to (<I>,R') 

then Gi+l = <-1' and ~+l = H' 

An abductive refutation is an abductive derivation to a 
pair ([],H). 

A consistency derivation from (Fl,Hl) to (Fn'~) (wrt P) 
is a sequence 

such that, for each i, O<i~, Fi has the fonn {<-I,I'} U Fi', 
where (without loss of generality) the clause <-1,1' has 
been selected (to continue the search), 1 is selected, and 

col) If 1 is positive 

where C' is the set of all resolvents of 
clauses in P with the selected clause on the 
selected literal, and [] e: C'. 

co2) If 1 is negative, 1 E ~ and l' is not empty 

co3) If 1 is negative (1 = 1 k), 1 e Hi 

then if there is an abductive derivation from 
«-k,~) to ([],R') 

then Fi+1 = Fi ' and ~+l = H' 
else if l' is not empty 

then F i+l= { <-I'} U Fi ' 

and ~+l=~ 

A consistency derivation of the goal ({G},<I» is ~ 

sequentialization of the search tree of G. This 
sequentialization is necessary because of the need to 
accumulate the hypotheses found during this process. 

We say that the abductive procedure is sound with respect 
to the stable semantics if whenever there exists a refutation 
from «-A,<I» to ([],H) for A E HB then there exists a 
stable model M such that A E M and H n M = <1>. 

We say that the abductive procedure is complete with 
respect to the stable semantics if for each ground literal L, 
if P U {L} is stable-consistent then there exists a refutation 
for the goal «-L,<I». 

Note that in general, the abductive procedure is not sound 
with respect to the stable semantics, but it is sound with 
respect to the preferential semantics which is a 
generalization of stable semantics [Dun]. But since these 
two semantics coincide for programs N(P) where P is a 
acyclic disjunctive programs, the soundness with respect to 
the stable semantics follows directly from the soundness 
with respect to the preferential semantics. 



Theorem 4 (Soundness of the Abductive Procedure) 

Let P be an acyclic disjunctive program and «­
A,<\», .. ,([],H) be a refutation with respect to the program 
N(P). Then there exists a stable model M of P such that A 
E M and H n M = <\>. 

Proof (Sketch) Let Ho, .. ~, ... be the strata of P. Let Pi 
consist of those clauses Ai v ... v Au. <- Bd in Gp such that 
all Aj belong to ~. By induction, we can prove that for 
each i, the stable semantics and preferential semantics 
[Dun] of Pi coincide. It follows then that the stable and 
preferential semantics of P coincide. The theorem follows 
immediately from the fact that the abductive procedure is 
sound wrt preferential semantics [Duti]. 
II 

Using AbdudiYe ........... For Skeptical Reasoning 

The question of this chapter is: 

"Given a logic program P and a ground literal L, 
does L hold with respect to the stable semantics of 
P ?" 

The following lemma shows that if the abductive procedure 
is complete, then it can be used to as a proof procedure for 
skeptical reasoning. 

Lemma Let L be a ground literal and assume that 
the abductive procedure is sound and 
complete with resp'eet to the stable 
semantics. 

II 

If there exists no refutation for «- l L,<I» then 
PhL. 

If the abductive procedure terminates for ground 
goals, then it is decidable whether an arbitrary 
ground literal L holds with respeet to the stable 
semantics. 

Example P <- a 
p <- b 
a <-l b 
b <-l a 

Since the abductive procedure is complete for this program, 
the above lemma can be used to cheek whether p holds wrt 
stable semantics. 
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<-l P 
t ·~{<--p~}~H=-=~h-p~}----------------' 

fail 

'I 
{<-a, <-b} 

I 
{<- l b, <-b} 

~~------------------, 

I 1-b 

I 

{<-b} 
I 

{<- l a} 
I 

fail 

I 

<- l a 
t ~--------------~ 

[] 

{<-a} H = h P,l a} 
I 

{<- l b} 

I 

I 

I 
<I> 

<-b 
I 

As there is no refutation for «- l p,<I», P h p. 
II 

The applicability of the abductive procedure as a proof 
procedure for skeptical reasoning is based on its 
completeness. In the following paragraph, sufficient 
conditions for the completeness of abductive procedure are 
given. 

5. Completeness and Termination of the Abductive 
Procedure 

A normal program is said to be positive acyclic, written p" 
acyclic, if there is a level mapping 1.1 assigning each atom 
A E HBp a natural number IAI such that for each clause C 
in Gp, for each atom A occurring in the head of C and each 
atom B occurring positively in the body of C, IAI > IBI. 

It is not difficult to see that if P is an acyclic disjunctive 
program then N(P) is always p-acyclic. Note that positive 
.cyclicity is different to local stratifiability, i.e. there exists 
programs which are p-acyclic and not locally stratified and 
vice versa. 

The atom dependency graph of P is a graph with ground 
atoms as its nodes such that there exists a positive (resp. 
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negative) edge from A to B if A occurs in the head, and B 
occurs positively (resp. negatively) in the body of some 
clause C in Gp• 

An infinite path (AI'''.An, •• ) of pairwise different atoms in 
the atom dependency graph of P is said to be a negative 
infinite loop if the path contains infinitely many negative 
edges. P is said to be free of infinite negative loop, 
written INL-free, if there exists no negative infinite loop 
in the atom dependency graph of P. 

A program P is allowed [LIo] if each clause in P satisfies 
the condition that each variable appearring in the clause 
appears also in a positive subgoal in the clause body. 

Theorem 5 (Completeness of the Abductive Procedure) 

Let P be an allowed, p-acyclic, and NIL-free normal 
program, and L be an arbitrary ground literal. Then the 
abductive procedure will terminate for the goal «-L,<I», 
and if P U {L} is stable-consistent then there ex:ists a 
refutation from «-L,<I» to ([],H). 
II 

Let us specify now the class of disjunctive programs such 
that their normal form N(P) are INL-free. Two disjunctions 
of atoms Al v .. v ~ and BI v ... v Bm are said to be related 
if they have some atom in common. A sequence of 
disjunctions D1, ... ,Dn, ••• is said to be a related sequence if 
Di,Di+1 are related for each i. A related sequence of 
disjunctions D1, ... ,Dn, •• is said to be prime if for each i, 
there exists a common atom Ai in Di and Di+l such that the 
sequence A1, .. ,An, •• contains no atom twice. A disjunctive 
program is said to be free of prime related sequence 
(abbreviated as PRS-free) if no prime related consequence 
can be built from the instances of the heads of the program 
clauses of P. 

Corollary 

II 

If P is an allowed, acyclic, PRS-free 
disjunctive program then the abductive 
procedure, applied to N (P), is sound and 
complete wrt perfect model semantic of P. 
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Abstract 

Given a program P we specify an enlargement of 
its Well Founded Model which gives meaning to 
the adding of Closed World Assumptions. We do 
so by proposing the desirable principles of a Closed 
World Assumption (CWA), and proceed to for­
mally define and apply them to Well Founded Se­
mantics (WFS), in order to obtain a WFS added 
with CWA, the O-semantics. After an introduc­
tion and motivating examples, there follow the 
presentation of the concepts required to formalize 
the model structure, the properties it enjoys, and 
the criteria and procedures which allow the pre­
cise characterization of the preferred unique maxi­
mal model that gives the intended meaning to the 
O-Semantics of a program, the O-Model. Some 
properties are also exhibited that permit a more 
expedite obtention of the models. Several detailed 
examples are introduced throughout to illustrate 
the concepts and their application. Comparison is 
made with other work, and in the conclusions the 
novelty of the approach is brought out. 

1 Introduction and Motiva­
tion 

Well Founded Semantics [Van Gelder et al., 1980] 
has been proposed as a suitable semantics for gen­
eral logic programs. Its Extended Stable Mod­
els (XSM) [Przymusinska and Przymusinski, 1990, 
Przymusinski, 1990] version has been explored as 
a framework for formalizing a variety of forms of 
non-monotonic reasoning [Pereira et al., 1991d, 
Pereira et al., 1991e] and generalized to deal with 
contradiction removal and counterfactuals [Pereira 
et al., 1991a, Pereira et al., 1991b, Pereira et al., 
1991c]. The increasing role of logic programming 

extensions as an encompassing framework for these 
and other AI topics is expounded at length in 
[Kakas and Mancarella, 1991b], where they argue, 
and we concur, that WFS is by design overly care­
ful in deciding about the falsity of some atoms, 
leaving them undefined, and that a suitable form 
of CWA can be used to safely and undisputably 
assume false some of the atoms absent from the 
well founded model of a program. Consider the 
program P, adapted from [Kakas and Mancarella, 
1991a]: {a +-lVaj C +-lVa}, where WFM(P) = {}. 
We argue that the intended meaning of the pro­
gram may be {IVC}, since IVa may not l;>e true in 
any model of P, by the first rule, and so, the sec­
ond rule cannot contradict the assigned meaning. 
Another way to understand this is that one may 
safely assume IVC using a form of CWA on c, since 
IVa may not be consistently assumed. 

However, when relying on the absence of present 
evidence about some atom A, we do not always 
want to assume that IV A holds, since there may 
exist consistent assumptions allowing to conclude 
A. Roughly, we want to define the notion of con­
cluding for the truth of a negative literal IVA just 
in case there is no hard nor hypothetical evidence 
to the contrary, i.e. no consistent set of negative . 
assumptions such that IVA is untenable. 

Consider P = {a +-lVbj b +-lVaj C +- a}. If we 
interpret the meaning of this program as its WFM 
(which is empty), and as we do not have a, a naive 
CWA could be tempted to derive IVC based on the 
assumption IVa. There is however an alternative 
negative assumption IVb, that if made, defeats the 
assumption IVa, i.e. the assumption IVa may not 
be sustained since it can be defeated by the as­
sumption IVb. We will define later more precisely 
the notions of sustainability and tenability. 

Both programs above have empty well founded 



models. We argue that WFS is too careful, and 
something more can safely be added to the mean­
ing of program, thus reducing the undefinedness of 
the program, if we are willing to adopt a suitable 
form ofCWA. 

We argue that a set CW A( P) of negative lit­
erals (assumptions) added to a program model 
MOD(P) by CWA must obey the four principles: 

1. MOD(P) U CW A(P) ~ L for any 
",L E CW A(P). This says that the program 
model added with the set of assumptions iden­
tified by the CWA rule must be consistent. 

2. There is no other set of assumptions A 
such that MOD(P) U A F L for some 
",L E CW A(P). I.e. CW A(P) is sustain­
able. 

3. CW A(P) must be maximal. 

4. CW A(P) must be unique. 

The paper is organized as follows: in the next 
section we present some basic definitions. In sec­
tion 3 we introduce some new definitions, captur­
ing the concepts behind the semantics, accompa­
nied by examples illustrating them. Models are 
defined and organized into a lattice, and the class 
of sustainable A-Models is identified. In section 5 
we define the O-Semantics of a program P based on 
the class of maximal sustainable tenable A-Models. 
A unique model is singled out as the O-Model of P. 
Afterwards we present some properties of the class 
of A-Models. Finally, we relate to other semantics 
and present conclusions. 

2 Language 

Here we give basic definitions and establish nota­
tion ([Monteiro, 1991]). A program is a set of rules 
of the form: H +- B I , .•. ,i!n,"'CI , ... ,,,,Cm (n 2:: 
0, m 2:: 0) or equivalently H +- {B I , ••• , Bn}U 
"'{ CI, ... ,Cm}, where ",{AI, ... ,An} is a short­
hand for {",AI, ... , ",An}, and", C is short for 
"'{ CI, ... ,Cm }; H" Bi and Cj are atoms. 

The Herbrand Base B(P) of a program P is de­
fined as usual as the set of all ground atoms. An 
interpretation I of P is denoted by TU ",F, where 
T and F are disjoint subsets of B(P). Atoms in T 
are said to be true in I, atoms in F false in I, and 
atoms in B(P) - (T U F) undefined in I. 
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In an interpretation TU '" F a conjunction of 
literals {BI, ... , Bn}U '" {CI, ... ,Cm} is true iff 
{BI, ... , Bn} ~ T and {CI, ... , Cm} ~ F, is false 
iff {B I , ... ,Bn}nF # 0 or {CI, ... ,Cm}nF # 0, 
and is undefined iff it is neither true nor false. 

3 Adding Negative Assump­
tions to a Program 

Here we show how to consistently add negative 
assumptions to a program P. Informally, it is con­
sistent to add a negative assumption to P if the 
assumption atom is not among the consequences 
P after adding the assumption. We also define 
when a set of negative assumptions is defeated by 
another, and show how the models of a program, 
for different sets of negative assumptions added to 
it, are organized into a lattice. 

We begin by defining what it means to add as­
sumptions to a program. This is achieved by sub­
stituting true for the assumptions, and false for 
their atoms, in the body of all rules. 

Definition 3.1 (P+A) The program P + A ob­
tained by adding to a program P a set of negative 
assumptions A ~"'B(P) is the result of: 

• Deleting all rules H +- {B I , ••. , Bn}U '" C 
from P, such that some Bi E A 

• Deleting from the remaining rules all fVL E A 

Definition 3.2 (Assumption Model) An As­
sumption Model of a program P, or A-Model for 
short, is a pair (A; M) where A ~'" B(P) and 
M=WFM(P+A). 

Among these models we define the partial order 
:Sa in the following way: (AI; M I ) :Sa (A2 ; M 2 ) iff 
Al ~ A2 • On the basis of set union and set inter­
section among the sets A of negative assumptions, 
the set of all A-Models becomes organized as a 
complete lattice. 

Having defined assumption models we next con­
sider their consistency. According to the CW A 
principles above, an assumption '" A cannot be 
added to a program P if by doing so A is itself 
a consequence of P, or some other assumption is 
contradicted. 

Definition 3.3 (Consistent A-Model) An A­
Model (A; M) is consistent iff A U M is an inter­
pretation, i.e. there exists no assumption fVL E A 
such that L E M. 
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Example 1 Let P = { c +-"" b; b +-"" a; 
a +-"" a}, whose WFM is empty. The A-Model 
({ "'a}; {a, b, ""c}) is inconsistent since by adding 
the assumption ""a then a E W F M(P + {""a}). 
The same happens with all A-Models containing 
the assumption ""a. The A-Model ({ ""b, ""c}; {c}) 
is also inconsistent. Thus the only consistent A­
Models are ({};{}), ({"'b};{c}) and ({""c};{}). 0 

Lemma 3.1 If an A-Model AM is inconsistent 
then any AM' such that AM ~a AM' is incon~ 
sis tent. 

Proof;[sketch] We prove that for all ""a' E B(P), 
if (A; W F M(P + A) is inconsistent then 
(A U {""a'};W F M(P + A U {""a'}) is also in­
consistent. By definition of consistent A-Model: 
3 ",b E A I b E W F M(P + A), so it suffices to 
guarantee that: b ¢ W F M(P + A U {""a'}) --. 
a' E W FM(P + A U {"'a'}). 

Consider b ¢ W F M(P + A U {""a'}). Since 
P + A U {",a'} only differs from P + A in rules 
with a' or ""a', and since b is true in P + A, it can 
be shown a' is also true in P + A. As the truth 
of an atom in the WFM of any program may not 
rely neither on the truth of itself nor of its com­
plementary, and because the addition of "" a' to 
P + A only changes rules with ""a' or a', the truth 
value of a' in P + A U {""a'} remains the same, i.e. 
a' E WFM(P+AU{""a'}). ¢ 

According to the CWA principles above, an as­
sumption ",A cannot be sustained if there is some 
set of consistent assumptions that concludes A. 
We've already expressed the notion of consistency 
being used. To capture the notion of sustainability 
we now formally define how an A-Model can de­
feat another, and define sustainable A-Models as 
the nondefeated consistent ones. 

Definition 3.4 (Defeating) 
A consistent A-Model (A; M) is defeated by a con­
sistent (A'; M') iff 3 ",a E Ala E M'. 

Definition 3.5 (Sustainable A-Models) 
An A-Model (A; M) is sustainable iff it is consis­
tent and not defeated by any consistent A-Model. 
Equivalently (""S; M) is sustainable iff: 

S n Uconsistent (AjjMj) Mi = {} 
Example 2 The only sustainable models in ex­
ample 1 are ({}; {}) and ({""b}; {c}). Note that 
the consistent A-Model ({ ""c}; {}) is defeated by 

({ ""b}; {c}), i.e. the assumption ""c is unsustain­
able since there is a set of consistent assumptions 
(namely {""b}) that leads to the conclusion c. 0 

The assumptions part of maximal sustainable A­
Models of a program P are maximal sets of consis­
tent Closed World Assumptions that can be safely 
added to the consequences of P without risking 
contradiction by other assumptions. 

Lemma 3.2 If an A-Model AM is defeated by an­
other A-Model D, then all A-Models AM' such 
that AM ~a AM' are defeated by D. 

Proof: Similar to the proof of lemma 3.1 above. ¢ 

Lemma 3.3 The A-Model ({}; WFM(P) is al­
ways sustainable. 

Proof: By definition of sustainable. ¢ 

Theorem 3.4 The set of all sustainable A-Models 
is nonempty. On the basis of set union and set in­
tersection among its A sets, the A-Models ordered 
by ~a form a lower semi lattice. 

Proof: Follows directly from the above lemmas. ¢ 

A program may have several maximal sustain­
able A-Models. 

Example 3 Let 
P = {c +-""c, ""b; b +- a; a +-""a}. Its sustainable 
A-Models are ({}; {}), ({ ""b}; {}) and ({ ""c}; {}). 
The last two are maximal sustainable A-Models. 
We cannot add both ""b and ""c to the program to 
obtain a sustainable A-Model since ({ ""b, ""c}; {c}) 
is inconsistent. 0 

4 The O-semantics 

This section is concerned with the problem of sin­
gling out, among all sustainable A-Models of a pro­
gram P, one that uniquely determines the mean­
ing of P when the CWA is enforced. This is ac­
complished by means of a selection criterium that 
takes a lower semilattice of sustainable A-Models 
and obtains a subsemilattice of it, by deleting A­
Models that in a well defined sense are less prefer­
able, i.e. the untenable ones. 

Sustainability of a consistent set of negative as­
sumptions insists that there be no other consistent 



set that defeats it (Le. there is no hypothetical evi­
dence whose consequences contradict the sustained 
assumptions). Tenability requires that a maximal 
sustainable set of assumptions be not contradicted 
by the consequences of adding to it another com­
peting (nondefeating and nondefeated) maximal 
sustainable set. 

The selection process is repeated and ends 
up with a complete lattice of sustainable A­
Models, which defines for every program Pits 0-
Semantics. The meaning of P is then specified 
by the greatest A-Model of the semantics, its 0-
Model. 

To illustrate the problem of preference among 
maximal A-Models we give an example. 

Example 4 
Let P = {c ~rvc, rvb; b ~ a; a ~rva}, whose sus­
tainable A-Models are ({};{}), ({rvb};{}), and 
( { rvC }, {} ). Because we wish to maximize the 
number of negative assumptions we consider the 
maximal A-Models, which in this case are the 
last two. The join of these maximal A-Models, 
({ rvb, rvc}; {c}), is per force inconsistent, in this 
case wrt c. This means that when assuming rvC 

there is an additional set of assumptions entail­
ing c, making this A-Model untenable. But the 
same does not apply to rvb. Thus the preferred A­
Model is ({ rvb}, {}), and the A-Model ({ rvc}; {}) 
is said untenable. The rationale for the preference 
is grounded on the fact that the inconsistency of 
the join arises wrt c but not wrt b. 0 

Definition 4.1 (Candidate Structure) 
A Candidate Structure CS of a program P is any 
subsemilattice of the lower semi lattice of all sus­
tainable A-Models of P. 

Definition 4.2 (Untenable A-Models) 
Let {(AI; M 1}, ••• , (An; Mn)} be the set of all max­
imal A-Models in Candidate Structure GS. Let 
J = (AJ; MJ) be the join of all such A-Models, in 
the complete lattice of all A-Models. An A-Model 
(Ai; Mi) is untenable wrt G S iff it is maximal in 
G S and there exists rva E Ai such that a E M J. 

Proposition 4.1 There exists no untenable A­
Model wrt a Candidate Structure with a single 
maximal element. 

Proof: Since the join coincides with the unique 
maximal A-Model, which is sustainable by defini­
tion of CS, then it cannot be untenable. 0 
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The Candidate Structure left after removing all 
untenable A-Models of a CS, may itself have sev­
eral maximal elements, some of which might not 
be maximal A-Models in the initial CS. If the re­
moval of untenable A-Models is performed repeat­
edly on the retained Candidate Structure, a single 
maximal element is eventually obtained, albeit the 
bottom element of all the CSs. 

Definition 4.3 (Retained CS) The Re­
tained Candidate Structure R( G S) of a Candidate 
Structure G Sis: 

• G S if it has a single maximal A -Model, i. e. 
G S is a complete lattice. 

• Otherwise, let U nt be the set of all untenable 
A-Models wrt GS. Then R(GS) = R(GS -
Unt). 

Definition 4.4 (The O-Semantics) 
The O-Semantics of a program P is defined by the 
Retained Candidate Structure of the semilattice of 
all sustainable A-Models of P. 

Let (A; M) be its maximal element. The in­
tended meaning of P is A U M, the O-Model of 
P. 

Theorem 4.1 (Existence of O-Semantics) 
The Retained Candidate Structure of the semilat­
tice of all sustainable A-Models is nonempty. 

Proof:[sketch] It suffices to guarantee that at each 
iteration with more than one maximal A-Model at 
least one is untenable. This is done by contradic­
tion: suppose no maximal A-Model is untenable. 
Then their join would be the single maximal sus­
tainable one, and so could not be untenable, in the 
previous and final iteration; accordingly the sup­
posed models cannot be maximal. 

When there is a single maximal A-Model then 
the structure is a complete lattice, since at 
each iteration only maximal A-Models were re­
moved. This lattice is nonempty since its bot­
tom ({}; W F M(P) is always sustainable and can 
never be untenable. 0 

5 Examples 

In this section we display some examples and their 
O-Semantics. Remark that indeed the O-Models 
obtained express the safe CWAs compatible with 
the WFMs (which are all {}). 
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Example 5 
Let P = {a +-"'aj b +- aj C +-"'C, ",bj d +- c} The 
semilattice of all sustainable A-Models CS is: 

The Jom of its maximal A­
Models is ({ ",b, "'c, ",d}j {c, "'d}). Consequently, 
the maximal A-Model on the right is untenable 
since it contains "'c in the assumptions, and c is 
a consequence of the join. So R( C 8) = R( C B') 
where C8' is: 

The join of all maximal elements in C 8' is the same 
as before and the only untenable A-Model is again 
the maximal one having'" c in its assumptions. 
Thus R( C 8) = R( C 8") where C 8" is: 

So the O-Model is {",b, "'d}. Note that if P is 
divided into PI = {c +-"'c, "'b; d +- c} and P2 = 
{a +-"'a; b +- a}, the O-models of PI and P2 both 
agree on the only common literal ",b. So ",b rightly 
belongs to the O-models of P. 0 

Example 6 Let P = {q +-'" pj p +- a; a +-"'bj 
b +-'" C; C +-'" a}. Its only consistent A-Models 
are ({};{}), ({",p};{q}) and ({",q};{}). As this 
last one is defeated by the second, the only sus­
tainable ones are the first two. Since only one is 
maximal, these two A-Models determine the 0-
Semantics, and the meaning of P is {"'p, q}, its 
O-Model. Note that if the three last rules, form­
ing an "undefined loop", are replaced by another 
"undefined loop" a +-",a, the O-model is the same. 
This is as it should, since the first two rules con­
clude nothing about a. 0 

Example 7 Let P = {p +- a, b; a +-",b; b +-",a}. 
The A-Models with '" b in their assumptions de­
feat A-Models with ",a in their assumptions and 

vice-versa. Thus the O-Semantics is determined 
by ({}j {}) and ({ ",p}j {}), and the meaning of P 
is {"'P}, its O-Model. 0 

, 
Example 8 Let P = {c +-'" C, '" b; b +-"'c, "'b; 
b +- aj a +-'" a}. Its sustainable A-Models are 
({}j {}), ({ ",b}j {}) and ({ ",c}j {}). The join of the 
maximal ones is ({ ",b, ",c}j {b, c}), and so both are 
untenable. Thus the Retained Candidate Struc­
ture has the single element ({}j {}) and the mean­
ing of P is {} 0 

6 Properties of Sustainable 
A-Models 

This section explores properties of sustainable 
A-Models that provide a better understanding 
of them, and also give hints for their construc­
tion without having to previously calculate all A­
Models. 

We begin with properties that show how our 
models can be viewed as an extension to Well 
Founded Semantics (WFS). As mentioned in 
[Kakas and Mancarella, 1991a], negation in WFS 
is based on the notion of support, i.e. a literal ",L 
only belongs to an Extended Stable Model (XSM) 
if all the rules for L (if any) have false bodies in 
the XSM. In contradistinction, we are interested 
in negations as consistent hypotheses that cannot 
be defeated. To that end we weaken the necessary 
(but not sufficient) conditions for a negative lit­
eral to belong to a model as explained below. We 
still want to keep the necessary and sufficient con­
ditions of support for positive literals. More pre­
cisely, knowing that XSMs must obey, among oth­
ers, the following conditions d. [Monteiro, 1991]: 

• If there exists a rule p +- B in the program 
such that B is true in model M then p is also 
true in M (sufficiency of support for positive 
literals). 

• If an atom p E M then there exists a rule 
p +- B in the program such that B is true in 
M (necessity of support for positive literals). 

• If all rule bodies for p are false in M then 
"'p E M (sufficiency of support for negative 
literals). 

• If "'P E M then all rules for p have false bodies 
in M (necessity of support for negative liter­
als). 



Our consistent A-models, when understood as 
the union of their pair of elements, assumptions 
A and W F M{P + A), need not obey the fourth 
condition. Foregoing it condones making negative 
assumptions. In our models an atom might be false 
even if it has a rule whose body is undefined. Thus, 
only false atoms with an undefined rule body are 
candidates for having their negation added to the 
WFM{P). 

Proposition 6.1 Let (A; M) be any consistent A­
Model of a program P. The interpretation A U M 
'obeys the first three conditions above. 

Proof: Here we prove the satisfaction of the first 
condition. The remaining proofs are along the 
same lines. 

If 3p +- bt , ... , bn , I'V Ct, ... , I'V Crn E P I 
{bt , ... ,bn , I'VCt, ... ,I'VCrn } ~ AU M then bi E M 
(I ~ i ~ n) and I'VCj E M or I'VCj E A (1 ~ j ~ m). 
Let p +- b}, ... ,bn,I'VC1, ... ,l'Vck(1 ~ 1,k ~ m) be 
the rule obtained from an existing one by removing 
alll'Vcj E A, which is, by definition, a rule of P + A. 
Thus there exists a rule p +- B in P + A such that 
B ~ WFM{P+A) = M. Given that the WFM of 
any program must obey the first condition above, 
p E WFM{P+A). ~ 

N ext we state properties useful for more directly 
finding the sustainable A-Models. 

Proposition 6.2 There exists no consistent A­
Model (A; M) of P with I'V a E A such that 
a E WFM(P). 

Proof: Let (A; M) be an A-Model such that 
l'Va E A and a E W F M(P). It is known that the 
truth of any a E WFM(P) cannot be sup­
ported neither on itself nor on l'Va. If A = {l'Va} 
then, lafter adding {l'Va} to the program, the 
rules supporting the truth of a remain un­
changed, i.e. a E W F M{P + {l'Va}), and thus 
({ l'Va}; W F M (P + {l'Va})),s inconsistent. It fol­
lows, from lemma 3.1, that all A-Models (A; M) 
such that {l'Va} ~ A are inconsistent. ~ 

Hence, A-Models not obeying the above restric­
tion are not worth considering as sustainable. 

Proposition 6.3 
If a negative literall'VL E W F M(P) then there is 
no consistent A-Model (A; M) of P such that 
LEM. 

567 

Proof:[sketch] We prove that if L E M for a given 
A-Model (A; M) of P then (A; M) is inconsistent. 
If L E M there must exist a rule L +- B, I'Ve in P 
such that BU I'Ve ~ M U A and BU I'Ve is false in 
W F M(P), i.e. there must exist L +- B, I'Ve in P 
with at least one body literal true in M U A and 
false in W FM{P). If that literal is an element of 
I'Ve, by proposition 6.2, (A; M) is inconsistent (its 
corresponding atom is true in W F M (P) and false 
in M U A). If it is an element of B this theorem 
applies recursively, ending up in a rule with empty 
body, an atom with no rules or a loop without an 
interposing I'V/. By definition of W F M (P + A) the 
truth value of literals in these conditions can never 
be changed. ~ 

Theorem 6.1 If I'VL E W F M(P) then I'VL E M 
in every consistent A-Model (A; M) of P. 

Proof: Given proposition 6.3, it suffices to prove 
that L is not undefined in any consistent A-Model 
of P. The proof is along the lines of that of the 
proposition above. ~ 

Consequently, all supported negative literals in 
the W F M{P), which includes those without rules 
for their atom, belong to every sustainable A­
Model. 

Lemma 6.2 Let WFM{P) = TU I'VF. For any 
subset S of I'VF, W F M{P) = W F M(P + S). 

Proof: This lemma is easily shown using the def­
inition of P + A and the properties of the WFM. 
~ 

Theorem 6.3 Let WFM(P) = TU I'V F and 
(A; W F M(P + A)) be a consistent A-Model, and 
let A' = An I'V F. Then WFM(P + A) = 
WFM(P + (A - A')). 

Proof: Let pI = P + (A - A'), and W F M(P) = 
Tu I'VF. By theorem 6.1 I'VF ~ W F M(PI). So, 
by lemma 6.2, WFM(PI) = WFM(PI+ I'VF) = 
W F M([P+(A-(An I'VF) )]+ I'VF). By definition of 
P+A it follows that (P+At}+A2 = P+(A1 UA2 ). 

Thus W F M(P I
) is: ~ 

W F M(P + [(A - (An I'VF)U I'VF]) 
= WFM(P+A) 
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This theorem shows that sets of assumptions 
including negative literals of W F M(P) are not 
worth considering since there exist smaller sets 
having exactly the same consequences AU M and, 
by proposition 6.3 the larger sets are not defeatable 
by reason of negative literals from the WFM(P). 

Another important hint for calculating the sus­
tainable A-Models is given by lemma 3.1. Accord­
ing to it one should start by calculating A-Models 
with smaller assumption sets, so that when an in­
consistent A-Model is found, by the lemma, sets 
of assumptions containing it are unworth consid­
ering. 

Example 9 
Let P = {p f-"""a, """b; a f- c, d; c f-"""C; d}. The 
least A-Model is ({}; {d, """b}) where {d, """b} = 
W F M(P). Thus sets of assumptions contain­
ing """ d or """ b are not worth considering. 
Take now, for example, the consistent A-Model 
({ """a}; {d, """b,p}), which we retain. Consider 
({ """c}; {c, a, """p}); as this A-Model is inconsistent 
we do not retain it nor consider any other A­
Models with assumption sets containing """c. Now 
we are left with just two more A-Models worth 
considering: ({ """P }; {d, """b}) which is defeated 
by ({"""a}; {d,,,,,,,b,p}); and ({"""p,,,,,,,a};{d,,,,,,,b,p}) 
which is inconsistent. Thus the only two sustain­
able A-Models are ({}; {d, """b}) 
and ({"""a}; {d, """b,p}). In this case, the latter is 
the single maximal sustainable A-Model, and thus 
uniquely determines the intended meaning of P to 
be A U M = {"""a, d, """b, p}. 0 

7 Relation to other work 

Consider the following program ([Van Gelder et 
al., 1980]): 

P = {p f- q,"""r,"""s; q f- r,"""p; 
r f- p, """q; s f-"""P, """q, """r} 

In [Przymusinska and Przymusinski, 1990] they 
argue that the intended semantics of this program 
should be the interpretation {s, """p, """q, """r} due to 
the mutual circularity of p, q, r. This model is pre­
cisely the meaning assigned to the program by the 
O-Semantics, its O-Model. Note that WFS iden­
tifies the (3-valued) empty model as the meaning 
of the program. This is also the model provided 
by stable model semantics [Gelfond and Lifschitz, 
1988]. The weakly perfect model semantics for this 

program is undefined as noticed in [Przymusinska 
and Przymusinski, 1990]. 

The EWFS [Baral et al., 1990] is also an exten­
sion to the WFM based on the notion of GCWA 
[Minker, 1987]. Roughly EWFS moves closer than 
the WFM (in the sense of being less undefined) 
to being the intersection of all minimal Herbrand 
models of P [Dix, 1991]: 

EWFM(P) =def 
WFM(P) + (T(WFM(P)),F(WFM(P))) 

where: T(I) =def True(I - MIN - MOD(P)),­
F(I) =aef False(I - MIN - MOD(P)) and 
I - MIN - MOD ( P) is the collection of all minimal 
models consistent with the three valued interpre­
tation I. 

For the program P = {a f-"""a} we have: 

WFM(P)={}, 
MIN-MOD(P) = {a} and EWFM(P) = {a} 

Note this view identifies the intended meaning 
of rule a f-""" a as the equivalent logic formula 
a f- -,a, i.e. a. The O-Model of P is empty. 

The difference between the O-Semantics and 
EWFS may be noticed in the intended meaning 
of the two rule program: {a f-"""b; b f-"""a}, which 
is behind the motivation of the extension EFWS of 
WFM based on GCWA. EWFS wants to identify 
a V b as the meaning of this program, which also 
justifies the identification of a f-"""a with the fact 
a. The O-Model is empty. 

A similar approach based on the notion of stable 
negative hypotheses (built upon the notion of con­
sistency) is introduced in [Kakas and Mancarella, 
1991b], identifying a stable theory associated with 
a program P as a "skeptical" semantics for P, that 
always contains the well founded model. 

One example showing that 
their approach is still conservative is: 
{p f-"""q; q f-"""r; r f-"""P; s f- p}. Stable theories 
identifies the empty set as the meaning of the pro­
gram; however its O-Model is {"""s}, since it is con­
sistent, maximal, sustainable and tenable. Kakas 
(personnal communication) now also obtains this 
model, as a result of the investigation mentioned in 
the conclusions of [Kakas and Mancarella, 1991b]. 

8 Conclusions 

We identify the meaning of a program P as a suit­
able partial closure of the well founded model of 



the program in the sense that it contains the well 
founded model (and thus always exists). The ex­
tension we propose reduces undefinedness (which 
some authors argue is a desirable property) in the 
intended meaning of a program P, by an ade­
quate form of CWA based on notions of consis­
tency, sustainability and tenability with regard to 
alternative negative assumptions. Sustainability 
of a consistent set of negative assumptions insists 
that there be no other consistent set that defeats it 
(i.e. there is no hypothetical evidence whose con­
sequences contradict the sustained assumptions). 
Tenability requires that a maximal sustainable set 
of assumptions be not contradicted by the conse­
quences of adding to it another competing (nonde­
feating and nondefeated) maximal sustainable set. 
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Abstract 

The paper considers open logic programs originally 
introduced in [Bossi and Menegus 1991J as a tool 
to build an OR-compositional semantics of logic 
programs. We extend the original semantic defi­
nitions in the framework of the general approach 
to the semantics of logic programs described in 
[Gabbrielli and Levi 1991bJ. We first define an OR­
compositional operational semantics On(P) mod­
eling computed answer substitutions. We con­
sider next the semantic domain of D-interpretations, 
which are sets of clauses with a suitable equiva­
lence relation. The fixpoint semantics Fn(P) given 
in [Bossi and Menegus 1991J is proved equivalellt to 
the operational semantics, by using an intermedi­
ate unfolding semantics. From the model-theoretic 
viewpoint, an D-interpretation is mapped onto a set 
of Herbrand interpretation, thus leading to a defi­
nition of D-model based on the classical notion of 
truth. We show that under a suitable partial order, 
the glb of a set of D-models of a program P is an 
D-model of P. Moreover, the glb of all the D-models 
of P is equal to the usual Herbrand model of P \;vhile 
Fn(P) is a (non-minimal) D-model. 

1 Introduction 

An D-open program [Bossi and Menegus 1991J P is a 
program in which the predicate symbols belonging to 
the set D are considered partially defined in P. P can 
be composed with other programs which may further 
specify the predicates in D. Such a composition is 
denoted by Un. Formally, if Pred(P) n Pred(Q) ~ 
fl then P Un Q = P U Q, otherwise P Un Q is 
not defined (Pred(P) denotes the predicate sym­
bols in P). A typical partially defined program is a 
program where the intensional definitions are com-

2) Dipartimento di Informatica 

Universita di Pisa 

Corso Italia 40, 56125 Pisa 

{gabbri,levi,meo}@dipisa.di .. unipi.it 

pletely known while extensional definitions are only 
partially known and can be further specified. 

Example 1.1 Let us consider the following program 

Ql = { anc(X, Y) : -parent(X, Y). 
anc(X, Z) : -parent(X, Y), anc(Y, Z). 
parente isaac, jacob). 
parent(jacob, benjamin). } 

New extensional information defining new parent tu­
ples can be added to QI as follows 

Q2 = { parente anna, elizabeth). 
parente elizabeth, john). } 

The semantics of open programs must be fl­
compositional w.r.t. program union, i.e. the seman­
tics of PI Un P2 must be derivable from the semantics 
of PI and P2• If D contains all the predicates in P, 
D-compositionality is the same as compositionality. 

The least Herbrand model semantics, as origi­
nally proposed [van Emden and Kowalski 1976] and 
the computed answer substitution semantics in 
[Falaschi et al. 1988,Falaschi et al. 1989a], are not 
compositional w.r.t. program union. For example, 
in example 1.1, the atom anc( anna, elizabeth) which 
belongs to the least Herbrand model semantics of 
QI U Q2 cannot be obtained from the least Herbrand 
model semantics of QI and Q2 (see also example 2.1). 

In this paper we will introduce a semantics for 
fl-open programs following the general approach 
in [Gabbrielli and Levi 1991bJ which leads to se­
mantics definitions which characterize the program 
operational behavior. This approach leads to 
the introduction of extended interpretations C7r­
interpretations) which are more expressive than Her­
brand interpretations. The improved expressive 
power is obtained by accommodating more syn,tac­
tic objects in 7r-interpretations, which are (possibly 



infinite) programs. The semantics in terms of 7r­

interpretations can be computed both operationally 
and as the least fixpoint of suitable continuous im­
mediate consequence operators on 7r-interpretations. 
It can also be characterized from the model-theoretic 
viewpoint, by defining a set of extended models (7r­
models) which encompass standard Herbrand mod­
els. In the specific case of n-open programs, ex­
tended interpretations are called n-interpretations 
and are sets of conditional atoms (i.e. clauses such 
that all the atoms in the body are open). Each 
n-interpretation represents a set of Herbrand inter­
pretations that could be obtained by composing the 
open program with a definition for the open predi­
cates. n-interpretations of open programs are intro­
duced to obtain a unique representative model, com­
putable as the least fixpoint of a suitable continuous 
operator, in cases where no such a representative ex­
ists in the set of Herbrand models. 

The main contribution of this paper is the defi­
nition of an OR-compositional (i.e. compositional 
w.r.t. program union) semantics of logic programs 
in the style of [Falaschi et al. 1988, Falaschi et al. 
1989b]. Other approachs to OR-compositionality 
can be found in [Lassez and Maher 1984, Mancar­
ella and Pedreschi 1988, Gaifman and Shapiro 1989a, 
Gaifman and Shapiro 1989b]. An OR-compositional 
semantics corresponds to an important program 
equivalence notion, according to which two programs 
PI and P2 are equivalent iff for any program Q a 
generic goal G computes the same answers in PI U Q 
and P2 U Q. An OR-compositional semantics has 
also some interesting applications. Namely it can be 
used 

• to model logic languages provided with a 
module-like structure, 

• to model incomplete knowledge bases, where 
new chunks of knowledge can incrementally be 
assimilated, 

• for program transformation 
(the transformed programs must have the same 
OR-compositional semantics of the original pro­
gram), 

• for semantics-based "modular" program analy­
SIS. 

The paper is organized as follows. Subsection 1.1 
contains notation and useful definitions on the se­
mantics of logic programs. In section 2 we define 
an operational semantics On(P) modeling computed 
answer substitutions which is OR-compositional. 
Section 3 introduces a suitable $emantic domain for 
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the On(P) semantics and defines n-interpretations 
which are sets of clauses modulo a suitable equiv­
alence relation. In section 4 the fixpoint semantics 
Fn(P), is proved equivalent to the operational se­
mantics by using an intermediate unfolding seman­
tics. Section 5 is concerned with model theory. From 
the model-theoretic viewpoint, an n-interpretation 
is mapped onto a set of Herbrand interpretations, 
thus leading to a definition of n-model based on the 
classical notion of truth. We show that under a suit­
able partial order, the glb of a set of n-models of a 
program P is an n-model of P. Moreover, the glb of 
all the n-models of P is equal to the usual Herbrand 
model of P. Moreover, Fn(P) is a (non-minimal) n­
model, equivalent to the model-theoretic semantics 
defined in [Bossi and Menegus 1991] in terms of So­
models. A comparison between n-models and the 
So-models is made in section 6. Section 7 is devoted 
to some conclusive remarks. All the proofs of the re­
sults given here can be found in [Bossi et al. 1991]. 

1.1 Preliminaries 

The reader is assumed to be familiar with the ter­
minology of and the basic results in the seman­
tics of logic programs [Lloyd 1987,Apt 1988]. Let 
the signature S consist of a set F of function sym­
bols, a finite set P of predicate symbols, a denu­
merable set V of variable symbols. All the defini­
tions in the following will assume a given signature 
S. Let T be the set of terms built on F and V. 
Variable-free terms are called ground. A substitu­
tion is a mapping {) : V ---7 T such that the set 
D({)) = {X I {)(X) =I- X} (domain of f)) is finite. 
If W c V, we denote by {)Iw the restriction of {) to 
the variables in W, i.e. {)lw(Y) = Y for Y rt w. 
c denotes the empty substitution. The composition 
{)(J of the substitutions {) and (J is defined as the 
functional composition. A renaming is a substitu­
tion p for which there exists the inverse p-l such 
that pp-l = p-l P = c. The pre-ordering:::; (more 
general than) on substitutions is such that {) :::; (J iff 
there exists {)' such that {){)' = (J. The result of the 
application of the substitution {) to a term t is an in­
stance of t denoted by tf). We define t :::; t' (t is more 
general than t') iff there exists {) such that t{) = t'. A 
substitution {) is grounding for t if t{) is ground. The 
relation :::; is a preorder. ~ denotes the associated 
equivalence relation (variance). A substitution {) is a 
unifier of terms t and t' if tf) == t'{). The most general 
unifier of tl and t2 is denoted by rngu( tll t2)' All the 
above definitions can be extended to other syntactic 
expressions in the obvious way. An atom is an object 
of the form P(tl" .. ,tn) where pEP, t ll ... ,tn E T. 
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A clause is a formula of the form H : -L1 , ... , Ln 
with n ;::: 0, where H (the head) and L 1 , ..• ,Ln (the 
body) are atoms. ": -" and "," denote logic implica­
tion and conjunction respectively, and all variables 
are universally quantified. If the body is empty the 
clause is a -unit clause. A program is a finite set of 
clauses. A goal is a formula L 1 , ... , Lm, where each 
Li is an atom. By V m'( E) and P1'ed(E) we denote 
respectively the sets of variables and predicates oc­
curring in the expression E. A Herbrand interpre­
tation I for a program P is a set of ground atoms. 
The intersection M(P) of all the Herbrand models 
of a program P is a model (least Herbrand model). 
M(P) is also the least fixpoint of a continuous trans­
formation Tp (immediate consequences operator) on 
the complete lattice of Herbrand interpretations. If 
G is a goal, G ~ p B I , ... , Bn denotes an SLD deriva­
tion with fair selection rule of B I , ... ,Bn in the pro­
gram P where 13 is the composition of the mgu's used 

in the derivation. G ~ p 0 denotes the refutation 
of G in the program P with computed answer s'ubsti­
tution 13. A computed answer substitution is always 
restricted to the variables occurring in G. The nota­
tions i, X will be used to denote tuples of terms and 
variables respectively, ,,,,,hi Ie iJ denotes a (possibly 
empty) conjunction of atoms. 

2 Computed answer substitu­
tion semantics for D-open 
programs 

The operational semantics is usually given by means 
of a set of inference rules which specify how deriva­
tions are made. From a purely logical point of 
view the operational semantics is simply defined in 
terms of successful derivations. However, frol11 a 
programming language viewpoint, the operational 
semantics must be concerned with additional infor­
mation, namely observable properties. A given pro­
gram in fact may have different semantics depend­
ing on which of its properties can be observed. For 
instance in pure logic programs one can observe suc­
cesses, finite failure, computed answer substitutions, 
partial computed answer substitutions or any com­
bination of them. A given choice of the observ­
able induces an equivalence on programs, namely 
two programs are equivalent iff they are observation­
ally indistinguishable. "\iVhen the semantics correctly 
captures the observable, two programs are equiva­
lent if they have the same semantics. "\iVhen also 
compositionality is taken into account, for a given 
observable property we can obtain different seman-

tics (and equivalence relations) depending on which 
kind of program composition we consider. Indeed, 
the semantics of logic programs is usually concerned 
with AND~composition (of atoms in a goal or in a 
clause body). Consider for example logic programs 
with computed answer substitutions as observable 
[Falaschi et al. 1989a]. The operational semantics 
can be defined as 
O(P) = {p(X)8 IX are distinct var, p(X) ~p D} 
where the denotation of a program is a set of non­
ground atoms, which can be viewed as a possibly infi­
nite program [Falaschi et al. 1989a]. Since we have 
syntactic objects in the semantic domain, we need 
an equivalence relation in order to abstract from 
irrelevant syntactic differences. If the equivalence 
is accurate enough the semantics is fully abstract. 
According to [Gabbrielli and Levi 1991b], Herbrand 
interpretations are generalized by 7r-interpretations 
which are possibly infinite sets of (equivalence classes 
of) clauses. The operational semantics of a pro­
gram P is then a 7r-interpretation I, which has 
the following property. P and I are observation­
ally equivalent with respect to any goal G. This 
is the property which allows to state that the se­
mantics does indeed capture the observable behavior 
[Falaschi et al. 1989a]. The following example shows 
that when considering OR-composition (i.e. union of 
sets of clauses), non-ground atoms (or unit clauses) 
are not sufficient any longer to define a compositional 
semantics. 

Exalnple 2.1 Lei U8 con8ider the following pro­
grams 

PI = { q(X): -p(X). 
1'(X) : -.s(X). 
.s( b). 
pea). 

P2 = { p( b). 

According to the prevzous definition of O( P), 
O(Pd = {pea), q(a), reb), s(b)} and O(P2 ) = {pCb)}. 
Since O(PI U P2 ) = {p(a),p(b), q(a), q(b), reb), s(b)}, 
the semantics of the ~mion of the two programs can­
not be obtained from the semantics of the programs. 

In order for a semantics to be compositional, it 
must contain information in the form of a mapping 
from sets of atoms to sets of atoms. This is indeed 
the case of the semantics based on the closure op­
erator [Lassez and Maher 1984] and on the Tp op­
erator [Mancarella and Pedreschi 1988]. If we want 
a semantics expressed by the program syntax, OR­
compositionality can only be obtained by choosing 
as semantic domain a set of (equivalence classes of) 
clauses. In example 2.1, for instance, the semantics 
of PI should contain also the clause q(X) : -p(X). 



Let us formally give the definition of the program 
composition we consider. 

Definition 2.2 Let P be a program and Q be a set of 
predicate symbols. P is open w.r.t. Q (or Q-open) if 
the information on the predicates in Q is considered 
to be partial. Moreover if P, Q are Q-open progra,ms 
and (Pred(Q) n Pred(P)) ~ Q then P Uo Q is the 
Q-open program PUQ. If(Pred(Q)nPred(P)) Cl Q 

then P Uo Q is not defined. 

Note that when considering an Q-open program 
P and an Q'-open program Q, the composition of 
P and Q is defined only if (Pred(Q) n Pred(P)) ~ 
(Q n Q'). Moreover, the composition of P and Q is 
a W-open program, where W = Q U Q'. 

The definition of any predicate symbol p E Q in 
an Q-open program P can always be extended or 
refined. For instance in example 1.1 program Ql is 
open w.r.t. the predicate parent and this predicate 
is refined in program Q2. Therefore, a deduction 
concerned with a predicate symbol of an Q-open pro­
gram P can be either complete (when it takes place 
completely in the program P) or partial (when it ter­
minates in P with an atom p(i) such that p E Q and 
p( i) does not unify with the head of any clause in 
P). A partial deduction can be completed by the 
addition of new clauses. Thus we have an hypothetic 
deduction, conditional on the extension of predicate 
p. 

Let us consider again the program PI of exam­
ple 2.1 and assume n = {pl. Then, the goalr'(X) 
produces a complete deduction onl;y, comput.ing the 
answer substitution {Xjb}. The goal q(X) produces 
a complete deduction, computing t.he answer sub­
stitution {X j a} and an hypothetical deduction re­
turning any answer that could be computed by a 
definition of p external to Pl' The goal q( b) instead 
has one hypothetical deduction only, conditional on 
the provability (outside PI) of p( b). V\Te want to ex­
press this hypothetical reasoning, i.e. that. q( b) is 
refutable if p( b) is refutable. Hence we will consider 
the following operational semantics (recall that by 
B we denote B l , ... , Bn with n ~ 0). . 

Definition 2.3 Let Q be a set of predicate syrnbol8. 
We define 

Id(Q) = {p(-X-) : -p(_Y) I p E D, ~t are 
distinct variables } 

Definition 2.4 (Q-compositional computed answer 
substitutions semantics) Let P be a program and let 
P* = P U Id(Q). Then we define Oo(P) = 

{A: -B2 I p(X) ~p Bl -0.p. B2 
X distinct variables, 
A = p( _Y ){J'y, {Pred( .Hz)} ~ Q} 

The set of clauses I d( Q) in the previous defini­
tion is used to delay the evaluation of open atoms. 
This is a trick which allows to obtain by using 
a fixed fair selection rule R, all the derivations 

P(Xl' ... ,Xn) ~ P B l , ... , En which use any selec­
tion rule R', for P1'ed(B l , ... ,Bn) ~ D. Note that 
t.he first step of the derivation uses a clause in P (in­
stead than in P*) because we want Oo( P) to contain 
a clause p(-X) : -p(X) if and only if p(_Y) ~p p(~Y). 

Example 2.5 Let PI, P2 be the Q-open programs of 
example 2.1 where Q = {p}. 
Then On(P2) = {p( b)} and 
0dPl ) = {q(X) : -p(X), p(a), q(a), r(b), s(b)}. 
0 0 contains eno'ugh information to compnte the se­
mantics of compositions. Indeed O(PI U P2) ~ 
On(Pl UP2) and On(Pl UP2) = Oo( On(PdUOo(P2)) 
(see theorem 2.9). 

Example 2.6 Lei Q = {q,r} and lei Ql, Q2 be the 
following programs 
Ql = {p(X, Y) : -1'(X), q(Y). Q2 = { 1'(b). } 

r(a). 

Then 00(Q2) = {1'(b)}, 00(Q1)= 
{p(X, Y) : -r(X), q(Y), p(o., Y) : -q(Y), dan and 
On(Q1 U Q2) = Oo(Oo(Qd U On(Q2)) = 
{p(X, Y) : -1'(X), q(Y), p(a, Y) : -q(Y), 

p(b, Y) : -q(Y), r(a), r(b)} (see theorem 2.9). 

Note that Oo(P) is essentially the result of the 
partial evaluation [Lloyd and Shepherdson 1987] of 
P, where derivations terminate at open predicates. 
This operational semantics fully characterizes hypo­
thetic deductions, conditional on the extension of the 
predicates in n. Indeed the semantics of a program 
P can be viewed as a possibly infinite set of clauses 
and the partial computed answer substitutions can 
be obtained by executing the goal in the "program". 
The equivalence (~n) on programs induced by the 
computed ansvver substitution observable when con­
sidering also programs union, can be formally de­
fined as follows. 

Definition 2.7 Let PI, P2 be Q-open programs. 
Then PI ~n P2 if for e'very goal G and for ev­
ery program Q s.t. Pi Un Q, i = 1,2) is defined) 

G {} 0 'ff G' {}p 11,' 
1----+ P j UnQ Z. T 1----+ P2 U nQ 0 'were p 1,S a renam-

mg. 

On allows to characterize a notion of answer sub­
stitution which enhances the usual one, since also 
(unresolved) atoms, with predicate symbols in Q, are 
considered. Therefore it is able to model computed 
answer substitutions in an OR compositional way. 
The following results show that On(P) is composi­
tional w.r.t. Un and therefore it correctly captures 
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the computed answer substitution observable notion 
when considering also programs union. 

Theorem 2.8 Let P be an rl-open program. 

Then P ~o Oo(P). 

Theorem 2.9 Let Pl. P2 be n-open programs and 

let PI Uo P2 be defined. 

Then Oo(Oo(Pd Un 00(P2 )) = Oo(Pl Uo P2 ). 

Corollary 2.10 Let PI, P2 be n-open programs. 

If Oo(Pd = On(P2 ) then PI ~o P2 . 

3 ,Semantic domain for n-open 
programs 

In this section we formally define the semantic do­
main which characterizes the above introduced op­
erational semantics 0 0 . Since 0 0 contains clauses 
(whose body predicates are all in n), we. have 
to accommodate clauses in the intei'pretations we 
use. Therefore we will define the notion of n­
interpretation which extends the usual notion of in­
terpretation since an n-interpretation contains con­
ditional atoms. As usual, in the following, n is a set 
of predicates. 

Definition 3.1 (Conditional atoms) 
An n-conditional atom is a clause 
A: -Bl , .. . , Bn such that Pn;:d(B l , . ..• Bn) ~ n. 

In order to abstract fro111 the purely syntactical 
details, we use the following equivalence ~ on con­
ditional atoms. 

Definition 3.2 Let Cl = Al : -B l , ... , B n , C2 = 
A2 : -D l , ... , Dm be cla1tSes. Then Cl :s; C2 iff:::h9 
such that 3{i l , ... , in} ~ {I, ... , rn} such that A(z9 
= A 2 , i h =I- ik for h =I- k, and (BliJ, ... , Bn iJ ) = 
(Dil' ... ,Din ). Moreover we define C1 ~ C2 iff C1 :::; C2 

and C2 :::; C1· 

Note that in the previous definition bodies of 
clauses are considered as multisets (considering sets 
would give the standard definition of subsumption). 
Equivalent clauses have the same body (considered 
as a multi set ) up to renaming. Considering sets in­
stead of multisets (subsumption equivalence) is not 
correct when considering computed answer substitu­
tions. The following is a simple counterexample. 

Example 3.3 Let 
C1 = p(X, Y) : -q(X, Y), q(X, Y) 

and C2 = p(X, Y) : -q(X, Y). Let PI = {cd and 

P2 = {C2} be D.-open programs 'where D. = {q}. Obvi­
ously, considering bodies of cl(J.1I,8es (l.S sets. C1 = C2E 

where E is the empty renamzng. However" PI ~o 
P 2 since by considering Q = {q(X,b),q(a,Y)}, 

p(X,Y) ~PIUQ 0 where () = {X/a,Y/b}, while the 
goal p(X, Y) in the program P2 U Q can compute ei­

ther {X/a} or {Y/b} only. 

Definition 3.4 The n-conditional base, Cn, is the 
quotient set of all the rl-conditional atoms w. r. t. ~. 

In the following we will denote the equivalence 
class of a conditional atom c by G itself, since all 
the definitions which use conditional atoms are not 
dependent on the element chosen to represent an 
equivalence class. Moreover, any subset of Cn will 
be considered implicitly as an D.-open program. Be­
fore giving the formal definition of rl-interpretation, 
we need the notion of 'u-closed subset of Cn. 

Definition 3.5 A subset I of Cn is u-closed iff 

V H : - Bll ... ,Bn E I and VB : - AI, ... ,Am E I 

s'uch that ~() = mgu(Bi' B), for 1 :::; i :::; n, 
(H : -Bl , ... , B i- l , AI,"" Am, B i+b .·., Bn){) E I. 
Moreover if I ~ Cn, 'we denote by j its 'n-closure 
defined as the least (w. r. t. ~) l' ~ Co 1t-closed such 
tha.t I ~ 1'. 

Proposition 4.5 will show that the previous notion of 
u-closure is well defined. A u-closed interpretation I 
is an interpretation which, if viewed as a program, 
is closed under unfolding of procedure calls. Inter­
pretations need to be u-closed for the validity of the 
model theory developed in section 5. Therefore, in 
order to define rl-interpretations we will consider u­
closed sets of conditional atoms only. Let us now 
give the formal definition of D.-interpretation. 

Definition 3.6 An rl-interpretation I is any sub­
set of Co which is tt-closed. The set of all the D.­
interpretations is denoted by S'. 

Lemma 3.7 (S',~) is a complete lattice where the 

minimal element is 0 and glb(X) = Ux~ x for any 

X ~ S'. 

In the following the operational semantics On will 
be formally considered as an D.-interpretation. 

4 Fixpoint semantics 

In this section we define a fixpoint semantics Fn( P) 
which in the next subsection is proved to be equiva­
lent to the previously defined operational semantics 
On(P). This can be achieved by defining an imme­
diate consequence operator TJ1 on the lattice (S', ~) 
of D.-interpretations. Fn( P) is the least fixpoint of 
TJ1. 



The immediate consequences operator TJl is 
strongly related to the derivation rule used for D.­
open programs and hence to the unfolding rule. 
Therefore TJl models the observable properties in an 
OR compositional way, and may be useful for mod­
ular (i.e. OR compositional) bottom-up program 
analysis. 

Definition 4.1 Let P be an D.-open program. Then 

TfJ(I) = r~(I) where r~(I) is the operator defined 
in [Bossi and M enegus 1991 j as follows. 
r~(I) = 
{(A : -LI, . .. ,Ln){} E Cn I 

3A: -Bb'" ,Bn E P, 
3Bi: -Li E I U Id(D.), i = 1, ... ,11., mi ~ 0 
s.t. {} = mgu((Bb"" Bn), (B~, ... , B~))} 

Proposition 4.2 TJl is contin1W'lls in the complete 
lattice (~, ~). 

The notion of ordinal powers for TJl is defined as 
usual, namely TJl iO = 0, TJl in+1 = Tj}( TJl in ) 
and TJl iw = Un>O ( TJl in). Since Tj} is contin­
uous on (8', ~), ~ell known results of lattice theory 
allow to prove proposition 4.3 and hence to define 
the fixpoint semantics as follows. 

Proposition 4.3 Tj} iw is the least fixpoint of Tj} 
in the complete lattice (~, ~). 

Definition 4.4 Let P be an D.-open program. 
The fixpoint semantics Fn(P) of P is defined as 
Fn(P) =Tj} i~', 

Remark 
The original definition of r~( I) does not require D.­
interpretations to be u-closed subsets of Cn . If we 
consider an D.-interpretation as any subset of Cn and 
the r~ operator, even if the intermediate results 
r~ i 11. are different, the following proposition 4.5 
and theorem 4.6 show that the least fixpoint r~ i w 

is a u-closed set and it is equal to Fn(P) (r~ is con­
tinuous on (~(Cn), ~)). Therefore, when considering 
the fixpoint semantics we can use the r~ operator. 
Moreover, proposition 4.5 ensures us that the previ­
ous notion of u-closure is well defined. 

Proposition 4.5 Let I ~ Cn and let r9(I) be de­
fined as in definition 4.7. Then the following hold 

1. I is u-closed iff 1= r9(I)) 

2. for any program p) r~ i w is 'u-closed) 

9. I' = r9 i w is the least (w. r. t. set incl1tsion) 
subset of Cn such that it is ,It-closed and I ~ 1'. 

Theorem 4.6 Lei P an D.-ope~ program. r~ i w = 
Fn(P). 
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4.1 Unfolding semantics and equiva­
lence results 

To clarify the relations between the operational and 
the fixpoint semantics, before proving their equiva­
lence, we introduce the intermediate notion of un­
folding semantics Un(P) [Levi 1988, Levi and Man­
carella 1988]. Un(P) is obtained as the limit of the 
unfolding process. Since the unfolding semantics can 
be expressed top-down in terms of the r~ opera­
tor, the unfolding semantics can be proved equal to 
the standard bottom-up fixpoint semantics. On the 
other hand, since Un(P) and On(P) are based on 
the same inference rule (applied in parallel and in 
sequence respectively) Un(P) and Oo(P) can easily 
be proven equivalent. 

Definition 4.7 Let P and Q be D.-open programs. 
Then the unfolding of P w. r. t. Q is defined as 
unffJ(Q)= 
{(A: -Ll'''' , Ln){} I 

3A : -Bl' ... , Bn E P, 
3Bi : -Li E I U !d(D.), i = 1, ... ,11., mi ~ 0 
s.t. {} =n/'gU((Bl, ... ,Bn),(B~, ... ,B~))} 

Note that the only difference between unffJ(Q) and 
r~( Q) is that the second restricts to clauses in Cn 
the set resulting from the definition. Therefore if I is 
an D.-interpretation (i.e. I ~ Cn), r~(I) = unffJ(1) 
holds. In general, r~(I) = tn(unffJ(1)) where tn(P) 
extracts from a program P an D.-interpretation. 

Definition 4.8 Let P be an D.-open program. Then 
we define 

tn(P)={cEPlcECn }. 

Definition 4.9 Let P be an D.-open program and let 
tn(P) be as defined in definition 4,8. Then we define 
the collection of programs 

Po =P 
Pi = Unfpi_l (P) 

The unfolding semantics Un(P) of the program P is 
defined as 

Un(P) = U Ln(Pi ). 

i=1,2, ... 

The following theorem states the equality of the un­
folding and the operational semantics. 

Theorem 4.10 Let P be an D.-open program. Then 
On(P) = Un(P). 

Note that r~ i 11. + 1 = unf;;, (0), where P~ 
P and P!+! = 1mffJ(Pf). Therefore we have the 
following t.heorem. 
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Theorem 4.11 Let P be a program. Then Fo(P) = 
Uo(P). 

Corollary 4.12 Let P be a program. Then 
Fo(P) = Oo(P}. 

5 Model Theory 

As we have shown, the operational and fixpoint se­
mantics of a program P define an D-interpretation 
I p , which can be viewed as a syntactic notation for 
a set of Herbrand interpretations denoted by H(Ip). 
Namely, H( Ip) represents the set of the least Her­
brand models of all programs which can be obtained 
by closing the program Ip with a suitable set of 
ground atoms defining the open predicates. Our aim 
is finding a notion of D-model such that Oo(P) (and 
Fo(P)) are D-models and every Herbrand model is 
an D-model. This can be obtained as follows. 

Definition 5.1 Let J be an D-interpretation .. Then 
we define 
Atomo( J) = {pC i) I p E D and p( i) is a ground 

instance of a.n a.tom in J}. 

Example 5.2 Let D = {p, q} and 
J = {pea) : -q(b)}. Then Atorno(J) = {p(o.),q(b)}. 

Definition 5.3 Let I be an D-interpreta.tion for an 
D-open program. Then we define 

H(!) = {M(I U J) I J ~ Atomo(I)} 

where M( K) denotes the least H erbrand model of J(. 

Example 5.4 Let I = {p(o.) : -q(b)} be an D­
interpretation. Then 

1) for D = {q} 
Atomo (I) = {q( b)} and 
H(!) = {0. {pC a.), q(b)}}, 

2) for D = {p, q} 
Atomo(I) = {p(a),q(b)} and 
H(!) = {0, {p(o.)}, {p(o.),q(b)}}. 

Definition 5.5 Let P be an D-open program and_ 
I be an D-interpretation. I is an D-model of P iff 
'If J E H(I), J is a Herbrand model of P. 

Obviously, in general given a Herbrand modellvI 
of a program P, M U N is not anymore a model of 
P for an arbitrary set of ground atoms N. Since 
we want a notion of D-model which encompasses the 
standard notion of Herbrand model, the "closure" of 
the interpretation I can be performed by adding only 
ground atoms which unify with atoms already in I. 
The following example 5.6 shows that if such a con­
dition is not satisfied, a standard Herbrand model 
would not any more be an D-p10del. 

Example 5.6 Let us consider the D-open program 
P = {pea) :' -q(a)} where D = {q}. Then 0 is 
a (the least) H erbrand model of P. If, by violating 
the J ~ Atomo(!) condition, {q(a)} E H(0), since 
{q( a)} is not a H erbrand model of P, 0 would not be 
an D-model of P. 

Example 5.7 Let us consider the program PI where 
D = {p} of the example 2.1. Then 
Oo(Pd = {q(X) : -p(X), pea), q(a), reb), s(b)} 
is an D-model of PI since 
H(Oo(Pl )) = {Hl ,H2 ,H3 , .. • }' 

where, denoting by [p(X)] the set of ground instances 
of p(Xo), 
HI = {p(a),q(a),r(b),s(b)} 
H2 = {p(a),p(b),q(a),q(b),r(b),s(b)} 

Hw = {reb), s(b)} U [p(X)] U [q(X)]} 
and HI, H2 , ••• ,Hw a.re Herbrand models of Pl' 

The following proposition states the mentioned prop­
erties of D-models. 

Proposition 5.8 Let P 
open program. Then 

1. every Herbrand model of P is an D-model of P, 

2. Oo(P) is an D-model of P. 

A relevant property of standard Herbrand mod­
els states that the intersection of a set of models of 
a program P is always a model of P. This allows 
to define the model-theoretic semantics of P as the 
least Herbrand model obtained by intersecting all 
the Herbrand models of P. The following example 
shows that this important property does not hold 
any more when considering D-models with set theo­
retic operations. 

Example 5.9 Let D = {q} and P be the following 
D-open program P = {pCb) : -q(b), p(X), q(a)}. 
Then Oo(P) = {pCb) : -q(b), p(x), q(a)} and 
M(P) = {q(a)} U {pel) I l is a ground term }. 
By proposition 5.8 Oo(P) and M(P) are D~models 
ofP. HoweverOo(P)nM(P) = {q(a)} is not an 
D-model of P. 

The D-model intersection property does not hold 
because set theoretic operations do not adequately 
model the operations on conditional atoms. Namely, 
the information of an D-interpretation II may be 
contained in 12 without II being a subset of 12. In 
order to define the model-theoretic semantics for D­
open programs as a unique (least) D-model, we ·then 
need a partial order ~ on D-interpretations which 



allows to restore the model intersection property. G 
should model the meaning of D-interpretations, in 
such a way that (SS, G) is a complete lattice and the 
greatest lower bound of a set of D-models is an D­
model. As we will show in the following, this can 
be obtained by considering G as given: in definition 
5.10. According to the above mentioned property, 
there exists a least D-model. It is worth noting that 
such a least D-model is the standard least Herbrand 
model (proposition 5.21). Moreover note that, the 
most expressive D-model Oo(P) is a non-minimal D­
model. The following definitions extend those given 
in [Falaschi et a1. 1989b] for the non compositional 
semantics of positive logic programs. 

Definition 5.10 Let II, 12 be D-interpretations. 
We define 

• II S 12 UJ VC1 E II 3C2 E 12 s'uch that e2 SCI' 

• II G 12 iff (II S 12) and (12 S II implies 

II ~ 12)' 

Proposition 5.11 The relation S is a preorder (f.nd 
the relation G is an ordering. 

Note that if II ~ 12 , then II G 12 , since II ~ [;2 

implies II S 12 . The following definitions and propo­
sitions will be used to define the model-theoretic se­

mantics. 

Definition 5.12 Let I be an D-interpretation. We 
define Min'(I) = {c E I I Ve' E I, c'S c :::} c' = c} 
and Min(I) = 1I1in'(I). 

Example 5.13 We show "~1in and jIlin' for the fol­
lowing D-interpretations I and J. Let 

1= 

J={ 

Then 

{p(x), q(b), p(a), p(a) : -q(b) 
q(;1.;) : -p(;r), 7'(;1') 

q(b) : -p(b) 
q(b) : -p(T) 

db) 

Min'(I) = lvIin(I) = {p(x), q(b)}. 
Min'(J) = {r(b), q(x) : -p(;r),r(x). q(b) : -p(.?,)}, 
Min(J) = J. 

Definition 5.14 
Let A be a set of D-interpreta.tions. We introd'uce 
the following notations. 

• VA = UIEA I 

• Min(A) = lvIin(vA) 

• UA = ,4 'where . ..-l = JlIin(~\) U v{I E .:\ I 
Min(A) ~ I} ) 
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It is worth noting that V I Min( I) ~ I (recall that 
I is u-closed) and "~1in(A) = "~lin.(U A). 

Proposition 5.15 
For any set A of D-interpretations there exists the 
least tlpper bound of A , Iv.b(A). and [ub(A) = UA 
holds. 

Proposition 5.16 The set of all the D-interpreta­
tions SS with the ordering G is a complete lattice. Co 
is the top element and 0 is the bottom element. 

The model-theoretic construction is possible only 
if D-interpretations can be viewed as representations 
of Herbrand interpretations. Notice that every Her­
brand interpretation is an D-interpretation. The fol­
lowing proposition generalizes the standard intersec­
tion property of Herbrand models to the case of D­
models . 

Proposition 5.17 Let M be (J. non-empty 8et of D­
models of an D-open pTOgram P. Then glb(M) is an 
D-model of P. 

Corollary 5.18 The set of all the D-rnodels of a 
program P with the ordering G 7:" (J. complde lattice. 

Vve are now in the position to formally define the 
model- theoretic semant.ics. 

Definition 5.19 Let P be a program. n~ model­
theoretic semantics 1:S the greak~t lower bound of the 
set of its modeL~: i.e., 
Alo(P) = glb( {I E '::s' I I is a D-m.odel of P}). 

Proposit.ion 5.21 shovvs t.hat the above defined 
model-t.heoret.ic semantics is t.he standarclleast. Her­
brand model. This fact just.ifies om choice of t.he 
ordering relat.ion. 

Proposition 5.20 For any D-morlel I there exists 
a standard H erbrand model I' ,,·u.ch that I' G I. 

Proposition 5.21 The least "ta.ndo.rd Herbrand 
model is the lea,8t D-model. 

6 SD-models 

vVe will now consider t.he relat.ion between D­
models (definition 5.5) ancl the So-models defined 
in [Bossi and Menegus 1991] on the same set of in­
terpretat.ions. Bot.h t.he D-models and the So-models 
are intended to capt.ure specific operat.ional proper­
ties, from a model-t.heoret.ic point of view. However, 
So-models are based on an ad hoc notion of t.ruth 
(So-trut.h) and t.he least. So-modd is eX(l('tly Fo(P). 
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Conversely, n-models are based on the usual notion 
of truth in a Herbrand interpretation through the 
function 1t. Moreover the least n-model is the usual 
least Herbrand model, while Fo(P) is a non-minimal 
n-model. 

Definition 6.1 (Bossi and Menegus 1991] 
(So-Truth) Let n be a set of predicate symbols and I 
be an n-interpretation. Then 

(a) An atom A is n-true in I iff AEI. 

(b) A definite clause A:-BI , ... ,Bmis n-true in I iff 
VB~, ... , B~ such that 
B~ : - L1 , ••• ,B~ : - Ln E I U I d( n) 
if 319 = mg·u((Bll ... , B n ), (B~, ... , B:J) 
then (A : -LI" .. , LnW EI. 

So-models are defined in the obvious way. 

Proposition 6.2 E-very So-model is an n-model 
(according to definition 5.5). 

Proposition 6.3 (Bossi and Meneg'lls 1991] If A i8 
a non-empty set of So-models of an n-open program 
P, then nMEA k! is an So-model of P. 

The previous proposition allows to define the model 
theoretic semantics M Sf) (P) for Ct prograrn P in 
terms of the So-models as follows. 

Definition 6.4 (Bossi and M encgns 1991] Let P be 
an n-open p7'Ogram and let S be the set of a.ll the 
So-modeL~ of P. Then j'vlsn(P) = nIlES j\I. 

Corollary 6.5 Let A be a non-empty sct of Sn­
models of an n-open program P. Then nUEA JI is 
an n-model of P. 

By definition and by proposition 6.:3., j'vlSf)(P) is 
the least So-model in the lattice (:s. <:;;;:) (recall that :s 
is the set of all the n-interpretations). The following 
proposition shows that j'vlsn(P) is also the least So­
model in the lattice (S, ~). 

Proposition 6.6 Let P be a p'T'ogram and let S be 
the set of all the SwmodeL~ of P. Then j'vl 8'-1 (P) = 
glb(S) (acco'Nling to ~ oTdeTing). 

The following theorem shows the equivalence 
of the fixpoint semantics (definition 4.4) and the 
model-theoretic semantics j'vl S'n (P). 

Theorem 6.7 (Bossi and Meneg'l/.s 1991] Let P be 
an n-open program. Then Fo(P) = .i'vlS'I(P), 

Corollary 6.8 Let P be an n-open pTogT(J:rn. Then 
Fo(P) is an n-model of P. 

It is worth noting that, Slllce Oo(P)= Fo(P) 
= MSf)(P), theorem 2.9 shows that the model­
theoretic semantics Msn(P) is compositional w.r.t. 
n-union of programs when considering computed an­
swer substitutions as observahles. This result was 
already proved in [Bossi and Menegus 1991] for the 
Msn(P) model. Finally note that, as shownby the 
following example, Tj1 is not monotonic (and there­
fore it is not continuous) on the complete lattice 
(S', ~). However, proposition 6.10 ensures us that 
Fo(P) is still the least fixpoint of Tj1 on (S', ~). 

Exalnple 6.9 Consider the program 
P = {reb) p(x): -q(x)}. 
Let n = 0, II = {q(a),q(x)} and 12 = {r(b),q(x)}. 
Then II ~ 12 while Tj1(Id={p(:r),p(a),r(b)} ~ 
Tj1(I2 ) ={p( x), r( b)}. 

Proposition 6.10 Tj1 jw is the least fixpoint of Tj1 
on the complete lattice CS', ~). 

7 Related work and conclu­
sions 

The result of our semantic construction has sev­
eral sirnilarities with the proof-theoretic semantics 
defined in [Gaifman and Shapiro 1989a, Gaifman 
and Shapiro 1989b]. Our construction however is 
closer to the usual characterization of the seman­
tics of logic programs. Namely we define a top­
down operational and bottom-up fixpoint semantics, 
and, last but not least a model-theoretic seman­
tics which allows us to obtain a declarative char­
acterization of syntactically defined models. The 
semantics in [Gaifman and Shapiro 1989a] does not 
characterize computed ansvver substitutions, while 
the denotation defined by the fully abstract seman­
tics in [Gaifman and Shapiro 1989b] is not a set of 
clauses (i.e. a program). The framework of [Gaifman 
and Shapiro 1989a, Gaifman and Shapiro 1989b] 
can be useful for defining a program equivalence no­
tion, even if our more declarative (model-theoretic) 
characterization is even more adequate. Moreover, 
the presence of an operational or a fixpoint seman­
tics makes our construction useful as a formal ba­
sis for program analysis. Another related paper is 
[Brogi et al. 1991]' where n-open logic programs are 
called open theories. Open theories are provided 
with a model-theoretic semantics v"hich is based on 
ideas very similar to those underlying our definition 
5.3. [Brogi et al. 1991] however does not consider 
semantic definitions in the style of our OoCP) which 
gives a. unique denotation to any open program. 



Let us finally remark some interesting properties 
of the n-model On(P). 

• By means of a syntactic device, we obtain a 
unique representation for a possibly infinite set 
of Herbrand models when a unique representa­
tive Herbrand model does not exist. A simi­
lar device was used in [Dung and Kanchana­
sut 1989, Kanchanasut and Stuckey 1990, Gab­
brielli et a1. 1991J to characterize logic programs 
with negation. 

• Operators, such as Un are quite easy and natu­
ral to define on On(P). 

• On(P) can be used for modular program analy­
sis [Giacobazzi and Levi 1991J and for studying 
new equivalences of logic programs, based on 
computed answer substitutions. which arf' not 
considered in [Maher 1988]. 

• It is strongly related to abd'uction [Eshghi and 
Kowalski 1989]. If n is the set of abducible pred­
icates, the abductive consequences of any goal 
G can be found by executing G in Oll(P). 

• The delayed evaluation of open predicates which 
is typical of Oll(P) can easily be generalized to 
other logic languages, to achieve compositional­
ity w.r.t the union of programs. In particular 
this matches quite naturally the sem.antics of 
CLP and concurrent constraint programs given 
in [Gabbrielli and Levi 1990. Gabbrielli and Levi 
1991aJ. 
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We present a simple and powerful generalized alge­
braic semantics for constraint logic programs that is 
parameterized with respect to the underlying con­
straint system. "Generalized semantics" abstract 
away from standard semantics objects, by focus­
ing on the general properties of any (possibly non­
standard) semantics definition. In constraint logic 
programming, this corresponds to a suitable defi~ 
nition of the constraint system supporting the se­
mantics definition. An algebraic structure is in­
troduced to formalize the constraint system notion, 
thus making applicable classical mathematical re­
sults and both a top-down and bottom-up seman­
tics are considered. Non-standard semantics for CLP 
can then be formally specified by means of the same 
techniques used to define standard semantics. Differ­
ent non-standard semantics for constraint logic lan­
guages can be specified in this framework: e.g. ab­
stract interpretation, machine level traces and any 
computation based on an instance of the constraint 
system. 

1 Introduction 
Constraint logic programming (CLP) is a generaliza­
tion of the pure logic programming paradigm, hav­
ing similar model-theoretic, fixpoint a,nd operational 
semantics [Jaffar and Lassaz 87]. Since the basic op­
erational step in program execution is a test for solv­
ability of constraints in a given algebraic structure, 
CLP has in addition an algebraic semantics. CLP 
is then a general paradigm 'which may be instan­
tiated on various semantic domains, thus achieving 
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a good expressive power. One relevant feature is 
the distinction between testing for solvability and 
computing a solution of a given constraint formula. 
In the logic programming case, this corresponds to 
the unification process, which tests for solvability by 
computing a solution (a set of equations in solved 
form or most general -unifier). In CLP, the com­
putation of a solution of a constraint is left to a 
constraint solver, which does not affect the seman­
tic definition of the language. This allows different 
computational domains, e.g. real arithmetic, to be 
considered without requiring complicated encodings 
of data objects as first order terms. Since the fun­
damentallinguistic aspects of CLP can be separated 
from the details specific to particular constraint sys­
tems, it seem.s natural to parameterize the seman­
tics of CLP languages with respect to the underly­
ing constraint system [Saraswat et al. 91]. We re­
fer to such a semantics as generalized semantics. It 
turns out that generalized semantics provide a pow­
erful tool for dealing with a variety of applications 
relating to the semantics of CLP programs. For ex­
ample, by considering a domain of "ahstra,ct con­
straints" instead of the "concrete constraints" that 
are actually ma,nipulated during program execution, 
we obtain for free a formal treatment of abstract in­
terpretation of CLP programs: this provides a foun­
dation for dataflow analysis and program manipula­
tion of CLP programs. In this paper we address the 
problem of defining a generalized semantics for con­
straint logic programs. This can also be the base to 
specify non-standard semantics for other logic-based 
languages (e.g. in [Barbutiet al. 92] Prolog control 
features are expressed in terms of a constraint logic 
language). The algebraic approach we take to con­
straint interpretation makes it easy to identify a suit­
able set of operators, which can be instantiated in 
different ways to obtain the definition of different 
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non-standard semantics. An interesting aspect of 
such a development is that non-standard interpre­
tations such as abstract interpretations can be de­
veloped entirely within an algebraic framework: for 
example, the notion of "abstraction" can be char­
acterized simply via additional axioms that specify 
which terms are to be considered "equal" under the 
abstract interpretation, and relationships between 
different abstract interpretations can be character­
ized in terms of homomorphisms between the corre­
sponding algebras. 

In this paper, two kinds of generalized seman­
tics top-down and bottom-up, are considered. Since 
computations are always performed in the algebra 
of constraints, the two approaches represent just 
two ways to perform possibly non-standard compu­
tations. The reader is assumed to be acquainted 
with the basic notions of lattice theory and sorted 
algebras. Full proofs, not included due to space lim­
itations, are present in the full version of this paper. 

2 Constraint Algebras 
As defined in [Jaffar and Lassez 87], the semantics 
of constraints is given in terms of an algebraic struc­
ture which interprets constraint formulas, while the 
semantics of a constraint logic program is given in 
terms of the well known fixpoint, model-theoretic 
and operational characterizations. In this section we 
introduce an incremental algebraic specification for 
constraint systems. 

2.1 Term Systems 

In the following we introduce the notion of term sys­
tem as an algebra of terms provided with a binary op­
erator which realizes substitutions [Cirulis 88]. We 
are interested in term systems where every term de­
pends only on a finite number of variables l

. They 
represent the first basic definition in the semantics 
construction. 

Definition 2.1 A term system T is an algebraic 
structure (T, 5, V) where we refer to the elements 
of T as T -terms (terms in short); V is a countable 
set ofT-'Variables ('Variables, for short) in T; 5v is a 
countable set of binary operations on T, indexed by 
V; and the following conditions hold, for all x, y E V 
and t, t', t" E T: 

TI . sx( t, x) = t, (identity) 

T2 • sx(t,y) = y, if x =I y, (annihilation) 

T3 . sx(t, sx(Y, t')) = sx(Y, t') if x =I y, (renaming) 

1 A more general definition that considers sets of a.rbitrary 
cardinalities is given in [Cirulis 88]: for our purposes, it suffices 
to consider denumerable sets. 

T4 • sx(t', Sy(t", t)) 
Y ind t' 

Sy( sx( t', t"), t) if x =I y and 
(independent composition) 

where aT-term t is independent on the T-variable 
x, denoted as "x ind t," if sx(t', t) = t for every 
t' E T. We say that a variable v occurs in a term t 
if-,(x indt). I 

Intuitively, sx( t, t') denotes the operation "sub­
stitute t for every occurrence of the variable x 
in t' ." For notational convenience, we denote 
sx( t, t') as [t / xl t'. This notation can be extended 
to substitutions on multiple variables, by writing 
SXI(t l ,SX2Ct2,"·SXk(tk,t) .. . )) as [tI/xI ... tk/xJt. 

Example 2.1 Let E be a denumerable collection of 
function symbols. We denote by r(E, V) the set 
of possibly non-ground terms defined on E. The 
standard term system 1(I;,V) = (r(E, V), Sub, V) is a 
term system provided that substitutions in Sub per­
form idempotent substitutions. In this case 'V ind t 
iff the variable v does not occur in t. 0 

Let IT be a finite collection of predicate symbols. 
A (T, IT)-atom has the form P(tl' ... , tn) where pEn 
and ti E T, Vi = 1, ... , n. We denote by WI \ W2 the 
set WI where the elements in W2 have been removed. 
The powerset of a set 5 is denoted by 2s, and any tu­
ple of syntactic objects (terms, atoms, etc.) o}, ... , On 
is denoted by (01, ... , On). 

2.2 An Algebraic Framework 

We give now a formal algebraic specification for the 
language of constraints on a given term system. 

Definition 2.2 A Closed Bemiring [Aho "et al. 74] 
is an algebraic structure (C,0,EB,1,0), such that: 
(1) (C, Ee, 0) is a (join- )idempotent and commutative 
monoid; (2) (C,0, 1) is a (meet- )monoid; (3) ° is an 
annihilator for O; (4) if aI, ... , an, .. is a countable 
sequence of elements in C, al Ee a2 Ee ... Ee an Ee .. exists 
and is unique; (5) associativity, commutativity and 
idempotence of Ee apply to infinite as well as finite 
joins; and (6) ° distributes over finite and counably 
infinite joins. I 

Example 2.2 [[Aho et al. 74]] 
Let A~ = (?R+, +, min, 0, +00) where ?R+ is the 
set of non-negative reals including +00, and AI; = 
(E*,·,u,{€},0) where E* is the family of sets of 
finite-length strings of symbols from the finite alpha­
bet E (including the empty string €) and· denotes 
concatenation. Both A~ and AI; are closed semir­
ings. Notice that in AI; . is not commutative. 0 



Any semantics definition supports the notion of 
observable behaviour for a given program. Modelling 
answer constraints in constraint logic programming 
corresponds to consider answer constraints as the 
observable property for any CLP program. Thus, 
the notion of solution for a given answer constraint 
has to be restricted (projected) to the variables of 
the corresponding query (output variables). Closed 
semirings are too weak to capture the notion of vari­
able projection. We handle this notion by means 
of a family of "hiding" operators on the underly­
ing algebra, as in [Saraswat et al. 91]. Cylindric al­
gebras [Henkin et ai. 85] provide a suitable frame­
work to enhance our algebraic structures. A cylin­
dric algebra is formed by enhancing a Boolean alge­
bra by means of a family of unary operations called 
cylindrifications. The intuition here is that given 
a constraint c, the cylindrification operation 3s( c) 
yields the constraint obtained by "projecting out" 
information about the variables in S from c. They 
are necessary here because when we solve a goal in 
a constraint logic program, we are interested only 
in constraints on the variables that appear in that 
goal: thus, any additional constraints that may have 
been imposed on other variables during the course 
of the computations should be projected away in the 
representation of the final answer constraint. This 
is accomplished using cylindrification. Technically, 
cylindric algebras allow us to make projections on 
finite sets of variables. However, since our semantic 
formulation is in terms of infinite unfolding, as dis­
cussed later in the paper, it may also be necessary 
to allow projections on infinite sets. The machinery 
of cylindric algebras is not quite adequate for this, 
but the problem can be handled using polyadic alge­
bras [Henkin et al. 85], which allow possibly count­
ably many cylindrifications. 

Diagonal elemenis [Henkin ei al. 85] are con­
sidered as a way to provide parameter passing 
[Saraswat ei al. 91]. In constraint logic. program­
ming the equality symbol "=" is assumed in any 
constraint system to provide term unification. How­
ever, cylindric algebras were introduced to provide 
an algebraic formalization"'of first-order-Iogic., actu­
ally oriented to first-order-Ianguages wi thou t opera­
tion symbols; thus ignoring all terms but variables. 
This framework is not adequate to provide an alge­
braic semantic framework for constraint logic pro­
grams. We extend diagonal elements to deal with 
generic terms, following the approach in [Cirulis 88]. 
Diagonal elements represent equations on a given 
term system T. This approach results in introduc­
ing "term-unification" (i.e. equations on terms) as 
distinguished elements in the algebra. 
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Definition 2.3 A cylindric closed semzrmg is an 
algebraic structure (C, ®, EB, 1, 0, 3~, dt,t' )~S;;V;t,t'ET 
where C is a set called the universe of semiring, V 
is a countable set of variables, T is a term system; 
0,1, dt,t' are distinct elements of C, for each i, if E T; 
{3~}~s;;v are unary operations on C; ®, EB are binary 
operations on C; such that the following postulates 
are satisfied for any c, c

f 
E C; ~, W ~ V and i, if E T: 

Sl' the structure (C, ®, EB, 1,0) is a closed semiring, 

c3 . 3~(c ® 3~c') = 3~c ® 3~c', 

C4 • 3~3wc = 3(~uw)c, 

C5 • 3~ distributes over finite and count ably infinite 
joins, 

D 1 • dt,t = 1, 

D 2 • dt,t' = 3{x}( dt,x ® dx,t') where x ind i, tf, 

D 3 . dz,[t/x)t' = 3{x}( dz,t' ® dx,t), where z i= x and 
x ind i, z ind if. 

Notice that Axiom D3 relates the notion of substi­
tution in the term system T with diagonal elements 
of C (which intuitively correspond to the notion of 
equality constraints) in the expected way. 

The notions of "independence" and "occurrence" 
of variables extends in the obvious way from terms 
in T to constraints in C. Let {:1:1,"" x n } ~ V, in the 
following we will denote 3var(c)/{Xl, ... ,X,,}C, i.e. hiding 
from all the variables in c except {Xl,"" x n }, as 

3( C ){Xl , ... ,x,,}. We also denote as d(tl , ... ,tn),(t~ , ... ,t:,) the 
element dtl,t~ ® ... ® dtn,t:" where t 1 , ... , tn, t~, ... , t~ E 
T. Any closed semi ring can be extended to a cylin­
dric closed semi ring by letting dt,t' = 1 for each 
i, if E T and 3~c = c for each c E C and ~ ~ f-l. 
Following [Henkin et al. 85] we refer to them as dis­
crete cylindric clos ed s emirings. 

In the general theory of cylindric algebras, the 
commutative and transitive properties of diagonal el­

ements (i.e. dt,t' = dt',t and (dt,t,®dt',t" )EBdt,t" = dt,t") 
are derived by the axioms. Because of the weakness 
of cylindric closed semiring'S, these properties are not 
derivable from the axioms. However they are not re­
quired in proving the semantic results given below. 
They can be added to provide the theory of equality. 

Given a closed semiring, we can induce a partial 
ordering relation !;;;;Ell on C, such that C1 !;;;;Ell C2 iff 
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C1 EEl C2 = C2. As a consequence, (C, ~EB) is a complete 
lattice. 

2.3 Constraint Systems 

In this section we formalize the notion of constraint 
system, based on the above algebraic framework. 

Definition 2.4 A constraint interpretation struc­
ture is any cylindric closed semiring. Given a con­
straint interpretation structure A with universe C, 
an A-constraint (constraint for short) is any element 
in C. I 

Idempotence, associativity and commutativity are 
the least set of properties [Barbuti et al. 91,Debray 
and Ramakrishnan 91] which allow EEl to model the 
set union operation. 0 corresponds to the constraint 
conjunction and plays the important role of collect­
ing the information during the computation. Dis­
tributivity allows to represent constraints as possi­
bly infinite joins of finite meets (also called simple 
constraints). Closure on (possibly infinite) count­
able elements in C allows to denote infinite joins of 
constraints. 

Example 2.3 Let us assume that TI = TIc UTIp and 
TIc n TIp = 0. We refer to A(I;,Dc) as the free alge­
bra of formulas in the sorted vocabulary (5,~, TIc): 
where 5 (sort) is a set of symbols, ~ a specified set of 
operations with a corresponding signature on 5 and 
TIc a set of predicate symbols with a signature on 5; 
enhanced with the disjunction symbol V, the con­
junction symbol 1\, the existential quantifier 3, the 
identity symbol =, the truth and falsehood symbols 
T and F and closed under count ably infinite disjunc­
tions of formulas in A(I;,Dc)' Equations and possibly 
existentially quantified (Tt.I;, V), TIc )-atoms are called 
atomic constraints. 

Let us consider the sol'ntion compact many sorted 
algebraic structure R(I;,Dc) [J affar and Lassez 87], 
defined over the many sorted alphabet (5,~, TIc), 
consisting of: a collection DR of non-empty sets 
denoted {DRsL, where S E 5; an assignment of 
a function DRsl X ." x DR.sn -+ DRs to each n­
ary function symbol f E ~, where (Sl"",Sn,s) is 
the signature of f; an assignment of a function 
DRsl X ." x DRsn -+ { tnle, false} to each n-ary 
predicate symbol p E TIc, where (Sl,,,.,Sn) IS the 
signature of p. 

Let us consider a constraint c in A(I;,Dc)' R 1= 
c, iff there exists a mapping rJ (the solntion of the 
constraint) from each distinct free variable x in c into 
DRs, (free variables in a constraint c are denoted 
FV ( c ) ) where s is the sort associated with x, and crJ 
is R-equivalent to T (R 1= crJ). 

Let. C1 =. V c~ and C2 =. V c~' denote possibly 
.EIl .E12 

infinite disjunctions of conjunctions of atomic con-
straints c~ and ci', where i ranges over 11 and 12 be­
ing sets of possibly infinite indexes. The equivalence 
relation ~n on A(I;,Dc) is defined as follows 

~n is a congruence relation on the one sorted alge­

bra (A(I;,Dc),I\, V,T,F,3 x ,t = t')x~V;t,t/E1(~,v)' The 
standard constraint interpretation structure is then 
given by the quotient algebra, denoted as Ast = 

(A(I;,Dc),/\,V,T,F,3x ,t = t')x~V;t,t/E1(~,v/RJn' It is 
trivially a meet-idempotent and commutative cylin­
dric closed semiring. 0 

Example 2.4 [CLP('H)] Let us consider the follow­
ing signature associated with the usual Herbrand 
universe definition, ~ = {a,b,,,.,f,g,,,.}. Atomic 
constraints are one sorted equations on the term 
system Tt.I;,v). The corresponding Herbrand in­
terpretation structure Art, is the quotient algebra 
(Crt, 1\, V, T, F, 3x , t = t')X(;Y;t,t/E1(~,v/ RJEQ' modulo 

~EQ, where Crt = { t = t' I t, t' E Tt.I;,V) } and ~EQ 
is the equivalence relation induced by the algebraic 
structure interpreting diagonal elements as. unifica­
tion [Jaffar and Lassez 87]. It is straightforward to 
prove that this corresponds to the pure logic pro­
gramming case. 0 

To relate constraint interpretation structures, we 
follow the approach to "static semantics correctness" 
in [Barbuti and Martelli 83]. Correctness of non­
standard semantics specifications can be handled in 
an algebraic way through the notion of morphism. 
However, the algebraic notion of morphism can be 
made less restrictive by assuming that the carriers of 
the involved algebras be partially ordered sets. We 
introduce a weaker notion of morphism, capturing 
the approximation possibly induced by abstract in­
terpretations or any approximate semantics defined 
in the framework. 

Definition 2.5 Let AI; and BE be (many sorted) 
algebraic structures over the sorted alphabet (5, ~). 
Let us assume that for each S E 5, (DBs, ~DBJ is a 
partially ordered set. A weak morphism 0' : A -+ B 
is a family of functions 0' s : D As -+ DB s, for 
S E 5, such that: (Ts(fA) ~DBs fB, for each con­
stant symbol f :-+ S in ~ and O's(fA(al, "., an)) ~DBs 
fB ( (T Sl ( a1 ), ... , (T 5 n ( an) ), for each operation symbol 
f:sl",sn-+sin~. I 



Definition 2.6 Let A be a constraint interpretation 
structure. A constraint interpretation morphism is 
a weak morphism c from (A(E,nc)' 1\, V, T, F, ::Ix, t = 

t')x~V;t,t'E1(E,V) in A. I 

Example 2.5 The standard constraint interpreta­
tion morphism Cst is a morphism which associates 
with any formula in A(E,nc)' the corresponding 
equivalence class modulo -;::::'1(.. 0 

In general, a constraint system is an interpretation 
(in a closed semiring) for constraint formulas. 

Definition 2.7 A constraint ~ystem is a pair r 
(A, c) where A is a constraint interpretation struc­
ture and c is a corresponding constraint interpreta­
tion morphism. I 

Similar algebraic structures for the definition 
of constraint systems have been introduced in 
[Saraswat et al. 91] to specify the semantics of the 
more complex class of concurrent constraint lan­
guages characterized by the ask/tell paradigm. 

Constraint systems are specified as systems of 
partial information in the style of Scott's informa­
tion systems [Scott 82], (simple constraint systems), 
which are tuples (C, D., f-), where C is an non-empty 
set of "primitive" constraints and f-~ 2c x C is an 
entailment relation such that Vu, v E 2c: (1) u f- D., 
(2) u f- X whenever X E u and (3) if v f- Y for all 
Y E u and u f- X, then v f- X. The relation f- can 
be extended on 2c x 2c as follows: Vu, v E 2c , u f- v 

iff u f- X for every X E v. 

Composition of constraints is defined in terms of 
set-union, which is a well known commutative and 
idempotent operator. Hiding and parameter passing 
are handled by cylindrification (only finite-variable 
cylindrifications are allowed) and diagonal elements. 
The difference is then in the underlying algebraic 
structure: while information systems provide an el­
egant framework to develop the (standard) seman­
tics for concurrent constraint languages, we are in­
terested in more appropriate algebraic structures to 
generalize standard semantics results on CLP. In our 
case, the constraint system is parametric with re­
spect to a given term system. This introduces a more 
structured approach (two steps) to non-standard 
constraint system definition (e.g. abstract interpre­
tation). As for the basic algebraic structure, the 
choice of closed semirings results more natural in 
the context of the present paper. We are interested 
in possibly non-commutative/iq.empotent composi­
tions (meets) of constraints (see AE in Example 2.2). 
Moreover (see Prop in Section 4.1 below) standard 
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logical and arithmetic operators (e.g. V, 1\, T and F) 
can be specified more naturally as an instance of a 
closed semiring instead of as an instance of an infor­
mation system. Nevertheless, it is easy to associate 
an information system with any 0-commutative and 
idempotent closed semiring. Let (C, 0, EEl, 1,0) be 
a 0-commutative and idempotent closed semiring. 
The corresponding information system (C, D., f-) is 
defined as follows D. = 0 and Vu, v E 2c: u f- v iff 
v ~EB u. 

The key difference is in the semantics definition. 
In [Saraswat et al. 91] the semantics of constraint 
languages is specified as closures on the constraint 
system, thus amalgamating the semantics construc­
tion and data-objects. We follow the standard ap­
proach (see section below) in generalizing the stan­
dard operational and fixpoint semantics character­
izations, already known in logic programming. A 
more structured approach to the generalization pro­
cess can be obtained by separating the domain of 
constraints with the various techniques to construct 
models (e.g. fixpoints of continuous transforma­
tions) for constraint logic programs. The indepen­
dence of the semantics constructions from the un­
derying constraint systems focuses the generalization 
process on the constraint system definition, thus sim­
plifying the specification of non-standard semantics. 

Generalized constraint logic programs are defined 
in the usual way. Let A be a constraint interpreta­
tion structure on the term system T. An A-clause 
is a formula of the form H : - cOB}, ... , Bn with 
n 2:: 0 where H (the head) and B l , ... , Bn (the body) 
are (T, IIp )-atoms, c is an A-constraint and 
and "," denote logic implication and conjunction 
respectively. An A-goal is a formula cOB}, ... , B n, 
where c is constraint and each Bi is (T, IIp )-atom. 
A (generalized) constraint logic program, also called 
A-program is a finite set of A-clauses. 

3 Generalized Semantics 
The mechanism introduced in [Falaschi et al. 89] to 
model computed answer substitutions is general­
ized in CLP, by allowing constrained atoms into 
the base of interpretations [Gabbrielli and Levi 91]. 
Each constrained atom p(x) : - c, in fact, repre­
sents the set of instances p( x){), where {) is a solution 
of the constraint c. 

Definition 3.1 Let A be an interpretation struc­
ture. A constrained atom has the form p(x) : - c 
where c is an A-constraint, p(x) is a (T,IIp)-atom 
and FV(c) = x. I 

Definition 3.2 Let A be an interpretation struc­
ture and ~ be the corresponding set of constrained 



586 

atoms. We define a partial order ~ on ~ such that 
p( Xl) : - Cl ~ p( X2) : - C2 iff there exists x' such 
that 3{xt}(dxI ,Xl ® Cl) ~E!l C2· I 

The equivalence relation induced by the partial or­
der :5 is denoted by"'. The A-base of interpretations 

B, is ~/"'. 

Definition 3.3 3 ~ 28 is the collection of sets 
of constrained atoms I such that I E 3 iff 
I I:!:! 0 o I:!:! I = I, where I:!:! is defined as: 

{ 

~(Xj):-CjEIlUI2'} 
)"11 ,12,' p(x) L:jCj Cj = 3xj (dx,xj ®Cj) . 

and X ind Cj 
I 

An A-interpretation is any element of 2. I:!:! is 
strongly related to EB. As usual we define II ~1tI 12 iff 
Ill:!:! 12 = 12 such that (3, ~1tI) is a complete lattice. 
Each interpretation always consists of a finite set' 
of constrained atoms, containing at most one con­
strained atom for each program predicate symbol: 
p(x) : - LjeW Cj E I, where for each JEW, Cj rep­
resents the set of admissible (i.e. computable in the 
program) solutions for the predicate symbol p, on 
the variables x. As a consequence infinite joins of 
constraints are allowed in constrained atoms. This 
is well defined by the closure of C. In the following 
we will often omit A in specifying programs, goals, 
etc. 

3.1 Operational Semantics 

Let r = (A, c:) be a constraint system and P be 
an A-program. Define ~P~ A-Goals x A-Goals 
(an A-derivation step) to be the smallest relation 
such that GA ~P G'A iff GA = CODpl(ld, "',Pn(ln); 
there exist n (renamed apart) versions of clauses in 
P: Pi(Xi) : - ciDGi , i = 1..n; G'A = Co ® Cl ® ... ® 
cnDGI, ... , Gn, where for each i = 1..n, Ci = dXi,ti ®Ci. 

An A-derivation from an A-goal GA is a finite 
or infinite sequence of (different) A-goals such that 
every A-goal is obtained from the previous one by 
means of a single A-derivation step. A successful 
derivation is a finite sequence whose last element 
has an empty body. The operational semantics is 
then defined in terms of the successful computations 
specified by the transitive closure of the transition 
relation on A-goals: 

Goal dependent semantics is defined in terms of a 
function Q that yields the computed answer con­
straint for any A-goal, such that 

Q(GA
) = 3(c)var(GA) iff GA ~p cO . 

Theorem 3.1 Let GA = CODpl(t1 ), "',PnC£n) be a 
goal. Q( GA) = C iff there exist pi(xd : - Ci E 
Or(p), for i = 1, ... , nand C = 3(co ® dX1,tl ® Ci ... ® 
dxn,fn ® cn)var(GA). 

3.2 Fixpoint Semantics 

In this section we define a fixpoint semantics which is 
proved to be equivalent to the operational semantics. 

Definition 3.4 Let P be an A-program, th~ map­
ping T; : 2 ~ 3, is defined as follows T;(I) =' I:!:! 

GeP 
Tt(I) where if C: p(t) : - CDpl(ll), "',Pn(ln) then 

TB(I) = 1 p(x) : -3(c). 

for each i = 1. .. n : 
Pi(Xi) : -Ci E I 1 ci = dXi,ti ® Ci 1 
C = dx,t ® C ® c~ .. ® .. c~ 
x ind c, cL ... , c~ 

T; is a continuous function on the complete lat­
tice (3, ~1tI). Let lfp(f) denote the least fixpoint of 
a function f and :;:r(p) = Ifp(TP) = TP i w. The 
following result states the equivalence between the 
operational and the fixpoint semantics, for any con­
straint system r. 

Theorem 3.2 Let P be a program and r a con­
straint system. Then :;:r(p) = Or(p). 

4 Abstract Interpretation of CLP 
The definition of an abstract constraint system is 
performed in two steps: term abstraction and con­
straint abstraction. In the first step new syntac­
tic objects are introduced to represent sets of con­
crete terms. In the second one, constraints on the 
abstracted term system are abstracted. Since the 
complete lattice of interpretations is induced by the 
closed semiring structure, any abstract interpreta­
tion will correspond to a suitable definition of a con­
straint system associated with a particular applica­
tion. 

Definition 4.1 Given a constraint system r = 
(A,c:), a constraint system r' = (A',.:;'), is correct 
with respect to r iff there exists a weak algebraic 
morphism a c (ac : A ~ A') which is a monotonic 
mapping of (C, ~E!l) into (C' , ~E!l/)' I 

Notice that, since a c is monotonic, it behaves as an 
algebraic morphism with respect to the EB operator. 
Termination has been guaranteed by requiring that 
all chains be finite. 



Definition 4.2 A constraint interpretation struc­
ture A is Noetherian iff (e, ~I'f)) does not contain any 
infinite chain. A constraint system (A, c) is Noethe­
rian iff A is Noetherian. I 

Given a Noetherian constraint system r, it is easy 
to prove that (3, ~1;tJ) is Noetherian. An abstract con­
straint system is a Noetherian constraint system r ti 

which is correct with respect to the standard one r st. 

lt is straightforward to show that in any abstract 
constraint system (Ati,c;ti), c;ti = a c 0 Cst. Moreover, 
by weakness and monotonicity, the composition of 
two monotonic weak morphisms is still a monotonic 
weak morphism. Let r ti be a correct abstract con­
straint system. The map~ing a : 3 -+ 3 ti such that 
a( I) = {p( x) : - ac( c) I p( x) : - c E I } is con­
tinuous. Abstract interpretations for constraint logic 
programs correspond to the definition of an abstract 
constraint system together with a program evalu­
ation strategy. The first defines what an abstract 
computation is, while the second one deals with a 
specific evaluation strategy to collect abstract in­
formation. Top-down abstract interpretations corre­
spond to the abstraction of the operational seman­
tics. Bottom-up evaluations instead allow to com­
pute a finite abstract approximation of the fixpoint 
semantics associated with a given constraint logic 
program. Goal-independence is an attractive feature 
of bottom-up evaluations. Global program analysis, 
especially useful in type inference, can then be spec­
ified as a bottom-up evaluation in a suitable con­
straint system. 

Proposition 4.1 Given a program P and an ab­
stract constraint system r ti = (Ati, c ti )) there exists 
a finite positive k such that F11 (P) = Tl i k. 

The correctness of the analysis is reduced to the 
correctness of the constraint system. 

Theorem 4.2 Let P and r" be a program and 
an abstract constraint system respectively. Then 
a(Ol(P)) ~~ Oll(p) and a(Fl(P)) ~~ Fl1(P). 

Example 4.1 The closed semi ring A1R developed in 
Example 2.2 can be used to define a simple com­
plexity analysis tool for constraint logic programs 
on reals, CLP(~) [Jaffar and Lassez 87]. Let I.IT : 
T(~, V) -+ N be a mapping associating a "weight" 
with any term, where N is the. set of natural num­
bers. Let us consider a morphism c; such that for 
each constraint c: tl < t2, c( c) = ItllT + It2IT. 

587 

The interpretation structure (N, +, min, 0, +00), 
where cylindrifications are defined as in the dis­
crete case and diagonal elements are natural num­
bers dt1h = ItllT + It2IT' is trivially Noetherian. A 
lower-bound complexity analysis can be performed 
returning a lower bound estimation of the costs in 
arithmetic computations, as in the following exam­
ple for a simple integration routine: 

int(A,B,x) :- 0 < B - A ~ €, 

X = (B - A) * f(A + (B - A)/2)0 E(€). 
int( A, B, x) : - B - A > €, 

M = A + (B - A) /2, x = Xl + X2 

o int(A, M, Xl)' int(M, B, X2), E(€). 
E(x) : - x = l/nON(n). 
N(n') n' = n + 10N(n). 
N(n') : - n' = 10. 

Let, for instance, c+, c* and Cf be the costs of 
addition, multiplication/division and f respectively. 
Variables and constants have a zero cost. Thus, de­
noting r T such constraint system: 

{ 

int(A, B, x) : - 4c+ + 3c* + Cf, } 

F1T(P) = E(n'): - c*' 
N(n') :- 0 

o 

A space of approximate constraints can be spec­
ified by defining an auto-weak morphism p which 
is an upper closure operator (i.e. an idempotent, 
monotonic and extensive operator) on (e, ~I'f)). As 
shown in [Cousot and Cousot 79] the approximation 
process essentially consists in partitioning the space 
of constraints so that no distinction is made between 
equivalent constraints, all approximated by a repre­
sentant of their equivalence class. The equivalence 
relation is induced by an upper closure operator p: 
Cl =p C2 iff P(CI) = P(C2). In [Cousot and Cousot 79] 
different equivalent methods for specifying abstract 
domains (i.e. upper closure operators) are presented. 
However, there are standard techniques in algebraic 
specifications that allow the definition of abstract 
constraint systems. For example, cylindrifications 
can be interpreted as abstractions on the algebra of 
constraints. 

Proposition 4.3 Let ~ ~ V; :J~ is an auto-weak 
morphism and upper closure operator on (e, ~I'f)). 

Existential quantification is then a way to define 
abstract domains. The space of approximate con­
straints can also be specified by adding axioms to 
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the underlying constraint system A. These addi­
tional axioms extend the meaning of the diagonal el­
ements dt,t' of the algebra, in effect specifying which 
objects are to be considered "equivalent" from the 
perspective of the analysis. This is illustrated by the 
following example: 

Example 4.2 Consider the logic program P 

p(O). 
p(s(x)) q(x). 
q(s(x)) p(x). 

and a simple type (parity) analysis for P. Interpret­
ing P as a constraint logic program on the Herbrand 
constraint system AH , the type analysis can be spec­
ified by extending the axioms specifying the con­
straint system with the additional axiom: s(s(x)) = 
x. The resulting constraint system, denoted by A1J, 
is trivially Noetherian. The semantics of P in AH is 
{p(x) :- x = 0 V x = s2n(0); q(:r):- V x = 

n>l n>l 
s2n-l(0)}; whereas the interpretation in A1J l~turns 
{p(x) : - x = 0; q(x) : - x = s(O)}. The meaning 
of P in A1J captures the type of the predicate p and 
q, computing even and odd numbers respectively. 0 

A very useful analysis on the relationships among 
variables of a program can be specified in our frame­
work [Cousot and Halbwachs 78]. The automatic 
derivation technique in [Verschaetse and De Schr­
eye 91] for linear size relations among variables in 
logic programs can be suitably specified as a con­
straint computation. A constraint system of affine 
relationships (i.e. linear equalities of the form Co = 
CIX1 + ... + cnXn) can be defined by specifying inter­
section, disjunction and cylindrification (restriction) 
as. given in [Verschaetse and De Schreye 91]. Gener­
alizations considering linear inequalities, as proposed 
in [Cousot and Halbwachs 78], can still be defined 
in our framework, thus making explicit the strong 
connection between automatic detection of linear re­
lationships among variables and C LP( 3?) computa­
tions. Applications of this analysis are: compile time 
overflow, mutual exclusion, constraint propagation, 
termination etc. [J¢rgensen et al. 91J. 

4.1 Generalized Rigidity Analysis 

There exists a wide class of abstract interpreta­
tion techniques for the analysis of ground depen­
dences (also named covering) of pure logic programs 
[Barbuti et al. 91,Cortesi et al. 91J. In this section 
we extend the ground dependence notion by means 
of the notion of rigidity. 

A norm is a function weighting terms. Let us recall 
some basic concepts about norms. For a more accu­
rate treatment on this subject see [Bossi et al. 90]. 

Definition 4.3 Let T ba a term system. A norm 
on T is a function 1 .. 1< : T ~ N, mapping any 
term t E T into a natural number. I 

Example 4.3 The following weighting map is a 
norm on the Herbrand term system: Itlsize = 0 if t is 
avariableort = [], Itlsize = 1+ltaill size ift = [hltail]. 
o 

In order to extend the notion of groundness and 
ground dependences [Barbuti et aI. 91, Cortesi et 
al. 91] to deal with a more refined one, able to take 
into account only the relevant subterms of a given 
(possibly non-ground) term t, we address the notion 
of rigidity as introduced in [Bossi et al. 90J. 

Definition 4.4 Let I .. k be a norm on the term sys­
tem T. A term t E T is rigid with respect to I .. k iff 
for any substitution of variables a: latk = Itk. I 

The rigidity of terms turns out to be important in 
simplifying termination proofs. If a term is rigid, its 
weight will not be modified by further substitutions. 
Rigidity is then strongly related to groundness. Any 
ground term can not change its weight by instanti­
ation, thus it is always rigid. This notion allows to 
identify those sub terms which are relevant for the 
analysis purposes. Notice that given a norm I .. k, 
and a non-rigid term t E T, there must exist some 
variable in t whose instantiation affects the weight of 
t. In the Herbrand case, results in [Bossi et al. 90] 
allow to restrict our attention to a particular class 
of norms: semilinear norms on Herbrand. 

Definition 4.5 A norm on 1(~,V) is semilinear iff it 
may be defined according to the following structure: 

Itk = 0 if t is a variable; Itk = Co + Itil k + ... + Itimlc 
if t = f(tl, ... ,tn ), where Co 2: a and {il, ... ,im } ~ 
{1, ... ,n}. I 

Note that the position of the subterms which allow 
the principal term to change its weight by instantia­
tion depends on the outermost term constructor only 
(i.e. 1). These subterms are then relevant from the 
analysis viewpoint. All the non-relevant subterms 
are discarded by the analysis. Semilinear norms al­
low to reduce the rigidity notion to a syntactical 
property of terms. Let 

Vrel«(t) = { v E V I :3 a such that latk =I- Itk }. 

As shown in [Bossi et al. 90], given a semilinear 
norm I .. k, a term t E 1(~,V) is rigid iff Vrel«(t) = 0. 
The notion of semilinear norms can be generalized to 



arbitrary term systems in a straightforward way, as 
follows: given a term system T, we define a function 
w : T ---+ N; for each t E T, an associated finite 
set of functions Ft : t ---+ T; and an associative and 
commutative function ~: N x N ---+ N. 

Intuitively, for any term t, the value of w(t) is the 
"initial weight" of the term t, the set of functions 
Ft correspond to the set of selectors for the "rele­
vant" subterms, and ~ indicates how the sizes of the 
sub terms of a term are to be combined. Then, gen­
eralized semilinear norms can be defined as follows: 

It I = w(t)+ ~fEFt If(t)l· 

Example 4.4 The "usual" notion of semilinear 
norms for Herbrand constraint systems can now be 
generalized as follows, let Co E N: w(t) = 0 if t is a 
variable, Co otherwise; if t is a variable then Ft = 0; 
otherwise Ft consists of selectors for the relevant po­
sitions of t; ~ is summation. 

The "depth norm", which could not be ex­
pressed as a semilinear norm in the development of 
[Bossi et al. 90], can be defined as follows: w( t) = 0 
if t is a variable, 1 otherwise; if t is a variable 
then Ft = 0; otherwise if t = f(tl, ... , tn) then 
F t = {fill ::s; i ::s; n}, where fi(t) = ti, i.e. fi is 
the selector for the subterm at the ith position; and 
~ is max. 0 

Let us consider the set C(V) of finite conjunctions 
of variables in V (the empty conjunction is denoted 
€) and a term abstraction map O'.T : T --+ C(V) such 
that, given a semilinear norm I·· Ie and t E T, O'.T(t) = 
{ Xl /\ ... /\ Xm I Vrel((t) = {Xl, ... , xm }}. Let 7( 
be the corresponding abstract term system where 
substitutions are performed as usual. Marriott 
and Spndergaard have proposed an elegant domain, 
named Prop, further studied in [Cortesi et al. 91]' 
to represent ground dependences among arguments 
in atoms. In [Codognet and File 91] an interesting 
application is introduced. Prop is formalized as a 
constraint system, and both groundness and defi­
niteness analysis are specified by executing programs 
in CLP(Bool). The corresponding constraint sys­
tem does not allow disjunctions of vara.bles, without 
fully exploiting the expressive power of Prop. The 
general notion of ground dependence corresponding 
with any Prop formula (including disjunctions) ca.n­
not be specified. 

Let A( = (Prop(, V,/\,T,F,3x,t <-t t')xr;,V;t,t'E1{ 
be the algebra of possibly existentially quantified for­
mulas defined on the term system 7(; including the 
set of connectives V, /\, <-to Intuitively, the formula 

589 

X /\ Y /\ z <-t W /\ v represents an equation t = t' where 
VreZ,(t) = {x,y,z} and Vrel,(t') = {w,v}; X /\ Y 
represents a term whose rigidity depends upon vari­
ables X and y; while X V Y represents a set of terms 
whose rigidity depends upon variables X or y. Lo­
cal variables are hidden by existential quantification, 
projecting away non-global variables in the compu­
tation [Codognet and File 91]. 

Let Bool be a boolean algebraic structure; c ~Bool 

c' iff B 001 1= c <-t c'. It is easy to prove that Ad';::, Boo! 

is an abstract constraint system. 

Exalnple 4.5 Let us consider the semi linear norm 
"size" and the following constraint logic program on 
the Herbrand constraint system 

append(XI' X2, X3) 
append(xI,x2,X3) 

Xl = [] /\ X2 = X3· 
Xl = [hly] /\ X3 = [hlz] 

Dappend(y, X2, z). 

The corresponding abstract model is: 
{append(xI,x2,X3) :- Xl <-t € /\ X2 <-t X3}, gen­
eralizing the standard ground behavior (where 
Vrel(t) var(t): and the abstract model is 
{ append( Xl, X2, X3) : - X3 <-t Xl /\ X2}) vs. size­
rigidity behavior: "the second argument list-size can 
change iff the third argument does". 0 

5 Machine-level Traces 
In this section, we consider an example non-standard 
semantics for constraint logic programs, that of 
machine-level traces (for a discussion of similar non­
standard semantics in a denotational context, see 
[Stoy 77]). Such a semantics is essential, for exam­
ple, if we wish to reason formally about the correct­
ness of a compiler (e.g. see [Hanus 88]) or the behav­
ior of a debugger or profiler. In this section, we show 
how the semantics described in earlier sections may 
be instantiated to describe such low-level behaviors. 
Instead of constrained atoms where each atom is as­
sociated with a constraint, this semantics will asso­
ciate each atom with a set of machine states (equiva­
lently, instruction sequences) that may be generated 
on an execution of that atom. 

The code generated by a compiler for a constraint 
language must necessarily depend on both the con­
straint system and the target machine under consid­
eration. Suppose that each "primitive" constraint 
op( t l , ... , t n ) in the language under consideration 
corresponds to (an instance of) a (virtual) machine 
instruction op(t l , ... , t n ).2 For example, correspond-

2In an actual implementation, each such virtual machine 
instruction may, of course, "macro-expand" to a sequence of 
lower-level machine instructions. 
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ing to a constraint 'X = Y + 5' in the language un­
der consideration, we might have a virtual machine 
instruction 'eq(X, Y + 5)'. Each such machine in­
struction defines a transformation on machine states, 
representing the changes that are performed to the 
heap, stack, :registers, etc. of the machine by the ex-

. ecution of that instruction (e.g., see [Hanus 88] for a 
discussion of the WAM along these lines). In other 
words, let S be the set of all possible states of the 
machine under consideration, then an instruction I 
denotes a function I : S --+ S U {fail}, where fail 
denotes a state where execution has failed. 

Given a set S, let Soo denote the set of finite 
and infinite sequences of S. Intuitively, with each 
execution we want to associate a set of finite and 
infinite sequences of machine states, that might be 
generated by an OR-parallel interpreter. Thus, we 
want the universe of our algebra to be 2s"", the 
set of sets of finite and infinite sequences of ma­
chine states. One subtlety, however, is that in­
structions may "fail" at runtime because som~ con­
straints may be unsatisfiable. To model this, it 
is necessary to handle failure explicitly, since "for­
ward" execution cannot continue on failure. To 
deal with this, we define the notion of concate­
nation of sequences of machine states as follows: 
given any two sequences 81 and 82 of states in S U 
{fail}, their concatenation 81 8 82 is given by 81 8 82 

= if 81 contains fail then 81 else concat (81,82), 

where concat (81,82) d~notes the "usual" notion of 
concatenation of finite and count ably infinite se­
quences. Thus, the cylindric closed semiring in 
this case is (e, 0 , EEl ,1, 0, 3~, dt,t ' )~~V;t,t'ET where: 
C = 2(su{fail})OO is the set of finite and infinite se-

quences of machine states; for any S1, 52 E C, 
S10S2 = {818 8 2I 81 E S1,82 E 52}; EEl = U; 
1 = {c:}, where c: is the empty sequence; 0 = 0; 
3~ corresponds to the function that, given any ma­
chine state S, yields the machine state obtained by 
discarding all information about the variables in ~; 
and for any t, t' E T, dt,t ' corresponds to the function 
that, given any machine state S, yields the machine 
state resulting from constraining t and t' to be equal, 
and fail if this is not possible. 

A simple variation on this semantics is one where 
failed execution sequences are discarded silently. To 
obtain such a semantics, it suffices to redefine the 
operation EEl as follows: 
S1 EEl S2 = { 8 I 8 E S1 U S2 !\ fail is not in s }. 

6 Related Work 
A related framework is considered in [Codognet and 
File 91] where an algebraic definition of constraint 
systems is given. Program analysis based on ab-

stract interpretation techniques are considered, like 
groundness dnalysis and definiteness analysis for 
CLP programs. Only 0-composition is considered. 
The notion of "computation system" is introduced 
but it is neither formalized as a specific algebraic 
structure nor extended with the join-operator. In 
particular, because of the underlying semantics con­
struction, mainly based on a generalization of the 
top-down SLD semantics, a loop-checker consisting 
in a "tabled" -interpreter is introduced. The use of 
tabled interpreters allows to keep separate the notion 
of abstraction from the finiteness required by any 
static analysis. As a consequence, static analysis can 
be performed by "running" the program in the stan­
dard CLP interpreter with tabulation. In our frame­
work, no tabulation is considered. This makes the 
semantics construction more general. Finiteness is a 
specific property of the constraint system (expressed 
in terms of EEl-chains), thus allowing to specify non­
standard computations as standard CLP computa­
tions over an appropriate non-standard constraint 
system. Both the traditional top-down and bottom­
up semantics can then be specified in the standard 
way thus allowing the definition of goal-independent 
static analysis as an abstract fixpoint computation, 
without loop-checking. If the constraint system 
is not Noetherian, a widening/narrowing technique 
[Cousot and Cousot 91] can be applied in the fix­
point computation to get a finite approximation of 
the T; fixpoint. 

In a related paper, Marriott and S¢ndergaard 
consider abstract interpretation of CLP. A meta­
language is defined to specify, in a denotational style, 
the semantics of logic languages. Abstract interpre­
tation is performed by abstracting such a seman­
tics [Marriott and S¢ndergaard 90]. In this frame­
work, both standard and non-standard semantics are 
viewed as an instance of the meta language specifi­
cation. 
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Abstract 

This' paper presents a declarative semantics of logic 
programs which possibly contain inconsistent informa­
tion. We introduce a multi-valued interpretation of logic 
programs and present the extended well-founded seman­
tics for paraconsistent logic programs. In this setting, a 
meaningful information is still available in the presence 
of an inconsistent information in a program and an.y fact 
which is affected by an inconsistent information is dis­
tinguished from the others. The well-founded semantics 
is also extended to disjunctive paraconsistent logic pro­
grams. 

1 Introduction 

Recent studies have greatly enriched an expressive 
power of logic programming as a tool for knowledge .rep­
resentation. Handling classical negation as well as nega­
tion by failure in a program is one of such extension. An 
extended logic program, which is introduced by Gelfond 
and Lifschitz [GL90], distinguishes two types of negation 
and enables us to deal with explicit negation as well as 
default negation in a program. An extended logic pro­
gram is, however, possibly inconsistent in general, since 
it contains negative heads as well as positive ones in pro­
gram clauses. Practically, an inconsistency is likely to 
happen when we build a large scale of knowledge base 
in such a logic program. A knowledge base may contain 
local inconsistencies that would make a program contra­
dictory and yet it may have a natural intended global 
meaning. However, in an inconsistent program, the an­
swer set semantics proposed in [GL90] implies every for­
mula from the program. This is also the case for most 
of the traditional logics in which a piece of inconsistent 
information might spoil the rest of the whole knowledge 
base. 

To avoid such a situation, the so-called paraconsistent 
logics have been developed which are not destructive in 
the presence of an inconsistent information [Co74]. From 
the point of view of logic programming, a possibly in­
consistent logic program is called a para consistent logic 
program. Blair and Subrahmanian [BS87] have firstly de-

veloped a fixpoint semantics of such programs by using 
Belnap's four-valued logic [Be75]. Recent studies such as 
[KL89, Fi89, Fi91] have also developed a logic for pos­
sibly inconsistent logic programs and provided a frame­
work for reasoning with inconsistency. However, from 
the point of view of logic programming, negation in these' 
approaches is classical in its nature and the treatment of 
default negation as well as classical one in paraconsistent 
logic programming is still left open. 

In this paper, we present a framework for paracon­
sistent logic programming in which classical and default 
negation are distinguished. The rest of this paper is or­
ganized as follows. In section 2, we first present an ap­
plication of Ginsberg's lattice-valued logic to logic pro­
gramming and provide a declarative semantics of para­
consistent logic programs by extending the well-founded 
semantics of general logic programs. Then we show how 
the extended well-founded semantics isolates an incon­
sistent information and distinguishes meaningful infor­
mation from others in a program. In section 3, the well­
founded semantics is also extended to paraconsistent dis­
junctive logic programs. 

2 Well-Founded Semantics for Paraconsistent 
Logic Programs 

2.1 Multi-valued Logic 

To present the semantics of possibly inconsistent logic 
programs, multi-valued logics are often used instead of 
the traditional two-valued logic. Among them, Bel­
nap's four-valued logic [Be75] is well-known and sev­
eral researchers have employed this logic to give the se­
mantics of paraconsistent logic programs [BS87, KL89, 
Fi89, Fi91]. In Belnap's logic, truth values consist of 
{t, f, T, 1..} in which each element respectively denotes 
true, false, contradictory, and undefined. Each element 
makes a complete lattice under a partial ordering defined 
over these truth values (figure 1). 

To represent nonmonotoriic aspect of logic program­
ming, however, we need extra truth values which rep­
resent default assumption. Such a logic is firstly intro­
duced by Ginsberg [Gi86] in the context of bilattice for 
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Figure 1. Four-valued logic 

default logic. We use this logic to give the semantics of 
paraconsistent logic programs.1 

The set VII = {t, f, dt, df, *, T,.l} is the space of 
truth values in our seven-valued logic. Here, additional 
elements dt, df, and *, are read as true by default, false 
by default, and don't-care by default, respectively. In 
VII, each element makes a complete lattice under the 
ordering ~ such that: \Ix E VII, x ~ x and .1 ~ x ~ T; 
and for x E {t, f}, dx ~ * ~ x (figure 2). 

A program is a (possibly infinite) set of clauses of the 
form: 

A ~ Bl A ... A Bm AnotC1 A ... A notCn 

where m, n ~ 0, each A, Bi(1 ~ i ~ m) and 
Cj (1 ~ j ::; n) are literals and all the variables are as­
sumed to be universally quantified at the front of the 
clause. In a program, two types of negation are distin­
guished; hereafter, ..., denotes a monotonic classical nega­
tion, while not denotes a nonmonotonic default negation. 
A ground clause (resp. program) is a clause (resp. pro­
gram) in which every variable is instantiated by the el­
ements of the Herbrand universe of a program. Also, 
such an instantiation is called H erbrand instantiation of 
a clause (resp. program). 

An interpretation I of a program is a function such 
that I : HB -+- VII where Hn is the Herbrand base of 
the program. (Throughout of this paper, HB denotes the 
Herbrand base of a program.) 

A formula is defined as usual; (i) any literal L or ...,L 
,is a formula, (ii) for any literal L, notL and not...,L are 
formulas, and (iii) for any formula F and G, \IF, 3F, 
F V G, FAG and F ~ G are all formulas. A formula 
is closed if it contains no free variable. Satisfaction of a 
formula is also defined as follows. 

1 [KL89] has also suggested the extensibility of their logic for han­

dling defaults by using Ginsberg's lattice-valued logic. 
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Definition 2.1 Let P be a program and I be its 
interpretation. Suppose IFF denotes that I satisfies a 
formula F, then: 

1. For any atom A E HB , 

(a) I FA ift ~ I(A), 

(b) I F ...,A if f ~ I(A), 

(c) I F notA if df ~ I(A) ~ *, 
(d) I F not...,A if dt ~ I(A) ~ *. 

2. For any closed formula 3F (resp. \IF), I F 3F (resp. 
I F \IF) if IFF' for some (resp. every) Herbrand 
instantiation F' of F. 

3. For closed formulas F and G, 

(a) IFF V G if IFF or I F G, 

(b) IFF A G if IFF and I F G, 

(c) IFF ~ G if IFF or I ~ G. 0 

The ordering ~ on truth values is also defined be­
tween interpretations. For interpretations 11 and 12, 
11 ~ 12 iff \lA E HB , Il(A) ~ I2(A). An interpreta­
tion I is called minimal, if there is no interpretation J 
such that J i= I and J ~ I. An interpretation I is also 
called least, if I ~ J for every interpretation J. 

An interpretation I is called a model of a program 
if every clause in a program is satisfied in I. Note that 
in our logic, the notion o( model is also defined for an 
inconsistent set of formulas. For example, a program 
{p, ...,p} has a model I such that I(p) = T. Especially, 
an interpretation I of a program is called consistent if 
for every atom A in HB , I(A) i= T. A program is called 
consistent if it has a consistent model. 
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2.2 Extended Well-Founded Semantics 

The well-founded semantics is known as one of the 
most powerful semantics which is defined for every gen­
erallogic program [VRS88, Pr89]. The well-founded se­
mantics has also extended to programs with classical 
negation in [Pr90], however, it is not well-defined for in­
consistent programs in which inconsistent models are all 
thrown away_ In this section, we reformulate the well­
founded semantics for possibly inconsistent logic pro­
grams. 

To compute the well-founded model, we first present 
an interpretation of a program by a pair of sets of ground 
literals. 

Definition 2.2 For a program P, a pair of sets of 
ground literals I =< Crj 6 > presents an interpretation of 
P in which each literal in I is interpreted as follows: 

For a positive literal L, 
(i) if L (resp. ,L) is in a, L is true (resp. false) in I; 
(ii) else if L (resp. ,L) is in 6, L is false by default 
(resp. true by default) in I; 
(iii) otherwise, neither L nor ,L is in a nor 6, L is 
undefined. 
Especially, if both L and ,L are in a (resp. 6), L is 

contradictory (resp. don't-care by default) in I. 0 

Intuitively, a presents proven facts while 6 presents 
default facts, and an interpretation of a fact is defined 
by the least upper bound of its truth values in the pair. 

Now we extend the constructive definition of the well­
founded semantics for general logic programs [Pr89] to 
paraconsistent logic programs. 

Definition 2.3 Let P be a program and I =< a; 6 > 
be an interpretation of P. For sets T and F of ground 
literals, the mapping cI> I and WI are defined as follows: 

cI> I(T) = {A I there is a ground clause A ~ BI /\ ... /\ 
Bm /\ notCI /\ ... /\ notCn from P s.t. VBi (1 ::; i ::; m) 
Bi E aUT and VCj (1 ::; j ::; n) Cj E 6}, 

wI(F) = {A I for every ground clause A ~ BI/\ ... /\ 
Bm /\ notCI /\ ... /\ notCn from P, either 3Bi (1 ::; i ::; m) 
s.t. Bi E 6 U F or 3Cj (1 ::; j ::; n) s.t. Cj E a}. 0 

Definition 2.4 Let I be an interpretation. Then, 
TI i 0 = 0 and FI! 0 = HB U,HB (where ,HB = 

{,A I A E H B } ); 

TIin+1=cI>I(TIin) and Fj !n+1=wI(Fj ! 
n); 

TI = Un<w TI i nand FI = nn<w FI ! n. 0 

As in [Pr89], Tj and FI are the least fixpoints of the 
monotonic operators cI> I and WI, respectively. 

Definition 2.5 For every interpretation I, an oper­
ator e is defined by: 

e(I) = IU < T j ; FI >; 
Ii 0 =< 0;0 >; 

lin + 1 = a(I in); 
Mp = Un<(oI lin. 0 

Lemma 2.1 Mp is the least fixpoint of the monotonic 
operator e and also a model of P. 0 

By definition, Mp is uniquely defined for every para­
consistent logic program. We call such an Mp the ex­
tended well-founded model of a program and the meaning 
of a program represented by such a model is called the 
extended well-founded semantics of a program. 

Note that the original fixpoint definition of the well­
founded semantics in [Pr89] is three-valued and defined 
for general logic programs, while our extended well­
founded semantics is seven-valued and defined for ex­
tended logic programs. Compared with the three-valued 
well-founded semantics, the extended well-founded se­
mantics handles positive and negative literals symmet­
rically during the computation of the fixpoint. Further, 
the extended well-founded model is the least fixpoint of 
a program under the ordering ~, while the three-valued 
well-founded model is the least fixpoint with respect to 
the ordering f < .1 < t, which is basically different from 
~.2 

Example 2.1 (barber's paradox) Consider the fol­
lowing program: 

shave(b, X) ~ not shave(X, X) 

Then shave( b, b) is 
undefined under the three-valued well-founded seman­
tics, while Mp =< 0; {,shave(b,b)} > then shave(b,b) 
is true by default under the extended well-founded se­
mantics. In another words, the extended well-founded 
semantics assumes the fact 'the barber shaves himself' 
without conflicting the sentence in the program. 0 

Also it should be noted that the extended well­
founded model is the least fixpoint of a program, but not 
necessarily the least model of the program in general. 

Example 2.2 Let P = { ,p ~ not p, ,q ~ 
,p, q ~}. Then Mp =< {,p,q"q}j{p} > and the 
truth value of each predicate is {p ---+ f, q ---+ T}. While, 
the least model assigns truth values such as {p ---+ .1, q --+ 

t}. 0 

In fact, the above least model is not the fixpoint of 
the program. In this sense, our extended well-founded se­
mantics is different from the least fixpoint model seman­
tics of [BS87] (even for a program without nonmonotonic 
negation). The difference is due to the fact that in their 
least fixpoint model semantics each fact which cannot be 
proved in a program is assumed to be undefined, while 
it possibly has a default value under the extended well-

2This point is also remarked in [Pr89, Pr90j. In terms of the 

bilattice valued logic [Gi86, Fi91j, the ordering < is called a truth 

ordering, while the ordering ::S is called a knowledge ordering. 



founded semantics. The above example also suggests the 
fact that for. a consistent program P, Mp is not always 
consistent. 

The extended well-founded semantics is also different 
from Fitting's bilattice-valued semantics [Fi89, Fi91]. 

Example 2.3 Let P = {p - q, p - 'q, q -
}. Then, as is pointed out in [Su90], p is unexpectedly 
contradictory under Fitting's semantics, while Mp =< 
{p, q}; { 'p, .q} > then both p and q are true under the 
extended well-founded semantics. D 

N ow we examine the behavior of the extended well­
founded semantics more carefully in the presence of an 
inconsistent information. 

Example 2.4 Let P be the following program: 
innocent - .guilty 
.guilty - charged A not guilty 
charged -

Then Mp is < {charged, innocent, .guilty}; 
{guilty, .innocent, .charged} >. Then the truth values 
of charged and innocent are true, while guilty is false. 
D 

In the above example, when we consider the program 
P' = P U {.innocent -}, the truth value of innocent 
turns contradictory, while truth values of charged and 
guilty are unchanged. That is, a meaningful information 
is still available from the inconsistent program. 

On the other hand, when we consider the program 
P" = P U {.charged -, man -}, the truth value of 
charged is now contradictory, while man, innocent are 
true and guilty is false. Carefully observing this result, 
however, the truth of innocent is now less credible than 
the truth of man, since innocent is derived from the fact 
.guilty which is now supported by the inconsistent fact 
charged in the program. 

Such a situation also happens in Blair and Subrah­
manian's fixpoint semantics [BS87], in which a truth fact 
is not distinguished even if it is supported by an incon­
sistent fact in a program. In the next section, we refine 
the extended well-founded semantics to distinguish such 
suspicious truth facts from others. 

2.3 Reasoning with IncoBSistency 

When a program cont ains an inconsistent informa­
tion, it is important to detect a fact affected by such an 
information and distinguish it from other meaningful in­
formation in a program. In this section, we present such 
skeptical reasoning under the extended well-founded se­
mantics. 

First we introduce one additional notation. For a 
program P and each literal L from HE, Lr is called a 
suffixed literal where r is a collection of sets of ground 
literals (possibly preceded by not). Informally speaking, 
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each element in r presents a set of facts which are used 
to derive L in P (it is defined more precisely below). An 
interpretation of such a suffixed literal Lr is supposed to 
be the same with the interpretation of L. 

Definition 2.6 Let P be a program and I =< 0"; 8 > 
be an interpretation in which 0" (resp. 0) is a set of 
suffixed literals (resp. a set of ground literals). For a set 
T (resp. F) of suffixed literals (resp. ground literals), 
the mapping «Pj and Wj are defined as follows: 

«pj(T) = {Ar I there are k ground clauses A - BIl A 

... AB'mAnotCIlA ... AnotC'n (1 ::; 1 ~ k) from P s.t. VB,i 
(1 ~ i ::; m) B~'i E 0" U T and VC'j (1 ::; j ~ n) C,j E 0 
and r = U,{ {BIl , .. , B,m , notCIl , .. , notC,n }U')'Il U .. U')'lm I 
')'li E r ,i }. 

wj(F) = {A I for every ground clause A - Bl A ... A 
Bm A notCl A ... A notCn from P, either 3Bi (1 ::; i::; m) 
s. t. Bi E 0 U F or 3Cj (1 ::; j ::; n) s. t. Cp EO"}. D 

The least fixpoint Mp of a program is similarly de­
fined by using the mapping «Pj and wj instead of «P I and 
W 1, respectively in the previous section. Clearly, Mp is 
also a model of P and we call such Mp the suspicious 
well-founded model. 

Example 2.5 Let P = {p - q A not r, p -
.r, q - s, .r -, S -}. Then, Mp =< 
{p{{q,$,not r},{ -.r}}, q{{ $}} , .r{0}, s{0}}; { 'p, 'q, r, .s} >. 
D 

Definition 2.7 Let P be a program and Mp be its 
suspicious well-founded model. For a suffixed literal Lr 

in M p, if every set in r contains a literal L' or .L' such 
that L' is contradictory in Mp, L is called suspicious. 
D 

We consider a proven fact to be suspicious if every 
proof of the fact includes an inconsistent information. In 
another words, if there is at least one proof of a fact which 
contains no inconsistent information, we do not consider 
such a fact to be suspicious. A proven fact which is not 
suspicious is called sure. 

Note that we do not consider any fact derived from 
true and false by default information to be suspicious, 
since such a don"t-care information just presents that 
both positive and negative facts are failed to prove in a 
program and does not present any inconsistency by itself. 

The following lemma presents that a fact which is 
derived using a suspicious fact is also suspicious. 

Lemma 2.2 Let P be a program and Lr be a suffixed 
literal in Mp. If each set in~r contains a suspicious fact, 
then the truth value of L is also suspicious. 

Proof Suppose that each set')' in r contains a suspi­
cious fact A. Then A has its own derivation histories r' 
such that each ')" in r' contains a literal which is contra­
dictory in Mp. By definition, ')" ~ ')' then')' also contains 
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the contradictory literal. 0 

Now reasoning under the suspicious well-founded se­
mantics is defined as follows. 

Definition 2.8 Let P be a program and Mj, be its 
suspicious well-founded model. Then, for each atom A 
such that A r (resp. .Ar ) is in Mj" A is called true 
with suspect (resp. false with suspect) if A (resp . • A) is 
suspicious and .A (resp. A) is not sure in Mj,. 

On the contrary, if A (resp. .A) is suspicious but 
.A (resp. A) is sure in Mj" then A is false (resp. true) 
in Mj, without suspect. 0 

Especially, if A is both true and false with suspect, 
A is contradictory with suspect. 

Example 2.6 Let P be the following program: 
innocent f- .guilty 
.guilty f- charged 1\ not guilty 
charged f-

.charged f-

man f-

where Mj, is < {charged{0} , .charged{0} , man{0}, 
innocent{{ .... guilty,charged,not guilty}}, 'guilty{{charged,not guilty}}}; 

{guilty, .innocent, .man} >. Then, man is true, 
charged is contradictory, while innocent and guilty are 
true with suspect and false with suspect, respectively. 
o 

In the above example, if a new fact guilty is added 
to P, this fact now holds for sure then guilty becomes 
true without suspect. 

2.4 Related Work 

Alternative approaches to paraconsistent logic pro­
gramming based upon the stable model semantics [GL88] 
are recently proposed in [PR91, GS92a]. These ap­
proaches have improved the result of [GL90] in the sense 
that stable models are well-defined in inconsistent pro­
grams. However, these semantics still inherit the prob­
lem of the stable model semantics and there exists a 
program which has no stable model and yet it con­
tains a meaningful information. For example, a program 
{p f-, q f- not q} has no stable model, while it has an 
(extended) well-founded model in which p is true. Wag­
ner [Wa91] has also introduced a logic for possibly incon­
sistent logic programs with two kinds of negation. His 
logic is paraconsistent and not destructive in the presence 
of an inconsistent information, but it is still restricted 
and different from our lattice valued logic. 

Several studies have also been done from the stand­
point of contradiction removal in extended logic pro­
grams. Kowalski and Sadri [KS90] have extended the 
answer set semantics of [GL90] in an inconsistent pro­
gram by giving higher priorities to negative conclusions 

in a program. This solution is rather ad-hoc and also 
easily simulated in our framework by giving higher prior­
ities to negative facts in a program. Another approaches 
such as [PAA91] and [DR91] consider r~moving contra­
diction brought about by default assumptions. For in­
stance, consider a program {p f- not q, .p f- r, r}. 
This program has an inconsistent well-founded model, 
however, it often seems legal to prefer the fact .p to 
p, since p is derived by the default assumption notq, 
while its negative counterpart .p is derived by the 
proven fact r. Then they present program transforma­
tions for taking back such a default assumption to gen­
erate a consistent well-founded model. In our frame­
work, such a distinction is also achieved as follows. Con­
sider a suspicious well-founded model of the program 
< {p{{not q }},.p{{r}},r{0}};{q,.q,.r} > where a fact p 

has a default fact in its derivation history while .p does 
not, then we can prefer the fact .p as a more reliable 
one. These approaches [PAA91, DR91] further discuss 
contradiction removal in the context of belief revision or 
abductive framework, but from the point of view of para­
consistent logic programming, they provide no solution 
for an inconsistent program such as {p, 'p, q}. Another 
approaches in this direction are [In91, GS92b] in which 
the meaning of an inconsistent program is assumed to 
be a collection of maximally consistent subsets of the 
program. 

3 Extension to Disjunctive Programs 

The semantics of logic programs is recently extended 
to disjunctive logic programs which contain incomplete 
information in a program. The well-founded semantics 
is also extended to disjunctive logic programs by several 
authors [Ro89, BLM90, Pr90]. In paraconsistent logic 
programming, [Su90] has also extended the fixpoint se­
mantics of [BS87] to paraconsistent disjunctive logic pro­
grams. In this section, we present the extended well­
founded semantics for paraconsistent disjunctive logic 
programs. 

A disjunctive program is a (possibly infinite) set of 
the clauses of the form: 

Al V .. , V Al f- BI 1\ ... 1\ Bm 1\ notCI 1\ ... 1\ notCn 

where l > 0, m, n ;::: 0, each Ai, B j and Ck are lit­
erals and all the variables are assumed to be universally 
quantified at the front of the clause. The notion of a 
ground clause (program) is also defined in the same way 
as in the previous section. Hereafter, we use the term 
normal program to distinguish a program which contains 
no disjunctive clause. 

As in [Sa89], we consider the meaning of a disjunctive 
program by a set of its split programs. 

Definition 3.1 Let P be a disjunctive program and 



G be a ground clause from P of the form: 

Al V ... V A, -+- BI A ... A Bm A notel A ... A noten 
(1 ~ 2) 

Then G is split into 2' - 1 sets of clauses G}, .. , G21-1 

such that for each non-empty subset Si of {A I, .. , A, } j 
Gi = {Aj -+- Bl A ... A Bm A notel A ... A noten I Aj E 

Silo 

A split program of P is a ground normal program 
which is obtained from P by replacing each disjunctive 
clause G with its split clauses G i . 0 

Example 3.1 Let P = {p V -'q -+- not r, s -+­

p, s -+- -,q}. Then there are three split programs of 
Pj 

o 

PI = {p -+- not r, s -+- p, S -+- -,q}, 
P2 = {-,q -+- not r, s -+- p, S -+- -,q}, 
P3 = {p -+- not r, -,q -+- not r, s -+- p, S -+- -,q}. 

Intuitively, each split program presents a possible 
world of the original program in which each disjunction 
is interpreted in either exclusive or inclusive way. The 
following lemma holds from the definition. 

Lemma 3.1 Let P be a disjunctive program and P;, 
be its split program. If I is a model of P;" I is also a 
model of P. 0 

The extended well,-founded models of a disjunctive 
program are defined by those of its split programs. 

Definition 3.2 Let P be a disjunctive program. 
Then Mp is called the extended well-founded model of P 
if Mp is the extended well-founded model of some split 
program of P. 0 

Clearly, the above definition reduces to the extended 
well-founded model of a normal program in the absence 
of disjunctive clauses in a program. 

A disjunctive program has multiple extended well­
founded models in general and each atom possibly has 
different truth value in each model. In classical two­
valued logic programming, a ground atom is usually as­
sumed to be true (resp. false) if it is true (resp. false) in 
every minimal model of a program. In our multi-valued 
setting, we define an interpret.tion of an atom under the 
extended well-founded semantics as follows. 

Definition 3.3 Let P be a disjunctive program, 
M~, .. , Mp be its extended well-founded models and 
M~(A)(i = 1, .. , n) be the truth value of an atom A in 
M~. Then an atom A in P has a truth value J-L under 
the extended well-founded semantics if M~(A) = ... = 
Mp(A) = J-L. 0 

Example 3.2 For the program P in example 
3.1, there are three extended well-founded models 
such that M~ =< {p, s}j {-,p, q, -'q, r, -'r, -,s} >, 
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M~ =< {-,q, s}; {p, -,p, q, r, -'r, -,s} > and M~ =< 
{p,-,q,s};{-,p,q,r,-,r,-,s} >. Then s is true and r 
is don't-care by default in P under the extended well­
founded semantics, while truth values of p and q are not 
uniquely determined. 0 

When a program has inconsistent models as well as 
consistent ones, however, it seems natural to prefer con­
sistent models and consider truth values in such models. 

Example 3.3 Let P = {p -+-, -,p V q -+-}. Then 
the extended well-founded models of P are M~ =< 
{p,-,p}j{q,-,q} >, M~ =< {p,q}j{-,p,-,q} > and 
M~ =< {p, -,p, q}; {-,q} > where only M~ is consistent. 
o 

In the above example, a rational reasoner seems to 
prefer the consistent model M~ to M~ and M~, and 
interprets both p and q to be true. The extended well­
founded semantics for such a reasoner is defined bellow. 

Definition 3.4 Let P be a disjunctive program such 
that M~, .. , Mp (n =F 0) are its consistent extended well­
founded models. Then an atom A in P has a truth value 
J-L under the rational extended well-founded semantics if 
M}(A) = ... = Mp(A) = J-L. 0 

Lemma 3.2 Let P be a disjunctive program such 
that it has at least one consistent extended well-founded 
model. If an atom A has a truth value J-L under the 
extended well-founded semantics, then A has also the 
truth value J-L under the rational extended well-founded 
semantics, but not vice versa. 0 

The suspicious well-founded semantics presented in 
section 2.3 is also extensible to disjunctive programs in 
a similar way. 

4 Concluding Remarks 

In this paper, we have presented the extended well­
founded semantics for paraconsistent logic programs. 
Under the extended well-founded semantics, a contra­
dictory information is localized and a meaningful in­
formation is still available in an inconsistent program. 
Moreover, a suspicious fact which is affected by an in­
consistent information can be distinguished from others 
by the skeptical well-founded reasoning. The extended 
well-founded semantics proposed in this paper is a natu­
ral extension of the three-valued well-founded semantics 
and it is well-defined for every possibly inconsistent ex­
tended logic program. Compared with other paraconsis­
tent logics, it can treat both classical and default nega­
tion in a uniform way and also simply be extended to 
disjunctive paraconsistent logic programs. 

This paper has centered on a declarative semantics 
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of paraconsistent logic programs, but a proof proce­
dure of the extended well-founded semantics is achieved 
in a straightforward way as an extension of the SLS­
procedure [Pr89]' That is, each fact which is true/false in 
a program have a successful SLS-derivation in a program, 
while a default fact in a program has a failed derivation. 
A fact which is inconsistent in a program has a successful 
derivation from its positive and negative goals. The proof 
procedure for the suspicious well-founded semantics is 
also achieved by checking consistency of each literal ap­
pearing in a successful derivation. These procedures are 
sound and complete with respect to the extended well­
founded semantics and also computationally feasible. 
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Abstract 

vVe continue our exploration of a theory of database up­
dates (Reiter [21, 23]) based upon the situation calculus. 
The basic idea is to take seriously the fact that databases 
evolve in time, so that updatable relations should be 
endowed with an explicit state argument representing 
the current database state. Database transactions are 
treated as functions whose effect is to map the current 
database state into a successor state. The formalism 
is identical to that arising in the artificial intelligence 
planning literature and indeed, borrows shamelessly from 
those ideas. 

Within this setting, we consider several topics, specif­
ically: 

1. A logic programming implementation of query eval­
uation. 

2. The treatment of database views. 

3. State constraints and the ramification problem. 

4. The evaluation of historical queries. 

5. An approach to indeterminate transactions. 

1 Introduction 

Elsevlhere (Reiter [21, 23]), we have described how one 
may represent databases and their update transactions 
vvithin the situation calculus (McCarthy [13]). The ba­
sic idea is to take seriously the fact that databases evolve 
in time, so that updatable relations should be endowed 
with an explicit state argument representing the current 
database state. Database transactions are treated as 
functions, and the effect of a transaction is to map the 
current database state into a successor state. The result­
ing formalism becomes identical to theories of planning 
in the AI literature (See, for example, (Reiter [18])). 

Following a review of some of the requisite basic con­
cepts and results, we consider several topics in this paper: 

1. We sketch a logic programming implementation 
of the axioms defining a database under updates. 
While we give no proof of its correctness, we observe 
that under suitable assumptions, Clark completion 
axioms (Clark [3]) should yield such a proof. 

2. We show how our approach can accommodate 
database views. 

3. The so-called ramification problem, as defined in the 
AI planning literature, arises in specifying database 
updates. Roughly speaking, this is the problem 
of incorporating, in the axiom defining an update 
transaction, the indirect effects of the update as 
given by arbitrary state constraints. We discuss this 
problem in the database setting, and characterize 
its solution in terms of inductive entailments of the 
database. 

4. An historical query is one that references previous 
database states. We sketch an approach to such 
queries which reduces their evaluation to evaluation 
in the initial database state, together with conven­
tional list processing techniques on the list of those 
update transactions leading to the current database 
state. 

5. The database axiomatization of this paper addresses 
only determinate transactions; roughly speaking, in 
the presence of complete information about the cur­
rent database state, such a transaction determines a 
unique successor state. By appealing to some ideas 
of Haas ([7]) and Schubert ([24]), we indicate how 
to axiomatize indeterminate database transactions. 

2 Preliminaries 

This section reviews some of the basic concepts and re­
sults of (Reiter [23, 21, 19]) which provide the necessary 
Qackground for presenting the material of this paper. 



These include a motivating example, a precise specifica­
tion of the axioms used to formalize update transactions 
and databases, an induction axiom suitable for proving 
properties of database states, and a discussion of query 
evaluation. 

2.1 The Basic Approach: An Example 

In (Reiter [23]), the idea of representing databases and 
their update transactions within the situation calculus 
was illustrated with an example education domain, which 
we repeat here. 

Relations 

The database involves the following three relations: 

1. enrolled(st,course,s): Student st is enrolled in 
course course when the database is in state s. 

2. grade( st, course, grade, s): The grade of student st 
in course cou'rse is grade when the database is in 
state s. 

3. prerequ(pre, course): pre is a prerequisite course 
for course course. Notice that this relation is 'state 
independent, so is not expected to change during 
the evolution of the database. 

Initial Database State 

We assume given some first order specification of what is 
true of the initial state So of the database. These will be 
arbitrary first order sentences, the only restriction being 
that those predicates which mention a state, mention 
only the initial state So. Examples of information which 
might be true in the initial state are: 

enrolled(Sue, ClOO, So) V enrolled(Sue, C200, So), 

(3c)enrolled(Bill, c, So), 

(Vp).prerequ(p, P300) == p = PIOO V P = MIOO, 

(Vp)-,prerequ(p, CIOO), 

(Vc).enrolled(Bill, c, So) == 
c = MIOO V c = ClOO V c = P200, 

enrolled(M ary, ClOO, So), 

-,enrolled(John, M200, So), ... 

grade(Sue, P300, 75, So), grade(Bill, 111200, 70, So), . . . 

prerequ(M200, MIOO), -'prerequ(MIOO, CIOO), .. . 

Database Transactions 

Update transactions will be denoted by function sym­
bols, and will be treated in exactly the same way as 
actions are in the situation calculus. For our example, 
there will be three transactions: 
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1. register(st, course): Register student st in course 
course. 

2. change(st,course,grade): Change the current 
grade of student st in course course to grade. 

3. drop(st, course): Student st drops course course. 

Transaction Preconditions 

Normally, transactions have preconditions which must be 
satisfied by the current database state before the transac­
tion can be "executed". In our example, we shall require 
that a student can register in a course iff she has ob­
tained a grade of at least 50 in all prerequisites for the 
course: 

Poss(register(st, c), s) == 
{(Vp).prerequ(p,c)::J (3g).grade(st,p,g,s) Ag 2 50}.l 

It is possible to change a student's grade iff he has a 
grade which is different than the new grade: 

Poss(change(st,c,g),s) == 
(3g') .grade( st, c, g', s) A g' =J g. 

A student may drop a course iff the student is currently 
enrolled in that course: 

Poss(drop(st,c),s) == enrolled(st,c,s). 

Update Specifications 

These are the central axioms in our formalization of up­
date transactions. They specify the effects of all trans­
actions on all updatable database relations. As usual, 
all lower case roman letters are variables which are im­
plicitly universally quantified. In particular, notice that 
these axioms quantify over transactions. In what follows, 
do( a, s) denotes that database state resulting from per­
forming the update transaction a when the database is 
in state s. 

Poss(a,s):J [enrolled(st,c,do(a,s)) == 
a = register(st,c) V 

enrolled(st,c,s) A a =J drop(st, c)], 

Poss(a, s) :J [grade(st, c,g, do(a, s)) == 
a = change(st, c,g) V 

grade(st,c,g,s) A (Vg')a =J change(st,c,g')]. 

2.2 An Axiomatization of Updates 

The example education domain illustrates the general 
principles behind our approach to the specification of 

lIn the sequel, lower case roman letters will denote variables. 
All formulas are understood to be implicitly universally quantified 
with respect to their free variables whenever explicit quantifiers 
are not indicated. 
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database update transactions. In this section we pre­
cisely characterize a class of databases and updates of 
which the above example will be an instance. 

Unique Names Axioms for Transactions 

For distinct transaction names T and T', 

T(x) i= T'(f}). 

Identical transactions have identical arguments: 

T(X1' ... , xn) = T(y!, ... , Yn) => Xl = Y1 A ... A Xn = Yn 

for each function symbol T denoting a transaction. 

U nique Names Axioms for States 

(Va,s)So i= do(a,s), 

(Va,s,a', s').do(a, s) = do(a',s') => a = a' As = s'. 

Definition: The Simple Formulas 

The simple formulas are defined to be the smallest set 
such that: . 

1. F(~s) and F(~So) are simple whenever F is an 
updatable database relation, the t are terms, and s 
is a variable of sort state. 2 

2. Any equality atom is simple. 

3. Any other atom with predicate symbol other than 
Pass is simple. 

4. If Sl and S2 are simple, so are --,S1, Sl A S2, Sl 'l.fS2, 
Sl => S2, Sl == S2. 

5. If S is simple, so are (:lx)S and (Vx)S whenever X 
is an individual variable not of sort state. 

In short, the simple formulas are those first order formu­
las whose updatable database relations do not mention 
the function symbol do, and which do not quantify over 
variables of sort state. 

Definition: Transaction Precondition Axiom 

A transaction precondition axiom is a formula of the form 

(Vx, S ).PoSS(T(X1, ... ,xn), s) == fIr, 

where T is an n-ary transaction function, and fIr 
is a simple formula whose free variables are among 
X1,···,Xn,S. 

Definition: Successor State Axiom 

A successor state axiom for an (n + 1 )-ary updatable 
database relation F is a sentence of the form 

(Va,s).Poss(a,s) => 
(Vx!, ... ,xn).F(X1, ... ,xn,do(a,s)) == <I>F 

2For notational convenience, we assume that the last argument 
of an updatable database relation is always the (only) argument 
of sort state. 

where, for not.ational convenience, we assume that F's 
last argument is of sort state, and where <I> F is a 
simpl~ formula, all of whose free variables are among 
a, s, Xl, . .. ,Xn . 

2.3 An Induction Axiom 

There is a close analogy between the situation calculus 
and the theory of the natural numbers; simply identify 
So with the natural number 0, and do(Add1, s) with the 
successor of the natural number s. In'effect, an axiomati­
zation in the situation calculus is a theory in which each 
"natural number" s has arbitrarily many successors.3 
Just as an induction axiom is necessary to prove any­
thing interesting about the natural numbers, so also is 
induction required to prove general properties of states. 
This section is devoted to formulating an induction ax­
iom suitable for this task. 

We begin by defining an ordering relation < on states. 
The intended interpretation of s < s' is that state s' is 
reachable fTom state s by some sequence of transactions, 
each action of which is pos.sible in that state resulting 
from executing the transactions preceeding it in the se­
quence. Hence, < should be the smallest binary relation 
on states such that: 

1. (7 < doe a, (7) whenever transaction a is possible in 
state (7, and 

2. (7 < doe a, (7') whenever transaction a is possible in 
state (7' and (7 < (7'. 

This can be achieved with a second order sentence, as 
follows: 

Definitions: s < s', s :::; s' 

(Vs, s').s < s' == 
(VP).{[(Va,sl).Poss(a,sl) => P(sl,do(a,sl))] A 

[(Va, Sl, S2)'POSS( a, S2) A P( Sl, S2) => 
pes!, do(a, S2))]} 

=> pes,s'). 
(1) 

(Vs,s')s :::; s' == s < s' V s = s'. (2) 

Reiter [20] shows how these axioms entail the following 
induction axiom suitable for proving properties of states 
s when So :::; s: 

(VW).{W(So) A 
[(Va, s).Poss(a, s) A So:::; s A W(s) => W(do(a,s))]} 

:) (Vs ).So :::; s => W(s). 
(3) 

This is our analogue of the standard second order induc­
tion axiom for Peano arithmetic. 

3There could even be. infinitely many successors whenever 
an action is parameterized by a real number, as for' example 
move(block, location). 



Reiter [23, 20J provides an approach to database in­
tegrity constraints in which the concept of a database 
satisfying its constraints is defined in terms of inductive 
entailment from the database, using this and other ax­
ioms of induction for the situation calculus. In this pa­
per, we shall find other uses for induction in connection 
with database view definitions (Section 4), the so-called 
ramification problem (Section 5), and historicaf queries 
(Section 6). 

2.4 Databases Defined 

In the sequel, unless otherwise indicated, we shall only 
consider background database axiomatizations 'D of the 
form: 

D = less-axioms U Dss U Dtp U'Duns U 'Dunt U Dso 

where 

• less-axioms are the axioms (1), (2) for < and ~. 

• 'Dss is a set of successor state axioms, one for each 
updatable database relati'on. 

• Dtp is a set of transaction precondition axioms, one 
for each database transaction. 

• 'Duns is the set of unique names axioms for states. 

• 'Dunt is the set of unique names axioms for transac­
tions. 

• Dso is a set of first order sentences with the prop­
erty that So is the only term of sort state mentioned 
by the database updatable relations of a sentence of 
Dso' See Section 2.1 for an example Dso' Thus, 
no updatable database relation of a formula of Dso 
mentions a variable of sort· state or the function sym­
bol do. Dso will play the role of the initial database 
(i.e. the one we start off with, before any transac­
tions have been "executed"). 

2.5 Querying a Database 

Notice that in the above account of database evolution, 
all updates are virtual; the database is never physically 
changed. To query the database resulting from some 
sequence of transactions, it is necessary to refer to this 
sequence in the query. For example, to determine if John 
is enrolled in any courses after the transaction sequence 

drop(J ohn, ClOO), register(M ary, ClOO) 

has beeri 'executed', we must determine whether 

Database F (3c).enrolled(John,c, 
do(register(M ary, ClOO), do(drop(John, ClOO), So))). 
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Querying an evolving database is precisely the temporal 
projection problem in AI planning [8J.4 

Definition: A Regression Operator R 

Let W be first order formula. Then R[WJ is that formula 
obtained from W by replacing each atom F (~ do( 0:,0-)) 
mentioned by W by <I>F(~ 0:, 0-) where F's successor state 
axiom is 

(Va, s).Poss(a, s) :J (Vx).F(x,do(a,s)) == <I>F(X, a,s). 

All other atoms of W not of this form remain the same. 
The use of the regression operator R is a classical plan 

synthesis technique (Waldinger {25]). See also (Pednault 
[16, 17]). Regression corresponds to the operation of un­
folding in logic programming. For the class of databases 
of this paper, Reiter [23, 19J provides a sound and com­
plete query evaluator based on regression. In this paper, 
we shall have a different use for regression, in connection 
with defining database views (Section 4). 

3 Updates in the Logic Pro­
gramming Context 

It seems that our approach to database updates can be 
implemented in a fairly straightforward way as a logic 
program, thereby directly complementing the logic pro­
gramming perspective on databases (Minker [15]). For 
example, the axiomatization of the education example of 
Section 2.1 has the following representation as clauses: 

Successor State Axiom Translation: 

enrolled( st, c, do( register( st, c), s)) 
t- Poss(register(st,c),s). 

enrolled( st, c, do( a, s)) 
t- a=j:. drop(st,c),enrolled(st,c,s),Poss(a,s). 

grade( st, c, g, do( change(st, c, g), s)) 
t- Poss(change(st,c,g),s). 

grade( st, c, g, do( a, s)) 
t- a =j:.change( st, c, g'), grade( st, c, g, s), Poss( a, s ).5 

Transaction Precondition Axiom Translation: 

Poss(register(st, c), s) t- not P(st, c, s). 
Q(st,p,s) t- grade(st,p,g,s),g 2': 50.6 

Poss(change(st,c,g),s) t- grade(st,c,g',s),g =j:. g'. 
Poss(drop(st,c),s) t- enrolled(st,c,s). 

4This property of our axiomatization makes the resulting ap­
proach quite different than Kowalski's situation calculus formaliza­
tion of updates [9], in which each database update is accompanied 
by the addition of an atomic formula to the theory axiomatizing 
the database. 

5This translation is problematic because it invokes negation­
as-failure on a non-ground atom. The intention is that whenever 

. a is bound to a term whose function symbol is change, the call 
should fail. This can be realized procedurally by retaining the 
clause sequence as shown, and simply deleting the inequality a =f. 
change(st, c, g'). 
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With a suitable clausal form for Dso , it would then be 
possible to evaluate queries against updated databases, 
for example 

f- enrolled(John, C200, 

do( register(M ary, ClOO), do( drop( John, ClOO), So))). 

Presumably, all of this can be made to work under 
suitable conditions. The remaining problem is to char­
acterize what these conditions are, and to prove correct­
ness of such an implementation with respect to the logi­
cal specification of this paper. In this connection, notice 
that the equivalences in the successor state and transac­
tion precondition axioms are reminiscent of Clark's [3J 
completion semantics for logic programs, and our unique 
names axioms for states and transactions provide part of 
the equality theory required for Clark's semantics (Lloyd 
[12], pp.79, 109). 

4 Views 

In our setting, a view is an updatable database relation 
V(x,s) defined in terms of so-called base predicates: 

(Vx,s).V(x,s) == B(x,s), (4) 

where B is a simple formula with free variables among x 
and s, and which mentions only base predicates. 7 Unfor­
tunately, sentences like (4) pose a problem for us because 
they are precluded by their syntax from the databases 
considered in this paper. However, we can accommodate 
nonrecursive views by representing them as follows: 

(Vx).V(x, So) == B(x, So), (5) 

(Va, s ).Poss( a, s) ::) 
(Vx). V( x, do( a, s)) == R.[B( x, do( a, s) )J.8 (6) 

Sentence (5) is a perfectly good candidate for inclusion 
in D so ' while (6) has the syntactic form of a successor 
state axiom and hence may be included in Dss. 

This representation of views requires some formal jus­
tification, which the following theorem provides: 

Theorem 1 Suppose V(x, s) is an updatable database 
relation) and that 8(x,s) is a simple formula which does 

6We have here invoked some of the program transformation 
rules of (Lloyd [12], p.113) to convert the non-clausal formula 

{('v'p).prerequ(p, c) ::) 
(3g).grade(st, c, g, s) 1\ 9 ~ 50} ::) Poss(register(st, c), s) 

to a Prolog executable form. P and Q are new predicate symbols. 
7We do not consider recursive views. Views may also be defined 

in terms of other, already defined views, but everything eventually 
"bottoms out" in base predicates, so we only consider this case. 

8Notice that since we are not considering recursive views (i.e., f3 
does not mention V), the formula n[f3(x, do(a, s))] is well defined. 

not mention V and whose free variables are among x, s. 
Suppose further that DBS contains the successor state ax­
iom (6) for V, and that Dso contains the initial state 
axiom (5). Then, 

DU {3} F= (Vs).So ~ s::) (Vx).V(x,s) == 8(x,s). 

Theorem 1 informs us that from the initial state and 
successor state axioms (5) and (6) we can inductively 
derive the view definition 

(Vs).So ~ s::) (Vx).V(x,s) == B(x,s). 

This is not quite the same as the view definition (4) with 
which we began this discussion, but it is close enough. It 
guarantees that in any database state reachable from the 
initial state So, the view definition (4) will be true. We 
take this as sufficient justification for representing views 
within our framework by the axioms (5) and (6). 

5 State Constraints and the 
R~mification Problem 

Recall that our definition of a database (Section 2.4) does 
not admit state-dependent axioms, except those of Dso 
referring only to the initial state So. For example, we 
are prevented from including in a database a statement 
requiring that any student enrolled in C200 must also be 
enrolled in C 1 00. 

(Vs, st).So ~ sA enrolled(st, C200, s) ::) 
enrolled( st, ClOD, s). 

(7) 

In a sense, such a state-dependent constraint should be 
redundant, since the successor state axioms, because 
they are equivalences, uniquely determine all future evo­
lutions of the database given the initial database state 
So. The information conveyed in axioms like (7) must 
already be embodied in Dso together with the successor 
state and transaction precondition axioms. We have al­
ready seen hints of this observation. Reiter [20J proposes 
that dynamic integrity constraints should be viewed as 
inductive entailments of the database, and gives sev­
eral examples of such derivations. Moreover, Theorem 
1 shows that the view definition 

(Vs).So ~ s::) (Vx).V(x,s) == 8(i,s). 

is an inductive entailment of the database containing the 
initial state axiom (5) and the successor state axiom (6). 

These considerations suggest that a state constraint 
can be broadly conceived as any sentence of the form 

(Vs1, •.. , sn).SO ~ Si A Si ~ Sj A··· ::) W(Sl,"" sn), 

and that a database is said to satisfy this constraint iff 
the database inductively entails it. 9 

9See Section 2.3 for a brief discussion of inductively proving 
properties of states in the situation calculus. 



The fact that state constraints like (7) must be induc­
tive entailments of a database does not of itself dispense 
with the problem of how to deal with such constraints 
in defining the database. For in order that a state con­
straint be an inductive entailment, the successor state 
axioms must be so chosen as to guarantee this entail­
ment. For example, the original successor state axiom 
for enroll (Section 2.1) was: 

Poss(a,s)::) {enTollecl(st,c,clo(a,s)) == 
a = TegisteT(st,c)V (8) 

enTollecl(st,c,s) /\ a i- clrop(st, c)}. 

As one would expect, this does not inductively entail (7). 
To accommodate the state constraint (7), this Sllccessor 
state axiom mllst be changed to: 

Po.ss(a,s)::) {enTollecl(st,c,clo(a,.s)) == 
a = regi.steT( .st, c) /\ [c = C200 ::) enTollecl( .st, ClOO,.s)] 
V 

enrolled(.st,c,.s) /\ a i- clTOp(.st,c)/\ 
[c = C200 ::) a i- dTop(.st, ClOD)]}. 

(9) 
It is now simple to prove that, provided 'Dsa contains 
the unique names axiom ClOD i- C200 and the initial 
instance of (7), 

enTolled( .st, C200, So) ::) enTolled( .st, ClOD, So), 

then (7) is an inductive entailment of the database. 
The example illustrates the subtleties involved in get­

ting the successor state axioms to reflect the intent of a 
state constraint. These difficulties are a manifestation 
of the so-called ramification problem in artificial intelli­
gence planning domains (Finger [4]). Transactions might 
have ramifications, or indiTect effect.s. For the example 
at hand, the transaction of registering a student in C200 
has the direct effect of causing the student to be enrolled 
in C200, and the indirect effect of causing her to be en­
rolled in ClOD (if she is not already enrolled in ClOD). 
The modification (9) of (8) was designed to capture this 
indirect effect. In our setting, the ramification problem 
is this: Given a static state constraint like (7), how can 
the indirect effects implicit in the state constraint be em­
bodied in the successor state axioms so as to guarantee 
that the constraint will be an inductive entailment of 
the database? A variety of circumscriptive proposals for 
addressing the ramification problem have been proposed 
in the artificial intelligence literature, notably by Baker 
[1], Baker and Ginsberg [2], Ginsberg and Smith [5], Lif­
schitz [10] and Lin and Shoham [11]. Our formulation 
of the problem in terms of inductive entailments of the 
database seems to be new. For the databases of this pa-

. per, Fanghzen Linlo appears to have a solution to this 
problem. 

lOPersonal communication. 
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6 Historical Queries 

U sing the relations < and ::; on states, as defined in 
Section 2.3, it is possible to pose hi.stoTical queries to a 
database. First, some notation. 

Notation: do([al, ... ,n],s) 

Let aI, ... ,an be transactions. Define 

clo( [ ], .s) = .s, 

and for 17, = 1,2, ... 

do( [aI, ... , an], s) is a compact notation for the state 
term clo(an, do(an-I,'" clo(al' s) .. . )) which denotes that 
state resulting from performing the transaction aI, fol­
lowed by a2, ... , followed by an, beginning in state .s. 

Now, suppose T is the transaction sequence leading 
to the current database state (i.e., the current database 
state is clo(T, So)). The following asks whether the 
database was ever in a state in which John was simulta­
neously enrolled in both ClOD and 1I1100? 

(3s).50 ::; s /\.s ::; clo(T, 50 )/\ 

em'ollecl( John, ClOD, s) /\ enTollecl( John, 1I1100,.s). 
(10) 

Has Sue always worked in department 13? 

(\ls).50 ::; s /\ s ::; clo(T, So) ::) emp(5ue, 13, s). (11) 

The rest of this section sketches an approach to an­
swering historical queries of this kind. The approach is of 
interest because it reduces the evaluation of such queries 
to evaluations in the initial database state, together 
with conventional list processing techniques on the list of 
those transactions leading to the current database state. 

Begin by considering two new predicates, last and 
mem-dZtf. The intended interpretation of last(s, a) is 
that the transaction a is the last transaction of the se­
quence.s. For example, 

last( clo( [clTOp( 111 w'y, ClOD), registeT( John, ClOD)]' 50), 
TegisteT( John, ClOD)). 

is true, while 

la.st( do([ clrop(M ary, ClOD), clrop( John, ClOD)]' 50)' 
1'egisteT( John, ClOD)) 

is false, assuming unique names axioms for transactions. 
The following two axioms are sufficient for our purposes: 

.(last(50 , a). 

la.st( do( a,.s), a') == a = a'. 



606 

The intended interpretation of rnern-d1jJ( a, s, Sf) is that 
transaction a is a member of the "list difference" of s 

and 5', where state s' is a "su blist" of .5. For example, 

mern-diff( drop(JVJ ary, C100), 
dO([Tegister( John, C100), dTOp(Bill, ClOO), 

dTOp(1I1 aTY, ClOO), drop( John, 111100)], So), 
dO([TegisteT(John, ClOO)J, So)) 

is true, whereas 

rnern-diff( registerUvI aTY, C1 00), 
do([register( John, ClOO), drop(Bill, ClOO), 

drop(M ary, ClOO), drop(J ohn, 111100)], So), 
do([register( John, ClOO)J, So)) 

is false (assuming unique names axioms for transactions). 
The following axioms will be sufficient for our needs: 

,'mern-diff(a, s, s). 

s S s':::) rnern-diff(a,do(a,s'),s). 

mern-diff( a, s, Sf) :::) rnern-diff( a, do( a', s), s'). 

mem-diff(a,do(a',s),s') /\ a =I- a':::) rnern-diff(a,s,s'). 

'vVe begin by showing how to answer query (11). Sup­
pose, for the sake of the example, that the successor state 
axiom for emp is: 

Poss(a,s):::) emp(p,d,do(a,5)) == a = hiTe(p,d) V 
emp(p, d,s) /\ a =I- jire(p) /\ a =I- quit(p). 

Using this, and the sentences for last and rnern-diff to­
gether with the induction axiom (3), it is possible to 
prove: 

So S s :::) emp(p, d, s) == emp(p, d, So) /\ 
,rnern-diff(fire(p) , s, So) /\ ,rnern-diff(quit(p) , s, So) V 

(3s').So S s' S s/\ last(s', hire(p, d)) /\ 
,rnern-diff(fi1'e(p) , 5, Sf) /\ ,rnern-diff( quit(p), 5, s'). 

Using this and the (reasonable) assumption that the 
transaction sequence T is legal,l1 it is simple to prove 
that the query (11) is equivalent to: 

V 

{ 

emp(Sue, 13, So) /\ } 
,rnern-diff(fire(Sue) , do(T, So), So) /\ 
,rnern-diff( quit(Sue), do(T, So), So) 

{ 

(3s').So S s' S do(T, So) /\ } 
last( s', hire( Sue, 13)) /\ 
,rnern-diff(fire(Sue), do(T, So), Sf) /\ 
,rnern-diff(quit(Sue) , do(T, So), Sf). 

11 Intuitively, T is legal iff each transaction of T satisfies its pre­
conditions (see Section 2,1) in that state resulting from performing 
all the transactions preceeding it in the sequence, beginning with 
state So' See (Reiter [19)) for details, and a procedure for verifying 
the legality of a transaction sequence. 

This form of the original query is of interest because 
it reduces query evaluation to evaluation in the initial 
database state, together with simple list pTocessing on 
the list T of those transactions leading to the current 
database state. We can verify that Sue has always been 
employed in department 13 in one of two ways: 

1. Verify that she was initially employed in department 
13, and that neither jire(Sue) nor quit(Sue) are 
members of list T. 

2. Verify that T has 
a sublist ending with hire(Sue,13), and that nei­
ther jire(Sue) nor quit(Sue) are members of the 
list difference of T and this sublistY 

We now consider evaluating the first query (10) in the 
same list processing spirit. We shall assume that (8) is 
the successor state axiom for enrolled. Using the above 
sentences for last and rnern-diff, together with (8) and 
the induction axiom (3), it is possible to prove: 

So S s :::) enrolled(st, c, s)) == 
enrolled(st,c,So) /\ ,rnern-diff(drop(st,c),s,So) V 
(3s').So S s' S s /\ last(s',regi5ter(st, c)) /\ 

,rnern-diff(drop(st, c), s, 5'). 

Then, on the assumption that the transaction sequence 
T is legal, it is simple to prove that the query (10) is 
equivalent to: 

(3s).So S s S do(T, So) /\ 

{ 
enrolled( John, ClOO, So) /\ 

} enrolled(John, MlOO, So) /\ 
,rnern-diff( drop( J olm, ClOO), s, So) /\ 
,rnern-diff( drop( John, M100), 5,5'0) 

V 

1 

enrolled(John, ClOO, 5'0) /\ 

) 
,rnern-diff(drop(J ohn, ClOO), s, 5'0) /\ 
(35').So Ss' S s /\ 
last(s', register(John, MlOO)) /\ 
,rnern-diff( drop( John, MlOO), s, Sf) 

V 

{ 
enroll ed( John, Ml 00, 5'0) /\ 

} (3s").5'0 S S" S s /\ 
last( S", register( John, ClOO)) /\ 
,rnern-diff( drop( John, ClOO), s, S") 

V 

1 

(3s', S") .5'0 S s' S s /\ So S S" S s /\ 

) 
last(s', register(John, MlOO)) /\ 
last( S", register( John, C100)) /\ 
,rnern-diff( drop( John, M100), s, Sf) J\ 

,rnern-diff( drop( John, ClOO), s, S") 

12The correctness of this simple-minded list processing proce­
dure relies on some assumptions, notable suitable unique names 
axioms. 



Despite its apparent complexity, this sentence also has a 
simple list processing reading; we can verify that John 
is simultaneously enrolled in ClOO and All00 in some 
previous database state as follows. Find a sublist (loosely 
denoted by s) of T such that one of the following four 
conditions holds: 

1. John was initially enrolled in both 
ClOO and 1\IIlOO and neither drop(John, ClOO) nor 
clrop( John, All00) are members of list s. 

2. John was initially enrolled in 
ClOO, d7'Op( John, ClOO) is not a member of list s, 
s has a sublist s' ending with register( John, MlOO) 
and drop(John, All00) is not a member of the list 
difference of sand s'. 

3. John was initially enrolled in MlOO, 
drop(John,All00) is not a member of list s, s has 
a sublist s' ending with register( John, ClOO) and 
clrop( John, ClOO) is not a member of the list differ­
ence of sand s'. 

4. There are two sublists s' and s" of s, s' 
ends with registe7'( J o/m, MlOO), s" ends with 
register(John,ClOO), clrop(John,All00) is not a 
member of the list difference of sand s', and 
dr'op( John, ClOO) is not a member of the list dif­
ference of sand s". 

\Ve can even pose queries about the future, for exam­
ple, is it possible for the database ever to be in a state 
in which John is enrolled in both ClOO and C200? 

(::Is ).So :::; s /\ enrolled( John, ClOO, s) /\ 
enrolled( John, C200, s). 

Answering queries of this form is precisely the problem 
of plan synthesis in AI (Green [6]). For the class of 
databases ofthis paper, Reiter [22, l8J shows how regres­
sion provides a sound and complete evaluator for such 
queries. 

7 Indeterminate Transactions 

A limitation of our formalism is that it requires all trans­
actions to be determinate, by which we mean that in 
the presence of complete information about the initial 
database state a transaction completely determines the 
resulting state. 

One way to extend the theory to include indetermi­
nate transactions is by appealing to a simple idea due 
to Haas [7J, as elaborated by Schubert [24J. As an ex­
ample, consider the indeterminate transaction drop-a­
student(c), meaning that some student - we don't know 

. whom - is to be dropped from course c. Notice that we 
cannot now have a successor state axiom of the form 

Poss(a,s) :J {enrollecl(st,c, do(a, s)) == <l>(st,c, a,s)}. 
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To see why, consider the following instance of this axiom: 

Poss( drop-a-student(Cl 00), So) :J 
{ enrolled( John, ClOO, clo( drop-a-student(Cl 00), So)) 

== <l>(John, ClOO, drop-a-student(C100), So)}. 

Suppose L;o is a complete description of the initial 
data.base state, and suppose moreover, that 

L;o 1= Poss( drop-a-student(Cl 00), So) /\ 
enrolled(John, ClOO, So). 

By the completeness assumption, 

L;o 1= ±<l>(John, ClOO, drop-a-student(C100), So), 

in which case 

L;o 1= ±enrollecl(John, ClOO, 
do( drop-a-student (C 100), So)). 

In other words, we would know whether John was the 
student dropped from ClOO, violating the intention of 
the drop-a-student transaction. 

Despite the inadequacies of the axiomatization of Sec­
tion 2.2 (specifically the failure of successor state axioms 
for specifying indeterminate transactions), we can rep­
resent this setting.with something like the following ax­
ioms: 

(3st)enrolled( st, c, s) :J Poss( drop-a-student( c), s). 

enrolled(st, c, s) :J Poss(drop(st, c), s). 

Poss(a, s) :J 
{a = drop(st,c):J ,enrolled(st,c,do(a,s))}. 

Poss(a,s):J {a = drop-a-student(c):J 
(::I!st)em'olled( st, c, s) /\ ,enrolled( st, c, do( a, s)}Y 

Poss(a, s) :J 
{-.enrolled(st, c, s) /\ enrolled(st, c, do(a, s)) :J 

a = register(st, c)}. 

Poss( a, s) :J 
{enrollecl(st, c, s) /\ -.enrolled(st, c, do(a, s)) :J 

a = clrop(st, c) Va = drop-a-student(c)}. 

The last two formulas are examples of what Schubert 
[24] calls explanation closure axioms. For the example 
at hand, the last axiom provides an exhaustive enu­
meration of those transactions (namely clrop( st , c) and 
drop-a-student(c)) which could possibly explain how it 
came to be that st is enrolled in c in the current state 
s and is not enrolled in c in the successor state. Simi­
larly, the second last axiom explains how a. student could 
come to be enrolled in a course in which she was not en­
rolled previous to the transaction. 14 The feasibility of . 

13(3!st) denotes the existence of a unique st . 
14It is these explanation closure axioms which provide a suc­

cinct alternative to the frame axioms (McCarthy and Hayes [14]) 
which would normally be required to represent dynamically chang­
ing worlds like databases (Reiter [23]). 
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such an approach relies on a closure assumption, namely 
that we, as database designers, can provide a finite ex­
haustive enumeration of such explaining transactionsY 
In the "real" world, such a closure assumption is prob­
lematic. The state of the world has changed so that a 
student is no longer enrolled in a course. What can ex­
plain this? The school burned down? The student was 
kidnapped? The teacher was beamed to Andromeda by 
extraterrestrials? Fortunately, in the database setting, 
such open-ended possible explaining events are precluded 
by the database designer, by virtue of her initial choice 
of some closed set of transactions with which to model 
the application at hand; no events outside tflis closed 
set (school burned down, student kidnapped, etc.) can 
be considered in defining the evolution of the database. 
This initial choice of a closed set of transactions having 
been made, explanation closure axioms provide a natural 
representation of this closure assumption. 

By appealing to explanation closure axioms, we can 
now specify indeterminate transactions. The price we 
pa.y is the loss of the simple regression-based queryeval­
ua.tor of (Reiter [23, 21]); we no longer have a simple 
sound and complete query evaluator. Of course, conven­
tional first order theorem-proving does provide a query 
evaluator for such an axiomatization. For example, the 
following are entailments of the above axioms, together 
with unique names axioms for transactions and for John 
and Ma1'Y: 

en1'olled(J ohn, ClOO, So) 1\ en1'olled(M ary, CIOO, So) 

=> 
enrolled(John, CIOO, do(drop(Mary, CIOO), So)) 1\ 

-,enrolled(M ary, C100, do( drop(M ary, ClOO), So)). 

{(Vst).enrolled(st,C100,So) ==st = John} => 
(Vst)-,enrolled(st, CIOO, 

do(drop-a-student (C100),So)). 

{(Vst).enrolled(st, ClOO, So) == 
st = John V st = Mary} 

=> 
enrolled(John, CIOO, do( drop-a-student(C100), So)) EEl 
enrolled(lvJ ary, ClOO, do( drop-a-student( CIOO), So)). 

Notice that the induction axiom (3) of Section 2.3 does 
not depend on any assumptions about the underlying 
database. In p~rticular, it does not depend on succes­
sor state axioms. It follows that we can continue to use 
induction to prove properties of d·atabase states and in­
tegrity constraints in the more generalized setting of in­
determinate transactions. The fundamental perspective 
on integrity constraints of (Reiter [20]) - namely that 
they are inductive entailments of the database - remains 
the same. 

15This assumption is already implicit in our successor state ax­
ioms of Section 2.2 
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Abstract 

The incomplete theory problem has been of large interest 
both in explanation based learning and more recently in 
inductive logic programming. The problem is studied in the 
context of Hom clause logic, and it is assumed that there is 
only one clause missing for each positive example given. 
Previous methods have used either top down or bottom up 
induction. Both these induction strategies include some 
undesired restriction on the hypothesis space for the missing 
clause. To overcome these limitations a method where the 
different induction strategies are completely integrated is 
presented. The method involves a novel approach to inverse 
resolution by using resolution, and it implies some 
extensions to the framework of inverse resolution which 
makes it possible to uniquely determine the most specific 
result of an inverse resolution step. 

1 Introduction 

Completion of incomplete theories has been of large interest 
in machine learning, particularly in the area of explanation 
based learning, for which a complete theory is crucial 
[Mitchell et al. 1986, Dejong and Mooney 1986]. Research 
on augmenting an incomplete domain has been reported in 
[Hall 1988, Wirth 1988, Ali 1989]. A new framework for 
inductive learning was invented by inverting resolution 
[Muggelton and Buntine 1988]. Papers considering 
augmentation of incomplete theories in this framework are 
[Wirth 1989, Rouveirol and Puget 1990, RouveiroI1990]. 

We only consider Hom clause logic, which is a subset of 
first order logic, and we follow the notation in logic 
programming [Lloyd 1987]. The incomplete theory problem 
can then be formulated as follows. Let P be a definite 
program (an incomplete theory) and E a definite program 
clause which should but does not follow from P (P 1* E). 

* This research was supported by NUTEK, the Swedish National Board 
for Industrial and Technical Development. 

Then find a definite program clause H such that: 
(a) Pu{E} 1* H 

(b) Pu{H} 1= E 

H is an inductive conclusion according to [Genesereth 
and Nilsson 1987]. 

Let E=(Af-Bl. ... ,Bn). Then by top down induction 
we mean any reasoning procedure, to infer an inductive 
conclusion, that starts from A. By bottom up induction 
we mean any inductive reasoning procedure that starts from 
Bl, ... ,Bn. 

Most previous methods use either top down [Hall 1988, 
Wirth 1988, Ali 1989] or bottom up induction [Sammut and 
Banerji 1986, Muggelton and Buntine 1988, Rouveirol and 
Puget 1990]. Both these induction strategies have some 
undesired restrictions on the hypothesis space of H. In 
[Wirth 1989] a method that combines top down and bottom 
up induction is presented, while in this paper a method 
where they are completely integrated will be described. In 
the previous methods there are also other undesired 
restrictions, namely that the input clause E must be fully 
instantiated [Hall 1988, Wirth 1988, Wirth 1989, Ali 1989, 
Sammut and Banerji 1986] or a unit clause [Muggelton and 
Buntine 1988]. Our method works for full Horn clause 
logic. 

Logical entailment is used as a definition of generality. 
Let E and F be two expressions. Then E is more general 
than F, if and only if E logically entails F (E 1= F). We also 
say that F is more specific than E. 

In the examples, predicate symbols are denoted by p, q, 
r, s, t and u. Variables (universally quantified) are denoted 
by x, y, z and w. Constants are denoted by a, band c. 
Skolem functions are denoted by k. 

In section 2 the inductive framework of inverse 
resolution is given. In section 3 some extensions to this 
framework, which make it possible to determine the most 
specific inverse resolvent, are described. In section 4 a new 



inverse resolution method is presented, and finally in section 
5 related work and contributions is discussed. 

2 The Framework of Inverse 
Resolution 

The inductive framework of inverse resolution was first 

presented in [Muggelton and Buntine 1988]. First, as a 
background, resolution will be described. Then inverse 
resolution will be definied, and some problems considering 
inverse reslution will be pointed out. 

2.1 Resolution 

A substitution is a finite set of the form {V1/t1, ... ,Vn/tn}' 
where each Vi is a variable, each ti is a term distinct from Vi, 
and the variables Vb ... ,Vn are distinct. Each element Vilti is 

called a binding for Vi. A substitution is applied by 
simultaneously replacing each occurence of the variable Vi, 
in an expression, by the term ti. 

An expression is either a term, a literal, a clause or a set 
of clauses. (A fixed ordering of literals in clauses and a 
fixed ordering of clauses in sets of clauses are assumed.) 

Let E be an expression and V be the set of variables 
occurring in E. A renaming substitution for E is a 

substitution {X1/Yl, ... ,xn/Yn} such that Y1, ... ,Yn are distinct 
variables and (V-{X1, ... ,Xn})n{Y1, ... ,Yn}=0. 

Let E and F be expressions. Then E is a variant of F if 
there exists a renaming substitution 8 such that E=F8. 

A unifier for two terms or literals t1 and t2 is a 
substitution 8 such that t18=t28. 

A unifier 8 for t1 and t2 is called a most general 
unifier (mgu) for t1 and t2, if for each unifier 8' of t1 and 

t2 there exists a substitution 8" such that 8'=88". 

Let C and D be two clauses which have no variables in 

common. Then the clause R is resolved from C and D, 
denoted (C;D) I-R R, if the following conditions hold: 
(a) A is a literal in C and B is a literal in D. 
(b) 8 is an mgu of A and B. 

(c) R is the clause «C-{A})u(D-{B })8. 

The clause R is called a resolvent of C and D. 

Since C and D have no variables in common, the mgu 8 

can uniquely be divided into two disjunct!ve parts 8A and 

8B such that 8=8AU8B and A8A= R8B. Consequently 
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condition (c) can be rewritten as: 
(c) R is the clause (C-{A})8AU(D-{B})8B, where 

8=8AU8B and A8A= B8B. 

Let RO be a definite program clause and P a definite 
program. A linear derivation from RO and P consists of a 
sequence RO,R 1 , ... of definite program clauses and a 
sequence C1,C2, ... of variants of definite program clauses 
in P such that each Ri+1 is resolved from Ci+1 and Ri. A 
linear derivation of Rk from RO and P is denoted: 
(RO;C1) I-R (R1;C2) I-R ... I-R Rk or for short 

(RO;P) I-R* Rk. 

2.2 Inverse Resolution 

A place within an expression is denoted by an n-tuple and 
defined recursively as follows. The term, literal or clause at 
place <a1> within f(t1, ... ,tn) or {t1, ... ,tn} is tal' The term 

or literal at place <al, ... ,am> (m>1) within f(tl, ... ,tn) or 
{t1, ... ,tn} is the term or literal at place <a2, ... ,am> in tal' 

Let E be an expression. Then for each substitution 8 

there exists a unique inverse substitution 8-1 such that 

E88-1=E. Whereas the substitution 8 maps variables in E to 

terms, the inverse substitution 8-1 maps terms in E8 to 

variables. An inverse substitution is a finite set of the 
form {(t1, {P1,1, ... ,P1,ml }/Vl, ... ,(tn,{ Pn,l, .. ·,Pn,mn } )/vn} 

where each Vi is a variable distinct from the variables in E, 
each ti is a term distinct from Vi, the variables V1, ... ,Vn are 
distinct, each Pi,j is a place at which ti is found within E and 
the places P1,1, ... ,Pn,mn are distinct. An inverse substitution 
is applied by replacing all ti at places {Pi,l, ... ,Pi,m) in the 

expression E by Vi. 

Example: If the following inverse substitution 
{(a,{ <1,1,2>,<1,2,1,1>,<2,2,1> ))/x} is applied on the 

expression {(p(a,a)~p(f(a»,(q(a)~r(a»}, the expression 

{(p(a,x)~p(f(x»,(q(a)~r(x»} is obtained. 

Let R, C and D be three clauses. If R can be resolved 
from C and D, then D can be inverse resolved from Rand 

C. The clause 0 is inverse resolved from Rand C, 
denoted (R;C) I-IR D, if the following conditions hold: 
(a) A is a literal in C. 

(b) 8A is a substitution whose variables are variables that 

occur in A. 

(c) (C-{A})8A is a subset of R. 

(d) r is a subset of (C-{A})8A. 

(e) 8B-1 is an inverse substitution whose terms are terms 

that occur in A. 

(f) D is the clause «R-r)u{ A}8A)8B-1. 
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The clause D is called an inverse resolvent of Rand C. 

Given R and C there are four sources of indeterminacy 
for D, namely: A, SA, rand SB-l . 

If A is a positive literal then D is forwardly inverse 
resolved, and if A is a negative literal then D is 
backwardly inverse resolved. 

Example: Suppose we have R=(s(a,z)f-q(a),r(b», 

C=(P(a,x)f-q(a),r(x» and D=(s(y,z)f-p(y,b». The clause 

D can be forwardly inversed resolved from Rand C, 
(R;C) I-IR D, if A=p(a,x), SA={x/b}, r=(f-q(a),r(b» and 

SB- l ={(a,{<I,I>,<2,1>})/y}. The clause C can be 

backwardly inverse resolved from Rand D, (R;D) I-IR C, if 
A=-.p(y,b), SA={y/a}, r=(s(a,z)f-) and SB- 1= 

{(b,{<1,2>,<3,1>})/x}. (It is assumed that the positive 
literal is first in the ordering of literals in a clause.) 

Let DO be a definite program clause and P a definite 
program. An inverse linear derivation from DO and P 

consists of a sequence DO,Dl, ... of definite program clauses 
and a sequence Cl,C2, ... of variants of definite program 
clauses in P such that each Dj+l is inverse resolved from 
Cj+l and Dj. An inverse linear derivation of Dk from Do and 
P is denoted: 
(DO;Cl) I-IR (Dl;C2) I-IR ... I-IR Dk or for short 
(DO;P) I-IR* Dk· 

A backward inverse linear derivation is an inverse 
linear derivation where each Dj is backwardly inverse 
resolved, and a forward inverse linear derivation is an 
inverse linear derivation where each Dj is forwardly inverse 

resolved. 

2.3 Some Problems 

Consider the definition of inverse resolved. The substitution 
SA can be divided into two disjunctive parts, SAl including 

the variables that occur both in A and (C-{ A}), and S A2 

including the variables that only occur in A (SA=SA1USA2). 

Then, to determine an inverse resolvent D, we have to 

choose A, SAl, SA2, rand SB- I . Only in some special 

cases there are more than one alternative for A and SAl. 

Example: Let R=(pf-q(a),r(b» and C=(Pf-q(x),r(x». 

Then we have either A=-.q(x) and SAl ={ x/b}, or A=-.r(x) 

and SA1={ x/a}. 

For rand SB-l there are limited numbers of alternatives, 

but for S A2 there is not. The terms in S A2 can be any 

possible terms. Consequently, it is hard to choose S A2. 

Unfortunately there are examples when the choice of SA2 is 

crucial. 

Example: Let R=(rf-q), Cl =(p(x)f-q), C2=(Sf-p(a» 

and D=(rf-s). Then there is a linear derivation of R from D 

and {Cl,C2}: 
(D;C2) I-R «rf-p(a»;Cl) I-R (rf-q). 

Consequently, there is an inverse linear derivation of D from 
Rand {Cl,C2}: 
(R;Cl) I-IR «rf-p(a»;C2) I-R (rf-s). 

In the first inverse resolution step S A2 is chosen as {x/a}. 

With any other choice of SA2 the inverse linear derivation of 

D would not have been possible. 

If R, C, A and SAl are given, then it is desirable that a 

unique most specific inverse resolvent can be determined. 
Unfortunately, in Horn clause logic, it is not possible due to 
the substitution S A2. 

Example: Let R=(rf-q) and C=(p(x)f-q). If we seek 

the most specific clause D such that (R;C) I-IR D, then we 
let r=0 and SB-l=0 but what should SA2 be? If we let 

SA2=0, the clause Dl=(rf-p(x),q) is obtained. For example 

the clauses D2=(rf-p(a),q) and D3=(rf-p(b),q) are more 

specific than Db but neither D2 nor D3 is more specific than 
the other. Consequently, there is no unique most specific 
inverse resolvent. 

3 Extended Inverse Resolution 

Our inverse resolution method (see section 4) implies some 
extensions to the framework of inverse resolution. After 
these extensions the choices of SA2, rand SB-l in inverse 

linear derivations can be postponed, and the most specific 
inverse resolvent can be determined. 

3.1 Existentially Quantified Variables 

To postpone the choice of S A2, existentially quantified 

variables will temporarily be introduced. Any sentence, in 
which the existentially quantified variables are replaced by 
Skolem functions, is equal to the original sentence with 
respect to satisfiability [Genesereth and Nilsson 1987]. 
Therefore the existentially quantified variables will be 
represented by Skolem functions. As a consequence of the 
introduction of existentially quantified variables (Skolem 
functions), some additional types of substitutions are 
needed. 



A Skolemfunction is a term f(Xl, ... ,Xn) where f is a 
new function symbol and Xl, ... ,Xn are the variables 
associated with the enclosing universal quantifiers. 

A S kolem substitution is a finite set of the form 
{Vl/kl, ... ,vn/kn}, where each Vj is a variable, each kj is a 
Skolem function, and the variables Vl, ... ,Vn are distinct. 

An inverse Skolem substitution is a finite set of the 
form {kl/Vl, ... ,kn/vn}, where each ki is a Skolem function, 
each Vj is a new variable, and the Skolem functions 

kl, ... ,kn are distinct. 

Let o'={ xl/kl, ... ,Xn/kn} be a Skolem substitution and 

o-l={kl/Yl, ... ,kn/Yn} an inverse Skolem substitution such 

that the Skolem functions in 0' and 0-1 are exactly the same. 

Then the composition 0'0'-1 of 0' and 0'-1 is a renaming 

substitution {Xl/Yl, ... ,Xn/Yn} for any expression E. 

An existential substitution is a finite set of the form 
{kl/tl, ... ,kn/tn}, where each kj is a Skolem function 
(existentially quantified variable), each tj is a term (possibly 
a Skolem function) distinct from kj, and the Skolem 

functions kl, ... ,kn are distinct. While a substitution or a 
Skolem substitution corresponds to a specialization an 
existential substitution corresponds to a generalization. 

As an inverse substitution, an inverse existential 
substitution is specified with respect to an expression E. An 
inverse existential substitution is a finite set of the 
form {(tl, {Pl,l, ... ,Pl,ffil }/kl, ... ,(tn,{ Pn,l, ... ,Pn,ffin } )/kn} 

where each kj is a Skolem function distinct from the Skolem 
functions in E, each tj is a term distinct from kj, the Skolem 
functions kl, ... ,kn are distinct, each Pj,j is a place at which 
ti is found within E and the places Pl,l, ... ,Pn,ffi n are 

distinct. An inverse existential substitution is applied by 
replacing all ti at places {Pj,l, ... ,Pi,ffij} in E by kj. 

Let o'={ vl/kl, ... ,Vn/kn} be a Skolem substitution and 

Tl={kl/tl, ... ,kn/tn } an existential substitution such that the 

Skolem functions in 0' and Tl are exactly the same. Then the 

composition O'Tl of 0' and Tl is the substitution 

{Vl/tl, ... ,Vn/tn}. In this way Skolem substitutions and 
existential substitutions can be used to postpone the choice 
of SA2. 

3.2 Most Specific Inverse Resolution 

To postpone the choice of r, the notion of optional 

literals will be used. A clause {Bl, ... ,Bk,Bk+I, ... ,Bn}, in 
which the literals {Bk+ I , ... ,Bn} are optional, is denoted 
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C[c]={BI, ... ,Bk,[Bk+l, ... ,B n]} where C={B}, ... ,Bd and 
C={Bk+l, ... ,Bn}. Consequently, if c=0 then C[c]=C. 

Example: Let R=(pf-q,r,s) and C=(tf-q,r,s) be two 

clauses. Then (R;C) I-IR D, where D=(pf-t,q,r,s)-r and 

r~{-,q,-,r,-,s}. All these alternatives for D can be 

described in a compact way by using optional literals. Thus, 
D[d]=(pf-t,[ q,r,s]). 

The definition of inverse resolved can now be modified 
in such a way that the choices of SA2, rand SB-1 are 

postponed. The clause D is most specific inverse 
resolved from R[r] (which may include Skolem functions) 
and C, denoted (R[r];C) 1-.tIR D, if the following conditions 
hold: 
(a) A is a literal in C. 
(b) SAl is a substitution whose variables are variables that 

occur both in A and (C-{A}). 
(c) Tl- l is an inverse existential substitution whose terms 

are terms that occur in (C-{ A}). 
(d) (C-{A})SAlTl-1 is a subset of R[r]. 

(e) 0' is a Skolem substitution whose variables are all the 

variables that only occur in A. 
(f) D[d] is the clause D=«R-r)u{ A}SA1O'), d=rur, 

where r=(C-{A })SAlTl-I. 

The clause Du d is called a most specific inverse 

resolvent of Rand C. 

Given Rand C, there are only two sources of 

indeterminacy, namely: A and SAl. Consequently, given R, 

C, A and SAl there is a unique most specific inverse 

resolvent Dud. 

Example: Let R=(rf-q) and C=(p(x)f-q). Then the 

unique most specific inverse resolvent of Rand C is the 
clause Dud=(rf-p(k),q) where k is a Skolem functions 

(representing an existentially quantified variable). This is 
true, since 'v'x(rf-p(x),q) 1= (rf-p(t),q), and (rf-p(t),q) 1= 

3x(rf-p(x),q) for any term t. 

Let DO[do] a be definite program clause and P a definite 
program. A most specific inverse linear derivation 
from DO[dO] and P consists of a sequence DO[dO],D}[dI1, ... 
of definite program clauses and a sequence CI,C2, ... of 
variants of definite program clauses in P such that each 
Di+l[dj+I1 is most specific inverse resolved from Cj+l and 
Dj[dj]. A most specific inverse linear derivation of Dk[dkl 
from Do[do] and P is denoted: 
(DO[dO];Cl) 1-.tIR (D}[dl];C2) 1-.tIR ... 1-.tIR Dk[dkl 
or for short (DO[dO];P) 1-.tIR* Dk[dk]· 
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Each result of an inverse linear derivation can be obtained 
from the result of some most specific inverse linear 
derivation, if we apply an inverse substitution, an existential 
substitution, and drop a subset of the optional literals. 

Example: Suppose we have the following clauses 
R=(rf-q), Cl=(P(X)f-q), C2=(Sf-p(a)), C3=(t(b)f-p(b)), 
D=(rf-s,t(x),p(c» and D'[d']=(rf-s,t(b),[p(k),q]). Then 

(R;{Cl,C2,C3}) -IR* D and 
(R; {Cl,C2,C3}) I-J-IR* D'[d']. 
The clause D can be obtained from D'[d'] by application of 
the inverse substitution {(b,{<3,1>})/x} and the existential 
substitution {klc}, and by dropping the optional literal q. 
The most specific inverse linear derivation of D'[d'] looks 
as follows: 

. (R;Cl) I-J-IR «rf-p(k),[q]);C2) I-J-IR 

«rf-s,[p(k),q]);C3) I-J-IR (rf-s,t(b),[p(k),q]). 
That TJ-l, in the two last steps are {(a,<l,l»/k} and 

{ (b, < 1,1> )/k}, and that k then can be replaced by a third 
term c, may seem inconsistent, but it is not. Consider the 
corresponding inverse linear derivation of D from Rand 
{Cl,C2,C3}: 
«rf-q);Cl) I-IR «rf--q,p(c»;Cl) I-IR 

«rf--q,p(b),p(C»;Cl) I-IR «rf--p(a),p(b),p(C));C2) I-IR 

«rf--s,p(b),p(C»),C3) I-IR (rf--s,t(x),p(c)). 

Note that since k has been used as three different terms (a, b 
and c) in the most specific inverse linear derivation, three 
inverse resolution steps are needed to compensate for the 
step where k is introduced. Note also that 8A2={X/C} in the 

first, 8A2={x/b} in the second and 8A2={x/a} in the third 

inverse resolution step. To choose exactly those 
substitutions is hard, but in a most specific inverse linear 
derivation it is not necessary. 

3.3 Truncation Generalization 

A clause Cl 01]-subsumes a clause C2 if there exists a 

substitution 8 and an existential substitution rt such that 

C18~C2TJ· If Cl 8rt-subsumes C2 then CI 1= C2. 

To perform a 01]-truncation is to apply some arbitrary 

existential substitution rt, apply some arbitrary inverse 

substitution 8-1, and drop some arbitrary literals. The 

generalizarion technique 8rt-truncation corresponds to 8rt­
subsumption. 

Let P be a definite program (an incomplete theory) and E 
a definite program clause which should but does not follow 
from P (P 1# E), let D be the set of definite program clauses 

D such that (E;P) I-IR* D, and let lHl be the set of definite 

program clauses H such that Pv{H} 1= E. Since resolution 

is not complete [Rob65] D is a subset of·lHl (D ~ lHl). In 

particular each definite program clause D' that 8TJ-subsumes 

some clause D, where D E D, will be in lHl. This is true 

since Pv{D} 1= E, and D' 1= D, gives us Pv{D'} 1= E. 

Consequently, we can perform any 8rt-truncation on the 

result D of a most specific inverse linear derivation and still 
have an inductive conclusion. 

4 The Method 

In this section a method, which in an easy way realizes 
inverse linear derivations, will be described. Instead of 
performing an inverse linear derivation from the example 
clause E, a variant of ordinary resolution derivation is 
performed from the complement E of E. 

4.1 Complement 

A definite program clause complement set (dpcc-set) 
is set of clauses containing exactly one unit goal and a 
number of unit clauses. 

Let C be a definite program clause (Af-Bt, ... ,Bn), as-l 

an inverse Skolem substitution including all Skolem 
functions in C, and as a Skolem substitution including all 

the universally quantified variables in C. Then the 
complement C of C is the definite program clause 

complement set {( f--A),(B 1 f- ), ... ,(Bnf-) las-lac. Let S 

be a dpcc-set {(f--A),(Blf--), ... ,(Bnf--)}, ac-l an inverse 

Skolem substitution including all Skolem functions in S, 
and as a Skolem substitution including all the universally 

quantified variables in S. Then the complement S of S is 

the definite program clause (Af--Bl, ... ,Bn)ac-las. Thus, 

the complement of a dpcc-set is a definite program clause 
and vice versa. 

Example: Let C be the clause (p(a,x)f--q(k,x,y». Then 

the complement C of C is the definite program clause 

complement set {(f--p(a,kx»,(q(Xk,kx,ky)f-)}, which is 

obtained by application of the inverse Skolem substitution 
{klXk} and the Skolem substitution {x!kx,ylky} on the set of 
clauses {( f-p(a,x»),(q(k,x,y)f--)}. The complement C' of 

C is the definite program clause (p(a,x')f--q(k',x',y'), 

which is obtained by application Qf the inverse Skolem 
substitution {kx/x',ky/Y'} and the Skolem substitution 



{xidk'} on the clause (p(a,kx)f-q(Xk,kx,ky)). The clause C 

is a variant of C, since C=C8 where 8 is the renaming 

substitution {x/x',y/y'}. 

4.2 Clause Set Resolution 

The notion of optional clauses will be used a similar 
same way as optional literals. A set of clauses 
{Cl, ... ,Ck,Ck+l, ... ,Cn}, in which the clauses 
{ C k + 1 , ... , C n } are optional, is denoted 
S[s]={ Cl, ... ,Ck,[Ck+l, ... ,Cn]} where S={Cl. ... ,Ck} and 
S={Ck+I. ... ,Cn}. Consequently, if s=0 then S[s]=S. 

An elementary clause set L is a set of clauses 

containing at most one clause, that is L=0 or L={ C} where 

C is a clause. 

Let Si[Si] be a clause set and L an elementary clause set. 

Then Si+l[Si+11 is clause set resolved from Si[Si] and 
L, denoted (Si[Si];L) I-CSR Si+l[Si+l]' if the following 

conditions hold: 
(a) C is a variant of a clause C in Si[Si]UL. 

(b) D is a clause in Si[SJ. 
(c) R is a resolvent of C' and D. 
(d) 1:1 is the elementary clause set of unit clauses in {C,D}. 

(e) Si+l[Si+Il is the clause set Si+l=(Si-{C,D})u{R}, 

Si+l=Siul:1. 

If D is a definite goal then R will also be a definite goal, 
and we say that Si+dsi+l] is backwardly clause set 
resolved from Si[Si] and L. If both C and D are definite 

program clauses then R will also be a definite program 
clause, and we say that Si+ 1 [Si+ 11 is forwardly clause 
set resolved from Si[Si] and L. 

Let SO[SO] be a clause set and P a definite program. A 
clause set derivation from So[SO] and P consists of a 
sequence SO[so],Sl[sIl, ... of clause sets, and a sequence 
Ll.L2, ... of elementary clause sets, such that each Li is a 

subset of P and each clause set Si+dsi+Il is clause set 
resolved from Si[Si] and Li+l. A clause set derivation of 

Sk[Sk] from SO[SO] and P is denoted: 

(SO[SO];Ll) I-CSR (Sl[SI];L2) I-CSR ." I-CSR Sk[skl or 

(SO[SO];P) I-CSR* Sk[skl. 

A backward clause set derivation is a clause set 
derivation where each Si[Sj] is backwardly clause set 
resolved, and a forward clause set derivation is a 
clause set derivation where each Si[Si] is forwardly clause 
set resolved. 
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Example: Let So={ (f-p(k)),(q(k)f- ),(r(k)f-)} and 

C=(p(x)f-r(x),s(x). Then we have the following backward 

clause set derivation: 
(SO;{C}) I-CSR ({(f-r(k),s(k),(q(k)f-),(r(k)f-)};0) I-CSR 

{( f-s(k»,(q(k)f- ),[(r(k)f-)]}. 

4.3 The Algorithm 

Let P be a definite program and E a definite program clause 
which should but does not follow from P (P I:;t: E). Our 
algorithm to produce an inductive conclusion H looks as 
follows. 

Completion of Refutation Proof Algorithm: 
1. Compute the complement E of E, which is a dpcc-set. 

2. Perform a clause set derivation from P and E of a dpcc­

set H'[h']. 

3. Compute the complement H[h'] of H[h'], which is a 

definite program clause. 
4. Perform a 8Tl-truncation of H[h'] to obtain H. 

The generalization performed in steps 1-3, is called a 
reformulation generalization, which in fact is 
equivalent to performing a most specific inverse linear 
derivation. 

Reconsider the definition of most specific inverse linear 
resolved in section 2. Let {AI, ... ,Am}=C-{A} and 
{Bl, ... ,Bn}=R-{Al, ... ,Am}8A11l-1. Then the clause 

D[d]={ Bl, ... ,Bn }u{ A} 8AI aS2U[ {AI, ... ,Am }8AITl-1] is 

most specific inverse resolved from 
R={Al, ... ,Am}9AlTl-1u{B}, ... ,Bn} and 

C={A }u{Al. ... ,Am}. 

The corresponding reformulation generalization looks as 
follows: 
1. The complement R of R is the dpcc-set 

({ { Ad, ... ,{ Am} }9A11l-lu{ { Bd, ... ,{ Bn} DaSI-laR 

where aSl-1 is an inverse Skolem substitution including all 

Skolem functions in Rand aR is a Skolem substitution 

including all universally quantified variables in R. 

2. The following clause set derivation is performed: 
( R;{C}) I-CSR* D[d] where 

D=({{ Bl}, ... ,{ Bn}}u{{A}9All and 

d=[{ { Ad, ... ,{ Am} } 8AlTl-l])asl-laR. 

3. The complement D[d] of D[d] is the definite program 

clause 

({Bl, .. ·,Bn}u{ A }9AlaS2U[ {Al, ... ,Am}9AlTl-l])9 

where aS2 is a Skolem substitution including all universally 

quantified variables in D[d]aSl and 8 is the renaming 

substitution 8=aSl-1<JR<JR-laSl. 
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Consequently, a most specific inverse linear derivation 
(Do[dO];P) I-J,IR* Dk[dkl 
is equivalent to the clause set derivation 
(SO[SO];P) I--CSR* Sk[skl, 
where SO[so]= DO[dO], Dk[dk]= Sk[Sk]S and S is a 

renaming substitution. 

Example: Let R=(r(a,z)~q(z)), CI =(p(x,y)~q(y)), 

C2=(s(w,y)~p(b,y)), DI=(r(x,z)~s(c,z)), D2=(r(x,z)~) 

and D[d]=(r(a,z)~s(kw,z),[p(kx,z),q(z)]) Then 

(R;{CI,C2}) I-J,IR* D[d], and 
(R;{Cl,C2}) I-IR* DI. 
Although D2 is not inverse linear derivable, it is still an 
inductive conclusion, since {Cl,C2,D2} 1= R. 
With our algorithm D'[d'], DI' and D2', which are equal to 
D[d], DI and D2 up to variable renaming, are constructed in 
the following way: 
1. The complement R of R is the dpcc-set 

{( ~r(a,kz)),(q(kz)~)}. 

2. The following clause set derivation is performed: 

( R;{Cd) I--CSR 

({ (~r(a,kz)),(p(x,ky)~ ),[(q(kz)f--)]); {C2}) I--CSR D[d], 

where 
D[d]={ (~r(a,kz)),(s(w,kz)~),[(p(x,ky)~),(q(kz)~)]}. 

3. The complement D'[d'] of D[d] is the definite program 

clause 
(r(a,z')~ s(kw,z') ,[p(kx ,z') ,q (z')]). 

4. By application of the inverse substitution 
{(a,{ <1,1> })/x} and the existential substitution {kw/c} and 
by dropping the optional literals, DI'=(r(x,z')~s(c,z')) is 

obtained. 
If the last negative literal in DI' also is dropped then 
D2'=(r(x,z')~) is obtained. 

Steps 2 and 4 in the completion of refutation proof 
algorithm are indeterministic. The use of a preference bias 
can make them deterministic. Such a preference bias must 
specify which clause set is the most preferable result of the 
clause set derivation (reformulation bias), and which 
generalization should be done in the STl-truncation 

(truncation bias). 

The algorithm is implemented in a system, called CRPl, 

in which a depth first search is used to find the best dpcc-set 
H[h'] according to some given preference bias. 

4.4 Integrating Top down and Bottom up 
Induction 

Backward inverse linear derivations correspond to top down 
induction, and forward inverse linear derivations correspond 
to bottom up induction. In our method, backward clause set 
derivations correspond to top down induction, and forward 
clause set derivations correspond to bottom up induction. 
Each step in a clause set derivation can be either backwardly 
or forwardly clause set resolved. Consequently, in our 
method (and in the system CRP1) top down and bottom up 
induction are completely integrated. 

Example: Let E=(p~q,t,u) and P={ (p~q,r),(s~t,u)}. 

Then the inductive conclusion HI =(r~t,u) is inferable by 

top down induction (backward inverse linear derivation), 
but not by bottom up induction (forward inverse linear 
derivation). The inductive conclusion H2=(P~q,s) is 

inferable by bottom up induction, but not by top down 
induction. The inductive conclusion H3=(r~s) can only be 

inferred by a method that combines top down and bottom up 
induction. With our algorithm the clause H3 is constructed 
as follows: 
1. The complement E of E is the dpcc-set 

{(~p),(q~ ),(t~),(u~)}. 

2. The following clause set derivation is performed: 
( E; { (p~q,r)}) I--CSR 

({ (~q,r),(q~ ),(t~ ),(u~) };0) I--CSR 

({ (~r),(t~ ),(u~),[(q~ )]};{ (s~t,u)}) I--CSR 

({(~r),(s~u),(u~),[(t~),(q~)]};0) I--CSR H3[h3] 

where H3[h3]={ (~r),(s~ ),[(u~ ),(t~ ),(q~)]} 

3. The complement H3[h3] of H3[h3] is the definite 

program clause (r~s,[u,t,q]). 

4. By dropping the optional literals H3=(r~s) is obtained. 

The first two steps in the clause set derivation are 
backwardly clause set resolved (top down induction) and the 
last two steps are forwardly clause set resolved (bottom up 
induction). 

5 Concluding Remarks 

Some extensions to the inverse resolution framework and a 
new inverse resolution method have been presented. This 
method subsumes the previous methods based on inverse 
resolution and completely integrates top down and bottom 
up induction. 



Reconsider the definition of inverse resolved in section 2. 
If we let A be a positive literal, SA2=0 and r=(C-{A})SA 

then it is a definition of the absorption operator [Muggelton 
and Buntine 1988]. If we let A be a positive literal, SA2=0, 

r=0 and SB-1=0 then it is a definition of elementary 

saturation [Rouveirol and Puget 1990]. The saturation 
operator [Rouveirol and Puget 1990] is equal to an 
exhaustive forward inverse linear derivation, in which each 
step is restricted according to elementary saturation. If we let 
A be a positive literal, SA2=0, r=(C-{A})SA and SB-1=0 

then it is a definition of the learning procedure called 
generalize in [BaneIji 1991]. If we let A be a negative literal, 
SA2=0 and r=(C-{A})SA then it is a definition of the 
identification operator [Muggelton and Buntine 1988]. 

Since our method performs inverse linear derivations 
without any restrictions on A, SA2, r or SB-1, all the 

methods mentioned above can be seen as special cases of 
our method. 

Our notion of optional literals is the same as in 
[Rouveirol and Puget 1990]. Our Srt-truncation is similar to 

the truncation generalization in [Rouveirol and Puget 1990] 
and the truncation operator in [Muggelton and Buntine 
1988], which both correspond to S-subsumption. 

Wirth [Wirth 1989] and Rouveirol [RouveiroI1991] have 
both pointed out the advantages of combining top down and 
bottom up induction. In [Wirth 1989], a system called LFP2, 
which uses both top down and bottom up induction is 
presented. However, the different induction strategies are 
separated into different parts of the system. The first part 
(top down) is based on completion of partial proof trees, 
while the second part (bottom up) is based on operators 
performing inverse resolution. The second part uses the 
result from the first part, and different types of bias are used 
in the different parts. Our method has the major advantage 
that the two different induction strategies are completely 
integrated, which not only eliminates the restrictions that 
they imply when separated, but also makes possible the use 
of an overall preference bias. 

The main contributions of this research are: 
1. A complete integration of top down and bottom up 

induction. 
2. Introduction of existentially quantified variables, which 

makes it possible to uniquely determine the most 
specific inverse resolvent. 

3. A method to perform inverse resolution for full Hom 
clause logic by using resolution. 
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Abstract motifs are not in the inside of the transmembrane do­

This paper describes a machine learning syst.em that dis­
covered a "negat.ive mot.if", in transmembrane domai~ 
ident.ificat.ion from amino acid seqnences, and report.s it.s 
experiments on protein dat.a using PIR database. We in­
t.roduce a decision tree whose nodes are labeled wit.h reg­
ular pat.terns. As a hypothesis, t.he system produces such 
a decision tree for a small number of randomly chosen 
posit.ive and negat.ive examples from PIR. Experiments 
show t.hat our syst.em finds reasonable hypotheses very 
successfully. As a theoret.ical foundat.ion, we show t.hat. 
the class of languages defined by decision trees of depth 
at most dover k-variahle regular patterns is polynomial­
time learnable in the sense of probably approximately 
correct (PAC) learning for any fixed d, k ~ O. 

1 Introduction 

Hydrophobic transmembrane domains can be ident.ified 
by a very simple decision tree over regular patterns. This 
result was discovered by the machine learning system we 
developed. The system takes some training sequences of 
positive and negative examples, and produces a hypoth­
esis explaining them. When a small number of positive 
and negative examples of transmembrane domains were 
given as input, our system found a small decision tree 
over regular patterns as a hypothesis. Although the hy­
pothesis is made from just 10 positive and 10 negative 
examples, it can explain all data in PIR database [PIR] 
with high accuracy more than 90%. The hypothesis ex­
hibits that "two consecutive polar amino acids" (Arg, 
Lys, His, Asp, Glu, GIn, Asn) are not included in the 
tl'ansmembrane domains. This indicates that significant 
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mains but in the outside. We call such motifs "negative 
motifs." 

This paper describes a machine learning system t.o­
gether wit.h a background theory that discovered such 
negative motifs, and reports its experiments on knowl­
edge acquisition from amino acid sequences that reveal 
the importance of negative data. Traditional approaches 
to motif-searching are to find subsequences common 
to functional domains by various alignment techniques. 
lIenee the eyes are focused only on positive examples, 
and negative examples are mostly ignored. Our approach 
by decision trees over regular patterns provides new di­
rection and method for discovering motifs. 

A regular pattern [Shinohara 1982, Shinohara 1983] 
is an expression WOXI WI X2 ••• Xn Wn that defines the se­
quences containing Wo, Wt, ... , Wn in this order, where 
each 'IDi is a sequence of symbols and Xj varies over 
arbitrary sequences. Regular patterns have been used 
to describe some features of amino acid sequences in 
PROSITE database [Bairoch 1991] and DNA sequences 
[Arikawa et al. 1992, Gusev and Chuzhanova 1990]. 
Our view to these sequences is through such regular pat­
terns. A decision tree over regular patterns is a tree 
which describes a decision procedure for determining the 
class of a given sequence. Each node is labeled with ei­
ther a class name (lor 0) or a regular pattern. At a 
node with a regular pattern, the decision tree tests if the 
sequence matches the pattern or not. Starting from the 
root toward a leaf, the decision procedure makes a test 
at each node and goes down by choosing the left or right 
branch according to the test result. The reached leaf an­
swers the class name of the sequence. Such decision trees 
are produced as hypotheses by our machine learning sys­
tem. Since the system searches a decision tree of smaller 
size, regular patterns on the resulting decision tree ex­
hibit motifs which play a significant role in classifica­
tion. Hence, compared with neural network approaches 
[Holly and Karplus 1989, Wu et al.]' our system shows 
important motifs in a hypothesis more explicitly. 



We employ the idea of ID3 algorithm [Quinlan 1986, 
Utgoff 1989] for constructing a decision tree since it is 
sufficiently fast and experiments show that small enough 
trees are usually obtained. We also devise a new method 
for constructing a decision tree over regular patterns us­
ing another evaluation function. Given two sets of posi­
tive and negative examples, our machine learning system 
finds appropriate regular patterns as node attributes dy­
namically during the construction of the decision tree. 
Hence, unlike ID3, we need not assume any concrete 
knowledge about attributes and can avoid struggles from 
defining the attributes of a decision tree beforehand. Our 
system makes a decision tree just from a small num­
ber of training sequences, which we also guarantee with 
the PAC learning theory [Valiant 1984] in some sense. 
Therefore it may cope with a diversity of classification 
problems for proteins and DNA sequences. 

We made an experiment on raw sequences from twenty 
symbols of amino acid residues. The system discovered a 
small decision tree just from 20 sequences with more than 
85% accuracy that show if a sequence contains neither E 

nor D (both are polar amino acids) then it is very likely 
to be a transmembrane domain. 

A hydropathy plot [Engelman et al. 1986, Kyte and 
Doolittle 1982, Rao and Argos 1986] has been used gener­
ally to predict transmembrane domains from primary se­
quences. With this knowledge, we first transform twenty 
amino acids to three categories (*, +, -) according to the 
hydropathy index of Kyte and Doolittle [1982]. From 
randomly chosen 10 positive and 10 negative training ex­
amples, our system has successfully produced some small 
decision trees over regular patterns which are shown to 
achieve very high accuracy. The regular patterns appear­
ing in these decision trees indicate that two consecutive 
polar amino acid residues are important negative motifs 
for transmembrane domains. From the view point of Ar­
tificial Intelligence, it is quite interesting that the polar 
amino acid residues D and E were found by our machine 
learning system without any knowledge on the hydropa­
thy index. 

After knowing the importance of negative motifs, we 
examined decision trees with a single node with regular 
patterns XI-X2-' • '-Xn for n ~ 3. The best is the pattern 
XI-X2-X3-X4-XS-X6 that gives the sequences containing 
at least five polar amino acids. The result is very ac­
ceptable. The accuracy is 95.4% for positive and 95.0% 

. for negative examples although it has been believed to 
be difficult to define transmembrane domains as a simple 
expression when the view point was focussed on positive 
examples. 

619 

2 Decision Trees over Regular 
Patterns 

Let E be a finite alphabet and X = {x, y, Z, Xl, X2,' .. } 

be a set of variables. We assume that E and X are dis­
joint. A pattern is an element of (E U X)+, the set of 
all nonempty strings over E U X. For a pattern 7r, the 
language L( 7r) is the set of strings obtained by substitut­
ing each variable in 7r for a string in E*. We say that a 
pattern 7r is regular if each variable occurs at most once 
in 7r. For example, xaybza is a regular pattern, hut xx 
is not. Obviously, regular patterns define regular lan­
guages, but not vice versa. In this paper we consider 
only regular patterns. A regular pattern containing at 
most k variables is called a k-variable regular pattern. 

A decision tree over regular patterns is a binary tree 
such that the leaves are labeled with 0 or 1 and each 
internal node is labeled with a regular pattern (see Fig­
ure 1). For an internal node v, we denote the left and 
right children of v by left ( v) and right( v), respectively. 
We denote by 7r( v) the regular pattern assigned to the 
internal node v. For a leaf tt, value( u) denotes the value 
o or 1 assigned to u. The depth of a tree T, denoted by 
depth(T), is the length of the longest path from the root 
to a leaf. 

For a decision tree T over regular patterns, we define 
a function fT : E* -+ {O, I} as follows. For a string w 
in E*, we determine a path from the root to a leaf and 
define the value fT( w) by the following algorithm: 

begin /* Input: w E E* */ 
v +- root; 
while v is not a leaf do 

if w E L( 7r( v)) then v +-right( v) 
else v +-left( v); 

fT( w) +- value( v) 
end 

For a decision tree T over regular patterns, we define 
L(T) = {w E E* I fT(W) = I}. It is easy to see that L(T) 
is also a regular language. But the converse is not true. 
Let L = {a2n I n ~ I}. It is straightforward to show that 
there is no decision tree T over regular patterns with L = 
L(T). The same holds for the language {a2n b I n ~ I}. 

3 Constructing Decision Trees 

This section gives two kinds of algorithms for construct­
ing decision trees over regular patterns that are used in 
our machine learning system. 

The first algorithm employs the idea of ID3 algorithm 
[Quinlan 1986] in the construction of decision trees. The 
ID3 algorithm assumes data together with explicit at­
tributes in advance. On the other hand, our approach 
assumes a space of regular patterns which are simply 
generated by given positive and negative examples. No 
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Figure 1: Decision tree over regular patterns defining a lan­
guage {ambna l I m,n,12 I} over ~ = {a,b} 

extra knowledge about data is required. Although the 
space may be large and contain meaningless attributes, 
our algorithm finds appropriate regular patterns from 
this space dynamically during the construction of a de­
cision tree in a feasible amount of time. This is a point 
which is very suited for our empirical research. 

Let P and N be finite sets of strings with P n N = 0. 
Using P and N, we deal with regular patterns of the form 
'tVOXl'WIX2 ••• XkWk such that 'tVa, ••• , 'Wk are substrings of 
some strings in PuN. Let II(P, N) be some family of 
such regular patterns made from P and N. The family 
II(P, N) is appropriately given and used as a space of 
attributes. 

For a regular pattern 7r E II( P, N), the cost E( 7r, P, N) 
is the one defined in [Quinlan 1986] by 

where PI (resp. nd is the number of positive examples 
in P (resp. negative examples in N) that match 7r, i.e., 
PI = IP n L(7r)I, nl = IN n L(7r)I, and Po (resp. no) 
is the number of positive examples in P (resp. negative 
examples in N) that do not match 7r, i.e., Po = IPnL(7r)I, 
no = IN n L(7r)I, L(7r) = ~* - L(7r), and 

I(x,y) 

= { 
o (if x = 0 or y = 0) 

x x y y . 
---log -- - --log -- (otherwIse). 

x+y x+y x+y x+y 

The first algorithm DT1(P,N) (Algorithm 1) sketches 
our decision tree algorithm for II(P, N), where 
CREATE( 7r, To, Td returns a new tree with a root la­
beled with 7r whose left and right subtrees are To and 1'1, 
respectively. 

The second algorithm uses a different evaluation func­
tion. For a decision tree T over regular patterns, let 
nodes(T) be the number of nodes in T, and T(T) be the 
set of trees constructed by replacing a leaf v of T by the 
tree of Fig. 2 (a) or Fig. 2 (b) for some pattern 7r. 

The score function Score(T, P, N) balances the infor-

function DT1 ( P, N : sets of strings ): node; 
begin 

if N = 0 then 
return( CREATE("l", null, null) ) 

else if P = 0 then 
return( CREATE("O", null, null) ) 

else begin 

end 

Find a shortest pattern 7r in II(P, N) 
that minimizes E(7r, P, N); 
PI +- P n L(7r); Po +- P - PI; 
NI +- N n L(7r); No +- N - NI; 
return(CREATE(7r,DTl (Po, No),DT1(P1 , Nd)) 
end 

Algorithm 1 

ct~t cf~ 
(a) (b) 

Figure 2: A leaf is replaced by (a) or (b) for some pattern 1r. 

function DT2( P, N: sets of strings, 
AfaxNode: int ) : tree; 

begin 
if N = 0 then 

return( CREATE("l", null, null) ) 
else if P = 0 then 

return( CREATE("O", null, null) ) 
else begin 

T +-CREATE("l", null, null); 
while ( nodes(T) < !lfaxN ode 

and Score(T, P, N) < 1 ) do 
begin 

end 

find Tmax E T(T) 
that maximizes Score(Tmax , P, N); 

T +- Tmax 
end 

return ( T ) 
end 

Algorithm 2 

mation gains in classification and is defined as 

S (T P N) = IP n L(T)I . IN n L(T)I 
core , '. IPI INI· 

The second algorithm DT2(P, N,MaxNode) (Algorithm 
2) checks all leaves at each phase of a node generation 
using the evaluation function Score(T, P, N). 

Algorithm 2 is slower than Algorithm 1 since all leaves 
are checked at each phase of a node generation. However, 



Algorithm 2 constructs decision trees which are finely 
tuned when the size of decision trees is large. More­
over, it is noise-tolerant, i.e., it allows conflicts between 
positive and negative training examples. If the size of 
Il(P, N) is polynomial with respect to the size of P and 
N, then these algorithms run in polynomial time. 

4 Transmembrane 
Identification 

Domain 

The problem of transmembrane domain identification is 
one of the most important protein classification problems 
and some methods and experiments have been reported. 
For example, Hartman et a1. [1989] proposed a method 
using the hydropathy index for amino acid residue'S in 
[Kyte and Doolittle 1982]. The reported success rate is 
about 75%. Most approaches deal with positive exam­
ples, i.e., sequences corresponding to transmembrane do­
mains, and try to find properties common to them. 

The sequence in Figure 3 is an amino acid sequence of 
a membrane protein. There is a tendency to assume that 
a membrane protein contains several transmembrane do­
mains each of which consists of 20 '" 30 amino acid 
residues. Therefore, if a sequence corresponding to a 
transmembrane domain is found in an amino acid se­
quence, it is very likely that the protein is a membrane 
protein. 

Our idea for transmembrane domain identification is 
to use decision trees over regular patterns for classifica­
tion. Algorithm 1 and 2 introduced in Section 3 are used 
to find good decision trees from positive and negative 
training examples. In order to avoid combinatorial ex­
plosion, we restrict the space of attributes to the regular 
patterns of the form 

xay, 

where x and yare variables and a is a substring taken 
from given examples. 

In our experiments, a positive example is a sequence 
which is already known to be a transmembrane domain. 
A negative example is a sequence of length around 30 cut 
out from the parts other than transmembrane domains. 
The length 30 is simply due to the reasonable length of 
a transmembrane domain. From PIR database our ma­
chine learning system chooses randomly two small sets 
P and N of positive and negative training examples, re­
spectively. Then, at each trial, by using Algorithm 1 or 
Algorithm 2, the system tries to construct a small deci-' 
sion tree over regular patterns which classifies P and N 
exactly. 

We have evaluated the performance ratio of a pro­
duced decision tree in the following way. As the total 
space of positive examples, we use the set POS of all 

. transmembrane domain sequences (689 sequences) from 
PIR database. The total space NEG of negative ex­
amples consists of 19256 negative examples randomly 
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chosen from all proteins from PIR. The success rate of 
a decision tree for positive examples is the percentage 
of the positive examples from POS recognized as posi­
tive (class 1). The success rate for negative examples is 
counted as the percentage of the negative examples from 
NEG recognized as negati\'f~ (class 0). 

Fignre 5 (a) is one of the sma llest df'cision tref'S discov­
f'rf'd hy our system just from 10 posit.ivc and 10 lwgative 
raw sequences that achif've good accuracy. The perfor­
mance ratio is (81.8%,89.6%) for all data in POS and 
NEG, respectively. This decision trf'e suggests that if 
a seque'nce of length around :30 contains neitllfT D not 
E then it is Vf'ry likely to be a part of transmemhrane 
domain. 

The alphahet of amino acid sequences consists of 
tWf'nty symhols. It has bcen shown that the use of 
the hydropat hy indf'x for amino acids is Vf'ry successful 
[Arikawa et al. 1992, Hartmann et al. 1989]. According 
to the hydropathy indf'x of [Kyte and Doolittle 1982], 
we transform t l1<'se twent.y symbols to three symbols as 
shown in Tahle 1. This t.ransformation reduces the size 
of a search spa,e drastically small while less information 
is, fortunately, lost in classification. 

Then by this transformation table, the sequence in 
Figure 3 becomes the sequence in Figure 4. 

Figure 5 (b), (c) show two of the best decision trees 
over regular patterns that our machine learning sys­
tem found from 10 positive and 10 negative train­
ing examples. The decision tree (b) recognizes 91.4% 
of positive examples and 94.8% of negative examples. 
Even the decision tree of (c) can recognize 92.6% of 
the positive examples and 91.6% of the negative ex­
amples. The negative motif "--" which indicates con­
secutive polar amino acid residues plays a key role 
in classification. This may have a close relation to 
the signal-anchor structure that consists of two parts, 
the hydrophobic part of a membrane-spanning sequence 
and the charged residues around the hydrophobic part 
[Lipp et al. 1989, Von Heijine 1988]. 

The decision tree (a) also shows the importance of a 
cluster of polar amino acids in transmembrane domain 
identification although our machine learning system as­
sumed no knowledge ahout the hydropathy. 

VVe examined how the performance of our machine 
learning system changes with respect to the number of 
training examples. The training examples are chosen 
randomly ten times in each case and a point of the graph 
of Figure 6 is the average of these ten results for each 
case. Figure 6 shows the results. We may observe the 
following facts: 

1. The hydropathy index of Kyte and Doolittle 
[Kyte and Doolittle 1982] is very useful. \Vhen in­
dexed sequences are used, the system can produce 
from 40 positive and 40 negative examples a decision 
tree with only several nodes whose accuracy is more 
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MDVVNQLVAGGQFRVVKE(PLGFVKVLQWVFAIFAFATCGSY)TGELRLSVECANKTESALNIEVEFEYPFRLHQVYFDA 
PSCVKGGTTKIFLVGDYSSSAE(FFVTVAVFAFLYSMGALATYIFL)QNKYRENNK(GPMMDFLATAVFAFMWLVSSSAW 
A)KGLSDVKMATDPENIIKEMPMCRQTGNTCKELRDPVTS(GLNTSVVFGFLNLVLWVGNLWFVF)KETGWAAPFMRAPP 
GAPEKQPAPGDAYGDAGYGQGPGGYGPQDSYGPQGGYQPDYGQPASGGGGYGPQGDYGQQGYGQQGAPTSFSNQM 

Figure 3: An amino acid sequence which contains four transmembrane domains shown by the parenthesized parts. 

Amino Acids Hydropathy Index New Symbol 
A M C F L V I 1.8 I"V 4.5 -+ * 
P Y W S T G -1.6 I"V -0.4 -+ + 
R K DEN Q H -4.5 I"V -3.2 -+ 

Table 1: Transformation rules 

*-**--***++-*-**--(+*+**-**-+********+*+++)++-*-*+*-**--+-+**-*-*-*-++*-*--*+*-* 
++**-++++-****+-++++*-(***+*******++*+***++***)---+-----(++**-***+******+**+++*+ 
)-+*+-*-**+-+--**--*+**--++-+*--*--+*++(+*-++***+**-***+*+-*+***)--+++**+**-*++ 
+*+---+*++-*++-*+++-+++++++--++++-+++-+-++-+*++++++++-+-++--+++--+*+++*+--* 

Figure 4: The sequence obtained by the transformation 

no~yes 
cD ® 

[6.5%,3.9%] [4.4%,13.0%] [91.4%,5.2%] [1.2%,3.2%] [92.6%,8.4%]. [7.4%,91.6%] 

(a) (84.8%, 89.6%) (b) (91.4%,94.8%) (c) (92.6%, 91.6%) 

Figure 5: The node label, for example, -- is an abbreviation of XI--X2 that tests if a given sequence contains the sequence 
--. The leaf label 1 (resp. 0) is the class name of transmembrane domains (resp. non-transmembrane domains). The total 
space consists of 689 positive examples and 19256 negative examples. Each of the decision trees (a)-( c) is constructed from 10 
positive and 10 negative training sequences. The pair [P%, n%] attached to a leaf shows that p% of positive examples and n% 
of negative examples have reached to the leaf. The pair (p%,n%) means that p% of 689 positive (resp. n% of 192.56 negative) 
examples are recognized as transmembrane domains (resp. non-transmembrane domains). 

than 90% for the total space in average. On the 
other hand, for raw sequences the accuracy is not so 
good but both accuracies approach to the same line 
as the number of training examples increases. 

2. The number of nodes of a decision tree is reasonably 
small. But when the number of training examples 
is larger, the number of nodes in a decision tree be­
comes larger while the accuracy is not improved very 
much. There may arise the problem of overfitting. 

A new discovery obtained from these decision trees 
is that the motif "--" drastically rejects positive exam­
ples. After knowing the negative motif "--", we have 
examined the decision trees with a single node with the 
patterns of the form 

for n ~ 3. The best is the pattern containing "-" five 
times. The result is quite acceptable as shown in Table 
2. 
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Figure 6: Relations between the number of training exa.mples, accuracy and the number of nodes in a decision tree 

Pattern POS (689) NEG (19256) 
18296 (95.0%) 

With these decision trees over regular patterns, we 
have developed a transmembrane domain predictor that 
reads an amino acid sequence of a protein as an input 
and predicts symbol by symbol whether each location of 
a symbol is in a transmembrane domain or not. Exper­
iments on all protein sequences in PIR show that the 
success rate is 85% f'V 90%. 

5 PAC-Learnable Class 

This section provides a theoretical foundation on the 
classes of sets classified by decision trees over regular 
patterns from the point of algorithmic learning theory 
[Valiant 1984]. 

For integers k, d ~ 0, we consider a decision tree T over 
k-variable regular patterns whose depth is at most d. We 
denote by DTRP(d, k) the class of languages defined by 
decision trees over k-variable regular patterns with depth 
at most d. 

Theorem 1 DTRP( d, k) is polynomial-time learnable 
for alld, k ~ o. 

We need some terminology for the above theorem. 
When we are concerned with learning, we call a subset of 

:E* a concept. A concept class C is a non empty collection 
of concepts. For a concept c E C, a pair (x, c(x)) is called 
an example of c for x E :E*,where c(x) = 1 (c(x) = 0) if 
x is in c (is not in c). For an alphabet :E and an integer 
n ~ 0, :E$n denotes the set {x E :E* Ilxl ::; n}. 

A concept class C is said to be polynomial-time learn­
able [Blumer et al. 1989, Natarajan 1989, Valiant 1984] 
if there is an algorithm A which satisfies (1) and (2). 

(1) A takes a sequence of examples as an input and runs 
in polynomial-time with respect to the length of in­
put. 

(2) There exists a polynomial p("".) such that for any 
integer n ~ 0, any concept c E C, any real number 
e, 8 (0 < e,8 < 1), and any probability distribution 
P on :E$n, if A takes p(n,;, t) examples which are 
generated randomly according to P, then A outputs, 
with proba.bility. at least 1 - 8, a representation of a 
hypothesis h with P(cEB h) < e. 

Theorem 2 [Blumer et al. 1989, Natarajan 1989] A 
concept class -C is polynomial-time learnable if the fol­
lowing conditions hold. 

1. C is of polynomial dimension, i.e., there is a polyno­
mial d(n) such that I{c n :E$n IcE C}I :::; 2d(n) for 
all n ~ O. 

2. There is a polynomia.l-time algorithm called a 
polynomial-time hypothesis finder for C which pro­
duces a hypothesis from a sequence of examples such 
that it is consistent with the given examples. 
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Moreover, the polynomial-time hypothesis finder for C 
is a learning algorithm satisfying (1) and (2) if C satisfies 
1. 

The following lemma can be easily shown. 

Lemma 1 Let T be a decision tree over regular patterns 
and Tv be a subtree of T at node v. We denote Tv by 
7r(To, TJ), where 7r is the label of node v and To, Tl are 
the left and right subtrees of Tv, respectively. Let S be a 
set of strings and let T' be the tree obtained from T by 
replacing Tv wit.h To at node v. If no string in S matches 
7r, then L(T) n S = L(T') n S. 

Proof of Theorem 1. 
First we show that the concept class DTRP( d, k) is of 

polynomial dimension. Let DTRP(d, I.~)n = {L n ~~n I 
L E DTRP( d, I.:)} for n 2: O. \Ve evaluate the cardinality 
of DTRP(d, k)n. Let 7r be a regular pattern with 17r1 > 
n + k, then no string of length at most n matches 7r. By 
Lemma 1, we need to consider only regular patterns of 
length at most n + k. The number of such patterns is 
roughly bonnded by (I~I + 1 )n+k. Since a tree of depth 
bounded by d has at most 2d - 1 internal nodes and at 
most 2d leaves, IDTRP(d, k)nl ::; ((I~I + 1)n+k?d-1 ·22d 

This shows that the dimension of DTRP(d, k)n is O(n). 
Next we show that there is a polynomial-time hypoth­

esis finder for DTRP(d, k). Let P and N be the sets of 
strings which appear in positive and negative examples, 
respectively. Let TI (I.:, P, N) be the set of regular pat­
terns 7r up to renaming of variables such that it contains 
at most k variable occurrences and 7r() is a substring of 
some s in PuN. By Lemma 1, we need to consider only 
patterns in TI( I.~, P, N) in order to find a decision tree over 
regular patterns which is consistent with P and N. Then 
ITI(k, P, N)I ::; LSEPUN((lsI2 )k+1

). Therefore the number 
of possible trees is bounded by (ITI(k, P, N)1)2

d
-l . 22d , 

which is bounded by a polynomial with respect to the 
input length LSEPUN lsi· 

It is known that, given a regular pattern 7r and string 
W, we can decide in polynomial time whether w matches 
7r or not. Therefore, given a string wand a decision 
tree T over k-variable regular patterns whose depth is 
at most d, we can decide whether w E L(T) or not in 
polynomial-time. 

The required polynomial-time algorithm enumerates 
decision trees T over regular patterns in TI(k, P, N) with 
depth at most d. Then it checks whether s E L(T) for 
each s E P and t ~ N for each tEN. If such a tree T is 
found, the algorithm outputs T as a hypothesis. D 

\Ve should say that the polynomial-time learning algo­
rithm in the proof of Theorem 1 exhausts an enormous 
amount of time and is not suited for practical use. 

We may understand the relationship of Algorithms 1 
and 2 in Section 3 to Theorem 1 in the following way: 

\Vhen we set n(p, N) to be the family of k-variahle regu­
lar patterns made from P and N, Algorithms 1 and 2 run 
sufficiently fast in practicalnse (of conrse, in polynomial­
time) and produce a decision tree over I.~-variable regular 
patterns which classifies given positive and negative ex­
amples. But the produced decision tree is not guaranteed 
to be of depth at most d. Hence, these algorithms are 
not any learning algorithm in the exact sense of (2). 

However, experiences tell that these algorithms usu­
ally find small enough decision trees over regular pat­
terns in our experiments on transmembrane domains. 
For the class DTRP(d, I.:), Theorem 2 asserts that if a 
polynomial-time algorithm A produces a decision tree 
over k-variable regular patterns with depth at most d 
which classifies given positive and negative examples 
then it is a polynomial-time learning algorithm. In 
this sense, we may say that Algorithms 1 and 2 are 
polynomial-time algorithms for DTRP(d, I.~) which of­
ten produce reasonahle hypotheses although there is no 
mathematical proof showing how often snch small hy­
potheses are obtained. This aspect is very important 
and useful when we are concerned with machine discov­
ery. 

Ehrenfeucht and Haussler [1989] have considered 
learning of decision trees of a fixed rank. For learning 
decision trees over regular patterns, the restriction by 
rank can be shown to have no sense. Instead, we con­
sider the depth of a decision tree. It is also reasonable 
to put a restriction on the number of variables in a reg­
ular pattern. It has been shown that the class of regular 
pattern languages is not polynomial-time learnable un­
less NP =1= RP [Miyano et al. 1991]. Therefore, unless 
restrictions such as bound on the number of variables 
in a regular pattern are given, we may not expect any 
positive results for polynomial-time learning. 

6 Conclusion 

We have shown that the idea of combining regular pat­
terns and decision trees works quite well for transmem­
brane domain identification. The experiments also have 
shown the importance of negative motifs. 

A union of regular patterns is regarded as a special 
form of a decision tree called a decision list. We have 
reported in [Arikawa et al. 1992] that the union of small 
number of regular patterns can also recognize transmem­
brane domains with high accuracy. However, the time 
exhausted in finding hypotheses in [Arikawa et al. 1992] 
is much larger than that reported in this paper. 

Our system constructs a decision tree over regular pat­
terns just from strings called positive and negative ex­
amples. We need not take care of which attribut~s to 
specify as in ID3. Therefore it can be applied to 'another 
classification problems for proteins and DNA sequences. 
We believe that our approach provides a new application 



of algorithmic learning to Molecular Biology. 
We are now in the process of examining our method 

for some other related problems s11ch as predicting the 
secondary structure of proteins. 
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Abstract 

A large hypothesis space makes the version space 
approach, like any other concept induction algorithm based 
on hypothesis ordering, computationally inefficient. 
Working with smaller composable concept languages rather 
than one large concept language is one way to attack the 
problem, in that it allows us to do part of the induction job 
within the more convenient languages and move to the less 
convenient languages when necessary. In this paper we 
investigate the use of multiple concept languages in a 
version space approach. We define a graph of languages 
ordered by the standard set inclusion relation, and provide 
a procedure for efficiently inducing version spaces while 
shifting from small to larger concept languages. We apply 
this method to the attribute languages of a typical 
conjunctive concept language (i.e., a conjunctive concept 
language defined on a tree-structured attribute-based 
instance space) and compare its complexity to that of a 
standard version space algorithm applied to the full concept 
language. Finally we contrast our approach with other 
work on language shift, outlining an alternative highly­
constrained strategy for searching the space of new 
concepts which is not based on constructive operators. 

1 Introduction 

Of all the algorithms for incremental concept induction that 
are based on the partial order defined by generality over the 
concept space, the candidate elimination (CE) algorithm 
[Mitchell 1982] is the best known exemplar. The CE 
algorithm represents and updates the set of all concepts that 
are consistent with data (Le. the version space) by 
maintaining two sets, the set S containing the maximally 
specific concepts and the set G containing the maximally 
general concepts. The procedure to update the version 
space is as follows. A positive example prunes concepts in 
G which do not cover it and causes all concepts in S which 
do not cover the example to be generalized just enough to 
cover it. A negative example prunes concepts in S that 
cover it and causes all concepts in G that cover the example 
to be specialized just enough to exclude it. As more 
examples are seen, the version space shrinks; it may 
eventually reduce to the target concept provided that the 
concept description language is consistent with the data. 

This framework has been later improved along several 
directions. The first is that of incorporating the domain 
knowledge available to the system in the algorithm; this has 
resulted in feeding the CE algorithm with analytically-

generalized positive examples (e.g., [Hirsh 1989], 
[Carpineto 1990]), and analytically-generalized negative 
examples (e.g., [Carpineto 1991]). Another research 
direction is to relax the assumption about the consistency of 
the concept space with data. In fact, like many other 
learning algorithms, the CE algorithm uses a restricted 
concept language to incorporate bias and focus the search 
on a smaller number of hypotheses. The drawback is that 
the target concept may be contained in the set of concepts 
that are inexpressible in the given language, thus being 
unleamable. In this case the sets Sand G become empty: to 
restore consistency the bias must be weakened adding new 
concepts to the concept language [Utgoff 1986]. Thirdly, 
the CE algorithm suffers from lack of computational 
efficiency, in that the size of S and G can be exponential in 
the number of examples and the number of parameters 
describing the examples [Haussler 1988]. Changes to the 
basic algorithm have been proposed that improve efficiency 
for some concept language [Smith and Rosenbloom 1990]. 

In this paper we investigate the use of multiple concept 
languages in a version space approach. By organizing the 
concept languages into a graph corresponding to the 
relation larger-than implicitly defined over the sets of 
concepts covered by the languages, we have a framework 
that allows us to shift from small· to larger concept 
languages in a controlled manner. This provides a powerful 
basis to apply a general divide-and-conquer strategy to 
improve the efficiency of a standard version space 
approach in which the concept description language is 
factorizable. The idea is to start out with the smallest 
concept languages (Le., the factor languages) and, once the 
version spaces induced over them have become 
inconsistent with the data, to move along the graph of 
product languages to the maximally small concept 
languages that restore consistency. Working with smaller 
concept languages may greatly reduce the size of S and G, 
thus resulting in a neat improvement in efficiency. On the 
other hand, use of several languages in parallel and 
language shifts negatively affect complexity. Therefore the 
two main objectives of the paper are : (1) define a set of 
languages and a procedure for inducing version spaces 
after any language shift efficiently, (2) show that in some 
cases this method may be applied to reduce the complexity 
of the standard CE algorithm. Since this framework 
supports version-space induction over a set of concept 
languages, it can also be suitable to handle inconsistency 
when the original concept language is too small. More 
generally, it suggest an alternative approach to inductive 
language shift in which the search for useful concepts to be 
added to the concept language is not based on constructive 
operators. This aspect is also discussed in the paper. 
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any suit anyrank 

/ "\ / "\ 
black red face numbered 

/"\ /"\ //"\ // .. ~ .. • • • J Q K 1 2 10 

Fig. 1. Two concept languages in the playing cards domain. 

The rest of the paper is organized as follows. In the 
next section we define a graph of conjunctive concept 
languages and describe the learning problem with respect to 
it. Then we present the learning method. Next, we apply 
the method to the factor languages of a conjunctive concept 
language defined on a tree-structured attribute-based 
instance space, and evaluate its utility. Finally we compare 
this work to other approaches to factorization in concept 
induction and to inductive language shift. 

2 The learning problem 

We first introduce the notions that characterize our learning 
problem. In the following concepts are viewed as sets of 
instances and languages as sets of concepts. 

A concept c 1 is more general than a concept c2 if the set 
of instances covered by c 1 is a proper superset of the set of 
instances covered by c2. 

A language LI is larger than a language L2 if the set of 
concepts expressible in LI is a proper superset of the set of 
concepts expressible in L2. 

In the playing cards domain, which we shall use as an 
illustration, two possible concept languages are: LI = 

{anysuit, black, red, "', ... , ., • } and L2 = {anyrank, 
face, numbered, J, Q, K, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1O}. 
The relation more-general-than over the concepts present in 
each language is shown in fig 1. 

The product L1,2 of two factor languages LI and L2 is 
the set of concepts formed from the conjunctions of 
concepts from Ll and L2 (examples of product concepts are 
'anyrank-anysuit', 'anyrank-black', etc). The number of 
concepts in the product language is therefore the product of 
the number of concepts in its factors. Also, a concept 
cel' c2' in the language LI2 is more general than (» another 
co~cept ccl",c2" if and on'ly if CI' > Cll! and c2'> c21!. 

With n initial languages it is possible to generate Lk=l,n 
n! / (n - k)! k! = 20 - 1 product languages (see fig. 2). 
Moreover, given that the superconcept 'any' can always be 
added to each factor language, the relation larger than over 
this set of languages can be immediately established, for 
each product language is larger than any of its factor 
languages. 

The learning problem can be stated as follows. 

A set of factor concept languages 
A set of positive instances. 
A set of negative instances. 

Incrementally Find 
The version spaces in the set of product 
concept languages that are consistent with data 
and that contain the smallest number of factors. 

Fig. 2. The graph of product languages with three 
factor languages. 

3. The learning method 

In this approach concept learning and language shift are 
interleaved. We process one instance at a time, using a 
standard version space approach to induce consistent 
concepts over each language of the current set (initially, 
the n factor languages). During this inductive phase some 
concept languages may become inconsistent with the data. 
When every member of the current set of languages has 
become inconsistent with data, the language shifting 
algorithm is invoked. It iteratively selects the set of 
maximally small concept languages that are larger than the 
current ones (i.e. the two-factored languages, the three­
factored languages, etc.) and computes the new version 
spaces in these languages. It halts when it finds a 
consistent set of concept languages (i.e. a set in which 
there is at least one consistent concept language); then it 
returns control to the inductive algorithm to process 
additional examples.The whole process is iterated as long 
as the set of current languages can be further specialised 
(i.e. until the n-factored language has been generated). We 
call this algorithm Factored Candidate Elimination (FCE) 
algorithm. The top-level FCE algorithm is presented in 
table 1. 

The core of the algorithm is the procedure to find the 
new consistent version spaces in the product languages (in 
italics in table 1). The difficulty is that the algorithm for 
inducing concepts over a language (the inductive algorithm) 
is usually distinct from the algorithm for adding new terms 
to the language itself (the language-shifting algorithm). In 
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Table 1: The top-level FCE algorithm 

Input: An instance set {I}. 
A set of partially ordered concept languages {L} formed by n given 
one-factored languages and their products. 

Output: The version spaces in the set of languages {L} that are consistent with {I} and that 
contain the smallest number of factors. 

Variables: {LS}k is the subset of (unordered) languages in {L} which have k factors. 
{VS} k is a set of version spaces, with 1VSki = ILSkl. 
{Ls,VS}k is the set of pairs obtained pairing the corresponding elements in {LS}k 
and {VS}k. 

Function: CE(i,l,vs) takes an instance, a concept language and a version space and returns the 
updated version space. 

FCE({I},{L}) 
K=1. 
{VSh = {Lsh. 
For each instance i in {I}, 

For each (ls,vs) in {LS,VS}k 
vs = CE(i,ls,vs). 

If all the version spaces in {VS} k are empty 
Then Repeat 

IfK=n 
Then Returnfailure 

K=K+1. 
For each Is in {LS}k, 

find the new version space vs associated with it. 
Until at least one vs is not empty. 

general, the inductive algorithm has to be run again over 
the instance set after any change made by the language­
shifting algorithm ([Utgoff 1986], [Matheus and Rendell 
1989], [Pagallo 1989], [Wogulis and Langley 1989]). In 
this case, however, in defining the procedure to induce the 
new consistent concepts after any language shift, we take 
advantage of the features of the particular inductive learning 
algorithm considered (i.e. the CE algorithm) and of the 
properties of language "multiplication". The two key facts 
are that the CE algorithm makes an explicit use of concept 
ordering and that concepts in any product language 
preserve the order of concepts in its factors. This makes it 
possible to modify the basic CE algorithm with the aim of 
computing the set of consistent concepts in a product 
language as a function of some appropriate concept sets 
induced in its factors. 

The concept sets computed in each factor language 
which will be utilized during language shift are the 
following. First, for each language we compute the set S*. 
S* contains the most specific concepts in the language that 
cover all positive examples, regardless of whether or not 
they include any negative examples. Second, for each 
language and each negative example, we compute the set 
0*. 0* contains the most general concepts in the language 
that do not cover the negative example, regardless of 
whether or not they include all positive examples. 

These operations can be better illustrated with an 
example. Let us consider again the playing cards domain 
and suppose that we begin with the two concept languages 
introduced above - rank (L1) and suit (L2). Let us suppose 
the system is given one positive example - the Jack of 
spades - and two negative examples - the Jack of hearts and 
the Two of spades. We compute the two corresponding 
version spaces (one for each language), the sets S* (one 
for each language), and the sets 0* (one for each language 

and for each negative example) in parallel. In particular, the 
sets S* and 0* can be immediately determined, given the 
ordering over each language's members. The inductive 
phase is pictured in fig.3 (f stands for face, b for 
black,etc). 

The three instances cause both of the version spaces to 
reduce to the empty set. The next step is therefore to shift 
to the set of maximally small concept languages that are 
larger than Ll and L2 (in this case the product L 12) and 
check to see if it contains any concepts consistent with 
data. The problem of finding the version space in the 
language L12 can be subdivided into the two tasks of 
finding the lower boundary set S 12 (i.e. the set of the 
most specific concepts in L12 that are consistent with data) 
and the upper boundary set 0 12 (i.e. the set of the most 
general concepts in L12 that are consistent with data). 

Computation of S 12 

Because a product concept contains an instance if and 
only if all of its factor concepts contain the instance, the 
product of S 1 * and S2 * returns the most specific factor 
concepts that include all positive instances. By discarding 
those that also cover negative examples, we get just the set 
S 12' If the set becomes empty, then the product language is 
also inconsistent with the data. More specific concepts, in 
fact, cannot be consistent because they would rule out 
some positive example. More general concepts cannot be 
consistent either, for they would cover some negative 
examples. In our example, as there is only one positive 
example, the result is trivial: S 12 = {J'" }. 
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2. 

~={r, ... } 

Fig. 3. Concept sets computed during the inductive phase. 

Computation of 012 

Rather than generating and testing for consistency all 
the product concepts more general than the members of 
S12, the set 0 12 is computed using the sets 0* As for 
each negative example there must be at least. one factor 
concept in each consistent product concept whIch does not 
cover the negative example, and because we se~k t~e 
maximally general consistent product concepts, the Idea IS 
to use the members of the sets 0* as upper bounds to find 
the factor concepts present in such maximally general 
product concepts. .. 

The algorithm is as follows. It begms by droppmg 
from the sets 0* the elements that cannot generate factor 
concepts that are more general than those contained in S12' 
Then, it (a) finds all the conjunctions o~ concept~ in the 
reduced sets 0* such that each negative mstance IS ruled 
out by at least one concept, and (b) checks if there are ~ore 
general consistent conjunc.tions. SteI? (~) reqUIres 
conjoining each factor concept I~ each 0* (It wII~ rul~ out at 
least one negative example) wIth all the combmatIOns of 
factor concepts in the other O*'s which rule out. the 
remaining negative examples. Step (b) reqUIr~s 
generalising (with the value 'any') the factor c<:mcepts m 
the conjunctions found at the en.d of step (a) WhICh do ~ot 
contribute to rule out any negatIve example. The resultmg 
set of conjunctions, if any is found, coincides with the set 
0 12, in that there cannot be more. general product co?cepts 
consistent with data. However, It may not be possIble to 
find a consistent concept conjoining the members of the 
O*'s. In this case we are forced to specialise the members 
of the O*'s to the extent required so that they rule out more 
negative instances, and to iterate the procedure (in the limit, 
we will get the set S12)' 

In our example there are just two factors and only two 
negative instances. The initial sets 0* are: 

tn, Q, K} 

{f, 1, 3,00, 10} 

{b, + } 
{r, ... } 

The simplification with the set S12 returns: 

{ } 

{f} 
{b} 
{ } 

Step (a) in this case reduces to the union of ~he 
conjunction of 01 * relative t? inst~nce 1 and 02* r~latIve 
to instance 2 and the conjunctIon of 01 * relatIve to 
instance 2 and 02* relative to instance 1. The resull ({ fb }) 
does not need be generalized (step (b)) for both 'f and 'b' 
contribute to rule out (at least) one negative example. Also, 
in this case, the specialisation procedure is not needed 
because we have been able to find a consistent conjunction: 
0 12= {fb }. The overall version space in the language 1.,12 is 
shown in fig.4. 

~ 
G 

1 2 

t"'MJb 

Fig.4. The version space in the product language after 
the constructive phase. 
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4 Evaluation 

There are two ways in which the factored CE algorithm 
(FeE) can be used to reduce the complexity of the standard 
CE algorithm. Either we use a graph-factoring algorithm 
[Subramanian and Feigenbaum, 1986] to find the factors of 
a given concept space (provided that it is factorable), or we 
choose a concept language that can be naturally 
decomposed into factor languages. Here we evaluate the 
utility of the FCE algorithm with respect to a simple but 
widely used concept language that has this property. We 
consider a conjunctive concept language defined on a tree­
structured attribute-based instance space. We assume the 
number of attributes be n, each attribute with I levels and 
branching factor b (the case can be easily extended to 
nominal and linear attributes, considering that a nominal 
attribute can be converted in a tree-structured attribute using 
a dummy root 'any-value', and that a linear attribute can be 
considered as a tree-structured attribute with branching 
factor = 1). Each term of the concept space is a conjunction 
of n values, one for each attribute; the total number of 
terms in the concept space is [(bI - 1) / (b - 1)]n. It is worth 
noting that with such a concept language the set S of the 
version space will never contain more than one element 
[Bundy et al. 1985]. Even in this case, however, Haussler 
[1988] has shown that the size of the set G can still be 
exponential, due to its fragmentation. 

In the following we compare the CE algorithm applied 
to this full conjunctive concept language to the FCE 
algorithm applied to its attribute languages. While their 
relative performances are equivalent, in that in order to 
find all the concepts consistent with data in the full concept 
language it suffices to eventually compute the boundaries 
of the n-factored version space, their time complexity may 
strongly vary. The gain/loss in efficiency ultimately 
depends on the number of instances that each intermediate 
language is able to account for before it becomes 
inconsistent. In the best case all the induction is done 
within the smallest languages,and language shift to larger 
languages is not necessary. In the worst case no consistent 
concepts are induced in the smaller languages, so that all 
the induction is eventually done within the full concept 
language. 

To make a quantitative assessment we have to make 
assumptions about a number of factors in addition to the 
structure of factor and product languages, including target 
concept location, training instance distribution, cost of 
matching concepts to training instances. We consider the 
worst case convergency to the target concept in the full 
concept language. This amounts to say that after the first 
positive instance (the first instance must be positive in the 
CE algorithm) there are only negative instances, and that 
each of them causes only one concept to be removed from 
the version space until it shrinks to the target concept (i.e., 
the first positive instance). In terms of the full concept 
language ordering this means that general concepts are 
removed earlier than any of their more specific concepts. 
Furthermore, we assume that the generality of the attribute 
values in the concepts dropped from the version space 
decreases uniformly. More precisely, we assume that if an 
attribute value in a dropped concept is placed at level k in 
the corresponding attribute tree, then the values of that 
attribute in the remaining consistent concepts are placed at 
most at level k+ 1. This presentation of training instances 
has the effect of maximizing the amount of instances that 
each intermediate language can take in before it becomes 
inconsistent. 

As for the cost of matching concepts to instances and 
other concepts we assume that it is the same in all 
languages. 

We can now analyse the complexity in the two 
approaches. As done in [Mitchell 1982], the time 
complexity bounds indicate bounds on the number of 
comparisons between concepts and instances, and 
comparisons between concepts. 

CE ale-orithm with full conjunctive concept lane-uae-e. 
Let q be the number of negative instances, g the largest size 
of G. Following [Mitchell 1982], in our case the key term 
is 0(g2q). The maximum size of G is given by the largest 
number of unordered concepts that can be found in the 
version space after the first positive instance. This number 
turns out to be 0(n21). To illustrate, first we must note that 
the version space after the first positive instance will 
contain the concepts more general than the instance, 
therefore the admissible values for each attribute will be the 
I values in the attribute tree that are placed in the chain 
linking the attribute value in th~ instance to the root of the 
attribute tree. When n = 2 there "are. at most I ways to 
choose a pair of values from two ordered sets of size 1 in 
such a way that the pairs are unordered. When n increases, 
this number comes to be multiplied by n / (n -2)! 2! . In 
fact, considering that two n-factored concepts are 
unordered if they contain at least two factor concepts with 
different orderings, all the possible unordered n-factored 
concepts can be obtained considering the same 
combinations as in the 1 original unordered concepts for 
each possible way of choosing a pair of attributes from 
among the n attributes. The maximum size of G is 
therefore 0(n21). The complexity of the CE algorithm is 
0(n412q). 

FCE al~orithm with attribute lane-uae-es. In this case 
several concept languages are active at once. For each 
negative instance we have to update in parallel at most 
maxk [n! / (n-k)!k!], that is 0(n2), version spaces. Given 
our hypothesis on instance distribution, the g value of the 
intermediate version spaces will be 1 for the one-factored 
languages, 2 for the two-factored languages, .. , n for the 
n-factored languages. The largest value of g is n, and the 
relative complexity factor for each version space is 
therefore 0(n2). Thus the time taken to induce version 
spaces within the set of active languages is at most 
0(n2n2q) = 0(n4q). . 

The total time complexity can be calculated adding the 
time taken by language shift to the time taken by concept 
induction alone. The cost of shifting the concept languages 
is given by the number of language shifts (2n) multiplied 
by the cost of any single language shift. The time taken by 
any single language shift becomes constant if we modify 
the FCE algorithm's inductive phase by labelling each 

. member of each G* and any of its more specific concepts 
with all the negative instances it does not cover. In this 
way, in fact, the operations described in the procedure to 
compute the G set in any product language will no longer 
involve any matching between concepts and instances. On 
the other hand, the cost of labelling must now be added to 
the cost of language shift. The labelling we introduced 
requires matching each negative instance against the 
members of n G*'s (we keep only the G*'s relative to the 
initial factor languages), where each G* contains only one 
member (in our case, in fact, as there is only one positive 
instance, we can immediately remove the concepts that are 
not more general than the positive instance from the G*'s, 



at an additional cost of O(qnbl», and repeat for all the 1 
more specific concepts of each member of G* (Le., the 
concepts contained in the chain of admissible values 
relativ~ to that G*'s factor language). Therefore labelling 
takes In all O(qnl) + O(qnbl) = O(qnbl). The time 
complexity of language shift is 0(2n) + O(qnbl). The 
overall time complexity is therefore 0(n4q) + 0(2n) + 
O(qnbl), which, for practical values of n, b, and 1, 
approximates to 0(n4q). 

In sum, we have 0(n4}2q) in the CE algorithm versus 
0(n4q) in the FeE algorithm. The effect of using the FCE 
algorithm with the chosen instance distribution appears to 
be that of blocking the fragmentation of G due to 1. It is 
also worth noting that the factor 0(n2) in the FCE 
algorithm due to the presence of multiple languages can be 
reduced by reducing the number of intermediate product 
languages employed. This would, on the other hand, be 
counteracted by an increase of the factor 0(n2) due to the g 
of the intermediate languages. Here is a trade-off between 
using few concept languages and using many concept 
languages in a given range. The fewer the concept 
languages, the less the amount of computation devoted to 
parallel induction and language shift. The more the concept 
languages, the more likely it is that a smaller amount of 
induction will be done within the largest concept 
languages, which are the least convenient. Experimentation 
might help investigate this kind of trade-off. 

5 Relation to factorization in concept induction 

Factorization with smaller concept languages in the CE 
algorithm has been first explored in [Subramanian and 
Feigenbaum 1986] and [Genesereth and Nilsson 1987]. 
Although we were inspired by their work, our goals, 
methods and assumptions are different. First, in 
[Subramanian and Feigenbaum 1986] and [Genesereth and 
Nilsson 1987].1anguage factorization has been used with 
the aim of improving efficiency during the phase of 
experiment generation, whereas we have investigated its 
utility during the earlier and more important stage of 
version-space induction from given examples and counter­
examples. Second, while they have primarily addressed the 
problem of factoring a version space and assessing credit 
over its factors, we have focussed on language shift 
during version-space induction over a set of available factor 
and product languages. Third, their approach relies on the 
assumption that the given concept langage is factorable into 
independent concept languages l . By contrast, when 
applying the FCE algorithm directly to the attribute 
languages of a conjunctive concept language it is not 
necessary the attribute languages be independent. For 
example, the two factor languages we have used as an 
illustration throughout the paper (Ll and L2) happen to be 

ITwo concept languages LA and LB are independent if membership 
in any of the concepts from LA does not imply or deny membership 
in any of the concepts in LB. This definition implies that for every 
concept a in LA and every concept bin LB the intersection of a and b 
is neither empty nor equal to either concept Two independent concept 
languages are unordered with respect to the larger-than relation. 
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two independent languages2; however, we could well 
apply the FeE algorithm to the concept language LB we 
introduced earlier along with the concept language Lc = 
{anyrank, odd, even, 1, 3, 5, 7, 9, J, K, 2, 4, 6, 8, 10, 
Q}, these two languages being not independent (the 
intersection of the concept "2" in LB and the concept "odd" 
in Lc is empty, for instance). Using non-independent 
factor languages, as their product may contain a large 
number of empty or redundant concepts, may badly affect 
the performance when the FeE algorithm is applied to 
recover from inconsistency due to use of small concept 
languages. But it does not seem to affect the result when 
the FeE algorithm is used to improve efficiency with 
respect to the full conjunctive concept language. 

6 Relation to inductive language shift 

As mentioned earlier, the FCE algorithm can also be 
seen as a method for introducing new concepts to 
overcome the limitations of a set of restricted concept 
languages (Le., the factor languages). It does so by 
creating another set of larger concept languages (Le., the 
product languages) to constrain the search for new useful 
concepts. This is a significant departure from the search 
strategy usually employed in most approaches to inductive 
language shift. Regardless of the specific goal pursued -
many systems deal with improvement of some quality 
measures of the learned descriptions rather than with their 
correctness - "the problem of new terms" [Dietterich et al. 
1982] or "constructive induction" [Michalski 1983] is in 
general tackled by defining a set of appropriate constructive 
operators and carrying out a depth-first search through the 
space of the remaining concepts to find useful (e.g., 
consistent, more concise, more accurate) extensions to be 
added to the given language. Furthermore, since the 
number of admissible extensions is generally intractably 
large, most of the approaches to constructive induction rely 
on various heuristics to reduce the number of candidate 
additional concepts and/or to cut down the search (e.g, 
[Matheus and Rendell 1989], [Pagallo 1989], [Wogulis 
and langley 1989]). 

By contrast, we compute and keep all the admissible 
language extensions (in a given set of extensions) that 
restore consistency with data, rather than considering one 
or few plausible language extensions at a time. Just as the 
relation more general than that is implicitly defined over the 
terms of a concept language may allow efficient 
representation and updating of all consistent concepts 
[Mitchell 1982], so too the relation larger than that is 
implicitly defined over a set of languages may provide the 
framework to efficiently organize the small-to-Iarge 
breadth-first search of useful languages. These 
considerations suggest that an alternative abstract model for 
language shift can be formulated, in which the search for 
new concepts, rather than being based on the use of 
constructive operators, is driven by the ordering of a set of 
candidate concept languages (work in preparation). 

2 It is ~ften the case that attribute choice reflects independencies in 
the world, thus giving rise to actual independent factor languages. 
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7. Conclusion 

We have presented the FCE algorithm for efficiently 
inducing version spaces over a set of partially-ordered 
concept languages. The utility of this algorithm is twofold: 
improving the efficiency of version-space induction if the 
initial concept language is decomposable into a set of factor 
languages, and inducing consistent version spaces if a set 
of concept languages inconsistent with data is initially 
available. In this paper we have focussed on the former. 
We have applied theFCE algorithm to the task of inducing 
version spaces over a conjunctive concept language defined 
on a tree-structured attribute-based instance space, and we 
have evaluated when it leads to a reduction in complexity. 
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Abstract 

The concepts of strategy description language (SDL) and 
theorem proving engine (T P E) are introduced as archi­
tectural and applicative tools in the design and use of 
an automated theorem proving system. Particular em­
phasis is given to the use of an SDL as a research tool 
as well as a way to use a prover both as a batch or as 
an interactive program. In fact, the availability of an 
interpreter for such a language offers the possibility of 
having a system able to cover both of these usages, giv­
ing to the user some way of choosing the granularity of 
the steps the prover must take. Three examples are given 
to show possible applications. Their purpose is to show 
its usefulness for expressing and testing new ideas. Some 
interesting capabilities of an SDL are applied to highlight 
how it allows the treatment of self-analysis on the state 
of the search space. Examples of these are the definition 
of a self-adaptive search and a tree pruning strategy. All 
the definitions we give reflect a running Prolog prototype 
and inherit much from the Prolog style and structure. 

1 Introd uction 

The uses of and the interest in automated theorem prov­
ing have grown markedly in the preceding decade. The 
cause rests in part with faster computers, easy access to 
workstations, portable and powerful automated theorem­
proving programs, and successes with answering open 
questions. Various researchers in the field conjecture 
that far more power is needed to attack the deep prob­
lems of mathematics and logic that are currently out of 
reach. 

Although some of the needed increase in effectiveness 
will result from even faster computers, many state that 
the real advances will result from the formulation of new 
and diverse strategies. Because we feel that the ease of 
comparing, analyzing, and formulating such strategies 
would be enhanced if an appropriate abstract language 
and theory were available, we undertake here the devel­
opment of such a language. Perhaps the abstraction and 
language will lead to needed insights into the nature of 

strategy of diverse types. In addition, because of its re­
lation to this language, here we also provide an abstract 
treatment of theorem-proving programs as engines. This 
abstraction may enable researchers to analyze the dif­
ferences, similarities, and sources of power among the 
radically diverse program designs. 

The idea for developing a strategy description lan­
guage (SDL) usable to define search strategies for a the­
orem prover was born when we began to study the ap­
plication of parallelism to ATP. One proposal was to run 
many theorem provers on the same problem but with 
different search strategies. Having different strategies 
expressed as programs would mean having, as input of 
each prover process, the couple < theorem, search -
algorithm >. 

The development of a language requires the definition 
of an abstract machine to execute its programs, requiring 
an interpreter for the language. Our experiences and 
previous work with Prolog has suggested its use for the 
realization of a prototype. 

One simple way to build an interpreter is to define a 
kernel module offering the basic services. This led us to 
the definition of a theorem-proving engine (TPE). Next, 
we developed a theorem prover having an SDL inter­
preter and a TPE as basic modules. zSDL is the name 
of our SDL. 

Generally, we conjecture that an SDL might benefit by 
having one (or more) of the basic attitudes and of being 
procedural, functional, and logical. It should also be able 
to focus on the operations with different granularity as 
well as directing the prover process, controlling details of 
different level of complexity. As a sample model we can 
think at production systems in AI, and say that an SDL 
could be used to describe the control side of such a sys­
tem. There can be as many SDL languages as different 
production systems. 

The language we defined did not result from a deep 
analysis of the cited aspects; instead, it has been driven 
by the underlying structure of the TPE we developed, 
by the fact that is realized in Prolog, and by the wish 
to define the language on the field so that it could he 
run. One of the nice things about Prolog is that you can 
develop executable meta-languages. 



2 A theorem proving engine 

A TPE is a program module devoted to maintain and 
operate a knowledge base (K B) of logical formulas and a 
set of indexes on them. We think of these indexes as sets 
of references (or ids) to the formulas. The sets are dis­
tinguished by name. Each formula is retained together 
with various information about it. 

A TPE can perform two basic activities: inference and 
reduction. The object of the first activity is to deduce 
new knowledge, gathering it by considering various sub­
sets of the formulas in the KB. The object of the second 
activity is to keep the size (or the weight) of the KB as 
small as possible, by discarding redundant information. 
We require that every successful call to the inference pro­
cess (IP) also calls the reduction process (RP). 

To better define the activities of a TPE, we focus on 
a possible minimal interface to such a module. We as­
sume that the TPE finds the KB initialized with a given 
input set of formulas and that each operation maintains 
appropriately the indexes. We shall extend this interface 
gradually in the paper. 

The kernel functions of a TPE can be: 

• (TPE.l) - enable(+Rule) 

• (TPE.2) - disable(+Rule) 

A TPE is thought to offer a set of inference and 
reduction rules, each referred with a name. An IP 
will then apply the set of all the active inference 
rules, and the RP will only use the active reduction 
rules. These two functions are used to control the 
activity sets. For simplicity we assume the calls can 
also accept a list of rule names. 

Its purpose is to activate the IP. It will superpose 
the formula referred to by I d} on the one referred 
to by Id2 using all the active inference rules. We 
use the concept of superposition because it implies 
the ordering of the arguments, which is sometimes 
required. In this respect the general form of a single 
inference (as well as reduction) rule is thought of as 

meaning that this rule takes as premises two formula 
references and produces a set of new references as­
sociated to the formulas resulting from the actual 
application. Consider for example the binary reso­
lution inference rule. It takes two clauses and gener­
ates a set of resolvents. So, if we consider the clausal 
formulas referred to by Id1 and by Id2 , the reference 

635 

set {N1,N2 , ... ,Nm } will refer to their resolvents 
(if any). Rules with single premises are called with 
8uperpose(Id,Id). 

• (TPE.4) - delete(+Id) : 

It is used to delete the formula referred to by Id from 
the KB and from the indexes. This operation, com­
bined with a superposition call, can be used to re­
alize transformation processes on the KB. Consider 
for example the standard CNF transformation. It 
replaces a formula with a (satisfiability) equivalent 
set of clauses. We can model this by calling an infer­
ence rule with only one premise to generate the set 
of clauses and then delete the premise. As a matter 
of fact we think of this operation as reversible. See 
the next operation. 

• (TPE.5) - undelete(+Id) 

It is called to recover an earlier deletion of a for­
mula. We can think of it as a special inference 
rule that uncovers a formula. It can be useful in 
adaptive searches. Suppose for example we are us­
ing a weighting strategy to discard newly generated 
formulas if they exceed a fixed weight. Using the 
delete/1 call we can simply hide the formula from 
the KB and the indexes and later recover it if, for 
example, the search ends with a consistency status. 

As a matter of fact the indexes on the formula KI3 
have a dominant role for understanding the entire idea. 
In the next section we will make clearer this role. 

3 zSDL: a strategy description 
language 

Indexes, as sets of references to KB's formulas, are the 
basic objects of the language zSDL, which uses id-sets as 
the basic elements to refer to nodes and to describe the 
visit of the search tree. 

The underlying idea is that an SDL requires some 
mechanism to represent a proof tree, for the ideal search 
strategy for proving a given theorem is the description 
of the precise steps the reasoning module must follow 
to reach the proof nodes in the search tree. Wi th an 
SDL we must be able to speak about the nodes of the 
tree (the formulas) and the relations between them (how 
to reach the parents of each node, following the ances­
tor relation, as well as how to reach the children of a 
node, following the descendants relation). Another use­
ful property might be the ability to know the level of 
a tree node, in order to define a (partial) ordering be­
tween the steps made to reach the proof (a sequence of 
parallelizable steps). 
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From these observations we chose to use sets of nodes 
as the basic description objects. And zSDL turned out 
to be, in some sense, a sets-operations oriented language. 
We will refer to a generic zSDL set of references to formu­
las to mean either an id-set or an index. A set is referred 
by a (unique) name. It is something like a variable of 
type id-set. 

In zSDL we can apply to the id-sets all of the com­
mon operations and relations on sets, plus some special 
(procedural) ones like assignments, evaluation, etc. The 
following is a list of these functions, giving in addition 
some of the syntax of zSDL (recall that it is a Prolog by­
product). In zSDL an id-set is represented as a Prolog 
list. 

The Prolog variable names implicitly define the types 
of the operators in the following way: 

SelName: the name of the variable that refers to the set. 

SelExpr: an expression on sets, which can be an explicit 
set (list), a SetNarne or an expression built up using 
the defined operations. 

Var: a Prolog non-instantiated variable. 

ElemOr Var: a Prolog variable (Var) eventually instan­
tiated (Elem). 

Notice that the SetExpr are evaluated. 

o (zSDL.l) - set operations: 

+5'etExpr A •• +SetExprB % union 
+5'etExprA .+ +SetExprB % weak union 
+5'etExpr A .* +SetExprB % intersection 
+5'etExpr A - +SetExprB % difference 

The weak union makes no checks on repetitions. 

o (zSD L.2) - ,'et relations : 

? ElernOrVar .? +SetExpr % membership 
+5'etExpr A . -< +SetExprB % containment 
+5'etExpr A . < +SetExprB % strict containment 
+5'etExpr A . II: +5'etExprB % equality 

Notice that, using the Prolog negation, we also have 
the negations of these relations 

o (zSDL.3) - set procedures: 

+5'etN arne : II: +5'etExpr % assignment 
- Var . +SetN arne % extract 1st element 
- Var " +SetExpr % evaluate 
.. +5'etN arne % destroy the set 

The pop operation treats the set as a stack. 

As an example, in a zSDL-Prolog session we could 
have: 

I ?- a :- [1,2,3], 
b .• a .- [3,4,5]. 

yes 
I ?- A 

B 
X 

a, 
b, 
b .• [6]. 

A" [1.2.3]. 
B .. [1.2]. 
X [1,2,6] 

in which you see how zSDL sets are permanent objects, 
contrary to the classical Prolog variables. 

This level of basic operations on (id- )sets must be en­
riched by statements to permit interaction with the TPE. 
We will show the basic calls zSDL defines to run an IP 
by developing the Prolog code that can realize it. 

We are looking for a statement responsible for execut­
ing the actual inference steps applicable on some given 
id-sets. Consider the zSDL syntax 

o (zSDL.4) - directed superposition 

+SetExpr A ++> +SetExprB 

After the evaluation of the id-set expressions the gen­
eral form of a call can be thought of as 

Obviously we expect this search to consider all the 
pairs, i.e. the TPE must be directed to try all the fol­
lowing superpositions: 

<AI,B}>, < A},B2 >, 
< A2, B} >, < A2 , B2 >, 

... , 

... , 

... , 

This can be realized by the following straightforward 
Prolog code: 

SetExprA ++> SetExprB 
Ai .? SetExprA, 
Bj .? SetExprB, 
superpose(Ai,Bj), 
stop_search. 

SetExprA ++> SetExprB. 

The only new predicate we used is stop_search/O. In 
fact, one omitted item in the TPE interface we have ob­
served is a test to control the status of the KB. Therefore, 
we extend the TPE interface with 



• (TPE.6) - prooLfoundC-Int) : 

Used to ask the status of the KB. The number of 
found proof(s) is given. 

You can think of stop_search/O as built from a 
proof _found/ 1 call followed by an appropriate compar­
ison and by any other (eventually) necessary operations. 

In addition to the ++>/2 operator, zSDL also defines 
the syntax 

<> (zSDL.5) - superposition 

+SetExpr A <+> +SetExprB 

With the <+>/2 operator each couple is also reversed 
(except for the <X,X> ones). 

As we commented, the general form of an inference 
rule in zSDL is thought to be 

Id},Id2 

The actual application of such a rule is called by 

The first missing item is a way to get, in a zSDL pro­
gram, the id-set of the generated formulas. With a typ­
ical Prolog attitude, we can generalize this problem. 

A superposition goal on id-sets is like evaluating a 
high-level function on a set. The relation that links the 
input and the output sets is different from the classical 
ones, for it is related to some properties of the objects 
in the sets and not to the sets themselves. This simply 
implies that the actual module responsible of the eval­
uation of these relations is not the classical one. And 
we know that that module must be the TPE. So we are 
looking for a syntax like 

<> (zSDL.6) : 

?Index ::- +TPE_Goal, 

where aT P E_Goal can be, as an example, a superposi­
tion call. Notice that we defined the new operator: : =/2 
in order to switch the evaluation to the right module. 
The call also suggests a possible model for the computa­
tion of the goal. In fact a goal of the TPE is generally 
requested to produce a new index (say a dynamic index) 
that is updated during the actual evaluation of the goal. 
Consider the following code. 

Given ::- TPE_Goal :­
new_dynamic_indexCNewSet), 
callCTPE_Goal), 
( var(Given), 

Given .. NewSet 
Given :- NewSet ), 

del_dynamic_indexCNewSet). 
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It asks the TPE to release a new dynamic index 
that will be updated during the execution of the given 
TPE_Goal to hold the result of the evaluation. This 
result is then properly assigned to the input Given ar­
gument and finally the dynamic index is cleared. This 
asks for the extension of the TPE interface with the two 
following calls 

• (TPE.7) - new_dynamicjndexC-SetName) 

Ask the TPE to extend the sets of active indexes. 
SetName will be used to refer to this new dynamic 
id-set. The complementary call is 

• (TPE.8) - deLdynamicjndexC+SetName) 

It is used to remove the index referred by SetName 
from the set of the dynamic indexes known by the 
TPE. 

With the new zSDL operator we can now use the fol­
lowing statement to sketch the application of an inference 
rule: 

NewIds ::- [Id}] ++> [Id2 ]. 

where NewIds will be instantiated to the right in­
stance of [N}, N2, ••• , N m ], even possibly the empty id­
set. Notice that the: : =/2 operator works for each TPE 
goal. 

The last extension we will give before going through 
some examples of an application of zSDL focus on a way 
to have a local specification of the inference rules we wish 
to apply in a TPE goal. The zSDL syntax is: 

<> (zSDL.7) : 

+TPE_Goal ./ +Inferences, 

defines a TPE evaluation modulo a given set of in­
ference rules. 

Suppose for example we wish to superpose clauses 3 
and 15 only by binary resolution (binary _res). Consider 
the following code 

TPE_Goal .f Inferences 
Active .. enabled_inferences, 
disable(Active), 
enable(Inferences). 
call(TPE_Goal) • 
disable(Inferences), 
enable(Active). 

With this new operator we can express the preceding 
problem as 

Resolvents :: - [3] ++> [15] ./ binary _res. 
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The code we have given assumes that the enable/1 
and disable/1 calls in the TPE interface maintain one 
set, called enabled_inferences, collecting the names of 
the active inference rules. 

So in zSDL the more general IP activation call to the 
TPE is 

NewIds ::- EXprA <+> EXprA ./ Infs. 

which will give in NewIds the id-set of all the for­
mulas derivable by applying the chosen inferences to all 
the pairs of formulas implicitly referred to by the id-set 
expressions. 

4 A simple zSDL program: the 
breadth-first strategy 

Time has come to give the first example of the use of 
zSDL to describe a classical strategy: the breadth-first 
search. We suppose that the TPE is already active and 
some input formulas are present in the KB. An index 
called input collects the references to those statements. 

In the breadth-first search the next level of the tree is 
filled with all the conclusions given by superposing the 
last level with all the existing levels. The search stops 
with complete search or, for example, with a proof. The 
zSDL program is 

breadth_first .­
levels :- input, 
last :- input, 
while( ( \+ stop_search, 

\+ last . = [] ), 
( Next ::- last <+> levels, 

last :- Next, 
levels .- last) ). 

The two indexes, levels and last, refer to the entire 
tree and to its last level, respectively. The vhile/2 is the 
classical cyclic structure you found in each procedural 
language. Its syntax is 

o {zSDL.8} - while(+Condition,+Goal) 

After the initialization of the values to the input ref­
erences, the program repeatedly fills the Next level of 
the search tree, superposing the last level with all the 
nodes. Then the Next level becomes the last and is also 
added to the references of the entire tree. The.- nota­
tion resemble the C language style assignments. Simi­
larly zSDL accepts the operators +-, -a and .11:. Notice 
also that the instances of the Prolog variable(s) in the 
vhile/2 statement are released between the cycles. 

The preceding algorithm can be improved by thinking 
of the cases it generates. When we superpose the last 
level with the entire tree, we must note that all of the 

nodes in last are already in levels. Furthermore, if we 
apply the <+> operator to superpose an id-set on itself, 
we try all of the pairs twice. So, a better program is 

breadth_first :­
last :- input, 
others :- [], 
while( ( \+ stop_search, 

\+ last . - [] ), 
LL ::- last ++> last, 
LO ::- last <+> others, 
others :- last .+ others, 
last :- LL .+ LO ) ). 

In this definition the last index refers again to the 
last level of the tree while others refers to the rest of the 
tree. At each step last is superposed on itself (with the 
oriented operation ++» and then with the upper levels 
of the tree. You might also note that in this way we 
can substitute the use of the standard union with the 
weak one (append) as no repetitions are possible in the 
references in the indexes. 

In addition to the while statement, zSDL defines some 
other basic control structure: 

o {zSDL.9} - foreach(+Generator, +Goal) : 

Goal is executed for all the solutions of the given 
Generator. 

o {zSDL.I0} - repeat (+Goal, +Condition) 

Goal is executed at least once and re-executed while 
Condition fails. 

o (zSDL.l1) - iF( +Condition, +Goal) 

Goal is executed only if the Condition holds. It al­
ways succeeds. 

This list is given only for completeness: the reader 
might note that zSD L programs are basically extended 
Prolog programs and that all the structures definable 
on the underlying Prolog machine can be used by zSDL 
programs. 

However, we think that one real important aspect of 
the < TPE,zSDL > Prolog-based architecture comes 
from its direct executabilty on a Prolog machine. The 
global proving system loses the property to be batch or 
interactive: a proof search is directed by the execution 
of goals, and the granularity of these steps can vary from 
the single superposition to the entire search. 



5 More complex applications 

The availability of a language like zSDL adds to the ease 
of implementing and experimenting with new ideas, for 
example, non-standard search strategies. To illustrate 
the value of using of zSDL, and to introduce some addi­
tional features of this language, we now focus on three 
somewhat complex programs. The first defines an adap­
tive, weighting-based, search strategy. The second in­
troduces some atypical deletion strategy into the search. 
The last one shows how to define a strategy (oriented) 
tailored to a given inference rule. 

5.1 A weight-based adaptive strategy 

By weighting (w) strategies we refer to those algorithms 
structured to consider the length, or weight, of the for­
mulas. Examples of w-functions are: the number of sym­
bols in a formula, the number of (positive, negative, to­
tal) literals in a clause, as well as linear functions built 
on these or other values. The general behavior of a w­
strategy is to filter the retention in the KB of a newly 
generated formula, according to the given w-function. 
Formulas that are too heavy are discarded. The under­
lying intuitive idea is that if a proof can be obtained 
without the use of heavy formulas, then such formulas 
can be discarded. 

We shall not consider the well-known subproblems 
that the subsumption operation can lead to, which vary 
with the w-function adopted. Instead, we consider one 
of the practical difficulties in the application of these 
strategies, namely, choosing the appropriate threshold 
(upper bound on weights) to use for deciding which for­
mulas to discard. The solution we propose follows this 
simple idea: the threshold can be increased, when the 
search stops generating formulas, and set to the lightest 
weight template in the set of the w-deleted formulas. In 
this sense the search is adaptive: it adapts to the perfor­
mance of the program. 

Let us first show the mechanisms provided by the 
TPE to support w-strategies. Each formula is stored 
with a weight template. An internal function, namely, 
weight (+Formula ,-W _Template), is used by the TPE 
to calculate it. Such a template consists of a 4-integers 
tuple (N -P-T-S) that counts Negative.Literals, Posi­
tive.Literals, Total.Literals and Symbols, where the first 
three values are "0" if the formula is not a clause. The 
TPE offers some calls in order to define weighting-based 
strategies: 

• (TPE.9) - max_weights(?W _Template) 

The call can be used both to access the current ref­
erence w-template (if W_Template is an uninstanti­
ated variable at the call) or to set a new value for 
it. The new given W_Template will be used by the 
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w-filter operation to decide which new formulas to 
accept or discard. All the values for the new formu­
las must be less or equal to the threshold ones fixed 
by the given W_Template. The value of a variable 
will be considered greater than each integer. 

• (TPE.I0j - lormula_weight(+Id, -W..Template) : 

Accesses the given formula(s) to get their weight 
tern plate( s ). 

The basic behavior of the strategy we are going to 
write is straightforward. At each time we choose the 
lightest not yet used formula in the KB to be superposed 
with all the already used ones. Than we move the given 
formula to the set of the used ones (say "done") while 
the new generated formulas are added to the first set (say 
"to_do"). We can express this with the following zSDL 
program: 

to_do :- [], 
done .• [], 
Input input, 
add_ordered (Input ,to_do) , 
while( ( \+ stop_search, 

\+ to_do .- [] ), 
Lightest .- to_do, 
add_ordered([Lightest] ,done), 
New ::- [Lightest] <+> done, 
add_ordered (New ,to_do) ) ). 

As one sees, we solved the problem of getting the 
lightest formula in a set by extracting the first element 
from an ordered set. The expected side effect of an 
add_ordered(Set,SetName) call is to build an ordered 
union of Set and SetName (into SetName) according to 
the weight of the corresponding formulas. We can obtain 
this with: 

add_ordered([] ,_SetName). 
add_ordered(Set,SetName) :­

Xet .. SetName, 
XX gets a list of Count-Id pairs 

get_counts(Set,SetCs), 
get_counts(Xet,XetCs), 
append(SetCs,XetCs,YetCs), 

XX sorts by counts 
keysort(YetCs,ZetCs), 

XX removes the counts 
pop_counts(ZetCs,Zet), 
Set Name :- Zet . 

where the get_counts/2 call accesses the weights­
template of the formulas to get the symbol counts (ob­
viously, one can choose different approaches). 

To extend our strategy to be self-adaptive we have to 
solve certain problems: 
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* how to get information on the deleted formulas; 

* how to choose some initial value for the reference 
w-template. 

The first problem rests entirely on the TPE behav­
ior, as the "over-weight" deletions are embedded into its 
operations. Our system maintains a set of structures, 
indexed by weights-template, to have the references to 
the deleted formulas. The call 

• (TPE.ll) - queue(wdel(?W _Template), ?Queue) 

Queue holds the ids of all the deleted formulas shar­
ing the same it W _Template. 

We first give the extended program that realizes the 
self-adaptive search, and then we discuss its main steps. 

self_adaptive :­
input_weighting, 
to_do .• [], 
done :- [], 
Input .. input, 
add_ordered(Input,to_do) , 
while( ( \+ stop_search, 

( \+ to_do .= [] 
q_exists(wdel(_» », 

once ( to_do .= [], 
lightest_deleted(Count) , 
closest_wtemplate(Count,NewWT), 
max_weights (NewWT), 
deleted :- [], 
add_deleted(Count,deleted), 
Unhide .. deleted, 
Restored ::= undelete (Unhide), 
add_ordered(Restored,to_do) 
Lightest .- to_do, 
add_ordered([Lightest] ,done), 
New ::= [Lightest] <+> done, 
add_ordered(New,to_do) ) ). 

The first difference concerns the while condition: it 
now considers the possible presence of formulas deleted 
by weight, so the search is complete only if no deleted 
formulas remain. The lightest_deleted/l call accesses 
the deletion queue, searching for the lightest-weight for­
mula. Its definition can be: 

lightest_deleted(Count) 
setof( SymCount, 

queue(wdel(N-P-L-SymCount),Q), 
Deleted ), 

sort (Deleted, [Countl_Others]). 

The closest_wtemplate/2 call is responsible for de­
ciding the value for the new reference weights-template, 

or, in other words, for the "size of the adaptation-step". 
The following definition builds the new template in order 
to accept all the formulas with the given deleted smallest 
symbol count. 

closest_wtemplate(Count,Template) .­
setof( N-P-L-Count, 

queue(wdel(N-P-L-Count),Q), 
Deleted ), 

max_weights (CurrentWT), 
max4([CurrentWTIDeleted] ,Template) . 

where the call to max4/2 builds the Template given by 
the maximal values for each count. 

The add_deleted/2 call is conceptually similar to the 
add_ordered/2 call, but works with the deletion queue. 
Its definition can be: 

add_deleted(Count,SetName) 
( queue(wdel(N-P-L-Count),Queue), 

SetName += Queue, 
q_del(wdel(N-P-L-Count», 
fail 
true ). 

It collects into SetName all the references to the deleted 
formulas with the given symbol Count and deletes the 
corresponding queue (q_del/l). 

So, in the while loop of our program, the to_do id­
set is extended either by newly inferred formulas or by 
reactivating the lightest deleted ones (if any). 

A last point addresses the choice of the initial values 
for the reference w-template. A strategy that has given 
us interesting results fixes the values by looking at the 
counts of the input formulas and choosing the lowest 
values among them. Its definition is: 

input_weighting :-
Input .. input, 
formula_weight(Input,WTs), 
max4(WTs,Template) , 
max_weights(Template). 

5.2 A pruning strategy 

This second example of the applications of the zSDL lan­
guage is given to show how it can be used to define some 
self-analytical activity for the proving process. In other 
words we can use it to reason about the current state of 
the search during the execution. 

A well-known problem each ATP program must face 
is the possible explosion of the search space, which can 
occur for various reasons. Here we do not study this 
topic, nor do we suggest that our program has a deep 
impact on the solution of the general problem. Our goal 
is only to show how an SDL language can be useful in 
different research areas of ATP. 



We observe that our pruning strategy is based on the 
addresses of the undeterminism in the order of applica­
tion of the inference steps. On the other hand, the use of 
reduction rules comes from the wish to have a KB cap­
ture the same logical consequences with a smaller possi­
ble representation "size". Consider now a generic search 
process and suppose a reduction step occurs. With "re­
duction" we will refer to the results of an operation able 
to change the structure of a formula, maintaining its logi­
cal value. Generally speaking a reduction step will refor­
mulate a formula by "reducing" its complexity and/or 
size. This transformation will in general involve other 
formulas used as a base for the logical reformulation. As 
an example, consider the following steps on two generic 
clauses 

[1] -,A I B, [2] -,A I -,B I C binary resolution 

[3] -,A I C subsumption 
delete 2 

We can view this step as the application of a reduc­
tion rule that uses [1] to transform [2] into [3]. We note 
that the satisfiability of the overall KB is preserved, i.e. 
the operation maintains the logical truth of the set of 
formulas. 

Suppose next that such a reduction has occurred dur­
ing a search, say a formula F has been reduced to F'. 
There now exists a potential set of formulas whose gen­
eration depends on the order in which the search process 
has been executed: this set consists of all of the descen­
dants of F that have not contributed to the generation 
of F', or, more precisely, the set 

by_inference{ descendants{F)) - ancestors{F'). 

(We note that we must leave all the descendants of F 
given by reduction as those are formulas originally not 
in the set generated by F). 

Pruning this set (if not empty) could perhaps make 
the proof longer, as the proof could be reachable rapidly 
by using one of the formulas we deleted, but it will not 
preclude the possibility of finding the proof if there is 
one. 

The effectiveness of this pruning strategy depends 
mainly on the effectiveness and the applicability of re­
duction steps in a proof, and so it relies directly on the 
structure of the search space (given by the formulas as­
serting the theorem). 

Let us now see how we can implement this operation 
by using zSDL and the mechanisms of the TPE. First 
of all we formalize the calls the TPE defines (and zSDL 
inherits) to access various relations on the content of the 
KB. We already announced some of them in section 2. 

• (TPE.12) - parentsC+ld,-Parents) 

• (TPE.13) - ancestorsC+ld,-Ancestors) 

• (TPE.14) - childrenC+ld,-Children) 
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• (TPE.15) - descendantsC+ld, -Descendants) 

Being I d the reference to a formula, these calls 
will respectively return the id-set of its parents, 
ancestors, children, and descendants, with respect 
to the current KB. We note that the given id-set 
may contain references to currently inactive formu­
las (deleted for some reason). All these relations will 
consider both inference as well as reduction steps. 

• (TPE.16) - by..reductionC+ldSet,-ByRed) : 

Given an IdSet this call selects which referred for­
mulas have been produced by application of a re­
duction rule, building the id-set ByRed with their 
ids. 

• (TPE.17) - replaceC?Newld, ?Id) 

The call succeeds if New I d refers to a formula that 
replaces an old one (referred by I d) following a re­
duction step. Otherwise the call fails. 

The proposed pruning strategy acts like a filter on the 
result of a superposition call: at each step it checks if 
the new formulas are given by reduction, in which case 
it tries to apply the deletion. So, we are going to extend 
the superposition control level of zSDL with a meta-call 
realizing the pruning. 

pruning_deriveCSetA,Mode,SetB) 
XA .? SetA, 
XB .? SetB, 
once C 

Given::- deriveC[XA] ,Mode,[XB]), 
by_reductionCGiven,ByRed), 
foreach( Nld .? ByRed, C 

replace(Nld,Id), 
ancestors(Nld,NldAnc), 
descendants(Id,IdDes), 
by_reduction(IdDes, IdDesByRed), 
IdDesBylnf .. IdDes .- IdDesByRed, 
DelSet .. IdDesBylnf .- NldAnc, 
delete(DelSet) ) ) ), 

stop_search. 
pruning_derive(SetA,Mode,SetB). 

derive(SetA,«+»,SetB) 
derive(SetA,(++»,SetB) 

SetA <+> SetB. 
SetA ++> SetB. 

The schema is quite simple. Each by-reduction child 
(Nld) of a superposition call is related to the formula it 
replaces (Id). Then the set of the by-inference descen­
dant of Id is reduced by the set of the Nld ancestors. No­
tice how the byjnference(descendant(F)) set is evalu­
able a.'> desceTldants(F) - by_reductions( descendants{F )). 
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5.3 A hyperresolution-oriented search 
strategy 

Our last example uses zSDL to define a strategy specifi­
cally oriented to work with a given inference rule, namely, 
the inference rule hyperresolution. 

The efficiency of an ATP system comes from the effi­
ciency of all of the different components of the program, 
from the basic unification and match algorithms to the 
KB management, and so on. With some "tough" infer­
ence rule, it also heavily relies on the ability of the search 
strategy to control its application ensuring a complete 
search without repeating steps. Hyperresolution is one 
such inference rule. . 

Hyperresolution considers a basic clause (called nu­
cleus) that has one or more negative literals. An in­
ference step occurs when a set of positive unit clauses 
(called satellites) is found that simultaneously unify with 
all of the negative literals of the nucleus. It is simple 
to see how hyperresolution will not generate new nuclei 
(for the rule cannot produce a clause containing nega­
tive literals) while it can generate new satellites. So, 
the set of potential satellites change dynamically during 
the search, and a good strategy must ensure a complete 
covering partition (with multiple occurrences) of this set 
without repeating trials. 

We first explain how we implemented the hyperres­
olution inference rule in our system (we call it hy_p). 
As usual the. rule has two arguments: the first must be 
a satellite and the second a nucleus. If a unification is 
found between the given satellite and one of the negative 
literals in the nucleus, then the set of the current active 
satellites is partitioned and superposed on the remaining 
negative literals. 

This behavior suggests the development of a search 
strategy driven by the generation of new satellites. In 
fact, we can visit the search space by levels, generate all 
the possible hyperresolvents, choose from them the new 
satellites, and use those to drive the search in the next 
level. As those satellites are new, the partitions we will 
try are new too, and no repetition in the trials occur. 
The basic shape of the strategy can be: 

hyper_strategy :-
Input .. input, 
get_satellites(Input,Sats), 
get_nuclei(Input,Nucs), 
last_sats := Sats, 
nucs :- Nucs, 
while( ( \+ stop_search, 

\+ last_sats .K [] ), ( 

New ::- last_sats ++> nucs ./ hy_p, 
get_satellites(New,NewSats), 
last_sats := NewSats ) ). 

The get_satellites/2 and get..lluclei/2 calls are 
used to choose from an id-set the subset of formula-

references corresponding, respectively, to valid satellites 
and nuclei. Notice how these calls can be defined by us­
ing the formula_weight/2 call and testing the negative 
and positive literal counts accordingly. 

As a matter of fact, the algorithm we have given fol­
lows closely the general schema of a breadth-first search. 
So, it can be simply extended to consider the application 
of more inference rules, intermixing the searches with the 
control, the enable/i, and the disable/i operations 
permitted. 

6 Conclusions 

This work introduces the concepts of Theorem Proving 
Engine and Strategy Description Language as architec­
tural and applicative tools in the design and use of an 
automated theorem-proving program. 

The definitions we give reflect a running Prolog sys­
tem, named zEN2, and" because of this fact, they inherit 
a Prolog style structure. 

Particular emphasis is given to the use of an SDL as a 
research tool as well as a way to reinterpret the use of a 
theorem prover as a batch or as an interactive program. 
In fact, the availability of an interpreter for such a lan­
guage offers the possibility of having a system able to 
cover both of these usages, giving to the user some way 
of choosing the granularity of the steps the prover must 
take. 

Three examples are given to show the possible appli­
cation of an SOL. Their purpose is to show its usefulness 
for expressing and testing new ideas. Some interesting 
capabilities of zSDL are applied to highlight how it al­
lows the treatment of self-analysis on the state of the 
search space. Examples of these are the definition of the 
self-adaptive search and the pruning strategy. 
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Abstract 
To reduce the number of generated clauses in resolution­
based deduction systems, subsumption has been around 
quite for a long time in the automated reasoning com­
munity. It is well-known that use of the subsumption 
sharply improves the effectiveness of theorem proving. 
However, subsumption tests can be very expensive be­
cause they should be applied repeatedly and are rela­
tively slow. There have been several researches to over­
come the expensiveness of subsumption. One of them is 
the s-link test based on the connection graph procedure. 
In the s-link test, it is essential to find a set of pairwise 
strongly compatible matching substitutions between lit­
erals in two clauses. This paper presents an improved 
algorithm of the s-link test with a new object, called 
strongly compatible list. By use of the strongly compat­
ible lists and appropriate bit operations on them, the 
proposed algorithm reduces the possible combinations 
of matching substitutions between literals as well as im­
proves the pairwise strongly compatible test itself. Two 
other subsumption algorithms and our algorithm are an­
alyzed in terms of the estimated maximal number of 
string comparisons. Our analysis shows that the worst­
case time complexity of our algorithm is much lower 
than the other algorithms. 

1 Introduction 
Logical Reasoning (or theorem proving) is the key to 
solving many puzzles, to solving problems in mathe­
matics, to designing electronic circuits, to verifying pro­
grams, and to answering queries in deduction systems. 
Logical reasoning is a process of drawing conclusions 
that follows logically from the supplied facts. Since the 
first-order predicate logic is generally sufficient for logi­
cal reasoning and offers the advantage of being partially 
decidable, it is widely used in automated reasoning. 

There have been a number of approaches to show 
that a formula is a logical consequence of a set of 
formulas. Notable among them is Robinson's reso­
lution principle [Robinson 1965] which is very power­
ful and uses only one inference rule. Many refine­
ments of the resolution principle based on graph have 
been proposed to increase the efficiency [Kowalski 1975, 
Sickel 1976, Andrew 1981, Bibel1981, Kowalski 1979]. 
One of them is Kowalski's connection graph proof pro­
cedure [Kowalski 1975, Kowalski 1979] which has some 
distinct advantages over previous approaches based 
upon resolution. 

1. Once an initial connection graph is constructed 
all information is present as to which literals are 
potentially resolvable so that no further search for 
unifiable complementary literals is needed. 

2. Application of a deletion operation can result in 
further deletion operations, thus potentially lead­
ing. to a snowball effect which reduces the graph 
rapIdly. The probability of this effect rises with 
the number of deletion rules available. 

3. The presence of the complete search space during 
connection graph proof procedure suggests the op­
portunity to use parallel evaluation strategies [Lo­
ganantharaj 1986,Loganantharaj 1987,Juang 1988] 
to improve the efficiency. 

Various deletion strategies [Munch 1988 Gottlob and 
Leitsch 1985,Chang and Lee 1973] are suggested to re­
~uce the number of cla?ses generated in theorem prov­
mg (automated reasomng). A very powerful deletion 
rule in resolution-based deduction systems is the sub­
sumption [Eisinger 1981, Wos 1986]. The subsumption 
is used not only to discard a newly deduced clause when 
a copy already has been retained, but also to discard 
other types of unneeded information. The use of sub­
sumption sharply improves the effectiveness of theorem 
proving, as illustrated by the benchmark problem, Sam's 
Lemma [Wos 1986]. 

However, the use of subsumption can be quite ex­
pensive because it must be repeated very often and is 
relatively slow [Wos 1986]. There have been two ap­
proaches for overcoming the expensiveness of subsump­
t~on. One is t.o.reduce the number of necessary subsump­
tIon tests [ElSlnger 1981], and the other is to improve 
the subsumption test itself [Gottlob and Leitsch 1985 
Stillman 1973]. Eisinger [Eisinger 1981] proposes the s~ 
link test which is based on the principal ideas of the con­
nection graph proof procedure. His method provides an 
efficient preselection which singles out clauses D that do 
not possess the appropriate links to the clause C. Having 
preselect~d t~e candida~es, we need to compose match­
mg substItutIOns from lIterals in clause C to literals in 
clause D to find a matcher () from C to D. In some cases 
many compositions are possible and hence the search 
for () becomes quite expensive. Socher [Socher 1988] im­
proves the search procedure by imposing restrictions on 
the possible matching substitutions. 

In this paper we propose an improved s-link test with 
a new object, called strongly compatible list. By use of 
the strongly compatible lists and appropriate bit opera­
tions on them, the proposed algorithm reduces the 
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possible combinations of matching substitutions be­
tween literals as well as improves the pairwise strongly 
compatible test itself. Two subsumption algorithms 
(Eisinger, Socher) and our algorithm are analyzed in 
terms of the estimated maximal number of string com­
parisons. Our analysis shows that the worst-case time 
complexity of our algorithm is much lower than the other 
algorithms. 

In the next chapter, preliminary definitions and the 
s-link test are presented. A new subsumption algorithm 
based on strongly compatible lists and its related works 
and analysis are given in Chapter 3 and Chapter 4, re­
spectively. In Chapter 5, our works are summarized. 

2 Preliminaries 

We assume that the readers are familiar with materials 
in [Chang and Lee 1973]. A variable starts with an up­
per case letter and a constant starts with a lower case 
letter. 

Definition 2.1 A substitution (7 IS a mapping from 
variables to terms. 

We represent a substitution (7 with Si(7 = ti for each 
i (1 :::; i :::; n) by the set of pairs {td SI,' .. ,tn/ sn}, and 
represent the composition of substitution of (7 and T by 
0' - T. For convenience, we denote (71 •••• - (7 n by -£=1 (7i. 

Definition 2.2 Two substitutions (7 and T are strongly 
compatible, if 0' • T = T • (7. 

Definition 2.3 Substitutions (7I,' •. ,(7n are pairwises­
tTongly compatible, if any two substitutions (7i,O'j E 
{0'1' ... ,(7n} are strongly compatible. 

Definition 2.4 A matching substitution from a term 
(or a literal) s to a term (or a literal, respectively) t 
is a substitution Il such that SIl = t. 

Definition 2.5 uni( C, Ii, D) is a set of all matching 
substitutions mapping a literal Ii in clause C onto some 
literal in clause D. 

For example, given C = {p(X, Y), q(Y, en and D = 

lP(a,b),p(b,a),q(a,cn, we have uni(C,p(X,Y),D) = 
{a/X,b/Y},{b/X,a/Y}} and uni(C, q(Y,c), D) = 
{a/Y}}. 

Definition 2.6 If there is a T with {} = (7 _ T for any 
other unifier {} for sand t, (7 is a most general unifier 
(mgu) for sand t. 

To reduce the search space in theorem proving, re­
dundant clauses must be removed. The redundant clause 
means a clause whose removal does not affect the unsat­
isfiability. The redundant clause includes a tautology or 
a subsumed clause. The subsumption can be defined in 
two ways. 

Definition 2.7 A clause C l subsumes another clause 
C2 if Cl logically implies C2 . 

Definition 2.8 A clause C1 {}-subsumes another clause 
G2 if IGII :::; IG2 1 and there is a substitution {} such that 
G1 {} ~ C2 • 

It has been shown [Gottlob and Leitsch 1985,Love­
land 1978] that these two definitions are not equiva­
lent. If we use the first definition, then most of the 
resolution-based proof procedures are not complete be­
cause a clause always subsume its factors. In this paper 
we are concerned only with the {}-subsumption. 

In order to perform a subsumption test on given 
two clauses, we must find a matcher 0 such that CO 
~ D. It is well known that finding such {} is NP­
complete [Gottlob and Leitsch 1985] and the search for 
{} may become expensive. There have been some efforts 
to reduce the cost of finding a matcher {} [Gottlob and 
Leitsch 1985,Socher 1988,Chang and Lee 1973,Eisinger 
19S1,Stillman 1973]. One of them is the s-link test based 
on the connection graph procedure. The subsumption 
test based on the s-link is provided by the following the­
orem [Eisinger 1981]: 

Theorem 2.1 Let C = {/I, ... , In} and D be clauses. 
Then C {}-subsumes D if and only if ICI S IDI and there 
is an n-tuple ((7I,"" O'n) E x£=luni(C, Ii, D) such that 
all (7i (1 :::; i :::; n) are pairwise strongly compatible. 

Example 2.1 (of Theorem 2.1 [Socher 1988]) Given a 
set {C, Dl , D2 , D3} of clauses with C = {p(X, Y), 
q(Y, en, Dl = {p(a, c), r(b, en, D2 = {p(U, V), q(V, Wn 
and D3 = {p(a, b), p(b,a), q(a, en one want to find out, 
which clauses are subsumed by C. Dl can be excluded 
because the literal q(Y, c) in C is not unifiable with any 
literal in DI, that is, there is no s-link from q(Y, c) to a 
literal in Dl . D2 cannot be a candidate because uni( C, 
q(Y, c), D2) = D. For D3 we obtain the two pairs ((7I, 

T) and ((72, T), where (71 = {a/X, b/Y}, (72 = {b/X, 
a/Y} and T = {a/Y}. From these two pairs only ((72, 

T) is strongly compatible and thus C subsumes D3. 0 

As shown in Example 2.1, in order to find clauses 
that are subsumed by a clause C = {II, ... , 1m}, first 
we have to preselect clauses that are connected to every 
literals in C by s-links of a connection graph. If D is 
such clause then each literal in C is unifiable with some 
literals in D. For such candidate D, we need to perform 
a pairwise strongly compatible test on all elements of 
X~l uni( C, ii, D). 

3 A New Subsumption Algo­
rithm Based on Strongly Com­
patible Lists 

The s-link test [Eisinger 1981] for long clauses with more 
than one matching substitution for each literal may re­
quire an expensive search of all elements of the Cartesian 
product. 

We define the strongly compatible list of matching 
substitutions in order to improve the s-link test. With 
the strongly compatible lists, we can single out use­
less matching substitutions and improve the pairwise 
strongly compatible test itself. 

The following three bit operations are used in this 
paper. 

bitwise disjunction of WI and W2 

bitwise conjunction of WI and W2 

bitwise complementation 



where Wi is a bit sequence. For convenience, we denote 
WI + ... + 'Wn by + i=l 'Wi. Similarly, we denote WI * ... * 'Wn 

by *i=l'Wi. 
To test whether the given two matching substitutions 

are strongly compatible, we need the following defini­
tion. 

Definition 3.1 Let {VI,'" ,vn } be an ordered set of 
variables in clause C, and a matching substitution 0" be­
tween literals in clauses C and D be {tIi Sl,' .. ,tmj Sm}. 
8(0") is an n-length list such that the ith element is tj if 
Vi = Sj, </J otherwise. 8(0") = (t1,"" tn) indicates that 
substitution 0" does not substitute for variable Vi if ti is 
</J, otherwise it substitutes ti for Vi· 

Example 3.1 Let C = {11, 12} and D = {kl, k2' k3} 
with h = p(X, Y), 12 = p(Y, Z), k1 = p(a, b), k2 = p(a, e), 
k3 = p( d, b) and {X, Y, Z} be an ordered set of variables 
in C. We want to find all the matching substitutions 
between literals in C and literals in D. Then, we can 
obtain that 0"1 = {aj X, bjY}, 0"2 = {aj X, ejY}, 0"3 = 
{djX, bjY}, 0"4 = {ajY, bjZ}, O"s = {ajY, ejZ}, and 
0"6 = {djY, bjZ} for each (ii, kj ) where 1:::; i:::; 2 and 
1 :::; j :::; 3. By Definition 3.1 we obtain that 8(0"1) = (a, 
b, </J), 8(0"2) = (a, e, </J), 8(0"3) = (d, b, </J), 8(0"4) = (</J, a, 
b), 8(O"s) = (</J, a, e), and 8(0"6) = (</J, d, b). 0 

If two matching substitution 0"1 and 0"2 are strongly 
compatible, they should not substitute for same vari­
ables differently. That is, if 0"1 substitutes a term t for 
a variable V then 0"2 has to substitute the term t for the 
variable V or does not have to substitute for the variable 
v. This can be formally described in Lemma 3.1. 

Lemma 3.1 Let {V1,' .. ,vn} be an ordered set of vari­
ables in clause C, and 0"1 and 0"2 be matching substitu­
tions from literals in clause C to literals in clause D. 0"1 
and 0"2 are strongly compatible if and only if 7fi( 8( 0"1)) 
= ¢ V 7fi(8(0"2)) = ¢ V 7fi(8(O"d) = 7fi(8(0"2)) for each i 
(1 :::; i :::; n), where 7fi(X) is a selection function which 
returns the ith element of list X. 
(Proof) (f-) Each case is considered separately. 

(i) in the case 7fi(8(0"1)) = ¢ 
Since VW1 = Vi and clauses C and Dare variable­
disjoint, Vi( 0"1 e0"2) = (ViO"l )0"2 = Vi0"2 = (ViO"2 )0"1 = 
Vi( 0"2 e O"l)' 

(ii) in the case 7fi(8(0"2)) = </J 
Since ViO"2 = Vi and clauses C and D variable­
disjoint, Vi( 0"2 eO"l) = (ViO"2)O"l = ViO"l = (VW1)0"2 
= Vi(0"1 e0"2)' 

(iii) in the case 7fi(8(0"1)) = 7fi(8(0"2)) 
Since VW1 = ViO"2 and clauses C and Dare 
variable-disjoint, Vi( 0"1 e0"2) = (viO"d0"2 = (VW2)O"2 
= Vi0"2 = ViO"l = (ViO"l)O"l = (Vi0"2)0"1 = Vi(0"2 eO"l)' 

From (i), (ii), and (iii), if 7fi(8(0"1)) = </J or 7fi(8(0"2)) = 
¢ or 7fi(8(O"d) = 7fi(8(0"2)) for each i (1 :::; i :::; n), then 
0"1 and 0"2 are strongly compatible. 
(-+) Assume that 7fi(8(0"1)) =J </J, 7fi(8(0"2)) =J </J, and 
7fi(8(O"d) =J 7fi(8(0"2))' By Definition 3.1,0"1 and 0"2 con­
tain SdVi and SdVi, respectively, where Sl =J S2. Hence, 
Vi(0"1 e0"2) =J Vi(0"2 eO"I) (i.e. 0"1 e 0"2 =J 0"2 e O"d. This is 
contradictory to that 0"1 and 0"2 are strongly compatible. 
The proof is completed. 0 
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Lemma 3.1 suggests a new method for testing whether 
the given two matching substitutions 0"1 and 0"2 are 
strongly compatible. That is, without calculating 0"1 e0"2 
and 0"2eO"l, we can determine whether 0"1 and 0"2 are 
strongly compatible by only comparing 8(0"1) with 8(0"2)' 
For example, we can know that 0"1 and 0"4 in Example 
3.1 are not strongly compatible because 7f2(8(0"1)) =J </J 
1\ 7f2(8(O"4)) =J </J 1\ 7f2(8(O"d) =J 7f2(8(0"4))' 

Definition 3.2 Let {Vb"" vm } be an ordered set of 
variables in clause C, and let {O"t, .. " 0" n} be an ordered 
set of matching substitutions from literals in clause C 
to literals in clause D. Pi(X), 1 :::; i :::; m, is an n-bit 
sequence such that its j'th bit is 1 if the i'th element 
of 8(O"J is X or </J, otherwise 0 for each j (1 :::; j :::; n). 
Especially, when X is ¢ all bits of Pi(X) are 1. 

Example 3.2 From Example 3.1, we have P1!aj = 
11 0 111, PI (d) = 001111 , PI ( </J) = 111111 , P2 a = 
000110, P2(b) = 101000, P2( e) = 010000, P2 d = 
000001, P3(¢) = 111111, P3(b) = 111101, and P3(e) = 
111010. In this case, P1 (a) = 110111 indicates that vari­
able VI having value a is compatible with substitutions 
1,2,4,5,6 but not with the substitution 3. 0 

Let {0"1, "', O"n} be an ordered set of matching sub­
stitutions from literals in clause C to literals in clause 
D and m be the number of variables in C. Match­
ing substitutions which are strongly compatible with O"i, 
1 :::; i :::; n, can be represented by an n-bit sequence 
which is calculated by the following function (3( O"i): 

(3( O"i) = *~1 Pj( 7f j( 8( O"i))). 
We call (3(O"i) the strongly compatible list for O"i. 

Lemma 3.2 Let {VI, .. " vm } be an ordered set of vari­
ables in clause C, and {0"1, .. " 0" n} be an ordered set of 
matching substitutions between literals in clauses C and 
literals in clause D. 0" E {0"1, .. " O"n} and O"k, 1 :::; k :::; n, 
are strongly compatible if and only if the k'th bit of (3( 0") 
is 1. 
(Proof) We must show that if the k'th bit of *~1 
Pi(7fi(8(0")) ) is 1 then 0" and O"k are strongly compat­
ible, and also show that if 0" is strongly compatible with 
O"k then the k'th bit of *~1 Pi(7fi(8(0"))) is 1. 
(f-) From the fact that the k'th bit of *~1 Pi ( 7fi( 8( 0"))) is 
1, the k'th bit of Pi(7fi(8(0"))) is 1 for each i (1 :::; i :::; m). 
By Definition 3.2, 7fi(8(0")) = </J or 7fi(8(0")) = 7fi(8(O"k)) 
or 7fi( 8( O"k)) = ¢ for each i (1 :::; i :::; m). Therefore, by 
Lemma 3.1, 0" and O"k are strongly compatible. 
(-+) From Lemma 3.1, 7fi( 8( 0")) = </J or 7fi( 8( 0")) = 
7fi(8(O"k)) or 7fi(8(O"k)) = ¢ for each i (1 :::; i :::; m). By 
Definition 3.2, the k'th element of Pi(7fi(8(0"))) is 1 for 
each i (l :::; i :::; m). Therefore, the k'th bit of *~1 
Pi(7fi(8(0"))) is 1. 0 

Example 3.3 From Example 3.2, we can obtain (3(O"i) 
for each i (1 :::; i :::; 6) as follows: 

(3(0"1) = P1(a) * P2(b) * P3(¢) = 110111 * 101000 
* 111111 = 100000 

(3(0"2) = P1(a) * P2(e) * P3(</J) = 110111 * 010000 
* 111111 = 010000 

(3(0"3) = P1(d) * P2(b) * P3(¢) = 001111 * 101000 
* 111111 = 001000 

(3(0"4) = P1(</J) * P2(a) * P3(b) = 111111 * 000110 
* 111101 = 000100 

(3(O"s) = P1(</J) * P2(a) * P3(e) = 111111 * 000110 
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* 111010 = 000010 
(3(U6) = PI (</» * P2(d) * P3(b) = 111111 * 000001 

* 111101 = 000001. 
From this, we know that each ui(1 ~ i ~ 6) is strongly 
compatible with only itself. 0 

Some matching substitutions do not contribute to 
construct a matcher 0 such that CO C D. If such match­
ing substitutions can be identified ;;:nd removed before 
the actual pairwise strongly compatible tests, we can re­
duce the effort to find a matcher O. One class of such 
matching substitutions can be defined as follows: 

Definition 3.3 Let C = {lI, "', 1m} and D be clauses 
and U a matching substitution mapping a literal in C 
onto a literal in D. If there is an lk E {it, .. " lm} such 
that any matching substitution in uni(C, Ik, D) is not 
strongly compatible with U then U is useless. 

Intuitively we know that a matching substitution U 

is useless if the number of Is in f3(u) is less than m, 
the number of literals of C. But the number of Is in 
f3( u) is not always less than m though U is useless. Let 
C = {It, "', 1m} and D be clauses and {ut, "', Un} 
be a set of matching substitutions from literals in C to 
literals in D. We can represent uni(C, Ik' D) by an n-bit 
sequence Mlk such that its i'th bit is 1 if Ui E uni( C, Ik' 
D), otherwise 0 for each k and i (1 ~ k ~ m, 1 ~ i ~ n). 
Given these n-bit sequences, we can easily test whether 
a matching substitution U is useless, that is, if there is 
an lk such that Mlk * f3( u) = 0 then U is useless. 

Example 3.4 From Example 3.1, we have uni(C, It, 
D) = {ut, U2, U3} and uni(C, l2' D) = {U4' U5, U6} and 
thus Mil = 111000 and MI2 = 000111. We have f3(Uk) 
for each k (1 ~ k ~ 6) as shown in Example 3.3. Since 
f3( Ui) * MI2 = 0 for each i (1 ~ i ~ 3) and f3( Uj) * Mh 
= 0 for each j (4 ~ j ~ 6), all Uk (l~k~6) are useless. 
o 

Theorem 3.1 Let C = {It, "', lm} and D be clauses. 
If U E uni(C, lk, D) (1 ~ k ~ m) is a useless matching 
substitution then there is no 0 such that CO C D and 0 
= UI •... Uk-I. U • Uk+I ...• Um where u-;-E uni(C, 
li, D) for each i (1 ~ i ~ m, i =f. k). 
(Proof) Let U be a member of uni( C, lk, D) and a useless 
matching substitution. Suppose that there is a 0 such 
that CO ~ D and 0 = UI ., .• Uk-I • U • Uk+! ... 
• Urn where Ui E uni(C, Ii, D). By Theorem 2.1, Ut, 
"', Uk-I, U, Uk+I , "', Urn must be pairwise strongly 
compatible and thus U is strongly compatible with Ui E 
uni(C, ii, D) for each i (1 ~ i ~ m, i =f. k). U E uni(C, 
lk, D) is strongly compatible with itself. Therefore each 

uni(C, li, D) for each i (1 ~ i ~ m) has at l.east ~ne 
matching substitution which is strongly compatIble WIth 
u. This is contradictory to that U is a useless matching 
substitution. Hence, there is no such O. 0 

By Theorem 3.1, it is not necessary to perform pair­
wise strongly compatible test on useless matching substi­
tutions. If U E uni( C, Ik' D) is a usele~s matching s.ubsti-
tution then we can remove U from unz(C, lk , D) WIthout 
changing the result of subsumption tests. In Example 
3.4, we know that clause C does not subsume clause D 
without pairwise strongly compatible tests, since all Ui 
are useless. 

Given two clauses C and D, there may be more than 
one matcher 0 such that CO C D. To test that C sub­
sumes D, we only find a makher, that is, we have no 
need to find all matchers. By this property we can re­
move more matching substitutions. 

Definition 3.4 Let C = {h, "', 1m} and D be clauses 
and {ut, ., " un} be an ordered set of matching substi­
tutions from literals in C to literals in D. If Ui, Uj E 
uni(C, Ir, D) for some r (1 ~ r ~ m) and Uj is strongly 
compatible with each Uk which is strongly compatible 
with Ui then Uj includes Ui, denoted by Ui ~q Uj, where 
k =f. i and k =f. j. 

Let {ut, .. " un} be an ordered set of matching sub­
stitutions and ,( Ui) be f3( Ui) * J.Li, where J.Lin is the n-bit 
sequence such that the value of its i'th bit is 1 and all 
remaining bits are O. Then, we can easily test the ~q-
relation by bit operations, i.e. if ,( Ui) * ,( Uj) = 0 then 
Ui ~q Uj. 

Example 3.5 Let C = {p(X), q(Y)}, D = {p(a), p(b), 
q(a), q(b)} and {X, Y} be an ordered set of variables in 
C. Then wehaveul = {a/X}, U2 = {b/X}, U3 = ~a/Y}, 
and U4 = {b/Y}. By Definition 3.1, we have 8(UI = (a, 
</», 8(U2) = (b, </», 8(U3) = (</>, a), 8(U4) = (</>, ). We 
can calculate the followmg strongly compatible lists of 
matching substitutions: 

f3IUIj = PIla) * P2(</» = 1011 * 1111 = 1011 
f3 U2 = PI b) * P2 (</» = 0111 * 1111 = 0111 
f3 U3 = PI </» * P2(a) = 1111 * 1110 = 1110 
f3 U4 = PI </» * P2(b) = 1111 * 1101 = 1101. 

From this strongly compatible lists, we can obtain ,( UI) 
and ,( (2) as follows: 

,(UI) = f3(UI) * J.Li = 1011 * 0111 = 0011 
,(U2) = f3(U2) * J.L~ = 0111 * 1011 = 0011. 

Since ,(UI) * ,(U2) = 0, we obtain the relation UI ~q 
U2. Similarly, we obtain the relation U3 ~q U4' 0 

Theorem 3.2 Let C = ~it, "', 1m} and D be clauses, 
U E uni( C, ik, D) and U E uni(C, ik, D) for some k 
(1 ~ k ~ m), U ~q u' and Ui E uni(C, Ii, D) for each 
i (1~ i ~m, i =f. k). If there is a 0 such that CO ~ D 
and 0 = UI •... • Uk-I. U.Uk+! ... • Um, then there is a 
0' such that CO' ~ D and 0' = UI •... • Uk-I. U'.Uk+! 
••• • U m • 

(Proof) Let us suppose that there is a 0 such that CO ~ 
D and 0 = UI • ... • Uk-I. U.Uk+I '" .Um. Then, Ut, ... 
Uk-b u, Uk+! ... Um are pairwise strongly compatible 
by Theorem 2.1. Since u' includes u, u' is strongly com­
patible with UI, .. ', Uk-I, Uk+I, .. ', um. Thus UI, "., 
Uk-b u', Uk+!, .. ', Um are pairwise strongly compatible. 
Therefore, there is a 0' such that CO' ~ D and 0' = UI. 
... • Uk-I. U'.Uk+! ... • Um by Theorem 2.1. 0 

By Theorem 3.2, we do not need perform a strongly 
compatible test on the combinations of matching substi­
tutions which contain a matching substitution UI such 
that UI E uni(C, ii, D), U2 E uni(C, ii, D), and UI ~q 
U2. In Example 3.5, we can remove UI and U3 because 
U2 and U4 include UI and U3, respectively. 

As Theorem 3.1 (useless theorem) and Theorem 3.2 
(included theorem) suggest, we can remove the useless 
or included matching substitution before we take a pair­
wise strongly compatible test. We call a matching sub­
stitution which is either useless or included unnecessary. 



One phenomenon we want to point out is that a match­
ing substitution becomes unnecessary due to the propa­
gation of deletion, so needs to be deleted. Therefore we 
should keep deleting unnecessary matching substitutions 
until there is no more such matching substitution. For 
examples, let 0"1, 0"2 and 0"3 be matching substitutions 
from literals in C to literals in D, and let the number of 
literals in C be 3. Suppose that 0"1 is strongly compat­
ible with 0"2 and 0"3, and 0"2 is not strongly compatible 
with 0"3. Then 0"1 is not a useless matching substitution. 
However, the removal of useless matching substitutions, 
0"2 and 0"3, causes 0"1 to be a useless matching substitu­
tion and thus it can be removed. 

Let C = {II, ... , in}, and D clause. Then, in 
the worst case O(n2 ) strongly compatible tests will be 
needed for each combination (O"I, ••• , O"n) E xi=l uni(C, 
ii, D) in order to check C subsumes D. However, given 
f3( O"i) we can enhance the performance of a subsumption 
test by the following theorem. 

Theorem 3.3 Let C = {it, ... , 1m} and D be clauses, 
{0"1, ... , O"n} be a set of matching substitutions from 
literals in C to literals in D, and {O"XI' ... , O"Xm} be a 
subset of {O"I, ••• , O"n}. There is a f) = O"Xl e ... eO"Xm 
such that Cf) ~ D and O"Xk Euni( C, lk, D) for each k 
(1 :::; k :::; m) if only if *k=l f3(O"Xk) * +k=l I1xk n = +k=l 
I1xk n. 

(Proof) (+--) Since *k=l f3( O"Xk) * +k=l I1xk n = +k=l I1xJ< n, 
by Lemma 3.2, O"XI' ... , O"Xm are strongly compatible 
wi th each of {O" Xl' ••• , 0" Xm}. Therefore 0" Xl' ... , 0" Xm are 
pairwise strongly compatible. Thus, by Theorem 2.1, 
there is a () = O"XI e ... eO"Xm such that CO ~ D and O"Xk 
E uni(C, Ik' D) for each k (1 :::; k :::; m) 
(--+) By Theorem 2.1, O"XI' ... , O"Xm are pairwise strongly 
compatible. Therefore, by Lemma 3.2, the Xi bit of 
f3(O"Xk) for each i, k (1 :::; i, k :::; m) is 1. Thus *k=l 
f3( O"Xk) * +k=l I1xk n = +k=l I1xk n. 0 

Now we can formulate a new algorithm that returns 
a pairwise stron~ly compatible set {O"I, ••• , O"m} such 
that (O"I, ••• , O"m) E X~l uni(C, ii, D) if exists, other­
wise return {}. The detail algorithm, Pairwise Strongly 
Compatible Test (PSCT), is described in Figure 1 and it 
can be summarized as follows: 

1. Calculate the strongly compatible list for each 
matching substitution. 

2. Remove unnecessary matching substitutions until 
there is no such matching substitution. 

3. Find out an m-tuple (O"I, ••• , O"m) such that *k=l 
f3( O"k) * +k=l 11k n = +k=l 11k n. 

Example 3.6 Given C = {p(X, Y), r(Y, Z), s(X, Z)} 
and D = {p(b,a), p(a, b), r(a,d), r(b,c), s(a,d), s(a,c)} 
we want to find out a substitution f) such that Cf) C D. 
Let {X, Y, Z} be an ordered set of variables in C. Then, 
we can obtain that 

Mp(x,y) = 110000, Mr(y,z) = 001100, Ms(x,z) = 000011, 
13(0"1) = 101000, 13(0"2) = 010111, 13(0"3) = 101010, 
13(0"4) = 010101, 13(0"5) = 011010, 13(0"6) = 010101. 

Since j3( O"d * Ms(x,z) = 0, 0"1 is removed and thus the 
strongly compatible lists are adjusted as follows: 

13(0"2) = 010111, 13(0"3) = 001010, 13(0"4) = 010101, 
13(0"5) = 011010, 13(0"6) = 010101. 
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Since 13(0"3) * Mp(X,y) = 0, 0'3 is useless. By further 
removing the useless matching substitution 0"3, we can 
obtain that 

13(0"2) = 010111, 13(0"4) = 010101, 13(0"5) = 010010, 
13(0"6) = 010101. 

Since 13(0"5) * Mr(y,Z) = 0, 0"5 is useless and thus re­
moved. Consequently we can obtain following strongly 
compatible lists: 

13(0"2) = 010101, 13(0"4) = 010101, 13(0"6) = 010101. 

Since 13(0"2) * 13(0"4) * 13(0"6) * 010101 = 010101, 0"2, 0"4 
and 0"6 are pairwise strongly compatible. Thus, there is 
a substitution () = 0"2e0"4e0"6 = {ajX, bjY, cjZ}. 0 

Our Algorithm PSCT 
Input: clauses C = {II, ... , 1m} and D 
Output: a pairwise strongly compatible set {0"1' ... , 0" m} 
such that (O"l,···,O"m) E X~l uni(C, Ii, D) 

1. Calculate 13(0") for all 0" E U~l uni(C, Ii, D). 

2. Let I be an n-bit sequence such that all its bits are 
o. 

(a) for each O"k E U~l uni(C, Ii, D), if O"k is use­
less then 

i. remove O"k. 
ii. I = I + 11k n. 

(b) for each O"k E U~l uni(C, Ii, D), if there is a 
0"/ such that O"k :::;(7 0"/ then 

i. remove O"k. 
ii.I=I+l1kn. 

(c) for each O"k E U~l uni(C, lj, D), f3(O"k) 
f3(O"k) * 7. 

3. If uni(C, ii, D) = {} for some i, then return {}. 

4. Repeat step 2",3 until there is no unnecessary 
matching substitution. 

5. For each m-tuple (O"il , ..• , O"im) where O"ik E uni(C, 
h, D), 
if*k=l f3(O"ik) * +k=ll1ik

n = +k=ll1ik
n, then return 

{O"il,···,O"im}· 

6. return {}. 

Figure 1: Algorithm PSCT 
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4 Related Works and Analysis 

This section compares our algorithm with the two ex­
isting s-link tests, namely Eisinger's algorithm and 
Socher's algorithm. The analysis is based on the number 
of string comparisons to determine whether a clause C = 
{11, ... , 1m} subsumes a clause D. To measure the com­
plexity of three algorithms, we use the following sym­
bols: 

r: the maximal arity of predicate symbols occurring in 
literals in clauses C and D. 

Ne: the number of distinct variables in a literal in 
clauses C and D. 

ND : the number of distinct terms which are substituted 
for a variable in clause C. 

Ns: the number of strongly compatible tests needed to 
see whether m matching substitutions between lit­
erals are pairwise strongly compatible. 

Np : the number of pairwise strongly compatible tests 
needed to find a matcher f) such that CO ~ D. 

To simplify the analysis, we assume that the number of 
matching substitutions in each uni( C, Ii, D) (1 :s; i :s; 
m) is equal and let it be k. 

In Eisinger's algorithm, subsumption tests for long 
clauses with more than one matching substitution for 
each literal may require an expensive search of all ele­
ments of the Cartesian product. Since compositions of 
substitutions are needed to see whether two given substi­
tutions are strongly compatible and O( N8) string com­
parisons are needed for each strongly compatible test, 
O(NsN1J string comparisons are needed for each pair­
wise strongly compatible test. Thus O(NpNsN8) string 
comparisons are needed for the subsumption test. Since 
P :s; N p :s; km , 1 :s; Ns :s; m(n;-l), and 1 :s; Ne :s; r, 
in the worst case Ne = r, Ns = m(m - 1)/2 and N p 
= km

, so the worst-case time complexity of Eisinger's is 
O(km m 2r2). 

Socher proposes an improvement of the s-link test 
for subsumption of two clauses [Socher 1988]. He im­
proves the search for 0 such that Cf) ~ D by imposing a 
restriction on the possible matching substitutions. It is 
based on the idea of giving the variables and literals of 
a clause a characteristic property, which in fact denotes 
information about the occurrences of variables in vari­
ous argument positions of a literal. An order for these 
characteristic is defined and it is shown that the order 
is compatible with the matching substitution (J" from C 
to D. Thus all matching substitutions that do not re­
spect the order can be singled out. However, he does not 

improve the pairwise strongly compatible test itself and 
thus does not reduce the worst-case time complexity of 
the s-link test. 

In some cases Socher's algorithm can not single out a 
matching substitution which is either useless or included 
matching substitution. For example, let C = {p(X, Y), 
q(Y,X)} and D = {p(a,e), p(b,d), q(e, b), p(d, a)} be 
given. No matching substitution is singled out because 
the characteristic matrices of literals p and q in Care 
equal to those ones in D. However, all matching sub­
stitutions are useless in our approach, so no pairwise 
strongly compatible test is performed. 

By using strongly compatible lists and bit opera­
tions, we improve the pairwise strongly compatible test 
and thus reduce the worst-case time complexity of the s­
link test. O(km2 NeND) string comparisons are needed 
to calculate all strongly compatible lists. O(m) bit­
conjunctions are needed for a pairwise strongly compat­
ible test when m strongly compatible lists are given. 
Thus, O(km2 NeND) string comparisons and O(mNp ) 
bit-conjunctions are needed for a subsumption test. 
Since P :s; N p :s; km

, 1 :s; Ne :s; r, and 1 :s; ND :s; km, 
in the worst case N p = km

, Ne = rand ND = km, so 
the worst-case time complexity is O( k2rm3 string com­
parisons + mkm bit-conjunctions). 

Let n be the ratio of the time complexity of a string 
comparison to the time complexity of a bit-conjunction. 
Then, in the case that Prm3 is greater than mk

m
, the 

worst-case time complexity of our algorithm is O(k2rm3
) 

and we can reduce the worst-case time complexity of 
Eisinger's algorithm by O( km,:2r). In the other case, 
the worst-time complexity of our algorithm is O( m~m) 
and we can reduce the worst-case time complexity of 
Eisinger's algorithm by O(mr2n). 

5 Conclusions 
Subsumption tests for long clauses with more than one 
matching substitution for each literal may require an 
excessive search for all elements in the Cartesian prod­
uct. We have presented a new subsumption algorithm, 
called PSCT algorithm, which has a lower worst-case 
time complexity than the existing methods. The effi­
ciency of our algorithm is based on the following facts. 

1. Construction of strongly compatible lists allows 
us to identify unnecessary matching substitutions 
at the early stage of the subsumption test. Such 
matching substitutions are removed and are not 
involved at the actual pairwise strongly compat­
ible test to come. This filtering process reduces 
the number of possible combinations of matching 
substitutions clearly. 

2. As for the pairwise strongly compatible test itself, 
the test is carried out efficiently due to the appro­
priate bit operations on the strongly compatible 
lists which are already constructed. 

The approaches [Socher 1988, Eisinger 1981] that ac­
tually compose the matching substitutions to check pair­
wise compatibility are considered to be slow and expen­
sive. In most cases our approach outperforms others 
[Socher 1988, Eisinger 1981] even though it may involve 
the cost overhead for computation of the strongly com­
patible lists of matching substitutions. Furthermore, it 
should be noted that our subsumption algorithm can be 
used in general theorem proving approach even though 
it is described in the context of the connection graph 
proof procedure in this paper. 
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Abstract 

We present a duality relationship between abduction for 
definite abductive programs and model generation 011 

the only-if part of these programs. As was pointed out 
by Console et all, abductive solutions for an abductive 
program correspond to models of the only-if part. We 
extend tIus observation by showing that the procedu­
ral semantics of abduction itself can be interpreted du­
ally as a form of model generation on the only-if part. 
Tlus model generation extends 5atcluno with an efficient 
treatment of equality. It is illustrated how this duality 
allows to improve current procedures for both abduction 
and model generation by transferring teclmical results 
known for one of these computational paradigms to the 
other. 

1 Introduction 

The work we report on this paper was motivated by 
some recent progress made in the field of Logic Pro­
gramming to formalize abductive reasoning as logic de­
duction (see [Console et ai., 1991J and [Bry, 1990]). In 
[Kowalski, 1991], R. Kowalski presents the intuition be­
hind this approach. He considers the following simple 
definite abductive logic program: 

P = { wobbly-wheel +- flat-tyre. 
wobbly-wheel +- broken-spokes. 
flat-tyre +- J>.unctured-tube. 
flat-tyre ~ leaky-valve. } 

where the predicates broken-spokes, puuctured-tube and 
leaky-valve are the abducibles. Given a query Q = +­

wobbly-wheel, abductive reasoning allows to infer the as­
swuptions: 

51 = { pWlctured-tube }, 
52 = { leaky-valve}, and 
53 = { broken-spokes} . 

·supported by the Belgian "Diensten voor Programmatie van 
Wetenschapsbeleid", under the contract RFO-AI-03 

t supported by the Belgian National Fund for Scientific Research 

These sets of assumptions are abductive solutions to the 
given query +-Q in the sense that for each 5i, we have 
that P U Si 1= Q. 

Kowalski points out that we can equally well obtain 
these solutions by deduction, if we first transform the 
abductive program P U {Q} into a new logic theory T. 
The transformation consists of taking the only-if part 
of every defuution of a non-abducible predicate hI the 
Clark-completion of P and by adding the negation of Q. 
In the example, we obtain the (non-Horn) theory T: 

T = { wobbly-wheel -+ flat-tyre, broken-spokes. 
flat-tyre -+ punctured-tube, leaky-valve. 
wobbly-wheel +- } 

Minimal models for this new theory Tare: 

Ml = { wobbly-wheel, flat-tyre, puuctured­
tube }, 
M2 = { wobbly-wheel, flat-tyre, leaky-valve }, 
and 
M3 = { wobbly-wheel, broken-spokes }. 

Restricthlg these models to the atoms of the abducible 
predicates only, we precisely obtain the three abductive 
solutions 51, 52 and 53 of the original problem. 

The above observation points to an hlteresting is­
sue; namely the possibility of linking these dual declara­
tive semantics by completely equivalent dual procedures. 
Figure 1 shows this duality between an 5LD+ A~duction 
tree (see [Cox and Pietrzykowski, 1986]) and the exectu­
tion tree of Satcluno, a theorem prover based on model 
generation ([Manthey and Bry, 1987]). 

SO=0 
~ 

f-wobbly-wheel SI = so u (wobbly-wheel} 

~roken-SPOkes Abrok""."""'" J f-flat-tyre s2=slu(flat-tyre} 

!;leaky-valve ~eaky-valve} f-Qunctured-tube 
S3=S2u (punctured-tube } 

. Figure 1: Procedural Duality of Abduction and Satchmo 



Although this example illustrates the potential of us­
ing deduction or more precisely, model generation, as a 
formalisation of abductive reasoning, an obvious restric­
tion of the example is that it is only propositional. Would 
this approach also hold for the general case of definite 
abductive programs? An example of a non-propositional 
program and its only-if part is given in figure 2. 

Abd = {q!2}; P = 
{ p(a,b)~ 

p(a,X) ~ q(X,V). } 

Q=~p(x.X). 

only-ifCP) = FEQ U 

{p(y,Z) ~ 
(y=a&Z=b), 
(3V: Y=a & q(Z,V»} 

notCQ)= 3 X: p(X,X). 

Figure 2: A predicate example 

The theory only-if(P) consists not only of the only-if 
part of the definitions of the predicates but comprises 
also the axioms of Free Equality (FEQ), also known as 
Clark Equality ([Clark, 1978]). The abductive solutions 
and models of only-if(P) are displayed in figure 3. 

1l = {q(a,a)}, e = {X/a} 
1l = {q(a,b)}, e = {X/a} 
1l = {q(a,sk)}, e = {X/a} 

M= {p(a,a), ~} 
M= {p(a,a), ~} 
M= {p(a,a),~} 

Figure 3: Abductive solutions and models 

The duals of the abductive solutions are again identi­
cal to models of only-if(P). This example suggests that 
at least the duality on the level of declarative seman­
tics is maintained. However, on the level of procedural 
semantics, some difficulties arise. The SLD+Abduction 
derivation tree is given in figure 4. 

f- p(X,X) 

./'\ e = {X/a} 
unifiiation \ 

fails ( V) f- q a, 

Figure 4: Abductive derivation tree 

After skolemisation of the residue +-q( a, V), we obtain 
the third abductive solution. With respect to the model 
generation, the theory only-if(P) is not clausal, however 
the extension of Satchmo, Satchmo-1 ([Bry, 1990]), can 
deal with such formulas directly (without normalisation 
to clausal form). Without dealing with the technical 
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details of the computation, figure 5 presents the compu­
tation tree. 

transitivity 

~a=b 

failure 

Stv {sk1=a. q(skl'sk2)} 
reflexivity 
symmetry 
substitution 

p(a,sk1) 

p(sk1 ,a) 

~ 

~21 

success 

Figure 5: Execution tree of Satchmo-1 

Globally, the structure of the SLD+abduction tree of 
figure 4 can still be seen in the Satchmo-1-tree. Strik­
ing is the duality of variables in the abductive derivation 
and skolem constants in the model generation. However, 
one difference is that the Satchmo-1 tree comprises many 
additional inference steps due to the application of the 
axioms of FEQI. In the abductive derivation these addi­
tional steps correspond to the unification operation (e.g. 
on both left-most branches, the failure of the unification 
of {X=a, X=b} corresponds to the derivation of the in­
consistency of the facts {" kl =a, "k1 = b } ). 

Another difference is that the generated model 

{p(a, a), q(a, "k1 ), p("k1, a), p(a, "k1 ), p( $kl' "k1), 

q($kl! $kl ), $kl =a, a="k1 , a=a, "k1 =$k1 , "k1 ="kl } 

is much larger than the model which is dual to the abuc­
tive solution. Satchmo_1 generates besides the atoms of 
this model also all logical implications of FEQ, compris­
ing all substitutions of a by Ski' It is clear that in general 
this will lead to an exponential explosion. 

However, observe that we obtain the desired model by 
contracting $k1 and a in the generated model. Therefore, 
extending Satchmo-1 with methods for dynamic contrac­
tion of equal elements would solve the efficiency problem 
and would restore the duality on the level of declarative 
semantics. 

Contraction of a model is done by taking one unique 
witness out of every equivalence class of equal terms and 

Ihnproper use or Satchmo_l: Equality in head or rule. 
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replacing all terms in the facts of the model by their 
witnesses. Techniques from Term Rewriting can be used 
to implement this. The procedural solution is to con­
sider the set of inferred equality facts as a Term Rewrit­
ing System (TRS), to transform the set to an equivalent 
complete TRS, and to normalise all facts in the model 
using this complete TRS, and this after each forward 
derivation step in Satchmo_1. 

This procedure may seem alien to Logic programming, 
but the contrary is true. As a mather of fact, the pro­
posed procedure appears to be exactly the dual of tech­
niques used in SLD+Abduction: 

• the completion procedure corresponds dually to uni­
fication. 
The dual of the mgu (by replacing variables by 
skolem constants) is the completion of the set of 
equality atoms. 

• the normalisation corresponds dually to applying 
the mgu. 

Therefore, incorporating these techniques in Satchmo.l 
would also restore the duality on the level of procedural 
semantics. 

The research reported in this paper started as a 
mathematical exercise in duality. However, there are 
clearly spinoffs. One application is the extension of 
Satchmo.l with efficient treatment of equality. We pro­
pose a framework for model generation under an arbi­
trary equality theory and we formally proof the dual­
ity of SLD+abduction in the instance of the framework, 
obtained by taking FEQ as the equality theory. Also 
for abduction there are spinoffs. An illustration of this 
is found in the context of planning as abduction in the 
event calculus. The event calculus contains a clause, say­
ing that a property holds at a certain moment if there 
is an earlier event which initiates this property, and the 
property is not terminated (clipped) in between: 

holds.at(P, T)~happens(E), iniiiates(E, P), 
E < T, -,clipped(E, P, T). 

A planner uses this clause to introduce new events which 
initialise some desired property. Technically this is done 
by first skolemising and then abducing the happens goal. 
However, skolemisation requires explicit treatment of 
the equality predicate as an abducible satisfying FEQ 
([Eshghi, 1988]). The techniques proposed in this paper 
allow efficient treatment of the abduced equality atoms, 
and provide a declarative semantics for it. 

The paper is structured as follows. III section: 2, we 
present the class of theories for which the model gen­
eration is designed. Section 3 recalls basic concepts of 
Term Rewriting. In section 4, the framework for model 
generation is presented and inlportant semantic results 
are formulated. In section 5, the duality with abductive 
reasoning is formalised. Section 6 discusses future and' 

related work. Due to space restrictions, all proofs are 
omitted. We refer to [Denecker and De Schreye, 1991] 
for the explicit proofs. 

2 Extended programs. 

In this section we int.roduce the formalism for which 
the model generation will be designed. This formal­
ism should at least contain any theory that can be ob­
tained as the only-if part of the definition in the Clark­
completion of definite logic programs. The extended 
clause formalism introduced below, generalises both this 
kind of formulas and the clausal form. 

Definition 2.1 Let L be a first order language. 
A 11. extended clause or rule is a closed formula of the 

type: V(Gl, ... ,Gk-+ El, ... ,EI ) 

where Ei has the general form: 

such that all Gi are atoms based on L, all Fi are 11.011.­

equality atoms based on L 

Definition 2.2 An extended program is a set of ex­
tended clauses. 

Interestingly, the extended clause formalism can be 
proven to provide the full expressivity of first order logic. 
Any first order logic theory can be translated to a logi­
cally equivalent extended program, in the sense that they 
share exactly the same models. (Recall that the equiv­
alence between a theory and its clausal form is much 
weaker: the theory is consistent iff its clausal form is 
consistent. ) 

In the sequel, the theory of general equality (resp. the 
theory of Free Equality), for a first order language L will 
be denoted EQ(L) (resp. FEQ{L)). A theory T, based on 
L, is called a theory with equality if it comprises EQ( L). 
A theory T, based on L is called an equality theory if it is 
a theory with equality in which" =" is the only predicate 
symbol in all formulas except for the substitution axioms 
of EQ(L). 

3 Concepts of Term Rewriting. 

The techniques we intend to develop for dealing with 
equality, are inspired by Term Rewriting. However, work 
in this area is too restricted for our purposes, because the 
concepts and techniques assume the general equality the­
ory EQ underlying the term rewriting. To be able to deal 
with FEQ, we extend the basic concepts for the case of 
an arbitrary underlying equaHty theory E. In the sequel, 
equality and identity will be denoted distinctly when am­
biguity may occur, resp. by "=" and "=". We assume 
the reader to be familiar with basic notions of TRS's (see 



e.g. [Dershowitz and Jouannautl, 1989]). We just recall 
some general ideas. A TRS I associates to each term s 
a reduction tree in which each branch consists of succes­
sive applications of rewrite rules of I' If I is noetherian, 
these trees are all finite. If moreover I is Church-Rosser 
or confluent, all leaves of the reduction tree of any term t 
contain the same term, called the normalisation of t and 
denoted t. , . In Term Rewriting, such a TRS is called 
complete. Below we extend tIus concept. 

Definition 3.1 Let E be an equality theory based on a 
language L, I a Term Rewriting System based on L. 

I is complete wrt to < L, E> iff I is noetherian and 
Church-Rosser and, moreover, <L,E+, > has a Least 
Herbrand Model, which consists of all ground atoms s = t 
constructed from terms in HU{L) such that S,,=t. , . 

This definition extends the normal definition in Term 
Rewriting by the tIlird condition. However, for E = EQ, 
it has been proved that this property is implied by the 
noetherian and Church-Rosser properties (for a proof see 
[Huet, 1980]). Of course this is not the case for an arbi­
trary equality theory (as FEQ). 

Definition 3.2 A completion of a TRS I wrt <L,E> 
is: 

• {o} if <L,E+'Y> is inconsistent 

• a complete TRS Ie' such that <L,E> F I ~ Ie 

Our framework for model generation is developed for 
logical theories consisting of two components, an ex­
tended program P and an underlying equality theory E. 
TIlls distinction reflects the fact that the model genera­
tion mechanism applies only to the extended clauses of 
P, wIllIe E is dealt with in a procedural way, using com­
pletion and normalisation. However, in order to make 
this possible, E should satisfy severe conditions, which 
are formulated in the following definition. 

Definition 3.3 An equality theory with completion, 
E, based on a language L, is a clausal equality theory 
equipped with a language independent completion proce­
dure. 

The latter condition means that if I is a ground Term 
Rewriting System based on an extension L' of L by 
skolem constants, and Ie is the completion of 'Y wrt 
to <L',E>, then for any further extension L" of L' by 
skolem constants, 'Ye is still the completion of I wrt 
<L",E>. 

We denote 'Ye as TRS-comp((). 
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4 A framework for Model Gen­
eration 

Informally a model generator const-ructs a sequence1 

(C'ld,jd)~' where Cld is the ground instance of a rule 
applied after d steps, and jd thl! index indicating the con­
clusion of Cld that was selected, an increasing sequence 
of sets of asserted ground facts (Md)~ of non-equality 
predicates, a sequence of complete Term Rewriting Sys­
tems ((d)O' each of which is equivalent with the set of 
asserted equality facts, and an increasing sequence of sets 
of skolem constants (S kd)~, obtained by skolemizing the 
existentially quantified variables. Formally: 

Definition 4.1 Let L be a language, L,/c an infinite 
countable alphabet of skolem constants, T an e:xtended 
program based on L consisting of an equality theory with 
completion E with completion function TRS-comp and P 
an extended program. 

An N ondeternunistic Model Generator with Equality 
{NMGE} J( is a tuple of jour sequences (Skd)o' (Md)o, 
b d)O and -( C ld' jd)~ where n E IN U {oo}. The sequences 
satisfy the following conditions: 

1. Mo = Sko = Uj 10 = TRS-comp( {}) 

2. for each d such that 0 < d :::; n, Cld, jd, Skd, lvld 

and Id are obtained from Skd- l , M d- 1 and Id-1 by 
applying the following steps: 

(a) Selection of rule and conclusion 

Define LHMd_l as: 
LHM{<L+Skd _ 1, EQ(L)+ M d- 1 + 'Yd-1» 

Select nondeterministically a ground normal 
instance of a rule of P 

such that G1, ••• ,Gk hold in LHM d-l' If l' = 
0, define Skd = U, Md = 'Yd = {o} and n = 
d. 

Otherwise, select nondeterministically a con­
clusion Ej from the head Ell"" E,. Define 
jd = j. We say that the rule Cld applies [with 
its jd'th conclusion]. 

(b) Skolemisation 

Let Ejd be of the form: 3Y1 , ••• , Ym : 

Sl = t1&'" &Sg = tg&F1& ... &Fh 

Replace Y1"", Ym by unique skolem constants 
sk1, ... ,skm from L,k\Skd_1 • Define Skd = 
Skd- 1 U {sk1, ... , skm } 

(c) Completion 

Define Id = TRS-comp(,d_1 + {Sl = til"" 
Sg = tg }). If Id is {o} then define Md = {o} 
and n = d. 



654 

(d) Normalisation+Assertion 

Define Md = M d- l " d + {FI' ... , Fh}"d, ob­
tained by computing the normal form of all 
facts in these sets. 

K is failed if n is finite and In = Mn = {OJ. This 
situation occurs when Cln is a negative clause, or when 
E+,n-1+{Sl =tl, ... ,Sg=tg} is inconsistent. 

If K is not failed then K is called successful. 

Not all NMGE's are interesting. For example, the 
empty NMGE (( {}), ({}), (TRS-comp( {} »), ()) trivially 
satisfies the definition of an NMGE, but will not gener­
ate a model if P contains one positive extended clause, 
i.e. an extended clause with empty body. In that case 
the empty NMGE is an example of an unfair NMGE: 
there exists a rule with a true body, but which is never 
applied. 

Definition 4.2 A NMGE K is fair iff K is failed or if 
the following conditions are satisfied: 

• K is 3Uccessful. 

• If Cl = Gl , ••. , G/c~El"'" E, is a ground instance 
of a rule of P based on L+L,/c, and there exists a d 
such that Gl is based on L + Skd and the body of 
Gl holds in LHMd then there exists a d' such that 
El V ... V E, holds in LHMd" 

Property 4.1 (Skd)~ is a monotonically increasing se­
quence. (LHMd)'O is a monotonically increasing se­
quence. 

An NMGE performs a fixpoint computation, the result 
of which can be seen as an interpretation of the language 
L and, as we later show, a model of <L,P+E>. 

Definition 4.3 The fixpoint of an NMGE K is UoLHMd 
and is denoted by Kj. The skolem set used by K is U'OSkd 

and is denoted by Sk(K). Kj defines an interpretation of 
L in the following way: 

• domain: HU(L+Sk(K)) 

• for each constant c of L: KT( c )=c 

• for each functor fin of L: KTUln) is the function 
which maps terms t l , ... , tn of HU(L + Sk(K)) to 
f(tl, ... ,tn ). 

• for each predicate of L: Kj(pln) is the set of 
P(tl'" .,tn ) facts in Kj. 

Corollary 4.1 If K is a finite successful NMGE [( of 
length n, then Kj = LHMn 

Theorem 4.1 (Soundness) If K is a fair NMGE, then 
KT i.s a model for <L,P+E> and P+E is con.si.stent (a 
fortiori). 

We say that [(j is the model generated by K. 
To state the completeness result, we require an ad­

ditional concept: the NMGE-Tree. Analogously with 
the concept of SLD-Tree, anNMGE-Tree is a tree of 
NMGE's obtained by applying all different conclusions 
of one rule in the descendents of a node .. 

Definition 4.4 Let L be a language, E an equality the­
ory with completion, P an extended program based on L, 
and L,/c an. alphabet of skolem constants. 

An NMGE-Tree (NMGET) T for <L,P+E> is a tree 
such that: 

• Each node is labeled with a tuple (Sk,M,,) where Sk 
is a skolem set, M a set of non-equality facts baud 

on L+Sk, and I is a ground TRS based on L+Sk. 

• To each non-leaf N, a ground instance Cl of a rule 
of P is associated. For each conclusion with index 

j in the head of GI, there is an arc leaving from N 

which is labeled by (GI,i). 

• The sequence of labels on the nodes and arcs on each 
branch of T constitute an NMGE . 

Definition 4.5 An NMGET is fair if each branch tS 

fair. 

Definition 4.6 An NMGET is failed if each branch is 
failed. 

Observe that a failed NMGET contains only a finite 
number of nodes. Also if T is inconsistent then because of 
the soundness Theorem 4.1, each fair NMGET is failed. 

As a completeness result, we want to state that for any 
model of P+E, the NMGE contains a branch generating 
a smaller model. In a context of Herbrand models, the 
smaller-than relation can be expressed by set inclusion. 
However, because of the existential quantifers and the re­
sulting skolem constants, we cannot restrict to Herbrand 
models only. In order to define a smaller-than relation 
for general models, we must have a mechanism to com­
pare models with a different domain. A solution to this 
problem is provided by the concept of homomorphism. 

Definition 4.7 Let II, 12 be interpretations of a lan­
guage L with domains' D1, D2 • 

A homomorphism from 11 to 12 is a mapping h: 
Dl ~Dz which satisfies the following conditions: 

• For each functor fin (n 2: 0) of Land:e, :el, ... ,:en E 
D 1 : :e::I1 (fIn) ( :el, . ", :en) => 
h(:e)::Iz{f/n)(h(:ed, ... , h(:e n)) 

• For each predicate symbol pin (n 2: 0) of Land 
:ell ... , :en E D l : 

I1(p/n)(:Cl, ... ,:en ) ~ 12(pln)(h(:ed,· .. ,h(:en )) 



Intuitively a homomorphism is a mapping from one 
domain to another, such that all positive information in 
the first model is maintained under the mapping. There­
fore the homomorphsinlS in the class of models of a the­
ory can be used to represent a " .. . contains less positive 
information than ... " relation. We denote the fact that 
there exists a homomorphism from interpretation Ii to 
12 by Ii ::S 12, This notation captures the intuition that 
Ii contains less positive information than 12 , 

For NMGET's we can proof the following powerful 
completeness result. 

Theorem 4.2 (Completeness) Let E be an equality 
theory with completion, P an extended program, both 
based on L. Let L,/c be an alphabet of skolem constants. 

1. There exists a fair NMGET for <L,P+E>. 

2. For each model M of <L,P+E> and each fair 
NMGET T, there exists a succesful branch K of T 
wch that KT ::S M. 

We refer to [Denecker and De Schreye, 1991] for a con­
structive proof of this strong result. As a corollary we 
obtain the following reformulation of a traditional com­
pleteness result. 

Corollary 4.2 If <L,P+E> is consistent then in each 
fair NMGET there exists a succesjul branch. 

If there exists a failed NMGET for <L,P+E>, then 
<L,P+E> is inconsistent, and all fair NMGET's are 
failed. 

The completeness result does not imply that all models 
are generated. For example for P = {pt-q}, the model 
{p,q} is not generated by an NMGE. The following ex­
ample shows that different NMGET's for the same the­
ory might generate different models. 

Example P = { p, qt- pt-} 

Depending on which of these clauses is applied first, 
we get two different nonredwldant NMGET's. If 
pt- is applied first, then p, qt- holds already and is 
not applied anymore. So we get an NMGET with 
one branch of length 1. On the other hand if p, qt­
was selected first, then two branches exist and we 
get the solutions {p} and {p,q}. 

Therefore it would be interesting if we could charac­
terize a class of models which are generated by each 
NMGET. The second item of the completeness Theo­
rem 4.2 gives some indication: for any given model M, 
some succesful branch of the NMGET generates a model 
with less positive information than M. For the clausal 
case, models with no redundant positive information 
are minimal Herbrand Models. From this observation 
one would expect that for a clausal program, each fair 
NMGET generates all minimal models. Indeed, the fol­
lowing completeness theorem holds: 
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Theorem 4.3 (Minimal Herbrand models) If P is 
clausal, then for each fair NMGET T, each minimal Her­
brand model is generated by a branch in T . 

We have extended the concept of mininlal model 
for general logic theories and proved the complete­
ness of NMGE in the sense that each fair NMGET 
T generates all minimal models. 
[Denecker and De Schreye, 1991]. 

We refer to 

5 Duality of SLD+Abduction 
and Model Generation. 

The NMGE framework allows to formalise the observa­
tions that were made in the introduction. We first intro­
duce the notion of a dualisation more formally. 

Definition 5.1 Let L be a first order language, L ,/c an 
alphabet of skolem constants, V,/C a dual alphabet of vari­
ables such that a bijection D : L ,,.---+ V,k exists. 

The dualisation mapping D can be extended to a map­

ping from HU(L+L,/.:) U HB{L+L'k) to the set of terms 
based on L+ V,k by induction on the depth of terms: 

• for each constant c of L : D(c) == c 

• for each term t = f(t 1 , ••• , tn) : 
D(f(t 1 , ••• , tn))==f(D(td, ... , D(tn)) 

D can be further extended to any formula or set of 
formulas. Under dualisation, a ground TRS , based on 
L+L'k corresponds to an equation set Dr,) with terms 
based on L + V,/.:. , is said to be in solved form iff Dr,) 
is an equation set in solved form. 

An equation set is in solved form iff it consists of equa­
tions :Vi = ti, such that the :Vi'S are distinct variables and 
do not occur in the right side of any equation. So a TRS 
is in solved form if the left terms a.re distinct skolem con­
stants of L ,/c which do not occur at the right. A TRS 
in solved form can also be seen as the dual of a variable 
substitution. 

Property 5.1 Let, be a TRS in solved form. Then 'Y 

is complete wrt to <L,FEQ>. 

Theorem 5.1 (Duality completion - unification) 
FEQ{L) is an equality theory with completion. The com­
pletion procedure is dual to unification. The dual of the 
com.pletion of a ground TRS, based on L+Sk, is the mgu 
of D(r). Or D{TRS-comp(r)) = mgu(D(r)). 

As was observed in the int.roduction, this duality 
can be extended further to the complete process of 
SLD+abduction. On a procedural level, each resolution 
step corresponds dually to a model generation step. The 
selection of a goal for resolution corresponds dually to 
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the selection of the extended rule with its condition in­
stantiated with the dual of the goal. The selection of 
the clause in the resolution corresponds dually to the se­
lection of the corresponding conclusion in the extended 
rule. The unification of goal with the head of the clause 
and the subsequent application of the mgu, corresponds 
to the completion of the dual equations in the conclusion 
and the subsequent normalisation. 

N ow we can formulate the duality theorem for 
SLD+Abduction ([Cox and Pietrzykowski, 1986]) and 
Model Generation. 

Theorem 5.2 Let L be a first order language, with an 
alphabet of variables L", L,/c an alphabet of skolem con­
stants, and D: L,k-+L" a duality bijection between skolem 
con3tants and variables. Let P be a definite abductive 
program baud on L. 

For any definite query ~Q, an abductive derivation 
for t-Q and P can be dually interpreted as a fair NMGE 
for only-ij(P}+3(Q). The set of atoms of the generated 
model, re3tricted to the abducible predicate,s is the dual of 
the abductive solution. The dual of the answer substitu­
tion is the re3triction of'n to the skolem constants dual 
to the variables in the query. 

The following corollary was proved first by Clark 
([Clark, 1978]) for normal programs. For the definite 
case it follows immediately from the theorem above. 

Corollary 5.1 An SLD-refutation for a query t-Q, and 
a definite program P without abducibles is a consistency 
proof of 3( Q) +only-if{P}. A failed SLD-tree for a ground 
query ~Q and P is an inconsistency proof of:J( Q) +only­
ij(P}, and therefore of 3(Q)+comp{P}. 

6 Discussion 

A current limitation of the duality framework is its re­
striction to definite abductive programs. In the future 
we will extend it to the case of normal abductive prQ­
cedures. The extended framework will then describe a 
duality between an SLDNF+Abduction procedure and a 
form of model generation. 

The SLDNF+Abduction procedure can be found by 
proceeding as for the definite case. There we started 
from pure SLD and definite programs without abduction, 
we dualised it and obtained the NMGE method, which 
under dualisation yields an SLD+Abduction procedure. 
At present we have performed (on an informal basis) 
the dualisation of SLDNF for normal programs without 
abduction. Under dualisation, the resulting model gen­
eration procedure gives a natural extension of SLDNF 
for abductive programs. The abductive procedure incor­
porates skolemisation for non-ground abducibles goals 
and efficient treatment of abduced equality atoms by the 
methods presented earlier. Integrity constraints can be 
represented by adding for any integrity constraint IC, 

the rule: "falset-not{IC)." ,transforming these rules to 
a normal program using the transformation of Lloyd­
Topor ([Lloyd and Topor, 1984]), and adding the literal 
not false to the query. 

A prototype of this method has been implemented. An 
interesting experiment was its extension to an abductive 
planner based on the event calculus. Our prototype plan­
ner was able to solve some hard problems with context 
dependent events, problems that are not properly solved 
by existing systems ([Shanahan, 1989], [Missiaen, 1991]). 

In [Denecker and De Schreye, 1992], we proved the 
soundness of the procedure with respect to Completion 
semantics, in the sense that for any query ~Q and gen­
erated solution .6.: 

This implies the soundness of the procedure with re­
spect to the Generalised Stable Model semantics of 
[Kakas and Mancarella, 1990b]: a generated solution can 
be extended in a natural way to a generalised stable 
model of the abductive program. As a completeness re­
sult we proved that the procedure generates all minimal 
solutions when the computation tree is finite. 

Related to our work, [Bry, 1990] also indicates a rela­
tionship between abduction and model generation. How­
ever, while we propose a relationship on the object level, 
there it is argued that abductive solutions can be gen­
erated by model generation on the abductive program 
augmented with a fixed metatheory. 

In [Console et al., 1991]' another approach is taken for 
abduction through deduction. An abductive procedure is 
presented which for a givellnormal abductive program P 
and query t-Q, derives an explanation formula E equiv­
alent with Q under the completion of P: 

comp( P) F (Q ¢:> E) 

The explanation formula is built of abducibles predicates 
and equality only. It characterises all abductive solutions 
in the sense that for any set .6. of abducible atoms, .6. is 
an abductive solution iff it satisfies E. 

Although this approach departs also from the concept 
of completion, it is of a totally different nature. In the 
first place, our approach aims at contributing to the pro­
cedural semantics of abduction. This is not the case with 
the work in [Console et al., 1991]. Another difference is 
that this approach is restricted to queries with a finite 
computation tree. If the computation tree contains an 
infinite branch, then the explanation formula cannot be 
computed. 

In [Kakas and Mancarella, 1990a], an abductive pro­
cedure for normal abductive programs has been defined. 
A restriction of this method is that abducible goals can 
only be selected when they are ground. As argued in sec­
tion I, this poses a serious problem for applications such 



as plaIUllng. The methods presented here allow to over­
come the problem by skolemisation of nonground goals 
and efficient treatment of abduced equality facts. 

Recently, an plalmi.ng system based on abduction in 
the event calculus has been proposed i.n [Missiaen, 1991]. 
The underlying abductive system incorporates negation 
as failure, skolemisation for non-ground abducible goals 
and efficient treatment of abduced equality facts. How­
ever, the system shows some problems with respect to 
soundness and completeness. Experiments indicated 
that these problems are solved by our prototype plan­
ner. 

Finally, we want to draw attention to an unexpected 
application of the duality framework. In current work 
on abduction, the theory of Free Equality is implicitly 
or explicitly present. What happens if FEQ is replaced 
by general equality EQ and the equality predicate is ab­
ducible? The result is an uncommon form of abduction 
illustrated below. Take the program P = {r( a) ~ }. For 
tIlls program, the query ~r(b) has a successful abductive 
derivation. 

~r(b) b.={} 

o b. = {b = a} 

~r( b) succeeds under the abductive hypothesis {b= 
a}. The duality framework provides the teclmical sup­
port for efficiently implementing this form of abduction. 
The only difference with normal abduction is that the 
completion procedure for FEQ -the dual of unification­
must be replaced by a completion procedure for EQ, for 
example Knuth-Bendix completion. 

To conclude, we have presented a duality between two 
computation paradigms. This duality allows to transfer 
tecruucal results from one paradigm to the other and vice 
versa. One application that was obtained was an efficient 
extension of model generation with equality. Transfer­
ring these methods back to abduction, we obtained tech­
niques for dealing with non-ground abducible goalS and 
efficient treatment of abduced equality atoms. We dis­
cussed experiments indicating that the extension of the 
duality framework for the case of normal programs is ex­
tremely useful for obtaining an abductive procedure for 
normal abductive programs. 
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Abstract 

This paper proposes a constructive logic in which a con­
current system can be defined as a proof of a specifi­
cation. The logic is defined by adding stream types 
and several rules for them to an ordinary constructive 
logic. The unique feature of the obtained system is in 
the (!vIP ST) rule which is a kind of structural induction 
on streams. The (AI PST) rule is based on the idea of 
largest fixed point inductions, but the formulation of the 
rule is quite different and it allows to define a concurrent 
process as a Burge's mapstream function with a good 
intuition on computation. This formulation is possible 
when streams are viewed as sequences not infinite lists. 
Also, our logic has explicit nondeterminacy but we do not 
introduce any extralogica.l device. Our nondeterminacy 
rule, (N onDet), is actually a defined rule which uses 
inherent nondeterminacy in the traditional intuitionis­
tic logic. Several techniques of defining stream based 
concurrent programs are also presented through various 
examples. 

1 Introduction 

Constructive logics give a method for formal develop­
ment of programs, e.g., [C+86, HN89]. Suppose, for ex­
ample, the following formula: \:Ix : D 1 .3y : D 2 • A(x, y). 
This is regarded as a specification of a functIon, j, 
whose domain is Dl and the codomain is D2 satisfy­
ing the input-output relation, A(x,y), that is, \:Ix : 
D 1 • A(x, j(x)) holds. This functional interpretation of 
formulas is realized mechanically. Namely, if a construc­
tive proof of the formula is given, the function, j, is ex­
tracted from the proof with q-realizability interpretation 
[TvD8S] or with Curry-Howard correspondence of types 
and formulas [HowSO]. This programming methodology 
will be referred to as constnlctive programming [SK90] 
in the following. 

Although constructive programming has been studied 
by many researchers, the constructive systems which can 
handle concurrency are ra.ther few. This is mainly be-

*This work was supported by ICOT as a joint research project 
on theorem proving and its application. 

cause most of the constructive logics. have been formal­
ized as intuitionistic logics, and the intuitionism itself 
does not have explicit concurrency besides proof nor­
malization corresponding to the execution of programs 
[Got85]. For example, QJ [Sat87] is an intuitionistic pro­
gramming'logic for a concurrent language, Quty. How­
ever, when we view QJ as a constructive programming 
system, concurrency only appears in the operational se­
mantics of Quty. 

Linear Logic [Gir87] gives a new formulation of con­
structive logic which is not based on intuitionism. This is 
the first constructive logic which can handle concurrency 
at the level of logic. The logic was obtained by refining 
logical connectives of traditional intuitionistic or classi­
cal logic to introduce drastically new connectives with 
the meaning of parallel execution. In Linear Logic, for­
mulas are regarded as processes or resources and every 
rule of inference defines the behavior of a concurrent op­
eration. Linear Logic resembles Milner's SCCS [Mi189] 
in this respect. 

We take intermediate approach between QJ and Linear 
Logic in the sense of not throwing away but extending 
intuitionistic logic. The advantage of this approach is 
that the functional interpretation of logical connectives 
in the traditional constructive programming based on in­
tuitionism is preserved, and that both the sequential and 
concurrent parts of programs are naturally described as 
constructive proofs. To this end, we take the stream 
based concurrent programming model [KM74]. We intro­
duce stream types and quantification over stream types. 
A formula is regarded as a specification of a process 
when it is a universally or an existentially quantified 
over stream types, and otherwise it represents a speci­
fication of a sequential function, properties of processes 
9r linkage relation between processes. A typical process, 
\:IX.::lY.A(X, Y) where X and Yare stream variables, is 
regarded as a stream transformer. Most of the rules of in­
ference are those of ordinary constructive programming 
systems, but rules for non determinacy and for stream 
types are also introduced. Among them, a kind of struc­
tural induction on stream types called (M PST) is the 
heart of our extended system: With (M PST), stream 
transformers can be defined as Burge's mapstream func­
tions [Bur75]. 



T. Hagino [Hag87] gave a clear categorical formaliza­
tion of stream types (infinite list types or lazy types) 
whose canonical elements are given by a schema of map­
stream functions, but relation between his formulation 
and logic is not investigated. N. Mendler and others 
[PL86] introduced lazy types and the type checking rules 
for them into an intuitionistic type theory preserving 
the propositions-as-types principle in the sense that an 
empty type can exist even in the extended type theory. 
However, they do not give sufficient rules of inference for 
proving specification of stream handling programs. Rea­
soning about stream transformer can be handled with a 
largest fixed point induction as was demonstrated by P. 
Dybjer and H. P. Sander [DS89]. However, their system 
is designed as a program verification system not as a con­
structive programming system. Although q-realizability 
interpretation for program extraction can be defined for 
the coinduction rule [KT91]' the rule seems rather dif­
ficult to use for proving specifications. The reason is 
that the coinduction rule deeply depends on the notion 
of bisimulation, so that in the proof procedure one must 
find a stronger logical relation included in the more gen­
eral logical relation and that is not always an easy task. 

The (~1 PST) rule is based on a similar idea to the 
coinduction rule: one must find a new logical relation and 
a new function to prove the conclusion. However, what 
one must find has a clear intuitive meaning as the compo­
nents of a concurrent process. Therefore, the (111 PST) 
rule shows an intuitive guideline on how to construct a 
concurrent process. 

Section 2 explains how a concurrent system is specified 
in logic. A process is specified by the VX.::lYA(X, Y) 
type formula as in the traditional constructive program­
ming. The rest of the sections focus on the problem of 
defining processes which meet the specifications. Sec­
tion 3 formulates streams and stream types. Streams 
are viewed as infinite lists or programs which generate 
infinite lists at the level of underlying programming lan­
guage. At the logical reasoning level, streams are se­
quences, namely, total functions on natural numbers. 
This two level formulation of streams enables to intro­
duce (JIll PST) which will be given in section 4. Section 
5 presents the rest of the formalism of the whole system. 
The realizability interpretation which gives the program 
'extraction algorithm from proofs will be defined. Several 
examples will be given in section 6 to demonstrate how 
stream based concurrent programming is performed in 
our system. 

Notational preliminary: 'Ne assume first order intu­
itionistic natural deduction. Equalities of terms, typing 
relations (}vI : 0'), and T (true) are atomic formulas. 
The domain of the quantification is often omitted when 
it is clear from the context. Sequences of variables are 
denoted as x or X. ~lx[N] denotes substitution of N 
to the variable, x, occurring freely in 111. 1I1x[N] de­
notes simultaneous substitution. FV(M) is the set of 
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free variables in M. (::) denotes the (infinite) list con­
structor. Function application is denoted ap(M, N) or 
1I1(N). Mn(N) denotes M(· .. ~1( N) ... ). 

'-......--' 
n 

2 Specifying Concurrent Sys­
tems in Logic 

The model of concurrent computation in this paper is 
as follows: A concurrent system consists of processes 
linked with streams. A process interacts with other pro­
cesses only through input and output streams. The con­
figuration of processes in a concurrent system is basi­
cally static and finite, but in some cases, which will be 
explained later, infinitely many new processes may be 
created by already existing processes. A process is re­
garded as a transformer (stream transformer) of input 
streams to an output stream, and it is specified by the 
'IX : lO'l,oo',O'n. ::lY : IT". A(X, Y) type of formula where 
10' denotes the type of streams over the type 0', but its 
definition will be given later. l u1 ,oo.,O'n is an abbreviation 
of 10'1 x· .. x l un , X and l' are input and output streams, 
and A(X, 1') is the relation definition of input and out­
put streams. 

The combination of two processes, VX.::lY A(X, Y) 
and VP.::lQ. B(P, Q), by linking the stream l' and P 
is described by the following proof procedure: 

~l 

VX.::lY A(X,1') ('IE) 
::l1'. A(X, 1') IIo (::lE)(l) 

::l1'.::la. A(X, a) & B(a, 1') (VI) 
VX.::l1'.3a. A(X, a) & B(a, Y) 

where ITo ~ ~2 

VP.::lQ. B(P, Q) ('IE) 
::lQ. B(1",Q) III (::lE)(2) 

31'.3a. A(X,a) & B(a,Y) 
and III ~ 

[A(X, y,)](l) [B(y, Q,)](2) 
A(X 1") & B(1" Q') (& I) , , (3I) 

::la. A(X,a) & B(a,Q') (31) 
::l1'.::la. A(X, a) & B(a, 1') 

and ~l and ~2 are the definition of process 
VX.::l1'.A(X,1') and VP.::lQ.B(P, Q). 

This is a typical proof style to define a composition of 
two functions. Thus, a concurrent system is also specified 
by V X.3Y A(X, 1') type formula. X and l' are input and 
output streams of the whole concurrent system, and a is 
an internal stream. 

All these things just realize the idea that functions can 
be viewed as a special case of processes. In the follow­
ing, we focus on the problem of how to define a process 
(stream transformer) as a constructive proof. 
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3 Formulation of Streams 

Vve give in this section the definition of the stream types 
Cu and Iu , and consider the semantics of quantification 
over Iu. 

3.1 Two Level Stream Types 

A stream can be viewed at least in three ways: an in­
finite list, an infinite process, and an output sequence 
of a.n infinite process, namely, a total function on natu­
ra.! numbers. The formal theories of lazy functional pro­
gramming such as [PL86] and [Hag87] can be regarded as 
the theories of concurrent functional programming based 
on the first two points of view on streams .. Our system 
uses a lazy typed lambda calculus as the underlying pro­
gramming language and has lazy types as computational 
stream types. Computational stream types are only used 
as the type system for the underlying language. In prov­
ing specifications of stream transformers, we use logi­
cal stream types which are based on the third point of 
view on streams. In other words, we have two kinds 
of streams: computational streams at the programming 
language level, and logical streams at the logical reason­
ing level. Vve denote a computational stream type Cu 

and a logical stream type Iu' The following is the basic 
rules for computational stream types. The idea behind 
them is similar to that behind the lazy type rules in 
[PL86]. We confuse the meaning of the infinite list con­
structor, (::), and will use this also as an infinite carte­
sian product constructor. Vie abbreviate 111 ~ N for 
111 = N in CT in the following. 

r I- 111 : CT r I- S : Cu 

r I- (111 :: S) : Cu 

r1-1I1~N rl-S~T 

r I- (111 :: S) ~ (N :: T) 

r I- (111 :: S) ~ (N :: T) 
r I- A1 %:: N 

r I- (111 :: S) ~ (N :: T) 

rl-S~T 

r,Z: T I- M: T 

r I- liZ. 111: T' 
where T is Cu or 7 -t Cu' 

// is the fixed point operator only used for describing 
a stream as an infinite process (infinite loop program). 
The reduction rule for II-terms is defined as expected. hd 
and tl are the primitive destructor functions on streams. 

r I- M: Cu 

r I- hd( 111) : CT 

r I- 111 : Cu r I- n : nat 
r I- tln(M) : Cu 

r I- X: Cu 

r I- X ~ (hd(X) :: tl(X)) 

r I- (111 :: S) : Cu r I- (M :: S) : Cu 

r I- hd((l11:: S)) ~ 111 r I- tl((111 :: S)) ~S 

r, n : nat, tln(s) ~ tln(T) I- S Un~C<7 T 

rl-S~T 

r, n : nat I- hd(tln(s)) ~ hd(tln(T)) 

rl-S~T 

r I- A1z ~ Nw[z] 

r I- liZ. Mz ~ IIW. Nw 

Before giving the definition of logical stream types, 
note that the type, nat -t CT, is isomorphic to Cu, namely, 

Proposition 1: Let CT be any type, then Let <p : 
(nat -t CT) -t Cu be <p(M) == ap(lIz.An. (M(n) :: 
z(n + 1)),0) for arbitrary 111 : nat -+ CT, and let 
'l/;(N) == An. hd(tln(N)) for arbitrary N : Cu' Then, 
(1) For arbitrary M : nat -+ CT, <p(M) : Cu and 
'l/;(<p(1I1)) = M in nat -t CT; 

(2) For arbitrary N : Cu, 'lj;(N) : nat -t CT and 
<p('l/;(N)) = N in Cu' 

A logical stream type, I u , has the same elements as 
nat -t CT, but the elements are viewed differently, namely, 
viewed as streams: 

r I- M : nat -t (J' r I- M : Iu 
r I- M : Iu r I- M : nat -t CT 

This means that any (total) function on the natural 
number type nat definable in the underlying program­
ming language is regarded as a stream. A similar idea is 
formulated with regard to formulas: 

r I- Vn : nat.::lx : CT. A(n, x) (ST) 
r I- 3Y : Iu.Vn : nat. A(n, Y(n)) 

The equality between streams is extensional. That is 
rl-X:lu Y:lu Vn:nat.X(n)=Y(n) 

rl-X~Y 
The following rule, (CON), characterizes a kind of con­

tinuity of stream transformers and is used for justifying 
(111 PST) rule given later. 

(a) r I- F : Iu1,.",uk -t Iu1,.",uk 
(b) r I- vX : Iu1,. .. ,uk'vn : nat. A(n, F(X)) =? A(n + 1, X) 

r I- VX : Iu1,.",uk.Vn : nat. A(o,Fn(x)) =? A(n,X) 

A logical stream also has, hd, tl and (::), which simulate 
those accompanied with Cu : 

hd(X) ~ X(O) for X : Iu 

tln(x) def Am.X(m + n) for X : Iu 

(M:: S)(O) ~ M 
def (M :: S)(n) S(n - 1) for n > 0 

Note that X(n) = hd(tln(x)) for arbitrary X : Iu and 
n : nat. All the rules for hd, tl and (::) in computa­
tional streams also hold for these defined functions and 
the constructor for logical streams. 

3.2 Quantification over Logical Stream 
Types 

There is a difficulty in defining the meaning of quantifica­
tion over (logical) stream types. The standard intuition-



is tic interpretation of, say, existential quantification over 
a type, CT, :lx : CT.A(x) is that "we can explicitly give the 
object, a, of type CT such that A(a) holds". However, as a 
stream is a partial object we can only give an approxima­
tion of the complete object at any moment. Therefore 
we need to extend the familiar interpretation of quan­
tification over types. In fact, Brouwer's theory of choice 
sequences [TvD88] in intuitionism provides us with the 
meaning of quantification over infinite sequences. 

There are two principles in Brouwer's theory, the prin­
ciple of open data and the principle of function continu­
ity. The principle of open data, which informally states 
that for independent sequences any property which can 
be asserted must depend on initial segments of those se­
quences only, gives the meaning of the quantification of 
type \lX.:ly.A(X, y). That is, for an arbitrary sequence, 
X, there is a suitable initial finite segment, X o, of X such 
that :ly. A(Xo, y) holds. The principle of function con­
tinuity gives the meaning of the quantification of type 
\lX.:lY.A(X, Y). Assume the case of natural number 
streams (total functions between natural number types). 
The function continuity is stated as follows: 

\lX.:lY. A(X, Y) =? :lj : K. \IX. A(X, fiX) 

where fiX = Y is an abbreviation of \Ix : nat. f(x .. 
X) = Y (x) and J( is the class of functions that take 
initial finite segment of the input sequences and return 
the values. This means that every element of Y is deter­
mined with a suitabl~ initial finite segment of X. 

These principles meet our intuition of functions on 
streams and stream transformers very well. \IX : 1"..:ly : 
r.A(X, y) represents a function on streams over CT, but 
we would hardly ever try to define a function which re­
turns a value after taking all the elements of an input 
stream. Also, we would expect a stream transformer, 
\IX : 1"..:lY : I.r.A(X, Y), calculate the elements of the 
output stream, Y, gradually by taking finitely many el­
ements of the input stream, X, at any step of the calcu­
lation. 

Note that this semantics also meets the proof method 
used in [KM74j: To prove a property P(X) on a stream 
X, we first prove P for an initial finite subsequence, X o, 
of X (I- P(Xo)) and define I- P(X) to be limxo--+x P(Xo). 

4 Structural Inductiori on Logi­
cal Streams 

As streams ca.n be regarded as infinite lists, we would 
expect to extend the familiar structural induction on fi­
nite lists to streams. However, a naive extension of the 
structural induction on finite lists does not work well. If 
we allow the rule below, 

f, A(tl(X)) I-jA(X) (S1) 
f I- \IX : 1".. A(X) 

the following wrong theorem can be proved: 

WrongTheorem: \IX : 1nat . B(X) 
where B(X) ~:ln : nat. X(n) = 100. 
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Proof: By (S1) on X : 1nat . Assume B(tl(X)). Then, 
there is a natural number k such that tl(X)(k) = X(k + 
1) = 100. Then B(X).I 

This proof would correspond to the following uninter­
esting program: foo = )"X. foo(tl(X)). This is be­
cause the naive extension of the structural rule on finite 
lists does not maintain the continuity of the function on 
streams. Therefore, we need a drastically different idea 
in the case of infinite lists. One candidate is the coinduc­
tion rule (a largest fixed point induction) as in [DS89j: 
(B =? <I>p[B]) =? (B =? lIP.cP) where 1IP.<I> denotes the 
largest fixed point of P = <I>. \IX : 1"..A(X) part will be 
described with lIP.<I> type formulas, and one must find a 
suitaQle logical relation B to prove the conclusion. But 
searching B will not always be an easy task: we wish the 
searching task decomposed into more than one smaller 
tasks each of which has clear and intuitive meaning of 
computation. Therefore, we take another approach: the 
(M PST) rule. 

4.1 Mapstream Functions as Stream 
Transformers 

Recall that the motivation of pursuing a kind of struc­
tural induction on streams is to define stream transform­
ers as proofs, and stream transformers can be realized as 
Burge's mapstream functions. A schema of mapstream 
functions is described in typed lambda calculus as fol­
lows: 

P = )..MT-+"'.)..NT-+T.)..XT. (eM x) :: (((P M) N) (N x))) 

If we give the procedures M and N, we obtain a map­
stream function. Note that, from the viewpoint of con­
tinuity, these procedures should be as follows: 
M = "Fetch initial segment, Xo, of the input stream, 

X, to generate the first element of the output 
stream. " 

N = "Prepare for fetching the next finite segment 
input stream interleaving, if necessary, other 
stream transformer between the original input 
stream and the input port. 

This suggests that if a way to define M, N, and P as 
proof procedures is given, one can define stream trans­
formers as constructive proofs. 

4.2 A Problem of Empty Stream 

Before giving the rule of inference for defining stream 
transformers, a little more observation of stream based 
programming is needed. Assume a filter program on nat­
ural number streams realized as a mapstream function: 
flta= )"X. if (alhd(X)) then Jlta(tl(X)) 

else (hd(X) :: flta(tl(X))) 
= )"X.((M X) :: (((P M) N)(NX))) 
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where (alhd(X)) is true when hd(X) ca.n be divided by 
a (a. na.tural number) and 

!ll _ ,\X. if (alhcZ(X)) then Al(tl(X)) else hd(X) 

N == AX. if (alhd(X)) then N(tl(X)) else tl(X) 

For example, flt s((5 :: 5 :: 5 :: 5 :: ... )) is an empty se­
quence because the evaluation of ~M(5 :: 5 :: 5 :: 5 :: ... ) 
does not terminate. This contradicts the principle of 
open data explained in 3.2. To handle such a case, we 
introduce the notion of complete stream. The idea is 
to regard flts, for example, always generating some ele­
ments even if the input stream is (5 :: 5 :: ... ). 

Def. 1: Complete types 
Let ()" be a.ny type other than a strea.m type, then ()".I.. 

denotes a type ()" together with the bottom element -L" 
(often denoted just -L) and it is called a complete type. 

Def. 2: Complete stream types 
A stream type, 1" or C", is called complete when ()" is a 
complete type. 

flt s is easily modified to a function from C nat to Cnatl.' 

and then flt s((5 :: 5 :: ... )) will be (-L :: -L :: ... ) which 
is practically an empty stream. 

4.3 The (1\11PST) rule 

Based on the observations in the previous sections, we in­
troduce a rule (M PST) for defining stream transformers. 
The rule is formulated in natural deduction style, but the 
formula, A, in the specification of a stream transformer, 
VX.3Y A(X, Y), is restricted. In spite of the restriction, 
the rule can handle a fairly large class of specifications 
of stream transformers as will be demonstrated later. 
The rule is as follows: 

(a) VX : Ier.3a : T. M(X, a) 
(b) VX : Ier.Va : T. VS : IT' (Al(X, a) ::} A(O,X, (a :: S))) 
(c) 3f : Ier -+ Ier. V X : Ier.\fY : IT.Vn : nat. 

(A(n, f(X), tl(Y)) ::} A(n + 1, X, Y)) 
VX : Ier.3Y : IT.Vn : nat. A(n,X, Y) 

where Al is a suitable predicate and A(n, X, Y) must be 
a rank 0 formula [HNS9]. We can easily extend the rule 
to the multiple input stream version. \lve do not give 
the precise definition of rank 0 formulas here, but the 
intention is that we should not expect to extract any 
computational meaning from A(n, X, Y) part. This re­
striction comes from purely technical reason, but does 
not degenerate the expressive power of the rule from the 
practical point of view because we usually need only to 
define a stream transformer program but not the verifica­
tion code corresponding to A(n, X, Y) part. The techni­
cal reason for the side condition of (AlP ST) is as follows: 
(AIPST) is in fact a derived rule with (ST) and (CON), 
so that q-rea.lizability interpretation defined in the next 
section is carried out using the interpretation of those 

rules. The difficulty resides in the interpretation of the 
(CON) rule, but if we restrict the formula A(n, X) in 
(CON) to be rank 0, the interpretation is trivial. This 
condition corresponds to to side condition of (M PST). 

The intuitive meaning of (.N! PST) is as follows. As 
explained in 4.1, a mapstream function is defined when 
Al and N procedure are given. (a) is the specification 
of the M procedure, fM' and (b) means that fM cer­
tainly generates the right elements of the output stream. 
The N procedure, fN, is defined as the value of ex­
istentially quantified variable, f, in (c). (c) together 
with (b) intuitively means the following: for X : I" (in­
put stream) and Y : IT (output stream), let us call a 
pair, (fN(X), tln(y)), the nth fN-descendant of (X, Y). 
Then, for arbitrary n : nat, A(n, X, Y) speaks about nth 
fN-descendant of (X, Y), and A(n, fN(X), tl(Y)) actu­
ally speaks about n + lth fN-descendant of (X, Y). 
If fN is a stream transformer, this means that the pro­
cess (stream transformer) defined by (M PST) generates 
another processes dynamically. 

Note that, as we must give a suitable formula, M, to 
prove the conclusion, (M PST) is essentially a second 
order rule. 

5 The Formal System 

This section presents the rest of the formalization of our 
system briefly. 

5.1 Non-deterministic 'x-calculus 

The non-deterministic A-calculus is a typed concurrent 
calculus based on parallel reduction and this is used as 
the underlying programming language. The core part is 
almost the same as that given in [Tak91]. It has natural 
numbers, booleans (T and F), Land R as constants. 
Individual variables, lambda-abstractions, application, 
sequences of terms ((MI, ... , Mn) where Mi are terms), 
if-then-else, and a fixed point operator (f.L) are used as 
terms and program constructs. The reduction rules for 
terms are defined as expected, and if a term, M, is re­
ducible to a term, N, then AI and N are regarded as 
equal. Also, several primitive functions are provided for 
arithmetic operations and for the handling of sequences 
of terms such as projection of elements or subsequences 
from a sequence of terms. The type structure of the cal­
culus is almost that of simply typed A-calculi. nat (nat­
ural number type), bool (boolean types), and 2 (type of 
Land R) are primitive types and x (cartesian product) 
and -+ (arrow) are used as type constructors. The type 
inference rules for this fragment of the calculus are de­
fined as expected. In addition to them, computational 
streams, computational stream types and a special term 
called coin flipper is introduced to describe concurrent 
computation of streams. For the reduction strategy, /1-



terms in section 3.1 are lazily evaluated. 
The coin flipper is a device for simulating nondetermi­

nacy. It is a term, ., whose computational meaning is 
given by the following reduction rule: 

• t> Lor R 
That is, • reduces to L or R in a nondeterministic way. 
This is like flipping a coin, or can be regarded as hiding 
some particular decision procedure whose execution may 
not always be explained by the reduction mechanism. 

• is regarded as an element of 2+, a super type of 
2. The elements of 2 have been used to describe the 
decision procedure of if-then-else programs in the pro­
gram extraction from constructive proofs in [Tak91) as 
if T = L then A1 else N. Nondeterminacy arises when 
T is replaced by •. The intentional semantics of • IS 

undefined. 2+ enjoys the following typing rules: 
L : 2+ R : 2+ • : 2+ 

5.2 Rules of Inference 

(1) Logical Rules 
The rules for logical connectives and quantifiers are those 
of first order intuitionistic natural deduction with math­
ematical induction. 
(2) Rules for Nondeterminacy 

A A 
• = Lv. = R A (NonDet) 

(N onDet) is actually a derived rule: This is obtained 
by proving A by divide and conquer on TVT. (NonDet) 
means that if two distinct proof of A are given, one of 
them will be chosen in a nondeterministic way. This 
is the well-known nondeterminacy both in classical and 
intuitionistic natural deduction. 
(3) Auxiliary Rules 

1\1 : 0" -t 0" a: 0" n: nat 
ap(Mn,a) : 0" 

f : 0"1 -t T1 g: 0"2 -t T2 

f X g : 0"1 X 0"2 -t Tl X T2 

5.3 Realizability Interpretation 

The realizability defined in this section is a variant of 
q-realizability [TvD88). 

A new class of formulas called realizability relations is 
introduced to define q-realizability. 

Def. 3: Realizability relation 
A 'realizability Telation is an expression in the form of 
a q A, where A is a formula and a is a finite sequence of 
variables which does not occur in A. a is called a Tealiz­
ing vaTiables of A. For a term A1, A1 q A, which reads 
"a term 1\1 realizes a formula A", denotes (a q A)a[A1], 
and A1 is called a TealizeT of A. 

A type is assigned for each formula, which is actually 
the t.ype of the realizer of the formula. 

Def. 4: type(A) 
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Let A be a formula. Then, a type of A, type(A), IS 

defined as follows: 

1. type(A) is empty, if A is rank 0; 

2. type(A & B) ~ type(A) x type(B); 

3. type(A V B) ~ 2+ X type(A) x type(B); 

4. type(A ~ B) ~f type(A) -t type(B); 

5. type(Vx: 0". A) ~ 0" -t type(A); 

6. type(3x : 0". A) ~ 0" X type(A); 

Proposition 2: Let A be a formula with a free vari­
able x. Then, type(A) = type(Ax[M)) for any term 111 
of the same type as x. 

Def. 5: q-rea.lizability 

1. If A is a: rank 0 formula, then () q A ~ A; 

2. a q A ~ B ~ Vb : type(A).(A & b q A ~ a(b) q B); 

3. (a, b) q 3x : 0'. A ~ a : 0" & Ax[a) & b q Ax[a); 

4. a q Vx : 0". A ~ Vx : 0". (a(x) q A); 

5. (z,a,b) q A VB 
~f (z = L & A & a q A & b: type(B)) 
V (z = R & B & b q B & a : type(A)) provided that 
A and B are distinct or A = B with A and B not 
rank 0; 

6. • q A V A ~ A if A is rank 0; 

7. (a,b) q A & B ~f a q A & b q B. 

Proposition 3: Let A be any formula. Ifa q A, then 
a: type(A). 

Theorem: Soundness of realizability: 
Assume that A is a formula. If A is proved, then there 
is a term, T, such that T q A can be proved in a triv­
ially extended logic in which realizability relations are 
regarded as formulas, and FV(T) C FV(A). 

The proof of the theorem gives the algorithm of pro­
gram extraction from constructive proofs. The program 
extracted from (NonDet) is if • = L then Meise N 
where M and N are the program extracted from the 
subproofs of two premises. From a proof by (MPST), 
the program AX.Am.apUM, f'N(X)) is extracted where 
fM and fN are as explained in section 4.3. Other part of 
the extraction algorithm can be seen in [Tak91). 

6 Examples 

The basic programming technique with (A1 PST) is 
demonstrated in this section. In the following, we write 
Xn for X(n) when X is a stream. 
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6.1 Simple Examples 

A process which doubles each element of the input nat­
ural number stream is defined as follows: 

SPEC 1: VX : Inat .3Y : Inat.Vn : nat. Yn = 2· Xn 
Proof: The proof is continued by (!I1PST). Let 

M(X, a) ~ a = 2 . hd(X), and (a) and (b) are easily 
proved. (c) is proved by letting f = )..X. tl(X) .• 

The program extracted from the proof is )"X.)..m. 2 . 
hd(tlm(x)) which is, by the isomorphism cp, extension­
ally equal to l/z.)..X. (2· hd(X) :: z(tl(X))). 

A process which takes the successive two elements at 
once from the input stream and outputs the sum of them 
is defined as follows: 

SPEC 2: VX: IO'.3Y: Iq.Vn : nat. Yn = X 2 .n + X 2'n+1 

Proof: By (MPST). Let !I1(X,a) ~ a = hd(X) + 
hd(tl(X)) and (a) and (b) are easily proved. (c) is proved 

by letting f <l4 )..X. tl2(X). I 

The program extracted from the proof is 
)"X.)..m. hd(tl2.m(X)) + hd(tl2.m+l(X)) 

which is extensionally equal to l/z.)..X. (hd(X) + 
hd(tl(X)) :: z(t/2(X))). 

6.2 Parameterized Processes and 
Complete Stream Types 

A filter process defined below removes all the elements 
of the input stream, X, which can be divided by a fixed 
natural number p. This process is an example of pa­
rameterized processes. The definition uses the complete 
stream type and the rank 0 formula technique. 

SPEC 3: Vp : nat.VX : Inat.3Y : 1natl.' 
Vn : nat. OA(p, n, X, Y) 

where A(p, n, X, Y) <l4 ((pIXn) & Yn 1.) V 

(""'(pIXn) & Yn = Xn) and 0 is the rank 0 operator. 
Proof: Let p : nat be arbitrary, and 
VX.3Y.Vn. OA(p,n,X,Y) will be proved by (MPST). 
Let M(X, a) ~ ((plhd(X)) & a 1.) V 
(""'(plhd(X)) & a = hd(X)). (a) is proved by divide and 
conquer with regard to (plhd(X)) V ....,(plhd(X)). (b) is 
proved easily, and (c) is proved by letting f = )..X. tl(X). 
I 

The program extracted from the proof is 
)..p.)..X.)..m" ap(fM,f'N(X)) 

where fM ~f )"X. if (plhd(X)) then 1. else hd(X) 
and fN ~ )..X. tl(X). Precisely, (plhd(X)) should be a 
decision procedure for (plhd(X)). 

6.3 Dynamic Invocation of Processes 

The following example, a program which extracts only 
prime numbers in the input stream, is one of the typical 
examples of dynamic creation of new prqcesses. 

SPEC 4: VX: Inat .3Y: Inatl..Vn: nat. OA(n,X,Y) 
where 

A(n,X,Y) def (P R(Xn) & Yn = Xn) 
V (....,p R(Xn) & Yn = 1.) 

and P R(m) ~ Vn: nat. 
(2:::; n < m 

=? ....,(3d : nat. m = d· n)). 

Proof: By (MPST). Let M(X, a) ~ 
(PR(hd(X)) & a = hd(X)) V (....,PR(hd(X)) & a = 
1.). (a) is proved by divide and conquer with re­
gard to PR(hd(X)) V ....,PR(hd(X)). (b) is proved eas­
ily. The proof of (c) is a little complex. Let f == 
)..X. if P R(hd(X)) then flt(hd(X), tl(X)) else tl(X) 
where flt(p, X) is the filter process developed in the 
previous subsection. Then, for arbitrary X : Inatl. 
and n : nat the following hold: 1. P R(f(X)n) =? 

P R(tl(X)n); 2. ....,p R(f(X)n) =? ....,p R(tl(X)n); 3. 
P R(f(X)n) =? f(X)n = tl(X)n. These can be proved 
by divide and conquer on P R( hd( X)) V ...,p R( hd( X)). 
Then, from A(n, f(X), tl(Y)) {:} (P f!.(f(X)n) & Yn+1 = 
f(X)n) V (....,p R(f(X)n) & Yn+1 = 1.), A(n + 1, X, Y) 
can be proved. Then, (c) is proved. I 

The program extracted from this proof is 
)"X.)..m. ap(fM' fJV(X)) 

where fM ~ )..X. if P R(hd(X)) then hd(X) else 1. 

and fN ~ 
)"X. if P R(hd(X)) then flt(hd(X) , tl(X)) else tl(X). 
This program performs load distribution in the follow­
ing way. When a prime number, p, is found in the input 
stream, X, this program invokes a filter process, flt p 

making X as the input stream of fltp and take the out­
put stream of fltp as the new input' stream. 

6.4 Nondeterminacy 

The stream merge operation is a typical example of non­
determinacy which can also be defined by (MPST). 
However, because of the condition (c) on A(n, (X, Y), Z), 
our specification is weaker than that of the merge opera­
tion. It only specifies that all the elements of the output 
stream come from the input streams. The rest of the cri­
teria for a merge operation, namely, all the elements of 
the input streams occur in the output stream preserving 
the order of the input elements without repetition and 
loss, depends on how the formula M is defined in (a) and 
how f is defined for ( c) in the premises of (M PST). 
SPEC 5: V(X, Y): l q ,O'.3Z : 10" 



Vn : nat. OA(n, (X, Y), Z) 

where A(n, (X, Y), Z) ~ (3m: nat. Zn = Xm) V (31: 
nat. Zn = Yi) 
Proof: By (M PST). Let M((X, Y), a) ~ a = hd(X), 
then the proofs of (a) and (b) are straightforward. ( c) is 
proved as follows: Let (X, Y) : Iq,(n Z : leT and n : nat be 
arbitrary. Then, A(n, (tl(X), Y), tl(Z)) == (3m. tl(Z)n = 
tl(X)m) V (31. tl(Z)n = Yi) ¢:} (3m. Zn+l = X m+1) V 

(31. Zn+l = Yi). This implies (3m'. Zn+1 = Xml) V 

(3l. Zn+l = Yi) == A(n + 1, (X, Y), Z). Similarly, 
A(n, (Y, tl(X)), tl(Z)) =? A(n + 1, (X, Y), Z) is proved. 
Then, two distinct proofs of (c) are given. Then, by 
(NonDet), (c) is proved. I 

The program extracted from this proof is 
.A(X, Y) . .Am. ap(JM' fFJ(X, Y)) 

where fM ~f >'X.hd(X) and fN ~ >'(X, Y). if • 
L then (tl(X), Y) else (Y, tl(X)). 

7 Conclusion and Future Works 

An extension of constructive programming to stream 
based concurrent programming was proposed in this pa­
per. The system has lazy types at the level of program­
ming language and logical stream types, which are types 
of sequences viewed as streams, at the level of logic. This 
two level formulation of streams enables to formulate a 
purely natural deduction style of structural induction on 
streams (lv[ PST) in which concurrent processes (stream 
transformers) are defined as proofs. The (MPST) rule 
allows to develop the proof of a specification with a good 
intuition on the concurrent process to be defined, and the 
rule seems to be easier to handle than the largest fixed 
point induction. Also, nondeterminacy was introduced 
at the level of logic using the inherent nondeterminacy 
of proof normalization in intuitionistic logic. 
For the future work, as seen in the example of a merger 
process, the side condition for (M PST) should be re­
laxed to handle larger varieties of concurrent processes. 
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Abstract 

The main aim of this paper is to construct a logic by 
which properties of programs can be formalized for ver­
ification, synthesis and transformation of programs. 

This paper has 2 main points. One point is realizabil­
ity interpretation of coinductive definitions of predicates. 
The other point is an extraction of programs which treat 
streams. 

An untyped predicative theory TID 1I is presented, 
which has the facility of coinductive definitions of pred­
icates and is based on a constructive logic. Properties 
defined by the greatest fixed point, such as streams and 
the extensional equality of streams, can be formalized 
by the facility of coinductive definitions of predicates in 

TIDI/' 
q-realizability interpretation for TIDI/ is defined and 

the realizability interpretation is proved to be sound. 
By the realizability interpretation, a program which 

treats streams can be extracted from a proof of its spec­
ification in TIDI/' General program extraction theorem 
and stream program extraction theorem are presented. 

1 Introduction 

Our main aim is to construct a logic by which we can 
formalize properties of programs for verification, synthe­
sis and transformation of programs. In this paper, we 
concentrate on formalization of programs with streams 
and present a theory TIDI/' 

Coinductive definitions are very important for this 
purpose. Properties of streams are represented seman­
tically by the greatest fixed point. The predicate rep­
resenting what a stream is and the extensional equality 
of streams are defined semantically by the greatest fixed 
point. These properties defined by the greatest fixed 
point can be formalized by coinductively defined predi­
cates and coinduction. 

It-calculus has been studied to formalize programs with 
streams for verification [3]. {L-calculus has the facility of 

coinducti;e definitions of predicates and coinduction and 
is based on classical logic. 

In this paper, we present a theory T1DI/' which has 
the facility of coinductive definitions of predicates and 
coinduction and is based on a constructive logic. By 
these facilities we can formalize properties of programs 
with streams in TIDI/' 

Our theory T1DI/ is based on a constructive logic be­
cause we want to use the facility of program extraction 
by realizability for TIDI/' Program extraction is one of 
the benefits we get when we use a constructive formal 
theory to formalize properties of programs. Program ex­
traction is to get a program from a constructive proof 
of its specification formula. One method of program ex­
traction is to use realizability interpretation. In PX[4], 
for example, a LISP program is extracted from a proof of 
its specification formula by realizability interpretation. 

By the facility of coinductive definitions of predicates 
and realizability interpretation, we can synthesize pro­
grams with streams naturally in TIDI/ using theorem 
proving techniques. 

This paper has 2 main points. One point is realizabil­
ity interpretation of coinductive definitions. The other 
point is an extraction of programs with streams. 

We present an untyped predicative theory T1DI/' 
which has coinductive definitions of predicates and is 
based on a constructive logic. We define q-realizability 
interpretation of TIDI/' We show that the realizabil­
ity interpretation is sound. We present general program 
extraction theorem and stream program extraction the­
orem. 

The soundness proof is based on the early version of 
this paper [8]. The soundness theorem was proved also 
in [5]. Both works are independent. 

In Section 2, we define a theory TIDI/' In Section 3, we 
briefly explain how useful the facility of coinductive def­
initions of predicates is to formalize streams. In Section 
4, we discuss a model of T1DI/ and prove its consistency. 
In Section 5, we present q-realizability interpretation 
of TIDI/ and prove the soundness theorem. In Section 
6, we give general program extraction theorem, stream 



program extraction theorem for T1Dv and an example 
of program synthesis. 

2 Theory T1Dv 

'vVe present a theory T1Dv in this section. It is the same 
as Beeson's EON [1] except for the axioms of coinductive 
definitions of predicates. 

In this paper, we choose combinators as the target pro­
gramming language for simplicity since we want to con­
centrate on the topic of coinductive definitions of predi­
cates. We suppose that the evaluation strategy of com­
binators is lazy or call by name because we represent 
a stream by an infinite list, which is a non-terminating 
term. We omit also the formalization of the lazy or call 
by name evaluation strategy in T1Dv for simplicity. 

Definition 2.1. (Language of T1Dv) 
The language of T1Dv is based on a first order lan­

guage but extended for coinductive definitions of predi­
cates. 

The constants are: 

K, S, p, Po, PI' 0, SN, PN, d. 
We choose combinators as a target programming lan­

guage for simplicity. K and S mean the usual basic com­
binators. We have natural numbers as primitiyes, which 
are given by 0, a successor function SN and a predecessor 
function PN. We also have paring functions p, Po and 
PI as built-in, which correspond to cons, car and cdr 
in LISP respectively. d is a combinator judging equal­
ity of natural numbers and corresponds to an if-then-else 
statement in a usual programming language. 

We have only one function symbol: 
App 

whose arity is 2. It means a functional application of 
combinators. 

Terms are defined in the same way as for a usual first 
order logic. For terms s, i, we abbreviate App(s, i) as si. 
For terms s, i, we also use an abbreviation (s, i) == psi, 
to == Pot and tl == PIt. 

The predicate symbols are: 
1.., N, -. 

V.,re have predicate variables, which a first order lan­
guage does not have. The predicate variables are: 

X, Y, Z, ... , X*, Y*, Z*, .... 
Each predicate variable has a fixed arity. 

We use an abbreviation Ax.i which is constructed 
by combinators in the usual way. We also abbreviate 
Y(>..x.t) as j.lx.i where Y == Af.(Ax.f(XX ))(>..x.f(xx )). 

Definition 2.2. (Formula) 
We define a formula A, a set S+(A) of predicate vari­

ables which occur positively in A and a set S_(A) of 
predicate variables which occur negatively in A. 

1. If a, b are terms, 
.1, N(a), a = b 

are formulas. Then 
S+(1..) = S_(1..) = </>, 

S+(N(a)) = S_(N(a)) = </>, 

S+(a = b) = S_(a = b) = </>. 
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2. If X is a predicate variable whose arity is n, 
X(XI"" ,xn) is a formula and 

S+(X(XI,'" ,xn)) = {X}, 

S-CX(XI"" ,xn )) = </>. 

3. A & B, A V B, A ~ B, VxA, :lxA are formulas if A 
and B are formulas in the same way as a first order 
language. Then 

S+CA & B) = S+(A V B) = S+(A) U S+(B), 
S_CA & B) = S_(A V B) = S_(A) U S_CB), 

S+(A ~ B) = S_(A) U S+(B), 
S_(A ~ B) = S+(A) U S_(B), 

S+CVxA) = S+(:lxA) = S+(A), 
S_(VxA) = S_(:lxA) = S_(A). 

4. (VX.AXI'" xn.A)(tl , ... , in) is a formula where X is 
a predicate variable whose arity is n, A is a formula, 
i l , ... , tn are terms and X is not in S_(A). Then 

S+((VX.AXI ... xn.A)(i l , ... , tn)) = 

S+(A) - {X}, 

S_((VX.AXI'" xn.A)(ib ···, in)) = S_(A). 

.1 means contradiction. N(a) means that a is a natural 
number. a = b means that a equals to b. 

The last case corresponds to coinductively defined 
predicates. Remark that X and Xl, ... , Xn may occur 
freely in A. The intuitive meaning of a formula 

(VX.AXI ... xn.A(X, XI, ... ,xn))(il , .. . ,in) 
is as follows: Let P be a predicate of arity n such that 
P is the greatest solution of an equation 

P(XI,"" Xn) f-4 A(P, Xb"" xn). 
Then (VX.AXI'" xn.A(X, Xl, ... , Xn))(tl , ... , tn) means 
P(tl,' .. ,tn ) intuitively. 

We abbreviate a sequence as a bold type symbol, for 
example, Xl, ... ,Xn as x. 

Example 2.3. 
We give an example of a formula. We assume the arity 

of a predicate variable P is 1. Then 
(VP.AX.X = (Xo, Xl) & Xo = ° & P(XI))(X) 

is a formula. 

Among many axioms and inference rules of TIDv, we 
discuss only inference rules of coinductive definitions of 
predicates here. The rest of axioms and inference rules 
are almost the same as EON [1] and we only list them 
in Appendix A. 
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Definition 2.4. (Coinductive Defi.nitions) 
Let v == vP.Ax.A(P) where x is a sequence of vari­

ables whose length is the same as the arity of a predicate 
variable P and A(P) is a formula displaying all the oc­
currences of P in a formula A. Suppose that C(x) is a 
formula displaying all the occurrences of variables x in 
the formula. 

Vie have the following axioms: 
Vx(v(x) -+ A(v)), (vI) 
Vx(C(x) -+ A(C)) -+ Vx(C(x) -+ vex)). (v2) 

v P.Ax.A(P) means the greatest fixed point of the func­
tion from a pr~dicate P to a predicate Ax.A(P). 

We define a theory TID- as a theory T1Dv except for 
the 2 axioms of coinductive definitions of predicates. 

3 Coinductive 
Predicates 

Definitions of 

We explain coinductive definitions of T1Dv and show 
some examples of formalization of streams by coinductive 
defini tions. 

Proposition 3.1. 
Let v be vX.Ax.A(X). Then 

Vx(v(x) f-t A(v)) 
holds. 

Proof 3.2. 

( vI') 

By (vI), we get vex) -+ A(v). By letting C be Ax.A(v) 
in (v2), A(v) -+ vex) holds. 0 

This proposition shows that vP.Ax.A(P) is the solu­
tion of the following recursive equation of a predicate 
P: 

P(x) f-t A(P). 
(v2) says that vP.Ax.A(P) is the greatest solution of 
this equation or the greatest fixed point of the functi~n 
AP.AX.A(P). 

Streams can be formalized by coinductive definitions 
[3]. Therefore we can formalize streams in TIDII . 

We represent a stream by an infinite list (a, s) con­
structed by pairing where a is the first element of the 
stream, s is the rest of the stream. In this representa­
tion, if s is a stream, we can get the first element of s by 
So and the rest by Sl. 

We present an example of bit streams. A bit stream 
is a stream whose elements are 0 or 1. We will define 
a predicate BS(x) which means that x is a bit stream. 
When we write down a formula BS(x) in a naive way, BS 
itself occurs in the body of the definition as follows: 

BS(x) f-t x = (xo, Xl) & (xo = 0 V Xo = 1) & BS(Xl). 
BS is a solution P of the following equation for a predi­
cate P 

P(x) f-t 

or the fixed point of the function 

AP.AX.X = (Xo, Xl) & (Xo = 0 V Xo = 1) & P(Xl). (2) 

There may be many solutions P for (1). For example, 
AX.l. is one solution of (1), though it is not our intended 
solution. AX.l. is the least solution. Our intended solu­
tion is the greatest solution of (1) or the greatest fixed 
point of (2). Hence we have the solution in TIDv and it 
is represented as follows: 

BS == v P.AX.X = (Xo, Xl) & 

(Xo = 0 V Xo = 1) & P(Xl). 
Let 0 be f-Ls.(O, s). 0 represents the zero stream whose 

elements are all o. We can show BS(O) by coinduction 
(v2). Let C be AX.(X = 0) in (v2), then we have 

Vx(x = 0-+ 

X = (xo, Xl) & (xo = 0 V Xo = 1) & Xl = 0) 
-+ Vx(x = 0 -+ BS(x)). 

By definition of 0, 
Vx(x = 0-+ 

X = (xo, Xl) & (xo = 0 V Xo = 1) & Xl = 0) 
holds and we have 

Vx(x = 0 -+ BS(x)). 
Let X = 0" then we get BS(O"). 

The coinductive definitions of predicates play an im­
portant role also to represent predicates of properties of 
streams [3, 6]. We will define the extensional equality 
s ~ t for streams sand t. This equality can be repre­
sented by the coinductive definitions of predicates. ~ 
is the greatest solution of the following equation for a 
predicate P: 

P(x, y) f-t Xo = Yo & P(Xb Yd. 
Therefore ~ can be formalized in TIDII as follows: 

~ == VP.AXY·Xo = Yo & P(Xl,Yl). 

4 Model of TIDv 

We will briefly explain semantics of TIDII by giving its 
intended model. 

We will use classical set theory and the well-known 
greatest fixed point theorem for model construction in 
this section. 

Theorem 4.1. (Greatest Fixed Point) 
Suppose S be a set, p( S) be a power set of S. If 

f : p( S) -+ p( S) is a monotone function, there exists a 
such that a E p( S) and 

1. f(a) = a, 

2. For any bE peS), if b c feb), then be a. 



a is abbreviated as gfp(f). 
We will construct a model M' of TIDv extending an 

arbitrary model M of TID-. Our intended model of 
TID- is the closed total term model whose universe is 
the set of closed terms [1]. We denote the universe by U. 

We will define p 1= A in almost the same way as for a 
first order logic where A is a formula and p is an environ­
ment which assigns a first order variable to an element 
of U and a predicate variable of arity n to a subset of 
un and which covers all the free first order variables and 
all the free predicate variables of A. We present only the 
definition for the case (vP.>.x.A(P))(t). 

Define F as follows: 

Ixl = n, 

F : p(Un
) -t p(Un

), 

F(X) = {x E un I p[P := X] 1= A(P)}, 
where p[P := X] is defined as follows: 

p[P := X](P) = X, 
p[P := X](x) = p(x) if x is not P. 

Then p 1= (vP.>.x.A(P))(t) is defined as t E gfp(F). 
Note that F is monotone since a predicate variable P 
occurs only positively in A(P). 

Theorem 4.2. 
If TIDv f- A, then p 1= A for any environment p which 

covers all the free variables of A. 

Theorem 4.3. 
T1Dv is consistent. 

5 q-Realizability Interpretation 
of TIDv 

We will explain motivation of our realizability. We 
start with a usual q-realizability and try to inter­
pret (vP.>.x.A(P))(x). Let v be vP>.x.A(P) and then 
v(x) f-+ A(v, x) holds. We want to treat v(x) and A(v, x) 
in the same manner. So we require (e q v( x)) f-+ 

(e q A(v,x)). Therefore it is very natural to define 
(e q v(x)) as v*(e,x) where v*(e,x) is the greatest so­
lution of a recursive equation for a predicate variable X*: 

X*(e, x) f-+ (e q A(v, x))[(r q v(y)):= X*(r, y)]. 
where [(I" q v(y)):= X*(r, y)] of the right hand side 
means replacing each subformula (I" q v(y)) by a sub­
formula X*(r,y) in a formula (e q A(v,x)). We get 
the following definition of our realizability by describing 
syntactically this idea. 

Our realizability in this paper is an extension of 
Grayson's realizability. We can also define usual q­
realizability of coinductively defined predicates in the 
same way as in this paper. 

Definition 5.1. (Harrop formula) 

1. Atomic formulas ..1, N(a) and a = b are Harrop. 

669 

2. If A and B are Harrop, then A & B, C -t B, VxA 
and (vP>.x.A)(t) are also Harrop. 

Since a Harrop formula does not have computational 
meanings, we can simplify the q-realizability interpre­
tation of them. 

Definition 5.2. (Abstract) 

1. A predicate constant of arity n is an abstract of arity 
n. 

2. A predicate variable of arity n is an abstract of arity 
n. 

3. If A is a formula, >'Xl ... xn-A is an abstract of arity 
n. 

We identify (AXl ... xn.A)(tl , ... , tn) with A[XI 
tl , .. ·, Xn := tn] where [Xl := tl , ... , Xn := tn] denotes 
a substitution. 

Definition 5.3. ( q-realizability Interpretation) 
Suppose A is a formula, PI,".' Pn is a sequence of 

predicate variables whose arities are ml, ... ,mn respec­
tively and Fl , Gi, ... , Fn , Gn is a sequence of abstracts 
whose arities are ml, ml + 1, ... ,mn, mn + 1 respectively. 

(e qPl, ... ,Pn[Fl , Gl, ... , Fnl Gn] A) 
is defined by induction on the construction of A as fol­
lows. 

We abbreviate qPl, ... ,pJFl , Gl , ... , Fn, Gn] as q', 
qP1, ... ,Pn,p[Fl, Gl , ... , Fn, Gn, F, G] as qp[F, G], 
Fl, ... ,Fn as F and Pl"",Pn as P. 

1. (e q' A) == e = O&Ap[F] where A is Harrop. 

2. (e q' Pi(t)) == Fi(t) & Gi(e, t). 

3. (e q' Q(t)) - Q(t) & Q*(e, t) where Q :t 
Pi (l:::;i:::;n). 

4. (e q' A & B) == (eo q' A) & (el q' B). 

5. (e q' A V B) == N(eo) & 
(eo = 0 -t (el q' A)) & 
(eo =/:. 0 -t (el q' B)). 

6. (e q' A-tB) == (A-tB)p[F]&Vq((q q' A)-t 
(eq q' B)). 

7. (e q' VxA(x)) == Vx(ex q' A(x) ). 

8. (e q' :3xA(x)) == (el q' A(eo)). 

9. (e q' (vX.>.x.A(X))(t)) == 
(vX*.>.ex.(e q'x[vp[F],X*] A(X)))(e, t) 

where v == vX.>.x.A(X). 

In the above definition, Pl, ... ,PJFl, Gl , ... , Fn, Gn] means 
a substitution. Our realizability interpretation is some­
thing like a realizability interpretation with a substitu­
tion. 
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Proposition 5.4. 

Let v = vP.Ax.A(P). 

1. Vxr((r q vex)) f-+ (r q A(v))). 

2. Axr.r q Vx(v(x) -+ A(v)). 

Proof 5.5. 

By the definition of q-realizability and (vI'). 0 

Definition 5.6. 

For a formula A, a predicate variable P and a term I, 
we define a term (]'~,j by induction on the construction 
of A as follows: 

1. A is a Harrop formula, then (]'~,j = Ar.O. 

2. A = P(t), then (]'~,J = Ar.ltr. 

3. A = Q(t), then (]'~,J = Ar.r if Q ¢ P. 

4 A -A & A th P,J - \ (p,j P,J) . = 1 2, en(]'A =Ar·(]'A1rO,(]'A2r1. 

6 A -A A th P,J - \ p,j( ( P,j )) . = 1 -+ 2, en (]' A = Arq.(]' A2 r (]' Al q . 

9. A = (vQ.Ax.A1)(t), 
(]'~,j = (f.-lg.Axr.(]'~~g((]'~/r))t where Q ¢ P. 

Proposition 5.7. 
Let v = vP.Ax.A(P). Then 

Aq'f.-lf.Axr.(]'~(~)(qxr) q 

Vx(C(x) -+ A(C)) -+ Vx(C(x) -+ vex)) 
holds. 

We prove it in Appendix B. 

Theorem 5.B. (Soundness Theorem) 

then 

If TIDv f- A, we can get a term e from the proof of f- A 
and TIDv f- (e q A) holds where all the free variables 
of e are included in all the free variables of A. 

Proof 5.9. 

By induction on the proof of f- A. The case of the 
axiom (vI) is proved by Proposition 5.4. The case of the 
axiom (v2) is proved by Proposition 5.7. 0 

6 Program 
Streams 

Synthesis with 

In this section, we give general program extraction the­
orem, stream program extraction theorem for TIDv and 
an example of program synthesis. 

Program synthesis by theorem proving techniques has 
been studied both in typed theories [2] and untyped theo­
ries [4]. For untyped theories, realizability interpretation 
is used as the foundation of program synthesis by the­
orem proving techniques. In Section 3, we showed that 
streams and programs which treat streams can be formal­
ized in TIDv by the facility of coinductively definitions 
of predicates. In Section 5, we showed that realizability 
interpretation can be defined for TIDv and the inter­
pretation is sound. Hence we can synthesize programs 
which treat streams by theorem proving techniques in 
TIDv using realizability interpretation. . 

We represent streams by infinite lists constructed by 
pairing. We represent a specification of a program by a 
formula: 

Vx(A(x) -+ 3yB(x,y)) 
where x is an input, y is an output, A(x) is an input 
condition and B(x, y) is an input output relation. 

Theorem 6.1. (Program Extraction) 
Suppose that we prove a specification formula 

Vx(A(x) -+ 3yB(x, y)) of a program in TIDv and we 
have a realizer j such that 

VX(A(x)-+(jx q A(x))). 
Then we can get a program I and a proof of 

VX(A(x) -+ B(x, Ix)) 
effectively from the proof of the specification formula. 

Proof 6.2. 
Since the specification formula is proved in TIDv, by 

soundness theorem of q-realizability interpretation we 
have a realizer e such that 

e q VX(A(x) -+ 3yB(x,y)) 
holds. Let I be Ax.(ex(jx))o. Then the claim holds. 0 

We can synthesize programs in the following steps: 

1. We write down a specification formula. 

2. We prove the specification formula in TIDv. 

3. We extract a program from the proof. 

The program extraction theorem says that the third step 
can be automated completely. 

Example 6.3. 
We show an example of the program which gets a 

stream of natural numbers and returns a stream whose 
each element is the element of the input stream plus one. 



The predicate NS( x) which says that x is a stream 
of natural numbers can be represented in TIDv by the 
facility of coinductive definitions of predicates as follows: 

NS == VX.AX.X = (Xo, Xl) & N(xo) & X(XI). 
The input condition of the specification is a formula 
NS(x). 

The input output relation of the specification is a for­
mula ADD1(x,y) which is defined as follows: 

ADDl == VX.AXY.Yo = Xo + 1 & X(XI,YI). 
The specification formula is: 

Vx(NS(x) -t 3yADD1(x, y»). 

We have one problem for this program synthesis 
method. The coinduction cannot be applied to the part 
Vx(NS(x) -t ... ) in the above example. We cannot prove 
3y AD D 1 ( x, y) by the coind uction in general. Therefore 
the realizer of the coinduction cannot give a loop struc­
ture for the program. On the other hand, a realizer of 
the induction principle plays an important role for this 
approach of program synthesis since the realizer corre­
sponds to a loop structure of a program [4, 7]. There­
fore we need the new method by which a realizer of the 
coinduction also corresponds to a loop structure and is 
useful. 

Then we need more specialized program extraction 
method for programs with streams in which the coin­
duction is useful. We give one solution for this problem 
by the next theorem. 

We put 2 restrictions on the theorem: One is that 
the input condition A(x) must be the form (VX.AX.X = 
(Xo, Xl) & A(xo) & X(Xl)(X) for some A. The other is 
that the input output relation B(x, y) must be the form 
(vX.Axy.B(x, Yo) & X(XI' Yl)(X, y) for some B. Th~se 
restrictions require an input condition and an input out­
put relation are uniform over data and they are natural 
when we suppose that an input X and an output yare 
both streams. 

Theorem 6.4. (Stream Program Extraction) 
Suppose that the specification formula is Vx(A(x) -t 

3yB(x, y», 
A == VX.AX.X = (xo, Xl) & A(xo) & X(XI), 
B == vX.Axy.B(x, Yo) & X(Xb yd 

and we have a termj such that Vx(A(x)-t(jx q A(x))). 
Then we define 

BO == vX.Ax.3zB(x, z) & X(Xl). 
If we have e such that 

e q Vx(A(x) -t BO(x)), 
we can get a term F such that 

Vx(A(x) -t B(x, Fx)) 
where 

filter == Jlf.AX.(Xoo, fXI), 
F == Ax.filter(ex(jx)). 

We prove it in Appendix C. 
By this theorem, we can synthesize programs in the 

following steps: 
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1. We write down a specification formula Vx(A(x) -t 

3yB(x, y»). 

2. We prove the corresponding formula Vx(A(x) -t 

BO(x» in TIDv. 

3. We extract a program Ax.filter(ex(jx)) from the 
proof where e is a realizer of the corresponding for­
mula Vx(A(x) -t BO(x»). 

In the second step, we can apply the coinduction to 
prove the part BO(x) since BO(x) is defined by coinduc­
tive definitions. Therefore a realizer of the coinduction 
can correspond to a loop structure of the program. 

Example 6.5. 
We treat the same example as above again. The speci­

fication formula is a formula Vx(NS(x)-t3yADD1(x, y)). 
Hence the formula ADD10(x) is: 

ADD10 == vX.Ax.3z(z = Xo + 1) & X(XI). (3) 

Therefore the corresponding formula we must prove is: 

Vx(NS(x) -t ADD10(x )). (4) 

If we prove this formula in TIDv, we can get the pro­
gram which satisfies the specification by stream program 
extraction theorem. 

The conditions of the theorem hold for this case. We 
can put j == AX.JlS.(O, s) since 

Vx(NS(x) -t (Jls.(O,s) q NS(x))). 
We prove (4) in the following way here: Firstly, we 

prove 

Vx(NS(x) -t 3z(z = Xo + 1) & NS(XI)). (5) 

This is proved by letting z be Xo + 1. Secondly, by letting 
C be NS in (v2) for ADDlo, we have 

Vx(NS(x) -t 3z(z = xo + 1) & NS(XI)) -t 

Vx(NS(x) -t ADD10(x)). (6) 

Finally, by (5) and (6), we get (4). 
We calculate realizers corresponding to the above 

proofs as follows: The realizer corresponding to the proof 
of (5) is: 

el == Axr.( (xo + 1,0), Tll)', 

el q Vx(NS(x) -t 3z(z = Xo + 1) & NS(XI)). 
The realizer corresponding to the proof of (6) is: 

e2 == Aq.Jlf.AXT.(J"(qxr), 

e2 q Vx(NS(x) -t 3z(z = Xo + 1) & NS(XI)) -t 

Vx(NS(x) -t ADD10(x» 
where 

(J" == Ar.((Too, TOI), fXITI). 
The realizer corresponding to the proof of (4) is: 

e == e2ell 

e q Vx(NS(x) -t ADD10(x)). 
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We get 

e = p,j.Axr.((xo + 1,0),jxlrn). 
The extracted program is: 

Fx filter(ex(jx)) 

= filter(Jx(p,s.(O,s))) 

= (p,g.AX.(Xo + 1, gXl))X 
where j == p,f.Axr.((xo + 1,0),jxlrn). This is the pro­
gram we expect. 

Remark that the realizer e2 of the coinduction (6) gives 
a loop structure of the program F. 
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Appendix 

A Axioms and Inference Rules 
of TIDv 

The logical axioms and inference rules are the same as 
the ones of a usual intuitionistic logic. 

Axioms for Equality: 
Vx(x=x) (El) 

Vx, y(x = y & A(x) --+ A(y)) (E2) 
Axioms for Combinators: 

Vx,y(Kxy = x) 

Vx, y, z(Sxyz = xz(yz)) 

Axioms for Pairing: 
Vx,y(Po(pxy) = x) 

VX,y(Pl(PXY) = y) 
Axioms for Natural Numbers: 

N(O) 
Vx(N(x) --+ N(SNX)) 

Vx(N(x) --+ PN(SNX) = x) 

Vx(N(x) --+ SNX =I- 0) 

A(O) & Vx(N(x) & A(x) --+ A(SNX))--+ 

Vx(N(x) --+ A(x)) 

Axioms for d: 

(Cl) 
(C2) 

(PI) 

(P2) . 

(Nl) 

(N2) 
(N3) 

(N4) 

(N5) 

Vx, y, a, b(N(x) & N(y) & x = y --+ dxyab = a) (Dl) 

Vx, y, a, b(N(x) & N(y) & x =I- y --+ dxyab = b) (D2) 

B Proof of Soundness Theorem 

Lemma B.I. 
(1) If a predicate variable P occurs only positively in 

a formula A, 
(r qp[F, AyX.(y q C(x))] A)--+ 
((7~,fr qp[F,Ayx.3r((r q C(x)) & y = jxr)] A). 

(2) If a predicate variable P occurs only negatively in 
a formula A, 

(r qp[F, Ayx.3r((r q C(x)) & y = jxr)] A)--+ 
((7~,J r qp[F, AyX.(y q C(x))] A). 

Proof B.2. 
We prove (1) and (2) simultaneously by induction on 

the construction of A. 0 

Proof B.3. (of 5.7) 
Let v == vP.Ax.A(P). 
Suppose 

Vx(C(x) --+ A(C)), 
q q Vx( C(x) --+ A( C)) 

and let 
j == p,j.Axr.(7~(~)(qxr). 

We show 
j q Vx(C(x) --+ v(x)). 



Let v*(r, x) == (r q v(x». It is sufficient to show 
Vxr((r q C(x» --t v*(fxr, x». 

This is equivalent to 
Vxy(3r((r q C(x» & y = jxr) --t v*(y,x». 

By (v2), it is sufficient to show 
Vxy(3r((r q C(x» & y = jxr) --t 
(y qp[v, Ayx.3r((r q C(x» & y = jxr)] A(P)). 

This is equivalent to 
Vxr((r q C(x»--t 

(fxr qp[v, Ayx.3r((r q C(x» & y = jxr)] 

A(P»). 
Fix x and r and assume 

r q C(x). 
We show 

jxr qp[v, Ayx.3r((r q C(x») & y = jxr)] A(P). 
By the assumption about q, 

qxr q A(C). 
Hence 

qxr qp[C, AyX.(y q C(x»] A(P). 
By positivity and Vx(C(x) --t v(x», 

qxr qp[v, AyX.(y q C(x»)] A(P). 
By Lemma B.l, 

O"~(~)(qxr) qp[v, Ayx.3r((r q C(x» & y = jxr)] 
A(P). 

By jxr = O"~(~)(qxr), we have 
jxr qp[v, Ayx.3r((r q C(x) & y = jxr)] A(P). 

D 

C Proof of Stream Extraction 
Theorem 

Lemma C.l. 
Suppose that 

A == VX.AX.X = (xo, Xl) & A(xo) & X(XI), 

B == VX.AXy.13(X, Yo) & X(Xll YI), 
BO == vX.Ax.3z13(x, z) & X(XI)' 

Then 
Vj(Vx(A(x) --t (fx q BO(x»)--t 

Vx( A( x) --t B( x, filter(f x»») 
holds. 

Proof C.2. 
By only rules of NJ, the above goal is equivalent to 

Vxy(3j(Vx(A(x) --t (fx q BO(x») & 

A(x) & y = filter(f x» --t B(x, y). 
By (v2), it is sufficient to show 

Vxy(3j(Vx(A(x) --t (fx q BO(x») & 

A(x) & y = filter(fx»--t 
13(x, Yo) & 3g(Vx(A(x) --t (gx q BO(x») & 

A(XI) & YI = filter(gxl»)' 

By only rules of NJ, it is equivalent to 
Vxj(Vx(A(x) --t (fx q BO(x») & A(x)--t 

13(x, (filter(fx»o) & 

3g(Vx(A(x) --t (gx q BO(x») & 

A(XI) & (filter(fx)h = filter(gxI»)' 

We will prove it. 
Fix x and j and assume that 

Vx(A(x) --t (fx q BO(x», 

A(x). 
By (8) and (9), (fx q BO(x» holds. Hence 
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(7) 

(8) 
(9) 

((fX)OI q 13(x, (fx)oo» & ((fxh q BO(XI») (10) 

holds. Therefore 13(x, (filter(fx»o) holds since 
(filter(fx»o = (fx)oo. 

Put 9 be Ay.(f(XO, y) h. We will show Vy(A(y) --t 
(gy q BO (y ) ) ). Fix y and assume that A(y). By the 
definition of A, 

A(x) f-7 X = (xo, Xl) & A(xo) & A(XI) 
and 

A( (xo, y)) f-7 A( xo) & A(Y) 
hold. By this and (9), A( xo) holds. Hence A( (xo, y) 
holds. Combined it with (8), we get (f(xo, y) q 
BO((xo,Y)). Hence ((f(xo,y)h q BO(y) and (gy q 
BO(y») hold. Therefore we get Vy(A( x) --t(gy q BO(y»). 

By (9), A( Xl) holds. Since, in general, (filter( s) h = 
filter(sl) holds, we get (filter(fx»)l = filter((fxh) = 
filter(gxl)' Therefore (7) holds. D 

Proof C.3. (of Theorem 6.4) 
By the aElsumptions and the definition of q-

realizability, Vx(A(x) --t (exUx) q BO(x») holds. Let­
ting j be Ax.ex(jx) in Lemma C.l, we get Vx(A(x)--t 
B(x,Fx). D 
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Abstract 

A new programming language called MLOG is intro­
duced. MLOG is a conservative extension of ML with 
logical variables. To validate our concepts, a compiler 
named CAML Light FL UO was implemented. Numer­
ous examples are presented to illustrate the possibilities 
of MLOG. The pattern-matching of ML is kept for A­
calculus bindings and an unification primitive is intro­
duced for the logical variables bindings. A suspension 
mechanism allows cohabitation of pattern-matching and 
logical variables. Though the evaluation strategy for 
the application is fixed, the order for evaluation of the 
parts of pairs and application remains free. MLOG pro­
grams can be evaluated in parallel with the same result 
obtained irrespective of the particular order of evalua­
tion. This is guaranteed by the Church Rosser prop­
erty observed by the evaluation rules. As a corollary, 
a strict A-calculus with explicit substitutions on named 
variables is shown to be confluent. A completely formal 
operational semantics of MLOG is given in this paper. 

1 Introduction 

Many attempts have been made at integrating func­
tional and logical tools in the same language. It ac­
tually seems worthwile to combine the strengths of the 
two paradigms, allowing the programmer to choose the 
most appropriate tool to resolve his problem. The ap­
proach we have followed is to add "logical" tools to a 
well-known strongly typed functional language: ML. To 
validate our ideas and to demonstrate that MLOG is a 
realistic proposal, we have implemented a compiler for 
MLOG named "CAML Light FL UO" . It is an extension 
of the CAML Light system of X.Leroy[Leroy 90]. Log­
ical variables and unification serve two goals in logical 
languages: to handle partially defined values, and to 
provide a resolution mechanism. The implementation 
of logical variables and unification is a required step to 
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implement a resolution mechanism, so we bypass that 
second goal and focus on the first one. MLOG is an 
extension of ML with built-in logical variables instan­
tiable once, and unification. We allow a fruitful cohab­
itation of logical variables and ML pattern matching 
by introducing a suspension mechanism, thus when an 
application cannot be evaluated due to a lack of infor­
mation, the application is suspended. In the designing 
of MLOG, we strive to obtain a conservative extension 
of ML. Pure ML programs are not penalized by the 
extension. This result is obtained by limiting the do­
main of logical variables and suspensions to specified 
logical types. Moreover, MLOG inherits from ML a 
strong system of types and a safety property for the ex­
ecution of well-typed programs. Thus the programmer 
does not waste energy in checking types. In this arti­
cle, we trace the execution of programs that illustrate 
that synchronisation algorithms, demand driven compu­
tation, algorithms using potentially infinite data struc­
tures or partially instantiated values are easily written 
in MLOG. Then we focus on the confluence property. 
In MLOG, the strategy for the evaluation of an applica­
tion is strict evaluation: i.e. we impose the evaluation 
of the argument before reducing the application. Never­
theless, some freedom remains in the order of evaluation 
of a term: both parts of an application or of a pair for 
example. Then MLOG is independent of the implemen­
tation choices and it can be implemented on a parallel 
machine. As we fix the strategy for the evaluation of 
the applications, we can name variables without risking 
clashes. A complete operational semantics is given in 
appendix. A subset limited to the functional part of 
these rules is a strict A-calculus with explicit substitu­
tions and named variables that verify the Church Rosser 
property. That calculus is a very simple formalism and 
as it is confluent, it is a good candidate to describe any 
implementation of strict A-calculus, even a parallel one. 

2 MLOG syntax and examples 

We describe here the added syntax to ML. As MLOG is 
an extension of ML, all programs of ML are programs of 



MLOG. For clearness, we limit ourselves to a mini-ML. 
All examples are produced by a session of our system 
CAML Light FLUO. Note that # is the prompt and;; 
the terminator of our system. 

2.1 Syntax 

The language we consider is A-calculus with pattern­
matching, concrete types (either built-in, as int or 
string, or declared by the user), constructors, the let 
construct and the conditional. We first define the set 
P of programs of MLOG. We assume the existence of 
a countable set Var of term variables, with typical ele­
ments x, y, and a disjoint countable set C of construc­
tors, with typical elements c. Some constructors are 
predefined: integers, strings, booleans (true, false) and 
0, the element of type unit. In the following, i ranges 
over integers and s over strings. The syntax of patterns, 
with typical element p, 'is: 
p ::= x I c I (pI, ... ,Pn) I c P 
As in ML, we limit ourselves to linear patterns. The 
syntax of programs, with typical elements a, b, is: 

a :: = x I c I a b I (a 1, ... , an) I let x = a in b I a; b 

(function Pl -+ al I ... I Pn -+ an) I undef I unif 

a; b is the ML notation for a sequence, it means evaluate 
a then evaluate b and return the value of b. The last two 
constructs are specific to MLOG: undef is a generator 
of fresh logical variables; unif is the unification primi­
tive. let_ var u in '" is syntactic sugar for let u 
= undef in .... 

2.2 Types 

In MLOG, the programmer has to declare specially the 
types that may contain undefined objects (that is, log­
ical variables and suspensions). The notion of logical 

type, is introduced. We assume given a countable set of 
type variables TVar, with typical elements 'a, 'b, a dis­
joint countable set of variables over logical types LTVar 

with typical elements 'a?, 'b? and two countable sets of 
type constructors with typical elements ident and lident. 
The sets of logical types .c, with typical element 'Ti, and 
types T (typical element ti) are recursively defined by: 

'Ti::= 'a? I [til lident 
and 
ti::= 'Ti I bool I int I string I unit I ti -+ tj I ti * tj I 

[til ident 

Note that .c is a strict subset of T. Expressions to 
declare new type are: 

type ['a, ... , 'kJident = c [of tiHi .. ·Ic' [of tjll I 
type logic ['a, ... ,'k] lident = c [of ti][l ... Ic' [of tj]] 
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where [ ] surround optional expressions. A logical type 
is declared by the new key-word: type logic. The 
type void below has a unique value void and logical 
variables of type void may be declared. The type void 
is isomorphic to the type unit except that no logical 
variable can be declared in unit. A value of the type 
Bool below is True, False, or a free logical variable 
that will possibly be instantiated later to either True or 
False. 

#type logic void = void;; 
Type void defined. 

#type logic Bool = True False;; 
Type Bool defined. 

The following rules govern type variable instantiations: 
(1) ) a may be instantiated by any type (including 'b?); 
(2) ) a? may be instantiated by any logical type; (3) 'a? 
may not be instantiated by a non logical type. 

We write "a : ti" the program a of type ti. Thus, 
the set of MLOG programs is in fact the subset of the 
well-typed programs Py of P defined by the familiar 
ML type system. We just have to specify that: (1) un­
def: 'a?; (2) unif: 'a -+' a -+ void. Fortunately, as far 
as types are concerned, logical variables and assignable 
constructs are quite close, we have adapted to logical 
variables previous work done for typing assignable ob­
jects in ML. We have directly applied the idea of Pierre 
Weis and Xavier Leroy [LeroyWeis 91], and, using their 
notion of cautious generalization, we get an extension of 
the ML. type system to logical variables that is sound: 

Theorem 1 No evaluation of a well-typed program can 
leads to a run-time type error. 

Thus CAML Light Fluo has a type-checker that infers 
and checks the types of programs. 

2.3 Examples 

We give below very simple examples to illustrate the 
semantics of unification and logical variables in MLOG. 
First logical variables are instantiable once, when the 
unification fails, the exception Unify is raised: 

#let (u:Bool) = undef;; 
Value u : Bool u = ? 
#unif u True; unif u False;; 
- : void Uncaught exception: Unify 
#u; ; 
- : Bool - = True 

CAML Light FL UO prints "?" for a free logical vari­
able. Rational trees are allowed; unif does not perform 
any occur-check. Moreover, unif does not loop when 
unifying rational trees. The type 'a stream below im­
plements the potentially infinite lists. 
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#type logic 'a stream = Nil 1St of 'a * 'a stream;; 
Type stream defined. 
#let (u:int stream) = undef;; 
Value u : int stream u ? 
#unif u (St(l,u));u;; 

int stream 
- = St (1, St (1, St (1, St (1 ,Interrupted. 

The printing of u was interrupted by a system break. 
At that point we can use classical technics used in the 
logical languages, see for example in the appendix the 
classical functional quicksort program, except that dif­
ference lists are used instead of lists to improve the con­
catenation of sorted sublists. 

2.4 Suspensions: an intuitive semantics 

Consider first the example below: 
#let neg = function True -) False IFalse -) True;; 
Value neg : Bool -> Bool 
#let b,exp = let_var u in (u, neg u);; 
Value b : Bool Value exp : Bool b = ? exp 

b is a new free logical variable of type Bool. The ap­
plication cannot match u with True or False: u is free. 
So what is the meaning of exp? The answer is: the 
application neg u is suspended. Thus, exp is a suspen­
sion of type Booll. A suspension is a first class citizen 
in MLOG. It may be handled in data structures, and 
used in other expressions. 

#let exp' = unif exp False;; 
Value exp' : void exp' = ... 

Since exp is a suspension, MLOG cannot perform the 
unification of exp with False. Therefore this unification 
is also suspended2• Let us now instantiate b with True, 
and look at exp and exp' . 

#unif b True; exp,exp';; 
Value - : Bool * void (False,void) 

We have to clarify when a suspension is awakened. 
Awakening a suspension could be delayed until it is ac­
tually needed. We must define when such an evaluation 
is needed: 

#let (a,b,e) = let_var a,b in 
(a,b,(function True ->(unif a True))b);j 

Value a : Bool Value b : Bool Value e: void 
a =? b =? e = ... 

e is suspended waiting for the instantiation of b. 

#unif b True;; 
Value - : void - = void 

INote that CAML Light FLUO prints suspensions as " ... ". 
2That is why the'type of the result of unif has to be a logical 

type. We do not want to have suspension in a non logical type. 

As b is instantiated, e can be awakened. If we choose 
to wake up a suspension only if its value is needed, e 
remains suspended and then a remains free. If the value 
of a is needed, nothing indicates that the evaluation of 
e will instantiate a. This motivates our choice to wake 
up all suspended evaluations that can be awakened. An­
other motivation is that, if an expression is suspended, it 
is because its evaluation was needed and unfortunately 
was stopped by lack of information. So if we look at a: 

#a;; Value - : Bool - = True 

The example above illustrates the fine control on eval­
uation allowed by the suspension mechanism. The ap­
plication is performed and then a is instantiated only 
when b is instantiated. 

3 A confluence result 

To give an operational semantics for MLOG we have to 
deal with bindings of .A.-calculus variables, bindings of 
logical variables and suspensions. We give here a simple 
formalism that allows us to keep named parameters and 
we show that this calculus is strongly confiuent3. In this 
section we neglect types. 

3.1 A strict calculus with environment 

We store bindings of parameters in environments. We 
call EA the set of terms with environments. As our 
calculus is strict, we specialize a subset Val of EA which 
is the set of the values handled by the language. Typical 
elements of Val and EA are respectively noted v and t. 

e ::= [] I (x,v)::e 
v ::= c I c(v) I (v,v') I (function ... ).e 
t ::= c I c(t) I (t,t') I t(t') la.e 

3.2 Logical variables, substitutions and sus-
pensions 

Now we have to extend the set Val with logical vari­
ables. We assume the existence of a countable set U 
disjoint with V and C with typical element u( i), dis­
tinct logical variables have distinct indexes. We call 
LVal and ELA the obtained sets of values and terms 
with environments. To manage the bindings of logical 
variables we define substitutions as functions from U 
to ELA. We will use greek letters to note substitu­
tions. We call the domain of (J' and note dom( (J') the set 
{u(i) s.t. (J'(u(i)) -=I u(i)}. We will note (J' 0 a the com­
position of substitutions. The MLOG pattern matching 
algorithm has to deal with logical variables. It has to 

3Recall that if no strategy for application is imposed, name 
clash may occurs. To avoid that problem, the names of variables 
can be replaced by numbers "iI. la De Bruijn"[AbadiCaCuLe 90, 
HardinLevy 90] 



access to the pointed value when it checks a bound vari­
able, it fails with Unknown when it tries to match a free 
logical variable with a construct pattern. We define the 
match of a term t with a pattern pat in the substitution 
0- and note ~cr(pat, t) as the list of appropriate bindings 
of parameters of pat. Recall that patterns are linear. 
We define now a sequential pattern matching without 
entering into the optimization of the algorithm4. 

if <P.,.(po, t) = e then <ps.,.(i,po :: pI, t) = i, e 
if <P.,. (Po , t) = Unknown then <ps.,.(i,po :: _, t) = i, Unknown 
if <P.,. (Po , t) = fail then <ps.,.(i,po :: [], t) = i, fail 
if <P.,.(Po, t) = fail and pl =1= []then 
<ps.,.(i,po :: patl, t) = <ps.,.(i + 1,patl, t) 

When the pattern matching fails with Unknown, we 
suspend the application. We do not want to have to 
go throughout the term to wake up suspensions or to 
duplicate suspensions when reducing application. On 
other hand, we note that both free logical variables and 
suspensions are holes in the term that will be plugged in 
when more information is broadcast. So we replace the 
new suspension by a logical variable u(j) (with j < 0 
to recall that it is created for a suspension) and we 
bind u(j) with the suspension in a dedicated substitu­
tion a(See rules Susp and ASusp in figure 2). As ex­
plained above, unification may build rational trees, thus 
a naive recursive application of a substitution to a term 
may loop. We define o-*(t) as the recursive application 
of 0- to t that does not substitute a logical variable if 
it has already been substituted in a prenex occurrence 
of t. More precisely, we call M the set of the logical 
variables of dom( 0-) already met, 0-* is defined by: 
0-* = 0 f- 0-* and 

M f- o-*(u(i)) = u(i) if u(i) EM or u(i) E dom(o-) 
M f- o-*(u(i)) = {u(i)} U M f- 0-* (o-(u(i))) if u(i) ~ M 
M f- o-*(c) = c 
M f- o-*(t(t')) = (M f- o-*(t))(M f- o-*(t')) 
M f- o-*(t, t') = (M f- o-*(t), M f- o-*(t')) 
M f- o-"'(p.e) = (M f- 0-* (p).M f- o-*(e)) 

3.3 Unification 

The used unification procedure is adapted from 
[Huet 76]. We do not discuss here the whole algorithm 
but the three following points deserve mention: (1) We 
do not want to open the Pandora's Box of higher or­
der unification, so when we compare closures we limit 
ourselves to physical identity (we assume an appropri­
ate primitive eq).(2) When the procedure has to unify 
a suspension with any other term, it stops and returns 
susp5. (3) When the procedure has to unify a free log-

4The interested reader is referred to [Laville 88] and 
[PuelSuarez 90] for presentation of optimized algorithms in the 
framework of functional lazy evaluation. Such algorithms may be 
of some interest for our language as they avoid useless tests and 
then avoid useless suspensions. 

5 susp is returned even if the procedure has to unify a free 
logical variable and a suspension. 
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ical variable with a construct term, the unification is 
performed even if a suspension occurs in the term. We 
define unifuo(t,t') by: 
( a) uni f Uo (t, t') = 0- iff the unification procedure applied 
to{ (t, t')} with the initial substitution 0-0 succeeds and 
builds the substitution 0-. 

(b) unif Uo (t, t') = fail iff the unification procedure ap­
plied to {( t, t')} with the initial substitution 0-0 stops 
with fail. 

(c) unifuo(t, t') = susp(u(i)) iff the unification proce­
dure applied to {( t, t')} with the initial substitution 0-0 

stops with susp( u( i)). 
The following result holds: 

Theorem 2 For all terms t, t' uni f Uo (t, t') terminates 
and: (a) if t and t' are not unifiable in the initial substi­

tution 0-0, then unifuo(t,t') = fail or sUSP(-)i (b) oth­
erwise if there is at least one pair of the form (u(j), t") 
with j < 0 built then unifuo (t, i') = susp(_) (c) else 

unifuo (t, t') = 0- which is the most general unifier of 
(t, t'), moreover there is no cycle in 0- of the form 
o-*(u(i)) = u(i). 

3.4 Confluence of the reduction over ELA 

The reduction has to account for the bindings of logi­
cal variables and those of logical variables created for 
the suspensions. Moreover, it has to deal with waking 
up the suspensions. Thus we define -t as the small­
est relation over E LA x substitutions x substitutions x 
substitutions that verifies the rules given in figures 1 
and 2 in appendix. A 4-tuple is note by < i, 0-, a, r > 
where t is the term to reduce. The substitution 0- stores 
the bindings of unified logical variables and updated 
suspensions. The valuation a stores the suspensions 
(recall they are bound to u(j) with j < 0). The sub­
stitution r stores the suspensions of which evaluations 
are running. We use the classical notation ~ and .!!:., 
for reflexive transitive closure of -t and for derivations 
of length n. We first have two lemmas that say that no 
term of the form (a.e).e' is produced and that the term 
component of a normal form is a value. 

Lemma 1 Let a be a program and 

< a.[], 0, 0, 0 >.!!:.,< t, 0-, a, r >. For all subterms of t oj 
the form t'.e, i' is a program. 

Lemma 2 Let a be a program and 

< a.[], 0, 0, 0 >~< i, 0-, a, r > such that < i, 0-, a, r > 
is a normal form. Then t is a value. 

We can deduce from these lemmas that all bindings in 
0- bind a variable with a value. Let us remark now that 
if no suspension rule is applied, as we do not reduce 
under a A and we impose a strict calculus we have strong 
confluence for our reduction rules. 
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Proposition 1 Let < t, 0-, a, r >-t< tll 0-1, a, rl > 
and < t,o-,a,r >-t< t2,0-2,a,r2 > two reduction us­
ing respectively rules r 1 and r2 with ri not a suspen­
sion rule. Then we have by the application of respec­

tively r2 and r1: < tl, 0-1, a, rl >-t< t3, 0-3, a, r3 > 
and < t2, 0-2, a, r2 >-t< t3, 0-3, a, r3 > 

An important corollary of that result is that if we re­
strict ourselves to the functional subset of MLOG, we 
have describe a strong confluent calculus with explicit 
substitutions and named variables. That calculus is 
rather simple (all that concerns logical variables and 
suspensions is unnecessary) and describes all implemen­
tations of a strict >.-calculus, even a parallel one. 

Remark that -t is not strongly confluent on the whole 
language. That is illustrated by the example below 
where the choice is between UniIT and Susp and the 
diagram cannot be closed in one step as even if U niIT 
is chosen after Susp waking up the suspension remains 
to be done. 

< ((fun c -t c').[] u(l), unif u(l) c), 0, 0, 0 > 

We can see the use of a rule Susp, ASusp or USusp 
as the translation of subterm from the term to r. From 
a reduction point of view we can say that these rules do 
not work. Thus the idea is to define an equivalence be­
tween four_uples < t, 0-, a, r > which is stable for these 
suspension rules and then show the strong confluence of 
-t up to that equivalence. 

Definition 1 < t, 0-, a, r >==< t', 0-', a', r' > iff 

1. there exists a permutation P over positive variable 
index such that (0- 0 a 0 r)*(t) = P(o-' 0 a' 0 r')*(t') 

2. and for all u(i) in dom(o-) with i > 0, (0- 0 a 0 

r)*( u(i)) = P( 0-' 0 a' 0 r')*( u(P( i))) 

3. and for all u( i) in dome a) U dom(r) or there exists 
j < 0 such that u(j) in dome a') U dom(r') and 
(o-oaof)*(u(i)) = P(O"'oa'or')*(u(j)), either there 
exists a subtermt~ oft' such that (o-oaor)*(u(i)) = 
pea' 0 a' 0 r')*(tD 

and vice versa for all u( i) in dome a') U dom(f') 

or t = t' = failwith(s) 

Thus we have verified the Church Rosser property (the 
proof is in appendix C): 

Theorem 3 If < t, 0-, a, r > has a normal form for-t 
then it is unique up to == 

Remark that if we add types as defined in the section 
above, the rules have not to be modified and the result 
holds. 

4 MLOG: a conservative extension 
ofML 

The fact that the type of undef is ' a? ensures that 
no logical variable occurs in a non-logical type. That is 
not enough to ensure that no suspension of a non-logical 
type is built. Fortunately, we handle type information 
when we compile the pattern matching. Thus we have 
the following rules for the application: 

Let f be a function of type tl -t t2: (1) if type tl is a 
non-logical type, then do not do any test to check if the 
argument is a free variable or a suspension. (2) if type 
tl is a logical type, then (21) first, test if the argument 
is a bound logical variable or an updated suspension, 
and access the bound value. (22) if type t2 is a non­
logical type, test if the argument is a free variable or a 
suspension. If so, raise failure Unknown. (23) if type t2 
is a logical type, test if the argument is a free variable 
or a suspension. If so build and return the appropriate 
suspension. 

Example: 

#type logic 'a partial = P of 'a;; 
Type partial defined. 

#(function (P x) ->x) undef;; 
uncaught exception Unknown 

Theorem 4 Let a be a well-typed program. The evalu­
ation of a cannot build a logical variable or a suspension 
of a non-logical type. 

We can now deduce that MLOG is a conservative ex­
tension of ML as pure ML programs need not know for 
the extension. However, it is clear that with that rule 
of failure, our calculus is no longuer Church Rosser. To 
keep that property, we must not use functions from a 
logical type to a non-logical type. Let call M LOG* the 
subset of MLOG that does not contain such functions. 
Thus, we have the following result. 

Proposition 2 The relation -t is confluent on 
MLOG*. 

Remark: The counterpart of the conservative prop­
erty of MLOG is the need to be cautious with logi­
cal variables and "functional types". First, for any in­
stances of' a and 'b the type' a -t' b cannot include a log­
ical variable as it is a "pure ML" type. Anyway, it is cor­
rect to have logical variables of type (int -t int)partial 
as illustrated below. 

#let app (P h) (P x) = P (h x);; 
Value app:('a->'b)partial->'a partial->'b partial 
#let (g: (int -> int)partial)=undef;; 
Value g : (int -> int) partial g = ? 
#let e2 = app g (P 2);; 
Value e2 : int partial e2 = ... 



#unif g (P (fun x -> x*x»;; 
- : void - = void 
#e2; ; 
- : int partial P 4 

5 Conclusion 

We have defined MLOG as an extension ofML. We have 
shown that it verifies a Church Rosser property and 
then it may be parallelized or used to simulate parallel 
processes. Such processes can communicate with each 
other through shared logical variables and the suspen­
sion mechanism allows synchronization. Partial data 
are handled by MLOG, for example potentially infinite 
lists can be implemented by the use of free logical vari­
ables for the tail of the structure (see example in ap­
pendix). 

MLOG includes a suspension mechanism, let us now 
compare it to some other proposals of integration that 
have made a similar choice. MLOG is close to the 
language Qute defined by M.Sato and T.Sakurai in 
[SatoSakurai 86]. However, it differs from it in the fol­
lowing points: (1) its evaluation strategy ensures that 
the evaluation of a suspended expression will be tried 
only when needed information is provided; (2) the re­
duction of an application is allowed even if a subexpres­
sion of the argument is suspended, the only condition is 
that pattern matching succeeds, in that case the binding 
of the suspension by a logical variable and the storage 
in a avoid duplication of that suspension. 

MLOG is also close to GHC ofK.Veda [Ueda 86], the 
main difference (except for typing point of view) is that 
MLOG does not have non-determinism for rule selec­
tion and that we have preferred to keep the functional 
formalism in place of the predicate one as selection of 
rules is done by pattern matching. However, determin­
ist GHC programs are easily translated in MLOG6. 

The use of a suspension mechanism and the cohab­
itation of logical variables and functions are common 
to Le Fun of H.Ait Kaci[Ait Kaci 89] and MLOG. Here 
the main differences are that Le Fun provides a resolu­
tion mechanism based on backtracks and that MLOG 
is strongly typed. 

Perhaps the main difference between MLOG and 
these related works is that MLOG is a conservative ex­
tension of ML. We demonstrate that the type system 
of ML can be extended to MLOG and we gave a safety 
property for well typed programs. As a side effect, we 
have described an operational semantics for strict A­
calculus which uses names for parameters and verifies 
the Church Rosser property. Therefore it can be used to 

6The author has traduced all programs given by G.Huet in 
[Huet 88], he found that the use of types and of a functional for­
malism lead to more clear programs. 
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describe any interpreter of strict A-calculus, even par­
allel one. If it seems desirable, further work can be 
done to provide a resolution mechanism in MLOG. Note 
that the exhaustive search transformation described by 
K.Ueda in [Ueda 86] is applicable. 

We hope that MLOG is an attractive extension of ML 
as from a "logical paradigm" point of view it allows han­
dling incomplete data structures and controlled parallel 
evaluation with the improvement of the ML type sys­
tem. And from a "functional paradigm" point of view, 
it respects functional programs with the improvement 
of partial data and a fair control mechanism. 
Acknowledgments: We would like to thanks all members 
of LIENS-INRIA Formel project for helpful discussions. In 
particular Therese Hardin for her accurate suggestions to im­
prove our formalism and demonstration. 

A Appendix: MLOG programs 

The program below is the classical functional quicksort pro­
gram, except that difference lists are used instead of lists to 
improve the concatenation of sorted sublists. This is done 
by the use of the same variable r in both recursive calls of 
qsortrec. 

#let partition order x = 

let rec partrec = function 
Nil -> Nil,Nil 

ISt(h,t) -> let infl,supl = partrec t in 
if order(h,x) then St(h,infl),supl else infl,St(h,supl) 

in partrec ;; 
Value partition 
('a*'b->bool)->'b->'a stream->'a stream*'a stream 
#let quicksort order 1 = 
let rec qsortrec = function 
(Nil,result,sorted) -> (unif result sorted); result 

I(St(h,t),presult,sorted) -> 
let infl,supl = partition order h t in 
let_var r in (qsortrec(supl,r,sorted); 

qsortrec(infl,presult,St(h,r») 
in qsortrec (l,undef,Nil) ;; 

Value quicksort: ('a*'a->bool)->'a stream->'a stream 

The following example illustrates the use of potentially infi­
nite lists and demand driven computation. The confluence 
property allows to parallelize the evaluation of nested appli­
cations in the definition of the Hamming sequence of integers 
of the form 2i * 3j * 5k [Dijkstra 76J. 

#let mult (P X,P y) = P(x*y)jj 
Value mult : int partial * int partial -> int partial 
#let rec times (u,St(v,r» = St(mult(u,v),times(u,r);; 
Value times: 
int partial*int partial stream->int partial stream 

#let rec merge (St(P x,s),St(P y,r») = 
if x<y then Step x,merge (s,St(P y,r») else 
if x>y then Step y,merge (St(P x,s),r» else 
Step x, merge(s,r»jj 

Value merge: int partial stream*int partial stream -> 
int partial stream 

#let rec copy_stream (St(a,b)as s) (St(h,t» = 

unif a hj copy_stream b tj Sjj 
Value copy_stream: 'a stream -> 'a stream -> 'a stream 
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#let Hamming = let_var r in 
copy_stream 

(St(P l,merge(merge(times(P 2,r),times(P 3,r», 
times(P 5,r»» rj 

r· . 
" Value Hamming : int partial stream Hamming = ? 

#let rec increase_stream st = function 
o -> st 

I n -> let_var tail in unif st St(undef,tail)j 
increase_stream tail (n-l) jj 

Value increase_stream : 'a? stream -> int -> 'a? stream 
#increase_stream Hamming 9j Hamming;; 
Value - : int partial stream 
- =St(P l,St(P 2,St(P 3,St(P 4,St(P 5,St(P 6,St(P 8, 

Step 9,St(P 10,?»»))) 

B Reduction rules 

PairlF 
< t,a,o:,r >~< failwith(s),a,o:,r > 
< (t,t'),a,o:,r >~< failwith(s),a,o:,r > 

Pair2F 
< t',a,o:,r >~< failwith(s), a, 0:, r > 
< (t,t'),a,o:,r >~< failwith(s),a,o:,r > 

Pairl 

Pair2 

Figure 1: Structural rules 

We assume that we ha.ve a function queue such that 
queueu,cxu(i) returns all the suspensions in a waiting for in­
stantiation of u(i). The rule DVar uses a counter c that is 
increased each time a new logical variable is created. c is ini­
tially at 1. The rules Susp and USusp use an other counter 
Cs dedicated to suspensions also initially at 1, they increase 
a with the new suspension. The rules UniIT and AwUpd 
increase CT with the new bindings and increase r with the 
suspensions waiting for these instantiations or update. Note 
that we remain free to choose the order of evaluation of bi­
nary constructs as for Ell.. (We give in figure 1 the rules 
for pairs, rules for unification and application are similar.). 
Moreover, the order of evaluation of terms bound in r is also 
free (see rule Aw). 

C Demonstration of theoreme 3 

Let us give preliminary results. 

Lemma 3 If < t,CT,a,r >~< t',CT',a',r' > by application 
of a suspension rule then < t,CT,a,r >=< t',CT',a',r' > 

Proposition 3 If < tl,CT1,al,rl >~< t~,CT~,a~,r~ > 
by application of a rule distinct of a suspension rule, 
and if < t l , CTI, al, r 1 >=< t2, CT2, a2, r 2 > then we 
have < t~,CT~,a~,r~,> such that < t2,CT2,a2,r2 >~< 
t~,CT~,a~,r~ > and < t~,CTLa~,n >=< t~,CT~,a~,r~ > 

Proof: We carefully discuss one case, others are similar: 

Env < x.(x, t) :: _, a, 0:, r >~< t, a, 0:, r > 

EnvO 

Const 

AEnv 

UEnv 

PEnv 

DVar 

(3 

Susp 

ASusp 

Fail 

UnifT 

UnifF 

USusp 

Aw 

< x.(y, t) :: e, a, 0:, r >~< x.e, a, 0:, r > 

< c.e,a,o:,r >~< c,a,o:,r > 

< (t t').e,a,o:,r >~< (t.e t'.e),a,o:,r > 

< (unif t t').e,a,o:,r >~< (unif t.e t'.e),a,o:,r > 

< (t,t').e,a,o:,r >~< (t.e,t'.e),a,o:,r > 

< undef.e,a,o:,r >~< u(c),a,o:,r > 
and c +- (c + 1) 

< t, a, 0:, 0 > is in ~ normal form 
a*(f) = (fun PI ~ aII···1 pn ~ an).e, 
<P8u(1, (Pd, t) = i, ei 
< f t,a,o:,r >~< ai.ei @ e,a,o:,r > 

< t, a, 0:, r > is in ~ normal form. Cs =k 
a*(f) = (fun PI ~ aII···1 pn ~ an).e, 
<P8u(1, (Pi], t) = Unknown 
< f t,a,o:,r >~< u(-n),a, (u(-n), a*(f) t):: o:,r > 
and Cs +- (k + 1) 

< t, a, 0:, r > is in ~ normal form. c.=n 
a*(f) = u(i) 
< f t, a, 0:, r >~< u(-n), a, (u( -n), u(i) t) :: 0:, r > 
and c. +- (n + 1) 

< t, a, 0:, 0> is in ~ normal form. <Psu(l, (Pd, t) = fail 
a*(I) = (fun PI ~ all···1 pn ~ an).e, 
< f t, a, 0:, r >~< failwith(Pattern), a, 0:, r > 

< t, a, 0:, 0 > and < t', a, 0:, 0 >are in ~ normal form 
uniju(t, t') = a' 
Let L = 0 if a' = a or a'(u(i» = u(j) 
for all u(i) E dorn(a')\dom(a) 
and L = queueu,,,,(u(i» in other cases 
< unif t t', a, 0:, r >~< void, a' , o:\L >, L U r > 

< t,a,0:,0 > and < t',a,0:,0 > 
are in ~ normal form 
unifu(t, t') = fail 
< unif t t',a,o:,r >-.< failwith(Unif),a,o:,r > 

< t, a, 0:, 0 > and < t', a, 0:,0 > 
are in ~ normal form 
unifu(t, t') = 8usp(u(i», Cs = n 
< unif t t', a, 0:, r >~ 

< u(-n),a,(u(-n),uniJ t t'):: o:,r > 
and c. +- (n + 1) 

u(i) E dorn(r) and r(u(i» = t 
< t,a,0:,0 >~< t',a',o:',0 > 
and < t' , a' , 0:' , 0 > not in normal form 
< to,a,o:,r >~< to,a',o:',r[u(i) +- t'] > 

u(i) E dorn(r) and r(u(i» = t 
< t,a,0:,0 >~< t',a',o:',r" > 
and < t' , a' , 0:' , 0 > is in normal form 

AwUpd r' = queueu,,,,(u(j» 
< to,a,o:,r >~ 
< to, (u(j), t') :: a', o:'\r', r" u r' u r\ {( u(j), tn > 

u(i) E dom(r) and r(u(i» = t 
AwFail < t,a,0:,0 >~< failwith(s),u,0:,0 > 

< to,a,o:,r >~< jailwith(s) , u, 0:, r > 



Let < h,O"I,al,rl > be reduced by f3 applied on a sub­
term of t l . Let note that subterm 
(fun PI -+ al I ... I Pn -+ an).e v. By the hypothesis of 
== we have (0"20 a2 0 r 2)'"(t2) = tl, thus the corresponding 
subterm of t2 is of one of the following forms: u(i); u(i) u(j); 
(fun PI -+ al I·.· I Pn -+ an).e w. We examine the first two 
forms: 
(1): u(i). First as 0"2 binds variable with values, we have 
O"z(u(i)) = u(j) and u(j) ¢ dom(0"2). The == hypothesis en­
sures that u(j) ¢ dom(a2) as in that case the application 
would be suspended when the rule f3 applies on tl' Thus we 
have: O"z(r2(u(j))) = (fun PI -+ al I ... I Pn -+ an).e v. 
The == hypothesis ensures that the same pattern matchs in 
both reduction and then application of Aw with the rule f3 
on that term clearly leads to an equivalent four_uple. 
(2) u(i) u(j). The fact that bindings in a2 and r 2 are 
bindings of logical variable to non value terms ensure that 
O"2{u(i)) = (fun PI -+ a1 I··· I Pn -+ an).e and O"2'(u(j)) = V; 
then f3 applies on u( i) u(j) and leads to an equivalent 
four_uple.¢ We have now the result of strong confluence of 
-+ up to ==, 

Theorem 5 For all < t, 0", a, r > such that: 
< t,O",a,r >-+< tl,O"l,al,r l > 
< t,O",a,r >-+< t2,0"2,a2,r2 > 

There exists < t~, O"~ , a~ , r~ > and < t~, O"~, a~ , r~ > such 
that 

< t1, 171, al, r 1 > ~ < ti, O"~ , ai, ri > 
< t2,a2,a2,r2 >~< t~,a~,a~,r~ > 
< ti, a~ , ai , r~ > == < t~, O"~ , a~ , r~ > 

Proof: it is illustrated in figure 3. The cases where at least 
one reduction use a suspension rule are: if both rl and T2 use 
suspension rules, then the lemma 3 is enough to conclude. 
If one ri use a suspension rule, then we conclude with, the 
proposition 3 and the lemma 3.<> 

e 

/e~ 
e 

;/"\: ~ ~ 
el e2 el e2 

el .. e2 

~/ II 

e3/ e'l II e'2 

Two suspensions One suspension No suspension 

Figure 3: Strong confluence 

Proof of the theorem: We show that the diagram of figure 
4 holds with the theorem above and by successive inductions 
on lengths of d1 and d2 .<> 

Remark that the limitation to a strict calculus is neces­
sary. If we permit reducing application without reducing the 
argument, as some unification may occur in that argument 
different normal forms are possible. Example: 

< (fun (x,y) -+ unif x True).[](u(l),unif u(l) False),0,0,0 > 

has two normal forms: 

< void, ((u(l), True)}, 0, ° > 

and < jailwith(Unij),{(u(1),False)},0,0>. 

dl;/e~d2 

\ i 
e'l • e'2 

Figure 4: Church Rosser property 
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Abstract 

Traditionally the integration of functional and 
logic languages is performed by attempting to in­
tegrate their semantic logics in some way. Many 
languages have been developed by taking this ap­
proach, but none manages to exploit fully the pro­
gramming features of both functional and logic lan­
guages and provide a smooth integration of the two 
paradigms. We propose that improved integrated 
systems can be constructed by taking a broader view 
of the underlying semantics of logic programming. 
A novel integrated language paradigm, Definitional 
Constraint Programming (DCP), is proposed. DCP 
generalises constraint logic programming by admit­
ting user-defined functions via a purely functional 
subsystem and enhances it with the power to solve 
constraints over functional programs. This constraint 
approach to integration results in a homogeneous uni­
fied system in which functional and logic program­
ming features are combined naturally. 

1 Introduction 

During the past ten years the integration of functional and 
logic programming languages has attracted much research. 
An extensive survey and classification of their results can 
be found in [GLDD90]. Traditionally this integration is per­
formed by attempting to integrate the respective semantic 
logics of functional and logic languages in some way, re­
sulting in a "super logic language". The conventional un­
derstanding is that a logic program defines a logical theory 
and computation is attempting to prove that a query is a 
logical consequence of this theory. Taking this view, inte­
gration is regarded as enhancing the original logic to cope 
with functional programming features and results in a new 
logic programming system. In section 2 we survey the main 
results of this approach. It seems to us that this approach 
fails to deliver all the features of both functional and logic 
programming. The main source of inadequacy appears to 
stem from the respective "intended semantics" assumed for 
logic and functional languages. It is this intended semantics 
which we question, motivating our search for a new way of 
approaching the problem of integrating functional and logic 
languages. 

We show in later sections that if we regard functional pro­
gramming as defining a higher-order value space, we can ex-

tend the conventional constraint logic programming (CLP) 
framework by using a functional programming language to 
define the domain over which relations are defined. Thus we 
combine functional programming with a general CLP frame­
work rather than with the conventional Prolog-like system .. 
We call the resulting language paradigm Definitional Con­
straint Programming (DCP). We claim that DCP pro­
vides a uniform and elegant integration of functional, con­
straint and logic programming, while preserving faithfully 
the essence of each of these language paradigms. 

In section 3, constraint systems and constraint program­
ming are investigated at a very general level. A constraint 
logic programming model is then presented in section 4 
as a particular constraint programming paradigm. Section 
5 presents constraint functional programming (CFP) as a 
framework which superimposes a solving capability on the 
functional programming paradigm. The definitional con­
straint programming paradigm is developed in section 6. We 
discuss future work in section 7 and make some concluding 
comments in section 8. 

2 Background and Motivation 

From the traditional view of logic programming, integrat­
ing functional and logic languages is viewed as enhancing 
the original logic to cope with functional programming fea­
tures. Most approaches take first-order equational logic as 
the semantic logic of functional languages and combine it 
with Horn clause logic. A comprehensive presentation of 
the theory of Horn clause logic with equality may be found 
in [GM87] and [Yuk88]. This shows that for every theory 
in Horn clause logic with equality, its initial model (called 
the least Herbrand E-model in [Yuk88], and the least Her­
brand model in [Sny90]) always exists. Crucially, the initial 
model is the intended model of a logic programming system, 
since, according to the Herbrand theorem, the model is com­
plete with respect to solving a query. For a Horn clause with 
equality program r and a query 3Xl,' .. , xnAJ, .. . , An where 
Ai is an atom or equation, a computational model must ver­
ify r 1= 3Xl,' .. , xnA1 , •• • , An by computing an answer sub­
stitution (J such that r 1= V((JAI 1\ ••. 1\ (JAn). Such models 
integrate SLD-resolution with some form of equational de­
duction such as paramodulation. A complete computational 
model was proposed recently by Snyder et. al. [Sny90] as a 
goal directed inference system. Systems which aim to sup-



port the full power of Horn clause logic with equality include 
Eqlog [GMS4], which exploits fully the order-sorted variation 
of the logic, SLOG [FriS5] in which a completion procedure 
is used as the computational model, and Yukawa's system 
[YukSS] which uses an explicit axiomatization of equality. 

The computational difficulties of constructing a practical 
programming language based on the full Horn clause logic 
with equality leads us to conclude that this approach is not 
appropriate. Alternative languages overcome these prob­
lems by imposing syntactic and semantic restrictions on the 
paradigm. They all aim either to restrict the use of, or to 
weaken, defined equality. An example of the first approach is 
Jaffer and Lassez's Logic Programming Scheme [JLS6], 
in which the equality part of a program is defined sepa­
rately from predicate definitions. A program uses a first­
order equational sublanguage to define abstract data types 
over which a definite clause subprogram is imposed. Oper­
ational models are based on SLD-resolution together with 
an E-unification procedure which solves equations over the 
equality defined by the equational subprogram. 

Another way to restrict the computational explosiveness 
of general equational deduction is to use equational clauses 
as directed rewrite rules. A full discussion may be found 
in [DOSS]. Narrowing [HuISO] (resp. conditional narrowing 
[DOSS]) is employed to solve equations in a rewriting system 
(resp. conditional rewriting system). Many languages have 
been developed along this line, e.g. RITE [DPS6b], K-Leaf 
[EGPS6]. They represent enhanced Prolog systems in which 
a "rewrite" relation is defined over the Herband space. Syn­
tactic restrictions guarantee the confluency of this rewrite 
relation so that equational logic can mimic first order func­
tional programming. In the case of K-Leaf, the Herbrand 
space is enhanced to include partial terms, thus the lazy 
evaluation of functional languages may be modeled. 

These endeavours have led to the development of several 
very successful languages and have significantly enriched the 
state of the art of declarative language design, semantics 
and implementation. However, we believe that the ben­
efits of this combination are arguable and question how 
much is gained by enhancing a first-order logic by weak­
ening a higher-order logic. Moreover, even with only first­
order equational logic added, the inefficiencies of equational 
deduction mean that the resulting system is far from prac­
tical. This approach to language integration results in a 
sophisticated theorem prover, which we find unsatisfactory. 
We suggest, therefore, some fundamental rethinking on the 
purpose of integrating functional and logic languages. 

In fact, the conventional assumption that a logic program 
defines a logical theory has been criticized in many circum­
stances because: "there is no reference to the models that 
the theory is a linguistic device for" [MesS9]. A logical the­
ory may have many models, however when we are program­
ming we always have a particular intended model in mind. 
This alternative school of thought regards a program as a 
linguistic description of the intended model; but the model 
itself is primary. For a Horn clause program, its least Her­
brand model is taken as the intended model. Therefore, if a 
program is regarded as a linguistic description of this model, 
the canonical denotation of a program is not a first-order 
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theory but a set of relations over the Herbrand space. This 
view oflogic programming has also been taken by researchers 
wishing to extend Prolog-like systems. Hagiya and Sakurai 
[MTS4] present a formal system for logic programming based 
on the theory of iterative inductive definitions. A similar ap­
proach is taken by Hallnas and Schroeder-Heister to develop 
the framework of General Horn Clause Programming 
[AEHKS9]. Paulson and Smith proposed an integrated sys­
tem in which a logic subprogram is regarded as an inductive 
definition of relations [PSS9]. 

This definitional view of logic programming suggests the 
flexibility to define Horn clauses over arbitrary domains. 
Relations become constraints over the domain of discourse, 
which coincides with the general framework of Constraint 
Logic Programming [SmoS9]. In this paper, we take this 
idea one step further by using a functional programming 
language to define the domain over which relations are de­
fined. A novel definitional constraint programming system 
is induced in which functions and relations are used together 
to define constraint systems. 

3 Constraint Programming 

In this section, we present a framework for constraint pro­
gramming which has it origins in the seminal work of Steele 
[SteSO]. From the mathematical point of view, constraints 
are associated with well-studied domains in which some priv­
ileged predicates, such as equality and various forms of in­
equalities, are available. Relations formed by applying these 
predicates are regarded as constraints. A constraint may be 
regarded as a statement of properties of objects; its deno­
tation is the set of objects which satisfy these properties. 
Therefore, constraints provide a succinct finite representa­
tion of possibly infinite sets of objects. We present a simple 
definition of constraint systems to capture these character­
istics. 

3.1 Constraint System 

Definition 3.1 (Constraint System) A constraint sys­
tem is a tuple < A, V, CP, I> where 

• A is a set of values called the domain of the system. 

• V is a set of variables. 

• cp is a set of constraints. 
We define an A-valuation as a mapping V -+ A, and 
VA as the set of all A-valuations. A computable func­
tion V is used to assign to every constraint <I> a fi­
nite set V( <1» of variables, which are the variables con­
strained by <1>. ValA denotes the set of all A-valuations. 

• I is an interpretation which consists of a solution map­
ping [f, mapping every basic constraint <I> to [<I>f , a 
set of A-valuations called the solutions of <I> and []I 
is solution closed in the sense that 

We now present some examples of constraint systems. The 
most familiar constraint system in the context of program-
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ming languages is perhaps the Herbrand system which is a 
constraint system over finite labelled trees. 

Example 3.1.1 (Herbrand System) Let E be a set of 
ranked signatures of function symbols and V be a set of con­
stant symbols treated as variables. T(E) is the ground term 
algebra consisting of the smallest set of inductively gener­
ated E-terms. A Herbrand system is a constraint system 
< T(E), V, <1>, I> where <I> consists of all term equations of 
the form tl = t2 for tl, t2 E T(f' V), where T(E, V) is the 
free term algebra, and [tl = t2] = {a 1 atl == at2} where == 
denotes the identity of two terms. 

Example 3.1.2 (Herb rand E-System) Let E, V be as 
above and E an equational theory over T(E, V). Then 
T(E)j E denotes the quotient term algebra consisting of the 
finest E-congruences over T(E) generated by E. The con­
straint system < T (E) j E, V, <1>, I > is called the H erbrand 
E-System where <I> consists of all term equations of the form 
tl = t2 for tl, t2 E T(E, V) and [tl = td1 = {[alE 1 

[atl]E = [at2]E}, where [t]E stands for the equivalence class 
of t in T(E) and [alE : V --t T(E)j E stands for the cor­
responding equivalence class of ground term substitutions 
a : V --t T(E). 

Constraint systems on various term structures can be re­
garded as cases of the following general definition of an al­
gebraic constraint system. 

Example 3.1.3 (Algebraic Constraint System) Let A 
be an algebra equipped with a set of operators E and a set 
of predicates II. Then the algebra is associated with a con­
straint system SA : <I A I, V, <1>, I > where 1 A 1 is the car­
rier of the algebra and evey constraint in <I> is of the form 
p( el, ... , en) where every ei is an A -expression and p E II 
is an n-ary predicate in the algebra. [p( el, ... , en) f = {a 1 

A, a 1= p( el,"" en)}. Examples of algebraic constraints are 
constraints over term algebras, constraints over arithmetic 
expressions and constraint systems in boolean algebra. 

Following the idea of associating constraint systems with 
algebras, predicate logic can be viewed from the constraint 
system perspective. 

Example 3.1.4 (Predicate Logic) Suppose E is the first 
order signature of symbols, the well-formed E-formula are 
constraints, V ( <p) ~ V are free variables in <P with V the set 
of free (unquantified) variables. A is given by a E- structure 
(algebra) over which symbols are interpreted. With respect 
to a particular interpretation, I can be given as [<pf = {a 1 

A,a 1= <p}. 

For any constraint system, the solution of a constraint c 
can be restricted to a set of variables in c. Given a finite 
set of variables W ~f V, a valuation with respect to W 
becomes a partial mapping defined as follows : 

a W (x) = { a( x) x E W 
I ..1 otherwise 

The solutions of a constraint <P with respect to Ware defined 
as: 

[<p]{W := {alw I a E [<p]I} 

A constraint <P is consistent in a constraint system iff 
[<p]1 =I 0. A consistent constraint <P E <I> is valid iff [<pf = 
VA. We use the word true to denote a valid constraint and 
false to denote an inconsistent constraint. Given a set of 
constraints, the set inclusion relation of solutions introduces 
a preorder over constraints that reflects the richness of the 
information they possess. A constraint <PI is a W -refinement 
of a constraint <P2, <P2 :S;IW <PI, iff [<Pl]{W ~ [<p2]{W' <PI is a 

refinement of <P2, <P2 :s; <PI, iff [<plf ~ [<p2f. The preorder 
introduces an equivalence relation between co~straints. A 
constrajnt <P is ~quivalent to a constraint <p', denoted <P == <p' 
iff [<PI] = [<P2] . 

We consider some fundamental operations over con­
straints. 

Definition 3.2 Let <PI, <P2 be two constraints. Then their 
conjunction, <PI 1\ <P2, is a constraint with V( <PI 1\ <P2) = 
V(<Pl)UV(<P2) and [<pll\<P2f = [<PIt n[<p2]T; the constraint 
implication, <PI --t <P2, is a constraint with V( <PI --t <P2) = 
V(<Pl) U V(<P2) and [<PI --t <p2f = {VA - [<PIt} U [<p2f· 

The definition of binary constraint conjunction can be ex­
tended to the conjunction of a set of constraints. A finite 

. set of constraints is called a goal when it is interpreted as 
the conjunction of all its element constraints. A constraint 
implication <PI --t <P2 is always valid whenever [<plf ~ [<P2t 
in which case we say that <PI entails 4>2, denoted <PI I- <P2. It 
is obvious that <PI I- <P2 {:=:::? <P2 ~ <Pl. 

Definition 3.3 If <P is a constraint and x E V( <p), then 
the existential quantification, 3x.<p, is a constraint with 
V(3x.<p) = V(¢) - {x} and [3x.<pf = {a E VA 1 3,8 E 
[<pf, aV(¢)_x = ,8V(¢)-x}; the negation of <p, ,<p, is a con-

straint with V'<P = V<p and [,<pf = VA - [<pf. 

Existential quantification provides a means of hiding, by 
projecting away, information about quantified variables. A 
constraint system is said to be closed with respect to an 
operator iff the constraint obtained by applying the operator 
is always in the system. 

3.2 Constraint Solving 

The computational task of a constraint system is to solve 
constraints. This is a constructive procedure which not only 
verifies that the solution set is non-empty, but transforms 
it to an equivalent, more informative form, from which so­
lutions are easily derived. Such a form is called a solved 
form. As suggested by Smolka in [Smog1], constraint solv­
ing can be modeled by a rewriting system which simplifies 
a constraint to its equivalent solved form. Since, in the 
programming context, we are interested in solving goals, 
rewriting is applied to a set (more precisely, multiset) of con­
straints. Therefore, to express constraint solving in terms of 
rewriting we use multi set transformation systems. 

Definition 3.4 (Constraint Solver) A constraint sim­
plification rule is a multiset transformation rule G --t G' 
where G, G' are multisets of constraints (goals) such that 



[Gt]! ~ [Gf. A constraint solver C is a multiset transfor­
mation system containing a set of constraint simplification 
rules which is solution preserving, i.e. for n simplifica­
tion rules of the form G -+ Gi with the same left hand side 
M (up to renaming), we have: 

n 

[Gf = U [G~f 
i=l 

We call the relation ~ a one step simplification and ~ * 
a simplification derivation. A solved form of a goal G is a 
goal Gt such that Gt is a normal form with respect to the 
constraint solver. 

The set SF G of all solved forms of a goal G is complete 
iff 

Va E [Gf. :I Gt E SF G such that a E [Gtt 

For a one step simplification M -+ M t
, it is obvious that 

simplification is sound. 

Lemma 3.4.1 (Soundness of Simplification) For one 
step simplification G ~ Gt, [Gtf ~ [G]!. 

The following proposition is also straightforward. 

Lemma 3.4.2 For any goal G which is not in normal form 
and a E [G]!, there exists a one step simplification G ~ Gt 

such that a E [Gtf. 

To model precisely the idea of simplification and its com­
pleteness, the familiar methodology of term rewriting sys­
tems is adapted. We require a complexity measure of a goal 
G with respect to a solution a, 1 (G, a) I. We say that a 
constraint solver is well-founded iff 

Va E [Gtf G ~* Gt :::}1(G,a)I2:I(Gt ,a)1 

For any well-founded solver, a solved form is always reach­
able for a consistent goal G for a particular solution a. 
Therefore, it is always possible to enumerate a simplifica­
tion derivation such that G ~ * G t with Gt in solved form 
and a E [G t ]!. 

Lemma 3.4.3 (Completeness of Simplification) If a 
constraint solver C is well-founded, then for every consis­
tent goal G, there is a set, SF G, which is the complete set 
of solved forms of G. 

The well-foundness of a constraint solver does not suggest 
that the complete set of solved forms for a goal is finite. It 
would be helpful to consider only finite sets of solved forms. 
For this we need the notion of compactness of constraint 
systems. 
Definition 3.5 (Compactness) A constraint system is 
compact iff for every finite set of constraints G : 

G f-- G1 -¢::::::} :I G2 ~f G1 such that G f-- G2 

For any compact constraint system, a stronger completeness 
condition holds for any well-founded solver. 

Lemma 3.5.1 Let S be a compact constraint system and C 
be a solver for S. If C is well-founded, for any goal G, Gt and 
G f-- Gt, there are a finite number of derivations Gt ~ * Gi 
such that Gi is in solved form and Gt f-- V~l Gi. 

685 

This lemma shows that, in a compact constraint system, 
any information contained by a goal constraint can always 
be processed by a finite amount of computation. 

A constraint solver is deterministic when the simplifica­
tion system is confluent. A simplification rule is determinis­
tic in the solver if no other rule in the system has the same 
left hand side. For a well-founded deterministic solver, a 
consistent goal has a unique solved form. Constraint solv­
ing by a non-deterministic solver can be regarded as a re­
duction procedure which simplifies a disjunction of goals by 
rewriting it into an equivalent one. A constraint solver is 
terminating iff there is no infinite simplification derivation 
G -+ G1 -+ .... A well-founded constraint solver is de­
cidable iff any unsatisfiable constraint can be simplified to 
false. Thus, a complete constraint solver is a decision pro­
cedure for the satisfiability of constraints. 

3.3 Constraint Programming 

Constraint programming is a declarative programming 
paradigm in which the task of programming is to define a 
constraint system and the task of computation is to solve 
the constraints. Therefore, the declarative semantics of a 
constraint program is given by determining the domain of 
discourse and defining the denotation of each constraint as 
its solution set. Its operational semantics is given by the 
constraint solver of the system which can be presented as a 
rewriting system which must be sound with respect to the 
declarative semantics and preferably complete. A sufficient 
condition for completeness is well-foundness of the solver. 
This notion of constraint programming is a generalization 
of the approach of Steele [Ste80] and Lassez [LM89]. Here 
the constraint system is assumed to be "built-in" and there­
fore, "programming" simply means imposing constraints. 

When designing a constraint programming language it is 
essential to develop a systematic way to define constraints 
and a generic way to construct a solver for each defined 
constraint system. We give two examples of this generalized 
definition of constraint programming: Horn Clause Logic 
Programming and Equational Logic Programming. 
Example 3.5.1 (Horn Clause Logic Programming) 
A Horn clause program r defines a constraint system < 
T(I;), V, <P, I > where T(I;) is the ground term algebra for 
the signature I; of function symbols (Herbrand space) and 
<P consists of all positive literals and is closed under renam­
ing, conjunction and existential quantification. I interprets 
constraints (defined predicates) as relations in the least Her­
brand model Mr of the program : 

[p(tI, . .. , tn)f = {a: V -+ T(I;) 1 Mr,a 1= p(atl' ... ,atn)} 

SLD resolution is a well-founded constraint solver which 
simplifies each consistent goal G into a disjunction of idem­
potent substitution equations: :IX. Vi Si. 

This view of Horn clause logic programming is consistent 
with its traditional presentation. The major divergence is 
that we take the definitional view of logic programs. In an­
other words, it is a linguistic specification of the intended 
model of the program, the least Herbrand model. This di­
vergence results in some subtle differences in the properties 
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of programs. For example, the completeness condition of 
constraint solving may not hold for all models of a program. 
Therefore it is not true that r 1= G <==? Vi Si in the above 
example. To get this result a completion procedure must be 
applied to programs. 

Example 3.5.2 (Equational Logic Programming) 
A n equational program E is a constraint system for solv­
ing equations in the quotient term algebra which it defines. 
A general E-unification procedure is its constraint solver. 
Following Gallier and Synder's result [Sny90j, such a proce­
dure exists and can be represented as multiset transformation 
system. Moreover, it is also well-founded. Therefore, it is 
a complete solver which simplifies an equational goal to a 
(possibly infinite) set of idempotent substitution equations. 

These two logic programming systems show two different 
ways to construct constraint systems in terms of logical for­
mulas. A constraint system may be defined by a Horn clause 
logic program using recursive definition rules to define con­
straints over a fixed underlying domain. By contrast, in 
the case of equational logic programming, the form of con­
straints is fixed as equations over terms. An equational logic 
program forms a Herbrand E-system by defining the domain 
of discourse along with the interpretation of constraints (Le. 
the equality in the domain). The former approach may be 
seen as a "relational extension" of a basic constraint system 
comprising the predefined fixed domain of discourse together 
with some "built in" constraints. In section 4, a systematic 
framework is constructed for such an extension. On the 
other hand, an equational logic program can be understood 
as defining an abstract data type with equations as con­
straints. This method of defining constraint systems may 
be called "domain construction" for some fixed constraint 
relation. In section 5, we propose a way to use functional 
programs to define the domain of discourse for solving con­
straints. 

These two approaches may be combined to form a pow­
erful constraint programming system in which both the do­
main of discourse and constraint relations are user-definable. 
The logic programming scheme [JL87], in which a program 
is regarded as a relational extension of the Herbrand E­
constraint system defined by the equational subprogram, 
takes this route, although this was not the original semantics 
of the scheme. We believe that the constraint programming 
perspective provides a simpler and more intuitive semantic 
treatment of the scheme. Moreover, if we instantiate the 
underlying constraint system of the general eLP framework 
by constraint systems constructed over functional programs 
we have a powerful, general purpose, definitional constraint 
programming model which unifies functional and logic pro­
gramming. This is the main result derived from our gener­
alized view of constraint programming. 

4 Constraint Logic Programming 

As mentioned in the previous section, from the definitional 
view of logic programming, a constraint system can easily 
be integrated into a logic programming system. The re-

sulting constraint logic programming system is a defi­
nitional logic system which allows a predefined underlying 
constraint system to be extended by defining relations as 
new constraints. This formalism, which was first proposed 
by Hohfeld and Smolka in [Smo89], is more general than 
the proposal of Jaffer and Lassez [JL87], in which eLP is 
modelled within the traditional logic programming school. 
Many restrictions that are imposed on the underlying con­
straint system in the latter approach, such as the require­
ment that it is effectively axiomatized in first-order theory, 
are unnecessary within the definitional framework. 

Let C :< A, V, <P e, Ie > be a constraint system closed 
under conjunction, renaming and existential quantification. 
Given a signature R as a family of user-defined predicates 
indexed by their arities, a constraint logic program rover 
C is a set of constrained defining rules of the form : 

P f- Cl, ... , Cj, B1 , ••• , Bm 

P is an R-atom of form p(xt, ... , xn) where p E Rn is an 
n-ary user-defined predicate, Ci E <P c and the Bi are atoms. 

An interpretation I of rover C is defined by interpreting 
each predicate symbol PER as a relation plover A. An 
ordering over interpretations is defined by the set inclusion of 
the relations. That is, for any interpretations 1,1', I ::::; If iff 
pI ~ pI' ~ An for any n-ary predicate p ERn. Thus, the set 
of all interpretations forms a complete lattice. With respect 
to a given interpretation, I, any R-atom, p( xl, . .. , xn), can 
be regarded as a constraint whose solutions are given by : 

[p(xt, ... ,xn)f = {a I (a(xl), ... ,a(xn)) E pI} 

The solution set of a conjunction of atoms, a goal, is the 
intersection of the solutions of its elements. A defining rule 
P f- Cl, ... , Cj, B1 , ••• , Bm is valid in an interpretation I iff 

[P(Xb" ., xn)f :2 n{=1 [cifC n n~l [Bif 
A model of rover C is an interpretation in which all rules 

of the program are valid. The set of all models of a eLP 
program is closed under intersection and union, therefore, 
the minimal model exists. We take the minimal model as 
the intended model of a program. This may be constructed 
by the standard iteration procedure which computes the in­
ductive closure of relations generated by the clauses in r, 
given as: 

1o 0 
In+l UPETI pIn+l 

where pIn+l defines the denotation of predicate p at the 
n + 1 th iteration step: 

j m 

pIn+l = {(a(xl)'" .,a(xn)) I a E n [cifC n n [Bifn} 
i=1 i=1 

for all p(Xl, ... ,Xn):- ct, ... ,cj,B1, ... ,Bm E r. The se-
quence 1o, II, ... , Ik ... is a chain in the interpretation lat-
tice. The limit of the chain, Ir = U~oIn' is the minimal 
model of the program r and can be computed as the least 
fixed point of the iteration procedure. This is presented as 
the following theorem: 

Theorem 4.0.1 Let C :< A, V, <Pc, Ie > be a constraint 
system and r a constraint logic program over C. The se­
quence of interpretations In represents a chain in the com­
plete lattice of interpretations of r. The limit of the chain 
is the minimal model of rover C. 



In this least model semantics of a CLP program the underly­
ing constraint system is extended to a new constraint system 
via user-defined constraints. We call this a relational ex­
tension of a constraint system. 

Definition 4.1 (Relational Extension) Let r be a con­
straint logic program and R be the signature of user-defined 
predicates in r. r constructs the constraint system : 

R( C) :< A, V, <P~, I!! > 
as a relational extension of the underlying constraint sys­
tem C :< A, V, <Po Ic > by extending <Pc to accommodate 
user-defined relations over A. That is, <P~ = <P c U <Pn where 
<Pn contains all R-atoms and 

[1>fc 

{a I (a(xl), ... ,a(xn )) E pIr} 

where Ir is the minimal model of rover C. 

A solver for a relationally extended constraint system 
can be constructed by integrating SLD-resolution with the 
constraint solver of the underlying constraint system to 
give constrained SLD-resolution. Constrained SLD­
resolution rewrites a goal of the form G = Gc U Gn, where 
Gn is a finite subset of atoms in <Pn and Gc is a finite subset 
of <P c, to its solved forms. This model can be represented 
by the following multiset transformation rules. 

Semantic Resolution: 
G:3X < Gnu{p(SI, ... ,Sn)}UGc> 

G':3Xu Y < GnU{B1, ... ,Bm}UGcU{ q""'Ck }U{Xl-Sl , ... ,xn-Sn}> 
where VY.P(Xl ... Xn ):- CI, ... ,ck,BI, ... ,Bm is a 
variant of a clause in a program r. 

Constraint Simplification' G:3X <GnuGc> 
• G':3X <GnUG~> 

if 3X.Gc ----tc 3X.G~ and ----tc is the simplification 
derivation realised by the solver in the underlying sys­
tem. 

Finite Failure: G:3ia~~~Gc 
if 3X.Gc ----tc false. 

In this model, semantic resolution generates a new set of con­
straints whenever a particular program rule is applied. The 
unification component of SLD-resolution is replaced by solv­
ing a set of constraints via the underlying solver. Whenever 
it can be established that the set of constraints is unsolvable, 
finite failure results. 

For example, the following CLP program [CoI87]: 

InCap ([], 0) 
InCap (i :X~ c) InCap (x, 1.1*c - i) 

can be used to compute a series of instalments which will 
repay capital borrowed at a 10% interest rate. The first rule 
states that there is no need to pay instalments to repay zero 
capital. The second rule states that the sequence of N+1 in­
stalments needed to repay capital c consists of an instalment 
i followed by the sequence of N instalments which repay the 
capital increased by 10% interest but reduced by the instal­
ment i. When we use the program to compute the value 

of m required to repay $1000 in the sequence [m, 2m, 3m}, 
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we compute the solved form of the goal constraint: InCap 
([m, 2m, 3m), 1000). One execution sequence is illustrated 
below, in which --+ R denotes a semantic resolution rewrite 
step: 

InCap ([m, 2m, 3m], 1000) 
--+R InCap (x,1.1c-i), x=[2m, 3m], i=m, c=1000 
--+R InCap(x',1.1c'-i'), x=i':x', c'=1.1c-i, 

x=[2m, 3m], i=m, c=1000 
--+c InCap (x',1.1c'-i'), i'=2m, 

x'=[3m],i=m, c'=1100-m 
--+R InCap(x",1.1c"-i"), x'=i":x",1.1c'- i'=c" 

, i'=2m, x'=[3m],i=m,c'=1100-m 
--+c InCap (x",1.1c"-i"), x"=[], i"=3m,i'=2m, 

i=m,x'=[3m], c'=1100-m, c"=1210-3.1m 
--+R x"=[],1.1c"-i"=0, i"=3m, i'=2m, i=m, 

x'=3m, c'=1100-m, c"=1210-3.1m 
--+c 1.1(1210-3.1m)=3m 
--+c m =207+413/641 

Constrained SLD-resolution is a sound solver for a re­
lationally extended constraint system and, as proved in 
[Sm089], it is also well-founded. Therefore, any consistent 
goal can be simplified to a set of solved forms. Let <P 1~ <P 
be the set of all solved forms for <P. Then it is easy to show 
that <P~ 1~ <Pc 1. Therefore, from the completeness of the 
model, for any goal G with Vi>l G~ as its solved forms, 
given a goal G~ ~f <P c containing only basic constraints, 
G~ I- G => G~ I- Vi>l G~. Moreover, if the underlying con­
straint system is compact, then G~ I- Vi=l G~ for some n, 
i.e. the model has the stronger completeness of section 3.2. 

5 Constraint Functional Programming 

Constraint functional programming (CFP) is characterized 
as functional programming, enhanced with the capability 
to solve constraints over the value space defined by a func­
tional program. An intuitive construction of this language 
paradigm is presented below. 

5.1 Informal CFP 

A data type D in a functional program, r, can be associated 
with a constraint system CD. CD may contain privileged 
predicates over D. A CFP system may be formed to ex­
tend the constraint solver so that any D-valued expression, 
which may involve user-defined functions, can be admitted 
in constraints. A D-valued expression must be evaluated to 
its normal form with respect to r to enable the constraint 
solver to handle that value. 

We give a simple example of this paradigm. We assume a 
constraint system over lists in which atomic constraints are 
equations asserting identity over finite lists. A unification 
algorithm is used as the basic solver for the system. Given 
a functional program defining the function ++ which con­
catenates two lists and the function length which computes 
the length of a list: 
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data [alpha] = [] I alpha : [alpha] 
functions 

++ :: [alpha] X [alpha] ---t [alpha] 
length :: [alpha] ---t Num 

[] ++ z = z 
(x:y) ++ z = x: (y++z) 

length [] = 0 
length (x:y) = 1 + length y 

An extension to the basic solver may be used to solve the 
constraint: 

11 ++ 12 = [al, a2, ... , an], length 11 = 10 

to compute the first 10 elements of a the list [aI, a2, ... , an]. 
The solver must apply the function definitions of ++ and 
length and must guess appropriate instances of the con­
strained variables. We will show that this procedure itself 
may be modelled by some new constraints generated during 
rule application. 

Solving constraints over a functional program significantly 
enhances the expressive power of functional programs to in­
corporate logic programming features. This idea was cen­
tral to the absolute set abstraction construct which was 
originally proposed in [DAP86,DG89] as a means to invoke 
constraint solving and collect solutions. Using the absolute 
set abstraction notation, the above constraint may be rep­
resented as the set-valued expression: 

{ 11 I 11 ++ 12 = [al, a2, ... , an], length 11 = 10 } 

Reddy's proposal of "Functional Logic Programming" lan­
guages [Red86] also exploits this solving capability in func­
tional programs. However, his description of functional logic 
programming as functional syntax with logic operational se­
mantics fails to capture the essential semantic characteristics 
of the paradigm. The constraint programming approach, as 
we will show in the following, presents a concise semantical 
and operational model for the paradigm. 

We assume a functional language that is strongly typed, em­
ploys a polymorphic type system and algebraic data types, 
and supports higher-order functions and lazy evaluation. 
Examples of such languages are Miranda [Tur85] and Haskell 
[Com90]. To investigate constraint solving we put aside the 
statical features of a functional language such as its type 
system, and concentrate on its dynamic semantics. We use 
a kernel functional language with recursion equation syntax 
for defining functions. We assume variables ranged over by 
x and y, a special set of functional variables (identifiers) 
ranged over by f and g, constructors ranged over by d, con­
stants ranged over by a and b, patterns ranged over by t 
and s and expressions ranged over bye. A pattern is as­
sumed to be linear, i.e. having no repeated variables. Data 
terms comprise only constants, constructors and first-order 
variables. The following syntax defines this tiny functional 
language: 

Program .. - Decl in Exp 
Decl .. - ft = e 

I Decl; Decl 
Exp .. - x I a I el e2 I el op e2 

I if el then e2 else e3 
Pattern .- x I a I dt1 , ••• , tn 

The language can be regarded as sugared A-calculus and a 
program as a A-expression. The program shown above is 
an instance of this formalism in which the data statement 
introduces a list structure with a nullary constructor [] and 
a binary constructor :, and functions length and ++ which 
are defined by recursion equations. 

The semantics of a functional program is given in the stan­
dard way [Sc089]. The semantic domain D of the program 
is an algebraic CPO which is the minimal solution of the 
domain equation : 

D = B.l+ C(D)+D ---t D 

D contains the domain B.l of basic types (real numbers, 
boolean values et. al. lifted by .1 which denotes unde­
finedness), the domain C ( D) for constructed data struc­
tures which consists of partial terms ordered with respect to 
the monotonicity of constructors and the domain D ---t D 
of all continuous functions. A subdomain A of C(D) : 
A = B.l + C(A) is distinguished as the domain of data 
terms in the language (which is defined by the eq-type of 
ML [MiI84]). We use T to denote all complete objects of A. 

For a functional program, the semantic function P[] 
computes the value of the program in terms of the func­
tion D[] : Decl ---t (Var ---t D) ---t (Var ---t D) which 
maps function definitions to an environment which asso­
ciates each function name with its denotation. The function 
£[] : Exp ---t (Var ---t D) ---t D maps an expression together 
with an environment Tf : Var ---t D (a D-valuation) to an 
element of D. 

5.3 Evaluating Nonground Expressions 

Conventional functional programming involves evaluating a 
ground expression to its unique normal form by taking a 
program as a rewriting system. To superimpose a solving 
capability on the functional programming paradigm, we con­
sider first the extension of functional programming to handle 
non-ground expressions. The meaning of a non-ground ex­
pression is a set of values corresponding to every correctly 
typed instantiation of its free variables. Narrowing has been 
proposed as the operational model for computing all possi­
ble values of a nonground expressions [Red84]. In the the­
orem proving context, enumerating narrowing derivations 
provides a complete E-unification procedure for equational 
theories defined by convergent rewriting systems. This use 
of narrowing must be refined for the functional programming 
context. Due to the lazyness of functional languages, only 
those narrowing derivations whose corresponding reduction 
derivations are lazy should be enumerated. This notion of 
lazy narrowing is mentioned by Reddy in [Red84]. A lazy 
narrowing procedure, pattern-driven narrowing, is pro­
posed by Darlington and Guo in [DG90] for evaluating ab­
solute set abstractions. A similar procedure was indepen-



dently developed by You for constructor based equational 
programming systems [You88]. Here we present a lazy nar­
rowing model following the constraint solving approach. The 
model is central to the CFP paradigm. 

Consider reducing a non-ground expression of form fe by a 
defining rule ft = e'. The environment 11 should be enhanced 
to satisfy £[ e]1] = £[ t]ry, i.e. ry is a solution ofthe rewriting 
constraint e = t. This equality is the so called semantic 
equality since it is determined by the identity of denotations 
of components. It is not even semidecidable since it involves 
verifying the equivalence of partial values. However, since 
in our problem t is always a linear pattern, a semidecidable 
solver exists. 

Definition 5.1 The solved form of a rewriting constraint 
e = t is of the form {Xl = tl,· .. ,Xn = tn, YI = el, ... ,Ym = 
em} where the Xi E V( e) are output variables and the 
Yi E V( t) are input variables. The equation set 8 : {Xl = 
tl , ... ,Xn = tn } is an output substitution equation and 
B: {YI = el, ... , Ym = em} is an input substitution equation. 

The substitutions 8 and (j corresponding to 8 and B are called 
output substitutions and input substitutions respectively. 

The constraint solver presented below simplifies a rewriting 
constraint to its solved form. Solving a rewriting constraint 
realises the bidirectional parameter passing mechanism for 
narrowing an outmost function application. The algorithm 
is called pattern-fitting [DG89]. 

Substitution: {x = r} U G ::} {x = r} U pG 
where p = {x 1--+ r}. 

Decomposition: {de = dt} U G ::} {e = t} U G 

Removing: {a = a} U G::} G 

Failure: {dl el = d2e2} U G ::} false 

if dl =I d2 • 

Constrained Narrowing: {fe = ds} u G ::} {r = ds, e = t} u G 

where ft = r E r 
Lemma 5.1.1 The pattern-fitting algorithm is a complete 
solver for simplifying a rewriting constraint to its solved 
form. 

For any rewriting constraint e = t, a solved form corre­
sponds to a pattern-driven narrowing step fe ~8 (je' with 
respect to a defining rule ft = e' where 8 is the output 
substitution and (j is the input substitution associated with 
the solved form. A pattern-driven narrowing derivation is 
defined in a standard way by composing the output sub­
stitutions of each of its component steps. Note that a one 
step pattern-driven narrowing derivation contains many nar­
rowing steps due to the need to solve rewriting constraints. 
Each narrowing step is demand driven and affects an outer­
most function application. Therefore, we have the following 
theorem: 

Theorem 5.1.1 For any expression e and term t, if e ~8 
t, then the corresponding reduction derivation 8 e --+ * t is al­
ways a lazy derivation . . Such a reduction derivation is called 
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a standard reduction in [Hue86j. Enumerating pattern­
driven derivations is optimal and complete in the sense that 
any other derivation is subsumed by a pattern-driven deriva­
tion. 

We conclude that pattern-driven narrowing ·provides a re­
alisation of lazy narrowing. Lazy narrowing extends func­
tional programming with the capability to find for which 
values of variables in a nonground expression the expression 
evaluates to a given value. Thus, it introduces the essen­
tial solving feature to functional languages. However, on its 
own it is not enough because "built in" predicates may ex­
ist in functional languages, for example equality and various 
boolean valued primitive functions, for which a dedicated 
constraint solver is required. If we integrate lazy narrow­
ing with a constraint solver over data terms, the solver is 
then extended to allow general expressions containing user­
defined functions. Therefore, querying a functional program 
becomes possible. This enhanced functional programming 
framework may be formalized as the paradigm of constraint 
functional programming. 

5.4 Formalizing CFP 

We assume a constraint system Cy : (7, V, cI> Cl Ie) over first­
order values, where V is the set of variables over first-order 
types and cI> e are constraints consisting of privileged predi­
cates R. Computing the truth value of a ground relation of 
data terms with respect to R is decidable. Thus, a predicate 
w in n can always correspond to a boolean valued function 
fw in the language. A functional program may be applied to 
Cy. This introduces a new syntactic category in the func­
tional program for constraints: 

Constraint ::= w( el, ... , en) I Constraint, Constraint 

where W(XI, ••. , xn) E cl>e. We use c to range over con­
straints. 

Constraints in Cy are now enriched to admit general ex­
pressions defined by the functional program. A constraint 
system is admissible if it is closed under negation. In the 
following, we assume the underlying constraint system is 
admissable. A CFP program is an extension of a functional 
program with the syntax: 

Program ::= Decl in e I Decl in c 

The semantic function C[] : Constraint --+ P( Env) maps 
constraints to their solution sets: 

C[ CI, C2] C[ CI] n C [ C2] 
C[w( ell ... , en)] {ryIUV( ei) I 7 1= w( £[ el]ry, ... , £[ en]ry)} 

This semantics reveals constraint solving over a functional 
language as "computing the environments" in which expres­
sions, when evaluated, satisfy constraints. 

The constraint solving mechanism is formed by integrat­
ing the solver of Cy with lazy narrowing, thus enhancing 
Cy to handle constraints in the more general universe con­
structed by a functional program. A scheme for such an 
integration is presented below. We use the pair (G, C) to 
represent a goal G U C in which C contains rewriting con­
straints and G contains constraints from the underlying con­
straint solver G. 
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Constrained Narrowing: (Gu{w( ... ,je, ... )},C) 
( GU{w(' .. ,r, ... )),C)u{e==t} 

where ft = r E r . 
Simplification 1: (g,',~) 

if G ~ G' where ~ is a simplification derivation com­
puted by the under lying solver. 

Simplification 2: 19,'g1 
if C ~ C' where ~ stands for a simplification deriva­
tion computed by the solver of rewriting constraints. 

Failure: (G,C) 
false 

if G ~ false or C ~ false 

S b t 't to 1 (G,CU{x==e}) 
U S I U Ion : (pG,CU{x==e}) 

where p = {x f---f e} and x E V(G) and C u {x = e} is 
in solved form. 

S b t Ot to 2 (GU{x==t},Ci 
U S I U Ion : (G,pCu{x==t ) 

where p = {x f---f t} and G U {x = t} is in solved form. 

Positive Accumulating: 

Ifw(X)E~c. 

( G, cU{Jw e==true}) 
(GU{w(e)},C) 

N t · A I to (G,CU{Jwe=false}) ega Ive ccumu a mg: (Gu{-'w(e)},C) 

if w( x) E ~ c and the constraint system is admissable. 

An initial goal takes the form (G, {}). Its solved form is of 
the form (Gn, Cn) where Gn is in solved form with respect 
to the underlying solver and V( G) rf. V( C) and C are solved 
form rewriting constraints. 

The soundness of lazy narrowing guarantees that the 
enhanced solver is sound. However, it is not in general 
com plete because a functional program may define some 
boolean-valued functions which have no corresponding con­
straints in CT. This problem is similar to that of solv­
ing "hard constraints" in general constraint programming. 
Some ways exist to resolve this problem such as the "waiting­
resuming" approach in which the solving of a hard constraint 
is delayed until its variables are sufficiently instantiated 
[JL87], or by defining special simplification rules for such 
constraints. However, for a program in which all boolean­
valued functions are consistent with the underlying con­
straint system, the scheme provides a complete enhanced 
solver. 

The scheme provides a generic model to enhance a con­
straint system to solve constraints in functional languages. 
In [Pulga], Pull uses unification on data terms as the un­
derlying solver and combines it with lazy narrowing to 
solve equational constraints in lazy functional languages. In 
[JCGMRA91], a more general constraint system over data 
terms is adopted in which disunification is also exploited to 
deal with negative equational constraints. This model can 
be regarded as an instantiation of the scheme by providing 
unification and disunification as the "built-in" solvers. 

CFP represents a constraint programming system of the 
"domain construction" approach of section 3.3. This means 
that constraints appear only as computational goals; it is not 
possible to define new constraints in the system. However, 
the framework significantly enhances the expressive power 
of both functional programs and the basic constraint sys­
tem. Moreover, since a CFP program provides a constraint 
system in which defined functions behave as operators in 

some algebra, it is perfectly reasonable to define relations 
over the system following the philosophy of general con­
straint logic programming. Therefore, CFP is a "building 
block" for deriving a fully integrated Definitional Con­
straint Programming system in which both constraints 
and the domain of discourse are user-definable. 

6 Definitional Constraint Program­
ming 

We are now in a position to present a unified definitional 
constraint programming (DCP) framework. A DCP pro­
gram defines a constraint system by defining its domain of 
discourse and constraints over this domain. As discussed 
above, CFP and CLP exhibit, respectively, the power to de­
fine domains, and the power to define constraints. Therefore 
we would expect the unification of these two paradigms to 
result in a full definitional constraint programming system. 

We start by superimposing a functional program onto 
a privileged constraint system. As shown in the previous 
section, the functional program defining functions ++ and 
length can be queried to compute the initial segment of a 
given list. A further abstraction is possible if we take this 
CFP enriched constraint system as the underlying constraint 
system for a CLP language. Thus, CFP queries can be used 
to define relations as new constraints. For example we can 
define the relation front: 

front (n, 1, 11) 11 ++ 12 = 1, length 11 = n 

to compute the initial segment with length n of an input list 
1. This systematic integration of CFP and CLP results in 
a definitional constraint programming system and therefore, 
can be expressed by the formula DCP = CLP( CFP). 

It is straightforward to construct the semantic model of a 
DCP program. The semantics for its functional component 
are traditional functional language semantics. The intended 
model of the relational component is its least model. This 
may be constructed by computing all ground atoms gener­
ated by the program using the "bottom up" iterative proce­
dure presented in theorem 4.0.1 and taking the functionally 
enhanced constraint system as the underlying constraint sys­
tem. In terms of the semantic functions defined above the 
denotation of a defined predicate p in a program r can be 
computed by enumerating the inductive closure of r as fol­
lows: 

pO 0 
pIn+l {a( xl, ... , xn) I a E ni==l C[ Ci] n nj==l [Bj fn+l } 

for each P(Xb.'.'Xn):- cl, ... ,cn,Bl, ... Bm E r. [B]I 
maps B to all solutions of B under the interpretation I for 
the predicates in B. That is : 

[p( el, . .. , en)f = {1] I (£[el]1], . .. ,£[ en]1]) E pI 

Compared with other functional logic systems, this general 
notion of constraint satisfaction permits us, not only to de­
fine equational constraints over finite data terms, but also to 
introduce more general domain specific constraints. More­
over, partial objects as introduced by lazy functional pro­
gramming are admissible for constraint solving in the system 



as approximations of complete objects. This gives uniform 
support for laziness in a fully integrated functional logic pro­
gramming system. 

The computational model of the DCP paradigm is simply 
the instantiation of the underlying constraint solver in con­
strained SLD-resolution to the CFP solver. Soundness and 
completeness are a direct result of the properties of these 
two components. 

Clearly then, DCP represents a supersystem of both these 
paradigms. Both the CLP InCap program and the CFP 
query which computes the initial segment of a list are valid 
DCP programs and queries. Moreover, the expressive power 
of each of these individual paradigms is enhanced in the 
DCP framework. We will demonstrate this with reference 
to some programming examples. 

The "built-in" solver manipulates only first-order objects. 
In any correctly-typed DCP program, a function-typed vari­
able will never become a constrained variable. Thus, higher­
order functional programming features safely inherit their 
intended use in functional computation without introducing 
computability problems. The following examples illustrate 
some of the attractive programming features of this rich lan­
guage paradigm. 

The quicksort algorithm is defined below as a relation 
which uses difference lists (which appear as pairs of lists 
(x, y)) to perform list concatenation in constant time. The 
partitioning of the input list is specified naturally as a func­
tion, while the ordering function is passed as an argument 
to the quicksort relation. Within the semantics of DCP, 
such a functional parameter can be treated as special con­
stant in relation definitions. A primitive function apply is as­
sumed which is responsible for the application of such func­
tion names to arguments. 

functions 
partition : (alpha -+ alpha -+ boolean) X alpha X [alpha] 

-+ ([alpha], [alpha]) 
relations 
quicksort : (alpha -+ alpha -+ boolean) X [alpha] 

X ([alpha ],[alpha]) 

partition (j, n, m : 1) = if f (n, m) 
then (m : 11, 12) else (11, m : 12) 
where (11, 12) = partition (j, n, 1) 

partition (j, n, []) = ([], []) 

quicksort (j, n : 1, (x, y)) 
partition (j, n, 1) = (11, 12), 

quicksort (j, 11, (x, n : z)), quicksort (j, 12, (z, y)) 
quicksort (j, [], (x, x)) 

The relation perms below shows an interesting and highly 
declarative way of specifying the permutations problem in 
terms of constraints over applications of the list concatena­
tion function ++. 

relations 
perms : [ alpha] X [alpha] 
perms (a : 1, (11 ++ (a : 12)) (11 + + 12) = perms 1 

The final example shows how the recursive control constructs 
of higher-order functions may be used to solve problems in 
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the relational component of a DCP language. We use a 
reduce function over lists, together with the "back substitu­
tion" technique familiar in logic programming, to find the 
minimal value in a list and propagate this value to all cells 
of the list. This is shown via the relation propagatemin be­
low, which uses the standard list reduce function to find the 
minimum value, y, in the input list and construct a list, ll, 
which is isomorphic to the input list, in which each element 
is a logical variable x. 

relations propagatemin : [Int] X [Int] 
propogatemin 1 11 :-

reduce (j x, 1, (MaxInt, nil)) = (y, 11), x = y 
where f z n (m, 12) = (min (n, m), z : 12) 

These examples show that as well as being a systematic and 
uniform integration of constraint, logic and functional pro­
gramming with a sound semantics, the DCP paradigm dis­
plays a significant enhancement of programming expressive 
power over other integrated language systems. We believe 
that this pleasing outcome is a direct result of our strenuous 
effort to identify clearly the essential characteristics of the 
component language paradigms and to preserve them faith­
fully in the DCP language construction. We have defined a 
concrete DCP language, Falcon [GP91]. Many Falcon pro­
gramming examples appear in [DGP91]. 

7 Future Work 

A very promising area of future research is the use of DCP 
as the foundation for studying declarative parallel program­
ming. The idea is quite simple. If we keep strictly to the 
functional computational model for the functional sublan­
guage of a DCP language, synchronization between func­
tional computation and constraint solving over logic vari­
ables becomes possible. Within this concurrent DCP frame­
work, both the logical and the functional su blanguages coop­
erate to construct objects. The logical component approx­
imates objects by imposing constraints and the functional 
component constructs objects explicitly. At each step of the 
construction, the functional part asks for more information 
and continues the construction if and when that information 
is available. Otherwise, it suspends and waits until other 
concurrently executing agents provide the required informa­
tion. 

This behaviour is an important generalization of the tracli­
tional local propagation model for constraint-based com­
putation [Ste80]. The synchronization mechanism for func­
tional computation obviously follows the data flow school, 
but the use of constraint computation to enhance incremen­
tally the information of logical variables provides a very at­
tractive general data flow model, i.e. hi-directional data 
flow. This idea originated from the data flow language Jd­
Nouveau [NPA86] in which an array of logical variables is a 
special structure for synchronising functional computation 
and constraint solving. This feature is generalised by the 
concurrent DCP model as the basic principle of program­
ming. Concurrent DCP may be understood as a further de­
velopment of the concurrent constraint programming frame­
work proposed by Saraswat et. al. [SR90] by exploiting the 
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elegant concurrent cooperation between functional and logic 
computation. 

Since computation in its functional sublangauge is deter­
ministic, we would expect the efficiency of the system to be 
much better than a logic programming system. Moreover, 
since the functional component provides a powerful synchro­
nization mechanism for deduction, with such a "control" 
mechanism the overall efficiency of the paradigm is promis­
ing. This idea of exploiting deterministic computation in a 
non-deterministic system by constraint propagation is also 
central to the Andorra model [S.H90] which has been widely 
accepted recently in the logic programming community. The 
development of concurrent DCP has led to a very interest­
ing convergence of research on language integration, con­
straint programming and declarative parallel programming 
in [GF91]. 

8 Conclusion 

This paper set out to provide an answer to the question of 
how and why we should integrate functional and logic pro­
gramming languages. We believe that this should be done 
not only with the goal of building a more powerful program­
ming system but also aiming at diminishing the drawbacks 
of the individual language paradigms. An integrated sys­
tem should not only inherent the features of its components 
but also, and equally importantly, it should exhibit new dis­
tinguishing features as a result of their combination. We 
have developed a methodology for integration which demon­
strates how the essential relational and functional features 
may be preserved, and have explored the new programming 
features which arise. The main idea underpinning this work 
comes from clarification of the intended semantics of logic 
and functional languages which motivated the insight to use 
constraints as the glue for their integration. This led us to 
develop the new language paradigm of definitional constraint 
programming. We believe that the declarative constraint 
programming model is a promising language paradigm for 
the design of future programming languages. 
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Abstract 
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Several computational frameworks have been proposed 

to maintain information about the evolving world, which 

embody a default persistence mechanism; examples in­

clude time maps and the event calculus. In multi-agent 

environments, time and belief both play essential roles. 

Belief interacts with time in two ways: there is the time 

at which something is believed, and the time about which 

it is believed. 

We augment the default mechanisms proposed for the 

purely temporal case so as to maintain information not 

only about the objective world but also about the evo­

lution of beliefs. In the simplest case, this yields a two­

dimensional map of time, with persistence along each di­

mension. 

Since beliefs themselves may refer to other beliefs, 

we have to think of a statement referring to an agent's 

temporal belief about another agent's temporal belief (a 
nested temporal belief statement). It poses both semanti­

cal and algorithmic problems. In this paper, we concen­

trate on the algorithmic aspect of the problems. The gen­

eral case involves multi-dimensional maps of time called 

Temporal Belief Maps. 

1 Introduction: Time Maps and 
Temporal Belief Maps 

In multi-agent environments, time and belief both play 

essential roles. Belief interacts with time in two ways: 

there is the time at which something is believed, and 

the time about which it is believed. As in the atemporal 

treatment of belief, beliefs themselves may refer to beliefs 

(of other agents, or even the same one). For example, in 

the framework of Agent Oriented Programming [Shoham 

1990], at any time the mental state of an agent contains 

Yoav Shoham 
Computer Science Department 

Stanford University 
Stanford, CA 94305, U.S.A. 

information about the mental states of other agents at 

various times. 

A statement referring to an agent's temporal belief 

about another agent's temporal belief will be called a 

nested temporal belief statement. An example of it is the 

sentence "On Wednesday John believed that on the pre­

vious Monday Jane believed that on the following Sat­

urday they would clean the house." Nested temporal be­

liefs pose a number of interesting problems, both seman­

tical and algorithmic. In this paper we concentrate on 

the latter kind; we propose a computational mechanism 

called a Temporal Belief Map, which functions as a data 

base of nested temporal beliefs. 

Consider a formal language for expressing nested tem­

poral beliefs. A standard construction would extend clas­

sicallogic with a modal operator B:rp for each agent des­

ignator a and time point symbol t,meaning intuitively 

that at time t the agent a believes rp. To ensure that the 

modal operator respects the properties of belief (or, more 

exactly, its crude approximation that has been employed 

in computer science and AI), various restrictions on this 

operator have been suggested, and then extensively ex­

plored, debated and modified[Hintikka 1962, Griffiths 

1967, Konolige 1986]. These include properties such as 

B:(rp:::) '¢) I\B:rp:::) B:,¢ (the 'K' axiom), B:rp:::) ,B:,rp 

(the 'D' axiom) Bt (f) :::) Bt Bt (f) and ,Bt 
(f) :::) Bt ,Bt rp (the 

'aT a aT aT a a 

'4' and '5' axioms)[Chellas 1980], and others. In addi-

tion, although these have been less well studied, further 

constraint may be imposed on the change in belief over 

time. 

We will briefly return to these properties in the next 

section, but they are not the focus ofthis paper. Instead, 

we concentrate on algorithmic issues. Consider first the 

purely temporal case, without an explicit notion of be­

lief. In principle, capturing the truth of facts over time 



should pose no problem; we can use standard data base 

techniques to capture the fact true at a single point in 

time, and repeat it for all point. In practice, though, it 

is impossible, and we will need to use some shortcuts. 

The representational aspect of the problem appears in 

the form of the well-known frame problem [McCarthy and 

Hayes 1969]: when you buy a red bicycle, how you con­

clude that a year later it will still be red, regardless of 

what happens in the meanwhile - the bike is ridden, the 

tire is fixed, elections are held - unless it is painted. An 

axiom stating explicitly that the color does not change 

after each action is called a frame axiom; the problem is 

to capture the persistence of facts without including the 

numerous possible frame axioms. 

The frame problem and related problems have been 

investigated in detail from the logical point of view 

(d. [Shoham 1992]), and most solutions proposed have 

made use of nonmonotonic logic. Adding belief yields a 

qualitative increase in difficulty, since beliefs (and lack 

thereof) tend to persist as well: once you learn some­

thing, you will keep it in mind until you forget it or learn 

incompatible facts. The formal details of the persistence 

of mental state have not yet been studied as deeply; an 

initial treatment of it appears in [Lin and Shoham 1992]. 

As was said, we are interested in the algoirthmic as­

pects of the problem. Computational complexity of 

knowledge and belief without time was discussed by 

[Halpern and Moses 1985]. In the purely temporal case, 

the question is how to efficiently implement the follow­

ing persistence principle (throughout this article we will 

assume discrete time, but the discussion can be adapted 

to the continuous case as well; we also assume proposi­

tional facts, with no variables): 

pHI holds iff either an event which causes p 

occurred at time t, or else pi holds and no event 

which causes -'p occurred at time t. 

Straightforward embodiment of this rule III backward 

chaining is too inefficient. In order to determine the 

truth value of pi, you do not want to have to check pi-I, 

i-2 d ·1 d· th t i-2l3857. t p ,an so on unt! you IS cover a p IS rue. 

Both time maps [McDermott 1982, Dean and McDer­

mott 1987] and event calculus [Kowalski and Sergot 1986] 

provide better alternatives. In particular, time maps rely 

on keeping track of only the points at which the truth 

value of the proposition changes, which are sufficient to 
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Figure 1: A simple persistence 

Figure 2: Clipping a persistence 

determine the truth value of all other points. Each event 

gives rise to a default persistence, which ends at the first 

future point about which a contradictory fact is believed. 

For example, if an event which causes p occurs at time t[l] 

(the superscript in [ ] identifies a given time point), and 

no other information about p is yet present in the time 

map, then the two points t[l] and 00 are associated with 

p, with a default persistence of p from the first to the 

second. This may be depicted graphically by Figure 1. 

If it is subsequently added that at time t[2] (> t[l]) an 

event happened that causes -'p, t[2] is associated in ad­

dition with p; a default persistence of -'p is assumed be­

tween t[2] and 00, and the persistence of p starting at t(1] 

is "clipped" at t[2] (Figure 2). 

This is a crude description of the operation of time 

maps, but it suffices to explain the transition to tempo­

ral belief maps (TBM's), which incorporate an explicit 

notion of belief. 

(Note that we have discussed only persistence into the 

future. Most of the literature in AI does that, and we too 

will in this paper. However, persistence into the past can 

make as much sense, especially when one adds an explicit 

notion of belief. For example, if you find a book on a 

desk, you will believe that the book was on the desk a few 

minutes ago. Most researchers manage to avoid this is­

sue by limiting the form of temporal information. In par­

ticular, both time maps and the event calculus embody 

a certain causality principle: the only way new temporal 

information is added is by a preceding event which causes 

it. Since an explicit cause is known, there is no reason to 

posit backward persistence, past the cause. For example, 

we cannot represent the simple fact that the book was 

on the table; we must represent a specific event or ac­

tion that resulted in that state (such as placing the book 
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there). The closest one gets to backward persistence is 

through abductive reasoning, "what would have to be the 

case previously in order for this fact to hold," positing 

previous events. In applications such as planning[Allen 

et al. 1991], this is a reasonable assumption, as in those 

one is constructing a map of the future based on spe­

cific planned events. However, if one is trying to use the 

mechanism to piece together a map of time on the ba­

sis of spotty data, this may prove inappropriate. For ex­

ample in a framework such as Agent Oriented Program­

ming [Shoham 1990], a major source of new temporal in­

formation are INFORM messages from other agents. As 

a result of these messages, the agent may possess a rich 

sample of what is true and false over time, but no causal 

knowledge of the precipitating events. Nevertheless, we 

will ignore backward persistence in most of the paper. 

Unless we explicitly state otherwise, we will use the term 

persistence to mean forward persistence.) 

Suppose we now wish to represent the evolution of 

an agent's beliefs. Let us first introduce the notion of 

learning, which will playa role that is analogous to that 

of an event in time maps. Given this notion, beliefs too 

will be subject to a persistence rule: 

"The agent believes a fact at time t + 1 iff he 

learned it at time t, or else at time t he believed 

the fact and did not at that time learn that it 

became false." 

(This rule embodies the assumption that agents have 

perfect memory.) If, in addition, the "fact" itself is tem­

poral, we end up with persistence along two orthogonal 

dimensions: the time of belief and the time of the prop­

erty. This is the simple case of a 2-dimensional TBM. 

The extension to higher-dimensional TBM's is natural. 

Such TBM's are obtained by nested belief statements, 

such as as "John believes today that yesterday he did 

not believe ... " and "John believes today that tomor­

row Mary will believe ... "); both of these example state­

ments induce a 3-dimensional TBM. It turns out that 

resolving contradictions in a multi-dimensional TBM is 

somewhat more subtle than in standard time maps, as 

the following sections will describe. 

Here then is the problem we will address. Let us use 

the notation L: c.p to mean that agent a learned c.p at t 

(actually formalizing this notion is tricky, but that is not 

the concern of this paper; we use the notation merely 

as shorthand for the English sentence). The input to 

our problem is assumed to be a collection of data points 
t[i] t[i] t[i] t[i] t[i] P] tfi] P] 

of the form Lall La2
2 ••• La:~llPt and Lall La~ ... La:~ll -'Pjn 

In other words, the sequences of agent indices are iden­

tical in all the input data, but the time indices are un­

constrained (we will see in section 5 why assuming a 

fixed sequence of agent indices is not limiting). We also 

assume that the data is consistent, that is, it does not 
• t[k] t[k] P] P] t[k] t[k] 

contam both Lall ... La:~llPkn and Lall ... La:~ll -'Pk
n for 

any k. The problem is to define the rules of persis­

tence in this n-dimensional space, that is, to define for 

any (tl' tz' ... ,tJ in the space and each fact p, which (if 
either) of Btl Bt2 ••• Btn-l ptn and Btl Bt2 ••• Btn-l-'ptn are 

al a2 an al a2 an 

supported by the data. (In all of the above, both the 

agent indices and the time indices may contain repeti­

tions.) Furthermore, we will want our definition to sup­

port an efficient mechanism for answering such a query 

about any point in the space. 

Note that both the input form and query form are 

quite constrained. For example, the input form precludes 

facts such as "John learned that Mary did not believe c.p," 

(LJohn -,BMaryc.p) without making the stronger statement 

"John learned that Mary learned -'c.p." (LJohnLMary -,c.p) 

Similarly, a query "Does John believe that Mary does 

not believe c.p?" (BJohn -,BMaryc.p?) are disallowed, only 

the stronger query about Mary's believing the negated 

fact (BJohnBMary -'c.p?). A positive answer to the second 

(BJohnBMary -,c.p) would entail a positive one to the first 

(BJohn -,BMaryc.p), but a negative answer (-,BJohnBMary -,c.p) 

would shed no light on the first query (BJohn -,BMaryc.p?). 

These are extensions we plan to look at in the future. 

In the remainder of this paper we will elaborate on this 

picture. We will explicate the assumptions made about 

agents, and discuss the multi-dimensional persistence in 

more detail. The organization is as follows. In section 2 

we state the assumptions we make about agents' beliefs, 

both at single points in time and over periods of time. In 

section 3 we look closely at persisten.ce in a TBM's with 

a single datum point. In section 4 we look at TBM's 

with multiple data points. In section 5 we discuss the 

extension to data with multiple sequences of agent in­

dices. In section 6 we briefly mention the complexity of 

the query answering, and in section 7 we briefly mention 

implementation efforts. We conclude with discussion of 

related and future work. 



2 Assumptions about Belief 

We mentioned before that various idealizing assumptions 

about belief have been made and debated by other re­

searchers, and that the focus of this paper is different 

from them. Nonetheless a few basic assumptions are es­

sential, and we discuss them here. In the spirit of this pa­

per, we discuss these properties in commonsense terms, 

rather than in a formal logic. 

We have already listed some of the more common re­

striction on belief: closure of beliefs under tautological 

implication (as captured by the 'K' axiom), consistency 

(as captured by the 'D' axiom), and positive and nega­

tive introspection (as captured by the '4' and '5' axioms). 

Since among objective properties (those without a be­

lief operator) we will consider only literals (atomic prop­

erties and their negations), the closure property will be 

irrelevant. Positive and negative introspection will also 

turn out to impact our results only minimally, as will 

be discussed in section 5. However, consistency will lie 

at the heart of the TBM mechanism, and is our first as­

sumption. 

Assumption 1 (Consistency) B:'P and B: ''P cannot 

both hold. 

This is the only assumption we will make about a belief 

at an instance of time. 

In addition we have constraints on how beliefs change 

over time. We first assume that agents do not come to 

believe facts without explicitly learning them, but that 

once they learn them, they do not forget them. 

Assumption 2 (Causality and Memory) If at t agent 

a does not learn ''P) then B!+1'P holds iffB:'P holds. 

Our next assumption is that agents are extremely re­

ceptive to new information[Gardenfors 1988]. 

Assumption 3 (Gullibility) If at time t agent a 

learns 'P) then B!+I'P holds. 

(Of course, in an environement in which agents are sup­

plied with unreliable or dishonest information, this last 

assumption would be unacceptable, and we would need 

a more sophistiated criterion to determine which of the 

two contradictory facts, the previously believed one and 

the newly learned one, should dominate.) 

Our last assumption is that all these properties are 

'common knowledge': 
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tl: belief tl: belief 

Figure 3: Default region (left) and causal region (right) 

Assumption 4 (Common knowledge) Every agent 

believes that every agent believes the above properties) 

that every agent believes that every agent believes them) 

and so on. 

3 Multi-Dimensional Persistence 
of a Single Datum 

In this section, we consider TBM's induced by a single 

datum point. We start by considering the non-nested 
p] p] 

case, in which the datum has the form Lal p 2 (at time 

t~] agent a learns that at time t~l] property p was (is, 

will be) true). This induces a 2D TBM, in which the 

persistences along both axes are uninterrupted and thus 

do not terminate at all. This situation is represented 

graphically in Figure 3. 

The hatched quarter plane in the left picture, rooted in 

the point (til], t~l]), is called the default region of (t~l], t~]). 
The meaning of this region is that, given only the datum 

t[l] t[l] t t 
point Lal p 2 ,B al p 2 holds by default iff (iI' t2) lies in that 

. (. ·ff t[l] t d i[l] i) regIOn I.e., 1 I < I an 2 < 2 . 

Similarly, if we focus on an affected point (*), all data 

points affecting it by their forward persistence are dis­

tributed in the opposite quarter plane. This is the dual 

concept of the default region and is called a causal re­

gion of the affected point. It is depicted graphically in 

the right picture of the above figure. In this paper we 

will be concerned mostly default regions. 

Finally, although it is only the 2-dimensional case that 

is so amenable to graphical representation, these con­

cepts extend naturally to the multi-dimensional case. 
t[l] P] tf1] 

Specifically, given only the datum Lall •.. La:-=-llP n , we 

have that Btl ... Btn-l ptn holds iff it is the case that i
l 

> 
al an-l 

t[l] ... t > i[l] 
I' 'n n . 
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4 Mutiple Data with Incompat­
ible Beliefs 

We have so far considered only TBM's induced by a sin­

gle datum. We now look at the general case in which we 

have mutiple data. We still assume that all data have the 
.c t['] t[i] t[i] P] t[)] t[)] 
lorm L 1 ••• L n-l p.n or L 1 ••• L n-l 'p n for some fixed 

al an-l z al an-l J' 

aI' ... ,an _ l (again, see section 5 in this connection), but 

nothing beyond that. 

If for any Pk the collection does not contain more than 

one occurrence of Pk (whether preceded by , or not), the 

situation is simple: the persistence of each fact is inde­

pendent of the others, and so we construct an indepen­

dent TBM for each one. 

The situation in which multiple occurrence of a Pk ex­

ist, but all with the same polarity (that is, either in all 

data containing Pk the Pk is preceded by" or in none), 

the situation is also simple: the default region is simply 

the union of the individual regions for each datum con­

taining Pk' 

It is the presence of contradictory data that makes the 

story more interesting. Our assumption of consistency 

dictates that persistences of contradictory beliefs may 

not overlap. Without the strong limitations on the form 

of input data and queries, we would have two problems 

- to determine which sets of persistences are contra­

dictory, and to resolve the contradiction. For example, 

we would have to notice that the three sentences B: (p V 

q), B: 'P and B: 'q are jointly inconsistent, even though 

all pairs are· consistent. Our restrictions remove this 

first problem. Since we only consider facts of the form 
Btl Btn-l tn d Btl Bt 1 t h 1 f al ... an-l Pi an al' .. a:-=-l ,p/ ,t eon y act contra-
dicting Btl ... Btn-l Pktn will be Btl .•. Btn-l ,ptn and vice 

al an-l al an-l k' 

versa. When in future work we relax the restrictions on 

input and queries, we will need a new criterion for deter­

mining incompatibility. 

Our restrictions do not only render the problem of de­

termining incompatibility trivial, they also simplify the 

task of resolving it. Since we always have exactly two 

beliefs contradicting one another, our task reduces to re­

moving one of them; the question is which. l 

lor cours~, removing both would also restore consistency, but 
that would VIOlate our assumption about causality and memory. 

t[2] 
2 .. 

till 
2 .. 

elief 

Figure 4: Overlapping default regions (t~l] ::f. t~2], t~l] ::f. 
t~2]) 

t[2] 
2 .. 

till 
2 .. 

elief 

Figure 5: Consistent default regions (41
] ::f. t~2], 41

] ::f. t~2]) 

4.1 The 2D Case 

The rule for resolving contradictory beliefs in the two 

dimensional case is derived in a straightforward fashion 

from the assumptions stated in section 2, and is analo­

gous to the clipping of persistences in simple time maps. 

We will discuss the case of two data points, but the dis­

cussion extends easily to multi pIe points. 

Consider the input data consisting of the two points 
P] P] t[2] t[2] 

• : Lal P 2 and 0 : Lal 'P 2 • Without loss of generality, 

assume that t~2] ~ til] holds. We consider the two cases 

- t~2] ~ t~l] and t~] < t~l] - and assume for now that 

neither ti2] = t~l] nor t~2] = t~l] hold. The default regions 

of the two points in both cases are shown in the left and 

right portions of Figure 4, respectively. 

In both cases the default regions overlap, which is for­

bidden, and one of them must be trimmed. In deciding 

which, we recall the assumption of gullibility: right af­

ter learning a fact, the agent must believe it. further­

more, the assumption of memory and causality dictates 

that the agent must continue to believe it until the next 

point about which he learns that the fact is false there. 

This produces the consistent default regions in Figure 5. 

Example. If John learns on Monday that on 

Thursday his house will be painted white (.) 

and on Tuesday he learns that on Friday it will 



be painted blue (0), then from Monday until 

Tuesday John will believe that his house will be 

white from Thursday until the end of time, and 

from Tuesday on he will believe that his house 

will be white from Thursday until Friday (+450 

shading), and blue afterwards (-450 shading) 

(the left picture). (Of course, on Thursday he 

will learn that the painter had a wedding in 

Chicago and couldn't come.) 

On the other hand (the right picture), if 

John learns on Monday that on Thursday his 

house will be painted white (.) and on Tuesday 

he learns that on Wednesday it will be painted 

blue (0), then from Monday until Tuesday John 

will still believe that his house will be white 

from Thursday until the end of time (+450 

shading), but from Tuesday he will believe that 

his house will be blue from Wednesday until 

Thursday (_450 shading), and leave unaltered 

his belief that it will be white afterwards (+450 

shading). (That will change when the painter, 

back from Chicago a week later, paints John's 

house turquoise, since neither white nor blue 

really go well with olive tree in the yard.) 

Note that in either case, the beliefs from 

Tuesday onwards would not change even if the 

the two pieces of information were acquired in 

the opposite order. This is no accident; this 

Church-Rosser property is true in general of our 

system. 

We now turn to the limiting cases, in which either 

t~2] = 41
] holds or t~2] = 41

] holds. Note that from our 

assumption about the consistency of the input, at most 

one of them can hold. Therefore, if t~2] = t~1] holds, we 

may assume without loss of generality that t~2] > t~1]. 
This means that at time t~1] (= t~2]) the agent learned that 

p first became true (.) and later became false (0). The 

agent will th~refore believe at time t~l\ = t~2]) that p will 

be true from the first point until the second, and false 

afterwards. There will be nothing later to change that 

belief, and thus the default region of p forms an infinite 

horizontal strip, and the default region of ""p occupies 

the quadrant above it (Figure 6). 

The case in which t~2] = t~l] holds is more interesting, 

since it provides insight into the higher dimensional case. 
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tl: belief t1: belief 

Figure 6: Default regions (left: t~l] = ti2], right: t~l] = t~]) 

In this case the agent first learned that p became true 

at some point, and later learned that p became false at 

that very point. Now in principle we could imagine quite 

sophisticated criteria to decide which evidence should 

be given greater credence. However, our assumption of 

gullibility forces a "recent is better" policy, leading us 

to accept the later information and abandon the older 

one. The resulting default regions are shown in the right 

figure. 

4.2 The General Case 

We now extend the previous discussion to higher TBM's. 

We will unfortunately have to do so without the aid of 

graphics; instead, we will use the following example. 

Example. At t~l] you learn that at time t~l] 
your son learned that your son's teacher moved 

[1] [1] [1] [1] 
to Japan at time t3 (Lt1 Lt2 pt3). At time 

you son 

t~2] you learn that at time t~2] your son learned 

that his teacher moved to the US at time t12
] 

P] t[2] t[2] [2] [1] 
(Ly~uLs~n ""p 3 ) where t3 > t3 . 

Let t > max(t[1] t[2]) t > max(t[l] t[2]) 
1 1'1'2 2'2' 

and t3 > t~2](> t~1]). Then at t1 you believe 

that at t2 your son believes that his teacher is 

living in the US at t3' This is true regardless 

of the relationship between t~l] and t~2], or the 

relationship between t~l] and t~2]. 

Now consider the same scenario, except that 

t~2] = t~I]. This means that you believe that 

your son learned two contradictory facts. How­

ever, from the assumption that rules of belief 

change are common knowledge2
, you know that 

your son will adopt the latest information (as 

illustrated in the previous figure). Therefore 

2Note that this is our first use of the common knowledge 
assumption! 



700 

your beliefs about your son's beliefs will de­

pend on the relationship between t~11 and t~21; 
if t~l > t~ll then you will believe that your son 

believes that the teacher lives in the US; other­

wise you will believe that your son believes that 

the teacher lives in Japan. 

Finally, what will you believe if t~21 = t~l 
and t~21 = t~ll? In this case, you will need to 

break the tie by comparing t~ll and ti21 . Note 

that they cannot also be equal, as that would 

violate the assumption that the input data is 

consistent. 

The lesson from this example is clear. To determine 

whether a point in the hyper-space lies in a particular 

default region, you should compare the associated time 

vectors. This ordering is a reverse lexicographical order­

ing, the innermost time being the most significant and 

the outermost time the least significant. 

5 Multiple Sequences of Agent 
Indices 

We have all along assumed one fixed sequence of agent 

indices in the data: a l ,"', an_I' However, relaxing this 

limitation is quite simple. Consider data points with 

multiple sequences of agents indices. Unless we make 

further assumptions about belief, data with different in­

dex sequences will simply not interact. For example, the 
t[l] t[l] t[l] 

truth of Ba1 Bb2 p 3 is completely independent from the 
t[2] t[2] 

truth of any statement that is not of the form Ba1 Bb2 x, 

where x is an objective sentence (containing no belief op-
pl pl t[ll 

erator); in particular, it is consistent with Ba1 Bc2 -,p 3 • 

Thus we may simply construct separate TBM's for these 

different sentences, each obeying our restriction. 

However, if we do make further assumptions about 

belief, we must take greater care. We consider here four 

possible further assumptions about belief. The first two 

are the familiar assumptions of introspective capability: 

Assumption 5 (Positive introspection) B:r.p holds iff 

Bt Bt (f') holds. 
a aT 

Assumption 6 (Negative introspection) -,B:r.p holds 

iff B: -,B: r.p holds. 

The other two have to do with beliefs of the agent at 

different points in time. The first is that not only do 

agents have memory (which we have already assumed), 

but they also have perfect memory of past beliefs: 
Assumption 7 (Introspection about past beliefs) 

if T > O. 

The last assumption states that agents do not expect 

their beliefs to change: 
Assumption 8 (Belief about stability of beliefs) 

if T > O. 

(Notice ,that assumptions 5, 7, and 8 can be unified into 
BtlBt2 == Bmin(h,t2 ) .) 

a a r.p a r.p 
We are not arguing on behalf of these assumptions. We 

list them merely as examples of plausible assumptions 

one might want to make. The reason we mention them at 

all is that they violate the property that nested temporal 

beliefs with different agent indices are independent of 

one another. For example, under assumption 8, B~B!p8 
is contradictory with B~ -,l. 

Fortunately, these four assumptions allow an easy so­

lution. We simply keep simplifying the sentences by 

substitution, until no further simplifications are possi­

ble. It turns out that no matter what subset of these 

four we choose, the result of this substitution process is 

unique (the Church-Rosser property again). More gen­

erally, whenever our assumptions allow us to derive a 

unique canonical form, we convert the query and the in­

put data to this canonical form, and then revert to our 

usual procedure. We have not yet investigated the more 

complex case in which the canonical form is hard to de­

rive or nonexistent. 

6 Complexity 
Our definition of default regions was constructive, and 

allows efficient query answering. We briefly discuss the 

complexity here. If we assume that comparison of a pair 

of one-dimensional time points is done in one operation, 

then comparing two n-dimensional time points requires 

at most n operations. In ordinary applications, n will be 

a very small integer. Ordinary people will not think of 

n = 5 cases in their everyday life. 

If we have N data points, we can get a sorted list 

of the data points by the priority based on the reverse 

lexicographical ordering, as eX:plained. This requires only 

O(n . Nlog2 N) ~ O(NlogN) operations. Since each 

agent learns informations gradually, it is useful to use a 



heap, a well known balanced tree data structure which 

can be easily modified to keep ordering. 

If we need to identify only the dominant data point in 

the causal region, even a naive implementation gives it 

in O(nN) c::: O(N) operations. 

7 Implementation 

Our framework can be easily implemented by logic pro­

grammming languages such as Prolog as well as ordinary 

procedural languages such as C. We implemented various 

versions of this framework in both languages. Backward 

reasoning mechanism implemented in Prolog employed 

simplified versions of Kowalski/Sergot's Event Calculus. 

Forward reasoning mechanism implemented in C em­

ployed sorting of an array. As we described before, our al­

gorithm is very fast in simple cases. We intend to imple­

ment more complex cases and evaluate their complexity. 

As for 2D cases, we have a program which draw a map 

from a set of data points whose time stamps are given in 

hour/minutes or minutes/seconds or year/month/day. 

Finally, this work has been carried out as part of the 

research on Agent Oriented Programming. The current 

simple interpreter, AGENTO [Shoham 1990 l, only has a sim­

ple version of standard time maps. We have implemented 

an experimental agent interpreter which incorporates the 

ideas ofthis paper, and hope to report on it in the future. 

8 Related Work and Conclu-
SIons 

The only closely related work of which we are aware, 

other than the work on time maps and event calculus 

which we have discussed at length, is Sripada's [Sripada 

1991], which was independently developed. Both sys­

tems can deal with nested temporal beliefs. Sripada rep­

resents a nested temporal belief by a Cartesian product 

of time intervals, and like us assumes that nested tem­

poral beliefs are consistent. However, he does not con­

sider the notion of default persistence, and therefore not 

with the resolution of competing default persistences. It 

would seem that the result of our system could serve as 

input to his, but we would like to understand his work 

better before making stronger claims about the relation­

ship to his work. 

As should be clear, much more needs to be done. We 
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made it clear that in this work we did not undertake 

a logical treatment of time, belief and nonmonotonic­

ity. We were also explicit about the limitations of our 

framework. We hope to do both in the future, as well as 

demonstrate the pratical utility of this work. 
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Abstract 

The paper presents a formalization of the notion of 
time ·granularity in a logic-based approach to knowl­
edge representation and reasoning. The work is based 
on the Event Calculus [Kowalski,86], a formalism for 
reasoning about time, events and properties using first­
order logic augmented with negation as failure. In the 
paper, it is extended to include the concept of time 
granularity. With respect to the representation, the 
paper defines the basic notions of temporal universe, 
temporal decomposition and coarse grain equivalence. 
Then, it specifies how to locate events and properties 
in the temporal universe and how to pair event and 
temporal decompositions. With respect to the rea­
soning mechanisms, the paper defines two alternative 
modalities of performing temporal projection, namely 
upward and downward projections, that make it pos­
sible to switch among coarser and finer granularities. 

1 Introduction 

The paper presents a formalization of the notion 
of time granularity in a logic-based approach to 
knowledge representation and reasoning. The work 
is based on the Event Calculus, a formalism for 
reasoning about time, events and properties using 
first-order logic augmented with negation as failure 
[Kowalski and Sergot 1986]. In the paper, it is ex-
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tended to include the concept of time granularity. 
Informally, granularity can be defined as the reso­
lution power of a representation. In general, ea.ch· 
level of abstraction at which knowledge can be rep­
resented is characterized by a proper granularity. Pro­
viding a formalism with the concept. of granularity al­
lows it. to embed different levels of knowledge in a 
representation. In such a way, each reasoning t.ask 
can refer to the representational level that abstracts 
from the domain only those aspects relevant io the 
actual goal. We are interested in time granularity. 
With respect to the expressive power, it allows one 
to maintain the representations of the dynamics of 
different processes of the domain that evolve accord­
ing to different time constants as separate as possible 
[Corsetti et al. 1990]. It also allows one to model t.he 
dynamics of a process with respect t.o different time 
scales. In such a case time granularity has to be paired 
with other refinement mechanisms such as process 
decomposition [Allen 1984], [Kaut.z and Allen 1986J, 
[Corset.t.i ct al. 1991a], [Evans 1990]. Finally, time 
granularit.y increases both the temporal distinctions 
that a language can make and the distinctions that 
it can leave unspecified. This means that consjd­
ering two events as simultaneous or temporally dis­
tinct, or two time dependent relations as tempo­
rally overlapped or disjoint depends on the granular­
ity one refers to. With respect to the computational 
powet·, it supports different grains of reasoning to deal 
with incomplete and uncertain knowledge [Allen 1983]' 
[Dean and Boddy 1988]. It also allows one to t.ailor t.he 
visibility of the knowledge base and the reasoning pro­
cess to the needs of the actual task [Fum et al. 1989]. 
Secondly, it allows one to alternate among different 
time granularities during the execution of a task in 
order to solve each incoming problem at a time granu­
larity as coarse as possible [Dean et al. 1988]. An ex­
ample of a limited use of time granularity to expedit.e 
the search of large temporal databases is provided by 
[Dean 1989]. Finally, it allows one to solve a problem 
at a time granularity coarser than the required one to 



cope with the complexity of temporal reasoning. Such 
a simplification speeds up the reasoning, but implies a 
relaxation of the precision of the solution. The ratio 
between the time granularities provides a measurement 
of the approximation of the achieved result. 

In despite of the widespread recognition of its rel­
evance for knowledge representation and reasoning, 
there is a lack of a systematic framework for tempo­
ral granularity. The main references are the paper 
of Hobbs [1985] on the general concept of granular­
ity and the works of Plaisted [1981], Giunchiglia and 
Walsh [1989] on abstract theorem proving. Hobbs de­
fines a concept of granularity that supports the con­
struction of simple theories out of more complex ones. 
He formally introduces the basic notions of relevant 
predicate set, indistinguishability relations, simplifica­
tion, idealization and articulation. Such notions are 
extended and refined by Greer and McCalla [1989], 
which identify two orthogonal dimensions along which 
granularity can be interpreted, namely abstraction and 
'aggregation. However, the one and the others reserve 
little or no attention to time granularity. In particular, 
Hobbs only sketches out a rather restrictive mapping 
of continuous time into discrete times using the situ­
ation calculus formalism. Conversely, a set-theoretic 
formalization of time granularity is provided by Clif­
ford and Rao [1988], but they do not attempt to relate 
the truth value of assertions to time granularity. Fi­
nally, Galton [1987] and Shoham [1988] give significant 
categorizations of assertions based on their temporal 
properties. These categorizations are strictly related 
to the concept of time granularity even if it is not ex­
plicitly considered. 

A first attempt to introduce the notion of time 
granularity in the Event Calculus is reported in 
[Evans 1990]. Evans defines a macro-events calculus 
for dealing with time granularity whose limitations 
are discussed in section 4.1. Our paper proposes a 
framework to represent and reason abou t time gran­
ularity in the Event Calculus that generalizes these 
previous results. It significantly benefits by the work 
done to formalize the concept of time granularity 
in TRIO, a logic formalism for specifying realtime 
systems [Corsetti et al. 1991b], [Corsetti et al. 1991c], 
[Montanari et al. 1991], and [Ciapessoni et al. 1992]. 
[Maim 1991] and [Maim 1992a] present an alternative 
approach where the granularity problem is seen as an 
issue of dealing with ranges and intervals in constraint­
based reasoning. 

The paper is organized as follows: section 2 presents 
the original Event Calculus together with its basic ex­
tensions, namely types, macro-events and continuous 
change; section 3 focuses on the representation of time 
granularity; section 4 details the modalities of reason­
ing about time granularity. 
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2 The Event Calculus 

The Event Calculus proposes a general approach 
to represent and reason about events and their ef­
fects in a logic framework [Kowalski and Sergot, 1986]' 
[EQUATOR 1991]. From a description of events t.hat 
occur in the real world, it allows one to derive va.riolls 
relationships and the time periods for which they hold. 
It also embodies a notion of default persistence, that. 
is, relationships are assumed to persist until an event 
occurs which terminates them. As an example, if we 
know that an aircraft enters a given sector at 10:00hrs 
and leaves at 10:20hrs, the Event Calculus allows us 
to infer that it is in that sector at 10:15hrs. More pre­
cisely, the Event Calculus takes the notions of event, 
property, time-point and time-interval as primitives 
and defines a model of change in which et!ent.~ hap­
pen at time-points and initiate and/or terminate timf'­
intervals over which some property holds. So, for in­
stance, the events of entering and leaving the sector ini­
tiate and terminate the aircraft's property of being in 
the sector, respectively. Time-points are unique points 
in time at which events take place instantaneously. Tn 
the previous example, the event of entering the sec­
tor occurs at 10:OOhrs, while the event of leaving t.he 
sector occurs at. lO:20hrs. They can be specified at dif­
ferent degree of explicitness, e.g. "91/5/24:10:00hrs" 
to include the full date or just "lO:OOhrs", but belong 
to a unique domain. Time-intervals are represent.ed by 
means of tuples of two time-points. Wit.h the same ex­
ample, we can deduce that the aircraft is in the sect.or 
during the time-interval starting at 10hrs and ending 
at lO:20hrs. 
Formally, Event Calculus represents domain knowl­
edge by means of initiates and terminates predicat.es 

. 1 that express the effects of event.s on propertIes : 

initiates( Event., Property) 
terminates(Event, Property) 

In such a way, domain relations are intensionally 
defined in terms of events and properties types 
[EQUATOR 1991]. Weak forms of t.he initiate.'! and 
terminates predicates, namely weak-initiate.'! and wmk­
terminates, have been introduced in [Sergot 1990]. 
The predicate weak-terminate., states that a giv(>n 
event terminates a given property unless this propert.y 
has been already terminated. In a similar way, the 
predicate weak-initiates states that a given event ini­
tiates a given property unless this property has been 
already initiated. 
Instances of events and properties are obtained by at.­
taching a time-point (event, time-point) and a time-

1 We adopt the variable convention of the original Event. 
Calculus where constants are distinguished from variables 
by being denoted by names beginning with upper-case 
characters. 
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interval (property, time-interval) to event and property 
types, respectively. 

The first Event Calculus axiom we introduce is the 
Mholds-for. It allows us to state that the property p 
holds maximally (i.e. there is no larger time-interval 
for which it also holds) over (start, end) if an event e 
occurs at the tiine start which initiates p, and an event 
e' occurs at time end which terminates p, provided 
there is no known interruption in between: 

Mholds-for(p, (start,end») +0-

happenLat(e,start) /\ initiates(e,p) A 

happens_at(e',end) A terminates(e',p) A 

end> . start A not broken-during( p, (start, end») 

In the above axiom, the negation involving the bro­
ken predicate is interpreted using negation-as-failure. 
This means that properties are assumed to hold un­
interrupted over an interval of time on the basis of 
failure to determine an interrupting event. Should we 
later record a terminating event within this interval, 
we can no longer conclude that the property holds over 
the interval. This gives us the non-monotonic char­
acter of the Event Calculus which deals with default 
persistence2

• 

The predicate broken-during is defined as follows: 

broken-during(p, (start,end») +0-

happens_at(e,t) /\ start < t /\ 
end> t /\ terminates(e,p) 

This states that a given property p ceases to hold 
at some point during the time-interval (start,end) if 
there is an event which terminates p at a time t within 
(start,end). 
Event Calculus also defines an Iholds-for predicate in 
terms of Mholds-for to state that a property holds over 
each time-interval included in the maximal one: 

Iholds-for(p, (start,end») +0-

Mholds-for(p, (a,b») /\ start ~ a A end ~ b 

Finally, Event Calculus defines the holds-at predicate 
which is similar to Iholds-for except that it relates a 
property to a time-point rather than a time-interval: 

holds-at(p,t) +0-

Mholds-for(p, (start,end») A 
t > start A t < end 

In particular, the holds-at predicate states that a prop­
erty is not valid at the time points at which occur the 
events that initiate and terminate it. This negative 
conclusion about the validity of properties at the left 
and right ends of time-intervals properly stands for 
ignorance. Time granularity will allow us to refine de­
scriptions with respect to finer temporal domains. 

2To deal with default persistence, [Maim 1992b] presents 
an approach to constructive negation in constraint-based 
reasoning. 

2.1 Macro-events to Model Discrete 
Processes 

To model discrete processes the basic Event Calcu­
lus has been extended with an event decomposition 
mechanism that allows us to refine event represent.a­
tions [Evans 1990], [EQUATOR 1991]. Evans intro­
duced the notion of macro-event, which is a finite event. 
decomposed into a number of sub-events. The connec­
tions between a macro-event and its components are 
formalized in the Event Calculus as follows: 

happens_at(e,t) +0-

happens_at(e1,tJ) A parLoJ(e1,e) A 

happens_at(e2,t2) /\ parLoJ(e2,e) /\ 
happens_at(e3,t3) /\ parLoJ(e3,e) /\ 
happens_at(e4,t4) A parLoJ(e4,e) 

where the predicate parLof is defined by means of ap­
propriate domain axioms. 
This axiom allows us to derive the occurrence of a 
macro-event from the occurrences of it.s sub-events. It. 
can also be used to abduce the occurrence of sub-events 
from the occurrence of the macro-event. 

2.2 Continuous Change to Model 
Continuous Processes 

The basic Event Calculus is well-equipped to represent 
discrete processes, but is not so good for represent­
ing continuous processes, i.e. processes characterized 
by a continuous variation in a quantity such a.s t.he 
height of a falling object or the angular position of a 
crankshaft. Modelling a continuous process in terms of 
its temporal snapshots, in fact, can be seen a partiCll­
lar case of event decomposition, but cannot he directly 
done by means of macro-events. To model cont.inu­
ous processes, Event Calculus has been extended wit.h 
the idea of the trajectory of a continuously changing 
property through a space of values [Shanahan 1990], 
[Shanahan 1991], [EQUATOR 1991]. Shanahan intro­
duced the notion of 'dynamic' propert.ies, like motJing 
of a train. When such a property holds, another prop­
erty is continuously changing, such as position of the 
train. Continuously changing properties are modelled 
as trajectories. Formally, the holds-at axiom which 
gives value to a continuously changing property is: 

holds_at (p, t2) +0-

happens_at(e,t1) A initiates(e,q) /\ t1 < t2 A 

not broken_during(q, (tt, t2»/\ 
trajectory(q,t1,p,t2) 

In this axiom, the continuously changing propert.y p 
can be assigned a given value at a time point t2 if 
an instance of the relevant dynamic property q is ini­
tiated at a time point t1 (before t2) and not. broken 



at some point between t1 and t2. The predicate tra­
jectory describes the functional relationship between 
the continuously changing property and the time that 
has elapsed since it started to change. It can be seen 
as a path plotted against time through the correspond­
ing quantity space. The formula trajectory(q, n,p, t2) 
represents that property p holds at time t2 on the tra­
jectory of the period of continuous change represented 
by q which start at time tl. Such a property p holds 
only instantaneously and represents that some quan­
tity varying continuously has a particular value. Its 
definition is domain specific. That is, a set of trajec­
tory clauses is also part of the description of the do­
main, along with the domain's initiates and terminates 
clauses. 

For example, suppose that the angular position of 
a crankshaft increasing linearly with time whilst the 
shaft is rotating. If w is the angular velocity of the 
crankshaft, we have the following domain axiom: 

trajectory(rotating, t1, angle(a2), t2) ..­
holds-Llt(angle(a1), t1)" a2 = w(t2 - tl) + a1 

3 Representing Time Granu­
larity 

This section first introduces the notion of temporal 
universe as a set of related, differently grained tempo­
ral domains. Such a notion supports the definition of 
the relations of indistinguishability and distinguisha­
bility among the time-points of the domains. Then, it 
precisely states the linkage between events and prop­
erties, and time granularity. 

3.1 The Temporal Universe 

Providing a representation with time granularity re­
quires introducing a finite set of disjoint temporal do­
mains that constitutes the temporal universe of the 
representation: 

T= U T, 
'=1 .... n 

The set {Tt, T2 , .. , Tn} is totally ordered on the basis of 
the degree of fineness (coarseness) of its elements and, 
for each i, with 1 ::; i < n, Ti+l is said of a finer granu­
larity than Ti. Each domain is discrete with the possi­
ble exception of the finest domain that may be dense. 
For the sake of simplicity, we assume that each do­
main is denumerable. The temporal universe includes 
at most one dense domain because each dense domain 
is already at the finest level of granularity, since it 
allows any degree of precision in measuring time dis­
tances. As a consequence, for dense domains we must 
distinguish granularity from metric, while for discrete 
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domains we can define granularity in terms of set cardi­
nality and assimilate it to a natural notion of metric3

. 

For the sake of simplicity, we assume that each domain 
is denumerable. 

For each pair of domains Ti, Ti+l, a mapping is 
defined that maps each time-point of Ti into a t.ime­
interval of Ti+l (totality). mathemat.ical expressions 
we use the SUCCi(t) denotes the It maps contign­
ous time-points into contiguous, disjoint time-intervals 
(contiguity) preserving the ordering of the domains 
(order preserving). Moreover, the union set. of the 
time-intervals of Ti+l belonging to its range is eq1lal 
to Ti+l (coverage). Finally, we assume that the length 
of time-intervals into which it maps the time-point.s 
of Ti is constant (homogeneity). This const.ant., de­
noted by ~i.i+l' defines the conversion factor bet.ween 
Ti and Ti+l which provides a relative measurement of 
the granularity of Ti and Ti+l wit.h respect. to each 
other. A general mapping between Ti and ~, wit.h 
Ti coarser than TJ , can be easily obtained by a suit­
able composition of a number of elementary map­
pings. It is formally defined in a recursive way in 
[Corsetti et al. 1991a], where it is also shown that the 
properties of totality, contiguity, order preserving, cov­
erage and homogeneity are preserved. 
In general, there are several ways to define these map­
pings each one satisfying the required propert.ies. Ac­
cording to the intended meaning of the mappings as de­

composition functions, each time-point of Ti is mapped 
into the set of time-points of Ti+l that compose it.. 
Nevertheless, we are faced by a number of alterna­
tive possibilities in settling the reference time-point of 
each domain. Choosing the one or the other is merely 
a matter of convention, but it determines the actnal 
form of the mappings. In the following, assume that, 
for each pair Ti, Tj, the relevant function maps t.he 
reference time-point of Ti into a time-interval of 7~ 
whose first element is the reference time-point of TJ 

(reference time-points alignment assumption). 
To include the notion of temporal universe in t.he 

Event Calculus, we introduce the predicat.e value­
metric which splits each time-point (1st argument) 
into a metric (2nd argument) and a value (3rd arg11-
ment) components. Moreover, we express metrics as 
a subset of integer. Let us consider a temporal uni­
verse consisting of hours, minutes and seconds, a.nd 
assign by convention the metric 1 to the doma.in of 

3 "Mapping, say, a set of reals into anot.her set of rcals 
would only mean changing the lmit of measure wit.h no se­
mantic effect. Just in the same way one could decide t.o 
describe geomet.ric facts by using, say, Kmeters and cen­
timetres. However, if Kmeters are measured by real num­
bers, the same level of precision as with centimetres can b~ 
achieved. Instead, the key point in time granularit.y is t.hat. 
saying that something holds for all days in a given int.erval 
does not imply that it holds every second within the 'sam~' 
interval" [Corsetti et al. 1991c). 
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seconds (in general, metric 1 is assigned to the finest 
domain), the metric 60 to the domain of minutes )1 
minu te corresponds to 60 seconds) and the metric 3600 
to the~ domain of hours (1 hour corresponds to 3600 sec­
onds). As an example, value-metric(2hrs30m,60,150) 
since there are 60 minutes in an hour. Using the pred­
icate value-metric, decomposition functions can be de­
fined as follows: 

fine_grain_of( < tl, 12 >, t)+­
value_metric(t, m, v) /\ 
value_metric(tl, ml, vI) /\ 
value_metric(t2, ml, v2) /\ ml :::; m /\ 
vI = v * (mimI) /\ v2 = (v + 1) * (mimI) - 1 

Given a pair of domains Ti, Tj , with Ti coarser grain 
of Tj, for each time-point tj of Tj we also define as its 
coarse grain equivalent on T, the time-point ti of Ti 
such that tj belongs to the time-interval obtained by 
applying the corresponding decomposition function to 
ti. The uniquity of the coarse grain equivalents can be 
easily deduced from the definition of the decomposition 
functions. Coarse grain equivalent functions can also 
be defined using the predicate value-metric as follows: 

coarse_grain_of(t2, tl)+­
value_metric( t1, m1, vI) /\ 
value_metric(t2, m2, v2) /\ 
m1 :::; m2/\ v2 = (vI * ml)llm2 

where (vI * m1)1 1m2 denotes the integer division of 
(vI *ml) by m2. 
The relationships of temporal ordering can be gener­
alized to make it possible to compare two time-points 
belonging to different temporal domains as follows: 

is-Clfter(t2, tl)+­
value_metric(tl, m, vI) /\ 
coarse_grain_of(t, t2) /\ 
value_metric(t, m, v) /\ 
vI < v 

is_after(t2, tl)+­
valuLmetric(t2, m, v2) /\ 
coarse_grain_of(t, tl) /\ 
value_metric(t, m, v) /\ 
v < v2 

The is_before predicate can be easily defined in a sim­
ilar way. 

The coarse grain equivalent and the decomposition 
functions can be viewed as forms of simplification and 
articulation along the dimension of temporal aggrega­
tion, i.e. shifts in focus through part-whole relation­
ships among time-points, respectively. They define dis­
tinguishability and undistinguishability relations be­
tween any pair of time-points with respect to each do­
main of the temporal universe. 

3.2 Events and Properties In the 
Temporal Universe 

Let us now locate events and properties in t.he tempo­
ral universe. The idea is to directly associate a time 
granularity with events and to derive the granularity 
of propert.ies on the basis of the initiates and termirwtc 
relations. 
First of all, we give a characterization of events with re­
spect to the temporal universe. With respect to a given 
domain, we distinguish instantaneou,'1 events, that. hap­
pen at. a time-point., and events with duration, that 
take place over a nonpoint time-interval. Such a dis­
tinction among events is a relative one, so, for example, 
passing from a given domain to a finer (coarser) one 
an instantaneous (with duration) event may become 
an event with duration (instantaneous). 
With respect to the temporal universe, we distinguish 
finite and infinitesimal events. An event is said finite 
if there exists a domain with respect to which it has 
duration. A finite event thus identifies an implicit level 
of time granularity: at this level and coarser ones, it is 
an inst.antaneous event; at finer levels it is of finit.e du­
ration. We define such a threshold the intrinsic time 
granularity of the event. An event is said infinitesimal 
if it is instantaneolls with respect to every doma.in 4

. 

Infinit.esimal event.s are needed for dealing with con­
tinuous change [Shanahan 1990]. Let us consider, for 
instance, a process of continuous change such as sink 
filling with wat.er. We might. associate the occurrence 
of an event. with each new level reached by the filling 
fluid. If we did t.his, t.hen there would be no limit to 
how fine we might choose our temporal grain in order 
for the events to remain instantaneous. Thus t.a.king 
this approach we have a need for infinitesimal event.s. 
Differently from the previous one, such a dist.inction 
among events is an absolute one. 
To be able to deal with instantaneous events only, we 
impose that every event is associated with a domain 
whose granularity is equal to or coarser than the in­
trinsic one of the event. In such a way, Event Cal­
culus axioms can be still used to reason within do­
mains. On the contrary, they are insufficient by them­
selves to deal wit.h events associated with different do­
mains (differently grained events). However, reason­
ing across domains can be brought back to reasoning 
within domains provided that there exist some rules t.o 
relate differently grained events to the same domain. 
The idea is to integrate macro-events (section 3.3) and 
continuous change (section 3.4) mechanisms with time 
granularity, and to define general temporal project.ion 

4The absolute instantaneousness of infinitesimal event.s 
copes with the same representational problems t.hat 
suggested to Hayes and Allen the introduction of 
short time periods (moments) in Allen's Interval Logic 
[Hayes and Allen 1987J. 



rules (section 4) that are used by default when nei­
ther macro-events nor continuous change decomposi­
tions are explicitly given. 

3.3 Refining Macro-Events 

We define a unifying framework for the packaging of 
events and the granularity of time to describe the tem­
poral relationships between a macro-event and its com­
ponents. We require that the intrinsic time granularity 
of a macro-event is coarser than the ones of its sub­
events and that its occurrence time is a coarse grain 
equivalent of the occurrence time of all its sub-events. 
We also define a number of general operators, called 
macro-event constructors, for specifying temporal rela­
tionships among sub-events [EQUATOR 1991](we use 
the infix notation for macro-event constructors for the 
sake of simplicity)5: 

sequence 
;delay(min,max) minimum and maximum delay 

between two events 

I 
II 

[ ] 

alternative 
parallelism 
sequential repetition (n is optional) 
parallel repetition (n is optional) 
composition 

Let us report here the Event Calculus axiomatization 
of the basic operators expressing sequence, alternative, 
and parallelism. 

happens..at(e1; e2, t)-
happens..at( e1, t1) " happens_at( e2, t2)" 
coarsf-grain_of(t, tl)" coarse_grain_of(t, t2) 
is_after(t2, t1) 

happens..at(e1Ie2, t)-
happens..at( e1, t)" not happens..at( e2, t) 

happens..at(e1Ie2, t)-
not happens..at{e1, t)" happens..at(e2, t) 

happens..at(e11Ie2, t)-
happens..at( e1, t)" happens..at( e2, t) 

In general, domain axioms include definition of macro­
events in terms of a suitable composition of su b-events. 
An example of these domain axioms is: 

happens..at( e, t)­
happens..at([e1; [e21Ie3]], t)" 
parLof(e1, e) AparLof(e2, e)" parLof(e3, e) 

5Dealing with the repetition operators may require the 
addition of a domain composed of a single time point to the 
temporal universe (absolutely coarsest domain). 
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The operator expressing sequence deserves further 
consideration. It allows us to deduce the occurrence of 
a macro-event at a time-point of a domain coarser than 
the domain(s) the occurrence times of its component 
events (possibly macro-events in their turn) belong to. 
Such a time-point is a coarse grain equivalent of both 
the occurrence times of components. Then, the rule for 
sequential macro-events first executes a comparison of 
time-points with respect to the finer domain and then 
it abstracts them into a time-point of the coarser one. 
The presence of this switching to a coarser domain 
makes the definition of sequential macro-events incom­
plete. Consider the following example. Given the oc­
currences of three events e1, e2 and e3 at time-point.s 
2hrs15m, 2hr42m and 2hrs50m, respectively, we are 
not able to deduce the occurrence of a sequential event. 
e1; [e2; e3] at time-point 2hr s when the temporal uni­
verse is { ... , hours, minutes, ... }. In fact, there is no 
way of strictly ordering e1 and the macro-event. into 
which e2 and e3 can be abstracted, because the occur­
rence time of the macro-event is a coarse grain equiva.­
lent of the occurrence time of d. To make it possible 
to derive the occurrence the macro-event el; [e2; e3], 
the temporal universe has to be extended wit.h the 
domain of 3D-minutes (similar considerations hold for 
the macro-event [eli e2]; e3). However, it is easy t.o 
find another sequence that cannot be abstracted into 
a sequential macro-event with respect to the extended 
temporal universe too. Such an incompleteness is due 
to the fact that mappings between temporal domains 
are fixed once and for all and then is inherent to t.he 
upward tempora.l projection involved in macro-event. 
derivation rules (section 4.1). 

3.4 Refining Continuous Change 

The original approach to con tin uous change makes 
the assumptions that the parameters of the trajectory 
function are set not after tl and are not reset between 
tl and t2. In general, these assumptions are too re­
strictive. Mechanisms are requested for resetting t.he 
parameters of the trajectory function. This allows it to 
be initiated with parameters values at the start of the 
property, but also allows the parameters to be changed 
during the interval of validity of the property_ In this 
way, the trajectory may model 'non-linearities' (e.g. a. 
change in the rate of a linear increase of a tempera­
ture) without interrupting the relevant dynamic prop­
erty (e.g. by splitting a 'temperature rising' property 
when the rate of rise changes). 

To take into account the resetting of parameters the 
original axiom can be replaced by the following one: 
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holds_at(p,t) +­

value_metric(t, m, v)A 
happens..at(e, tl) A value_metric(tl, m, vl)A 
~vl < v A initiates( e, q)A 
not broken..during( q, (tl, t»)A 
happens..at(e', t2) A value_metric(t2, m, v2)A 
v2 < v A initiates(e',par)A 
not broken..during(par, (t2, t»)A 
max(tl,t2,ti) A trajectory(q,par,ti,p,t) 

A continuously changing property p can be assigned a 
given value at a time point t if an instance of the rele­
vant dynamic property q is initiated at a time point tl 
(before t) and not broken at some point between tl and 
t, the relevant parameter par is (re)set at a time point 
t2 (before t) and not broken at some point between t2 
and t, and the initial value of p is calculated (by the 
trajectory predicate) at the time point ti which is the 
maximum between tl and t2 and the 'max' predicate 
has the obvious definition. The crankshaft example of 
section 2.2 must be rewritten according to the revisited 
axiom as: 

trajectory(rotating, velocity(w), ti, angle(a), t) -
value_metric( ti, m, vi) A value_metric( t, m, v)A 
holds - at(angle(ai), ti) A a = w(v - vi) + ai 

The indirect recursion on the predicate trajectory (or, 
equivalently, on the predicate holds_at) stops when the 
initial values of the configuration variables, e.g. the 
angular position, are reached. They can be explicitly 
asserted or derived from the occurrence of independent 
events. 
The application of the refined axiom for continuous 
change is not restricted to discrete resetting of param­
eters; it can be used to deal with continuously chang­
ing parameters too. In such a case, the occurrence of 
the continuous events of resetting can be derived from 
the continuous change of the configuration variables 
by means of appropriate domain axioms. 
Continuous events can be either acquired by the ex­
ternal environment or computed according to explicit 
laws. In both cases, we generally need to plot them at 
regular time intervals to make the model computable. 
Choosing the width of the time interval is equivalent to 
choosing the time granularity at which describing the 
process. Then, a change in the frequency of plotting 
is equivalent to the switching of a continuous process 
from one time granularity to another. 

4 Reasoning 
Granularity 

with Time 

We distinguished two basic modalities of relating dif­
ferently grained events, namely upward and downward 
temporal projections. Upward (downward) projection 

determines the temporal relat.ions set up by two events 
ei and ej which occur at the time-points ti E Ti and 
tj E Tj, respectively, wit.h Ti coarser than Tj, by up­
ward (downward) projecting ej (ej) on Tj (Tj). 

4.1 'Naive' Upward Projection 
The 'naive' upward projection is a quite straightfor­
ward approach to abstractive t.emporal reasoning. It. 
states that the upward projection of an event e that 
occurs at a time-point t of a domain Tj on a domain Ti, 
coarser than Tj, is accomplished by simply replacing 
t with its coarse grain equivalent on Ti [Evans 1990]. 
Then the temporal ordering and distance between two 
events ei and ej which occur at the time-points ti E Ti 
and tj E Tj, respectively, are determined on the basis 
of the relation between tj and the coarse grain equiv­
alent of tj on Tj. Moreover, if ej (ej) precedes ej (ed 
then the properties initiated by ej (e j) and terminated 
by e j (ed hold over the time-interval of n identified by 
ti and the coarse grain equivalent of tj. To formalize 
upward projection in the Event Calculus, we first ex­
tend the definition of the occurrence time of an event. 
as follows: 

happens..at( e, tl)-
happens_at(e, t2) A coarse - grain - ol(tl, t2) , 

In this way, each event is endowed with several occur­
rence times belonging to different domains, i.e. the 
time-point at which it originally occurs and all the 
coarse grain equivalents of such a point. Combined 
with the macro-event derivation rules, upward pro­
jection allows us to deduce the occurrence of paral­
lel and alternative macro-events at time-points of do­
mains coarser than the domains at which occur their 
components. 
Upward projection can be seen as a simplification rule 
[Hobbs 1985], because it allows us to derive a rela­
tion of temporal indistinguishability, i.e. simultaneity, 
among events from the relation of indistinguishabilit.y 
among time-points defined by coarse grain equivalent 
functions. 

Then, the Mholds-for predicate is redefined to con­
strain the starting and the ending time-points of the 
time-interval to belong to the same domain: 

Mholds-for(p, (start,end») +­

happens_at(e,start) A initiates(e,p) A 

value-metric( start, m, vs) A 
happens_at(e' ,end) A terminates(e' ,p) A 

value-metric(end,m,ve) A 
vs < ve 1\ not broken-during(p, (start,end») 

together with a similar axiom for the predicate broken­
during. 
In such a way, the predicate Mholds-for identifies sev­
eral time-intervals of ditferents domains over which the 



properties initiated and terminated by two differently 
grained events hold. 

In despite of its apparent simplicity upward projec­
tion involves a number of semantic assumptions. The 
most relevant one is related to its application to con­
tradictory events, i.e. events that cannot occur simul­
taneously. We formally define two events as contradic­
tory if they initiate or terminate incompatible proper­
ties. The definition of the relation of incompatibility 
among properties depends on domain-specific knowl­
edge [Kowalski and Sergot 1986]. 
Upward projection maintains the weak temporal order­
ing between events, but it does not always preserve the 
strict one. Then the logical consistency of the upward 
projection cannot be guaranteed in the general case, 
because it may enforce contradictory events to occur 
at the same time-point in a coarser domain. As a con­
sequence, if two differently grained events are contra­
dictory the coarse grain equivalent of the occurrence 
time of the fine grained event must be different from 
the occurrence time of the coarse-grained event. This 
is guaranteed by the following integrity constraint6

: 

+- happens.JLt(e1, t) /\ happens_at(e2, t)/\ 
cont'radictory( e1, e2) 

Moreover, upward projection may change the ratio be­
tween the width of time-intervals. That is, given two 
domains Ti and TJ', with Ti coarser than Ti , the coarse 
grain equivalents on Ti of two pairs of time-points of 
Tj which are at the same temporal distance may be at 
a different one, while the coarse grain equivalents on Ti 
of two pair of time-points of TJ that are at a different 
temporal distance may be at the same one. 
Such a weakness of the 'naive' upward projection will 
be overcome refining upward projection according to 
the downward projection schema we are going to de­
fine. 

4.2 Downward Projection 
The downward projection of an event e that occurs at 
a time-point t of a domain Ti on a domain TJ finer 
than Ti is accomplished by applying the following de­
composition scheme: for each event e that occurs at a 
time-point t of Ti there exist two infinitesimal event.s 
ei and e f that occur at the time-points ti and t J of 

6This solution can be generalized by making cont.radic­
tion dependent on granularities or even on time instants. 
In such a way, simultaneous occurrence of two events can 
be classified as contradictory in certain domains, or even in 
certain time instants of them, only. 
The relevant integrity constraint becomes: 

+- happens_at(el, t) /\ happens_at(e2, t)/\ 
contradictory(el, e2, t) 
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Tj, respectively, and such that (i) ti ~ t J; (ii) t i~ tllp 
coarse grain equivalent on Ti of both ti and t,; (iii) 
for each property p such that p is terminated hy (', 
there exist an event e1' that occurs at t1' of Tj such 
that e1' terminates p and ti ~ t1' ~ t J; (iv) for each 
property q such that q is initiated bye, there exist. 
an event eq . that occurs at tq of Tj such that eq ini­
tiates q and ti ~ tq ~ t f; (v) the (type of the) event 
e becomes a dynamic property that is initiated by fi 

and terminated bye, with respect to Tj. Because of 
an event is defined by the properties that it initiat.es 
and terminates, such rules provide the definition of the 
component events ei, e" e1' and e/. 
Downward projection can be seen as an articulation 
rule [Hobbs 1985]. From the relation of distinguisha­
bility among time-points of the finer domain intro­
duced by the decomposition function, in fact, it. de­
rives a relation of temporal distinguishability among 
the sub events of a given finite event. 

Let us formalize this scheme in the Event Calcu­
lus. First of all, we define two functions begin and 
end that map a given instance of a macro-event. int.o 
its initiating and terminating events, respectively. The 
occurrence of such events can be deduced from the oc­
currence of the macro-event by means of the following 
aXIOms: 

happens_at{begin( e, t), time(begin( e, t)))+­
happens_at( e, t) /\ 
coarse - grain - of(t, time(begin{e, t))) 

happens_at(end(e, t), time(end(e, t)))+­
happens_at(e, t) /\ 
coarse - grain - of(t, time(end(e, t))) 

together with (condition (ii)): 

coarse - grain - of(t, time(begin(e, t))) 
coarse - grain - of(t, time(end(e, t))) 

where time(begin(e, t)) and time(end(e, t)) denote t.he 
occurrence times of begin( e, t) and end( e, t), resp~c­

tively. 
Condition (i) is expressed by the following integrity 
constraint: 

+- iSJlfter(time(begin( e, t)), time( end( e, t))) 

Let us now represent e1' and eq by means of two func­
tions term and in. For each property p (q), term 
(in) maps each instance of a given macro-event int.o 
the component event that terminates (initiat.es) sl1ch 
a property. Using these functions, conditions (iii) and 
(iv) are codified by the following axioms: 

7When ti and t J coincide, the events ei, €1" €q and e, 
are merged into the original single event e. This is always 
the case of the downward projection of infinitesimal events. 
For instance, the infinitesimal event of swit.ching on t.he 
light remains instantaneous with respect to all the domains 
of the temporal universe composed of {Day, Hour, Minute}. 
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terminates(term(e, t,p),p) - terminates(e,p) 
initiates(in(e, t, q), q) - initiates(e, q) 

togetlfer with: 

- is-D./ter(time(begin( e, t)), time( term( e, t, p)))V 
is_be/ore(time( end( e, t)), time(term( e, t, p») 

- is-D./ter(time(begin(e, t»), time(in(e, t, q»)V 
is_be/ore(time(end(e, t)), time(in(e, t, q))) 

for each property p and q. 
Finally, condition (v) is expressed by the following ax­
ioms: 

initiates(begin( e,t) ,e) 
terminates( end( e,t ),e) 

They allow us to state that the property e holds 
over (time(begin(e, t)), time(end(e, t») by means of 
the Mholds-for axiom. These last axioms provide each 
temporal object with a twofold event/property charac­
terization. That is, (the type of) an event e, associated 
with a given domain, may become a dynamic prop~rty 
with respect to a finer domain, and vice versa. 
Let us consider, as an example, the event of flying from 
Milan to Venice. With respect to the domain TH of 
hours it can be modeled as an instantaneous event that 
occurs at a time-point t of TH. Such an event termi­
nates the property of being in Milan and initiates the 
property of being in Venice. With respect to the do­
main TM of minutes, it can be decomposed into a pair 
of infinitesimal events /lyingi and flying, that occur 
a~ the time-points ti and t f of TM, respectively, with 
ti ::; t f, and such that t is the coarse grain eq ui valent 
of both. Moreover, flyingi terminates the property 
of being in Milan and initiates the property of flying, 
while flying, terminates the property of flying and 
initiates the property of being in Venice. 

4.3 'Revised' Upward Projection 

The event/property duality introduced by downward 
projection suggests an extension of the upward projec­
tion rules to cope with contradictory events without 
restrictions. When the coarse grain equivalents of two 
contradictory events coincide the downward projection 
schema suggests to merge and replace the events by a 
macro-event corresponding to the conjunction of the 
properties initiated by the first one and terminated by 
the second one. Moreover, such a macro-event termi­
nates (initiates) all the properties terminated (initi­
ated) by its first (second) component and every prop­
erty terminated (initiated) by the second (first) com­
ponent which is not initiated (terminated) by the first 
(second) component. 
Let us consider, as an example, the events of leaving 
station A and arriving at station B of a train. The 

first one terminates the property of the train of being 
at station A and initiates the property of moving, while 
the second one terminates the property of moving and 
initiates the property of being at station B. Let be T a 
domain with respect to which the two events are simul­
taneous. According to the revised upward projection 
rules they are merged and replaced by the event of 
moving that terminates the property of being at sta­
tion A and initiates the property of being at station 
B. 

The actual structure of the corresponding macro­
event can be given in terms of a suitable composition of 
the component events using macro-event constructors. 
Consider two contradictory events e1 and e2. If their 
temporal ordering is known and meaningful, e.g. el 
precedes e2, then the corresponding macro-event e is a 
sequential one, that is, el; e2; if their temporal order­
ing is meaningless (their global effect does not change 
even if their ordering changes), and possibly unknown, 
then the corresponding macro-event is a parallel one, 
that is ellle2; if their temporal ordering is meaningful 
and unknown, then the corresponding macro-event is 
[ellle2]l[[el; e2]I[e2; ell]; and so on. 
The last one is the case, for instance, of events of rota­
tion around orthogonal axes in the three dimensional 
space which are not commutative, that is, the final 
configuration of the rotating system depends on the 
ordering of their occurrences. 

5 Conclusion 

The paper made a proposal for embedding the notion 
of time granularity into a logic-based representat.ion 
language. Firstly, it enumerated a number of nota­
tional and computational reasons that motivate the 
introduction of time granularity and briefly surveied 
and discussed the existing relevant literature. Succes­
sively,it extended the Event Calculus to deal with time 
granularity by introd ucing the concepts of temporal 
universe, finite and infinitesimal events, macro-event., 
and continuously changing events and properties. Fi­
nally, it provided Event Calculus with the axioms sup­
porting upward and downward temporal projection. 
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Abstract 

UNIREDll is the high performance inference processor of 
the parallel inference machine PIE64. It is designed for 
the committed choice language Fleng, and for use as an 
element processor of parallel machines. Its main features 
are: 1) a tag architecture, 2) three independent mem­
ory buses (instruction fetching, data reading, and data 
writing), 3) a dedicated instruction set for efficient exe­
cution of Fleng, 4) multi-context processing for reducing 
pipeline interlocking and overhead of inter-processor syn­
chronization. With the multi-context processing mecha­
nism, the internal pipeline is shared by several indepen­
dent instruction streams (contexts), and which contexts 
are to be executed is determined cycle by cycle. So, U­
NIREDll acts as a pipeline-shared MIMD processor. In 
this paper, several architectural features and the instruc­
tion set are explained. And performance measurement 
results by simulation are also presented. High perfor­
mance (about 1M RPSI with 10MHz clock) is attained, 
and it is shown that the multi-context processing mech­
anism is very effective for improved performance. 

1 Introduction 

Committed choice languages are designed for efficient 
parallel execution of logic programs, but, because of their 
parallel and logic semantics, high performance is hardly 
achieved by conventional processors which are designed 
for sequential and procedural languages. Therefore we 
designed a dedicated processor for the element proces­
sor of the parallel inference machine PIE64 [Koike and 
Tanaka 1988], which we are now developing, and named 
UNIREDlI. PIE64 executes committed choice language 
Fleng[Nilsson and Tanaka 1988], and has sixty-four pro­
cessor elements. 

For design decisions in UNIREDlI, we paid special at­
tention to the following points. 

1. The processor architecture should be tuned for the 
execution of Fleng programs. 

1 RPS: Reduction Per Second 

2. It must be equipped with the features of an element 
processor of parallel machines. 

For the first point, we designed a dedicated instruction 
set for executing Fleng based on the experience of devel­
oping Fleng interpreters on workstations. For the second 
point, we proposed the multi-context processing mecha­
nism for reducing inter-processor synchronization, and 
the independent coprocessor command bus to intercon­
nect network interface processors and a process manage­
ment processor. 

UNIREDll is implemented in 1.2 f-l CMOS gate array 
and driven with 10MHz clock. This clock rate is se­
lected because UNIREDlI must synchronize with the lo­
cal memory bus, which in turn synchronizes with the 
network hardware of PIE64. 

An overview of PIE64 is given in section 2. In section 
3, the architecture including the multi-context process­
ing mechanism and instruction set of UNIREDlI are de­
scribed. In section 4 and 5, some simulation results are 
presented and discussed. Finally, we conclude this paper 
in section 6. 

2 PIE64 

PIE64 is one of several parallel inference machines which 
executes parallel logic programming languages such as 
Fleng[Nilsson and Tanaka 1988] and KL1[Kimura and 
Chikayama 1987]. We designed the committed choice 
language Fleng for PIE64 so that it is easy to imple­
ment and easy to attain high performance. PIE64 has 
sixty-four processor elements, which are called inference 
units (IUs), and two independent interconnection net­
works (Process Allocation Network: PAN and Data Ac­
cess/ Allocation Network: DAAN)[Takahashi et al. 1991]. 

These interconnection networks are implemented as cir­
cuit switching, and have a special function of broadcast­
ing load information for automatic load balancing so that 
each IU can select the minimum load IU automatically. 
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*CBIF:Command Bus Interface 
*MBIF:Memory Bus Interface 

Figure 1: organization of the inference unit of PIE64 

Each IU has an inference processor lJNIREDll, tw02 

network interface processors(NIPs) [Shimizu et al. 1991 J, 
a management processor(MP), and a local memory of 
four banks (see figure 1). NIP, which is a dedicated pro­
cessor as well as UNIREDll, performs inter-IU commu­
nicating/synchronizing functions in a form suitable for 
Fleng execution. The transmission throughput is 10M 
word per sec., namely 40MByte per sec. at one connec­
tion for each network. MP ~anages process scheduling, 
load distribution, and load balancing, and performs other 
functions such as system maintenance. We use a gen­
eral purpose processor, SP ARC, as MP to make process 

, management flexible. Thus, in the IUs, we use func­
tional parallelism by the three kinds of processor, where 
UNIREDli performs computation, NIP performs commu­
nication and synchronization, and MP performs process 
management. 

In an IU, these three kinds of processors share the lo­
cal memory, and access it through a three way mem­
ory bus which is driven with a lOMHz clock to synchro­
nize with network access over NIPs. So we can get a 
throughput of 10M word (40MByte) per sec. each way, 
namely 120MByte per sec. in all. In addition, UNIRED­
ll, NIPs, and MP communicate with each other through 
a coprocessor command bus using a specialized protocol 
for command-reply among these processors. The format 
of the coprocessor commands is determined with the FI­
eng data types taken into account. 

2In practice, there are four network interface processor chips in 
one IU. Two of them act in master mode and can start the action 
of network connection while the other two act in slave mode and 
respond to the master NIP when requested. 

feed newly generated 
processes from MP 

multiple contexts I 
rr==;-r====~context 0 .---.J 
~ I Status Reg I context 1 

~~~~~~'~~C~~~~~~~3 ...... ---~ 
I pc: Program Counter activate a sleeping context 
, ~hen a reply is received 

select one active context • 
at every clock cycle i , .: 

. feed the value of PC of the context 
to the internal pipeline I put a context to the sleep 

t state if it waits for a reply 

fetch a instruction and execute it t 
with the pipeline 

(contex no.:) 131211 10 11 11 11 I 

pipeline stage: 2 345 6 7 

Fi~ure 2: overview of the multi-context processing mech­
amsm 

3 UNIREDH Architecture 

3.1 Overview 

UNIREDll is a dedicated processor. It was designed for 
executing Fleng programs efficiently and to meet require­
ments of an element processor for parallel machines. Its 
main features are: 

1. a. tag architecture 
2. three independent memory buses (instruction fetch­

ing, data reading, and data writing) 
3. multi-context processing 
4. a dedicated instruction set to execute Fleng pro­

grams efficiently 
All instructions of UNIREDll have one word (32 bits) 

length, and are single-cycle instructions. Also its data 
types have a length of 32 bits, and consist of two mark 
bits for garbage collection, two tag bits, and twenty-eight 
bits of value part (pointer types); or two mark bits, six 
tag bits, and twenty-four bits of value part (constant 
types) . 

3.2 Multi-Context Processing 

The internal pipeline of UNIREDli is shared by multi­
ple instruction streams (contexts). UNIREDll executes 
them concurrently, and which contexts should be exe­
cuted is determined cycle by cycle. In other words, U­
NIREDll acts as a pipeline-shared MIMD processor (see 
figure 2). Because Fleng is a parallel language which 
generates many instruction streams in parallel, we can 
expect to get enough instruction streams to fill the con­
texts of UNIREDll. Process scheduling is determined by 
the management processor, and UNIREDIl starts a new 
process as one of the contexts by receiving a appropriate 
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Figure 3: pipeline organization of UNIREDll 

coprocessor command from MP. And when one of the 
contexts waits for a reply of some remote memory ac­
cess, UNIREDll puts the context to sleep state and fills 
its pipeline with the other contexts dynamically. 

Two kinds of aim of the multi-context processing exist. 
1) To reduce pipeline interlocking caused by pipelined 
executions of the instructions (intra-processor effect). 2) 
To reduce the cost of process switching due to remote 
memory access (inter-processor effect). Especially, the 
second effect is a very important feature for an element 
processor of parallel machines. 

The most remarkable point of the multi-context pro­
cessing mechanism of UNIREDll is that it can continu­
ously execute instructions of only one context while the 
other contexts are sleeping (as shown at the stage from 
5 to 7 in the figure 2). UNIREDll has a pipeline inter­
locking mechanism to keep dependency among instruc­
tions of one context. Other processors which have simi­
lar mechanisms, such as HEP[Jordan 1983], MASA [Hal­
stead and Fujita 1988], and CPC[Shimuzu et al. 1989], 

do not have pipeline interlocking mechanism and can­
not execute one instruction stream in continuous cycles. 
Therefore they slow down dramatically as the number of 
executable instruction streams decrease. That is not the 
case of UNIREDll. 

Due to the restriction of available number of gates, the 
number of contexts is limited to four. But that is enough 
to get the full effect of multi-context processing, as we 
show later. 

3.3 Hardware Organization 

3.3.1 Pipeline Organization 

Figure 3 shows the internal pipeline organization of U­
NIREDIL The pipeline consists of seven stages. The 
main reason why as many stages as seven are required 
is that, in an IU, all memory access needs two phases, 
one of which is the bus arbitration phase in which the 
four kinds of independent accesses from UNIREDll, two 
NIPs, and MP are arbitrated (see figure 1), and another 
is the data transfer phase in which memory access is ac­
tually performed, so that the memory access time hides 
the bus arbitration time. Thus, at the first and the sec-
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ond stages, UNIREDll fetches an instruction from the 
local memory, decodes it and reads registers at the third 
stage, executes it at the fourth stage, reads data from 
the memory at the fifth and the sixth stages, and writes 
data into the memory at the sixth and the seventh stages. 
Also registers are written at the seventh stage. UNIRE­
Dll has thirty-two general purpose registers per context, 
namely] 28 general purpose registers in alL By means of 
this pipeline organization, UNIREDll makes efficient use 
of its three memory buses and can execute test-and-set 
type instructions which require two times of memory ac­
cess (one read and one write) in one cycle without any 
pipeline holding because the data reading and writing 
buses are handled by different stages. These type in­
structions are very important for processing elements of 
parallel machines. 

The effectiveness of the pipeline architecture is deter­
mined by when and where the pipeline interlock occurs. 
As for UNIREDll, the pipeline interlock will occur when 
not all contexts can be executed. In that case, taking a 
jump (at the fourth stage) will invalidate at most three 
following, already-fetched instructions of the same con­
text at the first, the second, and the third stages. And 
reading registers (at third stage) which are destinations 
of load instructions executed within three preceding cy­
cles will cause pipeline hold. When all four contexts can 
be executed, no pipeline interlock occurs because instruc­
tions of the same context are not executed and registers 
of the same context are not read in any four continuous 
cycles. 

3.3.2 Mechanism of Remote Memory Access 

In principle, memory-accessing instructions of UNIREDll 
can execute remote memory access automatically. UNI­
REDll has a special register which holds the IU identifier 
of six bits, and it compares the IU identifier field of the 
memory address (the upper six bits of the address of 
twenty-eight bits) with the IU-id register when executing 
memory access instructions. When they are not equal, 
UNIREDll issues a remote memory access command to 
NIP instead of accessing its local memory. The result of 
the remote memory access is sent back as a coprocessor 
reply from NIP. 

UNIREDll should receive the replies of the remote mem­
ory access commands correctly. For this purpose, all 
general purpose registers of UNIREDll have a special bit 
indicating that they are waiting for replies or not. When 
an instruction reads the register whose reply wait bit is 
set before the reply is received, UNIREDll cancels the 
instruction and puts its context to sleep. And, after re­
ceiving the reply, UNIREDll wakes the context up and 
re-executes the canceled instruction. 
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Table 1: the instruction set of UNIREDII 

Dereference derf dereference dfcl dereference and check list 
dcll dereference and check list and load car dfcv dereference and check vector 
dcvl dereference and check vector and lod top dfcc dereference and check constant 

Execute exec execute 
exll execute on list and load car 
exvl execute on vector and load top 

Manipulate cpir copy if remote 
Structure cvtp check vector top 
Load / Id load 
Store Idst load and store 

st store 
stim store immediate 

Active bind bind variable 
Unification cvos check variable order and swap 
Heap Allocation allc allocate 
Flow jump jump 
Control jcmp jump on compare 

jtag jump on tag 
jrmt jump on remote pointer 
jcc jump on flag condition 

Coprocessor cpcm send coprocessor command 
Garbage Idsm load and store mark 
Collection jmrk jump on mark/stop condition 
Set setc set constant 

seta set alternative pointer 
eIrf clear condition flags 

Arithmetic add add 
and Logical sub subtract 

and bit-wise and 
xor bit-wise exclusive or 
ror rotate right 
rcr rotate with carry right 
shr shift right 

Management spid set pid register 
shp set heap pointer 
exhp exchange heap pointer set 
Itp load from scratch area pointer 
Idf load from flags 

3.4 Instruction Set 

Table 1 shows the instruction set of UNIREDII. We de­
scribe several notable instructions of it in the following 
su bsections. 

3.4.1 Dereference Instructions 

The dereference instructions are most characteristic of 
the instruction set of UNIREDII. They dereference links 
of a variable and get the value of the variable. To deref­
erence one link per cycle, they recursively jump to them­
selves when the value of the operand register of them is 
a pointer to a variable. In that case, they read the con­
tent of the address of the variable, write its value into 
the same operand register, and jump to themselves. As 
a result, they have dereferenced one link. By means of 
using this mechanism in addition to the cycle-by-cycle 
context switching, instructions of the other contexts can 
be executed even while a dereference loop is processed. 

exel execute on list 
exev execute on vector 
exct execute on constant 
cprr copy if remote with register 
cvtr check vector top with register 
tgld tagged load 
tlds tagged load and store 
sudf store undefind code 

bdim bind with immediate 

call call 
jncp jump on not compare 
jntg jump on not tag 
jloc jump on local pointer 
stop stop 

stmm store with modified mark 

sett set mark and tag 
setf set condition flags 
gfc get flag condition 
adc add with carry 
sbb subtract with borrow 
or bit-wise or 
rol rotate left 
reI rotate with carry left 
shl shift left 
asr arithmetic shift right 
pidt preset pid and tag 
Ihp load from heap pointer 
stp set scratch area pointer 
stf store flags 

One significant point of the dereference instructions is 
that they have special ability for committed choice lan­
guages. That is the suspension register mechanism. In 
head matching of committed choice languages, a goal 
may suspend when a component of its arguments is an 
unbound variable while the corresponding component of 
the current clause head is not a variable. After trying all 
alternative clauses and committing no clauses, the goal 
really suspends. Therefore when a goal may suspend 
at one of alternative clauses, the variable which caused 
the suspension must be recorded to hook the goal by 
some suspension stack mechanisms until all alternative 
clause are tried. In the case of UNIREDlI, the variable 
is recorded in the suspension register (general purpose 
register R30) by the dereference instructions. 

There are two kinds of effect of the suspension regis­
ter mechanism. First, the suspension stack, which is in 
memory in the case of other similar processors [Kimura 
and Chikayama 1987], can easily be implemented in reg-



append([H I T], x, Y) :- Y = [H I Z], append(T, X, Z). 
append([], X, Y) :- X = Y. 

append: 
seta $suspend, ap 
dell rl, $2, r4 [H 

$1 : 
tgld [rl + 1], rl T] 
alle s, 1st, 2, rS [ 

st r4, [rS] , %tmp H I 
sudf [r5 + 1], r6 Z] 

bind rS, r3, r7 Y = [ H I Z] 
jntg r7, udf, $cheekl 
mov r6, r3 Z) 
exll rl, $1, r4 [H 

$2: 
dfcc rl, nil, $fail [] 

cvos r2, r3, r2, r3 X = Y. 
bind r2, r3, r7 
jntg r7, udf, $check2 
succ gtp, mp 
stop 

Figure 4: an example of compiled codes (append) 

isters so that the suspension check is speeded up. Second 
and more important, when the head matching is deter­
ministic, as is often the case with real programs, once 
a goal suspends at one of the alternative clauses, the 
goal suspends after all. Therefore no suspension stack 
in memory-is necessary in that case. The suspension 
register mechanism also speeds up this case. 

Several combined iristructions exist among the derefer­
ence instructions. The dereference-and-check-list (dfcl) 
instruction checks the dereferenced value to determine 
whether it is a pointer to a list or not, and the dereference­
and-check-list-and-load-car (dcll) instruction reads the 
car part of the list if the de referenced value is a pointer to 
a list. Similarly the dereference-and-check-vector (dfcv) 
instruction checks the dereferenced value to determine 
whether it is a pointer to a vector, and so on. These 
instructions are capable of a two-way jump, one for sus­
pension and the other for pointer type check failing. The 
jump addresses are given by the offset value from the in­
struction itself and the alternative pointer register (gen­
eral purpose register R28). 

Another kind of combined instruction is that the exe­
cute instructions, which execute tail recursions, are com­
bined with those dereference instructions so that they op­
timize the tail recursion and the consequent head match­
ing sequence. 

3.4.2 Arithmetics and Bit-wise Logic Instruc­
tions 

The arithmetic and bit-wise logic instructions of UNI­
REDll are very similar to those of conventional proces­
sors. They exist for compiling such things as built-in 
arithmetic predicates. One difference between those of 
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Figure .5: the simulation model used for the evaluation 

Table 3: the number of clock cycles which are necessary 
for emulating co-processor commands issued by UNIRE­
Dll 

command description to reply num.of cycles 

newgoal enqueue a new goal MP no 
endreduce end of a reduction MP no 1 
suspend suspend a goal MP no 7 
deref dereference a variable NIP yes 16 
bind bind a variable NIP yes 17 
read2 read a remote list NIP yes 19 
activates activate a goal NIP no 8 

UNIREDll and those of conventional processors is that 
those of UNIREDII check the tag part of the operands 
and set the tag error flag bit of the flag register accord­
ing to the value of the tags3

. Therefore there are several 
switches of those instructions to deal with various tag 
types. For example, the add.i instruction (.i switch on) 
adds an integer to another integer (otherwise set the tag 
error flag), the add. p instruction adds an integer to a 
pointer, and the add.b instruction adds total 32-bits to 
32-bits and does not change the tag error flag. 

3.4.3 A.n Example of Compiled Code 

Now, we present an example of compiled code of UNI­
REDII in figure 4. It is the code compiled from a de­
terministic append program. In the tail recursion loop 
(between label $1 and $2 in the figure), there are only 
eight instructions. Therefore UNIREDll can execute the 
append program at a maximum rate of 1.25 million re­
ductions per second with the clock rate of 10 MHz. 

4 Simulation Results 

4.1 Simulation Model 

Figure 5 shows a simulation model used for the evalu-

3To simplify the hardware, there are no tag error trap mecha­
nisms in U NIREDII. 
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Table 2: several aspects of the sample programs which are revealed by the simulation 

program append 100 
total clock cycles 1435 
times of reduction 101 
times of suspension 0 
num.of executed instructions 816 
instructions per reduction 8.08 
clock cycles per instruction 1.759 

ation. We evaluated UNIREDll as a single, independent 
processor, and emulated the coprocessor commands is­
sued by UNIREDll with the imaginary command proces­
sor shown in Figure 5. In a real IU of PIE64, these com­
mands are processed by MP and NIPs. Table 3 shows 
the number of cycles which are necessary for emulating 
the commands with the command processor. As for net­
work access commands, the number of cycles in the ta­
ble is determined based on the NIP's performance from 
[Shimizu et al. 1991]. In addition, we used an indepen­
dent queue memory for queuing newly spawned goals in 
the simulation model. This roughly corresponds to the 
MP memory in figure 1. The goal scheduling strategy 
with this queue memory is LIFO (Last-In/First-Out). 

4.2 Performance with Sample Programs 

First, we evaluate UNIREDll's performance under the 
condition that there is no remote memory access. We 
use, as the sample programs, append 100 (deterministic 
append of a list of length 100), nreverse 30 (naive reverse 
of a list of length 30), qsort 50 (quick sort of a list of 
length 50), primes 100 (generation of prime numbers up 
to 100), and 8 queens (the 8-queen problem). Table 2 
shows some aspects of the sample programs, and figure 6 
shows the performance with the sample programs. These 
are measured with 10 MHz clock. 

As for append 100, the performance is comparatively 
low because, for spawning no sub-goals, the number of 
active contexts in the program does not exceed one and 
so the multi-context processing mechanism does not work. 
In this case, the pipeline interlock OCGurs frequently and 
therefore the performance is degraded in spite of only 
eight instructions in its reduction loop. Figure 7 shows 
the average number of active contexts about the sample 
programs. In the figure, more than three contexts are 
active in average about the other four programs. Con­
sequently we can get enough effect of the multi-context 
processing in these programs. 

Another example of low performance is that of primes 
100 because there are no multiplier/divider units in U­
NIREDll and it takes long time to carry out the divi­
sions which that program requires through integer addi­
tions and subtractions. According to table 2, there are 
more than fifty instructions per reduction in that pro-

nreverse 30 qsort 50 primes 100 8 queens 
5427 8162 . 41068 656011 

496 380 726 38878 
29 122 103 558 

4858 7747 39352 647933 
9.79 20.39 54.20 16.67 

1.117 1.054 1.044 1.012 
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Figure 6: performance with the sample programs 
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Figure 7: average number of active contexts in the sam­
ple programs 

gram, and this is over twice as big as in other programs 
such as quick sort 50 and 8 queens. This is because it 
takes about 120 instructions to perform an integer divi­
sion which is required in primes 100. For other similar 
programs which require multiplication and/or division 
of integer and/or floating point, low performance is also 
expected. But, because the management processor has 
its own FPU (floating point unit) in the IUs of PIE64, 
UNIREDll can pass such calculation to the MP and can 
concentrate on reducing goals. However, the evaluation 
has not been done yet. 

4.3 Tolerance of Remote Access Latency 

To evaluate tolerance of remote memory access latency, 
we incorporated a pseudo-remote access mechanism in 
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Figure 9: all sorts of clock cycles vs. remote memory 
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the simulator in spite of the single processor model of it 
as shown in figure 5. In more detail, we change the value 
of the IU-identifier field of the pointers included in every 
goal when reduction of the goal starts or resumes after 
suspension, with the probability which we call remote 
pointer ratio. Remote memory access commands issued 
by UNIREDII are emulated by the command processor 
shown in figure 5 with cycles listed in table 3. Under 
these conditions, we varied the maximum number of the 
contexts from one to four, and measured the clock cycles 
required by all sorts of the pipelined execution of instruc­
tions using the 8 queens program. Results are shown in 
figure 8 to 10. In these figures, the lowest part (shad­
owed) of the graph represents the number of executed 
instructions, the second part (hatched) represents the 
number of invalidated instructions by some jumps, the 
third part (lightly shadowed) the number of cycles while 
the internal pipeline of UNIREDII holds, and the fourth, 
uppermost part (white) the number of cycles while the 
pipeline are sleeping because, waiting for some replies, 
no contexts can be executed. 

In figure 8, the multi-context processing mechanism of 
UNIREDil is not activated because the maximum num­
ber of the active contexts is set to one. Therefore the 
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pipeline sleeping time (the white part of the graph) can 
not be hidden and becomes longer and longer as the re­
mote memory access increases. Moreover, the pipeline 
hold time and the amount of invalidated instructions are 
great because the pipeline interlock occurs frequently. 

In the other two figures (figure 9 and 10), the multi­
context processing mechanism works and works O1ol'f' ef­
fectively as the number of contexts increase. The pipeline 

sleeping time is least in the figure 10 and the pipeline 
interlock (the pipeline hold and the instruction invalida­
tion) hardly occurs in that figure. They become a little 
longer as the remote memory access increases because 
the average number of the active contexts decreases. Fig­
ure 9 shows an intermediate state between figure ~ a.nd 
10. 

4.4 Effects of Dedicated Instructions 

Finally, we present the effect of the dereference instruc­
tions, which are most characteristic of the instruction 
set of UNIREDII. Figure 11 shows the speed up about 
four sample programs (naive reverse 30, quick sort 50, 
primes 100, 8 queen) without the dereference instructions 
(the dereference instructions are resolved into more ba­
sic instructions), with only the basic dereference (derf) 



722 

instruction, with the dereference-and-check-listj constant 
(dfcl j dfcc) instruction, and with the all combined in­
structions such as the dereference-and-check-list-Ioad-car 
j execute-on-list-Ioad-car (dclljexll) instruction, respec­
tively. 

In the figure, the speed up of the basic dereference in­
struction is about 10 % except in toe primes 100 pro­
gram, in which the majority of the executed instructions 
are arithmetic ones. In addition, the combined instruc­
tions have their effect as shown, and the total effect 
of these instructions is about 30% except primes 100. 
Therefore it can be said that the dereference instructions 
have a great effect. 

5 Discussion 

In the previous subsection, we present the effect of the 
dereference instructions and the combined ones. One 
point is that they are not such complicated instructions. 
In the hardware design, the instruction decoder does not 
include the critical path which actually determines the 
maximum clock rate of UNIREDll. The critical path 
is included in reading general purpose register file and 
ALU calculation. Moreover, all of the instructions of U­
NIREDll are single-cycle instructions because they jump 
to themselves recursively when they need more cycles 
to complete their action, as described before in section 
3.4.1. 

Owing to these dedicated instructions, we can compile 
Fleng programs so that the number of executed instruc­
tions a.re minimized. As the result, we can achieve high 
performance though the clock rate is comparatively slow, 
10 MHz. 

Finally, we shall mention the effect of the multi-context 
processing of UNIREDll. As well as reducing overhead of 
inter-processor synchronization, we can reduce pipeline 
interlock with it so that we can turn the pipeline of U­
NIREDll into an interlock-free one. 

6 Conclusion 

We have described the architecture of the inference pro­
cessor UNIREDll, and evaluated some aspects of it. We 
got a performance of about 1 MRPS with lOMHz clock, 
and made certain that the multi-context processing of 
UNIREDll has a big effect on reducing pipeline inter­
locking and on reducing overhead of the remote memory 
access latency. In future, we will evaluate it by larger, 
real application programs. And, of course, we will make 
the real UNIREDll chip work as PIE64 system element. 
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ABSTRACT 

This paper proposes and evaluates the. hardware 

implementation required for dynamic load balancing in 

the prototype PIM/c of the Parallel Inference Machine 

(PIM). In fine grain multiprocessing, dynamic load 

balancing is suffering from the high overhead due to the 

frequent access to load information. Proposed hardware 

can reduce the overhead by speeding up the access to 

the load information. In order to utilize the high locality 

of logic programs, PIM/c is configured along a 

hierarchical structure of network-connected clusters 

each of which is a bus-connected multiprocessor. 

Therefore two kinds of hardware suitable for each 

hierarchy are implemented for dynamic load balancing. 

First, in the clusters, we propose a register with 

broaC:1cast write feature. The evaluation determines the 

reduction of overhead due to memory polling which 

detects a load request. The proposed hardware reduces 

the execution time of logic programs by 15%. 

Second, in the network, we propose the use of a 

shortcut path to request the value of the total load within 

a cluster. The evaluation shows that the overhead due to 

the request of that value is reduced as a result of 

introducing the shortcut path. The proposed hardware 

reduces the execution time by 50%. 

The results obtained confIrm that the use of hardware 

can reduce the high overhead of dynamic load 

balancing. 

1. INTRODUCTION 

Japan's Fifth Generation Computer project [1] has 

been centered around ICOT (the Institute for new 

generation COmputer Technology). ICOT has 

developed the parallel logic programming language 

KLI (Kernel Language-I) [2] to describe knowledge 

and information processing systems. ICOT has also 

produced software in KL 1, including the PIM operating 

system [3]. 

We are currently developing the PIM/c [4] as a KL1-

based machine. A hierarchical structure of network­

connected clusters each of which is a bus-connected 

multiprocessor is introduced to utilize high access 

locality of KLI programs in PIM [5]. Use of locality 

could restrict the interactions to clusters of several 

processors and thus reduce the communications among 

clusters. Therefore, a double hierarchical organization 

is used in PIM/c. 

Dynamic load balancing is one of the main research 

areas for PIM. As a result of the fact that logical 

relations are present in a KLI program and they never 

defIne their process of execution with determinacy, 

dynamic load balancing must be used. For dynamic 

load balancing it is necessary to require load 

information, for example, the information about the 

existence of idle processors or the value of a total load 

within a cluster. The load information is updated and 

referenced by distributed processors. In other words 

the load information is global, therefore it has no 

locality. 

A problem exists in that hardware for normal process 

execution in PIM/c: is optimized to the access with 

locality. With this type of hardware the latency in 

accessing global information is large. In fIne grain 

multiprocessing in KLI programs, high frequency and 

large latency in accessing load information produces 

high overhead. Therefore, extensions in hardware are 

introduced in order to reduce the latency of load 

information in PIM/c. 

In shared bus mUltiprocessors, snooping caches are 

known to reduce the memory latency observed by the 

processors [6,9]. There are two types of cache 

coherency protocols for rewriting shared data with 
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copies distributed in plural caches; invalidation-type 

protocols and broadcast-type protocols. The choice 

depends on whether it is preferable to invalidate old 

copies for rewriting by the same processor, or to 

broadcast the new data for rewriting by other 

processors. 

Eggers [7] defined "per processor locality" as the 

average number of repeated write references to the same 

address by the same processor. For normal process 

execution in the KLI system, an incremental garbage 

collection makes the same processor reuse the same 

address repeatedly for different data references [4]. 

Thus invalidation protocols are more suitable due to 

high "per processor locality". 

For dynamic load balancing, broadcast protocols are 

preferable in order to access load information 

efficiently. Although protocols using both invalidation 

and broadcast features are known as "competitive 

snooping protocols [8]", the cache is insufficient to 

reduce the latency in accessing load information within 

the cluster of bus-connected multiprocessors. Thus the 

snooping cache in PIM/c utilizes an invalidation 

protocol and the implementation of broadcast feature is 

also considered, not for cache, but for registers to 

reduce the latency more efficiently. 

In network-based mUltiprocessors, for normal 

process execution, it is more important to increase the 

throughput than to reduce the latency because the "non­

busy-waiting" feature could overcome the large latency 

[4]. The PIM/c network unit has message queues to 

increase the throughput, although they produce an 

increase in latency. For dynamic load balancing, use of 

the old information may cause wasteful load 

dispatching. Therefore, a shortcut path to the message 

queues is introduced to reduce the latency in accessing 

load information through the network of PIM/c. 

Hardware extensions in PIM/c require only a small 

amount of hardware because the addressable space for 

broadcasting is limited in the shared bus, and because 

the increase in the number of interconnections among 

clusters is less than that of a system with a special 

purpose network [10]. 

2. PIM/c HARDWARE FEATURES 

PIM/c has the following hardware features: 

A. Hierarchical structure of shared bus 

multiprocessor and network based multiprocessor. 

Figure 1 shows the configuration of PIM/c. It is 

organized along a hierarchical structure of network­

connected clusters to utilize the localities of KLI 

programs. Thus, the shared bus hierarchy consists of 

processors combined in a cluster. Each processor has 

its own cache, and they share a common bus. Software 

simulation has proved that the common bus might be a 

bottle-neck. We concluded that the number of 

processors within a cluster should be limited to around 

eight, and that a two-way-interleaved common bus [11] 

should be possible in PIM/c. 

We consider that utilizing the access locality makes it 

possible to reduce the amount of network hardware 

because of reducing the number of messages 

transferred among clusters. As a consequence, in PIM/c 

the network is connected only to cluster controllers 

(CC) instead of all processors in the cluster. 

l Crossbar network J 32 Clusters 
/ System 

I I 
I • I 

CC PE1 PE8 

I gache I ••• I ~aChe I Cache 
1 

II .II 11 
I • • • 

11 Interleaved shared-bus 
1 ..l I Shared memory P 

8PEs / Cluster t-

CC:Cluster Controller 
PE: Processor Element 

1-

Fig. 1. The configuration of PIM/c. Each 

cache has a capacity of 80 Kbytes and consists of 20 

byte blocks. 



B. Broadcast registers in the shared bus hierarchy. 

In order to reduce the access latency of load 

information in the shared bus hierarchy, registers with 

broadcast feature are introduced in PIM (Fig. 2) [12]. 

We denote these registers as EFR's (Event Flag 

Register). They have the following features: 

• one-bit wide to indicate an event, and a fast 

detection feature for control jumps which checks the 

existence of events . 

• feature of broadcast write; therefore, registers 

indicating the same request event to any processor 

can be written simultaneously. 

The reference and jump can be done within a cycle. 

When using registers, there is no overhead due to cache 

misses. Each PIM/c processor has 16 EFRs. 

P E 0 PEl P E 7 Shared 

I .... _-.-#-. -:'- - ... 
PE: Processing Element 
EFR: Event Flag Register 

Fig. 2. Broadcast registers in the cluster. Bold 

lines show the propagation path of a request event to 

broadcast registers and the broken lines show the 

memory polling path without hardware support. The 

thin lines show the reset action of that event. 

C. Shortcut path in the network hierarchy. 

In order to reduce the access latency of load 

information in the network hierarchy, two kinds of 

features are introduced; a shortcut path for the specific 

messages (Fig. 3) [13] and the registers that hold the 

load information are called CIR's (Cluster Information 

Register). The hardware has the following features: 

• a shortcut path to message queues. 

• eight-bit wide registers to indicate load information 

in a corresponding cluster. 

The register should be written with the load 

information by its corresponding cluster controller. 

As the load information is required without waiting at 

message queues and without waiting for the cluster 

controllers toreceive, specified registers can always be 

read in 11 cycles. 

eeo 

Network un~ 

Send 

msg. 

queue 

• 

ee1 

1 

Recv. 

msg. 

queue 

CC: Cluster Controller 
CIA: Cluster Info Register 

Fig. 3. Shortcut path in the network. The 

shortcut paths and the registers exist in the router board 

of the packet switching network. Broken lines show the 

normal path through the message queues to increase the 

network throughput and the bold lines show the 

shortcut path to bypass the queues. 

3. EVALUATION STRATEGY 

We defined the following two strategies to evaluate 

the effectiveness of the proposed load balancing 

hardware. 

3.1 Evaluation on the Real Hardware 

Real hardware was used for evaluation as the 

software simulation is almost impossible for the 

following reasons: 

• The presence of the cache and the network introduce 

more parameters. 

There are many hardware parameters related to the 

internal states of the cache and the network. The 

common bus arbitration time, and the message 

packet switching time are examples. The overhead 

of cache misses and the network latency is important 
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in this evaluation. Thus, simulating the cache and 

network effects concurrently with processor 

activities would have taken a great deal of time in 

software simulation. 

3.2 Evaluation using an Artificial Load 

Model 

With an aim toward further improvement, we 

evaluated an artificial load model for the following 

reasons: 

• to separate the effect of hardware alone. 

An evaluation independent of the specific 

application is necessary in order to isolate the 

speedup produced by the proposed hardware 

mechanisms. 

• to separate the effect of load balancing. 

The real KLI execution environment involves many 

new control sequences in addition to load 

balancing. For example, handling the priority of 

loads needs another polling action using EFR 

registers. The total performance depends on the 

usage of the proposed hardware in other control 

sequences. 

4. EVALUATION RESULTS 

We carried out the evaluation of the proposed 

hardware in both shared bus and network-based 

hierarchies. 

4.1 Evaluation of broadcast registers in the 

shared-bus hierarchy 

We carried out this evaluation by focusing on the 

reduction of the latency to access the information about 

the existence of the idle processors. 

A. The load balancing scheme. 

The load balancing scheme is explained below: 

• Distributed load pool. 

Each processor has its own load pool in order to 

avoid implicit data transfers between caches due to 

updating a serial link in case of the generator 

processor of the load differs from its consumer 

processor using common load pool [14]. 

Consequently, an explicit load balancing 

communication for the distributed load pools is 

required. 

• Receiver-initiated load balancing. 

The explicit load balancing communication for the 

distributed load pools should be initiated by fully 

idle processors in order to avoid wasteful 

dispatching. Thus the communication is request 

based. 

• Communication with arbitrary responder . 

In order to reduce the response time without 

interrupting busy processors, a new type of 

communication, the AR (Arbitrary Responder) 

communication is introduced in PIM/c [12]. The 

request is sent to any processor which has more 

than one load in its load pool. In order to avoid the 

high overhead of context switching, every 

processor polls the request at intervals where the 

context switch overhead is low. Thus any 

processor which detects the request rust responds 

to it. As the timing to detect requests differs in 

each PIM/c processor, this communication method 

is expected to reduce the response time 

proportionally to the number of processors in a 

cluster. 

B. The load model. 

This model reflects the following characteristics of 

KLI program execution: 

• Unit load. 

We denote the unit as the reduction. The unit is 

assumed to be 200 cycles in PIM/c (Fig. 4). 

• Indeterminacy in the granularity of loads. 

In order to simulate "Tail Recursion Optimization" 

[17], we define the goal as consisting of an 

arbitrary number of reductions (1 to 16). 

• Indeterminacy in the number of goals . 

In order to simulate the indeterminacy, we assume 

that each processor generates an arbitrary number of 

goals (1 to 4096). 

• A high write ratio and a high share ratio. 

Accesses performed within the reductions have the 



following parameters: write ratio is 0.5, share ratio 

is 0.5, where write ratio is defined as the ratio of 

write references to total memory references, and 

share ratio is defmed as the ratio of references to 

shared data area to total memory references . 

• A high access locality. 

We define the locality as the number of successive 

accesses to the same address. The value is set to 4 

in order to simulate free-list manipulation, which 

consists of allocating, instantiating, referring and 

deallocating a memory cell. 

N 

PEi 

o : Unit load 

Fig. 4. A Load model with varying 

granularity. 

C. Results o/the evaluation in a cluster. 

We control the initial load amount in each processor 

to vary load balancing conditions. According to the 

deviation of the initial load amounts within processors, 

14 cases are simulated with an 8-processor cluster. The 

resulting data are the total elapsed time (1'), the total idle 

time (I), the total wait time after requesting for load (i), 

the total dispatching time (t), the total reduction count 

(R) and the load request count (r). The total idle time 

includes the time spent waiting for load dispatching 

since requesting a load by updating a bit-map word 

until receiving a load by reading a non-zero value from 

its communication area, and the time to wait for 

termination of the whole program. The bit-map word is 

a data array in which each bit corresponds to a 

processor requesting load. The total dispatching time 

includes the time to select an idle processor by encoding 

the bit-map word to the address of its communication 

area, and the time to dispatch a load to each idle 
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processor by updating their communication areas. The 

evaluation measures are i and t, and the reduction cost 

is defmed as follows: 

Reduction cost = (T - I - t ) / R 

Figure 5 shows the performance increase in reduction 

using registers. The total reduction cost and the load 

request count are varied in 14 simulation cases. In this 

figure, request ratio is introduced, which is defmed as 

the ratio of the load request count r to the total reduction 

count R. The reduction cost is almost independent of 

the request ratio. This fact indicates that the memory­

polling overhead caused by checking request 

occurrences is larger than the overhead due to cache 

misses using invalidation protocol. The speedup 

obtained is 15% due to the use of EFRs. 
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Fig. 5. The increase in speed using regis­

ters. The reduction cost is defined as the number of 

execution cycles per unit load. The result involves extra 

cycles for probing. The request ratio is defined as the 

number of request per reduction. Using memory 

polling the reduction cost is high due to the serial 

execution of a memory access and a branch. Using 

EFR, both the access and the branch can be done within 

a cycle. The polling is done for three kinds of events; 

load request, load dispatching and termination of the 

whole program. 
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Figure 6 shows the wait time i and the dispatching 

time t as a function of request count. It is confirmed that 

the use of EFR with broadcast feature reduces both the 

wait time and dispatching time. The use of EFR reduces 

the dispatching time by 20%, and reduces the wait time 

by 15%. 

2.5 HI 2.510' 

• -0 - Wllhou,-EFR 
WAIT TIME 

--Wllh_EFR 0 

en 2.01r1 2.010' 
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~ ~ w 
~ 1.51r1 1.5 10' =i 
t= -I 
(!) §: 
Z m 
I 1.01r1 1.010' :Q () 0 

~ CD 
a.. .!!1 
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5 5.01rJ 5.010' 

-.(>o-Wllhoul_EFR 
DISPATCHING TIME 

--With_EFR 

0 0 
2000 3000 4000 5000 0000 7000 

REQUEST COUNT 

Fig. 6. The increase in speed using broad­

casting. The dispatching time and the wait time 

increase due to the cache misses using an invalidation­

type snooping cache. The use of broadcast feature 

eliminates the overhead due to the cache misses. 

4.2. Evaluation of shortcut paths in the 

network-based hierarchy 

We carried out this evaluation by focusing on the 

reduction of the latency in accessing the value of the 

total load in a cluster. 

A. The load balancing scheme. 

The load balancing scheme is described below: 

• Sender-initiated load balancing. 

A study of the Multi-PSI system disclosed a 

problem of the receiver-initiated load balancing 

sch~eme in large-scale machines, namely that a load 

request contention may arise at busy processors 

[15]. In order to avoid this contention, an improved 

sender-initiated scheme, named "Smart Random 

Load Dispatching" [5] is efficient in reducing 

wasteful dispatching. In this scheme, the cluster to 

which goals are dispatched is determined at random 

and then this goal dispatch is aborted on the 

condition that the dispatch target has more loads in 

the pool than the dispatching cluster. 

B. The Load model. 

The load model among clusters is defmed in such a 

way as to reflect the changes in the amount of loads in 

the load pool. The load model is as follows: 

• An initial goal is denoted by L( 16) (Fig. 7 shows 

L(5)). 

• The execution of goal L(i) produces (i-I) 

subgoals, L(i-l), ... , L(2), L(1). Thus, the goal 

L(i) has 2i-l reductions. 

• Each reduction takes 300 cycles to execute using 

network messages. 

• The message length required for the load 

dispatching is 27 bytes long. Thus, it takes 27 

cycles to send this message through the one-byte­

wide network interface. The length of the message 

requesting the load amount is 2 bytes. 

© :Unitload 

Fig. 7. A load model with floating amount of 

load. 

C. Results o/the evaluation among clusters. 

We control the dispatching rate, which is defmed as 

the ratio of all goals dispatched to other clusters to all 

executed goals, by changing the interval of the 

dispatching control. In order to determine the efficiency 

of load dispatching, the total elapsed time (T), the total 

idle time (I) and the dispatching rate (d) are measured. 

Differences result from the latency of load information. 



Figure 8 shows the results obtained by applying the 

smart random load dispatching scheme to 8 cluster 

system without support hardware. The normalized 

elapsed time, which is defmed as the ratio of elapsed 

time by 8 cluster system to elapsed time by single 

cluster, and the utilization of processors are plotted as a 

function of the dispatching rate. In order to compare the 

results in the two cases, we assume that the dispatching 

rate is controlled to be 0.2, because safe control occurs 

only at the upper side of the minimum point. Without 

the support hardware, the resulting increase in speed is 

approximately 3.3 in an 8-cluster system at a 

dispatching rate of 0.2. 
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without support hardware. The dispatching rate 

is defined as the ratio of all goals dispatched to other 

clusters to all executed goals. The normalized elapsed 

time varies considerably from 0.125 using 8 clusters 

connected via a network because the overhead for 

message handling is visible. 

Figure 9 shows the results after applying the smart 

random load dispatching scheme with hardware 

support. The normalized elapsed time and the utilization 

of processors are plotted as a function of the 

dispatching rate. With the support hardware active, the 

processor can reduce the overhead due to requesting the 

load amount. The resulting increase in speed is 

approximately 5.5 in an 8-cluster system at a 

dispatching rate of 0.2. 

Comparing the two results, the use of the proposed 

hardware halves the normalized elapsed time at 0.2 

dispatching rate, where the control of dispatching rate 

seems to be possible. 

It should be noted that the shortcut path can also be 

used for other load balancing schemes, including the 

minimum load distribution scheme [16]. These schemes 

will be evaluated in future work. 
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Fig. 9. Smart random dispatching 

with support hardware. The normalized elapsed 

time varies near 0.125 using 8 clusters connected via a 

network because the overhead for message handling is 

quite low. 

5. CONCLUSION 

Hardware for dynamic load balancing is implemented 

in both shared-bus and network-based mUltiprocessors. 

We propose a register with broadcast write feature in 

shared-bus multiprocessors. Also, in network-based 

multiprocessors, the network unit uses a shortcut path. 

The evaluation was carried out using real hardware and 

an artificial load model. 

The evaluation results in the shared bus hierarchy 

determine the overhead due to memory polling which 

detects a load request. The proposed hardware reduces 
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the execution time of logic programs by 15%. 

The evaluation results in the network-based hierarchy 

show that the overhead due to requesting the load 

amount is reduced as a result of introducing the shortcut 

path. The proposed hardware reduces the execution 

time by 50%. 

It is confirmed that the proposed hardware reduces 

the access latency of load infon~ation, and 

subsequently the overhead produced by dynamic load 

balancing. 
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Abstract 

EM-4 is a highly parallel computer whose eventual tar­
get implementation has more than 1,000 processing el­
ements(PEs). The EM-4 prototype consists of 80 PEs 
and has been fully operational at the Electrotechni­
cal Laboratory since April 1990. EM-4 was designed 
to execute in parallel not only static or regular prob­
lems, but also dynamic and irregular problems. This 
paper presents an evaluation of the EM-4 prototype 
for dynamic and irregular problems. For this eval­
uation, we chose a checkers program as an example 
of the game tree searching problem. The game tree 
is dynamically expanded and its structure is irregu­
lar because the number and the depth of subtrees of 
each node depend heavily upon the status of the game. 
We examine effects of the load balancing by function 
distribution, data transfer, control of parallelism, and 
searching algorithms on the EM-4 prototype. The re­
sults show that the EM-4 is effective in dynamic load 
balancing, fine grain packet communication and high 
performance of instruction execution. 

1 Introduction 

Parallel computing has been effective for static or reg­
ular problems such as scientific computing and data­
base systems. Parallel computing is, however, still an 
active research topic for dynamic or irregular prob­
lems. 

EM-4 is a highly parallel computer which was de­
veloped at the Electrotechnical Laboratory in Japan. 
Its target applications include not only static or regu­
lar problems, but also dynamic or irregular problems. 
EM-4 provides special hardware for parallel comput­
ing: high data transfer rate, high data matching per­
formance, dynamic load balancing, and high instruc­
tion execution performance. 

In this paper, we evaluate the performance of EM-4 
on a dynamic and irregular problem. The performance 

of EM-4 on some small programs such as recursive fi­
bonacci is presented in [Kodama et al. 1991]. While 
the fibonacci program creates many function instances 
dynamically, it is not irregular because the tree of call­
ing functions is a binary tree, the depth of each branch 
is similar to those of its neighbors, and the size of each 
node function is the same and small. We chose a game 
tree searching problem as a practical problem. This 
class of programs dynamically expands the game tree, 
and is irregular because the number of subtrees from 
each node of the game tree, the depth of su btrees, an d 
the execution time of each node depends heavily upon 
the status of the game. Furthermore, the o:-{3 search­
ing algorithm is often used for game tree searching, 
because it cuts the evaluation of the current tree by 
using the evaluation of the previous tree. Tree cutting 
makes the program more dynamic and irregular. 

This paper presents the evaluation of the EM-4 pro­
totype using a checkers game program as an example 
of the game tree searching problem. We examine the 
effect of parallel computing on the EM-4 prototype. 
Section 2 presents an overview of the EM-4 and its 
prototype. Section 3 describes a game tree searching 
problem and a checkers game. Section 4 presents eval­
uation issues for load balancing, data transfer, control 
of parallelism, and searching algorithms for the check­
ers game. Section 5 gives an evaluation and examina­
tion of the strategies described in section 4. Section 6 
concludes our results and discusses our future plans. 

2 The EM-4 Highly Parallel 
Computer 

EM-4 is a highly parallel computer whose even­
tual target implementation has more than 1,000 
PEs[Yamaguchi et al. 1989, Sakai et al. 1989]. The 
EM-4 prototype consists of 80 PEs and has been fully 
operational since April 1990[Kodama et al. 1990]. 
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Figure 1: The organization of EM-4 Prototype 

2.1 The architecture of EM-4 

The organization of the EM-4 prototype is shown in 
Figure 1. The prototype consists of 80 PEs, and each 
5 PEs are grouped and are implemented on a single 
PE board. The PE of the prototype is an single chip 
processor which is called EMC-R and is implemented 
in a C-MOS gate array. The PE has local memory 
and is connected to the other PEs through a circular 
omega network. 

EMC-R is a RISC processor for fine grain packet­
based parallel processing. EMC-R generates packets 
in an execution pipeline, and computation is fired by 
the arrival of packets. This is a dataflow mechanism, 
but we improved it so that it can operate on a block 
which consists of several instructions, executed exclu­
sively from other instructions. This model is called 
the "strongly connected arc model", and the block is 
a strongly connected block(SCB). 

When a packet arrives at a PE, the execution 
pipeline is fired and EMC-R executes the SCB indi­
cated by the packet. First, EMC-R checks whether the 
partner of the packet has arrived. If the parter exists, 
it continues to execute the SCB until the end of the 
block. If the parter does not exist, EMC-R stores the 
packet data in a matching memory and waits for the 
next packet. 

The packet size of EMC-R is two fixed words and 
there is only one format consisting of one address word 
and one data word. It can be generated in a RISC 
pipeline of EMC-R. During the data word is calcu­
lated in a RISC pipeline, the address word is formed 
in a packet generation unit when the packet output is 

instructed. Since the network port is only one word 
wide, first the address word is sent to network, and 
then the data word is sent. In the second clock cycle, 
the next instruction can be executed in parallel with 
data word transfer. 

The circular omega network has the same structure 
as an omega network, except that every node of the 
network is connected to a PE. The network has the 
following features: (1) The required amount of hard­
ware is D(N), where N is. the number of PEs; (2) The 
distance between any two PEs is D(logN). The 3 by 
3 packet switching unit is in a EMC-R, and a packet 
can be transferred to a neighboring PE independent of 
the instruction execution on the PE. Packets are trans­
ferred by wormhole routing, and take only M + 1 cycles 
between PEs which are distance M apart if there is 
no network conflict. 

The clock of the EMC-R runs at 12.5 MHz. The 
RISC pipeline can execute most instruction in one 
clock cycle; the peak execution performance is 12.5 
MIPS. It takes two clock cycles when two operand 
matching fails, and takes three clock cycles when the 
matching succeeds. The peak synchronization perfor­
mance is 2.5 Msync/s. It takes two clock cycles to 
transfer a packet, and the peak network packet trans­
fer performance is 18.75 Mpacket/s. EM-4 prototype 
consists of 80 PEs, the peak execution performance is 
1 GIPS, its ,peak synchronization performance is 200 
Msync/s, and its peak network packet transfer per­
formance is 1.5 Gpacket/s. EMC-R achieves a high 
performance in both instruction execution and packet 
data transfer/matching. 
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[LD,[GA,CA]] is the MLPE packet which shows that 
PE[GA,CA] has the minimum load LD 

Figure 2: How to Detect the Minimum Load PE 

2.2 Dynamic load balancing method 

To get high performance in parallel computers, high 
utilization of PEs, as well as high performance of PEs 
are necessary. If the program has simple loop struc­
ture or static data transfer structure such as in dif­
fusion equation applicaitons, the load of the program 
can be estimated and the load can be statically bal­
anced at programming or compiling time. But, if the 
program is dynamic or irregular structure, static load 
balancing is difficult and dynamic load balancing· is 
necessary. 

In the EM-4, we implemented automatic load bal­
ancing mechanisms attached to the circular omega 
topology. In the circular omega network, each node 
has two circular paths. We use a path to group 
the PEs, and use another path to achieve dynamic 
load balancing. Suppose that a PE wants to in­
voke a new function. This PE will send out a spe­
cial MLPE{Minimum Load PE) packet. The MLPE 
packet always holds the minimum load value and the 
PE address among the PEs which it goes through. 
The load of each PE is evaluated by hardware in the 
PE mainly based on the number of packets in the in­
put buffer. At the starting point, the MLPE packet 
holds its sender's load value and its PE address; when 
it goes through a certain SU in the circular path, the 
SU compares the load value of the PE connected to it, 
and if the value is less than of the packet, the data in 
the MLPE packet will be automatically rewritten to 
the current PE's value; otherwise the MLPE packet 
keeps its value and goes to the next SU. This oper­
ation is done in one clock cycles of packet transfer. 
When the MLPE packet returns to the starting point, 
it holds the least loaded PE number and its load value. 
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Figure 2 show this. In this figure, PE[l,O] generates 
an MLPE packet and, after the circulation, it obtains 
the least loaded PE number [0,2] and its load l. 

By this method, called the circular path load bal­
ancing, each MLPE packet scans s different groups, 
where s is the number of network stages. When 
the total number of the PEs increase, coverage of 
PEs by this load balancing method becomes relatively 
small. The efficacy of this method is reported in 
[Kodama et al. 1991]. 

Since it takes several cycles for the MLPE packet to 
return, the EM-4 resolves this latency by pre-fetching: 
it sends a MLPE packet in advance, allocates the new 
function instance on the PE specified by the returned 
packet of MLPE, and stores the function ID in a spe­
cial register of the required PE. When a function call is 
necessary, the stored function ID is used and another 
MLPE packet is sent for the next function call. In the 
pre-fetch strategy, the new function ID may have not 
yet been stored when a function call is necessary. In 
this case, the pre-fetch method uses one of the other 
distribution methods to choose the PE. 

3 Game Tree Searching Prob­
lem 

We choose the checkers program as an example of a 
game tree searching problem in order to evaluate the 
EM-4 on a dynamic and irregular problem. Since the 
rules of checkers are very simple, the program makes 
it easy to characterize the parallel behavior of the pro­
gram. 

The rule of checkers game is as follows. Each player 
moves one of his pieces in turn until the player who 
has no pieces or moves loses. Pieces can be moved 
to a forward diagonal area. If there is an opponent's 
piece in a forward diagonal area, and the next diagonal 
area is empty, you must jump to the empty area and 
remove the enemy piece. If you can jump successively, 
you must jump successively. If your piece arrives at 
the end of the enemy area, that piece can then move 
in all four diagonal directions. 

The Min-Max searching algorithm is the simplest al­
gorithm for the game tree searching problem. This al­
gorithm expands the game tree by the possible moves 
of each player in turn. When the game tree is ex­
panded to a certain level, each leaf is evaluated. If 
the stage corresponds to your turn, the maximum 
node is selected; if the stage is your opponent's turn, 
the minimum node is selected. Although the Min­
Max algorithm is simple, it is not efficient because 
it needs to search every branch. The a-{3 searching 
algorithm[Slagle 1971] is more efficient than the Min-
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Max algorithm, because this algorithm tries to cut off 
the evaluation of unnecessary branches. 

If the game tree is expanded in a depth-first man­
ner, the resources required to remember the game tree 
are small. This.expansion makes it easy to cut off the 
unnecessary branches, but reduces the parallelism. If 
the game tree is expanded in a breadth-first manner, 
it results in large parallelism, so this expansion is well­
suited for parallel computers. However, since the num­
ber of nodes increases exponentially as a function of 
the depth of the tree, the resources will be exhausted 
quickly if the parallelism is not controlled. 

4 Execution Issues of a Check­
ers Game 

The overheads to parallelize the checkers program are 
the following: 

1. overhead for allocating new function instances on 
other PEs. 

2. overhead for transferring the current status of the 
table to other PEs. 

3. idle PEs caused by an unbalanced load. 
4. decline of efficiency caused by cutting branches in 

the a-f3 search. 

These overheads depend upon implementation strat­
egy decisions. The function distribution strategy ef­
fects the function allocation overhead. Packed data 
transfer reduces the amount of transfer data. The 
idle PE ratio depends upon the load balancing strat­
egy. The searching algorithm changes the branch cut­
ting overhead. These overheads also depend upon the 
control of the parallelism and the searching strategy. 
Each of these decisions is described in greater detail 
in the following subsections. 

4.1 Function distribution and load bal­
ancIng 

Load balancing is the most important issue in achiev­
ing high performance on parallel computers. Since the 
checkers program requires many function instances to 
expand the game tree, it distributes them among the 
PEs in order to balance the load across the machine. 

Our checkers program can distribute function calls 
by one of the following two strategies: 

round-robin distribution Each PE independently 
chooses the PE which will execute the called func­
tion in a round-robin manner. 

manager distribution A centralized manager PE 
chooses the PE which will execute the called func­
tion. 

We can also combine the two methods: that is, the 
manager distribution can be used until a certain level 
in the game tree expansion, and the round-robin dis­
tribution can be used after that level. In the round­
robin distribution, the load might be unbalanced at 
the beginning of the program. In the manager distri­
bution, the overhead is larger than round-robin dis­
tribution because of packet communication overhead 
and concentration of requests. 

EM-4 dynamically distributes functions according 
to the load of PEs by the circular path load balanc­
ing described in section 2.2. The dynamic round-robin 
distribution described below is the third function dis­
tribution method that we evaluated in our checkers 
program. 

dynamic round-robin distribution A PE is dy­
namically chosen by the circular path load bal­
ancing method, and in the case that the MLPE 
packet has not returned, a PE is chosen by the 
round-robin distribution method. 

4.2 Data transfer 

Since EM-4 is a distributed-memory parallel com­
puter, the checkers program sends the status of the 
table and selected moves by packets to functions on 
other PEs. The status of the table is represented by 
a 64 word array, but each word is only 4 bits. The 
following two transfer methods are considered in the 
checkers program. 

unpacked transfer use packets which have data 
representing a position. 

packed transfer use packets which have packed 
data representing 8 positions. 

While the unpacked transfer sends eight times more 
packets than the packed transfer, the packed transfer 
needs to pack and unpack data. 

4.3 Control of parallelism 

Parallelism has to be controlled to both avoid exhaus­
tion of resources, and to provide sufficient parallelism 
to keep all the PEs busy. To control parallelism, 
throttling can limit the number of the active func­
tions. If the number of active functions exceeds a cer­
tain amount, further requests for calling functions are 
buffered until other functions are finished. Throttling 
has the possibility of deadlock. 

Another way to control parallelism is to switch 
from breadth-first search to depth-first search at some 
level of the game tree, where the level can be deter­
mined either statically or dynamically. Static switch­
ing sets the level by the depth of the game tree. Dy­
namic switching determines the level using the load 



of PEs. Breadth-first searching increases parallelism, 
and depth-first searching restrains parallelism. 

Our checkers program uses the static switching 
strategy to control parallelism, because this strategy 
is very simple. We plan to implement the dynamic 
switching strategy for the checkers program in the 
near future. 

4.4 Game tree searching algorithlTIs 

The two primary algorithms for the game tree search­
ing problems are the Min-Max algorithm and the a-/3 
algorithm. The Min-Max algorithm provides much 
parallelism in the breadth-first strategy. The a-{3 al­
gorithm has high efficiency in the depth-first strategy. 
If the a-/3 algorithm is used only with the breadth-first 
strategy, it ignores the possibility of cutting branches, 
and it must search more trees than the a-{3 algorithm 
on a single processor. Since the ratio of branches cut 
off relative to the whole tree in the a-{3 algorithm in­
creases according to the depth of the searching tree, a 
parallel a-/3 searching algorithm must be considered to 
increase the efficiency of branch cutting in the parallel 
environment. 

Parallel a-/3 searching is complicated because of the 
dilemma between parallelism and efficiency of branch 
cutting. Another important problem is the overhead 
of terminating functions. Since these function in­
stances are distributed and activated in parallel, the 
overhead of terminating functions is more than over­
head of creating functions. This difficult trade-off is 
simply resolved in our checkers program by chang­
ing algorithm in breadth-first strategy and depth­
first strategy. In the breadth-first strategy, we se­
lect the min-max algorithm to expand the parallelism, 
and in the depth-first strategy, we select the a-{3 al­
gorithm to achieve the efficiency of cutting branch. 
We call this search "serial a-{3 search" in this paper. 
This search can be easily implemented, but the effi­
ciency of branch cutting is less than the parallel a-{3 
search[Oki et al. 1989]. 

To get more efficiency from branch cutting, the 
search that uses a-/3 search from the leaf of breadth­
first strategy is the "partial parallel a-/3 search". This 
search algorithm is illustrated in Figure 3. In this 
search, depth-first search is called in parallel from the 
leaf of breadth-first search, but the top node(which 
is indicated by B in the figure) of serial depth-first 
search gets the a-/3 value from the parent node (A) 
every time when the child node (C) return the eval­
uation result, and check whether the remain branch 
(C') can be cut off or not. The merit of this search is 
that we can expect enough efficiency from branch cut­
ting and the overhead of terminating search is nothing 
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Figure 3: partial parallel search 

since the child node in depth-first strategy is sequen­
tialized. 

The checkers program can use the following three 
searching algorithms. 

Min-Max search using the Min-Max algorithm 
both breadth-first and depth-first. 

serial a-{3 search using the Min-Max algorithm 
breadth-first, and using the a-/3 algorithm depth­
first. 

partial parallel a-{3 search using the Min-Max al­
gorithm breadth-first until the last level, and us­
ing the a-/3 algorithm in the last level of breadth­
first and then depth-first. 

5 Experimental Results on the 
EM-4 

We implemented the checkers program on the EM-
4 prototype in an assembly language to evaluate the 
performance of the EM-4 for dynamic and irregular 
problems. We examine the execution issues discussed 
in the previous section. 

5.1 Effects of function distribution and 
load balancing 

An unbalanced workload causes idle PEs. Since the 
load balancing of the checkers program is performed 
at the function level, the function distribution strat­
egy must be evaluated. The alternatives for the func­
tion distribution of the checkers program are the man­
ager distribution, the round-robin distribution, the 
dynamic round-robin distribution, and combinations 
of these. 

We executed the checkers program using the partial 
parallel a-/3 search using each function distribution 
methods. Figure 4 shows the results. We represent 
the speedup ratio of each distribution relative to the 
round-robin distribution. We executed each combina­
tion of manager distribution and round-robin distribu-
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Figure 4: Effects of function distribution 

tion, and the fastest combination is shown in the fig­
ure. The combination uses the manager distribution 
until the third level, and thereafter uses the dynamic 
round-robin. 

When the level of tree searching is shallow, manager 
distribution is better, because the manager distribu­
tion allocates functions more evenly. Since the size of 
each function is large relative to the whole program, 
the heavily loaded PE will become a bottle-neck and 
the program cannot achieve sufficient speed-up, even 
if the load is only slightly unbalanced. When the level 
ofthe search tree becomes deeper, the dynamic round­
robin distribution is better, because the size of each 
function becomes small relative to the whole program, 
and a small load imbalance does not effect the execu­
tion time much. On the other hand, in the manager 
distribution, the requests of PE addresses for the func­
tion call concentrate on the manager PE. Because of 
the queue of requests, the long turnaround time of 
the function call makes the execution time slow. Fur­
thermore, at the sixth level of the search tree in the 
manager distribution, the program cannot be executed 
because of overflow of the packet queue buffer. 

Since the execution of the dynamic round-robin dis­
tribution is 15% faster than the round-robin distribu­
tion when the searching tree is deep, this indicates 
that the dynamic round-robin strategy is effective in 
the case that there is sufficient parallelism. 

5.2 Effects of data transfer 

To parallelize the program, data must be transferred 
between PEs, while data is only passed between mem-

eXl!cutio time(ms) instructions 
3 (\(\ .", 

10 0 
,;;/ 

~;/ 
0 ,z 

/ ....... /' 
0 

/pa~r·lnst/ 
packed.tlme 3.~//· 

1.61 ~- ./·:~35 ..---::. ,~, .... , .... ·unpacked-Inst 
1 •• ---- 1.13 . ;/ 

unpacked-t1'!'e;' 
.3 

/~ 
1 ... / 

3 

3 

o 

o. 
/ .m 

.~.// 

y 
1 

o 

0.0 
2 3 4 5 6 

Depth of searching tree 

Figure 5: Comparison of data transfer 

ory locations in a single PE. We compared the two 
data transfer method, unpacked and packed. The un­
packed transfer uses a packet which has data repre­
senting a position, while the packed transfer uses a 
packet which has packed data representing 8 positions. 

Figure 5 is the results by the checker program of 
the partial parallel a-{3 search using the combination 
of manager and dynamic round-robin method as the 
function distribution. This figure shows the execution 
time and the total number of executed instructions of 
both data transfer method. Note that the execution 
time and the total number of the executed instructions 
are figured on a logarithmic scale. 

In this figure, the number of executed instructions 
of the packed packet transfer is 50% more than the 
unpacked transfer for each level. The increase of the 
executed instructions is caused by the pack and un­
pack operations. When the level is shallow, the ex­
ecution of the unpacked transfer is 1.5 times faster 
than the packed transfer. This speed-up ratio is the 
same as the instruction amount ratio. But when the 
level is deep, packed transfer is a little faster than the 
unpacked transfer while the instruction count of the 
packed transfer is larger than the unpacked transfer. 

Figure 6 shows the number of active PEs and over­
head PEs in both data transfer strategies. An over­
head PE is a PE which is waiting for the ready of the 
network to send a packet or stores the packet in the 
memory packet buffer when the on-chip packet buffer 
overflows. An active PE is a PE which is neither an 
overhead PE nor an idle PE. At the shallow levels, the 
active PE ratio of both transfer strategy is low. VVhen 
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Figure 6: Examination of the active PE ratio compar­
ing the data transfer 

the level becomes deep, the active PE ratio of the un­
packed transfer is 30% lower than the packed transfer, 
and the overhead PE ratio of the unpacked transfer is 
30% higher than the packed transfer. This high over­
head PE ratio of the unpacked transfer is the reason 
why it is slower than the packed transfer. Since the 
unpacked transfer needs to send more packets than 
the packed transfer, the network has many conflicts, 
resulting in large overhead. 

Although the packed transfer shows the high ra­
tio of the active PEs on the surface, a third of the 
instructions are used for packing and unpacking the 
packets, and the packed transfer is not so effective. 
Since the pipeline of the EM-4 is designed to send 
packets quickly, unpacked transfer is suitable for the 
EM-4. If there are many conflicts in the network, how­
ever, the overhead decreases the performance of send­
ing packets. One way to reduce this overhead is to 
avoid the network conflicts by allocating the function 
locally. Since the manager and round-robin distribu­
tions does not take into account the locality between 
the PE which calls the function and the PE which ex­
ecutes the function, it increases the possibility of net­
work conflicts. If the execution PE is selected from the 
neighbors of the calling PE, network conflicts do not 
occur as frequently. Another way to control the par­
allelism is by limiting the number of active functions. 
This is examined in detail in the next subsection. 
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Figure 7: Effects of parallelism control 

5.3 Effects of parallelism control 

While parallelism must be exploited to make the pro­
gram execution faster, as mentioned before, too much 
parallelism causes some overhead. It is necessary to 
control the parallelism in order to avoid the exhaus­
tion of resources, and to reduce the overhead of paral­
lelization. The checkers program controls parallelism 
by switching the searching strategy from a breadth­
first manner to a depth-first manner. 

Figure 7 shows the speedup ratio to the sequential 
execution of the a-{3 search when the switchover level 
of the parallelism control strategy is changed. The 
execution uses the combination of manager and dy­
namic round-robin method as the function distribu­
tion strategy and the unpacked method as the data 
transfer strategy. Note that the X-axis represents the 
depth of the breadth-first searching, while these all 
execution search the game tree until the depth is the 
sixth level. 

In the Min-Max search, the deeper level of par­
allel searching results in more parallelism, and the 
maximum speedup becomes 49 times. Exploiting 
maximum parallelism, however, does not necessarily 
achieve speedup. One reason is that at the sixth level, 
too many packets are sent and the overhead of network 
conflicts becomes much larger than at the shallow lev­
els. Another reason is that excessive parallelism is just 
overhead such as data transfer or remote function in­
vocation, since sufficient parallelism is exploited until 
the fifth level. It is sufficient to have as much par­
allelism as needed to activate every PE and hide the 
latency of remote access - excessive parallelism is not 
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helpful. 
The serial a-{3 search executes fastest at the sec­

ond level, and when the level is deeper the perfor­
mance decreases. This is because parallel searching 
uses breadth-first search, and much information that 
could be used to cut subtrees is discarded to parallelize 
the program. As parallel searching gets deeper, more 
information is discarded. As a result, it reduces the 
efficiency of cutting excessive branches, and increases 
the number of trees to be evaluated. The partial par­
allel a-{3 is same as the serial a-{3 search. 

5.4 Effects of searching algorithms 

Figure 7 also shows the effects of searching algorithms. 
The execution of the Min-Max search on 80 PEs is 
49 times faster than the Min-Max search on a sin­
gle PE, but only 1.8 times faster than the a-{3 search 
on one PE. This shows that the Min-Max search is 
suitable for parallel execution, but that it is difficult 
to compensate for the difference of efficiency between 
the Min-Max search and the a-{3 search by parallel 
execution. 

The a-{3 search is a very serial algorithm, but 
can achieve 16 times speedup via partial parallel a­

/3 search, while the serial a-/3 search can achieve 6 
times speedup. This is because the partial parallel 
a-{3 search uses the information of cutting trees at 
the last level of parallel searching, and the efficiency 
of cutting trees in the partial parallel a-{3 search is 
higher than the serial a-{3 search. 

6 Conclusion and Future plans 

To evaluate the highly parallel computer EM-4 on dy­
namic and irregular programs, we execute the game 
tree searching problem of checkers on the EM-4 pro­
totype, which consists of 80 PEs. The effects of the 
strategies for load balancing, data transfer, parallelism 
control and searching algorithm are examined. 

Our checkers program achieves 49 times speedup in 
the Min-Max search and 16 times speedup in the a-{3 
search on 80 PEs system. In this execution, the com­
bination of the manager distribution until the third 
level and the dynamic round-robin distribution there­
after is used as the function distribution method for 
load balancing, the unpacked transfer is used as the 
data transfer strategy, and the static switching from 
the breadth-first to the depth-first at the fifth level in 
the Min-Max search and at the second level in the a-{3 
search is used to control parallelism. 

In this evaluation, we demonstrated that the EM-
4 is effective for dynamic load balancing, fine grain 

packet communication and high performance of in­
struction execution. 

In the near future, we plan to implement a dynamic 
switching strategy which controls parallelism accord­
ing to the load of neighboring PEs. We will also im­
plement the full parallel a-{3 search, compare it with 
partial parallel a-{3 search, and make clear the advan­
tages and disadvantages of each method in the EM-4 
for the parallel game tree searching. 

Furthermore, we are designing a higher performance 
parallel computer EM-5. This computer will reduce 
the overheads which are found in these evaluations 
such as network conflicts. 
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Abstract 

The paper presents experimental results of running a 
knowledge based system that applies a set of rules to 
a circuit board (or a gate array) design and reports 
any design errors, on two OR-parallel Prolog systems, 
Muse and Aurora, implemented on a number of shared 
memory multiprocessor machines. The knowledge based 
system is written in SICStus Prolog, by the Knowl­
edge Based Systems group at SICS in collaboration 
with groups from some Swedish companies, without con­
sidering parallelism. When the system was tested on 
Muse and Aurora, without any modifications, the OR­
parallel speedups were very encouraging as a large prac­
tical application. The number of processors used in our 
experiment is 25 on Sequent Symmetry (S81), 37 on 
BBN Butterfly II (TC2000), and 70 on BBN Butterfly 
I (GP1000). The results obtained show that the Aurora 
system is much more sensitive to the machine architec­
ture than the Muse system, and the latter is faster than 
the former on all the three machines used. The real 
speedup factors of Muse, relative to SICStus, are 24.3 
on S81, 31.8 on TC2000, and 46.35 on GP1000. 

1 Introduction 

Two main types of parallelism can be extracted from 
a Prolog program. The first, AND-parallelism, utilizes 
possibilities for simultaneous execution of several sub­
problems offered by Prolog semantics. The second, OR­
parallelism, utilizes possibilities for simultaneous search 
for multiple solutions to a single problem. This paper 
is concerned with two systems exploiting only the lat­
ter type of parallelism: Muse [Ali and Karlsson 1990a] 
and Aurora [Lusk et ai. 1990]. Both systems support 
the full Prolog language with its standard semantics, 
and they have been implemented on a number of shared 
multiprocessor machines, ranging from a few proces­
sors up to around 100 processors. Both systems show 
good speedups, in comparison with good sequential Pro­
log systems, for programs with a high degree of OR­
parallelism. The two systems are based on two dif-

ferent memory models. Aurora is based on the SRI 
[Warren 1987] and Muse on incremental copying of the 
WAM stacks [Ali and Karlsson 1990a]. The two systems 
are implemented by adapting the same sequential Pro­
log system, SICStus version 0.6. The extra overhead 
associated with this adaptation is low and depends on 
the Prolog program and the machine architecture. For 
a large set of benchmarks, the average extra overhead 
for the Muse system on one processor is around 5% on 
Sequent Symmetry, 8% on BBN Butterfly GP1000, and 
22% on BBN Butterfly TC2000. For the Aurora sys­
tem with the same set of the benchmarks, it is around 
25% on Sequent Symmetry, 30% on BBN Butterfly 
GP1000, and 77% on BBN Butterfly TC2000. Earlier re­
sults [Ali and Karlsson 1990b, Ali and Karlsson 1990c, 
Ali et ai. 1991a, Ali et ai. 1991b] show that the Muse 
system is faster than the Aurora system for a large set 
of benchmarks and on the above mentioned machines. 

In this paper we investigate the performance results 
of Muse and Aurora systems on those multiprocessor 
machines for a large practical knowledge based system 
[Holmgren and Orsvarn 1989, Hagert et ai. 1988]. The 
knowledge based system is used to check a circuit board 
(or a gate array) design with respect to a set of rules. 
These rules may for example be imposed by the develop­
ment tool, by company standards or testability require­
ments. The knowledge based system has been written 
in SICStus Prolog [Carlsson and Widen 1988], by the 
Knowledge Based Systems group at SICS in collabora­
tion with groups from some Swedish companies, without 
considering parallelism. The gate array used in our ex­
periment consists of 755 components. The system was 
tested on Muse and Aurora without any modifications. 
One important goal that has been achieved by Muse 
and Aurora systems is running Prolog programs that 
have OR-parallelism with almost no user annotations 
for getting parallel speedups. 

The speedup results obtained are very good on all the 
machines used for the Muse system, but not for Aurora 
on the Butterfly machines. We found that this appli­
cation has high OR-parallelism. In this paper we are 
going to present and discuss the results obtained from 
the Aurora and Muse systems on the three machines 
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used. 

The paper is organized as follows. Section 2 briefly 
describes the three machines used in our experiment. 
Section 3 briefly describes the two OR-parallel Pro­
log systems, Muse and Aurora. Section 4 presents the 
knowledge based system. Sections 5 and 6 present and 
discuss the experimental results. Section 7 concludes 
the paper. 

2 Multiprocessor Machines 

The three machines used in our study are Sequent Sym­
metry S81, BBN Butterfly TC2000, and BBN Butterfly 
GP1000. Sequent Symmetry is a shared memory ma­
chine with a common bus capable of supporting up to 30 
(i386) processors. Each processor has a 64-KByte cache 
memory. The bus supports cache coherence of shared 
data and its capacity is 80 MByte/sec. It presents the 
user with a uniform memory architecture and an equal 
access time to all memory. 

The Butterfly GP1000 is a multiprocessor machine 
capable of supporting up to 128 processors. The GPlOOO 
is made up of two subsystems, the processor nodes and 
the butterfly switch, which connects all nodes. A pro­
cessor node consists of an MC68020 microprocessor, 4 
MByte of memory and a Processor Node Controller 
(PNC) that manages all references. A non-local memory 
access across the switch takes about 5 times longer than 
local memory access (when there is no contention). The 
Butterfly switch is a multi-stage omega interconnection 
network. The switch on the GP1000 has a hardware 
supported block copy operation, which is used to im­
plement the Muse incremental copying strategy. The 
peak bandwidth of the switch is 4 MBytes per second 
per switch path. 

The Butterfly TC2000 is a similar to the GP1000 
but is a newer machine capable of supporting up to 512 
processors. The main differences are that the proces­
sors used in the TC2000 are the Motorola 88100s. They 
are an order of magnitude faster than the MC68020 and 
have two 16-KByte data and instruction caches. Thus 
in the TC2000 there is actually a three level memory hi­
erarchy: cache memory, local memory and remote mem­
ory. Unfortunately no support is provided for cache co­
herence of shared data. Hence by default shared data 
are not cached on the TC2000. The peak bandwidth of 
the Butterfly switch on the TC2000 is 9.5 times faster 
than the Butterfly GP1000 (at 38 MBytes per second 
per path). The TC2000 switch does not have hardware 
support for block copy. 

3 OR-Parallel Systems 

In Muse and Aurora, OR-parallelism in a Prolog search 
tree is explored by a number of workers (processes 
or processors). A major problem introduced by OR­
parallelism is that some variables may be simultane­
ously bound by workers exploring different branches of 
a Prolog search tree. Two different approaches have 
been used in Muse and Aurora systems for solving this 
problem. Muse uses incremental copying of the WAM 
stacks [Ali and Karlsson 1990a] while Aurora uses the 
SRI memory model [Warren 1987]. 

The idea of the SRI model is to extend the conven­
tional WAM with a large binding array per worker and 
modify the trail to contain address-value pairs instead of 
just addresses. Each array is used by just one worker to 
store and access conditional bindings, i.e. bindings to 
variables which are potentially shareable. The WAM 
stacks are shared by all workers. The nodes of the 
search tree contain extra fields to enable workers to move 
around the tree. When a worker finishes a task, it moves 
over the tree to take another task. The worker starting 
a new task must partially reconstruct its array using the 
trail of the worker from which the task is taken. 

The incremental copying of the WAM stacks used in 
Muse is based on having a number of sequential Prolog 
engines, each with its own local address space, and some 
global address space shared by all engines. Each sequen­
tial Prolog engine is a worker with its own WAM stacks. 
The stacks are not shared between workers. Thus, each 
worker has bindings associated with its current branch 
in its own copy of the stacks. This simple solution 
allows the existing sequential Prolog technology to be 
used without loss of efficiency. But it requires copying 
data (stacks) from one worker to another when a worker 
runs out of work. In Muse, workers incrementally copy 
parts of the (WAM) stacks and also share nodes with 
each other when a worker runs out of work. The two 
workers involved in copying will only copy the differing 
parts between the two workers states. The shared mem­
ory space stores information associated with the shared 
nodes on the search tree. Workers get work from shared 
nodes through using the normal backtracking mecha­
nism of Prolog. Each worker having its own copy of the 
WAM stacks simplifies garbage collection, and caching 
the WAM stacks on machines, like the BBN Butterfly 
TC2000, that do not support cache coherence of shared 
data. 

A node on a Prolog search tree corresponds to a Pro­
log choicepoint. Nodes are either shared or nonshared 
(private). These nodes divide the search tree into two 
regions: shared and private. Each worker can be in ei­
ther engine mode or in scheduler mode. In the engine 
mode, the worker works as a sequential Prolog system 
on private nodes, but is also able to respond to interrupt 
signals from other workers. Anytime a worker has to ac-



cess the shared region of the search tree, it switches to 
the scheduler mode and establishes the necessary coor­
dination with other workers. The two main functions of 
a worker in the scheduler mode are to maintain the se­
quential semantics of Prolog and to match idle workers 
with the available work with minimal overhead. 

The two systems, Muse and Aurora, have differ­
ent working schedulers on the three machines used in 
our experiment. Aurora has two schedulers: the Ar­
gonne scheduler [Butler et al. 1988] and the Manch­
ester scheduler [Calderwood and Szeredi 1989]. Accord­
ing to the reported results, the Manchester scheduler al­
ways gives better performance than the Argonne sched­
uler [Mudambi 1991, Szeredi 1989]. So, the Manchester 
scheduler will be used for Aurora in our experiment. 
Muse has only one scheduler [Ali and Karlsson 1990c, 
Ali and Karlsson 1991], so far. 

The main difference between the Manchester sched­
uler for Aurora and the Muse scheduler is in the strat­
egy used for dispatching work. The strategy used by the 
Manchester scheduler is that work is taken from the top­
most node on a branch, and only one node at a time is 
shared. In Muse, several nodes at a time are shared and 
work is taken from the bottommost node on a branch. 
The bottommost strategy approximates the execution of 
sequential implementations of Prolog within a branch. 
Another difference between the two schedulers is in the 
algorithms used in the implementation of cut and side 
effects to maintain the standard Prolog semantics. 

Many optimizations have been made of implementa­
tion of the Aurora and Muse systems on all the three 
machines. The only optimization that has been im­
plemented for Muse and not for Aurora is caching the 
WAM stacks on the BBN Butterfly TC2000. In Aurora 
the WAM stacks are shared by the all workers while in 
Muse each worker has its own copy of the WAM stacks. 
Therefore, it is straightforward for Muse to make the 
WAM stack areas cachable whereas in Aurora it requires 
a complex cache coherence protocol to achieve this ef­
fect. 

4 Knowledge Based System 

One important process in the design of circuit boards 
and gate arrays is the checking of the design with respect 
to a set of rules. These rules may for example be im­
posed by the development tool, by company standards 
or by testability requirements. Until now, many of these 
rules have only been documented on paper. The check is 
performed manually by people who know the rules well. 
Increasing the number of gates in circuit boards (or in 
gate arrays) makes the manual check a very difficult pro­
cess. Computerizing this process is very useful and may 
be the most reliable solution. The knowledge based sys­
tems group at SICS, in collaboration with groups from 
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some Swedish companies, has been developing a knowl­
edge based system that applies a set of rules to a circuit 
board (or a gate array) design and reports any design er­
rors [Hagert et al. 1988, Holmgren and Orsvarn 1989]. 
The groups have developed two versions of the knowl­
edge based system. The first version has been developed 
using a general purpose expert system shell while the 
second has been developed using SICStus Prolog. The 
latter, which will be used in our experiment, is more 
flexible and more efficient than the former. It is around 
10 times faster than the first version on single proces­
sor machines. When it has been tested, without any 
modifications, on Muse and Aurora systems on Sequent 
Symmetry, the speedups obtained are linear up to 25 
processors. 

One reason for the high degree of OR-parallelism in 
this kind of application is that all of the rules applied 
to the circuit board (or a gate array) design are inde­
pendent or could be made independent of each other. 
The second source of OR-parallelism is the application of 
each rule to all instances of a given circuit sub-assembly 
on the board. A circuit sub-assembly can be either a 
component (like buffer') inver'ter') nand) and) nor') Or') 

XOr') etc.) or a group of interconnected components. The 
knowledge based system mainly consists of an inference 
engine, design rules, and a database describing the cir­
cuit board (or the gate array). The inference engine is 
implemented as a metainterpreter with only 8 Prolog 
clauses. The gate array used in our experiment consists 
of 755 components (Texas gate array family TGC-100), 
which is described by around 10000 Prolog clauses. The 
design rules part with its interface to the gate array 
description is around 200 Prolog clauses. Eleven inde­
pendent rules are used in this experiment. The metain­
terpreter applies the set of rules to the gate array de­
scription. For a larger gate array more OR-parallelism 
is expected. It should be mentioned that people who de­
veloped the knowledge based system did not at all con­
sider parallelism, but they tried to make their system 
easy to maintain by writing clean code. They avoided 
using side effects, but they have used cuts (embedded in 
ILThen_Else) and findall constructs. The user interface 
part of this application is not included in our experi­
ment. 

Since Muse and the Aurora system are also running 
on larger machines, the BBN Butterfly machines, it was 
more natural to test the knowledge based system on 
those machines. The speedup results obtained differ for 
the Muse and the Aurora system. On 37 TC2000 pro­
cessors, Muse is 31.8 times faster than SICStus, while 
Aurora is only 7.3 times faster than SICStus. Similarly, 
on 70 GP1000 processors Muse is 46.35 times faster than 
SICStus, while Aurora is only 6.68 times faster than 
SICStus. The low speedup for the Aurora system is sur­
prising since this application is rich in OR-parallelism. 
Is this a scheduler problem for Aurora or an engine prob­
lem? The following two sections are going to present and 
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analyze the results of Muse and Aurora, in order to try 
to answer this question. 

5 Timings and Speedups 

In this section we present timing and speedup results 
obtained from running the knowledge based system on 
Muse and Aurora systems. The runtimes given in this 
paper are the mean values obtained from eight 
runs. On Sequent Symmetry, there is no significant dif­
ference between mean and best values, whereas on the 
Butterfly machines, mean values are more reliable than 
best values due to variations of timing results from one 
run to another!. Variations around the mean value will 
be shown in the graphs by a vertical line with two short 
horizontal lines at each end. The speedups given in this 
section are relative to running times of Muse on one 
processor on the corresponding machine. The SICStus 
one-processor runtime on each machine will also be pre­
sented to determine the extra overhead associated with 
adapting the SICStus Prolog system to the Aurora and 
Muse systems. Sections 5.1, 5.2, and 5.3 present those 
results on Sequent Symmetry, GP1000, and TC2000 ma­
chines, respectively. 

5.1 Sequent Symmetry 

Table 1 shows the runtimes of Aurora and Muse on Se­
quent Symmetry, and the ratio between them. Times are 
shown for 1,5, 10, 15,20, and 25 workers with speedups 
(relative to one Muse worker) given in parentheses. The 
SICStus runtime on one Sequent Symmetry processor is 
422.39 seconds. This means that for this application and 
on the Sequent Symmetry machine the extra overhead 
associated with adapting the SICStus Prolog system to 
Aurora is 26.3%, and for Muse is only 1.0% (calculated 
from Table 1). The performance results that Table 1 il­
lustrates are good for both systems, and Aurora timings 
exceed Muse timings by 25% to 26% between 1 to 25 
workers. Figure 1 shows speedup curves for Muse and 
Aurora on Sequent Symmetry. Both systems show lin­
ear speedups with no significant variations around the 
mean values. 

Table 1: Runtimes (in seconds) of Aurora and Muse on 
Symmetry, and the ratio between them. 

I Workers 1/ Aurora I Muse II Aurora/Muse I 
1 533.69(0.80) 426.74(1.00) 1.25 
5 106.87(3.99) 85.67( 4.98) 1.25 
10 53.58(7.96) 42.94(9.94) 1.25 
15 36.06(11.8) 28.73(14.9) 1.26 
20 27.22(15.7) 21.65(19.7) 1.26 
25 21.83(19.5) 17.39(24.5) 1.26 

IThese variations are due mainly to switch contention. 
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Figure 1: Speedups of Muse and Aurora on Symmetry, 
relative to 1 Muse worker. 

5.2 BBN Butterfly GP1000 

Table 2 shows the runtimes of Aurora and Muse on 
GP1000 for 1, 10, 20, 30, 40, 50, 60, and 70 workers. 
The SICStus runtime on one GP1DDD node is 534.4 sec­
onds. So, for this application and on the GP1DDD ma­
chine the extra overhead associated with adapting the 
SICStus Prolog system to Aurora is 66%, and for Muse 
is only 7%. Here the performance results are good for 
the Muse system but not for the Aurora system. Aurora 
timings are longer than Muse timings by 55% to 594% 
between 1 to 70 workers. 

Figure 2 shows speedup curves corresponding to Ta­
ble 2 with va~iations around the mean values. The 
speedup curve for. Aurora levels off beyond around 2D 
workers. On the other hand, the Muse speedup curve 
levels up as more workers are added. 

Table 2: Runtimes (in seconds) of Aurora and Muse on 
GP1DOD, and the ratio between them. 

I Workers II Aurora I Muse II Aurora/Muse I 
1 886.4(0.65) 572.3(1.00) 1.55 

10 105.3(5.44) 58.3(9.82) 1.81 
20 74.1(7.72) 29.8(19.2) 2.49 
30 72.7(7.88) 20.7(27.7) 3.52 
40 64.3(8.91) 16.1(35.5) 3.99 
50 72.4(7.90) 13.8(41.6) 5.26 
60 65.7(8.71) 12.4(46.1) 5.29 
70 80.0(7.15) 11.5(49.6) 6.94 
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Figure 2: Speedups of Muse and Aurora on GP1000, 
relative to 1 Muse worker. 

5.3 BBN Butterfly TC2000 

Table 3 shows the performance results of Aurora and 
Muse on TC2000 for 1, 10, 20, 30, and 37 workers. The 
SICStus runtime on one TC2000 node is 100.48 seconds. 
Thus, for this application and on the TC2000 machine 
the extra overhead associated with adapting the SICStus 
Prolog system to Aurora is 80%, and for Muse is only 

Table 3: Runtimes (in seconds) of Aurora and Muse on 
TC2000, and the ratio between them. 

I Workers II Aurora I Muse II Aurora/Muse I 
1 180.55(0.59) 105.97(1.00) 1.70 

10 22.12( 4.79) 10.81(9.80) 2.05 
20 16.02( 6.61) 5.56(19.1) 2.88 
30 13.66(7.76) 3.93(27.0) 3.48 
37 13.79(7.68) 3.29(32.2) 4.19 

5%. Here also the performance results are good for the 
Muse system but not for the Aurora system. Aurora 
timings are longer than Muse timings by 70% to 319% 
between 1 to 37 workers. 

Figure 3 shows speedup curves corresponding to Ta­
ble 3. The speedup curves are similar to the correspond­
ing ones shown in Figure 2. 
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Figure 3: Speedups of Muse and Aurora on TC2000, 
relative to 1 Muse worker. 

6 Analysis of Results 

From the results presented in Section 5 we found that 
the Muse system shows good performance results on the 
three machines, whereas the Aurora system shows good 
results only on the Sequent Symmetry. In this section, 
we try to explain the reason for these results by studying 
the Muse and Aurora implementations on one of the 
Butterfly machines (TC2000). The TC2000 has better 
support for reading the realtime clock than the GP1000. 
A worker time could be divided into the following three 
main activities: 

1. Prolog: time spent executing Prolog (i.e., engine 
time). 

2. Idle: time spent waiting for work to be generated 
when there is temporarily no work available in the 
system. 

3. Others: time spent in all the other activities (i.e., 
all scheduling activities) like spin lock, signalling 
other workers, performing cut, grabbing work, 
sharing work, looking for work, binding installa­
tion (and copying in Muse), synchronization be­
tween workers, etc. 

Table 4 and Table 5 show time spent in each activ­
ity and the corresponding percentage of the total time. 
Results shown in Table 4 and Table 5 have been ob­
tained from instrumented versions of Muse and Aurora 
on the TC2000. The times obtained from the instru­
mented versions are longer than those obtained from 
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Table 4: Time (in seconds) spent in the main activities 
of Muse workers on TC2000. 

Activity 
M use Workers Prolog Idle Others 

1 128.36(100) 0 0 
5 128.80(99.7) 0.09(0.1) 0.26(0.2) 
10 129.28(99.1) 0.40(0.3) 0.71(0.5) 
20 129.90(96.5) 3.56(2.6) 1.17(0.9) 
30 130.32(95.4) 4.17(3.0) 2.11(1.5) 

Table 5: Time (in seconds) spent in the main activities 
of Aurora workers on TC2000. 

Activity 
Aurora Workers Prolog Idle Others 

1 210.42(98.2) 0 2.36(1.1) 
5 221.24(98.3) 0.19(0.1) 2.03(0.9) 
10 235.34(98.1) 0.43(0.2) 2.43(1.0) 
20 329.60(98.1) 1.11(0.3) 3.61(1.1) 
30 412.97(94.7) 13.70(3.2) 7.64(1.8) 

uninstrumented systems by around 19-27%. So, they 
might not be entirely accurate, but they help in indicat­
ing where most of the overhead is accrued. 

Before analyzing the data in Table 4 and Table 5 
we would like to make two remarks on these data. The 
first remark is that in the Aurora system the overhead of 
checking for the arrival of requests is separated from the 
Prolog engine time, while in the Muse system there is no 
such separation. This explains why there is scheduling 
overhead (Others) in the 1 worker case in Table 5 and 
not in Table 4. The other remark is that the figures 
obtained from the Aurora system do not total 100% of 
time, since a small fraction of the time is not allocated 
to any of the three activities. However, these two factors 
have no significant impact on the following discussion. 

By careful investigation of Table 4 and Table 5 we 
find that the total Prolog time of Muse workers is almost 
constant with respect to the number of workers whereas 
the corresponding time for Aurora grows rapidly as new 
workers are added. We also find that the scheduling time 
(Others) in Table 5 is not very high in comparison with 
the r:orresponding time in Table 4. Similarly, the dif­
ference of Idle time between Muse and Aurora is not so 
high. So, the main reason for performance degradation 
in Aurora is the Prolog engine speed. 

We think that the only factor that slows down the 
Aurora engine as more workers are added is the high 
access cost of non-local memory. Non-local memory ac­
cess takes longer time than local memory access, and 
causes switch contention. Non-local memory accesses 
can be due to either the global Prolog tables or the 
WAM stacks. In Muse and Aurora systems, the global 
tables are partitioned into parts and each part resides 
in the local memory of one processor. In Aurora the 

WAM stacks are shared by all workers while in Muse 
each worker has its own copy of the WAM stacks. The 
global Prolog tables have been implemented similarly in 
the both Muse and Aurora systems. Since the Muse 
engine does not have any problem with the Prolog ta­
bles, the problem should lie in the sharing of the WAM 
stacks in Aurora, coupled with the fact that this applica­
tion generates around 9.8 million conditional bindings, 
and executes around 1.1 million Prolog procedure calls. 
On the average, each procedure call gerierates around 
9 conditional bindings. This may mean that the rea­
son why Aurora slows down lies in the cactus stack ap­
proach, which causes a great many non-local accesses 
to the Prolog stacks. This results in a high amount of 
switch contention once over five workers. This is avoided 
in the Muse model, since each worker has its own copy 
of the WAM stacks in the processor local memory and 
the copy is even cachable. Unfortunately, we could not 
verify this hypothesis because the current Aurora imple­
mentation on the TC2000 does not provide any support 
for measuring the stack variables access time. 

7 Conclusions 

Experimental results of running a large practical knowl­
edge based system on two OR-parallel Prolog systems, 
M use and Aurora, have been presented and discussed. 
The number of processors used in our experiment is 25 
on Sequent Symmetry (S81), 37 on BBN Butterfly II 
(TC2000), and 70 on BBN Butterfly I (GP1000). The 
knowledge based system used in our study checks a cir­
cuit board (or a gate array) design with respect to a set 
of rules and reports any design errors. It is written in 
SICStus Prolog, by the Knowledge Based Systems group 
at SICS in collaboration with groups from some Swedish 
companies, without considering parallelism. It is used 
in our experiment without any modifications. 

The results of our experiment show that this class of 
applications is rich in OR-parallelism. Very good real 
speedups, in comparison with SICStus Prolog system, 
have been obtained for the Muse system on all three 
machines. The real speedup factors for Muse are 24.3 
on 25 S81 processors, 31.8 on 37 TC2000 processors, 
and 46.35 on 70 GP1000 processors. The obtained real 
speedup factors for Aurora are lower (than for Muse) 
on Sequent Symmetry, and much lower on the Butterfly 
machines. The Aurora timings are longer than Muse 
timings by 25% to 26% between 1 to 25 S81 processors, 
70% to 319% between 1 to 37 TC2000 processors, and 
55% to 594% between 1 to 70 GP1000 processors. 

The analysis of the obtained results indicates that 
the main reason for this great difference between Muse 
timing and Aurora timing (on the Butterfly machines) 
lies in the Prolog engine and not in the scheduler. The 
Aurora engine is based on the SRI memory model in 



which the WAM stacks are shared by the all workers. 
We think that the only reason why the Aurora engine 
slows down as more workers are added is to be found in 
the large number of non-local accesses of stack variables. 
This results in a high amounts of switch contention as 
more workers are added. This is avoided in the Muse 
model, since each worker has its own copy of the WAM 
stacks in the processor local memory and even cachable 
in the TC2000. Unfortunately, we could not verify this 
hypothesis because the current Aurora implementation 
on the Butterfly machines does not provide any support 
for measuring access time of stack variables. 
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Abstract 

Advances in interconnection network performance and in­
terprocessor interaction mechanisms enable the construction 
of fine-grain parallel computers in which the nodes are phys­
ically small and have a small amount of memory. This class 
of machines has a much higher ratio of processor to mem­
ory area and hence provides greater processor throughput 
and memory bandwidth per unit cost relative to conven­
tional memory-dominated machines. This paper describes 
the technology and architecture trends motivating fine-grain 
architecture and the enabling technologies of high-perfor­
mance interconnection networks and low-overhead interac­
tion mechanisms. We conclude with a discussion of our ex­
periences with the J-Machine, a prototype fine-grain con­
current computer. 

1 Introduction 

Computer architecture involves balancing the capabili­
ties of components (processors, memories, and commu­
nication facilities), organizing the connections between 
the components, and choosing the mechanisms that con­
trol how components interact. The top-level organiza­
tion of most computer systems is similar. As shown in 
Figure 1, all parallel computers consist of a set of pro­
cessing nodes each of which contains a processor, some 
memory, and a communication interface. The nodes are 
interconnected by a communication facility (typically 
a network). A sequential processor is the special case 
where there is only a single node and the network is 
used only to connect to I/O devices. 

At present, the organization of processors and memo­
ries is well understood and network technology is rapidly 
maturing. While these components continue to evolve 

IThe research described in this paper was supported in part by 
the Defense Advanced Research Projects Agency under contracts 
N00014-88K-0738 and N00014-87K-0825, in part by a National 
Science Foundation Presidential Young Investigator Award, grant 
MIP-8657531, with matching funds from General Electric Corpo­
ration and IBM Corporation, and in part by assistance from Intel 
Corporation. 

Node 1 Node 2 Node N 

••• 

Network 

Figure 1: The structure of a parallel computer or mul­
ticomputer. All multicomputers consist of a collection 
of nodes connected by a network. Each node contains a 
processor (P), a memory (M), and a communication in­
terface (C). Machines differ in the balance of component 
performance and in the mechanisms used for communi­
cation and synchronization between the nodes. 

with improving technology and incremental architecture 
improvements, they do not provide significant differenti­
ation between machines. With a convergence in machine 
organization, balance and mechanisms become central 
architectural issues and serve as the major points of dif­
ferentiation. 

This paper explores two ideas related to balance and 
mechanisms. First, we propose balancing machines by 
cost, rather than by capacity to speed ratios. Such cost­
balanced machines have a much higher ratio of proces­
sor to memory area and hence much greater proces­
sor throughput and memory bandwidth per unit cost 
compared to conventional machines. Cost-balanced ma­
chines are have a fine-grained physical structure. Each 
node is physically small and has a small amount of mem­
ory. Efficient operation with this fine-grained structure 
depends on high-performance communication between 
nodes and low overhead interaction mechanisms. 

The mechanisms that control the interaction between 
the nodes of a parallel computer determine both the 



grain-size and the programming models that can be effi­
ciently supported. By choosing a simple, yet complete, 
set of primitive mechanisms, a parallel computer can 
support a broad range of programming models and op­
erate at a fine grain size. 

A fine-grain parallel computer with fast networks and 
efficient mechanisms has the potential to become a uni­
versal computer architecture in two respects. First, this 
class of machine has the potential to universally displace 
conventional (sequential and parallel) coarse-grained com­
puters. Secondly, a simple yet efficient set of interaction 
mechanisms serves as the basis for a parallel computer 
that is universal in the sense that it runs any parallel 
programming system. 

The remainder of this paper explores the issues of bal­
ance and mechanisms in more detail. The next section 
identifies trends in conventional sequential processor ar­
chitecture that have led to a cost-imbalance between 
processors and memory. Section 3 discusses how an op­
portunity exists to greatly improve the performance/cost 
of computer systems by correcting this imbalance. The 
next two sections deal with the two enabling technolo­
gies: Networks (Section 4) and Mechanisms (Section 5). 
Together these enable fine-grain machines to give se­
quential performance competitive with conventional ma­
chines while greatly outperforming them on parallel ap­
plications. Our experience in building and operating a 
prototype fine-grain computer is described in Section 6. 

2 Trends in Sequential Architec­
ture 

Two trends are present in the architecture of conven­
tional computers: 

1. The size of a processor relative to the size of its 
memory system is decreasing exponentially. 

2. The time required for a processor to interact with 
an external device connected to its memory bus is 
increasing. 

The first trend is due to an attempt to balance com­
puter systems by ratio of processor performance (i/s) 
to memory capacity (bits). In 1967, Amdahl [22] sug­
gested that a system should have 8Mbits of memory 
for each Mi/s of processor performance. The processor 
performance/size ratio (i/s x cm2

) benefits from tech­
nology improvements in both density and speed while 
the memory capacity/size ratio (bits/ cm2

) benefits only 
from density improvements. Thus the processor to mem­
ory cost ratio for an Amdahl-balanced system scales in­
versely with speed improvements. 
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Let K(67) denote the ratio of processor cost to mem­
ory cost for such an Amdahl-balanced system in 1967. 
Every Y years, the line width of the underlying semi­
conductor technology has halved. As a result, the area 
of both the processor and the memory was reduced by 
a factor of four [23]. At the same time, the processor 
speed increased by a factor of a. To keep such a system 
Amdahl-balanced, the capacity (and hence the size) of 
the memory must also be increased by a. Thus, the 
processor to memory ratio during year x > 67 is given 
by K( x) = K(67)a(67-X)/Y. For typical values of a = 3 
and Y = 5 [23], K(92) = .004K(67). 

The cost of a conventional machine has become largely 
insensitive to processor size as a result of this expo­
nential trend in the ratio of processor to memory size. 
Thus, processor designers have become lavish in their 
use of areal. Costly features such as large caches, com­
plex data paths, and complex instruction-issue logic are 
added even though their marginal affect on processor 
performance (compared to a small cache and a simple 
organization ) is minor. As long as the size of the ma­
chine is dominated by memory, adding area to the pro­
cessor has a small effect on overall size and cost. 

The second trend, the increase in external interac­
tion latency, is due to the first trend, to the increas­
ing difference in on-chip to off-chip signal energies, and 
to to deepening memory hierarchies. As processors get 
faster and memory size increases the number of proces­
sor cycles required to access memory increases. Modern 
microprocessor-based computers have a latency of 5-20 
cycles for a main memory access and this number is in­
creasing. At the same time, decreasing on-chip signal 
energies require greater amplification to drive off-chip 
signals. Also, as more levels of caching are introduced, 
the number of cycles expended before initiating an exter­
nal memory reference increases and the memory inter­
face becomes specialized for the transfer of cache lines. 

If a conventional processor is used in a parallel com­
puter, its high external interaction latency limits its 
communication performance as the network must typ­
ically be accessed via the external memory interface. 
Whether this interface uses DMA to transfer data stored 
in memory (and possibly cached) or uses writes to a 
memory-mapped network port, each word of the mes­
sage must traverse the external memory bus and the cost 
of initiating an external memory operation is incurred 
at least once. The slow external memory interface also 
contributes to the lack of agility in modern processors 
(that is, their slowness in responding to external events 
and switching tasks) because a great dea1 of processor 
state must be transferred to and from memory during 
these operations. 

These trends in conventional processor architecture 

1 As a result of this lavish use of area, processor sizes have 
scaled slightly slower than predicted by the formula above. 
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make conventional processors ill-suited for use in a par­
allel computer. Current cost-insensitive processors are 
not cost effective in a machine with higher processor 
to memory ratio where the cost of the processor is an 
important factor. Their high external interaction la­
tency severely limits their communication performance 
and their poor agility limits their ability to handle syn­
chronization. 

This does not mean, however, that conventional in­
struction set architectures (ISAs) are unsuitable for par­
allel computing. Rather it is the cost-insensitive design 
style, deep memory hierarchies, and poor agility that are 
the problem. As we will see in Section 5, a conventional 
ISA can be extended with a few instructions to provide 
an efficient set of parallel mechanisms. 

Most importantly, the trend toward ever higher mem­
ory to processor size ratios has created an enormous 
opportunity for parallel computing to improve the per­
formance/ cost of computers. By adding more proces­
sors while keeping the amount of memory constant, the 
performance of the machine is dramatically increased 
with little impact on cost. The current trend, how­
ever, of building parallel computers by simply replicat­
ing workstation-sized units (increasing processors and 
memory proportionally) does not exploit this advantage. 
The processor to memory ratio must be decreased to im­
prove efficiency. This theme is explored in more detail 
in the next section. 

3 Balance 

Balance, in the context of computer architecture, refers 
to the ratios of throughput, latency, and capacity of 
different elements of a computer. In this section we 
will explore the balance between processor throughput, 
memory capacity, and network throughput in a parallel 
computer. A case will be made for balancing machines 
based on cost 2. 

Traditionally, machines have been balanced by rules 
of thumb such as the one due to Amdahl discussed above. 
However, a more economical design results if a machine 
is balanced based on cost. A machine is cost-balanced 
when the incremental peformance increase due to an 
incremental increase in the cost of each component is 
equal. Let each component ki in a machine with perfor­
mance P have cost Ci, then the machine is cost-balanced 
if OP/OCi = oPjocj;Vi,j [7]. 

It is difficult to solve these balance equations because 
(1) no analytic function exists that relates system per­
formance to component cost and (2) this relationship 
varies greatly depending on the application being run. 
Also, analyzing existing applications can be misleading 

2Much of the material in this section is based on a joint work 
in progress with Prof. Anant Agarwal of MIT. 

as they have been tuned to run on particular machines 
and hence reflect the balance of those machines. 

A workable approach is to start from the present 
memory-dominated system and increase the processor 
and network costs until they reach some fraction of to­
tal cost, for example 10%. At this point the system 
costs a small fraction more than a conventional system. 
If designed with an appropriate communication network 
(Section 4) and mechanisms (Section 5), it should pro­
vide sequential performance comparable to that of a con­
ventional machine. Applications that are parallelized to 
take advantage of the machine can potentially speed up 
by the entire increase in processing cost. 

To make reasonable balancing decisions, it is impor­
tant to use manufacturing cost, not component price, as 
our measure of cost. This avoids distorting our analysis 
due to the widely varying pricing policies of semiconduc­
tor vendors. To simplify our analysis of cost, we will use 
silicon area normalized to half a minimum line width, >., 
as our measure of cost [27]. 

First consider the issue of processor to memory bal­
ance. There are two issues: (1) how large a processor to 
use on each node and (2) how much memory per proces­
sor. A 64-bit processor with floating point but no cache 
and simple issue logic currently costs about 100M).2, 
about the same as 500Kbits of DRAM, and has a per­
formance of 50Mi/s. Making a processor larger than 
this gives diminishing returns in performance as heroic 
efforts are made to exploit instruction-level parallelism 
[20]. A smaller processor may improve efficiency slightly. 
If we are allocating 10% of our cost to processors, we 
will build one processor for every 5Mbits of memory -
rounding up this gives one processor per MByte. In to­
day's technology a processor of this type with IMByte 
of memory can easily be integrated on a single chip. In 
comparison, an Amdahl-balanced machine would pro­
vide 64MBytes of memory for each processor and be 
packaged in 30-50 chips. 

Providing a small cache memory for the processor is 
cost effective; however a large cache and/ or a secondary 
cache are not. Adding a small 4KByte I-cache and D­
cache requires about 16M).2 of area and greatly boosts 
processor performance achieving hit rates greater than 
90% on many codes [35]. Making the cache much larger 
or deepening the memory hierarchy would greatly in­
crease processor area with a very small return in perfor­
mance. Also, using a small co-located memory reduces 
processor access time to DRAM memory. 

The network to memory balance is achieved in a sim­
ilar manner, by adding network capability until cost is 
increased by a small fraction. A great deal of network 
performance comes at very little cost. The PC (printed­
circuit) boards on which the processor-memory chips are 
mounted have a certain wiring capacity and the periph­
ery of the chips can support a certain number of I/O 



pads3 . The network can make use of most of these pin 
and wire resources at a very small cost. The cost of the 
network router itself is small; a competant router can be 
built in less than 10MA2 [16]. For example, a router on 
an integrated processor-memory chip could easily sup­
port 6 16-bit wide channels from which a 3-D network 
can be constructed (Section 4). Conventional PC boards 
and connectors can easily handle these signals. 

Attempting to increase network bandwidth beyond 
this level becomes very expensive. To add more channel 
pins, the router must be moved to a separate chip or even 
split across several chips incurring additional overhead 
for communication between the chips. These chips are 
pad-limited and most of their area is squandered. If the 
amount of memory per node is increased proportionally 
to the cost of the network router to hold the memory to 
network cost ratio constant, the network bandwidth per 
bit of memory decreases (and the processor to memory 
ratio is distorted). 

A computer design can be approximately cost-balanced 
by using technology constraints to determine the proces­
sor/memory /network ratios. A simple three step method 
gives a well cost-balanced system: 

1. Size the processor to the knee of its performance/ cost 
curve to get a cost effective processor. 

2. Set the processor to memory ratio to allocate a 
fixed fraction I (in the example above 0.1) of cost 
to the processor to get a machine that is within 
1/1 - I of the optimium cost. 

3. Holding processor and memory sizes constant, size 
the network to the knee of its performance/cost 
curve to get a cost effective network. 

Machines that are cost-balanced using this method 
offer aggregate processor performance and local memory 
bandwidth that is 50 times that of an Amdahl-balanced 
machine per unit cost. This performance advantage will 
expand by a factor of a every Y years. 

Why are coarse-grained Amdahl-balanced machines 
widespread both in uniprocessors and parallel comput­
ers? In uniprocessors, the number of processors is not 
a free variable. Thus the designer is driven to increase 
the size and cost of a single processor far past the knee 
of its performance/cost curve. 

Existing parallel computers are driven to a coarse 
grain-size because (1) they are built using processors 
that lack appropriate mechanisms for communication 
and synchronization, (2) their networks are too slow 
to provide fast access to all memory in the machine[2], 

3Typical PC boards support 20wires/cm on each of 4-8 wiring 
layers. Typical ICs support 100pads/cm along their periphery 
with 20-50% of these pads reserved for power. 
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and (3) converting software to run in parallel on these 
machines requires considerable effort [21]. Much of the 
difficultly associated with (3) is due to the partitioning 
requied to get good performance because of 1 and 2. 

For cost-balanced machines to be competitive, in­
creasing the number of processors must (1) not substan­
tially reduce single-processor performance and (2) must 
provide the potential for near-linear speedup on certain 
problems. To retain single-processor performance on 
a machine with a small amount of memory per node, 
the network and processor communication mechanisms 
must provide a single processor access to any mem­
ory location in the machine in time competitive with a 
main memory access in a conventional machine. Single­
processor performance depends on network latency. To 
provide speedup on parallel applications, the processor's 
communication and synchronization mechanisms must 
provide for low-overhead interaction and the network 
throughput must be sufficient to support the parallel 
communication demands. Parallel speedup depends on 
throughput and agility. 

The two key technologies for building cost-balanced 
machines are efficient networks, and processor mecha­
nisms for communication and synchronization. The next 
two sections explore these technologies in more detail. 

4 Network Architecture and De-. 
sIgn 

The interconnection network is the key component of a 
parallel computer. The network accepts messages from 
each processing node of a parallel computer and delivers 
each message to any other processing node. Latency, T, 
and throughput, As, characterize the performance of a 
network. Latency is the time (s) from when the first 
bit of the message leaves the sending node to when the 
last bit of the message arrives at the receiving node. 
Aggregate throughput AsN is rate of message delivery 
(bits/s) when the network is fully loaded. 

T must be kept low to achieve good performance for 
sequential codes and for the portions of parallel codes 
where the parallelism is insufficient to keep the ma­
chine busy. During these periods performance is latency­
limited and execution time is proportional to T. Dur­
ing periods where there is abundant parallelism, perfor­
mance is throughput limited. Recent developments in 
network technology give throughputs and latencies that 
approach physical and information theoretic bounds given 
pin and wire constraints. A detailed discussion of this 
technology is beyond the scope of this paper. This sec­
tion briefly summarizes the major results. 

An interconnection network is characterized by its 
topology, routing, and flow control [11]. The topology of 
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Figure 2: Insertion of express channels into a k-ary 3-
cube gives performance within a small factor of physical 
limits: (A) One dimension of a regular k-ary 3-cube 
network, (B) Inserting one-level of express channels op­
timizes the ratio of wire to node delay for messages trav­
elling long distances, (C) Hierarchical express channels 
also reduce the number of switching decisions to the 
minimum, logq N. (D) Adding multiple channels at each 
level adjusts network bisection bandwidth to maximize 
throughput. 

a network is the arrangement of nodes and channels into 
a graph. Routing specifies how a packet chooses a path 
in this graph. Flow control deals with the allocation of 
channel and buffer resources to a packet as it traverses 
this path. 

The topology strongly affects T since it determines 
(1) how many hops H a message must make, (2) the to­
tal wire distance D (cm) that must be traversed, and (3) 
the channel width W (bits) which is limited by the bi­
section width of the wiring media divided by the channel 
bisection of the network4

• The latency seen by a single 
message in a network with no other traffic (zero-load 
latency or To) is directly determined by these three fac­
tors: 

D L 
To = HTn + -;- + W r (1) 

Where Tn is the propagation delay of a node (s), v 
is the signal propagation veloci ty5 (cm/ s), and f is the 
wire bandwidth (S-l). 

The three-dimensional express cube topology [12], a 
k-ary 3-cube with express channels added to skip in­
termediate hops (Figure 2B) when travelling large dis­
tances, can simultaneously optimize H, D, and AsN to 

4In some small networks, Vi is constrained by component or 
module pinout and not by bisection width. 

5Typically v is a fraction of the speed of light O.3c S; v S; c. 
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Latency vs. Distance for Express Cubes 

Figure 3: Latency as a function of distance for a hierar­
chical express channel cube with i = 4, 1 = 3, 0: = 64, 
and a flat express channel cube with i = 16, 0: = 64. 
In a hierarchical express channel cube latency is loga­
rithmic for short distances and linear for long distances. 
The crossover occurs between D = a and D = ia logi a. 
The flat cube has linear delay dominated by Tn for short 
distances and by Tw for long distances. 

achieve performance that is within a small fraction of 
physical and information-theoretic limits. The number 
of hops H is bounded by logqN if a q way decision is 
made at each step. The express cube network achieves 
this bound by inserting a hierarchy of interchanges into 
a k-ary n-cube network (Figure 2C). The wire distance, 
D is kept to within 2-1

/
3 of the physical minimum by al­

ways following a manhattan shortest path. Finally, the 
number of network channels can be adjusted to use all 
available wiring capacity (Figure 2D). 

Figure 3 compares the performance of flat and hier­
archical express cubes with a regular k-ary n-cube and a 
wire with no switching. The ratio of the delay of a node, 
T - n, to the delay of a wire between two adjacent nodes, 
D( 1 ) / v, is denoted a = Tn V / D (1). The figure assumes 
a = 64. The figure shows that a flat express cube de­
creases delay to a multiple of wire delay determined by 
the ratio 0: to interchange spacing, i. Interchange spac­
ing is set to the square-root of the distance to balance 
the delay due to local channels with the delay due to 
express channels. The hierarchical cube with three lev­
els (1 = 3) permits small interchange spacing and allows 
local and global delays to be optimized simultaneously. 

The advantages of minimum H and maximum AsN 

achieved by the express cube topology are important 
for very large networks. For smaller networks (less than 
4K nodes), however, a simpler three-dimensional torus 
or mesh network, k-ary 3-cube, is usually more cost ef-



fective. The 3-D mesh also provides manhattan shortest 
paths in physical space to keep D near minimum, has 
a very regular structure, and uses uniformly short wires 
simplifying the electrical design of the network. 

Three-dimensional networks are required to obtainin 
adequate throughput for machines larger than 256 nodes. 
As machines grow, the throughput per node varies in­
versely with the number of nodes in a row, as N 1

/
2 for 

a 2-D network and as N 2
/

3 for a 3-D network. 3-D net­
works provide adequate throughput up to 4K nodes (16 
nodes per row). Beyond this point express cubes and/or 
careful management of locality is required. For ma­
chines of 256K or larger, express cubes become bisection­
limited and locality must be exploited. No cost-effective 
network can scale throughput linearly with the size of 
the machine. Above a certain size, all networks become 
bisection-width limited and hence have a throughput 
that grows as N 2

/
3

• 

Routing, the assignment of a path to a message, de­
termines the static load balance of a network. Most 
routers built to date have used deterministic routing -
where the path depends only on the source and destina­
tion nodes. Deterministic routers can be made simple 
and fast, and deadlock avoidance becomes much easier. 
In particular, deterministic routing in dimension order 
permits the switch to be cleanly partitioned [17]. For 
some traffic patterns, deterministic routing results in a 
degradation in performance due to channel load imbal­
ance. However, for most cases deterministic routing has 
proved adequate. 

Several adaptive routing algorithms have been pro­
posed [14, 4, 25] that are capable of dynamically detect­
ing and correcting channel load imbalance. Adaptive 
routers also are able to route around a number of faulty 
nodes and channels. Most adaptive routers require much 
more complex logic than deterministic routers. The pla­
nar adaptive routing algorithm [4] is particularly attrac­
tive in that it retains much of the simplicity of dimension­
order routing. 

Flow control involves dynamically allocating buffer 
and channel resources to messages in the network. Most 
parallel computer networks use wormhole routing [8] in 
which buffers are allocated to messages while channels 
are allocated to flow-control digits or flits. To keep 
routers small and fast, channel buffers are often shorter 
than messages. Thus it is possible for a message to be 
blocked on the receiving side of a channel while part 
of the message remains on the transmitting side. With 
only a single buffer per channel, blocking a message on 
the transmitting side would idle the channel wasting net­
work resources. 

Virtual-channel flow control permits messages to pass 
blocked messages and make use of what would other­
wise be idle channels [13]. By associating several buffers 
(virtual channels) with each physical channel and multi-
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Figure 4: Latency as a function of offered traffic for a 2-
ary 8-fly network with 1, 2, 4, 8, and 16 virtual channels 
per physical channel. 

plexing them on demand, a network loaded with uniform 
traffic can operate at 90% of its peak channel capac­
ity. In comparison, the throughput of a network with 
only a single buffer per node saturates at 20% to 50% of 
capacity depending on the topology and routing. Vir­
tual channel flow control uses several small, indepen­
dent buffers in place of a single large queue to more 
efficiently use valuable router storage. Figures 4 and 5 
show the effect of adding virtual channels to the latency 
and throughput of 2-ary n-fly networks. 

The network technology described above is able to 
meet the goal of providing global memory access with 
a latency comparable to that of a uniprocessor. Com­
pare for example a 64-node 3-D torus with 1MByte per 
node with a comparably sized single processor machine 
with 64Mbytes. Both of these machines will fit comfort­
ably on a desktop. Since network channels are uniformly 
short it is customary to operate them at twice the pro­
cessor rate [10] (or more [5]). For our comparison we 
will use a processor rate of 50MHz and a network clock 
of 100MHz. 

The 64-node torus requires an average of 6 hops to 
reach any node in the machine (HTn =60ns). A message 
of six 16-bit flits (L/Wj=60ns) is sent in each direc­
tion for a read operation. The composition time of the 
message and the initiation of the memory access can be 
overlapped with this L/W j. Thus the one-way commu­
nication time is 120ns. The memory access itself takes 
lOOns. Adding the reply communication time (again ter­
minal operations are overlapped with the L/W j time) 
gives a total access time of 340ns. The uniprocessor re­
quires 1 cycle to get off chip, 2 cycles to get across a 
bus, and 1 cycle to initiate the memory operation (80ns 
total). Again the memory read itself is lOOns and the 
reply across the bus requires another SOns for a total of 
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Figure 5: Throughput of 2-ary n-fly networks with vir­
tual channels as a function of the number of virtual chan­
nels. 

260ns. Thus the uniprocessor is only 80ns or 24% faster. 
Much of the additional delay can be attributed to the 
fact that the parallel computer network has more deci­
sions to make during routing and is able to handle many 
messages simultaneously. While these capabilities have 
a slight negative affect on latency, they give a significant 
throughput advantage. 

To see the throughput advantage, consider the prob­
lem of rotating a matrix about its center row. To per­
form one 64-bit move, the conventional machine requires 
two memory cycles or 520ns for a rate of 123Mbits/s. 
With an interleaved memory and a lockup-free memory 
interface (which few processors have) it could overlap 
operations to complete one every 160ns for a rate of 
400Mbits/s. The parallel computer on the other hand 
can apply its entire bidirectional bisection bandwidth of 
256 16-bit channels to the problem for a total bandwidth 
of 409.6GBits/s. 

In summary, modern interconnection network tech­
nology gives latency comparable to conventional mem­
ory access times with throughput orders of magnitude 
higher. Raw network performance solves only half of the 
communication problem, however. To use such a net­
work effectively requires efficient communication mech­
anisms. 

5 Mechanisms 

Mechanisms are the primitive operations provided by 
a computer's hardware and systems software. The ab­
stractions that make up a programming system are built 
from these mechanisms [18, 9]. For example, most se­
quential machines provide some mechanism for a push­
down stack to support the last-in-first-out (LIFO) stor­
age .allocation required by many sequential models of 

computation. Most machines also provide some form of 
memory relocation and protection to allow several pro­
cesses to coexist in memory at a single time without 
interference. The proper set of mechanisms can provide 
a significant improvement in performance over a brute­
force interpretation of a computational model. 

Over the past 40 years, sequential von Neumann pro­
cessors have evolved a set of mechanisms appropriate for 
supporting most sequential models of computation. It 
is clear, however, from efforts to build concurrent ma­
chines by wiring together many sequential processors, 
that these highly-evolved sequential mechanisms are not 
adequate to support most parallel models of computa­
tion. These mechanisms do not support synchronization 
of events, communication of data, or global naming of 
objects. As a result, these functions, inherent to any 
parallel model of computation, must be implemented 
largely in software with prohibitive overhead. 

For example, most sequential machines require hun­
dreds of instructions to create a new process or to send 
a message. This cost prohibits the use of fine-grain pro­
gramming models where processes typically last only' a 
few tens of instructions and messages contain only a 
few words. It is not hard to construct mechanisms that 
permit tasks to be created and messages sent in a few 
instruction times; however, these mechanisms are not to 
be found on conventional processors. 

Some parallel computers have been built with mech­
anisms specialized for a particular model of program­
ming, for example dataflow or parallel logic program­
ming. However, our studies have shown that most pro­
gramming models require the same basic mechanisms 
for communication, synchronization, and naming. More 
complex model-specific mechanisms can be built from 
the basic mechanisms with little loss in efficiency. Spe­
cializing a machine for a particular programming model 
limits its flexibility and range of application without any 
significant gain in performance. In the remainder of this 
section, we will examine mechanisms for communica­
tion, synchronization, and naming in turn. 

Communication between two processing nodes In­

volves the following steps: 

1. Formatting: gathers the message contents together. 

2. Addressing: selects the physical destination for the 
message. 

3. Delivery: transports the message to the destina­
tion. 

4. Allocation: assigns space to hold the arriving mes­
sage. 

5. Buffering: stores the message into the allocated 
space. 



6. Action: carries out a sequence of operations to 
handle the message. 

All programming models use a subset of these basic 
steps. A shared memory read operation, for example, 
uses all six steps. A read message is formatted, the 
address is translated, the message is delivered by the 
network, the message is buffered until the receiving node 
can process it, and finally a read is performed and reply 
message is sent as the action. Some models, such as 
synchronous message passing always send messages to 
preallocated storage and thus omit allocation (step 4). 
In some cases, no action is required to respond to a 
message and step 6 can be omitted. 

The SEND instruction, first used in the message-driven 
processor [15, 16], with translation of destination ad­
dresses [19] efficiently handles the first two steps: for­
matting and addressing. A message is sent with a se­
quence of SEND instructions followed by a SENDE instruc­
tion. A SEND instruction takes a number of arguments 
equal to the number of read register ports (typically two) 
and appends its arguments to a message. A SENDE in­
struction is identical to the SEND except that it also sig­
nals the end of the message. The first SEND after a SENDE 
starts a new message. By making full use of the regis­
ter bandwidth the SEND instruction reduces formatting 
overhead to a minimum. The alternative approaches of 
formatting a message (1) in memory or (2) by writing 
to a memory mapped network port have much lower 
bandwidth and higher latency. 

Translation is achieved by interpreting the first word 
of the message stream (the first argument of the first 
SEND) as a virtual destination address and translating 
it to a physical address when a message is sent. A 
simple translation-Iookaside buffer (TLB) efficiently per­
forms this translation. This approach of translating vir­
tual network addresses to physical addresses during the 
SEND operation permits message sends from user code 
to be fully protected without incurring the overhead of 
a sytem call (as is done on many machines today). User 
code is only permitted to send messages to addresses 
that are entered in TLB. Sending a message to any other 
address raises an exception. 

Communication operations that do not require allo­
cation and or remote action can use a subset of the basic 
mechanism. A remote write operation, for example, re­
quires neither of these functions. A voiding allocation 
and action in this case eliminates the overhead of copy­
ing the message from newly allocated storage to its final 
destination. The first SEND instruction of a message can 
specify whether allocation (.A suffix) and/or spawning 
a task (. S suffix) are required [19]. A SEND with no suf­
fix would simply perform a remote write, SEND. A would 
allocate but not initiate a remote action, and SEND. SA 
would do both. The sending node treats these three 
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SEND operations identically and simply sends along the 
two option bits with the message. The receiving node 
examines the option bits to determine whether alloca­
tion and/or action is required. If an action is required, 
the routine to be invoked is specified by the second word 
of the message. 

Storage allocation and message buffering must be per­
formed in hardware to achieve adequate performance. 
While approaches using stack (LIFO) or queue (FIFO) 
based storage are simple to implement [10], they may 
require copying if messages are not deallocated in order. 
An alternative is to allocate message buffers off a free 
list of fixed-sized segments [40]. Management of such 
a free list is simple (only a single pointer is required) 
and it does not restrict message lifetimes. Messages too 
long for the fixed-sized segments can be handled in an 
overflow area. 

With any allocation scheme, a method for handling 
message buffer overflow is required. Because handling 
an overflow may require access to other nodes, the net­
work must be usable even when a full buffer is causing 
messages to back up into the network. This is accom­
plished on the J-Machine by using two virtual networks 
[10]. The actual overflow handling may be performed 
in software as it is a rare event. While many strategies 
may be used to handle overflow, a simple one is to re­
turn overflowing messages to their senders. With this 
scheme each node must guarantee that it has storage to 
hold each message it originates until it is acknowledged. 

The final step of a communication operation is to ini­
tiate a remote action by creating and dispatching a task. 
A task or process consists of a thread of control and an 
addressing environment. A thread can be created in a 
few clock cycles by loading a processor's IP to set the 
thread of control and initializing its memory manage­
ment registers to alter the addressing environment. On 
the J-Machine, each message in the message queue is 
treated as a thread that is ready to run and threads are 
dispatched when they reach the head of the queue This 
dispatching on message arrival also serves as the basis 
of a synchronization mechanism. 

Synchronization enforces an ordering of events in a 
program. It is used, for example, to ensure that one 
process writes a memory location before another reads 
it, to provide mutual exclusion during critical sections 
of code, and to require all processes to arrive at a barrier 
before any processes leave. 

Any synchronization mechanism requires a names­
pace that processes use to refer to events, a method for 
signalling that an event is enabled, and a method for 
forcing a processor to wait on an event. Using tags for 
synchronization, as with the presence bits on the HEP 
[36], uses the memory address space as the synchroniza­
tion namespace. This provides a large synchronization 
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namespace with very little cost as the memory manange­
ment hardware is reused for this function. It also has the 
benefit that when signaling the availability of data, the 
data can be written and the event signaled in a single 
memory operation. Since it naturally signals the pres­
ence of data, we refer to this synchronization using tags 
on memory words as data synchronization[40]. 

With synchronization tags, an event is signaled by 
setting the tag to a particular state. A process can 
wait on an event by performing a synchronizing access 
of the location which raises an exception if the tag is 
not in the expected state. A synchronizing access may 
optionally leave the tag in a different state. Simple pro­
ducer/consumer synchronization can be performed using 
a single state bit. In this case, the producer executes a 
synchronizing write which expects the tag to be empty 
and leaves it full. A synchronizing read which expects 
the location to be full and leaves it empty is performed 
by the consumer. If the operations proceed in order, 
no exceptions are raised. An attempt to read before a 
write or to write twice before a single read raises a syn­
chronization exception. More involved synchronization 
protocols require additional states (for example to signal 
that a process is waiting on a location) [19]. 

The communication mechanism described above com­
plements data synchronization by providing a means for 
a process on one node to signal an event on a remote 
node. In the simplest case, a message handler can per­
form a synchronizing read or write operation. However, 
it is often more efficient to move some computation to 
the node on which the data is resident. Consider for 
example the problem of adding a value to a remote 
location6 . One could perform a remote synchronizing 
read that marks the location empty to gain exclusive 
access, perform the add, and then perform a remote syn­
chronizing write. Sending a single message to invoke a 
handler that performs the read, add, and write on the 
remote node, however, reduces the time to perform the 
operation, the number of messages required, and the 
amount of time the location is locked. 

Many machines have implemented some form of global 
barrier synchronization. For example, the Caltech Cos­
mic Cube [32] had four program accessible wire-or lines 
for this purpose. While global barrier synchronization 
is useful for some models, it can be emulated rapidly us­
ing communication and data synchronization. If there 
is sufficient slack time from when a process signals that 
it has reached the barrier to when it waits on the bar­
rier, this emulation will not affect program performance. 
The required amount of slack time varies logarithmically 
with the number of processors performing the barrier. 
Also, the major use of barrier synchronization (insert­
ing a barrier between code that produces a structure 

6This occurs for example when performing LU decomposition 
of a matrix. 

(e.g., array) and code that consumes the structure) is 
eliminated by data synchronization. By synchronizing 
in the data space on each individual element of the data 
structure, control space synchronization on the program 
counter between the producer and consumer is neither 
required nor desired. It is more efficient to allow the 
producer and consumer to overlap their execution sub­
ject to data dependency constraints. Barrier synchro­
nization mechanisms also have the disadvantage that 
they require a separate namespace which tends to be 
small because of the prohibitive cost of providing many 
simultaneous barriers, and they consume pin and wire 
resources that could otherwise be used to speed up the 
general communication network. 

The mechanism that enforces event ordering solves 
only half of the synchronization problem. Efficient syn­
chronization also requires an agile processor that can 
rapidly switch processes and handle events and messages 
to reduce the exception handling and context switching 
overhead when switching processes while waiting on an 
event. Rapid task switching can be provided by pro­
viding multiple register sets or a named-state register 
set [29]. Exception handling is accelerated by specifi­
cally vectoring exceptions, providing separate registers 
for exception handling, and explicitly passing arguments 
to exception handlers [19]. 

6 Experience 

In the Concurrent VLSI Architecture Group at MIT, we 
have built the J-Machine [10], a prototype fine-grain par­
allel computer with a high-speed network and efficient 
yet general communication and synchronization mech­
anisms. The J-Machine was built to test and evaluate 
our ideas on mechanisms and networks, as a proof of 
concept for this class of machine, and as a testbed for 
parallel software research. Small prototoypes have been 
operational since June of 1991. We expect to have a 
1024-processor J-Machine on-line during the summer of 
1992. 

The J-Machine communication mechanism permits a 
node to send a message to any other node in the ma­
chine in < 1.5flS. On message arrival, a task is created 
and dispatched in 200ns. A translation mechanism sup­
ports a global virtual address space. These mechanisms 
efficiently support most proposed models of concurrent 
computation and allow parallelism to be exploited at a 
grain size of 10 operations. The hardware is an ensemble 
of up to 65,536 nodes each containing a 36-bit proces­
sor, 4K 36-bit words of on chip memory, 256K words 
of DRAM, and a router. The nodes are connected by a 
high-speed 3-D mesh network with deterministic dimen­
sion order routing. The J-Machine has about the grain 
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Figure 6: FloOl'plan and Photograph of a Message­
Driven Processor chip, 

size of the cost-balanced machine described in Section 3, 
one processor per megabyte of memory. 

A photograph of the message-driven processor chip 
used in the J-Machine is shown in Figure 6. One of these 
chips combined with three external DRAM parts forms 
a J-Machine node. An array of 64 nodes is packaged on 
a single board (Figure 7). These boards are stacked and 
connected side-to-side to form larger J-Machines. 

Three software systems are currently operational on 
the J-Machine. It runs Concurrent Smalltalk (CST) 
[24], a version of Id based on the Berkeley TAM system 
[37, 6], and a dialect of "C". Execution of these diverse 
programming systems has demonstrated the efficiency 
and flexibilty of the J-Machine mechanisms. 

Table 1 shows the advantage of efficient mechanisms. 
The left column of the table lists the operations in­
volved in performing a remote memory reference on a 
l024-node parallel computer. The next two columns list 
the approximate number of instruction times required 
to perform each operation on the Intel Paragon [5] and 

Operation Paragon J-Machine Ideal 
Send 4-Word Message 600 3 2 
Network Delay 32 10 10 
Buffer Allocation 20 0 0 
Switch To Handle Msg 1000 10 1 
Presence Test 5 0 0 
Send 3-Word Return Msg 600 3 2 
Network Delay 32 10 10 
Buffer Allocation 20 0 0 
Switch To Handle Msg 1000 3 1 
Switch To Restart Task 1000 10 1 
TOTAL 4309 49 27 

Table 1: The time to perform a remote memory ref­
erence on the Intel Paragon, a conventional message­
passing multicomputer, the J-Machine, a fine-grain par­
allel computer, and the time that could be achieved 
with current technology (Ideal). Switch refers to a task 
switch. 
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Figure 7: Photograph of a 64-node J-Machine board. 

the J-Machine. Many of these times were derived from 
the study reported in [38]. The final column of the table 
shows the times that could be achieved with techniques 
that are currently understood. 

The table shows that while both machines have fast 
networks the time to carry out a simple remote action is 
many times greater on the conventional machine. The 
single largest contributor is the task switching time7

. 

The overhead of task switching in a conventional operat­
ing system is unacceptable in this environment. Even if 
the task switch time were reduced to zero, the overhead 
of sending a message8 in a system where this function is 
handled in software is still prohibitive. End-to-end hard­
ware support for communication is required to achieve 
acceptable latency. 

The rightmost column represents times that could be 
achieved by making some minor modifications to the 
J-Machine. In particular, task switch time could be re­
duced from 10 cycles (when registers need to be saved) 
or 3 cycles (w /0 register save) to a single cycle by pro­
viding more support for multithreading [29, 39]. The 
J-Machine would also benefit from more user registers, 
automatic destination translation on message send, be­
ing able to subset the communication operation, and a 

. 7The estimate of 1000 instruction times or 25/1-s for the i860 
IS extrapolated from other microprocessors and hence very gener­
OUS; because of the complexity of event handling on this chip the 
actual number is higher. ' 

8Some receive time is also included in this number. 

non-LIFO message buffer. 

7 Related Work 

Like the message-driven processor from which the MIT 
J-Machine is built, the Caltech MOSAIC [33], Intel 
iWARP [3], and INMOS Transputer [26] are integrated 
processing nodes that incorporate a processor with mem­
ory and communication on a single chip. These inte­
grated nodes, however, lack the efficient mechanisms 
of the MDP and thus cannot efficiently support many 
different models of computation. Also, the software­
routed, bit-serial Transputer network does not have ad­
equate performance for many applications. 

Many machines built for a specific model of compu­
tation have been generalizing their mechanisms. For 
example, the MIT Alewife machine [1], while special­
ized for the shared-memory model, provides an inter­
processor interrupt facility that can be used for general 
message-passing. Being memory mapped, this operation 
is somewhat slower than the register-based send opera­
tion described above. Dataflow machines, which once 
hard-wired a particular dataflow model into the archi­
tecture [30, 34], have also been moving in the direction 
of general mechanisms with the EM4 [31] and *T [28]. 



8 Conclusion 

Two enabling technologies, fast networks (Section 4) 
and efficient interaction mechanisms (Section 5), make 
it possible to build and program fine-grain parallel com­
puters. Fine-grain machines have much less memory per 
processor than conventional machines because they are 
balanced by cost, rather than by capa.city to speed ra­
tios. Increasing the processor to memory ratio improves 
the processor throughput and local memory bandwidth 
by a factor of 50 with only a small increase in system 
cost. 

We expect this dramatic performance/ cost advantage 
will lead to mechanism-based fine-grain parallel comput­
ers becoming universal, replacing sequential computers 
in all sizes of systems from personal desktop computers 
to institutional supercomputers. This universal paral­
lel computer will not happen with existing semiconduc­
tor price structures, where processor silicon is an order 
of magnitude more expensive per unit area than mem­
ory silicon. Cost effective fine-grain computing requires 
a true jellybean (inexpensive and plentiful) processing­
node chip. 

Low-latency networks enable each node in a fine grain 
machine to access any memory location in the machine 
in time competitive with a global memory access in 
a conventional machine. Thus, the small memory per 
node does not limit either the problem size that can be 
handled or sequential execution speed. A fine-grain ma­
chine can execute sequential programs with performance 
competitive with conventional machines. 

High-bandwidth networks and efficient interaction 
mechanisms enable fine-grain computers to apply their 
high aggregE.te processor throughput and memory band­
width with minimum overhead. Reducing interaction 
overhead to a few instruction times (Table 1) increases 
the amount of parallelism that ca.n be economically ex­
ploited. It also simplifies programming as tasks and 
data structures no longer have to be grouped into large 
chunks to amortize large communication, synchroniza­
tion, and task-switching overheads. 

At MIT we have built and programmed the J-Machine 
to test, evaluate, and demonstrate our network and mech­
anisms. By running three programming systems on the 
machine, we have demonstrated the flexibility of its mech­
anisms and generated some ideas on how to improve 
them. The next step is to work to commercialize this 
technology by developing a more integrated and higher­
performance processing node in today's technology and 
by providing bridges of compatibiliity to existing sequen­
tial software. 
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Abstract 

The Andorra family of languages (which includes the 
Andorra Kernel Language -AKL) is aimed, in principle, 
at simultaneously supporting the programming styles of 
Prolog and committed choice languages. On the other 
hand, AKL requires a somewhat detailed specification 
of control by the user. This could be avoided by pro­
gramming in Prolog to run on AKL. However, Prolog 
programs cannot be executed directly on AKL. This 
is due to a number of factors, from more or less trivial 
syntactic differences to more involved issues such as the 
treatment of cut and making the exploitation of certain 
types of parallelism possible. This paper provides ba­
sic guidelines for constructing an automatic compiler 
of Prolog programs into AKL, which can bridge those 
differences. In addition to supporting Prolog, our style 
of translation achieves independent and-parallel execu­
tion where possible, which is relevant since this type of 
parallel execution preserves, through the translation, 
the user-perceived "complexity" of the original Prolog 
program. 

1 Introduction 

A desirable goal in logic programming language de­
sign is to support both the don't-know nondetermin­
istic, search-oriented programming style of Prolog and 
the don't-care indeterministic, concurrent communicat­
ing agents programming style of committed-choice lan­
guages. Furthermore, from an implementation point 
of view it is interesting to be able to support the or­
and independent and-parallelism often exploited in the 
former (e.g. [Lus88, AK90, Ka187, HG90j) as well 
as the dependent and-parallelism exploited in the lat­
ter (e.g. [Cra90, IMT87, HS86]). The Andorra fam­
ily of languages is aimed at simultaneously supporting 

-This work was funded in part by both ESPRIT project 2471 
"PEPMA" and CICYT project 305.90. 

tPlease direct correspondence to Manuel Hermenegildo at the 
above address. 

these two programming paradigms and their associated 
modes of parallel execution. The Andorra proposal in 
[War] (called the "basic" andorra model, on which the 
Andorra-I system [SCWY90] is based) defined a frame­
work which allowed or-parallelism and also the and­
parallel execution of deterministic goals (deterministic 
"stream and-parallelism"), this now being called the 
"Andorra Principle." 

An important idea behind the choice of control in 
the basic Andorra model is to perform the least pos­
sible amount of computation while allowing the maxi­
mum amount of parallelism to be exploited. Another 
and complementary way of achieving this goal which 
has also been identified [HR89, HR90] is to also run in 
parallel nondeterministic goals, but provided (or while) 
they are independent ("independent and-parallelism" -
lAP). In order to also include this type of parallelism 
the Extended Andorra Model (EAM) [War90, HJ90] de­
fines an execution framework which allows lAP in addi­
tion to the forms of parallelism supported in the basic 
Andorra model. The EAM defines rules which specify 
a series of admissible steps of computation from each 
possible given state. Several rules can be admissible 
from a given state and this gives rise to both nondeter­
minism and indeterminism, and also to opportunities 
for parallel execution. One important issue within this 
framework is thus that of control: i.e. which of the ad­
missible rules should be applied in order to achieve the 
most efficient execution while ,attaining the maximum 
parallelism. 

Two obvious approaches to treating the above men­
tioned issue are to put control decisions in the hands 
of the programmer or to try to do this automatically 
by compile-time and/or run-time analysis. The An­
dorra Kernel Language (AKL) [HJ90, JH91], uses ex­
plicit control. In particular, AKL allows (dependent) 
parallel execution of determinate subgoals, as stated 
by the Andorra Principle, but it also allows the more 
general forms of parallel execution of the EAM, albeit 
controlled by the programmer. The specification of con­
trol is done, among other mechanisms, by positioning 
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the goals and constraints before or after a guard oper­
ator, in a way that can be reminiscent of the labeling 
of unification as input or output (i.e. ask or tell con­
straints [Sar89]) in the GHC language [Ued87aj. These 
operators divide body clauses into two parts, the guard 
and the actual body. Guards are executed In indepen­
dent environments and proceed unless they attempt 
to perform output unification, while bodies wait un­
til guards are completely solved and goals in the body 
promoted. Such goals are then executed concurrently 
provided they are deterministic, in the spirit of the An­
dorra Principle. These properties give a means of con­
trol to the programmer which can be used to achieve 
parallel execution of general goals. 

The AKL is therefore quite a powerful language. 
However, it does put quite a burden on the programmer 
in requiring certain specification of control. In partic­
ular, Prolog programs cannot always be executed di­
rectly on the AKL. This is due to a number of factors 
from more or less trivial syntactic differences to mor~ 
involved issues such as the treatment of cut, labeling 
of unification, and making the exploitation of certain 
types of parallelism, most notably lAP, possible with­
out user involvement and preserving the programmer­
perceived complexity of the original program. 

The objective of this paper is to investigate how the 
above mentioned differences can be bridged, through 
program analysis and transformation. It points out 
the non-trivial problems involved in performing such 
a translation, and then provides solutions for these 
problems. Although desirable, our aim at this point 
is not to provide the best possible translation, which 
would take advantage of AKL properties to achieve a 
large reduction of search space, but rather to bridge 
the gap between Prolog and AKL in a manner that no 
increment in the search space is done, and also lAP 
can be exploited (with the important result of achiev­
ing "stability" in the frame of AKL for these cases). 
Building on partial translation approaches presented 
in [JH90, Her90] the paper presents a basic algorithm 
for constructing a translator from Prolog to AKLI. 
An important feature of the translation approach pro­
posed herein is that it automatically detects and allows 
the parallel execution of independent goals (as well of 
course as or-parallelism, and the parallel execution of 
deterministic goals even if they are dependent as per 
the Andorra Principle). The execution of independent 
goals in parallel has the very desirable properties of pre­
serving the program complexity perceived by the pro­
grammer [HR89]. Important requirements for such a 
translation are the compile-time detection of goal in­
dependence and input/output modes. This requires in 
general a global analysis of the program, perhaps us-

1 Veda [Ved87bj proposed automatic translation from Prolog 
to a committed-choice language (GHC, in his case). However, 
our aim and target language are quite different. 

ing abstract interpretation. In the approach proposed 
herein heavy use will be made of our compile-time tools, 
developed in. the context of &-Prolog [HG90j. In partic­
ular, Prolog programs are first analyzed and annotated 
as &-Prolog programs (thus making goal independence 
explicit), and then they are translated into AKL. 

In the following section, the AKL control model and 
its rules are briefly reviewed together with some syn­
tactic conventions. Then transformations for Prolog 
constructions for a basic translation are presented in 
section 3 and some rules for combining the AKL model 
with our purpose of achievement of independent paral­
lelism are shown in section 4. Section 5 will present the 
analysis tools and why they are needed in the trans­
lation process. In section 6 some results are shown for 
the execution of a number of benchmarks automatically 
translated, and section 7 presents some conclusions. 

2 The Andorra Kernel Lan-
guage Revisited 

In this section we present a brief overview of the AKL 
model of execution, in order to make the paper self­
contained. The purpose is to, based on an understand­
ing of this, extract the correct rules for a translation of 
Prolog which achieves the desired results. AKL and 
its model of execution have been fully described in 
[JH91, HJ90j. 

AKL is a language with deep guards. Thus, clauses 
are divided into two parts: the guard and the body, sep­
arated by a guard operator. Guard operators are: wait 
(:), cut (!), and commit (I). The following syntactical 
restrictions apply: 

• Each clause is expected to have one and only one 
guard operator; 

• All clauses in the definition of a predicate have to 
be guarded by the same guard operator. So, if any 
of the clauses is not guarded, the guard operator 
of its companions is assumed and positioned just 
after the clause neck. 

• A wait operator is assumed, and in the above men­
tioned position, where no other operator can be 
assumed using the above mentioned rules. 

Guards are regarded as part of clause selection. This 
means that a clause body is not entered unless head 
unification succeeds and its guard is completely solved. 
Then, execution proceeds by "expansion" of the present 
configuration by application of a rule of the computa­
tion model. The rules in the AKL model allow rewriting 
of configurations (states) leading to valid configurations 
from valid ones. They are fully described in [JH91j, so 
we will simply enumerate them, providing very infor­
mally the concept behind the rule, rather than a precise 
definition: 



1. Local forking: unfolds an atomic goal into a choice 
of all the alternatives in its definition (but without 
creating "copies" 2 yet of continuation goals). 

2. Nondeterminate promotion: promotes one guarded 
goal with solved guard in a choice of several of them 
(i.e. copies the goal to the parent continuation, ap­
plying its constraint/substitution to it, and creates 
a "copy" of the continuation environment). 

3. Determinate promotion: special case of the above 
when there is a single guarded goal in a choice if 
its guard is solved (no copying of the continuation 
environment is necessary). 

4. Failure and synchronization rules: remove or fail 
configurations in the usual way. 

5. Pruning rules: handle the effects of pruning guard 
operators. 

6. DMtribution and bagof rules: do the distribution of 
guards and the bagof operation. 

These rules basically represent the allowable transi­
tions of the EAM. The last three rules are less relevant 
for our purposes. In addition to these rules there are 
three basic control restrictions in the general computa­
tion model (meta-rules) which control the application 
of the above rules and which are highly relevant to our 
independent style translation: 

• Pruning in AKL has to be quiet, that is, a solution 
for the guard of a cut or commit guarded clause 
may not further restrict (or constrain) variables 
outside its own configuration. 

• Goals in the guard of a clause are completely and 
locally executed. This means that execution of 
guards is simultaneous but independent of the par­
ent environment. 

• N ondeterminate promotion is only admissible 
within a stable subgoalof a configuration. A goal is 
stable if no rule is applicable to any subgoal, and 
no possible changes in its environment will lead to 
a situation in which a rule is applicable in the goaL 

As we shall soon see these three restrictions force the 
conditions under which translation has to be done if we 
want to achieve parallelism and correct pruning in the 
translated clauses. But first, we will illustrate the AKL 
execution model with a simple example: 

partition([],_,Left,Right):- I, 
Left = [], 
Right = []. 

2 Although we refer to "copying" throughout the paper, part 
of the continuation goals could in principle be shared [War90j. 

partition([EIR] ,C,Left,Right):­
E < C, I. 
Left = [EILeft1], 
partition(R,C,Left1,Right) . 

partition([EIR] ,C,Left,Right):­
E )= C, I, 
Right = [EIRight1], 
partition(R,C,Left,Right1). 
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For a query such as partition([2.1] .3.1.D) the 
initial configuration would be a choice-point with the 
three clauses for the predicate. Head unification would 
fail the first alternative ([] = [2.1]), but the second one 
would succeed ([EIR1= [2.1] • C=3. E<C, including the 
guard), thus pruning the rest of the alternatives. 

The single remaining alternative would then be pro­
moted by determinate promotion, its bindings pub­
lished, and execution would proceed with goals in its 
body. Note that this could not be done if, for example, 
the goal Left=[EILeftl] were included in the guard, 
as it would add constraints to the variable I (l=Left) 
in the external configuration, and thus pruning would 
have been "noisy." 

On the other hand, if the clauses had no (explicit) 
guard operator, a wait operator would be assumed. In 
this case, both the second and third alternatives would 
succeed and only nondeterminate promotion would be 
applicable. IT the configuration is stable, and assum­
ing that the rightmost alternative is selected for pro­
motion, the goal E>=C (i.e. 2>=3) would be executed 
(and failed) only after promotion. After failure of this 
branch, determinate promotion of the remaining one 
would be applicable, and execution would proceed as 
before. 

3 Translating Prolog Construc­
tions 

Having the aforementioned rules in mind, we now dis­
cuss transformation rules for translating basic Prolog 
constructions, disregarding any possible exploitation of 
lAP. Even this straightforward step is nontrivial, as we 
shall soon see. This is due mainly to the semantics of 
cut in both Prolog and AKL, cut being a guard oper­
ator in the latter. With the restrictions required for 
guard operators to achieve both syntactic and semantic 
correctness in AKL, we find problems in the following 
constructions: 

• syntactical restrictions: 
- definitions of predicates in which a pruning 

clause appears, 
- clauses in which more than one cut appears; 

• semantic restrictions: 
- if-then-elses, where the cut has a "local" pru­

ning effect, 
- pruning clauses where the cut is regarded as 
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noisy (i.e. attempts to further restrict varia­
bles outside its scope), 

- side-effects and meta-logical predicates, whic.h 
should be sequentialized. 

The transformations required to deal with these con­
structions are proposed in the following subsections. 
This is done mainly through examples. The aim is thus 
not to provide precise and formal definitions of program 
transformations but rather to provide the intuition be­
hind the process of translation. In subsequent sections 
we will discuss other issues involved in the process of 
translation, such as achievement of lAP, problems in 
this, and its relation with the AKL stability conditions. 

3.1 Direct translation 

First, as all AKL clauses in a definition are forced to 
have the same guard operator, we have to ensure this 
is achieved. For example: 

Example 1 Same guard operator in a definition 

p(X,Y):- q(X), reV). 
p(X,Y):- test(X) , !, 

output(Y) . 
p(X,Y):- a(X,Y). 

p(X,Y):- q(X), reV). 
p(X,Y):- pc(X,Y). 

pc(X,Y):- test(X) , !, 
output(Y) . 

pc(X,Y):- a(X,Y). 

Note that clauses before the pruning one will have an 
(assumed) wait operator and clauses after that one (and 
that one itself) will have an (assumed) cut operator. 
All of them but the pruning one have an empty guard. 
Note that, had the program not been rewritten, the 
rules for assuming guard operators would have put a 
cut operator in the first clause, which is obviously not 
the correct translation. 

Note also,· that only one guard operator is to be al­
lowed in a clause. Therefore repeated cuts in the same 
body (which are otherwise strongly discouraged as a 
matter of style and declarativeness) have to be "folded" 
out using the technique sketched below: 

Example 2 Single guard operator in a clause 

p(X, Y):- teat(X) , !, 
test (Y), !, 
accept(X,Y). 

p(X,Y):- test(X) , !, 
foo(X, Y). 

foo(X,Y):- test(Y), !, 
accept(X,Y). 

Second, the AKL cut operator is regarded as a guard 
operator, and, furthermore, it has to be quiet (which is 
not the case in some Prolog constructions, which can­
not be easily translated to AKL). One of them is local 
pruning, i.e. if-then-else. Indeed, an if-then-else can be 
viewed as a disjunction containing a cut whose scope is 
limited to the disjunction itself, rather than the clause 
in which it appears. Thus the following preprocessing 
can be done: 

Example 3 Local pruning of if-then-else 

p(X):- (cond(X) -> p(X):- foo(X,Y,Z), s(Y,Z). 
q(X, Y) 
r(X,Z) 

), s(Y,Z). 
foo(X,Y,_):- cond(I), I, 

q(X, Y). 
foo(X,_,Z):- r(I,Z). 

Last but not least, we have to ensure the quietness 
of all AKL cuts. A cut is quiet if it does not attempt 
to bind variables which are seen from outside its own 
scope, that is, the clause where they appear. Then, 
if this is not the case, we have to make that binding 
explicit in the form of an equality constraint (a unifi­
cation) and place it after the cut itself, i.e. outside the 
guarded part of the clause: 

Example 4 Making a cut quiet 

p(X,Y):- teateX) , p(X,Y):- test(X) , 
output(Y), !. output (Yl), !, 

p(X,Y):- s(I,Y). Yl=Y. 
p(X,Y):- s(X,Y). 

Note that knowledge of input/output modes of vari­
ables is required for performing this transformation, 
and that the transformation may not always be safe3

• 

This will be discussed in the following subsection. 

3.2 Noisiness of cut 

The main difference between cut in Prolog and cut in 
AKL is that cut is quiet in AKL 4 • "Quiet" in the context 
of a cut means that the solution of the cut's guard is 
quiet, that is, it does not add constraints to variables 
outside the guarded goals themselves, other than those 
which already appear in its environment. 

Indeed, a transformation such as the one proposed 
in example (3.1).4 can make a noisy cut quiet. What 
it does is to delay output unification until the guard is 
promoted by making it explicit in the body part of the 
clause. We regard a variable to be output in a query 
if execution for this query will further constrain it; a 
variable will be regarded as input if execution will de­
pend on its state of instantiation (or constraint). In 
other words, a variable is an output variable in a literal 
if it is further instantiated by the query this literal rep­
resents it is an input variable if it makes a difference 
for the' execution of the literal whether the variable is 
instantiated or not5 • Note that a given variable can be 
both input and output, or none of them. 

3Note also that this transformation, when safe, may be of 
advantage as well in standard Prolog compilers in order to avoid 
trailing overhead. 

4Nevertheless, a noisy cut has also been implemented in AKL, 
which we will discuss later. 

5These definitions are similar to those independently proposed 
in [SCWY91], (and also in the spirit of those of Gregory [Gre8S]), 
which describes translation techniques from Prolog to Andorra­
I, an implementation of the Basic Andorra Model. ~ltho~gh ~he 
techniques used in such a translation have some relatlonshl~ wl~h 
those involved in Prolog-AKL translation, the latter requires m 
practice quite different techniques due to AKL being based on the 



The objective of a transformation such as the one 
proposed is to rename apart all output variables in the 
head of a pruning clause, and then bind the new vari­
ables to the original ones in the body of the clause 
leaving input variables untouched. In general, it is un~ 
wise to rename apart input variables since,· from their 
own definition, this renaming would make the variable 
~ppear uninstantiated and potentially result in growth 
In the search space of the goals involved. This would 
not meet our objective of preserving the complexity of 
~he progra~ (and perhaps not even that of preserving 
Its semantIcs). However, since a variable can be both 
input and output a conflict between renaming and not­
renaming requirements appears in such cases. For these 
cases< in which a variable cannot be "moved" after the 
cut guard operator a real noisy cut is needed. This 
?pe~ator exists in AKL (!!), together with a sequential­
IzatlOn operator, the sequential conjunction (&). It is 
necessary that every noisy cut be sequentialized, this 
to ensure that pruning would occur in the same con­
text that it would in Prolog. Thus, every literal call 
to the pruning predicate has to be sequentialized to its 
right, and every other call to a predicate sequentialized 
has in turn to be also sequentialized. For this reason 
noisy cut is not very efficient, and thus the translation 
tries to minimize its use. 

At this point we can summarize the action that 
should be taken in every case to transform the prun­
ing clauses of a Prolog program, based on the knowl­
edge of input/output variables, that is, whether they 
are "tested" or not and further instantiated or not. 
Here we use "noisy" to mean the transformation that 
defaults to the AKL noisy cut, and "move" to refer to 
the renaming of variables like in example (3.1).4. 

II Further Instantiated? I Tested? I Action II 
yes yes noisy 

no move 
unknown user 

no '" none 
unknown yes user 

no move 
unknown user 

Note that the knowledge of input/output modes in 
the Prolog program that is assumed in this transforma­
tion requires in general a global analysis of the program 
and can only be approximated, the translator having 
to make conservative approximations or warn the user 
("user" cases above) when insufficient information is 
available. Note also that the "user" cases can be re­
placed by "noisy" cases if a non-interactive transforma­
tion is preferred. This subject will be discussed further 
in section 5, as well as the type of analysis required. 

Extended A?dorra Model (thus having to deal with the possibility 
of parallehsm among n~n-deterministic goals and the stability 
rules) .and the rather different way in which the control of the 
execu~lOn model (explicit in AKL and implicit in Andorra-I) is 
done in each language. 
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3.3 Synchronization of side-effects 

In general, the purpose of side-effect synchronization is 
to prevent a side effect from being executed before other 
preceding (in the sense of the sequential operational se­
ma.il.tics) side-effects or goals, in the cases when such 
adherence to the sequential order is desired. In our 
context, if side-effects are allowed within parallel AKL 
code and a behaviour of the program identical to that 
observable on a sequential Prolog implementation is to 
be preserved, then some type of synchronization code 
should be added to the program. In general, in order 
to preserve the sequential observable behaviour, side­
effects can only be executed when every subgoal to their 
left has been execute'd, i.e. when they are "leftmost" 
in the execution tree. However, a distinction can be 
made between soft and hard side-effects (a side-effect is 
regarded to be hard if it could affect subsequent execu­
tion) , see [DeG87] and [MH89]. This distinction allows 
more parallelism. It is also convenient in this context to 
distinguish between side-effect built-ins and side-effect 
procedures, i.e. those procedures that have side-effects 
in their clauses or call other side-effect procedures. 

To achieve side-effect synchronization, various 
compile-time methods are possible: 

• To use a chain of variables to pass a "leftmost to­
ken", taking advantage of the suspension proper­
ties of guards to suspend execution until arrival of 
the token [SCWY91]. 

• To use chains of variables as semaphores with some 
compact primitives that test their value. In [MH89] 
a solution was proposed along such lines, and its 
implementation discussed. 

• To use a sequentialization built-in to make the side­
effect and the code surrounding it wait; this primi­
tive would be in our case the sequentialization op­
erator "&". 

In the first solution, a pair of arguments is added 
to the heads of relevant predicates for synchronization. 
Side-effects are encapsulated in clauses with a wait (:) 
guard containing an "ask" unification of the first ar­
gument with some known value (token), to be passed 
by the preced~g side-effect upon its completion. Upon 
successful execution of the current side-effect the sec­
ond argument is bound ("tell") to the known value and 
the token thus passed along. This quite elegant solution 
can be optimized in several cases. 

The second solution can be viewed as an efficient 
implementation of the first one, which allows further 
optimization [MH89]. The logical variables which are 
passed to procedures in the extra arguments behave as 
semaphores, and synchronization primitives operate on 
the semaphore values. 
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In the third solution, every soft side-effect is syn­
chronized to its left with the sequentialization opera­
tor "&", and every hard one both to its left and right. 
This sequentialization is propagated upwards to the 
level needed to preserve correctness. This introduces 
some unnecessary restrictions to the parallelism avail­
able. However, if side-effects appear close to the top of 
the execution tree, this may be quite a good solution. 

4 Stability and Achievement of 
Independent And-Parallelism 

In order to achieve more parallelism than that available 
by the translations described so far one might think of 
translating Prolog into AKL so that every subgoal could 
run in parallel unrestricted. However, this can be very 
inefficient and would violate the premise of preserving 
the results and complexity of the computation expected 
by the user. On the other hand, and as mentioned 
before, parallel execution of independent goals, even if 
they are nondeterministic, is an efficient and desirable 
form of parallelism and its addition motivated the de­
velopment of the EAM, on which the AKL is based. 
Nevertheless, in AKL goals known to be independent 
have to be explicitly rewritten in order to make sure 
that they will be run in parallel. This is because of the 
rules that govern the (nondeterminate) promotion, that 
is, the stability condition on nondeterminate promo­
tion, which will prevent these goals for being promoted 
if they try to bind external variables for output. There­
fore, one important issue is the transformation that is 
needed to avoid suspension of independent goals. This 
is presented in section 4.1. Also, independence detec­
tion can and will be used to reduce stability checking, 
a potentially expensive operation. 

Clearly, an important issue in this context is how 
stability /goal independence is detected. In the frame­
work of the &-Prolog system we have already developed 
technology and the associated tools for determining in­
dependence conditions for goals and partially evaluat­
ing many of those conditions at compile-time through 
program analysis. Conceptual models for independent 
and-parallel execution have been presented and their 
correctness and efficiency proved [HR89j; among all 
we focus on the and-parallelism models proposed in 
[HR90, HR89j. For different but related models the 
reader is referred to the references in those papers. As 
mentioned before, in the translation process we pro­
pose to use algorithms and tools already developed in 
the context of &-Prolog. In this context, a series of al­
gorithms used in the &-Prolog compiler for annotating 
Prolog programs have been implemented and described 
in [MH90j. These algorithms select goals for paral­
lel execution and, using the sufficient rules proposed 
in [HR89], generate the conditions under which inde-

pendence is achieved and therefore independent paral­
lel execution ensured. The result is a transforma.tion of 
a given Prolog clause into an &-Prolog clause contain­
ing parallel e'xpressions which achieve such independent 
and-parallelism. 

The output of this analysis is made available for 
the translation process in the form of an annotated 
&-Prolog program [HG90j, i.e. the program itself ex­
presses whi~h goals are independent and under which 
conditions. These conditions are expressed in the form 
of if-then-elses which have the intuitive meaning of "if 
the conditions hold then run in parallel otherwise se­
quentially." The parallelism itself is made explicit by 
using the "&" operator to denote parallel conjunction 
instead of the standard sequential conjunction denoted 
by "," 6. Some new issues are involved in the interaction 
between the conditions of these parallel expressions and 
other goals run in parallel concurrently, as it would be. 
the case in AKL. These will be presented in section 4.2. 

4.1 The transformation proposed 

At this point the &-Prolog conditionals are regarded as 
input to the translator. As such, if-then-elses are pre­
processed in the form mentioned in the previous sec­
tions and the remaining issue is the treatment of the 
parallelization operator "&". In implementing this op­
erator we will use the AKL property that allows local 
and unrestricted execution of guards, i.e., goals that are 
encapsulated in a guard can run in parallel with goals 
in other guards even if they are nondeterministic. The 
transformation that takes advantage of this will: 

• put goals known to be independent in (different) 
guards, and 

• extract output arguments from the guards, binding 
them in the body part of the clauses, 

the last step being required so that the execution of 
these goals is not suspended because of their attempt­
ing to perform output unification. With the guard en­
capsulation we ensure that those predicates will be exe­
cuted simultaneously and independently. The' following 
example illustrates the transformation involved: 

Example 5 Encapsulation of independent subgoals 

p(X):- (ground (X) , 
indep(Y,Z) -> 

q(X,Y) t r(X,Z) 
; q(X,Y) , r(X,Z) 

) , 
s(Y,Z) . 

p(X):- pp(X,Y,Z), s(Y,Z). 

pp(X,Y,Z):- ground(X) , 
indep(Y, Z), !, 
qp(X,Y), 
rp(X,Z). 

pp(X,Y,Z):- q(X,Y), r(X,Z). 

qp(X,Y):- q(X,Y1), ., Y=Y1. 

rp(X,Z):- r(X,Z1), ., Z=Z1. 

6Note that in AKL these operators have just the opposite 

meaning!. 



When the condition is met, both sub goals will be 
tried by the local fork rule, then both guards will be 
completely and locally solved, and then, as goals are 
independent on X (X is ground) and no output is pro­
duced in the guard, the nondeterminate promotion rule 
is always applicable and all solutions will be tried in 
the standard cartesian product way. Thus, parallel ex­
ecution is ensured for those goals that are identified as 
independent. 

On the other hand, when the condition fails (the goals 
being dependent) they appear together in a body with 
an empty guard. This means that the guard will be im­
mediately solved, the clause body promoted, and sub­
goals tried simultaneously. Then the standard stability 
and promotion rules will apply. 

It should be noted that, as in the case of cut, 
and in addition to detecting goal independence, to be 
able to perform this transformation it is necessary to 
have inferred mode information regarding the predicate 
clauses. In section 5 techniques used in order to infer 
this information will be reviewed. 

4.2 Cohabitation of dependent and 
independent and-parallelism and 
stability checks 

When evaluating the conditions of parallel expressions 
at run-time within a parallel framework such as that 
of the AKL, they may not evaluate to the same value 
than during a Prolog execution. This is what we have 
termed in another context the CGE-condition problem 
[GSCYR91]7, and may result in a loss (or increase) of 
parallelism. To deal with these issues, different levels 
of restrictions can be placed on the translation: 

• Disallow any parallel execution except for those 
goals found to be independent. 

• Allow parallel execution only for goals not binding 
variables that appear in the conditions or CG E. 

• Allow parallel execution outside a CGE but se­
quentialize before and after the conditional parallel 
expressions. 

• Allow unrestricted parallel execution unrestricted, 
i.e. no sequentialization is to be done. 

The first solution can be implemented by translating 
every conjunction as a sequential AKL conjunction, ex­
cept those joining independent goals. This will lead to 

7Note that some other problems mentioned in [GSCYH91] re­
garding the interaction between independent and dependent and­
parallelism (in particular, the deterministic goal problem) are less of 
an issue in the proposed translation to AKL because independent 
goals execute in their own environments, thanks to the dynamic 
scoping of AKL guards. In any case, the AKL implementation is 
assumed to cope with all types of goal activations possible within 
the EAM. 
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a type of execution where only goals known to be inde­
pendent are run in parallel and which directly resem­
bles that of &-Prolog [RG90]. The same search space 
as &-Prolog will be explored. Nondeterminate (and de­
terminate) promotion will then be restricted to only 
independent and sequential goals. Thus, one very im­
portant advantage of this translation is that no checks 
on stability ever need to be done, as stability is ensured 
for sequential and independent execution. This is an 
important issue since stability checking is a potentially 
expensive operation (and very closely related to inde­
pendence checking). Thus, in an ideal AKL implemen­
tation code translated as above, i.e. free of stability 
checks, should run with comparable efficiency to that 
of &-Prolog. On the other hand, the transformation 
loses determinate dependent and-parallelism and its de­
sirable effect of co-routining, which could be useful in 
reducing search space [SCWY90j. 

The second solution attempts to preserve the environ­
ment in which the CGE evaluates while allowing corou­
tining of goals that don't affect CG E conditions and 
goals. Although interesting, this appears quite difficult 
to implement in practice as it requires very sophisti­
cated compile-time analysis and will probably incur in 
run-time overheads for checking of the conditions placed 
in the program. 

The third solution can be viewed as a relaxation of 
the first one to achieve some coroutining, or as an effi­
cient (and feasible) way of partially implementing the 
second one. Goals before and after are allowed to exe­
cute in parallel using the Andorra Principle, but they 
are sequentialized just before and after a CG E. In this 
way CGEs evaluate in the same context as in Prolog 
and the same level of independent and-parallelism is 
achieved. This translation has the good characteristics 
regarding search space of the previous one. In addi­
tion, some reduction of search space due to coroutining 
will be achieved. However, stability checking, although 
reduced, cannot in general be eliminated altogether. 

The fourth solution will allow every goal to run in 
parallel. The full EAM and AKL operational seman­
tics (including stability) has to be preserved. The 
execution of goals which are unconditionally indepen­
dent or depend only on groundness checks (conditionals 
in the parallel expressions are composed of ground/1 
and indep/2 checks, as in the example of section 4.1) 
will be the same as in &-Prolog as eager execution 
of other goals cannot affect ground or empty checks 
[GSCYH91j. However, independence' checks may fail 
where they wouldn't in Prolog (therefore losing this 
parallelism), but also succeed where they would fail in 
Prolog (therefore gaining this parallelism). Also, the 
number of parallel steps will always be the same or less 
as in Prolog (although different than in &-Prolog). This 
solution (as well as the first and second ones) appear as 
quite reasonable compromises and offer different trade-
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offs. The current translation approach uses this fourth 
option, but the others should also be explored. 

5 Inferring modes - Abstract In­
terpretation 

We have mentioned in previous sections the need for 
inferring modes of clause variables (i.e. whether they 
are input or output variables) in Prolog programs. The 
main reason for this need is that we have to know which 
are the output variables in a clause in order to rename 
them apart and place corresponding bindings for them 
in the body part of the clause in both 

• the pruning clauses (as shown in section 3.2), and 

• the remade clauses for parallel execution (as shown 
in section 4.1 in example 5). 

Much work has been done in global analysis of logic 
programs to infer run-time properties, and, in particu­
lar, modes, mostly using the technique of abstract in­
terpretation [CC77]. A more sophisticated sort of vari­
able binding analysis (comprising groundness, aliasing, 
and freeness information) is instrumental in the pro­
cess of inferring the independence conditions for lit­
erals in a body. While not strictly needed, such an 
analysis is extremely useful as it allows the reduc­
tion of the number of conditions and therefore the im­
provement of performance by reducing run-time check­
ing [WHD88, MH91b] (these papers provide references 
to the important body of other work in this area). 
The standard global analyzer in the &-Prolog compiler, 
described in [MH91 b], infers groundness and variable 
sharing/ aliasing. Since variable freeness is also needed 
for the AKL translator, this analyzer has been extended 
to use the algorithm described in [MH91a] and infer 
variable freeness information. 

It turns out that freeness information is very useful 
for many reasons [MH91a]. In the translation process 
it is essential for determining input/output arguments. 
This we can show by simply expressing the information 
required for the table in section 3.2 in terms of infor­
mation directly available froni abstract interpretation. 
In order to do this, recall, as defined in section 3.2, that 
a program variable (or an argument) is output in a lit­
eral if the call to the corresponding predicate further 
instantiates this variable, and it is input in a literal if 
its state of instantiation is going to be checked in the 
execution of the call for that literal. With these defini­
tions in mind the following table shows how the input 
or output character of variables can be decided in a 
good number of cases based on the information directly 
available from global analysis: 

From the table we identify cases in which it is clear 
that the variable is known not to be an input variable, 
without any further analysis (i.e. when the variable is 

II Before After Output? Input? II 
ground (ground) no * 

free free no -" 
semi yes no 

ground yes no 
semi 1 semi 1 no --. 

semi2 yes ? 
ground yes ? 

free). Furthermore, we realize that if a variable is 
known not to be an output variable then it doesn't need 
to be renamed apart and it is not necessary to deter­
mine whether it is an input variable or not ("*" cases). 
Reducing the cases where knowing if a variable is input 
is quite useful since inferring whether a variable bind­
ing is needed or not requires additional analysis ("7" 
cases) . This analysis seeks to decide if a variable is 
crucial in clause selection or checking. Note that the 
analysis has to be extended for every child procedure of 
the one being analyzed. 

Finally, we would like to also mention that combining 
mode/type analysis (such as the one used in [SCWY91] 
or [J an90j) with the accurate tracking of sharing and 
freeness information of [MH91a] could be very helpful 
in this process (improving the ability to more accurately 
resolve different degrees of partial instantiation such as 
the semil/ semi2 cases in the table above) and is part 
of our plans for future work. 

6 Performance Timings 

This section presents some results on the timing of a 
number of benchmarks in a prototype AKL system. 
The AKL versions of the programs obtained through 
automatic compile-time translation are compared with 
versions specifically written for AKL. Timings for the 
original Prolog versions are also included for compar­
ison and also with the intention of identifying trans­
lation paradigms that help efficiency. With this aim 
in mind, the set of benchmarks has been chosen so 
that performance results are obtained for several differ­
ent programming paradigms, and a number of different 
translation issues are taken into account. The results 
show that translation suffices in most cases, provided 
state-of-art analysis technology is used. 

Timings8 have been done for the Prolog program 
(compiled and interpreted), the AKL program obtained 
from automatic translation and the "hand-written­
AKL" version. Execution until the first solution is ob­
tained has been measured. Timings are an average of 
ten consecutive executions done after a first one (not 
timed) and are given in in Il?-ilisseconds, rounded up to 
tens. 

8SICStus 1.8 and a sequential AKL 0.0 prototype system, 
made available by SICS, have been used. 



We briefly introduce the programming paradigms 
represented by each of the benchmarks used. qsort has 
been translated in two ways, one that "folds" pruning 
definitions, and another one that is able to "extend" the 
cut to all clauses; the latter showing an advantage w.r.t. 
the former. sort illustrates the advantage of being able 
to detect that some cuts are not noisy (as opposed to 
defaulting to noisy cut in every case). In fact, in this 
case the translated version is slightly faster than the 
hand-coded one. 

For money we have used three different versions. In 
the first version of the program the problem is solved 
through extensive backtracking. In the second one the 
ordering of goals is improved at the Prolog level. In 
the third version the Prolog builtins are translated into 
AKL specific ones. As in zebra the difference with the 
"hand-written" version is in the use of the arithmetic 
predicates: addition is programmed in the hand-coded 
AKL version as illustrated by the sum/3 predicate, 

Bum(X.Y.Z):- pluB(X.Y.zO). I. Z = ZOo 
Bum(X.Y.Z):- minUB(Z.Y.XO). I. I = XO. 
Bum(X.Y.Z):- minus(Z.X.YO). I. Y = YO. 

in which the coroutining effect provides a "constraint 
solving" behaviour. 

Scanner is a program where AKL can take a 
large advantage from concurrent execution and the 
"determinate-first" principle, even without explicit con­
trol, and this is shown in the good performance of the 
translated program. On the other hand, in triangle 
and knights heavy use of special AKL features has been 
made, through hand-optimization. 

Prolog Prolog AKL AKL 
compiled interpret. translated "hand" 

qsortl 30 290 750 290 
qsort 30 290 290 290 
sort 20 50 870 910 
money 1 66,590 520,190 294,370 530 
money 47,790 391,190 294,070 530 
moneyb 47,790 391,190 187,920 530 
zebra 8,550 43,740 10,380 1,980 
scanner 1,407,450 8,838,000 540 120 
triangle 3,140 7,260 152,230 11,020 
knights 79,960 855,049 1,165,020 480 

Prolog Prolog AKL AKL 
compiled interpret, translat. translat. 

(encap.) (direct) 

qsort 30 290 290 290 
matrix 50 400 610 690 
hanoi 10 50 70 310 
query 70 340 370 1,600 
maps 90 540 140 2,240 

In matrix, hanoi, query, and maps (and also qsort) , 
encapsulation of different programming paradigms has 
been tried. The results show that encapsulating inde­
pendent goals which are deterministic provides no im­
provement, but performance improves when they are 
nondeterministic. Performance also improves in the 
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case of goals which act in producer/consumer fashion 
( maps). These results suggest that AKL control simi­
lar to that of hand-coded versions can be imposed au­
tomatically for paradigms other than independence of 
goals. 

The automatic transformation achieves reasonably 
good results when compared to. code specifically writ­
ten for AKL, provided one takes into account that the 
starting point is a Prolog program with little specifi­
cation of control, and it is being compared to an AKL 
program where control has been greatly optimized by 
the programmer. The examples where the largest dif­
ferences show are those in which the control imposed 
by hand in the AKL program changes the complexity 
of the algorithm, generally through smart use of sus­
pension (as in the sum/3 predicate), something that 
the transformation can not yet do automatically. How­
ever, the results also show that it would obviously be 
desirable to extend the translation algorithms towards 
implementing some of the smart forms of control that 
can be provided by an AKL programmer. 

When comparing with Prolog, both the interpreted 
and compiled Prolog figures should be considered, as 
the AKL system prototype used is somehow something 
in between a compiler and an interpreter. The re­
sults show that a variable performance improvement 
can be obtained whenever determinism is significant in 
the problem (this is quite spectacular in scanner). Also, 
the encapsulation transformation can help efficiency in 
some cases. In any case the figures are of course pre­
liminary and a more exhaustive study should clearly be 
done after improvements in the translation prototype 
and the AKL system, and also when an actual parallel 
AKL system is available. 

7 Conclusions 

We have presented an algorithm for translating Pro­
log into AKL which in addition achieves independent 
and-parallel execution of appropriate goals. We have 
pointed out a series of non-trivial problems associated 
with such a translation and proposed solutions for them 
based on existing global analysis technology. We have 
shown how to take advantage both of the AKL exe­
cution model (the Extended Andorra Model) and the 
independence analysis performed in the context of &. 
Prolog to produce a translation that allows the exploita­
tion of all the forms of parallelism present in AKL 
(dependent-and, independent-and, and or-parallelism) 
while offering the user the familiar Prolog (or, in gen­
eral, logic with minimal control) view (and debugging 
ease!). Most importantly, this is done while preserving 
or improving the user-perceived complexity of the pro­
gram. The transformation is relevant even in the case 
of a sequential AKL implementation since the reduc­
tion of stability checking which follows from knowledge 
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of goal independence can already be of significant ad­
vantage, given the expected cost· of stability tests. In 
the case of a parallel AKL implementation the transfor­
mation amounts to a form of automatic parallelization 
and search space reducing implementation for Prolog 
programs which. exploits the EAM, and imposes a par­
ticular form of control on it. 

A sequential AKL implementation is already being 
developed at SICS with a first prototype already run­
ning. The translator itself is also being implemented 
and a preliminary version is already integrated with 
the &-Prolog system compilation tools. The combina­
tion has been tested and some sample programs exe­
cuted successfully on AKL, and compared with their 
specific AKL counterparts. Further work is expected 
in the translator as better translation algorithms are 
developed to take more specific advantage of the AKL 
control facilities, in particular coroutining, in more ac­
curately detecting input and output variables, in adapt­
ing the algorithms to possible evolutions of the AKL, in 
evaluating the performance of the translated programs 
with respect to Prolog, and in the formal proof of the 
correctness of the transformation and its preservation 
of user expected computation size, the latter point be­
ing supported already in part by the basic results on 
independent and-parallelism. 
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Abstract 

We argue that in order to exploit both Indepen­
dent And- and Or-parallelism in Prolog programs there 
is advantage in recomputing some of the independent 
goals, as opposed to all their solutions being reused. 
We present an abstract model, called the Composition­
Tree, for representing and-or parallelism in Prolog Pro­
grams. The Composition-tree closely mirrors sequen­
tial Prolog execution by recomputing some indepen­
dent goals rather than fully re-using them. We also 
outline two environment representation techniques for 
And-Or parallel execution of full Prolog based on the 
Composition-tree model abstraction. We argue that 
these techniques have advantages over earlier propos­
als for exploiting and-or parallelism in Prolog. 

1. Introduction 

One of the features of logic programming lan­
guages that make them attractive is that they al­
low implicit parallel execution of programs. There 
are three main forms of parallelism present in logic 
programs: or-parallelism, Independent And-parallelism 
and Dependent and-parallelism. In this paper we 
restrict ourselves to Or-parallelism and Independent 
and-parallelism. There have been numerous proposals 
for exploiting or-parallelism in logic programs [AK90, 
HCS7, LW90, WS4, WS7, etc.]:j: and quite a few for ex­
ploiting independent and-parallelism [HS6, LKSS, etc.]. 
Models have also been proposed to exploit both or­
parallelism and independent and-parallelism in a single 
framework [BKSS, GJS9, RKS9]. It is the latter aspect 
of combining independent and- and or-parallelism that 
this paper addresses. 

t Much of this work was done while the first author was a Re­
search Associate in David H.D. Warren's group at the University 

of Bristol. 

:j: See [GJ90] for a systematic analysis of the various models. 

One aspect which most models that have been pro­
posed (and some implemented) so far for combining 
or-parallelism and independent and-parallelism have in 
common is that they have either considered only pure 
logic programs (pure Prolog), e.g. [RKS9, GJS9], or, 
alternatively, modified the language to separate parts 
of the program that contain extra-logical predicates 
(such as cuts and side-effects) from those that contain 
purely logical predicates, then allowing parallel execu­
tion only in parts containing purely logical predicates 
[RSS7, BKSS]. In the former case practical Prolog pro­
grams cannot be executed since most such programs 
use extra-logical features. The latter approach has a 
number of disadvantages: first, it requires program­
mers to divide the program into sequential and paral­
lel parts themselves. As a result of this, parallelism 
is not exploited completely implicitly since some pro­
grammer intervention is required. This also rules out 
the possibility of taking "dusty decks" of existing Pro­
log programs and running them in parallel. In ad­
dition, some parallelism may also be lost since parts 
of the program that contain side-effects may also ac­
tually be the parts that contain parallelism. It has 
been shown that or-parallelism and independent and­
parallelism can be exploited in full Prolog completely 
implicitly (for example, in the Aurora and Muse Sys­
tems [HCSS, LWH90, AK91], and in the &-Prolog sys­
tem [HG90, MHS9, CCS9]). We argue that the same 
can be done for systems that combine independent and­
and or-parallelism and that will be one of the design 
objectives of the approach presented in this paper. t 

The paper thus describes a general approach for 

t Due to length limitations the actual techniques for incorpo­
rating side effects in and-or parallel systems in order to execute 
full Prolog are presented in a separate report [GS91]. However, 
the model presented in this paper has been designed with this is­
sue in mind, i.e., having as one of the objectives that the inclusion 

of side effects be facilitated. 



combined exploitation of independent and- and or­
parallelism in full Prolog. We present an abstract 
model of and-or parallelism for logic programs which 
mirrors sequential Prolog execution more closely, essen­
tially by recomputing some independent goals (those 
that Prolog recomputes) rather than re-using them, 
and show the advantages of this approach. Our pre­
sentation is then two-pronged, in that we propose two 
alternative efficient environment representation tech­
niques to support the model: paged binding arrays and 
stack copying. Using the concept of teams of proces­
sorst, we also briefly discuss issues such as scheduling 
and memory management. 

The environment representation techniques pro­
posed are extensions of techniques designed for purely 
or-parallel systems---specifically the Aurora [LW90] 
and Muse [AK90] systems. The method for encod­
ing independent and-parallelism is taken from purely 
independent and-parallel systems-specifically the &­
Prolog system [H G90]: we use the parallel conj unction 
operator "&" to signify parallel execution of the goals 
separated by this operator and Conditional Graph Ex­
pressions (CGEs) [HN86,H86]§. Hence our model can 
be viewed as a combination of the &-Prolog system and 
a purely or-parallel system such as Aurora or Muse­
in the presence of only independent and-parallelism our 
model behaves exactly like &-Prolog while in the pres­
ence of only or-parallelism it behaves exactly like the 
Aurora or Muse systems, depending on the environ­
ment representation technique chosen. 

The rest of the paper is organised as follows: Sec­
tion 2 describes or-parallelism and independent and­
parallelism in Prolog programs. Section 3 presents 
arguments for favouring recomputation of some inde­
pendent and-parallel goals over their complete reuse. 
Section 4 then presents an abstract model called the 
Composition-tree for representing and-or parallel ex­
ecution of Prolog with recomputation. Section 5 
deals with environment representation issues in the 
Composition-tree: section 5.1 presents a comparison 
of environment representation techniques based on 
whether there is sharing or non-sharing; section 5.2 
presents an extension of the Binding Arrays method, an 
environment representation technique based on shar-

t We refer to the working "agents" of the system -the "work­
ers" of Aurora and Muse and "agents" of &-Prolog- simply as 
processors, under the assumption that the term will generally 
represent processes mapped onto actual processors in an actual 

implementation. 

§ Note that CGEs and & operators can be introduced auto­
matically in the program at compile time [MH89a] using abstract 
interpretation and thus the programmer is not burdened with the 

parallelization task. 
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ing; while section 5.3 presents another technique, based 
on non-sharing, which employs stack-copying. Finally, 
section 6 presents our conclusions. We assume that the 
reader is familiar to some extent with Binding Arrays 
[W84, W87], the Aurora and Muse Systems [LWH90, 
AK90], and. the &-Prolog system [HG90], as well as 
with some aspects of sequential Prolog implementation. 

2. Or- and Independent And-parallelism 

Or-parallelism arises when more than one rule de­
fines some relation and a procedure call unifies with 
more than one rule head in that relation-the corre­
sponding bodies can then be executed in or-parallel 
fashion. Or-parallelism is thus a way of efficiently 
searching for solutions to a goal, by exploring alter­
native solutions in parallel. It corresponds to the par­
allel exploration of the branches of the proof tree. Or­
parallelism has successfully been exploited in full Pro­
log in the Aurora [LWH90] and the Muse [AK90] sys­
tems both of which have shown very good speed up 
results over a range of problems. 

Informally, Independent And-parallelism arises 
when more than one goal is present in the query or 
in the body of a procedure, and the run-time bindings 
for the variables in these goals are such that two or 
more goals are independent of one another. In general, 
independent and-parallelism includes the parallel exe­
cution of any set of goals in a resolvent, provided they 
meet some independence condition. Independent and­
parallelism is thus a way of speeding up a problem by 
executing its subproblems in parallel. One way for goals 
to be independent is that they don't share any variable 
at run-time (strict independence [HR90]t). This can 
be ensured by checking that their resulting argument 
terms after applying the bindings of the variables are ei­
ther variable-free (i.e., ground) or have non-intersecting 
sets of variables. Independent and-parallelism has been 
successfully exploited in the &-Prolog system [HG90]. 
Independent and-parallelism is expressed in the &­
Prolog system through the parallel conjunction opera­
tor "&", which will also be used in this paper. For syn­
tactic brevity we will also use &-Prolog's Conditional 
Graph Expressions (CGEs), which are of the form 

(condition ::::} goa/r & goal2 & ... & goaln ) 

meaning, using the standard Prolog if-then-else con­
struct, 

(condition ---+ goal! & ... & goaln ; goa/r, ... , goaln ) 

t There is a more general concept of independence, non­
strict independence [HR90], for which the same results (the 
model presented in this paper included) apply. However, the 
rest of the presentation in this section will refer for simplicity, 

and without loss of generality, to strict independence. 
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i.e., that, if condition is true, goals goall ... goaln are 
to be evaluated in parallel, otherwise they are to be 
evaluated sequentially. The condition can obviously 
be any prolog goal but is normally a conjunction of 
special builtins which include ground/I, which checks 
whether its argument has become a ground term at run­
time, or independent/2, which checks whether its two 
arguments are such at run-time that they don't have 
any variable in common, or the constant true meaning 
that goah ... goa/n can be evaluated in parallel uncon­
ditionally. It is possible to generate parallel conjunc­
tions and or CGEs automatically and quite successfully 
at compile-time using abstract interpretation [MH89]. 
Thus, exploitation of independent and-parallelism in &­
Prolog is completely implicit (although user annotation 
is also allowed). 

There have been a number of attempts to exploit 
or- and independent and-parallelism together in a single 
framework [GJ89, RK89, WR87, etc.]' however, and as 
mentioned earlier, they either don't support the full 
Prolog language, or require user intervention. Also, in 
general these systems advocate solution sharing which, 
as will be argued in the following section, stands in the 
way of supporting full Prolog. 

3. Recomputation vs Reuse 

In the presence of both and- and or-parallelism in 
logic programs, it is possible to avoid recomputing cer­
tain goals. This has been termed as solution sharing 
[GJ89, G91a]. For example, consider two independent 
goals a(X), b(Y), each of which has multiple solutions. 
Assuming that all solutions to the program are desired, 
the most efficient way to execute this goal would be to 
execute a and b in their entirety and combine their so­
lutions (possibly incrementally) through a join [BK88, 
GJ89, RK89]. However, to solve the above goal in this 
way one needs to be sure that the set of solutions for a 
and b are static (i.e., if either goal is executed multiple 
times, then each invocation produces an identical set 
of solutions). Unfortunately, this can hold true only if 
clauses for a and b are pure logic programs. If side­
effects are present (as is usually the case with Prolog 
programs), then the set of solutions for these goals may 
not be static. For example, consider the case where, 
within b, the value of a variable is read from the stan­
dard input and then some action taken which depends 
on the value read. The solutions for b may be differ­
ent for every invocation of b (where each invocation 
corresponds to a different solution of a), even if the 
goal is completely independent of the others. Hence 
solution sharing would yield wrong results in such a 
case. The simple solution of sequentializing such and­
parallel computations results in loss of too much and-

parallelism, because if a(X), bey) falls in the scope 
of some other goal, which is being executed in and­
parallel, then that goal has to be sequentialized too, 
and we have to carryon this sequentialization process 
right up to the top level query. If, however, the goals are 
recomputed then this sequentialization can be avoided, 
and parallelism exploited even in the presence of cuts 
and side-effects [GS91]. 

Hence, there is a strong argument for recomput­
ing non-deterministic and-parallel goals, especially, if 
they are not pure, and even more so if we want to 
support Prolog as the user languaget. Additionally, 
recent simulations of and-or parallelism [SH91] show 
that typical Prolog programs perform very little re­
computation, thus providing further evidence that the 
amount of computation saved by a system which avoids 
recomputation may be quite small in practice. Pre­
sumably this behaviour is due to the fact that Prolog 
programmers, aware of the selection and computation 
rules of Prolog, order literals in ways which result in 
efficient search which minimises the recomputation of 
goals. Note that the use of full or partial recomputa­
tion can never produce any slowdown with respect to 
Prolog since Prolog itself uses full recomputation. 

Recomputation of independent goals was first pro­
posed in the context of &-Prolog.1:. It is obviously also 
used in Aurora and Muse (since, performing no goal 
independence analysis, no possibility of sharing arises) 
and has made these three systems quite capable of sup­
porting full Prolog. Recomputation in the context of 
and-or parallelism has also been proposed in [SH91]§. 
The argument there was basically one of ease of simu­
lation and, it was argued, of implementation (being a 
simulation study no precise implementation approach 
was given). Here we add the important argument of 
being able to support full Prolog, provide an abstract 
representation of the corresponding execution tree, and 
outline two efficient implementation approaches. 

4. And-Or Composition Tree 

The most common way to express and- and or-

t There is a third possibility as well: to recompute those 
independent and-parallel goals that have side-effects and share 
those that don't. Since the techniques for implementing solution 
sharing are in the literature and techniques for implementing 
solution recomputation are presented herein such an approach 
would represent a -perhaps non-trivial- combination of the given 

methods. 

1: In the case of &-Prolog there are even further arguments 
in favour of recomputation, related to management of a single 

binding environment and memory economy. 

§ The idea of recomputation is referred to as "or-under-and" 

in [SH91]. 



parallelism in logic programs is through the traditional 
concept of and-or trees, i.e. trees consisting of or-nodes 
and and-nodes. Or-nodes represent multiple clause 
heads matching a goal while and-nodes represent mul­
tiple subgoals in the body of a clause being executed 
in and-parallel. Since in the model presented herein we 
are representing and-parallelism via parallel conjunc­
tions, our and-nodes will represent such conjunctions. 
Thus, given a clause q :- (true => a & b), and as­
suming that a and b have 3 solutions each (to be exe­
cuted in or-parallel form) and the query is ?- q, then 
the corresponding and-or tree would appear as shown 
in figure 1. 

Key: 

• Choice point 

al 

q 

(a & b) 

a3 
a2 

Figure 1: And-Or Tree 

One problem with such a traditional and-or tree is 
that bindings made by different alternatives of a are not 
visible to different alternatives of b, and vice-versa, and 
hence the correct environment has to be created before 
the continuation goal of the parallel conjunction can be 
executed. Creation of the proper environments requires 
a global operation, for example, Binding Array loading 
in AO-WAM [GJ89, G91a]' the complex dereferencing 
scheme ofPEPSys [BK88], or the "global forking" oper­
ation of the Extended Andorra Model [W90]. To elim­
inate this possible source of overhead in our model, we 
extend the traditional and-or tree so that the various 
or-parallel environments that simultaneously exist are 
always separate. 

The extension essentially uses the idea of recom­
puting independent goals of a parallel conjunction of 
&-Prolog [HG90] (and Prolog!). Thus, for every al­
ternative of a, the goal b is computed in its entirety. 
Each separate combination of a and b is represented 
by what we term as a composition node (c-node for 
brevity). Thus, each composition node in the tree cor­
responds to a different solution for the parallel conjunc­
tion, i.e., a different "continuation". Thus the extended 
tree, called the Composition-tree (C-tree for brevity), 
for the above query might appear as shown in figure 
2-for each alternative of the and-parallel goal a, goal 
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b is entirely recomputed (in fact, the tree could contain 
up to 9 c-nodes, one for each combination of solutions 
of a and b). To represent the fact that a parallel con­
junction can have multiple solutions we add a branch 
point (choice point) before the different composition 
nodes. Note that c-nodes and branch points serve pur­
poses very similar to the Parcall frames and markers of 
the RAP-WAM [H86, HG90]. The C-tree can represent 
or- and independent and-parallelism quite naturally­
execution of goals in a c-node gives rise to independent 
and-parallelism while parallel execution of untried al­
ternatives gives rise to or-parallelism. t. 

q Key: 

• Choice point 

CJ Share Node 

c:::::J Composition Node 

b3 

bi b2 b2 

Figure 2: Composition Tree 

Notice the topological similarity of the C-tree with 
the purely or-parallel tree shown in figure 3 for the pro­
gram above. Essentially, branches that are "shared" in 
the purely or-parallel tree (i.e. that are "common", 
even though different binding environments may still 
have to be maintained -we will refer to such branches 
and regions for simplicity simply as "shared") are also 
shared in the C-tree. This sharing is represented by 
means of a share-node, which has a pointer to the 
shared branch and a pointer to the composition node 
where that branch is needed (figure 2). Due to shar­
ing the subtrees of some independent and-parallel goals 
maybe spread out across different composition nodes. 
Thus, the subtree of goal a is spread out over c-nodes 
Cl, C2 and C3 in the C-tree of figure 2, the to­
tal amount of program-related work being essentially 
maintained. 

t In fact, a graphical tool capable of representing this tree 
has shown itself to be quite useful for implementors and users of 

independent and- and or-parallel systems [eGglj. 
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Key: 

- indicates end 
of a's branch 

bl 

b2 

Figure 3: Or-Parallel Tree 

b3 

b2 

4.1 And-Or Parallelism & Teams of Processors 

We will present some of the implementation isuues 
from the point of view of extending an or-parallel sys­
tem to support independent and-parallelism. When a 
purely or-parallel model is extended to exploit indepen­
dent and-parallelism then the following problem arises: 
at the end of independent and-parallel computation, 
all participating processors should see all the bindings 
created by each other. However, this is completely op­
posite to what is needed for or-parallelism where pro­
cessors working in or-parallel should not see the (con­
ditional) bindings created by each other. Thus, the 
requirements of or-parallelism and independent and­
parallelism seem anti-thetical to each other. The so­
lutions that have been proposed range from updating 
the environment at the time independent and-parallel 
computations are combined [RK89, GJ89] to having a 
complex dereferencing scheme [BK88]. All of these op­
erations have their cost. 

We contend that this cost can be eliminated by or­
ganising the processors into teams. Independent and­
parallelism is exploited among processors within a team 
while or-parallelism is exploited among teams. Thus a 
processor within a team would behave like a processor 
in a purely and-parallel system while all the processors 
in a given team would collectively behave like a pro­
cessor in a purely or-parallel system. This entails that 
all processors within each team share the data struc­
tures that are used to maintain the separate or-parallel 
environments. For example, if binding arrays are be­
ing used to represent multiple or-parallel environments, 
then only one binding array should exist per team, so 

that the whole environment is visible to each member 
processor of the team. In copying is used, then pro­
cessors in the team share the copy. Note that in the 
limit case there will be only one processor per team. 
Also note that despite the team arrangement a proces­
sor is free to migrate to another team as long as it is 
not the only one left in the team. Although a fixed 
assignment of processors to teams is possible a flexi­
ble scheme appears preferable. This will be discussed 
in more detail in section 4.3. The concept of teams of 
processors has been successfully used in the Andorra-I 
system [SW9I], which extends an or-parallel system to 
accommodate dependent and-parallelism. 

4.2. C-tree & And-Or Parallelism 

The concept of organising processors into teams 
also meshes very well with C-trees. A team can work on 
a c-node in the C-tree-each of its member processors 
working on one of the independent and-parallel goal in 
that c-node. We illustrate this by means of an example. 
Consider the query corresponding to the and-or tree of 
figure 1. Suppose we have 6 processors PI, P2, ... , 
P6, grouped into 3 teams of 2 processors each. Let us 
suppose PI and P2 are in team I, P3 and P4 in team 2, 
and P5 and P6 in team 3. We illustrate how the C-tree 
shown in figure 2 would be created. 

Execution commences by processor PI of team I 
picking up the query q and executing it. Execution con­
tinues like normal sequential execution until the paral­
lel conjunction is encountered, at which point a choice 
point node is created to keep track of the information 
about the different solutions that the parallel conjunc­
tion might generate. A c-node is then created (node 
CI in figure 2). The parallel conjunction consists of 
two and-parallel goals a and b, of which a is picked 
up by processor PI, while b is made available for and­
parallel execution. The goal b is subsequently picked 
up by processor P2, teammate of processor PI. Pro­
cessor PI and P2 execute the parallel conjunction in 
and-parallel producing solutions a1 and b1 respectively. 
In the process they leave choice points behind. Since 
we allow or-parallelism below and-parallel goals, these 
untried alternatives can be processed in or-parallel by 
other teams. Thus the second team, consisting of P3 
and P4 picks up the untried alternative corresponding 
to a2, and the third team, consisting of P5 and P6, 
picks up the untried alternative corresponding to a3. 
Both these teams create a new c-node, and restart the 
execution of and-parallel goal b (the goal to the right 
of goal a): the first processor in each team (P3 and 
P5, respectively) executes the alternative for a, while 
the second processor in each team (P4 and P6, respec­
tively) executes the restarted goal b. Thus, there are 



3 copies of b executing, one for each alternative of a. 
Note that the nodes in the subtree of a, between c-node 
Cl and the choice points from where untried alterna­
tives were picked, are "shared" among different teams 
(in the same sense as the nodes above the parallel con­
junction are-different binding environments still have 
to be maintained). 

Since there are only three teams,. the untried alter­
natives of b have to be executed by backtracking. In 
the C-tree, backtracking always takes place from the 
right to mimic Prolog's behaviour-goals to the right 
are completely explored before a processor can back­
track inside a goal to the left. Thus, if we had only 
one team with 2 processors, then only one composition 
node would actually need to be created, and all solu­
tions would be found via backtracking, exactly as in 
&-Prolog, where only one copy of the Parcall frame ex­
ists [H86, HG90]. On the other hand if we had 5 teams 
of 2 processors each, then the C-tree could appear as 
shown in fig 4. In figure 4, the 2 extra teams steal the 
untried alternatives of goal b in c-node C3, This results 
in 2 new c-nodes being created, C4 and C5 and the sub­
tree of goal bin c-node C3 being spread across c-nodes 
C3, C4 and C5. The topologically equivalent purely 
or-parallel tree of this C-tree is still the one shown in 
figure 3. The most important point to note is that 
new c-nodes get created only if there are resources to 
execute that c-node in parallel. Thus, the number of c­
nodes in a C-tree can vary depending on the availability 
of processors. 

[J 

bl b2 

Choice point 

Share Node 

Composition Node 

b2 

'The composition·nodes CI, C2 and C3 are created one each 

!: ::"~w~=~v;J:': ::':J..~~:llo':! ilie,!:!C~f 
and·parallel goal b in composition node C3 are picked by 
others. The equivalent purely or-parallel tree is shown in fig 2. 

Figure 4: C-tree for 5 Teams 

It might appear that intelligent backtracking, that 
accompanies independent and-parallelism in &-Prolog, 
is absent in our abstract and-or parallel C-tree model. 
This is because if b were to completely fail, then this 
failure will be replicated in each of the three copies of b. 
We can incorporate intelligent backtracking by stipulat­
ing that an untried alternative be stolen from a choice 
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point, which falls in the scope of a parallel conjunction, 
only after at least one solution has been found for each 
goal in that parallel conjunction. Thus, c-nodes C2, 
C3, C4 and C5 (fig 4) will be created only after the 
first team (consisting of PI and P2) succeeds in finding 
solutions ai and bi respectively. In this situation if b 
were to fail, then the c-node Cl will fail, resulting in 
the failure of the whole parallel conjunction. 

4.3. Processor Scheduling 

Since our abstract model of C-trees is dependent 
upon the number of processors available, some of the 
processor scheduling issues can be determined at an 
abstract level, without going into the details of a con­
crete realization of the C-trees. As mentioned earlier, 
teams of processors are used to carry out or-parallel 
work while individual processors within a team perform 
and-parallel work. Since and-parallel work is shared 
within a team, a processor can in principle steal and­
parallel work only from members of its own team. Or­
parallel work is shared at the level of teams, thus only 
an idle team can steal an untried alternative from a 
choice point. An idle processor will first look for and­
parallel work in its own team. If no and-parallel work is 
found, it can decide to migrate to another team where 
there is work, provided it is not the last remaining pro­
cessor in that team. If no such team exists it can start 
a new team of its own, perhaps with idle processors 
of other teams, and the new team can steal or-parallel 
work. One has to carefully balance the number of teams 
and the number of processors in each team, to fully ex­
ploit all the and- and or-parallelism available in a given 
Prolog program t . 

5. Environment Representation 

So far we have described and-or parallel execution 
with recomputation at an abstract level. We have not 
addressed the crucial problem of environment represen­
tation in the C-tree. In this section we discuss how to 
extend the Binding Arrays (BA) method [W84,W87] 
and the Stack-copying [AK90] methods to solve this 
problem. These extensions enable a team of processors 
to share a single BA without wasting too much space. 

5.1 Sharing vs Non-Sharing 

In an earlier paper [GJ90] we argued that environ­
ment representation schemes that have constant-time 
task creation and constant-time access to variables, but 
non-constant time task-switching, are superior to those 

t Some of the 'flexible scheduling' techniques that have been 
developed for the Andorra-I system [D91] can be directly adapted 

for optimal distribution of or- and and-parallel work. 
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methods which have non-constant time task creation 
or non-constant time variable-access. The reason being 
that the number of task-creation operations and the 
number of variable-access operations are dependent on 
the program, while the number of task-switches can be 
controlled by the implementor by carefully designing 
the work-scheduler. 

The schemes that have constant-time task creation 
and variable-access can be further subdivided into those 
that physically share the execution tree, such as Bind­
ing Arrays scheme [W84, W87, LW90] and Versions 
Vectors [HC87] scheme, arid those that do not, such as 
MUSE [AK90] and Delphi [CA88]. Both these kinds of 
schemes have their advantages. The advantage of non­
sharing schemes such as Muse and Delphi are that less 
synchronization is needed in general since each proces­
sor has its own copy of the tree and thus there is less 
parallel overhead [AK90]. This also means that they 
can be implemented on non-shared memory machines 
more efficiently. However, operations that may require 
synchronization and voluntary suspension such as side 
effects, cuts and speculative scheduling are more over­
head prone to implement. When an or-parallel sys­
tem reaches a side effect which is in a non-leftmost 
or-branch, it has two choices: (i) it can suspend the 
current branch and switch to some other node where 
there is work available, the suspended branch would be 
woken up when it becomes leftmost; or (ii) it can busy­
wait at the current branch until it becomes left most. 
In case (i) an or-parallel system that does not share 
the execution tree, such as Muse, will have to save its 
current execution stack in a scratch memory-area since 
switching to a new node means that the current stack 
would be overwritten due to copying of the branches 
corresponding to the new node. Even if modern sophis­
ticated multiprocessor Operating Systems may allow 
some memory-saving optimizations, a substantial mem­
ory overhead may still be presentt. The same holds for 
case (ii), where a modern OS may manage to avoid 
busy-waiting, but at the cost of extra memory. 

The essential conclusion is that for some applica­
tions (those that require processors to synchronize of­
ten riue to presence of a large number of side-effects 
and cuts) environment representation schemes which 
share the or-tree are better, and for some other appli­
cations (those that require processors to synchronize 
less often) schemes which maintain an independent or­
tree per processor are better. With this observation 
in mind we have extended both types of environment 

t Experimental results show that processors may voluntarily 

suspend as much as 10 to 100s of times for large sized programs 

[S191j. 

representation schemes to accommodate independent 
and-parallelism with recomputation of goals. We first 
describe an extension of the Binding Arrays scheme, 
and then an extension of the stack-copying technique. 
Due to space limitations the essence of both approaches 
will be presented rather than specifying them in detail 
as full models, which is left as future work. 

5.2. Environment Representation using BAs 

Recall that in the binding-array method [W84, 
W87] an offset-counter is maintained for each branch of 
the or-parallel tree for assigning offsets to conditional 
variables (CVs)t that arise in that branch. The 2 main 
properties of the BA method for or-parallelism are the 
following: 

(i) The offset of a conditional variable is fixed for its 
entire life. 

(ii) The offsets of two consecutive conditional variables 
in an or-branch are also consecutive. 

The implication of these two properties is that con­
ditional variables get allocated space consecutively in 
the binding array of a given processor, resulting in opti­
mum space usage in the BA. This is important because 
a large number of conditional variables might need to 
be created at runtimei. 

a 

\-

~~\f 
1!0> 

c1 
Fig (i): Part of a C-tree 

BA 

Figure (ii): Optimal Space Allocation in the BA 

Figure 5: BAs and Independent And-Parallelism 

In the presence of independent and-parallel goals, 
each of which has multiple solutions, maintaining con­
tiguity in the BA can be a problem, especially if pro­
cessors are allowed (via backtracking or or-parallelism) 
to search for these multiple solutions. Consider a goal 
with a parallel conjunction: a, (true => b 8& c), d. 
A part of its C-tree is shown in figure 5(i) (the figure 

t Conditional variables are variables that receive different 

bindings in different environments [GJ90j. 

i For instance, in Aurora [LW90j about 1Mb of space is allo­

cated for each BA. 



also shows the number of conditional variables that are 
created in different parts of the tree). If band e are 
executed in independent and-parallel by two different 
processors PI and P2, then assuming that both have 
private binding arrays of their own, all the conditional 
variables created in branch b-b1 would be allocated 
space in BA of PI and those created in branch of e­
e1 would be allocated space in BA of P2. Likewise 
conditional bindings created in b would be recorded in 
BA of PI and those in e would be recorded in BA of 
P2. Before PI or P2 can continue with d after finding 
solutions b1 and e1, their binding arrays will have to 
be merged somehow. In the AO-WAM [GJ89, G91a] 
the approach taken was that one of PI or P2 would 
execute d after updating its Binding Array with con­
ditional bindings made in the other branch (known as 
the the BA loading operation). The problem with the 
BA loading operation is that it acts as a sequential bot­
tleneck which can delay the execution of d, and reduce 
speedups. To get rid of the BA loading overhead we 
can have a common binding array for PI and P2, so 
that once PI and P2 finish execution of band e, one of 
them immediately begins execution of d since all con­
ditional bindings needed would already be there in the 
common BA. This is consistent with our discussion in 
section 4.1 about having teams of processors where all 
processors in a team would share a common binding 
array. 

However, if processors in a team share a binding 
array, then backtracking can cause inefficient usage of 
space, because it can create large unused holes in the 
BA. This is because processors in a team, that are work­
ing on different independent and-parallel branches, will 
allocate offsets in the binding array concurrently. The 
exact number of offsets needed by each branch cannot 
be allocated in advance in the binding array because 
the number of conditional variables that will arise in a 
branch cannot be determined a priori. Thus, the offsets 
of independent and-branches will overlap: for example, 
the offsets of kl CVs in branch bl will be intermin­
gled with those of k2 CVs in branch cl. Due to over­
lapping offsets, recovery of these. offsets, when a pro­
cessor backtracks, requires tremendous book-keeping. 
Alternatively, if no book-keeping is done, it leads to 
large amount of wasted space that becomes unusable 
for subsequent offsets (see [GS92, G91, G91a] for more 
details). 

5.2.1. Paged Binding Array 

To solve the above problem we divide the binding 
array into fixed sized segments. Each conditional vari­
able is bound to a pair consisting of a segment number 
and an offset within the segment. An auxiliary array 
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keeps track of the mapping between the segment num­
ber and its starting location in the binding array. Deref­
erencing CVs now involves double indirection: given a 
conditional variable bound to (i, 0), the starting address 
of its segment in the BA is first found from location i 
of the auxiliary array, and then the value at offset 0 

from that address is accessed. A set of CV s that have 
been allocated space in the same logical segment (i.e. 
CV s which have common i) can reside in any physi­
cal page in the BA, as long as the starting address of 
that physical page is recorded in the ith slot in the 
auxiliary array. Note the similarity of this scheme to 
memory management using paging in Operating Sys­
tems, hence the name Paged Binding Array (PBA)t. 
Thus a segment is identical to a page and the auxil­
iary array is essentially the same as a page table. The 
auxiliary and the binding array are common to all the 
processors in a team. From now on we will refer to the 
BA as the Paged Binding Array (PBA), the auxiliary 
array as the Page Table (PT), and our model of and-or 
parallel execution as the PBA modelt. 

Every time execution of an and-parallel goal in a 
parallel conj unction is started by a processor, or the 
current page in the PBA being used by that processor 
for allocating CVs becomes full, a page-marker node 
containing a unique integer id i is pushed onto the 
trail-stack. The unique integer id is obtained from a 
shared counter (called a pt_eounter). There is one 
such counter per team. A new page is requested from 
the PBA, and the starting address of the new page is 
recorded in the ith location of the Page Table. i is re­
ferred to as the page number of the new page. Each 
processor in a team maintains an offset-counter, which 
is used to assign offsets to CV s within a page. When a 
new page is obtained by a processor, the offset-counter 
is reset. Conditional variables are bound to the pair <i, 
0>, where i is the page number, and 0 is the value of the 
offset-counter, which indicates the offset at which the 
value of the CV would be recorded in the page. Every 
time a conditional variable is bound to such a pair, the 
offset counter 0 is incremented. If the value of 0 be­
comes greater than K, the fixed page size, a new page 
is requested and new page-marker node is pushed. 

t Thanks to David H. D. Warren for pointing out this 

similarity. 

t A paged binding array has also been used in the ElipSys 
system of ECRC [VX91], but for entirely different reasons. In 
ElipSys, when a choice point is reached the BA is replicated for 
each new branch. To reduce the overhead of replication, the BA 
is paged. Pages of the BA are copied in the children branches 
on demand, by using a "copy-on-write" strategy. In ElipSys, 
unlike our model, paging is not necessitated by independent and­

parallelism. 
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A list of free pages in the PBA is maintained sepa­
rately (as a linked list). When a new page is requested, 
the page at the head of the list is returned. When a 
page is freed by a processor, it is inserted in the free­
list. The free-list is kept ordered so that pages higher 
up in the PBA occur before those that are lower down. 
This way it is always guaranteed that space at the top 
of the PBA would be used first, resulting in optimum 
space usage of space in the PBA. 

While selecting or-parallel work, if the untried al­
ternative that is selected is not in the scope of any 
parallel conjunction, then task-switching is more or 
less like in purely or-parallel system (such as Aurora), 
modulo allocation/ deallocation of pages in the PBA. 
If, however, the untried alternative that is selected is 
in the and-parallel goal g of a parallel conjunction, 
then the team updates its PBA with all the conditional 
bindings created in the branches corresponding to goals 
which are to the left of g. Conditional bindings created 
in g above the choice point are also installed. Goals 
to the right of g are restarted and made available to 
other member processors in the team for and-parallel 
execution. Notice that if a C-tree is folded into an 
or-parallel tree according to the relationship shown in 
figures 2 and 3, then the behaviour of (and the num­
ber of conditional bindings installed/ deinstalled dur­
ing) task switching would closely follow that of a purely 
or-parallel system such as Aurora, if the same schedul­
ing order is followed. 

Note that the paged binding array technique is a 
generalization of the environment representation tech­
nique of AO-WAM [GJS9, G91a], hence some of the 
optimizations [GJ90a] developed for the AO-WAM, 
to reduce the number of conditional bindings to in­
stalled/deinstalled during task-switching, will also ap­
ply to the PBA model. Lastly, seniority of conditional 
variables, which needs to be known so that "older" vari­
ables never point to "younger ones" , can be easily deter­
mined with the help of the <i, 0> pair. Older variables 
will have a smaller value of i; and if i is the same, then 
a smaller value of o. 

More details on Paged Binding Arrays can be 
found in [GS92, G91]. 

5.3. The Stack Copying Approach 

An alternative approach to represent multiple en­
vironments in the C-tree is to use explicit stack-copying. 
Rather than sharing parts of the tree, the shared 
branches can be explicitly copied, using techniques sim­
ilar to those employed by the MUSE system [AK90]. 

To briefly summarize the MUSE approach, when­
ever a processor PI wants to share work with another 

processor P2- it selects an untried alternative from one 
of the choice points in P2's stack. It then copies the 
entire stack of P2, backtracks up to that choice point 
to undo all the conditional bindings made below that 
choice point, and then continues with the execution 
of the untried alternative. In this approach, provided 
there is a mechanism for copying stacks, the only cells 
that need to be shared during execution are those cor­
responding to the choice points. Execution is other­
wise completely independent (modulo side-effect syn­
chronization) in each branch and identical to sequential 
execution. 

If we consider the presence of and-parallelism in 
addition to or-parallelism, then, depending on the ac­
tual types of parallelism appearing in the program and 
the nesting relation between them, a number of relevant 
cases can be distinguished. The simplest two cases are" 
of course those where the execution is purely or-parallel 
or purely and-parallel. Trivially, in these situations 
standard MUSE and &-Prolog execution respectively 
applies, modulo the memory management issues, which 
will be dealt with in section 5.3.2. 

Of the cases when both and- and or-parallelism 
are present in the execution, the simpler one represents 
executions where and-parallelism appears "under" or­
parallelism but not conversely (i.e. no or-parallelism 
appears below c-nodes). In this case, and again mod­
ulo memory management issues, or-parallel execution 
can still continue as in Muse while and-parallel execu­
tion can continue like &-Prolog (or in any other local 
way. The only or-parallel branches which can be picked 
up appear then above any and-parallel node in the tree. 
The process of picking up such branches would be iden­
tical to that described above for MUSE. 

In the presence of or-parallelism under and­
parallelism the situation becomes slightly more com­
plicated. In that case, an important issue is carefully 
deciding which portions of the stacks to copy. When 
an untried alternative is picked from a choice-point, 
the portions that are copied are precisely those that 
have been labelled as "shared" in the C-tree. Note that 
these will be precisely those branches that will also be 
copied in an equivalent (purely or-parallel) MUSE ex­
ecution. In addition, precisely those branches will be 
recomputed that are also recomputed in an equivalent 
(purely and-parallel) &-Prolog execution. 

Consider the case when a processor selects an un­
tried alternative from a choice point created during ex­
ecution of a goal gj in the body of a goal which occurs 
after a parallel conjunction where there has been and­
parallelism above the the selected alternative, but all 
the forks are finished. Then not only will it have to copy 



all the stack segments in the branch from the root to 
the parallel conjunction, but also the portions of stacks 
corresponding to all the forks inside the parallel con­
junction and those of the goals between the end of the 
parallel conjunction and 9j. All these segments have in 
principle to be copied because the untried alternative 
may have access to variables in all of them and may 
modify such variables. 

On the other hand, if a processor selects an untried 
alternative from a choice point created during execution 
of a goal 9i inside a parallel conjunction, then it will 
have to copy all the stack segments in the branch from 
the root to the parallel conjunction, and it will also 
have to copy the stack segments corresponding to the 
goals 91 ... 9i-1 (i.e. goals to the left). The stack seg­
ments up to the parallel conjunction need to be copied 
because each different alternative within the 9iS might 
produce a different binding for a variable, X, defined 
in an ancestor goal of the parallel conjunction. The 
stack segments corresponding to goals 91 through 9i-1 

have to be copied because the different alternatives for 
the goals following the parallel conj unction might bind 
a variable defined in one of the goals 91 .. . 9i-1 differ­
ently. 

5.3.1. Execution with Stack Copying 

We now illustrate by means of a simple example 
how or-parallelism can be exploited in non determinis­
tic and-parallel goals through stack copying. Consider 
the tree shown in figure I that is generated as a result.of 
executing a query q containing the parallel conjunction 
(true => a(X) &' b(Y». For the purpose of illustra­
tion we assume that there is an unbounded number of 
processors, PI ... Pn. 

Execution begins with processor PI executing the 
top level query q. When it encounters the parallel con­
junction, it picks the subgoal a for execution, leaving 
b for some other processor. Let's assume that Proces­
sor P2 picks up goal b for execution (figure 6.(i)). As 
execution continues PI finds solution ai for a, gener­
ating 2 choice points along the way. Likewise, P2 finds 
solution bi for b. 

Since we also allow for full or-parallelism within 
and-parallel goals, a processor can steal the untried al­
ternative in the choice point created during execution 
of a by PI. Let us assume that processor P3 steals this 
alternative, and sets itself up for executing it. To do 
so it copies the stack of processor PI up to the choice 
point (the copied part of the stack is shown by the dot­
ted line; see index at the bottom of figure 6), simulates 
failure to remove conditional bindings made below the 
choice point, and restarts the goals to its right (i.e. the 
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goal b). Processor P4 picks up the restarted goal band 
finds a solution bi for it. In the meantime, P3 finds the 
solution a2 for a (see figure 6.(ii)). Note that before P3 
can commence with the execution of the untried alter­
native and P4 can execute the restarted goal b, they 
have to make sure that any conditional bindings made 
by P2 while executing b have also been removed. This 
is done by P3 (or P4) getting a copy of the trail stack 
of P2 and resetting all the variables that appear in it. 

Like processor P3, processor P5 steals the untried 
alternative from the second choice point for a, copies 
the stack from PI and restarts b, which is picked up 
by processor P6. As in MUSE, the actual choice point 
frame is shared to prevent the untried alternative in 
the second choice point from being executed twice (once 
through PI and once through P3). Eventually, P5 finds 
the solution a3 for a and P6 finds the solution bi for b. 
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Figure 6: Parallel Execution with Stack Copying 

Note that now 3 copies of b are being executed, 
one for each solution of a. The process of finding the 
solution bi for b leaves a choice point behind. The 
untried alternative in this choice point can be picked 
up for execution by another processor. This is indeed 
what is done by processors P7, P8 and P9 for each copy 
of b that is executing. These processors copy the stack 
of P2, P4 and P6, respectively, up to the choice point. 
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The stack segments corresponding to goal a are also 
copied (figures 6.(iv), 6.(v), 6.(vi)) from processors PI, 
P3 and P5, respectively. The processors P7, P8 and P9 
then proceed to find the solution b2 for b. 

Execution of the alternative corresponding to the 
solution b2 in the three copies of b produces an­
other choice-point. The untried alternatives from these 
choice points can be picked up by other idle teams in a 
manner similar to that for the previous alternative of b 
(not shown in figure 6). Note that if there were no pro­
cessors available to steal the alternative (corresponding 
to solution b3) from b then this solution would have 
been found by processors P7, P8 and P9 (in the re­
spective copies of b that they are executing) through 
backtracking as in &-Prolog. The same would apply 
if no processors were available to steal the alternative 
from b corresponding to solution b2. 

5.3.2. Managing the Address Space 

While copying stack segments we have to make 
sure that pointers in copied portions do not need re-

,location. In Muse this is ensured by having a phys­
ically separate but logically identical memory spaces 
for each of the processors [AK90]. In the presence of 
and-parallelism and teams of processors a more sophis­
ticated approach has to be taken. 

All processors in a team share the same logical 
address space. If there are n processors in the team the 
address space is divided up into m memory segments 
(m ;:::: n). The memory segments are numbered from I 
to m. Each processor allocates its heap, local stacks, 
trail etc. in one of the segments (this also implies that 
the maximum no. of processors that a team can have is 
m). Each team has its own independent logical address 
space, identical to the address space of all other teams. 
Also, each team has an identical number of segments. 
Processors are allowed to switch teams so long as there 
is a memory segment available for them to allocate their 
stacks in the address space of the other team. 

Consider the scenario where a choice point, which 
is not in the scope of any parallel conjunction, is picked 
up by a team Tq from the execution tree of another 
team Tp. Let x be the memory segment number in 
which this choice point lies. The root of the Prolog ex­
ecution tree must also lie in memory segment x since 
the stacks of a processor cannot extend into another 
memory segment in the address space. Tq will copy 
the stack from the xth memory segment of Tp into its 
own xth memory segment. Since the logical address 
space of each team is identical and is divided into iden­
tical segments, no pointer relocation would be needed. 
Failure is then simulated and the execution of the un-

tried alternative of the stolen choice point begun. In 
fact, the copying of stacks can be done incrementally 
as in MUSE [AK90] (other optimizations in MUSE to 
save copying should apply equally well to our model, 
and are left as future work). 

Now consider the more interesting scenario where 
a choice point, which lies within the scope of a parallel 
conjunction, is picked up by a processor in a team Tq 
from another team Tp. Let this parallel conjunction be 
the CGE (true =} gl& ... &gn) and let gi be the goal 
in the parallel conjunction whose sub-tree contains the 
stolen choice point. Tq needs to copy the stack seg­
ments corresponding to the computation from the root 
up to the parallel conjunction and the stack segments 
corresponding to the goals gl through gi. Let us as­
sume these stack segments lie in memory segments of 
team Tp and are numbered Xl, ... , xk. They will be' 
copied into the memory segments numbered Xl, ... , Xk 
of team Tq. Again, this copying can be incremen­
tal. Failure would then be simulated on gi. We also 
need to remove the conditional bindings made during 
the execution of the goal gi+1 ... gn by team Tp. Let 
Xk+1 ... Xl be the memory segments where gi+1 .. , gn 
are executing in team Tp. We copy the trail stacks of 
these segments and reinitialize (i.e. mark unbound) all 
variables that appear in them. The copied trail stacks 
can then be discarded. Once removal of conditional 
bindings is done the execution of the untried alterna­
tive of the stolen choice point is begun. The execution 
of the goals gi+1 ... gn is restarted and these can be ex­
ecuted by other processors which are members of the 
team. Note that the copied stack segments occupy the 
same memory segments as the original stack segments. 
The restarted goals can however be executed in any of 
the memory segments. 

An elaborate description of the stack-copying ap­
proach, with techniques for supporting side-effects, var­
ious optimizations that can be performed to improve 
efficiency, and implementation details are left as future 
work. Preliminary details can be found in [GH91]. 

6. Conclusions & Comparison with Other Work 

In this paper, we presented a high-level approach 
capable of exploiting both independent and-parallelism 
and or-parallelism in an efficient way. In order to find 
all solutions to a conjunction of non-deterministic and­
parallel goals in our approach some goals are explic­
itly recomputed as in Prolog. This is unlike in other 
and-or parallel systems where such goals are shared. 
This allows our scheme to incorporate side-effects and 
to support Prolog as the user language more easily and 
simplifies other implementation issues. 



In the context of this approach we also presented 
two techniques for environment representation in the 
presence of independent and-parallelism which are ex­
tensions of highly successful environment representa­
tion techniques for supporting or-parallelism. The first 
technique, based on Binding Arrays [W84, W87], and 
termed Paged Binding Array technique, yields a sys­
tem which can be viewed as a direct combination of 
the Aurora [LW90] and &-Prolog [HG90] systems. The 
second technique based on stack copying [AK90] yields 
a system which can be viewed as a direct combina­
tion of the MUSE [AK90] and &-Prolog systems. If 
an input program has only or-parallelism, then the sys­
tem based on Paged Binding Arrays (resp. Stack copy­
ing) will behave exactly like Aurora (resp. Muse). If 
a program has only independent and-parallelism the 
two models will behave exactly like &-Prolog (except 
that conditional bindings would be allocated in the 
binding array in the system based on Paged Binding 
Arrays). Our approach can also support the extra­
logical features of Prolog (such as cuts and side-effects) 
transparently [GS91], something which doesn't appear 
to be possible in other independent-and/or parallel 
models [BK88, GJ89, RK89]. Control in the models 
is quite simple, due to recomputation of independent 
goals. Memory management is also relatively simpler. 
We firmly believe that the approach, in its two ver­
sions of Paged Binding Array and stack copying can 
be implemented very efficiently, and indeed their im­
plementation is scheduled to begin shortly. The im­
plementation techniques described in this paper can 
be used for even those models that have dependent 
and-parallelism, such as Prometheus [SK92], and ID­
IOM (with recomputation) [GY91]. They can also be 
extended to implement the Extended Andorra Model 
[W90]. 
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Abstract 

In this paper we describe a system for compile time 
instrumentation of Prolog programs to estimate the 
amount of inherent parallelism. Using this infor­
mation we can determine the maximum speedup 
obtainable through OR- and AND/OR-parallel ex­
ecution. We present the results of instrumenting a 
number of common benchmark programs, and draw 
some conclusions from their execution. 

1 Introduction 

In this paper we describe a method for timing Pro­
log programs by instrumenting the source code. 
The resulting program is run sequentially to esti­
mate the sequential and best possible OR parallel 
execution times. This method is then extended to 
give the b~st possible AND/OR parallel execution 
time. Our instrumentation does not drastically r~ 
duce efficiency, and we present the results of a num­
ber of programs. 

Our AND parallelism estimation method is based 
upon the work of by Kumar [1988] in estimating 
the inherent parallelism in Fortran programs. His 
method augments the source program with a times­
tamp for each data item d, which is updated each 
time d is written. In order to honor dependences, 
each computation that reads d can begin no ear­
lier than the time recorded in d's timestamp. The 
largest timestamp computed by such an augmented 
program is the optimal parallel time for the original 
program. This time can be used to evaluate how 
well a given implementation exploits parallelism. 

This paper comprises six sections. The remain-
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der of the first presents some terminology. The 
second describes measuring the amount of OR par­
allelism in a Prolog program. The third section 
extends this method to include AND parallelism. 
The fourth presents the timing methods used for 
several builtin predicates. The fifth section gives 
the results of our technique on the UCB Bench­
marks. The last section presents some conclusions 
and suggests some future work. 

1.1 Terminology 

A prolog program consists of a top-level query and 
a set of clauses. The top-level query is a sequence 
of literals; we shall also use the term query to refer 
to any arbitrary sequence of literals. A literal is an 
atom or a compound term consisting of a predicate 
name and a list of subterms or arguments. Each 
subterm is an atom or a compound term. The num­
ber of sub terms of a compound term is its arity. A 
clause has a head literal and zero or more body liter­
als. A clause with no body literals is a fact; others 
are rules. Clauses are grouped into procedures by 
the predicate name and arity of their head liter­
als. The rest of this paper assumes some working 
knowledge of Prolog's execution strategy. 

For our timings we model a program's execution 
as traversal of its OR tree (SLD tree). Each node in 
an OR tree is labeled by a query. The first literal 
of the query at node N is the literal at N. The 
label of the root is the top-level queryl. Each child 
N of a node M is produced by unifying a clause 
C's head with the literal L at M. N's query is 
formed by replacing L in M's query by the body 
of C. The left-to-right order of such children is the 
order of the clauses in the source program. A leaf 
node with an empty query is a success. Sequential 
Prolog systems traverse this tree depth-first and 
left to right. 

1 Which may have appeared in the source program, or 
may have been typed by the user at the read-evaluate-print 
prompt. 
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2 Sequential and OR time 

The most efficient OR parallel implementations of 
Prolog to date [Warren 1987, Ali 1990] have been 
based upon the Warren Abstract Machine (WAM) 
[Warren 1983]. Because of this, we compute crit­
ical path timings in number of WAM instructions 
executed. The number of instructions is an ap­
proximation to execution time, since each type of 
WAM instruction takes a slightly different time. 
Variations in execution time come mainly from two 
sources: argument unification and backward exe­
cution. The former comes from the get_value and 
unify _value instructions, whose costs depend on 
the size of the terms they unify, which can be sub­
stantial. We address this by making the cost of 
these instructions the number of unification steps 
they perform. Backward execution comes from in­
struction failure and may perform significant book­
keeping changes, especially for deep backtracking. 
Different WAM implementations, particularly par­
allel ones, have differing costs for backward execu­
tion. In the measurements presented here we have 
assumed zero backward execution cost, but other 
cost assumptions can be used. 

The execution time of a program has two com­
ponents. The literal L at a node N in the OR tree 
is a call to a procedure p. Calling p consists of 
setting up L's calling arguments by a sequence of 
put instructions and performing the call by a call 
or execute instruction. The execution time of this 
sequence is a statically computable time tp(L) for 
L, which we approximate by the number of put 
instructions plus one. 

Executing a called procedure consists of trying 
clauses in succession. If C is being tried for the call, 
the call arguments are unified with the arguments 
of C's head literal H. This is done by get and 
unity instructions and takes a time tu(H). In gen­
eral the execution time of these instructions cannot 
be estimated at compile time, so this head unifica­
tion is performed by calls to run-time routines for 
the corresponding WAM instructions. tu (H) is the 
sum of the times computed by these routines. 

To represent execution times the OR tree is given 
two new labels. First, each node N is labeled with 
the time tp(L) Jor the literal L at N. Second, each 
edge (N, M) is labeled with tu(H), where H is the 
head literal of the clause C applied to produce node 
M. The program's all-solutions sequential execu­
tion time is the sum of the all tp's and tu's in the 
tree's processed region2 • 

2 Predicates such as cut may prevent traversal of parts of 
the tree. 

fib(O,l). 
fib(l,l). 
fib(I,F) :-

I > 1, 
11 is I - 1, 
fib(ll,Fl), 
12 is I - 2, 
fib(12,F2), 
F is Fl + F2. 

Figure 1: A program to be timed 

Ts(L) pucconstant 3,AO ~ 1 
.p ~::::.u~t_.:.::v::J.ar.=.ia_bl_e_A_l_,A_l...... tp(L) 
saIl fib!2 

T~) geCvariable AO,YO ttU(H) 
gecvariable Al,Yl 
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Te(C) 

Figure 2: Execution of a timed literal L 

2.1 Pure Prolog 

Finding the minimum OR parallel time requires 
finding the critical path in the OR tree. For a pure 
Prolog program this is done by summing the tp's 
and tu's from the root to each leaf. The critical 
path has the largest such sum. Programs contain­
ing builtins such as read, setof, recorda, and 
assert require timing in sequential order. We first 
describe the method for pure programs and extend 
it to handle these predicates below. 

Figure 1 shows a program to be instrumented, 
and Figure 2 shows its execution. The time at 
which literal L is to be processed is denoted by 
T,(L). If L is at the root of the OR tree, then 
T,(L) = O. Otherwise T,(L) is the time the p~e­
ceding computation finished. Execution of L begms 
with the puts and call, which take time tp(L), as 
we noted above. Thus the earliest time any clause 
can be tried for L is T,(L)+tp(L). This is the start 
time T,(C) for every clause C applied for L, since 
all are tried in OR parallel. Head unification for 



C begins at T, (C) and is done by get (and unify) 
instructions. If successful, this completes at time 
T,(C) + tu(H). If C is a fact, then the end time is 
Te(C) + 1, where the 1 is for the proceed instruc­
tion. 

If C is a rule, each literal Li is processed as L 
was, begins at time T,(Li), and ends successful ex­
ecution at time Te(Li). The first body literal begins 
at time T,(L 1 ) = T,(C)+tu(H). If the call from Li 
is successful and returns at time Te(Li), then the 
next literal Li+l starts at time T,(Li+d = Te(Li). 
This continues until the last literal Ln completes 
at time Te(Ln), which is also the finish time Te(C) 
for C. 

The time for a success is Te(L) for the last lit­
eral L in the top-level query. The time for a failed 
instruction in C is T,(C) plus the portion oftu(H) 
computed before the failure. Most builtins are 
given a cost of one, and builtin failure takes the 
same time as a successful call does. 

The system maintains a global critical path time 
Tmax. Whenever a library routine performing head 
unification fails at time TJ, it examines T max, and 
stores the larger of the two times as the new Tmax. 
The library routine that computes T, (C) also up­
dates Tmax, and the top-level query is modified to 
update it as well. 

Figure 3 shows the timed version of Figure 1. 
Each clause has two new arguments, Ts and Te, 
and head unification is performed by routines such 
as get_constant and get_variable. These rou­
tines perform the corresponding WAM operation 
and update the critical path time. The first two 
clauses are facts, so the end time is computed by 
an update_time literal for the proceed instruction. 

The third clause is a rule, so each body literal L 
has a preceding update_time literal. If L refers 
to a user-defined predicate this literal computes 
T,(L) + tp(L) for use as the start time for the call. 
If L refers to a builtin predicates (except those in 
Section 4) the update_time literal adds tp(L), plus 
one for the builtin's execution time, and uses this 
as the end time for L. 

Each clause also has an initial index literal that 
enables last call optimization. Moving head unifi­
cations to the body made indexing impossible, so 
this literal is added to perform first argument in­
dexing. If this is not done, last call optimization 
rarely works. This literal appears sufficient for last 
call optimization with the Sicstus compiler. 

fib(A,B,Ts,Te) :-
(A == 0 j var(A», 
get_constant(A,O, Ts, Tul), 
get_constant(B,l, Tul, Tu2) , 
update_time (Tu2, 1, Te). 

fib(A,B,Ts,Te) :-
(A == 1 j var(A», 
get_constant(A,l, Ts, Tul), 
get_constant(B,l, Tul, Tu2), 
update_time (Tu2, 1, Te). 

fib(A,B,Ts,Te) :­
get_variable(A,N, Ts, Tul), 
get_variable(B,F, Tul, Tneck), 
update_time (Tneck, 4, Tel), 
N > 1, 
update_time(Tel, 6, Te2), 
Nl is N - 1, 
update_time(Te2, 3, Ts3), 
fib(Nl, Fl, Ts3, Te3), 
update_time(Te3, 6, Te4), 
N2 is N - 2, 
update_time (Te4, 3, Ts5), 
fib(N2, F2, Ts5, Te5), 
update_time(Te5, 6, Te), 
F is Fl + F2. 

Figure 3: Program after instrumentation 
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3 Adding AND parallelism 

The critical path time determines the best possi­
ble OR parallel execution time. Often segments 
of a branch can execute simultaneously, and do­
ing so would reduce that critical path time. This 
is AND parallel execution, and unlike OR paral­
lelism, it requires testing for dependences even in 
pure Prolog programs. In this section we describe 
the application of Kumar's [1988] techniques for 
Fortran to estimate the best AND/OR parallel ex­
ecution time. The method we describe extends 
his work to deal with the dynamic data structures 
and aliasing present in Prolog. We believe this 
framework has the advantage over other methods 
[Shen 1986, Tick 1987] of allowing us to extend it to 
measure critical path times in programs with user 
parallelism. 

A program's dependences can only be exactly 
determined at execution time, since one execution 
may have a dependence while another does not. A 
compiler, to ensure legal execution, must assume a 
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Figure 4: A dependence graph 

dependence exists unless it can be proven not to. 
Because of this, compilers often infer many more 
dependences than are actually present in the pro­
gram. Another use of the method we propose is to 
compute exact dependences to test the effectiveness 
of dependence tests. 

There are a number of AND parallel execution 
models that differ in their treatment of the dynamic 
nature of dependences. The approaches range 
from dependence graphs that are static [Kale 1987, 
Chang et al 1985, Wise 1986] to partly dynamic 
(conditional) [DeGroot 1984, Hermenegildo 1988] 
to completely dynamic [Conery and Kibler 1985]. 
Kal'e [1984] notes that in some rare situations it 
may be beneficial to evaluate dependent literals in 
parallel. His Reduce-Or Process Model allows for 
dependent AND parallelism, but his implementa­
tion [Ramkumar and Kale 1989] supports only in­
dependent AND parallelism. Epilog [Wise 1986] 
also permits dependent AND parallelism, but pro­
vides a primitive (CABO) to curtail it. The model 
we have developed includes dynamic, independent 
AND parallelism, with a strict sequential ordering 
on dependent literals. We are only able to present 
the results here for independent AND parallel exe­
cution, though, because of a problem in the Prolog 
system used to execute the instrumented programs. 
In the future we hope to report the timings for the 
more general approach. 

3.1 Dependences 

The third clause in Figure 1 contains six body 
literals that might potentially execute in parallel. 
The arguments of the > builtin must both be nu-

meric expressions, so to execute correctly the argu­
ment I to fib must be an integer. Because neither 
writes I, the two is goals can execute indepen­
dently. Each reads B and produces a binding for 
11 or 12, the values of B for the recursive instances. 
Since all fib clauses read B, the recursive calls can 
only begin after their corresponding is. The final 
is literal requires the value of both F1 and F2 so 
the two fib calls must precede the final is. There 
need be no other ordering between literals. 

Figure 4 shows the dependence graph for the 
clause. There is a node for the initial call to fib 
and a node for each body literal. Recursive com­
putations are represented by shaded areas. An 
arc between two nodes represents a dependence, or 
that the node at the tail must precede the node 
at the head of the arc. Dependence arcs are la­
beled with the variables causing them. Such a vari­
able v causes a dependence 6 in one of two ways. 
First, if the node at the tail of Q binds v, and and 
v is read at the head, then there is a data depen­
dence. Second, if the node at the head of 6 binds 
v and the node at the tail reads v using a meta­
logical predicate (var, write, etc.), then there is 
an anti-dependence. Anti-dependences arise when 
a literal succeeds with a variable v unbound and 
would fail or produce incorrect output because v is 
subsequently bound. 

3.2 Shadow terms 

Dependences are detected at run time by shadow 
terms. Each term t has a shadow term "p(t) asso­
ciated with it, which mirrors t's structure. The 
shadow of an atomic term is the atom a. The 
shadow term of a compound term t = l(t 1 , ••• , tn) 
is s( "p(tt) , ... , .,p(tn )) , where .,p(ti) is the shadow for 
ti. 

A variable must be bound for a dependence to 
exist, so the shadow term for a variable keeps 
the binding times for that variable (there can be 
multiple bindings, since some may be variable-to­
variable). The shadow of an unbound variable is 
unbound. If v is bound to any term t at time T 
by a get_variable or unify_variable instruction, 
the shadow variable "p( v) is dereferenced and the fi­
nal variable is bound to the structure w("p(t), T). 
The same operation is performed if v is bound to a 
non-variable term t by any other instruction. If v is 
bound to another variable Vi by any other instruc­
tion at time T, an alias has been created. The two 
shadows reflect this by dereferencing both .,p( v) and 
"p( Vi) and binding the final variables of both to the 
term w(.,p'(v),T), where .,p'(V) is a new unbound 



fib(A. B, Sa, Sb. Ta, Te) .-
(A == ° ; var(A», 
get_constant(A,O, Sa, Ts, Tul), 
get_constant(B,l, Sb, Tul, Tu2), 
update_times (Tu2, 1, Te). 

fib(A. B, Sa, Sb, Ts, Te) .-
(A == 1 ; var(A», 
get_constant(A,l, Sa, Ts, Tul), 
get_ constant (B, 1, Sb, Tul, Tu2) , 
update_times (Tu2 , 1, Te). 

fib(A. B, Sa, Sb. Ts. Te) .­
get_variable(A,I, Sa, Sn, Ts, Tul), 
get_variable(B,F, Sb, Sf, Tul, Tu), 
max_shadow_time(Tu, [Sn], Ttl), 
update_time(Ttl, 4, Tel), 
I > 1, 
max_shadow_time(Tu, [Snl,Sn], Tt2), 
update_time(Tt2, 6, Te2), 
11 is 1 - 1, 
set_shadows([Snl],[ll],Te2), 
update_time(Tu, 3, Ts3), 
fib(ll, Fl, Snl, Sfl, Ts3, Te3), 
max_shadow_time(Tu, [Sn2,Sn], Tt4), 
update_time(Tt4, 6, Te4), 
12 is 1 - 2, 
set_shadows([Sn2], [12], Te4), 
update_time(Tu, 3, Ts6), 
fib(12, F2, Sn2, Sf2, Ts6, Te6), 
max_shadow_time(Tu, [Sf,Sfl,Sf2], Tt6), 
update_time(Tt6, 6, Te6), 
F is Fl+F2, 
set_shadows([Sf], [F], Te6), 
max([Tel,Te2,Te3,Te4,Te6,Te6], Te). 

Figure 5: AND/OR instrumented program 

variable. If v is examined by a meta-logical builtin 
at time T, ..p( v) is dereferenced, and the final vari­
able is bound to m(..p' ( v), T), where ..p' (v) is a new 
unbound variable. 

3.3 Dependences with shadow terms 

Figure 5 shows fib after instrumentation for 
AND/OR parallelism. Each variable V in a clause 
has a shadow variable Sv, and each head argument 
has a shadow argument. The end time for a clause 
is the largest end time for any literal in that clause, 
as if each literal starts immediately after head unifi­
cation and suspends until its dependences are satis­
fied. In Figure 5 the end time is shown as computed 
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by a max literal at the end of the clause. This is 
for clarity of presentation only, because this would 
inhibit last call optimization. In the real version a 
current maximum is passed to each body literal in 
successIOn. 

The head unification routines now include 
shadow variables as arguments, since it is in these 
instructions that dependences in user-defined pred­
icates are enforced. These routines previously com­
puted their finish time only from the start time 
and the cost of the instruction. Now there is the 
possibility that the instruction must wait until the 
shadow time for a variable causing a dependence 
before performing the unification. Hence the com­
pletion time is computed by performing the unifica­
tion and keeping a current time. Whenever a term 
is referenced the current time becomes the maxi­
mum of the current time and the timestamp. The 
unification is then performed and the current time 
incremented. 

Two other predicates enforce dependences in­
volving builtins. The first, max_shadow_time, com­
putes the earliest time the builtin's arguments are 
available3 from the latest time in the arguments' 
shadows. This enforces data dependences that have 
the builtin as their head. The builtin's end time 
is computed by update_time, as before. The sec­
ond predicate, set-Bhadows, builds shadows for 
changes to the arguments of a builtin. Shadows 
are built for those arguments that are bound or 
are examined by meta-Iogicals, and they are con­
structed from the variable bindings after execution. 
This handles builtins at the tail of a dependence. 
For some builtins such as =.. this can be fairly 
complex. 

4 Builtin predicates 

Prolog has several types of builtin predicates, each 
with a different set of effects on critical path timing. 
We have already noted that meta-logical builtins 
(var, write, etc.) can cause anti-dependences. In 
this section we describe four other kinds of predi­
cates and methods for timing each of them. 

4.1 Predicates involving call 

There are four predicates that implicitly use the 
meta-logical builtin call. They are bagof, setof, 
not, and \ +. Timing these predicates requires two 

3This predicate is also used to enforce independent-AND 
parallel execution, by making every user predicate strict 
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Te-Tmax 
Tmax-max{pop, Te) 

Figure 6: Processing setof 

kinds of special handling. First, since call's argu­
ments may be constructed at run time, instrumen­
tation is done at run time. This is done by including 
the the instrumentation program in the timed pro­
gram. Second, setot, bagot, not and \+ traverse 
an entire OR tree, so their finish times are related to 
the longest path in that tree. A stack of maximum 
times is used with nested calls to these predicates 
to collect a subtree's maximum time. For setof 
and bagot we also add one for each solution for the 
cost of building the returned list. 

Figure 6 shows the processing of a call to setof 
that computes all the solutions for the p(X) in re­
gion R and collects them in a list L. Since it tra­
verses the whole OR tree R required to compute 
p(X), setof's finish time is the longest completion 
time in R. The maximum time is maintained by 
update_time in the global variable Tmax4. Since 
there may be a previous maximum time greater 
than the largest completion time in R, Tmax is 
pushed on a stack and the start time for the setof 
is used as Tmax. R is traversed and the maximum 
time is stored in Tmax, as always. The return time 
for setof, Te is Tmax. At the end of setof Tmax is 
set to the maximum of the stack value and Te, so 
again Tmax contains the global largest time. 

4.2 Read and write 

Neither setof nor pure Prolog cause depen­
dences between branches in the OR tree. The in­
put/output predicates (read, write, etc.) cause 

41n the implementation of our system the maximum time, 
along with a parallelism histogram, is maintained by several 
C routines accessed through a foreign function interface, but 
this is done only for the sake of efficiency. 

Te2=max{Td(2), Te1j+ 1 
lasLio=Te2 

Figure 7: Processing the input/output predicates 

cross-branch dependences, since the observable or­
der of input/output needs to conform to Prolog's 
left-to-right order. Figure 7 depicts the execution 
of a program with two writes, WI and W2. Data de­
pendence would permit each write to start when 
its arguments were ready (times Td(l) and Td(2) 
respectively) were it not for the order of output. 
WI must write its output before W2, so to deter­
mine when input or output can be done we main­
tain a global variable last_io. In this example, W2 

cannot write its output until max{Td(2), last.io}. 
Writes cost one time unit, so W2 can start no earlier 
than max{T)d(2) , Td(l) + I}. In the instrumented 
version each input/output predicate is preceded by 
a literal that updates last_io. 

4.3 Recorda and recorded 

Prolog also has the builtins recorda, recorded, 
and erase to manipulate an internal database. 
Parallel accesses to relations in the database must 
appear to preserve the sequential execution order. 
Accesses to different database relations do not af­
fect one another, so this order is only within a rela­
tion. It is not necessary to serialize accesses to each 
relation to preserve the appearance of sequential ac­
cess order. All we need is to guarantee that read 
accesses to an element by recorded occur after the 
write access that placed that element there, and 
that write accesses (recordas and erases) are or­
dered. The former is enforced by pairing each item 
placed in the database with its insertion time. Ac­
cesses by recorded wait until the maximum of the 
data dependence time Td and the element's inser­
tion time. The write order is enforced by labeling 
each relation with a last..modify that is updated 



Program Serial OR AND/OR 
Name WAM Parallel Parallel 

Instr. Speedup Speedup 
chat_parser 1014791 257 1596 
crypt 31787 58 114 
divide10 207 1 2 
fast-ITIU 8899 9.1 10.7 
flatten 5218 1.25 2.37 
log10 119 1 1.2 
met~qsort 38675 2.1 3.7 
mu 5925 16.7 17.7 
nand 180145 5.4 14.3 
nreverse 4460 1 1 
ops8 163 1.04 2.8 
poly10 307177 1.1 76.3 
prover 7159 4.5 14.2 
qsort 5770 1.3 1.5 
queens8 33821 26.4 69.3 
query 17271 243 480 
reducer 279220 2 3.3 
serialise 3199 1.4 1.9 
tak 1431202 1.1 686 
times10 207 1 1.9 
unify 29490 1.6 3.5 
zebra 261858 453 482 

Table 1: Instrumented benchmark times 

just like last_io. 

4.4 Assert and retract 

Prolog also allows as s ert and retract to mod­
ify the program at run time. These predicates 
are timed by the method for call and that for 
the internal database. The former is because the 
asserted clause can be constructed at run time, 
and hence the instrumentation must be done then. 
The latter is because predicates modified at run 
time must obey the access rules for database up­
dates. The write-write (assert and retract) or­
der is enforced by updating the last...modify for the 
predicate. The read-write ordering is maintained 
by adding a first literal to each asserted clause 
that records when it was added. This is used to de­
termine the earliest time a read (a clause builtin 
or call to the modified predicate) can execute. 

5 Analysis of programs 

Table 1 presents the results obtained by instru­
menting 23 of the University of California at Berke-
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ley's UCB benchmarks. These programs range over 
a variety of sizes and purposes. There are sev­
eral interesting facts to observe from these pro­
grams. First, David H. D. Warren's assertion 
[Warren 1987] that OR parallelism was likely to 
produce significant speedups on a range of pro­
grams appears to be borne out. Several pro­
grams achieved small speedups from OR paral­
lelism, mostly due to shallow backtracking (e.g flat­
ten, ops8, polyl0, qsort, tak, unify). Improved in­
dexing would probably eliminate most of this OR 
parallelism. A number of programs exhibited es­
sentially no OR parallelism (e.g. divide10, log10, 
nreverse, timesl0). 

In general, independent AND parallel execu­
tion improved the performance of programs al­
ready speeded up by OR parallel execution by 
a small factor (1-6). These programs have all 
shown reasonable speedups in real OR parallel 
systems[Szeredi 1989]. Our results show that there 
is plenty of parallelism in several of these programs 
to extend to much larger machines (e.g. consider 
chat_parser, query and zebra). Those with smaller 
speedups may profit from the introduction of inde­
pendent AND parallelism. 

Of the programs that were mostly OR-sequential, 
the majority get very small speedup by applying in­
dependent AND parallel execution. For divide10, 
log10, and times10, this is because the AND paral­
lel sub-problems are very unbalanced; that is, one 
sub-problem is much larger than the other. For 
nreverse, the reason is that independent AND par­
allel execution is not able to execute the two body 
goals of nreverse in parallel. It is a recurrence, and 
is hence completely sequential. This can be ad­
dressed by replacing the algorithm or applying a 
parallel recurrence solver. 

The best results for independent AND paral­
lelism come from polyl0 and tak. In both cases 
these give rise to fairly large numbers of indepen­
dent subcomputations. In the case of tak, the 
branching factor is approximately three and the 
calling depth is large, so a large speedup is ob­
tained. Qsort on a well-chosen input list with a 
better partition routine should be able to obtain 
similar results. 

These results are just the beginning of under­
standing the parallelizability of programs, as we 
would like information on the more general AND 
and other sorts of parallelism. However, they can 
tell us something about how much speedup we can 
reasonably expect from parallel models. More­
over, examining these programs to see where de­
pendences occur should help in designing restruc-
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turing transformations. 

6 Conclusions 

The amount of OR and AND/OR parallelism in 
a Prolog program can be effectively measured by 
sequentially executing an instrumented version of 
that program. The timings obtained this way give 
a best-possible speedup under two different paral­
lelism models, and can be used for a number of pur­
poses. First, they can be used to evaluate the abil­
ity of a parallel execution model to exploit paral­
lelism. These results can suggest areas of improve­
ment for such models. We intend to instrument a 
number of programs for this purpose. 

With some relatively simple extensions this tech­
nique can measure the amount of a number of 
lower-level program characteristics. Among these 
are unification parallelism, backtracking properties, 
aliasing, data dependences, and dereference costs. 

Prolog can also be extended with predicates for 
source-level parallelism. With proper timing meth­
ods, this instrumentation method can be used to 
evaluate restructuring transformations for Prolog. 
The instrumentation system we described has been 
extended with such predicates and we have begun 
to evaluate transformations. In the future we will 
describe these extensions to the instrumentation 
method as well as the results of our restructuring 
transformations. 
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Abstract 

Stream-based concurrent object-oriented programming 
languages (SCOOL) to date have been typically im­
plemented in concurrent logic programming languages 
(CLL). However, CLLs have two drawbacks when used 
to implement message streams on parallel machines with 
distributed memory. One is the lack of restriction on the 
number of readers of a shared variable. The other is 
a cascaded buffer representation of streams. These re­
quire many interprocessor communications, which can 
be avoided by language systems designed specially for 
SCOOLs. The authors have been developing such a 
language system named A'UM-90 for A'UM, a SCOOL 
with highly abstract stream communication. This pa­
per presents the optimized method used in A'UM-90 to 
implement streams on distributed memory. A stream is 
represented by a message queue, which migrates to its 
reader's processor after the processor becomes known. 
The improvement from using this method is estimated 
in terms of the number of required interprocessor com­
munication, and is demonstrated by the result of a pre­
liminaryevaluation. 

1 Introduction 

One natural use of concurrent logic programming lan­
guages(CLLs) is to implement the Actor or object­
oriented programming models. In a CLL, it is 
easy to specify objects running concurrently, com­
municating with one another by messages sent in 
streams[Shapiro and Takeuchi 1983]. Message streams 
in CLLs are especially useful, as they provide flexibility 
and modularity, and facilitates the exploitation of paral­
lelism; they allow dynamic re-configuration of communi-

tNEC Corporation 
4-1-1, Miyazaki, Miyamae-ku, Kawasaki, Kanagawa 216, Japan 
{konishi, maruyama, ·konagaya }@csl.cl.nec.co.jp 

tInstitute for New Generation Computer Technology 
1-4-28, Mita, Minato-ku, Tokyo 108, Japan 
{yoshida, chikayama}@icot.or.jp 

cation channels, while each object knows little about the 
partners with whom it is communicating. 

To support this style of programming, a number of 
languages have been proposed ([Furukawa et al. 1984] 
[Kahn et al. 1986] [Yoshida and Chikayama 1988] 
[Saraswat et al. 1990]). We call these languages stream­
based concurrent object-oriented languages(SCOOL). 

Most research on SCOOLs to date has been focused on 
providing excellent expressibility. While SCOOLs have 
been implemented in CLLs, to our knowledge, no lan­
guage system dedicated for SCOOLs has been imple­
mented. 

A dedicated system for SCOOL can be much more 
efficient than those implemented in CLLs when the ab­
straction and other information in programs are fully 
exploited. The authors have been developing such a ded­
icated system for a kind of SCOOL, A'UM. The system 
is named A'UM-90, and is targeted for multiprocessor 
systems with distributed memory. . 

In this paper, some drawbacks of CLLs as implementa­
tion languages for stream communications are discussed, 
then it is shown how A'UM's well-regulated abstract 
streams can be efficiently implemented. A brief descrip­
tion of such an implementation is given, its improvement 
over a CLL implementation is estimated, and the results 
of a preliminary evaluation are given. 

The next section describes the implementation of ob­
jects and stream communication in CLLs. Section 3 in­
troduces SCOOLs as natural descendants of CLLs. Sec­
tion 4 explains why CLLs are inadequate for implement­
ing streams. Section 5 describes A'UM and A'UM-90 
briefly. Section 6 describes the implementation of stream 
communication in A'UM-90 and its costs. Section 7 
shows some results of evaluation. The last section gives 
conclusion. 

2 Objects in eLL 

Stream-based concurrent object-oriented programming 
languages have evolved from efforts to embody the 
Actor or object~oriented programming models in 
CLLs[Shapiro and Takeuchi 1983]. This style of pro-
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object([message(Arguments) I In], State) :­
true I 
method (Arguments , State, NewState), 
object(In, NewState). 

Figure 1: A clause representing an object 

gramming has the virtues of object-oriented program­
ming such as modularity and natural parallelism in an 
extended way[Kahn et al. 1989]. For example, an object 
implemented in a CLL may have multiple input ports, 
and communication ports can be transferred between 
processes. Moreover, it can send messages before the 
destination is determined. In this chapter, an implemen­
tation of object-oriented programming in a CLL is briefly 
described. 

Many CLLs (FCP, FGHC, Flehg, Oc, Strand, etc.) 
have been proposed to date. We use FGHC[Ueda 1985] 
in the following explanation. 

Figure 1 shows a typical example of representing an 
object in FGHC. The behavior of an object is defined 
by a number of clauses similar to the one above. Given 
these clauses, a goal named obj ect represents the state 
of an object at a certain moment. The first argument 
is a shared variable used as a communication port, from 
which the object receives messages. The second argu­
ment is the internal state of the object. 

When another goal sharing the variable with the first 
goal assigns a term [message(Actuals) I Rest] to the 
variable, the above clause can be selected, and Rest be­
comes shared by the two goals. Actuals are bound to 
Arguments, and the body of the clause is executed. 

A goal named method performs most of the actual 
work, creating new states and assigning it to NewState. 
A new object goal is created with Rest as the first ar­
gument and NewState the second. Thus, an object, or a 
process, is represented by the recurring creation of goals 
with altered states. 

Communication ports are represented by variables 
shared by two goals. One goal emits a message by assign­
ing a structure containing a message and a new variable. 
When the other goal receives the message by successfully 
matching itself with a head of a clause, the new variable 
becomes shared, to be used as a new port. By repeating 
this procedure, these goals can communicate as many 
messages as required, one after another. The connec­
tion is closed when a structure containing no variable is 
assigned. Communication in this style is called stream 
communication. 

Basically, stream communication is one-to-one as de­
scribed above. However, several streams of messages can 
easily be merged into one by a simple process. A merger 
should have several ports representing the input streams 
to be merged and one more for the output. It receives 

a message from one of its input ports and forwards it to 
the output port. 

Many types of mergers with varying policies can be 
devised. A merger of one type might receive from an 
arbitrary port, utilizing the non-determinism in clause 
selection of the CLL. A merger of another type might 
concentrate on one port until the connection through it 
is closed, then it might move on to another port. We call 
the former type a merger, and the latter an appender, 
because it effectively appends streams one after another. 

3 SCOOL 

Programming objects in a CLL has several obvious draw­
backs. First, the implementation of stream communi­
cation is explicitly described in the program. Streams 
are explicitly formed using messages and a variable, 
and many to one communications are implemented with 
merger processes. Programmers must make sure that 
the same conventions are used throughout their pro­
grams. Secondly, contentions are apt to happen, due 
to the lack of restriction on multiple writers to a vari­
able. Lastly, the verbosity, in particular manipulation of 
internal states, is excessive. It is cumbersome to provide 
all the details of communication. 

Many SCOOLs have been proposed to remove these 
drawbacks ([Furukawa et al. 1984] [Kahn et al. 1986] 
[Yoshida and Chikayama 1988] [Saraswat et al. 1990]). 
These languages have a form for class definition, intro­
duced to make a concise description of object behavior 
possible. Stream communication is denoted by dedicated 
expressions, with its implementation removed from pro­
grams. 

To our knowledge, all SCOOLs have been implemented 
in CLLs. It is natural and efficient to use CLLs for this 
purpose, but is problematic with respect to the resulting 
system's performance. CLL systems can not provide a 
thoroughly object-oriented view efficiently, such as inte­
gers operated on by messages: Another problem is im­
plementing stream communication on a multiprocessor 
system with distributed memory. We focus on the latter 
problem, and explain the inadequacies of CLLs in the 
next section. 

4 Problems in implementing 
streams in CLLs 

Stream communication, and more generally asyn­
chronous communication, uses message buffers to store 
pending messages. In distributed memory multiproces­
sor systems, accessing a message buffer requires inter­
processor communications(IPC), unless both the access­
ing process and the buffer are on the same processor. 

While a single IPC suffices to write a message into a 



buffer on a remote processor, reading a message requires 
two: a request and a reply. Placing the buffer on the 
reader's processor can save one IPC for each message 
communicated through the buffer. 

However, it's difficult for CLL systems to place the 
buffer on the reader's processor. CLL systems use a 
shared variable as a message buffer, and they can't tell 
the readers of a variable from the writers. In addition, 
there may be multiple readers for a variable. In that 
case, there is a relatively small advantage in saving IPCs 
for only one reader among many. 

Moreover, the number of IPCs required would not be 
reduced even if the buffer is placed on the reader's pro­
cessor. In a CLL, streams are represented as a sequence 
of message buffers, and the writer only knows the last 
one. When it becomes full, a new buffer is appended to 
the sequence, and if it is created on the reader's proces­
sor, the address must be propagated to the writer. This 
costs an additional IPC for every message sent. 

Since CLL systems may not place shared variables on 
the reader's processor, implementing these streams in 
CLLs results in costly remote reads, repeated for every 
buffer. 

The argument so far prompts the development of a 
dedicated system for SCOOLs. A'UM-90 is such a sys­
tem for A'UM, a SCOOL that thoroughly integrates 
streams into its specification. The next section describes 
A'UM and gives an overview of A'UM-90. 

5 A'UM and A'UM-90 

5.1 Behavior of Objects 

All A'UM objects run concurrently. They keep internal 
states called slots, and execute methods according to the 
messages they receive. 

The class an object belongs to defines its behavior. A 
class definition has the following form, which includes the 
declaration of the class name, the classes it inherits from, 
slot names (local state) and definitions of its methods. 

class class_name. 
super _class_decl 
sloLdecl 
method_defs 

end. 

An object receives messages from only one stream, 
called its interface. An object is referenced by connect­
ing a stream to its interface. Streams connected to the 
object later on will be merged into the interface. 

A method is defined by the following form. 

selector -) actions. 
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where selector is the method's name, and actions specify 
the operations it performs. 

The only operations methods are allowed to perform 
are connecting a stream to another, creating an object, 
and sending a message to a stream. 

5.2 Streams in A'UM 

Stream communication in A'UM is highly abstract, pro­
viding safe communications and the notion of channels. 
Directed variables prevent contentions for a stream. The 
semantics of variables are enhanced so that they denote a 
set of confluent streams called a channel, a more general 
concept than a stream. 

All variables in A'UM have a stream as their value. 
The role of streams in A'UM is similar to pointers m 
Lisp; streams are the sole way of referencing objects. 

5.2.1 Operations on Streams 

A stream is a sequence of messages, directed to a cer­
tain receiver. A message sent to a stream is placed at 
the end of the stream. Sending is expressed simply by 
juxtaposing a stream and a message, as follows. 

stream message 

Connection of two streams are denoted by the follow­
ing syntax. 

receiver = stream 

This means that all messages sent to stream flow into 
receiver. 

Closing a stream indicates that no more messages will 
be sent through it. Closing is always performed auto­
matically, when a stream is discarded. 

In addition, messages arriving at an object's interface 
stream are consumed exclusively by that object. This 
operation is also performed automatically. 

5.2.2 Directed Streams 

Stream connection is asymmetric; a stream may only 
be connected to another stream once, but many other 
streams may be connected to it. In order to assure at 
compile-time that streams are connected only once, ref­
erences to a stream are classified into two types, called 
directions. An inlet is a reference to a stream from which 
messages flow; an outlet is another kind of reference in 
which messages are sentI. The single connection of a 
stream is assured by the restrictions requiring that a 
stream has only one inlet and that the right hand value 
of a connect expression be an inlet. 

Inlets and outlets are distinguished syntactically. Vari­
ables referencing inlets are denoted with a variable name 
with A prepended to it, e.g. AX. Slots holding inlets and 

lThey are named from an object's point of view. 
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class account. 
out balance. 

:init -> 0 = !balance. 
:deposit(AAmount) -> 

!balance + Amount = !balance. 
:withdraw(AAmount, AAck) -> 

(Amount < !balance) ? ( 
: (true· -> 

!balance - Amount = !balance. 
: (false -> 

Ack :overdrawn(!balance). 
) . 

:balance(!balance) -> . 
end. 

Figure 2: Bank account 

outlets are written as slot names preceded by @ and by 
! ,respectively. Expressions have a value whose direction 
is determined according to their kind. Messages are dis­
tinguished by the directions of their arguments as well 
as their number, and the message's name. 

5.2.3 Channel Abstraction 

Two types of stream confluence, namely mergers and 
appenders have special support in the language. As 
mentioned earlier, a merger performs non-deterministic 
merging, and an appender connects streams one after 
another in a specified order. 

A channel is a tree formed of these confluences of 
streams, Variables represent a channel of a particular 
form, consisting of an appender and an arbitrary num­
ber of mergers. All outputs of the mergers are connected 
to inputs of the appender. 

For a variable named Foo, AFoo is an inlet of the root 
stream of the channel. Foo$1, Foo$2, Foo$3, and so on, 
are leaf streams. Foo is equivalent to Foo$1. They are 
appended into the root in the order of their number. 
When there are many expressions having the same num­
ber, the streams they denote are merged before being 
appended. 

Using channels reduces the description of mergers and 
appenders in programs, which would be indecipherable 
otherwise. 

5.3 An Example Program 

Figure 2 is an example A'UM program defining a class 
for a bank account. 

Arguments in a message are connected with values 
of the expressions in the selector corresponding to the 
message. For example, : deposi t receives an outlet and 
connects A Amount to it. : balance receives an inlet and 
connects it to the value of ! balance. 

A binary expression is a macro form. It expands into 
a send expression, which sends to the left hand value a 
message with two arguments, the right hand value and 
an inlet of a new stream. The name ofthe message is de­
termined according to the operator. A macro form eval­
uates into an: outlet of the new stream. Thus, ! balance 
+ Amount are expanded into !balance :add(Amount, 
AResult), with Result as its value. 

exp? (... ) is an anonymous class definition, 
which is used to represent a conditional behavior. Either 
of the methods : (true or : (false is executed by the 
instance of the anonymous class, according to the result 
of Amount < ! balance. 

5.4 An outline of A'UM-90 

A'UM-90 is an A'UM language system, independent of 
any CLL. It provides efficient stream communication on 
a distributed memory multiprocessor system. Moving 
stream data structures to their reader's processor saves 
many IPCs, which are otherwise required in stream com­
munication. 

A'UM-90 manages coarse-grained processes. Specifi­
cally, a process executes an instance of a user-defined 
class. 

An A'UM-90 system consists of a compiler and an 
emulator. The compiler generates code for an abstract­
machine designed for the system, and the emulator exe­
cutes the code. 

Two different types of platform have been used. One is 
a Sequent Symmetry with 16 processors, and the other 
is a number of Sun Sparc Stations communicating by 
Ethernet. Although a Symmetry has shared memory, 
we used it as a distributed memory machine. We used 
a small part of the memory to implement message com­
munication, and'divided the rest among processors. 

6 Implementation of Streams in 
A'UM-90 

The implementation described here fully utilizes infor­
mation on stream abstraction and message flow direc­
tion available in A'UM programs. Although the delivery 
of messages is somewhat delayed, the number of IPCs 
required is significantly reduced, when many messages 
are sent through a long cascade of streams. Moreover, 
the delay is eliminated in many cases by various subtle 
optimization methods. 

6.1 Streams 

A stream is represented by a structure consisting of a 
message queue, a pointer to its receiver, and a reference 
count. The reference count is necessary for detecting 
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Figure 3: Stream location 

closed streams and for implementing the appenders cor­
rectly. The structure is named M node, where M stands 
for merging. A merger is simply represented as an M 
node having· more than one pointer referring to it. An 
appender is represented by a structure consisting of an M 
node and a pointer to the following stream. The struc­
ture is named A node. 

With these structures, implementing operations on 
streams within a processor is straightforward. Sending 
a message is simply queuing it. Connecting a stream to 
a receiver is making the pointer in the stream point to 
the receiver and increasing the reference count of the re­
ceiver. When a stream is closed, its reference count is 
decreased. Receiving a message is just dequeuing it. 

6.2 Location of Streams 

As argued in a previous section, a stream should be 
placed on its receiver's processor in order to decrease the 
number of IPCs. However, when a stream is created, its 
receiver is still unknown. So we place it on the processor 
local to its creater at its creation, and let it migrate later 
to the receiver's processor(see Figure 3). 

Since it is always an object that ultimately receives 
messages sent to a stream, the stream migrates to the ob­
ject's processor. When the stream is directly connected 
to the object, it migrates immediately. If it is connected 
to an intermediate stream, it waits until the intermediate 
stream migrates. 

Suppose that an address of a stream in a processor is 
announced to an object in another processor and that 
the stream has not yet migrated. If the object sends 
messages to the stream, two series of IPCs occur, one 
for sending them to the stream, and another for the mi­
gration proeess of the stream. We eliminate the former 
series by putting the messages into a new stream cre­
ated on the same processor as the sending object and 
connecting the new stream to the original. 

With this strategy, and assuming that objects do not 
migrate, all messages except those used for implementing 
the strategy are transferred between processors at most 
once. In the next section, a more detailed description of 
the stream migration is given. 
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6.3 Migration Procedure 

In the following description, all streams are supposed to 
reside in different processors until they move. Opera­
tions within a processor are trivial, and are assumed to 
cost much less than ones involving IPCs. It is also sup­
posed that streams are connected ,in a processor other 
than that of the receiving object. Otherwise, the migra­
tion procedure is so simple to become identical with an 
ordinary sending without migration. 

1. A stream is placed on the same processor as its cre­
ator object. 

2. When the stream is connected, a control message 
named where is sent to the specified receiver. The 
control message has a pointer to the stream and a 
tag showing the type of the stream, i.e., either an M 
node or an A node. 

3. The where causes the following actions according to 
the type of the receiver: 

a stream before its migration handles the con­
trol message as if it is an ordinary message. 
That is, it is put into the receiver's queue. 
It will be transferred again when the receiver 
eventually migrates, and will be forwarded to 
another receiver, which should cause the fol­
lowing case. 

an object or a stream after its migration 
creates a new node of the type indicated by 
the tag in the control message, and reports the 
address of the new node by a control message 
named here to the stream waiting for the re­
ply. When the type of the immigrant and the 
receiver is the same, the receiver creates no new 
node, and reports its own address. 

4. When the stream receives the here, it migrates to 
the specified new residence, in one of the following 
manners according to its type: 

M node It sends all messages in its queue to the 
new residence. If it hasn't been closed yet, it 
leaves in the former residence a pointer for­
warding to the new location. The original res­
idence will be reclaimed when it is closed. 

A node In addition to the procedure for the M 
node, the stream to be appended to the migrat­
ing one is connected to the same receiver at the 
moment when this A node is closed. That is, a 
new where with a pointer to the stream is sent 
to the receiver. 
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6.4 Migration Cost 

Each stream creates a where. It is transferred between 
processors twice, once when the stream is connected, and 
once when its receiver migrates. The second transfer 
doesn't happen if the receiver is an already moved stream 
or an object. Suppose a channel connected to an object 
consists of n streams, and of which nd are connected 
directly to the object, then the number of IPCs for where 
isn+(n-nd). 

A here is created in correspondence with a where, and 
is transferred between processors once. For all here's, n 
IPCs occur. 

Migration brings about no transfer of control mes­
sages, so the number of IPCs required for migration is 
n + (n - nd) + n = 3n - nd. 

Closing a stream requires another kind of control mes­
sage. We call it close. Each stream sends its reader one 
close when closed. This adds up to n close's requiring n 
IPCs. 

Ordinary messages are transferred between processors 
always once. If there are m ordinary messages to be sent, 
then, in total, 

transfers between processors occur. 
How many IPCs occur for stream communication if 

streams don't move? Neither of where and here are cre­
ated. A close is still created for a stream. The number 
of times ordinary messages and close's are transferred 
depends on the structure of the channel. 

A channel is a tree having streams as its nodes. Sup­
pose the i-th node receives mi messages, and its depth is 
d· where a depth of a node is number of streams in the 
p~th from the leaf to the root. For example, the depth 
of a leaf directly connected to an object is 2. Then mes­
sages sent to the i-th leaf is transferred di - 1 times, and 
the total number of transfers will be: 

n 

I:(di -1)(mi + 1) 
i=l 

The condition when it requires less IPCs to imple­
ment stream communication with migrating streams 
than without them is: 

n 

I:(di - 1)(mi + 1) > (3n - nd) + m + n 
i=l 

This can be rewritten as: 

n 

I:(di - 2)(mi + 1) > 3n - nd 
i=l 

Since di can not be smaller than 2, di - 2 never becomes 
negati ve. The next term mi + 1 is the number of messages 
sent from a node, including a close. The last term 3n -

nd is the number of control messages used to move all 
streams. 

The above condition says that if the channel has some 
intermediate nodes between the root and leaves, and 
more than a certain number of messages are sent through 
them, then stream migration is beneficial. Conversely, if 
all streams in a channel are directly connected to an ob­
ject, or too few messages are sent, streams should not 
be moved. The next section discusses some optimization 
based on detecting those cases. 

6.5 Further Optimization 

The left-hand side of the above condition becomes zero 
when all streams are directly connected to an object. 
When connecting a stream, it is detected at run-time 
that the receiver is an object; pointers are tagged to in­
dicate the type of the pointed structure. By not moving 
those streams, the right-hand side is also decreased to 
zero when the left-hand becomes zero. 

When less than two messages are sent through a 
stream, the stream does not migrate, i.e. it .does not 
send out a where. More detailed analysis shows that two 
is the least number to make stream migration beneficial. 

In addition, various minor optimization methods are 
applied to reduce the delay of the first message's deliv­
ery. For example, the first message is sent with a where, 
packed together in one IPC, if it is available when the 
where is sent out. When a where is received by a stream 
that only bridges two other streams, receiving no ordi­
nary messages, it immediately forwards this where in­
stead of sending out a new one. Such a stream can be 
distinguished by checking its reference count when it re­
ceives a where. 

7 Evaluation 

In order to evaluate performance of the implementation 
described in the sections so far, we measured the follow­
ing three values: 

• Delay time 

• IPC load 

• Total elapsed time for entire execution of a program 

As a control, we measured against an A'UM-90 system 
which does not migrates streams. We call this system 
NO_WHERE, and the system that performs the migra­
tion WHERE in the following sections. 

Programs used in the measurement of delay time and 
IP C load form a linear channel, a long chain of streams 
without any branches, and send along the channel. Fig­
ure 5 shows the objects' configuration. Each PE creates 
one stream on itself. When the PE receives a message 
connect, it connects its stream to the next lower stream 
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Figure 4: Objects' configuration 

on another PE. Also, the first PE releases several mes­
sages named hello at its stream. 

The connect circulates around the PEs, one at a time, 
through a channel different from that thorough whiCh 
hellos flow. Two programs which differ in direction of 
the circulation were used. We call one of them DOWN­
STREAM, in which a connect flows in the same direction 
as hellos, and the other UPSTREAM, in which a connect 
flows against hellos. The connect in Figure 5 is flowing 
UPSTREAM. 

The time was measured from after the release of the 
hellos and a connect until the arrival of the last hello. 

7.1 Delay time 

Figure 6 shows the result of the delay time measure­
ment, sending up to ten messages down a channel of 
length ten. 

The values are elapsed time measured on an unloaded 
Sequent Symmetry, using 10 PEs. They includes CPU 
time and idle time during which PEs were waiting for 
messages. 

In the DOWNSTREAM case, delay time in the 
WHERE is longer than in the NO_WHERE by at most 
1000 msec, as expected. In the UPSTREAM case, how­
ever, messages arrive earlier in the WHERE than in the 
NO_WHERE by 200 msec. The reason for this reversal 
is that the migration of streams took place concurrently 
with the circulation of the connect in the WHERE. After 
the connect reached the uppermost PE, hellos were sent 
directly to their final receiver in the WHERE, while, in 
the NO_WHERE, they flowed through every PE having 
a part of the channel. 

From these results, we can expect that the difference 
in the delay time of the WHERE and the NO_WHERE 
would be smaller than 1000 msec when the connections of 
a channel's constituent streams occur in a varying order. 

Also, note that the delay time for the first message 
in the WHERE is much smaller than those for the later 
messages. This results from the optimization, mentioned 
at the section 6.5, of sending a where and the first mes­
sage together whenever possible. 
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7.2 IPC load 
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Figure 7 shows the result of the IPC load measurement, 
sending up to 200 messages down a channel oflength 500. 
The values are CPU time measured on an unloaded Se­
quent Symmetry, using 10 PEs. The results confirm that 
the IPC load in the NO_WHERE eventually becomes 
much larger than that in the WHERE as the number of 
released messages grows. 

7.3 Total elapsed time 

Figure 8 and Figure 9 shows results of measurements 
using a program PRIME, which enumerates prime num­
bers by the generate-and-test method. The graphs in 
Figure 8 are obtained from 10 PEs in a Symmetry, and 
those in Figure 9 are from isolated Ethernet network con­
sisting of two Sun Sparc Stations. The top two graphs 
in each figure are elapsed time, the next two are average 
total CPU time for a PE, and the other one is CPU time 
for a PE, spent only for processing other than IPC. The 
last one is estimated from CPU time for execution using 
1 PE, divided by the number of PEs, i.e., 10. 

The graphs for elapsed time shows that the WHERE 
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is faster than the NO_WHERE. On a Symmetry, the en­
tire speedup can be explained by decrease of CPU time. 
There is up to 40% improvement in CPU time spent for 
IPC, which can be read from the difference between to­
tal and non-IPC portion of CPU time. On Ethernet, the 
speedup is much larger than the decrease of CPU time, 
due to much slower communication. 

8 Conclusion 

Streams in CLLs are difficult to implement efficiently for 
two reasons: 

1. Message buffers are not always placed on their read­
ers' processor, because an arbitrary number of read­
ers are allowed for a buffer. Therefore, interpro­
cessor reading from the buffer takes place with two 
IPCs, instead of one required for writing into it. 

2. A stream is represented by cascaded message 
buffers, which CLLs don't treat as a single body. 
Consequently, even if these buffers are placed on 
their reader's processor, their address has to be re­
peatedly sent to their writer. 

This is not the case for A'UM. A'UM has abstract 
stream communication, whose implementation is left as 
the language systems' responsibility. In addition, every 
stream is restricted to have only one reader. So streams 
in A 'UM can be more efficiently implemented than ones 
in CLLs. 

An A'UM-90 moves a stream to its reader's processor, 
and saves about half of the IPCs required in CLLs. In 
spite of the migration, it deliver the first message through 
the stream with small delay. A prime number generator 
program runs up to 40 % faster in an A'UM-90 than in 
the system does not migrate streams. 

While the optimization method given in this paper 
tries to reduce the number of IPCs for a given distri­
bution of objects, it is also important to find the best 
distribution of objects. Of course, those methods have 
to balance the amount of IPCs and the parallelism ex­
ploitation. 
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Abstract 

We proposed in [Ueda and Morita 1990] a new,. 
message-oriented implementation technique for Moded 
Flat GHC that compiled unification for data trans­
fer into message passing. The technique was based 
on constraint-based program analysis, and significantly 
improved the performance of programs that used goals 
and streams to implement reconfigurable data struc­
tures. In this paper we discuss how the technique 
can be parallelized. We focus on a method for 
shared-memory multiprocessors, called the shared-goal 
method, though a different method could be used for 
distributed-memory multiprocessors. Unlike other par­
allel implementations of concurrent logic languages 
which we call process-oriented, the unit of parallel exe­
cution is not an individual goal but a chain of message 
sends caused successively by an initial message send. 
Parallelism comes from the existence of different chains 
of message sends that can be executed independently 
or in a pipelined manner. Mutual exclusion based on 
busy waiting and on message buffering controls access 
to individual, shared goals. Typical goals allow last­
send optimization, the message-oriented counterpart of 
last-call optimization. We are building an experimen­
tal implementation on Sequent Symmetry. In spite of 
the simple scheduling currently adopted, preliminary 
evaluation shows good parallel speedup and good ab­
solute performance for concurrent operations on binary 
process trees. 

1. Introduction 

Concurrent processes can be used both for program­
ming computation and for programming storage. The 
latter aspect can be exploited in concurrent logic pro­
gramming to program reconfigurable data structures 
using the following analogy, 

records +-----t (body) goals 
pointers +-----t streams (implemented by lists) 

where a (concurrent) process is said to be implemented 
by a multiset of goals. 

Masao Morita 

Mitsubishi Research Institute 
3-6, Otemachi 2-chome, Chiyoda-ku, Tokyo 100, Japan 

morita@asdal.mri.co.jp 

nt([], _, L,R) :-true I 
L= [J , R= [J . 

nt([search(K,V) ICs] ,K, Vl,L,R) :- true I 
V=Vl, nt(Cs,K,Vl,L,R). 

nt([search(K,V)ICs],Kl,Vl,L,R) :-K<Kll 
L=[search(K,V) ILl] , nt(Cs,Kl,Vl,Ll,R). 

nt ([search(K, V) I Cs] ,Kl, Vi,L ,R) : - K>Kl I 
R=[search(K,V)IR1], nt(Cs,Kl,Vl,L,Rl). 

nt ([update(K, V) I Cs] ,K, _, L ,R) : - true I 
nt(Cs,K,V,L,R). 

nt([update(K,V)ICs],Kl,Vl,L,R) :-K<Kll 
L=[update(K,V) ILl], nt(Cs,Kl,Vl,Ll,R). 

nt([update(K,V)lcs],Kl,Vl,L,R) :-K>Kll 
R=[update(K,V)IR1], nt(Cs,Kl,Vl,L,Rl). 

tee] ) :-true I true. 
t ([searchC, V) I Cs]) : - true I 

V=undefined, t(Cs). 
t ([update(K, v) I Cs]) : - true I 

nt(Cs,K,V,L,R), tel), t(R). 

Program 1. A GHC program defining 
binary search trees as processes 

An advantage of using processes for this purpose is 
that it allows implementations to exploit parallelism 
between operations on the storage. For instance, a 
search operation on a binary search tree (Program 1), 
given as a message in the interface stream, can enter 
the tree soon after the previous operation has passed 
the root of the tree. Programmers do not have to worry 
about mutual exclusion, which is taken care of by the 
implementation. This suggests that the programming 
of reconfigurable data structures can be an important 
application of concurrent logic languages. (The ver­
bosity of Program 1 is a separate issue which is out of 
the scope of this paper.) 

Processes as storage are almost always suspend­
ing, but should respond quickly when messages are 
sent. However, most implementations of concur­
rent logic languages have not been tuned for pro­
cesses with this characteristic. In our earlier pa­
per [Ueda and Morita 1990], we proposed message­
oriented scheduling of goals for sequential implemen­
tation, which optimizes goals that suspend and resume 
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frequently. Although our primary goal was to optimize 
storage-intensive (or more generally, demand-driven) 
programs, the proposed technique worked quite well 
also for computation-intensive programs that did not 
use one-to-many communication. However, how to uti­
lize the technique in parallel implementation was yet to 
be studied. 

Parallelization of message-oriented scheduling can 
be quite different from parallelization of ordinary, 
process-oriented scheduling. An obvious way of paral­
lelizing process-oriented scheduling is to execute differ­
ent goals on different processors. In message-oriented 
scheduling, the basic idea should be to execute different 
message sends on different processors, but many prob­
lems must be solved as. to the mapping of computation 
to processors, mutual exclusion, and so on. This paper 
reports the initial study on the subject. 

The rest of the paper is organized as follows: 
Section 2 reviews Moded Flat GHC, the subset of 
GHC we are going to implement. Section 3 reviews 
message-oriented scheduling for sequential implemen­
tation. Section 4 discusses how to parallelize message­
oriented scheduling. Of the two possible methods sug­
gested, Section 5 focuses on the shared-goal method 
suitable for shared-memory multiprocessors and dis­
cusses design issues in more detail. Section 6 shows 
the result of preliminary performance evaluation. The 
readers are assumed to be familiar with concurrent 
logic languages [Shapiro 1989]: 

2. Moded Flat GRC and Constraint-Based Pro-
gram Analysis 

Moded Flat GHC [Ueda and Morita 1990] is a subset 
of GHC that introduces a mode system for the compile­
time global analysis of dataflow caused by unification. 
Unification executed in clause bodies can cause bidi­
rectional dataflow in general, but mode analysis tries 
to guarantee that it is assignment to an uninstantiated 
variable effectively and does not fail (except due to oc­
cur check). 

Our experience with GHC and KLI [Ueda and 
Chikayama 1990] has shown that the full functional­
ity of bidirectional unification is seldom used and that 
programs using it can be rewritten rather easily (if not 
automatically) to programs using unification as assign­
ment. These languages are indeed used as general­
purpose concurrent languages, which means that it is 
very important to optimize basic operations such as 
unification and to obtain machine codes close to those 
obtained from procedural languages. 

For global compile-time analysis to be practical, 
it is highly desirable that individual program mod­
ules can be analyzed separately in such a way that 
the results can be merged later. The mod~ system of 
Moded Flat GHCis thus constraint-based; the mode 

of a whole program can be determined by accumulat­
ing the mode constraints obtained separately from the 
syntactic analysis of each program clause. Another ad­
vantage of the constraint-based system is that it allows 
programmers to declare some of the mode constraints, 
in which case the analysis works as mode checking as 
well as mode inference. 

The modularity of the analysis was brought by the 
rather strong assumption of the mode system: whether 
the function symbol at some position (possibly deep in 
a data structure) of a goal 9 is determined by 9 or by 
other goals running concurrently is determined solely 
by that position specified by a path, which is defined 
as follows. Let Pred be the set of predicate symbols 
and Fun the set of function symbols. For each p E Pred 
with the arity np, let Np be the set {1,2, ... ,np}. N f 
is defined similarly for each f E Fun. Now the sets 
of paths Pt (for terms) and Pa (for atoms) are defined 
using disjoint union as: 

Pt = ( L N f)* , Pa = ( L N p ) x Pt. 
fEFun pEPred 

An element of Pa can be written as a string (p, i)(h, 
j1) ... (fn,jn), that is, it records the predicate and the 
function symbols on the way as well as the argument 
positions selected. A mode is a function from Pa to 
the set {in, out}, which means that it assigns either of 
in or out to every possible position of every possible 
instance of every possible goal. Whether some position 
is in or out can depend on the predicate and function 
symbols on the path down to that position. The func­
tion can be partial, because the mode values of many 
uninteresting positions that will not come to exist can 
be left undefined. 

Mode analysis checks if every variable generated in 
the course of execution will have exactly one out occur­
rence (occurrence at an out position) that can deter­
mine its top-level value, by accumulating constraints 
between 'the mode values of different paths. 

Constraint-based analysis can be applied to analyz­
ing other properties of programs as well. For instance, 
if we can assume that streams and non-stream data 
structures do not occur at the same position of differ­
ent goals, we can try to classify all the positions into 

(1) those whose top-level values are limited to the list 
constructors (cons and nil) and 

(2) those whose top-level values are limited to symbols 
other than the list constructors, 

which is the simplest kind of type inference. Other 
applications include the static identification of 'single­
reference' positions, namely positions whose values are 
not read by more than one goal and hence can be 
discarded or destructively updated after use. This 
could replace the MRB (multiple-reference bit) scheme 
[Chikayama and Kimura 1987], a runtime scheme 



adopted in current KL1 implementations for the same 
purpose. 

3. Message-Oriented (Sequential) Implementa­
tion 

In a process-oriented sequential implementation of con­
current logic languages, goals ready for execution are 
put in a queue (or a stack or a deque, depending on 
the scheduling). Once a goal is taken from the queue, 
it is reduced as many times as possible, using last-call 
optimization, until it suspends or it is swapped out. A 
suspended goal is hooked on the uninstantiated vari­
able( s) that caused suspension, and when one of the 
variables is instantiated, it is put back into the queue. 

Message-oriented implementation has much in 
common with process-oriented implementation, but 
differs in the treatment of stream communication: It 
compiles the generation of stream elements into pro­
cedure calls to the consumer of the stream. A stream 
is an unbounded buffer of messages in principle, but 
message-oriented implementation tries to reduce the 
overhead of buffering and unbuffering by transferring 
control and messages simultaneously to the consumer 
whenever possible. To this end, it tries to schedule 
goals so that whenever the producer of a stream sends 
a message, the consumer is suspending on the stream 
and is ready to handle the message. Of course, this 
is not always possible because we can write a program 
in which a stream must act as a buffer; messages are 
buffered when the consumer is not ready to handle in­
coming messages. 

Process-oriented implementation tries to achieve 
good performance by reducing the frequency of costly 
goal switching and taking advantage of last-call opti­
mization. Message-oriented implementation tries to re­
duce the cost of each goal switching operation and the 
cost of data transfer between goals. 

Suppose two goals, p and q, are connected by a 
stream sand p is going to send a message to q that 
is suspending on s. Message-oriented implementation 
represents s as a two-field communication cell that 
points to (1) the instruction in q's code from which the 
processing of q is to be resumed and (2) q's goal record 
containing its arguments (Fig. 1). (Throughout the pa­
per, we assume that a suspended goal will resume its 
execution from the instruction following the one that 
caused suspension, not from the first instruction of the 
predicate.) To send a message m, p first loads m on 
a hardware register called the communication register, 
changes the current goal to the one pointed to by the 
communication cell of s, and calls the code pointed to 
by the communication cell of s. The goal q gets m 
from the communication register and may send other 
messages in its turn. Control returns to p when all 
the message sends caused directly or indirectly by m 

(p) 

(p) (q) 

receiver's 
goal 

record 

sender's 
goal 

record put~get 
~----~mes.~mes. ~----~ 

comm. reg. 
(hardware) 

Fig. 1. Immediate message send 

code for buffering 
(q) 

sender's 
goal 

record CJ 
comm. reg. 
(hardware) 

Fig. 2. Buffered message send 
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have been processed. However, if m is the last mes­
sage which p can send out immediately (i.e., without 
waiting for further incoming messages), control need 
not return to p but can go directly to the goal that 
has outstanding message sends. This is called last-send 
optimization, which we shall see in Section 5.4 in more 
detail. 

We have observed in GHCjKL1 programming that 
the dominant form of interprocess communication is 
one-to-one stream communication. It therefore de­
serves special treatment, even though other forms of 
communication such as broadcasting and multicasting 
become a little more expensive. One-to-many commu­
nication is done either by the repeated sending of mes­
sages or by using non-stream data structures. 

Techniques mentioned in Section 2 are used to ana­
lyze which positions of a predicate and which variables 
in a program are used for streams and to distinguish 
between the sender and the receiver( s) of messages. 

When a stream must buffer messages, the commu­
nication cell representing the stream points to the code 
for buffering and the descriptor of a buffer. The old en­
tries of the communication cell are saved in the descrip­
tor (Fig. 2). In general, a stream must buffer incoming 
messages when the receiver goal is not ready to han­
dle them. The following are the possible reasons [Ueda 
and Morita 1990]: 
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Fig. 3. Binary search tree as a process 

(1) (selective message receiving) The receiver is wait­
ing for a message from other input streams. 

(2) The receiver is suspending on non-stream data 
(possibly the contents of messages). 

(3) The sender of a message may run ahead of the re­
ceIver. 

( 4) When the receiver r belongs to a circular process 
structure, a message m sent by r may possibly ar­
rive at r itself or may cause another message to be 
sent back to 1'. However, unless m has been sent 
by last-send optimization, r is not ready to receive 
it. 

The receiver examines the buffer when the reason 
for the buffering disappears, and handles messages (if 
any) in it. 

Process-oriented implementation often caches (part 
of) a goal record on hardware registers, but this should 
not be done in message-oriented implementation III 

which process switching takes place frequently. 

4. Parallelization 

How can we exploit parallelism from message-oriented 
implementation? Two quite different methods can be 
considered: 

Distributed-goal method. Different processors take 
charge of different goals, and each processor handles 
messages sent to the goals it is taking charge of. 
Consider a binary search tree represented using goals 
and streams (Fig. 3) and suppose three processors take 
charge of the three different portions of the tree. Each 
processor performs message-oriented processing within 
its own portion, while message transfer between por­
tions is compiled into inter-processor communication 
with buffering. 

Shared-goal method. All processors share all the goals. 
There is a global, output-restricted de que [Knuth 1973] 
of outstanding work to be done in parallel, from which 
an idle processor gets a new job. The job is usually to 
execute a non-unification body goal or to send a mes­
sage, the latter being the result of compiling a unifi­
cation body goal involving streams. The message send 

will usually cause the reduction of a suspended goal. If 
the reduction generates another unification goal that 
has been compiled into a message send, it can be per­
formed by the same processor. Thus a chain of message 
sends is formed, and different chains of message sends 
can be performed in parallel as long as they do not in­
terfere with each other. In the binary tree example, dif­
ferent processors will take care of different operations 
sent to the root. A tree operation may cause subse­
quent message sends inside the tree, but they should 
be performed by the same processor because there is 
no parallelism within each tree operation. 

Unlike the shared-goal method, the distributed­
goal method can be applied to distributed-memory 
multiprocessors as well as shared-memory ones to 
improve the throughput of message handling. On 
shared-memory multiprocessors, however, the shared­
goal method is more advantageous in terms of latency 
(i.e., responses to messages), because (1) it performs no 
inter-processor communication within a chain of mes­
sage sends and (2) good load balancing can be attained 
easily. The shared-goal method requires a locking pro­
tocol for goals as will be discussed in Section 5.1, but 
it enables more tightly-coupled parallel processing that 
covers a wider range of applications. Because of its 
greater technical interest, the rest of the paper is fo­
cused on the shared-goal method. 

5. Shared-Goal Implementation 

In this section, we discuss important technicalities in 
implementing the shared-goal method. We explain the 
method and the intermediate code mainly by examples. 
Space limitations do not allow the full description of 
the implementation, though we had to solve a number 
of subtle problems related to concurrency control. 

5.1 Locking of Goals 

Consider a goal p(Xs, Ys) defined by the following 
single clause: 

p([AIXs1],Ys) :- true I 
Ys=[AIYs1], p(Xs1,Ys1). 

In the shared-goal method, different messages in 
the input stream XS may be handled by different pro­
cessors that share the goal p (Xs, Y s). Any processor 
sending a message must therefore try to lock the goal 
record (placed in the shared memory) of the receiver 
first and obtain the grant of exclusive access to it. The 
receiver must remain locked until it sends a message 
through Ys and restores the dormant state. 

The locking operation is important in the following 
respect as well: In message-oriented implementation, 
the order of the elements in a stream is not represented 



spatially as a list structure but as the chronological or­
der of message sends. The locking protocol must there­
fore make sure that when two messages, 0:' and /3, are 
sent in this order to p (Xs, Ys), they are sent to the 
receiver of Ys in the same order. This is guaranteed by 
locking the receiver of Ys before p(Xs, Ys) is unlocked. 

5.2 Busy Wait vs. Suspension 

How should a processor trying to send a message wait 
until the receiver goal is unlocked? The two extreme 
possibilities are (1) to spin (busy-wait) until unlocked 
and (2) to give up (suspend) the sending immediately 
and do some other work, leaving a notice to the receiver 
that it has a message to receive. We must take the 
following observations into account here: 

(a) The time each reduction takes, namely the time re­
quired for a resumed goal to restore the dormant 
state, is usually short (several tens of CISC in­
structions, say), though it can be considerably long 
sometimes. 

(b) As explained in Section 5.1, a processor may lock 
more than one goal temporarily upon reduction. 
This means that busy wait may cause. deadlock 
when goals and streams form a circular structure. 

Because busy wait incurs much smaller overhead 
than suspension, Observation (a) suggests that the pro­
cessor should spin for a period of time within which 
most goals can perform one reduction. However, it 
should suspend finally because of (b). 

Upon suspension, a buffer is prepared as in Fig. 2, 
and the unsent message is put in it. Subsequent mes­
sages go to the buffer until the receiver has processed 
all the messages in the buffer and has removed the 
buffer. As is evident from Fig. 2, no overhead is in­
curred to check if the message is going to the buffer 
or to the receiver. The receiver could notice the ex­
istence of outstanding messages by checking its input 
streams upon each reduction, but it incurs overhead to 
(normal) programs which do not require buffering. So 
we have chosen to avoid this overhead by letting the 
sender spawn and schedule a special routine, called the 
retransmitter of the messages, when it creates a buffer. 
The retransmitter is executed asynchronously with the 
receiver. When executed, it tests if the receiver has 
been unlocked, in which case it sends the first message 
in the buffer and re-schedules itself. 

For the shared resources other than goals (such as 
logic variables and the global deque), mutual exclu­
sion should be attained by busy wait, because access to 
them takes a short period of time. On the other hand, 
synchronization on the values of non-stream variables 
(due to the semantics of GHC) should be implemented 
using suspension as usual. 
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5.3 Scheduling 

Shared-goal implementation exploits parallelism be­
tween different chains of message sends that do not 
interfere with each other. For instance, a binary search 
tree (Fig. 3) can process different operations on it in 
a pipelined manner, as long as there is no dependence 
between the operations (e.g., the key of a search op­
eration depending on the result of the previous search 
operation). When there is dependency, however, par­
allel execution can even lower the performance because 
of synchronization overhead. 

Another example for which parallelism does not 
help is a demand-driven generator of prime numbers 
which is made up of cascaded goals for filtering out 
the multiples of prime numbers. The topmost goal re­
ceiving a new demand from outside filters out the mul­
tiples of the prime computed in response to the last 
demand. However, until the last demand has almost 
been processed, the topmost goal doesn't know what 
prime's multiples should be filtered out, and hence will 
be blocked. 

These considerations suggest that in order to avoid 
ineffective parallelism, it is most realistic to let pro­
grammers specify which chains of message sends should 
be done in parallel with others. The simple method we 
are using currently is to have (1) a global deque for the 
work to be executed in parallel by idle processors and 
(2) one local stack for each processor for the work to be 
executed sequentially by the current processor. Each 
processor obtains a job from the global deque when its 
local stack is empty. We use a global deque rather than 
a global stack because, if the retransmitter of a buffer 
fails to send a message, it must go to the tail of the 
deque so it may not be retried soon. 

Each job in a stack/ deque is uniformly represented 
as a pair (code, env), where code is the job's en­
try /resumption point and env is its environment. The 
job is usually to start the execution of a goal or to re­
sume the execution of a clause body. In these cases, env 
points to the goal record on which code should work. 
When the job is to retransmit buffered messages, env 
points to the communication cell pointing to the buffer. 

When a clause body has several message sends to 
be executed in parallel, they will not put in the deque 
separately. Instead, the current processor executing 
the clause body performs the first send (and any sends 
caused by that send), putting the rest of the work to 
the deque after the first send succeeds in locking the 
receiver. Then an idle processor will get the rest of 
the work and perform the second message send (and 
any sends caused by that send), putting the rest of the 
rest back to the deque. This procedure is to guarantee 
the order of messages sent through a single stream by 
different processors. Suppose two messages, 0:' and /3, 
are sent by a goal like Xs= [0:' ,/31 Xs 1]. Then we have 
to make sure that the processor trying to send /3 will 
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not lock the receiver of Xs before the processor trying 
to send a has done so. 

5.4 Reduction 

This section outlines what a typical goal should do dur­
ing one reduction, where by 'typical' we mean goals 
that can be reduced by receiving one message. As an 
example, consider the distributor of messages defined 
as follows, 

p([A!Xs] ,Ys,Zs) :- true! 
Ys=[A!Ysi] , Zs=[A!Zsi], p(Xs,Ysi,Zsi). 

where we assume A is known, by program analysis or 
declaration, to be a non-stream datum. (Otherwise 
a somewhat more complex procedure is necessary, be­
cause the three occurrences of A will be used for one-to­
two communication.) The intermediate code for above 
program is: 

entry(p/3) 
rcv _ val ue (Ai) 
get_cr(A4) 
send_call(A2) 
put_cr(A4) 
send_call(A3) 
execute 

} or send_jmp(A3) . 

The Ai's are entries of the goal record of the goal 
being executed, which contain the arguments of the 
goal and temporary variables. Other programs may use 
Xi's, which are (possibly virtual) general registers local 
to each processor, and GAi's, which are the arguments 
of a new goal being created. The label entry(p/3) 
indicates the initial entry point of the predicate p with 
three arguments. 

The instruction rcv _ val ue (Ai) waits for a mes­
sage from the input stream on the first argument. If 
messages are already buffered, it takes the first one and 
puts it on the communication register. A retransmitter 
of the buffer is put on the deque if more messages ex­
ist; otherwise the buffer is made to disappear (Section 
5.7). If no messages are buffered, which is expected to 
be most probable, rcv_value unlocks the goal record, 
and suspends until a message arrives. In either case, 
the itlstruction records the address of the next instruc­
tion in the communication cell (or, if the communica­
tion cell points to a buffer, in the buffer descriptor). 
The goal is usually suspending at this instruction. 

The instruction get_cr(A4) saves into the goal 
record the message in the communication register, 
which the previous rcv_value(Ai) has received. Then 
send_call (A2) sends the message in the communica­
tion register through the second stream. The instruc­
tion send_call(A2) tries to lock the receiver of the 
second stream and if successful, transfers control to 
the receiver. If the receiver is busy for a certain pe­
riod of time or it isn't busy but is not ready to handle 

the message, the message is buffered. The instruction' 
send_call does not unlock the current goal record. 
When control eventually returns, put_cr(A4) restores 
the communication register and send_call(A3) sends 
the next message. 

When control returns again, execut e performs the 
recursive call by going back to the entry point of the 
predicate p. Then the rcv _ val ue (Ai) instruction will 
either find no buffered messages or find some. In the 
former case, rcv_value(Ai) obviously suspends. In 
the latter case, a retransmitter of the buffer must have 
been scheduled, and so rcv_value(Ai) can suspend 
until the retransmitter sends a message. Moreover, the 
resumption address of the rcv _ val ue (Ai) instruction 
has been recorded by its previous execution. Thus in 
either case, execute effectively does nothing but un­
locking the current goal. This is why last-send opti­
mization can replace the last two instructions into a 
single instruction, send_jmp(A3). 

The instruction send_jmp(A3) locks the receiver of 
the third stream, unlocks the current goal, and trans­
fers control to the receiver without stacking the return 
address. Last-send optimization enables the current 
goal to receive the next message earlier and allows the 
pipelined processing of message sends. Note that with 
last-send optimization, the rcv _ val ue (Ai) instruction 
will be executed only once when the goal starts ex­
ecution. The instructions executed for each incom­
ing message are those from get_cr(A4) through send_ 
jmp(A3) . 

The above instruction sequence performs the two 
message sends sequentially. However, a variant of 
send_call called send_fork stacks the return address 
on the global deque instead of the local stack, allowing 
the continuation to be processed in parallel. Note that 
send_fork leaves the continuation to another proces­
sor rather than the message send itself for the reason 
explained in Section 5.3. 

We have established a code generation scheme for 
general cases including the spawning and the termi­
nation of goals (Section 5.5), explicit control of mes­
sage buffering (Section 5.6), and suspension on non­
stream variables. Several optimization techniques have 
been developed as well, for instance for goals whose 
input streams are known to carry messages of lim­
ited forms (e.g., non-root nodes of a binary search 
tree (Fig. 3)). Finally, we note that although process­
oriented scheduling and message-oriented scheduling 
differ in the flow of control, they are quite compati­
ble in the sense that an implementation can use both 
in running a single program. Our experimental im­
plementation has actually been made by modifying a 
process-oriented implementation. 

5.5 An Example 

Here we give the intermediate code of a naIve reverse 



The program: (1) nreverse ([H I T] ,0) 
(2) nreverse ([] , 0) 
(3) append([IIJ] ,K,L) 
(4) append( [] , K, L) 

true 
true 
true 
true 

append(01,[H] ,0), nreverse(T,01). 
0= [] . 
L=[IIM], append(J,K,M). 
K=L. 

entry(nreverse/2) 
rcv_value(A1) 

check_not_eos(101) 
get_cr(X3) 
commit 
put_cc(X4) 
push_value(X3) 
push_eos 
g_setup(append/3,3) 
put_value(A2,GA3) 
put_value(X4,GA2) 
put_com_variable(A2,GA1) 

g_call 
return 

label(101) 
commit 
send_call(A2) 
proceed 

entry(append/3) 
deref(A3) 
rcv_value(A1) 
check_not_eos(102) 
commit 
sendn_jmp(A3) 

label(102) 
commit 
send_unify_jmp(A2,A3) 

receive a message from the 1st arg 
(the program is usually waiting for incoming messages here) 
if the message is eos then collect the current comm. cell and goto 101 
save the message H in the comm. reg. to the register of the current P E 
Clause 1 is selected (no operation) 
create a comm. cell with a buffer 
put the message H into the buffer 
put eos into the buffer 
create a goal record for S args and record the name 
set the Srd arg of append to a 
set the 2nd arg of append to [H] 
create a locked variable 01 and set the 2nd arg of nreverse and the 
1st arg of append to the pointer to 01, 
assuming that append will turn 01 into a comm. cell soon 
execute append until it suspends 
unlock the current goal and do the job on the local stack top 

Clause 2 is selected (no operation) 
send eos in the comm. reg. to the receiver of a 
deallocate the goal record and return 

dereference the Srd arg L 
receive a message from the 1st argo 
if the message is eos then collect the current comm. cell and goto 102 
Clause S is selected (no operation) 
send the received message to the receiver of L, where 
'n' means that the instruction assumes that L has been dereferenced 

Clause 4 is selected (no operation) 
make sure that messages sent through K are 
forwarded to the receiver of L, and return 

Fig. 4. Intermediate code for naIve reverse 
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program (Fig. 4). In order for the code to be almost 
self-explanatory, some comments are appropriate here. 

Suppose the messages ml, ... , mn are sent to the 
goal nreverse (In, Out) through In, followed by the 
eos (end-of-stream) message indicating that the stream 
is closed. The nreverse goal generates one suspended 
append goal for each mi, creating the structure in 
Fig. 5. The ith append has as its second argument 
a buffer with two messages, mi and eos. The final eos 
message to nreverse causes the second clause to for­
ward the eos to the most recent append goal holding 
m n . The append holding m n , in response, lets different 
(if available) processors send the two buffered messages 
mn and eos to the append holding m n-1. The message 
mn is transferred all the way to the append holding m1 
and appears in Out. The following eos causes the next 
append goal to send m n -1 and another eos. 

The performance of nrevers e hinges on how fast 
each append goal can transfer messages. For each in­
coming message, an append goal checks if the message 
is not eos and then transfers both the message and con­
trol to the receiver of the output stream. The message 
remains on the communication register and need not 
be loaded or stored. 

The send_unify_jmp(1'1,r2) instruction is used 
for the unification of two streams. Arrangements are 
made so that next time a message is sent through 1'1, 

the sender is made to point directly to the communi­
cation cell of 1'2' If the stream 1'1 has a buffer (which is 
the case with nreverse), the above redirection is made 
to happen after all the contents of the buffer are sent 
to the receiver of 1'2. 

It is worth noting that the multiway merging of 
streams can transfer messages as efficiently as append. 
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Fig. 5. Process structure being created by 
nreverse([rnl,'" ,rnn ] ,Out) 

5.6 Buffering 

As discussed in Section 5.2, the producer of a stream s 
creates a buffer when the receiver is locked for a long 
time. However, this is a rather unusual situation; a 
buffer is usually created by s's receiver when it remains 
unready to handle incoming messages after it has un­
locked itself. Here we re-examine the four reasons of 
buffering in Section 3: 

(1) Selective message receiving. This happens, for in­
stance, in a program that merges two sorted streams 
of integers into a single sorted stream: 

omerge([AIX1],[BIY1] ,Z) :- A< B 
Z=[AIZ1], omerge(X1,[BIY1] ,Z1). 

omerge([AIX1], [BIY1] ,Z) :- A>=B I 
Z=[BIZ1], omerge([AIX1],Y1,Z1). 

Two numbers, one from each input stream, are neces­
sary for a reduction. Suppose the first number A ar­
rives through the first stream. Then the goal omerge 
checks if the second stream has a buffered value. Since 
it doesn't, the goal cannot be reduced. So it records 
A in the goal record and changes the first stream to a 
buffer, because it has to wait for another number B to 
come through the second stream. Suppose B( > A) ar­
ri ves and the first clause is selected. Then the second 
stream ~hould become a buffer and B will be put back. 
The first stream, now being a buffer, is checked and a 
retransmitter is stacked if it contains an element; other­
wise the buffer is made to disappear. Finally A is sent to 
the receiver of the third stream. The above procedure 
is admittedly complex, but this program is indeed one 
of the hardest ones to execute in a message-oriented 
manner. A simpler example of selective message re­
ceiving appears in the append program in Section 5.5; 
its second input stream buffers messages until the non­
recursi ve clause is selected. 

(2) Suspension on non-stream data. The most likely 
case is suspension on the content of a message (e.g., 
the first argument of an update message to a binary 
search tree). When a goal receives from a stream s 
a message that is not sufficiently instantiated for re­
duction, it changes s to a buffer and puts the message 
back to it. A retransmitter is hooked on the uninstan­
tiated variable( s) that caused suspension, which will be 
invoked when any of them are instantiated. 

(3) The sender of a stream running ahead of the re­
ceiver. It is not always possible to guarantee that the 
sender of a stream does not send a message before the 
receiver commences execution, though the scheduling 
policy tries to avoid such a situation. The simplest so­
lution to this problem is to initialize each stream to an 
empty buffer. However, creating and collecting a buffer 
incurs certain overhead, while a buffer created for the 
above reason will receive no messages in most cases. So 
the current scheme defers the creation of a real buffer 
until a message is sent. Moreover, when the message is 
guaranteed to be received soon, the put_corn_variable 
instruction (Fig. 4) is generated and lets the sender 
busy-wait until the receiver executes rcv_value. 

(4) Circular process structure. When the receiver sends 
more than one message in response to an incoming 
message, sequential implementation must buffer subse­
quent incoming messages until the last message is sent 
out. In parallel implementation, the same effect is au­
tomatically achieved by the lock of the goal record, and 
hence the explicit control of buffering is not necessary. 

The retransmission of a buffer created due to the 
reason (1) or (3) is explicitly controlled by the receiver. 
When a buffer is created due to the reason (2) or by 
the sender of a stream, a retransmitter of the buffer is 
scheduled asynchronously with the receiver. 

5.7 Mutual Exclusion of Communication Cells 

The two fields of a communication cell representing a 
stream may be updated both by the sender and the 
receiver of the stream. For instance, the sender may 
create a buffer and connect it to the cell when the re­
ceiver is locked for a certain period of time. The re­
ceiver may set or update the cell by the rcv_value 
instruction, may create or remove a buffer for the cell 
when buffering becomes necessary or unnecessary, may 
execute send_unify_jmp and connect the stream to 
another, and may move or delete the goal record of its 
own. 

This of course calls for some method of mutual ex­
elusion for communication cells. The simplest solution 
would be to lock a communication cell whenever up­
dating or reading it, but locking both a goal record 
and a communication cell for each message send would 
be too costly. It is highly desirable that an ordinary 
message send, which reads but does not update a com­
munication cell, need not lock the communication cell. 

However, without locking upon reading, the follow­
ing sequence can happen and inconsistency arises: 

(1) the sender follows the pointer in the second field 
(the environment) of the communication cell, 

(2) the receiver starts and completes the updating of 
the communication cell (under an appropriate lock­
ing protocol), and then 
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Table 1. Performance Evaluation (in seconds) 

Language 

GHC 

Processing 

1 PE (no locking) 
1 PE 
2 PEs 
3 PEs 
4 PEs 
5 PEs 
6 PEs 
7 PEs 
8 PEs 

C (recursion) cc-O 
C (iteration) cc-o 

(* kilo Reductions Per Second) 

(3) the sender locks the (wrong) record r (the goal 
record for the receiver or a buffer for the communi­
cation cell) obtained in Step (1) and calls the code 
pointed to by the first field (the code) of the up­
dated communication cell. 

This can be avoided by not letting the receiver up­
date the second field of the communication cell. The 
receiver instead stores into the record r the pointer p 
to the right record. The receiver accordingly sets the 
first field of the communication cell to the pointer to a 
code sequence (to be called by the sender in Step (3)) 
that notifies the sender of the existence of the pointer 
p. 

The sender can now access the right record pointed 
to by p via the wrong record r, but it is still desirable 
that p is finally written into the second field of the com­
munication cell so that the right record can be accessed 
directly next time. This update of the communication 
cell must be done before the sender is unlocked and the 
control is completely transferred to the receiver. 

For this purpose, we take advantage of the fact that 
the 1-byte lock of a record can take states other than 
'locked' and 'unlocked'. When the lock of a record has 
one of these other states, a special routine correspond­
ing to that state runs before the goal record of the 
sender is unlocked. This feature is being used for up­
dating the second field of a communication cell safely. 

6. An Experimental System and Its Perfor­
mance 

We have almost finished the initial version of the 
abstract machine instruction set for the shared-goal 
method. An experimental runtime system for per­
formance evaluation has been developed on Sequent 
Symmetry, a shared-memory parallel computer with 
20MHz 80386's. The system is written in .an assem­
bly language and C, and the abstract machine instruc­
tions are expanded into native codes automatically by 

binary process tree 
(5000 operations) 

(search) (update) 

1.25 1.83 
1.38 2.10 
0.78 1.15· 
0.55 0.81 
0.44 0.63 
0.36 0.53 
0.33 0.46 
0.33 0.39 
0.33 0.36 

0.71 
0.32 

0.72 
0.35 

naIve reverse 
(1000 elements) 

2.23 (225 kRPS)* 
3.27 (154 kRPS) 
2.43 (207 kRPS) 
1. 71 (294 kRPS) 
1.33 (377 kRPS) 
1.10 (456 kRPS) 
0.96 (523 kRPS) 
0.85 (591 kRPS) 
0.77 (652 kRPS) 

a loader. A compiler from Moded Flat GHC to the 
intermediate code is yet to be developed. 

The current system employs a simple scheme of 
parallel execution as described in Section 5.3. When 
the system runs with more than one processor, one 
of them acts as a master processor and the others as 
slaves. They act in the same manner while the global 
deque is non-empty. When the master fails to obtain a 
new job from the deque, it tries to detect termination 
and exceptions such as stack overflow. The current sys­
tem does not care about perpetually suspended goals; 
they are treated just like garbage cells in Lisp. A slight 
overhead of counting the number of goals in the sys­
tem will be necessary to detect perpetually suspended 
goals [Inamura and Onishi 1990] and/or to feature the 
shoen construct of KL1 [Veda and Chikayama 1990], 
but it should scarcely affect the result of performance 
evaluation described below. 

Locking of shared resources, namely logic variables, 
goal records, communication cells, the global deque, 
etc., is done using the xchg (exchange) instruction as 
usual. 

V sing Program 1, we measured (1) the processing 
time of 5000 update operations with random keys given 
to an empty binary tree and (2) the processing time 
of 5000 search operations (with the same sequence of 
keys) to the resulting tree with 4777 nodes. The num­
ber of processors was changed from 1 to 8. For the one­
processor case, a version without locking/unlocking op­
erations was tested as well. The numbers include the 
execution time of the driver that sends messages to the 
tree. The result was compared with two versions of (se­
quential) C programs using records and pointers, one 
using recursion and the other using iteration. The per­
formance of nreverse (Fig. 4) was measured as well. 
The results are shown in Table 1. 

The results show good (if not ideal) parallel 
speedup, though for search operations on a binary 
tree, the performance is finally bounded by the sequen-
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tial nature of the driver and the root node. Access 
contention on the global deque can be another cause 
of overhead. Note, however, that the two examples are 
indeed harder to execute in parallel than running inde­
pendent processes in parallel, because different chains 
of message sends share goals. Note also that the binary 
tree with 4777 nodes is not very de~p. 

The binary tree program run with 4 processors out­
performed the optimized recursive C program. The it­
erative C program was more than twice as fast as the 
recursive one and was comparable to the GHC pro­
gram run with 8 processors. The comparison, however, 
would have been more preferable to parallel GHC if a 
larger tree had been used. 

The overhead of locking/unlocking was about 30% 
in nreverse and about 10% in the binary tree pro­
gram. Since nreverse is one of the fastest programs 
in terms of the kRPS value, we can conclude that the 
overhead of locking/unlocking is reasonably small on 
average even if we lock such small entities as individ­
ual goals. 

As for space efficiency, the essential difference be­
tween our implementation and C implementations is 
that GHC goal records have pointers to input streams 
while C records do not consume memory by being 
pointed to. The difference comes from the expressive 
power of streams; unlike pointers, streams can be uni­
fied together and can buffer messages implicitly. 

One may suspect that message-oriented implemen­
tation suffers from poor locality in general. This is true 
for data locality, because a single message chain can 
visit many goals. However, streams in process-oriented 
implementation cannot enjoy very good locality either, 
because a tail-recursive goal can generate a long list of 
messages. Both process-oriented and message-oriented 
implementations enjoy good instruction locality for the 
binary tree program and nreverse. 

Comparison of performance between a message­
oriented implementation and a process-oriented imple­
mentation was reported in [Ueda and Morita 1990] for 
the one-processor case. 

7. Conclusions and Future Works 

The main contribution of this paper is that message­
oriented implementation of Moded Flat GHC was 
shown to benefit from small-grain, tightly-coupled par­
allelism on shared-memory multiprocessors. Further­
more, the result of preliminary evaluation shows that 
the absolute performance is good enough to be com­
pared with procedural programs. 

These results suggest that the programming of re­
configurable storage structures that allow concurrent 
access can be a realistic application of Moded Flat 
GHC. Programmers need not worry about mutual ex­
clusion necessitated by parallelization, because it is 
achieved automatically at the implementation level. In 

procedural languages, parallelization may well require 
major rewriting of programs. To our knowledge, how to 
deal with reconfigurable storage structures efficiently in 
non-procedural languages without side effects has not 
been studied in depth. 

We have not yet fully studied language constructs 
and their implementation for more minute control over 
parallel execution. The current scheme for the control 
of parallelism is a simple extension to the sequential 
system; it worked well for the benchmark programs 
used, but will not be powerful enough to be able to tune 
the performance of large programs. We need a notion 
of priority that should be somewhat different from the 
priority construct in KL1 designed for process-oriented 
parallel execution. The notion of fairness may have to 
be reconsidered also. KL1 provides the shoen (manor) 
construct as well, which is the unit of execution control, 
exception handling and resource consumption control. 
How to adapt the shoen construct to message-oriented 
implementation is another research topic. 
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Abstract 

We present a new granularity analysis scheme for con­
current logic programs. The main idea is that, instead ot" 
trying to estimate costs of goals precisely, we provide a 
compile-time analysis method which can efficiently and 
precisely estimate relative costs of active goals given the 
cost of a goal at runtime. This is achieved by estimat­
ing the cost relationship between an active goal and its 
subgoals at compile time, based on the call graph of the 
program. Iteration parameters are introduced to handle 
recursive procedures. We show that the method accu­
rately estimates cost, for some simple benchmark pro­
grams. Compared with methods in the literature, our 
scheme has several advantages: it is applicable to any 
program, it gives a more precise cost estimation than 
static methods, and it has lighter runtime overheads 
than absolute estimation methods. 

1 Introduction 

The importance of grain sizes of tasks in a parallel com­
putation has been well recognized [6, 5, 7]. In practice, 
the overhead to execute small grain tasks in parallel may 

well offset the speedup gained. Therefore, it is impor­
tant to estimate the costs of the execution of tasks so 
that at runtime, tasks can be scheduled to execute se­
quentiallyor in parallel to achieve the maximal speedup. 

Granularity analysis can be done at compile time or 
runtime or even both [7]. The compile-time approach es­
timates costs by statically analyzing program structure. 
The program is partitioned statically and the partition­
ing scheme is independent of runtime parameters. Costs 
of most tasks, however, are not known until parameters 
are instantiated at runtime and therefore, the compile­
time approach may result in inaccurate estimates. The 
runtime approach, on the other hand, delays the cost 
estimation until execution and can therefore make more 
accurate estimates. However, the overhead to estimate 
costs is usually too large to achieve efficient speedup, 
and therefore the approach is usually infeasible. The 
most promising approach is to try to get as much cost 
estimation information as possible at compile time and 

make the overhead of runtime scheduling very slight. 
Such approach has been taken by Tick [10], Debray et 
al, [2], and King and Soper [4]. In this paper, we adopt 
this strategy. 

A method for the granularity analysis of concurrent 
logic programs is proposed. Although the method can 
be well applied to other languages, such as functional 
languages, in this paper, we discuss the method only 
in the context of concurrent logic programs. The key 
observation behind this method is that task spawning 
in many concurrent logic program language implemen­
tations, such as Flat Guarded Horn Clauses (FGHC) 
[13], depends only on the relative costs of tasks. If 
the compile-time analysis can provide simple and pre­
cise cost relationships between an active goal and its 
subgoals, then th~ runtime scheduler can efficiently es­
timate the costs of the subgoals based on the cost of 
the active goal. The method achieves this by estimat­
ing, at compile time, the cost relationship based on the 
call graph and the introduction of iteration parameters. 
We show that for common benchmark programs, the 
method gives correct estimates. 

2 Motivations 

Compile-time granularity analysis is difficult because 
most of the information needed, such as size of a data 
structure and number of loop iterations, are not know~ 
until runtime. Sarkar [7] used a profiling method to 
get the frequency of recursive and nonrecursive function 
calls for a functional language. His method is simple 
and does not have runtime overheads, but can give only 
a rough estimate of the actual granularity. 

In the logic programming community, Tick [10j first 
proposed a method to estimate weights of procedures 
by analyzing the call graph of a program. The method, 
as refined by Debray [1], derives the call graph of the 
program, and then combines procedures which are mu­
tually recursive with each other into a single cluster 
(i.e., a strongly connected component in the call graph). 
Thus the call graph is converted into an acyclic graph. 
Procedures in a cluster are assigned the same weight 
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which is the sum of the weights of the cluster's children 
(the weights of leaf nodes are one, by definition). This 
method has very low runtime overhead; however, goal 
weights are estimated statically and thus cannot cap­
ture the dynamic change of weights at runtime. This 
problem is especially severe for recursive (or mutually 
recursi ve ) procedures. 

As an example of the method, consider the naive­
reverse procedure in Figure 1. (The clauses in the nrev/2 
program do not have guards, i.e., only head unification 
is responsible for commit.) Examining the call graph, 
we find that the algorithm assigns a weight of one to 
append/3 (it is a leaf), and a weight of two to nrev/2 
(one plus the weight of its child). Such weights are asso­
ciated with every procedure invocation and thus cannot 
accurately reflect execute time. 

Debray et al. [2] presented a compile-time method 
to derive costs of predicates. The cost of a predicate is 
assumed to depend solely on its input argument sizes. 
Relationships between input and output argument sizes 
in predicates are first derived based on so-called data de­
pendency graphs and then recurrence equations of cost 
functions of predicates are set up. These equations are 
then solved at compile time to derive closed forms (func­
tions) for the cost of predicates and their input argument 
sizes, together with the closed forms (functions) between 
the output and input argument sizes. Such cost and ar­
gument size functions can be evaluated at runtime to 
estimate costs of goals. A similar approach was also 
proposed by King and Soper [4]. Such approaches rep­
resent a trend toward precise estimation. For nrev/2, 
Debray's method gives Costnrev(n) = O.5n2 + 1.5n + 1, 
where n is the size of the input argument. This function 
can then be inserted into the runtime scheduler. When­
ever nrev/2 is invoked, the cost function is evaluated, 
which obviously requires the value n, the size of its first 
argument. If the cost is bigger than some preselected 
overhead threshold, the goal is executed in parallel; oth­
erwise, it is executed sequentially. 

The method described suffers from several drawbacks 
(see [11] for further discussion). First, there may be 
considerable runtime overhead to keep track of argu­
ment sizes, which are essential for the cost estimation 
at runtime. Furthermore, the sizes of the initial input 
arguments have to be given by users or estimated by the 
program when the program begins to execute. Second, 
within the umbrella of argument sizes, different metrics 
may be used, e:g., list length, term depth, and the value 
of an integer argument. It is unclear (from [2, 4]) how to 
correctly choose metrics which are relevant for a given 
predicate. Third, the resultant recurrence equations for 
size relationships and cost relationships can be fairly 
complicated. 

It is therefore worth remedying the drawbacks of the 
above two approaches. It is also clear that there is a 

tradeoff between precise estimation and runtime over­
head. In fact, Tick's approach and Debray's approach 
represent two extremes in the granularity estimation 
spectrum. Our intention here is to design a middle­
of-the-spectrum method: fairly accurate estimation, ap­
plicable to any procedures, without incurring too much 
runtime overhead. 

3 Overview of the Approach 

We argue here, as in our earlier work, that it is sufficient 
to estimate only relative costs of goals. This is especially 
true for an on-demand runtime scheduler [8]. Therefore, 
it is important to capture the cost changes of a subgoal 
and a goal, but not necessarily the "absolute" granular­
ity. Obviously the costs of subgoals of a parent goal are 
always less than the cost of the parent goal, and the sum 
of costs of the subgoals (plus some constant overhead) 
is equal to the cost of the parent goal. The challenging 
problem here is how to distribute the cost of the parent 
goal to its subgoals properly, especially for a recursive 
call. For instance, consider the naive reverse procedure 
nrev/2 again. Suppose goal nrev([1,2,3,4J ,R) is in­
voked (i.e., clause two is invoked) and the cost of this 
query is given, what are the costs of nrev( [2,3,4J ,R1) 
and append(R1,[lJ,R)? 

It is clear that the correct cost distribution depends 
on the runtime state of the program. For example, the 
percentage of cost distributed to nrev ( [1,2,3,4] , R) 
(i.e., as one of the subgoals of nrev([1,2,3,4,5] ,T) 
will be different from that of cost distributed to nrev ( 
[1,2J ,R). To capture the runtime state, we introduce 
an iteration parameter to model the runtime state, and 
we associate an iteration parameter with every active' 
goal. Since the cost of a goal depends solely on its en­
try runtime state, its cost is a function of its iteration 
parameter. Several intuitive heuristics are used to cap-

ture the relations between the iteration parameter of a 
parent goal and those of its children goals. To have a 
simple and efficient algorithm, only the AND/OR call 
graph of the program, which is slightly different from 
the standard call graph, is considered to obtain these 
iteration relationships. Such relations are then used in 
the derivation of recurrence equations of cost functions 
of an active goal and its subgoaIs: The recurrence equa­
tions are derived simply based on the above observation, 
i.e., the cost of an active goal is equal to the summation 
of the costs of its subgoals. 

We then proceed to solve these recurrence equations 
for cost functions bottom up, first for the leaf nodes 
of the modified AND/OR call graph, which can be ob­
tained in a similar way in Tick's modified algorithm by 
clustering those mutually recursive nodes together in the 
AND/OR call graph of the program (see Section 2). Af­
ter we obtain all the cost functions, cost distribution 
functions are derived as follows. Suppose the cost of an 



active goal is given, we first solve for its iteration param­
eter based on the cost function derived. Once the itera­
tion parameter is solved, costs of its subgoals, which are 
functions of their iteration parameters, can be derived 
based on the assumption that these iteration parameters 
have relationships with the iteration parameter of their 
parent, which are given by the heuristics. This gives the 
cost distribution functions desired for the subgoals. 

To recap, our compile-time granularity analysis pro­
cedure consists of the following steps: 

1. Form the call graph of the program and 
cluster mutually recursive nodes of the 
modified AND lOR call graph. 

2. Associate each procedure (node) in the 
call graph with an iteration parameter 
and use heuristics to derive the itera­
tion parameter relations. 

3. Form recurrence equations for the cost 
functions of goals and subgoals. 

4. Proceed bottom up in the modified AND­
OR call graph to derive cost functions. 

5. Solve for iteration parameters and then 
derive cost distribution functions for each 
predicate. 

4 Deriving Cost Relationships 

4.1 Cost Functions and Recurrence Equations 

To derive the cost relationships for a program, we u'se 
a graph G (called an AND lOR call graph) to capture 
the program structure. Formally, G is a triple (N, E, A), 
where N is a set of procedures denoted as {PI, P2, ... ,Pn} 
and E is a set of pair nodes such that (PI, P2) E E if and 
only if P2 appears as one of the subgoals in one of the 
clauses of Pl. Notice that there might be multiple edges 
(PI,P2) because PI might call P2 in multiple clauses. A is 
a partition of the multiple-edge set E such that (PbP2) 
and (PI,P3) are in one element of A if and only if P2 and 
P3 are in the body of the same clause whose head is Pl' 
Intuitively, A denotes what subgoals are AND processes. 
After applying A to edges leaving out a node, edges are 
partitioned into clusters which correspond to clauses and 
these clauses are themselves OR processes. Figure 2 
shows an example, where the OR branches are labeled 
with a bar, and AND branches are unmarked. Leaf facts 
(terminal clauses) are denoted as empty nodes. 

As in [1], we modify G so that we can cluster all 
those recursive and mutually recursive procedures to­
gether and form a directed acyclic graph (DAG). This 
is achieved by traversing G and finding all strongly­
connected components. In this traversing, the differ­
ence between AND and OR nodes is immaterial, and 
we simply discard the partition A. A procedure is re-
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cursive if and only if the procedure is in a strongly­
connected component. After nodes are clustered in a 
strongly-connected component in G, we form a DAG 
G' , whose nodes are those strongly-connected compo­
nents of G and edges are simply the collections of the 
edges in G. This step can be accomplished by an effi­
cient algorithm proposed by Tarjan [9]. 

The cost of an active goal P is determined by two 
factors: its entry runtime state s during the program 
execution and the structure of the program. We use 
an integer n, called the iteration parameter, to approxi­
mately represent state s. Intuitively, n can be viewed as 
an encoding of a program runtime state. Formally, let 
S be the set of program runtime states, M be a map­
ping from S to the set of natural numbers N such that 
M(s) = n for s E S. It is easy to see that the cost of 
P is a function of its iteration parameter n. It is also 
clear that the iteration parameter of a subgoal of P is 
a function of n. Hereafter, suppose Pij is the ph sub­
goal in the ith clause of p. We use Iij (n) to represent 
the iteration parameter of Pij. The problem of how to 
determine function Iij will be discussed in Section 4.2. 

To model the structure of the program, we use the 
AND lOR call graph G as an approximation. In other 
words, we ignore the attributes of the data, such as size 
and dependencies. We first derive recurrence equations 
of cost functions between a procedure P and its subgoals 
by looking at G. Let Costp (n) denote the cost of p. 
Three cases arise·in this derivation: 

Case 1: P is a leaf node of G' which is non­
recursive. This includes cases where that P 
is a built-in predicate. In this case, we sim­
ply assign a constant c as Costp (n). c is the 
cost to execute p. For instance such cost can 
be chosen as the number of machine instruc­
tions in p. 

For the next two cases, we consider non-leaf nodes 
p, with the following clauses (OR processes), 

Let the cost of each clause be Costej (n) for 1 ::; j ::; k. 
We now distinguish whether or not P is recursive. 

Case 2: P is not recursive and not mutually 
recursive with any other procedures. We can 
easily see that 
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k 

Costp(n) ~ L CostcJ(n). (1) 
j=1 

Conservatively, we approximate Costp( n) as 
the right-hand side of the above inequality. 
Notice that in a committed-choice language, 
the summation in the above inequality can 
be changed to the maximum (i.e., max) func­
tion. However this increases the difficulty of 
the algebraic manipulation of the resultant 
recurrence equations (see [11] for example) 
and we prefer to use the summation as an 
approximation. 

Case 3: P is recursive or mutually recur­
sive. In this case, we must be careful in the 
approximation, since minor changes in the 
recurrence equations can give rise to very 
different estimation. This can be seen for 
spli t in qsort example in Section 2. 

To be more precise, we first observe that 
some clauses are the "boundary clauses," that 
is, they serve as the termination of the recur­
sion. The other clauses, whose bodies have 
some goals which are mutually recursive with 
p, are the only clauses which will be effective 
for the recursion. Without loss of general­
ity, we assume for j > u, Cj are all those 
"mutually recursive" clauses. For a nonzero 
iteration parameter n (i.e., n > 0), we take 
the average costs of these clauses as an ap­
proximation: 

and for n = 0, we take the sum of the costs 
of those "boundary clauses" as the boundary 
condi tion of Costp ( n ): 

u 

Costp(O) = L CostCj (0). 
j=1 

The above estimation only gives the relations be­
tween cost of p and those of its clauses. The cost of 
clause Cj can be estimated as 

nj 

Costcj(n) = CHeadj + L Costpjm(Ijm(n)) (3) 
m=1 

where CHeadj is a constant denoting the cost for head 
unification of clause Cj and Ijm ( n) is the iteration pa­
rameter for the mth body goal. Substituting Equation 3 
back into Equation 1 or 2 gives us the recurrence equa­
tions for cost functions of predicates. 

4.2 Iteration Parameters 

There are several intuitions behind the introduction of 
the iteration parameter. As we mentioned above, ite~­
ation parameter n represents an encoding of a program 
runtime state as a positive integer. In fact, this type of 
encoding has been used extensively in program verifica­
tion, e.g., [3], especially in the proof of loop termination. 
A loop C terminates if and only it is possible to choose a 
function M which always maps the runtime states of C 
to nonnegative integers such that M monotonically de­
creases for each iteration of C. Such encoding also makes 
it possible to solve the problem that once the cost of an 
active goal is given, its iteration parameter can be ob­
tained. This parameter can be used to derive costs of 
its subgoals (provided the iteration-parameter functions 
1m are given), which in turn give the cost distribution 
functions. 

Admittedly, the encoding of program states may be 
fairly complicated. Hence, to precisely determine the 
iteration-parameter functions for subgoals will be com­
plicated too. In fact, this problem is statically unde­
cidable since this is as complicated as to precisely de­
termine the program runtime behavior at compile time. 
Fortunately, in practice, most programs exhibit regular 
control structures that can be captured by some intu­
itive heuristics. 

To determine the iteration-parameter functions, we 
first observe that there is a simple conservative rule: 
for a recursive body goal p, when it recursively calls 
itself back again, the iteration parameter must have been 
decreased by one (if the recursion terminates). This is 
similar to the loop termination argument. Therefore, 
as an approximation, we can use Im(n) = n - 1 as a 
conservative estimation for a subgoal pim which happens 
to be p (self-recursive). Other heuristics are listed as 
follows: 

§ 1. For a body goal pim whose predicate only 
occurs in the body once and it is not mutu­
ally recursive with p (i.e., not in a strongly­
connected component of p), lim(n) = n. 

§2. If Pim is mutually recursive with p and its 
predicate only occurs once in the body, lim (n) 
=n-1. 

§3. If Pim is mutually recursive with P and its 
predicate occurs I times in the body, where 

1 > 1, lim ( n) = n / 1 (this is integer division, 
i.e., the floor function). 

The intuitions behind these heuristics are simple. 
Heuristic §1 represents the case where a goal does not 
invoke its parent. In almost all programs, this goal will 
process information supplied by the parent, thus the it-



eration parameter remains unmodified. Heuristic §2 is 
based on the previous conservative principle. Heuristic 
§3 is based on the intuition that the iteration is divided 
evenly for multiple callees. Notice for the situation in 
heuristic §3, we can also use our conservative principle. 
However, we avoid use of the conservative principle, if 
possible, because the resultant estimation of Costp( n) 
may be an exponential function of n, which, for most 
practical programs, is not correct. 

These heuristics have been derived from experimen­
tation with a number of programs, placing a premium 
on the simplicity of I (n). A partial summary of these 
results is given in Section 6. A remaining goal of future 
research is to further justify these heuristics with larger 
programs, and derive alternatives. 

4.3 An Example: Quicksort 

After we have determined the iteration-parameter func­
tions, we have a system of recurrence equations for cost 
functions. These system of recurrence equations can be 
solved in a bottom-up manner in the modified graph G'. 
The problem of systematically solving these recurrence 
equations in general is discussed in [11]. Here, we con­
sider a complete example for the qsort/2 program given 
in Figure 2. 

The boundary condition for Costqsort (n) is that 
Costqsort(O) is equal to the constant execution cost d1 of 
qsort/2 clause one. The following recurrence equations 
are derived: 

Costqsort(O) 

Costqsort(n) 

With Heuristic §3, we have 

CostC2 = d2 + Costsplit(n) + 2Costqsort(n/2) 

where d2 is the constant cost for the head unification of 
the second clause of qsort/2. 

Similarly, the recurrence equations for Costsplit (n) 
are 

Costsplit(O) 

Cost split ( n ) 

Furthermore, 

Cos t C2 

d3 

(Costc2 + CostcJ/2 

CostC3 

d4 + Costsplit(n -1) 

where d4 is the constant cost for the head unification 
of the second (and the third) clause of spl it. We first 
solve the recurrence equations for split, which is in 
the lower level in G' and and then solve the recurrence 
equations for qsort. This gives us Costsplit(n) = d3 +d4n 
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which can be approximated as d4n and Costqsort(n) = 
d1 + d2 10g n + d4 n log n, which is the well known average 
complexity of qsort. 

Finally, it should be noted that it is necessary to dis­
tinguish between the recursive and nonrecursive clauses 
here and take the average of the recursive clause costs 
as an approximation. If we simply take the summation 
of all clause costs together as the approximation of the 
cost function, both cost functions for split and qsort 
would be exponential, which are not correct. More pre­
cisely, if the summation of all costs of clauses of split 
is taken as Costsplit(n), we will have 

Costsplit(n) = d3 + 2(d4 + Costsplit(n - 1)) 

The solution of Costsplit (n) is an exponential function, 
which is not correct. 

5 Distributing Costs 

So far, we have derived cost functions of the iteration 
parameter for each procedure. However, to know the 
cost of a procedure, we need to first know the value of 
its iteration parameter. This, as pointed out in our in­
troduction, may require too much overhead. We notice 
that, in most scheduling policies (such as on-demand 
scheduling), only relative costs are needed. This can be 
relatively easily achieved in our theory since cost func­
tions only have a single parameter (iteration parameter). 

To derive cost distributing formulae for a given pro­
cedure and its body goals, the first step is to solve for 
the iteration parameter n in Equation 3 assuming that 
Costp(n) is given at runtime as Cpo Assuming that 
clause i is invoked in runtime, we approximate CoStCi (n) 
as Cp and solve Equation 3 for n. Let n = F( Cp ) be the 
symbolic solution, which depends on the runtime value 
of Costp(n) (i.e., Cp ), we can easily derive costs of its 
subgoals of clause i as we can simply substitute n with 
F( Cp ) in CostPim (Iim( n)), which gives rise to the cost 
distributing functions we need to derive at compile time. 

Let's reconsider the nrev/2 procedure. The cost 
equations are derived as follows: 

Costnrev(n) 

Costnrev (0) 

Cost append ( n) 

Costappend(O) 

Costnrev(n - 1) + Costappend(n) 

Cl 

Costappend(n - 1) + Ca 

C2 

We can easily derive the closed forms for these two cost 
functions as Costappend(n) = n x Ca + C2 which can be 
approximated as Ca x n, and Costnrev(n) == Ca X n2 /2. 
Now, given the Costnrev(n) as Cn we solve for nand 

have n = ~. Hence, we have Costnrev (n - 1) = 
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Ca(jWf -.1)2/2 and. C~stap~end(n) = CajWf. These 
are the desIred cost dIstrIbutmg functions. 

It should be pointed out that in some cases it is 
not necessary to first derive the cost functions and then 
derive the cost distributing functions since we can sim­
ply derive the cost distributing scheme directly from the 
cost recurrence equations. For example, consider the Fi­
bonacci function, where the cost equations are 

Cost jib( n) 

Costjib(O) 

Cj + 2 x Costjib(n/2) 

CI 

Without actually deriving the cost functions of Cost jib( n), 
we can simply derive the cost distributing relationship 
from the first equation as Costjib(n/2) = (Costjib(n) -
Cj )/2. 

Also note that at compile time, the cost distribut­
ing functions should be simplified as much as possible 
to reduce the runtime overhead. It is even worthwhile 
sacrificing precision to get a simpler function. There­
fore, a conservative approach should be used to derive 
the upper bound of the cost functions. In fact, we can 
further simplify the cost function derived in the follow­
ing way. If the cost function is of a polynomial form 
such as conk + clnk- l + ... Ck, we simplify it as kconk 
and if the cost function is of several exponential com­
ponents such as Clan + C2bn where b > a, we simplify 
it as (Cl + c2)bn. This will simplify the solution of the 
iteration parameter and the cost distributing function 
and hence simplify the evaluation of them at runtime. 

5.1 Runtime Goal Management 

The above cost relationship estimation is well suited 
for a r~ntime scheduler which adopts an on-demand 
scheduling policy (e.g., [8]), where PEs maintain a lo­
cal queue for active goals and once a PE becomes idle, 
it requests a goal from other PEs. A simple way to 
distribute a goal to a requesting PE is to migrate an 
active goal in the queue. The scheduler should adopt 
a policy to decide which goal is going to be sent. It is 
obvious that the candidate goal should have the maxi­
mal grain size among those goals in the queue. Hence, 
we can use a priority queue where weights of goals are 
their grain sizes (or costs). The priority is that the big­
ger the costs are, the higher priority they get. Because 
the scheduler only needs to know the relative costs, we 
can always assume the weight of the initial goal is some 
fixed, big-enough number. Based on this initial cost and 
the cost distributing formulae derived at compile time, 
every time a new clause is invoked, the scheduler derives 
the relative costs of body goals. The body goals are then 
enqueued into the priority queue based on their costs. 

Some bookkeeping problems arise from this approach. 
First, even though we can simplify the cost distributing 

functions at compile time to some extent, the runtime 
overhead may still be large, since for each procedure 
invocation, the scheduler has to calculate the weights 
of the body goals. One solution to this problem is to 
let the scheduler keep track of a modulo counter and 
when the content of the counter is not zero, the sched­
uler simply lets the costs of the body goals be the same 
as that of their parent. Once the content of the counter 
becomes zero, the cost-distributing functions are used. 
If we can choose an appropriate counting period, this 
method is reasonable (one counter increment has less 
overhead than the evaluation of the cost estimate). 

Another problem in this approach is that for long­
running programs, costs may become negative, i.e., the 
initial weight is not large enough. Since we require only 
relative costs, a solution is to reset all costs (includ­
ing those in the queue, and in suspended goals), when 
some cost becomes too small. Cost resetting requires 
the incremental overhead of testing to determine when 
to reset. 

As stated above, we need to choose the initial cost as 
big as possible. However, this can introduce an anomaly 
for our relative cost scheme. To see this, consider the 
nrev example again. Suppose that the initial query is 
nrev([l, ... ,50J). The correct query cost is approxi­
mately 50 x 50 = 2500. The correct cost of its immediate 
append goal is approximately 49, and the correct cost of 
one of its leaf descendant goals nrev ( [J) is one (the 
head unification cost). If we choose the initial cost as 
a big number, say 106

, then the corresponding iteration 
parameter is 103

• This will give the cost of nrev ( [J ) 
as (103 - 50)2 which is bigger than the estimated cost 
of the initial append goal (only around 103 ). In other 
words, this gives an incorrect relationship between goals 
near the very top and near the very bottom of the proof 
tree. 

For this particular example, the problem could be fi­
nessed by precomputing the "correct" initial value of the 
iteration parameter: exactly equal to the weight of the 
query. However, in general, a correct initial estimation 
is not always possible, and when it is possible, its com­
putation incurs too much overhead. All compile-time 
granularity estimation schemes must make this trade­
off. Fortunately, in our scheme" the problem is not as 
serious as it first appears. For initial goals with suffi­
ciently large cost, our scheme is still able to give correct 
relative cost estimation for sufficiently large goals which 
are not close to leaves of the execution call graph. This 
can be seen in the nrev example, where the relative costs 
among nrev ( [2, ...• 50J through nrev ( [42, ... ,50J ), 
and the initial append are still correct in our scheme. 
Correct estimation for the large goals (those near the 
root of the proof tree) is more important than that for 
small goals (those near the leaves ) because the load bal­
ance of the system is largely dependent on those big 
goals, and so is performance. 



Heuristic Applicable Correct Percentage 
§1 24 21 87.5% 
§2 29 26 89.6% 
§3 4 2 50.0% 
all 32 27 84.7% 

Table 1: Statistics for Benchmark Programs 

Heuristic Applicable Correct Percentage 
§1 64 57 89.1% 
§2 49 55 87.3% 
§3 6 4 66.7% 
all 111 101 91.0% 

Table 2: Statistics for a Compiler Front End 

6 Empirical Results: Justifying the Heuristics 

We applied our three heuristics and the cost estima­
tion formulae to two classes of programs. The first 
class includes nine widely used benchmark programs 
[12], containing 32 procedures. The second class con­
sists of 111 procedures comprising the front-end of the 
Monaco FGHC compiler. The results are summarized 
in Table 1 and Table 2. For each heuristic, the tables 
show the number of procedures for which the heuristic is 
applicable (by the syntactic rules given in Section 4.2), 
and the number for which the heuristic is correctly esti­
mates complexity. The row labeled "all" gives the total 
number of procedures analyzed. Since more than one 
heuristic may be applicable in a single procedure, the 
total number of procedures may be less than the sum of 
the previous rows. 

From the tables, we see that §1 and §2 apply most 
frequently. This indicates that most procedures are lin­
ear recursive (i.e., have a single recursive body goal) 
which can be estimated correctly by our scheme. The 
relatively low percentage of §3 correctness is because the 
benchmarks are biased towards procedures with expo­
nential time compl~xity, whereas §3 usually gives poly­
nomial time complexity. 

Analysis of the benchmarks indicated two major ano­
malies in the heuristics. Although § 1 may apply, a pro­
cedure may distribute a little work (say, the head of a 
list) to one body goal and the rest of the work (say, the 
tail of the list) to another goal. This cannot be captured 
by § 1, which essentially treats the head and tail of the 
list as equal, i.e., a binary tree. A correct cost analysis 
needs to explore the data structures of the program. 

For recursive procedures, §3 can capture only the 
fixed-degree divide & conquer programming paradigm. 
However, the compiler benchmark contained procedures 
which recursively traverse a list (or vector) and the de­
gree of the divide & conquer dynamically depends on the 
number of top-level elements in the list (or vector). In 
this situation, the procedure may have to loop on the top 
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level while recursively traversing down for each element 
(which may be tree structures). Again, this presents in­
herent difficulty for our scheme because we take the call 
graph as the sole input information for the program to 
be analyzed. 

To summarize, our statistics show that our scheme 
achieves a fairly high percentage. of correct estimation. 
However, we need to apply multiply-recursive heuristics 
§2 and §3 with more finesse. Further quantitative perfor­
mance studies of the algorithm's utility are presented in 
Tick and Zhong [11]. Those multiprocessor simulation 
results quantify the advantage of dynamically schedul­
ing tasks with the granularity information. 

7 Conclusions and Future Work 

We have proposed a new method to estimate the relative 
costs of procedure execution for a concurrent language. 
The method is similar to Tick's static scheme [10], but 
gives a more accurate estimation and reflects runtime 
wei,l!;ht chan,l!;es. This is achieved bv the introduction 
of an iteration parameter which is used to model recur-
SIons. 

Our method is based on the idea that it is not the 
absolute cost, but rather the relative cost that matters 
for an on-demand goal scheduling policy. Our method 
is also amenable to implementation. First, our method 
can be applied to any program. Second, the resultant 
recurrence equations can be solved systematically. In 
comparison, it is ·unclear how to fully mechanically im­
plement the schemes proposed in [2, 4]. Nonetheless, 
our method may result in an inaccurate estimation for 
some cases. This is because we use only the call graph to 
model the program structure, not the data. We admit 
that further static analysis of program structure such as 
argument-size relationships can give more precise esti­
mations. 

Future work in granularity analysis includes the de­
velopment of a more systematic and precise method to 
solve the derived recurrence equations. It is also nec­
essary to examine this method for more practical pro­
grams, performing benchmark testing on a multiproces­
sor to show the utility of the method. 
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nrev([HIT],R) :- nrev(T,R1), append(R1,[H],R). 

append([],L,A) ;- A=L. 
append ( [H I T] ,L,A) : - A= [H I A1], append(T ,L ,A1) ·back to nrev 

back to append 

Figure 1: Naive Reverse and its Call Graph 

qsort([], S) :- S=[]. 
qsort([MIT],S) :­

split(T,M,S,L), 
qsort(S,SS), 
qsort(L,LS), 
append(SS,LS,S). 

spli t ( [] , M, s, L) : - S= [], L= [] . 
split([HIT],M,S,L) :- H < M I 

S=[HITS] , split(T,M,TS,L). 
split([HIT],M,S,L) :- H >= M I 

L=[HITL], split(T,M,S,TL). 

back to split 

back to qsort 

Figure 2: Quick Sort: FGHC Source Code and the AND/OR Call Graph 
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Abstract 

Programs operating on inductively defined data struc­
tures, such as lists, are naturally defined by recursive 
programs. Millroth has recently shown how many such 
programs can be transformed or compiled to iterative 
programs operating on arrays. The transformed pro­
grams can be run more efficiently than the original pro­
grams, particularly on parallel computers. 

The paper proposes the introduction of 'bounded 
quantifications' in logic programming languages. These 
formulas offer a natural way to express programs oper­
ating on arrays and other 'indexable' data structures. 
'Bounded quantifications' are similar to 'array compre­
hensions' in functional languages such as Haskell. They 
are inherently concurrent and can be run efficiently on 
sequential computers as well as on various classes of par­
allel computers. 

1 PROCESSING DATA STRUCTURES 

There are two principal ways of building a data structure 
in a logic program. 

AI. Use a recursive relation which defines explicitly the 
contents of a finite part of the data structure and 
then uses itself recursively to define the rest of the 
data structure. 

BI. Express directly the contents of each element of the 
data structure, preferrably through an 'indexing' of 
the elements of the data structure. 

Correspondingly there are two principal ways of travers­
ing a data structure in a logic program. 

A2. Use a recursive relation which examines explicitly 
the contents of a finite part of the data structure 
and then uses itself recursively to traverse the rest 
of the data structure. 

B2. Access directly the contents of each element of the 
data structure, preferrably through an 'indexing' of 
the elements of the data structure. 

(There is, of course, an obvious duality between these 
operations. ) 

Method A is often natural when one uses induc­
tively defined data structures, including lists, trees, etc. 
Method B is often natural when one uses data structures 
whose elements can be indexed. Some data structures, 
most importantly lists, fall in both categories and which 
method is most natural depends on the context. 

2 RECURSION 

We can broadly classify recursive programs in 'conjunc­
tive' and 'disjunctive' programs (some are a mixture). 
The former category use recursion to compute a con­
junction, like the following lessall program. l 

lessall(A, [BIXD f- A < B 1\ lessall(A, X). 
lessall(A, [D. 

A formula lessall(A, [Bt, B2, . .. ,BnD reduces to the fi­
nite conjunction 

A < BI 1\ A < B2 1\ ... 1\ A < Bn 

which could be expressed more briefly as 

Vi{l :::; i :::; n -+ A < Bd. 

This reduction can be performed at compile time, ex­
cept that the value of n is the length of the list actually 
supplied to the program. Such a program can be run 
efficiently as an iteration on a sequential computer. 

The latter category uses recursion to compute a dis­
junction, for example the member program. 

member(A, [BIXD f- A = B. 
member(A, [BIX]) f- member(A, X). 

A formula member(A, [BI, B2, ... , BnD reduces to the fi­
nite disjunction 

A = BI V A = B2 V ... V A = Bn 

lOur language consists (initially) of clauses whose bodies may 
contain comj unctions , disjunctions and negations. We assume 
"Herbrand" equality except for arithmetic expressions and array 
elements. All examples can be easily translated into Prolog or 
Godel (Hill & Lloyd, 1991). 
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which could, in turn, be expressed more briefly as 

3i{1 ~ i ~ n /\ A = Bd 

which can, similarly, be run efficiently. Millroth's com­
pilation method (1990, 1991), based on Tarnlund's Re­
form inference system (1992) transforms 'conjunctive' 
and 'disjunctive' recursive programs to the iterative pro­
grams above. 

2.1 Concurrency 

The conjunction, or disjunction, in a logic program can 
be interpreted as a concurrent operator, as in AND­
parallel and OR-parallel logic programming systems. 
This does not yield sufficient concurrency for running re­
cursive programs efficiently on parallel computers. Even 
using a concurrent connective, work is only initiated on 
one 'recursion level' in each step. This implies a linear 
run time which can be approximated by an expression 
An + B (where A is the overhead for each recursion level, 
n is the recursion depth and B is the time spent in each 
recursion level). The number of literals in a recursive 
clause is typically much smaller than the depth of the 
recursion. For recursive programs with simple bodies, 
such as lessall or member, the An term will always dom­
inate Only for small recursion depths and complex bodies 
will the B term be significant. 

Recursive programs transformed by Millroth's method 
have a much larger potential to run efficiently on parallel 
computers. The iterative programs can be run in parallel 
on n processors unless prohibited by data dependencies 
etc. Techniques for parallelizing this kind of iterations 
have been developed for, and applied to, FORTRAN pro­
grams for some time. 

3 EXPLICIT QUANTIFICATION 
It is possible to build arrays and other indexable data 
structures, or express relations over them using recursive 
programs. It is often more natural to use a universal or 
existential quantification over the members of the data 
structure. 

We may express the lessall relation over arrays as 

lessall( A, X) f- 'v' B'v' I {X[IJ = B -+ A < B}, 

provided that the the value of the expression X[IJ is the 
I th element of the array X. 

We may express reversal of the elements in an array: 

reverse(X1,XZ) f-

size( 0, Xl, L) /\ size( 0, X z , L) /\ 
'v'A'v'I{XdIJ = A -+ Xz[L - 1- 1J = A}. 

(Our notation assumes that the expression L - I - 1 is 
evaluated and replaced by its value. We also assume that 
array indices are zero based. Finally, we let size(D, X, S) 
express that the size of the array X in dimension D is 
S.) 

We may express one generation of Conway's game of 
Life: 

step( Gl , Gz) f-

size(O, Gt, So) /\ size(O, Q, So) /\ size(O, G2 , So) /\ 
size(l, Gl , SI) /\ size(l, Q, Sl) /\ size(l, Gz, SI) /\ 
'v'I'v'J{Q[I,JJ = GIll -1 mod So,J -1 mod SIJ + 

GIll -1 mod So,JJ + 
GIll -1 mod So,J + 1 mod SIJ + 
Gl [I, J -1 mod SIJ + 
GIlI,J + 1 mod Stl + 
GdI + 1 mod So,J -1 mod SIJ + 
GIll + 1 mod So,J] + 
Gl [I + 1 mod So, J + 1 mod SIJ -+ 

(Q[I, JJ < 2/\ Gz[I, J] = 0 V 
Q [I, JJ = 2 /\ Gz [I, J] = 1 V 
Q [I, J] = 3 /\ Gz [I, J] = 1 V 
Q [I, J] > 3 /\ Gz [I, J] = O)}. 

We can also present a simple example of the use of 
explicit existential quantifiers. The problem is to find 
the position I in a array X of some element which is 
smaller than a given value A. 

small(I, X, A) f- 3J {X[J] = B -+ B < A /\ J = I}. 

In all these examples we have quantified over the ele­
ments of an indexable data structure. There are other 
useful relations which can be expressed naturally in this 
way, and run efficiently. Specifically we want to include 
all quantifications over the elements of a finite set, whose 
members are 'obvious'. Below we will be somewhat more 
precise what this means. 

4 BOUNDED QUANTIFICATION 

Consider those universally quantified formulas which are 
instances of the schema 

'v'x{8[xJ --+ <I>[x]} 

where 8 is a formula which is "obviously" true for 
only a finite number of values of x, denoted by, say, 
{ Co, Cl, ... , Ck-l}. In this case the quantification is clearly 
equivalent to the finite conjunction 

(8[eo] --+ <I> [co]) /\ 
(8[elJ --+ <I>[CI]) /\ ... /\ 

(8[Ck-l] --+ <I>[Ck-l]) 

which is, by the definition of 8, equivalent to 

Similarly, a formula which is an instance of the schema 
3x{8 [xJ/\<I> [x]} is under the same assumptions equivalent 
to 

We propose to 

1. identify a set of formulas which always are true for 
only a finite number of objects, we call them range 
formulas, 



2. make a system which recognizes those instances of 
the schema above where 8 is a range-formula, we 
call them bounded quantifications, and 

3. interpret bounded quantifications concurrently. The 
conjuncts obtained from a bounded quantification 
may be run in any order, even simultaneously, pro­
vided that any data dapendencies (arising, e.g., from 
numerical expressions) are satisfied. 

Since a range formula is required to hold for a finite num­
ber of objects, it is possible to enumerate them (as we 
have indeed done above with {co, Cl, ... , Ck-l} ). It will 
become apparent from examples below that it is very 
useful to have range formulas relate each object with a 
unique integer in {a, 1, ... , k - I}. 

In the following sections we will first identify a few use­
ful range formulas and then show how to run bounded 
quantifications efficiently on sequential and parallel com­
puters. 

5 RANGE FORMULAS 

The following is an incomplete set of interesting range 
formulas. 

5.1 Array and "structure" elements 

As we have seen, it is useful to quantify over all elements 
of a data structure. In an array, each element is associ­
ated with a unique integer in the range, say, {a, 1, ... ,n}. 
We could, for example let XlI] = E (where X is an ar­
ray, I is a variable and E is a term) be a range formula 
and the lessall and reverse programs above are examples 
of its use. It may be difficult to write a compiler which 
recognizes precisely this use of an equality as a range 
formula. One solution would be to predefine, say, the 
predicate symbol eIt by 

elt(I, X, E) f- XlI] = E. 

and only recognize predications on the form elt(·,·,·) as 
range formulas. 

5.2 Integer ranges 

An obviously useful range formula would be one which 
is true for the first k integers ([0, k - 1]). Again, the 
formula ° :::; X /\ X < K expresses exactly that relation, 
but for practical reasons it may be wise to define the 
binary predication cardinal(X, K) to stand for the binary 
relation which is true whenever ° :::; X < K. Note that 
the enumeration in this case coincides with the objects 
themselves. 

Note, moreover, that it is trivial to obtain a range 
formula which is true for all integers in an arbitrary range 
[I, J] using the binary cardinal predicate. 
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5.3 Enumerable types 

A logic programming language with types is likely to 
contain "enumerable" types, for example, finite sets of 
distinct constants. One may wish to consider any predi­
cation, whose predicate symbol coincides with the name 
of such a type, a range relation. For example, suppose 
that colour is a type with the elements spades, hearts, 
clubs, and diamonds (in that order). Then colour(I, X) 
is a range formula which is true if and only if I is ° and 
X is spades, I is 1 and X is hearts, I is 2 and X is clubs, 
or I is 3 and X is diamonds. 

Note that in this view an enumerable type of K ele­
ments is isomorphic with the integer range [0, K - 1], so 
it does not really add anything to the language as such. 2 

5.4 List elements and list suffixes 

Lists are usually operated upon by recursively defined 
programs. Still, there are occasionally reasons for ex­
pressing programs through bounded quantifications. We 
propose two range formulas involving lists. The first as­
sociates every element of some list with its (zero-based) 
position in the list. The second enumerates every (not 
necessarily proper) suffix of some list (with the list itself 
being suffix 0). We propose to recognize the predication 
member(I, L, X) as a range formula which is true if and 
only if X is the Ith element of the list L. 

The predication suffix(I, L, X) is a range formula 
which is true if and only if X is the I th suffix of the 
list L. Note that if the length of L is K and [] denotes 
an empty list, then suffix(O, L, L) and suffix(I(, L, []) are 
true formulas. (Since Prolog has no occur check, a pro­
grammer in that language could apply these predicates 
to cyclic "terms". We leave the behaviour in such a case 
undefined. ) 

5.5 Finite sets 

Given that finite sets are provided as a data structure it 
would make sense to have range formulas for sets (e.g., 
membership), as has been suggested by Omodeo (per­
sonal communication). This is an interesting proposal, 
but is is difficult to represent arbitrary sets efficiently in 
a way that allows the elements to be enumerated. Multi­
sets (bags) are easier to implement, but these are, on the 
other hand, quite similar to lists, except that the order 
in which elements occur is irrelevant. 

6 SEQUENTIAL ITERATION 

Consider a bounded quantification \f x {8 [x] ---+ <.P [x]}, 
such that 8[x] is true when (and only when) the value of 
x is one of {CO,Cl, ... ,Ck-d. We may run the conjuncts 
<.P[ca] /\ <.P[Cl] /\ ... /\ <I>[ck-d in any order, provided that 
any data dependencies are satisfied. 

2They do, however, seem to make programs easier to under­
stand and debug. 
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We consider now a bounded quantification without 
dependencies. Running it on a sequential computer is 
straightforward: translate the quantified formula into 
an iteration which evaluates, in sequence, the formulas 
cI>[co], cI>[Cl], ... , cI>[Ck-l]. 

Since the compiler knows in advance about the possi­
ble range formulas, it may generate specialized code for 
each kind of range formula. For example, if the range 
formula 8[x] is member(I, X, L) then we can illustrate 
the resulting code as 

allocate_environment; 
y = deref(l); 
while Cy != NIL) 
{ 

} 

x = deref(y->head); 
code for cI>[x]; 
y = deref(y->tail); 

deallocate_environment; 

using a C-style notation. (Note that we ignore the enu­
meration of the list elements in this example.) Assum­
ing that the implementation is based on WAM (Warren, 
1983) the "code for cI>[x]" may introduce choice points 
(and thus be unable to deallocate environments) if there 
are alternative solutions for cI>[x1. 

In the important case that the proof for cI>[x] is de­
terministic, every pass through the loop will begin in 
the same environment. This is more efficient than the 
corresponding recursive computation in Prolog (under 
WAM) which will allocate and deallocate an environ­
ment for each recursive call. Most implementations will 
also refer to the symbol table when making the recursive 
call. That is somewhat less efficient than the (condi­
tional) jump performed at the end of a loop. We predict 
that together these improvements will result in substan­
tial savings, particularly when proofs are deterministic, 
the bodies of recursive clauses are small and recursion is 
deep. Meier also notes these advantages when compiling 
some recursive programs as iterations (1991). 

7 PARALLEL ITERATION 

On sequential computers bounded quantification, when 
at all appropriate, is likely to offer significant improve­
ments over the corresponding recursive programs, run 
in the usual way. The potential speed-ups on parallel 
computers are still more dramatic. 

Consider the conjunction 

obtained from a bounded quantification Vx{8[x] -+ 

cI>[x]}. Since we may run the conjuncts in any order, we 
may also run them all in parallel (similarly for disjunc­
tions), provided that we add synchronization to satisfy 
dependencies. 

7.1 Running deterministic programs 

There are several methods for running deterministic it­
erations in parallel; these ideas have successfully applied 
to FORTRAN programs for a long time. The following 
is one of the simplest. If there are k processors, num­
bered from 0 to k - 1, simply let processor i evaluate 
cI>[Ci], for each i, 0 ::; i < k. If there are fewer than k 
processors, say k' processors, simulate k processors by 
letting processor i evaluate cI>[Cj], for each j, 1 ::; j < k, 
such that j modulo k' is i. If the computation of each 
cI>[Ci] is deterministic, then this is quite straightforward. 

7.2 Running nondeterministic programs 

Suppose that the formula cI> is such that there is a choice 
of two or more potential proofs for some conjunct cI>[Ci]. 
If no two conjuncts cI>[Ci] and cI>[Cj]' i #- j, share any 
variables, then we have independent parallelism in which 
backtracking is 'local' and easily implemented, cf., e.g., 
DeGroot (1984). 

This is a special case of the more general situation in 
which one can compute the variable assignments satisfy­
ing each conjunct independently of each other. For ex­
ample, the conjuncts may share a variable, whose value 
at runtime is an array, and only access distinct elements 
of it. In general it is not possible to verify this condition 
statically so some run time tests will be necessary. 

Consider the other case: that the free variables of 
conjuncts interact in such a way that it is not possi­
ble to compute variable assignments independently for 
each conjunct. In that case the corresponding recursive 
program, if run in the usual way using depth-first search 
of the proof tree, has to perform deep backtracking to 
earlier recursion levels. When investigating this class of 
programs we have noted that they occur surprisingly in­
frequently. Running such programs often leads to a com­
binatorial explosion of potential proofs which is only fea­
sible when backtracking over a few recursion levels. The 
programs also do not behave nicely when running on, 
e.g., WAM. They tend to consume stack space rapidly 
if choice information prevents environments from being 
deallocated. 

The problem of simultaneously finding variable assign­
ments for a set of non-independent and non-deterministic 
conjuncts is also very difficult. Earlier research on back­
tracking in AND-parallel logic programming systems by, 
e.g., Conery (1987) confirms this claim. 

Our current position is therefore to refuse to run in 
parallel any bounded quantification for which we can­
not show statically, or at least with simple run time 
tests, that the conjuncts are independent. In the con­
text of AND-parallel logic programming systems, De­
Groot among others have investigated appropriate run 
time tests for independency. Note that the overhead for 
such tests is lower in our context. One test (say, for de­
termining whether a free variable in a bounded quantifi­
cation is instantiated at run time) is sufficient for starting 



arbitrarily many independent computations. 
By applying these requirements also when running 

bounded quantifications on sequential processors it is 
guaranteed that the stack size when starting the proof 
of each conjunct will be constant. 

8 SIMD AND MIMD PARALLEL COMPUTERS 

We believe that bounded quantifications will run effi­
ciently on both SIMD and MIMD parallel computers. 
When the bodies of bounded quantifications are simple 
and no backtracking is needed inside them, the capabil­
ities of SIMD parallel computers are sufficient. It seems 
that most programs belong, or can be made to belong, 
to this class. 

For those programs which do more complicated pro­
cessing in the bodies of bounded quantifications, e.g., 
backtracking, not all processors of a SIMD parallel com­
puter will be active simultaneously. This will reduce the 
efficiency of such a computer, while it may still be pos­
sible to fully utilize a MIMD parallel computer. 

9 OTHER OPERATIONS 

We think it is also beneficial to predefine certain useful 
operations, such as reductions and 'scans' over lists and 
arrays. Such operations will make it easy to eliminate 
many parallelization problems with variables shared be­
tween conjuncts in bounded universal quantifications. 

For example, this is a program which computes the 
inner product S of two arrays X and Y. 

i_p(X, Y, S) f-

size(O, X, Z) /\ size(O, Y, Z) /\ size(O, T, Z) /\ 
VIVQ{Y[I] = Q --+ T[I] = XlI] x Q} /\ 
reduce( +, T, S). 

The arrays X, Y and T are shared between all conjuncts 
but they all access distinct elements of the arrays. (The 
variable Q was only introduced to maintain the standard 
form of bounded quantifications. It seems convenient 
and possible to relax, the syntax to recognize expressions 
such as VI {T[I] = XlI] x Y[I]} as bounded quantifica­
tions, which is certainly even more elegant. 

Sometimes the partial sums are also needed in the 
computation. In this case it is useful to compute a 'scan' 
with plus over an array. The result is an array of the 
same length but where each element contains the sum of 
all preceding elements in the first array. 

10 FURTHER EXAMPLES 

We now turn to a few more examples written using 
bounded quantifications. In the authors' opinion these 
formulas express at a high level the essentials of the al­
gorithms they implement. In some cases they contain 
formulas reminiscent of what would be (informally ex­
pressed) loop invariants when programming in another 
language. 
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10.1 Factorial 

The following program computes the factorial of N. The 
program shows the use of the cardinal range formula. 

factorial( N, F) f­

size(O, T, N) /\ 
V I {cardinal(I, N) --+ T[I] = I + 1} /\ 
reduce( x, T, F). 

10.2 Fibonacci 

The following program computes the Nth Fibonacci 
number. The program is remarkable in being both simple 
and efficient, since it does not recompute any Fibonacci 
numbers. Similar effects have been accomplished using 
'memo' relations and 'bottom-up' resolution, etc., but 
this solution appears both simple, elegant and semanti­
cally impeccable. 

fibonacci( N, F) f­

size(O, T, N + 1) /\ 
V I { cardinal( I, N) --+ 

I = ° /\ T [1] = 1 V 
I = 1 /\ T [1] = 1 V 
1 > 1 /\ T [I] = T [I - 1] + T [I - 2]} /\ 

F = T[N -1]. 

10.3 Finding roots in oriented forests 

Suppose that the array P represents an oriented tree. 3 

Each element of P contains the index of the parent of 
some node; roots contain their own index. The follow­
ing program returns a new array in which each element 
points immediately to the root of its forest. This is an 
example of a parallel-prefix algorithm and it also illus­
trates how bounded quantifications and recursion can be 
used together. 

find(P,P) f- VI{P[I] = P[I] --+ P[I] = P[P[I]]}. 
find(Po, P) f-

VIVJ{Po[I] = J --+ (J = Po[J]/\ PdI] = JV 
J i= Po [J]/\ PI [I] = Po [ J] )} /\ 

10.4 Matrix transposition 

The following little program transposes a matrix. 

trans(MI, M2 ) f-

size(O, MI, A) /\ size(1, Ml, B) /\ 
size(O, M2 , B) /\ size(1, M2 , A) /\ 
VIVJVQ{MI[I, J] = Q --+ M 2 [J, I] = Q}. 

3Recall that an oriented tree is a "directed graph with a spec­
ified node R such that: each node N # R is the initial node of 
exactly on arc; R is the initial node of no arc; R is a root in the 
sense that for each node N # R there is an oriented path from N 
to R" (Knuth, 1968). 
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10.5 Numerical integration 

The following program computes an approximation to 
the integral 

l bf
(x)dx 

using Simpson's method (a quadrature method). In the 
program below we let A and B be the limits, N the 
number of intervals and I the resulting approximation of 
the integral. We assume that the relation r(X, Y) holds 
if and only if f(X) = Y, where f is the function being 
integrated. 

intsimp( A, B, N, I) f­

W = (B - A)/N /\ 
size(O, G, 2 x N + 1) /\ size(O, Z, N) /\ 
VIVY{G[I] = Y -+ r(A + I x W/2, Y)} /\ 
VIVS{Z[I] = S-+ 

S = W x (G[2 x I] + 

reduce( +, Z, I). 

4 x G[2 x I + 1] + 
G[2 x I + 2))/6} /\ 

The array G is set up to contain the 2 x N + 1 values 
f(a), f(a + w/2), f(a + w), ... , f(b - w), f(b - w/2), 
f(b). These values are used to compute the area for each 
of the intervals, stored in Z. Finally the sum of the areas 
is computed. 

10.6 Linear regression 

This is an example of a more involved numeric computa­
tion, adopted from Press et al. (1989). The problem is to 
fit a set of n data points (Xi, Vi)' ° :s; i < n, to a straight 
line defined by the equation Y = A + Bx. We assume 
that the uncertainty O'i associated with each item Yi is 
known, and that all Xi (values of the dependent variable) 
are known exactly. 

Let us first define the following sums. 

S - ",n-l 1 
- L....i=O ~ 

S - ",n-l Ei.. 
x - L....i=O (T~ 

The coefficients A and B of the equation above can now 
be computed as 

The following program computes A and B from three 
arrays X, Y and U. 

linear_regression(X, Y, U, A, B) f-

size(O, X, N) /\ size(O, Y, N) /\ size(O, U, N) /\ 
size(O, Z, N) /\ size(O, Zx, N) /\ size(O, Zy, N) /\ 
size(O, Zxx, N) /\ size(O, Zxy, N) /\ 

V I { cardinal(I, N) -+ 

Z[I] = 1/(U[I] x Uri)) /\ 
Zx[I] = X[I]/(U[I] x Uri]) /\ 
Zy[I] = Y[I]/(U[I] x Uri)) /\ 
Zxx[I] = (X[I] x X[I))/(U[I] x Uri)) /\ 
Zxy[I] = (X[I] x Y[I))/(U[I] x Uri))} /\ 

reduce( +, Z, S) /\ 
reduce( +, Zx, Sx) /\ reduce( +, Zy, Sy) /\ 
reduce( +, Zxx, Sxx) /\ reduce( +, Zxy, Sxy) /\ 
Delta = S x Sxx - Sx x Sx /\ 
A = (Sxx x Sy - Sx x Sxy)/ Delta /\ 
B = (S x Sxy - Sx x Sy)/ Delta. 

It is obvious that this program can be run in O(1og n) 
time using n processors, dominated by the reductions. 
The bounded quantification which computes the inter­
mediate arrays Z, Zx, Zy, Zxx and Zxy runs in constant 
time using n processors. 

11 LIST EXAMPLES 

The following two examples are present simply to show 
that it is possible to express also list algorithms us­
ing bounded quantifications, although the recursive pro­
grams are usually more elegant. 

11.1 Lessall 

The lessall program for lists is of course very similar to 
the array program (this makes it easy to change the data 
structure) . 

lessall(A, L) f- V BV I {member{I, L, B) -+ A < B}. 

11.2 Partition 

The partition program, finally, is an example of a pro­
gram which is much clearer when expressed recursively. 
We intend that partition(X, A, L, H) be true if and only 
if L contains exactly those of elements of X which are 
less than or equal to A, and H contains exactly those 
which are greater than A. The partition predicate is 
usually part of an implementation of Hoare's Quicksort 
algorithm. Here is the recursive program: 

partition( [], A, [], []). 
partition([BIX]' A, L, [BIH)) f-

A :s; B /\ partition(X, A, L, H). 
partition([BIX], A, [BIL], H) f­

A> B /\ partition(X, A, L, H). 

In the following program which uses bounded quantifi­
cations, we have tried to keep some of the structure of 
the recursive program. 

partition(X, A, L, H) f-

VFxVZVI{suffiai...I,X, Fx) -+ 

member(I,SL,L) /\ 
member(I, SH, H) /\ 
part(Fx,L,H,A,SL,SH)} /\ 



member(l, SL, L) /\ member(l, SH, H). 
part([] , [], [], A, SL, SH). 
part([BIX]' L, H, A, SL, SH) f­

J=I+1/\ 
member(J, SL, Ld /\ member(J, SH, HI) /\ 

(A ::; B /\ L = LI /\ H = [BIHI ] V 
A> B /\ L = [BILl] /\ H = Hd. 

The program computes two lists of lists SL and SH which 
are scans of partitions on X, picking out those elements 
which are less than or greater than A, respectively. 

12 NESTED BOUNDED QUANTIFICATIONS 
Consider a bounded quantification whose body is an­
other bounded quantification: 

Provided that 8dx] is true for any x in {co, Cll ... ,ck-d, 
and that similarly 8 2 [y] is true for any y in {do, dl , ... , 

dl-d, the nested bounded quantification is equivalent to 
the k x R element conjunction 

<l>[Co, do] 
/\ <l>[CI' do] 

/\ <l>[co, dl ] 
/\ <l>[CI, dl ] 

/\ . . . /\ <l>[co, dl - l ] 

/\ ... /\ <l>[CI' dl - l ] 

As before, provided that all data dependencies are satis­
fied, all these conjuncts can be run simultaneously. 

13 TOLERATING DEPENDENCIES 
In all examples shown above the computations of the 
conjuncts obtained from a bounded quantification have 
been independent. Therefore the conjuncts could be 
computed in any order, for example in parallel. 

There are interesting computations where the result­
ing conjuncts are dependent. Consider, for example, the 
following program (adapted from a program by Ander­
son & Hudak [1990]) which defines an n x n matrix A 
through a recurrence. 

rec(A) f-

size(O, A, N) /\ size(l, A, N) /\ 
VIVJ{A[I,J] = X -7 

I=l/\X=lV 
I>l/\J=l/\X=lV 
I>l/\J>l/\ 
X = A[ I - 1, J] + 

A[I -1, J - 1] + 
A[I, J -I]}. 

This program requires a co-routining implementation of 
bounded quantification to run on a sequential computer 
or synchronization to run on a parallel computer. We are 
currently investigating whether automatic generation of 
synchronization/ co-routining code is sufficient or if the 
programmer should be allowed to annotate the program, 
for example, through read-only variables (Shapiro, 1983). 
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14 RELATED WORK 

We noted above that M. Meier has suggested (1991) how 
to compile some tail recursive (conjunctive as well as 
disjunctive) programs to iterative programs on top of 
WAM. 

Several authors, e.g., Lloyd & Topor (1984) and Sato 
& Tamaki (1989), have discussed methods for running 
logic programs with arbitrary formulas in bodies. Our 
method only covers a limited extension of Horn clauses. 

14.1 Array Comprehensions 

It is obvious that there are similarities between arrays 
and bounded quantifications on one side, and the array 
comprehensions proposed for the Haskell language (Hu­
dak & Wadler, 1990) on the other. Both concepts aim 
to express the contents of an array, or the relationship 
between several arrays, declaratively. 

It appears to us, as with most functional programming 
language concepts, that when they are at all appropriate 
they offer a more compact and occasionally more ele­
gant notation. For example, the factorial program above 
could have been expressed more easily if an expression 
describing the temporary array T could have been writ­
ten immediately. 

However, when the relationship between the elements 
of more than one array are to be described, the bounded 
quantifications appear to be more comprehensive. 

Array comprehensions are, in general, evaluated by 
lazy computation. This can be thought of as a degener­
ated form of concurrency which suspends part of a com­
putation until it is known that it must be performed. 
We do not think lazy computation is necessary, provided 
unification with the "logical variable" and a more general 
form of concurrency. 

Futures (Halstead, 1985) are yet another way of giving 
names for values which are yet' to be fully computed. 

14.2 Nova Prolog 

The ideas presented above originated as a generaliza­
tion of the language Nova Prolog (Barklund & Millroth, 
1988).4 Here, however, it is appropriate to present Nova 
Prolog as a language embodying a subset of bounded 
quantifications. The subset is chosen to obtain a lan­
guage tailored specifically for massively parallel SIMD 
computers, such as the Connection Machine. More 
specifically, we assume that we can store some data struc­
tures in such a way that processor i has particularly ef­
ficient access to the ith element of each data structure. 
We say that those data structures are distributed. 

4Nova Prolog relates to Prolog in much the same way as *LISP 
(by Thinking Machines Corp.) relates to Common LISP and C* 
(also by Thinking Machines Corp.) to C. That is, it is a sequential 
programming langauge extended with a distributed data structure 
and a control structure for expressing computations over each ele­
ment on the data structure. 
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We currently limit the distributed data structures to 
be compound terms; in fact only those compund terms 
whose function symbol is pterm and whose arity is some 
fixed value. We shall call them 'pterms.' (This is to help 
a compiler distinguish distributed data structures from 
other compound terms.) 

Since pterms are the only distributed data structures 
and they are compound terms, the only range formula we 
need is arg( i, t, x). 5 We have chosen a syntax for bounded 
quantifications which makes it possible to combine the 
range formula with the quantification of variables. In 
N ova Prolog a formula 

where T is a pterm, is called a 'parall' and has the same 
meaning as the bounded quantification 

Y IYAN A z· .. YAn( a rg(I , T I , AI) ~ 
arg(I, Tz, Az) 1\ ... 1\ 

arg(I, Tn, An) 1\ <1>[1]), 

namely that <1> is true for every corresponding element 
Ai of Ti , 1 :::; i :::; n. We can see that in Nova Prolog 
the 'index' I is implicit and is denoted by the constant 
symbol self in the body <1>. 

All examples above for array computations can' be 
translated into Nova Prolog. vVe have recently imple­
mented parts of Nova Prolog in *LISP (Blanck, 1991). 

15 CONCLUSION AND FUTURE WORK 

We have defined bounded quantifications, a new con­
struct for logic programming languages. We have dis­
cussed how they can be efficiently implemented on se­
quential and parallel computers. They offer clarity as 
well as efficiency and we propose that language designers 
and implementors consider including them in implemen­
tations of, e.g., Prolog, Godel and KLl. 

A natural continuation of this work is to verify ex­
perimentally that bounded quantifications can be im­
plemented efficiently in sequential and concurrent lan­
guages, and on sequential and parallel computers. It 
is also important to investigate how data dependencies 
and other synchronization considerations can be han­
dled, when bounded quantifications are interpreted con­
currently. 
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Abstract 

For representing high level knowledge, such as the math~ 
ematical knowledge used in interactive theorem provers 
and verification systems, it is desirable to extend Prolog's 
concept of data object. A basic reason is that Prolog 
data objects-Herbrand objects-are terms of a minimal 
object language, which does not include its own object 
variables, or quantification over those variables. 

Qu-Prolog (Quantifier Prolog) is an extended logic 
programming concept which takes as its data objects, 
object terms which may include free or bound occur­
rences of object variables and arbitrary quantifiers to 
bind those variables. Qu-Prolog is unique in allowing its 
data objects to include free occurrences of object vari­
ables. 

In this paper the design of the abstract machine for 
Qu-Prolog is given. The underlying design of the ma­
chine reflects the extended data objects and Qu-Prolog's 
unification algorithm. 

1 Introduction 

The extended logic programming language Qu-Prolog 
(Quantifier Prolog) [Cheng et ai. 1991, Paterson and 
Hazel 1990, Paterson and Staples 1988, Staples et 
al. 1988a, Staples et ai. 1988b] has been designed to pro­
vide improved support for language processing applica­
tions such as interactive proof systems. Its main feature 
is that it supports higher level symbolic data types than 
does Prolog. In particular, the data objects which Qu­
Prolog reasons about are terms of a full first order logic 
syntax, which includes both object level variables and 
arbitrary bindings of object level variables. 

The language >.Prolog [Miller and N adathur 1986], 
which extends Prolog with typed lambda-terms, may 
also be used for these purposes. Qu-Prolog is weaker, 
in that its terms correspond to second-order lambda­
terms; substitution is provided, but not application of 
terms to terms. However, in Qu-Prolog, as in traditional 
notation, term variables may refer to open terms, raising 
further questions of whether an object level variable oc-
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t present address: Department of Computing, Imperial College, 
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curs free in a term, or whether two object level variables 
are distinct. 

The Qu-Prolog Abstract Machine (QuAM) [Cheng 
and Paterson 1990] is designed as the target for com­
pilation of the logic programming language Qu-Prolog. 
QuAM is developed from the Warren Abstract Ma­
chine (WAM). New mechanisms are introduced to handle 
quantified terms and substitutions and flexible program­
ming in Qu-Prolog. This paper presents the basic struc­
ture of the language and describes its implementation. 

The main features of Qu-Prolog are described in sec­
tion 2. In section 3, unification is extended to Qu-Prolog 
terms. The design of QuAM is given in section 4. Some 
examples are given in section 5. It is assumed that the 
reader has some knowledge of the design of WAM [Alt­
Kaci 1990, Warren 1983] and the compilation of logic 
programming languages. 

2 Qu-Prolog - the Language 

Qu-Prolog has Prolog as a subset, and uses Edinburgh 
Prolog syntax for constants and structures, and for ordi­
nary variables which are intended to range over arbitrary 
object level terms. These variables will be referred to as 
meta variables, in recognition of the meta level status of 
the Qu-Prolog language relative to the object language. 
In addition, Qu-Prolog introduces syntax to represent 
object level variables and quantifiers, as follows. 

Qu-Prolog has other features not described here. 
These include persistent variables, which are used to 
manage incomplete information in the database. For a 
description of persistent variables and their implementa­
tion, see [Cheng and Robinson 1991]. 

2.1 Object Variables 

Since object level variables are simply part of the object 
level syntax, it might seem natural to name them at the 
Qu-Prolog (meta) level by constants. Instead, Qu-Prolog 
refers to object level variables only by a type of Qu­
Prolog (~eta) level variable, called object-var variables. 
The semantics of object-var variables is that they range 
over object level variables. The success of this approach 
reflects the common intuition that object level variables 
are interchangeable. 
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The phrase 'object variable' is commonly used to ab­
breviate 'object-var variable' since it has no other use 
in describing Qu-Prolog syntax. For an occasional ref­
erence to a variable of the object language, the phrase 
'object level variable' will be used. 

Qu-Prolog ,object variables have the same lexical 
conventions as constants. In order to distinguish 
them, object variable notations must be declared by 
ob j ect_var /1. The declaration convention is that an 
explicit declaration of an object variable name also im­
plicitly declares all variant names derived by appending 
an underscore followed by a positive integer. The stan­
dard library declares the atoms x, y and z as object 
variables. 

As each object variable is intended to range over all 
object level variables, it is important to know whether 
two object variables denote different object level vari­
able. This information can be supplied implicitly or by 
explicit use of the predicate distinctJrom/2. For ex­
ample, x distinctJrom y asserts that x and y do not 
denote the same object level variable. By default, all 
object variables occurring in the same clause/query are 
distinct from each other. 

Remark: In fact Qu-Prolog makes internal use of 
some meta level constants representing'object level vari­
ables. These terms, called local object variables, are 
mentioned below but they are not discussed here in de­
tail. Their key role is as 'new' variables, for use when 
changing bound variables. This newness is implemented 
by a convention that they are excluded from instanti­
ations of user accessible meta variables and object-var 
variables. 

2.2 Quantifiers 

Qu-Prolog can reason about object level terms which 
include arbitrary quantifiers, in much the same way that 
Prolog can reason about terms which include arbitrary 
function symbols. The user declares quantifier notations 
as needed. Thus it is possible to have representations of 
f for integral calculus as well as 't/, 3 for first order logic. 

Distinct quantifier notations in Qu-Prolog represent 
distinct object level quantifiers. Qu-Prolog uses the tra­
ditional prefix notation for quantified terms. Quantifiers 
are declared explicitly by executing 

ope Precedence, quant, Q) 

where Q is the representation for the quantifier; Q must 
have the same lexical structure as a Prolog constant. 

2.3 Substitutions 

Throughout logical reasoning, the need for substitutions 
arises naturally. Qu-Prolog directly supports parallel 
substitution for free occurrences of object level variables. 

The syntax for substitutions in Qu-Prolog is 

[tI/XI, ... ,tn/Xn] * term 

where Xl, ••• ,Xn are object variables and tl, . .. ,tn are 
arbitrary Qu-Prolog terms. 

Qu-Prolog substitutions are evaluated at unification 
time, in accordance with the standard concept of cor­
rect substitution into quantified terms, which substitutes 
only for free occurrences of variables and which changes 
bound variables to avoid capture of free variables from 
the substituted terms. For a term 81 * ... * 8 n * Y where 
81, ... ,8n is a sequence of substitutions, the substitutions 
are applied from right to left. That is, 8n is applied to y 
first. The effect of applying a substitution to a term can 
be observed with this example: 

After applying the rightmost substitution, the result will 
be: 

• 8 * ti if for some i = 1, ... , n, Xi = y, or 

• 8 * Y if for all i = 1, ... , n, Xi distinct-from y. 

It is also possible that there is insufficient information 
at a particular stage to determine which of these cases 
applies. In that case evaluation of the substitution will 
be delayed. That may lead to delaying of unification sub­
problems, perhaps extending beyond the current unifica­
tion call. 

As well as substitutions appearing in user inputs, the 
system can generate substitutions via unification. For 
example, the problem lambda X A = lambda y B has 
the solution A = [x/V] * B. 

2.4 Example 

As a small example, we give a A-calculus evaluator in 
Qu-Prolog. The terms of the A-calculus are transcribed 
directly, except that we use the infix constructor (0 for 
application. First, we declare the quantifier lambda and 
the application operator: 

?- op(700, quant, lambda). 
?- op(600, yfx, (0). 

Now the following predicate defines the structure of A­
terms: 

lambda_ term(x) . 
lambda_term(A(OB) 

lambda_term(A), 
lambda_term(B). 

lambda_term(lambda x A) 
lambda_ term (A) . 

For example, the following are A-terms: 

x 
lambda x x 
(lambda x x) (Oy 
lambda x (x(Oy) 

Note that A-terms may contain free object variables. 
Now we can define a single-step reduction predicate 

on A-terms: 



?- op(800, xfx, =». 
(lambda x A)~B => [B/x]*A. 
A~B => C~B 
A~B => A~C 

A => C. 
B => C. 

lambda x A => lambda x B :- A => B. 

The first clause is the well-known ,B-rule. The others 
allow rewrites anywhere in the expression. If desired, we 
could also add the 17-rule: 

lambda x A~x => A :- x not_free_in A. 

The full reduction relation in the usual reflexive, transi­
tive closure of the single-step reduction predicate: 

?- op(800, xfx, =>*). 
A =>* C :- A => B, !, B =>* C. 
A =>* A. 

3 Unification 

Qu-Prolog extends Prolog unification to cover the new 
data objects in the language. Two terms are unified if 
they are equivalent up to changes of bound variables (a 
equivalent). Since unification for Prolog terms is not 
changed (except that Qu-Prolog includes occurs check­
ing), our discussion will concentrate on the new features. 

Because Qu-Prolog unification is more difficult than 
ordinary unification-it is not decidable, but semi­
decidable [Paterson 1989]-we often encounter sub­
problems which cannot be solved at that point in the 
computation, but we may be able to make further 
progress on them later. Such sub-problems are delayed, 
waiting for a relevant variable (or variables) to be in­
stantiated, at which point they are re-attempted. If the 
sub-problems remain unsolved at the end of query so­
lution, they are displayed as part of the answer. This 
approach has proved practical in our implementation. 

We have also found it useful to delay sub-problems 
to avoid branching. As a simple example, consider the 
unification problem [X/y]*Z = c, where cis a constant (a 
similar situation arises with structures). The unification 
can succeed in one of two ways: 

• Imitation: Z = c. Here the substitution has a null 
effect on Z. 

• Projection: Z = y and X = c. 

Hence it is impossible to determine a unique most general 
unifier. Rather than branch the unification problem, Qu­
Prolog delays it until the binding of Z is known. 

3.1 Object Variables 

Since an object variable is intended to range over object 
level variables, and since object variables are the only 
Qu-Prolog terms of this type, an object variable can be 
instantiated only to another object variable. Further, 
unification fails if the object variables denote distinct 
object level variables. Also, whenever a meta variable 
is unified with an object variable, the meta variable is 
bound to the object variable. 

3.2 Quantifiers 

To motivate the treatment of unification for quantified 
terms, consider 

lambda x x = lambda y y 
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Intuitively, the two terms are unifiable without instan­
tiation of x or y, because the terms are the same up 
to change of bound variable. To unify x and y would 
be incorrect: the two terms are a equivalent even if x 
and y denote distinct object level variables. Hence dur­
ing quantifier unification, Qu-Prolog uses substitution 
to rename the bound variables to a common bound vari­
able. The bound variable must not appear in the unified 
terms. This is where the local object variables mentioned 
previously are used. In general, a problem of the form 
q x t = q y t' is reduced to 

[vlx] * t = [vly] * t' 
for some new local object variable v, and unification con­
tinues. Here is how the approach applies to the example, 
(v is a local object variable). 

lambda x x 

lambda v [vlx] * x 

[vlx]*x 
v 

(success) 

lambda y y 

lambda v [vly] * y 

[vly] * y 
v 

A substitution containing local object variables, when 
applied to a meta variable, may be removed by a rule 
called inversion: a: problem of the form [vlx] * X = t is 
reduced to the two problems 

X = [xlv] * t, x not-free_in t 

For example, we have the following reduction: 

lambda x A 

[v/x] * A 

A 

A 

A 

lambda y y 

[v/y] * y 

[xlv] * [vly] * y, 
x not-free_in [v/y] * y 

x, x not-free_in v 

x 

Unification produces the answer A = x. 
As a further example, consider 

lambda x A = lambda y x 

Since x does occur free on the right and cannot occur free 
on the left, this unification problem should fail. In Qu­
Prolog unification, that failure is detected when, at the 
time of calculation of A = [x I v] * [v I y] * x, the constraint 
x not-free_in [v I y] * x is generated and tested; and after 
substitution evaluation, the test fails. 

Such not-free_in constraints may be delayed if they 
cannot be immediately decided. For example, the unifi­
cation problem 

lambda x A lambda y [xlz] * Z 
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gives the solution 

A = [x/v] * [v/y] * [x/z] * Z 
provided: 

x nOLfreLin [v/y] * [x/z] * Z 

In the absence of further information about Z, the 
noLfree_in test must be delayed. 

3.3 Occurs Checking 

Unlike Prolog, occurs checking is included as standard in 
Qu-Prolog unification. However, it is not always possible 
to determine whether a variable occurs in the final form 
of a term. For example, it is impossible to determine 
whether X occurs in the term [X/y] * Z without knowing 
more information about Z. If Z is bound to y, X occurs 
in the term. On the other hand, if Z is bound to a 
constant c, X does not occur. 

Thus, if we are considering a sub-problem of the form 
X = t, we cannot always reduce the problem. We use 
two conservative syntactic conditions: 

• If X occurs in t outside of any substitution, and t is 
not of the form s * X, the unification fails, for the 
X must appear in t no matter how other variables 
are instantiated . 

• If X does not appear in t, including substitutions, 
X is instantiated to t. 

If neither of these conditions is met, the unification sub­
problem must be delayed, pending further instantiation 
ofX. 

4 The Qu-Prolog Abstract Machine 

One of the design criteria for QuAM is that the effi­
ciency of ordinary Prolog queries within Qu-Prolog must 
be maintained wherever possible. Thus, most of the 
features of WAM are retained and the description be­
low will concentrate on the differences between QuAM 
and WAM. The current implementation of QuAM differs 
from the present description in that it uses an experimen­
tal representation for structures, intended for future en­
hancements to the Qu-Prolog language with higher-order 
predicates and multiple-place quantifiers. The present 
paper focuses on other aspects of the machine, so we omit 
these details here, assuming a WAM-like representation 
of structures. Because of the difference of the represen­
tation of the structures, no performance evaluation will 
be given. A description of the current implementation 
can be found in [Cheng and Paterson 1990]. 

4.1 Data Objects 

Unbound Variables 

Because of the association with delayed problems de­
scribed below, the representation of a self reference cell 
for unbound variables as in WAM is inapplicable. A 

data cell with a VARIABLE tag is used to indicate an 
unbound variable in Qu-Prolog. The value field of the 
data cell contains a pointer to a list of delayed prob­
lems associated with the variable (Figure 1). Although 
the representation of variables is different to WAM, the 
classification into temporary and permanent variables, 
the age determining method and the rules of binding a 
variable are retained. 

I VARIABLE I + delayed problems 

Figure 1: An Unbound Qu-Prolog Variable 

The REFERENCE tag is retained to indicate that 
one variable is bound to another one. When two heap 
variables are bound together, the one created more re­
cently points to the one created earlier on the heap. The 
delayed problems from the younger one are appended to 
those of the older one. 

Unbound Object Variables 

delayed problems 

distinct object variables 

Figure 2: An Unbound Object Variable 

x OBJECLVARIABLE 

y 

z OBJECLVARIABLE 

Figure 3: x distincLfrom y and x distincLfrom z 

A separate tag OBJECT_VARIABLE is given tothe 
object variables to distinguish its function from the vari­
ables. The value field has the same purpose as the value 
field in variables. The second cell in an object variable 
points to a list of object variables from which it is dis­
tinguished (Figures 2, 3). Rather than record all object 
variables in the distinctness list, an ALL-DISTINCT 
tag is placed in this cell for local object variables. 



The classification method, the binding rules and the 
age determining method used for variables is also applied 
to object variables. 

The OBJECT _REFERENCE tag indicates that an 
object variable is bound to another object variable. 
When two object variables are bound together, the dis­
tinctness information from both object variables are 
merged together and placed in the older object variable 
and the delayed problems will be woken up. 

Quantified Terms 

Qu-Prolog currently allows 1 place quantifiers (i.e. quan­
tifiers with one bound variable) only. To represent quan­
tified terms in Qu-Prolog, a tag QUANTIFIER is in­
troduced, analogous to the STRUCTURE tag of the 
WAM. Such a value points to a three contiguous cells, 
containing the quantifier atom, a reference to the bound 
object variable, and the body ofthe quantified term (Fig­
ure 4). 

QUANTIFIER 

ATOM q 

OBJECT_VARIABLE 

term 

Figure 4: Quantified Term q x term 

Substitution Operators 

In QuAM, an application of one or more substitutions 
to a term is represented as a data cell, marked with a 
SUBSTITUTION_OPERATOR tag and pointing to a 
pair of cells. The first cell contains a pointer to the list 
of substitutions, while the second is a data cell denoting 
the term (Figure 5). The list of substitutions is stored 
in reverse order, with the innermost substitution at the 
front, to simplify evaluation. 

SUBSTITUTION_OPERATOR 

Figure 5: sub * term 

An ordinary parallel substitution is represented as a 
data cell with the property tag, containing a pointer to 
a pair of cells. The first of the cells is a pointer to the 
parallel substitution, while the second represents the rest 
of the substitution list. A parallel substitution involving 
n pairs of object variables and terms is represented as 
a block of 2n + 1 cells; the first contains the size of the 
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substitution, while the renaming 2n cells refer to the 
object variables and terms. Again the substitution pairs 
are stored in the reverse order for easy evaluation (Figure 
6). 

2 

OBJECT _REFERENCE - r---+ y 

INTEGER 456 

OBJECT_REFERENCE - r---+ x 

INTEGER 123 

Figure 6: A Parallel Substitution s * [123/x, 456/y] 

Each substitution list contains a marker describing the 
property of the substitution list. It is used during unifi­
cation to assist the determination of whether or not the 
unification can be solved by projection. In general, a 
problem of the form s * A = t, where t is a constant, 
structure, quantified term or object variable, can always 
be reduced by imitation. If s is known not to contain 
any terms of the same top-level structure as t, then the 
problem cannot be solved by projection. Thus branching 
is eliminated and we can proceed by imitation. Other­
wise, the unification problem will be delayed to avoid 
branching. In most cases, the whole substitution list 
must be examined in order to eliminate projection. In 
special cases, the marker will contain enough information 
to make a complete search unnecessary. 

It is also convenient to know if a substitution list con­
sists solely of renamings generated by quantifier unifica­
tion, as such a list can be safely inverted. Thus, each 
substitution list is marked as one of: 

• invertible: the substitution list consists solely of re­
namings. 

• object variables only: the substitution list is not in­
vertible, but its range contains only object variables. 

• others: the range of the substitution list contains 
constants, structures, quantifiers or meta variables. 

4.2 Data Areas 

QuAM supports the same data areas as in WAM. The 
heap provides space to store data objects as well as the 
distinctness information and linking cells required for de­
layed problems. The local stack holds choice points and 
environments. The choice points are enlarged to reflect 
the extra data areas and registers. 

Because the delayed problems list and distinctness in­
formation must be reset to their previous value upon 
backtracking, the method of trailing (i.e. resetting the 
address to null) used in WAM is inapplicable. Each en­
try in the trail is extended to be a pair of addresses and 
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previous values to provide extra information for back­
tracking. 

In addition to the standard WAM data areas, a de­
layed problems stack that holds any delayed problem 
generated during unification is provided. Apart from 
containing pointers to the arguments for the delayed 
problem, it has a type tag and a solved tag. The type tag 
indicates whether the delayed problem is a unification or 
a noLlree_in problem (Figure 7). The solved tag is set 
whenever the problem is solved. 

~IFY 
[f(l)jxJ*A 

f(l) 

Figure 7: Delayed Problem: [!(1)/x] * A = 1(1) 

When a query is solved, any delayed problem that re­
mains is printed as a constraint to the solution. Storing 
the delayed problems in a separate area allows fast access 
to the problems when the solution is printed. 

4.3 Registers 

There are a few extra registers used in QuAM: 

• the top of the delayed problems stack, 

• a list of formerly delayed problems that have been 
woken up, 

• The substitution pointer register points to the entry 
in the parallel substitution where the next compo­
nent is to be added. 

As well as the X registers, there is an associ­
ated set of registers, known as the XS (X substitu­
tion) registers, which hold the substitution of a term 
when the substitution and the term of a SUBSTITU­
TION_OPERATOR data cell are broken up during 
dereference. This procedure enables the substitution to 
be passed from the outer structure to the inner terms 
effectively. 

Because each Y register is one data cell in size, and an 
OBJECT_VARIABLE is two cells in size, a Yregister 
cannot hold an OBJECT_VARIABLE directly, and in­
stead contains a reference to an OBJECT _VARIABLE 
in the heap. 

4.4 Instruction Set 

For each new data object provided in QuAM, there are 
put and get instructions to build and unify the data ob­
ject. The new instructions are: 

put-object-variable Xi 
Create a new object variable on the heap, and place 
a reference to it in Xi. 

get-object-variable Xi Xj 
Copy the object variable reference in Xj into Xi. 

put-object-value Xi Xj 
Copy the object variable reference in Xi into Xj. 

get-object-value Xi Xj 
Unify X Sj, Xj with the object variable referenced 
by Xi. 

put-quantifier q Xi Xj Xk 
Construct a quantified term, with quantifier q, 
bound object variable Xi and body Xh and place a 
reference to it in Xk. 

geLquantifier q Xi Xj Xk 
Match the term in X Sk, Xk with a quantified term, 
with quantifier q and bound object variable Xi. The 
body is placed in X Sj, Xj. 

In each of the last two instructions, the register Xi must 
have been previously set to an object variable. 

Note that some of these instructions use the XS reg­
isters, while others ignore them, expecting any substi­
tution to be incorporated into the term in the X regis­
ter. Thus during head matching substitutions are con­
veniently accessible in the substitution registers, allow­
ing efficient dereferencing, and sharing of substitutions. 
However, if such a value is to be a sub-term, its substi­
tution (if any) must be re-incorporated into the term. 

There is a set of put instructions to build substitu­
tions, but no corresponding set of get instructions. This 
is because a substitution occurring in the head must be 
built in the same way as if it had occurred in the body, 
and then the substituted term must be unified with the 
corresponding head argument (or component). The in­
structions available are: 

puLsubs_operator Xi Xj 
Combine X Sj and Xj into a SUBSTITU­
TION_OPERATOR, and place a reference to it 
in Xi. 

puLempty_subs Xi 
Set X Si to an empty substitution. 

pULparalleLsubs n Xi 
Prepend a parallel substitution, consisting of n pairs 
(each supplied with the next instruction), to X Si. 

pULparalleLsubs_pair Xi Xj 
Add a pair, substituting Xj for the object variable 
referred to by Xi, to the parallel substitution cur­
rently under construction. 

puLsubs Xi Xj 
Transfer a substitution from X Si to X Sj. 

seLobject-property Xi 
Set the property tag on XSi to "object variables 
only". 

determine_property Xi 
determine the property tag of X Si. 



The only new procedural instructions are: 

do_delayed_problems 
Solve any woken delayed problems. This instruction 
is executed after the head has been matched. 

noLfree_in 
Perform a noLfree_in test during quantifier unifi­
cation. 

4.5 Dereference 

Because of the presence of substitution, additional opera­
tions are included into the dereference algorithm. The 
substitutions are evaluated during dereference when­
ever possible. Given an object variable, the substitution 
will map the object variable to its value. Depending 
on the type of the data object encountered in the term, 
dereference also simplifies the substitution before ree 
turning. 

5 Examples 

A number of small examples are given here to highlight 
the design differences between QuAM and WAM. 

5.1 Quantified Terms 

Quantified terms are constructed in a similar fashion to 
the unary structures, except for the object variable. The 
following sequence of instructions shows how a quantified 
term lambda x x is built in register Xl: 

put_object_variable XO 1. ~ 
put_quantifier lambda XO XO Xl 

Matching a quantified term is slightly more compli­
cated than structure matching. Apart from matching 
the term from outside in (i.e. match the quantifier befor~ 
matching the body), it must establish that the bound 
variable of the quantified term in the head does not oc­
cur freely in the body of the quantified term from the 
query. Thus, a not..free_in instruction must be exe­
cuted before the quantifier matching is performed. The 
following instructions match the argument Xo with the 
head argument (lambda x A)COB: 

get_structure CO/2 XO 
unify_variable X2 
unify_variable XO 
put_object_variable X3 
put_empty_subs X3 
not_free_in X3 X2 
get_quantifier lambda X3 X2 X2 

5.2 Substitutions 

Yo lambda x A 
1. B 
Yo x 

Yo A 

QuAM is designed to create substitutions independent 
of the term. The term is created before the substitu­
tion. The example [a I x, b I y] * A illustrates this 
property. 

put_variable XO XO 
put_empty_subs XO 
put_object_variable Xl 
put_atom 'b' X2 
put_object_variable X3 
put_atom 'a' X4 
put_parallel_subs 2 XO 
put_parallel_subs_pair Xl 
put_parallel_subs_pair X3 
determine_property XO 

1. A 

Yo y 

1. x 

Yo * A 
X2 Yo [b/y] * A 
X4 Yo [a/x,b/y]*A 
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If the substitution is nested inside another term, an ex­
tra step is needed. A SUBSTITUTION _OPERATOR 
data object is created to group the substitution and 
its associated term together. To construct the term 
f ( [a/x, b/y] * A), the following additional instruc­
tions are required: 

put_subs_operator XO XO 1. group together 
put_structure f/l Xl 
unify _ value XO 

Whenever a substitution is associated with a term in 
the head, that term together with the substitution will 
be built by put instructions and general unification will 
be called. For example, consider the following clause 
from the A-calculus evaluator: 

(lambda x A)COB => [A/x]*B. 

In section 5.1 above, we gave the translation of the 
matching of the first argument, leaving x in X 3 , A in 
X 2 and B in Xo . .The following instructions match the 
second argument (in Xl): 

XO Yo group together B 
X2 1. group together A 

1. *B 

put_subs_operator XO 
put_subs_operator X2 
put_empty_subs XO 
put_parallel_subs XO 1 
put_parallel_subs_pair X3 
determine_property XO 

1. *B 
X2 1. [A/x] 

get_value XO Xl 1. unify with the argument 

Note that A and B must both be combined with their 
substitutions, if any. In the case of A, this allows the 
value to fit into a cell in the substitution pair. In the 
case of B, the substitution must be i~corporated into the 
value, and the substitution register set to empty, so that 
the new substitution will be outside any existing substi­
tutions. 

If the substitution is nested within another term, the 
outer term is matched by the get instructions, while the 
substitution is built and unified with the appropriate 
component. 

6 Conclusions 

QuAM has been implemented in C under the SUN 4 
environment. The compiler was initially implemented in 
NU-Prolog [Naish 1986], and subsequently transferred to 
Qu-Prolog, which includes Prolog as a subset. 
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Qu-Prolog, including the extensions and features men­
tioned here, has been motivated particularly by the need 
to rapidly prototype interactive proof systems, and cur­
rently it is the implementation language for a substantial 
experimental proof system [Robinson and Tang 1991]. 
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Abstract 

We present in this paper a general inference machine 
for building a large class of meta-interpreters. In par­
ticular, this machine is suitable for implementing ex­
tensions of Prolog with non-classical logics. We give 
the description of the abstract machine model and 
an implementation of this machine in a fast language 
(ADA), along with a discussion on why and how paral­
lelism can easily increase speed, with numerical results 
of sequential and parallel implementation. 

1 Introduction 

In order to get closer to human reasoning, computer 
systems, and especially logic programming systems, 
have to deal with various concepts such as time, be­
lief, knowledge, contexts, etc ... Prolog is just what is 
needed to handle the Horn clause fragment of first or­
der logic, but what about non-classical logics? Just 
suppose we want to represent in Prolog time, knowl­
edge, hypotheses, or two of them at the same time; or 
to organize our program in modules, to have equational 
theories, to treat fuzzy predicates or clauses. All these 
cases need different ways of computing a new goal from 
an existing one. 

Theoretical solutions have been found for each of the 
enumerated cases, and particular extensions of Pro­
log have been proposed in this sense in the literature-. 
Examples are [BK82]' [GL82], Tokio [FKTM086], N­
PROLOG [GR84]' Context Extension [MP88], Tem­
plog [Bau89], Temporal Prolog [Sak89], and [Sak87]. 

For all these solutions it is possible to write spe­
cific meta-interpreters in Prolog that implement these 
non-classical systems ([SS86]). But there are disadvan­
tages of a meta-interpreter: lower speed and compila-

*Supported by the Centre d'Etudes de la Navigation Aeri­
enne, France 

tSupported by the Medlar Esprit Project 
tSupported by CAPES - Brasil 

tion notoriously inefficient. If we want to go a step 
further, and to write proper extensions of Prolog, then 
the problem is that costs for that are relatively high 
(because for each case we will lead to write a new ex­
tension), and we are bound to specific domains: we can 
only do temporal reasoning, but not reasoning about 
knowledge (and what if we want to add modules?). 

Our aim is to define a framework wherein a supe­
ruser can create easily "his" extension of Prolog. This 
framework should be as general as possible. Hence, 
we must provide a general methodology to implement 
non-classical logics. 

There are four basic assumptions on which our frame 
is built: 

1. to keep as a base the fundamental logic program­
ming mechanisms that are backward chaining, 
depth first strategy, backtracking, and unification, 

2. to parametrize the inference step: it is the supe­
ruser who specifies how to compute the new goal 
from a given one, and he specifies it in a logic 
form. 

3. to be able to rewrite goals. 

4. to select clauses "by hand". 

Points (2) and (3) postulate a more flexible way 
of computing goals than that of Prolog, where first a 
clause is selected from the program, then the Robinson 
unification algorithm is applied to the clause and the 
head of the goal, and finally a new goal is produced. 

Point (4) introduces a further flexibility: the supe­
ruser may select clauses that do not unify exactly with 
the current goal, but just "resemble" it in some sense. 
Even more, if the current goal contains enough infor­
mation to produce the next goal, or if we just want to 
simplify a goal or to reorder literals we don't need to 
select a fact clause at all. 

The assumptions (1) and (2) were at base of 
the development. of a meta-level inference system 
called MOLOG [FdC86], [ABFdC+86], [BFdCH88], 
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(Esp87b], (Esp87a]. The inference machine that is pre­
sented in this paper is a complete rewriting of MOLOG 
realizing assumption (4). It has been developped at 
IRIT ((Bri87] and (AG88]). 

A formal specification of the inference mecha­
nism called TIM : Toulouse Inference Machine, to­
gether with various examples, has been published in 
(BHLM91]. Here, in this paper, we present the 'J\RS.KI : 
Toulouse Abstract Reasoning System for Knowledge 
Inference, which is an abstract machine in which the 
inference mechanism can be implemented. In the pre­
liminary version of this work nothing has been said 
about abstract machine and implementation, and the 
specifications are being defined more clearly now. 

'J\R.sKr was designed to implement parallelism (see 
sections 6 and 7). For example, for a given definite 
fact and goal clauses, more than one rule is possible. 
In this case it is possible to use a different processor for 
each rule. The parallel machine wasdevelopped and 
differents solutions was be done. 

2 Horn clauses 

The base of the language is that of Prolog. That lan­
guage can (but need not) be enriched with context op­
erators if one wants to mechanize non-classical logics. 

Characteristically, non-classical logics possess sym­
bols with a particular behaviour. These symbols are 

• either classical connectors with modified seman­
tics (e.g. intuitionist, minimal, relevant, paracon­
sis tent logics) 

• or new connectors called context operators (nec­
essary and possible in modal, knows in epistemic, 
always in temporal, if in conditional logics ). 

Example In epistemic logics, the context operators 
are knows and comp, and 

knows(a):P means that agent a knows 
that P 

comp(a):P means that it is compatible 
with a's knowledge that P 

Hence inference engines for non-classical logics must 
reckon for the particular behaviour of some given sym­
bols. These properties will be handled by built-in fea­
tures of the inference engine. 

The conditio sine qua non for logic programming 
languages is that they possess an implicational symbol 
to which a procedural sense can be given. To define a 
programming language it's less important if this is ma­
terial implication or not, but it's rather the dynamic 
aspect of implication that makes the execution of a 
logic program possible. That is why the TIM language 
is built around some arrow-like symbol. 

We suppose the usual definition of terms and atomic 
formulas of logic programming. Intuitively, TIM Horn 
Clauses are formulas built with the above connectors, 
such that dropping the context we may get a classi­
cal Horn clauses. Now for each logic programming 
language we suppose a particular set of context op­
erators. This set depends on the logic programming 
language we want to implement, e.g. in epistemic logic 
it is {knows, comp} and in temporal logic it is {always, 
sometimes}. Formally we define by mutual recursion: 

Definition 2. 1 - contexts 

m( t 1, ... , t n) is a context if m is a context operator n ~ 
0, and for 1 ~ i ~ n every ti is either a term or 
a definite clause. 

Definition 2. 2 - goal clauses 

? P is a goal clause if P is an atomic formula 

?(G /\ F) is a goal clause if ?G, ?F are goal clauses 

? MOD : F is a goal clauses if ? F is a goal clause and 
MOD is a context 

Definition 2. 3 - definite clauses 

P is a definite clause if P is an atomic formula 

MOD: F is a definite clause if F is a definite clause 
and MOD is a context 

F +- G is a definite clause if F is a definite clause 
and G is a goal clause 

Definition 2. 4 - TIM Horn clause 

A TIM Horn clause (or Horn clause for short) is 
either a goal clause or a definite clause. Note that 
Horn clauses may contain several implication sym­
bols. 

We shall also use the term Modal Horn clauses if we 
are speaking of a modal logic. A set of definite clauses 
is called a database. 

In the following sections we shall use the definition 
of the head of a Horn clause. 

Definition 2. 5 - Head of a Horn clause 

• H is a head of H. 

• H is a head of F /\ G if H is a head of F. 

• H is a head of F +- G if H is a head of F. 

• H is a head of MOD : F if H is a head of F. 

3 Writing meta-interpreters 

3.1 General Mechanism 

Just as in Prolog, to decide whether a given goal fol­
lows from the database essentially means to compute 
step by step new subgoals from given ones. In our 
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Figure 1: General mechanism of the TIM machine 

case, the computation of the new subgoal is specified 
by the superuser. The general inference mechanism is 
described in figure 1. There are five steps: 

Clause selection: We select a clause to solve the first 
sub-goal of the question. 

Rule selection: We select a rule to be applied to the 
current clause and the current question. 

Rule execution: The execution of the rule "modi­
fies" the current clause and the current question 
and builds a resolvent. 

Rewritting of the resolvent: When we reach a ter­
mination rule, we rewrite the resolvent into a new 
question. 

End of resolution : A resolution is completed when 
we reach a final form: the goal clause true. 

This system is doubly non determinist, because we 
have both a clause selection (as in standard Prolog) 
and a rule selection. 

We are going in the next sections to explain how this 
mechanism can be implemented. In subsection 3.2, we 
will discuss rule selection and execution, in subsection 
3.4 rewriting and in subsection 3.3 clause selection. In 
section 6, we will come back to rule selection to show 
how efficient mechanism can be used to improve reso­
lution speed. 
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3.2 Selecting and Executing Infer­
ence Rules 

An inference rule is of the form: A,? B f-?C where 
A is a definite clause and B, C are goal clauses. It 
can be read: If the current goal clause unifies with B 
and the selected database clause unifies with A then a 
new goal can be inferred that is unified with C. In the 
style of Gentzen's sequent calculus, inference rules can 
be defined recursively as follows: 

A,?B f-?C 

A', ?B' f-?C' 
where A,A' are definite clauses and B, C, B', C' are 

goal clauses. As usual in metaprogramming, objects of 
the object language are represented by variables of the 
metalanguagel

. 

Essentially, what can be tested here is any condition 
on the form of A,A', B, C, B', C', or on the existence 
of a database clause of a certain form. E.g. we can 
let an inference rule depend on the (non- )existence of 
some clause in some particular module of the database. 

In the recursive definition the following conditions 
must be met2

: 

• var(A') C var(A) 

• A' is a head of A or A is a head of A' 

• C' is a variable 

• C' is a head of C 

A special category of inference rules are reflexive 
rules: 

true, ? B f-?C 

A', ? B' f-?C' 
These rules use the special fact true. The conditions 

that these rules must meet are: 

• A' is either: 

a variable3
, or 

any definite clause constructed from the vari­
ables in Band C and constants. 

• C' is a variable 

• C' is a head of C 
Partial termination rules are written: 

A, ? B f-?C if Condition 

They end the recursivity in resolution. 
These are some examples : the Prolog rule for goai 

conjunctions: 
A,?BACf-?DAC 

A,?Bf-?D 

lTo be correct, the real form of inference rule is a little dif­
ferent : a procedural condition expressed with elementary func­
tions of the abstract machine (see section 5) can be added. This 
enables a more precise control over execution. 

2It is these conditions on the form of the inference rules that 
warrant the efficiency of the implementation. 

3This variable will be unified with a new fact taken in the 
clause base 
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the Prolog rule for implications in database clauses: 
At-B,?GI-?BAD 

A,?G I-?D 
the Prolog partial termination rule is: 

p, ?p I-?true 
Note that here we make use of unification. These three 

rules are exactly what is needed to implement Prolog. 
To summarize, the execution of an inference rule 

modifies the current fact and the current question and 
constructs a resolvent. The resolvent has the same 
structure than the question or any other fact. Partial 
resolution is achieved when we reach a partial termi­
nation rule. 

How rules are selected is defined by the user. We 
will see in the section 6 how this is exactly done. For 
the moment, we say that rules are taken in the order 
they appear in the rule base. 

3.3 Rewriting the Resolvent into a 
New Question 

As soon as we have reached a partial termination rule, 
we rewrite the resolvent to create the new question to 
solve. Rewriting is useful not only in order to simplify 
goals, but also in order to eliminate the true predicate 
from the new goal clause. 

Rewrite rules are of the form: 
GI~G2 

and allow to replace a term that is matched by G I 
in the resolvent with some substitution a by the term 
(G2)a in the new question. 

For example, the Prolog rewrite rule is: 
true A A~ A 

In epistemic logic, the rule: 
knows(a) : knows(a) : A ~ knows(a) : A 

is a useful simplification. 

3.4 Selecting Database Clauses 

The user can define the way clauses are selected in 
the base. But this selection "by hand" must be cho­
sen among a given set (that currently implements only 
two methods: classical Prolog selection and least used 
clause selection). 

Using the abstract machine, it is possible to build 
another selection mechanism (for example indexing se­
lection on the first operator) but it has not been im­
plemented yet and it is not described in this paper. 

4 Examples: Modules 

In this section we are going to show how to spec­
ify modules with dynamic import. Here, any module 
name, such as m, ml, m(2), etc ... is considered to be 
a context. 

Module logic 
U,fM:Ut fM:NU 

O,?GI-?NG 
M:O,?M:GI-?M:NG 

O,?GI-?NG 

truel\G-v>true 

M:true-v.true 

Table 1: Rules for Module logics 

The goal mi : m2 : G succeeds if G can be proved 
using clauses from the modules m1 and m2. The infer­
ence rules are that for Prolog, plus two supplementary 
rules to handle module operators (table 1). 

The first rule represents the case where a module 
M is used to compute a new goal, and the second 
where another module name eventually occurring in 
G is used. 

Others types of modules such as modules with static 
import or with context extension [MP88], can be speci­
fied by just adding as new inference rule. In [BHLM91], 
we have shown how temporal logics, hypothetical rea­
soning and logics of knowledge and belief can be spec­
ified elegantly in our framework. 

5 The abstract machine 

The goal of the ']!\.R;:Ki abstract machine is to bridge the 
gap between the description of inference rules in logical 
form as shown above, and the real implementation of 
the rule in an efficient programming language. 

Compared to the WAM, the ']!\.R;:Ki abstract machine 
deals with different objects, and has a quite different 
goal, but on the whole, principles are identical; we will 
also define our machine in terms of data, stacks, reg­
isters and instructions set. We do not have enough 
room here to describe completely the machine. So, 
we shall not speak of the "classical" parts of resolu­
tion that are identical: i.e unification or backtracking. 
Let's say that the machine relies on classical structure 
sharing for unification, and on depth first search and 
backtracking. 

Before going further, we must tell about the Great 
Lie. ']!\.R;:Ki does not use classical logic operators A or 
t-. For consistency and simplicity sake, all operators 
either modal, temporal, classical, are represented in 
our formalism in the same way and are treated by the 
machine in the same way also. Let's see that on an 
example: The logical clause written in Prolog: 

At-BAG 

will be written in ']!\.R;:Ki: 

A( G) : A(B) : A 

Here B is the argument of A and A is qualified by 
A(B). All operators have arguments, and qualify an 



object. For example, the 84 modallogic4 clause: 
D(X) : (D(a) : p +- O(a) : p) 

will be written: 
D(X) : /\(O(a) : p) : D(a): p 

and O( a) : p is the argument of /\ that qualifies D( a) : 
p. 

This could look like the polish reverse notation, but 
it is not exactly the same. In the polish reverse nota­
tion K pq (that is p /\ q) gives the same role to p and q. 
In /\ (p) : q, p and q have really different parts to play: 
p is an operand of /\ and q is the object qualified by 
/\(p). This destroys the symmetry of /\, but should be 
considered as an advantage here. In all classical Pro­
log, solving p /\ q is different from solving q /\ p: the 
operator is not symmetric at all. 

This formalism was not adopted lightly. The first 
versions did not use it, and gave a special place to 
the classical operators: we had a lot of problems to 
describe correctly the inference mechanism. Adopting 
this structure greatly enhanced the simplicity and the 
efficiency of the system. 

5.1 Data structures 

First of all, boolean objects (true, false) with classical 
operations associated (not, or, and) are implemented 
along with integer and floats, with their standard op­
erations. 

All data are organized in stacks. There are currently 
nine basic data types, and nine corresponding stacks. 

The objects stack: holds all the objects on which 
the machine operates. An object can be either: 
an operatorS, a predicate6

, a variable, an integer, 
a float, a cons 7 , alfree8

• Elements of this stack will 
be called ObjectElement? 

The operands stack: Objects do not hold their 
operands. Each object that has arguments holds 
the number of its operands and a pointer to an 
element of this stack that holds pointers to all 
the operands lO

• Elements of this stack are called 
Opera ndElement. 

4From now on, we will only use the S4 modal logic. A classical 
introduction is [HC72]. We will use the following notations: 0 

is knows, 0 is compatible. Modal operators have arguments that 
must be constants. The new operator O[ must be added to the 
original language as shown in ([CH88]). 

5 An operator is an object that has objects as arguments and 
qualify an other object. 

6 A predicate is an object that has arguments but do not 
qualify any other object. 

7The classical LISP cons 
8 alfree is a special object quite similar in its behaviour to a 

variable that would always be free (alfree is the abbreviation of 
always free). 

9Strings are currently not implemented. 
laThe operand stack is probably a technical mistake and will 

probably be suppressed in future versions of the machine 
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The clauses stack: Each element of this stack is 
composed of: 

• a pointer in the object stack to the beginning 
of the clause 

• a pointer to the head predicatell 

• the number of free variables in the clause. 

Elements of this stack are called ClauseElement. 

The environments stack: Each element is a pair 
composed of a pointer to an object and a pointer 
in the environment stack in that the object has 
to be evaluated (classical structure sharing imple­
mentation). Elements of this stack are called En­
vironmentElement. 

The Trail stack: Pointers to the environment list for 
resetting to free some variables when backtracking 
(classical structure sharing implementation). Ele­
ments of this stack are called TrailElement. 

The backtrack stack: Each element holds all infor­
mation necessary to backtracking (values of top 
of stacks). Elements of this stack are called Bac­
trackElement. 

The question stack: Each element is a pair com­
posed of a pointer of an object and a pointer to 
the environment where this object must be evalu­
ated. The question stack holds goals to be solved. 
Elements of this stack are called QuestionElement. 

The resolvent stack: stack for the resolvent ele­
ments. The resolvent is built with the current 
question and the current selected fact. When 
reaching a partial termination rule, the resolvent 
is re-written using rewriting rules on the top of the 
question and becomes the new question. Elements 
of this stacks are called resolventElement. 

The predicates stack: Holds predicate structures. 

There are also nine other types: pointers12 to object 
in each stack, respectively ObjectPointer) Operand­
Pointer)ClausePointer) EnvironmentPointer) Trail­
Pointer) BacktrackPointer) resolventPointer) Ques­
tionPointer. 

At last, there is the rules array. This array describe 
how resolution rules behave in the system. We will 
come back to this later. 

5.2 Registers 

The registers described here are what we call global 
registers or main registers (see figure 2). There exists 

11 Useful when using classical Prolog clauses selection to in­
crease speed. 

l2We usually use the term pointer that is not exactly appro­
priate. Our pointers should be thought as abstract data types, 
that can be implemented as real pointers, or as indexes of an 
array, or anything similar. 
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Register 
Qcurr 
FCurr 
FEnv 
CClause 
CRuie 
TrTop 
ObTop 
BTTop 
Qtop 
RTop 
EnvTop 

Description 
Pointer to the current object in the question 
Pointer to the current object in the clause 
Pointer to the environment of the current clause 
Pointer to the current clause 
Index of the current rule used 
Pointer to the top of Trail Stack 
Pointer to the top of Object Stack 
Pointer to the top of Backtrack stack 
Pointer to the top of question stack 
Pointer to the top of resolvent stack 
Pointer to the top of environment stack 

Figure 2: Abstract machine registers 

Push(x : object) return pointer 
Read(i : pointer) return object 
Pull return object 
Modify(x: object; i : pointer) 
SetTop(i : pointer) 
Position return pointer 

Figure 3: Operations available on each stack 

also general purpose registers that can be temporarily 
used for calculations. We will note them RO, RI, ... in 
the following pages. 

At time t, the machine is completely defined by the 
values of its stacks and its registers. 

5.3 Instructions set 

We describe here the instruction set of the abstract 
machine. We can not, because of lack of space, describe 
it extensively, but the next few lines give an intensive 
definitions of all instructions. 

For each type of object, there are twice as many 
functions as there are components in the object, one 
for getting the value of the component and one for 
setting this value. 

Moreover, for each of the nine stacks there are 6 basic 
operations implemented (see figure 3). 

+(p:pointerj i:integer):pointer Increments poin­
ter p by i 

- (p:pointerj i:integer) :pointer Decrements pointer 
p by i 

-(pl,p2 : pointer):integer Returns the number of 
elements between pI and p2. 

There are also some classical functions: Assign­
ment, Equality test, Conditional constructions. 

This ends the description of atomic functions. We 
will need in the following lines the classical macro-

instruction unify, that unifies (Structl, Envl) with 
(Struct2, Env2)13. 

Let's see on an example how the abstract machine 
code is used to implement rules14 : 

D(X) : A, ?D(X) : B I-?D(X) : 0 
D(X) : A, ? B I-?O 

is translated into: . 

RO:=Read(Qcurr) 
if not 
unify(Fcurr,Fenv,GetNumStruct(RO),GetNumEnv(RO) 
then return false 
else Pushreso!vent(RO) endif 

Qcurr := Qcurr+l 
return true 

6 Rule selection 
lelism 

with paral-

In section 3.4, we said that resolution rules were cho­
sen in the rules base in order of appearance. We are 
going to show here that this mechanism can be greatly 
enhanced by indexing the rules base and using parallel 
execution of rules. 

6.1 Indexation of rules 

The rules necessary to implement S4 are shown on top 
of table 2. 

Remember that due to the uniform notation of the 
abstract machine the clause !\(A) : B of the second 
rule is in fact the implication B t- A. We can see 
that, for a given fact and a given question, we have 
to try a lot of different rules. This creates a second 
non-determinism that greatly slows down the imple­
mentation of the language. 

But trying all rules is usually not useful, because 
for a given fact and a given question, only a few rules 
will match the shape of the fact and the shape of the 
question. For example, if the fact is D(X) : A and the 
question <>I(X, 1): B only rules 9 and 11 can be used. 

So, for a given logic, we can develop extensively all 
possible cases. For 84, this gives table 2. This way, 
given a fact and a question, the array gives directly the 
rules that can be applied and there is often only one 
rule that can be applied. This transforms the double 
non-determinism in an almost simple non-determinism 
much closer to Prolog complexity. 80, in a large num­
ber of cases, it is not necessary to backtrack on rule 
selection. 

13unify is of course written with atomic instructions. 
l40ther examples can be found in [AIled]: full implementation 

of S4 logic, among others (Fuzzy logic, module logic). 



Type 
Rule 
Rule 

Rule 

Rule 

Rule 

Rule 

Rule 

Rule 

Rule 

Rule 

Rule 

Fact 
Pred 

Pred 

Pred 

/\ 

/\ 

/\ 

/\ 

o 
o 
o 

o 

01 

01 

01 

Number 
1 
2 

3 

4 

5 

6 

7 

8 

9 

10 
11 

Question 
Pred 

/\ 

o 
Pred 

/\ 

o 
o 

Pred 

/\ 

o 

o 

Form 
p, ?p I-?true 
A(A}:B,?CI-?A(A}:D 

B ?CI-W 
B,?A(A):CI-?A(A):D 

B ?CI-W 
A,?O(X):BI-?C 

A,?BI-?C 
o r(X ,I):A,?O(X):BI-?O r(X ,1):C 

A, ?O(X):BI-?C 
OdX ,l}:A,?Or(X,l}:BI-?Or(X,I):C 

A,?BI-?C 
D(X):A,?D(X):BI-?D(X):C 

D(X):A,?BI-?C 
D(X):A,?o(X):BI-?O(X):C 

D(X):A,?BI-?C 
D(X}:A, ?Or(X,I):BI-?Or(X,I):C 

D(X):A,?BI-?C 
D(X):A,?O(X):BI-?O(X):C 

A,?O(X):BI-?C 
D(X):A,?BI-?C 

A ?BI-?C 

Usable rules 
p, ?p I-?true 
A,.t\lX):BI-.A(X):(,' 

A ?BI-?C 
A,?O(X):BI-?C 

A ?BI-?C 
A(X):A,?BI-.A(X):C 

A ?BI-?C 
t\(X):A,.A Y):l1/-·.A(Y):(,' 

A(X):A,?BI-?C 
A(X):A,!O:Y :l1l-.A(X ):(,' 

A?O Y :BI-?C 
A(X):A,.D[Y :l1l-.A(X):C 

A,?D Y :BI-?C 
A(X):A,!Or( ,l):l1/-·.A(X):C 

A ?Or(YI):BI-?C 
D(X):A,:BI-?C 

A ?BI-?C 
D(Y):A,.A(X):BI-.A(X):C 

D(YI:A ?BI-?C 
D(X):A,?O(Y):BI- !C 

A ?<>(Y :BI-?C 
D(Y):A, !O(X ):l1l-'!C 

D(YI:A,?BI-?C 
D(X ):A,'!O(X ):l1l-'!O(X ):(,' 

A,?O X):BI-?C 
-D(X):A, !~(A ,:l1t !VIA J:C 

D(X :A ?BI-?C 
D(X):A,?Orl ,l):BI-!C 

A,?odYl :BI-?C 
D(X ):A,!Or( ,1 ):11/-·[<;>1(-" ,1):(,' 

D(X :A ?BI-?C 
<;>r(Y):A,.A( ):l1t-·.A(X):C 

OI(Y):A,?BI-?C 
Or(Y):A,?o(X):BI-?C 

OI{Y):A,?BI-?C 
o r(X,I):A,!O(X ):l1l-'!Or(X,1 J:C 

A ?O(X):BI-?C 
Or(X,I):A,!Or(X,l):l1l- tOr(X,l):C 

A ?BI-?C 

Table 2: S4 logic rules and their exhaustive develop­
ment 
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Each processor will continue resolution with a fourth of 
the resolution tree 

Figure 4: Parallel execution of S4 rules 

6.2 Parallel rule execution 

The abstract machine was designed to enable an easy 
implementation of parallelism. Sometimes, for a given 
definite fact and a given goal clause, more than one 
rule is possible: we can use a different processor for 
each rule. For example, in the S4 logic, if the fact is 
D(X) : A and the question is O(X) : B, four rules can 
be used (table 3). With four processors, each one can 
continue the resolution with a different rule. Figure 4 
shows how the inference system running originally on 
processor Pl. With four processors Pi, P2, P3, P4 
available, it is possible to solve, in parallel, S4 rules 
described in table 3. 

The information transferred from one processor (Pi) 
to its children (P2, P3, P4) are the abstract machine 
data stacks and the abstract machine registers. Some 
stacks are never transferred (the backtrack stack, the 
trail stack) because the child does not need to back­
track over the current resolution point. This paral­
lelism induces no side effects : as soon as one proces­
sor has received data, it will not have to communicate 
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L to all : free 

P to L : request 

L to P : Ok 

P to L : Data 

Figure 5: Fully interconnected network 

with its parent any more until it has finished its own 
resolution. Moreover, there is no overhead in process­
ing time because parallelism is explicit in the language 
itself: overhead comes only from communication be­
tween processes. 

Four models (Master/slaves network, fully intercon­
nected networks, ring networks, top-down networks) 
are under development; we just mention them and we 
will not discuss them in detail15

• 

Fully interconnected network: Every processor can 
distribute work to any other processor that is free. 
A very simple protocol is used to prevent two pro­
cessors to send at the same time data to the same 
processor (figure 5). This protocol will solve prob­
lems as represented in figure 4. 

Master/slaves network: The master process dis­
tributes work to all other processes, which, in 
turn, can not distribute any work. This protocol 
will also solve problems as represented in figure 4. 

Ring network: Here each processor can send work to 
the next one, and the last processor can send work 
to the first. 

Top-Down network: In the Top-Down Network, 
each processor can only send information to the 
following one but the last processor can't send in­
formation to the first one. In ring networks and 
top-down networks, resolution is not exactly as 
represented in figure 4. 

7 Implementing Parallelism 

7.1 The "classical" machine 

The new abstract machine specifications was the result 
that began with the first implementation of MOLOG, 
in C, in 1988. 

Coding the new machine took less than two months. 
Of course, two years spent in coding other abstract 
machines (that proved to be unsatisfactory) helped a 
lot. From the beginning, the stress was on getting a 

150n all practical implementations issues, details can be found 
in [AIled]. 

program as close as possible to the specifications of 
the abstract machine. That was the reason why the 
ADA language has been chosen: the specifications of 
the abstract machine are exactly the specifications of 
the main package of the implementation. Moreover, 
compared to other implementations previously written 
in C, coding and debugging was a lot easier and faster. 
We wanted also to be able to easily implement paral­
lelism. So, for example, stacks are implemented with 
arrays and there is not a single real pointer in the sys­
tem, only indexes. It has an interesting well known 
side effect: we never run out of stack space, because if 
a stack becomes full, we just have to copy it to a new 
larger stack. All indexes are still valid. The mechanism 
is invisible to the programmer and the user and very 
useful with some very recursive non-classical problems. 

This was done at the loss of performance. Access­
ing any object in a stack requires two function calls 
and three tests plus the classical indirection. The 
'l\R.sK:r machine runs about fifteen times slower than 
C-Prolog16 on PROLOG problems. This could easily 
be enhanced by recoding the machine with efficiency 
in mind. 

Coding a logic is very easy as soon as it follows the 
general framework given in section 3.2. The S4 logic 
was implemented in one day. and tested with the clas­
sical "wise men" puzzle. The puzzle is solved in three 
minutes on a HP-720 workstation with the full amount 
of knowledge (more than twenty clauses). With only 
the five clauses necessary to solve the problem, the so­
lution is found in less than a second, hundred times 
faster than the MOLOG interpreter. 

7.2 The parallel machine 

The parallel machine was developped with an ETH­
ERNET network as medium for data transfer. The 
parallel system is made of many 'l\RS.Kr machines run­
ning on different workstations, linked by INTERNET 
sockets 1 7. The only configuration tested was a top­
down network. Results are shown in table 4. It would 
be too long to discuss them here in detail. Full expla­
nations can be found in [AIled]. 

We can briefly say that, over three processors, the 
network is clearly too slow and becomes the bottleneck 
of the system. A large part of time is lost in com­
municating with other processors. There are different 
solutions that could be used to enhance performances: 

• We can use parallelism only for branches that are 

161t is however faster than some classical PROLOG written in 
compiled Common Lisp 

171t was quite easy to do, because all necessary packages for 
communication and parallelism had been developped previously 
for other projects. Reusability of software is a major advantage 
of ADA. 



# of Procs P1 P2 P3 P4 
1 
2 
3 
4 

319+1 
166+10 145+6 
129+24 142+50 77+17 
129+26 140+46 46+31 22+9 

Table 4: CPU +system time used 

close to the root of the tree. This will decrease 
the number of sent packets. 

• We can try a master/slave network. The master 
processor will be almost devoted to sending pack­
ets but slaves would not spare time on this. 

• We can improve the amount of sent data; some 
stacks can only grow, and are never modified un­
der a certain depth. We could only send new data, 
and not the whole stack. 

• We could try to use a different medium. An 
ethernet network is a very slow device for par­
allelism, and, moreover, our network is usually 
crowded with packets coming from other stations 
or other X-terminals. It would be very interesting 
to implement the machine on a multi-processor 
computer with shared memory segments, or on 
a transputers network. We were not able to do 
it yet because we lack access to such a machine. 
We are very eager to try such an approach. If 
we are able to find a machine with many proces­
sors, the inference machine could be almost as fast 
as a standard PROLOG even when solving non­
classical logic problems, because the double non­
determinism would be almost reduced to classical 
PROLOG non-determinism. 

8 Conclusion 

We think the implementation of any logic given by in­
ference rules of the form defined in the earlier sections 
can be done in a very short amount of time (one or 
two days at most). The development of an automatic 
translator from the logical shape of the rules to the 
abstract machine specifications suggests itself and is a 
subject of current work. 

Now, it is hoped that fast, general and efficient im­
plementations of such logics could bring a new area of 
development for expert systems. In particular, in the 
C.E.N .A.IS a large expert system (3,000 rules) using 
fuzzy and temporal logics has been developped in Pro­
log ([AL91]). This expert systems could be an excellent 
test for 1\lliKI. 

18The CENA is an institution responsible for studies of new 
systems for Air Traffic Control in France 
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Abstract 
The subject of this paper is the integration of two 
active areas of research: a parallel implementation of a 
constraint logic programming language. Specifically, 
we report on some experiments with the and/or­
parallel logic programming system Andorra-I 
extended with support for finite domain constraint 
solving. 

We describe how the language supported by 
Andorra-I can be extended wi th finite domain 
constraints, and show that the computational model 
underlying Andorra-I is well suited to execute such 
programs. For example, most constraints are 
automatically executed eagerly so as to reduce the 
search space; moreover, they are executed 
concurrently, using dependent and-parallelism. 

We have compared the performance of some 
constrained search programs on Andorra-I with that 
of conventional generate-and-test programs. The 
results show that the use of constraints not only 
reduces the sequential execution time, but also 
significantly increases the and-parallel speedup. 

1 Introduction 
Much of the success of Prolog has been due to its 
suitability for applications involving search: the. 
language provides a relational notation which is very 
convenient for expressing non-deterministic problems 
and it can be implemented with impressive efficiency. 
However, the search strategy built into Prolog is a 
rather naive one, which tends to perform an 
unnecessary amount of search for problems that are 
stated in a simple manner. To solve realistic search 
problems in Prolog, it is often necessary to perform 
additional forward computation in order to reduce 
the search space to a manageable size. However, 
since this extra computation must be programmed in 
Prolog itself, it may be an expensive overhead which 
partly offsets the speed benefits of the reduced search. 
Moreover, the resulting program is more opaque and 
difficult to write than a natural solution in Prolog. 

To improve on the search strategy of Prolog while 
retaining its advantages is the motivation for the 
development of constraint logic programming (CLP) 
systems. Most of the CLP languages that have been 
proposed are based on Prolog, extended with the 
ability to solve constraints in one or more domains. 
CLP languages use knowledge specific to their 
domain to execute certain goals ("constraints") earlier 
than would be possible in Prolog, thus potentially 
reducing the search space. Provided that the 
constraint solving mechanism is implemented 
efficiently and that the language is simple to use, the 
search time can be reduced at little cost in either 
forward computation time or increased program 
complexity. One type of CLP language, which has 
proved particularly useful for combinatorial search 
problems, is that based on finite domains; this is 
described in a little more detail in Section 2. 

There have been many projects in recent years to 
develop parallel implementations of Prolog. Most of 
these systems incorporate either or-parallelism, 
independent and-parallelism, or both. In contrast, the 
Andorra-I system is an implementation of Prolog that 
exploits or-parallelism together with dependent and­
parallelism, which is the sole form of parallelism 
exploited in most implementations of concurrent logic 
programming languages such as Parlog and GHC. 
Andorra-I has proved effective in obtaining speedups 
in programs that have potential or-parallelism and 
those with potential and-parallelism, while in some 
programs both forms of parallelism can be exploited. 
Andorra-I, and the Basic Andorra model on which it 
is based, are described briefly in Section 3. 

The subject of this paper is the integration of the 
above strands of research: a parallel implementation 
of a constraint logic programming language. 
Specifically, we report on our experiences with 
extending the Prolog-like language supported by 
Andorra-I to support finite domain constraint solving. 
There are two main reasons why this is of interest: 

1. Language. To investigate how easily the required 
language extensions can be supported by the Basic 
Andorra model. 
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2. Performance. To ensure that the finite domain 
extensions can be implemented efficiently in 
Andorra-I and that the efficiency is retained in 
parallel execution. 

Although a prototype or-parallel implementation 
of the Chip language has been developed [Van 
Hentenryck 1989b], we are not aware of any previous 
investigation of and-parallelism with finite domain 
constraints. By adding these extensions to Andorra-I 
we can experiment with both forms of parallelism and 
compare them. 

It is particularly interesting to compare the 
performance of constrained search programs on the 
Basic Andorra model with that of conventional 
generate-and-test programs (apart from the expected 
reduction in overall execution time). The constraint 
solving represents additional forward computation, 
so - provided that the constraints can be effectively 
solved in parallel- we would expect and-parallelism 
to be increased. At the same time, since the search 
space is reduced, there may be less scope for or­
parallelism. The performance results obtained with 
Andorra-I confirm these expectations. 

The next two sections describe the background to 
the paper. Section 4 discusses the implementation of 
finite domain constraints on the Basic Andorra model. 
It describes in detail the language extensions that we 
have implemented and the structure of programs that 
use them. Section 5 presents some results of running 
constrained search problems on Andorra-I. Section 6 
concludes the paper. 

2 Finite domain constraints 
The idea of adding finite domain constraints to logic 
programming originated with the work of Van 
Hentenryck and his colleagues, and was first 
implemented in the language Chip [Van Hentenryck 
and Dincbas 1986; Dincbas et al. 1988; Van Hentenryck 
1989a]. Chip extends Prolog in several ways to 
handle constraints; the principal extensions relevant 
to finite domains are outlined below. 

2.1 Domain variables 

Some variables in a program may be designated 
domain variables, ranging over any specified finite 
domain. Domain variables appear to the programmer 
like normal logical variables but are treated 
differently by unification and by constraints. 

2.2 Constraints on finite domains 

Goals for certain constraint relations behave ina 
special way when they have domain variables as 
arguments. For example, if X is a domain variable, the 
goal X ~ 5 can be executed by removing from the 
domain of X all items greater than 5. This in tum may 

reduce the search space that the program explores. A 
user-defined predicate may be made a constraint by 
using a 'forward' or 'lookahead' declaration, while 
some primitives (e.g., inequality) have such 
declarations implicitly. (Unification can have a 
similar effect: unifying two domain variables reduces 
the domain of both to the intersection of their original 
domains, while unifying a domain variable and a 
constant may fail.) 

2.3 Coroutining 

Constraints should be executed as early as possible in 
order to reduce the search space. For example, X ~ Y 

could be executed as soon as either X or y has a value 
and the other is a domain variable. In general, a 
coroutining mechanism ensures that control switches 
to a constraint goal as soon as it can be executed. The 
simplest such control rule is forward checking, used for 
forward-declared constraints, whereby a constraint is 
executed as soon as its arguments contain at most one 
domain variable and are otherwise ground. The 
constraint goal is then effectively executed for each 
member of its argument's domain and values that 
cause failure are removed from the domain. 

The lookahead rule, often used for inequality 
relations such as '~', can even execute constraints 
whose arguments contain more than one domain 
variable; we shall not consider this further in this 
paper. 

3 The Basic Andorra model 
The Basic Andorra model is a computational model 
for logic programs which exploits both or-parallelism 
and dependent (stream) and-parallelism. The model 
works by alternating between two phases: 

1. Determinate phase. Determinate g()als are 
executed in preference to non-determinate goals. 
While determinate goals exist they are executed in 
parallel, giving dependent and-parallelism. (A 
goal is considered determinate if the system can 
detect that it can match at most one clause.) This 
phase ends when no determinate goals are 
available or when some goal fails. 

2. Non-determinate phase. When no determinate 
goals remain, one goal - namely, the leftmost one 
that is not det only (see below) - is selected and 
a choicepoint created for it. Or-parallelism can be 
obtained by exploring choicepoints in parallel. 

The model and its prototype implementation, 
Andorra-I, are described in [Santos Costa et al. 1991]. 

Andorra-I supports· the Prolog language 
augmented with a few features specific to the model. 
For example, det_only declarations allow the 
programmer to specify that goals for some predicate 



can only be executed in the determinate phase; if such 
a goal remains in the non-determinate phase it cannot 
be used to create a choicepoint, even if it is the 
leftmost goal. Conversely, non _ de t _ 0 n 1 y 
declarations can be used to prevent goals from 
executing in the determinate phase even if they are 
determinate. 

Performance results for Andorra-I show that the 
system obtains good speedups from both or­
parallelism and and-parallelism. The best and­
parallel speedups are obtained for programs that are 
completely determinate (and therefore have no or­
parallelism to exploit). The best or-parallel speedups 
come from search programs, especially when 
searching for all solutions. 

Unfortunately, very little and-parallel speedup has 
typically been observed in running standard Prolog 
search programs on Andorra-I. One reason for this is 
the sequential bottleneck inherent in the Basic 
Andorra model: the periods (both during the non­
determinate phases and while backtracking) when no 
and-parallel execution is performed. 

This suggests that the key to obtaining greater 
and-parallel speedup is to increase the "granularity" 
of the and-parallelism. That is, it is important to 
minimize the number of choicepoints created and the 
number of goal failures, relative to the total number of 
inferences. One way to achieve this in search 
programs is by the use of constraint satisfaction 
techniques. 

4 Implementing finite domains 
in Andorra-I 

In order to experiment with finite domain constraint 
solving on Andorra-I, we have defined and 
implemented finite domains and a few simple 
primitives to operate on them. Our system defines a 
new data type, a domain, which exists alongside 
numbers, structures, etc. Domains can only be used 
as arguments to the domain primitives and have no 
meaning elsewhere in a program; for example, they 
cannot be printed. A domain is created with a set of 
possible values that it may take; eventually it may 
become instantiated to one of those values, at which 
time we call it an instantiated domain. In contrast with 
the Chip concept of domain variables, a domain 
instantiated to t is not identical to t. We write a 
domain as a set {tt,. . . ,tn}, where tt,. .. ,tn are its current 
possible values; {t} represents an instantiated domain. 

Our domains,are easier to implement than domain 
variables because there is no need to change many 
basic operations of the system such as unification, 
suspension on variables, etc. At the same time, the 
efficiency of implementation should be comparable 
with that of domain variables, while our primitives 
are still quite convenient to use. 
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We describe our primitives first and then outline 
their use and implementation. 

4.1 Finite domain primitives 
Domains can be created by the primitives 
make domain and make domains. The latter is 
potentially more efficient when creating many 
domains ranging over the same values since the table 
of values can be shared. 

All of the other primitives operate on existing 
domains; they can only be executed when their first 
argument is instantiated and will fail if this is not a 
domain. domain_var performs the mapping 
between a domain and its ultimate value, while 
domain remove allows the removal of values from a 
domain.-Either of these may cause the domain to be 
instantiated: the first in a positive way, the second by 
removing all but one of the values. doma in _gue s s is 
the only non-determinate primitive. The last two, 
domain_size and domain_values, may yield 
different results depending on when they are called 
and should therefore be used with care. 

make_domain(D,Set) 

Can be executed when Set is instantiated to a 
non-empty list of distinct atomic terms, [tt, .. . ,tn]. 
D, which should be an unbound variable, is bound 
to a new domain, {tt,. .. ,tn}. 

make_domains (Ds,Set) 

Can be executed when Set is instantiated to a 
non-empty list of distinct atomic terms, [tt,. . . ,tn], 
and D s is a list of variables. Each variable in D s is 
bound to a new domain, {tt, ... ,tn}. 

domain_var(D,Var) 

Unifies Va r with the value variable (a normal 
logical variable) of domain D. Subsequently, if D 
becomes an instantiated domain {t}, t is unified 
with Va r. Alternatively, if Va r becomes 
instantiated to t, if t is currently in the domain D, D 

becomes an instantiated domain {t}, otherwise 
failure occurs. 

domain_remove (D,Value) 

Can be executed when Value is ground. If Value 
is not currently in the domain D, there is no effect. 
If D is the instantiated domain {Val u e} the 
primitive fails. Otherwise Value is removed from 
the domain; if only one value, t, remains in the 
domain D becomes instantiated ~o {t}. 

domain_9uess (D) 

Instantiates D non-determinately to one of its 
possible values. If D is the domain {tt, . .. ,tn}, D is 
instantiated successively to (ttl, ... , {tn}. 

Note that do m a in 9 u e s s (D) is non­
determinate (unless D is already instantiated) and 
can therefore be executed only if there are no 
determinate goals to execute. 
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domain_size(D,Size) 

S i z e is unified with a positive integer which 
indicates the number of values currently in 
domainD. 

domain_values (D,Values) 

Val u e s is· unified with a list of the values 
currently in domain D. 

4.2 Finite domain programming 

Like Chip, our aim is to provide the programmer with 
a language as close as possible to Prolog but with the 
extensions necessary for constraint programming. 
However, the "Prolog" language supported by the 
Basic Andorra model differs in behaviour from that of 
regular Prolog, and this affects how the language is 
used. In this section we outline how our primitives 
can be employed in the context of Prolog on 
Andorra-I to solve constraint problems. 

Program 1 is our solution to the familiar N-queens 
problem. This program is almost identical to the Chip 
one on p123 of [Van Hentenryck 1989a], except that 
the result of the goal four_queens (Qs) is a list of 
domains (which can be converted to a numeric value 
by domain_ var). However, it executes differently. 
The execution order in Chip is the same as in Prolog, 
repeatedly executing a domain_guess goal for one 
domain followed by a no a t t a c k goal to remove 
inconsistent values from the other domains. On 
Andorra-I the program executes all of the queens and 
noattack goals first, since they are determinate, and 
sets up all '*' constraints before domain _gues s is 
called to non-determinately generate domain values. 

four queens (Qs) :-
Qs = [Ql, Q2, Q3, Q4] , 
make domains (Qs, [1,2,3,4]), 
queens (Qs) • 

queens ( [ ] ) . 
queens ([QIQs]) 

domain guess(Q), 
noattack(Q, Qs, 1), 
queens (Qs) . 

noattack ( , [], ). 
noattack (Ql, [Q2TQs], N) 

Ql * Q2, 
Ql * Q2 - N, 
Ql * Q2 + N, 
Nl is N + 1, 
noattack(Ql, Qs, Nl). 

Program 1: N-queens 

At the end of the first determinate phase, the 
resolvent contains only the following goals, for 
domain_guess and the inequality predicate '*', 
where each of Ql, Q2, Q3, and Q4 is an uninstantiated 
domain: 

domain guess (Ql), 
Ql :i"" Q2, Ql * Q2 - 1, Ql * Q2 + 1, 
Ql * Q3, Ql * Q3 - 2, Ql * Q3 + 2, 
Ql * Q4, Ql * Q4 - 3, Ql * Q4 + 3, 

domain guess (Q2), 
Q2 :i"" Q3, Q2 * Q3 - 1, Q2 * Q3 + 1, 
Q2 * Q4, Q2 * Q4 - 2, Q2 * Q4 + 2, 

domain guess (Q3), 
Q3 :i"" Q4, Q3 * Q4 - 1, Q3 * Q4 + 1, 

domain_guess (Q4) • 

The only goals that can be executed in the non­
determinate phase are for domain guess, since the 
'*' goals are treated as det only (see Section 3). 
Selecting the leftmost goal, domain guess (Ql), Ql is 
instantiated non-determinately to the domain {1} and 
a new determinate phase begins, in which all nine '*' 
goals containing Ql can be executed in parallel. 

This example illustrates a difference between our 
language and Chip, which follows from the Basic 
Andorra model: that the order of goals in a clause is ' 
irrelevant. Constraints and generators can appear in 
any order, but the constraints will always be set up 
before any non-determinate bindings are made. This 
is important, since it results in a smaller search space. 
In order to get the same effect (called "generalized 
forward checking") in Chip, the structure of the 
program has to be changed. However, we do have to 
make sure that constraints can be executed 
determinately, so that they execute first, whereas 
constraints need not be determinate in Chip. 

The inequality predicate '*' used above is an 
example of a constraint that is to be executed by 
forward checking. Such predicates can be 
programmed using the primitives of Section 4.1. As 
an example, Program 2 defines a constraint 
plusorminus (X, Y, C), which means X=Y-C or 
X=Y+C. This can be executed in a forward checking 
way when either of domains X and Y is instantiated 
and the third argument is ground; it then leaves only 
(at most) the two values Y-C and Y+C (resp. X-C and 
x+c) in the domain of X (resp. Y). 

In Program 2 we use Pandora syntax [Bahgat and 
Gregory 1989]. The plusorminus procedure is a 
"don't-care procedure" in the style of Parlog: the first 
clause removes the appropriate values from the 
domain of Y if domain X is instantiated, while the 
second does the converse. This procedure uses the 
da t a primitive to wait for the domain to be 
instantiated and the operator ': I to commit to the 
appropriate clause. A sequential conjunction operator 
'& I is used in the pm procedure, so that the values 
currently in domain Yare found (by a call to 
domain_values) only after the other arguments are 
instantiated. It then f i 1 t e rS these values to find 
which ones must be removed from the domain, and 
removes them by calling domain_remove. 

In addition to primitive constraints such as 
inequality, Chip allows user-defined constraints. 
These are conventional Prolog procedures augmented 
with a 'f 0 r war d' declaration indicating which 



arguments should be ground and which should be 
domain variables. For example, plusorminus is 
defined [Van Hentenryck 1989a: pl34] as follows: 

forward plusorminus(d,d,g). 
plusorminus(X,Y,C) :- X is Y - C. 
plusorminus(X,Y,C) :- X is Y + C. 

The problem with allowing user-defined 
constraints in Andorra-I is that the procedures may in 
general be non-determinate and, in any case, a search 
is required through the elements of a domain. One 
way to handle such constraints is by transforming the 
procedure to a determinate, forward checking, 
equi valen t, as we did with p 1 u s 0 r min u s in 
Program 2. Another way would be to use a 
"determinate bagof" primitive which is currently 
being implemented in Andorra-I. This is similar to 
the bagof of Prolog but it executes as part of the 
determinate phase as a new subcomputation, even if it 
has to create internal choicepoints. 

mode plusorminus(?, ?, ?). 
plusorminus(X, Y, C) <­

domain var(X, Xv), data (Xv) 
pm (Xv,-Y, C). 

plusorminus(X, Y, C) <-
domain var(Y, Yv), data (Yv) 
pm (Yv,-X, C). 

mode pm ( ?, ? , ?). 
pm (Xv, Y, C) <­

Yvl is Xv - C, 
Yv2 is Xv + C & 
domain values(Y, Yvs), 
filter(Yvs, Yvl, Yv2, Remove), 
remove_alley, Remove). 

mode filter(?, ?, ?, A). 
filter([], , ,[]). 
filter([Vl/Vs]; VI, V2, R) <-

filter (Vs, VI, V2, R). 
filter([V2/Vs], VI, V2, R) <­

filter (Vs, VI, V2, R). 
filter ([V/Vs], VI, V2, [V/Vsl]) <­

V \== VI, V \== V2, 
filter (Vs, VI, V2, Vsl). 

mode remove all(?, ?). 
remove all(-, []). 
remove-all(D, [v/vs]) <-

domain remove(O, V), 
remove=all(O, Vs). 

Program 2: Pandora program for the 
pI usorminus constraint 

The deleteff predicate of Chip, which is used to 
implement the first-fail heuristic, can easily be 
programmed using another of our primitives, 
domain size. deleteff (Best, Os, Rest) finds 
Best asthe domain in list Os that has the smallest 
current size; Rest contains the remaining elements of 
D s. Program 3 is a program for N -queens which 
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implements the first-fail heuristic (the noattack 
procedure is the same as in Program 1), and illustrates 
the general structure of such programs. Note that the 
"guessing" and "checking" components (the 
guess_queens and check_queens procedures) 
must be separated, though their order is unimportant. 

four queens (Qs) :-
Qs = [Ql, Q2, Q3, Q4] , 
make domains (Qs, [1,2,3,4]), 
guess queens (Qs), 
check=queens(Qs) . 

guess queens([]). 
guess-queens([Q/Qs)) 

defeteff (Best, [Q / Qs], Rest), 
domain guess (Best) , 
guess_queens (Rest) . 

check queens([]). 
check-queens([QIQs]) :­

noattack(Q, Qs, 1), 
check_queens (Qs) . 

Program 3: Changes to N-queens to implement first­
fail heuristic 

The main issue in using deleteff in an Andorra-I 
program is to ensure that it is called at the right time, 
i.e., immediately before a choicepoint is created. By 
default, Andorra-I would execute all the deleteff 
goals immediately, since they are determinate. This 
would just choose the domains to guess in a fixed 
order. The easiest way to avoid this problem is to 
declare del e te f f to be non de ton I y (see 
Section 3). 

During the first determinate phase, the 
check_queens goal executes to completion, 
spawning the same inequality ('~') goals as in 
Program 1, while guess_queens ([Ql, Q2, Q3, Q4]) 
reduces to the following: 

deleteff(Best, [Ql,Q2,Q3,Q4], Rest), 
domain guess (Best) , 
guess_queens (Rest) 

Now the leftmost goal, deleteff, runs and finds the 
smallest domain from [Ql, Q2, Q3, Q4]. In the next 
non-determinate phase domain_guess is called for 
the chosen domain, allowing some of the constraints 
to execute; when no more constraints can be executed, 
the next deleteff goal can execute, and so on. 

4.3 Implementation 

There are several ways to represent domains and to 
implement the predicates listed in Section 4.1. The 
predicates could be implemented by logic programs, 
provided we design a suitable representation of 
domains. Two of them, do m a i n va rand 
domain_remove, modify the state of a domain but, 
happily, domains have the property that their size 
monotonically decreases. This enables us to represent 
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each domain by a tuple of logical variables, one for 
each possible domain value; the variable is bound to 0 
when the value is removed, or 1 when the domain is 
instantiated to that value. 

Given such a representation, the properties of a 
domain (e.g., it must not be empty, it cannot be 
instantiated to a value that has been removed, and so 
on) must be preserved. One way to do this is for each 
operation to check the state of the domain before 
modifying it. This works well in a sequential logic 
programming system, but is extremely complex to 
implement correctly in an and-parallel context 
because of contention by several operations 
modifying the same domain in parallel. A better 
method in the presence of and-parallelism is to spawn 
a process network to maintain the properties of a 
domain at the time it is created. This technique was 
described in [Bahgat and Gregory 1989]. 

Both of the above techniques were used to 
prototype our domain operations. However, to get 
more meaningful performance results, we wished to 
implement them as efficiently as possible, so a lower­
level implementation was developed. A domain is 
represented by a structure containing the following 
fields: 

1. A term (initially an unbound variable) 
representing the ultimate value of the domain. 
This term can be accessed by the do m a in _va r 
primitive. 

2. A boolean array with one bit for each potential 
member of the domain. 

3. The number of elements currently in the domain. 
This field is accessed by the do m a ins i z e 
primitive. 

4. The position of the last element guessed non­
determinately. 

5. A reference to a table mapping between domain 
val ues and posi tions in the domain. 

The key implementation issues concern how to 
update the domains. Conditional modifications to 
domains (fields 2, 3,4) need to be trailed. Fortunately, 
this can be achieved using the "up datable variables" 
which are already implemented in Andorra-I and 
used for many other purposes. 

Each domain may be concurrently accessed by 
many constraints. To implement the required mutual 
exclusion, the value variable of a domain (field 1) is 
locked while the domain is modified, using the 
normal variable locking mechanism of Andorra-I. 
Each constraint locks only one domain at a time, so 
there is no danger of deadlock. Starvation is avoided 
because a domain is locked only when values are to 
be removed, and the size of domains is finite. 

Both the updatable variables and variable locking 
features of Andorra-I are described in [Santos Costa et 
al. 1991]. -

5 Performance results 
In this section we present some results obtained on 
the Andorra-I system running on a Sequent 
Symmetry. Each of the tables gives the results of 
running a particular program on different problem 
sizes. The respective columns show: 

BT the number of backtrackings, 

Time the execution time (in seconds) on one 
processor, 

And-II the and-parallel speedup when run on 10 
processors, 

Or-II the or-parallel speedup when run on 10 
processors. . 

(The speedup figures are simply the ratio of execution 
time on one processor to that on 10 processors.) 

Table 1 shows the results of a standard Prolog 
program for N-queens. The structure of this program 
is similar to that of Program 1, but it makes no use of 
forward checking: it simply places a queen on each 
row non-deterministically and tests each time that the 
resulting configuration is safe with respect to 
previously-placed queens. The top part of the table 
gives results of a search for all solutions, while the 
bottom part shows a search for the first solution. 

N BT Time And-/ / Or-/ / 
All 4 18 0.22 1.05 1.57 
solns 6 208 2.92 1.11 4.23 

8 3544 54.32 1.17 8.83 
10 75190 1250.41 1.21 9.82 

First 4 7 0.11 1.00 0.92 
soln 6 46 0.65 1.12 2.41 

8 223 3.27 1.16 3.85 
10 276 3.71 1.16 1.98 
12 873 11.94 1.19 1.51 
16 42865 653.78 1.26 1.10 

Table 1: Standard backtracking program for 
N-queens 

Table 1 confirms that the search space and 
execution time increase dramatically as the problem 
size increases. It also shows that the or-parallel 
speedup for the first solution is very variable. This is 
usual, since an or-parallel search for one solution 
explores a different part of the search tree than a 
sequential search, so the backtrack count will differ 



from that shown in the BT column and indeed will 
vary between runs. (We give the best or-parallel 
speedup obtained from several runs.) The consistent 
results are that a large or-parallel speedup is seen 
when searching for all solutions, while there is a very 
small and-parallel speedup in all cases. Both of these 
increase as the problem size increases. In every case, 
the or-parallel speedup observed is better than the 
and-parallel one. 

Table 2 gives the same results for the forward 
checking program (Program 1). As expected, the 
search space is much reduced. The fact that the total 
execution time is also much smaller indicates that our 
implementation of finite domains is efficient enough 
that the cost of constraint solving pays off. The and­
parallel speedup for this program is substantially 
larger than for the standard backtracking program 
(though it is still rather small), while the or-parallel 
speedup is generally less. In contrast to Table I, for 
the first-solution search, the and-parallel speedup 
always exceeds the or-parallel one. 

N BT Time And-/ / Or-/ / 
All 4 7 0.09 1.50 1.00 
solns 6 41 0.64 1.78 2.91 

8 417 8.34 1.86 6.95 
10 6667 142.54 1.99 9.37 

First 4 2 0.05 1.67 1.00 
soln 6 8 0.19 1.73 1.46 

8 24 0.52 2.08 2.00 
10 24 0.61 2.18 1.49 
12 54 1.42 2.22 1.34 
16 1833 53.56 2.44 2.12 

Table 2: Forward checking program for N-queens 

We carried out similar experiments for the graph 
colouring problem: to colour a graph so that 
neighbouring nodes have distinct colours, and so that 
the number of colours used (the chromatic number) is 
minimized. The programs for this problem perform a 
depth-first branch-and-bound search by first finding 
an approximate solution with chromatic number C, 
then restarting the search with the added constraint 
that no node can be given a colour greater than C-1; 
this is repeated until no better solution is found. 

Two programs for this problem were tested. The 
standard backtracking program colours nodes in 
descending order of degree; each time a node is 
coloured, each possible colour (from 1 to the current 
upper bound, C-1) is compared against the colour of 
each coloured neighbour. The forward checking 
program uses a domain of size C-1 for the colour of 
each node; when a node is coloured, the chosen colour 
is removed from its neighbours' domains. The latter 
program uses the first-fail heuristic to decide the 
order in which to colour nodes; when more than one 
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node has the smallest domain, the one with the 
greatest degree is chosen. 

Tables 3 and 4 give the results of our two graph 
colouring programs run on several randomly 
generated, constant density, graphs. N is the number 
of nodes and D is the density (the probability that any 
two nodes are connected). eN is the chromatic 
number of the graph. In the top half of each table we 
keep the size constant and vary the density; below we 
keep the density constant and vary the size. 

N D CN BT Time And-/ / 
30 0.1 3 92 8.04 4.62 
30 0.3 5 1768 29.20 2.47 
30 0.5 7 2891 49.53 2.50 
30 0.7 10 5567 81.47 2.23 
30 0.9 16 3610 87.72 3.10 
10 0.5 4 26 1.26 3.71 
20 0.5 6 372 12.86 3.75 
30 0.5 7 2891 49.53 2.50 
40 0.5 8 256888 1557.59 1.09 

Table 3: Standard backtracking program for 
graph colouring 

N D CN BT Time And-/ / 
30 0.1 3 1 10.68 
30 0.3 5 2 23.09 
30 0.5 7 3 35.72 
30 0.7 10 5 58.98 
30 0.9 16 1 60.55 
10 0.5 4 1 1.67 
20 0.5 6 1 11.56 
30 0.5 7 3 35.72 
40 0.5 8 9 97.96 

Table 4: Forward checking program for 
graph colouring 

3.63 
5.30 
6.01 
6.16 
6.89 

3.41 
5.28 
6.01 
6.35 

The results show that the use of forward checking 
dramatically reduces the search space, and also 
reduces the sequential execution time, especially for 
larger graphs. Moreover, the and-parallel speedup is 
much greater for the forward checking program. 

6 Conclusions 
We have described some extensions to Andorra-I that 
allow us to experiment with finite domain constraint 
logic programming in a parallel context. These 
extensions were implemented with very little effort, 
thanks to the existing features of the Andorra-I 
system, such as its coroutining mechanism, up datable 
variables, variable locking, etc. We have also shown 
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how easily constraint programs can be written in the 
Prolog variant supported by Andorra-I. For example, 
provided that constraints are determinate - a very 
common case - they are automatically executed 
"actively", in preference to non-determinate guessing. 

Our experiments have confirmed that programs 
which use constraints are much faster than similar 
generate-and-test programs, demonstrating that our 
implementation of forward checking has no 
substantial overhead. 

The results of parallel execution are particularly 
interesting. Constraint programs exhibit greater and­
parallelism than generate-and-test programs, because 
the extra computation involved in forward checking 
can be parallelized by solving constraints in parallel. 
Evidence of this is the difference between Tables 1 
and 2, and between Tables 3 and 4. For example, on 
one processor, forward checking solves the 16-queens 
problem 12 times faster than standard backtracking, 
and colours the 40-node graph 16 times faster. On 10 
processors, the speed improvement due to forward 
checking increases to 24 times and 92 times, 
respectively. 

Or-parallelism is usually measured for all­
solutions search, mainly because this gives more 
consistent results than a search for one solution since 
the whole search tree is explored. The or-parallel 
speedup for a first-solution search is very variable and 
depends heavily upon the nature of the or-parallel 
scheduler built into the system. However, in many 
combinatorial search problems it is impractical to 
search for all (or many) solutions, so it is arguably 
more realistic to measure performance for first­
solution search. Our results always give a much 
smaller or-parallel speedup for the first solution than 
for all solutions. 

For the generate-and-test program of Table 1, the 
or-parallel speedup does exceed the and-parallel one, 
which is negligible. However, for the forward 
checking program of Table 2, the opposite is true. 
Although the and-parallel speedup in Table 2 is not 
large, it is enough to tip the balance in favour of 
exploiting and-parallelism, given a choice. 

Finally, we should mention that all of our results 
concerning and -parallelism are specific to the Basic 
Andorra model. This is because Andorra-I is the only 
serious Prolog implementation that features 
dependent and-parallelism. (It seems unlikely that a 
system with independent and-parallelism could give 
similar results, since forward checking involves the 
solution of constraints that are mutually dependent.) 
As we noted in Section 3, the Basic Andorra model 
has a sequential bottleneck with respect to and­
parallelism, which is ameliorated by the use of 
constraint solving. It would be interesting to see 
whether our results extend to other computational 
models combining dependent and-parallelism and 
search. An example of such a model, not yet 
implemented, is the Extended Andorra model 

[Warren 1990], which can execute even non­
determinate dependent goals in parallel and therefore 
should not have such a bottleneck. 
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Abstract 
In this paper, we propose a parallel computational 
model, called PR 3 (Parallel Resolution and Reduction 
with RAP), and its abstract machine for the parallel exe­
cution of Lazy Aflog program. Lazy Aflog together with 
its abstract machine FW AM-II was proposed as a cost­
effective functional logic language. Since the parallel 
reduction of the arguments of a function can be regarded 
as a parallel evaluation of independent subgoals, only 
Independent-And Parallelism is exploited in PR 3 in 
order to simplify the execution control. PR 3 is an exten­
sion of DeGroot's RAP, and it is proposed as a simple 
and coherent parallelizing method that can be applied 
both of the function and logic. A parallel abstract 
machine for PR 3 based on the RAP-W AM is also 
developed, which is an extension of FWAM-II equipped 
with the run-time structures and the primitive instruc­
tions to spawn the parallel executions and gather the 
results. Simulation results show that both of the parallel 
resolution and parallel lazy reduction can be provided 
efficiently in the PR 3 and abstract machine. 

1 Introduction 
During the last couple of decades, there has been 

growing interest in functional languages and logic 
languages as potential alternatives to conventional 
languages, because of their declarative semantics and no 
side-effect. They have been widely used as system pro­
gramming as well as application programming 
languages. Functional languages are characterized by 
reduction rules which make them procedural, while logic 
languages have the declarative flavour owing to their 
logical backgrounds. However, there exist software com­
ponents which include both procedural and declarative 
part. Since defining them in one paradigm, procedurally 
or declaratively, would be unnatural and leads to 
inefficiency [Bellia and Levi 1986]' there have emerged a 
lot of research efforts on the combination of two 
languages. 

Lazy Aflog [Nang et al. 1991] is an E-Unification 
(Equality-Unification) based functional logic language, in 
which an E-Unification, called E-Unification with lazy 
evaluation, is developed to combine the lazy reduction of 
functional language and two-way argument passing of 
logic languages. Thanks to this E-Unification, the notice­
able functional language features such as infinite data 
structures and higher-order function can be expressed 
naturally, while the expressiveness of the logic language 
such as non-determinism and unification is also main­
tained in the single framework. FWAM-II [Nang et al. 
1991] is an abstract machine for Lazy Aflog, in which 

instructions and run-time structures to support the 
suspension and reactivation of functional closure are 
incorporated into WAM. We already demonstrated in 
[Nang et al. 1991] that this pair would be a good 
compromise between the expressiveness and efficiency of 
the combination. 

Although FWAM-II is designed to maximize the 
performance on the conventional von-Neumann comput­
ers, it has the speed limitation because of its sequential 
nature. A natural way to improve the performance is to 
extend Lazy Aflog and FW AM-II pair in parallel, while 
keeping the performance optimizations and storage 
efficiency of sequential system. However, parallelizing 
Lazy Aflog computation is not a trivial problem, because 
we should deal with two different styles of parallelisms, 
one for logic part and the other for functional part. The 
simplest way in parallelization is to adopt already 
developed parallelizing schemes for each part, for exam­
ple, Conery model [Conery 1983] for logic part and paral­
lel graph reduction model such as GRIP [Peyton Jones et 
al. 1987] for functional part. It, however, requires a com­
plex control mechanism to switch between the parallel 
execution of logic and functional part. Hence, instead of 
having two different schemes, it is highly desirable to 
develop a coherent one that could be applied to both 
logic and functional part. 

Since the main parallelism in the functional part of 
Lazy Aflog program is the parallel reduction of argu­
ments and it can be viewed as an Independent-AND 
Parallelism in the view point of logic language, the paral­
lelisms in both parts can be exploited easily if there is a 
parallelizing method for Independent-AND Parallelism. 
The RAP Model [DeGroot 1984] is such a parallelizing 
method to spawn the parallel executions when there are 
independent subgoals in a clause. In this paper, we pro­
pose a parallel execution model for Lazy Aflog, called 
PR 3 (Parallel Resolution and Reduction with RAP), 
which is an extension of RAP. In PR 3, only independent 
sub goals in a clause and all the arguments of a strict 
function are resolved and reduced in parallel. Although 
this approach overlooks some available parallelisms in a 
Lazy Aflog program such as OR-Parallelism in logic part, 
it helps to avoid the complex run-time support. 

In addition, this paper proposes an abstract machine 
for PR3, called PFWAM-II (Parallel FWAM-II). It is an 
extension of FW AM-II equipped with the run-time struc­
tures and primitive instructions to spawn the parallel 
execution and gather the results. These run-time struc­
tures and instructions are inherited from the RAP-WAM 
[Hermenegildo 1986] with some modifications for the 
parallel lazy reduction of functional terms. Simulation 
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results to show the p-processor speed-up ratio over sin­
gle lrocessor are also presented to show the efficiency of 
PR and PFWAM-II. 

This paper is structured as follows. Section 2 briefly 
recalls our previous works on the Lazy Aflog and 
FWAM-II. A parallel computational model based on RAP 
for ~y Aflog is presented in Section 3, while a parallel 
extenSIon of FW AM-II for the parallel model is followed 
in Section 4. The simulation results that show the perfor­
mance of the parallel extensions and a comparison with 
the related works are presented in Section 5. Finally, a 
summary of paper is presented in Section 6. 

2 Lazy Aflog and FWAM-II 
. Lazy Aflog [N~ng et al. 1991] is a successor of Aflog 

[Shm et. al.19~7: Shm et al. 1988], to which the capability 
to process mfimte data structures and higher-order func­
tion are added. FW AM-II is also a successor of the 
abstract machine for Aflog [Shin et al. 1992] with the 
primitives to suspend and reactive the functional closure 
at the mac?ine instruction level. Lazy Aflog and 
FWAM-II paIr was proposed as an effective mechanism 
to incofJ?orate the functional features into logic. Now, let 
us explam Lazy Aflog and FW AM-II in more detail. 

A Lazy Aflog program consists of a set of Prolog 
clauses and a set of function definitions (or rewrite rules) 
writt~n in a const~ctor based functional language. The 
functional symbols m Lazy Aflog programs are classified 
into two disjoint sets : a set of constructors and a set of 
defined functions. A symbol f is a defined function if it 
appears at the left hand side of a rewrite rule, otherwise 
it is treated as a constructor symbol. In a Lazy Aflog 
program, a function application occurs as an argument of 
Prolog subgoal, which is reduced to its WHNF (Weak 
Head Normal Form) [Peyton Jones 1986] when the 
~ubgoal is resolved. This is the way in Lazy Aflog to 
m~orporate functional programming into logic program­
mmg. Lazy Aflo.g imposes a restriction that all the argu­
~ents of a function should be ground before the function 
IS r~duced. Even though it prevents Lazy Aflog from 
havmg the powerful inferencing mechanism such as nar­
rowing, it greatly contributes to the efficiency of the 
underlying E-Unification algorithm, because it assures 
that the E-unifier of two terms is unitary. 
. Let us e.xplain the programming style and opera-

h?nal semantics of Lazy Aflog. Example 1 is the famous 
Sleve of Eratosthenes program which generates the list of 
all the prime numbers infinitely using lazy evaluation 
technique. 

Example 1 Sieve-of-Eratosthenes 

C 1 : test(X) :- truncate(X, sieve(from(2))). 
C 2 : truncate(O,L). 
C 3 : truncate(X,[H 1 T]) :-

print_era(X,H), Y is X - I, truncate(Y,T). 
C 4 : print_era(X,H) :- write(X), tab(2), write(H), nl. 

F 1 : from(N) ==> [N 1 from(N+ 1)]. 
F 2: sieve([P 1 L]) ==> [P 1 sieve(filterp(P,L»]. 
F 3 : filterp(P, [X 1 L]) ==> «X%P) == a 1 filterp(P,L» 
F 4: [X 1 filterp(P,L)]. 

In Example I, a query ":- test(100)." generates 100 
consecutive prime numbers as its result. In the course of 
the refutation of the query, the unification of truncate(100, 

sieve(from(2)) in eland truncate(X, [H 1 TJ) in C 3 is tried as 
follows: 

call E-Unify(sieve(from(2», [H 1 T]) 
~ call E-Unify(from(2), [P 1 L]) /* by F 2 * / 
~ exit E-Unify([21 from(2+ 1)], 

[21 from«2+ 1)]) /* by F 1 * / 
~ call E-Unify(sieve([21 from(2+ I)], [H 1 T]) 
~ exit E-Unify([21 sieve(filterp(2, from(2+1»)], 

[2 1 sieve(filterp(2,from(2+ 1»)]) 1* by F 2 * / 
In this E-Unification+ process, the reduction of a func­
tional term is initiated when a head pattern of a clause or 
rewrite rule is a non-variable term and the correspond­
ing argument of the caller is a functional term. Note that 
the functional term is not completely reduced to its nor­
mal form, but to WHNF, which makes it possible to han­
dle the infinite data structures. The complete deSCription 
of the E-Unification algorithm, called E-Unification with 
Lazy Evaluation, is presented in [Nang et al. 1991]. 

FW AM-II, an abstract machine for Lazy Aflog, is an 
extension of W AM augmented with the manipulation of 
functional closure. It is characterized by that: 
• it adds the reduction mechanism to the W AM architec­

ture, and 
• it employs an environment-based reduction rather than 

graph reduction. 
Since W AM uses an environment for the variables in the 
body of a clause, the conventional environment-based 
reduction scheme is more suitable to W AM than the 
graph reduction is in the combination. Therefore, 
FW AM-II behaves similarly to the WAM in the execution 
of a clause, whereas it works' similarly to an 
environment-based reduction machine in the reduction of 
functional term. This W AM-based approach has been 
also adopted in other abstract machines for the functional 
logic language, such as K-WAM [Bosco et al. 1989] for K­
LEAF and a W AM model [Nadathur and Jayaraman 
1989] for A.-Prolog. The E-unification of Lazy Aflog is 
realized in FWAM-II via the reducibility checking in the 
unification instructions, which immediately calls the 
reduction process if the passed argument is a functional 
term and corresponding pattern is not a non-variable 
term. To implement the suspension and reactivation of 
functional closure, a run-time structure (called, Reduction 
Stack) is added to W AM structure. Figure 1 shows a 
compiled FW AM-II code for the filterp function in Exam~ 
pIe I, where mode and eq are predefined strict functions. 

Upon the benchmark testing [Nang et al. 1991], the 
re~~ction mechanism of FW AM-II is relatively less 
effICIent than W AM executing pure Prolog programs 
because of its overhead to construct and reference the 
fun~ti?nal closure, but it can support lazy evaluation in 
lOgiC m the abstract machine level. Consequently, it is 
argued that FW AM-II can support not only all the 
features of logic language but also the essential features 
of functional language with the performance comparable 
toWAM. 

3 A Parallel Computational Model 
for Lazy Aflog 

Although FW AM-II would be an efficient sequential 
~bstract machine. for Lazy Aflog, it has the speed limita­
tion because of ItS sequential nature. A natural way to 
overcome this obstacle is to extend it in parallel. This 



F 1: filterp(P, [X I L]) => «X%P) == 0 I filterp(P,L» 
F 2: [X I filterp(P,L)]. 

allocate 3 
% Pattern Matching 
fget_value 'P',X1 
fget_list X2 
match_value 'X' 
match_value 'L' 
% Guard Checking 
try_me_else_L F2 
put_value X,Xl 
put_value P,X2 
call_P _Arity_N model2,2 
put_integer O,X2 
call_P _Arity_N eq12,2 
% Committing 
commit 
% Construct WHNF 
write_function 'filterp/2', Xl 
write_value 'P' 
write_value 'L' 
rewrite_value Xl 
% Returning 
return 
trust _me _else Jail 
write_function 'filterp/2', Xl 
write_value 'P' 
write_value 'L' 
write_list X2 
write_value 'X' 
write_value Xl 
rewrite_value X2 
return 

Figme 1 A Compilation Example 

section addresses our point of view that adopts the RAP 
as our starting point, and presents a parallel computa­
tional model for Lazy Aflog. 

3.1 Parallelisms in Lazy Aflog Programs 
Lazy Aflog has various kinds of parallelisms inher­

ited from both function and logic, such as AND­
Parallelism, OR-Parallelism, and Argument-Parallelism. 
Among these parallelisms, we adopt the Independent 
AND-Parallelism as the primary parallelism owing that: 
• Ideally, all parallelisms in the Lazy Aflog program can 

be exploited in the parallel extension. However, it may 
require a complex control mechanism that may 
degrade the performance gains obtained through the 
parallel execution. 

• Since the Argument-Parallelism in the functional 
language part can be viewed as a kind of 
Independent-AND Parallelism in the logic language 
part, we can exploit parallelisms in both of the func­
tional and the logic parts in a simple and coherent 
manner if there is a parallelizing method for it. 

• There have emerged an efficient and powerful compu­
tational model and an abstract machine for 
Independent-AND Parallelism of logic programs. 
DeGroot's RAP Model and RAP-WAM [Hermenegildo 
1986] are such a computational model and an abstract 
machine, respectively. 

853 

3.2 A Parallel Computational Model: PR 3 

A parallel computational model for Lazy Aflog, 
called PR3 [Nang 1992], is a parallel model which can 
support both of the parallel resolution and parallel lazy 
reduction simultaneously. The basic principle to spawn a 
parallel task is as follows; 

Rule 1) the subgoals in a clause are executed in parallel 
when their arguments are independent or ground 

Rule 2) the arguments of a functional term are reduced in 
parallel when their WHNFs are demanded and 
the function is a strict one 

Rule 3) the alternative clauses and rewrite rules are tried 
sequentially using the top-down strategy 

The algorithm of independent and ground are same as 
the ones defined in [DeGroot 1984]. This principle can be 
expressed with an intermediate code, called CGE+ 
(Conditional Graph Expression +), which is an extension of 
DeGroot's CGE [DeGroot 1984]. It is used to express the 
necessary conditions to spawn the subgoals or function 
reductions in paralleL The body of a clause and right­
hand side of a rewrite rule are expressed by the CGE+, 
which is informally defined as follows; 

1) G : a simple goal (or subgoal) whose argument can be 
a functional term. 

2) (SEQ E 1 ... En) : execute expressions E 1 through En 
sequentially 

3) (PAR E 1 ... En) : execute expressions E 1 through En 
in parallel 

4) (GPAR (V 1 ... Vk) E 1 ... En) : if all the variables V 1 

through Vk are ground, then execute expressions E 1 

through En in parallel ; otherwise, execute them 
sequentially 

5) (IP AR (V 1 ... Vk) E 1 ... En) : if all the variables V 1 

through Vk are mutually independent, then execute 
expression E 1 through En in parallel; otherwise, exe­
cute them sequentially 

6) (IF B E 1 E 2) : if the expression B is evaluated to 
true, execute expression E 1; otherwise, execute 
expression E 2 

7) F (SEQ Fl'" Fn) : if F is a construct symbol or 
non-strict function symbol, then construct WHNF 
F ( Fl' .. F n) sequentially ; otherwise (i.e. F is a 
strict function symbol) evaluate expressions F 1 

throuph Fn s,equentially and eventually evaluate 
F(F 1 ... Fn) 

8) F (PAR F 1 .. , Fn) : if F is a construct symbol or 
non-strict function symbol, then COl~stru~t W~NF 
F ( F 1 .. , Fn) sequentially ; otherwISe (z.e: F 15 a 
strict function symbol) evaluate expresslOns F 1 

throuph F n i,n parallel and eventually evaluate 
F( F1 .,. Fn) 

The expressions 1) through 6) are the same as the 
DeGroot's CGE for the clause (actually they are 
improved CGE defined in [Hermenegildo 1986]), while 
expressions 7) and 8) are new expressions for rewrite 
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rules. Note that there are no conditions to check the 
groundness of function arguments in the expressions 7) 
and 8), since they are automatically checked by pattern 
matching semantics of the rewrite rules. That is, the 
arguments of a rewrite rule are always ground, hence, 
they can be always evaluated in parallel. In expression 
8), the arguments are reduced in parallel only if the func­
tion is strict, which results in its WHNF. Otherwise, it is 
rewritten to the term in the right-hand side, which is 
returned as the result. In this case, as it is not WHNF, it 
induces another reduction process. The reason to adopt 
this reduction strategy rather than directly call the non­
strict function, is in order to keep the storage optimiza­
tion based on tail-recursion. 

Example 2 is a CGE + for a Lazy Aflog program. It 
can be automatically generated from the Lazy Aflog pro­
gram by the parallelizing compiler, or programmed 
directly by the programmer. 

Example 2 A CGE+ for the Lazy Aflog program 

C 1 : test(X,Y) :- (IPAR (X,Y) p(X,Z) q(Y,W», r(f(Z), g(W». 
c 2: test(X,Y). 
C 3 : p(a,I). C 5 : q(c,3). 
C 4 : p(b,2). C 6 : q(d,4). 
C7: r(2,S). 
C 8 : r(4,72). 
F 1 : f(X) ==> (X == 0) I 0, 

+(PAR fib(X) fib(2*X». 
F 2 : g(Y) ==> *(P AR factorial(Y), fib(Y». 

In Example 2, as the subgoals p (X ,Z) and q (Y ,W) 
would generate the values of Z and W that are taken 
into the terms I(Z) and g(W), the goal r(/(Z),g(W» 
should be executed after the evaluation of them. Figure 2 
is the snapshots of the parallel execution of the CGE+ in 
Example 2 when "Q 1 :- test(b,d)" is given. In Figure 2, the 
rectangle, circle and rounded-rectangle represent OR 
node, AND node and reduction node, respectively. The 
number attached to each node represents the order of 
execution, while the filled nodes represent the activated 
nodes at that time. Note that, since the Unification Paral­
lelism is not exploited in PR 3, the functional terms 1 (1) 
and g (3) in the step (c) are reduced sequentially, 
although they can be evaluated in parallel if the 
innermost-like reduction strategy is used. The backward 
execution of the PR 3 is the same as the one presented in 
[Hermenegildo 1986] because there are no backtracking 
in the reduction phases after a functional term is eventu­
ally reduced to WHNF. For example, in the step (d), the 
subgoal q (Y ,W) which generate the arguments W would 
search alternative solutions for Y and W when a fail is 
occurred, rather than to generate another WHNF for g(3) 
or 1 (1). 

4 A Parallel Extension of FWAM-II for PR3 
The desirable characteristics of parallel abstract 

machine is to support the parallel execution while retain­
ing the performance optimizations offered by the current 
sequential systems. To achieve this goal, a parallel 
abstract machine for PR3, called PFWAM-II (Parallel 
FWAM-II), is designed as an extension of the sequential 
abstract machine FW AM-II. It is equipped with the run­
time structures and instruction set to fork and join the 
parallel executions. We adopted the nm-time structures 

(b) When the body ofCl is executed. The goals 
p(X.z) and q(Y,W) can be executed in parallel 

L...-___ (c) The reduction of f(l) causes the reductions of 
fib(l) and fib(l *2) in parallel 

3 
-2:p(~ C7:r(2.5) C8:r(4.72 

(d) Since there are no clause unified with r(2,12), , 
a 'fail' message is sent to q(Y,W), and now C6 is tired. 

Figure 2 The Parallel Execution Snapshots of the 
Lazy Aflog Program in Example 2 

and instructions of the RAP-WAM for the extension of 
FW AM-II because it is also an extension of W AM for 
AND-Parallel execution of Prolog and has a general 
primitive to fork and join the parallel tasks. Figure 3 
shows the relationships between W AM, FW AM-II, RAP­
WAM, and PFWAM-II. 

RAP-WAM 

~=~_~ PFWAM-/I 

Figure 3 The Relationships Between WAM, FWAM-II, 
RAP-WAM and PFWAM-I1 



4.1 Run-Time Structures for Parallel Execution 
The run-time structure of PFWAM-II is an extension 

of FW AM-II for parallel executions as shown in Figure 4. 
It consists of three parts; First, the Heap, Trail, Environ­
ment, and Choice Point are structures for the execution of 
the logic part, and inherited from W AM ; Secondly, RS 
(Reduction Stack) is the structure only for the function 
reduction, and inherited from FW AM-II ; Finally, GS 
(Goal Stack), ParCali Frame, Local Goal Marker, Input 
Goal Marker, and Wait Marker are run-time structures 
for the parallel executions of subgoal or function 
reduction, that are inherited from RAP-WAM with slight 
modifications. 

H 

HEA 

CFA3 CODE 1 CP~ , 
P - -

TRm 
MB 

MESSAGE 
BUFFER -,-

REDUCTION 
SIM:K 

Figure 4 Data Areas and Registers for One PFW AM-II 

In fact the run-time structures of the parallel execu­
tion is almost ~he same as that of RAP-WAM except that 
a parallel task ill PFW AM-IT can be a reduction of a func­
~onal term as well as the evaluation of subgoal, whereas 
m RAP-WAM, only the evaluation of a subgoal can be a 
parallel task The run-time structure for parallel execu­
tion are the Goal Frame, ParCall Frame, Input Goal Marker, 
Local .Goal Marker, and Wait Marker. Let us explain them 
focusmg on the extensions which allow them to be also 
used for function reduction. 

• The Goal Frame : 
The subgoals or the functional terms which are ready 
to be executed in parallel are pushed onto the Goal 
Stack Each entry in the GS is also called a Goal Frame 
as in RAP-WAM. A Goal Frame contains all the neces­
sary information for the remote execution of tasks. 
There are two kinds of Goal Frame in PFW AM-II; one is 
for a subgoal, and the other is .for a function reduction. 
They are distinguished by the special tag in the Goal 
Frame. When a Goal Frame is the one for t1;le subgoal, 
the structure of Goal Frame is the same as in RAP­
W AM ; otherwise (i.e. it is one for the function reduc­
tion), it contains the extra pointer to the functional 
term to be reduced. In both cases, they are stolen from 
Goal Stack by a remote processor, and executed 
remotely in the same way. 

• The ParCall Frame: 
It is used to keep track of the parallel tasks during for­
ward and backward executions of PR 3. The entries 
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and meanings of the ParCali Frame that is created for 
each parallel task are the same as in RAP-WAM. If a 
ParCall Frame is the one for the parallel function reduc­
tions, it immediately disappears from the Local Stack 
when the parallel reductions are completed because 
there is no backtracking in the reduction process. It is 
different from the case of parallel subgoal calls, in 
which it remains in the Local Stack in order to select the 
appropriate actions during backtracking. 

• The entries and meanings of the Input Goal Marker, 
Local Goal Marker, and Wait Marker are the same as in 
RAP-W AM. However, they also immediately disap­
pears when the task is a function reduction and it is 
reduced to WHNF. 

The general execution scenario of PFW AM-II is as 
follows. As soon as a processor steals a task from another 
processor's Goal Stack, it creates an Input Goal Marker on 
its top of Local Stack, and checks whether it is a subgoal 
or a function reduction. If it is a subgoal, the processor 
starts working on the stolen sub goal by loading its argu­
ment registers from the parameter register fields in the 
Goal Frame and fetching instructions starting at the loca­
tion (procedure address) received. If the stolen task is a 
function reduction, the processor loads the arguments 
and finds the starting address of the corresponding 
rewrite rule by referencing the functional term stored in 
the Heap of the parent processor. It was recorded on the 
Goal Frame by the parent processor. At any case, the local 
stacks of the processor will then grow (and shrink) as 
indicated by the semantics of FW AM-II. 

When a parallel call is reached, a ParCall frame is 
created on the top of the Local Stack and tasks are pushed 
on to the Goal Stack. If there are no idle processors in the 
system at that time, the processor itself gets the goal from 
its Goal Stack again, makes a Local Goal Marker, and exe­
cutes the task locally. If the parallel call is one for the 
subgoals, an Wait Marker is created on the top of the Local 
Stack as soon as all subgoals succeed. It is used for the 
backward execution of PFWAM-II. However, if the 
parallel call is for the function reduction, the ParCall 
Frame, Local Goal Marker, or Input Goal Marker, created on 
the local Stack can be removed since there is no back­
tracking in the reduction process. After the parallel call 
is finished, the execution can continue normally beyond 
the parallel call. 

4.2 Instruction Set 
The instruction set of PFW AM-II consists of the 

FW AM-II instructions and the new instructions imple­
menting RAP as shown in Table-I. Since the FWAM-II 
instructions were explained in [Nang et al. 1991] and the 
instructions to fork and join the parallel call when tasks 
are subgoals are almost the same as the RAP-WAM, we 
only explain the instructions to control the parallel reduc­
tion. To fork and join the parallel executions are actually 
the same as the RAP-W AM when the parallel call is a 
determinate one. However, some attentions are required 
since the tasks to be forked can be functional terms. 

• pushJeduce Vn, Slot_Num 
It makes a new goal frame on the Goal Stack with the 
Slot_Num for the functional term pointed by Vn. 



856 

<Table-l> The PFWAM-il Instruction Set 

The PFW AM-II Instruction Set 
YVAM instructIons 

J:'roceaure _'-.. ontrol .-!n~exmg Llause _~..;onJ:!"Ql 
try L switch on term Ai, v,c,l,s call P/arity 
retry L switch-on -constant n, ff execute 
trust L switch=on=structure n,ff proceed 
try _me_else L allocate 
retry _me_else L deallocate 
trust me else fail 

Get Put Unify 
get_variable Vi,Ai put_variable Vi,Ai unify_variable Vi 
get_value Vi, Ai put_value Vi,Ai unny _value Vi 

put_unsafe_ value Yi, Ai unny _unsafe_value Yi 
get_constant C,Ai put_constant C,Ai unny _constant C 
get_list Ai put_list Ai unny _list 
get_structure S,Ai put_structure S,Ai un~ _structure S 
get_nil Ai put_nil Ai un' nil 

uni -void 
I{eauctIonlnstructIons 

l'get ~atcnmg 1!n~ng 
tget_value \Ii, Ai match_value Vi write_value Ai 
fget_constant C,Ai match constant C write constant C 
fget_list Ai match -structure S write-structure S 
fget_structure S,Ai match=list write-list Ai 
fget_nil Ai write-function F,Ai 

write-structure value 5, Ai 
R~uction Contro~ RewrItmg Reducmg 

commit rewrite_value Vi reduce_value Ai 
return 

arallel Abstract Machme ~[)eClhC InstructIons 
~-l'Vi ~M InstructIons 

check_me_else_Iabel Label push_call 
check_ground V n check_read y 
allocate_pcall #_oCslot, M check_independent 
J20R _pending __ goal waiting_ on siblings 

• deallocate-rcall 
It is used to join the parallel reductions. It waits until 
the number of goals to wait on in current ParCall Frame 
is 0; then, removes the current ParCall Frame from the 
local Stack. 

Figure 5 shows the simplified PFWAM-ll codes for 
F 2 of the CGE + in Example 2, in which since '+' and '*' 
are strict functions, their arguments are reduced directly 
rather than constructing the functional closure. 

5 Analysis 
5.1 Performance Evaluation 

In order to estimate the performance of our parallel 
extension, a simulator for PFW AM-II is developed. In 
this simulation, we assumed that there is a common 
shared memory for the run-time structures of each pro­
cessor which are interconnected by a network. Each pro­
cessor can access the run-time structures of other proces­
sors without additional overheads. The performance of 
PFWAM-ll is estimated by counting the number of 
memory and register references, where the time for 
referencing data stored in the shared memory (whether it 
is local or not) is assumed 3 times longer than the time 
for register referenCing, and the times for other opera­
tions such as arithmetic are ignored for the sake of sim­
plicity. 

We use three benchmark programs : the first one is 
FibonaccilO that is to compute the 10th fibonacci number, 
the second is CheckSO [Hermenegildo 1986] in which 
there are 10 parallel tasks each of which calls itself 50 

Parallel ReauctIon ~peclhcs 
Pid/Arit~lot# JJush_reduce Vn, ~lot_# 
Slot_#, bel aeallocate_pcall 
Vn,Vm 

F 2: g(Y) ==> *(PAR factorial(Y), fib(Y». 

F 2: allocate 
% Pattern Matching 
fget_ value Yl, Xl 
% Spawn Parallel Reduction for factorial(Y) 
allocate_pcall 2, 2 
put_value Yl, Xl 
write function factorial/l, Y2 
write= value Xl 
pushJeduce Y2,2 
% Spawn Parallel Reduction for fib(y) 
put_value Yl, Xl 
write_function fib/l, Y3 
write_value Xl 
pushJeduce Y3, 1 
% Gather the Results 
pop _pending_goal 
deallocate_pc all 
% Construct WHNF 
put_value Y2, Xl 
put_value Y3, X2 
call_P _Arity _N * /2, 2, 1 
rewrite_value Xl 
% Returning 
return 

Figure 5 An Compilation Example 
for CGE+ in Example 2 

times, and the third is Symbolic Derivation [Hermenegildo 
1986] which is to find the derivative with respect to a 
variable. There are 176 parallel tasks in the FibonaccilO, 



10 parallel tasks in the CheckSO, and 152 parallel tasks in 
the Symbolic Derivation. These benchmarks are pro­
grammedin both of logic and functional programming. 
In the simulation of function reduction, the effect of dif­
ferent reduction strategies is also measured. The simu­
lated reduction strategies are Innermost Reduction in 
which the innermost functional terms are reduced first 
before the outer is tried, Semi-Lazy in which only the 
strict functions are reduced in the innermost fashion, and 
Lazy Reduction in which all functions are reduced in the 
outermost fashion. 

Upon the simulation results, the parallelizing over­
head, which is defined as the extra execution time for 
parallel code running on the single processor, is meas­
ured as about 30-60 % when the grain size is relatively 
small (for example, FibonaccilO and Symbolic Derivation), 
whereas about less than 1 % when the grain size of paral­
lel task is large enough to ignore the overhead (for exam­
ple, CheckSO). Figure 6 graphically shows the speedup of 
the execution time of all benchmark programs as a func­
tion of the number of processors. In this figure, since 
CheckSO has only 10 parallel tasks, the speedup doest not 
increase when the number of processors is larger than 10. 
The speedup of other benchmark programs are not linear 
because they have too fine-grained parallelism. The most 
important fact which can be identified from Figure 5 is 
that, whether they are programmed in the logic or functional 
style, and whether the reduction strategy is innermost or outer­
most, the speedup behaviour is almost same. The speedup 
ratio is not dependent on the execution mechanisms, but 
the availability and grain size of parallelism in the bench­
mark programs. In other words, PFW AM-II can support 
both of the parallel resolution and parallel reduction with 
the almost same efficiency. 

Figure 7 shows the Working, Waiting, and Idle 
times for Symbolic Derivation as a function of the number 
of processors. It is from identified from Figu~e 7 that the 
processor utilization ratio is reduced proportlOnal to the 
number of processors, and the parallel reduction mechan­
ism permits higher utilization ratio than parallel resolu­
tion because there is no restriction to steal a task from 
other processors when the task is a function reduction 
(i.e., there is no "garbage slot problem [Hermenegildo 
1986]" when executing the function reduction). 

5.2 Comparison with Related Work 
One of the most related works is the CSELT's work 

centering around K-LEAF. K-LEAF [Levi and Bosco 1987] 
is a functional logic language based on the transforma­
tion. A rewrite rule in K-LEAF program is transformed 
into Prolog clause with an extra argument for the return 
value, and the nested function is flattened with produced 
variable for the outermost search strategy. K-WAM is an 
abstract machine to support outermost-SLD resolution 
which is the inference rule of K-LEAF. Accordingly, 
there is no real reduction mechanism in K-LEAF and K­
WAM. 

A parallel extension of K-W AM on a distributed 
memory multiprocessor is also developed [Bosco et al. 
1990]. In this work, K-WAM is extended to control the 
OR-parallel execution of K-LEAF progra~, and AN?­
parallelism is restricted to be one-soiutlOn. The major 
difference between the parallel extension of K-WAM and 
PFW AM-IT is that the former is designed for exploiting 
only OR-parallelism in the flattened K-LEAF programs, 
while the later is designed for exploiting only AND­
parallelism of Lazy Aflog programs. 
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Figure 6 SpeedUp vs. Number of Processors 
for Benchmark Programs 

6 Summary 
This paper presents a pair of a parallel computa­

tional model and its abstract machine for a functional 
logic language, called Lazy Aflog, which was proposed 
as a cost-effective mechanism to incorporate functional 
language features into logic language. The proposed 
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Figure 7 Working, Waiting Idle Times 
for Symbolic Derivation 

computational model underlies De<?root's RAP mo~el 
because the Restricted-AND ParallelIsm could be easIly 
exploited in both of the function and logic. However, 
some extensions are required since there is a parallel 
function reduction in the functional part of Lazy Aflog 
programs. Since RAP-WAM .includes the general struc­
tures to fork and join the parallel tasks, the parallel func­
tion reductions can be also supported efficiently with 
slight extension. A parallel abstract machine based on 
the RAP-WAM and extension of FWAM-ll, called 
PFW AM-II, is also proposed as an implementation 
method on a multiprocessor. Several simulation results 
show that PFWAM-II can support not only the parallel 
resolution, but also parallel reduction with the almost 
same efficiency. 
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Abstract 

A new scheduling scheme is proposed which directs pro­
cessors to share the search space according to universal 
task distribution rules obeyed by all processors involved. 
Load balancing is achieved by altering the shape of a 
search tree to remove the so-called structural imbalance, 
and following a statistically even distribution rule. A 
condition for task distribution is derived which minimizes 
the average parallel runtime. We present data showing 
the effectiveness of the proposed scheme. Simulation re­
sults from benchmark programs that can be found in 
literature demonstrate that the method is able to effi­
ciently treat programs that render mostly fine-grained 
parallel tasks under a typical existing scheduler. The 
peak speed-up factors with the proposed technique ex­
ceed by a substantial margin that achieved by Aurora 
Parallel Prolog on the same set of benchmarks. 
Key Words: Efficiency, Logic programming, Load bal­
ancing, Parallel execution, Scheduling, Speed-up. 

1 Introduction 

Load balancing is the key to obtaining maximum uti­
lization of a multiprocessor system. Parallel execution 
of a logic program creates many tasks that need to be 
assigned to processors at run time. Detecting available 
tasks at run time and migrating tasks among processors 
is expensive. This is particularly acute for systems in 
which communication overhead is high due either to ar­
chitectural reasons, or to a large number of processors 
being used, because a traditional task scheduler relies 
heavily on shared resources, shared memory or intercon­
nection network, to perform its functions. As the scale 
of a multiprocessor system grows, and the speed of im­
plementing resolution in local processor improves l

, task 
scheduling becomes increasingly frequent. However, the 
speed of the scheduler cannot be expected to increase 
proportionally if the scheduler continues to operate on 
resources shared by all processors. This motivates us to 

*This work is supported by AFOSR grant AFOSR-9l-0350 and NSF grand 
IRI-89-16059. 

search for schemes that are less reliant on resources sub­
ject to competition by all processors in a multiprocessor 
system. 

In this paper we discuss a scheduling scheme called self­
organizing scheduling which directs processors to share 
the search space, the search tree defined implicitly by a 
program, according to task distribution rules followed by 
all processors. We discuss methods, including program 
restructuring and a new interpretation of so-called choice 
predicates, that help to alter the shape of the search tree 
so as to facilitate maintaining load balance with a prob­
abilistic task distribution rule. We derive a condition 
for task distribution that minimizes the parallel runtime. 
Experimental data are presented showing the effective­
ness of the methods. Empirically, many programs that 
were frequently used as Or-parallelism benchmarks in the 
literature can be restructured to effectively exploit the 
advantage provided by the proposed scheduling method. 
For problems with fine-grained parallelism (e.g. a tightly 
written 8-queens, zebra, turtles programs, running on 30 
or more processors) whose speed-up factors reach peaks 
at less than 30 processors on a typical Or-parallel Prolog 
system, we found that the peak speed-up factors can be 
doubled or tripled using the self-organizing scheduling 
method even without resorting to communication. 

The paper is organized as follows: section 2 provides 
background on parallel execution of logic programs; sec­
tion 3 discusses the proposed methods; section 4 presents 
the experimental results, and comparison with existing 
systems; section 5 discusses advantage and limitation of 
the proposed method, and possible solutions; section 6 
describes related work; section 7 concludes our work. 

2 Background 

We consider a logic program to be a set of Horn clauses 
written as, 

1 Speed of sequential Prolog implementation has been improved drastically 
over the past several years. New developments have been reported [VR90j 
which could lead to improvement in speed in the order of several times that 
of the current best Prolog implementations. 
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where H, the head of the clause, is a positive literal 
and the B:s, the body of the clause, are conjunction of 
either positive of negated literals (possibly empty). The 
intuitive interpretation of the above rule is if all Bi 's are 
solved then H is considered solved. 

A query is written as : -Q, where Q is a conjunction of 
literals. Evaluation of Q starts with clause : -Q, using 
resolution [Lloyd84] to derive an empty clause should 
one exist. There may be multiple selection of rules at 
each resolution step. All solutions can be found by ex­
hausting every possible alternative in the program. The 
resolution process can be visualized as the construction 
of a search tree (backtracking tree, proof tree) for the 
given query. Given a program and a query, the tree is 
implicitly defined. 

We define a partition of the tree as a part of the tree 
that consists of a set of nodes reachable from the root of 
the tree. Two partition are disjoint if there is no common 
leaf node in the partitions. We note that a partition 
always contains a path from the root. 

2.1 Or-Parallel Execution of a Logic Program 

Or-parallel execution of a logic program can be viewed as 
having multiple processors (resolution engine, workers) 
simultaneously exploring different parts of a search tree 
defined implicitly by the program. Execution starts with 
the original goal sent to one of the workers. The goal is 
expanded by resolving one of its atoms (the leftmost one 
in the case of Prolog) with clauses which have matching 
heads. If more then one p')tential subgoal is generated, 
and if there are idle worker!3, the extra subgoals are made 
available to the idle workers. Any unsolved subgoal that 
remains is solved upon backtracking. The procedure re­
peats until all workers finish their tasks. In this paper, 
we are concerned only with the situation in which the 
tree is finite and all solutions need to be found. In other 
words, the entire search tree is explored. 

Task scheduling consists of searching for available tasks 
(or processors) and transferring a task. Transferring a 
task from one processor to another means migrating the 
state (variable bindings, control information, etc.) of 
one processor corresponding to the task to another pro­
cessor. Different execution models handle task migration 
differently [Ali90, But88, Mud91, Kale85, Lusk, Clock88, 
Giul90j, with the objective of balancing load distribu­
tion with as little communication as possible. A com­
mon characteristic of existing methods is that processors 
cope with the dynamically changing search space by in­
terchanging messages to detect where a task is available 
and migrate to the task. While this approach has an ob­
vious advantage of automatically adapting to the shape 
of the search tree, the overhead of scheduling can be un­
necessarily high especially for fine-grained tasks. This 
will become clear when performance data is presented 
from a typical Or-parallel system later in this paper. 

With increasingly fast implementation of sequential 
resolution engines, and even larger scale multiprocessor 
systems available, the issue of scheduling has added a 
new element of how to keep up with the speed of the 
resolution engine which operates primarily on local and 
private resources. The computing power of fast local 
resolution engines can be utilized fully only when the 
scheduler is able to allocate tasks for them efficiently. 

We investigate a method that divides the search space 
and coordinates the search by following universal rules 
rather than via communication among processors. We 
describe the method and present performance results in 
following sections. 

3 Self-organizing Scheduling 

The idea of the method is to allow each processor to 
decide, locally, a partition (defined in above section) in 
the search tree to explore, according to universal rules 
agreed on by the whole system. It works as follows: ev­
ery processor obtains a copy of the original goal (the root 
of the search tree), and performs a depth-first search on 
the tree. At each node, a processor expands all children 
of the node and claims those belonging to it according 
to rules agreed on by every other processor in the sys­
tem, then processes them independently. The decision of 
which path(s) to pursue is made locally by each proces­
sor. No dialogue among processors is necessary until the 
first processor completes the task it claims. 

An ideal situation would be that each processor ob­
tains a partition of equal size. However, this is unlikely 
unless the granularity of a task is predictable. We pro­
pose a program restructuring method which alters the 
shape of the search tree so as to facilitate a probabilist 
task distribution rule, which will be discussed later. 

Or-parallel branches in the search tree are created by 
the selected literal (for expansion) unifying the heads of 
multiple rules. Imbalances of the tree are results of either 
1) terminated branches (cut-offs) or 2) syntactic charac­
teristic of the program which results in an imbalanced 
search tree, as will be referred to as structural imbalance 
in the rest of the paper. 

An important class of programs written in a logic pro­
gramming language are the generate-and-test programs, 
where the generating phrase produces candidates, stored 
in a structure, and the testing phrase retrieves and tests 
a candidate from the structure. Generating and testing 
can be interwaiving. While we do not know yet how to 
speculate on cut-offs, structural imbalances can be cured 
by changing the way the candidates are retrieved. 

To illustrate the idea, we examine a Prolog predicate, 
the member predicate. This predicate, and its variation, 
can be found in many normal style generate-and-test pro­
grams as a mean to create alternative choices. The pred­
icate is usually defined as, 



member(X, [XIY]). 
member(X,[HIY]) :- member(X, V). 

Given a list as the second argument, member returns 
an element from the list in the first argument of the 
predicate. All element can be retrieved eventually by 
exhausting, recursively, all alternatives. 

Predicates which represent multiple choices in the res­
olution are refered to as choice predicates, as oppose to 
determinate predicates which has only one valid choice. 
The member predicate defined above is a choice predicate 
when called with an instantiated second argument and 
uninstantiated first argument. Notice that whether or 
not a predicate is a choice predicate is contingent on not 
only the way it is written but also the argument pattern 
it is called with. A recursive choice predicate and a re­
cursive determinate predicate is not distinguishable syn­
tactically in Prolog. We assume choice predicate are ex­
plicitly identified with annotation suplied by users. This 
assumption is consistent with practice in many existing 
parallel Prolog systems[But88, Ali90], which require ex­
plicitly distinction between predicates to be evaluated 
sequentially or in parallel. 

At run time the normal style member predicate defined 
above produces a search tree "biased" to the right: the 
left child of a node in the tree corresponds to the first 
rule and the right subtree of a node corresponds to the 
second recursive rule of the definition. When this predi­
cate is embeded ina program, a left branch so generated 
represents one element of the given list to be processed, 
and a right branch represents the rest elements to be 
processed. The difference cannot be observed by the res­
olution engines being at the parent node of the branches. 
Furthermore, the degree of bias is magnified if the pred­
icate is called from inside a loop. 

3.1 Flattening Choice Predicates 

Program Restructuring: Retrieving members of a 
given structure can be written in a non-recursive form. 
For instance, the member predicate can be defined as, 

member(X,[XIY]). 
member(X,LXIY]). 
member(X,L,_,XIY]). 
member(X,L,_,_,XIY]). 
member(X,L_,_,_,XIY]). 
member(X,L,_,_,_,_,XIY]). 
member(X, L,_,_,_,_,_,XIY]). 

if the number of elements the predicate will be called 
with is known at compile time. Otherwise a recursive 
rule has to be added to ensure the correctness of the 
definition, 

member(X,L_,_,_,_,_,-1Y]) :- member(X,Y). 
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We consider this approach a partial solution to the 
problem because it is not sufficient for all programs in 
general. It is a useful program pre-processing technique 
until a new interpreter is built that takes care of general 
cases as suggested below. 
Flattening Choice Predicates at Run Time: We 
propose that the evaluation of a choice predicate be sep­
arated from normal resolution so that choices can be rep­
resented in the search tree in a flatten form regardless 
how the choice predicate is written. A choice predicate 
is compiled into a special structure distinguishable from 
the rest of the code and is evaluated at run time sepa­
rately. We identify such a structure as a choice graph. 
The choice graph is intended to help expand all possible 
alternatives at run time. Ideally it should also provide 
mechanism to recognize "bogus" choices, i.e. choices that 
quickly lead to failure. For this purpose a guard can be 
incorporated to validate an alternative. A predicate will 
then be defined as 

Head: -Guard: Body 

At run time, the Guard is evaluated before a branch is 
actually expanded in the search tree. A choice graph is 
constructed at compile-time as follows: 

• the choice predicate forms a node called the root; 

• the right-hand-side of each alternative definition is a 
child node o(the root. There is a directed arc from 
the root to every child. A child node has two part, 
the guard and the body. The body can contain an arc, 
in position of the recursive call to the choice predi­
cate, leading to the root of the graph, representing 
recursion. We limit our discussion to direct recursion 
in this paper. 

At run time, a choice predicate is evaluated according 
to its choice graph. Choices generated by the evalua­
tion become immediate children to the node at which the 
choice predicate is caUdd. The tree so generated will 
be as if the choice predicates in the program were flat­
tened syntactically, achieving the same effect of removing 
structural imbalances in the search tree while keeping the 
original program intact. We note that to create a choice 
branch in the search tree, it is sufficient to evaluate only 
the guard and predicates positioned to the left of the 
recursive call (the recursive arc in the choice graph). 

3.2 Task Distribution Rules 

Effectiveness of the self-organizing scheduling approach 
lies in whether a balanced load distribution can be ob­
tained. By removing structural imbalance of a program, 
cut-offs are the only factor that remains causing imbal­
anced load distribution. Cut-offs exhibit high degree of 
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Figure 1: Sample Probability Density Functions 

uncertainty, or randomness. Here we investigate task dis­
tribution rules that minimizes average parallel runtime 
in theory. In the next section, we study the effectiveness 
of these rules on benchmark programs. 

Until now, we have been using the term task without 
formally defining it. A task is a sequence of consecutive 
resolution steps including backtracking performed by a 
processor. A task is a basic unit of work to be assigned 
to one or more processor( s). It can be represented by a 
node or several nodes in the search tree. -Task is created 
dynamically at run time. 

We assume that runtime is proportional to the num­
ber of nodes traversed. Runtime of a parallel execution 
is the longest runtime of all processors. In the follow­
ing discussion, runtime is measured by number of nodes 
traversed, as to simplify the description. 

We prove, in the Appendix, the following result: 
Theorem: Let N be the number of processors, let m 

(~ is an integer) be the number of tasks whose sizes are 
statistically identical and exhibits the following property: 

1. the probability density function is non-increasing, or 

2. the probability density function is symmetric with 
respect to a positive central point. 

then the average parallel runtime is minimized iff iden­
tical number of processors are assigned to each of the 
tasks. 

The conditions in the theorem are satisfied by distribu­
tion of shapes illustrated in 1, including, but not limited 
to, uniform, exponential, and normal distributions. 

Statistical identicality of tasks can be guaranteed by 
enforcing fairness in creating a task, that is, a particular 
node from a pool of available nodes has equal chance to 
be included in any task. 

Problem remains as to how many tasks are to be cre­
ated under any particular node. We could create as many 
tasks as the number of processors being present the node, 
evenly dividing them among processors, or create only 
one task, assigning it to all processors. In the former 
case the search space is divided among processors in the 
fast possible way. In the latter case the search space 
is not divided at the current node of the search tree. 
Redundant computation is incurred, but the ability to 
adapt to the shape of the search tree can be improved as 
will be explained later. 

Here, we focused on the following task distribution 
rules, both satisfying the statistical identicality condi­
tion: 

Table 1: Comparison of the Two Splitting Strategies. 
See Text for Further Explanation. 

1. the eager-splitting strategy: at each choice point 
where m processors are present, assume there is n 

valid choices. m tasks are created and assigned 
evenly to m processors. If n 2:: m, each task con­
tains ;; choices, the left-over choices are randomly 
included in some of the tasks. If n < m, each choice 
constitute !!!. tasks, the rest tasks are formed by ran­
domly picking one choice for each. 

2. the lazy-splitting strategy: at each choice point, two 
tasks are created and assigned to each of the half of 
the processors. In case of choices being not evenly 
dividable, left-overs are treated in a way similar to 
that in the eager-splitting rule. 

With the eager-splitting strategy, the search tree is di­
vided among processors in the fastest possible way. The 
lazy-splitting strategy is the opposite, trading computa­
tional overhead for better adaptability. 

Assuming that there are n = 2k processors, and the 
search tree is balanced and is of degree d (i.e. every node 
has d branches). Under these conditions, the two task 
distribution rules are compared in terms of parameters 
described below: 

• allocation level, Lalloc: the depth (from the root, level 
0) in the search tree where an individual processor 
commits itself to one or more nodes exclusively. 

• number of nodes allocated, Nalloc: the number of 
nodes a processor commits to at the allocation level. 

• redundant computatioI}. Crd: redundant node expan­
sion compared to the eager-splitting rule, which is 
considered O. 

Table 1 summarizes results comparing the two split­
ting strategies. We expect that the eager-splitting strat­
egy minimizes redundant computation, but it is not very 
adaptive to the shape of the search tree, in the sense 
that some processors may quickly be out of work due 
to encountering cut-offs in the tree. This strategy is 
suitable for a shallow search tree. On the other hand, 
the lazy-splitting strategy introduces redundant compu­
tation but it commits a processor to much more nodes 
in the search tree compared to the eager-splitting strat­
egy. It is expected to be more adaptive because there are 
more "alternative" tasks for a processor. For a deep (Le. 
the height of the tree is much greater that log n) and 
bushy search tree, the lazy-splitting strategy is expected 
to perform better since it is more adaptive to the shape 
of the tree and the redundant computation is relative 
insignificant in such a case. 



Program Size Description 
(res. steps) 

9-queens 225926 placing 9 queens such that 
they cannot attack each other 

n-square 77217 testing if allbut one 
of the elements of a square 
grid can be removed using 
tic-tac-toe like jumps 

patten 50520 testing if certain pattern 
of a list can be otained 

8-queens 47483 placing 8 qu~ns such that 
they cannot attack each other 

tree 22676 traversing a tree generated 
by pruning branches in a 
quad-tree randomly with 
probability set equal to 0.5 
The height of the tree is 16 

turtles 19678 fitting 9 sqaure pieces into 
a 3 by 3 bO¥,d so that certain 
constraints on matching edges 
are satistied 

zebra 17478 solving the puzzle of who 
owns the zebra 

Table 2: Benchmark Programs 

4 Performance Study 

Performance of the self-organize scheduling approach is 
studied on a set of benchmark programs listed in Table 2. 
The size of a program is the size of the search constructed 
during execution of the program. It is the number of 
resolution steps (logic inferences) during the execution, 
excluding evaluating Prolog built-in predicates. These 
programs are pre-processed with the program restructur­
ing method described in the previous section. We note 
that there is no significant performance changes due to 
the restructuring in any of the benchmarks running with 
Sicstus Prolog 0.6. 

4.1 Load Distribution 

First, we are interested in how effectively the task distri­
bution rules can balance the load, with structural imbal­
ance in a program removed. We defined balance factor 
as, 

B= ~EiTj 
Max(Tj ) 

where Ti is the total number of nodes in the search tree 
allocated to processor i, n is the total number of proces­
sors. A better balanced load distribution will be reflected 
in a larger B value. The load balance factor is similar to 
the efficiency factor e used in other literature [Kumar87], 
defined as 

1 T 
e= 

nMax(Tj ) 

where T is the total number of nodes in the tree. B = e 
if Ei Ti = T, which in many cases is untrue due to that 
the load on each processor (measured by the number 
of nodes it possesses) cannot always be ~, because the 
search tree may not have sufficiently many branches at 

Zebra: biased 
9000 .-----r--.-----r--.-----r--.--...... 
8000 
7000 
6000 
5000 
4000 
3000 
2000 
1000 o ~~~~~ __ ~~=w~~ 

o 10 20 30 40 50 60 70 

Zebra: flat 
9000 .-----r--.-----r--.-----r--.--...... 
8000 

7000 
6000 
5000 
4000 
3000 
2000 
1000 

01......L.......J.............uJJ.l..l...l......w.u1l.W..L..L..LJ1J..I.I.o..IL....lJ.l.J..........J 

o 1.0 20 30 40 50 60 70 

863 

Figure 2: Load Distribution from Running the Zebra 
Programs on 64 Processors 

any particular moment to keep every processor busy. The 
notion B tries to reflect a realistic load distribution that 
is possible under a particular load balancing strategy. 

The first set of results shows how the balance factor 
is improved by eliminating the structural imbalance in a 
program. These results are obtained by extracting the 
search tree of a program and then exploring the tree with 
the self-organizing scheduling rule in a simulation with 
a uniprocessor machine. The eager-splitting rule is used 
unless specified otherwise. 

Figure 2 shows the difference of load (in term of tree 
nodes) distribution on 64 processors between two ver­
sions of a zebra program, one with a regular choice pred­
icate and the other with a flattened choice predicate. 
Load balancing in vastly improved due to program re­
structuring. It is generally true that flattening the choice 
predicate results in a better balanced load distribution, 
though the improvement varies depending on different 
programs. 

We summarize the result by presenting the curves of 
balance factor for several other benchmarks, shown in 
Figure 3. The eager-splitting rule is used in this experi­
ment. As can be seen, the balance factor is significantly 
improved for all but the n-square and tree programs, 
which have a deep and bushy search tree that cannot 
be sufficiently taken care of by the eager-splitting rule. 
The n-square program, and the tree program were run 
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Figure 3: Comparison of Balance Factors (B) between. 
Programs with Flattened Choice Predicates (labeled 
'flat' in the figure) and with Normal Style Choice Pred­
icates (labeled 'bias' in the figure) 

with the lazy-splitting rule. Results are given Fig. 4. 
The balance factor is substantially improved (i.e> 100% 
with 128 processors) since the lazy-splitting is better in 
coping with irregular shaped tree. However, the over­
head of redundant computation makes the lazy-splitting 
rule unsuitable for a shallow search tree such as that 
of the 8-queens, the zebra, or the turtles program. The 
height of the search trees for these programs is not suf­
ficiently larger than log(128), the level at which each of 
the 128 processors commits to its own tasks. 

4.2 Speed-up Factors 

Speed-up factor is defined as sequential runtime divided 
by the parallel run time. It is a generally accepted indi­
cation of how well a parallel system is able to improve 
the runtime of a program. Next, we present data show­
ing speed-up factors of the proposed approach on the 
selected benchmark programs. 

B 

B 

o 

The n-Square Programs 

23456 7 
logN 

The Tree Programs 

o 234 567 
log N 

Figure 4: Comparison of the Eager-splitting Rule (la­
beled 'eager' in the figure) and the Lazy-splitting Rule 
(labeled 'lazy' in the figure), With Flattened Choice· 
Predicates in Both Programs 

Table 3 lists speed-up factors from a simulation study 
running on a uniprocessors. In this simulation, the run 
time is measured by the number of resolutions performed 
in the execution (number of nodes traversed in the proof 
tree). 

128 

I 
Proc. II 4 I 8 I 16 I 32 I 64 

Prog I------'---'-=Ea-g-e .... r_-sp"""li:-tt"'""in-g---L.----l 

8-queens 3.9 7.5 9.4 17.0 31.9 40.1 
9-queens 2.9 4.5 8.6 16.7 22.7 42.2 
zebra 3.2 4.0 8.3 9.1 15.3 20.6 
turtles 3.0 5.2 8.6 8.6 15.3 27.6 
pattern 2.8 5.5 6.2 12.5 21.7 21.7 
n-square 2.6 2.8 3.2 3.7 3.7 6.7 
tree 2.4 2.4 3.7 6.5 6.8 6.8 

Lazy-splitting 
n-square 2.2 2.8 4.3 7.2 13.0 17.7 
tree 1.6 2.3 2.7 4.9 9.0 14.2 

Table 3: Speed-up from Simulation Study. Speed-up is 
defined as sequential runtime divided by parallel run­
time. 

Table 4 lists speed-up factors from a parallel emulation 
study running on a BBN Butterfly TC2000 with 32 pro­
cessors. The run time is measured by the physical clock. 
We assume that each resolution step takes constant time. 
Cost of a real resolution step varies in general. However, 
here we are merely interested in the total time of a task 
which consists of a large number of resolution steps. The 
total time (the sum of the time by all resolution steps) 
can be considered as the average cost of each resolution 
step times the number of resolutions. In other words, 
the difference of time spent on each resolution step is 
immaterial. For a given program, the constant can be 
regarded as the average cost of each resolution step. 



In order to observe the real overhead of task alloca­
tion, which is the time to compute the partition of tasks, 
the resolution speed must be realistic. In the emulation, 
resolution engine speed is set equal to that of Aurora 
Parallel Prolog2 , a well known parallel Prolog implemen­
tation, running on one Butterfly processor. Both the ea­
ger and the lazy scheduling strategies are implemented in 
the emulator. The eager-splitting rule was used for the 
programs n-queens, zebra patten and turtles. The lazy­
splitting rule was used for the programs n-square and 
tree. From the emulation study, we are able to verified 
that the sequential simulation, which measures run time 
by the number of resolution steps performed, accurately 
reflects the speed-up result by the parallel emulation, 
which measures run time by the real clock, for up to 32 
processor. The overhead of calculating the task distribu­
tion, the only overhead not considered in the simulation, 
is nearly invisible in the emulation, given that the speed­
up factors are almost identical to that from the sequen­
tial simulation. Notice that there is no communication 
involved here. 

Program 1 4 proc 8 proc 16 proc 32 proc 
Eager-splitting 

8-queens 1 4.0 7.6 9.3 16.5 
9-queens 1 3.0 4.6 8.4 16.4 

zebra 1 3.2 4.0 8.0 8.9 
turtles 1 3.1 5.2 8.2 8.2 
patten 1 2.8 5.5 6.1 12.1 

Lazy-splitting 
n-square 1 2.2 2.8 4.2 6.9 

tree 1 1.6 2.3 2.7 4.6 

Table 4: Speed-up from Emulation Study. 

4.3 Performance Comparison with Aurora Par­
allel Prolog 

The same set of benchmarks were run with Aurora Paral­
lel Prolog on the Butterfly machine. Runtime and speed­
up factors (the best out of 10 runs) are listed in table 5. 
The Peak Speed-up Factors: The speed-up curves 
for all benchmark programs either have reached the peak 
(bold face numbers) or at least level off with Aurora Par­
allel Prolog on 32 processors, as shown i-n Table 5. Us­
ing the self-organizing scheduling approach, simulation 
results (Table 3) on up to 128 processors showed that: 

• the peak speed-up factors for the 8-queens, zebra and 
turtles programs (with fine grain parallelism) exceed, 
by a margin of at least 200%, experimental results 
on Aurora; 

• the peak speed-up factors for the 9-queens program 
is twice as that on Aurora; 

2 Aurora O.6/Foxtrot, patch #8, with the Manchester Scheduler. 
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• the peak speed-up factors for the n-square program 
(with a very bushy search tree) is about 30% faster 
that that on Aurora. 

I Program II 1 proc I 16 proc I 24 proc I 32 proc 

8-queens 1,620 141/11.5 122/13.3 123/13.2 

9-queens 7,500 533/14.1 367/20.4 350/21.4 

zebra 2,600 490/5.3 500/5.2 525/4.9 

turtles 4,300 550/7.8 580/7.4 569/7.5 

pattern 1,084 130/8.3 160/6.8 240/4.5 

n-square 2,230 190/11.7 170/13.1 178/12.6 

Table 5: Runtime (ms.) / Speed-up factors with Aurora 
Parallel Prolog 

Speed-up Comparison: Given the number of proces­
sors, the speed-ups achieved by self-organizing schedul­
ing appears to be comparable to that of Aurora, but 
somewhat lower when the number of processors is small 
(e.g < 16). Note that these results are obtained without 
communication. The same speed-up result is expected 
to hold regardless of the speed at which resolution en­
gine is running. Therefore, absolute speed comparison 
will favor the self-organizing scheduling scheme. 

5 Discussion 

In the above experiment we studied the behavior of 
the proposed technique without communication among 
processors. We demonstrated that the scheme is able 
to effectively deal with problems which render mostly 
fine-grained parallel tasks under a traditional scheduler. 
The loss of processor utilization due to the unevenness in 
load distribution can be more than covered by the bene­
fit of reduced scheduling overhead. The advantage of the 
proposed technique is its non-communicating nature, as 
frees it from possible constraints such as communication 
bandwidth among processors that could otherwise limit 
the ability of a scheduler to function effectively. The lim­
itation, however, is its unable to re-use processors that 
complete tasks they allocated before the termination of 
the (parallel) execution. We have shown, in the above 
simulation study, that this would not necessarily com­
promise performance of programs specially those that 
generate mostly fine-grained tasks at run time under a 
traditional scheduler. But the worse case scenario could 
happen despite the effort to obtain a better balanced 
load distribution by removing structural imbalance of 
the search tree and using a statistically even distribu­
tion rule. Below, we discuss options to deal with the 
problem. 

One possible solution to the problem is to resort to dy­
namic task redistribution as existing schedulers do. As 
we know, the overhead of dynamic task redistribution is 
relatively small for medium to large-grained tasks, and 
it provides us with the adaptiveness necessary to deal 
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with some extraordinary shape search space. On the 
other hand, the self-organizing scheduling approach in­
troduces low overhead and thus ensures that when it does 
not help improve performance it is not expect degrade 
it either. When the two methods are careful integrated, 
it can be a combination that takes advantage of what 
the two methods are best at. The issue is when and 
how dynamic task redistribution should be invoked to 
achieve the best result. Preliminary research has been 
conducted in this direction and we will present results 
in a separate paper. Another option that alleviates the 
problem is to have idle processors collected by a higher 
level scheduler (e.g. the operating system) and assigned 
to other queries. The idea is to use dynamic scheduling 
only at the level of user queries which usually offer larger 
granule. In a multi-user environment, this approach can 
yield a high system throughput given sufficient queries. 
Global load balancing is involved here. It appears an 
interesting subject for future investigation. 

Static program analysis that provides probability of 
cut-offs according to given query patterns will be very 
helpful to guide task distribution. More research is yet 
to be done before this becomes a feasible alternative to 
the currently used statistical distribution rule. 

Finally, we note that an interesting feature of the self­
organizing scheduling approach is that it establishes link­
age between processor mapping and the syntax of a pro­
gram. This feature provides user a mean to influence 
the mapping of processors to tasks, as would be partic­
ularly helpful for applications in which tasks are clearly 
defined and dynamic task redistribution is known to be 
not beneficial (there are many such applications). Again, 
dynamic task redistribution can be used to guard against 
abuse of this feature. 

6 Conclusion and Future Work 

A task scheduling technique, self-organizing scheduling, 
is proposed in this paper. The method directs processors 
to share the search space, a search tree defined implicitly 
by the program, according to universal rules followed by 
every processor in the system. Load balance is achieved 
by altering the shape of the search tree to remove the 
so-called structural imbalance (see section 3), and im­
posing a statistically even task distribution rule to deal 
with the randomness in cut-offs in the tree. Resolution 
engines only share the program and the original query. A 
condition for task distribution that minimizes the aver­
age parallel runtime is given and proved. An advantage 
of the method is that it allows all processors to oper­
ate independently on private resources both for resolu­
tion and task allocation, while being able to maintain a 
fairly balanced load distribution among processors. The 
effectiveness of the self-organizing scheduling scheme is 
independent of the speed of the resolution engine, and 
architectural characteristics of the multiprocessor. 

We presented data showing the effectiveness of the pro­
posed methods on programs that belong to the generate­
and-test category. By removing structural imbalances 
in a program, it was found that a reasonably balanced 
load distribution can be obtained by following a statis­
tically even distribution rule. We discussed two dis­
tinct task distribution rules, the eager-splitting rule 
and lazy-splitting rule and examed their effectiveness. 
We showed that the peak speed-up factors with self­
organizing scheduling for a set of benchmark programs 
exceeds, by a substantial margin, results achieved on the 
same programs by Aurora Parallel Prolog, a well-known 
parallel Prolog implementation. Given a fixed number 
of processors, the speed-up factors by the self-organizing 
scheduling scheme are competitive. By experimenting 
with the two near-extreme case task distribution rules 
we also demonstrated that adaptability can be gained 
on the cost of redundant computation within this frame­
work. 

We believe that the condition for task distribution de­
rived in the paper can be useful for other scheduling 
schemes. Also, the idea of removing structural imbal­
ances in a program will help with a tree-based sched­
uler that employs the top-most dispatching strategy 
[But88, Cald88]. 

We are currently investigating incorporating tradi­
tional task redistribution techniques in order to handle 
large but highly uneven shaped search trees. Prelim­
inary results indicate that allowing limited communi­
cation among processors one can substantially improve 
the efficiency of the execution. Global load balancing, 
aimed at maximizing throughput of a system that sup­
ports multiple user and multiple queries, is an interesting 
topic for future research. 
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Appendix 

We prove the following theorem: 
Theorem: Let N be the number of processors, let m 

C~ is an integer) be the number of tasks whose sizes are 
statistically identical and exhibits the following property: 

1. the probability density function is non-increasing, or 

2. the probability density function is symmetric with 
respect to a positive central point. 

then the average parallel runtime is minimized iff iden­
tical number of processors are assigned to each of the 
tasks. 

Before the proof, we describe some basic terminology 
and notations to be used. 

Capital letters X, Y, Z are used for random variables. 
The probability density function for X is fx(x), the 
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cumulative probability distribution function for X is 
Fx(x), we have Fx(x) = f~oo fx(t)dt by definition. Or 
in other words, fx(x) = Fx(x). In addition, fx(x) ~ 0 
and 0 ::; Fx(x) :::; 1. Fx(x) is non-decreasing since 
fx(x) ~ o. 

Runtime of a parallel execution is the longest runtime 
of all processors. Runtime is measured by the size of a 
task, in our case, the number of nodes to be traversed in 
a search tree. 

N is the number of processor available. Tl, T2 , ••• , Tm 
are random variables denoting the size of m tasks which 
are statistically identical, that is, with an identical 
probability distribution function f(x) and F(x). Let 
kl' k2' ... , km be the number of processors assigned to 
TIl ... ' Tm , respectively. kl + k2 + ... + km = N. 

We illustrate the proof with a special case when m = 2. 
Proof: 

Let Z be a random variable denoting the runtime by 
assigning kl to task Tl and k2 to task k2. We assume 
that Tl is processed in time f; and T2 is processed in 

time f!. 
Tl T2 

Z = max(-,-) 
kl k2 

The cumulative distribution function for Z is FAx), 

probability that Z ::; x 

probability that (~~ ::; x) AND (~: ::; x) 

probability that (Tl ::; klX) AND (T2 ::; k2X) 

F(klX)F(k2X) 

A verage runtime is the mean of Z, 

We- need to show that Z is minimized when kl = k2' 
given that kl + k2 = N, a constant. 

For fixed kI,k2' define function G(x) = F(klX)~F(k2X). 
We have 

since F(klX )F(k2X) ::; G2(X), given that F(x) is non­
negative. Equality holds when kl = k2 • 

Case I: the probability density function f(x) is non­
increasing. 

It can be shown that the curve of F (x) is either of an 
arch shape, or a straight line, as illustrated in figure 5. 
The curve of G( x) lies below (or on) that of F( x) because 
the curve of G(x) is composed from center points in lines 
whose two ends are on curve F(x). G(x) - F(x) ::; 0, 
hence G2(X) - F2(X) = (G(x) - F(x))(G(x) + F(x)):::; 0 
Therefore, 
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klx (k1+k2)x/2 k2x 

Figure 5: An Arch Shape Distribution 

Equation holds when kI = k2 • 

Thus, we have 

x 

I: (1 - Pz(x»dx ~ 1:(1- G
2
(x»dx ~ 1:(1 -P2(x»dx 

and equality holds when kI = k2 • Thus the mean of Z 
is minimized when kI = k2 • 

Case II: the probability density function f(x) is sym­
metric with respect to a positive center point, denoted 
by C. 

The curve of F( x) is of the shape an S tilted to the 
right, as illustrated in figure 6. The curve of G(x) is 
another S shape curve "contained" in that of F(x). We 
want to show that ' 

or, 

This is equivalent to showing 

i: (F(x) - G(x))dx ~ 0 

smce i: (F(x) + G(x))dx > 0 

Notice that we can no longer have (F(x) - G(x)) ~ 0 
for all x. However, the integral of (F(x) - G(x)) can 
still be non-negative if we can proof the shaded areas' 
A2 is larger or equal to Al in figure 6. It suffices to 
show that for any (C - x) and (C + x) on the X axe, 
F(C+x)-G(C+x) ~ G(C-x)-F(C-x), and 
equality holds when k1 = k2. 

Observe that (C-x,G(C-x)) is the center point of a 
line, 11, whose end points are on the curve of F(x). 
(C+x,G(C+x)) is the center point of another line, 12 , 

whose end points are on the curve of F(x). Now, rotate 
the lower part of the S shaped curve of F( x) 1800

• The 
two part of the S matches each other and it can be shown 

y 

Figure 6: An S Shape Distribution 

that 11, after the rotation, completely lies above or on 12• 

Thus, 

F(C + x) - G(C + x) ~ G(C - x) - F(C - x) 

Equality holds when k1 = k2. Proof done for m = 2. 0 

The same idea can be used to prove the general case. 
A formal proof of the general case will not be presented 
here, but we note that a property of polygon that is 
crucial to the proof is that the center of a convex polygon 
resides inside the polygon. 
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Abstract 

The distributed hash table is a parallelization of the hash 
table obtained by dividing the table into subtables of 
equal size and allocating them to the processors. It can 
handle a number of search/insert operations simultane­
ously, increasing the throughput by up to p times that of 
the sequential version, where p is the number of proces­
sors. However, in the average case, the peak throughput 
is not attained due to load imbalance. 

It is clear that the table size m must grow at least 
linearly in p to balance the load. In this paper, we 
study the rate of growth of m relative to p necessary to 
maintain the load balance on the average (or to make 
it approach the perfect load balance). It turns out 
that linear growth is not enough, but that moderate 
growth-namely w(p log2 p )-is sufficient. The proba­
bilistic model we used is fairly general and can be applied 
to other load balancing problems. 

We a.lso discuss communication overheads, and find 
that, in the case of mesh multicomputers, unless the net­
work channel bandwidth grows sufficiently as p grows, 
the network will eventually become a performance bot­
tleneck for distributed hash tables. 

1 Introduction 

Parallel computation achieves speedup over sequential 
computation by sharing the computational load among 
processors. The load balance between processors is cen­
tral in determining the parallel runtime (though other 
factors also affect performance). Unlike uniform com­
putational tasks in which almost perfect load balance is 
achieved by allocating data uniformly to the processors, 
non-uniform computational tasks such as search prob­
lems pose non-trivial load balancing problems. 

In most non-uniform tasks, worst-case computa­
tional complexity is far larger than average-case com­
plexity; and the W0rst case is usually a very rare 
case. Thus, the study of average case performance 
is important, and it has been conducted for sort­
ing and searching [Knuth 1973], optimization prob­
lems [Coffman and Lueker 1991], and many others 

[Vitter and Flajolet 1990]. However, there seems to 
have been little work on average-case performance anal­
ysis in regard to parallel algorithms, especially on 
highly-parallel computers, a notable exception being 
[Kruskal and Weiss 1985]. 

In this paper, we study the average-case load balance 
of distributed hash tables on highly parallel computers. 
A distributed hash table is a parallelization of a hash ta­
ble, in which the table is divided into subtables of equal 
size to be allocated to the processors. It can handle a 
number of search/insert operations simultaneously, in­
creasing the throughput up to p times that of the se­
quential version, where p is the number of processors. 

However, in average cases, the peak throughput is not 
attained due to load imbalance. Intuitively, the more 
buckets allocated to each processor, the better the aver­
age load balance becomes. It is clear that under a con­
stant load factor a = n/m (n is the number of elements 
in the table, m is the table size), m must grow at least 
linearly in p to balance the load. We shall investigate the 
necessary / sufficient rate of growth of m relative to p so 
that the load balance factor-the average processor load 
divided by the maximum processor load-approaches 1 
as P' -+ 00. It turns out that linear growth is not enough, 
but that moderate growth-namely, w(p log2 p )-is suf­
ficient. This means that the distributed hash table is 
a data structure that can exploit the massive computa­
tional power of highly parallel computers, with problems 
of a reasonable size. 

We also briefly discuss communication overheads on 
multicomputers, and find that, in the case of mesh multi­
computers, unless the network channel bandwidth grows 
sufficiently as p grows, the network will eventually be­
come a performance bottleneck for distributed hash ta­
bles. 

The rest of the paper is organized as follows. Sec­
tion 2 describes the distributed hash table and de­
fines the problem we shall analyze. The terminology 
of average-case scalability analysis is introduced in Sec­
tion 3. The analysis of load balance is presented in Sec­
tion 4. The full proofs of the propositions appear in 
[Kimura and Ichiyoshi 1991]. The communication over­
heads are considered in Section 5. The last section sum­
marizes the paper. 
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2 Distributed Hash Tables 

2.1 Distributed Hash Tables 

The distributed hash table is a parallelization of the hash 
table. A hash table of size m = pq is divided into subta­
bles of equal size q and the subtables are allocated to p 
processors. The two most simple bucket allocations are: 

The block allocation 

The k- th bucket (k ~ 1) belongs to the ( l( k-1) j qJ + 
l)-th subtable/ and 

The modular allocation 

The k-th bucket (k ~ 1) belongs to the (((k-1) mod 
p) + 1)-th processor. 

At the beginning of a hash operation (search or insert) 
for an element x, the hash function is computed for x to 
generate a number h (1 ::; h ::; m), and the element (or 
the key) is dispatched to the processor which contains 
the h-th bucket. The rest of the operation is processed 
at the target processor. 

For better performance, it is desirable to maximize the 
locality. Thus, when the indirect chaining scheme is em­
ployed for hash collision, the entire hash chain for a given 
bucket should be contained in the same processor which 
contains the bucket. With open addressing, linear prob­
ing has the best locality (under the allocation scheme 
(1» but its performance degrades quickly as the load fac­
tor increases. Other open addressing schemes have better 
sequential performance characteristics [Knuth 1973], but 
have less locality. For this reason and also for simplic­
ity of analysis, we choose the indirect chaining scheme. 
The bucket allocation scheme does not influence the load 
balance analysis in this case. 

The absence of a single entry point that can become 
a bottleneck makes the distributed hash table a suitable 
data structure for highly parallel processing. The peak 
throughput increases linearly with the number of proces­
sors. The problem is: \iVhen does the "real" performance 
approach the "peak" performance? When elements are 
evenly distributed over the processors, linear growth in 
the number of data elements is sufficient for linear growth 
in performance. On the other hand, in the worst case, 
all elements in the hash table might belong to a single 
subtable so that performance does not increase at all. 
We are not interested in these two extremes, but in av­
erage performance, just as we are more interested in the 
average complexity of hash operations in sequential hash 
tables rather than worst-case complexity. 

lWhen p does not divide m, taking q = fm/pl works but it 
may lead to a sub-optima.! load balance (e.g., consider the case 
m = p + 1). A better load balance can be realized by a mapping 
function which is a little more complicated than simple division. 

2.2 Problem Definition 

There can b·e a number of uses of hash tables depend­
ing on the application. Here we examine the following 
particular use of the hash table. 

Concurrent Data Generation, Search and Inser­
tion 

Initially, there is an "old" distributed hash table con­
taining "old elements" and an empty "new" distributed 
hash table. The old and new tables are of the same size 
m = pq (p is the number of processors and q is the num­
ber of buckets assigned to each processor) and use the 
same hash function. Also, some "seeds" of new elements 
are distributed randomly across the processors. 

(1) Concurrent Data Generation 

Each processor generates "new elements" from the 
allocated seeds. It is assumed that the time it takes 
each processor to generate new elements is propor­
tional to the number of generated elements. 

(2) Concurrent Data Dispatch 

Each processor computes the hash values of the new 
elements and dispatches the elements to the target 
processors accordingly. 

(3) Concurrent Search 

Each processor does a search in the old table for 
each of the new elements it has received. 

(4) Concurrent Insert 

Each processor inserts those new elements that are 
not found in the old table into the new table. No in­
terprocessor communication arises, because the old 
and new hash tables use the same hash function. 

The above usage may seem a little artificial, but the 
probabilistic model and the analysis for it should be eas­
ily applicable to other usages. In the analysis of load 
balance, the data dispatch step is ignored (equivalently, 
instantaneous communication is assumed). This is dis­
cussed in Section 5. 

3 Scalability Analysis 

Average Speedup and Efficiency We. denote the se­
quential runtime by T(l) and the parallel runtime us­
ing p processors by T(p). The speedup is defined by 
S(p) = T(l)jT(p), and the efficiency by E(p) = S(p)/p. 
Efficiency is the ratio between the "real" performance 
(obtained for a particular problem instance) and the 
"peak" performance of the parallel computer. In the 
absence of speculative computation, the efficiency is less 
than or equal to 1. 



Since we intend to engage ourselves in an average-case 
analysis, we need to define the "average speedup" and 
the "average efficiency". 

Definition 1 We define the average collective speedup 
O"(p) by E(T(l))/E(T(p)) (E(X) denotes the expecta­
tion of X) and the average collective efficiency 'T} (p) by 
O"(p)/p. 

The reason why we analyze the above defined aver­
age collective speedup, and not the expected speedup 
in the literal sense-E(T(l)/T(p))-is that: (1) it is 
much simpler to analyze E(T(l))/E(T(p)) than ana­
lyze E(T(1)jT(p)), and (2) in cases where any average 
speedup figure is meaningful our definition is a better 
indicator of overall speedup. Suppose we run a num­
ber of instances 11 ,12 , .. . from some problem class, then 
the collective speedup defined by L-i T(l,Ii)j L-i T(p,Ii) 
(T(l,I;) and T(p,I;) are sequential and parallel run­
times for problem instance Ii) and represent overall 
speedup. This is more meaningful than anyone of 
arithmetical mean, geometric mean, or harmonic mean 
that may be calculated from the individual speedups 
T(l, Ti)/T(p, Ti). 

Scalability Analysis and Isoefficiency We would 
like to study the behavior of 'T}(p) as p becomes very large. 
In general, for a fixed amount of total computation W, 
'T}(p) decreases as p increases, because there is only finite 
parallelism in a fixed problem. On the other hand, in 
many parallel programs, for a fixed p, 'T}(p) increases as 
HI grows. KU111_ar and Rao [1987] introduced the notion 
of isoefficiency: if HI needs to grow according to f(p) to 
maintain an efficiency E, then f (p) is defined to be the 
isoefficiency function for efficiency E. A rapid rate of 
growth in the isoefficiency function indicates that near­
peak performance of a large-scale parallel computer can 
be attained only when very-sometimes unrealistically­
large problems are run. Such a parallel algorithm and/or 
data structure is not suitable for utilizing a large-scale 
parallel computer. (We will refer to the isoefficiency by 
this original definition by exact isoefficiency.) 

Since it is sometimes impossible to maintain an exact 
E because of the discrete nature of the problem, the 
following weaker definitions of isoefficiency may be more 
suitable or easier to handle. 

Asymptotic Isoefficiency f is an asymptotic isoeffi­
ciency function for E if 

lim 'T}(p) = E under TiV = f(p). 
p->co 

Asymptotic Super-Iso efficiency f is an asymptotic 
8upel'-isoefficiency function for E if 

lim inf 'T}(p) 2: E under VV = f(p). 
p--+co 
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f is an asymptotic super-isoefficiency function if it is 
an asymptotic super-isoefficiency function for some 
E > 0, i.e., the efficiency is bounded away from 0 as 
p --+ 00. 

An exact isoefficiency function for E is an asymptotic 
isoefficiency Junction for E; and an asymptotic isoeffi­
ciency function for E is an asymptotic super-isoefficiency 
function for E. 

In the analysis of load balance, we study the bal­
ance of essential computation. Essential computation is 
the total computation performed by processors exclud­
ing the parallelization overheads. The amount of essen­
tial computation is equal to pT(p) minus the total over­
head time spent on things such as message handling and 
idle time. In the absence of speculative computation, we 
can identify the amount of essential computation with 
the sequential runtime.2 The terminology for load bal­
ance analysis is defined like that for speedup/efficiency 
analysis, except that "essential computation" replaces 
"runtime": the total essential computation corresponds 
to sequential runtime; maximum processor load corre­
sponds to parallel runtime; and load balance factor3 
corresponds to efficiency. We use the same terminol­
ogy for isoefficiency functions. In the following analysis, 
we study asymptotic isoefficiency for 1 and asymptotic 
super-isoefficiency. (Since we are not dealing with ex­
act isoefficiency, we drop the adjective "asymptotic" for 
brevity.) 

4 Analysis of Load Balance 

4.1 Assumptions 

For the sake of probabilistic analysis, we consider a model 
in which the following values are treated as random vari­
ables (RVs): the number of old and new elements belong­
ing to the j -th bucket on the i-th processor (1 ::; i ::; p, 
1 ::; j ::; q) denoted by Aij and Bij respectively, and the 
number of new elements generated at the i-th processor 
denoted by Gi . 

First, we make some assumptions on the distributions 
of these random variables. The two alternative mod­
els of h~sh tables are the Bernoulli model in which the 
number of elements n inserted in m buckets is fixed 
(a = n/m) and the probability that an element has 
a given hash value is uniformly l/m, and the Pois­
son model in which the occupancy of each bucket is 
an independent Poisson random variable with parame­
ter a [Vitter and Flajolet 1990]. We choose the Pois­
son model, because it is simpler to analyze directly, and 
because, with regard to the distributions of maximum 

2If we ignore various sequential overheads such as cache miss, 
process switching, and paging. 

3Not to be confused with the load factor of hash tables. 
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bucket occupancy in which we are interested, those un­
der the Bernoulli model approach those under the Pois­
son l11.odel as m ~ 00 [Kolchin et al. 1978J. 

For a similar reason, we assume that Gi (1 ~ i ~ p) are 
independent identically distributed (i.i.d.) random vari­
ables having a Poisson distribution with some parameter 
,. It follows that the total number of new elements has 
a Poisson distribution with parameter p" and by the as­
sumption on the hash function, Bi/s are i.i.d. random 
variables having a Poisson distribution with parameter 
fJ = p, / m = ,/ q. We assume that load factors a and 
fJ of the old and new hash tables are constant (do not 
change with p, q). 

To summarize, Aij and Bij are i.i.d. random variables 
having a Poisson distribution with parameters a and fJ, 
and G i are i.i.d. random variables with a Poisson distri­
bution with parameter qfJ. Note that Gi's and Bk'S are 
not independent because 2:i Gi = 2:ij B ij . 

4.2 Essential Computation and Load 
Balance Factor 

Since each data generation is assumed to take the same 
time, the essential computation of the data generation 
step is: 

lVgen = L Gi. 
l~i~p 

(ignoring the constant factor). 
As for the search step, some searches are successful 

(the new element is found in the old table) and others 
are unsuccessful. For simplicity of analysis, we choose a 
pessimistic estimate of the essential computation and as­
sume that all searches are unsuccessful. We also assume 
that an unsuccessful search involves comparison of the 
new elements against all the old elements in the bucket. 
Thus, the number of comparisons made by an unsuccess­
ful search in the bucket with Aij elements is Aj + 1 (the 
number of elements plus one for the hash table slot con­
taining the pointer to the collision chain). Therefore, the 
essential computation of the search step is: 

Hisearch = L L (Aij + 1 )Bij . 
l::;i::;p l::;j::;q 

(again ignoring the constant factor). 
\~Te make a similar assumption for the insert step: ev­

ery insert is done after an unsuccessful search in the new 
table. Thus, the essential computation of the search step 
for bucket j on processor i is: 

L (l + 1) = Bij(Bij + 1)/2, 
0:SI:SBij-l 

and the total essential computation for the search step 
IS 

Vliinsert = L L Bij(Bij + 1)/2. 
l~i:Sp l~j~q 

Thus, the total essential computation is: 

W(l) = L (W: + WI' + W:"), 
l~i~p 

where 

WI = Gi , WI' = 2:1:S;j:S;q(Aij + l)Bij , and 
WI" = 2:1:S;j~q BiABij + 1)/2. 

The maximum processor load is 

W(p) = max(W~ + W~' + W~") 
l~i:S;p' t , 

The average load balance 
factor 7](p) is E (W(1)) /pE (W(p)). We would like to 
know what rate of growth of q is necessary/sufficient so 
that 7](p) ~ 1 as p ~ 00. 

Since 

E ( L (WI + WI' + WI")) 
l~i~p 

E ( L WI) + E (L WI') + E ( L WI") 
l~i~p l~i~p l$i:S;p 

p(E (W;) + E (W;') + E (W;")) , 

and 

E (m~x(W: + WI' + WI")) 
l~t:S;p 

~ E (m~x WI) + E (m~x WI') + E (m~x Wf"), 
l~t~p l~t~p l:S;t~p 

we have 

E (W') + E (W") + E (Will) 7](p) ~ 1 1 1 . 

E (m~x WI) + E (m~x WI') + E (m~x WI") 
l~t~p l~t~p l~t~p 

Thus, if 

E (max WI) 
l$i~p 

E(WD, 

E (max WI') 
l$i~p 

E (Wn, and 

E (max W~") 
l$i~p t 

E (W;") 

(as p ~ 00), 

then 7](p) ~ 1. The above are also necessary conditions, 
because all three summands are significant as p ~ 00. 

The random variable Gi , having a Poisson distribution 
with parameter qfJ, has the same distribution as the sum 
of q i.i.d. random variables Hij (1 ~ j ~ q) with a Pois­
son distribution with parameter fJ. Thus, we are led to 
the study of the average maximum of p sums of q i.i.d. 
random variables Wij (1 ~ i ~ p, 1 ~ j ~ q) with a 
distribution that does not change with p and q. In our 
distributed hash table example, we are interested in the 
cases in which each Wij is either a Poisson variable, the 
product of two Poisson variables, or a polynomial of a 
Poisson variable. 



4.3 Average Maximum of Sum of i.i.d. 
Random Variables 

We give sketches of the proofs or cite the results. The 
details are presented in [Kimura and Ichiyoshi 1991]. 

4.3.1 Poisson Variable 

The asymptotic distribution of the maximum bucket 
occupancy has been analyzed by Kolchin et al. 
[1978]. The following is the result as cited m 
[Vitter and Flajolet 1990]. 

Theorem. 1 (Kolchin et al.) If Xi (1 ~ i ~ p) are 
i. i. d. random variables having a Poisson distribution with 
parameter /-l) the expected maximum bucket occupancy is 

Ai = E (max Xi) rv {b i! /-l = o(logp)j 
J.1 l::;i::;p /-l if /-l = w(1ogp)) 

where b is an integer gl'eater than /-l such that 

e-J.1/-lb+1 1 e-J.1/-lb 
---- < - < ---. 
(b + I)! - p b! 

When /-l = 8(1)) b rv logp/loglogp. 

The proof is based on the observation that, as p be­
comes large, P {MJ.1 > b} as a function of b approaches 
the step function having value 1 for b smaller than band 
o for b larger than b, and the expectation of MJ.1 is equal 
to its summation from b = 0 to b = 00. 

Vie extend Kolchin's theorem to the product of Poisson 
variables and polynomials of a Poisson variable. 

4.3.2 Product of Two Poisson Variables 

We introduce a partial order on the class M of non­
negative random variables with a finite mean. 

Definition 2 For X, Y E M, we define X -< Y iff 
E (max{X, c}) ~ E (max{Y, c}) for all c 2 o. 

There are a number of natural properties concerning 
this partial order. For example, if X -< Y and Z is 
independent of X, Y, then X + Z -< Y + Z, xz -< YZ, 
max{X, Z} -< max{Y, Z}, etc. Note X -< Yi and X -< Yz 
do not imply 2X -< Yi + Y;. The utility of -< in analyzing 
the expected maximum is illustrated by the following 
lemma. 

Lemma 1 Let Xi (1 ~ i ~ p) and ii (1 ~ i ~ p) 
be i.i.d. random variables distributed as X and Y. If 
X -< Y) then 
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SKETCH OF PROOF: 

max{XI,XZ, .. . ,Xp} -< max{Yi,Xz, ... ,Xp} 

-< ... -< max{Yi, ... , Yp} 0 

For the convex sum of i.i.d. variables, we have the 
following lemma. 

Lemma 2 Let Xi (1 ~ i ~ p) be i.i.d. random variables 
distributed as X. For all ai 2 0 (1 ~ i ~ p) such that 
al + ... + ap = 1) alXI + ... + apXp -< X. 

SKETCH OF PROOF: Let all az 2 0 and al + az = l. 
For arbitrary c 20, max{alXI +azXz,c}+max{a1XZ + 
azXt,c} ~ max{X1,c}+max{Xz,c}. The expectation of 
the left hand side is equal to 2E (max{ alXI + azXz, c}), 
and that of the right hand side is 

E (max{XI' c} + max{Xz,c}) 

= E (max{XI' c}) + E (max{Xz,c}) 

= 2E(max{X,c}). 

Thus, alXI + azXz -< X. The case for p > 2 can be 
reduced to p - 1 using the above. 0 

Finally, the following lemma gives an upper bound on 
the sum of the product of two sets of i.i.d. random vari­
ables. 

Lemma 3 Let Xi (1 ~ i ~ r s) and ii (1 ~ i ~ r s) be 
i.i.d. random variables. We have 

XlYi + ... + XrsYrs -< (Xl + ... + Xr)(Yi + ... + Ys). 

SKETCH OF PROOF: We can prove XlYi + ... XtYt+Z -< 
Xl (Yi + ... + Yt) + Z (Z independent of XiS, iis) by con­
ditioning Z and using Lemma 2. By repeatedly "collect­
ing" the Xij iij's and replacing them with the bracketed 
terms, we have the desired result. 0 

Theorem 2 Let Xi (1 ~ i ~ q) and ii (1 ~ i ~ q) be 
i. i. d. having a Poisson distribution with parameter a and 
;3. If q = w(1ogZ p)) then 

E (~i't" lEo Xi; Yij) 
(as p -+ 00). 

SKETCH OF PROOF: Let q = r2
, 

E (max (X·I}':;1 + ... + X· }':; )) l::;i::;p t t tq tq 

~ E (max (X·I + ... + X· )(}':;l + ... + }':; )) l::;i::;p t tr t tr 

~ E (m~x(Xil + ... )) E (m~x(YiI + ... )) l::;t::;p l::;t::;p 

by the Lemma 2 and 3. The sum of r i.i.d. Poisson 
variables with parameter a is distributed as a Poisson 
variable with parameter ra. Thus, if r = w(logp), then 

E (~t;~(Xil + ... + X ir )) rv ra = E (Xn + ... + X 1r ) 

by Kolchin's theorem. This is similar for the sum of iij. 
This is what we needed. 0 
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4.3.3 Polynomial of Poisson Variable 

The treatment of upper bounds on the expected maxi­
mum of the sums of a polynomial of i.i.d. random vari­
ables is more involved. We only list the result. 

Theorem 3 Let Xi (1 :::; i :::; q) be i. i. d. having a Pois­
son dist1'iblltion with parameter 0, and c(X) be a poly­
nomial of degree d > 0 with non-negative coefficients. If 
q = w(logd p), then 

(as p --T (0), where c(X) = adX(d) + ... + aiX(l) + a~, 
and c*(X) = adXd + ... + aiX1 + a~ (X(k) = X(X -
1)··· (X - k + 1) is the falling power of X). 

As for corresponding lower bounds on the necessary 
growth rate of q, we only know at present that if 
q = o( (log p / log log p)2), the ratio between the expected 
maximum and the mean tends to 00 as p --T 00. 

4.4 The Isoefficiency for Load Balance 

Now, let us suppose q = w(log2 p). Then, 

is immediate from Kolchin's theorem. Also, 

by Kolchin's theorem and the proposition for the product 
of two Poisson variables. Finally, since X(X + 1)/2 is a 
polynomial of degree 2, 

if q = w(1og2 p). 
vVe ha.ve shown that if q = w(log2 p), the average col­

lective load balance factor 'T/(p) --T 1 as p --T 00. There­
fore, HI = 0(pq) = w(plog2 p) is a sufficient condition 
for isoefficiency for 1. 

4.5 Simulation 

A simple simulation program was run to test the applica­
bility of the asymptotic analysis for p up to 4096. Fig. 1 
shows the results for 0 = f3 = 4, p = 4, 16, 64, 256, 

1024, and 4096 and q = 1, 19p, Ig2 p, and Ig3 p (lg de­
notes the logarithm with base 2). The experimental load 
balance factors (on the vertical axis) are plotted against 
the number of processors (on the horizontal axis). The 
experimental load balance factor "'p,q for p, q are calcu­
lated by 

E (2:\$j$q WIi ) 
"'p,q = ~============~~ 

max1$i$p 2:1$j$q Wij , 

where Wij is one of Xij, Xii Yij and Xi~) «a), (b) 
and (c), respectively in the figure), and the average 
max1$i$p 2:1$j$q Wij is calculated from the result of 50 
simulation runs. 

Xii and Yii are generated according to the Bernoulli 
model (i.e., a table X[l..pq] is prepared, and n = pqa. 
random numbers x's with x ~ 0 were generated, each x 
going to the «x mod p) + I)-th table entry, etc.). The. 
coefficient of variation (the ratio of standard deviation 
to average) of max1$i$p 2:1$j$q Wij is larger for X(2) and 
XY than for X, and it decreases as p becomes larger or q 
becomes larger. Table 1 gives the coefficients of variation 
for p = 64 and 4096. 

By and large, the results seem to confirm the asymp­
totic analysis. For the product and the second falling 
power, 0 (log2 p) appears to be a sufficient rate of growth 
of q for 'T/ to converge to 1. Even logarithmic growth 
(q = 19 p) does not lead to very poor load balance fac­
tors at least up to p = 4096 (approx. 0.5 for XY and 
approx. 0.4 for X(2). 

5 Communication Overheads 

We briefly discuss the communication overheads when 
distributed hash tables are implemented on multi­
computers. A multicomputer (also referred to as a 
distributed-memory computer and a message-passing 
parallel computer) consists of p identical processors con­
nected by some interconnection network. On such com­
puters, the time it takes to transfer a message of length 
L (in words) from a processor to another which is D 
hops away in the absence of network contention4 is 
ts+thD+twL, where ts is the constant start-up time, th is 
the per-hop time, and tw is the per-word communication 
time. We choose the mesh architecture for considera­
tion (two-dimensional square meshes in particular) since 
many of the recent "second generation" multicomputers 
have such topologies. Examples include J-Machine, Intel 
Paragon, and parallel inference machines Multi-PSI and 
PIM/m. 

We note that the average traveling distance of a ran­
dom message (a message from a randomly chosen proces­
sor i to another randomly chosen processor i', allowing 
i = if) is 3(JP- )p) f'V 3VP on the meshes. It is roughly 

4Communication latency in the absence of network contention 
is called zero-load latency. 
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Figure 1: Experimental Load Balance Factors (0: = (3 = 4) 

Table 1: Coefficients of Variation of Maximum Load (0: = (3 = 4) 

p = 64 
q=1 q=6 q = 36 

X 11.0% 6.3% 2.6% 
XY 17.8% 12.2% 5.0% 
X~2) 24.8% 13.1% 6.0% 

1/3 of the diameter of the network, which is 2(.JP - 1). 
We can easily see that HI = n(p3/2) is a necessary and 
sufficient condition for super-isoefficiency due to zero­
load latency, which is a situation worse than that due to 
load imbalance. 

In real networks, the impact of message collisions must 
be taken into account. Instead of estimating the time 
required for data dispatch using a precise model of con­
tention, we compare the amount of traffic generated by 
random communication and the capacity of the network. 
The traffic of a message is defined by the product of its 
traveling distance and its length. It indicates how much 
network resource (measured by channel x network cycle 
time) the message consumes. The capacity of a network 
is defined by the sum of the bandwidth of all network 
channels (channels that connect routers). It indicates 
the peak throughput of the netw-ork. The basic fact is 
that the time required for completely delivering a set of 
messages is at least !'I1/ C, where !'I1 is the total message 
traffic and C is the capacity of the network. 

The average traffic generated by L:l<i<p Gi random 
messages is rv ~p3/2q(3L (L is the constant message 
length). The network capacityis 2ytp(JP - l)/tw rv 

2p/tw ' Thus, the average data dispatch time is at least 
rv lJPq(3Ltw = 8(y'Pq) = w(T(1)/p). This means that 
meshes with constant channel bandwidth cannot sustain 
the traffic generated by random ~ommunication, forcing 
the efficiency to approach zero as p -+ 00. The network 
channel bandwidth must grow at least in proportion to 

p = 4096 
q=1 q = 12 q = 144 
7.1% 3.5% 1.0% 

12.3% 5.3% 2.1% 
15.4% 6.8% 2.6% 

.JP, to maintain the communication latency under heavy 
random communication within a constant factor of the 
zero-load laten·cy. 

A similar analysis for the hypercube architecture 
shows that W = n(plogp) is a necessary and sufficient 
condition for super-isoefficiency due to zero-load latency, 
and is less than that due to load imbalance, and that the 
network capacity has the same growth rate as that of the 
random traffic. 

The degradation of performance due to network con­
tention in the mesh architecture has been pointed out 
by several authors. Gupta and Kumar [1990] have done 
scalability analysis for a parallel FFT algorithm, and 
Singh et aI. [1990] for parallel quicksort algorithms. 
In both of these types of algorithms, the communication 
patterns are nonlocal as in our distributed hash table 
example, and the growth in the problem size makes lo­
cal computation per message increase very slowly. This 
means that isoefficiency function must grow very rapidly 
(nearly exponential). In our case, since local computa­
tion per message does not increase with problem size, it 
is impossible to maintain efficiency as p gets larger. 

Our analysis does not suggest that hypercubes are su­
perior to mesh networks for building very large-scale mul­
ticomputers. On the contrary, Dally [1990] showed that 
if we fix the wire bisection of the network, low dimen­
sional cubes (k-ary n-cubes with n small) provide larger 
throughput than high dimensional cubes (k-ary n-cubes 
with n large). We believe that future very large-scale 
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multicomputers should provide network bandwidths that 
can meet the traffic generated by nonlocal communica­
tion, if they are to support a wide variety of parallel 
algorithms, not restricted to ones with high communi­
cation locality. Dally [1991J proposes a design of such 
network architectures. 

6 Conclusions 

An asymptotic analysis of the load balance of distributed 
hash tables was conducted, and it was found that, with a 
constant load factor, m = w(p 10g2 p) is a sufficient rate of 
growth of table size m to balance the load as the num­
ber of processors p grows. Communication overheads 
on multicomputers was also briefly discussed. In the 
case of mesh multicomputers, unless the network chan­
nel bandwidth grows sufficiently as p grows, the network 
will eventually become a performance bottleneck. 

Because of the rather high overheads in encoding 
and decoding message packets on the part of the 
processing node, small- to medium-scale multicom­
puters may not generate enough message traffic to 
make contention-or, even communication latency­
a performance bottleneck [Nakajima and Ichiyoshi 1990, 
ChittoI' and Enbody 1990J. But, the bottleneck is bound 
to show itself in very large-scale multicomputers. 

The probabilistic analysis in this paper is fairly 
general and can be applied to similar load balance 
problems, such as parallel fi* search with distributed 
OPEN lists [Kumar et al. 1988, Huang and Davis 1988, 
Manzini 1990J. Kruskal and Weiss [1985J studied par­
allel runtimes when independent subtasks are allocated 
on processors, with an (rather restrictive) assumption 
that the distribution of subtask running times is one 
with increasing failure rate (IFR). Their analysis was 
also asymptotic as the number of subtasks and proces­
sors becomes large. This paper differs from their study 
mainly in that (1) the IFR assumption does not hold for 
the distribution of hash operation costs, and (2) asymp­
totic (super- )isoefficiency is investigated. 
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Abstract 

The meta-level representation of Guarded Horn Clauses 
(GHC) is considered and a GHC meta-computation sys­
tem is constructed by enhancing the simple GHC meta­
program. Then the Reflective Guarded Horn Clauses 
(RGHC) system is described, where a reflective tower 
can be constructed and collapsed in a dynamic man­
ner, using reflective predicates. The implementation of 
RGHC is shown. Finally a simple execution example is 
also shown. This paper assumes a basic knowledge of 
parallel logic languages. 

1. Introduction 
If we look for an ideal programming language, it must 

be simple and, at the same time, powerful language. 
Looking back the history of programming language, we 
note that the development of the programming language 
is generated by the repeated trials which look for such 
languages within a limitation of the available hardware. 

Recently, it seems that the mechanism, called meta 
or reflection, is attracting wide spread attention in pro­
gramming language community. Though the concept 
of computational reflection goes back to [Weyhrauch 80, 
Smith 84], this concept is becoming popular especially 
in the object-oriented language community [Maes 88]. 

In this paper, we assume the parallel logic program­
ming language GHC [Ueda 85, Tanaka 86] as our under­
lying language. The reasons for picking this language 
are in its structural simplicity, semantical clearness and 
applicability to the system programming. 

We have already proposed reflection mechanism 
and shown several application examples [Tanaka 88, 
Tanaka 90, Tanaka 91]. However, reflection has been in­
troduced in an ad hoc manner. It lacks the generality 
seen in 3-Lisp [Smith 84]. We would like to propose Re­
flective Guarded Horn Clauses (RGHC), which has the 

expressive power comparable to 3-Lisp, in this paper. 
The organization of this paper is as follows. In Section 

2, we try to describe the meta-computation system of 
GHC. After considering meta-presentation of the object­
level system, we describe GHC meta-computation sys­
tem by enhancing a simple 4-line GHC meta-program. 
The language features of RGHC and several reflec­
tive programming examples are described in Section 3. 
RGHC implementation is described in Section 4. An ac­
tual program execution example is shown in Section 4. 
Related works and conclusion are described in Section 6. 

2. Meta-computation system in GHC 
A meta-system can be defined as a computational sys­

tem whose problem domain is another computational 
system. The latter computational system is called the 
object-system. The program of meta-system is called 
meta-program. 

2.1. A simple GHC meta-program 
In Prolog world, a simple 4-line program is well-known 

as Prolog in Prolog or vanilla interpreter [Bowen 83]. 
The GHC version of this program can be described as 
follows: 

exec(true):-trueltrue. 
exec((P,Q)):-truelexec(P),exec(Q). 
exec(P):-user_defined(P)I 

reduce(P,Body),exec(Body). 
exec(P):-system(P)lsys_exe(P). 

Using this meta-program, we can execute a goal as an 
argument of "exec." This program tries to execute a 
given goal in an interpretive manner. We can see two 
levels, i.e., the meta-level, where the top level execution 
is performed, and the object-level, where goal execution 
is simulated inside the meta-program. 
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The meaning of this meta-interpreter is as follows: If 
the given goal is "true," the execution of the goal suc­
ceeds. If it is a sequence, it is decomposed and executed 
separately. In the case of a user-defined goal, the predi­
cate "reduce" finds the clause which satisfies the guard 
and the goal is decomposed to the body goals of that 
clause. If it is a system-defined goal, it is executed di­
rectly. 

Though this 4-line program is very simple, it certainly 
works as GHC in GHC. However, this GHC in GHC is 
insufficient as a real meta-program because of the follow­
ing reasons. 

o There is no distinction between the variables at the 
meta-level and those at the object-level. The object­
level variables cannot be manipulated at the meta­
level. 

• The predicate "reduce(P,Q)" finds potentially 
unifiable clauses for the given argument "P." The 
object-level program must also be defined as a pro­
gram. Therefore, the object-level program cannot 
be manipulated without using assert or retmct. 

o This program only simulate the top level execution 
of the program. The more detailed executing infor­
mation such as current continuation, environment 
or execution result is not explicit in this interpreter. 

2.2. Meta-level representation of the 
object-level system 

We would like to have a real meta-computation system 
which does not have the disadvantages described in the 
previous section. As a first step, we consider the meta­
level representation of the object-system. 

2.2.1. Constants, function symbols and 
predicate symbols 

We assume that constants, function symbols and pred­
icate symbols are expressed by the same symbols. The 
other possibility is using quote to distinguish the level. 
In this approach, '3 (quote three) corresponds to the 3 
at the object-level. 3-Lisp and G6del [Lloyd 88b] adopt 
this approach. 

However, we do not adopt this approach. Though 
quote is usually used to separate the data from the pro­
gmm, there exists a clear separation between predicates 
and functors in logic programming languages. Though 
the implementation of quote is not difficult, our claim is 
that there is little merit in using quote in logic program­
ming languages. 

2.2.2. Variables and variable bindings 
As explained previously, we cannot manipulate object­

level variables well if it is expressed as variables. To 

manipulate object-level variables, we need information 
about the representation of variables, i.e., we need to 
know where and how the given variable is realized. 

Therefore, we use a special ground term to express an 
object-level variable. This special ground term has a one­
to-one correspondence to the object-level term and is 
distinguished from the ordinary ground term. 

An object-level variables are expressed as "<Onumber" 
at the meta-level. A unique number is assigned for each 
variable. Though we are afraid that this representation 
of variables is not abstract enough, compared to the ap­
proach using quote, we have chosen it for implementation 
simplicity. Similarly, we also assume that the object-level 
variable is expressed as "<O! number" at the meta-meta­
level; "<O! ! number" at the meta-meta-meta-Ievel, and so 
on. 

The variable bindings at the object-level can concep­
tually be represented as a list of address-value pairs at 
the meta-level. The followings are the examples of such 
pairs. 

(@1, undf) 
(@2, a) 
(@3, (2) 

(@4,f(@1,@2)) 

the value of @1 is undefined 
the value of @2 is the constant "a" 
the value of @3 is the reference 
pointer to @2 
the value of @4 is the structure 
whose function symbol is "f," 
the first argument is the reference 
pointer to @1, and the second argu­
ment is the reference pointer to @2 

We can regard these pair as expressing the memory 
cells of the object-level. Similar to the ordinary Prolog 
implementation, reference pointers are generated when 
two variables are unified. Therefore, we need to derefer 
the pointers when the value of a variable is needed. 

2.2.3. Terms and object-level programs 

Keeping the consistency with the notations explained 
before, we denote object-level terms by corresponding 
meta-level special ground terms, where every variable is 
replaced by its meta-level notation. 

For example, the object-level term "p(a, [HITJ, 
f(T,b))" is expressed as "p(a, [<Oll<02J ,f(<02,b))" at 
the meta-level. 

It is also expressed as "p(a, [<O!1I<O!2J ,f(<O!2,b))" 
at the meta-met a-level. 

On the other hand, the program of object-level are 
expressed as a ground term at the meta-level, where all 
variables are replaced by "var(number)" notation. Note 
that "var(number)" is just a ground term and not the 
special ground term. 

For example, the following "append/3" program 

append([AIBJ,C,D):-truel 



D=[AIE], append(B,C,E). 
append([] ,A,B):-trueIA=B. 

is expressed as 

«append,3), 
[(append([var(1)lvar(2)] ,var(3),var(4)) 

:-truelvar(4)=[var(1)lvar(5)] , 
append(var(2),var(3),var(5))), 

(append([],var(1),var(2)) 
:~truelvar(1)=var(2))]) 

at the meta-level. Note that, this representation also 
works at the meta-meta-Ievel, since "var(number)" is 
just a ground term. 

2.3. An enhanced meta-program 
The simple GHC meta-program in Section 2.1 can be 

enhanced to fit to the requirements of the real meta­
program using the meta-level representation in Section 
2.2. The enhancement can be done by making explicit 
what is implicit in the simple GHC meta-program. 

• There was no distinction between the variable at 
the meta-level and the one at the object-level. We 
express object-level variables as special ground terms 
at the meta-level. 

• We manipulate object-level program as a ground 
term at meta-level. "exec" keeps it program as its 
argument. 

• "exec" also keeps the goal queue and the environ­
ment in its arguments for expressing continuation 
and variable bindings. 

The top level description of GHC meta-system can be 
written as follows: 

m_ghc(Goal,Db,Out) :- true I 
transfer(Goal,GRep,Env), 
exec([GRep] ,Env,Db,NEnv,Res) , 
make-result(Res,GRep,NEnv,Out). 

For given object-level goal "Goal" and given object­
level program "Db," "m_ghc" outputs the computation 
result to "Out." "transfer" changes given goal "Goal" 
to object-level representation "GRep." In "GRep," every 
variable in "Goal" has been replaced to "<onumber" form. 
The third argument contains the environment of this goal 
representation. 

For example, if we input "exam( [H I T] ,T)" to "Goal," 
"transfer(exam( [HIT], T) ,GRep,Env)" will be exe­
cuted. The computation result becomes 

GRep = exam([<Oll<02] ,(02) 

Env = (2,[(<Ol,undf),(<a2,undf)]). 
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Note that environment is expressed as a pair of a number 
and a list. The first element of the pair shows how many 
variables are allocated in the environment. In this case, 
two numbers have already been allocated. The second 
element of the pair shows the variable bindings. 

The enhanced "exec" executes this goal representation 
and the computation result "Out" will be generated by 
"make_result" predicate. 

The enhanced "exec" has five arguments. These five 
arguments, in turn, denote the goal queue, the environ­
ment, the program, the new environment and the execu­
tion result. The enhanced "exec" can be programmed 
as follows: 

exec([],Env,Db,NEnv,R) 
:- truel 

(NEnv,R)=(Env,success). 
exec([trueIRest] ,Env,Db,NEnv,R) 

:- truel 
exec(Rest,Env,Db,NEnv,R). 

exec([falseIRest] ,Env,Db,NEnv,R) 
:- true I 

(NEnv,R)=(Env,failure). 
exec([GRepIRest] ,Env,Db,NEnv,R) 

user_defined(GRep,Db) I 
reduce(GRep,Rest,Env,Db, 

NGRep,Envl), 
exec(NGRep,Envl,Db,NEnv,R). 

exec([GRepIRest],Env,Db,NEnv,R) 
system(GRep)I 

sys_exe(GRep,Rest,Env,NGRep,Envl), 
exec(NGRep,Envl,Db,NEnv,R). 

Though we omit the detailed explanation, the meaning 
of this program is self-explanatory. We easily notice that 
this is the extension of the simple GHC meta-program 
in Section 2.1. Note that the use of list for expressing 
goal queue imposes us inefficiency and some sequentiality. 
The difference list is used in the actual implementation. 
Also note that the use of shared-variable and short-circuit 
techniques [Hirsch 86, Safra 86] might be effective in the 
parallel implementation. 

3. Reflective Guarded Horn Clauses 
Reflection is the capability to feel or modify the cur­

rent state of the system dynamically. The form of reflec­
tion we are interested in is the computational reflection 
proposed by [Smith 84]. A reflective system can be de­
fined as a computational system which takes itself as its 
problem domain. 

In 3-Lisp, an infinite tower of meta is conceptually as­
sumed. A program is not executed directly. Instead, 
it is assumed to be executed on the bottom of the infi­
nite tower of meta. A meta-system executes the object­
system in an interpretive manner. Similarly, the meta­
meta-system executes the meta-system in an interpre­
tive manner. Conceptually, the infinite tower of meta all 
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moves in a synchronous manner. A reflective function 
can be defined as a mechanism which shift the control 
one level up. 

If a computational system has such reflective capabil­
ity, it becomes possible to catch the current state while 
executing the program and takes the appropriate action 
according to the obtained information. 

3.1. Two approaches in implementing 
reflection 

How should such reflective capability be implemented? 
Apparently, implementing an infinite tower of meta di­
rectly is not possible. 

There exist two approaches to realizing such reflec­
tive system. One is utilizing a pre-exist layer of meta­
systems. We can modify the meta-program and add the 
means of communication between the levels, namely, we 
prepare a set of built-in predicates which can catch or re­
place the current state of the object system. If we adopt 
this approach, it becomes possible to catch or modify the 
internal state of the executing program by using those 
built-in predicates. 

In [Tanaka 88, Tanaka 90, Tanaka 91], we proposed 
several reflective built-in predicates, such as "get_q," 
"put_q," "get_env" and "put_env." "get_q" gets the 
current goal queue of "exec." "put_q" resets the current 
goal queue to the given argument. Similarly, "get_env" 
and "put_env" operate on the variable binding environ­
ment. Though this approach has merit in that the imple­
mentation is relatively straightforward, we should note 
that this approach is not an accurate implementation 
of reflection. It is because the internal state is always 
changing, even while processing the obtained informa­
tion at the object-level. 

The other way is to create meta-system dynamically 
when needed. If a reflective predicate is called from the 
object-system, the meta-system is dynamically created 
and the control transfers to the meta-level in order t~ 
perform the necessary computation. The reflective func­
tion may also be called while executing the meta-system. 
In this case, the system creates the meta-meta-system 
and the control transfers to that system. Similarly, it 
is possible to consider the meta-meta-meta-system, the 
meta-meta-meta-meta-system, and so on. When the 
meta-level computation terminates, the control automat­
ically returns to the one-level-lower computation system. 

We adopted the second approach in implementing Re­
flective Guarded Horn Clauses (RGHC). RGHC is the 
reflective extension of GHC and can be defined as a su­
perset of GHC. Language features of RGHC are shown 
in the following sections. 

3.2. Reflective predicate 
Reflective predicates are user-defined predicates which 

invoke reflection when called. Reflective predicates can 

meta-level G:::J......... § EnVIronment 
Database 

object-level 

Figure 1: Execution of the reflective predicate 

be defined quite easily. It can used wherever we want, 
in the user program or in the initial query. Similar to 3-
Lisp, it is possible to access or modify the internal state 
of the computation system by this predicates. 

For example, reflective predicate for goal "p (A, B)" can 
be defined as follows: 

reflect(p(X,Y),(G,Env,Db),(NG,NEnv,NDb)) 
:- guard I body. 

Note that "p(A,B)" is changed to "p(X,Y)" 
and two extra arguments, i.e., "(G,Env,Db)" and 
"(NG,NEnv,NDb)" are added; When the goal "p(A,B)" 
is called at the object-level, we automatically shift one 
level up and this goal is executed at the meta-level. (See 
Figure 1.) At this level, "p(A,B)" is transformed to 
"p(X, Y)," where "X" and "Y" are the meta-level rep­
resentation of the arguments. 

The computation state of the object-level is also rep­
resented as "(G,Env,Db)," where "G" represents the re­
maining goals which should be executed at the object­
level, "Env" represents the, environments and "Db" rep­
resents the object-level program. Note that they are the 
representations of the state and we can freely access and 
manipulate these arguments. "(NG, NEnv ,NDb)" denotes 
the new computation state of the object-level to which 
the system should return when the meta-level execution 
finishes. We assume that (NG, NEnv ,NDb) are instanti­
ated while executing meta-level goals. When the execu­
tion of this reflective goal is finished, we automatically 
shift one level down and "(NG,NEnv,NDb)" becomes to 
the new object-level state. 

For example, a reflective predicate "var(X,R) ," which 
checks whether the given argument "X" is unbound or 
not, can be defined as follows: 

reflect(var(X,R),(G,Env,Db),(NG,NEnv,NDb)) 



unbound(X, Env) 1 
add_env((R,unbound),Env,NEnv), 
(NG,NDb)=(G,Db). 

reflect(var(X,R) ,(G,Env,Db) ,(NG,NEnv,NDb» 
bound(X,Env) 1 

add_env((R,bound) ,Env,NEnv) , 
(NG,NDb)=(G,Db). 

Since an object-level variable is handled as a special 
ground term and its value is contained in the environ­
ment, we examine the representation of environment to 
check whether the variable is bound or not and the result 
is added to the environment list as a value of "R." 

The "current_load (N)" predicate, which obtains the 
number of goals in the goal queue of the object-system, 
can be defined as follows: 

reflect(current_load(N),(G,Env,Db), 
(NG,NEnv,NDb»:- true 1 

length(G,X), 
add_env((N,X),Env,NEnv), 
(NG,NDb)=(G,Db). 

We shift up to the meta-level and computes the length 
"X" of "G." This value "X" is contained in the environ­
ment list as a value of "N." 

The "add_clause(CL)" predicate, which adds a given 
clause definition to the program ofthe object-system can 
be defined as follows: 

reflect(add_clause(CL),(G,Env,Db), 
(NG,NEnv,NDb» :- true 1 

add_db(CL,Db,NDb), 
(NG,NEnv)=(G,Env). 

The next example is the "interpretive" predicate 
which execute a given goal "p" in an interpretive manner. 

reflect(interpretive(P),(G,Env,Db), 
(NG,NEnv,NDb» :- true 1 

exec([P] ,Env,Db,NEnv,_) , 
(NG,NDb)=(G,Db). 

Note that this interpretive execution can be executed 
in parallel with other execution. Therefore, it is possible 
to execute the specific goals in an interpretive manner 
and execute others directly. One possibility is modify­
ing this "exec" to keep the debugging information. In 
such case, this predicate can be used as a "debugger." 
This kind of modification can be performed in a quite 
straightforward manner. 

3.3. Shift-down and shift-up 
It has been explained that, when a reflective predicate 

is called, the system is automatically shifted one-level 
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up. When the execution of the reflective procedure fin­
ishes, the system is automatically shifted one-level down. 
In that sense, shift-up and shift-down are automatically 
carried out by using reflective predicates and we do not 
need to specify them explicitly. 

However, we sometimes need to obtain the information 
about the representation, not the information itself. This 
typically happens when we want to implement a reflec­
tive system. For such purposes, we prepare two built-in 
predicates, i.e., "shift_down" and "shift_up." 

"shift_down (Exp, Down_Exp)" transforms the given 
representation "Exp" to the one-level lower represen­
tation "Down_Exp." "shift_up (Exp, Up_Exp)" trans­
forms the given representation "Exp" to the one­
level higher representation "Up_Exp." We should note 
that "shift_down" and "shift_up" just converts the 
representations. Therefore, they do not need to 
use environment for the conversion. For example, 
if we shift-down "p(a, [(011(02] ,f((02,b))'' we obtain 
"p(a, [<O!1I<O!2] ,f(<O!2,b»." 

Though the use of "shift_up" and "shift_d9wn" is 
not recommended for the casual user, we can use these 
predicates and obtain the information about the repre­
sentation if we want. For example, "get_q" predicate 
which obtains the content of execution goals as its repre­
sentation can be defined as follows: 

reflect(get_q(Q),(G,Env,Db),(NG,NEnv,NDb» 
true 1 

shift_down(G,Down_G) , 
add_env((Q,Down_G) ,Env,NEnv) , 
(NG,NDb)=(G,Db). 

We need to shift down the execution goals because we 
want to get the content of execution goals as its repre­
sentation. 

On the other hand, "put_q" predicate, which replaces 
the contents of goal queue to the given expression "Q," 
can be defined as follows: 

reflect(put_q(Q),(G,Env,Db),(NG,NEnv,NDb» 
true 1 

shift_up(Q,NG), 
(NEnv,NDb)=(Env,Db). 

Note that we cannot get the expected result, if we 
forget to shift-up "Q." 

3.4. Meta-level databases 
It is explained that reflective predicates are executed 

at the meta-level. The remaining question is how to build 
a meta-level computation system dynamically when the 
reflective predicate is executed. 

Please see Figure 1 again. In general, a computa­
tion system of GHG consists of three elements, i.e., goal 
queue, environment and database. We have already ex­
plained how the meta-level goal queue is created, i.e., it 
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only consists of the reflect goal. The meta-level environ­
ment only contains the binding information of this goal. 

How about database? It must be different from the 
object-level database. If all of guard and body goals of 
the reflective predicate consist of system-defined goals, 
no problems occur. If it includes user-defined goals, they 
must be defined in the database at the meta-level. 

How can we create meta-level database different from 
object-level database? We assume that initially only 
object-level database exists. 

"meta" and "global" predicates are prepared for such 
purpose. For example, if we would like to define a clause 

G :- H I B. 

at the the meta-level, we define it as 

meta(G):- H I B. 

at the object-level. When the meta-level is dynamically 
created by executing the reflective predicate, all meta 
definitions are searched from the object-level definition. 
Top level predicate "meta" is removed from those defi­
nitions and they are copied to the meta-level database. 
Similarly the meta-met a-level predicates can be defined 
as 

meta(meta(G)):- H I B. 

It is also assumed that reflective definitions are all 
copied to the meta-level, since they can be used recur­
sively. The global predicate 

global(G):- H I B. 

is also prepared to define user-defined predicates which 
are common to all levels. 

4. RGHC implementation 
In implementing RGHC, there exists several possibil­

ities. The most efficient implementation is re-designing 
the abstract machine code, which corresponds to War­
ren code, for RGHC. In this case, the abstract machine 
code must have the capability to handle system's inter­
nal state as data, or, conversely, to convert the given data 
into its internal state. 

The other possibility is realizing RGHC system as an 
interpreter on top of an ordinary GHC system. Though 
we cannot expect too much for the execution efficiency 
in this case, this method has a merit that the imple­
mentation is relatively simple. We actually implemented 
RGHC using this method. 

4.1. Description of RGHC 
The top level description of RGHC can be expressed 

as follows: 

r_ghc(Goal,Db,Out) 
true I 
transfer(Goal,GRep,Env), 
exec([GRep] ,Env,Db,NEnv,Res), 
make_result(Res,GRep,NEnv,Out). 

Note that this code is exactly the same as that of 
"m_ghc" in Section 2.3. This means that we realize a 
reflective system as a object-level system in the meta­
computation system. 

However, "exec" must be enhanced to realize reflec­
tion. This can simply be performed by adding one pro­
gram clause to the "exec" program in Section 2.3, as 
shown below. 

exec([GRepIRest] ,Env,Id,Db,NEnv,R) 
:- reflective(GRep,Db) I 
create_meta_db(Db,Meta_Db), 
shift_down((GRep,Rest,Env,Db), 

(D_GRep,D_Rest,D_Env,D_Db)), 
exec([reflect(D_GRep,(D_Rest,D_Env,D_Db), 

(<01,<02,<03))], 
(3, [(<D1,undf), (<02,undf), (<03,undf)]) 
Meta_Db,New_Meta_Env,_), 

deref_variable((<Ol,<02,<03),New_Meta_Env, 
(D_Rest2,D_Env2,D_Db2)), 

shift_up((D_Rest2,D_Env2,D_Db2), 
(N_Rest,N_Env,N_Db)), 

exec(N_Rest,N_Env,Id,N_Db,NEnv,R). 

This program definition clause takes care of the cre­
ation of the reflective tower. "create_meta_db" cre­
ates the meta-database from the object-system database. 
"(GRep, Rest, Env ,Db)". is shifted down and the rep­
resentation "(D_GRep, D_Rest, D_Env, D_Db)" is gener­
ated. 

Then "exec" at line 6 starts the meta-level compu­
tation using these arguments. This "exec" essentially 
responsible for the creation of the meta-level computa­
tion system. The trick of the program is in using the 
same "exec" at the meta-level computation. Note that 
variables at the meta-level computation are assigned dif­
ferently from the object-level computation. 

Therefore, in our implementation, the meta-level com­
putation is executed at the same speed as its object-level 
computation. 

When the meta-level execution finishes, "<01, <02, <03" 
must be instantiated. We derefer these variables, shift up 
this information and get "(N_Rest, N_Env, N_Db)" which 
denotes the new object-level information. Then we re­
turn to the object-level execution using this information. 

Figure 2 shows how the reflective tower is constructed 
by calling reflective predicates and how it is collapsed by 
finishing up their execution. 

4.2. RGHC implementation on PSI-II 
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Figure 3: Vector representation of variable bindings 

The prototype implementation of RGHC has already 
been finished up using PSI-II [Nakashima 87] sequen­
tial Prolog machine. We used KL1 [ICOT 89] and 
ESP [Chikayama 84] as our implementation program­
ming languages. KL1 is the extension of GHC, running 
on PSI-II hardware. Various extensions has been made 
to GHC, considering the actual program development on 
PSI-II. KL1 is used to describe the core part of the pro­
gram. On the other hand, user interface and if 0 part 
are written in ESP, the object-oriented dialect of Prolog. 
The total size of the program is 1530 lines, where KL1 
part consists of 985 lines. 

Though the RGHC system can conceptually be de­
scribed as shown in Section 4.1, this implementation is 
very expensive since list is used for expressing environ­
ment. It sequentially searches the element and it leads 
to the inefficiency when the length of the list becomes 
long. 

Therefore, the vector data type is used instead of list 
for internal implementation. KL1 provides us with vector 
data type, where the index search is possible. Figure 
3 shows the vector representation which corresponds to 
the variable bindings shown in Section 2.2.2. This vector 
implementation is initiated by [Koshimura 90] and it has 
turned out to be very efficient. 

In KL1, a vector can be created by executing 
"new_ vector eVector , N)" goal, where "N" is the in­
put for specifying the vector size and "Vector" is 
the output keeping the reference pointer to the vec­
tor. The content of i-th element can be examined by 
"vector_elementeVector, I, Element)." 
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"set_vector_elementeVector,I,OldElem,NewElem, 
NewVector)" is used for setting value "NewElem" to the 
i-th element of vector "Vector." We should note that 
the old value of i-th element is given as "OldElem" 
and the new reference pointer to the modified vector 
is given as "NewVector." It can be seen that this 
"set_ vector _element" predicate is defined in a quite 
declarative manner. However, at the language imple­
mentation level, the KL1 system is managing the refer­
ence count for the vector and destructive assignment is 
performed when no other goals are pointing the vector. 

Our policy for RGHC implementation is as follows: 
A vector is used instead of list for internal implementa­
tion. However, we still continue to use list structures for 
the external representation. Therefore, the reflective pro­
gramming examples shown in the previous sections are 
still effective. On the other hand, exec must be modified 
slightly to handle vectors, though we omit the implemen­
tation details because of the space limitation. 

Note that the use of the internal database, such as seen 
in DEC-10 Prolog [Bowen 83], may also be effective for 
the more efficient implementation. If we use the internal 
database, fast program look-up becomes possible using 
the key. Though we have not used the internal database 
in representing programs, these kinds of considerations 
become more important, especially when the size of the 
object-level program becomes larger. 

5. Program execution example 
The snapshots of a program execution example are 

shown in Figures 4 and 5. When the RGHC sys­
tem is started, "I/O WINDOW Level 1" is automatically 
opened, where "level 1" means the object level. The 
initial query can be typed in from this window. In 
this example, we have typed in "<- testeQ,A,B)." 
The definition of "test" predicate is shown in the 
"pmacs_window," located to the right side of Figure 4, 
for the reference. 

As seen in this program, "get_q(Q)" is defined as a 
reflective goal. When this "get_q(Q)" goal is executed, 
the meta-level computation system is dynamically cre­
ated and "I/O WINDOW Level 2" is opened. 

Figure 4 shows the instant when the meta-level compu­
tation has just finished up. "reflect (get_q e ... ) ... )" 
in "I/O WINDOW Level 2" shows the reflective goal to 
be executed at the meta-level. This window shows that 
the execution of this goal has been finished successfully 
by 42 steps. The bindings of variables allocated at the 
meta-level are also shown. Variables at the meta-level 
are shown by <0(1) , <0(2) , <0(3) and the object-level vari­
ables are shown by <O! 5, <0 ! 7. These representations are 
slightly different from those explained in Section 2.2.2, 
since it includes 0 at the meta-level. The differences 
mainly come from the regulations of our GHC system 
and are not essential. 
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~I~I" 

?- test(QIA,B). 
"" Sample program "" 

SW •• Itil •• IIII ••••••••••• rJ test (Q,A,B):- truel 
.. ' It append([112]IC3],A) I 

Shi ft up. 
?- reflect (geLq (@IS) I (Cappend (Ca,b .c] I Cd] I 
@17)].C (@10,undf) I (@!l,undf) I (@12. C@!91@113 
]» I ••• ] I C «test 13) • [ (test (var (1) .var (2) ,va 
r (3» : -true I ••• ]) I (@(1) 1@(2) ,@(3») 

success 
reduction = 42 
@(1) = Cappend(Calb,c] ICd] ,@!7)] 

@(2) = C (@ll.Cappend(Ca.blc].Cd],@!!7)]) I (@ 
10,undf) I (@!2,C@!9:@!13]) I (@!3,undf) I 
(@!4,undf) I (@!S,@1) •••• ] 

@(3) = C«test.3) IC(test(var(1) ,var(2).var( 
3» :-true: append (C 1. 2] • C3] I var (2» IgeLq (va 
r (1» .append (Ca.b IC] I Cd] ,var (3»)]) • «appen 
d 13) • C (append (Cvar (1) : var (2)] I var (3) I var (4) 
) :-true: uni fy (var (4) • Cvar (1) : var (5) ]) lappen 
d (var (2) I var (3) • var (S») I (append ([] .var (1) • 
var(2» : -true: unify (var (2) I var (1») ]) • «ref 
lect 13) • C (reflect (geLq (var (1» • (var (2) .var 
(3) • var (4) ) • (var (S) • var (6) • var (7) ) ) : -t rue: • .. ] 

o 

geLq(Q) I 
append (Ca Ib I c] I Cd] I B)' 

append([HITJ.V,Z):- true: 
Z=CH:Z2] I 
append <T I V I Z2) • 

append(C]IV,Z):- truel 
Z=V. 

reflect (geLq (V) • (G. Envl Db) • (NG, NEnvl NOb» :-. 
true: 

o 

shifLdown(G.G2) • 
add_env ( (V I G2) I Env I NEnv) I 
(NG.NOb) = (G,Ob). 

Figure 4: Execution example of RGHC (1) 

1- test (Q,A.S>. 
success 
reduct ion = 57 
Q=Cappend(Ca.b.c] .Cd] .@17)] 
A=ClI2,3] 
B=Ca.b,c.d] 

?_ r 

~% Sample program "" 

test (Q,A.B):- true: 
append(Cl,2l.C3].A) • 
geLq(Q) • 
append ([a.b .c]. Cd] .B). 

append (CH:n.V .Z):- true: 
Z=CH:Z2] • 
append <T • V • Z2) • 

append([].V.Z):- true: 
Z=V. 

reflect (geLq (V) • (G.EnvIDb) I (NG,NEnv.NOb» :­
true: 
shi fLdown (G. G2) I 
add_env ( (V. G2) • Env • NEnv) I 
(NG.NOb) = (G,Ob). 

Figure 5: Execution example of RGHC (2) 



When the meta-level computation terminates, "I/O 
WINDOW Level 2" also disappears. Figure 5 shows the 
instance when the whole computation terminates. The 
final computation result is shown in "I/O WINDOW Level 
1." It shows that the execution has been terminated suc­
cessfully by 57 steps and the variable bindings at that 
time are also shown. 

6. Related works and conclusion 
In logic programming field, [Bowen 82] provides us the 

starting point for meta-programming research. There 
exists related research, such as [Porto 84, Eshghi 86]. 
Also some related research was carried out in parallel 
logic programming field [Shapiro 84, Clark 84, Hirsch 86, 
Safra 86]. 

Recently, two workshops on meta-programming in logic 
programming, i.e., Meta 88 and Meta 90, have been held 
[Lloyd 88a, Bruynooghe 90]. It seems that the attention 
has been paid to the theoretical foundation of meta­
programming. Several considerations have been done 
for the meta-level representation of the object-system 
[Lloyd 88b, Lim 90]. Our representation, described in 
Section 2, is very close to Lim's approach. 

Though we described the GHC meta-computation sys­
tem first in this paper, it seems that our object-system 
representation is quite straightforward one and that most 
people agree with our representation scheme. 

However, regarding to reflection in logic programming, 
there exist few research works so far. The exceptions are 
[Costantini 89, Sugano 90, Lamma 91]. They all worked 
for reflection in Prolog. 

In [Costantini 89, Lamma 91] the interests mainly lie 
in controlling the program execution dynamically by re­
defining the solve predicate at the meta-level. In spite of 
his claim on computational reflection, their systems have 
only a very limited expressive power, 

On the other hand, [Sugano 90] assumes the similar 
kind of reflective predicate definition as proposed in this 
paper. However, his interest is mainly in semantics. Not 
much consideration has done for the implementation, the 
execution efficiency and the application. 

The features of our RGHC system can be summarized 
as follows: 

1. Reflection mechanism by reflective predicate defini­
tion. The user can freely define reflective predicates 
which invoke reflection when called. We can handle 
current continuation, environment and program at 
the meta-level. This mechanism is the GHC version 
of reflective function in 3-Lisp. 

2. Dynamic constructing and collapsing of a reflective 
tower. In our system, a new level is generated when 
a reflective predicate is called. When finished, that 
level is collapsed and the system automatically re­
turns to its original level. By calling reflective pred-
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icate recursively, the arbitrary level of meta can be 
created dynamically. 

3. Creation of the arbitrary layers of databases. We 
can define'the meta-level database, which is different 
from the object-level by "meta" predicate. It is also 
possible to define the arbitrary layers of databases 
by using "reflect," "meta" and "global" predi­
cates. 

It seems that the unique feature of RGHC is the imple­
mentation simplicity of reflection. As shown in Section 
4, the trick is in using the same "exec" at the meta-level 
computation. Therefore, the meta-level computation can 
be executed at the same speed as its object-level compu­
tation. 

This elegance of the implementation mainly comes 
from the simplicity of the language. This seems to be 
its most critical difference from the implementation of 
reflection in Lisp or the one in object-oriented languages. 
Though we did not mentioned the semantics of RGHC, 
we should note that [Sugano 90] worked out for defining 
the semantics of his R-Prolog* by the extended Herbrant 
base with if 0 pair. 

Our final goal exists in building a sophisticated dis­
tributed operating system on top of the distributed in­
ference machine such as PIM [Uchida 88]. Some trials 
for describing such systems can be seen in [Tanaka 88, 
Tanaka 90, Tanaka 91]. 
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Abstract 

CHARM (for Concurrency and Hiding in an Ab­
stract Rewriting Machine) is an abstract machine 
which allows to naturally model the behaviour of 
distributed systems consisting of a collection of pro­
cesses sharing variables. CHARM is equipped with 
a clean operational semantics based on term rewri t­
ing over a suitable algebra, and it exhibits a so­
phisticated treatment of concurrency and modular­
ity, which is obtained through the partition of each 
state into a global and a local part. To show the ex­
pressivness and generality of this abstract machine, 
two relevant computational formalisms, graph gram­
mars and concurrent constraint programming, are 
mapped onto the CHARM frame\vork. 

1 Introduction 

Various formalisms have been proposed in the last 
decades for describing and specifying concurrent pro­
gramming and distributed systems. Among them we 
recall Petri nets [Reisig 1985], CCS [Milner 1989], 
CSP [Hoare 1985], the Chemical Abstract Ma­
chine [Berry and Boudol 1990], Graph Grammars 
[Ehrig 1979], and Concurrent Const.raint Program­
ming [Saraswat 1989]. However, the high number of 
such formalisms shows t.he need for a unifying frame­
work, which should be able to capture the essence of 
concurrent computations. Such a framework should 
be general enough, so that most of the formalisms 
already proposed could be embedded in it, but it 
should be also expressive enough, so t.o be able, to 
prove interesting properties about it. Vie have found 
that a reasonable balance of generality and expres­
siveness can be enjoyed by a formalism able to ex-

*Research partially supported by t.he GRAGRA Basic Re­
search Esprit. 'Vorking Group n.3299 and by Alenia S.p,A. 

press in a simple way both concurrency and modu­
larity. In 'fact, such notions are fundamental in or­
der to describe how concurrent systems interact and 
synchronize, evolve, compose, or embed in other ?ys­
tems. 

In this paper we propose an abstract machine, 
called CHARM (for Concurrency and Hiding in an 
Abstract Rewriting Machine), which is intended to 
satisfy the above need for a unifying fra.mewor k for 
concurrent programming. Such a machine exhibits 
a sophisticated treatment of the above cited issues 
of concurrency and modularity, which subsumes and 
surpasses the corresponding treatment of many other 
formalisms. 

States of a CHARM are collections of processes 
interacting through shared variables. The issue of 
modularity is addressed basically by partitioning the 
st.ates into a global (i.e., visible) and a local (i.e., 
hidden) part. In fact, the global items of a system 
are those which allow the interaction with other sys­
tems, and thus are used to compose them in a non­
trivial way. Transitions of the machine are rewrite 
rules described by pairs of systems with an identical 
global part, \vhich expresses the part being preserved 
by the application of the rule (i.e., the part that 
the rule, being local to the rewritten state, cannot 
change). The presence of a global and a local part 
allmvs also a degree of concurrency higher than the 
one provided, for example, by the Chemical Abstract 
Machine [Berry and Boudol 1990] or by Petri nets 
[Reisig 1985]. In fact, two transitions ma.y be ap­
plied in parallel not only when the subsystems they 
affect are disjoint, but also when their intersection 
is preserved by both of them. 

The technique used for the form.al definition of the 
CHARM follows t.he algebraic approach introduced 
in [Meseguer and Montanari 1990] for Petri nets, 
and further developed for structured t.ransition sys-



888 

terns in [Corradini 1990,Corradini et al. 1990] and 
for concurrent rewriting systems in [Meseguer 1990]. 
This approach is characterized by the fact that states 
and transitions of a system ha.ve the same algebraic 
structure, which can also be consistently extended to 
computations. This algebraic construction equips a 
system with a calculus of computations, which pro­
vides a rich modular proof system. 

To show the expressiveness and generality of the 
CHARM computational model, we describe. how 
the classical algebraic approach to graph grammars 
[Ehrig 1979], which has been widely used for al­
gebraic system specification, can be implemented 
in our framework. Also, the CHARM provides 
a very natural interpretation of concurrent con­
straint programming [Saraswat and Rinard 1990] 
[Saraswat et al. 1991], since the sharing of variables 
and the possibility of "asking" (i.e., testing while 
preserving) a constraint are the two main notions 
in such a paradigm. Notice that the ability of 
expressing concurrent constraint programming in 
the CHARM framework is very significant, since 
such a paradigm is already very general and sub­
sumes many widely used programming paradigms 
like logic programming [Lloyd 1987], constraint logic 
programming [Jaffar and Lassez 1987]' and concur­
rent logic programming [Shapiro 1989]. 

Although this issue is not addressed in this pa­
per, we are confident that also process descrip­
tion languages, like CCS [Milner 1989] and CSP 
[Hoare 1985], can be modelled within the CHARM 
framework. This hope is supported by the fact that 
we use an algebraic approach, where some basic 
operators of such languages (i.e., parallel composi­
tion, hiding, and relabelling) are already present, 
while other mechanisms (like synchronization and 
non-deterministic choice) may be coded via suitable 
techniques, as we will hint in Section 2. 

We first give an informal description of the 
CHARM in Section 2, and then we present the for­
mal theory underlying our approach by presenting, 
in Section 3, an algebra for the states of the machine 
and also for the rewriting rules. We then address the 
relationship between the CHARM and graph gram­
mars and concurrent constraint programming in Sec­
tions 4 and Section 5 respectively. 

2 An informal description of 
the abstract machine 

In this ·section we informally give the main ideas un­
derlying the design of the abstract machine we pro­
pose (called CHARM in the rest of the paper), and 

we also enlighten some of its advantagesw.r.t. other 
transition systems and/or machines which have al­
ready been proposed in the literature for describing 
concurrent systems. 

Each state of a CHARM is a (distributed) system, 
i.e., a collection of processes and a set of (possibly 
shared) variables, where each process is connected to 
a subset of the variables. This notion of state is very 
general. In fact, we do not assume any requirement 
on the structure of processes and variables, which 
thus may be interpreted in various way. For exam­
ple, processes may also be though of as predicates or 
constraints or relations, and . variables may represent 
communication channels or shared data structures. 
It is important to notice that many of the approaches 
proposed to represent the evolution of concurrent 
systems [Berry and Boudol 1990] [Reisig 1985] can­
not model directly the sharing of variables, since a 
state is simply a multiset of processes. 

Each state is partitioned into a local part and a 
global part, and thus will be informally indicated in 
the rest of this section by the pair S = (G, L), where 
G stands for the global part and L for the local part. 
In terms of distributed systems, we may think of 
the local (resp., global) part as the hidden (resp., 
visible) set of variables and processes. Intuitively, 
the local items are those whose identity is known 
only to the system under consideration, while the 
global ones are the interface of the system with the 
rest of the world and thus may be known by other 
systems as well. For example, such an interface may 
contain common data structures, as well as processes 
implementing services of global utility. 

States can be built from smaller states. For ex­
ample, the parallel composition of two states (given 
later by the operator "I") is defined as the state 
whose global part is the set union of their global 
parts, and whose local part is the disjoint union of 
their local parts. This reflects the fact that, as we 
said above, the identity of the items in the global 
parts of the two states are known by both of them, so 
that items with the same name should be identified. 
In the state resulting from the composition, it is pos­
sible to force some items, which were global in both 
the composing sub-states, to become local. This can 
be done by using a suitable hiding operator, which 
will be denoted by "\". Parallel composition and 
hiding, together with a renaming operator (denoted 
by "[<I>]") define an algebra (introduced in t~e next 
section) whose terms are the states of a CHARM. 

The dynamic behaviour of a CHARM is given 
by a collection of rewrite rules. Every rewrite rule 
R: S -+ S' maps its left-hand side S = (G,L) to its 
right-hand side S' = (G, L'), both having the same 



global part G, which is also called the global part 
of R. The graphical representation of a rewrite rule 
can be seen in Figure 1. The idea is that L can be 
cancelled and L' can be generated provided that G 
is present. Thus our notion of rewriting is context­
dependent, the global part of a rule playing the role 
of the context. It is worth stressing that the global 
part G is not affected by the application of R, but 
it is simply tested for existence. Although this goes 
beyond the scope of this paper, this fact should allow 
us to define a satisfactory truly concurrent semantics 
for CHARM's, since it minimizes the causal depen­
dencies among rewrite rules. 

5 5' 

@ R G!) 
Figure 1: A rewri te rule. 

Intuitively, the global part G of R contains those 
items (processes and variables) which are needed for 
the transformation of the state to take place, but 
which are not changed by the rewrite rule. For ex­
ample, we may want to do some operation only if 
some data structure contains some given informa­
tion. In this case, the data structure is considered to 
be global and thus it is not affected by the rewrite 
rule. It is important at this point to notice that, 
unlike our app~oach, many transition systems or ab­
stract machines proposed in the literature (like Petri 
nets [Reisig 1985] and the Chemical Abstract Ma­
chine [Berry and Boudol 1990]) cannot distinguish 
between the situation where some item is preserved 
by a rewrite rule, and the one where the same item 
is cancelled and then generated again. For example, 
the rule "a rewrites to b only if e is present" must be 
represented in those formalisms as {a, e} -+ {b, e}, 
which also represents the rule "a and e rewrite to b 
and e". 

On the other hand, some other formalisms explic­
itly consider the issue of context-dependent rewrit­
ing, and allow one to formally indicate which items 
should be present for the application of a rule, but 
are not affected by it. For example, in the al­
gebraic approach to graph grammars [Ehrig 1979], 
the role of the context is played by the so-called 
"gluing graph" of a graph production, while in 
concurrent constraint progranlming [Saraswat 1989] 
[Saraswat and Rinard 1990] [Saraswat et al. 1991], 
the items the presence of which must be tested are 
explicitly mentioned by the use of the "ask" prim­
itive. The relationship between the CHARM and 
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these two formalisms will be explored deeply in later 
sections of this paper. 

A rewrite rule R from S = (G,L) to S' = (G,L') 
can be thought of as modelling the evolution of a 
(small) subsystem, represented by its left hand side 
S. To apply this rule to a given state Q = (GQ , LQ ), 

one first has to find an occurrence of S in Q, i.e., 
a subsystem of Q "isomorphic" to S (as we shall 
see later, this requirement will be relaxed in the for­
mal definitions). Following the usual intuition about 
structured systems, it is evident that all the items 
which are local for a part of a system are local for the 
whole system as well, while items which are global 
for a subsystem can be either global or local for any 
enclosing system. In the application of a rule like 
the one above, this observation is formalized by re­
quiring that the occurrence of Lin Q is contained in 
its local part L Q • 

The application of R to a system Q yields a new 
system Q' = (GQ"LQ'), where GQ' = GQ, i.e., the 
global part remains unchanged, and LQ' = (LQ \ 
L) U L'. In words, the local part of the new state 
coincides with the local part of the old one, except 
that the occurrence of L has been replaced by an 
occurrence of L'. Thus, the part oHhe state Q which 
is preserved by the application of R is partitioned in 
two parts: the occurrence of G, which is necessary 
to apply R, and the rest, which does not take part 
in the rewriting. The graphical representation of the 
application of R to Q can be seen in Figure 2. 

The fact that the application of a rewrite rule pre­
serves the global part of the state can be justified by 
interpreting the items contained in the global part 
as an interface for a possible composition with other 
states. Thus, such an interface cannot be modified 
by any rewrite rule, since a rewrite rule is local to 
the rewritten state. Notice that, as a consequence of 
the above considerations, a closed system, i.e., a sys­
tem which is not supposed to be composed further, 
is represented by a state with no global part. 

Q Q' 

(]@ @) 
GQ LQ 

Figure 2: The application of a rewrite rule. 

The above construction describes the application 
of a single rewrite rule of a CHARM to a state. How­
ever, this mechanism is intrinsically concurrent, in 
the sense that many rewrite rules may be applied in 
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parallel to a state, provided that their occurrences 
do not interfere. In particular, if the occurrences 
of the rules are pairwise disjoint, we have a de­
gree of parallelism which is supported also by many 
other models of concurrent computation, like Petri 
nets [Reisig 1985], the Chemical Abstract Machine 
[Berry and Boudol 1990], and the concurrent rewrit­
ing of [Meseguer 1990]. However, our approach pro­
vides a finer perception of the causal dependen­
cies among rewrite rules, because rules whose occur­
rences in a state are not disjoint but intersect only on 
their global parts can be considered not to depend 
on each other, and thus can be applied concurrently. 
This fact reflects the intuition, since such rules inter­
act only on items which are preserved by all of-them. 
This corresponds to what is called "parallel indepen­
dence" of production applications in the algebraic 
theory of graph grammars [Ehrig 1979], which can in 
fact be faithfully implemented within the CHARM 
framework, as we will see in Section 4. 

From a technical point of view, the appli­
cation of one or more rules of a CHARM is 
modelled by extending the algebra of states to 
the rules (for similar approaches in the case 
of Petri nets or structured transition systems 
see [Meseguer 1990], [Corradini et al. 1990] and 
[Meseguer and Montanari 1990)). As we shall see in 
Section 3, this is possible because each rule has an 
associated global part, just like states. The resulting 
algebra, called the algebra of tmnsitions, contains, 
as elements, all theTewrite rules of the abstract ma­
chine, an identity rule 5 : 5 -+ 5 for each state 
5, and it is closed w.r.t. parallel composition, hid­
ing, and substitution operations. The left and the 
right-hand sides of a transition (i.e., of an element 
of the algebra of transitions) are easily obtained by 
structural induction from its syntax. For example, 
if R : 5 -+ Q and R' : 5' -+ Q' are two rewrite rules, . 
then R I R' : 5 I 5' -+ Q I Q' is a new parallel tran­
sition. Like rewrite rules, transitions preserve the 
global part of the state they are applied to. 

In this paper we will assume that the algebra of 
transitions is freely generated by the set of rewrite 
rules defining a CHARM, and by the identity rules 
for all states. As a consequence of this fact, if a 
transition can be applied to a state 5, then it can be 
applied to any state containing 5 as well. Informally, 
this can be considered·as a meta-rule governing the 
behaviour of a CHARM, and directly corresponds 
to the so-called "membrane law" of the Chemical 
Abstract Machine [Berry and Boudol 1990]. 

Although the choice of a free algebra of transitions 
is satisfactory for the formalisms treated in this pa­
per, more general kinds of algebras would be needed 

in order to deal with other formalisms, like for ex­
ample process description languages [Milner 1989] 
[Hoare 1985]. In fact, some features of those lan­
guages (e.g., tIle parallel composition of agents 
wi th synchronization in the presence of restric­
tion, and the description of atomic sequences of 
actions, useful to provide a low-level implementa­
tion of the non-deterministic choice operator "+" 
[Gorrieri et al. 1990] 
[Gorrieri and Montanari 1990)) cannot be mod­
elled adequately within a free algebra of transi­
tions. Nevertheless, as shown in [Ferrari 1990] and 
[Gorrieri and Montanari 1990] respectively, both 
those aspects can be faithfully modelled in an alge­
braic framework by labelling transitions with obser­
vations which include an error label and by specify­
ing suitable algebraic theories of computations where 
the atomic sequences are basic operators. Thus we 
are confident that, although this goes beyond the 
scope of this paper, these topics could be fruit­
fully addressed in the algebraic framework intro­
duced here, by slightly generalizing the construction 
of the algebra of transitions of CHARM's presented 
in the next section. 

A computation of a CHARM is a sequence of tran­
sitions, starting from a given initial state. Since each 
transition preserves the global part of its left-hand 
side state, the final state of a computation has the 
same global part as the initial state. Thus every 
computation is naturally associated with a global 
part as well. As for transitions, this will a.llow us to 
define an algebra of computations, having the same 
operations of the algebra of states, plus a sequen­
tial composition operation denoted by"; ". The ele­
ments of the algebra of computations are subject to 
the same axioms as for states, plus some axioms stat­
ing that all the operations distribute over sequential 
composition. Thus 'vve have a rich language of com­
putations, where some computations can be proved 
to be equivalent by using the axioms. 

The interesting fact is that the algebra of compu­
tations allows one to relate the global evolution of 
a closed system to the local behaviour of its subsys­
tems. For example, suppose to consider the closed 
system P = (5 I 5')\x, where the two subsystems 5 
and 5' cooperate through the common global vari­
able x which is hidden by t.he use of the \x operat.or. 
Furthermore, consider the computations p : 5 => Q 
and p' : 5' * Q' for 5 and 5' respectively. Then, 
by using the algebra of computations it is possible 
to construct the computation a = (p I p')\x which 
models the evolution of the closed system P, i.e., 
a: P => P', where P' = (Q I Q')\x. 

The algebra of computations provides a.lso some 



basic mechanisms which should allow to model pro­
cess synchronization. In fact, consider for example 
the two computations a = (p I p')\a: and a' = (p\x) I 
(p'\x). Now, a =/:. a', since p and p' can synchronize 
through the common variable :r in (J, but not in (J'. 

Another relevant advantage of the definition of the 
algebra of computations of a CHARM consists of the 
possibility of providing a truly concurrent semantics 
in a natural way. In fact, computations differing only 
in the order in which independent rewrite rules are 
applied fall within the same equivalence class. For 
example, considering again the computation a' in­
troduced above, we . have that a' = (p \x) I (p'\x) = 
((p\x) I 5') ; (Q I (p'\x)), where 5' and Q stand 
for the identity computations on such states. This 
means that, since p\:r and p'\x are independent, 
they can be performed either in parallel or sequen­
tially, and the two resulting COll1put C1 tic>lls are equiv­
alent. 

With each equivalence class of computations it 
is possible to associate a partial ordering, record­
ing the causal dependencies among the rewrite rules 
used in the computations. For the two formalisms 
we shall consider in this paper (i.e., graph gram­
mars and concurrent constraint programming) the 
truly concurrent semantics obtained via their trans­
lation to a CHARM is significant. In fact, it is 
possible to show that some of the classical results 
about concurrency and parallelism in graph gram­
mars directly derive from the axioms of our algebra. 
Also, the truly: concurrent semantics pro·posed in 
[Montanari and Rossi 1991] for the concurrent con­
straint programming framework coincides wi th the 
one induced by its compilation into a. CHARM. How­
ever, the true concurrency aspects go beyond the 
scope of this paper. 

3 Formal Definitions 

In this section we present the formal descriptipn of a 
CHARM, following the outline of the informal pre­
sentation given in the previous section. After in­
troducing the algebra of states, a. CHARM will be 
defined as a collection of rewri t.e rules over this alge­
bra which preserve the global part of a term. Next 
we will introduce the algebra of transitions and the 
algebra of computations of a CHARM, respectively. 

The states of a CHARM are going to be repre­
sented by the terms of an algebra 5, which is para­
metric w.r. t. a fixed pair of disjoint infinite collec­
tions (P, V), called process instances and va.riables 
respectively. The terms of this algebra are subject 
to the axioms presented below in Definition 3. 

Definition 1 Let P be a set of process instances 
(ranged over by p, q, ... ), and V be a set of variables 
(ranged over by v, z, ... ). Each x E (P U V) is 
called an item. The algebra of states 5 is the alg~bra 
having as elements the eq'lLivalence classes of terms 
generated by the following syntax, mod'll.lo the least 
eqiLivalence relation indnced by the axioms listed in 
Definition 3: 

5 ::= 0 1 v 1 P(Vl,""Vn ) 1 S 15 1 S[<I>ll 5\x 

where v, VI, ..• , Vn E V,. pEP; "I" ·is called 
parallel composition,. <I> is a (finite domain) substi­
t1Ltion, i.e., a function <I> : (P U V) -+ (P U V) such 
that <I>(V) ~ V, <I>(P) ~ P, and s1Lch that the set of 
items for which x=/:. <I> ( x) is finite; and x is an item 
(\x is called a hiding operator). Term of the form 
OJ v, or p( VI, . .. , Vn) are called atoms .• 

Intuitively, 0 is the empty system, v is the sys­
tem containing only one variable, and p( VI, ... , Vn) 
represents a system with one process which has ac­
cess to n variables. The term 51 I 52 represents the 
composition of system 51 and system 52, 5[<I>] is the 
system obtained from state 5 by renaming its items, 
and 5\x is the system which coincides v,rith system 
5 except that item x is local. 

Definition 2 Given a term 5 E 5, its set of 
free items F(5) is inductively defined as F(O) = 
0; F(v) = {v}; F(P(Vl'''' ,vn)) = {p,Vl,'" ,vn}; 
F(51 I 52) = F(5I) U F(52 ); F(5[<I>]) = <I>(F(5)) 
= {<I>(x) I x E F(5)}; and F(5\x) = F(5) \ {x} if 
:1; E F(5) and F(5\x) = F(5) otherwise. A term 5 
is closed iff F(5) = 0. A term is concrete if it does 
not contain any hiding operator. A term is open if 
no variable appearing in the term is restricted. For­
ma.lly, all atoms a.re open; 51 I 52 is open if both 
51 and 52 are open; 5 [<I>] is open if 5 is open; and 
5\x is open if 5 is open and x tJ. F(5). Clearly, all 
concrete terms are open .• 

The free items of a term 5 are the process in­
stances and the variables of the global pa.rt of the 
system represented by 5. Thus a closed term rep­
resents a system with no global part, while an open 
term corresponds to a system where everything is 
global. The above interpretation of the operators of 
the algebra of states is supported by the following 
axioms, which determine when two terms are equiv­
alent, i.e., represent the same system. 

Definition 3 The terms of algebra 5 introd1Lced in 
Definition 1. are subject to the following conditional 
axioms. 

ACI: (51 152 ) 1 5'3 = 5'1 1 (52 1 53); 81 152 = 52 1 51; 5 I 
0=5' 
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ABS: p(v!, ... , Vn) I Vi = P(Vl, ... , vn), for 1 ~ i ~ 11,; 
SIS = S, if S is open 
COMP: S[<I?][IlI] = S[1lI 0 <I?] 

EXC: S\x\y = S\y\x 
EL: S\x = S, if x is not free in S 
MAP: p( VI, . .. , vn)[<I?] = <I? (p)( <I? ( Vt), ... , <I? ( Vn)); 
V[<I?] = <I?(V); O[<I?] = a 
DIS: (SI I S2)[<I?] = SI[<I?] I S2[<I?] 
FAC: Sl \x I S2 = (Sl I S2)\X, if x is not free in S2 
SWAP: (S\x)[<I?] S[<I?]\<I?(x), if I 3y E 
F(S\x) such that <I?(y) = <I?(x) 
a-CONY: S[<I?] = S, if<I? is bijective and <I?(x) = x \Ix E 
F(S) 

Two terms 5 and 5' are equivalent (written 5 ~ 
5') if they are in the least congrt£ence relation.r w. r. t. 
all the operators of the algebra) induced by the above 
axioms .• 

In words, axioms AC I al~d AB 5 state that the 
parallel composition of systems behaves like disjoint 
union on the local parts of systems, and like set 
union on the global ones. Axioms COMPand MAP 
deal. with substitution composition and application 
respectively, while axiom DI5 states that substitu­
tions distribute over parallel composition. Axioms 
EXC and EL state that the items of a system can 
be made local only once and in any order. Finally, 
axioms F AC and 5W AP describe in an obvious way 
the interplay between the hiding operator and the 
operators for parallel composition and substitution, 
while axiom a:-CONV formalizes the intuition that 
the names of the hidden items are not meaningful. 

As anticipated in Section 2, the rewrite rules which 
define a CHARM must preserve the global part ~f 
the states they can be applied to. Therefore we de­
fine a function gp which extracts from each term a 
concrete sub term, corresponding to its global part. 
Actually, gp is a partial function on S, because some 
term may denote a system whose global part is not 
a legal system. This happens when a variable is 
made local, but some process using it is consid~red 
as global. Terms on which gp is defined are called 
well-formed. The function gp is defined by exploit­
ing the existence of a canonical form of terms. 

Proposition 4 E1Jery term 5 of the algebra of 
states S has an equiva.lent canonical form 51 I 
52 \X1 ... \xn , where 51 and 52 are parallel compo­
sitions of atoms. If 52 = 521 I ... I S2k) then Vi = 
1, ... , k, either 5 2i = 0 or:F( 5 2i ) n {Xl, ... ,Xn } i- 0. 
M oreover,for each atom of the form q( VI, ... , Vm ) E 
52, Vi = 1, ... , m, either Vi = Xj for some j = 
1, ... ,n, or Vi occurs in 51. If 51 I 52 \X1 ... \xn 

and 5~ I 5~ \Y1 ... \Yk are two canonical forms for 
term 5, then 51 ~ 5~ .• 

Definition 5 Let 5 be a term (Lnd 51 I 52 \XI ... \xn 

be one of its canonical forms. Term S is well­
formed if and only if for eCLch atom of the form 
q( VI, . .. ,Vm ) E 52, q = Xi for some i. Then, the 
global part of a well-formed term 5 is defined as 

9P(5) = 51 .• 

Definition 6 A rewrite rule Rover S is a pair of 

well-formed terms of S, R = (5,5') (also written 
R: 5 --+ 5') s1£ch that 9P(5) ~ 9P(5'). A CHARM 
M (over S) is a collection of re"write rt£les over S, 
i.e., M = {Ri : 5 i --+ 5ihEI .• 

Definition 7 Let M = {Ri : 5 i --+ 5HiEI be a 
CHARM over S. Then the algebra of transitions 
of M, T(M), is generated by the following inference 
rules, which also give the left (J,nd the right-hand side 
of each transition. 

i E I 
Rj : Sj -t Si 

T : S -+ Q, T' : S' -+ Q' 
TIT' : SIS' -+ Q I Q' 

T:S--+Q 
T\x : S\x -+ Q\x 

SES 
S:S-tS 

T:S-+Q 
T[<I?]:S[<I?J-Q[<I?) 

The free items of a transition are the free items 
of its left (or right) hand side. A transition is open 
~ff it has the form 5 : 5 --+ 5, with 5 open. The 
terms of T( M) are st£bject to the same axioms as in 
Definition 9 .• 

Definition 8 Let jV( = {Ri : 5i --+ 5ihEI be a 
CHARM over S, and T(M) be its algebra of tran­
sitions. Then the algebra of computations of M, 
C(M), is generated by the following inference rules, 
where P : 5 =? 5' means that computation P starts 
from state 5 an(l ends in state 5': 

T : S -+ Q E T(M) 
T:S~Q 

p : S ~ Q, p' : S' ~ Q' 
pip' : SIS' ~ Q I Q' 

p:S~Q 

p\x : S\x ~ Q\x 

p : S ~ S', p' : S' ~ S" 
PiP': S ~ S" 

p:S~Q 

p[<I?]:S[<I?]~Q[<I?] 

The free items of a computation are the free items 

of its starting (or ending) state. The terms of C(M) 
are subject to the same axioms as in Definition 9, 
plt£s the following functoriality axioms, valid when­
ever both sides are defined, stating that the opera­
tions of the algebra distribute over sequential com­
position. 

(p I p')j (0" I 0"') = (pj 0") I (p'j 0"') 
(pj 0")[<1>] = p[<1>]; 0"[<1>] 
(pjO")\x = p\x;O"\x. 



4 Modelling graph grammars 

The "theory of graph grammars" studies a variety 
of formalisms which extend the theory of formal lan­
guages in order to deal with structures more general 
than strings, like graphs and maps. A graph gram­
mar allows one to describe finitely a (possibly infi­
nite) collection of graphs, i.e., those graphs which 
can be obtained from an initial graph through re­
peated application of graph productions. In this 
section we shortly show how to translate a graph 
grammar into a CHARM which faithfully imple­
ments its behaviour. Because of space limitations, 
the discussion will be very informal: a more for­
mal presentation of this translation can be found in 
[Corradini and Montanari 1991]. 

Following the so-called algebraic approach to 
graph grammars [Ehrig 1979], a graph production 

p = (L ~ I': ~ R) is a pair of graph monomor­
phisms having as common source a graph E, the 
gl'uing graph, indicating which edges and nodes have 
to be preserved by the application of the produc­
tion. Throughout this section, for graph we mean 
unlabelled, directed hypergraph, i.e., a triple G = 
(N, E, c), where N is a set of nodes, E is a set. of 
edges, and c : E ~ N- is the connection /nnction 
(thus each edge can be connected to a list of nodes). 
Production p can be applied to a graph G yielding 
H (written G ~p H) if there is an occurrence (i.e .. 
a graph morphism) 9 : L ~ G, and H is obtained 
as the result of the do'nble p'u.sho'u.t construction of 
Figure 3. 

PushOut 

G:---­
d 

K 

jh: 

D 

l' R 

PushOut jh 
H 

b 

Figure 3: Graph rewriting via double pushout con­
struction. 

This construction may be interpreted as follows. 
In order to delete the occurrence of L in G, we con­
struct the "pushout complement" of 9 and I, i.e., we 
have to find a graph D (with morphism k : I': ~ D 
and d : D ~ G) such that the resulting square is a. 
"pushout". Intuitively, graph G in Figure 3 is the 
pushout object of morphisms 1 and k if it is obtained 
from the disjoint union of Land D by identifying the 
images of J{ in L and in D. Next, we have to embed 
the right-hand side R in D via a second pushout, 
which produces graph H. In this case we say that 
there is a direct deriva.tion form G to H via p. 
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A graph rewriting system is a set n of graph pro­
ductions. A derivation from G to Hover n (shortly 
G ~n H), is a finite sequence of direct derivations 
of the form G ~PI G1 ::;'P2 •• , ~Ptl Gn = H, where 
PI , ... ,pn are in n. 

To define the CHARM which implements a given 
graph rewriting system, we have to define the sets 
of process instances and of variables (see Definition 
1). Quite obviously, \ve can regard a graph as a dis­
tributed system where the edges are processes, and 
the nodes are variables. Thus we consider a CHARM 
over the pair of sets (£, N) which are two collections 
including all edges and all nodes, respectively. The 
precise relationship between the algebra of states of 
such a CHARM and the graphs introduced above has 
been explored in [Corradini and Montanari 1991]. It 
has been shown there that concrete terms of such 
an algebra (i.e., terms without hiding operators, see 
Definition 2), faithfully model finite graphs, i.e., if 
FGraph is the collection of all finite graphs and 
CS is the sub-algebra of concrete terms of S, there 
are injective functions Gr : CS ~ FGm.ph and 
Tm. : FGraph ~ CS such that Gr(Tm( G)) ~ G 
for each graph G. Furthermore, well-formed terms 
(see Defini tion 5) model in a similar way "partially 
abstract graphs", i.e., suitable equivalence classes of 
graph monomorphisms, where the target graph is 
defined up to isomorphism. For our goals, it is suf­
ficient to introduce the function TV JT which asso­
ciates a well-formed term with each graph monomor­
phism. 

Definition 9 Let G = (N, E, c) be a gra.ph, with 

N = {ndi:5m , E = {ejL:5r , and c(ei) = nil· .. ·· nikj 

for (l.ll 1 :::; i :::; 1'. Then the concrete term represent­
ing G is defined as 

Tm,( G) = nl I ... I nm I el (n11,' .. , nlkl ) I ... I 
€r(nr l, ... ,nr kr ) 10. 

Let h : G '-+ H be (J, graph monomorphism. Then 
the 'well-formed term representing h 'is defined as 

TVJT(h) = (Trn(H)\xl \ ... \:rn )[h-1
] 

where {Xl, ... , :rn} is the set of items of H which are 
not in the image oj G thr01Lgh h, and 11.-1 improp­
erly denotes the s1Lbstit1ttion s1Lch that 11.-.1 (y) = X if 
hex) = y, and h.-l(y) = y otherwise (which is well 
defined because h is injective) .• 

From the last definition it can be checked that 
the global part of the well-formed term representing 
a monomorphism h : G '-+ H is equivalent to the 
concrete term representing G, i.e., Trn( G). Using 
this observation, and since a graph production is a 
pair of graph monomorphisms with common domain, 
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it is easy to associate a CHARM rewrite rule (in the 
sense of Definition 6) with each graph production. 

Definition 10 Let n be a graph rewriting system. 

For e~ch graph production p = (L ~ ]{ ~ R) in n, 
its associated rewrite r'ule M (p) is defined as M (p) : 
WfT(l) ~ vVJT(r). The CHARM implementing n 
is defined as l\11(n) = {M(pj) I Pi En} .• 

In order to correctly relate the operational be­
haviours of a graph rewriting system n and of its 
associated CHARM M(n), we have to take care of 
the translation of the starting graph of a derivation 
into a term. In fact, if G is such a graph, it would not 
be sound to take as starting state of M(n) the con­
crete term Tm( G). Indeed, we must observe that 
the graph derivations informally introduced above 
are defined up to isomorphism, i.e., if G =>p H, then 
G' =>p H' for each G' ~ G and H' ~ H. This is due 
to the fact that the pushout objects of Figure 3 are 
defined up to isomorphism. As a consequence, graph 
derivations actually define a relation among equiv­
alence classes of graphs, rather than among graphs. 
Such equivalence classes are faithfully represented 
by closed terms of the algebra of states: using Def­
inition 9, the class of all graphs isomorphic to G 
is represented as W JT(Oc), where Oc is the unique 
(mono)morphism from the empty graph to G. 

The next theorem states that the translation of 
a graph rewriting system into a CHARM is sound 
and complete. This result is not trivial, and is 
based on the fact that every transi tion of the alge­
bra T(M(n)) (see Definition 7) represents a pair of 
graph monomorphisms with common source, which 
are the bottom line of a double pushout construc­
tion like the one depicted in Figure 3. We re­
fer to [Corradini and Montanari 1991] for the formal 
proofs. 

Theorem 11 Let n be a graph rewriting system 
and M(n) be the associated CHARM. Soundness: 
If G is a graph and p : ItVfT(Oc) => Q is a. term 

of the algebra of computations of M('R..), i.e., of 

C(M(n)) (see Definition 8), then there is a. deriva­

tion G =>n H s'uch that IVfT(OH) ~ Q. Complete­
ness: If G =>n H, then there is a. cornpnt(dion p 
in the algebra. of computations of M ('R..), such that 

p: W fT(Oc) => vV JT(OH ) .• 

5 Modelling concurrent con­
straint programming 

The concurrent constraint (cc) programming 
paradigm [Saraswat 1989] is a very elegant frame­
work which captures and generalizes most of the 

concepts of logic programming [Lloyd 1987], con­
current logic programming [Shapiro 1989], and con­
straint logic programming [JaffaI' and Lassez 1987]. 
The basic idea is that a program is a collection of 
concurrent agents which share a set of variables, over 
which they may pose ("tell") or check ("ask") con­
straints. Agents are defin~d by clauses as the par­
allel composition ("II"), or the existential quantifi­
cation ("3"), or the nondeterministic choice ("+"), 
of other agents. A computation refines the initial 
constraint on the shared variables (i.e., the store) 
through a monotonic addition of information until 
a stable configuration (if any) is obtained, which is 
the final constraint returned as the result of such a 
computation. 

The cc paradigm is parametric w.r.t. the kind of 
constraints that are handled. Any choice of the con­
straint system (i.e., kind of constraints and solution 
algorithm) gives a specific cc language. For exam­
ple, by choosing the Herbrand constraint system we 
get concurrent logic programming, and by further 
eliminating concurrency we get logic programming. 
The constraint system is very simply modelled by 
a pa.rtia.l information system [Saraswat et a1. 1991], 
i.e. a pair < D, r>, where D isthe set of the primi­
ti ve constraints and r ~ r( D) x D is the entailment 
rela.tion which states which tokens are entailed by 
vvhich sets of other tokens, and which must be re­
flexive and transitive. Then, a constraint is a set of 
primitive constrairits, closed under entailment. 

In this section we will informally show how any 
cc program can be modelled by a CHARM. The 
idea is to consider each state as the current collec­
tion of constraints (on the shared variables) and of 
active agents (together with the variables they in­
volve), and then to represent each computation step 
as the application of a rewrite rule. More precisely, 
both agents and primitive constraints are going to 
be modelled as process instances, while the shared 
variables are the variables of the abstract machine. 

Basic computation steps are an ask operation, a 
tell operation, the decomposition of 'an agent into 
other agents, but also the generation of new con­
straints by the entailment relation. In the following, 
each agent or constraint always comes together with 
the variables it involves, even though we sometimes 
will not say it explicitly. 

In a state Q, the agent A = tell( c) ~ Al adds con­
straint c to Q and then transforms it.self into agent. 
AI. This can be fait.hfully modelled by a rewrite rule 
R from S = (G,L) to S' = (G,L') where L cont.ains 
agent A, L' contains agent Al and constraint. c, and 
G cont.ains the variables involved in A (since these 
are t.he only items connecting A to t.he rest. of the 



state Q). This rule may be seen in Figure 4. Note 
that the fact .that c is present only in the local part 
L' of 5' does not mean that c is visible only locally. 
In fact the mechanism of rule application allows to 
treat a'local item as a global one (see Figure 2). 

5 5' 

C8 R en!) 
e L e L' 

Figure 4: The CHARM rewrite rule for the agent 
A = tell( c) -t AI. 

In a state Q, the agent A = ask(c) -t A1 trans­
forms itself into A1 if c is in Q and suspends oth­
erwise. The corresponding re\'~ri te rule is R from 
5 = (e,L) to 5' = (G,L'), where L contains 
agent A, L' contains agent A1, and G contains c. 
In fact, constraints, once generatec~, are never can­
celled, since the accumulation of constraints is mono­
tonic. Since the rewrite rule cannot be applied if 
there is no occurrence of the Ihs in Q, the ask sus­
pension is given for free. This rule may be seen in 
Figure 5. 

Parallel and nondeterministic composition, as well 
as existential quantification of agents, are straight­
forwardly modelled by corresponding re\vrite rules. 
Note that, in an "atomic" interpretation, tell and (J.sk 
operations fail if c is inconsistent with the constraints 
in Q. Our rewrite rules model inst.ead the "eventual" 
interpretation [Saraswat 1989], where inconsistency 
is discovered sooner or later, but possibly not im­
mediately. Thus immediate failure is not directly 
modelled. However, since the difference between the 
two interpretations basically depends on the \vay the 
nondeterministic choice is implemented, the specifi­
cation of suitable algebraic theories, as suggested in 
Section 2, could be of help for the implementation 
of the atomic interpretation of the cc framework. 

Each pair (C, t) E f- may be modelled by a state 
change as well. In fact, in a state Q, (C, t) can be 
interpreted as a tell of t whenever C is in Q, and can 

5 5' 

G8 R CB 
G L G I' 

Figure 5: The CHARM rewrite rule for the agent 
A = ask( c) -t AI. 
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thus be represented by a rewrite rule R from 5 = 
(e, L) to 5' = (e, L'), \"rhere L is empty, e contains 
C, and L' contains t. Note that I is empty, since 
nothing has to be cancelled, and all items involved 
are either tested for presence and thus preserved (C) 
or generated (t). This rule may be seen in Figure 6. 

5 5' 

CD R GJ 
e I G L' 

Figure 6: The CHARM rewrite rule for the pair 
(C, t) of the entailment relation f-. 

In summary, (the eventual interpretation of) a cc 
program, together vvith the underlying constraint 
system, is modelled in a sound and complete way 
by'a CHARM with as many rewrite rules as agents 
(and subagents) and pairs of the entailment relation 
(note that, while the number of agents is always fi­
nit.e, in general t.here may be an infinite number of 
pairs in the entailment relation). It is important to 
stress the naturality of the CHARM as an abstract 
machine for cc programming. In fact, the global part 
of the rules exactly corresponds to the idea that con­
straints are never cancelled, and thus, once gener­
ated locally (by one of the subsystems), are global 
forever. This description of cc programming within 
the CHARM framework follows a similar one, given 
in [Montanari and Rossi 1991], where the classical 
"double-pushout" approach to graph rewriting was 
used to model cc programs and to provide them with 
a t.ruly concurrent semantics. Thus, the results of 
this section are not surprising, given the results in 
[Montanari and Rossi 1991] and those of the previ­
ous section, which show how to model graph gram­
mars through a C HARM. 

6 Future Work 

As pointed out in Section 2, one of the subjects 
which seem most interesting to investigate is the 
possibility to provide the CHARM with a true­
concurrency semantics. . Another one is instead 
the implementation of process description languages 
onto the CHARM. As briefly discussed in sections 
:2 and 3, both these issues seem to be fruitfully ad­
dressable within the algebraic· framework we have 
depicted in this paper. 

In [Laneve and Montanari 1991] it has been 
shown that concurrent constraint programming may 
encode the lazy and the call-by-value A-calculus. 
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This encoding exploits a technique similar to the one 
used by Milner to encode A-calculus inir-ca.lculus 
[Milner et a1. 19S9], since the mobility of processes 
(which is one of the main features ofir-calculus) can 
be simulated in cc programming via a clever use of 
the shared logical variables. This result, combined 
with our implementation of cc programming in the 
CHARM, described in Section 5, suggests that also 
higher order aspects of functional languages .may be 
expressed within the CHARM. 
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Abstract 
In this paper we present a denotational semantics for 
Flat GHC. In the semantics, the reactive behavior of a 
goal is represented by a sequence of substitutions, which 
are annotated with + or - depending on whether the 
bindings are given from, or posted to the environment of 
the goal. Our objective in investigating the semantics 
is to develop a framework for abstract interpretation. 
So, the semantics is less abstract enough to allow an 
analysis of various properties closely related to program 
sources. We also demonstrate moded type inference of 
FG H C programs using abstract interpretation based on 
the semantics. 

1 Introduction 
Various work on the semantics for concurrent logic 
languages has been investigated by many researchers 
[Gerth et al. 1988][Murakami 1988][Gaifman et al. 1989] 
[Gabbrielli and Levi 1990][de Boer and Palamidessi 
1990]. One of their main purposes is to identify one 
program with another syntactically different program, 
or distinguish between syntactically similar programs. 
And, since some researchers are interested in properties 
like fully abstractness, they may want to hide internal 
communications from the semantics or want to abstract 
even observable behaviors much further. 

Since our main objective is to analyze a program 
unlike the above researchers, we want to have a fix­
point semantics suitable to the collecting semantics, on 
which our framework of abstract interpretation is based. 
But once we try to introduce one of their semantics to 
a framework of abstract interpretation, the semantics 
may be too abstract to obtain some of the properties 
we require. 

In this paper we present a denotational fixpoint se­
mantics for Flat GHC. In the semantics the reactive 
behavior of a goal is represented by a sequence of sub­
stitutions which are annotated with + or - depending 
on vlhether the bindings are given from, or posted to the 
environment of the goal. The semantics presented here 
is less abstract enough to allow an analysis of various 
properties closely related to program sources, e.g., on 
occurrences of symbols in programs or internal commu­
nications. V\Te also demonstrate moded type inference 

of FGHC programs using abstract interpretation. 
We briefly explain the concurrent logic programming 

language Flat GHC and its operational semantics in 
Section 3 after we introduce the preliminary notions in 
the next section. Next we present the fixpoint approach 
to the semantics of Flat GHC in Section 4, and then in 
Section 5 we show the relationship between the fixpoint 
semantics and the operational semantics. After ;review­
ing a general framework for abstract interpretation, we 
show examples of analyzing FGHC programs. 

2 Preliminaries 
In this section, we introduce the following basic notions 
used in this paper, many of which are defined as usual 
[Lloyd .1987][Palamidessi 1990]. 

Definition 2.1 (Functor, Term, Atom, Predicate 
and Expression) 
Let Var be a non-empty set of variables, Func be a set 
of functors, Term be a set of all terms defined on Var 
and on Func, Pred be a set of all predicates and Atom 
be a set of all atoms defined on Term and Pred. 

An expression is a term, an atom, a tuple of expres­
sions or a (multi)set of expressions, and we denote a set 
of all expressions by Exp. We also denote the set of all 
variables appearing in an expression E by var(E). 

Definition 2.2 (Substitution) 
A substitution () is a mapping from Var to Term such 
that the domain of () is finite, where the domain of (), de­
noted by dom(()), is defined by {V E Var I ()(V) i= V}. 
The substitution () is also represented by a set of assign­
ments such that {V +-t I V E dom(()) /\ ()(V) == t}. The 
identity mapping on Var, called an identity substitution, 
is denoted by 0. The range of (), denoted by ran(()), is a 
set of all variables appearing in terms at the right hand 
side of each assignment of (), i.e., UVEdom(9) var(()(V)). 
var( ()) also denotes the set of variables dome ()) U ran( ()) 

When E is an expression, E() (or (E)()) denotes an 
expression obtained by replacing each variable V in E 
with ()(V). The composition of two substitution e and 
0', denoted by eO', is defined as usual [Lassez et al. 
1987][Palamidessi 1990]. A substitution e is assumed 
to be always idempotent [Lassez et al. 1987]. (i.e., 
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dom(8) n ran(8) = 0, where 0 denotes an empty set.) 
And the result of composing substitutions is also as­
sumed to be idempotent. The set of all idempotent 
substitutions is denoted by S'l.lbst and the set of all re­
namings is denoted by Ren. A restriction of 8 onto 
var(E) is denoted by alE' 

Definition 2.3 (Equivalence Class and Partial 
Ordering) 
A pre-ordering :5 on Subst, called an instantiation or­
dering, is defined as follows: al :5 a2 iff 30"(8l O" = ( 2), 
where ai, 82 , 0" E Subst. The equivalence relation w.r.t. 
an instantiation ordering ::$, denoted by rv, is defined 
as follows: 81 rv a2 iff 3'r/(al 'r/ == (2 ), where 'r/E Ren. 

And substitutions al and a2 are said to be in an equiv­
alence class when al rv a2. A set of the equivalence 
classes of Subst is denoted by Subst/",. A partial order­
ing on S1£bst /"" also denoted by :5, is naturally induced 
from a pre-ordering :5 on Exp. We denote the equiv­
alence class of a substitution a by 8"" or simply by 
a. Given T as the greatest element on :5 of Subst /"" 

Subst /'" can be naturally extended to Subst /"" Then 

(Subst /"" :5) forms a complete lattice. 

Definition 2.4 (Most General Unifier) 
A most general unifier (mgu) a of expressions E l , E2, 
denoted by mgu( El , E2), iff E1 8 == E28 and El aJ == 
E 2 8J J 8 :5 aJ for all 8J

• Let U be a set of equations 
{Sl =t l ,· .. , Sn=tn}. Then mgu([sl' ... , Sn], [t1" .. , t n]) 
is also denoted by mgu(U). A substitution 8 can also 
be represented by a set of equations, denoted by Eq(8), 
such that Eq(8) = {X=t / (X~t)E8}. 

Definition 2.5 (Directed) 
Let 81 ,82 be substitutions. Then 81 and 82 are said to 
be directed, denoted by 81 I><J 82 , iff var( ( 1 ) n var( ( 2 ) = 
dom(8d n dom(82). 

Example 2.1 Consider two substitutions 81 = {X~ 
U, Y ~U}, 82 = {X ~Y} in an equivalence class and a 
substitution 0" = {X ~ j(V), Y ~ j(a)}. Then 8l and 0" 
are directed, but 82 and 0" are not directed. 

As (Subst;"" :5) forms a complete lattice, every sub­

set of S1£bst;", has the lub (least upper bound) and 
the glb (greatest lower bound) w.r.t.:5. Several al­
gorithms for computing the lub and the glb have al­
ready been presented [Lassez et al. 1987][Palamidessi 
1990]. In [Palamidessi 1990], two operations: Subst/", x 
Subst/"" -+ S1£bst/", are provided, which are called a 
parallel composition j and a parallel factorizationj, This 
has shown 81 j82 = lub(81,(h) and 81 !82 = glb(81,82). 

We now review the two operations in [Palamidessi 
1990] briefly. Let ai, 82 be (equivalence classes) of idem­
potent substitutions. 81 j 82 is defined mgu(Eq(8d U 
Eq(a2)). And 81 ! a2 is defined by using the factor­
ization algorithm which repeatedly replaces the differ­
ent symbol at the same position in the bindings by a 
variable and finally generates (an equivalence class of) 

a substitution 'r/ as the glb(8}, ( 2 ) with two addenda 
0"1 , 0"2' Then, the following property is also shown be­
tween these substitutions: 'r/O"I = 81 and 'r/0"2 = 82 , 

where 0"1,0"2 are called side substitutions. Here we call 
0"1 (or 0"2) a most general difference (mgd) of 82 (or 
8d from 8l (or ( 2), and denote it by mgd(8l ,82 ) (or 
mgd( 82 , 8J).) 

Definition 2.6 (Colllpatibility and Complement) 
81 and a2 are said to be compatible, denoted by 81 ~ 82 , 

iff lub (81 , ( 2) =f. T. And they are said to be incom­
patible, denoted by 81 ¢ 82 , iff lube 81 ,(2 ) = T. A 
complement of a substitution 8/"" E Subst/"" denoted 
by 7J '" or 7J, is a set of all (equivalence classes of) 
substitutions incompatible with 8, which is defined by 
{8',.., E Subst/", / 8", ¢ 8',..,} 

Example 2.2 Consider substitutions 81 = {X ~ 
j(Z), Y~j(Z)} and a2 = {X~j(a), Y~j(b)}. Since the 
parallel composition 81 ja2 is T, they are incompatible. 
And the parallel factorization 81 !82 is the substitution 
{X ~ j(U), Y ~ j(V)}, and the most general difference 
mgd(81 ,82) is {U~V} and mgd(82,81) is {U~a, V~b}. 

3 Flat Guarded Horn Clauses 
Now, we briefly recall a concurrent programming lan­
guage Flat Guarded Horn Clauses (FGHC), and then 
define the operational semantics of Flat GHC in terms 
of a transition system [Ueda 1990b]. 

3.1 Syntax of FGHC 
An FGHC program is a set of fiat guarded clauses. A 
flat guarded clause (simply, clause) is of the form: 

P(t1,· ... ,tk):- G1, .. ·,Gm/Bb .. ·,Bn. 
(k,m,n ~ 0), 

where p is a k-ary predicate symbol, tb ... , tk are terms, 
and G1, ... , Gm, B1, ... , Bn are atoms. The atom 
p(t1, ... , tk) is called a head, the head and G I , ... , Gm 
are called a guard and B 1, ... ,Bn is called a body. One 
binary predicate "=" for unifying two terms is prede­
fined by the language, a goal of which is called a unifi­
cation goal. Each guard goal Gi must be a unification 
goal. 

3.2 Operational Semantics of Flat GHC 
In [Ueda 1990b], Ueda has defined the operational se­
mantics of FGHC in the style of Plotkin. Here we 
present it by following his definition. 

Definition 3.1 (Transition System of FGHC) 
A transition system oj an FGHC program P is defined 
by using a configuration and a transition relation. A 
configuration is a pair of the form (B, E) where B is a 
multiset of goals and E is a binding environment of B. 
A binding environment E is a multiset of equations C 
with a set of variables V such that var(B)Uvar(C)~ V, 
denoted by C: V. 



A transition relation under P, denoted by Transp, 
is the smallest set of binary relations on configurations, 
denoted by . -t ., such that: 

(1) 

({A=H} U G, C: V U var((H, G))) ~ (0, C U C g : V') 
({A}, C: V) -t (B, C U Cg : V' U var(B)) 

if 3cE P 37] E Ren((H:- G 1 B) == C7] /\ V n var(c7]) == 0) 
and 1= '11.( C :) 3( var( Cg ) \ va.r(A)).Cg ) (2) 

(s=t, C: V) -t (0, C U {s=t}: V) 
(3) 

vVhen C1 -t C2 E Trans p, C1 -t C2 is said to be in the 
transition system of P or C1 is said to be reduced to C2 

under a program P. Then, a computation of a program 
P with an initial goal B is represented by a (possibly 
infinite) sequence of transitions in Transp; C1 -t C2 -t 

... -t Ci -t '" such that C1 is (B, 0: var(B)). Each 
configuration ci(i ~ 1) is called a possible configuration 
from B. 

We may use alternative denotations ~, ~ and s:::/ 
corresponding to transition rules (1 ),(2) and (3) respec­
tively if it is necessary to identify them. The reflexive 
and transi ti ve closure of -t, by applying ~ (or s~t) 
once only, is denoted by =* (or s,,*\ respectively,) or by 
=} simply. 

4 Fixpoint Approach to the Semantics 
In this section, we show that a computation of a multi­
set of goals G is modeled as interleaving computations 
of each goal in G and the model can be computed as 
the fixpoint of the semantic function defined here. 

4.1 Atom Reaction 
We are interested in reactive behaviors between a given 
initial goal and a (possibly altered) environment which 
may be implemented by other goals, rather than the 
fixed behavior and the final result induced from the ini­
tial goal and the initial environment. In such a case the 
environment (i.e., the other goals) may also be (mono­
tonically) altered by reacting against the initial goal 
and/or its subgoals during the computation of the ini­
tial goal. 

Here possible reactive behaviors of a initial goal cor­
responding to various environments are denotation ally 
modeled by using sequences of substitutions. 

Definition 4.1 (Unit Reaction) 
A unit rea.ction is a substitution with an annotation '+' 
or '-', denoted by e+ or e- where e is a substitution. 
e+ is called an inp'ut unit reaction and e- is called an 
outp~d ~mit reaction. V'/e may denote a unit reaction 
without an annotation when we do not need to distin­
guish input or O1dp~d from each other. A substitution 
e obtained from a unit reaction 8 == ea by removing 
an annotation a is denoted by 181. A set of all input 
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unit reactions {e+ 1 e E Subst} is denoted by Ureact+, 
a set of all output unit reactions {()- 1 e E Subst} 
is denoted by Ureacr, and a set of all unit reaction 
Ureact+ U Ureacr is denoted by Ureact. 

Next we introduce special symbols, called termina­
tion symbols, which represent special states in reactive 
behaviors. 

Definition 4.2 (Terminal Symbol) 
A termination symbol is ..Lsuc , ..Lrf, ..Luf or ..Ldl, (or sim­
ply by ..L), which represent finite success, reduction 
failure, unifica.tion fa.ilure and deadlock respectively. 
Then Ureactl.. denotes Ureact U {..Lsuc,..Lrf,..Luf,..Ldt}. 
l..Lsucl = l..Lrfl = l..Ldd = 0, and l..Luri = T. 

Now we define various operations on unit reactions 
by extending operations on the substitutions defined 
above. 

Definition 4.3 (Operations on Unit Reactions) 
Let 0' be a substitution, 8 be a unit reaction and a 

be an ar.lnotation of 8. Then domain and range of 
unit reaction are defined by dom( 8) == dom(181) and 
ran( 8) == ran(181). mgu and mgd of a substitution 
0' and a unit reaction 8 are defined by mgu( 0',8) == 
mg~L(8,0') == mgu(181,0')a, mgd(8,0') == mgd(181,0')a and 
mgd( 0',8) == mgd( 0',181). 0' [Xl 8 and 8 [Xl 0' iff 0' [Xl 181 or 
181 [Xl 0'. 

For a unit reaction 8i and a sequence of unit reac­
tions b., 8i is said to be in b. iff 38i(1 ::; i ::; n)(b. = 
8182 ... 8n ), and denoted by 8i Eb.. An empty sequence 
of unit reactions is denoted by D. 

Definition 4.4 (Reaction Sequence) 
A reaction sequence is an empty sequence D, a sequence 
of one unit reaction 8, or a sequence of more than two 
unit reactions b. such that V8i,8j E b. (1 ::; i < j ::; 
n /\ dom(8 i )ndom(8j ) == 0/\ dom(8i )nran(8j ) == 0). A 
set of all reaction sequences is denoted by Rseq. 

A domain of b. E Rseq is a set of variables such that 
{V 1 38 E b.(V E dom(8))/\ '118' E b.(V ~ ran(8'))}. 
var(b.) also denotes the set of variables Uc5EA var( 8). 
A substitution 0' and a reaction sequence b. are said to 
be directed, denoted by 0' [Xl b., iff var( 0') n var( b.) = 
dom(O') n dom(b.). Reaction sequences b.1 and b.2 
are said to be directed, also denoted by b.1 [Xl b.2, iff 
var(b.1) n var(b.2) = dom(b.1) n dom(b.2)' 

When b. = 81 ... 8n E Rseq and 8 E Ureact, a concate­
nation of b. and 8 is denoted by b.. 8 or 8· b., defined 
by b.·8 = 81 ... 8n 8 or 8·b. = 881 ... 8n . A sequence of 
unit reaction b.·8 such that b. E Rseq and 8 E Ureactl.. 
is also a reaction sequence. A set of all such reaction 
sequences is denoted by Rseql... 

Definition 4.7 (Atom Reaction) 
An a.tom reaction is a pair of an atom A E Atom and 
a reaction sequence b. E Rseql.., denoted by (A, b.), 
such that dom(b.) ~ var(A). Here a set of all atom 
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reactions is denoted by Areact, i.e., Areaci = {(A, .6.) / 
A E Atom A .6. E Rseq.l.}. 

A substitution () and an atom reaction (A, .6.) are also 
said to be directed, denoted by () I><J (A, .6.), iff () I><J .6.. 
Atom reactions (AI, .6.1 ) and (A2' .6.2 ) are said to be 
directed, denoted by (AI' .6.1 ) I><J (A2' .6.2 ) iff.6.1 I><J .6.2 , 

An equivalence class of E, i.e., E"" may be repre­
sented by E, as mentioned in Section 2. When we say 
"E1 and E2 such that E11><JE2" where E1, E2 are substi­
tutions, reaction sequences or atom reactions, we mean 
that each E1 or E2 is restricted to a subset of E1", or 
E2", such that E1 EEl"" E2 EE2", and E11><J E2· 

Let (A, 01 .,. On), (A, O~ .. , o~) be atom reactions that 
are directed. Then (A, 01", On) is said to be more 
general than (A, o~ ... o~) when the following condition 
hold: 

(1) if On E 1.. or o~ E 1.., then On = o~, and 
(2) for all i (1 ::; i ::; n), 

(a) OJ E Ureact+ iff o~ E Urea ct + , 
(b) OJ E Ureacr iff o~ E Ureact-, 
(c) if OJ, oi E Ureact+, then IIoj ::S IIOi, and 
(d) if OJ, o~ E Ureact-, then IIo~ '" lub(IIo~_l' IIo j ), 

where IIo j is a composition of substitutions /01/ ... /Oi/' 
Here we want to explain intuitively what is the notion 

that (A, .6.) is more general than (A, .6.'). (A, .6.') 
represents a reactive behavior such that a goal A gets 
more instantiated bindings from, and posts not more 
instantiated bindings to the environment of the goal A, 
than the reactive behavior represented by (A, .6.). 

Definition 4.6 (AtOlTI on a Program) 
Given a FGHC program P, an atom on a program P 
is an atom A such that the predicate symbol of A ap­
pears in P (not necessarily at head parts.) A set of all 
atoms on P is denoted by Atomp, and a set of all atom 
reactions (A, .6.) such that A E A tom p and .6. E Rs eq is 
denoted by Areactp. 

Now we define the relation between atom reactions 
and operational behaviors more formally. 

Definition 4.7 (Correct A tom Reaction) 
When a program P and an atom Go E Atomp are 
given, an atom reaction (Go, 01 ... On) is called a cor­
rect atom reaction w. r. t. a program P, when the fol­
lowing conditions hold, where Bo = {Go}, Co = 0 and 
Vo = var(Go), and, for all i(l ::; i ::; n), let Co; be a set 
of equations such that mgu(CoJ '" /Oi/. 

(1) If n = 0, i.e., 0102 ... On = 0, then (Go, 01 ... On) is 
always correct, 

(2) if OJ E Ureact+, there exists a transition 
(Bi-1, Ci-1 U Co;: Vi-I) ~ (Bi, Ci: Vi-I U var(cry)) 
such that var(CsJ n Vi ~ var(GoG) and 
Bi = (Bj-l \ {H}) U B, where (H :- G / B) == cry, 
ryERen and G = mg1£(Cj _ 1), 

(3) if OJ E Ureacr, there exists a transition 
t=s 

(Bi-1, Ci-1: Vi-I) :::} (Bi' Cj: Vi-I U var( s=t)) such 
that C j = Ci - 1 U Cs; and B j = B i- 1 \ {t=s}, or 

(4) if on E {1..}, at least one of the conditions (1)-(3) 
holds for all i (1 :s; i :s; n - 1), and 
(a) if On is l..suc, then Bn- 1 is 0, 
(b) if On is l.rf, then there exists A E B n- 1 such that 

mgu(Cn- 1) ~ mgu( {A=H} U G) for all clauses 
such that (H :- G / B) == cry,ryERen and CEP, 

(c) if On is l.uf, then there exists (t=s) EBn- 1 such 
that mgu(Cn-d ~ mgu(t,s)), or 

(d) if On is l.dl, then there exists the same transition 
as in case (2) unless the condition var(COn_J n 
Vi ~ var(GoG) exists, where G = mgu(Ci-d. 

In the following we define the most important atom 
reaction in correct atom reactions. 

Definition 4.8 (Most General Correct Atom Re­
action) 
Let (A, .6.) be a correct atom reaction w.r.t. a program 
P. Then, (A, .6.) is called a most general correct atom 
reaction w.r.t. a program P, denoted by (A, .6.)~p, 
when (A, .6.) is more general than any other correct 
atom reactions (A, .6.') w.r.t. P. 

Example 4.1 Suppose that (A, 0102 03)~ p such that 
01,02 E Ureact+ and 03 E Ureact-. Intuitively we can 
explain the notion of a correct atom reaction by consid­
ering a chain of the following transitions: 

(G,0) 
(G,C01 ) ~(B1,C1) 

(B1' C1 U CoJ ~(B2, C2) 
s-t 

(B2, C2) ~ (B3, C2 U C03 ) 

where G = {A} and mgu(CoJ ""' /Oi/ (1 :s; i :s; 3). 

Example 4.2 Let P be a program 
{p(A,B,C):-A=f(D), C=g(a,E) / B=f(a)}, 
.6.1 be {X~f(U),Z~g(a,V)}+{Y~f(a)}-, 
.6.2 be {X ~ feU), Z ~g(a, V), Y ~ f(a)}+, and 
.6.3 be {X ~ f(U)}+{Z ~g(a, V), Y ~ f(a)}-. 
Then the following two atom reactions (p( X, Y, Z), .6.1 ) 

and (p(X, Y, Z), .6.2 ) are correct atom reaction w.r.t. P. 
(p(X, Y, Z),.6.d is a most general correct reaction, i.e., 
(p(X, Y, Z), .6.d~ p. But (p(X, Y, Z), .6.3 ) is not correct 
because the configuration ({p(X,Y,Z)}, {X=f(U)}) 
can not be reduced to any configuration under the pro­
gram P. 

4.2 Fixpoint Semantics 
In this section, we present the semantic function after 
defining some operations on reaction sequences and the 
semantic domain. Next we show the least fixpoint of the 
function gives the semantics of the programs in the same 
way as used in an ordinary fixpoint semantics theory. 

Firstly, we define an application of a substitution 
to an atom reaction when they are directed. Let 
() E Subst /'" and .6. = 0102 ... On E Rseq.l. such that 
() 1><J.6.. Then an application of a substitution () to a re­
action sequence.6., denoted by .6.(), is a sequence of unit 
reactions o~ o~ ... o~ such that o~ = mgd( 0' i, O'i-l) for all 
i (1 :s; i :s; n), where 0'0 = () and O'i = lub(O'i_1,Oi). 



Exalnple 4.3 Let 0 be a substitution 
{X f-M, Y f-M, Z f-g(N, b)}, 

and 0102 be the reactive sequence 6. 1 same as in Exam­
ple 4.2. Then, 0 and 6.1 are directed because 

var(O) n var(6.I) = dom(O) n dom(6.I) = {X, Y, Z}. 
Let 0"1 be lub(e,61 ), i.e., 

{X f- f(U), Y f- f(U), Z f-g(a, b), V f-b, 
M f- f(U), N f-a }, 

and let 0"2 be lub(O"I' 02), i.e., 
{ X f- f(a), Y f- f(a), Z f-g(a, b), V f-b, U f-a 

!vI f- f(a), N f-a }, 
Therefore, the application of 0 to 6. 1 is 

{M f- f(U),N f-a}+{U f-a}-(= 0~6~), where 6~ 
mgd(O"l'O) and 6~ = mgd(0"2,O"d. 

If Oi E Ureact+ and Oi ¢ O"i-1 for some i, then such 
an application is not defined, that is, we can ignore 
the result and remove it from our system. Because, 
although such a reduction can not be done by the clause 
(corresponding to the input unit reaction Oi)' it may 
be done by another alternative clause. That is, it is 
not necessary that a reduction failure is immediately 
induced by this application. On the other hand, in the 
case that Oi E Ureact- and Oi ¢ O"i-! for some i, 6.0 
is o~ o~ ... Oi- 1 1.uf' This is because such an application 
induces a unification failure immediately. 

Definition 4.9 (Application to Atom Reaction) 
Let (A, 6.) be an atom reaction. Then an application of 
a substitution 0 to an atom reaction (A, 6.) is (AO, 6.e), 
""hich is also an atom reaction. 

Exalnple 4.4 Let P be the same program and 
(p(X, Y, Z), 6.1 ) be the same atom reaction as in Exam­
ple 4.2, and let 0 be the same substitution as in Example 
4.3. Then, the application of 0 to (p(X, Y, Z), 6.I), i.e., 
(p(X, Y, Z)B, 6.1 e), is 

(p(M, M, g(N, b)), {M f- f(U), N f-a}+ {U f-a} -). 
Now the application of e to it, (p(X, Y, Z)e, 6.1 e), 
intuitively represents a reactive behavior of a goal 
p(M, M, g(N, b)) under the program P. In fact, the 
atom reactions (p(X, Y, Z), 6.d and (p(X, Y, Z)O, 6.10) 
is both correct w.r.t. P. 

Next we define possible interleavings of reaction se­
quences. 

Definition 4.10 (Interleaving) 
Possible interleavings of a set of reaction sequences 
{6.1 , ... , 6.n } on a set of variables V, denoted by 
in t ( 6. 1 , ... , 6.n ) IV' is a set of all reaction sequences 0'6. 
defined inductively as follows, where 6. i is Oi·6.~ for each 
i (1 ~ i ~ n) such that 6. i is not 0: 

(1) if Oi E Ureact+ and V C dom(od for all i (1 ~ i ~ n), 
then 6. = 0 and 0 = l.dl, or 

(2) otherwise, for some i (1 ~ i ~ 11.), 
(a) if 6. i = 0, 

then o· 6. = int( 6.1 , ... ,6.i-1, 6.i+1, ... , 6.n ) IV, 
(b) if 0i E {l.rf' l.uf, l.dd, then 6. = 0 and 0 = Oi, 

901 

(c) if 6. j = 6.'} ·l.suc for all j (1 ~ j ~ 11.), then 
6. = int(6.~oi, ... ,6.~, ... ,6.~Oi)lvar(VI6.I)·l.suc 
and 0 = Oi, or 

(d) otherwise, 
6. = int(6.10i , ... , 6.~, ... , 6.n oi )lvar«V)16.1) and 
6 = 0i. 

Definition 4.11 (Semantic Function) 
Given a program P, we denote a power set of Areaci p 
by Denp, and let it be a domain of the following se­
mantic function. Given a program P and a goal Go, we 
define a semantic function Tp,Go : Denp --+ Denp as 
follows: 

Tp,Go(I) = 
{(Go,O)}U 
{(s=t,O-) I (s=t,O)EI /\0 = mgu(s,t)}U 
{(BjOg,O) I 3(A, 0) EI /\ 3(H:- G I B) E P (Bi E B)}U 
{(A,Ot6.) I (A,O)EI/\ 

3(H:- G I B)EPVBi,Bj EB 
3(BiOg, 6. j ), (BjOg, 6. j ) E I 

((BjOg, 6. j ) t><l (BjOg, 6. j )/\ 
6. E int(6.1, 6.2 , .•. ,6.n )lvar(A))}U 

{(A,O+ l.rd I (A, D)EI /\ V(H:- G I B)EP(OE8g)} 

where Og = mgu({A=H} U G) and 8g = {O I ° 'I- Og} 

The set Den p forms a complete lattice under the or-
dering of set inclusion ~ with a bottom element 0 and 
a top element Areactp. 

The Tp,Go (I) is recursively defined by using I as the 
union of four sets of atom reactions each of which rep­
resents the following situation: 

(1) when a unification goal s = t is called, the binding 
mgu(s, t) is posted to the environment, 

(2) when a goal A exists, each goal BiOg is generated as 
a sub-goal of A and may invoke the new process, 

(3) and a goal A affects the environment as ot followed 
by a sequence of reactive behaviors represented by 6. 
which is obtained from interleaving reactive behav­
iors generated by all sub-goals of A, that is, A may 
perform the computation represented by 6. after A 
gets the binding 0 g' or 

(4) when A meets with the binding 0 incompatible with 
all bindings to solve the guard {A=H} U G for all 
clauses, A will suspend. This situation is called a 
reduction failure. 

Lemma 4.1 Let P be an FGHC program and G 
be a goal. The function Tp,G is continuous, i.e., 
Tp,G(lub(X)) = lub(Tp,G(X)) for any directed subset 
X of Denp 

Proof: It is proved in a similar way to the proof of 
continuity of the semantic function of a standard logic 
program. (See pp.37-38 [Lloyd 1987].) • 

From Lemma 4.1, Tp,G has the least fixpoint, 
lfp(Tp,G), and lfp(Tp,G) = glb{XITp,G(X) ~ X}. FUr­
thermore, Ifp(Tp,G) = Tp,Giw. 
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Definition 4.12 (Top down Senlantics) 
Let P be a FG H C program and G be a goal. Then 
lfp(Tp,G) is called a top down semantics of P with G, 
and denoted by [P]G' 

5 Relation between Operational Seman-
tics and Fixpoint Semantics 

In this section, we show that the topdown semantics 
defined in Section 4 is closely related to the operational 
semantics of FGHC introduced in Section 3. 

TlIeorem 5.1 (Soundness) Let P be an FGHC pro­
gram and Go be a goal. If (Go, .6.)~p, then (Go,.6.) E 

[P]G o' 

Proof (A SketclI of tlIe Proof): 
Let k be a length of .6., denoted by 1.6.1. The proof is 

by induction on the length k. 
If k = 0, then the theorem is trivial since (G, D) is 

always correct. 
Otherwise, i.e., k > 0, suppose .6. = .6.'. 0 such that 

1.6.' 1 =~ O. 
If Go is a unification goal, then the theorem is trivial. 
Otherwise, Go is a non-unification goal. Now, since 

(Go, .6.)~ p hold, (Go, .6.')~ p holds. By the induction 
hypothesis, since 1.6.'1 < k and (Go,.6.')~p, (Go,.6.') E 

[P]Go • 

Hence, from the definition of Tp,Go, 3Bt(.6.' = Bt· 
.6.") such that (H :- G 1 B) E P and 8g = mgu( {A= 
H} U G) and VBi E B3(BiBg, .6.i ) E [P]Go and .6." E 
int(.6. 1 , ..• ,.6.n )lvar(Go)' Now we have (Go,Bt·.6.")~p 
and .6." E int(.6.1 , ... , 6 n )lvar(Go)' Then we can get 
.6. i such that (BiBg,6i)~P by selecting a unit reaction 
from the only i-th argument (i.e., .6. i ) in the definition 
of into . 

Suppose that the last transition of (Go, 6' ·o)~ p is a 
transition on a sub-goal of BiBg. Then (BiBg, 6iO)~P. 

Since k > 16'1 > 16"1 ~ 16il, k> 16'1 ~ 16iol. 
By induction hypothesis again, since (BiBg, 6iO)~ p, 

(Bi8g, .6.io) E [P]Go. 
Therefore, from the definition of Tp,Go, since 6'0 = 

int(6 1 , ... , 6i, ... , 6 n ), (Go, 6' 0) E [P]Go' • 

In Theorem 5.1 we show that any most general cor­
rect atom reaction (Go, .6.) w.r. t. a program P is in the 
topdown semantics [P]G o' In general it is necessary 
to prove the only-if part of the theorem (usually called 
Completeness Theorem), and we think this is possible 
by introducing a kind of downward closure of (A, 6) 
by using the (more general than' relation in Section 4.1, 
as subsumption relation in [Falaschi et al. 1990]. This, 
however, is beyond the scope qf this paper. Because 
Theorem 5.1 is sufficient to guarantee the correctness of 
the framework of abstract interpretation based on the 
top down semantics since we want to use this semantics 
as a collecting semantics. 

6 General Framework for Abstract In-
terpretation 

In this section we briefly review a general framework of 
abstract interpretation for programs whose semantics 
can be defined from a fixpoint approach; and some con­
ditions to guarantee that the abstract interpretation is 
'safe' for the semantics. 

When a standard semantics is given by the least fix­
point of some semantic function, an abstract semantics 
is given by another semantic function obtained by di­
rectly abstracting the concrete semantic function such 
that the safe relation exists between their two seman­
tics. 

6.1 Concrete Fixpoint Semantics 
Suppose that the meaning of a program P is given by 
the least fixpoint of a (concrete) semantic function Tp , 
denoted by lfp(Tp), where Tp : Den --+ Den is a con­
tinuous function and Den is a powerset of D, called a 
concrete domain, such that each element of D expresses 
a concrete computation state of the program. For exam­
ple, in an ordinary logic program, is an Herbrand Base. 
And Den forms a complete lattice with regard to the set 
inclusion ordering ~ on Den. Then, the least fixpoint 
of Tp exists and we can get it by lfp(Tp) = Tpjw. 

Definition 6.1 (Concrete Semantics) 
[P] = lfp(Tp) is called the least jixpoint semantics of a 
program P. Especially, we call it the concrete semantics 
of a program P since the semantics is obtained from the 
concrete semantic function Tp 

6.2 Abstract Fixpoint Semantics 
We define an abstract fixpoint semantics by abstracting 
the concrete domain and the concrete semantic function 
introduced in 6.1. 

Definition 6.2 (Abstract Domain) 
Given a concrete domain D, an abstract domain D is a 
finite set of denotations satisfying the following condi­
tions: 

(1) every element of D represents a subset of D, 
(2) D forms a complete lattice with respect to an order 

relation ~ defined on D, and 
(3) there exist two monotonic mappings, that is, ab­

straction a : D --+ D and concretization, : D --+ D 
defined as follows: Vd. E D (d. = a(,(d.))) 1\ Vd E 
D (d ~ ,(a(d))) 

In order to define the abstract semantics of a program 
P, we should define (or design) a monotonic and contin­
uous mapping of a program Pi 'Lp : Den --+ Den, called 
the abstract semantic function, as well as the abstract 
domain D, corresponding to the concrete domain D and 
the concrete semantic function Tp of P. Then we have 
to define the abstract versions of various operations, 
e.g., a composition or an application of substitutions, 
used in the definition of Tp . 



Definition 6.3 (Abstract Semantics) 
Then the least fixpoint semantics [P] = Ifp(T..p) , ob­
tained from the abstract semantic function T..p , is called 
the abstract semantics of a program P. 

N ow we claim the termination property with respect 
to the abstract fixpoint semantics. 

Lelllllla 6.1 There exists the least fixpoint lfp (T.. p ) 
of T.. p such that Ifp(T..p ) = T.. p jk for some finite k 

Lastly, we attach the following acceptable relation be­
tween the abstract semantics and the concrete seman­
tics: 

Definition 6.5 (Safeness Condition) 
A safeness condition for the abstract semantics is as 
follows: [P] ~ ,([P]). 

Lemma 6.2 If TpCl(d.)) ~ ,(T..p(d)) for all d. E D, 
then the abstract semantics is safe, i.e., a safeness con­
dition holds, where Tp(,(d)) = {Tp(d) I dE,(d)}. 

7 Applications for Analysis of FGHC 
Programs 

In this section we show some examples of analyzing 
FGHC programs by using abstract interpretation based 
on the top down semantics in Section 4, which is an in­
stance of the general framework in Section 6 

7.1 Moded Type Graph 
The abstract domain presented here is so similar to the 
one based on type graphs in [Bruynooghe and Janssens 
1988], that most necessary operations on the abstract 
domain will be well-defined similarly to [Bruynooghe 
and Janssens 1988][J anssens and Bruynooghe 1989]. 

Here we introduce a moded type graph, and show 
briefly that a reaction sequence and an atom reaction 
can be abstracted by a moded type graph. 

Definition 7.1 (Moded Type Constructor and 
Generic Types) 
A(n n-ary) moded type constructor is a(n n-ary) func­
tion symbol fin E Func with a mode annotation + (or 
-), denoted by ftn (or fin) or simply f+ (or f-), which 

represents a(n n-ary) function symbol f appearing in 
input (or output) unit reactions (respectively). Four 
generic (moded) types are an any type, a variable type, 
an 1.mdefined type and an empty type, denoted by any, 
1::., - and 0 respectively. An any type represents the set 
of all moded terms, both l::. and _ represent the set of 
variables, and 0 represents the empty set of terms. 

Definition 7.2 (Moded Term and Moded Type) 
A moded term is a term constructed from moded type 
constructors over a set of variables Var. A moded term 
represents the same term without all mode annotations 
such that a moded type constructor with + (or -) cor­
responds to a function symbol appearing in an input 
(or an output) unit reaction. A moded type is a set of 
moded terms. 
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Definition 7.3 (Moded Type Graph) 
A moded type graph is a representation of a moded type, 
which is a directed graph such that each node is labeled 
with either a moded type constructor, a generic type, 
or a special label 'or'. 

The relation between a parent node and (possibly 
no) child nodes in a moded type graph 9 is defined as 
follows: 

(1) a node labeled with f7n or fin(n ~ 0) has n ordered 
arcs to n nodes, i.e., has n ordered child nodes, 

(2) a node labeled with 'or' has n non-ordered arcs to n 
nodes (n ~ 2), i.e., has n non-ordered child nodes, 

(3) a node labeled with a generic type has no child node, 
( 4) there exists at least one node, called a root node, 

such that there are paths from the root node to any 
other nodes in g, and 

(5) the number of occurrences of nodes with the same la­
bel on each path from the root node of 9 is bounded 
by a constant d, called a moded type depth. 

Suppose that a node N tries to be newly aqded as 
a child node of Np in a moded type graph g. Then, if 
the creation of the node N violates the condition (5) in 
the above definition, that is, if there exist more than d 
numbers of nodes with the same label as N on the path 
from the root node to N, then the new node N will not 
be added to 9 as a new child node of Np but will be 
shared with the farthest ancestor node of Np with the 
same label as N. In such a case, a circular path must 
be created. (Nodes with the same label aren't shared 
with each other when their nodes are on different paths 
from root.) The restriction of (5) is the same as the 
depth restriction in [Janssens and Bruynooghe 1989]. 
They call a type graph satisfying the depth restriction 
a restricted type graph, and they have presented an al­
gorithm for transforming a non-restricted type graph to 
restricted one. 

A concretization for a moded type graph with a root 
node No, denoted by ,(No), is defined as follows: 

(1) ,(N) is Var if the label of N is l::. or_, 
(2) ,(N) is the empty set 0 if the label of N is 0, 
(3) ,(N) is {f+(t l , ... , tn) Iti E ,(Ni) 1\ 0 :::; i :::; n} if 

the label of N is ftn and N I , ... , N n are child nodes 

of N, 
(4),(N) is {f-(tl, ... ,tn ) I tiE,(Ni)1\0 :::; i:::; n} if 

the label of N is fin and N I , ... , N n are child nodes 

of N, or 
(5) ,(N) is ,(NI ) U ... U ,(Nn ) if the label of N is 'or' 
and N I , ... , N n are child nodes of N. 

A moded type graph represents a set of moded term, 
i.e., a moded type, defined by,. A set of all moded 
types is denoted by Term. 

A moded type graph 9 can be also represented by an 
expression, called a moded type definition, like a context 
free grammar with (possibly no) non-terminal symbols, 
called type variables, and one start symbol, called a root 
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type variable, corresponding to the root node of g, as 
in [Janssens and Bruynooghe 1989]. A moded type or 
a mode type graph represented by a moded type defi­
nition may be referred to the root type variable. 

Example 7.1 The following graph 9 is a moded 
type graph whose root node is labeled with h J2: 

hJ2 

Then the moded type graph may also be denoted by 
the following moded type definition: 

T = h+(J::., TJ), 
T1 = j+(TJ), 

where T, T1 is type variable and T is a root type variable. 
This moded type definition represents a set of moded 

terms: 
,(T) = {h+(V1,j+(V2 )), h+(V1,j+(j+(V2 ))), •.. } 

An abstraction a for a moded term satisfying the 
condition (3) in Definition 6.2 is also well-defined in a 
similar way to [Janssens and Bruynooghe 1989]. 

A moded type substitution fl is a mapping Var to 
Term, and is also represented by a set of assignments 
of variables to moded types. A concretization and an 
abstraction for a moded type substitution is defined: 

,(fl) = {8 I VX E dom(fl) (t E ,(Xfl) :) (X ~t) E 8) 
a(8) = {X ~a(X8) I X E dom(8)} 

And an ordering relation ~ over moded type substi tu­
tions is defined as follows: fl.l ~ fl.z iff ,(Vfl.1 ) ~ ,(Vfl.z) 
for all variables V E Var. 

A moded type reaction sequence I'::!. is a sequence of 
moded type substitutions QIQZ ... Qn such that 

Vi,j(l ::; i < j ::; n)(Qi ~ Q/\ dom(Qi) = dom(Qj)), 
and dom(l'::!.) is defined dom(Qi)' A concretization for a 
moded type reaction sequence, denoted by ,(Q1 ... Qn), 
is defined as follows: 

{81 ... 8n I 81 ", 8n E Rseq /\ II8i E,(8i)}, 

where II8i is a composition of substitutions 181 1 .. ·18i I. 
And an instantiation ordering ~ on a moded type re­

action sequence is defined: 1'::!.1 ~ 1'::!.2 iff ,(1'::!.1) ~ ,(I'::!.z). 

Definition 7.4 (Moded Type A tom Reaction) 
A moded type atom reaction is a pair of an atom A and 
moded type reaction sequence I'::!. such that dom(l'::!.) ~ 
var(A). Areact is a set of all moded type atom reac­
tions. 

Exalllple 7.2 Let I'::!. be a reaction sequence {X ~ 
j(Y)}+{Y~g(Z)}-. Then a( {X~j(Y)}+{Y~(Z)}-) 
is {X ~Td{X ~TZ}' where T1 and T2 is defined by the 
following type definitions: 

T1 = j+(K), 
TZ = j+(g-(V)). 

An application of a moded type substitution Q to a 
moded type reaction sequence Ql ... Qn is a moded type 
reaction 'sequence 8~ ... 8~ such that 8~ = lube 8i-1, 8i) 
for all i (O:S i:S n) where 80 = 8. 

A possible interleaving of moded type reaction se­
quences int can be well-defined by using the definition 
of possible interleaving on a concrete domain in Section 
4.2. And Den is a power set of Areact. 

N ow we can define the abstract semantic function 
'Lp,G: Den -+ Den for a program P and a goal G by us­
ing abstract operations and denotations defined above. 

7.2 An Example of Detecting MUltiple 
Writers 

Consider that two goals try to instantiate a shared 
variable to a (possibly different) symbol( s). In such 
a case, the goals may cause inconsistent assignments 
to the same variable, which are called multiple writers. 
Recently, in the family of concurrent logic languages, 
several languages have been proposed that do not al­
low multiple writers, and many advantages have been 
discussed [Saraswat 1990][Ueda 1990a][Kleinman et al. 
1991][Foster and Taylor 1989]. For examples, moded 
FGHC presented in [Ueda 1990a] has the following ad­
vantages: (1) an efficient implementation based on a 
message-oriented technique, (2) unification failure free, 
and (3) easy mode analysis. So moded FGHC seems 
to lead FGHC programmers into a good style of FGHC 
programming. 

Although you can write most programs without using 
multiple writers, you may want to use them in a few 
cases. Stop signal may be one of these examples. 

Stop signal is a programming technique such that, 
when some goal find the answer to a searching prob­
lem, the goal broadcasts a stop signal to any other goals 
which are solving the same searching problem (or its 
sub-problems) and the goal forces any other goals to 
terminate their process by instantiating a flag symbol 
to a variable shared by all goals. Several flaggings may 
occur on different goals at the same time, or some goal 
may broadcast a flag at any stage if a flag is not received 
but has been sent from other goals. In such cases, mul­
tiple writing problems may OCCur. 

Now we show a method of detecting multiple writers 
as an application of the moded type inference in the pre­
vious section. The following program implements a very 
simple example of 'stop signal'. A subscript number of 
each function symbol is used to distinguish occurrences. 
main(T,F) :- true I generate(T),search(T. F). 
search(t1C-.al._).F) :- true I F=f1 . 

search(_.f2) :- true I true. 
search(t2 (L. bl .ft) .F) : - true I 

search(L,F),search(R,F). 
generate(T) :- true I T=t3(L.N,R).genNode(N), 

genNode(N) 
genNode(N): 

generate(L),generate(R). 
true I N=a2' 
true I N=b2. 



A goal generate (T) generates a binary tree with 
each node labeled with a or b, and a goal search (T , F) 

searches a node labeled with a. Body goals of search/2 
share the second argument as a 'stop signal'. Now we 
try to analyze the moded type of a goal main(T, F) by 
computing [P] . (T F) on the abstract domain for -ma1n , 
the moded type. Here each moded type constructor 
has a subscript number. When we apply fl = {X+-ai} 
to §. = {X +- az}, we can get a moded type substitu­
tion (fl)§. = {X +- aZ1 }. This represents a moded type 
{X+-a-} by engaging a2 to al. When goals try to en­
gage a moded type constructor with - to a moded type 
constructor with -, the goals are multiple writers. 

In the above program, we can compute the following 
moded type atom reactitm in [P] . (T F): --ma1n , 

(main(T,F), ... {F +- f;-l} ... ). 
Then we can get information such that 

(1) the goal main(T ,F) may cause multiple writes, and 
(2) the problematic goal is a unification goal writing f1' 

i.e. in the body of the first clause of search. 

8 Discussions 
Much research has been presented on the fixpoint ap­
proaches to the semantics for concurrent logic lan­
guages. 

Atom reactions are essentially the same as reactive 
clauses introduced in reactive behavior semantics [Gaif­
man et al. 1.989J. Since reactive behavior semantics is 
defined by the self-unfolding of reactive clauses, we can­
not always define some reasonable abstraction of the se­
mantics when the semantics is applied to abstract inter­
pretation. That is, the same non-terminating problem 
may occur as in the example below. While using our 
semantics, since we define by computing all possible re­
action sequences corresponding to atoms in a body at 
one time by int, such a problem does not occur. 

Our semantics distinguishes red,£ction failure from 
deadlock as well as l£nification faill£re, although the op­
erational semantics of FGHC say nothing w.r.t. reduc­
tion failure, that is, reduction failure is regarded as sus­

pension. Then the case that a goal is reduced by no 
clause is distinguished from failure ( unification failure), 
but not distinguished from deadlock. But we introduce 
reduction failure as a termination symbol. In a practi­
cal system of FGHC, reduction failure may be reported 
as a system service to users if the system fortunately 
detects it at run time. It is helpful to users if reduc­
tion failure can be detected since such failure causes 
deadlock. So, we will want to detect the possibility of 
reduction failure at analysis time too. This is why we 
must introduce reduction failure to the semantics. 

In [de Boer et. al. 1989J, they have presented a de­
notational and a fixpoint approach to the semantics for 
(non-fiat) GHC. They have presented the declarative se­
mantics based on a fixpoint approach over the semantic 
domain similar to our atom reaction. They have men-
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tioned that the fixpoint semantics is sound and com­
plete w.r.t. the operational semantics giving only the 
results of finite success computations. Whereas, since 
our approach keeps more information by using the com­
plement of all correct input unit reactions and l..rf, it 
can be correctly related to the operational semantics 
including the cases of deadlock and finite failure. 

A few works on abstract interpretation for concurrent 
logic programs have been presented. The approaches of 
[Codognet et al. 1990] and [Co dish et ai. 1991] are based 
on the operational semantics. 

In [Codognet et al. 1990], they have presented a meta­
algorithm for FCP(:) and an abstracted version of it. 
They also show the correctness relation of the algorithm 
to the operational semantics, which is defined by a tran­
sition system similar to this paper. 

In [Codish et al. 1991], they directly abstracted a 
standard transition system semantics, where a set of 
configurations is approximated to an abstract configu­
ration: One of the advantages of their approach is that 
the analysis is simple and easy to prove correct. 

These two are essentially the same approaches and it 
is easy to understand the correspondence to the opera­
tional semantics in both approaches. 

In the approach of [Codish et al. 1991], the termi­
nation of abstract interpretation may not be guaran­
teed for some programs such that a goal may infinitely 
generate more and more sub-goals. For example, the 
following program is taken from [Codish et al. 1991]. 
They must abstract the domain (i.e., configuration) too 
much (called star abstraction) in order to solve such a 
problem. The star abstraction is enough and not too ab­
stract to analyze suspension. But it may not be suitable 
to call and/or success pattern analysis. These problems 
may be solved by adopting some abstraction on goals 
other than the star abstraction [Co dish 1992]. 

producer(X) :- true I 
X=f(Xl,X2), producer(Xl), producer(X2). 

consumer (X) :- X=f(Xl,X2) I 
consumer(Xl), consumer(X2). 

But our abstract interpretation can analyze call pat­
tern of the program, and return the following moded 
type atom reaction when the moded type depth is 1: 

(producer(X), {X+- 7d{X+- 7d{X+- 73} ) 

71 = f+(_,_) 
72 = f+(72,-) 
73 = f+( 73,73) 

Although our possible interleavings may be a little 
difficult to define and understand, these problems can 
be solved by the abstraction only on the domain, i.e., 
reaction sequences. 
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9 Conclusions 
V'le have presented a denotational semantics for FGHC 
which is less abstract semantics and is suitable as a ba­
sis for abstract interpretation. Since the semantics is 
defined by a fixpoint approach on atom reactions which 
represent the reactive behaviors of atoms, we can easily 
develop a program analysis system only to abstract a 
(possibly infinite) domain to a finite domain. We have 
also demonstrated moded type inference of FGHC pro­
grams. 
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Optimizing large join queries that consist of many 
joins has been recognized as NP-hard. In this paper, 
we examine the feasibility of exploiting the inherent 
parallelism in optimizing large join queries, on a hy­
percube multiprocessor. This includes not only using 
the multiprocessor to answer the large join query, but 
also to optimize it. Two heuristics are provided for 
generating an initial solution, which is further opti­
mized by an iterative local-improvement method. The 
entire process of parallel query optimization and ex­
ecution is simulated on an Intel iPSC/2 hypercube 
machine. 

1 Introduction 

A large join query consists of a series of relational 
database join operations. The order in which these 
joins are executed has a great impact on the response 
time. The fundamental problem with optimizing large 
join queries is searching the large solution space of 
possible query execution plans. 

In [IK84], the optimization of N-relationaljoins, us­
ing the nested-loop join method is proven to be NP­
complete. In [KBZ86], a generic cost formula is as­
sumed applicable to the join methods used. They ex­
tend a polynomial time optimization algorithm for tree 
queries[IK84] to the more general case. This algorithm 
is also improved to an O( N 2

) solution where N is the 
number of relations in the query. 

Several researchers have been studying the feasi­
bility of applying general combinatorial optimization 
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Jose, California 95150 

Sudhakar Yalamanchili 

School of Electrical Engineering 

Georgia Institute of Technology 

Atlanta, Georgia 30332 

techniques, such as Simulated Annealing and Iterative 
Local-Improvement to avoid exhaustive enumeration 
of all plans. In [SG88], the solution space consists of 
only outer linear join processing trees where at most 
one intermediate result is active and the inner relation 
is always a base relation. Furthermore, they assumed 
that the database resides in main memory. Later in 
[Swa89], they propose a set of heuristics to be com­
bined with the combinatorial techniques in order to 
improve the performance. In [IK90], a new Two Phase 
Optimization algorithm is presented which runs Itera­
tive Local-Improvement for a small period of time and 
uses the output of this phase as the initial solution for 
the second phase that runs Simulated Annealing. 

In [DKT90] and [SD90], different strategies for pro­
cessing large join queries in a parallel environment are 
discussed. In [DKT90], the authors study how to ex­
ecute a large join query on a shared memory parallel 
computer. In [SD90], they show how a different repre­
sentation of a query tree can affect the degree of par­
allelism within a query and performance. Specifically, 
they compare left-deep and right-deep tree representa­
tions. 

In this paper, we investigate the issue of using the 
inherent parallelism in a hypercube multiprocessor to 
optimize large join queries. Both inter-join and intm­
join paralielism are exploited in forming the plan, 
which implies that a join can be performed on a sub­
cube of any size and more than one join can be per­
formed at a time. 
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2 The Parallel 
Model 

Query Processing 

Our parallel query processing model is predi­
cated on the following parallel architecture model. 
\Ve have P = 2d processors interconnected in a 
d-dimensional binary hypercube. Each processor, 
with address Pd-l,Pd-2, ... ,Pi, ... ,Pl,PO, is con­
nected to every other processor whose address is 

Pd-l,Pd-2, ... ,Pi, ... ,Pl,Po,Vi, where Pi is the bit 
complement of Pi. Communication between non­
adjacent processors is realized by routing messages 
between intermediate nodes. Every processor (node) 
has its own memory and interacts with other proces­
sors via message passing. In this paper, we refer to an 
n-dimensional hypercube of 2" nodes as an n-cube. A 
subcube is a subset of processors that forms a smaller 
hypercube. For the purposes of our study we assume 
the complete hypercube is available for performing the 
joins. 

Based on this architecture model, the query pro­
cessing model consists of the following steps. 

1. The host preprocesses a query and transforms it 
into an internal form such as a join graph. 

2. The host accesses the global database dictionary 
for relevant statistics for each relation and each 
join. 

3. The host selects a query optimization strategy for 
each node. The query and the selected strategy 
are sent to all nodes in the system. 

4. Each node follows its specified strategy to gener­
ate an initial plan and to optimize it to make the 
best parallel query execution plan. This plan is 
then reported to the host. 

5. The host selects the best plan from all of the 
nodes, schedules the query, and sends the plan to 
all participating nodes. Each node then executes 
the plan. 

A distinct feature of our research is to exploit the in­
herent parallelism of the optimization step, instead of 
relying on only the host to generate a good plan. 

3 Assumptions 

1. Each relation is horizontally partitioned over a 
sub cube within the system. Relations may be 
allocated to different subcubes of different sizes. 
Tuples are assumed to be uniformly distributed 
across nodes within a subcube. 

2. The queries considered only involve natural joins, 
i.e. equi-joins. For simplicity, we consider only 
two-way joins that use the Cube Hybrid-Hash join 
algorithm[OLS9j. 

3. The system is assumed to be dedicated to this 
application. Every node is available for both op­
timization and computation of the joins. 

4. A join can be performed on any subcube of any 
size. More than one join can be simultaneously 
performed in disjoint subcubes. 

5. The values of attributes are distributed uniformly 
and independently of each other. This implies 
that the size of R ~ S ~ T can be estimated by 
multiplying the cardinalities of the three relations 
and the two join selectivity factors. 

4 Definitions 

Parallelism in the execution of joins requires the 
allocation! deallocation of su bcu bes to relations and 
join computations. In our approach we use the binary 
buddy system to manage subcubes for relations and 
join operations. In the binary buddy system the hy­
percube is recursively partitioned into subcubes. The 
subcubes can be represented by a binary tree as fol­
lows. Associate with each node a status bit that is 1 
(0) if the processor is available (busy). The leaf nodes 
represent the status bits of the nodes. The status bit 
associated with any interior node is 0 if any of the leai 
nodes in the corresponding subtree is 0, and 1 other­
wise. The root is at level 0 and the nodes at level i are 
associated with subcubes of dimension n - i. When a 
request for 2k processors arrives, nodes at level n - kin 
the tree are searched to find the first available one. If 
found, it is allocated and the status bits of all the par­
ent nodes are adjusted accordingly. Similar updates to 
this structure take place on the deallocation of nodes. 

The set of all processors that form a sub cube of 
any size in a hypercube can be identified by a unique 
cube identifier. A cube identifier is an address mask. 
For example the 2-cube consisting of processing ele­
ments 0,2,8 and 10 are uniquely identified by the mask 
(*0*0), where * represents a don't care. Subcubes 
that can be allocated under the binary buddy sys­
tem can be identified with cube identifiers of the form 
Pd-l,Pd-2, ... , * * ... * *, where the n~mber of *'s is 
equal to the dimension of the subcube. This assumes 
that the recursive decomposition proceeds highest di­
mension first, followed by the next highest dimension, 
and so on. 
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Figure 1: The Tree Representation of a Parallel Plan. 

The following definitions are necessary to describe 
the dependencies between two joins. 

Definition 4.1 A join i is data-dependent on a 
join j, where i :f:. j, if at least one of the operands 
in i depends on the result of j. 
A join i is immediately-data-dependent on a join 
j, where i :f:. j, if the following two conditions are true: 

1. i is data-dependent on j. 

2. j is the most immediate join prior to i that pro­
duces one of the operands in i. 

Definition 4.2 A join i is location-dependent on 
a join j, where j is to be performed before i, if 
Ci n Cj :f:. 0, and i (j) is performed on cube Ci (Cj). 
A join i is immediately-location-dependent on a 
set of joins J, where i ~ J, if the following two condi­
tions are true: 

1. i is location-dependent on k, Vk, where k E J. 

2. ..tJ kl that is location-dependent on k2' where kl E 
J andk2 EJ. 

Definition 4.3 A join i is transfer-dependent on 
a cube Cj if all of the following conditions are true: 

1. At least one of the operandsfori, Rli, is currently 
stored on C j • 

2. Cj #- Cj, where join i is to be performed on Ci. 

3. Join i is the first join that involves Rli in the 
plan. 
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As an example, consider the following query for a 
4-cube, qi, 

MR3 .C=R •. C 14 MR •. D=Rr..D Rs 

Figure 1 is an arbitrary parallel plan for qj. C1 refers 
to the cube where relation Rl is currently stored. C12 
refers to the cube where the join between Rl and R2 
is to be performed. The following dependencies exist: 

1. it is transfer-dependent on C1 and C2 • 

2. h is immediately-data-dependent on it and 
transfer-dependent on C3 . 

3. h is immediately-location-dependent on it and 
transfer-dependent on C4 and Cs. 

4. j4 is immediately-location-dependent on hand 
immediately-data-dependent on h and ja. 

5 The Optimization Process 

The optimization process on every node consists of 
two steps as in [Swa89]. First, every node applies the 
specified heuristic to produce a feasible plan. Each 
of these initial plans is subject to combinatorial opti­
mization in the second step. 

In the following discussion, we represent a join plan 
as a binary tree, where all the non-leaf nodes repre­
sent join operations and the leaf nodes represent base 
relations. The cost of a plan refers to the execution 
time to complete this plan. The height of a plan (tree) 
refers to the number of join operations on the longest 
path from a node to the root. 

5.1 Evaluating a Parallel Large Join Plan 

This algorithm is used in the generation of an ini­
tial plan, and is used iteratively in the subsequent op­
timization of this plan. 

We provide an algorithm for estimating the cost of 
a parallel large join plan. We require that all transfer­
dependencies associated with every node be resolved 
before any join can be performed on this node. 

To expedite the evaluation of a parallel large join 
plan, the following information is necessary: i, RH­
ready, Rai-ready, C12i-ready, Start_time and Com­
plete.time. The first two ready fields are used to indi­
cate the existence of any immediate-data-dependency 
or transfer-dependency. Rli-ready is set to j if i is 
immediately-data-dependent on j. Rli-ready can also 
be set to CJ:, if i is transfer-dependent on the cube 
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CJ:. This means that i cannot be started before re· 
lation Rli is transferred from CJ:, and that i is the 
first join that involves Rli. In this case, we require 
that Rli be transferred to C12i before any join can 
be performed on Cle. Cl2i-ready is set to Jif i is 
immediately-location-dependent on a set of joins J. 
When a join i is free of any immediate dependencies, 
all three ready fields are set to -l. 

Start.time( i) is used to record the time at which i is 
started. This is set to the earliest time that i is free of 
any dependency. If i is immediately-data-dependent 
on j, its earliest Start.time will be the Complete_time 
of j plus the time to transfer the result of j. If a join i 
is transfer-dependent on a cube Cle because of R1i, its 
earliest Sta.rt_time will be after Rli is transferred from 
CJ:. The earliest Start-time for a join j on a cube Cj is 
the earliest time when any of the nodes in Cj is done 
transferring data for any transfer-dependency. The 
time to complete this plan is thus the largest Com­
plete_time among all joins. 

The following notation is used in the following dis­
cussion, for a join i : 

• i is immediately-data-dependent on joins dl and 
d2. 

• Transfer_time( Rdl) stands for the time to trans-' 
fer the join result of dl for i after dl is com­
pleted. Notice that Complete_time( -1) and 
Transfer_time( R_ 1) are both O. 

• i is immediately-location-dependent on the set of 
joins J. 

• i is transfer-dependent on a cube Cl1c because of 
Rl1c, and on C2 1e because of R21e. The first join 
to occupy Cl1c is the join lk, and the first join to 
occupy C21e is the join 2k. 

• i is to be performed on Ci . 

• Transfer_time(Rl1c) stands for the time to transfer 
the relation lk from Cl1c to Ct. 

Algorithm 5.1 This algorithm is used to estimate 
the cost of a parallel large join plan. 

1. Set all the ready fields by checking if there is any 
immediate data or location dependency between 
a join and all other joins prior to it, or any 
transfer-dependency between a join and any cube. 

2. Initialize all Start_time's to O. 

3. Initialize all Complete_time's to infinity. 

4. For every join i , 1 ~ i ~ n - 1, i in ascending 
order, n is the number of relations: 
For every transfer-dependency of i on CjJ:, 1 ~ 
j ~ 2, do the following: 

(a) Update the 
Start_time of i, to be Transfer...time(RjJ:) 
+ max( Start...time( i), Start...time(jk». 
i cannot start before the transfer of Rjle is 
completed. Notice that a previously posi­
tive Start_time(i) indicates that i was previ­
ously transfer-dependent on another cube or 
Ci was previously involved in some transfer­
dependency. 

(b) Update the Start_time of jk, to be 
Start.:time( i). 
We assume that jk cannot start before the 
transfer of Rjle is completed. 

(c) Update the corresponding ready field for i 
and the locations of the associated relations. 

5. Repeat Steps 6 and 7 until all joins are completed 

6. Compute the Complete_time for every uncom­
pleted join that is dependency-free. Update the 
locations of the involving relations. 

7. For every join i that has not been completed, 1 ~ 
i ~ n - 1, i in ascending order 
For every immediate-data-dependency on dj, 1 ~ 
j ~ 2, 
If dj has been completed, do the following: 

(a) Reset the corresponding ready field. 

(b) Update the Start_time of i, to 
be max( Start...time( i), Complete...time( dj» 
+ Transfer.:time(Rdj). 

If i is free of any immediate-data-dependency, 
and i has immediate-location-dependencies on the 
set of joins J, 
if every join in J has been completed, do the fol­
lowing: 

(a) Reset the corresponding ready field. 

(b) Update the Start_time of i, to be 
max(Start..:time(i), V,EJComplete..:time(l». 

5.2 Initial Plan Generation 

The complexity of large join optimization on a hy· 
percube multiprocessor does not only involve finding 



Rl 
Cl::OO** 

R2 
C2=OO1* 

Figure 2: An Example of a Parallel Plan using the 
Maximum Intra-Join-Parallelism Heuristic. 

the best order for executing the join operations, but 
also the best mapping between a join and the sub­
cube where it is to be performed. We provide the fol­
lowing two heuristics for mapping join operations to 
subcubes in order to produce an initial solution. The 
Maximum Inter-Join-Parallelism heuristic tries to re­
juce the height of the tree as much as possible. The 
Maximum Intra-Join-Parallelism heuristic always uses 
the largest cube to perform each join. These heuristics 
can be categorized as greedy heuristics. ' 

5.2.1 Maximum Inter-Join-Parallelism 

This heuristic tries to invoke as many joins in paral­
lel as possible at the same time, and therefore, in­
creases the degree of inter-join-parallelism. By in­
voking more joins in parallel, each join is allocated 
a smaller cube, however the height of the plan is re­
duced. Even though this plan may have a smaller 
height, each join may incur a higher cost. 

The parallel plan for query qi in Section 4, which is 
shown in Figure 1, could be produced by this heuristic. 
Due to constraints in the query, at most two joins can 
be performed in parallel. Therefore, it and i2 share 
the cube. Since the following two joins have to be 
performed sequentially, the largest cube is allocated 
to each join. 

5.2.2 Maximum Intra-Join-Parallelism 

The maximum degree of parallelism is applied to ev­
ery join to reduce the individual cost, but at the cost 
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Figure 3: A Plan Generated by the Maximum Inter­
Join-Parallelism Heuristic for qj. 

of redistributing the relations prior to all the joins. 
Since every join uses the same set of nodes, a chain of 
immediate-location-dependencies is formed. As a re­
sult, all joins are forced to be performed sequentially. 

Figure 2 is a possible parallel plan for the query qi in 
Section 4 using this heuristic. Every join is allocated 
the largest cube, i.e., the whole system. Note that 
not all plans generated by this approach are necessar­
ily binary linear processing trees[KBZ86] as shown in 
Figure 2, in which at most one intermediate relation 
is used as an input to subsequent join operation. 

5.3 Combinatorial Optimization 

Any plan for a large join query can be thought of as 
a state in a solution space which includes all possible 
plans. The ultimate goal of any optimization process 
is to find a state with the globally optimum cost. 

We use a simple combinatorial optimization tech­
nique, Iterative Local-Improvement. In this technique, 
the current plan is transformed into a new plan by per­
forming one move such as swapping the relative orders 
of two joins. If the new plan has a lower cost (as com­
puted by Algorithm 5.1), it becomes the current plan. 
This process in general continues until a local opti­
mum is found. 

We now discuss how we optimize plans generated by 
each of the heuristics described in the previous section. 
Note that a local optimum is reached by a node when 
further local improvement is not possible. The best 
plan chosen by the nodes is selected as the parallel 
large join plan. 
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5.3.1 Maximum Inter-Join-Parallelism 

Following the initial application of this heuristic, there 
is a limit to what extent the height of the plan (tree) 
can be reduced for a given query. Consider the query 
qj, joining 7 relations, Ro through ~, where R6 joins 
with relations R1,Rg ,R4 and R5; and Ra joins with Rg 
and with Ro. Since ~ is to be joined with Rl,Rg ,R4 

and R5 , only one of these four joins can be performed 
at a time. Figure 3 is a possible plan which has jl and 
h performed in parallel. Following that, hand i4 are 
performed in parallel. Finally j5 is performed followed 
by j6. We optimize plans generated by the applica­
tion of the Maximum Inter-Join-Parallelism heuristic 
as follows: 

• Globally, each node chooses a different maximal 
independent set of relations, such that if two joins 
i and j are in the same independent set, we can 
perform i and j at the same time on two disjoint 
cubes. 

• Locally, each node can swap the join locations of 
two randomly chosen joins for every independent 
set until a local optimum is reached. 

5.3.2 Maximum Intra-Join-Parallelism 

To optimize plans generated by this heuristic, we take 
an approach similar to that described using the Maxi­
mum Locality heuristic. However, since the join loca­
tions are fixed, i.e., the entire system, there is no need 
to alter the join locations. 

6 Performance Evaluation 

In this section, we present our experimental evalu­
ation of the two heuristics for parallel large join query 
optimization. 

6.1 System Description 

The different heuristics and the entire process were 
coded in C and the experiments were run on a 16-
node Intel iPSC/2 hypercube. To simulate a disk per 
node, we implemented a disk module for every node 
based on the single MAXTOR XT-8760S disk in our 
hypercube. 

Since the Intel hypercube uses the circuit switching 
approach, we had to alter our cost model[OL89] used 
in estimating the cost of a plan. The model[OL89] 
assumes a packet switching approach. In addition, 
to simplify the evaluation, attributes are not added 
with each successive join and sufficient main memory 
is assumed to be available to guarantee that hash table 
overflow will not occur. 

6.2 Query Characteristics 

We categorize our queries into four groups based 
on the number of tuples per relation (relation cardi­
nality), the relative locations of the relations, and the 
join selectivity factors: 

1. All relation cardinalities are uniformly dis­
tributed between 100 and 625 so that every re­
lation is stored on only one node. All join selec­
tivity factors are uniformly distributed between 
10-4 and 10-3 • 

2. All relation cardinalities are uniformly dis­
tributed between 5001 and 10,000 so that every 
relation is stored on the entire 4-cube. All join 
selectivity factors are uniformly distributed be­
tween 10-5 and 10-4 • 

3. All relation cardinalities are uniformly dis­
tributed between 100 and 10,000. All join selec­
tivity factors are uniformly distributed between 
10-4 and lO-g

• 

6.3 Experimental Results 

In order to compare the average performance of the 
two heuristics, we use the scaled cost instead of the real 
cost measured in seconds. The scaled cost is the ratio 
of the cost of the best plan produced by a heuristic for 
a given query, to the minimum cost of plans produced 
by the two heuristics for the same query. The reason 
we do not compare the actual timing is that the order 
of the costs for different queries can vary greatly and 
a scaled cost provides an objective measure of the rel­
ative advantage of a specific heuristic. A scaled cost 
of 1.0 means that this plan has the lowest cost among 
the plans produced by the two heuristics. 

The execution costs of these plans on the hyper­
cube are measured and the average scaled costs are 
compared to see if the result is consistent with the 
estimate produced by Algorithm 5.1. For simplicity, 
the execution cost only reflects the duration from the 
time a node receives a plan, until it finishes perform­
ing the entire join plan. This is the cost predicted by 
Algorithm 5.1. 

Optimization of each of the individual plans will 
take a varying amount of time. The overhead in ini­
tiating the optimization process at each of the nodes, 
and the transfer of the results back to the host are 
approximately equal. Therefore, we only consider the 
longest and shortest durations of the optimization al­
gorithms performed by the nodes. 

For each table of results, several experiments were 
run. We compare the average scaled cost of the initial 



Table 1: Performance of Queries in Category 1 for 20 
Relations. 

Cost Inter-Join-Par. Intra-J oin-Par. 

Best Initial 1.00 1.52 

Best Optimized 1.00 1.50 

Real Execution 1.00 2.20 

Total 1.03 1.14 

Table 2: Performance of Queries in Category 2 for 20 
Relations. 

Cost Inter-Join-Par. Intra-J oin-Par. 

Best Initial 3.42 1.00 

Best Optimized 3.28 1.00 

Real Execution 2.33 1.00 

Total 1.13 1.16 

plan, the average scaled cost of the optimized plan, 
the average scaled execution cost, and the scaled total 
cost which includes both the optimization time and 
execution time for the two heuristics. 

6.3.1 Comparison of Algorithms 

Table 1 shows the performance of the three heuris­
tics when all relations are very small and scattered. 
The Maximum Inter-Join-Parallelism heuristic has 
the best performance since it enables many joins 
to be performed in parallel. In addition, for the 
Maximum Intra-Join-Parallelism heuristic, the longest 
time spend for query optimization was 93.17 sec­
onds and for the Maximum Inter-Join-Parallelism 
heuristic it was only 87.34 seconds. The shortest 
time spend for query optimization was 31.49 sec­
onds for the Maximum Intra-Join-Parallelism heuris­
tic and 45.24 seconds for the Maximum Inter-Join­
Parallelism heuristic. By assigning the entire cube 
to every join, the Maximum Intra-Join-Parallelism 
heuristic has to spend more time in resolving all the 
transfer-dependencies in the beginning since all rela­
tions have to be re-distributed over the entire cube. 

When all relations are very large and stored on 
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Table 3: Performance of Queries in Category 3a for 20 
Relations. 

Cost Inter-Join-Par. Intra-Join-Par. 

Best Initial 2.42 1.00 

Best Optimized 4.65 1.00 

Real Execution 6.35 1.03 
Total 2.15 1.17 

the entire cube, the performance of the two heuris­
tics is summarized in Table 2. The Maximum Intra­
Join-Parallelism heuristic is superior to the Maxi­
mum Inter-Join-Parallelism heuristic. Although the 
Maximum Inter-Join-Parallelism heuristic provides a 
higher degree of inter-parallelism, for this type of 
queries, each join takes a longer time in addition to 
the overhead in resolving the transfer-dependencies. 
In addition, for the Maximum Intra-Join-Parallelism 
heuristic, the longest time spent for query optimiza­
tion was 94.11 seconds and for the Maximum Inter­
Join-Parallelism heuristic it was only 79.77 seconds. 
The shortest time spend for query optimization was 
25.51 seconds for the Maximum Intra-Join-Parallelism 
heuristic and 40.60 seconds for the Maximum Inter­
Join-Parallelism heuristic. 

Table 3 summarizes the general case where the 
relation cardinalities are uniformly distributed. In 
general, the Maximum Intra-Join-Parallelism heuris­
tic has the best initial and optimized costs. With re­
spect to the longest and shortest optimization times, 
a similar trend appeared as with the previous experi­
ments. 

6.3.2 Query Optimization Time 

In general, the longest time and the shortest time to 
reach a local optimum among the different starting 
solutions generated by different nodes are quite far 
apart. This makes it possible to improve the per­
formance with the 2PO (Two Phase Optimization) 
method described in [IK90]. Those nodes that have 
reached a local optimum earlier can use the current 
best solution as the input to the second phase, which 
uses a modified simulated annealing method. This can 
better utilize the idle nodes and further improve the 
quality of their solutions. 
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6.3.3 Query Execution Time 

Most of the average scaled costs for the queryexecu­
tion time on the hypercube are shown to be consis­
tent with the estimated plan costs. That is, if a plan 
produced by a heuristic is shown to have the best es­
timate, its actual execution cost is most likely to be 
the best as well. 

This is mainly due to the fact that for these two 
categories, every relation has to be re-distributed over 
the entire cube. This in turn results in increased link 
contention, and therefore communication delays. 

6.3.4 Total Time 

By examining the total time spent in both optimiza­
tion and execution, we have a better picture of the 
performance of a heuristic. For category 1 in Ta­
ble 1, the Maximum Inter-Join-Parallelism heuristic 
not only has the best execution cost but also the best 
total time. However in Table 2, the Maximum Inter­
J oin-Parallelism heuristic has the best total cost al­
though it has the worst execution cost. One possible 
reason is that for this heuristic, the difference between 
the time that the earliest and latest node reaches a lo­
cal optimum is significantly smaller than the other two 
heuristics; this compensates for the inferior quality of 
its optimized plan. Another possible explanation is 
that this heuristic may be able to handle queries whose 
relations are of similar sizes better than the other two 
heuristics. From Table 3 we can see that the Maximum 
Intra-Join-Parallelism heuristic has the best total time 
in general together with the best execution time. 

7 Summary 

In this paper, we examine the issue of optimizing 
large join queries on a hypercube multiprocessor. Two 
heuristics are proposed to produce an initial plan for a 
given query. We adapt the iterative local improvement 
procedure to the query optimization process in a hy­
percube multiprocessor to improve the plan produced 
by the application of the two heuristics. Our simula­
tion of the query optimization and the query execution 
process show that the performance of these heuristics 
depends on the characteristics of the queries. 

Optimizing complex queries in parallel will reduce 
the bottleneck in the query processor and will also im­
prove the quality of the query execution plan. How­
ever, it is important to realize that the overhead can 
be substantial, and therefore the number of processors 
used in optimizing a query should depend on each in­
dividual query. 
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Abstract 

This paper is devoted to the evaluation of aggre­
gates (avg, sum, ... ) in deductive databases. Aggre­
o-ates have proved to be a modeling tool necessary for 
: wide range of applications in non-deductive relational 
databases. They also appear to be important in con­
nection with recursive rules, as shown by the bill of 
materials example. Several recent papers have studied 
the problem of semantics for aggregate programs. As 
in these papers, we distinguish between the classes of 
stratified (non-recursive) and recursive aggregate pro­
grams. For each of these two classes, the declarative 
semantics is recalled and an efficient evaluation algo­
rithm is presented. The semantics and computation 
of aggregate programs in the recursive case are more 
complex: we rely on the notion of graph traversal to 
motivate the semantics and the evaluation method pro­
posed. The algorithms presented here are integrated 
in the QSQ framework. Our work extends the recent 
work on aggregates by proposing an efficient algorithm 
in the recursive case. Recursive aggregates have been 
implemented in the EKS-VI system. 

1 Introduction 

This paper examines an advanced functionality of de­
ductive database systems, namely the ability to express 
programs involving both recursion and aggregate com­
putations in a declarative manner. The bill of materials 
application (compute the total cost of a composite part 
built up recursively from basic components) shows the 
importance of this feature in real life databases. It is 
well known that such programs are not expressible in 
Datalog. We discuss semantics, evaluation model and 
implementation of aggregates in the EKS-VI system 
[VBKL90). 

The recursive aggregate facility is one of the inno­
vative features of the declarative language of EKS-VI, 
in addition to more standard features like recursion, 

IThis work was achieved while the author was at the European 
Computer-Industry Research Centre in Munich. 

negation and universal and existential quantifiers. EKS­
VI also provides an extensive integrity checking facility 
and sophisticated update primitives (hypothetical rea­
soning, conditional updates). EKS-VI was developed 
mainly in 1989 and demonstrated at several database 
conferences (EDBT, Venice, March 1990 - SIGMOD, 
Atlantic City, May 1990, ICLP, Paris, June 1991 -
VLDB, Barcelona, September 1991, ... ). 

The aggregate capabilities we consider are essentially 
those of SQL: a grouping primitive (group_by) is used 
in association with scalar functions (such as sum, avg, 
min) computing aggregate values for each group of tu­
ples. Adding aggregate capabilities to a recursive lan­
guage causes different problems, depending on the class 
of programs accepted. We will consider two such classes: 
stratified aggregate programs and non-stratified aggre­
gate programs (this terminology builds on an analogy 
with negation that will be explained below). 

Our aim here is to provide efficient evaluation al­
gorithms which can be integrated in the general eval­
uation frameworks such a QSQ or Magic Sets. In 
the case of EKS-VI, this is performed within the top­
down QSQ/DedGin * framework which was developed 
in [Vie86, Vie88, Vie89) and for which compilation and 
implementation techniques in a set-oriented way were 
developed in the DedGin* prototype [LV89]. Study­
ing evaluation in this framework does not limit its 
scope. Indeed, it is now accepted that there is a 
canonical mapping between an evaluation performed 
along a Magic Sets like strategy [RLK86, BR87, SZ87] 
and a "top-down" strategy [Vie86, Vie88, TS86] (see 
[Bry89b, Sek89, Ull89, Vie89] for a comparison). Hence, 
anything that we develop here can be adapted to Magic 
Sets (and vice-versa). 

In stratified aggregate programs, aggregate operations 
and recursion are not allowed to be interleaved. In other 
words, an aggregate value may be specified over the 
result of a recursive query, or a recursive query may 
be specified over the result of an aggregate operation. 
However, an aggregate operation may not be part of 
a recursive cycle, i.e. one aggregate predicate can not 
recursively refer to itself. 
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For stratified aggregate programs, both semantics 
and evaluation issues are readily solved: 1) the seman­
tics can be defined in a standard proof-theoretic way 
and 2) the evaluation problems are essentially those of 
top-down constant propagation and of coordination on 
the strata. The constant propagation issue is the (clas­
sical) problem of making use of constants given in the 
query to limit the search space. For a query like "Give 
me the average salary for the sales department", one 
does not need to consult the entire employee relation. 
As for coordination, one has to make sure that all rele­
vant tuples have been computed before performing the 
aggregate operation: again, this is a classical and rel­
atively easy problem, which can be solved by appro­
priately extending the query evaluation method of the 
respective system. 

In the case of non-stratified aggregates, interaction of 
recursion and aggregate computation raises more diffi­
cult problems. As a motivating example, consider the 
classical bill of materials application for a bicycle. In 
order to compute the total cost of a bicycle, one has to 
1) compute the total costs of all its direct subparts (e.g. 
a wheel), 2) multiply these costs by the number of oc­
currences of these subparts (e.g. 2 wheels in a bicycle) 
and 3) sum up the resulting costs (aggregate computa­
tion). Step 1 consists in a recursive invocation of the 
bill of materials query, implying a recursive invocation 
of step 3 (aggregate computation). Clearly, aggregate 
computation and recursion are intertwined. In the fol­
lowing, we refer to this more general class of programs 
either as non-stratified aggregate programs or as recur­
sive aggregate programs. 

The first difficulty concerns semantics. For instance, 
suppose that, in the bill of materials example, a com­
posite part is defined in terms of itself (cyclic data). 
Clearly, the cycle problem has to be solved in order to 
provide semantics for such queries. Our definition of 
the semantics of recursive aggregate queries relies on 
the two following intuitive choices. 1) We regard re­
cursive aggregate computations as operations on top 
of the evaluation of a Datalog program. This under­
lying program represents a generalized graph (Datalog 
allows more than just transitive closure) being traversed 
during evaluation [RHDM86]. 2) Semantics should be 
definable· in a way orthogonal to the semantics of the 
aggregate operations themselves: for example, the se­
mantics of a query should be definable whenever min is 
replaced by max or vice-versa (of course, the result of 
the evaluation would be different!). 

In order to give semantics to recursive aggregate pro­
grams, we consider the subclass of programs for which 
it is possible to associate a reduced program leaving out 
the associated computation of aggregates. This pro­
gram conceptually represents the graph being traversed. 
'rVe call such programs reducible aggregate programs. A 

query on a reducible program is meaningful only if there 
is no cycle in the derivations on the associated reduced 
program (we speak then of group stratification). Its se­
mantics can then be defined in a classical proof-theoretic 
manner. 

The second difficulty is the evaluation of recursive ag­
gregate queries. As in the stratified aggregate case, this 
issue is two-fold: constant propagation and coordina­
tion. Constant propagation is done in the same way as 
in the stratified aggregate case. Coordination is more 
difficult than in the stratified aggregate case as one has 
to rely on data stratification (there is no predicate strat­
ification any more). Hence, one has to ensure that the 
whole group of tuples for a given input value has been 
computed before performing the corresponding aggre­
gate operation. However, we are manipulating sets of 
tuples: in a given set of tuples at a given time, there 
might be a group that has been fully computed, and 
another one for which only a partial set of tuples have 
been produced. This makes the control over the order 
of evaluation more complicated as it now has to be per­
formed at the data level. 

In the top-down evaluation scheme of EKS-VI, we 
introduce the notion of subquery completion. We rely 
on dependencies between sub queries in order to check 
whether the evaluation of a given group has been com­
pleted. A general solution is proposed which makes use 
of the reduced associated program in order to provide 
ranges for the subqueries, so that the resulting sub query 
dependencies correspond to the group dependencies. In 
the case of tail-recursive programs, including the bill of 
materials program, a simplification is possible. 

The main contribution of our work is the integration 
of recursion and aggregates in a general query evalu­
ation framework. Two independent studies on recur­
sive aggregates [MPR90, CM90] have been developed in 
parallel to our work. They take a model-theoretic ap­
proach, as we consider a proof-theoretic approach to the 
semantics of aggregate programs. [MPR90] describes an 
algorithm extending the Magic Sets technique to strati­
fied aggregate programs (in fact Magic Stratified aggre­
gate programs). In this paper, we extend the evaluation 
algorithm based on QSQ to group stratified aggregate 
programs of which the bill of materials program is an 
example. 

The structure of this article is as follows. The re­
mainder of this section introduces some definitions and 
notations. Section 2 examines semantics and evalua­
tion of stratified aggregates. For the recursive aggregate 
case, we first analyze the semantics problem in section 
3 where we define the class of reducible aggregate pro­
grams. We then propose an evaluation method in sec­
tion 4 which relies on the notion of sub query completion. 
Section 5 discusses related work, summarizes the paper 
and opens towards future work. 



1.1 Definitions and Notations 

'rVe assume that a database is composed of base rela­
tions and of deduction rules of the form Head ~ Body 
where the Body is a conjunction of positive and negative 
literals. All the variables in the Head should appear in a· 
positive literal in the body. Deduction rules define vir­
tual predicates, which are also commonly called mews 
in the classical relational terminology. 

Definition 1.1 Aggregate rule 
An aggregate predicate agg_pred is syntactically 

defined, as in [MPR90j, by an aggregate rule in the 
following way: 

agg_pred( O;t) ~ group_bye 
group_pred(In), 
LisLoLGrouping_Variables, 
LisLoLAggspecs 

). 
where: 

• LisLoLGrouping_Variables is a list of variables. 
O;t and Iii. are sequences of variables. They are 
called grouping, output and input variables 
respectively; 

• group_pred is any virtual or base predicate and is 
called the grouping predicate; 

• LisLoLAggspecs is a list of aggregate specifica­
tions of the form A isagg funcagg(B) or A isagg 
count where funcagg can be 'sum', 'min', 'max' or 
'avg', A must be an output variable and B must 
be an input variable. The variable A is called an 
aggregate variable and B a variable to-be­
aggregated; 

• an output variable must either be a grouping vari­
able or an aggregate variable. 

Without loss of generality, we assume that an aggregate 
predicate is defined by one aggregate rule only. 0 

Note that the aggregate function count has no argu­
ment, as it simply counts the number of tuples for a 
given group. 

We allow the use of e.g. arithmetic predicates in the 
body of Datalog rules. Such predicates, not computable 
by the basic relational operations, are· called external 
predicates. We suppose that the external predicates are 
used in a safe way (as in [BS89] - finite set of answers 
and finite top-down evaluation). As an example, the 
bill of material example uses an external predicate per­
forming a multiplication (see section 3). The use of this 
predicate is safe as soon as the data is acyclic. 
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Definition 1.2 Grouping subtuples and groups of 
tuples 

Given a tuple for the grouping predicate, its group­
ing subtuple is its projection over the grouping argu­
ments. 

Given a set of tuples S for a grouping predicate, we 
partition S into groups of tuples: there is one group 
for each different grouping subtuple GST in S. A group 
contains those and only those tuples of Shaving GST 
as grouping subtuple (and no other tuple). 0 

We say that a predicate pred! depends directly (resp. 
indirectly) on the predicate pred2 , if pred2 appears in 
the body of a rule defining pred! (resp. if there is a pred­
icate pred3 such that pred! depends directly on pred3 

and pred3 depends indirectly on pred2 ). We can now 
give the following definition, inspired by the terminol­
ogy used in the case of Datalog queries with negation. 

Definition 1.3 Stratified aggregate program 
An aggregate program is stratified if no aggregate 

predicate depends directly nor indirectly on itself. 0 

Note that aggregate programs having recursive predi­
cates which are not mutually recursive with aggregate 
predicates are indeed aggregate stratified. 

A simple example of a stratified aggregate program 
is the following; 

Example 1.1 Aggregate on a base relation 
Suppose that the database contains a base rela­

tion employee with tuples of the form employee(Name, 
Dept, Salary). One can define a virtual predicate 
avg.Jlalary _peLdept by the following rule: 

avg_salary_per_dept(Dept, AvgSal) (-
group_bye employee (Name , Dept, Salary), 

[Dept] , 
[AvgSal isagg avg(Salary)] ). 

If the predicate avg_salary _peLdept is queried with the 
argument Dept instantiated, it returns one single value. 
If the query is fully uninstantiated, the result is a binary 
table with one value per department. V 

2 Stratified Aggregates 

In this section, we first recall the natural semantics of 
stratified aggregate 'programs, which rely on the strat­
ification of rules. We then describe their evaluation by 
extending the QSQ framework. 

2.1 Semantics 

The stratification of a database ensures the sound­
ness of the following extension of the classical proof­
theoretic definition of semantics for stratified aggrer:ate 
programs. 
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Similarly to Datalog programs with stratified nega­
tion, a stratified aggregate program P can be divided 
into strata Sj, i = 1, ... ,no 

Consider a predicate p appearing in the body of a 
rule R E Si. If R is an aggregate rule and p appears 
as a grouping predicate in R, then the definition of p is 
contained in Uj<i Sj. Else, its definition is contained in 

Uj~i Sj. 

Definition 2.1 Semantics of a stratified aggre­
gate program P 

Facts derivable for P from the database are obtained 
by saturation of the immediate consequence operator, 
consecutively on each stratum Si, starting from i = 1 up 
to i = n. Facts for aggregate predicates are defined as 
follows. 

For an aggregate predicate agg_pred, there is one tu­
ple T G for each group G of the corresponding grouping 
predicate group_pred such that: 

o 

1. If an attribute of TG corresponds to a grouping 
variable, its value is the value of the same variable 
in G. 

2. If an attribute of TG corresponds to an aggregate 
variable, its value is the result of the aggregate op­
eration performed on the corresponding values of G 
to be aggregateed. 

Note that this proof-theoretic definition of the seman­
tics is equivalent to the model-theoretic one given in 
[MPR90, CM90] (see proof in [Lef91]). 

2.2 Evaluation 

vVe present here an evaluation algorithm integrated in 
the QSQ framework. [MPR90] extend the Magic Set 
formalism to the stratified aggregates in a similar way. 

2.2.1 Constant Propagation 

The propagation of constants (i.e. taking advantage of 
the constants appearing in the query in order to reduce 
the search of the database) is addressed by adapting the 
QSQ framework: the top-down generation of sub queries 
is used for focusing on relevant data while answers are 
propagated bottom-up. 

We first describe this adaptation on a tuple-at-a-time 
basis. Let Q be a query over the aggregate predicate 
agg_pred defined by an aggregate rule as in definition 
1.1. Answering Q consists in the following steps: 

1. If Q matches the head agg_pred(Out) of the ag­
gregate rule, then generate a sub query SQ on 
group_pred by binding each variable X of group_pred 

which is also present in agg_pl'ed (X must be a 

grouping variable) to its value in Q (either a vari­
able or a constant). 

2. Answer the sub query SQ. 

3. Partition the answers to SQ into groups of tu­
ples and perform the aggregate operations for each 
group. 

4. Project the results over the arguments of agg_pred. 

Note that only the bindings of grouping variables are 
propagated downwards. If some aggregate variables of 
agg_pred are bound in SQ, then their bindings are not 
propagated to SQ (e.g. if a value for the A vgSal argu­
ment of example 1.1 is provided in the query, then this 
binding is not propagated). The gain obtained by us­
ing such bindings in order to reduce the search space 
depends on the nature of the aggregate and can require 
a complicated mechanism. 

2.2.2 Set-Oriented Evaluation in EKS-VI 

The evaluator/compiler of EKS-V1 derives from the 
DedGin* prototype. The above computational scheme 
is implemented in a set-oriented way by a simple adapta­
tion of the DedGin* query answering mechanism. The 
following operations correspond to the previously de­
scribed steps: 

1. A selection/projection selects from a set of queries 
Q those queries matching the head of the aggregate 
rule, and projects the resulting tuples over the rele­
vant arguments of group_pred. This results in a set 
of sub queries SQ over group_pred. 

2. The standard set-oriented evaluation of DedGin* is 
used to answer the sub queries in SQ. 

3. The grouping and aggregate operations are imple­
mented in one pass, by an extended operator. This 
results in an intermediate relation tmp containing 
one attribute for each grouping variable and for 
each aggregate variable. 

4. A projection of the tuples in tmp over answer tuples 
for agg_pred is finally performed. 

2.2.3 Coordination Aspects 

In general, the evaluation of deductive queries can be 
viewed as a saturation both on the top-down propaga­
tion of (non-redundant) sub queries and on the bottom­
up generation of answers. In the case of recursion with­
out negation or aggregates, there is total freedom as far 
as the order of propagation is concerned. In particular, 
answers can be propagated bottom-up even if they rep­
resent only a partial set of answers to the corresponding 



subqueries. In case of aggregates (also in case of nega­
tion), however, subqueries must be completely answered 
before their answers can be used or propagated further. 
If one did not stick to this strategy, wrong inferences 
could be made: for instance, one could propagate an 
intermediate count different from the final count. 

In EKS-Vl, in order to implement this strategy, 
we make use of a run-time structure described in 
[VieS8, LV89] called the data-flow graph (DFG). Nodes 
of this graph essentially represent (occurrences of) vir­
tual predicates and the graph serves to monitor the 
sets of data (essentially subqueries, environments and 
answers) manipulated for these (occurrences of) predi­
cates. The nodes are linked according to their relative 
positions in rules: the brother of a node corresponds 
to the immediately next literal in the body of a rule; 
predicates in the body of a rule defining a virtual pred­
icate p form children nodes with respect to the node 
corresponding to p. Please refer to [Vie88, LV89] for 
a precise definition of the DFG. This structure is quite 
adequate for coordination aspects since it gives, at any 
time, a "map" of the rules that have been evaluated or 
remain to be evaluated to fully answer a virtual pred­
icate. The coordination strategy described above can 
be formulated in the case of aggregate predicates as fol­
lows: 

FoT' each node N of the DFG corresponding 
to an aggregate predicate, saturate the descen­
dants of N before performing the aggregate op­
eration associated to N. 

3 Semantics of Recursive Aggre­
gates 

In order to introduce problems arising in case of recur­
sive aggregate programs, we discuss the classical bill of 
materials example, also presented in [MPR90, CM90]. 

Example 3.1 Bill of materials 
Suppose that the database contains the following in­

formation: basic parts and their cost and assembly links 
to make up composite parts are stored in two base rela­
tions 

basic_part(Part, Cost). 
assembly(Part, SubPart, Qty). 

The born predicate computes the total cost of a given 
part by summing up the costs of all its direct subparts, 
computed by the grouping predicate subparLcost. 

bom(Part, TotalCost) (- group_bye 
subpart_cost(Part, SubPart, Cost), 
[Part] , 
[TotalCost isagg sum(Cost)] ). 
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The non-recursive rule of subparLcost returns the cost 
for a basic part. The recursive rule computes the cost 
which a direct subpart SubPart accounts for in the total 
cost of Part by recursively computing its cost and mul­
tiplying it by the number of occurrences of SubPart zn 
Part. 

subpart_cost (Part , Part, Cost) (­
basic_part (Part , Cost). 

subpart_cost (Part , SubPart, Cost) (­
assembly(Part, SubPart, Quantity) 
and bom(SubPart, TotalSubCost) 
and Cost is Quantity * TotalSubCost. 

As an example, if Part is "bicycle", and if "bicy­
cle" is made up of two wheels (each costing 10) and 
of one frame (costing 100), then the subquery sub­
parLcost(bicycle, Subpart, Cost) will return two tuples: 

(wheel, 20) % 20 is 2 * 10 
(frame, 100) % 100 is 1 * 100 

The aggregate computation performed in the rule defin­
ing born then returns 120 as the total cost for a "bicy­
cle". V' 

What would be the semantics of the bill of materials 
example if there were a cycle in the data: which would 
be the cost of a recursively defined composite part (its 
value depending on itself)? In order to solve this prob­
lem, we rely on the following two choices: 

1. We intuitively view recursive aggregate computa­
tions as generalized graph traversals. In this frame­
work, computations are performed both along de­
duction paths (e.g. multiplying by the number of 
occurrences) and by aggregating the values associ­
ated with several paths (summing up costs). How­
ever, recursive aggregate computations go beyond 
graph traversal as they require 1) more complex 
structures than graphs to be searched (n-ary rela­
tions correspond to hypergraphs), 2) the combina­
tion of several "graphs" in the search (several, dif­
ferent predicates) and 3) more general search than 
transitive closure (e.g. non-linear recursion). 

To each recursive aggregate program, we concep­
tually associate a so-called reduced program. Intu­
itively, the requced program captures the essence 
of traversal, while leaving out the associated com­
putation of aggregates. We provide a rewriting 
method which, given a recursive aggregate pro­
gram, obtains its reduced program, if one exists. 

A recursive aggregate program is then acceptable 
if it is syntactically correct, i.e. if there exists a 
reduced program attached to the original aggregate 
program. In such a case, the program is said to be 
reducible. 
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2. Moreover, we consider that the semantics should 
be definable in a way orthogonal to the semantics 
of the aggregate operations: for example, the cases 
where the semantics of a query is defined should be 
the same whenever min is replaced by max or vice­
versa (however, the result of the evaluation would 
be different). As a consequence, we give seman­
tics to recursive aggregates only when the data is 
acyclic, i.e. if the proof trees generated from the 
database for the reduced query are acyclic. The ac­
tual semantics of meaningful recursive aggregates 
queries is then defined in a classical bottom-up 
manner. 

Indeed, although one could compute the shortest 
path between two nodes of a cyclic graph, one can 
not compute the maximal length of a path in such a 
case. But, accepting the first case without accept­
ing the second one would violate this principle. 

3.1 Reducible Aggregate Programs and 
Group Stratification 

'rVe conclude the semantics chapter by giving more pre­
cise definitions of the notions "reduced", "reducible" 
and "acyclic" introduced above. 

Consider the program P consisting of the set of 
rules mutually recursive with an aggregate predicate 
agg_pred. We first say that two variables X and Yare 
directly connected if they appear in the same external 
predicate. Furthermore, consider a predicate pred mu­
tually recursive with agg_pred. If X appears as the z-th 

argument of pred in the head of a rule defining pred, and 
Y appears as the z-th argument in a body occurrence of 
pred, then X and Y are also directly connected. The 
connected relationship is finally the transitive closure of 
the directly connected relationship. A variable X in Pis 
said to be aggregate connected if X is connected to 
an aggregate variable or a variable to-be-aggregated. 

Obtaining a reduced program from an original pro­
gram P will be possible if the grouping variables, repre­
senting the essence of the program, can be isolated from 
the aggregate connected variables. 

Definition 3.1 Reducible aggregate program 
The program P is said to be red ucible if no group­

ing variable is aggregate connected. If P is reducible, 
its reduced program reduce(P) is obtained by 1) delet­
ing from any rule of P any external predicate contain­
ing aggregate connected variables and 2) replacing each 
literal mutually recursive with agg_pred by a new pred­
icate where the aggregate connected variables have been 
omitted (hence, reducing its arity). 0 

Indeed, if P was not reducible, then the transformation 
reduce would also remove some grouping variables car­
rying the essence of the program. 

The full definition of the transformation can be found 
in [Lef91]. Frofll now on, we consider only reducible 
aggregate programs2 • 

In order to illustrate the concepts defined here, let us 
introduce the parts explosion example, which computes 
the total amount Qty of a given subpart SP involved 
in the construction of a given part P. The definition 
of parLsubparLqty has the same structure as the defini­
tion of bom. It uses a grouping predicate inLsubparLqty 
which gives, for each direct intermediate component IP 
of P, the quantity of SP involved through IP. Note that 
the predicate parLsubparLqty is an extension of the bom 
predicate having thus more didactic properties. 

Example 3.2 Parts explosion and reduced pro­
gram 

part_subpart_qty(P, SP, Qty) <-
group_bye 

int_subpart_qty(P, IP, SP, IQty), 
[P, SP], 
[Qty isagg sum(IQty)] 

) . 

int_subpart_qty(P, P, SP, Qty) <­
assembly(P, SP, Qty). 

int_subpart_qty(P, IP, SP, IQty) <­
assembly(P, IP, Qty) and 
part_subpart_qty(IP, SP, IQtyl) and 
IQty is Qty * IQtyl. 

The aggregate connected variables in this program are 
Qty, IQty and IQtyl. No grouping variables are aggre­
gate connected therefore the program is reducible. The 
reduced program is: 

r_part_subpart_qty(P, SP) <­
r_int_subpart_qty(P, IP, SP). 

r_int_subpart_qty(P, P, SP) <­
assembly(P, SP, Qty). 

r_int_subpart_qty(P, IP, SP) <­
assembly(P, IP, Qty) and 
r_part_subpart_qty(IP, SP). 

We now define precisely what we mean by "cyclic 
data". 

Definition 3.2 Fact and Group Dependencies 
A fact F derivable from DB is directly dependent 

on a fact F' if there is a ground instance I of a clause 

2In practice, the only reasonable recursive aggregate programs 
we could think of are reducible. This is also the case of all exam­
ples treated in the related work. 



such as I : F+-- ... , F', ... and such that all the ground 
literals of the body of I are derivable from DB. The de­
pendency relationship is the transitive closure of the di­
rect dependency relationship. 

The group dependency relationship is the fact de­
pendency relationship induced by reduce(P) over DB. 
o 

Definition 3.3 Group stratified program 
A recursive aggregate program P is group stratified 

over a database DB if the group dependency relationship 
introduced by P over DB is acyclic. 0 

We can now define the semantics of a group strati­
fied program P over DB, by refining the definition 2.1. 
Again, the notion of group stratified programs here is 

_ identical to the one proposed in [MPR90]. 
This time, we note that the facts in reduce(P) can be 

divided along group strata GSi, i = 1, ... ,n, such that, 
if a fact Fi E GSi depends on a fact Fj E GSj, then j < 
i. In addition, grouping and aggregate facts in P will 
be given the group stratum level of the corresponding 
reduced facts. 

Definition 3.4 Semantics of a group stratified ag­
gregate program P 

Facts derivable for P from the database are obtained 
by saturation of the immediate consequence operator 
using consecutively facts belonging to the group strata 
GSj:::;i, starting from i = 1 up to i = n. Facts for aggre­
gate predicates are derived as in definition 2.1. 0 

4 Evaluation of Reducible Group 
Stratifie,d Aggregate Programs 

The evaluation problems in the recursive aggregate case 
are, like in the aggregate stratified case, those of con­
stant propagation and coordination. As far as constant 
propagation is concerned, the problem is solved in the 
recursive aggregate case as described in section 2.2.1. 

The coordination problem is now different. The goal 
is still to perform the aggregate operations only on com­
plete groups. However, there is no predicate stratifica­
tion in the recursive case, and a control as described in 
section 2.2.3 cannot b-e performed any more. Instead, 
the group stratification that the program is supposed to 
enforce is data dependent and not predicate dependent. 
Hence, the coordination will have to be brought at the 
data level instead of at the predicate level. [MPR90] 
remark that group stratified programs can be evaluated 
in the order of the groups. We give in this section a 
precise algorithm performing this evaluation. 

Theoretically one could first generate the group de­
pendency graph and base the computation on this 
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graph. However, the representation and analysis of sucl 
a graph is likely to be expensive. 

The solution proposed in EKS-VI relies on the top 
down character of the evaluation: there exist natura; 
dependencies between the subqueries (a sub query SQ if 
said to directly depend on the sub queries derived dur­
ing the evaluation of the rules invoked for answering SQ: 
a formal description of these dependencies can be pro­
vided based on SLD-AL trees - see [Vie88]). In section 
4.1 we first present the subquery completion mechanism: 
the evaluation of a program under sub query completion 
ensures that the set of answer tuples to a subquery is 
propagated only when it is complete. In section 4.2 we 
apply this technique to recursive aggregates. Modifi­
cation of the original program using reduced literals is 
proposed in order to make sub query dependencies and 
group dependencies correspond. The sub query comple­
tion mechanism can then be applied to the modified 
program. Section 4.3 is concerned with tail-recursive 
rules. In such a case, the sub query dependencies nat­
urally correspond to the group dependencies and the 
original program can be evaluated under sub query com­
pletion. 

4.1 Subquery Completion 

We consider that a sub query has been completed dur­
ing evaluation if its complete set of answers has been 
generated. 

Definition 4.1 Subquery Completion 
A given subquery SQ has been completed if one of 

the two following conditions holds: 

• for a subquery on a base predicate: the join with 
the corresponding base relation has been performed; 

• for a subquery on a virtual predicate: all the rules 
have been fired, and recursively all the subqueries 
on which SQ directly depends have been completed. 

We say that a program is evaluated under sub query 
completion if the set of answers to each subquery SQ 
is propagated only when SQ has been completed. 0 

The sub query completion mechanism can be imple­
mented as follows: 

1. When a sub query is derived, it is originally marked 
as non-completed. 

2. When answering a set of sub queries for which all 
the rules have been triggered, the sub queries hav­
ing non-completed direct descendants are left out. 
The other sub queries are marked as completed and 
the join with their corresponding answer tuples can 
take place. 
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4.2 Evaluation with the Reduced Program 

Our goal is now to use the subquery completion mecha­
nism in order to solve the problem of recursive aggregate 
evaluation. However, the sub query completion mecha­
nism ensures that answers to a subquery are used when 
it has been completed, but not when a given group of 
tuples has been completed. We use calls to the reduced 
program in order to generate bindings for the grouping 
variables: this way, all grouping variables are instanti­
ated and the subquery tuples are identical to the group­
ing subtuples. It follows that the subquery dependencies 
and the group dependencies coincide. 

Consider a recursive aggregate program P. The algo­
rithm can be formalized as follows. 

Algorithm 4.1 

1. Produce the corresponding reduced program re­
duce(P). 

2. Modify P by introducing, in front of each group­
ing and each aggregate literal in the body of rules, 
the corresponding reduced literal. The evaluation of 
the reduced literal will provide bindings for all the 
grouping variables. Let pI be the obtained program. 

3. Modify the query by adding the corresponding re­
duced literal. 

4. Evaluate the modified query under subquery com­
pletion over reduce( P) U pi . 

Thanks to the instantiations of all the grouping argu­
ments by the reduced literals, the subquery dependen­
cies correspond exactly to the group dependencies: the 
completion mechanism applied to the modified program 
guarantees that a given group is used for aggregate op­
erations only when it is complete (see proof in [Lef91]). 

Note that the evaluation of reducible aggregate pro­
grams which are not group stratified stops and returns 
a negative answer. As there are cycles in the depen­
dencies, there always exists a non-completed sub query 
(which depends on itself), and the evaluation stops. 

Example 4.1 (exaII:1ple 3.2 continued) 
Consider a query part.-Subpart_qty(P, *SP, Qty) 

(where "*" marks an argument which is instantiated 
when the literal is consulted during evaluation). Sup­
pose that the compiler chooses the following ordering of 
the subqueries for the recursive rule of inLsu bparLqty. 

int_subpart_qty(P, IP, *SP, IQty) <­
part_subpart_qty(IP, *SP, IQtyl) and 
assembly(P, *IP, Qty) and 
IQty is *Qty * *IQty1. 

The evaluation of the recursive rule for int_subpart_qty 
immediately generates subqueries on parLsubparLqt) 
which are redundant w. r. t. the initial query on part_sub­
parLqty: they have the same argument *SP carrying the 
same value. However, the group dependencies are cycle 
free for this example as soon as the relation assembly is 
not cyclic. 

Using the reduced literals for generating bindings for 
the grouping variables has the following effect on our 
example. The call to the query literal is replaced by 
''r_part-BubparLqty(P, *SP) and part-Bubpart_qty(*P, 
*SP, Qty)". The modified version of the program is: 

part_subpart_qty(P, *SP, Qty) <-
r_int_subpart_qty(P, IP, *SP) and 
group_by( 

int_subpart_qty(*P, *IP, *SP, IQty) , 
[*P, *SP] , 
[Qty isagg sum(IQty)] 

) . 

int_subpart_qty(*P, *P, *SP, Qty) <­
assembly(*P, *SP, Qty). 

int_subpart_qty(*P, *IP, *SP, IQty) <­
assembly(*P, *IP, Qty) and 
r_part_subpart_qty(*IP, *SP) and 
part_subpart_qty(*IP, *SP, IQty1) and 
IQty is *Qty * *IQty1. 

As one can see, the reduced literal 
Lpart-BubparLqty(*IP, *SP) in the recursive rule is su­
perfluous as the two grouping arguments *IP and *SP 
would have been instantiated anyways. It can be re­
moved. \7 

4.3 Simplification in the Tail-Recursive 
Case 

The mechanism we have just presented has a main draw­
back. For the evaluation of a query on an aggregate 
predicate the evaluator performs the search through the 
relevant data twice: once during the evaluation of the 
reduced predicates, and once during aggregate compu­
tation. There is a case however where the subquery 
dependencies naturally correspond to the group depen­
dencies, even though some of the grouping arguments 
can be uninstantiated in the subqueries. In such a case, 
it is sufficient to evaluate the original aggregate pro­
gram under sub query completion, therefore searching 
the data only once. 

This case has been called tail-recursive in [LV89], and 
also corresponds to the right- and left-linear recursive 
case as in [NRSU89]. A tail-recursive program is charac­
terized by the following property: for a given sub query, 
the variables not shared between the head and the body 



literal for the recursive predicate are instantiated, and 
the free variables of the head and the body literal have 
the same positions in those literals. 

Algorithm 4.1 on reducible aggregate programs in the 
tail-recursive case has been implemented in the EKS-V1 
prototype. This includes the bill of materials and the 
parts explosion examples. 

Example 4.1 (continued) 
In case the first variable Part is instantiated in the 

query literal, the program is tail-recursive and there is 
no need to add any reduced literals. During the eval­
uation of a query ?- parLsubparLqty(*P, SP, Qty), a 
subquery part_subpart_qty(*IP, Si, Qi) may depend on 
itself (actually on a variant of itself) if and only if there 
is a cycle in the assembly relation. These dependen­
cies correspond to several group dependencies with the 
same value *IP for the first argument. The evaluation 
of queries for this pattern under subquery completion is 
complete and COT'reet in the acyclic case, and fails if the 
assembly relation is cyclic. V' 

5 Related Work 

[Klu82] has first formalized aggregates in relational al­
gebra and calculus, and argued that the notion of du­
plicates (multi-sets) was not needed for the expressiv­
ity of aggregates. We also think that the notion of 
multi-sets is not needed for specifying semantics. We 
regard the problem of being able to handle full dupli­
cates within sets as an issue independent from aggre­
gate computation. It is rather a modeling issue, as to 
how one may want to represent the data for a given 
application. Our standpoint however still permits a 
correct solution to the duplicate issue in the compu­
tation of aggregates: it can be performed by choosing 
the arguments being present in the grouping predicate. 
The model that we consider remains a flat model: it 
does not allow set-valued (or nested) attributes. In 
other words, sets are not first-class objects in EKS­
Vl. Hence, we are not following here the research 
trend around nested relations, NF2 models, represented 
for instance by research projects such as COL or LDL 
[AG91, TZ86). In these approaches, a more general 
grouping (or nesting) facility is provided allowing ag­
gregate functions to be simply expressed as functions 
applied to set-valued attributes. We believe that the 
extension of a fiat model with (scalar) aggregate facili­
ties (chosen here as in [MPR90, CM90]) remains worth 
investigating because its requirements on the physical 
level (storage and manipulation) are less stringent, it 
represents a natural extension of Datalog systems and 
despite its restrictions, it may well cover an important 
part of the application requirements. 
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Our work is close to that on Traversal Recursion by 
[RHDM86) in the way we consider aggregate operations 
as operations on top of graph traversals. However we 
generalize graph traversal to more complex structures 
than graphs and we do not incorporate the semantics of 
the particular aggregate function (min/max) and thus 
never allow cyclic graphs. Although this leads to some 
restrictions, we believe that, if one takes semantics of 
the aggregate functions into account, this should be 
done within as formal and as general a framework as 
possible. 

Several recent papers [MPR90, CM90] [KS91, RS92] 
also consider aggregates in Datalog programs. These 
papers take a model theoretic approach for defining the 
semantics of aggregate progra.ms. 

In the stratified aggregate case, the semantics and 
evaluation methods proposed are equivalent to ours. 
[MPR90) extend the Magic transforma.tion producing 
so-called magic stratified programs. The evaluation of 
such programs can be performed in an order correspond­
ing to the stratification order of the original program by 
a modification of the bottom-up fixpoint. 

For defining the semantics of non-stratified aggre­
gate programs, the approach taken in [MPR90, CM90] 
[KS91, RS92) is different from ours: they do not consider 
separately the underlying reduced program. Instead, 
they take into account the semantics of the aggregate 
operations, as well as the other arithmetic constructs 
appearing in an aggregate program, in order to define 
semantics. This allow them to treat the class of mono­
tonic aggregate programs (like the minimal length path 
program or the so-called corporate takeover program) 
for which natural semantics exists. [CM90) also treat 
closed semiring programs as a special case of recursive 
aggregate programs having natural semantics. 

The evaluation of recursive aggregate programs is not 
addressed by [MPR90). It is simply mentioned there 
that an evaluation following the order of the groups 
would be possible (which seems to be quite easy to re­
alize). [CM90] propose a general algorithm applying 
to closed semiring or to monotonic aggregate programs. 
Closed semirings are also interesting because special­
ized algorithms relying on graph traversal (such as in 
[CN89]) can be used for their evaluation. The case of 
monotonic programs involving minimum and maximum 
predicates has been' the object of another recent paper 
[GGZ91), proposing a bottom-up evaluation mechanism 
called greedy fixpoint. The parts explosion example 3.2 is 
also treated in [Phi90). They use a procedural language, 
where the control of the completion for each sub query 
during query evaluation is expressed in the program by 
the user. 

The more recent work of [KS91, RS92) is concerned 
with the model-theoretic semantics of aggregate pro­
grams, and unifies all the other approaches in a more 
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general framework. 
We have also pointed out the analogy between aggre­

gates and negation. There is a correspondence between 
the two notions of stratification in both areas, and be­
tween group stratification on the one hand and dynamic 
stratification [Prz90] (or effective stratification [BL90] 
or constructive consistency [Bry89a]) on the other. The 
coordination issue is essentially the same for negation 
(stratified case) as for aggregates (stratified case). In­
deed, just as for aggregate predicates, negated sub­
queries must be fully answered before negated facts can 
really be inferred. 

Our contribution has been to provide an efficient eval­
uation mechanism for group stratified reducible aggre­
gate programs. An extension to the work presented here 
would be to extend our solution to the classes of closed 
semirings and monotonic aggregate programs, which in­
deed have "natural" semantics. For this class of pro­
grams, only bottom-up algorithms have been proposed 
yet, thus unable to focus on relevant data. 
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In this paper we describe PoliS, a coordination model 
based on Multiple Tuple Spaces. PoliS addresses the 
specification and coordination of logically distributed 
systems. We show that it can be used as a basic 
model for designing distributed and rule-based soft­
ware development environments. In fact, PoliS has 
been used in the design of Oikos, a distributed soft­
ware development environment. It has been specified 
and implemented using Extended Shared Prolog, a 
parallel logic language that smoothly combines the 
PoliS approach, to deal with concurrency and distri­
bution, with Prolog, to deal with rules and deduction. 
Such a combination of blackboard-based communi­
cations and logic programming provides a. powerful 
framework in which experiments about different en­
vironment architectures can be performed and eva.lu­
ated. 

1 Introduction 

The concept of sojtwa1'e development environm.ent is a 
key issue in software engineering. Logic programming 
was proposed as an interesting technology for design­
ing and implementing innovative environments since 
the first FG CS conference [Furukawa et al., 1984]. 
However, only recently a theory for abstractly study­
ing and comparing different software development en­
vironments has been developed [Perry and Kaiser, 
1991J. Perry a.nd Kaiser introduced a hierarchy of 
classes of software development environments. Their 
hierarchy is roughly based on the number of program­
mers involved and includes four classes: individual, 
family, city, a.nd state. Each class is characterized by 
three interrelated components: policies, mechanisms, 
and structures. Policies are the strategies and the 
constraints ii11posed on the programmer by q1e en­
vironment; mechanisms are the tools supported by 
the environment; structures are the objects on which 
mechanisms operate. 

The main contribution of this paper is the definition 
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of an abstract. paradigm for modeling and implement­
ing a software development environment at the "city" 
level. The paradigm is called PoiiSpaces, because it 
is based on lVlultiple Tuple Spaces [Gelernter, 1989, 
Matsuoka and Kawai, 1988], and it is shortened to 
PoliS, from the Greek word for "town". Using the ter­
minology introduced by Perry and Kaiser, our model 
allows programmers to express different coordination 
policies simply and consistently, giving to the envi­
ronment designer a powerful tool for structuring dis­
tributed software development environments. 

Our proposal is twofold. Firstly, we define an ab­
stract coordination model that can be used as a tool 
in the design of a distributed software development 
environment supporting activities by many agents. A 
coordination model is a set of mechanisms for express­
ing and controlling distributed activities [Ciancarini, 
1990b, Carriero and Gelernter, 1991J. The activities 
themselves can be expressed in any sequential lan­
guage; their interaction with respect to other activi­
ties is defined using the coordination model. To make 
clear the coordination issues, we have introduced Ex­
tended Shared Prolog (ESP for short) [Bucci et ai., 
1991], a parallel logic language based on PoliS. 

Secondly, we show how a software development en­
vironment can be specified using ESP. The idea is 
that the environment enforces protocols that specify 
goals, duties, and constraints of the agents involved in 
the software development process. \Ne show how ESP 
can be used to specify simple programming environ­
ments corresponding to simple software development 
processes. The power of this method has been tested 
in the design of Oikos, a fully-fledged distributed en­
vironment [Ambriola et al., 1990bJ. Oikos offers a 
number of services giving some basic facilities, like 
access to databases and private workspaces, activa­
tion of shells, etc. ESP can be used to reconfigure 
and customize the environment. 

The paper is organized as follows: Section 2 de­
scribes PoliS. Section 3 introduces Extended Shared 
Prolog, a programming notation ba.sed on PoliS. Sec­
tion 4 shows how ESP can be used in the design of 



simple software development environments and pro­
cesses. Section 5 summarizes t.he main design princi­
ples underlying Oikos. 

2 PoliSpaces: A Model for 
Coordination 

Intuitively, a PoliS'pace is like an abstract town where 
there are many places; in each place many agents co­
operate. In the town many activities take place simul­
taneously, mostly independently; however, they are 
ruled by constraints that are either physical (e.g.) the 
available resources, like space and time) or abstract 
(e.g.) a set of laws that prohibit some behavior). 

Formally, a PoliSpace is a distributed system that 
is a collection of tuple spaces. A tuple space is a mul­
tiset of tuples; a tuple is simply a sequence of fields. 
More precisely, in PoliS three concepts are import.ant: 
tuples, agents, and places. 

• A tuple is a structured data object. that is a se­
quence of values. It is produced by some agent in 
some space, and it remains there until some agent 
consumes it. A tuple can be "copied" (read) or 
"consumed" (read and deleted) only by an agent 
included in the same place. Access to a tuple is 
associative, i.e., it is done "by contents". The 
particular access mechanism chosen is a degree 
of freedom: e.g., PoliS can accommodate either 
a mechanism based on typed pattern matching, 
as in Linda [Gelernter, 1985], or a mechanism 
based on unification, as in a logic language. 

• An agent is an execution thread, i. e., it is an 
abstraction of a running program completely in­
dependent of other agents. An agent is contained 
in a particular place and is a.ble to perform some 
operations on the tuples that it contains. The se­
mantics of an agent ca.n be described as follows: 
an agent looks continously for some tuples; when 
they are found, it executes a computation con· 
sisting of instructions written in some sequential 
programming language; finally, it creates new en·· 
tities (tuples or places). The sequential language 
chosen for programming the internal working of 
the agent is left outside the scope of the model 
as a degree of freedom, so that agents written in 
many different sequential languages can coexist. 

• A place is a named multi set of tuples (in this pa.­
per we will use as synonyms for "place" the terms 
tuple space and blackboard). Places are containers 
in the sense that the universe of tuples and agents 
is partitioned in a number of places. Places can 
be dynamically created by agents. A place is 
both a computing space and a communication 
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channel, i.e., a shared data structure on which 
agents read and write data; in fact, an agent can 
produce a tuple inside a place and it has access 
to every tuple in its own place. An agent cannot 
directly read the contents of an external place. 

The PoliS model is enforced by a notation whose 
syntax is informally described below. 

2.1 Places 

A place is a named multiset of tuples. Syntactically, 
we will write places as braced sequences of tuples. 

Example: For inst.ance, we write 

placel{ (a) (b,X) } 

to describe a place na.med place1 containing two tu­
p~. 0 

An interesting feature of PoliS pla.ces is that they 
have names. Agents can send tuples outside their own 
place using the name of another place. The name sys­
tem of places is an interesting design choice that has 
been left out of PoliS: it is another degree of free­
dom, just like the choice of the matching mechanism 
to access the tuples, and the sequential language for 
expressing local computations. For instance, in ESP 
the names are st.ructured: they are paths in Unix-like 
style. 

2.2 Tuples 

Tuples are sequences of variables and values. Val­
ues obviously depend on the chosen sequential com­
ponent, i. e., the sequential programming language 
adopted for agents. However, in PoliS a number of 
basic value types, as well as lists of these values, are 
allowed. Tuples denote themselves; they are simply 
da.ta objects that exist in a place, produced by some 
agent and possibly in the future consumed by some 
agent. An important topic is the scope of variables 
inside tuples contained in a place: the scope of these 
variables spans only the tuple to which they belong. 
This means that each tuple inside a Tuple Space is 
completely independent from other tuples. 

2.3 Agents 

Abstractly, agents are execution threads, i.e., an agent 
is a process executing some program. Syntactically, 
an agent is represented by a tuple and executes the 
program contained in another (special) tuple, called 
progmm-tuple. An agent can use the following ab­
stract tuple operations for its interaction with the 
landscape it lives in: 
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• associative test of a tuple cont.ained in the same 
place the agent is; 

• associative consumption of a t.uple from the same 
place the agent is; 

• asynchronous creation of a place or a t.uple inside 
the landsca.pe the agent knows. 

These operations are borrowed from Linda. Ac­
tually, Linda offers an intuitive syntax for Po­
liS operations, introducing two different "flavors" 
for the test and consumption operations (they 
can be either blocking or not-blocking), and two 
not blocking operators for the creation of en­
tItIes. The blocking test operation in Linda 
is written read( Tuple_schema.ta.), the non-blocking 
test operation is written readp (Tuple_schemata), 
the blocking consumptiol1 operation is written 
inC Tuple_8chemata) , the non- blocking consumption 
operation is written inp( Tuple_schemata) (a Tu­
ple-Schema.ta is simply a tuple containing variables. 
i.e., wild cards that match any actual argument inside 
a. tuple conta.ined in the Tuple Space). 

The c1'eation operation is written as out (Tuple) in 
the case of tuples, and Name. tsc 0 in the case of 
places (in this paper we assume no structure on the 
set of names of Tuple Spaces). 

An agent can output any of these entities: 

• a tuple; the operation is written out (Tuple) in 
case of local writing, name. out (Tuple) in case 
of outside writing: 

• a Tuple Space (i.e., it creat.es a new place); the 
operation is written name. tscO. 

The destination of such operat.ions is ahvays a 
place. The target of an out operat.ion is specified 
using a record-like notation. If no target is specified, 
the Tuple Space of the agent is used by defa.ult. What. 
happens if an out operation target.s an ext~rna.l tu­
ple space that does not. exists? PoliS tries to follow 
the Linda semantics: out is a non-blocking operation 
(i.e., the agent that issue it does not. wa.it for any 
result or error code), that never fails. Thus, commu­
nications among places are supported by a meta Tu­
ple Space where undelivered tuples remain deposited; 
whenever a place comes into existence. the undeliv­
ered tuples "pop up" in the tuple space. 

If an agent needs to be certain that a message ar­
rived somewhere, it must explicitly use some protocol. 
For instance it could send the message and an agent 
that, upon arrival in the target Tuple Space, sends 
back an ack. 

Finally, we note that an agent can test or consume 
tuples representing other agents. Such operations are 
useful to build agents that schedule agents. Places 

cannot be operands neither for testing nor for con­
suming, because the obvious semantics for such op­
erations (test a whole place, delete a whole place) 
should necessarily manipulate the global state of a 
place, sha.rply contrasting with the asynchronous na­
ture of its internal activities. 

PoliS agents have a reactive semantics defined by 
a fixed protocol of tuple operations. The basic pro­
tocol is the following (we borrow some syntax from 
regular expressions: with op* we intend a sequence of 
indefinite length of tuple operations): 

Syntactically, such a protocol is written inside a 
program-tuple. 

(Heading: (Test; Consume; Lac_Eva.!; Out)) 

The Heading is a normal tuple. Instead, Test, 
Consume, and Out are actually sequences of tuple op­
erations, whereas LocEval is a sequential computa­
tion that has no side effect on the place to which the 
agent belongs. An agent is activa.ted when the place 
contains both a program-tuple a.nd a normal tuple 
matching the heading in the program-tuple. The sec­
ond component of a program-tuple is also called a 
pattem. Executing a pattern, an agent will do the 
following actions: 

• it reads associatively something from its place us­
ing any number of test operations; actually the 
PoliS test operation has a broader semantics than 
read in Linda: a number of predefined tests on 
the place are allowed, depending on the chosen 
type system for tuple arguments. Some useful 
general predefined tests a.re: relational (bina.ry) 
predicates, a var predicate to check if an argu­
ment inside a tuple is a variable, and a self pred­
icate returning the name of the place in which an 
agent is located. 

• it deletes some tuples using any number of 
conSll1ne operations. 

vVhen an agent has finished testing and deleting 
tuples from the place, it "reacts" and starts a compu­
tation that ends by creating some new objects in the 
landscape. 

• it executes a "local evaluation" that has no ef­
fect on the place and is invisible from outside 
the agent insofar as no operations on the place 
are allowed; this local computation is expressed 
in a sequential programming la.nguage, 

• it outputs the results obtained in a number of 
places it "knows"; these outputs can consist of 
tuples or pla.ces: 



• at the end of the sequence the agent "dies", ter­
minating its thread of evaluation; however, we 
can specify an ever-lasting agent by inserting 
among its outputs the creation of a copy of it­
self. 

Which is the computing model underlying agents' 
computations? The idea is that agents are stateless 
and reactive, i.e., they compute when a "molecule" 
can be built inside the Tuple Space. A molecule is 
composed of a program-tuple, a normal tuple match­
ing the first field of a program-tuple, and all the tuples 
to be consumed as specified by the consume section in 
the program-tuple. The agent "reacts:' to its environ­
ment, "burning" the molecule, and as a result creates 
new entities as specified in the create section. This 
"chemical" model is also used in GAMMA [Banatre 
and LeMetayer. 1990J. 

Example: 
An ever-lasting chemical reaction can be seen in this 
Tuple Space containing two table tennis players: 

{ (a) (b) (ping) 

«a) : (in(ping);out(pong);out(a») 

«b) : (in(pong);out(ping);out(b»)} 

Agent a begins building a molecule with tuple (ping); 
it consumes that tuple and produces tuple (pong) 
and a copy of itself (a). Then it is the turn of agent b 
which can react and consume tuple (pong) to produce 
tuple (ping) and a copy of itself (b), and so on, either 
forever or until something from outside comes to alter 
this "chemical solution". For instance, suppose that 
an external agent sends a ne," ping tuple in the above 
Tuple Space; as soon as the new tuple is noticed by 
agent a, the two agents are no longer serialized. 0 

Even if the relationship among pla.ces, agents, 
program~tuples, and local evaluations can look 
slightly contrived, actually their relative meaning is 
quite simple: a place defines an AND-parallel compu­
tation of agents; an agent executes the computation 
defined by a program-tuple; the agent reacts to the 
contents of its place with a local evaluation followed 
by the crea.tion of new entities, either tuples or places. 

3 ESP: A programming nota­
tion based on PoliS 

PoliS is a coordination model that could accommo­
date any sequential language as sequential component 
for local computations inside agents. For example, C­
Linda can be considered an instance of PoliS where 
the sequential language is C, tuples are built using the 
C data types and a unique place is allowed for every 
program. In Linda tuple operations inside agents are 
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not structured (i. e., you can have in, read, and out 
in any order), but any sequence of Linda operations 
can be split in a number o.f subsequences such that 
each begins with read/in operations and terminates 
with out operations. 

PoliS is a model for designing coordination of dis­
tributed systems. It is introduced as a paradigm for 
explorative distributed programming, and can be con­
sidered a useful prototyping model for distributed ap­
plications. In order to explore its usefulness for this 
task, we have defined Extended Shared Prolog (ESP), 
a programming language that embeds its main fea­
tures. 

ESP is a logically distributed extension of the paral­
leI logic language Shared Prolog, which is a logic lan­
guage that uses the blackboard model for interprocess 
communication [Brogi and Ciancarini, 1991]. With 
some approximations, Shared Prolog can be consid­
ered a logic counterpart of the Linda family of phys­
ica.lly distributed programming languages [Gelernter, 
1985 J. The main difference is that Shared Prolog 
gains in expressive power with respect to Linda by 
exploiting unification and backtracking during syn­
chronization with the blackboard (Linda uses pattern 
ma.tching, and no backtracking is allowed). ESP gen­
eralizes Shared Prolog allowing multiple blackboards 
using a hierarchical name system. 

3.1 Theories 

An ESP program is composed of a set of theories. 
Each theoTY has the following syntactical structure: 

theory narne(V1, ... , lIn):-
eval pattern} # ... #patte1'11k 
wi th Prolog_prog1'am. 

A theory is identified by a name and zero or more 
arguments 'Ii that are logic variables that scope over 
the patterns. The theory inte1jace follows the key­
word eval and includes a number of patterns, sepa­
rated by the symbol #; the theory implementation is 
the Prolog program that follows the keyword with. If 
we compare ESP with other langua.ges for program­
ming in the large, the set of patterns of a theory can 
be considered the interface of a module, while the 
Prolog program is the private implementation of the 
module. 

Logic patterns are clauses that include test and 
consume operations, a loc_eval that is a goal to be 
evaluated with respect to the P1'olog_p1'ogram, and 
finally some out operations. For simplicity and con­
sistency with the logic paradigm, test operations are 
written as goals, whereas consumption and creation 
operations are put between braces. 

Test {Consume} ~. Goal {Success} fail 
{Failure} 
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The combination of Test and Consume operations 
is a guard: when such a guard is satisfied, i.e., when 
all its test and consume operations are completed, the 
pattern commits and the Prolog goal is evaluated. To 
deal with the possibility of a failure of such a Prolog 
goal, creation operations are partitioned in two sets 
separated by the keyword fail: if the goal evaluation 
succeeds the Success out-set is produced, else the 
Failure out-set is produced. Thus, an ESP pattern 
is similar to a Concurrent Prolog clause (but ESP 
clauses are failure-free), and a theory corresponds to 
t.he definition of a CP predicate. 

As a simple example, we show a simple theory in­
cluding one pattern: it defines an agent computing 
a value as a function of some input, or outputs an 
error tuple if the evaluation fails. 

theory agent(State) :­

eval 

with 

{tuple (Input)} I. conS71 me 

f(Input, State, Output, NewState) 

{tuple (Output), agent (NewState)} 'l. S 71ccess 
fail {error(f(Input,State)) , agent(State)} 

fO,S,O,NS):- ... 'l. Prolog_program 

3.2 Agents 

Logic agents are represented by active tuples; t.hey re­
act to the presence of other tuples in their blackboard. 
They can read and delete tuples from their black­
board; they answer by writing tuples in any black­
board they know. The relation between input and 
output is defined by a Prolog program (with a slight 
abuse of language, we will say sometime that the be­
havior of an agent is defined by a theory). Several 
agents with the same theory can be active at the same 
time, in the same blackboard or in different ones. 

A notable feature of ESP is that. control flow of 
test and consume operations is ruled by backtracking. 
Each test or consume operation either is successful or 
fails; a failure activates backtracking to the preceding 
operation. The formal semantics of such a mechanism 
has been studied in [Brogi and Ciancarini, 1991]. 

3.3 Blackboards 

Por reasons that will become clear in Sect..5, the name 
system chosen for ESP blackboards defines a hierar­
chica.l system. In fact, blackboard names are paths 
in the style of a Unix file system. Such a hiera.rchy is 
not limiting the communication patterns among the 
agents, since blackboard names can be exchanged in 
tuples, and an agent can put tuples in any blackboard, 
provided that it knows the name of the destination. 
Therefore, highly dynamic communication patterns 

can be set up, even connecting blackboards at differ­
ent levels of the hierarchy, if this is convenient. 

Blackboards can be dynamically created by agents 
simply outputting an activation goal that specifies a 
number of agents. This is the syntax of an activation 
goal. 

?- child{agent 1, ... , agentn } (0 parent. 

This goal creates a blackboard named child as off­
spring of blackboard paTent. 

In general, the execution of an ESP goal builds a 
tree of blackboa.rds. Syntactically, a blackboard is 
a multiset of tuples that are Prolog terms. Seman­
tica.lly, a blackboard defines an AND parallel evalua­
tion that transforms the contents of the blackboard it­
self. The actors of such an evaluation are logic agents, 
\vhose evaluat.ions are defined by Prolog programs. 

4 Programming with ESP 

The activity of programming with ESP consists of 
building distributed systems; this topic has been ex­
plored in another paper [Ciancarini, 1990a]. Here we 
will show how ESP can be used as a specification 
and design language for softwa.re development envi­
ronments. 

4.1 A Tiny Programming Environ­
ment 

A rule-based distributed software development envi­
ronment can be easily specified in ESP. Rule-based 
software development environments have recently be­
come popular [Barghouti and Kaiser, 1990] because 
they can be used to support process programming, 
i.e., the activity of specifying multiagent software de­
velopment. 

A very simple programming environment can be set 
up including an editor and a compiler. Suppose we 
have to specify a software development process that 
consists of editing a file, then compiling it as soon 
as the editing by a programmer is terminated; Fig.1 
depicts such an environment as a PoliSpace. If the 
compilation gives no errors, the object program has 
to be invoked and executed using some test data. 

In order to build the ESP program that implements 
such a PoliSpace we need three theories: one for a.n 
editing agent, one for a compiler agent, and one for an 
executing agent. We show the code for the compiler 
theory. 

theory compiler:­

eval 

{compile(File)} 

calLcompiler (File) , 



exec 

Figure 1: A PoliSpace Coordinating a Simple Pro­
gramming Environment 

{compiled(File)}Qexec 

fail {do_edit(File)}Qedit 

with. 

calLcompiler(File) : - ... 

I. £nvoke Prolog- Unix envelope for cc 

I. fails if compilations fails for errors 

Such a theory is called envelope because they in­
capsulate external software t.ools [Kaiser et 0.1., 1987]. 
Envelopes are useful to introduce non-declClrative op­
erators inside a declarative frClmework. because they 
a.re able t.o call standard Unix tools via some system 
predicates tha.t. return a logic result (i. e .. succes~ or 
fa.ilure). 

This minimal programming environment enforces a 
simple edit-compile-e:tec programming model. Admit­
tedly, something similar is not difficult to do with so­
phisticated editors like GNU Emacs, however in ESP 
distribution and remote evaluation are very easy to 
deal with. Moreover, it is easy to specify differ­
ent interaction paradigms. For ins! ance t.he three 
agents editor, compiler, and executor are easily 
integrated in a unique blackboard, or can be sepa­
rated in different blackboards, as in Fig.l. aiming at 
enforcing distribution and protection. 

4.2 A Multiuser Environment en­
forcing an Access Protocol 

A software project is composed of a set of modules on 
which a team of programmers operate. I'he updated 
public version of the \"hole project is stored within CI 

main database. Users can access the main database 
ill read mode. It is not possible to directly change 
the main database. The core of the environment is a 
reserve/deposit access protocol to the main dat.abase 
\vhich guarantees mutual exclusion and consist.ency: 
the main database always contains a consistent and 
updated version of the project. To modify the con­
t.ents of a module, the user must reserve the module 
to gain w1'ite access. Obviously, at any time a module 
can be reserved just once. 

A reserved module is copied into the user database, 
where the user can modify it a.t will. While a reserved 
module is being edit.ed in a user databClse. other users 
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main database 

Figure 2: A PoliSpace Coo1Yiinating a Multiuse1' En­
vironment 

can access in read mode the old public version of 
the module stored in the main database. \iVhen the 
changes to the module are completed and tested, the 
user will deposit the new version back into the main 
database. The updated version is then readily acces­
sible by all other users. 

The PoliSpace realizing such an environment is 
showed in Fig.2. 

theory user _databaseJllanager:­

eval 

self (Udb) , {checLin(File, Dbmain)} 

{check_in(File,Udb)}QDbmain 

# 

self (Udb) , {cheek_out (File, Dbmain) } 

{cheek_out (Udb, File) } QDbmain 

theory main __ databaseJllanager:­

eval 

# 

# 

# 

# 

file (F), not reserved(F, _), {cheek_out (P, F) } 

{reserved(F,by(P)}, {file(F)}QP 

not file(F), {check_out(P,F)} 

{error(nofile(F))}QP 

reserved(F,by(OP)), P -::j:. OP, {check_out(P,F)} 

{error(is~ocked(F,by(OP)))}QP 

file(F), not reserved(F) , {check_in(F,P)} 

--r 

{error(fileAxists(F))}QP 

file(F), reserved(F,by(F,OP), P -::j:. OP, 

{check.J.n(F ,P)} 

{error(is~ocked(F, by(OP))) }QP 

# 

not file(F), {check.J.n(F,p)} 
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{file(P>}. {created(P>}QP> 

We show only the 
code of the theories user _databaseJllanager, that 
handles the user's requests in a user database, and 
rnain_databaseJllanager, which guarantees the con­
sistency of the main database. 

5 Oikos 

Oikos is a distributed s,oftware development environ­
ment based on PoliS and written in ESP [Ambriola et 
al., 1990b J. Oikos provides a number of standard fa­
cilities that can be easily configured using ESP itself. 
The overall approach consists of offering mechanisms 
that can be easily composed, in order to easily explore 
different environment designs. 

The ESP blackboard hierarchy offers a natural 
way of structuring a software development environ­
ment. It is used to reflect its decomposition in sub­
environments, according to a top-dmvn refinement 
strategy. The blackboard hierarchy is not really 
constraining the communication patterns among the 
agents participating in a software development pro­
cess, since blackboard narl'les can be exchanged in tu­
ples, and an agent can put tuples in any blackboarcL 
provided t.hat it knows the name of the destination. 
Therefore, highly dynamic communication patterns 
can be set up, even connecting blackboards at differ­
ent levels of the hierarchy, if this is convenient. 

5.1 A Prototype Implementation of 
Oikos 

The Oikos prototype has been implemented on t.op 
of a local network connecting some Sun workstations 
and a Vax mainframe. Oikos is writ.ten is ESP, that 
provides the basic mechanisms for physical distribu­
tion and dynamic activation of communicating pro­
cesses. ESP itself is implemented partly 'in C and 
partly in Prolog [Bucci et al., 1991J. The standard set 
of Prolog system predicates has been augmented with 
IPC mechanisms using Unix Internet sockets [Ambri­
ola et al., 1990aJ. 

The three layers of the Oikos architecture are: the 
Oikos runtime support, which is \vritten in ESP and 
provides escapes to the underlying operating system; 
a collection of separate processes, that implement a 
distributed ESP run-time system; the underlying op­
erating system, UNIX in this case. The processes in 
the second layer are depicted by circles: an ESP pro­
cess is the local interpreter of the ESP language, and 
there are as many of them as machines in the network, 
eager to interpret pieces of the ESP program. For a. 
more detailed exposition see [Bucci et at.. 19911. 

5.2 Oikos Services 

Oikos provides a set of basic services. A service offers 
access to shared resources according to a given proto­
col. The public interface of a service specifies the pro­
tocol of interaction with the service, i.e., which tuples 
must be put into its blackboard to obtain its service. 
For lack of space, we simply summarize the Oikos 
standa1'd se1'vices, which play the role that primitive 
operators and data types play in a programming lan­
guage. Vie discuss here the most meaningful only, 
i. e., those that are fundamental in any software de­
velopment process. 

The Tool Kit Server (TKS), the Service and The­
ory Server (STS) and the History Server (HS) offer 
restricted access to databases of system data, e.g., 
those modeling the predefined documents. A User In­
terface Service (UIS) is used to interact with running 
softwai~e process programs, whereas the Workspace 
Server (vVS) allows users to run the tools and the 
executable products of the software process. The 
DataBase Server (DBS) offers unrestricted access to 
a general purpose project database, and is therefore 
used to set up specific project databases. Finally, the 
Oikos Run Time System (ORTS) can also be seen as 
a server offering essential services, like escapes to the 
underlying operating system. All these services, ex­
cept aRTS, can be simultaneously activated several 
times in different blackboards. 

The llser accesses Oikos through a special interac­
t.ive service called User Interface Service (UIS). It is 
a service because several different UIS can coexist, 
and their definitions are ESP programs found in STS. 
A UIS shows the user the contents of its blackboard 
in a \\lindow, and acts according to the user's input. 
A UIS offers also a flexible way to monitor a software 
process, since the user can activate it on a blackboard, 
looking at the tuple flow, and even saving some tu­
ples with the history server HS. UISs are the basic 
blocks of the role services, i.e., those parts of the pro­
cess program that allows users to interact with the 
software process. 

For lack of space, here we do not show how Oikos 
is used in a real software development process. The 
interested reader can see the example contained in 
[Ambriola et a.1., 1990b J. 

6 Conclusions 

In this paper we have introduced PoliS, a cOOl'dina­
tion model useful for designing distributed systems. A 
programming notation based on PoliS, ESP, has been 
used to illustrate the design of Oilms, a distributed 
software development environment. The goal of the 
ESP jOikos project. is to assess the combination of the 
blackboard model with logic programming in the de-



sign of distributed programming environments. \Vhile 
the blackboard model is well known in Artificial Intel­
ligence, its use in Software engineering is quite novel. 

After completing the implement.at.ion of Oikos, our 
future plans include the st.udy of the impact. of dif­
ferent models of tool coordination in the definition of 
planning tools for assisting users in the software pro­
cess, and the analysis of the role int.erplay in dealing 
wi th the software process itself. 
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ABSTRACT 

A software visualization tool is described that transforms 
program execution trace data from a multiprocessor into 
a single color image: a program signature. The image 
is essentially the program's logical procedure-invocation 
tree, displayed radially from the root, with possible ra­
dial and lateral condensation. An implementation of 
the tool was made in X-Windows, and experimentation 
with the system was performed with trace data from 
Panda, a shared-memory multiprocessor implementation 
of FGHC. We demonstrate how the tool helps the pro­
grammer develop intuitions about the performance of 
long-running parallel logic programs. 

1 Introduction 

Parallel programming is difficult in two main senses. It 
is difficult to create correct programs and furthermore, 
it is difficult to exploit the maximum possible perfor­
mance in programs. One approach to alleviating these 
difficulties is to support debugging, visualization, and 
environment control tools. However, unlike tools for se­
quential processors, parallel tools must manage a dis­
tinctly complex workspace. The numbers of processes, 
numbers of processors, topologies, data and control de­
pendencies, communication, synchronization, and event 
orderings multiplicatively create a design space that is 
too large for current tools to manage. 

The overall goal of our research is to contribute to 
processing this massive amount of information so that 
a programmer can understand it. There is no doubt 
that a variety of visualization tools will be needed (e.g., 
[6, 9, 12, 5]): no one view can satisfy all applications, 
paradigms, and users. Yet each view should be consid­
ered on its own merits: what are its strong and weak 
points, how effective is it in conveying the information 
desired, and hiding all else. In this paper we introduce 
one view in such a system: ba.sed on a new technique, 
called "kaleidescope visualization," that summarizes the 
execution of a program in a single image or signature. 

Unlike scientific visualization, i.e., the graphical ren­
dering of multi-dimensional physical processes, in par-

allel performance analysis there are no "physical" phe­
nomena; rather, abstract interactions between objects. 
Thus renderings tend to be more abstract, are less con­
strained by "reality," and are certainly dealing with many 
interacting parameters controlling the design space. Ka­
leidescope visualization is the graphical rendering of a 
dynamic call tree of a parallel program in polar cOOl'di­
nates, to gain maximum utilization of space. To fit the 
entire tree into a single workstation window, condensa­
tion transformations are performed to shrink the image 
without losing visual information. 

This paper concentrates on the analysis of parallel 
logic programs with VISTA, an X-Windows realization 
of kaleidescope visualization. Although we concentrate 
on committed-choice reduction-based languages, VISTA 
is applicable to a wider class of procedure-based AND­
parallel languages. The paper is organization as follows. 
Section 2 summarizes similar types of visualization tools, 
and Section 3 reviews the VISTA algorithms (summa­
rizing [14]). In Section 4, we describe the para.llel logic 

programming platform upon which VISTA experimen­
tation was conducted, and analyze the performance of 
logic programs to illustrate the power of the tool. In 
Section 5, conclusions and are summarized. 

2 Literature Review 

Earlier work on WAMTRACE [2, 3], a visualization tool 
for OR-parallel Prolog, has influenced our work a great 
deal. WAMTRACE is a trace-driven animator for Au­
rora Prolog [8] (originally for ANLWAM [2]). Aurora 
creates a proof tree over which processors ("workers") 
travel in search of work. WAMTRACE shows the tree, 
growing vertically from root (top) to leaves (bot tom), 
with icons representing node and worker types (e.g., live 
and dead branchpoints, active and idle workers). The 
philosophy of WAMTRACE was that an experimental 
tool should present as much information to the program­
mer as is available. This often results in information 
overload, especially because the animation progresses in 
time, leaving only the short interval of the nea.r-present 
animation frames in the mind of the viewer. 



With comparison to WAMTRACE, our goals in VIS­
TA were: (1) generalize the tool for other language 
paradigms. Specifically, AND-parallel execution is more 
prevalent in most languages, and needed to be addressed; 
(2) to summarize the animation; (3) abstract away in­
formation so as not to detract the viewer from under­
standing one thing at a time. Thus we introduce differ­
ent views of the same static image, to convey different 
characteristics; (4) more advanced use of color to reduce 
image complexity and increase viewer intuitions. 

Note that the emphasis of WAMTRACE on anima­
tion is a feature, not a bug - the animation enables 
the gross behavior of the dynamic scheduling algorithms 
to be understood. Animation is implemented, but not 
stressed in VISTA. In this paper, we analyze a system 
with simple on-demand scheduling [10], and so anima­
tion is not critical to understanding program behavior. 

There are numerous views of performance data, quite 
different than WAMTRACE, e.g., [6, 9, 12, 5]. In gen­
eral, these methods are effective only for large-grain pro­
cesses, and either do not show logical (process) views 
of program execution, or cannot show such views for 
large numbers of processes. Voyeur [12] and Moviola 
[5] are closest in concept to VISTA. These animators 
have great benefit, but this limits the complexity that 
can be realistically viewed. Related research concerns 
a visual representation [7] and visual debugger [4] for 
committed-choice languages, but these are not for per­
formance analysis. 

3 Inside VISTA 

The main goal of VISTA is to give effective visual feed­
back to a programmer tuning a program for parallel per­
formance. To achieve this goal, VISTA displays an en­
tire reduction tree in one (workstation) window, with 
image condensation if needed. Two types of conden­
sation are performed: level and node condensing (de­
scribed below). In addition, VISTA enables a user to 
view the tree from different perspectives (PE, time, or 
procedure) and zoom-up different portions of the tree. 
Since the tree is usually dense for small-grain parallel 
programs (even after condensation), and the tree must 
be redisplayed when the user desires different views, the 
tree-management algorithm must be efficient and the 
window space must be utilized effectively. 

We now define terminology for describing logical call 
trees. The level of a node is the path length from the 
root to the node. The root level is zero. The root is the 
initial procedure invocation, i.e., the query. The height 
of a tree is the longest pa.th from the root to a leaf, plus 
one. The height of a node is the height of the tree minus 
the level of the node. Level condensing is a mapping 
from a tree T to a tree T' with the same ancestor and 
descendant relationships, such that a node n at level [ 
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in T is mapped into a node n' at level [' in T', where 
[' = lZ / C J and c is level-condensing ratio (defined below). 
Node condensing is the removal of all the descendants of 
the node n from the tree, if the allocated sector (defined 
below) for n in the window space is less than one pixel. 

With these definitions in hand, VISTA management 
is now reviewed. There are two inputs to the algorithm: 
a trace file and a source program. A trace file entry con­
sists information corresponding to a time-stamped pro­
cedure reduction. Although not currently implemented, 
VISTA could easily be extended to accept arbitrary e­
vents logged in the trace, as does WAMTRACE. 

There are alternative ways to map an arbitrarily 
large tree onto a limited window space. Vve employ an 
abstraction requiring two passes over the trace: finding 
the tree height and creating a level-condensed tree. The 
condensed tree keeps the shape of the original tree (al­
though scaling is not precise). This original shape allows 
us to carry our intuitions over from the tool's view to 
tuning performance of actual programs. In order to cal­
culate the level-condensing ratio, c, the maximum tree 
height to be displayed (i.e., limitation of the window 
space) is needed: h max = lw/2dJ, where 10 is the maxi­
mum window width, and d is the distance between two 
adjacent levels. If tree height h :::; hmax , level condensing 
is not needed. If h > hmax , level condensing is performed 
with the c ratio calculated as follows: 

Co lh/ hmaxJ 

c 

cohmax - co(h - cohmax ) 

{
Co l:::;t 
co+11>t 

where [ is the node level. This condensation scheme puts 
more emphasis (space) on the levels closer to the root 
because earlier reductions are generally more "impor­
tant" than later reductions. The heuristic corresponds 
to the user's intuition that processes responsible for dis­
tribution of many subprocesses should appear larger. 

An open question is the categorization of programs 
into those which abide by this heuristic, and those which 
do not. A program that would "frustrate" VISTA heUl'is­
tics has the most significant computation near the leaves, 
where distribution of this work (near the root) is less im­
portant. A trivial example is a tree of parallel tasks, 
each a very heavy sequential thread of computation. 
VISTA will condense the graph to fit within the win­
dow, in the limit (of very long threads) producing a star 
shape. Although this may be considered "intuitive," it is 
abstracts away all information except the threads, which 
themselves are difficult to view against the background. 
Alternative views, such as condensing each thread into 
a polygon, perhaps colored as a function of the conden­
sation, may be more informative because the freed-up 
window space would allow the work distribution at the 
root to be viewed also. How this and other types of con-
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Figure 2: Weight Calculation for Qsort 

densation, while not scaling the tree linearly, can lead 
to better understanding of certain programs, is a topic 
of future research. 

At this stage of the algorithm, the levels to be dis­
played, and to be discarded, are decided. To illustrate, 
consider Fig. 1 showing the original tree for a Quick 
Sort program (the trace executed on four PEs and con­
sists of 23 records). Each node is labeled with a triple, 
(Si' pe, index), where Si is procedure S (abbreviated) in­
voked at trace index i, pe is the PE number, and index is 
the sequence index of that PE. For example, (q5, 3,1) of 
node D denotes that procedure qso1't was invoked as the 
5th trace record, and reduced on PE = 3 as the first goal 
executed by that processor. After level condensing with 
c=2, nodes B, F-L, U, and V are contracted into their 
parents. These odd-level nodes are removed because if 
(I mod c) =1= 0, all nodes in level 1 are condensed. 

Each node at level 1 in the logical tree is displayed 
in the window at a locus defined by radius r = d x I, 
where d is the (constant) distance between two adjacent 
levels. The node is illustrated by a point, however it is 
connected to its children (at the next level) by a closed 
polygon around the "family" (the polygon degenerates 
into a line if there is one child). The polygon itself is 
colored, representing an attribute of the parent. After 
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level condensing has completed, the nodes at each level 
are allocated to the corresponding locus (a concentric 
circle). This is analogous to the pretty printing problem 
for text. We solve this problem heuristically by allo­
cating a sector to each node depending on its weight. 
The node and its children are then displayed within the 
range of the sector only. The weight w for each node 
is heuristically defined as the sum of the weights of its 
children plus the height of the node. Thus more weight 
is put on nodes closer to the root because, the closer 
the node is to the root, the fewer nodes the correspond­
ing circle can contain. Fig. 2 shows an example of the 
weight calculation for the Quick Sort program. 

A sector is defined as the subset of the concentric cir­
cle within which a node can be displayed. To formalize 
the sector calculation, consider a unique labeling of each 
node by a path from the root {Xl, X2, ... , ;z; d, where Xi 

is the sibling number traversed in the path. For exam­
ple, in Fig. 2, node J with weight 9 has label {1, 3, 1}. 
The sector of a node at path p is represented as a pair 
(sp, a p ), where Sp and a p are the starting degree and the 
allocation degree of the node, respecti vely. The sector 
of the root is defined as (0, 360). The starting degree Sp 

for a node at level k is calculated as follows: 



leftmost child 
otherwise 

In other words, if the node is the leftmost child, then 
the starting degree is equal to the starting degree of 
the node's parent. Otherwise, the starting degree of the 
node is equal to the sum of the starting and allocation 
degrees of its left sibling. The allocation degree a p for a 
node at level k is calculated as follows: 

where Wp is the node's weight, the summation is the 
total weight of all m siblings (including the node itself), 
and the final factor is the allocation degree of the parent. 
Fig. 3 shows the sectors of the nodes for Fig. 2. 

After the previous steps, the execution graph is ready 
for display in the X-Window System [11] with VISTA as 
a client. When drawing the graphic, if the sector calcu­
lated is less than one pixel, node condensing is done, i.e., 
the node and its children are not displayed. The exact 
position for each node in the window space isn't calcu­
lated until the tree is displayed, since the size and the 
center of the tree may be changed. The exact node po­
sition (x,y) in the window is calculated in the next step 
as x = d x 1 x cos(s + a/2) and y = d x 1 x sin(s + a/2), 
where, d is the level distance, I is the level of the node, 
and (s,a) are the start/allocation degrees of the node. A 
complete description of the internal algorithms is given 
in [14]. To put the algorithms into perspective, Fig. 
4 shows the VISTA display showing a PE view of the 
Quick Sort program (corresponding to Figs. 1-3). 

4 Program Analysis with VISTA 

Our initial experimental testbed for VISTA is an instru­
mented version of the parallel FGHC system, Panda 
[10, 13]. Tuning a fine-grain parallel FGHC program 
for increased performance involves understanding how 
much parallelism is available and what portion is be­
ing utilized. In experimenting with parallel logic pro­
grams using VISTA, we have found a number of ap­
proaches useful for understanding performance charac­
teristics. Our experiments consisted of a set of execution 
runs on a Sequent Symmetry, and involved both modi­
fying the benchmarks and varying the numbers of PEs. 
We examine three such benchmarks here. 

4.1 Pascal's Triangle Problem 

Pascal's Triangle is composed of the coefficients of (x + 
y)n for n ~ O. The binomial coefficients of degree n are 
computed by adding successive pairs of coefficients of 
degree n - 1. A set of coefficients is defined as a row 
in Pascal's Triangle. Our first benchmark [13] computes 
the 35th row of coefficients, with bignum arithmetic. 

The easiest way to understand a program in VISTA 
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is with a procedure view or graph. Fig. 5 shows the re­
duction tree from the procedure view. This graph, dis­
played here without any condensation, has 2,235 nodes 
and a height of 56. The interesting snail shape, where 
the radial arms correspond to row calculations, indicates 
that the rows, and therefore the computations, are grow­
ing in size. Near the root, a cyan distribution procedure 
spawns the rows, and near the leaves, a sky-blue bignum 
procedure adds coefficients. The size of the subtree (i.e., 
one row) is increased by one for every two rows. This 
means that ~ and ~ + 1 rows have the same number of 
coefficients (because only the first half of the row is ever 
computed, taking advantage of the symmetry of a row). 
The two lines at the east side represent the expansion 
of the final half row into a full row. This program illus­
trates how the user can roughly understand execution 
characteristics from the procedure view, even without 
knowing the precise details of the source code. 

To analyze the parallelism of the exe~ution graph, 
we first examine load balancing among PEs. Good load 
balancing among PEs does not necessarily mean effi­
cient exploitation of parallelism. However, without fair 
load balancing, full exploitation of parallelism cannot be 
achieved. In VISTA, a fair color distribution in the PE 
view or graph represents good load balancing. Figs. 6 
(PE graph) and 7 (time graph) represent the execution 
on five PEs. In the time view, the RGB color spectrum 
from blue to magenta represents the complete execution 
time. Because there are few visibly distinct colors in 
this range, the same color in the time graph does not 
necessarily represent the same time. If some nodes are 
represented with the same color within the time graph, 
and by the same PE color within the PE graph (i.e, 
all the nodes are executed by the same PE), then the 
reductions were executed sequentially. 

All five colors are distributed almost evenly in the 
PE graph for Pascal, representing good load balancing. 
To further analyze parallelism, both PE and time graphs 
are used in conjunction. In the time view, the spectrum 
is distributed radially, although not perfectly so. This 
indicates that most rows were executed in parallel. Al­
though the maximum parallelism is limited by the PEs 
at five, again the vagueness of the RGB spectrum can 
be misleading, making it appear as if there is more par­
allelism. This problem can be overcome to some extent 
with a subtree display, where the spectrum is recycled 
to represent time relative to the selected root. 

Fig. 8 shows the single-PE time graph for Pascal. In 
this graph, the spectrum is distributed laterally, around 
the spiral. This distribution indicates that the nodes 
were executed by depth-first search, the standard Panda 
scheduling when no suspensions occur. By comparing 
the two time graphs, we can infer the manner of schedui­
ing: breadth-first on five PEs, and depth-first on one 
PE, but without a PE view, we cannot conclusively in­
fer parallelism. Fig. 6 shows that some rows are not 
executed entirely by the same PE (i.e., task switches 
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occur within some rows). These characteristics indicate 
that suspensions are occurring due to data dependencies 
between successive rows of coefficients. All three figures 
in conjunction indicate the "wavelike" parallelism be­
ing exploited as the leftmost coefficients of the Triangle 
propagate the computation down and to the right. 

4.2 Semigroup Problem 

The Semigroup Problem is the closure under multiplica­
tion of a group of vectors [13J. The benchmark uses an 
unbalanced binary hash tree to store the vectors pre­
viously calculated so that lookups are efficient when 
computing the closure. Fig. 9 (PE graph) and Fig. 
10 (time graph) were executed on five PEs. The total 
number of nodes in the reduction tree is 15,419, and 
the tree height h=174. In this experiment, the window 
size was 850 x 850 and the level distance was four. The 
maximum tree height to be displayed is calculated as 
hmax = l8~O X 2J = 106. Level condensing is performed 
because h> hmax . The first 38 levels are not condensed, 
but the remaining 136 levels are condensed by 2:1. This 
example demonstrates some strong points of VISTA: (1) 
After level condensing, the tree keeps its original shape; 
(2) The window-space efficiency is very good. If the 
tree were represented in a conventional way (propagat­
ing from the top of the window), representation would 
be difficult, and space efficiency \vould be poor. 

To understand the parallelism characteristics of Semi­
group, load balancing among processors is analyzed first. 
The most immediate characteristic of the PE graph is 
that the reductions form the shape of many spokes or 
threads of procedure invocations. Near the root are dis­
tribution nodes. Each thread represents a vector multi­
plication. As the graph shows, almost all threads were 
executed without task switch. This indicates few sus­
pensions due to lack of data dependencies, i.e., the vec­
tors are not produced in the pipelined fashion of t.he 
Pascal program. By eye, we judge t.hat the five colors 
in the PE graph are evenly distributed, indicat.ing that. 
load balancing is good. 

Lack of dat.a dependencies between nodes is con­
firmed by a single-PE time graph (not shown). The color 
distribution of this graph is similar to that of Fig. 10, in­
dicating that as soon as the first node of t.he new thread 
is spawned, bot.h the child and parent threads were ex­
ecuted in parallel, without any suspensions. The rea­
son that the threads are not executed clockwise or anti­
clockwise in Semigroup, as in Pascal, is that there were 
some initial data dependencies near the root. These 
dependencies, caused by hash-tree lookups for avoiding 
recomputation of a semigroup member, cause critical 
suspensions that "randomize" the growth pattern. 

When the PE graph (Fig. 9) is viewed in conjunction 
with the time graph (Fig. 10), parallelism can be ana­
lyzed in more detail. Threads wi th the same colors in 
the time graph, and different colors in the PE graph, are 

executed in parallel. The PE graph still has a fair num­
ber of threads per PE, indicating that not all potential 
parallelism has been exploited and additional PEs will 
improve speedup. These approximations can be refined 
by examining subtree displays. 

Historically, the Semigroup program analyzed above 
was the result of a number of refinements from an origi­
nal algorithm written by N. Ichiyoshi [1:3J. Earlier algo­
rithms utilize a pipeline process structure, wherein new 
tuples are passed through the pipe, and duplicates are 
filtered away. Any tuple surviving the pipe is added as 
a new filter at the end, and all of its products with the 
"kernel" tuples (the program's inputs) are sent through 
the pipeline. Although these a.lgorithms are elegant, the 
pipeline structure is a. performance bottleneck. The ver­
sion analyzed above utilizes a binary tree instead of a 
pipeline, increasing the parallelism of the checks. 

In retrospect, we see how VISTA could have helped 
in developing these successive algorithms. Fig. 11 shows 
the time graph for an older version of the program that 
has the same complexity as the program analyzed above. 
Thus the main difference is the pipeline bottleneck, which 
is clearly indicated by the signature's snail shape. Un­
like Pascal, time is not projecting radially, indicating 
lack of wave parallelism. Successive tuples a.re depen­
dent on previous tuples surviving the pipeline, and this 
dependency is seen in the coloring (it could be better 
viewed if the RGB spectrum were more distinguished). 
The dependency is made explicit by clicking on nodes 
to indicate the corresponding procedures. Fig. 10 radi­
ates from the query, indicating the potential parallelism 
afforded by a tree vs. a pipeline. The coloring further 
indicates that the tree is not bottlenecked. 

4.3 Instant Insanity 

The Instant Insanity problem is to stack four four-colored 
cubes so that the faces of each column of the stack dis­
play all four colors. This is a typical all-solutions search 
problem with eight solutions. There are several meth­
ods for doing the search in a committed-choice language: 
most notable are candidates/noncandidates and layered 
streams [13J. The candidates method builds an OR-tree 
where each node concerns whether the current candi­
date is consistent with the current partial solution. At 
the'root, all orientations of a.ll cubes are candidates and 
the partial solution is empty. At the leaves, no can­
didates remain and the partial solutions are complete. 
Each node has two branches: one branch contains the 
solutions that include the current candidate, and the 
other branch contains solutions that do not include the 
candidate. Layered streams is a, network of filters that 
eagerly attempt to produce a stream of solutions of the 
form H*T. Here H is the first element shared by a set 
of solutions, and T are the tails of these solutions. To 
throttle excessive speculative parallelism, a "nil check" 
is inserted at each filter to ensure that T must have at 
least one element. 



Layered streams has 9,094 reductions (nil check) and 
9,775 reductions (without nil check). This increase of 
7% reductions is because of two factors: the additional 
speculative execution and the bloated conversion of the 
now largely incomplete layered stream back into normal 
form. Both of these effects are seen by comparing the 
VISTA graphs (Fig. 12 and 13). The conversion rou­
tine is clearly viewed as a significant subtree without 
the nil check, compared to a single thread with check­
ing. The user can now appreciate the relative weight of 
the conversion with respect to the entire search. The 
speculative branches, however, do not stand out. This 
would be an interesting application of user-defined trace 
records, where a "trace dye" could be introduced with 
a nil check that does not throttle the speculation. 

The candidates program has 37,687 reductions, so 
that VISTA must condense the image. The final image, 
shown in Fig. 14, has 25,127 nodes. Examining the 
structure and coloring of the layered-streams and can­
didates programs, there are no obvious parallelism bot­
tlenecks in either (measurements of all three programs 
showed equal PE utilization of 93-95%). From the time 
graph coloring, the fine-grain parallelism of the filter 
structure is apparent in the layered streams program. 
The candidates graph shows large-grain structure, al­
though we must view the time and PE graphs together 
to ensure that PEs are equally distributed across time. 

The simple examples analyzed here facilitate the ex­
position of VISTA. Intuitions gained for these programs 
have been confirmed by timing measurements [13J. Pro­
grams without as much parallelism, and on larger num­
bers of PEs, can be similarly analyzed. As the number 
of PEs grows, however, the tool approaches its limita­
tions because the user can no longer distinguish between 
the multiple colors representing the PEs. This is an im­
portant area of future research. 

5 Conclusions and Future Work 

This paper described the performance analysis of par­
allel logic programs using "kaleidescope visualization." 
The VISTA system is an X-Windows realization of the 
method, and is demonstrated in the context of para.llel 
FGHC programs. We showed how the user can tune a 
large-trace program for performance by examining alter­
native abstract views of the execution. VISTA, because 
of its efficient implementation, proved its merit in en­
abling rapid analysis of views. This tool complements, 
but by no means replaces, other visualization methods, 
e.g., animation of PE activity and message passing. 

We are currently extending this research in several 
areas. First, we need to experiment more with the cur­
rent VISTA prototype, for various programming lan­
guages, to determine its utility. Second, coloration meth­
ods for combining the time and processor views need 
exploration, e.g., a method of spectral superposition [lJ. 
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Figure 5: Graph of Pascal from Procedure View (5 PEs) 
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Figure 6: Graph of Pascal from PE View (5 PEs) 

Figure 7: Graph of Pascal from Time View (5 PEs) 
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Figure 8: Graph of Pascal from Time View (1 PE) 
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Figure 10: Graph of Semi group from Time View (5 PEs) 
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Figure 9: Graph of Semi group from PE View (5 PEs) 
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Figure 11: Graph of Old Semigroup Algorithm from 
Time View (5 PEs) 
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Figure 13: Graph of Layered Stream Cubes without Nil 
Check from Time View (5 PEs) 

Figure 12: Graph of Layered Stream Cubes with Nil 
Check from Time View (5 PEs) 

Figure 14: Graph of Candidates Cubes from Time View 
(5 PEs) 
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Abstract 

The design and implementation of a visual programming 
environment for concurrent constraint programming is de­
scribed. The system is implemented in Strand, a com­
mercially available concurrent logic programming language. 
Three components are now operational and are described in 
detail in this report; they are a parser. [med-grained inter­
preter, and animator of Pictorial Janus programs. Janus. 
a concurrent constraint programming language designed to 
support distributed computation. has much in common with 
concurrent logic programming languages such as FGHC. The 
design of a visual syntax for Janus called Pictorial Janus is 
described in [KS90]. 

Visual programs can be created using any illustration or 
CAD tool capable of producing a PostScript description of 
the drawing. The Pictorial Janus Parser interprets traces of 
PostScript executions and produces a textual clausal version 
of the parsed picture which can be converted to Strand and 
run as an ordinary Strand program. 

The parser can also produce input to the Pictorial Janus In­
terpreter. The interpreter accepts as input a tenn representing 
the program clauses and query. This tenn is annotated with 
the colors. shapes. fonts. etc. used in the original drawing. 
It spawns recurrent agents corresponding to each agent (i.e. 
process or goal), rule (clause), message (tenn), port (vari­
able), link (equality relation), and channel. These agents 
interact to do the equivalent of clause reduction. The agents 
also produce streams of major events (e.g. that some mes­
sage moved and rescaled to the location and size of some 
other message). These streams are merged and fed into the 
Pictorial Janus Animator. 

The animator generates a stream of animation frames and 
associatedsOlmds. The resulting frames can then be printed; 
more importantly, they can be converted to a raster format 
and recorded on video tape or animated on a work station. 
The colors, shape, fonts, line weights, used in the original 
drawing are preserved so that the animation displays these 
elements in the same graphical tenns as they were conceived 
and created. 

Various lessons were learned in the process of constructing 
the system, ranging from parallel perfonnance issues, to 
deadlock, to trade-offs between the use of terms and agents. 

1 Introduction 

This paper presents a software architecture in which concur­
rent constraint (or logic) programming plays a predominant 
role. The structure of this software and the programming 
techniques used are described, and problems that arose and 
the resulting redesigns are discussed. This paper is primar­
ily about a large concurrent logic program and the fact that 
the program is one which supports a programming environ­
ment fOr concurrent constraint programming is unimportant 
to this paper. The purpose of this paper is rather to re­
late experiences in writing a large, complex. and somewhat 
unusual application in a concurrent logic programming lan­
guage. Much of the discussion centers around difficulties 
in applying, adapting. and choosing between well-known 
concurrent logic programming techniques. Other papers are 
in progress which present the visual programming environ­
ment. 

The software described is part of a "grand plan" in which 
parsers. editors, source transfonners. visualizers, animators, 
and debuggers all work together to support a programmer 
in constructing. maintaining, and understanding concurrent 
constraint programs in a completely visual manner. This 
work is driven by the belief that such an environment can 
have a dramatic impact on the way in which software is 
developed. 

The grand plan is to support whole families of concurrent 
constraint languages, including the familiar Herbrand family. 
which includes FGHC [Ued85], Strand [FT89] , and Andorra 
Prolog [HJ90]. We also anticipate supporting constraintsys­
tems other than the traditional Herbrand constraints of logic 
programming. Initially the system is being built to support 
only a pictorial syntax for Janus [SKL90], a concurrent con­
straint language designed to address some of the needs of 
distributed computing. Janus most closely resembles DOC 
[Hir86], Strand, and FGHC. 

An important aspect of the pictorial syntax of Janus is that 
it is a complete syntax (i.e. anything expressible in textual 
Janus is expressible in Pictorial Janus) and that the syntax 
is based upon the topology of pictures. For example, a port 
(i.e. a variable occurrence) is represented by any closed 
contour which has no other elements of the picture inside. A 
programmer is free to choose any size, color, shape, etc. for 
the elements of the program. The syntax of Pictorial Janus 
is discussed in greater detail in [KS90]. A simple example 
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program that appends two lists is shown in Figure 1. 
Computation is visualized as the reduction of asyn­

chronous agents. The rules for each agent are inside it. 
If at least one of these rules can match, then the agent re­
duces. A matching rule expands and its "ask" devices (its 
head and guard) match the corresponding devices attached 
to the agent. The rule is then removed, and its body remains 
connected to the pre-existing configuration by links. These 
links represent equality relations and are collapsed bringing 
the ports at each end together. 

The matching of an append agent with its recursive rule 
is shown in Figure 2. The matching rule contour expands 
to match the contour of the agent. The messages and ports 
rescale and translate to match the corresponding ports and 
messages of the agents. In Figure 3 the commitment of a 
rule is depicted. It shows the agent and the matched ele­
ments dissolving away leaving the configuration in the body 
of the rule connected to the configuration of the compu­
tation. Figure 4 shows changes which have no semantic 
meaning and are performed to tidy up the picture. Links in 
the configuration establish equality relations between ports 
and can be shnmk to zero, thereby bringing the equivalent 
ports together. Newly spawned agents are scaled. 

2 Pictorial Janus System Architecture 

Figure 5 attempts to capture the essential modules and data 
of a complete Pictorial Janus programming environment. It 
depicts the various processing stages which take Pictorial 
Janus program drawings to either a textual form for ordinary 
compilation or to animations of its execution. 

Source programs are drawings in PostScript. PostScript is 
well-suited for this because of its ability to describe curves, 
colors, fonts, etc. in a flexible and general manner. Since 
PostScript is a common page description language for laser 
printers, every modem illustration or computer-aided design 
program is capable of producing a PostScript description of 
a drawing. This is analogous to the situation in textual pr0-

gramming where the text file for a program can be produced 
by any text editor. An alternative to PostScript input yet to be 
explored is a custom structure editor that only allows the con­
struction of syntactically correct pictorial programs and can 
maintain a semantic representation of the program. Another 
source of PostScript is from automatic tracing tools such as 
Streamline from Adobe which converts scanned images of 
hand-made drawings into PostScript strokes. 

The problem of discovering the underlying program from 
a PostScript deScription is complicated by the fact that 
PostScript is a full programming language. This is analo­
gous to the situation in conventional languages with sources 
which require pre-processing. Such sources are not parsed 
by a compiler; instead the output of a pre-processor nul on 
those sources is. We handle this by executing the PostScript 
with an ordinary PostScript interpreter in an environment 
which redefmes the graphical primitives that draw strokes, 

rule( aS7 (272,485,308,521), 
append(port(p61(box(273,489,276,492»), 

port(p59(box(276,516,279,519»), 
port(p63(box(309,50 1,312,504»», 

[equal(c6(312,504,324,516) 
port(p63(box(309,501,312,504»), 
$(port(p65(box(324,516,327 ,519»»), 

equal(m55(262,488,277,493), 
port(p61(box(273,489,276,492»), 
[])], 

[equal(15(280,518,324,518), 
port(p59(box(276,516,279,519»), 
port(p65(box(324,516,327 ,519»»], 
[]) 

Figure 6: Annotated Janus Parse of the base case of Append 

show text, etc. to, instead, print a trace of their calls to a file .. 
The Pictorial Janus Parser is the module which accepts 

such traces of calls to PostScript graphical primitives and 
produces a parse in a format called •• annotated Janus". TIlls 
format captures the parse tree of the program picture and 
maintains correspondences with the original graphical ap­
pearances. These correspondences consist of annotations 
which give the animator guidance in choosing the appear­
ance, position, and scale of various program elements. They 
are ignored if the program is simply to be compiled and 
executed without the production of an animated trace. An­
notated Janus is the "lingua franca" of the system. It can be 
produced by the parser, by a visualizer from textual Janus 
to Pictorial Janus, by a custom structure editor, or by a pro­
gram transformation tool. It can be used by visual debuggers, 
animators, or program transformation tools, or it can be con­
verted to textual Janus for ordinary compilation and execu­
tion. Figure 6 contains the annotated Janus for produced by 
parsing the base case rule of append in Figure 1. (Constants 
such as "p61" also name PostScript drawing procedures.) 

A central component of the system is a fme-grained in­
terpreter for annotated Janus. As it interprets the program 
it produces a stream of events describing activities for each 
element of the computation (i.e. each agent, rule, port, chan­
nel, message. etc.). The event descriptions include a start 
and end time. By default, the interpreter performs every 
reduction as soon as possible. This corresponds to a maxi­
mally concurrent scheduler. The scheduler can currently be 
customized to some extent. It can follow a schedule based 
upon the trace of real execution on a parallel machine or 
network. 

The third major Component is the Pictorial Janus Anima­
tor. It accepts the stream of event descriptions from the 
fme-grained interpreter and some layout control and pro­
duces PostScript describing each individual frame. This 
PostScript can be printed, converted to raster for viewing or 
video taping, or converted to film. 

Other components of the system such as the "visualizer" 
which converts textual Janus to Pictorial Janus and a spe-
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First list followed by second 

Figure 1: A Simple Example Program to Append Lists 

Figure 2: The Animation of a Sucessful Rille Match 

Figure 3: The Animation of a Rille Commitment 

Figure 4: The Animation of Links Shrinking and Agents Rescaling 
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Figure 5: Overall Architecture of the System 

cialized pen-based editor for Pictorial I anus are under devel­
opment and will be discussed in future papers. Additional 
components such as an interactive visual debugger. a pro­
gram transformation, and a partial evaluation system based 
upon Pictorial I anus are only in the planning stages. 

The three major components (the parser, interpreter and 
animator) are operational prototypes and are discussed in 
further detail in the rest of this paper. 

3 Pictorial Janus Parser 

The parser begins with an unordered set of line and curve 
segments and located text which is the trace from executing 
a PostScript description of a Pictorial Ianus drawing (see 
Figure 7. These elements are analogous to the "alphabet" 
of the language. The fIrst phase of the parser is a sort of 
"tokenizing" where abutting curves are joined, closed curves 
detected, and arrows recognized. As with most of the phases, 
some tolerance for sloppy drawings is allowed. 

To reduce the complexity of further operations, a contain­
ment tree of the elements is constructed. The containment 
tree associates with each closed curve the sets of closed 
curves directly contained within, as well as the end points 
of open curves and arrows and the text directly contained 
within. Since many parsing decisions depend upon which 

ps(stroke,4, 
[moveto( 496,483), 
curveto( 496,487,485,490,472,490), 
curveto( 459,490,448,487,448,483), 
curveto( 448,479,459,475,472,475), 
curveto( 485,475,496,479,496,483)], 

box( 448,475,496,490), 
[eofill,setrgbcolor(l,l,l),setdeviceUnewidth(l) D. 

Figure 7: Sample Trace of PostScript Execution 

elements are closest to other elements in the same contain­
ment level, the containment tree reduces the amount of search 
necessary. 

The parse proceeds by a series of phases. 

• Identification of Ports. A port is defmed as a closed 
contour with nothing inside of it. Once the containment 
tree is completely built this is a trivial test. 

• Classification of Arrows. Arrows are used for two pur­
poses in Pictorial Ianus: channels between ports (i.e. 
distinguishing between the asker and teller occurences 
of variables) and the association of agents with rules. 
Once ports are identified it is easy to distinguish the two 
cases since channels are arrows between ports while 
defmition arrows connect agents. 



• Attachment of Ports. Ports cannot be free-standing; 
they must be attached to either an agent contour, a rule 
contour, a message contour, or the head of an channel 
arrow. Essentially the port attachs to the nearest syntac­
tically correct element. This phase also identifies which 
ports are the internal ports of messages. Messages are 
identified by having only an internal port and possibly 
a label inside . 

• Connecting Links. Open curves depict links which con­
nect ports. This phase determines which port is closest 
to the end of a link. The connecting port can be up or 
down one containment level from the level of the link 
end. 

After these phases have completed, the parser can gen­
erate Annotated Janus or textual Janus by descending from 
the top node in the containment tree and collecting informa­
tion. Agents are distinguished from rules here by alternating 
containment levels (i.e. the top level contains agents which 
contains rules which contain agents and so on). Ports of 
agents, rules and messages are collected into a list by going 
clockwise from a distinguished port. 

Early versions of the parser represented picture elements 
by terms. Initially ,little was known about the terms, so they 
contained many unbound logic variables for their role, their 
attached ports, their label, etc.. Lists posed problems since it 
can't be known beforehand how many elements they have. 
If tails are left uninstantiated then at the phase where no more 
elements can be added,some process must fmd these tails and 
bind them to the empty list. The lists are constructed in the 
order the elements were discovered; another logic variable 
was needed to hold the sorted list. This implementation 
became more cumbersome and was forced to rely upon some 
questionable primitives. 

Because of these problems, the parser was completely 
rewritten to represent picture elements by recurrent agents 
(processes). Lists are no longer a problem since agents can 
simply recur with a different list. Sorting the list is equally 
straight forward. 

This use of recurrent agents is an object-oriented pro­
gramming style [S1'83]. Unlike traditional object-oriented 
programming systems, however, the underlying flexibility of 
concurrent logic programming can be used to incrementally 
refme the type or class of elements. This might be called 
"object-oriented recognition". Closed contours, for exam­
ple, begin as generic • 'vanilla" nodes. As relationships are 
discovered, a node may specialize itself to a port or non-port. 
Figure 8 is a sketch of the code for determining whether a 
node is a port or not. 

Similarly non-ports may be further specialized as mes­
sages, rule contours, or agent contours depending upon their 
local relationships. The locality in this case is between a con­
tour and the elements directly contained within and elements 
contained in the same contour. 

In most object-oriented systems an instance cannot easily 
(or at all) change to be the instance of another class, even if 

node(ln,Contents,State) :-
In = [identify..portslIn'], 
Contents = [] I 
port(ln',state). 

node(ln,Contents,State) :-
In = [identify..portslIn'], 
Contents -# [] I 
non-port(ln',Contents,State). 
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Figure 8: An Example of Incremental Class Refmement 

that class is subclass of the original class. 

4 Pictorial Janus Interpreter 

A detailed trace of every reduction in a computation is needed 
by the animator. A meta-level interpreter is too coarse for 
this purpose. Instead a fme-grained interpreter which can 
report events such as each subterm match is needed. 

The fme-grained interpreter of Pictorial Janus is con­
structed out of recurrent agents. Agents are spawned which 
represent each element of a program or configuration (pro­
grams and configurations are treated identically). There are 
agents for each rule (clause),port(variable),message (term), 
link (equality relation), channel (asker and teller pairs) and 
agent (process). They emulate the ordinary execution at a 
message-passing level. An agent reduces by spawning an 
arbiter and sending a message to each of its rules. The rules 
reduce by sending match messages to each of their ports with 
streams to the corresponding ports of the agent. If all of the 
ports respond with a possible match then the rule sends a 
message to the arbiter. The first rule to send a message to 
the arbiter then commits and the others eliminate themselves. 
A committing rule spawns new agent, port, rule, message, 
channel and link agents. 

The agents of the fme-grained interpreter also generate 
a stream of events. For example, when a rule commits it 
produces two event descriptions. The first indicates that the 
rule contour should transform to match the contour of the 
agent it is reducing. As with all event descriptions, it also 
indicates the start and stop time for this activity. These times 
are computed based upon a specification of the scheduler. 
The second event describes the removal of the rule. All the 
event streams are merged to produce a time-ordered stream 
of events. 

One problem with the fme-grained interpreter is how it 
interprets pictorial programs which deadlock. Each rule 
agent suspends, waiting to hear from its ports how the match 
went. A port in turn passes the match request to its attached 
message. The message asks the corresponding port of the 
reducing agent for a description of its attached message. 
If there is no message there then the whole collection of 
rule, message and port agents suspend until a message is 
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connected to the port. In a deadlocked computation there 
never will be an attached message. These suspended agents 
are unable to produce events, which in nun prevents the 
ordered merge process from producing events; the whole 
production of the stream of events is cut off. 

In Strand it is possible to work around this by relying upon 
the questionable "idle" guard that suspends until the whole 
system is idle. The message agents waiting for a response 
from the corresponding message which are also part of an 
idle system can then proceed to return a match failure or 
signal an exception and the interpretation can proceed. It 
is possible to detect deadlock in a more principled manner 
[S.WKS88], but the price is a significantly more complex and 
verbose program. 

A related problem is controlling the arbiter between com­
peting rule conunitments. For example, a merge agent with 
inputs on both incoming ports can reduce with either rule. 
Which rule is chosen depends upon which one is the frrst 
to get a message to the arbiter of the reduction. Conse­
quently, the fme-grained interpreter selects between compet­
ing clauses depending upon the scheduler of the underlying 
Strand implementation. When run on a single processor this 
means that the same rule is always chosen. To make more in­
teresting animations a random number generator was needed 
to remove these biases. 

5 Pictorial Janus Animator 

The Pictorial Janus Animator consumes the stream of events 
produced by the fme-grained interpreter. It also can be given 
layout and viewpoint instructions. It produces a stream of 
animation frames in PostScript. The animator currently mod­
els space as a sequence of ten planes. The graphics of lower 
planes can be obscured by the graphics of higher planes. The 
planes are infinite in extent but only a portion is "viewed" 
at anyone time. 

The animator accepts event descriptions describing events 
whose times are described by real numbers. Given a frame 
rate (i.e. a sampling rate), these are converted to frame num­
bers. The animator is like a discrete-time simulator where 
on every "tick" every component needs to compute its next 
state. 

For each kind of event, the animator has methods for de­
picting it. A typical method might transform one element 
to gradually match another (currently the transform involves 
translation, scaling, and rotation). For example, a message 
matches another message by incrementally changing its po­
sition and size until it has the same bounding box as the 
other message. The other message may be changing and 
the animator needs to adjust the transformation accordingly. 
Furthermore, the method must maintain various constraints 
on the matching message contour so that it remains· in con­
tact with other elements. In order for a method to transform 
an element based upon the position of others, the animator 
maintains transformation "histories" for each picture ele-

ment. The history of a visual element is a list of transform 
matrices, one for each frame. A frame is constructed by 
selecting from each history the appropriate transformation 
to apply to the appearance of each element. 

The histories are also used to deal with graphical interac­
tions between elements. For example, if a port is to transform 
itself to match another port which itself is moving, then on 
each frame the position of the tracking port is a function of 
where it is, where the other port is, and the amount of time 
before they meet. An interesting alternative is that it is a 
function, not of where the other port is on each frame, but 
where it will be at the time of the meeting. As illustrated 
in Figure 9, the former corresponds to one port chasing an­
other, while the later is more like a rendezvous. Generally, 
the rendezvous looks better but it requires "knowledge of 
the future". With care it is possible to avoid cycles of such 
requirements of future knowledge that would lead to a dead­
lock. 

The frrst time the animator was run on a large problem 
(Le. one requiring several million reductions), it ran out of 
memory. Increasing the amount of available memory to 
30 or 40 megabytes helped but then it ran out again for 
somewhat larger tasks. The cause of this kind of problem 
is very difficult to track down. After much experimentation 
it was discovered that the problem was that agents inside 
the animator were producing information faster than other 
agents were able to consume it. Memory was being used 
to "buffer" the messages from the producers to the lagging 
consumers. 

This is a well-known problem and there is a well-known 
concurrent logic programming technique called "bounded 
buffers" [TF87] for dealing with it. The simple case of a 
single producer and a single consumer is rare in the animator 
and a more complex variant was needed to deal with con­
sumers of streams that have multiple producers (typically 
combined by an ordered merge). This fixed the problem but 
significantly increased the complexity of the source code. 
Many subtle bugs cropped up which eventually were trace­
able to some piece of code not following the bounded-buffer 
protocol correctly. These were hard to debug because they 
resulted in deadlocks of thousands of agents. 

Another shortcoming of using bounded-buffers is that it is 
difficult to tune for different language implementations and 
hardware platforms. Under some schedulers all this com­
plexity is unneeded because the scheduler nms consumers 
frrst. To both simplify the code and increase its flexibility, 
the bounded buffer technique was abandoned and instead 
each agent was programmed to know the animation frame 
number it is contributing to and which was the last frame to 
be completed. Producers are now controlled by an integer 
indicating how many frames ahead they are allowed to pro­
ceed. If this is set to a number larger than the total number of 
frames in the animation, then buffering is effectively nuned 
off. The use of frame numbers to control producers is easy 
to generalize to other problem domains such as simulation, 
but it is not as general as the bounded-buffer technique. 
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Figure 9: An Illustration of a Chase in Contrast to a Rendezvous 

When boWlded buffers were fIrst introduced the animator 
would deadlock sometimes. After a few days of investiga­
tion it turned out that the problem was an interaction with 
the method for having two ports meet. Recall that there are 
two alternatives: "chase" and "rendezvous". Rendezvous 
requires knowledge of where the other port will be at the end 
of the event. It turned out that the system was deadlocking 
whenever the buffer size was smaller than the nwnber of 
frames needed to animate a port meeting. Once discovered 
it was easy to conditionalize the meet method to use the ren­
dezvous style if the buffers are large enough and otherwise 
use the chase style. 

Concurrent logic programs can be written without care­
fully ordering events since the basic computational mecha­
nism reorders events based upon data dependencies. TIlls 
greatly simplified the construction of both the fme-grained 
interpreter and the animator. Each event can be handled 
independently regardless of whether the data it needs from 
other concurrent activities has been produced. In a sequen­
tiallanguage the programs would have to have been carefully 
constructed so that, say, the agent contour changes are com­
puted before the dependent changes on their ports. 

6 Preliminary Performance Results 

The parser, interpreter and animator are implemented in over 
11,000 lines of Strand code. The only important component 
in C is a routine which fmds the closest point on a Bezier 
curve to another point. A typical parse takes a few CPU 
minutes (on a SUN Sparc 2). The interpreter typically takes 
a few CPU minutes as well. The animator typically takes 
tens of CPU minutes (10 to 20 million reductions is not 
Wlcomrnon). 

The sequential execution of the system cannot be sped up 
much by optimizing the Strand code or replacing it with C. 
For the parser nearly half of its time is spent in the C routine 
for fmding the closest point to a curve. The Strand code 

of the animator takes a third of the total time to produce 
an animation; the PostScript rendering to raster takes up the 
rest. 

It would seem that parallel execution should speed up 
the system significantly. Preliminary results have, however, 
been disappointing. Possible reasons include: 

• Communication costs. The coding style used strived 
for maximal parallelism but little attention was paid to 
the amoWlt of information passed between agents. On 
a good shared-memory implementation, this would not 
be a factor. There are many cases where.much of this 
communication can be programmed away. For exam­
ple, rather than commWlicate large shared structures 
between agents, each processing node could have its 
private copy and the messages between nodes would 
just contain tokens referring to elements of these struc­
tures. TIlls rewriting has yet to be done. It would also be 
coWlter to the dream of concurrent constraint program­
ming (including the special case of concurrent logic 
programming) that straight-forward high-level portable 
programs can run effIciently in different environments 
without major revision. Some rewriting has been done 
to enable experimentation with parallelism. For exam­
ple, the output of the animator previously was a large 
PostScript fIle and now is a set of fIles, one for each 
frame. 

• Agent to Processor mappings. Experiments to date have 
used agent-to-processormapping annotations. While a 
few different mappings have been tried it is possible 
that a good one exists but has yet to be discovered. No 
experiments using a load balancing scheduler have been 
tried. 

Speedups of a factor of 2 to 3 were easily obtained by 
spawning Unix -level processes to convert PostScript to raster 
format on separate processors in parallel. 
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7 Conclusions and Future Work 

The building of a large prototype visual programming en­
vironment in a concmrent logic programming language was 
described. The architecture was presented and some expe­
riences and lessons learned were described. These lessons 
range from the trade-offs between using messages (terms) 
and recurrent agents, to difficulties with producers getting 
too far ahead of conswners, to dealing with deadlock. 

For sequential executions the overhead of using a concur­
rent logic programming language was small. For parallel 
executions on distributed memory machines, speedups are 
not readily available and appear to require program rewrit­
ing and/or very clever distributions of agents and data to 
processors. 

The system is under development. Current plans include 
extending the animator to deal with both spatial and temporal 
abstractions. The animator needs to deal better with the 
layout of elements. The parser needs to be revised to deal 
robustly with hand-drawn input. Support for primitives and 
foreign procedure calls are needed. The interpreter needs 
to be able to accept general scheduler specifications. The 
animator is cmrently able to produce a simple sound track 
synchronized with the animation. The sounds depend upon 
the kind of activities occurring. This should be extended 
to differentiate between different elements involved in the 
activities. 

A very challenging direction for future development is to 
build a "real-time" version of the system that the user can 
influence as the computation proceeds. This could lead to 
very powerful debugging tools. It could also be the basis 
for user interfaces that are simultaneously interactive visual 
programs. Such a system would need to run on platforms 
capable of many millions of reductions every second. 
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Abstract 

It is well known that while concurrent logic 
languages provide excellent computational sup­
port for object-:-oriented programming they pro­
vide poor notational support for the abstractions 
it requires. In an attempt to remedy their main 
weaknesses - verbose description of state change 
and of communication and the lack of class-like in­
heritance mechanism - new object-oriented lan­
guages were developed on top of concurrent logic 
languages. 

In this paper we explore an alternative solu­
tion: a notational extension to pure logic pro­
grams that supports the concise expression of both 
state change and communication and incorporates 
an inheritance mechanism. We claim that com­
bined with the execution mechanism of concurrent 
logic programs this notational extension results 
in a powerful and convenient concurrent object­
oriented programming language. 

The use oflogic programs with inheritance had a 
profound influence on our programming. We have 
found the notation vital in the structuring of a 
large application program we are currently build­
ing that consists of a variety of objects and inter­
faces to them. 

1 Introduction 

We share with the Vulcan language proposal [8] the 
view on the utility of concurrent logic languages as 
object-oriented languages: 

"The concurrent logic programming 
languages cleanly build objects with 
changeable state out of purely side-effect­
free foundations. [ ... ] The result-

ing system has all the fine-grained con­
currency, synchronization, encapsulation, 
and open-systems abilities of Actors [4]. 
In addition, it provides unification, logic 
variables, partially instantiated messages 
and data, and the declarative semantics 
of first-order logic. 

Abstract machines and correspond­
ing concrete implementations support the 
computational model of these languages, 
providing cheap, light-weight processes 
[ ... ] Since objects with state are not taken 
as a base concept, but are built out of 
finer-grained material, many variations 
on traditional notions of object-oriented 
programming are possible. These include 
object forking and merging, direct broad­
casting, message stream peeking, priori­
tized message sending, and multiple mes­
sage streams per object." 

See also [7] for a more recent account of the 
object-oriented capabilities of concurrent logic pro­
grams. 

We also share with the designers of Vulcan the 
conclusion that: 

"While [concurrent logic languages] 
provide excellent computational support 
[for object-oriented programming], we 
claim they do not provide good notation 
for expressing the abstractions of object­
oriented programming." 

However, we differ in the remedy. While Vul­
can and similar proposals [2,13] each offer a new 
language, whose semantics is given via transla­
tion to concurrent logic languages, we propose a 
relatively mild notational extension to pure logic 
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programs, and claim that it addresses quite ade­
quately the needs of the object-oriented program­
mer. Specifically, our notation addresses the main 
drawbacks of logic programs for object-oriented 
programming: verbose description of objects with 
state, cumbersome notation for message sending 
and receiving, and the lack of a class-like inheri­
tance mechanism that allows the concise expres­
sion of several variants of the same object. We 
explain the drawbacks and outline our solutions. 

Inheritance 

In certain applications, most notably graphical 
user interfaces, many variants of the same object 
are employed to cater to various user needs and to 
support smooth interaction. In the absence of an 
inheritance mechanism, a variant of a given object 
must be defined by manually copying the descrip­
tion of the object and editing it to meet the variant 
specification. Both development and maintenance 
are hampered when multiple copies of essentially 
the same piece of code appear within a system. 
Class-based inheritance mechanisms provide the 
standard solution for defining multiple variants of 
the same basic object in a concise way, without 
replicating the common parts. In this paper we 
propose an inheritance mechanism for logic pro­
grams, called logic programs with inheritance, or 
/pi for short. 

The idea behind [pi is simple. When a procedure 
p inherits a procedure q via the inheritance call 
q(Tl' ... , Tk), add to p's clauses all of q's clauses, 
with the following two basic modifications: 

1. Replace the head predicate q by the head 
predicate p, with "appropriate arguments" . 

2. Replace recursive calls to q by "corresponding 
calls" to p. 

The formal definition of [pi will make precise the 
meaning of the terms "appropriate arguments" 
and "corresponding calls". The effect of inheri­
tance is that behaviors realizable by q are also re­
alizable by p, as expected. 

Using common object-oriented terminology, lpi 
can be characterized as follows: 

• Predicates are classes: Logic program pred­
icates are viewed as classes, and procedures 
(i.e., predicate definitions) as class defini­
tions. Classes can be executed as well as in-

heritedj that is, superclasses are executable in 
their own right. 

• Clauses are methods: In the concurrent read­
ing of logic programs, each clause in a proce­
dure specifies a possible process behavior. In­
heriting a procedure means incorporating ap­
propriate variants of the clauses of the inher­
ited procedure into the inheriting procedure. 

• Multiple inheritance: A procedure may inherit 
several other procedures. 

• Parameterized inheritance: Inheritance is 
specified by "inheritance calls" , which may in­
clude parameters. Hence an inheriting proce­
dure may inherit the same procedure in sev­
eral different ways, using different parameters 
in the inheritance calls. 

We shall see examples for these features in the fol­
lowing sections. 

We note that the inherent nondeterminism of 
logic programs (and the inherent indeterminacy of 
concurrent logic programs) can accommodate con­
flicts in inherited methods with no semantic diffi­
culty. If necessary, an overriding mechanism can 
be incorporated to enforce a preference of subclass 
methods over superclass ones. 

Implicit Arguments 

Objects with state, accessible via messages, are re­
alized in concurrent logic programs by recurrent 
processes. Typically, such a recurrent process has 
one or more shared variables and zero or more pri­
vate state variables. The expression of a recurrent 
process by a concurrent logic program has the gen­
eral form: 

p( . .. old state of process .. }-
... message receiving and sending, ... 
p( .. . new state of process ... ). 

When a process has several variables, where only 
a few of them are accessed or changed on each 
process reduction, then the notation of plain logic 
programs becomes quite cumbersome. This is due 
to the need to specify explicitly all the variables 
that do not change in a process's state transition 
twice: once in the "old" state in the clause head, 
and once in the "new" state in the clause body. In 
addition, different names need to be invented for 



the old and new incarnations of a state variable 
that did change in the transition. 

This verbose syntax introduces the possibility 
of trivial errors and reduces the readability of pro­
grams, since it does not highlight the important 
parts (what has changed) from other details (rep­
etition of the unchanged part). 

We define a notational extension, independent 
of the inheritance notation, called implicit argu­
ments, to support the concise expression of re­
current processes. The notation allows specifying 
what has changed in the process's state during a 
state transition, rather than the entire old and new 
states required by a plain logic program, thus ef­
fectively providing a frame axiom for the state of 
recurrent processes. The semantics of the extended 
notation is given in terms of its translation to plain 
logic programs. 

Streams are the most commonly used data struc­
ture in concurrent logic programs. To describe 
sending or receiving a message M on a stream XS 
one equates Xs with a list (stream) cell whose head 
is M and tail is a new variable, say Xs', as in Xs 
:= (M-Xsj. In this notation the "states" of the 
stream before and after the communication have to 
be named and referred to explicitly. We propose a 
notation that, by exploiting the implicit arguments 
notation, refers only once to the stream being used. 

In practice we combine the two notational exten­
sion, inheritance and implicit arguments, into one 
language. We find the resulting language greatly 
superior to the "vanilla" syntax of (concurrent) 
logic programs. 

In the rest of the paper we formally define the 
inheritance notation, the implicit arguments nota­
tion and give examples of their use. 

2 Logic Programs with In­
heritance 

2.1 An Example 

The inheritance notation is an extension to plain 
logic programs which allows inheritance calis, 
which are calls of the form +P(Tl' ... , Tn). Using 
object-oriented terminology, we refer to a predicate 
as a class and to a procedure as a class definition. 
Each clause (or disjunct in a disjunctive form) of 
the procedure is viewed as a method which manip­
ulates the class's state. 
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As an example of inheritance consider the follow­
ing well known logic program which manipulates a 
simple counter: 

counter(In) :­
counter(In,O) . 

counter([clearIIn],_) 
counter(In,O). 

counter([addIIn],C) :-
C' := C + 1, counter(In,C'). 

counter([read(C) lIn] ,C) 
counter(In,C). 

counter( [] ,_). 

An alternative representation of a logic program 
can be in a disjunctive form, where all clauses of 
a predicate are written with separating semicolons 
and are under a single, simple head (an atom is 
simple if its arguments are distinct variables). The 
translation between plain logic programs and logic 
programs in disjunctive form is trivial. 

Put in disjunctive form, the definition of 
counter /2 would appear as: 

counter(In, c) :-

In [clearIIn'] , counter(In' ,0); 

In [addIIn'] , C' := C + 1, 

counter(In' ,C'); 
In = [read(C) lIn'], counter(In' ,C); 

In = []. 
We illustrate the inheritance notation by adding 

a feature to counter, which enables us to retain a 
backup value of the counter, named BackUp. The 
checkpoint method backs up the counter value and 
restore restores its value from the backup. The 
syntactic changes from the previous counter ver­
sion are an added argument and two new disjuncts. 
Using the inheritance notation we would write this 
as: 

counter2(In) 
counter2(In, 0, 0). 

counter2(In, C, BackUp) 
+counter(In, C); 

In = [checkpointIIn'] , 
counter2(In', C, C); 

In = [restoreIIn'] , 
counter2(In', BackUp, BackUp). 
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This procedure stands for: 

counter2(In, e, BackUp) ,­
In = [checkpoint I In'] , 

counter2(In', e, e); 
In = [restoreIIn'] , 

counter2(In', BackUp, BackUp); 
In = [clearIIn'] , 

counter2(In' ,0, BackUp); 
In = [add I In'] , e' := e + 1, 

counter2(In' ,e', BackUp); 
In = [read(e) lIn'] , 

counter2(In' ,e, BackUp); 
In = [], 

2.2 Syntax 

A logic program with inheritance, [pi, is a set of 
procedures, each having a unique head predicate. 
Each procedure is a disjunctive clause of the form: 

where n, k 2:: 0, Xi'S are distinct variables and each 
(ti is either a conjunctive goal or an inheritance 
call of the form +q(Xil' ... ,Xim ), where the ij's 
are distinct and 1 ~ ij ~ n for every j, 1 ~ j ~ m. 

Note that if p/n inherits q/m the definition im­
plies that m ~ n. 

An inheritance graph for an lpi program P is a 
directed graph (V, E) where V is the set of predi­
cates defined in P and for every inheritance call to 
a predicate q in the procedure ofpin P, (p, q) E E. 

An lpi program P is well-defined if the graph 
(V, E) is well-defined (i. e., every predicate that oc­
curs in E is a member of V) and acyclic. 

For convenience, we employ the following syn­
tactic default. Suppose the predicate q is defined 
by: 

q(Y1 , ••• Ym)~jh; .. . ; /3,. 
Then the inheritance call +q IS a shorthand for 
+q(Y1 , ... , Ym). 

2.3 Semantics 

The semantics of a well-defined logic program with 
inheritance P is given by the following unfolding 
rule, whose application to completion to P results 
in a logic program in disjunctive form. In the fol­
lowing rule p, q are predicates, the S's are terms, 
X and Yare logic variables, ai, f3i are disjuncts. 

Lpi Rule: Replace the clause: 

p(X1 ,X2, ... ,Xn)~ 
(tl;·· .;+q(Xi1 ,·· .,Xim );·· .;ak· 

where q is defined by the (renamed apart) clause: 

with the clause: 

where /3; is obtained from /3i by the following trans­
formation: 

1. Apply the substitution e ~ {Yj --+ Xij I 1 ~ . 
j ~ m}. 

2. Replace each recursive call q(Sl' ... , Sm) with 
de! { the call p(X1 , •• • , Xn)O', where 0' = Xii 1--+ 

Sj I (1 ~ j ~ m)}. 

This completes the definition of logic programs 
with inheritance. 

Assume some fixed first-order signature L. Let 
P be the set of all well-defined logic programs with 
inheritance over L. Let --+: P x P be the relation 
satisfying P --+ pI iff pI can be obtained from P 
by an application of the lpi rule to a clause in P. 

The pair (P, --+) is not strictly a 'rewrite system 
according to the standard definitions [3], since logic 
programs with inheritance are sets, not terms, and 
since they are not closed under substitution. How­
ever, these differences do not affect the applicabil­
ity of the relevant tools of rewrite systems, so we 
ignore them. 

Lemma 1 The rewrite system (P, --+) is termi­
nating and confluent up to clause renaming, i. e. if 
pI and P" are two normal forms of P then they are 
equivalent up to clause renaming. Furthermore, all 
normal forms are ordinary logic programs. 

Proof outline: Termination follows from the 
fact that any application of the [pi rule elimi­
nates one inheritance call. Normal forms don't 
have inheritance calls since they can all be re­
duced by the requirement that P contains only 
well-defined logic programs with inheritance. Con­
fluence follows from the associativity of substitu­
tion composition.O 

Corollary 1 The semantics of lpi is well defined. 



2.4 An Example of Parameterized 
Multiple Inheritance 

As an example of parameterized inheritance, sup­
pose we have a "show.id" feature which waits on 
an input port In for a message show_id and then 
fills the incomplete message with the value I d: 

id(In, Id) :-
In = [show_id(Id)I Newln], 
id(Newln, Id). 

And suppose we have a class containing two input 
ports Inl and In2, where on each port the class can 
receive requests to show its id. Instead of copying 
the method twice, we shall write: 

class(In1, In2, Name) 
+id(In1, Name); 
+id(In2, Name); 

«class body» 

The result of applying the lpi rule would be: 

class(In1, In2, Name) :-
In1 = [show_id(Name)I Newln], 

class(Newln, In2, Name); 
In2 = [show_id(Name)I Newln], 

class (In1, .Newln, Name); 

«class body» 

The same id feature could be used when an ob­
ject wishes to have different id's on different ports, 
i. e., return different answers on different ports for 
the same incomplete message show_id, as in: 

class(In1, In2, Name1, Name2) :­
+id(In1, Name1); 
+id(In2, Name2); 

«class body» 

The expansion is as follows: 

class (Int", In2, Name1, Name2) 
Ini = [show_id(Namei)I Newln], 

class(Newln, In2, Name1, Name2); 
In2 = [show_id(Name2)INewln], 

class(In1, Newln, Name 1 , Name2); 

«class body» 
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2.5 Integration with a Module Sys­
tem 

The power oflogic programs with inheritance is en­
hanced when integrated with a module system. We 
have integrated [pi with the hierarchical module 
system of Logix [11]. To simplify the description, 
we outline the principles behind the integration for 
a non-hierarchical module system. 

When p in module M inherits q from another 
module M', the semantics of inheritance is that 
the definitions of all predicates in M', called or in­
herited directly or indirectly by q, are incorporated 
in M, unless they are already defined in M. 

This overriding capability, which gives some of 
the effects of higher-order programming, proves to 
be invaluable in practice. One can easily specify a 
variant of a module M by inheriting its top-level 
procedure and overriding the definition of one or 
more of its subprocedures. For example, by in­
heriting a sorting module and overriding the com­
parison routine, one can turn an ordinary sort rou­
tine to a sort routine that operates on records with 
keys. 

We note that although the semantics specifies 
"code copying" , the following semantics-preserving 
optimization may apply. If M' inherits from M, 
P is a set of procedures in M that do not call or 
inherit procedures outside of P, and none of the 
procedures in P is redefined in M', then the code 
for P need not be included in M',· and any call 
to a procedure in P may be served by M. This 
optimization achieves runtime code sharing among 
several modules inheriting from the same module. 

3 Logic Programs with Im­
plicit Arguments 

3.1 Example 

We illustrate the notation of implicit arguments 
via an example. The counter program (section 2.1) 
is a typical logic program specifying a recurrent 
process. A logic program with implicit arguments 
that corresponds to the plain logic program for 
counter is: 

counter(In) + (C=O) :-
In = [clearlln'] , C' = 0, self; 

In [addlln'], C' := C + 1, self; 
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In [read(C) lIn'], self; 

In = []. 

Similarly, a binary merge can be defined using im­
plicit arguments by: 

merge(Inl,In2,Out) :-
Inl [Xllnl'], Out=[XIOut'], self; 
In2 [Xlln2'], Out=[XIOut'], self; 
Inl [], Out In2; 
In2 [], Out Inl. 

3.2 Syntax 

A logic program with implicit arguments is a set 
of clauses. A clause is composed of a predicate 
declaration and a disjunctive body. The predicate 
declaration has the form: 

p(XI' ... ) Xn) + (Xn+1 = VI, ... , Xn+k = Vk)+-­

where n, k 2': 0, the X's are distinct variable names 
and the V's are terms. We say that the predicate 
p has n global and k local arguments, denote it 
by p/n+k (or pin if k = 0), and call VI, ... , Vk 
the initial values of the local arguments of p/n+k. 
There can be at most one clause for any predicate 
p. 

A call to p/n+k in a procedure other than that 
of p/n+k has the form P(TI" .. ' Tm ), where m = n 
or m = n + k, where the T's are terms. A call to 
p/n+k that occurs in its own procedure may also 
have the form p, i. e., the call may have no argu­
ments whatsoever. Such a recursive call is called 
implicit. In addition, any call to p/n+k that oc­
curs in its own procedure may use the predicate 
name self as a synonym for p. 

Variable names may be suffixed by a prime, e.g. 
X', Y'. xn denotes the variable name X suffixed 
by n primes, n 2': O. A primed version of a variable 
name denotes a new incarnation of the variable 
in the sense that the "most primed" occurrence 
of a variable name is considered the most updated 
version of the variable and hence is used in implicit 
recursive calls as explained below. We assume that 
the predicate =/2 is defined via the single unit 
clause X = X. 

3.3 Semantics 

The semantics of a logic program with implicit ar­
guments P is given by the following rewrite rules, 

whose application to completion results in a dis­
junctive logic program P'. 

Rule 1: Expand local argument of calls. 
Replace each procedure call: 

to a procedure pin + k, by the call: 

P(Tl' ... ' Tn, Vn+l, ... , Vn+k) 

where Vn, ... , Vn+k are the initial values of the lo-
cal arguments of p/n+k. 

Rule 2: Expand implicit recursive calls. 
Replace each procedure call: 

p or self 

in the clause of pin + k by the call: 

p( UI , ... , Un+k) 

where Ui is the most primed version of Xi in the 
clause. We say that xn is the most primed occur­
rence of X in a clause C if xn occurs in C, and 
for no k > n, does Xk occur in C. 

For example, applying the rewrite rules to the 
merge procedure results in: 

merge(Inl,In2,Out) :-
Inl = [Xllnl'], Out=[xIOut'], 

merge(Inl',In2,Out'); 
In2 = [Xlln2'], Out=[xIOut'], 

merge(Inl,In2',Out'); 
Inl [], Out = In2; 

In2 = [], Out = Inl. 

3.4 Special Notation for Stream 
Communication 

Streams are the most commonly used data struc­
ture in concurrent logic programs. Recurrent pro­
cesses almost always have one input stream and 
often have several additional input andlor out­
put streams. Sending and receiving messages on 
a stream XS by a process p can be specified by the 
clause schema: 

pc. .. Xs ... ) :-
XS = [MessageIXs'], 
... , 
self. 



where the difference between sending and receiving 
is expressed using a language-specific synchroniza­
tion syntax. Since this is such a common case, we 
found it worthwhile to provide it with a special 
notation. Our notation is reminiscent of CSP [5] 
and Occam [6] (and in logic programming the Pool 
language [2]): 

Xs Message, 
Xs ? Message, 

These constructs specify, respectively, sending and 
receiving a message Message on a stream Xs. Each 
is equivalent to Xs = [Message-Xs'j with the ap­
propriate language-specific synchronization syntax 
added. The construct requires n+4 fewer charac­
ters, where n is the length of the stream variable 
name, and hence is less liable to typing errors and 
probably also more readable. 

Using this notation, a binary stream merger can 
be specified by: 

merge(In1,In2,Out) 
In1 ? X, Out ! X, self; 
In2 ? X, Out ! X, self; 
In1 [] , Out = In2; 
In2 = [] , Out = In1. 

The predicate append/3 can be specified using the 
first and third disjuncts of merge/3: 

append(In1,In2,Out) :-
In1 ? X, Out! X, self; 
In1 = [], Out = In2. 

It is interesting to note that this description of ap­
pend facilitates its process reading. The program 
can be read as: "append is a process with three 
streams. Upon receiving an item on its first stream 
it sends that item on its third stream and iterates. 
If the first steam is closed, then the second and 
third streams are connected" . 

Using multiple primes allows multiple messages 
to be sent or received on the same stream, as the 
following example for the filtering of pairs of items 
on a stream shows: 

remove_pairs(In, Out) :-
In ? X, In' ? X, Out! X, self; 
In ? X, In' ? Y, X =\= Y, 

Out! X, Out' ! Y, self. 
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3.5 Special Notation for Arith­
metic 

Arithmetic operations are quite common in ordi­
nary and concurrent logic programs. Recurrent 
processes with a loop counter such as the follow­
ing are abundant: 

list(N,Xs) :-
N > 0, Xs = [NIXs'], N' 

list(N',Xs'); 
N = 0, Xs = []. 

N - 1, 

Following C conventions we allow variable names 
to be suffixed by -- and ++, with the semantics 
of the expression N-- given by replacing it with N 
and adding the conjunctive goal N' : = N-1. Using 
the stream and arithmetic support, the above list 
generator can be written as: 

list(N,Xs) :-
N-- > 0, XS ! N, self; 
N = 0, Xs= [] . 

Similarly, we define += and - where N += K 
stands for N' : = N+K, and 
N -= K stands for N' : = N-K. 

4 Implicit Logic Programs 
with Inheritance 

4.1 Concepts 

The combination of inheritance and implicit argu­
ments proves to be both highly succinct and more 
readable. For example, the program counter2 of 
section 2.1 can now be rewritten as: 

counter2(In) + (C=O, BackUp=O) 
+counter; 
In ? checkpoint, BackUp' = C, self; 
In ? restore, C' = BackUp, self. 

The new style differentiates between global and 
local (hidden) arguments and also avoids copying 
counter's code as well as specifying the arguments 
of the two recursive calls. 

An implicit logic program with inheritance is 
translated into a pure logic program by apply­
ing the two previously defined rules. That of [pi 
(section 2.3) and that of implicit arguments (sec­
tion 3.3). Minor changes in the rules are due. 
Those changes depend on the order in which we 
apply the two transformations. 
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4.2 Examples 

A curious example in which /pi gives us some in­
sight into a program, is the redefinition of merge 
(section 3.4) as: 

rnerge(Inl,In2,Out) 
+append(Inl, In2, Out); 
+append(In2, Inl, Out). 

which means that merging is actually trying non­
deterministically to append in both possible ways. 

The following example implements a simple 
lookup table as a list of key - value pairs. The 
create predicate builds the list (named Table): 

create(Table) :­
Table=[]. 

i.e, a new table is an empty list. The following 
two predicates are not for direct usage. search iter­
ates through the list as long as the key-value pair 
at the top of the list does not match a given Key. 
find inherits search, and adds a termination clause. 

search(Key, Table, Tablel) :-
Table? Key1 - Valuel, Key=\=Keyl, 

Tablel ! Keyl - Valuel, self. 

find(Key, Table, Tablel, Ok) :­
+search; 
Table = [], 

Tablel = [], 
Ok = false('key not found', Key). 

The following check and lookup predicates in­
herit find and add a clause for the case where an 
identical key was found. The replace predicate in­
herits search directly since we want a different error 
message. 

check(Key, Table, Tablel, Ok) 
+find; 
Table? Key - Value, 

Tablel = Table, 
Ok :;: true. 

lookup(Key, Valuel, Table, Tablel, Ok) 
+find; 
Table? Key - Value, 

Tablel = Table, 
Valuel = Value, 
Ok = true. 

replace(Key, Value, Ne~Value, Table, 
Tablel, Ok) 

+search; 
Table? Key - OldValue, 

Value = OldValue, 
Tablel = [Key - Ne~Value 

I Table'], 
Ok = true; 

Table = [], 
Tablel = [], 
Ok = false('key not found', 

Key - Ne~Value). 

Finally insert and delete add and remove key- " 
value pairs from the table. 

insert(Key, Value, Table, Tablel, Ok) 
+search; 
Table? Key - Valuel, 

Tablel = Table, 
Ok = false('key"already exists', 

Key - Value); 
Table = [], 

Tablel = [Key - Value], 
Ok = true. 

delete(Key,Value,Table,Tablel,Ok) 
+find; 
Table? Key - Valuel, 

Value = Valuel, 
Table1 = Table' , 
Ok = true. 

As a third example we demonstrate the capa­
bilities of the inheritance mechanism in a graphi­
cal environment by rewriting the window handling 
class from [10]. 

The first class defines a rectangular area with 
methods clear for painting the area specified by 
Frame, and ask to retrieve the rectangular's dimen­
sions. In is an input port and Frame is a four-tuple" 
of rectangle coordinates. 

rectangular_area(In) + 
(Frame = {X, Y, w, H}) 

In ? clear, 
clear_primitive(Frame), 
self; 

In ? ask(Frame), 
self. 



The following class frame is a rectangular area 
with some content, which means that apart from 
the methods clear and ask, one can draw the area 
boundaries, and refresh it. Note that refresh is just 
a combination of two previously defined methods 
draw and clear. This also fixes a subtle synchro­
nization bug in Shapiro and Takeuchi [10] where 
the two methods were simultaneously activated, 
one by the class process and one by the indepen­
dent superclass process, which could have caused 
drawing before clearing. 

frame(In) + (Frame = {X,Y,W,H}) 
+rectangular_area; 
In ? draw, 

draw_lines(Frame), self; 
In ? refresh, 

self([clear, draw\In']). 

The final class labeled Window adds two more 
methods: change, to change a label, and show to 
show it. In addition we redefine the refresh method 
to show the label after refreshing (we thus require a 
method override mechanism). Another local vari­
able Label is added. 

labeledWindow(In) + (Frame = {X,Y,W,H}, 
Label = default) 

+frame; 
In ? change(Label'), self; 
In ? show, 

show_label_primitive(Frame), 
self; 

In ? refresh, 
self([clear, draw, show\In']). 

After we have the class labeled Window we can 
subclass it to define our own window as in: 

my_window(In, .... ) + (Frame = 
Label = ... ) 

+labeledWindow; 

«my_window_additional_methods». 

The generated code derived from the semantics 
of lpi and implicit arguments is not shown here due 
to space limitations. 

5 Conclusions 

5.1 Implementation 

Both notations, implicit and lpi, have been imple­
mented in FCP within the Logix system [11] by 
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adding language preprocessors. The lpi preproces­
sor implements the combined notation of Section 4; 
i. e., it translates FCP with inheritance and im­
plicit arguments to FCP with implicit arguments. 
Another preprocessor translates implicit FCP to 
pure FCP. Each of the preprocessors is about 1000 
lines of code. The implicit preprocessor was first 
written in FCP(:,?) [12]. That initial version was 
then used to bootstrap a new version written in 
the implicit notation. The [pi preprocessor is also 
written using the notation of implicit arguments. 

5.2 Further work 

A certain form of overriding is already available 
via the integration of lpi and a module system, 
described in Section 2.5. However, one may find 
useful also the ability of a subclass's method to 
override a method of the superclass. This can be 
achieved, for example, by stating that if several 
methods apply, then textual order dictates prece­
dence. By appropriately placing inheritance calls, 
one can achieve the desired override effect. 

Additional clarity and conciseness could be 
achieved by enabling an overriding method to also 
execute the overridden method (apart from do­
ing some processing of its own). This feature, 
called send to super in the object oriented termi­
nology, was easily implemented with Shapiro and 
Takeuchi's scheme [10] of a subclass having also an 
output stream to its super, by putting the method 
on the output stream. As an example of the send 
to super feature, suppose in my_window (section 
4.2) we need to add functionality to the draw rou­
tine (e.g. drawing a grid on the rectangular_area), 
which means overriding the current draw method. 
Instead of copying the whole draw method, we 
would write: 

In ? draw, send_to_super, 
draw_grid(Frame), my_window; 

where send_to_super is a macro which copies the 
necessary code from the appropriate superclass. 

A redundancy problem occurs when we want to 
use multiple inheritance but the generated inher­
itance graph is not a tree. For example, classes 
band c both inherit a, and d inherits both band 
c. Applying the transformation would result in 
d having a's methods twice. This (harmless) re­
dundancy could be optimized later, e.g. by the 
decision graph compilation method [9]. 
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5.3 Exp erience 

The implicit arguments notation was incorporated 
into Logix more than two years ago, and has been 
used extensively by all members of our group.' All 
of us found it preferable to the notation of plain 
logic programs. 

Logic programs with inheritance were incorpo­
rated as an extension to the implicit arguments 
notation less than a year ago. It has been used by 
all of us extensively, and it has had a major effect 
on our programming style. One notable effect is 
that inheritance allows us to specify in a modu­
lar way processes with a dozen of arguments and 
dozens of clauses, by specifying multiple methods, 
each referring only to a subset of the process's ar­
guments, and using multiple inheritance to specify 
the final process. This programming style meshes 
well with the decision graph compilation method 
to produce code which is readable, maintainable, 
and efficient. 

We have implemented two large systems using 
lpi, each having several thousand lines of FCP 
code, and we find it hard to imagine how we could 
have written them without an inheritance nota­
tion. 
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Abstract 

Programmers writing programs following a typical pro­
cess and streams paradigm usually have some conceptual 
image concerning the program's execution. Conventional 
debuggers cannot trace or debug such programs because 
they are unable to treat both processes and streams di­
rectly. The process oriented GHC debugger we propose 
provides high-level facilities, such as displaying processes 
and streams in three views and controlling a process's 
behavior by interactively blocking or editing data in its 
input streams. These facilities make it possible to trace 
and check program execution from a programmer's point 
of view. We implement the debugger by adopting reflec­
tion and program transformation to enhance standard 
GHC execution and to treat extended logical terms rep­
resenting streams. 

1 Introduction 

Debugging methods for programs in Guarded Horn 
Clauses(GHC)[Ueda 1985] are classified into those based 
on algorithmic debugging[Takeuchi 1986] under the de­
notational semantics of GHC programs, and those based 
on execution tracing [Goldszmidt et al. 1990]1 under the 
operational semantics. This paper proposes a debugging 
method belonging to the execution tracing class. 

In GHC programming, object-oriented[Shapiro and 
Takeuchi 1983] and stream-based[Kahn and MacQueen 
1977] programming focus on the notion of processes 
and streams. Individual abstract modules are regarded 
as processes, some of which are connected by streams, 
and communicate with each other concurrently. A typ­
ical process repeatedly consumes data from a stream, 

1 Even though the literature is concerned only with the execu­
tion tracing of Occam programs, its discussion is generally adapt­
able for most concurrent or parallel program debugging. 

changes its internal state, and generates data for another 
stream. 

In a conventional execution tracer, it is difficult to 
capture conceptual execution in terms of processes and 
streams, because they are decomposed into GHC primi­
tives and never displayed explicitly. The tracer we pro­
pose fully reflects the notion of processes and streams, 
and enables both the specific control flow of processes 
and the data structure of streams to be processed, mak­
ing the causality among processes explicit. 

2 Process Oriented Programs 
and Debugging 

2.1 Models of Processes and Streams 
in GHC 

2.1.1 Process model 

A process can be interpreted either as a goal or as 
a set of goals, e.g., an "object" in object-oriented 
programming[Shapiro and Takeuchi 1983]. The follow­
ing sections discuss processes based on the latter. 

A process consists of goals for the continuation of the 
process or goals for internal procedures defined in the 
process. The continuation goal accepts streams in its 
arguments one by one, and reserves its internal state in 
other arguments. The stream argument takes a role of 
an I/0 port for the dat3. migration. The internal state is 
not affected by other processes, but is calculated by the 
previous state and input data captured from streams. 

A process features: 

Creation: A process is created by the first call of the 
continuation goal. 

One-step execution: Reading data from streams, writ­
ing data to other streams, and changing the inter-
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nal state using internal procedures are regarded as 
atomic actions in an execution step. 

Continuation and termination: A process will carryon 
its computation with a new internal state when the 
continuation goal is invoked. Otherwise the process 
terminates its execution. 

2.1.2 Stream model 

A stream is a sequence of logical terms whose 
operations[Tribble et al. 1987] are limited to reading the 
first term of a stream and writing a term to the tail of a 
stream. 

A simple notation for streams is first introduced. 
Streams are constructed by stream-variables SV, stream­
functors (SHIIST) and stream-terminators 0, where SV 
is a variable constrained to become either a stream­
functor or a stream-terminator, SH is an arbitrary term 
denoting the first data of the stream, and ST is a stream 
representing the rest of the stream. 

A stream features: 

Creation: Streams are created dynamically when a con­
tinuation goal of a process is invoked, where they 
are assigned to the arguments of the goal. 

Data access: First data D is read from stream SX by 
unifying SX with structure (D II ST) in the guard part 
of a clause at runtime. Data D is written to stream­
variable SX by unifying SX with a structure (DIIST) 
in the body, where ST, called the tail of stream SX, 
is a stream-variable. In reading or writing done sev­
eral times, each operation is done recursively for the 
rest of stream, ST. 

Connection: Streams Sa and Sb are connected if they are 
unified in the body. One of the connected streams 
is regarded as an alias of the other. 

Equivalence relation ~ is defined for the set of streams 
S, used to visualize streams. 

For substitution (J, relation ~u is defined for S, the set 
of streams consisting of terms obtained in the execution. 

1. S ~u S; \is E S 

2. (HilS) ~u S; \is E S 

The first reflective rule implies that two lexically identi­
cal variables satisfy the relation. The second rule implies 
that a stream and its subpart are elements of the same 
equivalence class. The third rule means that connected 
streams are also elements of the same equivalence class. 
Relation ~u is defined as the symmetric and transitive 

closure of relation ~U' Below, relation ~ is written in 
place of ~u if substitution (J is clearly understood from 
the context. 

In GHC, a stream is actually implemented by a list in 
most programs, i.e. stream-functor (DIIS) and stream­
terminator () correspond to term [D' I S'] and atom D. 

2.2 Process Oriented Debugging 

GHC programs based on the process model are called 
process oriented programs, each goal in the execution 
trace belongs to a process, which is either a continuation 
or a part of an internal procedure of the process. In trac­
ing and checking process oriented programs, the goals be­
longing to a target process must first be extracted from 
the "chaotic" execution trace where these goals are in­
terleaved. 

The data flow must also be checked. Unless a pro­
cess inputs intended data, the process outputs incorrect 
data to its output stream, or becomes permanently sus­
pended. Intended data may not be sent to the process 
for two possible reasons. First, an adjacent process cor­
responding to the producer of the data malfunctions. Or, 
second, the input of the process is disconnected with the 
output of the producer, an error caused by misuse of a 
shared variable, in which case it is easier to detect the 
error if the stream connection between processes, called 
"a process network," is displayed. 

To make process oriented programs execution traces 
easier to read, the process oriented debugger(POD) we 
propose, visualizes process and stream information struc­
tured from input/output data, internal state values, in­
ternal procedure traces and the stream connection be­
tween processes. 

Programs can be debugged as follows: 

Step 1 A user starts execution of a target program. 

Step 2 The internal state and input/output data are dis­
played and checked at an appropriate interval. The 
process network is also checked. 

Step 3 The program code corresponding to a process 
where an error occurs is checked in detail, with 
any adjacent processes possibly contributing to the 
anomaly also checked. 

Step 4 Input/output data sequences are saved for check­
ing an abnormal process because comparing the se­
quence of output data before and after a program is 
modified makes it easier to check the behavior. 

If the process malfunctions in Step 3 and 4, it is 
forcibly suspended and overall execution is continued as 
far as possible because program reexecution takes much 



time and costs, i.e., reexecution must be avoided if it will 
take too much data in streams up to a sufficient length. 
Otherwise the program will have nondeterministic tran­
sitions. 

Reexecution can be avoided either by giving the de­
bugger the functions to delete or to modify unexpected 
data and to insert data in a stream interactively, or by 
having functions preserve data in streams automatically 
and execute a process in the preserved environment, 

Thus the POD requires the following execution control 
functions: 

1. Forcibly suspending, resuming and aborting the ex­
ecution of each process. 

2. Buffering and modifying the data in streams inter­
actively. 

3. Reexecuting a process in the preserved environment. 

3 Implementing the POD 

3.1 Process Declaration 

In our process model(Section 2.1.1), goals are classified 
into those for the continuation and those for internal 
procedures. They are syntactically the same, and are 
specified by the user in a process declaration. 

The process declaration consists of a predicate speci­
fication and continuation marking. The predicate spec­
ification begins with the keyword process followed by 
the name of the predicate specifying the usage of each 
argument. The usage of each argument is specified by 
declaring keyword state or port in an appropriate or­
der. Annotation state shows that the argument repre­
sents a part of the internal state. Annotationport shows 
that the argument represents a process's I/O port. The 
continuation mark consists of a (Q preceding the goal in 
a clause. An example of the process declaration is given 
in Listing 1. 

3.2 Streana Treatnaent 

As mentioned previously, streams consist of special vari­
ables, functors, and terminators. 

In the POD, streams are recognized and supported by 
introducing tagged data structures. Each variable, func­
tor, and atom that makes up a stream has an auxiliary 
field to store the stream identifier. An identifier is asso­
ciated with each stream equivalence class. 

In implementing identifiers, note that if two streams 
with different identifiers are unified, their identifiers 
should be the same. This is achieved by assigning a 
variable to each identifier and unifying the identifiers if 
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their streams are to be unified. The problem of whether 
two streams satisfy equivalence relation ~ is solved in a 
variable equivalence check. 

The POD recognizes and manages streams as follows: 
First, before starting the execution, a program transla­
tor, which is a subsystem of the POD, converts a target 
program to a canonical form as detailed in Section 3.4. 
Streams are replaced with special tagged terms, and ex­
tended unifications are placed for their unifications which 
causes accessing data in streams or connecting streams 
as described in Section 2.1. 

All the parameters of each process are stored in its pro­
cess table every own execution step. Process execution 
is visualized using these process tables. 

3.3 Reflective Extension of Unifier 

Section 3.2 addressed a need for extended unification, 
discussed in more detail together with its implementation 
with reflection. 

Tagged structures must be implemented using 
wrapped terms 'Sm'(Var,ID), 'Sm'(Atom,ID), and 
'Sm'( {Cons,Head,Tail},ID). The first term represents 
the fresh variable of a stream whose first argument, Var, 
corresponds to the original variable. The second, ID, is 
a fresh variable that denotes the identifier of its stream. 
The second term represents the terminator of a stream 
whose first argument, Atom, abstracts 0, while the third 
corresponds to (Head II Tail) and Cons is a functor for con­
catenation. 

Terms are classified into six types: variable, atom, 
compound term2, stream-variable, stream-functor, and 
stream-terminator. 

New unification rules are needed for stream-term x 
stream-term and stream-term x regular-term. The fol­
lowing cases are representative of the extended unifica­
tion X >< Y: 

Case 1 X is stream variable 'Sm'(V,ID), Y is a variable. 
Assign Y to X. 

Case 2 X is stream variable 'Sm'(V1,ID1), 
Y is stream variable 'Sm'(V2,ID2). 
Assign V 2 to V I and ID2 to ID1. 

Case 3 X is stream variable 'Sm'(V,ID), 
Y is compound ter.m {C,H,T}. 
Assign {C,H,'Sm'(N,ID)} to V, and execute 
'Sm'(N,ID) >< T, where N is a fresh variable. 

Case 4 X is stream functor 'Sm'( {C1,H1,Tt},ID). 
Y is compound term {C2,H2,T2}. 
Assign H2 to HI and C2 to C1. 
Execute TI >< T2 recursively. 0 

2In KLl, notation {F, AI, ... , An} is allowed to express com­
pound term F(AI , ... , An). We follow the notation for convenience. 
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The remaining 17 possible cases are omitted here due to 
space considerations. 

The variable check is essential when describing the uni­
fier and is done by reflection [Smith 1984]. Because re­
flection provides functions to manage memory and goal 
queue, it becomes easy to implement streams. 

Before developing the POD, we added a refiective fea­
ture to GHC similar to that for RGHC[Tanaka 1988]. 
When a user-defined reflective predicate is invoked, its 
arguments are automatically converted from internal 
representation to the meta-level ground form. Table 
1 shows the correspondence between object-level and 
meta-level terms. 

Case 3 is described using a reflective predicate whose 
second argument Gs is a stream connected with the goal 
scheduler. 

reflect(vector({atom('Sm'),variable(V),ID}) >< 
vector({C,H,T}),Gs,Mm) :- true 1 

Gs = [variable(V) = vector({C,H,vector( 
{atom('Sm'),variable(N),ID})}), 

vector({atom('Sm'),variable(N),ID}) >< T ], 
Mm = [malloc(N)]. 

%% Gs: Goal scheduler, Mm: Memory manager. 

The third argument Mm is a stream connected to the 
memory manager for the object program. Terms written 
in stream Gs are converted from meta-level ground terms 
to internal representation and placed in the goal queue. 
Terms written in stream Mm are understood as messages 
for memory access. Message malloc( N) invokes dynamic 
memory allocation, and the reference pointer to allocated 
memory is bound to variable N. Extended unification is 
defined similarly by the reflective predicate for all cases. 

3.4 Tagged Term Transformation 

As described above, tagged terms are represented as 
wrapped functors. The translator converts streams to 
tagged terms automatically. In the following, we show 
program examples before and after the conversion, then 
we explain the detail of the translating process. Fur­
thermore we present additional transformation steps to 
direct the data migration, in other words, to detect the 
origin of data. 

NAl >< [DAIDX], NA2 >< [DAIDY1]. 
DX >< 'Sm'(Nl,ID1), DYl >< 'Sm'(N2,ID2). 

The converted program differs from the original in the 
following ways: 

1. The arity of predicate p doubles, i.e. the third and 
fourth arguments are new, and the parameters of p 
are converted to tagged terms for streams such as 
, 8m' (Nl, rDl). 

2. The first and second arguments of the converted p 
are the same as those of the original, and the corre­
sponding parameters are maintained. 

3. Several extended unifications are added in the body. 

The above points characterize the transformation: Two 
kinds of variable bindings are treated. One is the same 
as the original bindings and is used for the execution of 
the guard goal. The other consists of tagged terms for 
streams, and is used in extended unifications. 

According to GHC semantics, unification invoked in a 
guard can not export any bindings to the caller. Fur­
thermore user-defined predicates can not be placed in a 
guard. Because it is not easy to extend the guard exe­
cution rule of GHC, we follow the semantics as much as 
possible. 

In our transformation, by maintaining the original 
bindings, the guard execution involving the parameter 
passing is independent of the term extension, and the 
extension never causes execution errors. The memory 
consumption by storing two kinds of bindings is, how­
ever, at least twice as much as that of the original. 

Transformation processes are detailed as follows: 

Step 1 Choose a clause, and erase all the guard unifi­
cations by partial evaluation[Ueda and Chikayama 
1985]. Replace nonvariable argument Arg to fresh 
variable Var, and add goal Arg = Var in the 
guard. By applying the replacement for every 
argument, we get a canonical form such that 
every argument is a variable and every guard 
goal is ether a unification = of a variable and 
a nonvariable term, a difference \=, an arith-

%Original program metic comparison or a type checker. We write a 
process p (port ,port) . canonical clause as P (Al, ... , An) : - G (Al, ... ,An) 
boot :- true 1 p([1,21_],X), q(X). I Q(Al, ... ,An,Bl, ... ,Bm),whereG(Al, ... ,An) 
p([AIX],Y) :- true 1 Y=[AIY1], @p(X,Yl). andQ(Al, ... ,An,Bl, ... ,Bm)representaconjunc-
%Conversion for streams tion of goals. 
boot :- true 1 p([1,21_],X,'Sm'(Nl,ID1),'Sm'(N2,ID2», 

q (X, , Sm' (N3, ID3) ) , Step 2 Rename all variables in the clause and get 
[1,21_] >< 'Sm'(Nl,ID1), NX >< 'Sm'(N2,102), a clause: P(Al', ... ,An'):- G(Al', ... ,An') I 
NX >< 'Sm'(N3,103). Q(Al', ... ,An',Bl', ... ,Bm'). Extract all the 

p ( [A 1 X] , Y , NAl , NA2) : - true 1 Y= [A 1 Yl] , unifications from G (Al ' , ... , An' ) , and replace 
p (X, Yl , ' Sm' (Nl, lOl) , , Sm' (N2, lO2» , symbol = of unification with symbol >< of extended 
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Table 1: Representations of meta-level terms 

Term 
Level Unbound variable Atom Compound 

Object unobservable Atom {Cl , .. ·, Cn} 
Meta variable ( Addr ) atom(Atom) vector( {Cl , ... ,Cn}) 

unification. The obtained conjunction is written as 
G'(Al', ... ,An'). 

Step 3 For goals defined as processes or as continuations 
in Q (Al' , ... , An' , Bl' , ... , Bm'), get conjunction 
Q' (Al', ... ,An' ,Bl', ... ,Bm') by repeating fol-
lower. Replace port-declared parameter Param 
with stream 'Sm'(N,ID), where Nand ID are fresh 
variables. Place extended unification Param >< 
'Sm'(N,ID) in the body of the new clause. 

Step 4 For two goals, B(Ol, ... ,Oi) in Q(Al, ... ,An, 
Bl, ... ,Bm) where OJ,l S j S i, is ranged over 
{Ai, ... ,An,Bl, ... ,Bm}, and B' (01' , ... ,Oi') in 
Q' (Al ' , ... ,An' , Bl ' , ... ,Bm' ), 
goal B" (01, .. ,Oi, 01' , .. ,Oi ') is defined as 
their concatenation. Conjunction Q' , (Al, ... ,An, 
Bl, ... ,Bm,Al', ... ,An' ,Bl', ... ,Bm') is defined 
by combining every B' , . 

Step 5 An objective clause is obtained by combining G, 
G' and Q" as follows: 

P(Al, ... An,Al', ... An'):- G(Al, .. An) I 
G' (Al ' , .. An') , 
Cl >< 'Sm'(Sl,ID1), ... ,Ci >< 'Sm'(Si,IDi), 
Q"(Al, ... ,An,Bl, .. ,Bm,Al', ... ,An',Bl', .. ,Bm'). 

% Replace Cj in Al', ... ,Bm' to 'Sm'(Sj,IDj) 

Detecting the origin of the data is achieved by using 
a tag similar to that stated above. A tagged functor 
'Sb'(Term,PID) is introduced, where Term corresponds 
to the original term and may include other tagged struc­
tures, PID is an unbound variable used as a process iden­
tifier. 

We show a modified example program using 'Sb' tag, 
then the additional transformation steps are detailed. 

%Conversion for detecting the origin of the data 
boot (PIDself) :- true I 

p([1,21_],X,'Sm'(Nl,ID1),'Sm'(N2,ID2),PID1), 
q(X,'Sm'(N3,ID3) ,PID2) , 
'Sb'(['Sb'(l,PIDself)I 
'Sb'(['Sb'(2,PIDself)I_],PIDself)] ,PIDself) 
>< 'Sm'(Nl,ID1), 
NX >< 'Sm'(N2,ID2), NX >< 'Sm'(N3,ID3). 

p([AIX],Y,NA1,NA2,PIDself) :- true I 

Y=[AIY1] , 
p(X,Yl,'Sm'(Nl,ID1),'Sm'(N2,ID2) ,PIDself) , 
NAl >< 'Sb'([DAIDX] ,PID1) , 
NA2 >< 'Sb'([DAIDY1] ,PIDself) , 
DX >< 'Sm'(Nl,ID1), DYl >< 'Sm'(N2,ID2). 

%% PIDl specifies the origin of the input list. 

Step 6 Add argument PIDseif to the head of the selected 
clause. 

Step 7 Select predicate pin in the body of the clause 
and, if pin is declared as a process, add new param­
eter PIDp / n or else add parameter PIDself . 

Step 8 Recursively replace every nonvariable term Ti 
except streams in G' (Al ' , ... ,An' ,Bl' , ... ,Bm' ) 
with term 'Sb'(T'i,PIDi). Each PIDi is used to in­
dicate the origin of corresponding data. 

Step 9 Replace every nonvariable parameter T of the ex­
tended unifications with term 'Sb'(T',PIDse1r). 

3.5 Execution Control 

In the POD, the specific control of a process proposed 
in Section 2.2 is achieved by introducing a valve inserted 
into a stream. The valve serves as an intelligent data 
buffer having two input ports, one output port, and 
a programmable conditional switch to close the output 
port. One of the two input ports is connected to the 
original stream, and the other is connected to the user's 
console. The user can send commands to the valve. The 
amount of buffered data and the description of the type 
of storable data are programmable conditions. 

The valve has three states, automatic migration mode, 
conditional migration mode", and manual edit mode, 
each changed by a user command or by evaluating pro­
grammable conditions. The valve operates as follows: 

• In automatic migration mode, the valve receives 
data from its own input port and it stores the data 
in its own buffer. Once the buffer becomes full, the 
valve outputs the first data in the buffer through the 
output port. 



966 

• In conditional migration mode, The valve gets data 
then stores it in the buffer. Once the buffer be­
comes full or if data does not satisfy a condition, 
the valve displays an alert and changes to manual 
editing mode. 

• In manual editing mode, the valve receives no new 
data. The number and the description of data to 
be stored, and data actually in the buffer can be 
referenced and modified using a text editor. After 
editing, the mode returns to the previous mode. 

A data checking condition is provided as the con­
junction of GHC goals. The goal is a built-in or user­
defined predicate. Built-in predicates are classified into 
type check, arithmetic comparison, and guard unifica­
tion. The type check goal is, e.g., atomO, integerO, or 
floatO. the arithmetic one is, e.g., >,~, <,~. The user­
defined goal is a combination of built-in goals. 

4 Examples of Tracing 

The POD is developed by extending the GHC interpreter 
with reflection in Prolog. A user can trace and debug a 
GHC program with a direct manipulation interface pro­
vided by the POD. 

The interface provides several control facilities for the 
target program in a menu, enabling the user to easily 
manipulate the POD by selecting a facility from a menu 
with a mouse. The menu currently provides, (1) compul­
sive process suspension, (2) process resumption, (3) valve 
insertion, (4) valve control, and (5) terminated process 
deletion. 

The POD provides different three views to visualize 
program execution: the stream graph, process char, and 
communication flow. 

The stream graph uses animated icons and lines to 
show dynamic changes in a network graph of processes 
and streams. 

The process chart displays, in a structured diagram, 
consumed and generated data from or to streams in a 
process and its subprocesses. More specifically, the dia­
gram contains dots, two kinds of lines, and data. A dot 
represents a process's argument in each execution step. 
One kind of line connecting two dots is associated with 
relation ~ between them. Consumed or generated data 
is located along this line. The other kind of line repre­
sents a subprocess fork point. 

The communication flow [Shin 1991] shows I/O process 
causality. When a substitution generated in process X is 
referenced in a committed clause of process Y, a directed 
arrow from X to Y is displayed. we say in this case that 
data from process X makes Y active. 

The usages of the menu and the views are described 
using a program in Listing 1, first suppose that the pro­
gram and query prime(10.Ps) are given to the POD. 

Listing 1: Primes generator program 
with process declaration 

process gen(state.state.port). sift(port.port). 
filter(port.state.port). 

prime(Max.Ps):- true I gen(2.Max.Ns). sift(Ns.Ps). 
gen(N.Max.Ns):- N>=Max I Ns=[]. 
gen(N.Max.Ns):- N<Max I Nl:=N+l. Ns=[NINsl]. 

~gen(Nl.Max.Nsl). 

sift([].Ps):- true I Ps=[]. 
sift([PIFs].Ps):- true I Ps=[PIPsl]. 

filter(Fs.P.Fsl). ~sift(Fsl.psl). 
filter([].P.Fs):- true I Fs=[]. 
filter([NINs].P.Fs):- true I sw(N.P.Fsl.[NIFsl].Fs). 

~filter(Ns.P.Fsl). 

sw(N.P.Fsl.Fs2.Fs):- N mod P=:=O 
sw(N.P.Fsl.Fs2.Fs):- N mod P=\=O 

Fs=Fsl. 
Fs=Fs2. 

Figure 1 shows the initial stream graph. Data in a 
stream that connects gen and sift can be checked in 
two ways, by setting a valve to either an output port of 
gen after suspending gen to prevent the creation of new 
data, or an input port of sift to avoid consuming data. 
Let item (1) be selected to gen suspend rather than sift. 
Selecting item (3), then (2), resumes gen. The generated 
valve is displayed as an icon in the window as for a pro­
cess. Initially, the valve is in automatic migration mode 
and the default buffer is set to 100. 

After process gen finishes generating data, information 
in the valve is displayed in a new dialog window if item 
(4) is selected. Figure 2 shows that buffer contents are 
modified by deleting the number 8. OAssume, then, that 
the window is closed and flushes all buffer data flushed. 

Flushing data causes sift to resume(Figure 3) with 
the stream graph eventually becoming stable. 

Process charts for each process in a window are shown 
in Figure 4. In this figure: 

• Process gen maintains an output stream specified 
by a vertical gray line at left in the window which 
connects all third arguments obtained at each exe­
cution step. Numbers generated by gen are aligned 
and displayed along this line. 

• Process filter maintains both an input and an out­
put stream specified by two vertical lines - black 
and gray in the middle of the window. The input 
sequence of numbers beside the black line, ranges 
from 3 to 9, with 8 deleted. Process filter gen­
erates or does not generate at each execution step 
when the output sequence on the gray line is refer­
enced. 
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Figure 5: Stream graph for int/2 and memo/3 

• The difference between the process chart for sift 
and others is the presence of a process fork speci­
fied by a dashed line. Process sift also has both 
input and output streams. The output stream re­
mains unchanged as the input stream is created dy­
namically. Process sift consumes a number from 
the input stream in the first argument, generating a 
fil ter and a prime number for the output stream 
in the second argument in an execution step. The 
input stream of the created filter is connected to 
the original input and the output stream to the new 
input stream of sift. 

Listing 2: Bounded buffer program 

process int (state ,port) , memo(port,port,state). 
bb(N):- true I open(N,H,T), int(O,H), memo(H,T,C). 
open(O,H,T):- true I H=T. 
open(N,H,T):- N>O I N1:=N-1, H=[_IH1], 

open(N1,H1,T). 
int(N,[XIS]):- true I X=s(N), ~int(s(N),S). 

memo([s(X)IS],T,C):- true I T=[_IT1], 
~memo(S,T1,s(X)). 

The, bounded buffer program is shown in Listing 2. 
Assume that the program and query bb(5) are given. 
The query goal invokes processes int and memo, which 
are connected after internal procedure open terminates. 
Figure 5 shows the stable stream graph. The commu­
nication flow of these processes indicates the alternate 
transition of two states. At left in Figure 6, Process 
memo becomes active by consuming data derived by the 
inactive int and a stream functor derived by the previ­
ous memo. At right, data from the inactive memo activates 
into 

5 Conclusion 

We have proposed a process oriented debugger(POD) for 
GHC programs based on a computation model for pro­
cesses and streams. The POD enables 

• Overall behavior of a process to be controlled by 
manipulating data in streams and arbitrary delay­
ing the transmission and reception of data between 
processes, 
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Figure 6: Communication flow transition 

• Process causality to be shown using animated fig­
ures of processes and streams in both stream graph 
and communication flow displays, 

• Stream connectivity to be organized and shown in a 
process chart, as a structure of lines connecting the 
arguments of a process. 

Because individual goal execution is not a concern, 
our debugger gives some information such as input and 
output substitutions and timing in less detail, making 
it necessary to include a viewpoint in the future that 
interprets the original sequence of primitives in such a 
way that the user can follow it. 

Our debugger is implemented using reflection and pro­
gram transformation. Reflection makes it easy to de­
scribe extended unification, and program transformation 
guarantees the efficient execution of guard goals under 
the standard guard execution mechanism. 
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Abstract 

The growing importance of expelt systems in real-time 
applications reveals the necessity of reducing response 
times. Since uniprocessor optimizations of production sys­
tems have widely been explored, only multiple processor ar­
chitectures appear to provide further perfonnance gain. Effi­
cient exploitation of the inherent parallelism of production 
systems, however, requires suitable algorithms for load bal­
ancing without simultaneously increasing organization or 
communication overhead. We present a novel parallel algo­
rithm for PAMELA expert systems, based on dynamic distri­
bution of data processing. The concept is suppolted by a 
transputer based architecture with an advanced interconnec­
tion structure. 1 

1 Introduction 

PAMELA (PAttern Matching Expert system LAnguage) 
[Barachini and Theuretzbacher 1988, Barachini 1988] was 
originally designed as a high pelfonnance rule-based expert 
system language especially suited to treat real-time prob­
lems. PAMELA's inference engine is highly optimized and 
makes the language one of the most etIicient platfonns for 
rule-based systems on uniprocessors. Nevertheless, the 
computational complexity of rule-based programs leads to 
considerable response times. Significant additional speed­
ups are expected from parallel execution of the inference en­
gine. 

Parallel PAMELA (P2 AMELA) uses a parallel matching 
scheme not restricted to a specific matching algorithm. The 
matches are perfonned concurrently on a number of identical 
processing elements, requiring only little communication. 
This is achieved by means of a special scheduling algorithm. 
The parallelization algorithm is able to incorporate all opti­
mization techniques of the serial PAMELA version. 

A transputer based architecture, the "Parallel PAMELA 
Research Engine" (PRE), has been developed to support the 
needs of the parallel version of PAMELA. PRE uses a per-

This research is sponsored by the Austrian Innovations­
und Technologiefonds as part of the InFACT project. 

sonal computer as master processor, with a multicast inter­
face from the PC to the processing elements [Kasparec et al. 
1989]. PRE is a research architecture and scalable to 32 
transputers. This limitation is not due to the paralle1ization 
algorithm but arises from intended cost and complexity re­
strictions for the hardware architecture. Moreover, it is well 
known from the literature that the inherent parallelism in typ­
ical present-day production systems does not allow speed­
up factors of more than 20. Hence, the number of 32 trans put -
ers is no obstacle for perfonning significant run-time 
experiments. 

We discuss in detail the mapping of the fme-grain algo­
rithm onto the coarse-grain PRE architecture. Preliminary 
perfonnance data of a few hand-coded examples show the 
efficiency of our algorithm in exploiting inherent parallel­
ism. These experiences serve as a motivation for a full imple­
mentation of a parallelizing production system compiler, 
which is in the final stage of development. 

2 Production Systems 

A (forward chaining) production system (PS) consists of a 
production memory containing rules, and a working memory 
(WM) containing data (working memory elements, WMEs) 
representing the system state. Real-time production systems 
are able to communicate with the outside world, e.g. for sam­
pling data or for sending messages to another system. 

A rule resembles the well-known IF .. THEN ... statement. 
It consists of a left hand side (LHS, corresponding to the IF­
part) and a right hand side (RHS, corresponding to the 
THEN-part). The PS execution breaks into a sequence of 
"recognize-act cycles" (RACs). A single RAC consists of 
the following steps: 

• During the "match phase", the LHSs satisfied by the 
WMEs are detennined. For each valid rule a correspond­
ing instantiation enters the "conflict set" (CS). 

• During "conflict set resolution" (CSR) one of the rule in­
stantiations in the CS is selected. 

• During the "act phase" the RHS statements of the se­
lected rule are executed. These statements usually 
change WM or initiate conununication with the outside 
world. 



970 

3 The Match Algorithlll of 
Sequential Palllela 

The RETE [Forgy 1979, Forgy 1982] and the TREAT [Mi­
ranker 1987J algorithm are the best known state saving algo­
ritluns, which avoid recomputations of comparisons done in 
previous RACs. Both algoritluns map the pattems of the 
LHSs of the rules to nodes of a network. The inference en­
gine of PAMELA uses a modified version lBarachini and 
Theuretzbacher 1988] of the RETE algoritlul1. Since we 
have chosen the RETE also for the implementation of our pa­
rallelization method, we sketch the basic mechanisms within 
a RETE network. 

When a WME is added to or removed from the WM, a 
plus-token resp. a minus-token representing this action is 
passed to the RETE network. In one-input nodes (lINs) at­
tributes of the incoming token are compared against constant 
values. Two-input nodes (2INs) have a token memory for 
each input. An incoming plus-token is stored in the token 
memory, a minus-token removes the corresponding 2IN to­
ken from the memory. In 2IN s attributes of each incoming to­
ken will be compared against attributes of all tokens in the 
opposite token memory, according to the conditions in the 
LHS. On each (successful) match, a new token is generated 
and is sent to the successor node. If a token leaves the RETE 
network a rule instantiation enters the CS. Figure-1 shows 
a RETE network with three lINs and two 21Ns. 

CS 

Figure-I: RETE network of a rule with 
three patterns 

4 Parallelization of Production 
Systems 

Before discussing parallelization, it seems appropriate fust 
to distinguish several classes of parallel architectures. In the 
familiar Flynn taxonomy [Flynn 1972], SIMD (single in­
struction, multiple data), MISD (multiple instruction, single 
data), and MIMD (multiple instruction, multiple data) archi­
tectures constitute the variety of parallel architectures. Al­
though there have been attempts to implement production 
systems on SIMD machines [Forgy 1980], MIMD architec­
tures obviously better match the needs of production system 
algorithms. Parallel (distributed) systems of the MIMD class 
fall into two categories [Bhuyan 1987], multiprocessors (all 
processors share main memory) and multicomputers (each 
processor has its own local memory with its local address 
space, a processor cannot directly access another processor 's 
local memory. Communication is accomplished via messa­
ge-passing). 

Two perfonnance measures are of particular interest in 
evaluating parallel systems, speed-up (defmed as the ratio of 
the execution times for one and for n processors) and effi­
ciency (defined as speed-up divided by the number of pro­
cessors) [Eager et al. 1989]. Efficiency depends on the ratio 
of communication and computation. Limiting factors are 
memory contention (with multiprocessors) and the COlnmu­
nication overhead (with multicomputers), respectively. 

Soon after the invention ofthe state saving algorithms, 
various investigations have been started on parallel architec­
tures for production systems. There are several levels of par­
allelism inherent to production system algorithms like the 
orie used in PAMELA. Apart from application parallelism 
(concurrent execution ofloosely coupled production system 
tasks), there exists match parallelism on rule, inter-node, 
and intra-node level, act parallelism, and CSR parallelism 
[Gupta 1986]. The usefulness of exploiting a particular type 
of parallelism depends on the time spent for each phase. Typ­
ical numbers for RETE production systems are: match (up 
to) 90%, act 5%, and CSR 5% [Forgy 1979, Gupta 1986]. 
Most investigations therefore have concentrated on concur­
rent execution of the match phase. However, newer studies 
have shown2 that some production systems spend consider­
ably less than 90% in the match phase. With rule level paral­
lelization, for the time of one RAC, each rule is assigned to a 
different processing element (PE). With inter-node level pa­
rallelization, each node of the RETE-network is assigned to 
a particular PE, whereas with intra-node level paralleliza­
tion comparisons within anode are assigned to different PEs. 

So far, none of the implementations of these ideas [Butler 
et al. 1988, Gupta 1986, Gupta and Tambe 1988, Kelly and 
Sevoria 1987, Miranker 1984, Oshisanwo and Dasiewicz 
1985, Schreiner and Zimmermann 1987, Shaw 1987, Stolfo 
1984, Tenorio 1984, Tien and Raghavendra 1987] has been 

2 Private communication with Daniel Miranker 



able to simultaneously cope with bottle-necks due to com­
munication overhead or due to shared resources, and load 
balancing problems. The approach presented in this paper is 
placed among the intra node parallelizations, but avoids the 
above-mentioned problems. The algorithm also exploits pa­
rallelization of the CSR and is not restricted to RETE but can 
be applied to TREAT as well. 

5 The Basic Idea of Independent 
Match Parallelization 

Anticipating the very simple overall structure of the architec­
ture (figure-2) we can sketch the steps of a RAC in Parallel 
PAMELA: 

• During the match phase the comparisons are assigned to 
the PEs by a scheduling algorithm (without inter-PE 
communication) . 

• Each PE perfonns its local CSR (which means also a pa­
rallelization of the CSR) and sends its candidate rule in­
stantiation to the "master" processor. 

• The master selects one ofthese candidates (global CSR), 
executes the RHS of the corresponding rule, and sends 
the WME changes back to the PEs. 

At the beginning of an RAC, each PE therefore must be able 
to decide independently which partition of the expected 
comparisons it intends to perfonn. This decision is made dy­
namically during run-time by a special scheduler running on 
each PE. 

Figure-2: Hardware architecture 
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In order to illustrate the idea of the independent match 
parallelism, we consider a 2IN of a RETE-network (fig­
ure-3). It is assumed that both token memories of node k are 
known to all PEs. Each PE has physical copies of these me­
mories and in this sense they are global. These memories 
have been independently generated from the WM, which is 
also global- ie. there is a copy of the WM on each PE. The 
task to be carried out is to compare each token of the left to-

Figure-3: Partitioning of comparisons 

ken memory with each token of the right memory, according 
to the comparison prescription of the 2IN. 

In order to partition the comparison among the PEs, either 
the left or the right memory is divided into a number of 
blocks, equal to the number of PEs (in our example we as­
sume 4 PEs). This partitioning is only "virtual" in the sense 
that both memories are still global. This is indicated by the 
dashed lines in figure-3. The partition just means that during 
the match phase in node k, the m-th PE takes the tokens in the 
m-th block and compares them against all tokens in the op­
posite memory. In this way, all comparisons in node k are per­
fonned by the PEs m = 1, ... ,N. But the run-time is reduced by 
a factor 1 IN, provided that the partitioned memory contains 
enough tokens. Each PE generates its own tokens corre­
sponding to its successful matches. This leads to disjoint 
parts of the left memory at node k+ 1. These parts are local to 
each PE, ie. part m is only known to PE m (indicated by the 
solid lines in figure-3). The matches in the subsequent nodes 
perfonned by PE m can only be done with its local data. One 
can easily see that the conjunction of all comparisons gives 
the whole set of comparisons of the uniprocessor version. 
This is a necessary condition for consistency. 

We demonstrate the consistency of the partitioning algo­
rithm by an example with four PEs, which should perfonn all 
matches in a two-input node. The input memories of this 
node are assumed to be global. The left memory is repre­
sented by the vertical axes of the squares in figure-4 and the 
right memOlY by the horizontal axes. Then we have three 
possibilities to distribute the matches between the PEs: (vir­
tual) partitioning of either the left token memory (first square 
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Figure-4: Consistency considerations 

in figure-4) or the right token memolY into four parts (sec­
ond square), or partitioning of both memories into two parts 
with a suitable assignment of tokens to PEs (third square in 
figure-4). The last square in figure-4 represents an assign­
ment of the tokens violating the consistency since not the 
whole cross product of matches is pelfonned. This restric­
tion can be easily taken care of by the following procedure. A 
prutitioning number Pk is assigned to the prutitioning node k. 
Pk is the dyadic logaritlun of the number of portions into 
which the matches in node k has been partitioned. Fonnally 
we can define Pk = 0 for unprutitioned matching in node k. 
Fmthem10re, a maximum prutitioning number Pmax is intro­
duced. This number Cru1 be calculated by the dyadic loga­
rithm of the number of PEs, which is always a power of two. 
Then the restriction takes the fonn Pk :s; Plllax In general, the 
left memOlY in a RETE-node need not be global due to pre­
vious prutitionings in predecessor nodes. In this case the 
right memory must not be fully partitioned according to the 
consistency requirements mentioned above. 

Since each PE holds the whole RETE-network the PEs 
can process the data, assigned by the partitioning algorithm, 
without conununication with other PEs. The matches are 
performed by using data which is local or global in the log­
ical sense but strictly local with respect to the physical PE. 
During the match phase all required global data items are not 
accessed by communication with other PEs but are generated 
from the global WM, which is located on each PE. 

This somewhat simplified picture can be applied to all ac­
tive nodes in the RETE-network and shows three major 
points of our approach: 

• the approach relies on data parallelism in token memory 
rather than on progrrun parallelism, 

• a velY fine grained dynamic distribution of matches 
runong the PEs leads to good load balancing, 

• no conununication is necessruy during the match phase, 
since no PE requires data from another PE. 

Compared to a static assigrunent of partitioning nodes our 
method is much more flexible, which is crucial if data load 
varies overtime. This is especially the case for real-time pro­
duction systems communicating with the outside world. 

In order to clarify some open questions, a few remarks 
should be made. So far, we have only considered compari­
sons in 2IN s and have not included those in lIN s. In principle 
it is possible to split the token flow already in an lIN. Since 
the lIN matches consume less than 5% of ilie total match 
time of a typical production system, we decided to discard 
this possibility in favour of more flexibility in partitioning 
later RACs. 

For simplicity it has been assumed that the token memo­
ries contain a sufficient number of tokens, so that partition­
ing leads to parts with nearly equal numbers of tokens. In real 
life this may be a bit too optimistic. Assuming we have 4 PEs 
and only 3 tokens in the memory of a node, a division into 
four parts excludes one PE from processing this node and all 
successor nodes for current path of token flow. Therefore, 
three is the maximum speed-up factor in this node. Since we 
need no synchronization point after the execution of a node, 
the free PE can process another node in the meantime. Nev­
ertheless, it is advisable to partition large memories because 
this reduces the chance of idle PEs. A special scheduling al­
goritlun is called on each PE at the begim1ing of a match 
phase, which estimates in advance the optimum nodes for 
partitioning. 

In reality the matching procedure is more complex since 
several token packages may enter the RETE-network at dif­
ferent nodes each RAe. The interference between token 
packages can be easily handled by processing package by 
package. All matches in the course of the token package's 
flow through the network are perfonned before the next 
package is processed. Furthermore, a token package can be 
partitioned at several nodes. This is allowed as long as the 
generalized consistency requirement 

l(t~t 

L 'Irk < 'Ir tn,ax 

k=Jirst 
(1) 

is obeyed. Due to the fact that we can have nodes with partial­
ly partitioning, ie. Pk < Pmax, left memories can hold data of 
different "degree of locality", generated during previous 
RACs. Such data is known by fixed subsets of PEs. There­
fore, if an incoming token package has to be matched against 
a left memory, the package might branch into token packages 
of different locality degrees. In all subsequent nodes these to­
ken packages have to be processed separately. 

When rule instances fmally enter the CS it must be guar­
anteed that the local CSs are disjoint in order not to contain 
dublicated instances. This is achieved by enforcing condi­
tion (1) but with "=" instead of":s;". Since the PEs' conflict 
sets form disjoint sets most of the CSR is automatically pa­
rallelized. Only the CSR for the best candidates received 
from the PEs is done by the master. CSR parallelism is only 



possible when the priority of rule instances do not depend on 
the existence or priority of other rule instances so that a glob­
al view of the CS is necessary. However, for LEX, MEA 
[Cooper and Wogrin 1988] and many other CSR strategies 
our algorithm exploits parallelism. 

In contrast to rule-level parallelization our algorithm can 
take full advantage of RETE-network sharing. This is due to 
the fact that our algorithm relies on a kind of data flow split­
ting which is implicitely controlled by above mentioned con­
sistency precautions. 

6 The Scheduling Algorithm 

At the beginning of each RAC, new tokens enter the RETE­
network. They are counted and buffered into token packages. 
These incoming tokens have to be matched against the oppo­
site memories in 2INs and emerging tokens are passed to the 
successor nodes. The task of the scheduling algorithm is to 
predict the match activity within the RETE-network for each 
token package. For this reason, the scheduler needs actual in­
fonnation about the number of entering tokens, size of token 
memories, and statistical data. 

Since the scheduler works independently on each PE, it is 
only allowed to use globally known data. Otherwise, there 
would be no guarantee that the schedulers on the PEs arrive 
at the same results (e.g. decision on the partitioning nodes). 

Figure-5: A typical two-input node 

Figure-5 shows a typical situation in a 2IN. The number of 
matches in node k is just the product of the number of incom­
ing tokens and the number of tokens in the opposite memory; 

The number of emerging tokens (successful comparisons) 
can be estimated by 
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Pk is the probability that a particular match is successful. Pk 
itself is estimated by the ratio (successful matches )Imatches 
of previously performed comparisons in node k and will be 
continuously updated. 

Having calculated the number of expected matches for a 
certain entering token package in all relevant nodes of the 
RETE-network, the scheduler decides upon the optimum 
partitioning nodes for the considered token package. For this 
reason, the scheduler searches for the minimum of a special 
function J.l representing a measure for the load balance 
among the PEs. The argument of this function is the number 
of the partitioning node part. For example, such a function 
could have the following form: 

Jt(part) 
part-l i=la.qt v.. 
""' v:. + ""' ~ L..t 1, L..t F. 

i=/irst i=part t 

From the entrance node first of the considered token pack­
age to the node part-l, no parallelization takes place. This 
contribution is represented by the fust sum. The partitioning 
node part and all its successor nodes are parallelized. Hence, 
the number of comparisons per PE is only a fraction of the 
total number of comparisons in each node, leading to speed­
up factors Fi in the second sum. These factors range between 
1 and the number N of PEs. F; = 1 means that one PE per­
forms all matches in node i, F; = N refers to the most balanced 
parallelization. It can be easily shown that the speed-up fac­
tors cannot increase from one node to its successor, ie. Fi ~ Fj 
for i > j. If, for instance, only one comparison has to be per­
formed in node first then, obviously, Ffirst = 1 and Fi = 1 for 
all subsequent nodes. This kind of unbalanced distribution of 
comparisons has already been mentioned in the previous sec­
tion. For the minimum function J.l to work sufficiently well, 
the Vi'S must represent the major portion of work to be per­
fonned during the matching. If it turns out that insertions into 
token memories take a significant amount of time, appropri­
ate tenns have to be added. 

Of course, the scheduling scheme can be generalized to 
several partitioning nodes for each token package. This is 
achieved by iterative application of the minimum search, 
with updated VkS for k ~ part after each step. 

After having detennined the partitioning node part, the to­
ken package actually enters the RETE-network. 

7 The Parallel PAMELA Research 
Engine 

It is a well-known experience that performance of (very ex­
pensive) shared-memory multiprocessors degrades at high­
er n (> 4) due to memory contention. The decision therefore 
has been made to construct a parallel architecture for PAME­
LA, offering the scalability of message passing machines as 
well as tightly coupled pairs of processors (figure-6). This 
tight coupling will facilitate future experiments using small 
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shared-memory subclusters constituting the otherwise lose­
ly coupled architecture. The p2 AMELA Research Engine 
(PRE) is a prototype serving for the evaluation of paralle­
lized PAMELA (p2 AMELA) expelt systems. 

In order to allow the PRE fit into a standard enviromnent, 
an industry-standard 386-based PC was selected for the 
master processor. This allows the use of standard operating 
systems and tools (Unix, A"Windows) as well as to interface 
to a variety of networks. The full PAMELA-C expert system 
shell therefore C,U1 be ported to the PRE. 

Personal Computer 

80386 

Figure-6: Basic architecture of the PRE 

In implementing the PEs, the design is based on the l111110s 
transputer. In the course of the design, two particular prob­
lems were to be solved, namely (i) to effectively update 
working memory on the PEs, and, (ii) to exchange data be­
tween a transputer pair on one PE. Therefore, up to 16 double 
transputer boards can be served by the PC. 

To solve the fIrst problem indicated above, a 'Link Broad­
cast Interface' (LIBRO) board was developed. The first ver­
sion of LIBRO was implemented on a PC add-on card. This 
PC LIBRO is a quadruple transputer link interface for per­
sonal computers; up to four boards per PC can be stacked and 
treated as a single device. The LIBRO solution allows WM 
contents and other global infonnation to be broadcast 
through four to sixteen links under control of a master pro­
cessor (PC). Each link chaIU1el is buffered in both directions, 
so fast access with string primitive instructions is possible. 

The core of the p2 AMELA Research Engine consists of 
Swapable-Memory Transputer Board (SMTB) modules 
(figure-7) for the PEs. An SMTB incorporates two IMS-805 
transputers at 25MHz with three free links each. The fourth 
link of each transputer is used to access a conunon memory 
swapping controller. The latter controls the access to four 
1MB yte blocks of memory. Each memory block is allocated 
to one of two transputers at a time. Control infonnation 
supplied by the two transputers through a dedicated link is 
used to change the allocation status. Therefore, we have a 
kind of shared memory between the two transputers on an 
SMTB. 

Figure-7: Swappable Memory Transputer Board 

8 Preliminary run time 
nleasurements 

In the absence of a production system compiler for the pa­
rallelization method described, we could only encode a few 

examples on a simple commercially available transputer 
based architecture. The results have been encouraging, al­
though most of the examples exhibit rather low inherent par­
allelism. In addition, the scheduling algorithm has not yet 
been optimized and it therefore causes some overhead. 
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Figure-S: Example run-time measurements 

TIle examples A and B in figure-S are simple production 
systems, characterized by four and nine lUles, respectively. 
Examples C and D use implementations of "Monkeys and 
Bananas" with static and dynamic pat1itioning nodes, re­
spectively. Unfortunately, the activity in the RETE-network 
for these examples is very low so that the low speed-up is not 
very surprising. Example E is an extended version of "Mon­
keys and Bananas" using more WMEs. It reveals the full 
power of the algoritlun, yielding a speed-up factor of about 
3.9 for the match phase (four PEs). Taking into account all 
overheads, the factor of 3.1 is still remarkable. Figure-S 
shows the speed-up dependence on the number of PEs. Al­
though these examples do not provide a representative set of 
production systems, they show the existence of expert sys­
tems with speed-ups ranging from minimal (one) to maxi­
mal (number of PEs) values. These results do not prove the 
efficiency of our parallelization algoritlun but they serve as a 
motivation for further investigations. 

9 Sunlnlary and Future Directions 

We presented a new approach to parallel execution of pro­
duction systems, exploiting data pat"allelism in token 
memory. The approach has the following advantages com­
pared to other published parallelization methods that rely on 
program parallelism: 

• high utilization of processing power, 

• no need for locking mechanisms for the consistency of 
the RETE-network, 
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Figure-9: Speed-up dependence for extended M&B 

• small cOl1ununication overhead, no bottle-neck on 
shared resources 

• a scalable architecture 

Possible disadvantages of the method presented may be: 

• the memory per PE will be about the size of the mono­
processor version, 

• the scheduling algorithm causes additional computation 
overhead. 

After the Parallel PAMELA-C system is fully implem­
ented, measurements on a representative set of production 
systems will be perfonned in order to assess the quality of the 
parallelization method. Various strategies for scheduling on 
PRE and alternative parallel architectures will be investi­
gated. In this respect, the adaption of the presented algorithm 
to a shared memory architecture is of particular interest. The 
usage of global data both simplifies the scheduling algorithm 
and increases its accuracy and flexibility. But in order to 
avoid memory and bus contention, the access to the global 
memory must either be infrequent or decoupled between the 
processing elements. Since the data of the RETE network are 
frequently accessed the contention problem does not allow a 
straightforward solution. Further investigations of this mat­
ter will be the subject of future research. 
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Abstract- Much effort has been expanded on special archi­
tectures and algorithms dedicated to efficient processing of the 
pattern matching step of production systems. In this paper, we 
investigate the possible improvement on the Rete pattern match­
er for production systems. Inefficiencies in the Rete match algo­
rithm have been identified, based on which we introduce a pat­
tern matcher with mUltiple root nodes. A complete implementa­
tion of the multiple root node-based production system 
interpreter is presented to investigate its relative algorithmiC be­
havior over the Rete-based Ops5 production system interpreter. 
Benchmark production system programs are executed (not sim­
ulated) on a sequential machine Sun 4/490 by using both inter­
preters and various experimental results are presented. Our in­
vestigation indicates that the multiple root node-based produc­
tion system interpreter would give a maximum of up to 6-fold 
improvement over the Lisp implementation of the Rete-based 
Ops5 for the match step. 

t Introduction 
The importance of production systems in artificial intelli­
gence (AI) has been repeatedly demonstrated by a large 
number of expert systems. As the number and size of ex­
pert systems grow, there has however been an emerging 
obstacle in the processing of such an important AI applica­
tion: the large match time. In rule-based production 
systems, for example, it is often the case that the rules and 
the knowledge base needed to represent a particular pro­
duction system would be on the order of hundreds to 
thousands. It is thus known that applying a simple match­
ing algorithm to production systems would yield 
intolerable delays. The need for faster execution of produc­
tion systems has spurred research in both the software 
[2,3,7,8] and hardware domains [6,11]. 

In the software domain, the Rete state-saving match al­
gorithm has been developed for fast pattern matching in 
production systems [2]. The motivation behind developing 
the Rete algorithm was based on the observation, called 
temporal redundancy, which states that there is little 
change in database between cycles. By storing the previous 
match results and using them at later time, matching time 
can be reduced [1]. 

Inefficiencies in the state-saving Rete algorithm were 
identified, based on which the non-state-saving Treat 
match algorithm was developed [10]. The motivation be­
hind developing the Treat algorithm was McDermott's 
conjecture, stating that the retesting cost will be less than 
t This work is supported in part by the NSF \Ulder grant No. CCR-9013965. 

Jean-Luc Gaudiot 
Department of Electrical Engineering-Systems 
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Los Angeles, CA 90089-2563, gaudiot@usc.edu 

the cost of maintaining the network of sufficient tests [9]. 
In this paper, we further identify the inefficiencies of 

the Rete algorithm, based on which we introduce a pattern 
matcher with Multiple Root Nodes (MRN). Section 2 gives 
a brief introduction to production systems and the Rete 
match algorithm. Section 3 explicates the inefficiencies of 
the Rete matcher. A Lisp implementation of the MRN­
based production system interpreter is then presented 
along with the distinctive features of its implementation. 

Section 4 presents benchmark production system pro­
grams and experimental results on both the Rete-based 
OPS5 interpreter and the MRN-based interpreter. Various 
statistics gathered both at compile time and runtime are 
presented as well. Performance evaluation on the two in­
terpreters are made in Section 5 in terms of number of 
comparison operations and execution time. The last sec­
tion concludes this paper. 

2 Background 

2.1 Production systems 

A production system as shown in Figure 1 consists of a 
production memory (PM), a working memory (WM), and 
an inference engine (IE). PM (orrulebase) is composed en­
tirely of conditional statements called productions (or 
rules). These productions perform some predefined actions 
when all the necessary conditions are satisfied. The left­
hand side (LHS) is the condition part of a production rule, 
while the right-hand side (RHS) is the action part. LHS 
consists of one to many elements, called condition ele­
ments (CEs) while RHS consists of one to many actions. 

Production Rules 

1··_····,' -w-M-:-:-:-:----w-m-e-s-+I ~wm 

Memory 

~wm: change in working memory 

Figure 1: An architecture of production systems 
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The productions operate on WM which is a database of 
assertions called working memory elements (wmes). Both 
condition elements and wmes have a list of elements, 
called attribute-value pairs (avps). The value to an at­
tribute can be either constant or variable for CEs and can 
be constant only for wmes. A simple production system 
with one rule is shown in Figure 2. The inference engine 
executes an inference cycle which consists of the follow­
ing three steps: 
o Pattern Matching: The LHSs of all the production 

rules are matched against the current wmes to deter­
mine the set of satisfied productions. 

o Conflict Resolution: If the set of satisfied productions 
is non-empty, one rule is selected. Otherwise, the exe­
cution cycle simply halts. 

o Rule Firing: The actions specified in the RHS of the se­
lected production are performed. 
The above three steps are also known as Match-Recog­

nize-Act, or MRA. The inference engine will halt the 
production system either when there are no satisfied pro­
ductions or a user stops. 

2.2 The Rete match algorithm 

The Rete match algorithm is a highly efficient approach 
used in the matching of objects in production systems [2]. 
The simplest possible matching algorithm would consist in 
going through all the rules and wmes one by one to find 
match(es). The Rete algorithm, however, does not iterate 
over the wmes to match all the rules. Instead, it constructs 
a condition dependency network like shown in Figure 2, 
saves in the network results from previous cycles, and uti­
lizes them at a later time. 

Production Memory 
Rulel: 
I(c X) (d Y)] ;CEI 
[(b Y)] ;CE2 
[(p I) (q 2) (r X)] ;CE3 
~ 

[Remove (b Y)] ;Action 1 

4 

5 

; I' 
l"" 

Men-;ories 
, ............................................. ; h. 

Working MemQry 
wmel: [(p 1) (q 2) (r *)] 
wme2: [(r=)(d+)] 
wme3: [(c *)(d +)] 
wme4: [(b 3)] 
wmeS: [(b +)] 
wme6: [(p 1) (q 3) (r 7)] 

Figure 2: A Rete network for Rule 1. 

Given a set of rules a network is built which contains 
information extracted from the LHSs of the rules. Figure 2 
depicts a network for Rule 1, with the following nodes: 
o Root Node (RN) distributes incoming tokens (or wmes) 

to sequences of children nodes, called one-input nodes. 
o One-Input Nodes (OIN) test intra-element features 

contained in a condition element, i.e., compare the val­
ue of the incoming wmes to some preset values in the 
condition element. For example, CE 1 of Rule I con­
tains 2 intra-element features and therefore 2 OINs are 
needed to test them. The test result of the one-input 
nodes are propagated to nodes, called two-input nodes. 

o Two-Input Nodes (TIN) are designed to test inter-con­
dition features contained in two or more condition 
elements. The variable X, which appeared in both eEl 
and CE3, must be bound to the same value for rule in­
stantiation. Attached to the TINs are left- and right 
memories in which wmes matched through OIN s are 
saved. The result from two-input nodes, when success­
ful, are passed to nodes, called terminal nodes. 

o Terminal Nodes (TN) represent instantiations of rules 
Conflict resolution strategies are invoked to select and 
fire a rule. 
There are other variations to the nodes listed above. 

Given the above network, the Rete algorithm performs pat­
tern matching and we shall not go into detail. See [1,2,5] 
for more details. 

3 The MRN Matcher and Its Implementation 
The multiple root node based interpreter is presented along 
with its Lisp implementation. 

3.1 The MRN Matcher 

The Rete algorithm described earlier presents two apparent 
bottlenecks: one in the root node and the other in two-input 
nodes, as illustrated in Figure 3. Tokens coming into the 
root node will pile up on the input arc of the root node since 
there is one and only one root node which can distribute to­
kens one at a time to all CEs. For the network shown in 

Figure 3: Two bottlenecks of the Rete. (1) piling up of wmes on an 
arc of the root node, resulting in a sequential distribution of wmes to 
all CEs one at a time. (2) O(n) or Oem) comparisons in TINs. 



Figure 3 where there are n condition elements, the root 
node will have to make nx distributions to the network 
when x wmes are present on the input arc of the root node. 

The second inefficiency can also be seen on Figure 3. 
Assuming that m tokens are stored in the left memory of 
the two-input node and a token is matched on the right in­
put. The arrival of this last token will trigger the invocation 
of m comparisons with the wmes received and stored in the 
left memory. Should the situation have been reversed and 
n tokens be in the right memory, a token on the left side 
would provoke n comparisons. The internal workings of 
this two-input node are therefore purely sequential. In or­
der to avoid wasting time in searching the entire memory, 
an effective allocation of two-input nodes and one-input 
nodes should be devised. In this paper, we will limit our­
selves to the first bottleneck. Discussions on the second 
bottleneck can be found in[ 4,5]. 

The first bottleneck described above can be resolved 
by introducing mUltiple root nodes (MRN) in the network, 
as depicted in Figure 4. This introduction of multiple root 
node is based on the observation that a wme that has n 
A VPs never matches a CE that has m A VPs where n<m. 
For example, a wme, [(a 1) (b 2)], cannot match a CE, [(a 
X) (b Y) (c Z)], where X, Y, Z are variable, since the wme 
is missing the third AVP (c Z). However, a wme [(a 1) (b 
2) (c 3) (d 4)] can match the CEo One should note here that 
the above observation is based on algorithmic behavior, 
not Ops5 syntactic behavior. 

Figure 4: An MRN network. RNn distributes wmes to CEs under 
RNl through RNn. A wme (iJ) refers to a wme with i AVPs, 
where j signifies its arrival order. The MRN network also demon­
strates a parallel distribution of wmes, where n RNs can simulta­
neously distribute n different wmes to the network. 

Constructing an MRN network is straightforward. All 
LHSs are split into condition elements (CEs). All CEs are 
grouped based on the number of A VPs in a CE, i.e., a CE 
with n A VPs belongs to a group n. Associated with each 
group is a root node which distributes a set of wmes to a 
particular group of CEs of the MRN network. For example, 
RN2 of Figure 4 distributes wmes with 2 A VPs to those 
CEs, where each CE has not more than 2 A VPs. 

Suppose that the network has n groups, each of which 
has equally m CEs, i.e., the total number of CEs is nm. As­
suming that the number of wmes generated in each 
production cycle is constant, i.e, k, then the original Rete 
network will need nmk distribution. Assuming that k wmes 
are equally distributed over the n groups, i.e., kin wmes per 
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each group, the MRN network will only need 
(l+2+ ... +n)mkln distributions. For an even distribution of 
wmes over groups, the MRN matcher is guaranteed to 
yield 2-fold improvement over the Rete network. Next sec­
tion will substantiate our prediction. In the mean time, we 
shall present the Lisp implementation of the MRN-based 
matcher. 

3.2 Characteristics of the MRN implementation 

The MRN-based production system has been completely 
implemented in Common Lisp from scratch. A complete 
listing of Lisp codes can be found in [12]. Its functionality 
is 100% up to the Rete-based OPS5. The main features of 
the MRN implementation are: 
o Free of global variables, except a single one which 

traces the number of wmes generated during the life­
time of a particular production system program, 

DOver 90% of the functions written in tail-recursion, and 
o A simple data structure using defstruct of Lisp. 

A major reason to avoid using global variables is in 
that the program should be easily ported to various multi­
processor environments without having to change much of 
its source codes. By not using global variables, the poten­
tial communication and synchronization overhead 
between processes would be reduced when ported to a 
multiprocessor environment. Furthermore, encapsulating 
the scope of variables within a function would allow us to 
analyze the data dependency, if any, between functions, 
thereby resulting in easy program partitioning. The ulti­
mate goal of parallel processing, extracting and exploiting 
more potential parallelism from given codes, would then 
become within a reachable distance. To substantiate this 
claim, the MRN-based production system interpreter has 
been implemented in a data-flow language SISAL 
(Streams and Iteration in a Single Assignment Language) 
and is currently being ported to multiprocessors, including 
shared memory multiprocessors such as Cray! 

Much effort has been spent on writing the program in 
tail recursion. One reason to do so was also due partly to 
the portability to various multiprocessor environments. 
When functions are written in tail recursion, it can be much 
easier to understand its behavior since the program tracing 
is automatic. This easiness in understanding of the behav­
ior of a program will directly translate into an easy 
conversion to iterations. Those vectorizing compilers or 
parallelizing compilers can be readily used to convert the 
Lisp programs into a language suitable for vector or muiti­
processors. 

The third feature, a simple data structure defstruct, 
would not necessarily be considered a good feature. The 
main reason employing defstruct is that it will simplify the 
implementation process due to its structuredness. This 
structured approach will shield the data dependency be­
tween data, i.e., dynamically changing memories in the 
network. However, this dynamic data structure consumes 
more memory space than other data structures such as lists. 
There is certainly a trade-off between the runtime memory 
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space and the easiness in programming and debugging. 
Due to the space constraints, we shall not illustrate imple­
mentation details. Complete implementation details can be 
found in [12]. 

4 Experimental Results 
Benchmark production system programs are presented 
along with the surface characteristics measured at compile 
time. Both the Rete-based OPS5 and MRN-based inter­
preters were executed on Sun 4/490 to measure their 
algorithmic performance. Statistics collected at runtime 
are: the execution time of a match step, the number of com­
parison operations for one-input nodes, and the 
distribution of wmes. All the measurements are done 
against production cycle numbers. 

4.1 Surface characteristics of benchmark programs 

The five programs chosen for performance analysis are 
commonly used ones, as seen from Table 1. Note that the 
size of production systems is not central to its performance 
evaluation. Indeed, Gupta has commented that (1) we 
should not expect smaller production systems (in terms of 
number of productions) to run faster than larger ones, and 
(2) there is no reason to expect that larger production sys­
tems will necessarily exhibit more speedup from 
parallelism [5]. The programs used in this study are: 
o Brick Sorting, to pick a brick from a pool and place 

them in ascending or descending order, 
o Monkey and Banana (MAB), for a monkey to grab a 

banana hanging from the ceiling, 
o N Monkeys and M Bananas (NMAB), the MAB with n 

monkeys and m bananas, 
o Waltz Labeling, a labeling algorithm developed in 

computer vision, and 
ON-Queen, a classical problem which places n queens on 

nxn board. 

PS a b c d e g h 

Brick 7 16 15 2336 2 4 4 20 60 
MAB 25 70 43 8409 59 5 14 16 58 
5MAB 23 60 43 45195 39 5 12 113 278 
Waltz 48 198 100 174891 90 5 40 245 297 
8-Queen 19 68 71 151985 36 6 11 1044 3866 

Table 1: Characteristics of benchmark production systems, where 
PS=production system program, a=No of rules, b=No of CEs, c=No 
of acts, d=OlNs executed, e= No of TINs, f=No of groups, g=Avg 
CEs/group, h=Rule ftrings, i=WMEs generated. 

The information collected from the above five produc­
tion system programs characterize various aspects of the 
benchmark programs. Our purpose is to measure the rela­
tive performance of the MRN approach in terms of 
~xecution time along production cycles. What is important 
In our performance evaluation is the information on groups 
of a production system program. Indeed, we find that even 
a small size production system program such as Brick Sort­
ing problem would suffice. 

4.2 Measurements on grouping 

Grouping the condition elements (CEs) based on the num­
ber of Attribute Value Pairs (AVPs) is central to the MRN 
approach. This would allow us to partition the production 
systems into many pieces each of which can be processed 
independent of the incoming newly generated wmes. Mea­
suring the distribution of condition elements over groups at 
compile time, we can predict the potential parallelism in 
the given production systems. Figure 5 depicts the distribu­
tion curve, where the x-axis shows group numbers and the 
y-axis the percentage of each group in a particular produc­
tion system program. 

In the Brick Sorting problem, there are four different 
groups, where a group-n contains condition elements, each 
of which has n Attribute-value Pairs. For example, Group2 
occupies slightly above 30% whereas Group 5 does 6% of 
the total number of CEs. Condition elements of Monkey 
and Banana are relatively equally distributed over four 
groups, compared to that of Waltz Labeling where one 
group is dominant over other groups. This dominance of a 
group over another is not desirable and does not yield a 
good performance. We shall come back to this analysis 
shortly. 
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4.3 Execution time on one-input nodes 

Figure 6 shows the execution time of matching one-input 
nodes measured at each production cycle. There are sever­
al points at which execution time run off the boundary. 
Several points running off the boundary are unimportant 
since our purpose is to show the relative performance. 
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Filure 6: Execution time profile of matching One-input nodes. 
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For Brick Sorting and Waltz, it appears that both the 
MRN and OPS5 show a rather regular behavior while they 
maintain a reasonably constant distance between the two 
curves along the x-axis. For example, in the Waltz, the dif­
ferences between two execution time curves for the cycle 
numbers 5 to 16 are relatively constant, except at the cycle 
numbers 3, 4, and 17. A similar behavior is also observed 
in Brick. This kind of proportional distance between two 
curves is important in predicting the possible outcome of 
the MRN approach. 

The MAB and NMAB, however, exhibit a slightly dif­
ferent behavior compared to Brick and Waltz. For 
example, the MRN curve in MAB gives an amplification 
factor higher than the one for Brick or Waltz. This irregular 
behavior is due partly to the memory management policy, 
garbage collection, in Lisp which contributes to inaccurate 
performance measurements. We shall give a more accurate 
measurement shortly. Over all, it is obvious that the MRN 
outperforms the OPS5 in any of the four problems. 

4.4 Number of comparison operations 

Another criterion to measure statistics at runtime is count­
ing the number of comparison operations. Consider the 
following simple Lisp function member: 

(defun member (a I) 
(cond ((null I) nil) 

((equal a (car I))) 
(t (member a (cdr I))))) 

Suppose that the function is called with (member 1 '(26 

4 7 1 )). It is clear that the function member will be called 
five times and therefore, the number of comparison opera­
tions will be five. Figure 7 shows the number of 
comparison operations for four programs. When we con­
sidered the execution time, we discussed that the behaviors 
of the four programs are rather irregular. The MRN curve 
of MAB in Figure 6 gave an amplification factor higher 
than the one for Brick or Waltz. However, that irregular be­
havior no longer persists in Figure 7. This consistent 
behavior is due mostly to the new criterion. Figure 7 again 
demonstrates that MRN outperforms OPS5 for all pro­
grams. 

4.5 Distribution of groups 

Figure 8 shows the runtime distribution of wmes and con­
dition elements for four programs. Take the Brick Sorting, 
for example. At runtime, there is no wme generated for 
group2, group4, and group6. Those wmes generated for 
Brick at runtime fall into either group3 or group5. As we 
can observe from Figure 8, there is a considerable amount 
of discrepancy between the runtime wme distribution and 
the compile CE distribution. 

For MAB, however, the situation becomes different. 
As we can observe from Figure 8, the discrepancy for 
MAB becomes much smaller compared to that for Brick. 
MAB and NMAB show a relatively low discrepancy 
whereas Brick and Waltz show a rather high discrepancy 
in terms of the wme distribution and the CE distribution. 

Contrary to the compile time distribution of condition 
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elements, most of the wmes generated at runtime fall into 
a few distinctive groups. All the four problems have basi­
cally two groups actively working at runtime. However, 
these distribution curves are problem dependent and there 
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Figure 7: Number of comparison operations on one-input nodes. 

is no single rule which can predict the behavior of the runt­
ime distribution of wmes. A simple conclusion we could 
draw from these discrepancy plots would be that more the 
discrepancy there is, more the improvement there will be. 
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5 Performance Evaluation 
Based on the foregoing three different types of observa­
tions, i.e., one-input match time, number of comparison 
operations, and distribution of wmes, we analyze the per­
formance of both interpreters. 

5.1 Comparison of MRN and OPS5 

Figure 9 shows the ratio of MRN to OPS5 on one-input 
match time for four different programs. Here, the ratio 
means simply the comparison of two match time units for 
one-input nodes. Again, x-axis is plotted against the pro­
duction cycle numbers whereas y-axis indicates the ratio of 
two different approaches. 

For Brick Sorting, for example, the one-input match 
time of OPS5 at production cycle number 13 is about 8 
times more than that of MRN. For NMAB, the one-input 
match time of Ops5 at the cycle 13 is about 17 times more 
than that of MRN. It is clear that there is a substantial im­
provement, ranging from 2 to over 20, depending on the 
programs and the production cycle number. 

Figure 10 gives a more accurate performance measure. 
It uses the number of comparison operations at each pro­
duction cycle. The x-axis is plotted against the production 
cycle number while the y-axis is again the ratio of the 
MRN-based match to Rete-based match. To closely exam-
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ine the improvement curve, consider again the production 
cycle number 13 as we did for Figure 9. 

For Brick Sorting of Figure 10, the number of compar­
ison operations performed by the Rete-based match at 
cycle 13 is about 8 times more than that by the MRN-based 
match. This improvement of 8 is exactly the same as the 
one we obtained from Figure 9. For NMAB, the improve­
ment, however, becomes different from what we would 
expect. Closely examining the NMAB curve of Figure 10 
at cycle 13, we find that the improvement is 8! We remem­
ber that the improvement we obtained from Figure 9 for 
NMAB at cycle 13 is 17. This is not surprising because 
measuring the real time can be affected by many factors 
which we iterated several times. Nevertheless, it is clear 
from the two improvement curves plotted in Figure 9 and 
Figure 10 that the MRN-based match algorithm outper­
forms the Rete-based match algorithm. Since the objective 
here is to compare the performance of the two match algo­
rithms, the two figures would suffice the stated objective. 

There are some other experimental results which are of 
particular interest but due to space constraints we shall 
have to be content with what we have presented thus far. 
When the two figures are summed and averaged along the 
production cycle number of x-axis, it gives an eventual im­
provement of six. The average improvement of the MRN 
approach over OPS5 on one-input match time would reach 
to six fold for the four production programs considered in 
this study. 

5.2 Discrepancy in the distribution of wmes and CEs 

It is interesting to observe the discrepancy between the 
compile time distribution of condition elements and the 
runtime distribution of wmes. By finding the discrepancy 
between them, we can more accurately locate the behavior 
of each production system, thereby identifying the poten­
tial improvement for a given production system program. 

Figure 11 displays all the discrepancies for the four 
programs. Note the discrepancy curves in Figure 11 and 
the improvement curves of Figures 9 and 10. Among the 
four discrepancy curves, the Brick curve has a high and 
regular behavior, which can in turn translate to a high im-· 
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provement. The curve for Brick in Figure 11 verifies this 
relation in which the improvement is high when the fluctu­
ation is low. 

However, the above statement on the relation between 
the discrepancy and the improvement would· have to be 
further substantiated by more experimental results. Most 
problems are runtime dependent and a simple prediction 
rule would be problematic. Based on our observations, it 
could be concluded that if there is more discrepancy be­
tween the compile time distribution of CEs and the runtime 
distribution of wmes, the production system program 
would have more potential parallelism in match step. 

A complete execution time of production cycles is il­
lustrated in Figure 12 to help give an overall view of the 
two interpreters. Again, the x-axis is plotted in production 
cycle numbers but the y-axis at this time is plotted in the 
total production cycle time. The total matching time is 
dominantly high compared to the selection time or action 
time as Forgy has indicated [2]. In any case, the MRN­
based production system interpreter outperformed the 
Rete-based OPS5. 
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Figure 12: A complete execution time for two approaches. 

6 Conclusions 
The main purpose of this paper was to evaluate the perfor­
mance of the multiple root node-based pattern matcher for 
production systems. A bottleneck was identified on the 
most efficient pattern Rete matcher. A solution to the bot­
tleneck was proposed by introducing multiple root nodes 
to the Rete matcher. The MRN-based production system 
has been completely implemented in Lisp. To measure the 
relative algorithmic performance of the MRN -based 
matcher, benchmark production system programs were se­
lected and executed on Sun 4/90 using both the MRN­
based interpreter and Rete-based OPS5. Experimental re­
sults indicated that the MRN approach would give a 
multiplicative effect on the Rete-based production sys­
tems. The two criteria used in this study, one-input match 
time and number of comparison operations in a window of 
20 production cycles, have shown that the MRN-based 

matcher can indeed give on the average a 6 fold improve­
ment over the Lisp implementation of the Rete-based 
OPS5. Our experimental results suggest that production 
systems have more potential parallelism than what has 
been known. To further identify the complete source of 
parallelism in production systems, we have been imple­
menting the MRN-based production system interpreter in 
SISAL, a pure functional language targeted to data-flow 
multiprocessors. The implementation is near completion 
and when complete we will be able to identify very fine­
grain parallelism in production systems. 
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Output in CLP(R) 

Abstract 

JOXAN JAFFAR* 

PETER J. STUCKEyt 

An important issue in Constraint Logic Programming 
(CLP) systems is how to output constraints in a usable 
form. Typically, only a small subset x of the variables in 
constraints is of interest, and so an informal statement 
of the problem at hand is: given a conjunction c(x, f)) of 
constraints, express 3f) c(x, f)) in the simplest form. In 
this paper, we consider the constraints of the CLP(n) 
system and describe the essential features of its output 
module. In the main, we focus on the well-known prob­
lem of projection in linear arithmetic constraints. We 
start with a classical algorithm and augment it with a 
procedure for eliminating redundant constraints gener­
ated by the algorithm. The rest of the paper discusses 
the remaining kinds of constraints, equations over trees 
and nonlinear equations, and clarifies how they are out­
put together with linear constraints. 

1 Introduction 

In its simplest description, the output of a constraint 
logic programming (CLP) [Jaffar and Lassez 1986] pro­
gram is the collection of all constraints accumulated 
along a successful execution path. However such a col­
lection is, in general, extremely complex because it is 
very large and contains many intermediate variables of 
no intrinsic interest to the user. Therefore, we can infor­
mally state that the problem at hand is: given a set x of 
target variables and a conjunction C(x, f)) of constraints, 
express 3f) C(x, f)) in the most usable form. While we 
cannot define usability formally, it typically means both 
conciseness and readability. In this paper we consider 
the constraints of the CLP(n) system [Jaffar et al. 1990] 
and discuss the several issues and techniques that arose 
in implementing the output module for CLP(n). 

* IBM T.J. Watson Research Center, P. O. Box 704, Yorktown 
Heights, NY 10598, USA. 

t Dept. of Computer Science, Univ. of Melbourne, Parkville, 
Victoria 3052, Australia. 

MICHAEL J. MAHER* 

ROLAND H.C. YAP* 

Consider some examples. Where {x, y} are the target 
variables: (a) the constraints x = f(z, z), z = g(y, w) 
can be output as x = f(g(y, _1), g(y, _1))\ (b) the 
constraints x = z + 1, y = 2 * z can be output as 
x = 0.5 * y + 1; (c) the constraints x < z, z ::; y, 
z ::; y + 1 can be output as x < y; (d) the constraints 
x = sin z*sin z+cos z*cos z+y can be output as x = 1 +y. 

We can classify the simplification of constraints in 
three directions: 

(I) the elimination of auxiliary variables (as in (a), (b) 
and (c)); 

(II) the elimination of redundant constraints (as in (c)), 
and 

(III) the replacement of expressions /by simpler equiva­
lent ones (as in (d)). 

The problem (I) of expressing 3f) C(X, f)) as a formula 
involving only the variables x is known variously as 
projection, variable elimination and quantifier elimina­
tion. Full variable elimination is not always possible 
in CLP(n), for example, in (a) above. However we 
note that it is theoretically possible to eliminate all 
auxiliary variables from purely arithmetic constraints 
[Collins 1982, Tarski 1951]. We will see later that ad­
ditional requirements restrain us from always achieving 
this goal. Eliminating redundant constraints (II) is in 
general very difficult, often more so than the problem of 
determining constraint satisfiability. Discovering simpler 
equivalent expressions (III) is also difficult in general; in 
this paper, it affects us only in the nonlinear constraints. 

A traditional approach to constraint simplification, is 
to use a notion of canonical form equipped with an effi­
cient algorithm for its computation. Informally, such a 
form represents the information content of the original 
constraints in a minimal manner w.r.t. the target vari­
ables x. For example, in PROLOG (equations over trees), 
constraints can be represented by their mgu, and writ­
ten in the form x = t(f)) where f) are distinct from x and 

1 Underscore notation is used to emphasize auxiliary variables. 
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t is a tuple of terms. For linear equations, a well known 
canonical form is called parametric form where equations 
are represented in the form x = t(fj) where f) are distinct 
from x and t is a tuple of linear expressions. If linear in­
equalities are also considered, there is still a natural no­
tion of canonical form [Lassez and McAloon 1988]; how­
ever, it is not clear if there exists an efficient algorithm. 
Finally, if nonlinear equations (including functions like 
sinO and absO) are also included, then it is not clear 
what a desired canonical form is, much less if there is an 
algorithm2 at all. 

In the context of CLP languages, the constraint simpli­
fication problem is compounded by other difficulties. One 
difficulty concerns backtracking: for efficiency the output 
module operates directly on the run-time structures rep­
resenting the constraints, and consequently these opera­
tions need to be undone. Another difficulty is that con­
straints are represented in a form designed for testing 
satisfiability; this form is often unsuitable for computing 
output. 

After a brief outline of the CLP(R) system, we focus 
on the classical problem of projection in linear arith­
metic constraints. The core element here is a Fourier­
based algorithm for eliminating non-target variables. The 
original Fourier algorithm [Fourier 1824] has the funda­
mental problem of generating too many redundant con­
straints, and the systematic removal of all such con­
straints is prohibitive. A major advance due to Cernikov 
[Cernikov 1963] made the Fourier algorithm plausibly 
practical by using an efficient, but partial, redundancy 
removal method. Combining the Cernikov method with 
further redundancy removal is, unfortunately, unsound 
in general. The main technical result of this paper shows 
that augmenting the Cernikov algorithm with strict re­
dundancy removal is in fact sound. 

The rest of the paper discusses the remaining kinds 
of constraints: equations over trees and nonlinear equa­
tions. Functor equations are straightforward. For non­
linear constraints, many possible simplifications are not 
performed because a nonlinear constraint solver is not 
employed. However, we do employ a general heuristic 
which is both efficient and effective. Finally, the vari­
ous sub-algorithms are put together in a specific order, 
together with a substitution mechanism, to obtain the 
complete algorithm. 

2 CLP(R) 

Real constants and real variables are both arithmetic 
terms. If t, t1 and t2 are arithmetic terms, then so are 
(t1 + t2), (t1 - t2), (h * t2), (tl/t2) , abs(t), max(t1, t 2), 
min(t1' t 2), sin(t), cos(t) and POW(t1' t2)' Uninterpreted 

2The satisfiability problem here is in fact undecidable. 

constants and functors are like those in PROLOG. Unin­
terpreted constants and arithmetic terms are terms, and 
so is any variable. If f is an n-ary uninterpreted func­
tor, n 2: 0, and t 1, ... , tn are terms, then f(t 1, ... , tn) is 
a term. If t1 and t2 are arithmetic terms, then t1 = t2, 
t1 < t2 and t1 :s: t2 are all arithmetic constraints. If at 
least one of t1 and t2 is not an arithmetic term, then only 
the expression t1 = t2 is a constraint. 

An atom is of the form P(t1' t2, ... ,tn) where p is a 
predicate symbol distinct from =, <, and :S:, and t 1, ... , tn 
are terms. A CLP(R) program is defined to be a finite 
collection of rules of the form Ao : - a1, a2, ... ,ak where 
each ai, 0 :s: i :s: k, is either a constraint or an atom. A 
CLP(R) goal consists of a set of current constraints, and 
a goal body. These constraints must be linear consistent, 
that is, it can be partitioned into a functor component, a 
linear component and a nonlinear component such that­
the conjunction of the first two components is satisfiable; 
the goal body is the same as a rule body. In an initial 
goal, the set of current constraints is empty. 

Let the goal G be w? - a1, ... , ak where W denotes the 
current constraints. A derivation step from G is defined 
over two cases: if a1 is a constraint, then G derives W U 

a1 ?-a2' ... ,ak providing wUa1 is linear consistent; if a1 
is an atom A and if there is a rule A' : - 131, ... ,13m, then 
G derives W U A = A'?- 131,"" 13m, a2,···, ak providing 
W U A = A' is linear consistent. When no derivation step 
is possible, execution "backtracks" to a point where an 
alternate choice of matching rule is available. 

A derivation sequence is a possibly infinite sequence 
of goals such that there is a derivation step to each goal 
from the preceding goal. A derivation sequence is con­
ditionally successful if it is finite and the body in the 
last goal is empty. If, however, the current constraints in 
this last goal (sometimes called answer constraints) has 
an empty nonlinear component, we say that the deriva­
tion sequence is successful. Producing appropriate out­
put from these constraints, given as target variables the 
variables appearing in the original goal, is the subject of 
this paper. 

In the CLP(R) system the user can also call, 
anywhere in the computation, the predefined predi­
cate dump([x1,"" XN]); this invokes the output mod­
ule on the current constraint set with target vari­
ables Xl,"" XN. For more details of the CLP(R) sys­
tem and its implementation we refer the reader to 
[Jaffar et al. 1990]. 

3 Linear Constraints 

Let C denote the collection of linear constraints at 
hand, let Xl, X2, ... ,XN (abbreviated x) denote the tar-
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for (i = 1; i :S N; i = i + 1) { 
if (Xi is a parameter) continue; 
let [, denote the equation Xi = r.h.s.(Xi) at hand; 
if (r.h.s.(Xi) contains a variable z of lower priority than Xi) { 

choose the z of lowest priority; 
rewrite the equation [, into the form z = t; 
if (z is a target variable) mark the equation [, as final; 
substitute t for z in the other linear equations and inequalities; 

} else mark the equation [, as final; 
} 
return all final equations; 

Figure 1: Linear equations 

get variables within C, and let Yl, Y2, ... ,YM (abbreviated 
f)) denote the remaining auxiliary variables. The linear 
solver in CLP(R) is partitioned into the equation solver 
and the inequality solver for efficiency reasons. 

In this section, we describe an algorithm which outputs 
3f) C(x, f)), where C is linear, in terms of target variables 
only, treating first the equations then the inequalities. 
The algorithm may produce an output not containing 
a particular target variable X which appears in C - for 
example, when eliminating Y from 3y X = Y + 2 - or may 
produce an untyped equation - for example, producing 
X = z from 3y X = Y + 1 /\ z = Y + 1. For such x, we add 
to the output the special constraint real (x) restricting x 
to real number values. 

3.1 Linear Equations 

Equations are maintained in parametric form, that is, in 
the form ii = t(v) where ii, called the object variables are 
distinct from V, called the parameters. For each object 
variable z we write r.h.s.(z) to denote the linear expres­
sion (of parameters) that z is equated to. Inequalities are 
always written in terms of parameters alone (in addition 
to other restrictions which do not concern us here). 

The algorithm, essentially a form of Gaussian elimi­
nation, is described in Figure 1. It assumes there is a 
priority 7r among the variables, n(xl) > ... > n(xN) > 
n(Yl) > ... > 7r(YM), expressing the relative importance 
of each variable in the output3

. The algorithm ensures 
that lower priority variables are represented in terms of 
higher priority variables. (We will see later how n is used 
in the context of functor and nonlinear equations to min­
imize the number of variables occurring in the output.) 

A crucial point for efficiency is that the main loop in 

3The priority among the Yi'S is arbitrary. 

Figure 1 iterates N times, and N « M in general, that 
is, the number of target variables is often far smaller than 
the total number of variables in the system. 

Note that the order of variables in the predefined pred­
icate dump([xl,"" XN]) determines the priority relation 
over these variables. Hence the user can influence the 
output representation of the constraints. 

3.2 Linear Inequalities 

The constraint solver stores the linear inequalities in 
a Simplex tableau. (See [Jaffar et al. 1990] for details.) 
Each linear inequality is expressed internally as an equal­
ity by introducing a slack variable, one whose value is 
restricted to be either nonnegative or positive. Our first 
job, therefore, is the elimination of such slack variables. 
This is achieved by pivoting the inequality tableau to 
make all the slack variables basic so that each appears 
in exactly one equation. Hence each row can be viewed 
as s = exp where s 2: 0 or s > 0, and this equation can 
now easily be rewritten into the appropriate inequality 
exp 2: 0 or exp > O. 

The remainder of this section deals with the prob­
lem of eliminating non-target variables which occur in 
these inequalities. We use a method based on Fourier's 
algorithm [Fourier 1824]. It is well-known that the di­
rect application of this algorithm is impractical because 
it generates many redundant constraints. Attempting to 
eliminate all redundancy at every step is also impractical 
[Lassez et al. 1989]. Adaptations of Fourier's algorithm 
due to Cernikov [Cernikov 1963] substantially improve 
the performance. We show how to incorporate other re­
dundancy elimination methods with those of Cernikov to 
obtain a more practical algorithm for eliminating vari­
ables from linear inequalities. 

In some circumstances, especially when constraints 
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when written as a matrix is dense, algorithms not based 
on Fourier such as [Huynh et al. 1990] can be more effi­
cient; however, typical CLP(R) programs produce sparse 
matrices. In general, the size of projection can grow ex­
ponentially in the number of variables eliminated, even 
when all redundancy is eliminated. Fourier-based meth­
ods have the advantage over other methods that we can 
stop eliminating variables at any time, thus computing 
a partial projection. 

3.2.1 Fourier-based Methods 

We begin with some necessary definitions. A labeled con­
straint is a linear inequality labeled by a set of con­
straint names. We say that c is label-subsumed by c' if 
label(c') ~ label(c). To simplify the explanation, we will 
not consider strict inequalities. We assume all constraints 
are written in the form 2::1 (};iXi :S {3. 

We shall be using some algebraic manipulation of con­
straints. Let Cj be the constraint 2::1 (};j,iXi :S {3j, for 
j = 1, ... ,n. Then "'I * Cj (or "'ICj) denotes the constraint 
2::1 "'IG-j,iXi :S "'I{3j where "'I is a real number, and Cj + Ck 
denotes the constraint 2::1 ((};j,i + (};k,i)Xi :S {3j + {3k. Sim­
ilarly, 2:7=1 Cj denotes an iterated sum of constraints. We 
consider constraints C and d equal, C = d, if C == "'I * d 
for some "'I > O. 

Let C be a set of labeled constraints. Given a variable 
Xi, we divide C into three subsets: C~, those constraints 
in which Xi has a positive coefficient (i.e. Cj such that 
(};j,i > 0); C;;;, those constraints in which Xi has a neg­
ative coefficient; and C~i' those constraints in which the 
coefficient of Xi is zero. We omit the subscript when the 
given variable is clear from the context. 

Let Ck E C+ and Cl E C- and let d = 1/ (};k,i * Ck + 
-l/(};I,i * Cl. Then, by construction, Xi does not occur in 
the constraint d. If Sk (Sl) is the label of Ck CCl) then d 
has label Sk U Sl. Let V be the collection of all such d. 
Then V U Co is the result of a Fourier step eliminating 
Xi. We write jourieri(C) = V U Co. When both C+ and 
C- are non-empty then V is non-empty, and the step is 
called an active variable elimination. After eliminating Xi 
the total number of constraints in C increases (possibly 
decreasing) by measure(xi,C) = IC+I x IC-I-IC+I-IC-I. 

Let A be a set of constraints where each constraint 
is labeled by its own name. Define Fo = A and Fi+1 = 
jourieri+l(Fi) .. Then {Fih=o,l, ... is the sequence of con­
straint sets obtained by Fourier's method, eliminating, 
in order, Yl, Y2, .... We write Fi for {Fjh=o,l, ... ,i' It is 
straightforward (see [Lassez and Maher 1988], for exam­
ple) that, if m < n, Fn +--+ ::JYm+b Ym+2, ... ,Yn Fm. In 
particular, Fn +--+ ::JY1, Y2, ... ,Yn A. Thus Fourier's algo­
rithm computes projections. 

However Fourier's algorithm generates many redun­
dant constraints and has doubly-exponential worst-case 
behavior. Cernikov [Cernikov 1963] (and later Kohler 
[Kohler 1967]; see also [Duffin 1974]) proposed modifi­
cations which allow some redundant constraints to be 
eliminated during a Fourier step, and address this prob­
lem. The first method eliminates all constraints gener­
ated at the n'th active step which have a label of car­
dinality n + 2 or greater, for every n. A second method 
retains, at each step, a set S of constraints such that ev­
ery constraint generated at this step is label-subsumed 
by a constraint in S 4. The first method eliminates 
a subset of the constraints eliminated by the second. 
These methods are correct in the following sense: If 
{Cih=o,l, ... is the sequence generated by such a method, 
then Ci +--+ ::JYl ... Yi A, for every i. 

Although it appears that the Cernikov modifications 
to Fourier's algorithm could be augmented by deleting 
additional redundant constraints after each step, this is 
incorrect in general [Huynh et al. 1990]. The following 
example highlights this point by showing that the first 
Cernikov algorithm, augmented by the simplest kind of 
redundancy removal, removal of duplicate constraints, is 
unsound. 

3.2.2 An Example 

Let A denote the following labeled constraints. Labels 
appear to the left of the constraints. It can be verified 
that A contains no redundancy. 

{I} w + X + Y + z :S1 
{2} w X + Y + z :S1 
{3} -w + X + Y + z :S1 
{4} -w X + Y + z :S1 
{5} v Y :SO 
{6} -v :SO 

Upon eliminating v (by adding the last two constraints), 
we obtain in the first (Fourier) step: 

{I} w + X + Y + z :S1 
{2} w X + Y + z :S 1 
{3} -w + X + Y + z :S1 
{4} -w X + Y + z :S1 
{5,6} -Y :SO 

N ext we eliminate w obtaining: 

{1,3} X + Y + z :S1 
{1,4} Y + z :S1 
{2,3} Y + z :S1 
{2,4} -x + Y + z :S1 
{5,6} -Y :SO 

4In the English translation of [Cernikov 1963], this is mis­
stated. 



Observe that Cernikov's criterion does not allow us to 
delete any constraints. Since the second and third con­
straints are duplicates, we could delete one. However, we 
choose not to in this step. Next x is eliminated to obtain: 

{1,2,3,4} 
{1,4} 
{2,3} 
{5,6} 

y 
y 
y 

-y 

+ 
+ 
+ 

z ::;1 
z ::;1 
z ::;1 

::;0 

The first three constraints are identical, and now we 
choose to delete the second and third, obtaining: 

{1,2,3,4} 
{5,6} 

y + z ::; 1 
-y ::; 0 

In the final Fourier step, we eliminate y to obtain: 

{1,2,3,4,5,6} z ::; 1 

Cernikov's criterion allows us to delete this constraint, 
and so we finally obtain an empty set of constraints. 
This outcome is incorrect since it implies ::lv, w, x, y A 
is true for all values of z, and it is straightforward to 
verify that, in fact, ::iv, w, x, y A +-+ (z ::; 1). Observe 
that we could have achieved the same incorrect outcome 
if, after eliminating w, one of the duplicate constraints 
was deleted. 

3.2.3 Combining Fourier-based Methods with 
Strict Redundancy Elimination 

Given a set C of constraints, c E C is redundant in C if 
C +-+ C - {c}. A subset R of C is redundant if C +-+ C -R. 
We define C~c iff, for some constraint c', C --+ c' and 
c' --+ c but c r c'. Equivalently, (if we are dealing with 
only non-strict inequalities) C~c means C --+ c' where 
c = c' + (0 ::; f) for some constraint c' and some f > O. 
(Recall that c' + (0 ::; f) denotes the sum ofthe constraint 
c' and the constraint (0 ::; f).) If also c E C then c is said 
to be strictly redundant in C. Geometrically, a strictly 
redundant constraint c determines a hyperplane which 
does not intersect the volume defined by C. We write 
C~C' if C---7>->c for every c E C'. A constraint c E C is 
said to be quasi-syntactic redundant [Lassez et al. 1989] 
if, for some c' E C and some f > 0, C = c' + (0 ::; f). 
Clearly quasi-syntactic redundancy is one kind of strict 
redundancy. 

We capture Cernikov's modifications of Fourier's al­
gorithm and others in the following definition. Let r be 
a constrairit deletion procedure which, at step i, deter­
mines a redundant subset of Fi as a function of the se­
quence F i . Let a Fourier-based algorithm be one which 
generates a sequence of constraint sets {Cih=o,I, ... where 
Co = A and Ci+1 = fourieri+1 (Ci ) - r(Fi+1)' It is im­
portant to note that, in general, it is not necessary 
for a Fourier-based method to compute the sequence 

991 

{Fj h=O,I, .... Indeed, these methods are valuable to the 
extent that they do not compute F i. All that is required 
is that Ci can be viewed as being computed using a func­
tion of this sequence. 

Let r be the function associated with a Fourier-based 
method, and let s map every constraint set to a subset 
obtained by deleting some strictly redundant constraints. 
The sequence of constraint sets {Kih=o,I, ... where Ko = A 
and Ki+1 = s(fourieri+I(Ki) - r(Fi+I)) is the result of 
augmenting the Fourier-based method with the deletion 
of (some) strictly redundant constraints. 

We let Vi denote the set of constraints deleted by 
s at step i, that is, Vi = (fourieri(Ki-l) - r(Fi)) -
s(fourieri(Ki-l) - r(Fi)). A removed constraint in Ci is 
defined to be a constraint in Ci which uses some con­
straint in V j , j ::; i during generation. That is, for some 
j ::; i, if we view generation of Ci as starting from Cj (in­
stead of Co) then c is generated using constraints from 
V j . Ri denotes the set of all removed constraints in C. 
Clearly Fi 2 Ci 2 lCi , lCi = Ci - R i, and Vi ~ R i· 

Numbers denoted by A's, I1'S, v's and f'S are non­
negative throughout. Thus (0 ::; f) is a tautologous con­
straint. The notation var(c) denotes the set of variables 
with non-zero coefficient in constraint c. 

The following theorem from the folklore underlies all 
the work below. 

Theorem 1 Let C = {co, CI, ... , Ck} be a consistent set 
of constraints and let c be a constraint. C --+ c iff c = 
L~=o AiCi + (0 ::; f) where the A'S and f are non-negative. 
D 

The next lemma shows that all strictly redundant con­
straints can be deleted simultaneously from a consistent 
set of constraints. Consequently it is meaningful to speak 
of a strictly redundant subset of C. It also shows that a 
set of redundant constraints can be deleted simultane­
ously with a set of strictly redundant constraints. The 
corresponding results for the class of all redundant con­
straints do not hold. 

Lemma 2 Let C be a consistent set of constraints. 

1. If V ~ C and each c E V is strictly redundant in C 
then C +-+ C - V. 

2. If S is strictly redundant in C and R is redundant 
in C then SUR is redundant in C. D 

We now prove that elimination of strict redundancy 
does not affect correctness of Fourier-based methods. 
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C = initial set of inequalities (after linear substitutions); 
label(c) = {c} for each C E C; 
n = 0; 
while (there exists an auxiliary variable x in C) { 

choose a variable x with minimal measure(x, C); 
V=C~; 
if (IC:I > 0 and IC;I > 0) { 

n = n + 1; / * count active eliminations * / 
for (each pair Ck E C:, Cz E C;) 

if (Ilabel(ck) U label(cz) I ;::: n + 2) continue; /* first Cernikov method */ 
d is the constraint obtained from Ck and Cz eliminating x; 
label (d) = label (Ck) U label (cz); 
if (d is not quasi-syntactic redundant wrt V) { 

E = quasi-syntactic redundant constraints in V wrt d; 

/ * ** 
V = VU {d} - E; 

second Cernikov method 
if (d is label-subsumed in V) 

V = V - {d}; 
else { 

F = constraints in V label-subsumed by d; 
V = V-F; 

} 

* * */ 
} 

} 
C =V; 

} 
return C; 

Figure 2: Linear inequalities 

Theorem 3 Suppose A is consistent and {Ci} is correct. 
Then {Ki} is correct. 

Proof: Note that, since A is consistent, Fn is consistent 
for every n, and consequently so are Cn and Kn- Suppose 
cERn and C depends on constraints in V m, m :s; n; 
say C = L:i AiCi + L:j /-tjdj where dj E Vm for each j and 
Ci E Cm - Vm for each i, and for some j, /-tj > O. Now for 
each j, since Cm~Vm (Lemma 2), dj = L:i VjiCi + (0 :s; 
Ej) where Ej > 0, and Ci E Cm - Vm for each i. Hence 
C = L:i(Ai + L:j /-tjVji)Ci + (0 :s; E') where E' = L:i /-tjEj and 
E' > O. Let c' = L:i(Ai + L: j /-tjVji)Ci so that C = c' + (0 :s; 
E'). 

Now Fm -----+ c' since every Ci E Fm. Furthermore Fn -----+ c' 
since var(c') = var(c) C {Yn+1, Yn+2,' .. } (since cERn). 
Since {Ci} is correct, Cn -----+ c', that is, Cn~c, 

By applying this argument for every C depending on Vm 
and every m :s; n, Cn~c for every cERn. By Lemma 
2, Cn - Cn - Rn. But Cn - Rn = Kn. Hence Kn - Cn 

and, since {Ci} is correct, Kn - Fn. 0 

This result extends to sets of constraints containing 
both strict and non-strict inequalities. Fourier's algo­
rithm and Cernikov's modification extend straightfor­
wardly. The definition of ~ stands, but it is no longer 
equivalent to C -----+ c' and C = c' + (0 :s; E), for some E > O. 

Before discussing our algorithm, we briefly outline the 
costs of various redundancy elimination procedures. Let 
C be a set of m inequalities involving n variables, ob­
tained in a Fourier-based method from mo original in­
equalities. Full redundancy elimination using the sim­
plex algorithm has exponential worst-case complexity, 
although in the average case it is O(m3n). Strict re­
dundancy elimination has essentially the same cost as 
full redundancy elimination. Quasi-syntactic redundancy 
elimination on the constraints C has worst-case complex­
ity O(m2n). The cost of eliminating redundancy in C 
using the first Cernikov method has worst-case complex­
ity 0 (mmo), and it has the important advantage that 
a constraint can be deleted before the (relatively expen-



sive) process of explicitly constructing it. Application of 
the second Cernikov method has worst-case complexity 
O(m2mo). 

In [Cernikov 1963] it is recommended that the first, 
and then the second Cernikov elimination method be 
applied at each step. The variation in which the sec­
ond method is applied only intermittently is suggested in 
[Kohler 1967]. If we want to incorporate the elimination 
of strict redundancy, the above complexity analysis sug­
gests that quasi-syntactic redundancy elimination may 
be most cost-effective. The analysis also suggests that 
this elimination should be performed between the first 
and second Cernikov methods. 

Our tests tended to support this reasoning. Using the 
first Cernikov method followed by quasi-syntactic re­
dundancy elimination produced significant improvement 
.over the first method alone. However further process­
ing in accord with the second Cernikov method only 
marginally reduced the number of constraints eliminated 
and led to an overall increase in computation time. Full 
redundancy elimination after each Fourier step, which is 
incompatible with the Cernikov methods, slows compu­
tation by an order of magnitude. Full strict redundancy 
elimination added to the Cernikov method is also un­
profitable. 

The algorithm is shown in Figure 2. It uses a heuristic 
(from [Duffin 1974]) attempting to minimize the number 
of new constraints generated. There remains the mat­
ter of verifying the correctness of the algorithm. It is 
easy to see that a step i is active in {:Fi} iff it is active 
in {Ki} iff it is active in {Cd. Thus the first Cernikov 
method is Fourier-based, and the corresponding part of 
the algorithm implements this method, and so is correct. 
The second part of the algorithm deletes some remaining 
quasi-syntactic redundancies and, by the previous theo­
rem, is correct. If the third part, which is commented 
out in Figure 2, is included in the algorithm then theo­
rem 3 does not apply directly. However it is not difficult 
to show that this algorithm is equivalent to eliminat­
ing some of the constraints eliminable by applying the 
second Cernikov method en bloc and then eliminating 
some strictly redundant (not necessarily quasi-syntactic 
redundant) constraints. Thus the theorem applies and 
the algorithm is correct. 

4 Constraints over Trees 

The constraints at hand are equations involving uninter­
preted functors, the functor equations. As in PROLOG 
systems a straightforward way of printing these equa­
tions is to print an equation between each target variable 
and its value. 

993 

Consider equivalence classes of variables obtained as 
the reflexive, symmetric and transitive closure of the re­
lation: {(x, y) : x is bound to y}; write rep(x) to denote 
the variable of highest priority equivalent to x. Now de­
fine the printable value of a variable as: 

value(f(t l ,···, tn)) = f(value(tl),· .. , value(tn)); 

l () { 
value(t), if x is bound to a term t; 

va ue x = . 
rep(x), If x is unbound 

The output is a set of equations ofthe form x = value(x) 
for each target variable x, excepting those variables x for 
which value(x) is x itself. We remark that most PRO­
LOG systems do not use equivalence classes as above, 
and thus for example, the binding structure x I-t _1, Y I-t 
_1 is generally not printed as x = y. 

One well-known drawback of the above output method 
is that the output can be exponentially larger than 
the original terms involved. For example, the output of 
Xl = f(X2' X2), X2 = f(X3' X3), ... Xn-l = f(xn, xn), Xn = 
a, where Xl, ... , Xn are target variables, is such that 
the binding of Xl is a term of size O(2n). This ex­
ponential blowup can be avoided by other methods 
[Paterson and Wegman 1978], but in practice it occurs 
rarely. Hence the binding method is adopted in the 
CLP(R) system. 

The output of functor equations in the context of 
other (arithmetic) constraints raises another issue. Re­
call that is not always possible to eliminate non-target 
variables appearing in functor equations (e.g. eliminat­
ing z in x = f (z)). Consequently, arithmetic constraints 
which affect these unavoidable non-target variables must 
also be output. We resolve this issue by augmenting the 
problem description sent to the linear constraint output 
module (c.f. Section 3) as follows: the target variables 
now consist of the original target variables and the un­
avoidable non-target variables, with the latter having pri­
ority intermediate between the original target variables 
and remaining variables. 

These secondary target variables are given lower pri­
ority than the original target variables in order to min­
imize their occurrence in the output. The lower prior­
ity ensures that such variables appear on the left hand 
side of arithmetic equations as much as possible. We can 
then substitute the right hand side of the equation for 
the variable and omit the equation, thus eliminating the 
variable. For example, if x and yare the target variables 
in x = f(z), y = z + 2 the output is x = f(y - 2). We 
discuss this further in section 6. 
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5 Nonlinear Constraints 

In general all nonlinear constraints need to be printed, 
regardless of the target variables, because omitting them 
may result in an output which is satisfiable when the 
original set of constraints is not. For example, given the 
constraints x < 0, y * y = -2 and target variable x, we 
cannot simply output x < O. This problem arises since we 
have no guarantee that the nonlinear constraints are sat­
isfiable. When the only nonlinear constraints are caused 
by multiplication the auxiliary variables in the nonlin­
ear constraints can, in theory, be eliminated. However 
this approach is not practical with current algorithms 
[Collins 1982] and not possible once trigonometric func­
tions are introduced. Thus, as with functor equations, 
the nonlinear equations contribute additional target vari­
ables. These are simply all the variables which remain 
in the nonlinear constraints, and. we give them priority 
lower than the target variables but higher than the vari­
ables added from functor equations. 

However, there is one observation which can signifi­
cantly reduce the number of nonlinear equations printed 
and the number of additional target variables: Sup­
pose a non-target variable y occurs exactly once in the 
constraints, say in the constraint c, and p(x) implies 
3y c( x, y) +-+ c' (i), for some constraint c' and some con­
dition p, then c can be replaced by c', provided the re­
maining constraints imply that p(i) holds. Some specific 
applications of this observation follow. 

If y occurs in the form y = f(i) then this constraint 
can be eliminated provided f is a total function on the 
real numbers (this excludes functions such as exponen­
tiation and division5). If y occurs as y = X Z then we 
can delete the constraint, provided we know that x > 0 
or z is an integer other than O. Similarly, we can delete 
x = zY provided that x > 0, Z > 0 and z i= 1, and delete 
x = yZ provided x > 0 and z i= o. A constraint x = Iyl 
can be replaced by x 2': 0; x = siny (and x = cosy) 
can be replaced by -1 :S x :S 1; x = min(y, z) can be 
replaced by x :S z (and similarly for max). A constraint 
x = y * z (equivalently y = x / z) can be eliminated, pro­
vided it is known that z i= O. In this latter case, which 
can be expected to occur more often than most of the 
other delayed constraints, we can use linear program­
ming techniques on the linear constraints to test whether 
z is constrained to be non-zero. Specifically, we add the 
constraint z = 0 to the linear constraint solver and if the 
solver finds that the resulting set of constraints is incon­
sistent then we delete x = y * z. We undo the effects of 
the additional constraint using the same mechanism as 
used for backtracking during execution of a goal. 

5Strictly speaking, division is not a function, since y = x/ z is 
defined to be equivalent to x = y*z and so % can take any value. 

There is a significant complication due to the linear 
constraints which are generated as a result of simplify­
ing nonlinear constraints. As each such linear constraint 
is generated, it is passed to the linear constraint solver 
so that a consistency check can be performed6

. If the re­
sulting constraint system is not consistent then the sim­
plifications are undone and the system backtracks to the 
nearest choice-point as it normally does after executing 
a failure. 

6 Summary of the Output Mod­
ule 

We now present the output algorithm in its entirety, a 
collation of the various sub-algorithms described above 
corresponding to the different kinds of constraints. Note 
that the order in which the sub-algorithms are invoked 
is important; essentially, the processing of functor and 
nonlinear equations must be done first in order to de­
termine the set of secondary target variables. Then the 
linear constraints are processed in such a way as to max­
imize the number of secondary target variables that can 
be eliminated. Step V below, not previously described, 
performs this elimination. It suffers the same drawback 
as processing functor equations - potentially the size of 
output is exponential in the size of the original equations. 

Step I 
Process the functor equations, in order to obtain the 
secondary target variables. These are essentially the 
non-target variables appearing in the bindings of the 
primary target variables. Obtain a (possibly empty) 
collection of functor equations. 

Step II 
Simplify the nonlinear equations, and expand the 
set of secondary target variables to include all the 
variables in the simplified collection. Obtain a col­
lection of nonlinear equations. This step might also 
produce additional linear equations. 

Step III 
Process the linear equations (Figure 1) with respect 
to the primary and secondary target variables, using 
some priority such that the primary variables are 
higher priority than the secondary variables and the 
auxiliary variables are of the lowest priority. Obtain 
a collection of final linear equations involving only 
target variables. 

Step IV 
Process the linear inequalities (Figure 2), and note 
that these may have been modified as a result of 

6Thus the output module implements a more powerful con­
straint solver than that used during run-time. 



Step III above, using the primary and secondary tar­
get variables. Obtain a collection of linear inequali­
ties involving only target variables. 

Step V 
For each secondary target variable y appearing in a 
linear equation of the form y = t, substitute t for y 
everywhere, and remove the equation. For each sec­
ondary target variable y appearing in a nonlinear 
equation of the form y = t, where y appears else­
where but not in t, substitute t for y everywhere, 
and remove the equation. 

Step VI 
Output all the remaining constraints. 

7 Conclusion 

The output module of CLP(R) has been described. 
While a large part of the problem coincides with the 
classical problem of projection in linear constraints, deal­
ing with functor and nonlinear equations, and working 
in the context of a CLP runtime structure, significantly 
increase the problem difficulty. 

The core element of our algorithm deals with project­
ing linear constraints; it extends the FourierjCernikov 
algorithm with strict redundancy removal. The rest of 
the paper deals with functor and nonlinear equations and 
how they are output together with the linear constraints. 
What is finally obtained is an output module for CLP(R) 
which has proved to be both practical and effective. 

We finally remark that the introduction of meta­
level facilities [Heintze et al. 1989] in a future version of 
CLP(R) significantly complicates the output problem, 
since the constraint domain is expanded to include rep­
resentations j co dings of constraints. 
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Abstract 

As a logic programming language, Prolog has shortcom­
ings. One of the most serious of these is in arithmetic. 
CLP(R) though a vast improvement, assumes perfect 
arithmetic on reals, an unrealistic requirement for com­
puters, where there is strong pressure to use floating­
point arithmetic. We present an adaptation of CLP(R) 
where the errors due to floating-point computation are 
absorbed by the use of intervals in such a way that the 
logical status of answers is not jeopardized. This system 
is based on Cleary's "squeezing" of floating-point inter­
vals, modified to fit into Mackworth's general framework 
of the Constraint-Satisfaction Problem. Our partial im­
plementation consists of a meta-interpreter executed by 
an existing CLP(R) system. All that stands in the way 
of correct answers involving real numbers is the planned 
addition of outward rounding to the current prototype. 

1 Introduction 

Mainstream computing holds that programming should 
be improved by gradual steps, as exemplified by the 
methods of structured programming and languages such 
as Pascal and Ada. Revolutionaries such as Patrick 
Hayes and Robert Kowalski advocated radical change, 
as embodied in Hayes's motto: "Computation is de­
duction." [Hayes 1973] According to this approach, pro­
grams are definitions in a declarative language and every 
computation step is a valid inference, so that results are 
logical consequences of program and data. Logic pro­
gramming, Prolog and the CLP scheme are examples of 
this radical alternative in programming languages and 
method. Where Prolog coincides with logic program­
ming, certainty of knowledge is obtained. 

In numerical analysis there is a similar tension between 
mainstream thinking and the radicals. The first is satis­
fied without rigorous control of errors. When successive 
approximations differ by a small amount, it is assumed 
that a result has been obtained with an error of approxi­
mately that amount. Of course sophisticated error anal­
yses can be made' to suggest more certain knowledge. 

But such analyses are typically valid only asymptotical­
ly. In practice one does not know whether one is close 
enough to the true value for the asymptotic analysis to 
be applicable at all. 

The radical alternative in numerical computation is 
represented by interval methods, where the ideal is to be 
sure that the true value is contained in an interval. It is 
then the purpose of iteration to shrink such an interval 
till it is no greater than an acceptable width. Here again 
the goal is certainty of knowledge. 

In the research reported in this paper, we bring these 
two radical streams together. Both streams are, in their 
present form, deficient. Logic programming lacks in con­
trol of numerical errors. Interval methods rely on conven­
tional algorithmic languages and hence lack computation 
as deduction. We show that the two can be combined in 
such a way that rigorously justified claims can be made 
about the error in numerical computation even if con­
ventional floating-point arithmetic is used. 

Problem statement. Logic programming, exempli­
fied by Prolog, is the most successful realization of 
Hayes's motto. In certain application areas, Prolog 
can be used to program efficient computations that 
are also logical deductions. However, Prolog arithme­
tic primitives, which are functional in nature, are in­
compatible with the relational paradigm of logic pro­
gramming. The advent of CLP(?R), an instance of the 
CLP scheme [Jaffar and Lassez 1987], takes us closer to 
relational arithmetic but its implementation CLP('R)l 
[Jaffar et at. 1990] is obtained by substituting each real 
number by a single floating-point approximation. As a 
result, round-off errors destroy soundness and disqualify 
CLP(R) computation as deduction. 

Solution. Our solution consists of three parts. First, 
we tackle the round-off error problem with interval arith­
metic introduced in [Moore 1966]. Instead of operating 
on individual floating-point numbers, interval arithmetic 

lIn this paper, we use CLP(3?) to denote the CLP instance with 
3? being the algebraic structure of finite trees ofreals; and CLP(n) 
is the name of a CLP(3?) implementation. 



manipulates intervals. The guaranteed inclusion proper­
ty of interval arithmetic ensures the soundness of com­
putation. 

Second, traditional interval arithmetic is function­
al and has been embedded in functional or impera­
tive languages. To develop the required relational ver­
sion, we use an interval narrowing operation based on 
work in [Cleary 1987] and similar to the one used in 
[Sidebottom and Havens 1992J. 

Finally, we make a modification to the CLP scheme by 
including an operation that reduces goal to normal form 
and show that interval narrowing is such an operation. 
By modifying a meta-interpreter for CLP(R) according­
ly, we obtain a prototype implementation. 

The paper is organized as follows. Section 2 discusses 
related work. Relational interval arithmetic, which con­
sists of interval narrowing and a relaxation algorithm, 
is presented in section 3. In section 4, we describe the 
semantics of ICLP(R), which is CLP(R) extended with 
relational interval arithmetic. We summarize and con­
clude in section 5. 

2 Related Work 

Interval arithmetic. While it is important to derive 
new and more efficient interval arithmetic algorithms and 
ensure delivery of practical interval bounds, recent devel­
opment in interval arithmetic [Moore 1988] emphasizes: 
(1) automatic verification of computed answers, and (2) 
clear mathematical description of the problem. Users of 
numerical programs are usually only interested in the so­
lution of a problem. They do not want to take the burden 
(a) to understand how the problem is solved, (b) to vali­
date the correctness of the answers, and (c) to calculate 
error bounds. Logic programming shares these goals. 

Constraint interval arithmetic. Constraint inter­
val arithmetic stems from constraint propagation tech­
niques. It is a form of "label inference," where 
the labels are intervals [Davis 1987]. ENVISION 
[de Kleer and Brown 1984] performs qualitative reason­
ing about the behaviour of physical systems over time. 
TMM [Dean 1985] is a temporal constraint system that 
records and reasons with changes to the world over 
time. SPAM [McDermott and Davis 1984] performs spa­
tial reasoning. These systems are based on consistency 
techniques [Mackworth 1977], which handle only static 
constraint networks. To be able to generate constraints, 
the described systems are equipped with programming 
languages tailored to the application. 

Constraint logic programming. Cleary incorpo­
rates a relational version of interval arithmetic, which 
he calls Logical Arithmetic [Cleary 1987], into Prolog. 
He introduces a new term "interval", which requires an 
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extension of the unification algorithm. Cleary presents 
several "squeezing" algorithms that reduce arithmetic 
constraints over intervals. A constraint relaxation cy­
cle coordinates the execution of the squeezing algo­
rithms. However, there is a semantic problem in this 
approach. Variables bound to intervals, which are terms 
in the Herbrand universe, can be re-bound to small­
er intervals. This is not part of resolution, where on­
ly a variable can be bound. It is not clear in what 
other, if any, sense this may be a logical inference. 
BNR Prolog [Older and Vellino 1990] has a partial im­
plementation of logical arithmetic, which only han­
dles closed intervals. The Echidna constraint reason­
ing system also supports relational interval arithmetic 
[Sidebottom and Havens 1992]. It is based on hierar­
chical consistency techniques [Mackworth et al. 1985]. 
Echidna is close to CHIP [Dincbas et al. 1988]; where­
as we remain within the CLP framework. 

3 Relational Interval Arithme­
tic 

Cleary describes several algorithms to reduce constraints 
on intervals [Cleary 1987]. These algorithms work under 
a basic principle: they narrow intervals associated with 
a constraint by removing values that do not satisfy the 
constraint. We study the set-theoretic aspect of the algo­
rithms and generalize them for narrowing intervals con­
strained by a relation p on lRn. We then discuss interval 
narrowing for several common arithmetic relations. In­
terval narrowing is designed for the reduction of a single 
constraint. Typically, several constraints interact with 
one another by sharing intervals, resulting in a constraint 
network. We present an algorithm that coordinates the 
applications of interval narrowing to constraints in the 
network. 

3.1 Basics of Interval Arithmetic 

We use lR to denote the set of real numbers and IF a set 
of floating-point numbers. We also distinguish between 
real intervals and floating-point intervals. The set of real 
intervals, I(lR), is defined by 

I(lR) = {(a,b]laElRU{-oo},bElR} U 
{[a, b) la E lR,b E lRu {+oo}} U 
{[a, b]1 a, b E lR} U 
{(a, b) la E lRu {-oo},b E lRU {+oo}}. 

Replacing lR by IF in the definition of I(lR), we obtain 
the definition of floating-point intervals. The symbols 
-00 and +00 are used to represent intervals without low­
er and upper bounds respectively. Every interval has the 
usual set denotation. For example, [e,1f) = {x Ie:::; x < 
1f}, (-00,4.5] = {x I x :::; 4.5}, and (-00, +(0) = lR. We 
impose a partial ordering on real intervals; an interval II 
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is smaller than or equal to an interval 12 if and only if 
II ~ 12. Given a set of intervals T. I E T is the smallest 
interval in T if I is smaller than or equal to I' for all 
l' E T. 

Conventionally, real numbers are approximated by 
floating-point numbers by means of rounding or trunca­
tion. We approximate real intervals by floating-point in­
tervals using the outward rounding function, e : I(JR) --+ 

I(IF); if I is a real interval, e(I) is the smallest floating­
point interval containing I. It follows that e(I) = I for 
each floating-point interval I. The IEEE floating-point 
standard [IEEE 1987] provides three user-selectable di­
rected rounding modes: round toward +00, round toward 
-00, and round toward O. The first two modes are es­
sential and sufficient to implement outward rounding: we 
round toward +00 at the upper bound and toward -00 at 
the lower bound. In most hardware that conforms to the 
IEEE standard, performing directed rounding amounts 
to setting a hardware flag before performing the arith­
metic operation. 

We state without proof the following properties of the 
outward rounding function. 

Lemma 1: If A E I(JR) and a' E e(A), then there exists 
a E A such that a' E e([a, aD. • 

Lemma 2: If A E I(IF), a' E A, and a E e([a', a']), then 
a E A. • 

3.2 Interval Narrowing 

An i-constraint is of the form (p, f), where p is a relation 
on IRn and f = (/1,'" ,In) is a tuple of floating-point 
intervals. Note that the number of intervals in the tuple 
f is equal to the arity of p. For any relation p of arity n, 
we can associate n set-valued functions with p: 

Fi(p)(SI, . .. , Si-I, Si+I," ., Sn) 
{Si I(Sl, ... ,Sn) E S(p)} 
'lri( S(p)), 

where i = 1, ... ,n, the S/s are sets, 'lri is the projection 
function defined by 'lri(p) = {sil(sI, ... ,sn) E p}, and 
S(p) = (SI X ... X Si-1 x 'lri(p) X Si+I x ... x Sn) np. 

To ensure that the result of narrowing is an interval, 
we consider only relations p on IRn, such that each Fi(p) 
maps intervals to intervals. We now specify interval nar­
rowing as an input-output pair. 

Input: f = (II, ... , In), where 
Ii is a floating-point interval (1 ::; i ::; n). 

Output: l' = (I~, ... , I~), where 
II = Ii ne(Fi(p)(I1,"" Ii-I, Ii+I,"" In)). 

The application of e in the formula ensures that the 
output intervals are floating-point intervals. If one or 
more Ii is empty, then interval narrowing fails and the i­
constraint (p, f) is i-inconsistent. Otherwise it succeeds 

with I~, .. . , I~ as output. Note that the output interval 
Ii is a subset of the corresponding input interval h 

For example, the Fi(add)'s of the relation add = 
{ (x, y, z) I x, y, z E JR, x + y = z} are 

F1( add)(I2, 13) = 13812, F2( add) (II, 13) = 138 II, 
F3( add) (I1,!2) = II EEl 12, 

where A EEl B = {a + b I a E A, b E B} and A 8 B = 
{a - b I a E A, bE B}. 

The following theorem shows the soundness and com­
pleteness of interval narrowing. 

Theorem 3: Let C be (p, (/1,"" In)). If (XI,"" Xn) 
E p and (Ii, ... , I~) are the output intervals obtained 
from interval narrowing of C, then (XI, ... , Xn) E II X 

... x In if and only if (Xl,' .. , Xn) E I~ x ... x I~. 

Proof: Since I~ x· .. x I~ ~ II x· .. x In, the if-part of the 
lemma is true. In the following, we prove the only-if-part 
of the lemma. 

Suppose (Xl"'" Xn) E II x··· xInnp. We have Xi E Ii 
for i = 1, ... , n and Xi E Fi(p)(Ib'" ,!i-1,!i+I,"" In) 
by definition. Therefore Xi E Ii and (XI, ... , Xn) E I~ x 
... x I~. • 

The next lemma assists in expressing interval narrow­
ing in terms of relational operations. 

Lemma 4: For A E I(IF) and B E I(JR), A ne(B) = 
e(AnB). • 

We rewrite the output of interval narrowing as follows: 

Ii Ii ne(Fi(p)(II,"" Ii-I, Ii+I,"" In)) 
e(Ii n Fi (p) (II, ... , Ii-I, Ii+! , ... , In)) by lemma 4 
e(Ii n 'lri(T(p))) 
e(Ii n{Xi I (Xl,"" Xn) E T(p)}) 
e({Xi E hl(XI,""Xn) ET(p)}) 
e( {Xi I (XI,"" Xn) E ((II X .,. x In) np)}) 
e('lri((I1 x ... X In) np)), 

where T(p) (II x ... X I i - 1 x 'lri(p) X Ii+! x 
... x In) np. In essence, interval narrowing com-
putes the intersection of II x .,. x In and p, and 
outward-rounds each projection of the resulting rela­
tion. We show in [Lee and van Emden 1991b] that 
interval narrowing is an instance of the LAIR rule 
[Van Hentenryck 1989], which is based on the arc consis­
tency techniques [Mackworth 1977]. Figure 1 illustrates 
the interval narrowing of the constraint (Ie, (II, 12)), 

where Ie = {(x,y) Ix,y E IR,x ::; y}. In the diagram, 
the initial floating-point intervals are II and 12 , The dot­
ted region denotes the relation Ie; the region for II x 12 is 
shaded with a straight-line pattern. Interval narrowing 
returns I~ and I~ by taking the projections of the inter­
section of the two regions. There is no need to perform 
outward-rounding in this example since the bounds of I~ 
and I~ share those of II and 12• 
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Figure 1: Pictorial illustration of interval narrowing. 

3.3 Arithmetic Primitives 

A useful relational interval arithmetic system should sup­
port some primitive arithmetic constraints, such as ad­
dition and multiplication. More complex constraints can 
then be built from these primitives. To ensure that a 
relation p is suitable for interval narrowing, we need to 
check that each Fi(p) maps from real intervals to real 
intervals. If p is one of 

eq {(x,x)IXEJR}, 
add {( x, y, z) lx, y, z E JR, x + y = z}, 
Ie {(x,Y)lx,YEJR,x~y}, 
1 t { ( x, y) I x, Y E JR, x < y}, 

we can verify easily that the Fi(p) 's satisfy the criterion. 
The case for the multiplication relation multiply = 

{(x, y, z) I x, y, z E JR, xy = z}, requires further explana­
tion. Consider 

Fl(mul tiply) (I2,!3) = 13012 and 
F2(mul tiply)(II, 13) = 13011, 

where A 0 B = {a/bla E A,b E B,b =1= O}. Note 
that A 0 B is not an interval in general. For example, 
[1,1] 0 [-2,3] = (-00,-1/2] U [1/3,+00) is a union of 
two disjoint intervals. The multiply relation does not 
satisfy the criterion for interval narrowing. 

As suggested in [Cleary 1987], we can circumvent the 
problem by partitioning multiply into multiply+ and 
multiply-, where 

multiply+ 
multiply-

{(x,y,z) Ix,y,z E IR,x ~ O,xy = z}, 
{(x,y,z) I X,y,z E JR, x < O,xy = z}. 

By restricting interval narrowing to one partition or the 
other, we can guarantee that the result of interval divi­
sion is an interval. When a multiply constraint is en­
countered, we choose one of the partitions and perform 
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narrowing; the other partition is visited upon automatic 
backtracking or under user control. 

An advantage of relational interval arithmetic is that 
we do not have the division-by-zero problem. For exam­
ple, the i-constraint (mul tiply+, ((4, +00),0, [-3,5))) is 
reduced to (mul tiply+, ((4, +00),0,0)). 

Relations induced from transcendental functions and 
the dis equality relation, such as sin = {(x, y) I x, Y E 

JR, y = sin( x nand dif = {(x, y) I x, Y E JR, x =1= y}, 
also suffer from the same problem as the multiply rela­
tion. Similarly, we can solve the problem by appropriate 
partitioning of the relations. 

3.4 Constraint Networks 

The interval narrowing discussed so far reduces individ­
ual i-constraints. In practice, we have more than one 
constraint in a problem. These constraints may depend 
on one another by sharing intervals. By naming an in­
terval by a variable and by having a variable occur in 
more than one constraint, we indicate that constraints 
share intervals. Note that the material in this section 
is not related to logic programming but is in conven­
tional notation with destructive assignment2• We define 
an i-network to be a set of i-constraints. Consider the 
quadratic equation x 2 - x - 6 = 0, which can be rewrit­
ten to x(x - 1) = 6. Suppose our initial guess for the 
positive root of the equation is [1,100]. We can express 
the equation by the following i-network: 

{(add, (Vi, [1, 1], V)), (mul tiply+, (V, Vi, [6,6]) n, 

where the variables V and Vi are intervals [1,100] and 
( -00, +00) respectively. 

Our goal is to use interval narrowing to reduce i­
networks. Note the following two observations. First, 
the reduction of an i-constraint C in the i-network affects 
other i-constraints that share variables with C. Second, 
interval narrowing is idempotent as shown in the follow­
ing lemma. 

Lemma 5: Let 1 = (II, ... , In), ji = (I~, ... , I~), and 
i" = (I~', .. . , I::) be tuples of floating-point intervals and 
p a relation on JRn. If, by interval narrowing, ji is ob­
tained from i and ji' is obtained from ji, then ji = i". 
Proof: To prove the equality of ji and ji', we prove 
II = Ii' for i = 1, ... , n. By the definition of interval 
narrowing and lemma 4, we have 

II = e(Ii n Fi(p) (II , ... , Ii-I, Ii+l , ... , In)), 
Ii' = e(IInFi(p)(I~, .. ·'!LllII+1'···'!~))· 

It is obvious that II' ~ II. Next we prove II ~ II'. 
Suppose ai E If. There exists 

2In section 4, we show how we use logical variables to replace 
the conventional variables. 



1000 

such that ai E e([aj, ajD by lemma 1. By the definition of 
Fj(p),for j = 1, ... ,i-1,i+1, ... ,n,thereexistsaj E I j 
such that (aI, .. . , an) E p. Since ai E Ii, we have aj E Ij 
for each j. Thus, aj E Fi(p)(If, ... ,IL1,IIH , ... , I~). 
This implies that aj E Ii'- By lemma 2, ai E II'. • 

An i-constraint (p, f) is stable if applying interval nar­
rowing on f results in 1. An i-network is stable if every 
i-constraint in the i-network is stable. The reduction of 
an i-network amounts to transforming it into a stable 
one. 

A naive approach for the reduction of an i-network is 
to reduce each i-constraint in the i-network in turn un­
til every i-constraint becomes stable. As suggested by 
lemma 5, this method is inefficient since much compu­
tation is wasted in reducing stable i-constraints. Algo­
rithm 1, which is based on the constraint relaxation al­
gorithm described in [Cleary 1987], is the pseudocode of 
a more efficient procedure. The algorithm tries to avoid 
reductions of stable i-constraints and, in this respect, 
it is similar to AC-3 [Mackworth 1977] and the Waltz 
algorithm [Waltz 1975]. Without loss of generality, we 
assume that every i-constraint in the i-network is of the 
form (p, (Vi, ... , Vn )), where Vi's are interval-valued vari­
ables. 

initialize list A to hold all i-constraints in the i-network 
initialize P to the empty list 
while A is not empty 

remove the first i-constraint, (p, V), from A 
apply interval narrowing on V to obtain V' 
if interval narrowing fails then 

exit with failure 
else if V =1= V' then 
V~V' 
foreach i-constraint (q,:9) in P 

if V and :9 share narrowed variable(s) then 
remove (q, :9) from P and append it to A 

endif 
endforeach 

endif 
append (p, V) to the end of P 

endwhile 

Algorithm 1: A Relaxation Algorithm. 

Algorithm 1 resembles a classical iterative numerical­
approximation technique called "relaxation" 
[Southwell 1946], which was first adopted in a constraint 
system in [Sutherland 1963]. Numerical relaxation may 
have numerical stability problems; the procedure may 
fail to converge or terminate even when the constraints 
have a solution. Algorithm 1 does not suffer from this 
problem as shown in the following theorem. 

Theorem 6: Algorithm 1 terminates. The resulting i­
network is either i-inconsistent or stable. • 

The validity of theorem 6 is easy to check since the 
precision of a floating-point system is finite and thus in­
terval narrowing cannot occur indefinitely due to the use 
of outward rounding. 

In the following, we show how algorithm 1 finds the 
positive root of the equation x 2 - x - 6 = 0 with initial 
guess in [1,100]. Initially, the passive list, P, is empty 
and the active list of i-constraints, A, is [GI, G2], where 

G1 (add, (VI, [l,l],V)) and 
G2 (rnul tiply+, (V, Vi, [6,6])). 

We remove the first i-constraint G1 from A and reduce 
it as shown in figure 2. 

The updated values of V and Vi are [1, 100] and 
[0,99] respectively. Similar narrowing is performed on 
the rnul tiply+ i-constraint. The process repeats until 
the precision of the underlying floating-point system is 
reached and no more narrowing takes place. The history 
of the values of A, P, V, and Vi, with four significant 
figures, after each narrowing is summarized in table 1. 

Table 1: Traces of A, P, V, and Vi. 

A P V V1 
[GI, G2 ] [] [1,100] (-00, +00) 

[G2 ] [G1] [1,100] [0,99] 
[G1] [G2] [1,100] [0.06,6] 
[G2] [G1] [1.06,7] [0.06,6] 
[G1] [G2 ] [1.06,7] (0.8571,5.661) 
[G2] [Gl ] (1.857,6.661 ) (0.8571,5.661) 
[Gd [G2 ] (1.857,6.661 ) (0.9009,3.231) 
[G2] [G1] (1.900,4.231 ) (0.9009,3.231) 
[G1] [G2 ] (1.900,4.231 ) (1.418,3.157) 

[] [G1,G2 ] (2.999,3.001 ) (1.999,2.001) 

It is well-known that arc-consistency techniques are 
"incomplete" [Mackworth 1977]: a network can be sta­
ble but neither a solution nor inconsistency is found. In 
the finite domain case, enumeration, instantiation, and 
backtracking can be used to find a particular solution af­
ter the constraint network becomes stable. This method 
is infeasible for interval domains, which are infinite sets. 
We use domain splitting [Van Hentenryck 1989] in place 
of enumeration and instantiation. When an i-network 
becomes stable, we split an interval into two partitions, 
choose one partition and visit the other upon automatic 
backtracking or user control. 



1001 

Input Intervals = (Ill 12 , h) (-00, +00) [1,1] [1,100] 
Fl(add) = [1,100] 8 [1,1] [0,99] 
F2(add) = [1,100] 8 (-00,+00) (-00, +00) 
F3 ( add) = (-00, +00) EEl [1,1] (-00, +00) 

Output Intervals = (If, I~, I~) [0,99] [1,1] [1,100] 

Figure 2: Interval narrowing of an add constraint. 

4 ICLP(R) 

So far, we have explained how a network of constraints 
in terms of floating-point intervals can be made sta­
ble. We have not considered how such networks can 
be specified. One language is CLP(R). An i-constraint 
(p, (II,' .. , In)) can be expressed in CLP(R) as 

where Xi E Ii stands for an appropriate set of inequali­
ties. In this representation, we don't need conventional 
variables. Constraints share intervals when they share 
logical variables. 

When a query to a logic program is answered accord­
ing to the CLP scheme at each step, a network of con­
straints is solved. A special case of such a constraint is 
a variable's membership of a domain. According to the 
CLP scheme, it is possible at any stage that the domain 
inclusions of the current set of constraints is inconsis­
tent in Mackworth's sense of the Constraint-Satisfaction 
Problem. We modify the basic CLP scheme by inserting 
a constraint simplification step and show that interval 
narrowing is a constraint simplification operation. 

In principle, any of the constraint-satisfaction algo­
rithms by Mackworth can be used. In this paper we are 
concerned with real-valued variables. As we argued, the 
only known way of obtaining correct answers involving 
real numbers on a machine with floating-point number­
s is to use interval arithmetic. Accordingly, we explain 
the theory of ICLP(R), where the sub-network consist­
ing of i-constraints is narrowed according to the method 
described above. 

An example. The i-constraint 

(add, ([0,2], [1,3], [4,6])) 

is represented by 

X ~ O,X ::; 2, y ~ 1, Y ::; 3, Z 2:: 4, Z ::; 6,X + Y = Z. 

However, if we submit the above example as a query to 
CLP(R) Version 2.02, we get the answer constraint 

X = -Y + Z,2 + Y ~ Z,Y ~ 1,3 ~ Y,Z ~ 4, 
6 ~ Z,X ~ O. 

Examining the answer more carefully, we note that 

X = -Y + Z == X + Y = Z and 2 + Y 2:: Z == X ::; 2. 

Thus the answer constraint is the original query disguised 
in a slightly different form. CLP(R) only checks the 
solvability of the constraint but does not remove unde­
sirable values from the intervals. A more useful answer 
constraint is 

X ~ 1, X ::; 2, Y ~ 2, Y ::; 3, Z ~ 4, Z ::; 5, X + Y = Z. 

The modified CLP scheme ICLP(R) is CLP(R) en­
hanced with interval narrowing and algorithm 1. The 
operational semantics of ICLP(R) is based on a general­
ization of Mx-derivations [Jaffar and Lassez 1986]. Let 
P be a CLP(X) program, where X is a structure with 
model Mx, and f- Gi be a goal. f- Gi+1 is M'x-derived 
from f- Gi if 

1. f- G' is Mx-derived from f- Gi , and 

2. f- Gi +1 = v( f- G'), where v is a normal-form 
function that maps from goal to goal such that 
P FMx 3(G') {:} P FMx 3(Gi+1)' 

An M'x-derivation is a, possibly infinite, sequence of 
goals G = Go, Gl , G2 , •.. such that Gi +1 is M'x-derived 
from G i . A M'x-derivation is successful if it is finite 
and the last goal contains no atoms. The soundness and 
completeness of M'x-derivations follow directly from the 
soundness and completeness of Mx-derivations and the 
definition of the normal-form function. A M'x-derivation 
is finitely-failed if it is finite, the last goal has one or more 
atoms, and condition 1 does not hold. 

The M'x-derivation step is not new. In fact, it 
has been implemented in other CLP systems as a con­
straint simplification step. The Mx-derivation step on­
ly checks the solvability of the constraint accumulated 
so far. Therefore, the answer constraint of a successful 
Mx-derivation is usually complex and difficult to inter­
pret. A useful system should simplify the constraint to 
a more "readable" form. For example, CLP(R) sim­
plifies the constraint {X + Y = 4, X - Y = 1} to 
{X = 2.5, Y = lo5}. Suppose the goal f- d, A' is M x -

derived from f- e, A. CLP(R) simplifies e' to e" such 
that FMx 3(e') {:}FMx 3(e") and thus 

P FMx 3(e', A') {:} P FMx 3(e", A'); 
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CLP(n) is based on M~-derivation. 

Theorem 7: If 

C {)(l E I1, ... ,)(n E In,P()(l, ... ,)(n)} and 
C' {)(l E I~, ... ,)(n E I~,P()(l, ... ,)(n)}, 

where Ii is obt~ined from Ii by interval narrowing for 
i = 1, ... , n, then FMx 3(C) ¢:>FMx 3(C'). 

Proof: The theorem follows directly from theorem 3 .• 

Theorem 7 guarantees that interval narrowing trans­
forms a constraint into a stable constraint with the same 
solution space. Algorithm 1, which performs narrow­
ing repeatedly on i-constraints in a network, is thus a 
normal-form function. 

Partitioning of relations can also be expressed com­
pactly in ICLP(n). For example, the multiply relation 
can be defined by 

multiplyCX,Y,Z) .- X ~ O,multiply+CX,y,Z). 
multiplyCX,Y,Z) .- X < O,multiply-CX,Y,Z). 

A meta-interpreter ICLP(n) written in CLP(n) is de­
scribed in [Lee and van Emden 1991a]. We have not yet 
included outward rounding in the current implementa­
tion. Table 1 is derived from a trace produced by our 
prototype, except that the outward rounding has been 
added manually. 

5 Concluding Remarks 

We have developed the essential components of a rela­
tional interval arithmetic system. Interval narrowing es­
tablishes (1) the criterion that an arithmetic relation has 
to satisfy to be used as arithmetic constraint in relation­
al interval arithmetic, and (2) the reduction of arithme­
tic constraint using the interval functions induced from 
the constraint. Algorithm 1 then coordinates the appli­
cations of narrowing to transform a constraint network 
into its stable form. 

The incorporation of relational interval arithmetic in 
CLP(n) makes it possible to describe programs, con­
straints, queries, intervals, answers, and variables in a 
coherent and semantically precise language--Iogic. The 
semantics of ICLP(n) is based on M~-derivation, which 
is a logical deduction. Consequently, numerical computa­
tion is deduction in ICLP(n), which is a general-purpose 
programming language allowing compact description and 
dynamic growth of constraint networks. One advantage 
of ICLP(n) over CLP(n) is the ability to handle non­
linear constraints, which are delayed in CLP(R). It is 
important to note that ICLP(n) is not another instance 
of the CLP scheme. It is a correct implementation of 
CLP(~). 

The ICLP(n) meta-interpreter shows the feasibility of 
our approach. Future work includes extending CLP(n) 

at the source level, to ICLP(n) to improve efficiency. We 
also plan to investigate applications in such areas as finite 
element analysis, and spatial and temporal reasoning. 
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Abstract 

Recent years have seen the emergence of two main 
approaches to integrating constraints into logic 
programming. The CLP Scheme introduces con­
straints as basic statements over built-in computa­
tion domains. On the other hand, systems such as 
CHIP have introduced new inference rules, which 
enable certain predicates to be used for propaga­
tion thereby pruning the search tree. Unfortu­
nately these two complementary approaches were 
up to now incompatible, since propagation tech­
niques appeared intimately tied to the notion of 
finite domains. This paper introduces a general­
isation of propagation that is applicable to any 
CLP computation domain, thereby restoring or­
thogonality and bridging the gap between two im­
portant constraint logic programming paradigms. 
The practical interest of this new notion of "do­
main independent" propagation is demonstrated 
by applying a prototype system for solving some 
hard search problems. 

1 Introduction 

There are two main approaches for integrating 
constraints into logic programming. The first ap­
proach, formalised as CLP(X) [Jaffar and Lassez, 
1987], is to replace the usual domain of compu­
tation with a new domain X. The computation 
domain X specifies a universe of values; a set of 
predefined functions and relations on this universe; 
and a class of basic constraints, which are formulae 
built from predefined predicate and function sym­
bols, and logical connectives. The C LP scheme 
requires that an effective procedure decide on the 
satisfiability of the basic constraints. The facility 
to define new predicates as facts or rules, possibly 
involving the built-in's, is carried over from logic 
programming. The evaluation of queries involving 
such user-defined predicates is performed using an 

extension of resolution, where syntactic unification 
is replaced with deciding the satisfiability of basic 
constraints (constraint solving). As with standard 
logic programming the default search method for 
evaluating program-defined predicates is depth­
first, based on the ordering of program clauses and 
goals. 

The second main approach to integrating con­
straints in logic programming uses the standard, 
syntactic, domain of computation, except that 
the variables may be restricted to explicitly range 
over finite subsets of the universe of values (finite 
domain variables) [Van Hentenryck and Dincbas, 
1986]. In this approach, inaugurated by CHIP 
[Dincbas et al., 1988), it is the proof system that 
is extended. The new type of controlled infer­
ence is termed constraint propagation or consis­
tency techniques [Van Hentenryck, 1989). These 
techniques combine solution-preserving simplifica­
tion rules and tree search, and were originally in­
troduced for solving constraint satisfaction prob­
lems [Montanari, 1974; Mackworth, 1977). 

Informally constraint propagation aims at ex­
ploiting program-defined predicates as constraints. 
It operates by looking ahead at yet unsolved goals 
to see what locally consistent valuations there re­
main for individual problem variables. Such con­
straint techniques can have 8. dramatic effect in 
cutting down the size of the search space [Dincbas 
et al., 1990). 

To date the technique of propagation has only 
been defined for search involving finite domain 
variables. Each such variable can only take 8. finite 
number of values, and looking ahead is a way of 
deterministically ruling out certain locally incon­
sistent values and thus reducing the domains. This 
restriction has prevented the application of prop­
agation to new computation domains introduced 
by the C LP(X) approach. In addition propaga­
tion, as currently defined, cannot reason on com-



pound terms, thereby enforcing an unnatural and 
potentially inefficient encoding of structured data 
as collections of constants. 

This has meant that the two approaches to in­
tegrating constraints into logic programming have 
had to remain quite separate. Even in the CHIP 
system which utilises both types of integration, 
propagation is excluded from those parts of the 
programs involving new computation domains, 
such as Boolean algebra or linear rational arith­
metic. 

This paper proposes a generalisation of propa­
gation, which enables it to be applied on arbitrary 
computation domains. Generalised propagation 
can be applied in C LP(X) programs, whatever the 
domain X. Furthermore its basic concepts, theo­
retical foundations, and abstract operational se­
mantics can be defined independently of the com­
putation domain. This allows programmers to rea­
son about the efficiency of C LP programs involv­
ing propagation in an intuitive a,nd uniform way. 
This generality carries over to the implementation, 
where algorithms for executing generalised prop­
agation apply across a large range of basic con­
straint theories. Last but not least, the declarative 
semantics of C LP programs is preserved. 

The main idea behind generalised propagation 
is to use whatever basic constraints are available 
in a CLP(X) language to express restrictions on 
problem variables. Goals designated as propaga­
tion constraints are repeatedly approximated. to 
the finest basic constraint preserving their solu­
tions. When no further refinement of the current 
resolvent's basic constraint is feasible, a resolution 
step is performed and propagation starts again. 

The practical relevance of generalised propaga­
tion has been tested by implementing it in the 
computation domain of Prolog. Programs are just 
sets of Prolog rules with annotations identifying 
the goals to be used for propagation. The lan­
guage has enabled us to write programs which are 
simple, yet efficient, without the need to resort 
to constructs without a clear declarative seman­
tics such as demons. The performance results have 
been very encouraging. 

In the next section we recall the interest of inte­
grating propagation over finite domains into logic 
programming. We then present a logical basis for 
propagation that will provide the basis for gen­
eralisation. The following section introduces gen­
eralised propagation, and sketches its theoretical 
basis. The fourth section introduces our proto­
type system on top of Prolog, and discusses some 
of the examples that we tackled with it. In con­
clusion we identify the directions that this work is 
now taking. 
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2 Propagation over Finite Domains 

2.1 Propagation in Constraint 
Satisfaction Problems 

The study of constraint satisfaction problems has 
a long history, and we mention here just a few im­
portant references. The concept of arc consistency 
was introduced in [Mackworth, 1977]; its combina­
tion with backtrack search was described in [Haral­
ick and Elliot, 1980]; the notion of value propaga­
tion is due to [Sussman and Steele, 1980]; the ap­
plication of constraint methods to real arithmetic 
was surveyed in [Davis, 1987]; finally [Van Henten­
ryck, 1989] extensively motivates and describes in 
detail the integration of finite-domain propagation 
methods into logic programming. 

A constraint satisfaction problem (CSP) can be 
represen ted as 

• a set of variables, {Xl, ... , Xn}, each Xi 
ranging over a finite domain Di; 

• a set of constraints Cl, ... , Cm on these vari­
ables, where each constraint Ci is an atomic 
goal Pi(Xi1 , .•• Xik) defined by a k-ary predi­
cate Pi. 

A solution to the problem is an assignment of 
values from the domains to the variables (a la­
belling) such that all the constraints are satis­
fied. We now briefly recall the main approaches 
to solving esP's in a logic programming setting, 
using the following toy example. The problem has 
four variables Xl, X2, X3, X 4, each with domain 
{a, b, c}. There are four constraints, each involv­
ing the same binary predicate p: 
p(X3, Xl) "p(X2, X3) 1\ p(X2, X4) 1\ p(X3, X 4) 
The relation denoted by P has three tuples: < 
a,b >, < a,c >, < b,c >. 

Generate and Test This approach enumerates 
labellings in a systematic way until one is found 
that satisfies all the constraints. It is hopelessly in­
efficient for all but the smallest problem instances. 
In our example the system will go through all 27 
labellings which begin with an a, before discover­
ing that Xl cannot take this value due to the first 
constraint p(X3, Xl). In general reordering the 
constraint goals may only bring minor improve­
ments. Analysing the cause for the failure of goals 
so as to avoid irrelevant backtrack steps (selective 
backtracking) makes the runtime structures more 
complex and is insufficient for complex problems 
(see for instance [Wolfram, 1989]).1 

1 Selective, or intelligent, backtracking [Codognet 
and Sola, 1990] addresses the symptom of too many 
choice points. Propagation addresses the cause, by re­
ducing the number of choice points in advance. 
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Backtrack Search A first improvement on pure 
generate-and-test is to check each constraint goal 
as soon as all its variables have received values 
[Golomb and Baumert, 1965]. Backtrack search 
thus performs an implicit enumeration over the 
space of possible labellings, discarding partial ~a­
beIlings as soon as they can be proved locally In­

consistent with respect to some constraint goal. 
Backtrack search demonstrates considerable gains 
over generate-and-test (the inconsistent assign­
ment Xl = a is detected at once). However 
this procedure still suffers from "maladies" [Mack­
worth, 1977], the worst being its repeated discov­
ery of local inconsistencies. For instance it is obvi­
ous from p(X3, Xl) " p(X2, X3) alone that Xl 
cannot take the value b. Backtrack search will 
nonetheless consider all 9 combinations of values 
for X2 and X3 before rescinding Xl = b. 

LocAl Propagation The idea behind local 
propagation methods for CSP's is to work on each 
constraint independently, and deterministically to 
extract information about locally consistent as­
signments. This has lead to various consistency 
algorithms for networks of constraints, the most 
widely applicable of these being arc-consistency 
[Montanari,1974]. Consistency can be applied as a 
preliminary to the search steps or interleaved with 
them [Haralick and Elliot, 1980]. The application 
of these techniques in the constraint logic program­
ming language CHIP was accomplished through 
two complementary extensions [Van Hentenryck 
and Dincbas, 1986; Van Hentenryck, 1989] 

• explicit finite domains of values to allow 
the expression of range restrictions, together 
with the corresponding extension of unifica­
tion (FD-resolution) 

• new lookahead inference rules to reduce finite 
domains in a deterministic way 

The effect of applying lookahead on a goal is to 
reduce the domains associated with the variables 
in the goal, so that the resulting domains approx­
imate as closely as possible the set of remaining 
goal solutions. The solutions can be determined 
by simply calling the goal repeatedly. Application 
of the lookahead rule is repeated on all constraint 
goals until no more domain reductions are possi­
ble, forming a propagation sequence. Constraint 
goals that are satisfied by any combination of val­
ues in the domains of their arguments can now be 
dropped. 

Our example problem can be encoded in a 
CHIP-like syntax as follows: 

csp(X1,X2,X3,X4) :-
lookahead p(X3,X1), /. [1] ./ 

lookahead p(X2,X3), /. [2] ./ 
lookahead p(X2,X4), /. [3] ./ 
lookahead p(X3,X4), /. [4] ./ 
dom(X1),dom(X2),dom(X3),dom(X4). 

The lookahead annotations identify goals that 
must be treated by the new inference rule. An­
notations can be ignored for a declarative reading. 

For our example problem, the initial propaga­
tion sequence is sufficient to produce the only so­
lution; domain goals merely check each of the vari­
able bindings already produced. A possible com­
putation sequence is as follows (though the order­
ing is immaterial for the final result): 

lookahead on: produces: 
p(X3,X1) [1] X3::{a,b}, X1::{b,c} 
p(X2,X3::{a,b}) [2] X2=a, X3=b 
p(a,X4) [3] X4::{b,c} 
p(b,X1::{b,c}) [4] X4=c 
p(b,X1::{b,c}) [1] X1=c 
p(a,b) [2] succeeds 
p(a,c) [3] succeeds 
p(b,c) [4] succeeds 

Note that the constraint [1] takes part in two prop­
agation steps before it is solved. In general con­
straints may be involved in any number (> 0) of 
propagation steps. 

From this brief summary of consistency tech­
niques for esP's and their integration into logic 
programming, it may appear that finite domain 
variables form the cornerstone of propagation. 
The purpose of this paper is to show that this is 
not the case, and that propagation has a very gen­
eral, natural and useful counterpart in constraint 
logic programming languages that do not feature 
finite domains. 

2.2 A Logical Basis for Propagation 

The effect of (finite domain) propagation on a con­
straint is to reduce the domains associated with 
the variables appearing in the constraint. The re­
sulting domains capture as precisely as possible 
the meaning of the constraint. The aim of this 
section is to say in what sense the meaning of a 
constraint is captured by a set of domains, and to 
give a formal characterisation of the qualification 
"as precisely as possible" . 

A constraint C(Xl,"" Xn) is to be understood 
as a logical formula with free variables Xl, ... , X n . 

A constraint formula has the syntactic form: 
(Xl = au " ... "Xn = aln ) V ... V (Xl = 
akl " ... " Xn = akn). , 
A domain formula Dom(X) is a disjunction of 
equalities involving a single variable X: 
X = al V X = a2 V ... V X = an. 



Generally many variables are involved in a prob­
lem, and we therefore introduce a syntactic class 
of formulae representing the conjunction of their 
domains. These are the basic formulae. Thus a 
basic formula D(Xl, ... , Xn) has the form: 
D07nl(Xd 1\ ... 1\ Domn(Xn). 

The reduced domains, resulting from propaga­
tion on a constraint, approximate the constraint 
formula as closely as is possible using only a ba­
sic formula. Propagation is "precise" if this basic 
formula is logically equivalent to the constraint for­
mula. The problem is that basic formulae have a 
limited expressive power, and it is not in general 
possible to find one logically equivalent to a given 
constraint formula. 

For example the constraint formula C(Xl' X 2 ), 

(Xl = al\X2 = b) V (Xl = al\X2 = C)V(XI = 
b 1\ X2 = c), 
is best approximated by the basic formula 
(Xl = a V Xl = b) 1\ (X2 = b V X 2 = c). 
However there is no basic formula logically equiv-
alent to C(Xl' X2)' 

Definition 1 A propagation step takes a con­
straint formula C and a basic formula D and 
yields a "least" basic formula D' which satisfies 
(C 1\ D) -+ D'. D' is the least such formula in the 
sense that for any other basic formula D" satisfy­
ing (C 1\ D) -+ D" it is also true that D' -+ D". 

This definition will be illustrated using the con­
straint C(Xt, X 2 ): 

(Xl = al\X2 = b)V(XI = bl\X2 = C)V(XI'= 
cl\X2=a). 
The input basic formula D(X1 , X 2 ) is: 
(Xl = a V Xl = b) 1\ (X2 = a V X 2 = b V X 2 = c). 

Propagation on a constraint involves two steps: 
the simplification of the constraint and the reduc­
tion of domains associated with its variables. 

The simplification of the constraint C(XI , X 2), 

with respect to the basic constraint D(Xl' X 2) is 
just the calculation of a simplified constraint log­
ically equivalent to C(Xl, X 2 ) 1\ D(XI' X 2 ). The 
result of simplifying is C'(X1 ,X2 ) == (C(Xt,X2 )I\ 
D(Xl' X2» == 
(Xl = a 1\ X 2 = b) V (Xl = b 1\ X2 = c). 

The reduction of the domains is the calcula­
tion of a new basic formula which approximates as 
closely as possible the simplified constraint. The 
result of reducing is D'(X l, X 2 ) == 
(Xl = a V Xl = b) 1\ (X2 = b V X 2 = c). 
For this example there is no basic constraint 
logically equivalent to C'(Xt, X2)' However 
D' (X 1, X 2) is the least basic formula implied by 
C'(XI,X2 ) since the domain of Xl must include 
at least a and b, and the domain of X 2 must in-
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clude at least band c. 

Definition 2 Propagation is the result of applying 
a propagation sequence, which is the repeated ap­
plication of propagation steps on every constraint 
until no more domain reductions are possible. 

This definition does not mention the order in 
which propagation steps are done. In fact the re­
sult of performing propagation on a set of con­
straints is independent of the order. We prove this 
as follows. 

Lemma 1 If ba,'iic formulae are ordered by logical 
entailment, propagation steps are increasing and 
monotonic on basic formulae. 

This is easily deduced from the definition of a 
propagation step. 

Lemma 2 Each (ordered) propagation sequence 
yields a fixpoint. 

This follows from the fact that there are only 
finitely many basic formulae greater than a given 
basic formula under the logical entailment order­
ing, and propagation steps are increasing. 

Theorem 1 The result of a propagation sequence 
is independent of the order of the steps. 

Suppose fix land fix2 were distinct fixpoints of 
a propagation sequence, resulting from an initial 
basic formula sO. Since propagation is increasing, 
fixl ~ sO. fix2 results from applying a particular 
ordered sequence of propagations on sO. By mono­
t.onicity t.his same sequence applied to fixl yields 
a result fix3 ~ fix2. However since fix 1 is a fix­
point of the propagation sequence, fix3 = fixl. 
We conclude that fixl ~ fix2. Symmetrically 
we can conclude that fix2 ~ fixl, and therefore 
fixl = fix2. 

It is also possible to show that propagation can 
be performed in parallel, and still yield the same 
fixpoint. These and other results fall out very nat­
urally when lattice theory is used to describe the 
constraints. The lattice theoretic formalisation of 
generalised propagation is described in another pa­
per [Le Provost and Wallace, 1992]. 

3 Generalised Propagation 

For finite domain propagation, the basic formulae 
express domains associated with the problem vari­
ables, and the constraint formulae express mem­
bership of tuples in relations. Each class of formu­
lae has a certain limited expressive power. How­
ever the definition of a propagation step and a 
propagation sequence do not depend on the partic­
ular syntactic classes chosen for basic formulae or 
constraint formulae. In this section we will explore 
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the consequences of admitting different classes of 
formulae. We shall propose a notion of generalised 
propagation parameterised on the classes of formu­
lae. 

In the CLP{X) approach a class of basic con­
straints is identified for each domain X. Gener­
alised propagation on a domain X is the result of 
admitting the basic constraints on X as basic for­
mulae as described in the last section. The class of 
constraint formulae is the class of goals expressible 
in CLP(X). 

The basic formulae used for finite domain prop­
agation involve only the equality predicate and 
no function symbols. For generalised propagation 
over a domain X the basic formulae may include 
other predicates, such as < and >, and function 
sym boIs such as + and "'. However the purpose 
and effects of propagation remain the same. To 
detect inconsistencies early and to extract as much 
information as possible from a set of goals deter­
ministically before making any choices. The infor­
mation extracted is expressed as a basic formula, 
which is added to the current constraint set, either 
yielding inconsistency immediately, or else helping 
to prune the remaining search. 

As a simple example of generalised propagation, 
consider C LP( Q) with atomic constraints Var ~ 
num and Var ~ num, where num is any rational 
nllmber. Let us define a predicate p on which we 
shall perform generalised propagation. 

p(X) :- X >= 3.4, X =< 4.6 
p(X) :- X >= 2.8, X =< 3.9 

Assume the current constraints include X ~ 4.0, 
and p(X) is a goal. The CLP(X) approach requires 
us to treat user-defined predicates such as p a la 
Prolog. One clause in the definition of p is selected, 
and if that yields an inconsistency the other is tried 
on backtracking. . 

Generalised propagation on the predicate p, 
treated this time as a constraint, deterministi­
cally derives the tightest basic constraint C(X) 
satisfying (p(X) /\ X ~ 4.0) -+ C(X), and adds 
C(X) to its current set of constraints. In this case 
C(X) == (X ~ 2.8/\ X ~ 4.0), which can be used 
to prune the remaining search tree. 

The case of finite domains can be viewed as an 
instance, CLP(FD), of the constraint logic pro­
gramming scheme, where the basic constraints 
are the basic formulae as defined in section 2.2. 
Propagation on finite domains can now be seen 
as an instance of generalised propagation, just as 
CLP(FD) is an instance of CLP(X). Notice that 
the expressive power of CLP(FD) is weaker than 
that of standard logic programming, since it is 
impossible using domains to state that two vari-

abIes are equal, until their domains are reduced to 
one value. This is indeed a weakness of propaga­
tion over finite domains, and in the next section 
we shall present an implementation of generalised 
propagation that overcomes it. 

Unfortunately it is not the case that generalised 
propagation can be automatically derived for any 
computation domain X. There is a practical re­
quirement to constructively define a propagation 
step. Specifically, for propagating on a goal the 
system requires an efficient way to extract a basic 
formula which generalises all the answers to the 
goal. 

More fundamentally a theoretical problem arises 
when we move from finite domain constraints to 
arbitrary basic constraints. There are only finitely 
many finite domain constraints tighter than a. 
given constraint. This fact ensures that propa­
gation is bound to reach a fixpoint. However for 
many sets of basic constraints, such as inequali­
ties over the rationals as exampled above, there is 
no similar guarantee of termination. This problem 
has been addressed by introducing a notion of ap­
proximate generalised propagation in [Le Provost 
and Wallace, 1992]. 

4 Propia: An Implementation of 
Generalised Propagation 

4.1 An Overview of the Implementation 

The behaviour of generalised propagation in prac­
tise has proved to be more than satisfactory. 
An implementation of generalised propagation has 
been completed based on ECRC's Sepia prolog sys­
tem. We call it Propia. The underlying domain is 
the I1erbrand domain of standard logic program­
ming. The built-"in relation on this domain is '=', 
and basic constraints are conjunctions of equalities 
(or equivalently substitutions). 

A simple example of generalised propagation 
over this domain, is propagation on the predicate 
p defined as follows: 

p(g(1),a,b). 
p(f(a),a,a). 
p(g(2),b,a). 
p(f(b),b,b). 

The result of generalised propagation on the goal 
p(A,X,X), is the deterministic addition of a new 
equation, A = f(X). Although there are two dif­
ferent possible values for A, they both have the 
form f(X), where X is the same variable occur­
ring as the second and third arguments in the goal. 
Using finite domains (even if structured terms were 
admitted) it would only be possible to infer that 
the doml\in of X was {a, b} and the domain of A 



was {f(a), f(b)}, but not that A = f(X). This is 
the weakness of finite domain pointed out on page 
5 above. 

Implementationally constraint simplification 
with respect to this goal amounts to selecting those 
clauses in the definition which unify with the goal, 
as done by Prolog. The reduction step, given a set 
of answers, finds the set of equations which best 
approximates them. The best approximation is, in 
fact, their most specific generalisation. 

Computations interleave the making of choices 
and propagation. When a propagation sequence 
terminates, goals are called a la Prolog until a new 
binding, or set of bindings, occur thereby conjoin­
ing new equations X = T to the current basic con­
straint. At this point propagation restarts. When 
a fixpoint is reached, the propagation sequence is 
complete and further goals are called a la Prolog. 

It would be prohibitively expensive to attempt 
propagation on all the constraints at each choice. 
In practise the system determines on which vari­
ables new equalities have been added and only 
propagates on constraints involving those vari­
ables. When further equalities are added during 
a propagation sequence, then propagation is also 
attempted on constraints involving these variables. 

The purpose of propagation is to extract as 
much information as possible deterministically be­
fore making any choices. The A ndorra princi­
ple [Warren, 1988] has a similar intent: it states 
that deterministic goals should be executed before 
other goals. The goal p(A, X, X) in the previous 
example is clearly not deterministic, yet determin­
istic information can be extracted from it. Lee 
Naish coined the term data determinacy for the de­
terminism detected and used by generalised prop­
agat.ion, as opposed to Andorra's weaker control 
determinacy. 

4,2 An Example of Propagation 

The behaviour of generalised propagation in the 
syntactic equality theory can be illustrated using 
a simple example. We shall investigate what prop­
agation is possible for varions calls on the 'and' 
predicate defined a.c; follows: 
and(true,true,true) , 
and(true,talse,talse), 
and(talse,true,talse), 
and(talse,talse,talse), 
\Ve treat the goal as a propagat.ion constraint by 
making the call?- propagate and(_,_,_). Note 
t.hat. finite domain variables are not part of our 
chosen propagation language. 

For "most specific generalisation" we shall use 
the abbreviation msg. First if the call is fully unin­
stant.iated ?- propagate and(X, Y, Z) the system 
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finds the first two answers and forms the msg 
and(true, Y, Z). After the third answer the msg 
becomes and(X, Y, Z), which is as little instanti­
ated as the query, and propagation stops. 

Second if 
the call has its first argument instantiated to false 
?- propagate and(talse, Y , Z) there are two an­
swers whose msg is and(false, _, false). Thus the 
equality Z = false is returned. 

Third if the call has its first argument instanti­
ated to true ?- propagate and ( true, Y , Z) there 
are again two answers, and(true, false, false) and 
and(true, true, true). Our generalisation proce­
dure is able to derive the equality of the last two 
arguments and the final msg is and(true, Y, Y). 
Thus the equality Y = Z is returned. 

We note that the behaviour is very similar to 
that obtained by encoding and using "cut guards" 
in Andorra, GIIC rules, or "demons" in CIIIP. For 
example in CIIIP we would write: 

?- demon and/3. 
and(talse,Y,Z) '- Z=talse, 
and(true,Y,Z) '- Z=Y. 
and(X,talse,Z) '- Z=talse, 
and(X,true,Z) '- Z=X, 
and(X,Y,true) '- X=true, Y = true, 
and(X,X,Z) '- Z=X 

The difference is that the use of propagate enables 
us to separate the specification of the predicat.e, 
from its control. When using guards or demons 
we are forced to mix them t.oget.her. Indeed gener­
alised propagation allows declarative specifications 
to be directly used as constraints! 

We used Propia for a benchmark set of propo­
sit.ional satisfiability problems distributed by the 
F AW research institute [Mitt.erreiter and Rader­
macher, 1991]. Its behaviour was in general quite 
comparable to that of CHIP's demons or built-in 
const.raint.s. 

Another application we examined was that of 
crossword puzzle compilation. The problem is to 
fill up an empty crossword grid using words from 
a given (possibly large) lexicon. The propagation 
constraint.s enforce membership of words. in the 
given lexicon. Intersections are expressed through 
shared variables. 

The statement of the problem is as follows: 

1* some lexicon ot available words */ 
word(a), 
word(a,b,a,c,k), 

prog ,-
propagate word(A,B,C,D), 
/* Bote the shared letter B */ 
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propagate ~ord(E,F,B,H), 
... , 
The program just comprises a set of propaga~ion 
const.raints. (There is no need for a labellmg smce 
Propia itself selects a propag~tion constraint f~r 
resolution when the propagatIOn sequence termI­
nates.) Immediately certain letters are instanti­
ated by the original propagation. Subsequently, 
each time some letters are instantiated after select­
ing a wOf'd goal for resolution, the affected prop­
agation constraints are re-executed in the hope of 
instantiating further letters. 

The crossword compilation problem has also 
been addressed using CLP by Van Hentenryck 
[Van IIent,enryck, 1989]. Generalised propaga­
tion yields a performance improvement of about 
15 times on Van I1entenryck's example. How­
ever much more significant is the power of gen­
eralised propagation for solving large problems. 
Van lIentenryck's example uses a lexicon which 
cont.ained precisely the 150 words needed to com­
pile the crossword. With generalised propagation 
it. is possible to compile crosswords from a 25000 
word lexicon. It is interesting to note that gener­
alised propagation automatically yields a similar 
algorithm for generating crosswords as that de~el­
oped for specialised crossword puzzle generatmg 
programs [Oerghel, 1987]. 

A further way to control the evaluation of the 
crossword puzzle example is to divide the word 
goals into clusters, reflecting connected subareas 
of t.he crossword grid. A predicate cluster can be 
defined which combines all the words in a cluster: 

cluster(A,B,C,D,E,F) :-
~ord(A,B,C),~ord(A,D,F),~ord(C,E,F). 

Generalised propagation can then be applied to 
t.he whole cluster: 

propagate cluster(A,B,C,D,E,F) 

In general propagation on cluster yields strictly 
more information than propagation on each of the 
word goals individually. However the amount. of 
computing required to perform the propagation on 
cluste?' is also likely to be greater than propagating 
on t.he word goals individually. 

If propagat.ion is applied to larger subproblems, 
then we term it more "global". Global propagation 
is more expensive than local propagation but the 
amount of pruning of the search tree that results 
can be very significant. 

4.3 Topological Branch and Bound 

Generalised propagation is based on the idea of 
finding all answers to a query and eliciting the 
most specific generalisation. However it much 

more efficient to alternate the finding of answers 
and calculating the most specific generalisation. 
We call this "topological branch and bound" . 

For example after finding two words which sat­
isfy a word goal in the crossword example, the sys­
tem immediately attempts to "generalise" by find­
ing common letters within and between words. If 
there are no common letters, the propagation pro­
cess ceases immediately. Only if there are com­
mon letters does the system now search for a third 
word. As a result, the system very rarely needs 
to find more than a few answers to any word goal 
during propagation. This is the reason that the 
program has such an excellent runtime, even with 
a dictionary of 25000 words compiling real cross­
words in a minute. It also accounts for Propia's 
good performance on the propositional satisfia.bil­
ity benchmarks despite its recalculating at runtIme 
propagation information which in the CHIP p.ro­
gram was hard coded by the programmer usmg 
demons. 

Further optimisations can be applied if the pred­
icate being used for propagation is defined by rules 
instead of facts. The exploration of a new branch 
in the search tree incrementally builds a new set 
of equalities. If, when exploring a branch, the par­
tial set of equalities becomes larger than the cur­
rent most specific generalisation, then the search 
on this branch can be stopped. This means that 
propagation can terminate even when the actual 
search tree is infinite. For example given the defi­
nition 

p(s(O». 
p(s(X» :- p(X). 

propagation on p(X) terminates after finding two 
solutions yielding the constraint X = s(_). 

5 Conclusion 

Constraint logic programming systems offer a 
range of tools for writing simple and efficient pro­
gram8 over various computation domains. Unfor­
tunately it is not always possible to use different 
tools together. For example classical propagation 
cannot be used in programs working on domains 
such as Prolog Ill's trees. 

A second drawback is that the logic of the pro­
gram, when efficiency considerations are taken into 
account, has to be transformed extensively, or 
parts of it replaced altogether with rules expressed 
in some reactive language such as demons. The 
result for non-toy programs is a loss of clarity 
and, possibly, efficiency. If the programmer is not 
extremely competent these problems compound 
themselves, too often yielding a result which is not 
only inefficient but incorrect. 



Generalised propagation makes a contribution 
to both problems. Firstly propagation can be used 
for arbitrary domains of computation, thereby im­
proving orthogonality. Secondly the propagation 
annotations keep the control very simple and quite 
separate from the program logic, thereby preserv­
ing clarity and correctness. 

Current experiments show generalised propaga­
tion to be a powerful and flexible tool for ex­
prc8sing control. More global propagation is more 
costly but it can bring a drastic reduction of the 
search tree. Local propagation is a cheap solution 
which is much easier to program and debug than 
guarded clauses or demons. 

\Ve are continuing to investigate the effective­
ness of generalised propagation on a range of ap­
plications, studying its practical applicability to 
other computation domains, and following up the 
8tudy of its lattice theoretic basis. 
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Abstract 

This paper presents the constraint system FT, which we feel 
is an intriguing alternative to Herbrand both theoretically 
and practically. As does Herbrand, FT provides a univer­
sal data structure based on trees. However, the trees of FT 
( called feature trees) are more general than the trees of Her­
brand (called constructor trees), and the constraints of FT 
are finer grained and of different expressivity. The basic no­
tion of FT are functional attributes called features, which 
provide for record-like descriptions of data avoiding the over­
specification intrinsic in Herbrand's constructor-based de­
scriptions. The feature tree structure fixes an algebraic se­
mantics for FT. We will also establish a logical semantics, 
which is given by three axiom schemes fixing the first-order 
theory FT. 

FT is a constraint system for logic programming, pro­
viding a test for unsatisfiability, and a test for entailment 
between constraints, which is needed for advanced control 
mechanisms. 

The two major technical contributions of this paper are 
(1) an incremental entailment simplification system that is 
proved to be sound and complete, and (2) a proof show­
ing that FT satisfies the so-called "independence of negative 
constraints" . 

1 Introduction 

An important structural property of many logic pro­
gramming systems is the fact that they factorize into 
a constraint system and an extension facility. Colmer­
auer's Prolog II [8] is an early language design making 
explicit use of this property. CLP (Constraint Logic 
Programming [10]), ALPS [16], CCP (Concurrent Con­
straint Programming [21]), and KAP (Kernel Andorra 
Prolog [9]) are recent logic programming frameworks 
that exploit this property to its full extent by being 
parameterized with respect to an abstract class of con­
straint systems. The basic operation these frameworks 
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require of a constraint system is a test for unsatisfiabil­
ity. ALPS, CCP, and KAP in addition require a test 
for entailment between constraints, which is needed for 
advanced control mechanisms such as delaying, corou­
tining, synchronisation, committed choice, and deep con­
straint propagation. Given this situation, constraint sys­
tems are a central issue in research on logic program­
ming. 

The constraint systems of most existing logic pro­
gramming languages are variations and extensions of 
Herbrand [14], the constraint system underlying Prolog. 
The individuals of Herbrand are trees corresponding to 
ground terms, and the atomic constraints are equations 
between terms. Seen from the perspective of program­
ming, Herbrand provides a universal data structure as a 
logical system. 

This paper presents a constraint system FT, which we 
feel is an intriguing alternative to Herbrand both theo­
retically and practically. As does Herbrand, FT provides 
a universal data structure based on trees. However, the 
trees of FT (called feature trees) are more general than 
the trees of Her brand (called constructor trees), and the 
constraints of FT are finer grained and of different ex­
pressivity. The basic notion of FT are functional at­
tributes called features, which provide for record-like de­
scriptions of data avoiding the overspecification intrinsic 
in Herbrand's constructor-based descriptions. For the 
special case of constructor trees, features amount to ar­
gument selectors for constructors. 

Suppose we want to say that x is a wine whose grape is 
riesling and whose color is white. To do this in Herbrand, 
one may write the equation 

x = wine(riesling, white, Yl,·." Yn) 

with the implicit assumption that the first argument of 
the constructor wine carries the "feature" grape, the sec­
ond argument carries the "feature" color, and the remain­
ing arguments Yl, ... ,Yn carry the remaining "features" 
of the chosen representation of wines. The obvious diffi­
culty with this description is that it says more than we 
want to say, namely, that the constructor wine has n + 2 
arguments and that the "features" grape and color are 
represented as the first and the second argument. 

The constraint system FT avoids this overspecification 
by allowing the description 

x: wine[grape =} riesling, color =} white] (1) 



saying that x has sort wine, its feature grape is riesling, 
and its feature color is white. Nothing is said about other 
features of x, which mayor may not exist. 

The individuals of FT are so-called feature trees, ex­
amples of which are shown in Figure 1. A feature tree 
is a possibly infinite tree whose nodes are labeled with 
symbols called sorts, and whose edges are labeled with 
symbols called features. The labeling with features is 
deterministic in that all edges departing from a node 
must be labeled with distinct features. Thus, every di­
rect subtree of a feature tree can be identified by the 
feature labeling the edge leading to it. The construc­
tor trees of Herbrand can be represented as feature trees 
whose edges are labeled with natural numbers indicating 
the corresponding argument positions. 

All but the second and third feature tree in Figure 1 
satisfy the description (1). 

The constraints of FT are ordinary first-order formu­
lae taken over a signature that accommodates sorts as 
unary and features as binary predicates. Thus the de­
scription (1) is actually syntactic sugar for the formula 

wine(x) 1\ 3y(grape(x,y) 1\ riesling(y)) 1\ 

3y( color( x, y) 1\ white(y)). 

The set of all rational feature trees is made into a corre­
sponding logical structure T by letting A( x) hold iff the 
root of x is labeled with the sort A, and letting f( x, y) 
hold iff x has y as direct subtree via the feature f. The 
feature tree structure T fixes an algebraic semantics for 
FT. 

We will also establish a logical semantics, which is 
given by three axiom schemes fixing a first-order theory 
FT. Backofen and Smolka [6] show that T is a model of 
FT and that FT is in fact a complete theory, which means 
that FT is exactly the theory induced by T. However, 
we will not use the completeness result in the present 
paper, but show explicitly that entailment with respect 
to T is the same as entailment with respect to FT. 

The two major technical contributions of this paper 
are (1) an incremental entailment simplification system 
that is proved to be sound and complete, and (2) a proof 
showing that FT satisfies the so-called "independence of 
negative constraints" [7, 14, 15]. The incremental entail­
ment simplification system is the prerequisite for FT's 
use with either of the constraint programming frame­
works ALPS, CCP or KAP mentioned at the beginning 
of this section. The indepence property means among 
other things that negative constraints can essentially be 
handled through entailment simplification. 

One origin of FT is Alt-Kaci's 'ljJ-term calculus [1], 
which is at the heart of the programming language LO­
GIN [3] and further extended in the language LIFE [5] 
with functions over feature structures thanks to a gen­
eralization of the concept of residuation of Le Fun [4]. 
Other precursors of FT are the feature descriptions found 
in so-called unification grammars [13, 12] developed for 
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natural language processing, and also the formalisms of 
Mukai [17, 18]. These early feature structure formalism 
were presented in a nonlogical form. Major steps in the 
process of their understanding and logical reformulation 
are the articles [20, 23, 11, 22]. Feature trees, the feature 
tree structure T, and the axiomatization of T were first 
given in [6]. 

The paper is organized as follows. Section 2 defines 
the basic notions and discusses the differences in expres­
sivity between Herbrand and FT. Section 3 gives a basic 
simplification system that decides satisfiability of posi­
tive constraints. Section 4 is not committed to FT but 
discusses the notion of incremental entailment checking 
and its connection with the indepence property and nega­
tion. Section 5 gives the entailment simplification sys­
tem, proves it sound, complete and terminating, and also 
proves that FT satisfies the independence property. 

2 Feature Trees and Constraints 

To give a rigorous formalization of feature trees, we first 
fix two disjoint alphabets 5 and F, whose symbols are 
called sorts and features, respectively. The letters A, 
B, C will always denote sorts, and the letters f, g, h 
will always denote features. Words over F are called 
paths. The concatenation of two paths v and w results 
in the path vw. The symbol c: denotes the empty path, 
vc: = c:v = v, and F* denotes the set of all paths. 

A tree domain is a nonempty set D ~ F* that is prefix­
closed, that is, if vw E D, then v E D. Thus, it always 
contains the empty path. 

A feature tree is a mapping t : D -7 5 from a tree 
domain D into the set of sorts. The paths in the domain 
of a feature tree represent the nodes of the tree; the 
empty path represents its root. The letters sand tare 
used denote feature trees. 

If convenient, we consider a feature tree t as a relation, 
i.e.} t ~ F*x5, and write (w, A) E t instead oft(w) = A. 
As relations, i.e.} as subsets of F* x 5, feature trees 
are partially ordered by set inclusion. We say that s is 
smaller than t if s ~ t. 

The subtree wt of a feature tree t at one of its nodes 
w is the feature tree defined by (as a relation): 

wt := {(v, A) I (wv, A) E t}. 

If D is the domain of t, then the domain of wt is the set 
w-1 D = {v I wv ED}. Thus, wt is given as the mapping 
wt : w-1 D -7 5 defined on its domain by wt( v) = t( wv). 
A feature tree s is called a subtree of a feature tree t if 
it is a subtree s = wt at one of its nodes w, and a direct 
subtree if w E F. 

A feature tree t with domain D is called rational if 
(1) t has only finitely many subtrees and (2) t is finitely 
branching, which is: for every wED, wFn D = {wf E 
D I f E F} is finite. Assuming (1), (2) is equivalent to 
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Figure 1: Examples of Feature Trees. 

saying that there exist finitely many features f1, . .. , fn 
such that D ~ {f1, ... , fn}*. 

Constraints over feature trees will be defined as first­
order formulae. We first fix a first-order signature S I±J F 
by taking sorts as unary and features as binary rela­
tion symbols. Moreover, we fix an infinite alphabet of 
variables and adopt the convention that x, y, z always 
denote variables. Under this signature, every term is a 
variable and an atomic formula is either a feature con­
straint xfy (f(x,y) in standard notation), a sort con­
straints Ax (A( x) in standard notation), an equation 
x == y, -.L ("false"), or T ("true"). Compound formu­
lae are obtained as usual by the connectives 1\, V, ---*, 

~, ' and the quantifiers ::J and V. We use 3¢ and V¢ 
to denote the existential and universal closure of a for­
mula ¢, respectively. Moreover, V(¢) is taken to denote 
the set of all variables that occur free in a formula ¢. 
The letters ¢ and 'lj; will always denote formulae. In the 
following we won't make a distinction between formu­
lae and constraints, that is, a constraint is a formula as 
defined above. 

S I±J F-structures and validity of formulae in S I±J F­
structures are defined as usual. Since we consider only 
SI±JF-structures in the following, we will simply speak of 
structures. A theory is a set of closed formulae. A model 
of a theory is a structure that satisfies every formulae of 
the theory. A formula ¢ is a consequence of a theory T 
(T 1= ¢) if V ¢ is valid in every model of T. A formula 
¢ is satisfiable in a structure A if 3¢ is valid in A. Two 
formulae ¢, 'lj; are equivalent in a structure A if V( ¢ ~ 'lj;) 
is valid in A. We say that a formula ¢ entails a formula 'lj; 
~n a structure A [theory T] and write ¢ I=A 'lj; [</> FT 'lj;] if 
V( ¢ ---* 'lj;) is valid in A [is a consequence of T]. A theory 
T is complete if for every closed formula ¢ either ¢ or '¢ 
is a consequence of T. 

The feature tree structure T is the S I±J F-structure 
defined as follows: 

• the domain of T is the set of all rational feature 

trees; 

• tEAT iff t(e) = A (t's root is labeled with A); 

• (8, t) E fT iff f E Ds and t = f 8 (t is the subtree of 
8 at 1). 

Next we discuss the expressivity of our constraints 
with respect to feature trees (that is, with respect to 
the feature tree structure T) by means of examples. The 
constraint 

,::Jy(xfy) 

says that x has no subtree at f, that is, that there is no 
edge departing from x's root that is labeled with f. To 
say that x has subtree y at path 11'" fn, we can use the 
constraint 

Now let's look at statements we cannot express (more 
precisely, statements of whom the authors believe they 
cannot be expressed). One simple unexpressible state­
ment is "y is a subtree of x" (that is, "::Jw: y = wx"). 
Moreover, we cannot express that x is smaller than y. 
Finally, if we assume that the alphabet F of features is 
infinite, we cannot say that x has subtrees at features 
iI, ... ,fn but no subtree at any other feature. In par­
ticular, we then cannot say that x is a primitive feature 
tree, that is, has no proper subtree. 

The theory FT 0 is given by the following two axiom 
schemes: 

(Axl) Vx Vy Vz (xfy 1\ xfz ---* Y == z) 
(for every feature 1) 

( Ax2) V x (Ax 1\ B x ---* -.L) 
(for every two distinct sorts A and B). 

The first axiom scheme says that features are functional 
and the second scheme says that sorts are mutually dis­
joint. Clearly, T is a model of FTo. Moreover, FTo is 



incomplete (for instance, :3x(Ax) is valid in T but invalid 
in other models of FTo). We will see in the next section 
that FT 0 plays an important role with respect to basic 
constraint simplification. 

N ext we introduce some additional notation needed in 
the rest of the paper. This notation will also allow us to 
state a third axiom scheme that, as shown in [6], extends 
FTo to a complete axiomatization of T. 

Throughout the paper we assume that the conjunction 
of formulae is an associative and commutative operator 
that has T as neutral element. This means that we iden­
tify ¢ 1\ ('I/; 1\ 8) with 81\ ('I/; 1\ ¢), and ¢ 1\ T with ¢ (but 
not, for example, xfy 1\ xfy with xfy). A conjunction of 
atomic formulae can thus be seen as the finite multiset of 
these formulae, where conjunction is multiset union, and 
T (the "empty conjunction") is the empty multiset. We 
will write 'I/; ~ ¢ (or 'I/; E ¢, if 'I/; is an atomic formula) if 
there exists a formula '1/;' such that 'I/; 1\ '1/;' = ¢. 

We will use an additional atomic formula xf i ("f 
undefined on x") that is taken to be equivalent to 
,:3y (xfy), for some variable y (other than x). 

Only for the formulation of the third axiom we intro­
duce the notion of a solved-clause, which is either T or 
a conjunction ¢ of atomic formulae of the form x fy, Ax 
or x fi such that the following conditions are satisfied: 

1. if Ax E ¢ and Bx E ¢, then A = B; 

2. if xfy E ¢ and xfz E ¢, then y = z; 

3. if xfy E ¢, then xfi ~ ¢. 

Given a solved-clause ¢, we say that a variable x is depen­
dent in ¢ if ¢ contains a constraint of the form Ax, xfy 
or x fi, and use VV( ¢) to denote the set of all variables 
that are dependent in ¢. 

The theory FT is obtained from FTo by adding the 
axiom scheme: 

(Ax3) V:3X¢ 
(for every solved-clause ¢ and X = VV(¢)). 

Theorem 2.1 The feature tree structure T is a model 
of the theory FT. 

Proof. We will only show that FT is a model of the 
third axiom. Let X be the set of dependent variables 
of the solved-clause ¢, X = VV(¢). Let a be any T­
valuation defined on V (¢) - X; we write the tree a(y) as 
t y • We will extend a on X such that T, a 1= ¢. 

Given x EX, we define the "punctual" tree tz = 
{(c:, A)}, where A E S is the sort such that Ax E ¢, 
if it exists, and arbitrary, otherwise. Now we are go­
ing to use the notion of tree sum of Nivat [19], where 
w-1t = {(wv, A) 1 (v,A) E t} ("the tree t translated by 
w" ), and we define: 

a(x) = ~{W-lty 1 x ~ y for some 
y E V(¢), wE F*}. 
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Here the "leads-to" relation ~ is given by: x ~ x, and 

x ~ y if x ~ y' and y'fy E ¢, for some y' E V(¢) and 
some f E F. Since 

and, for a node w of a( x), wa( x) = a(y), it follows that 
a( x) is a rational tree and that T, a 1= ¢. 

o 

3 Basic Simplification 

A basic constraint is either ~ or a possibly empty con­
junction of atomic formulae of the form Ax, xfy, and 
x == y. The following five basic simplification rules consti­
tute a simplification system for basic constraints, which, 
as we will see, decides whether a basic constraint is sat­
isfiable in T. 

1. 
xfy 1\ xfz 1\ ¢ 

xfzl\y==zl\¢ 

2. 
Ax 1\ Ex 1\ ¢ 

A-#B 
~ 

3. 
Ax 1\ Ax 1\ ¢ 

Ax 1\ ¢ 

x==yl\¢ 
4. x E V(¢) and x -# y 

x == Y 1\ ¢[x +--- y] 

The notation ¢[x +--- y] is used to denote the formula 
that is obtained from ¢ by replacing every occurrence 
of x with y. We say that a constraint ¢ simplifies to a 
constraint 'I/; by a simplification rule p if * is an instance 
of p. We say that a constraint ¢ simplifies to a constraint 
'I/; if either ¢ = 'I/; or ¢ simplifies to 'I/; in finitely many 
steps each licensed by one of the five simplification rules 
given above. 

Example 3.1 We have the following basic simplifica­
tion chain, leading to a solved constraint: 

xfu 1\ yfv 1\ Au 1\ Av 1\ z == x 1\ Y == z 
:::} xfu 1\ yfv 1\ Au 1\ Av 1\ z == x 1\ Y == x 
:::} xfu 1\ xfv 1\ Au 1\ Av 1\ z == x 1\ Y == x 
:::} xfv 1\ Au 1\ Av 1\ u == v 1\ z == x 1\ Y == x 
:::} x fv 1\ Av 1\ Av 1\ u == v 1\ z == x 1\ Y == x 
:::} xfv 1\ Av 1\ u == v 1\ z == x 1\ Y == x 

U sing the same steps up to the last one, the constraint 
xfu 1\ yfv 1\ Au 1\ Bv 1\ z == x 1\ Y == z simplifies to ~ (in 
the last step, Rule 2 instead of Rule 3 is applied). 0 
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Proposition 3.2 If the basic constraint c/> simplifies to 
'l/;J then FTo /= c/> ~ '1/;. 

Proof. The rules 3, 4 and 5 perform equivalence trans­
formations with respect to every structure. The rules 1 
and 2 correspond exactly to the two axiom schemes of 
FT 0 and perform equivalence transformations with re­
spect to every model of FTo. 0 

We say that a basic constraint c/> binds a variable x to 
y if x == y E c/> and x occurs only once in c/>. At this 
point it is important to note that we consider equations 
as ordered, that is, assume that x == y is different from 
y == x if x -=I- y. We say that a variable x is eliminated, 
or bound by C/>, if c/> binds x to some variable y. 

Proposition 3.3 The basic simplification rules are ter­
minating. 

Proof. First observe that the simplification rules don't 
add new variables and preserve eliminated variables. 
Furthermore, rule 4 increases the number of eliminated 
variables by one. Hence we know that if an infinite sim­
plification chain exists, we can assume without loss of 
generality that it only employs the rules 1, 3 and 5. Since 
rule 1 decreases the number offeature constraints "xfy", 
which is not increased by rules 3 and 5, we know that 
if an infinite simplification chain exists, we can assume 
without loss of generality that it only employs the rules 
3 and 5. Since this is clearly impossible, an infinite sim­
plification chain cannot exist. 0 

A basic constraint is called normal if none of the five 
simplification rules applies to it. A constraint 'I/; is called 
a normal form of a basic constraint c/> if c/> can be sim­
plified to 'I/; and 'I/; is normal. A solved constraint is a 
normal constraint that is different from .L 

So far we know that we can compute for any basic 
constraint c/> a normal form 'I/; by applying the simplifica­
tion rules as long as they are applicable. Although the 
normal form 'I/; may not be unique for C/>, we know that c/> 
and 'I/; are equivalent in every model of FTo. It remains 
to show that every solved constraint is satisfiable in T. 

Every basic constraint c/> has a unique decomposition 
c/> = c/>N 1\ c/>G such that c/>N is a possibly empty con­
junction of equations "x == y" and and c/>G is a possibly 
empty conjunction of feature constraints "xfy" and sort 
constraints "Ax". We call c/>N the normalizer and and 
c/>G the graph of c/>. 

Proposition 3.4 A basic constraint c/> -=I- ~ is solved iff 
the following conditions hold: 

1. an equation x == y appears in c/> only if x 1,S elimi­
nated in c/>; 

2. the graph of c/> is a solved clause; 

3. no primitive constraint appears more than once in C/>. 

Proposition 3.5 Every solved constraint is satisfiable 
in every model of FT. 

Proof. Let c/> be a solved constraint and A be a model of 
FT. Then we know by axiom scheme Ax3 that the graph 
c/>G of a solved constraint c/> is satisfiable in an FT-model 
A. A variable valuation a into A such that A, a 1= c/>G 
can be extended on all eliminated variables simply by 
a(x) = a(y) if x == y E C/>, such that A, a 1= C/>. 0 

Theorem 3.6 Let 'I/; be a normal form of a basic con­
straint C/>. Then c/> is satisfiable in T if and only if 'I/; -=I- ~. 

Proof. Since c/> and 'I/; are equivalent in every model 
of FTo and T is a model of FTo, it suffices to show 
that 'I/; is satisfiable in T if and only if 'I/; -=I- ~. To 
show the nontrivial direction, suppose 'I/; -=I- ~. Then 'I/; 
is solved and we know by the preceding proposition that 
'I/; is satisfiable in every model of FT. Since T is a model 
of FT, we know that 'I/; is satisfiable in T. 0 

Theorem 3.7 For every basic constraint c/> the following 
statements are equivalent: 

T /= 34> {::} :3 model A of FT 0: A 1= 34> {::} FT 1= 34>. 

Proof. The implication 1 :::} 2 holds since T is a model 
of FTo. The implication 3 :::} 1 follows from the fact that 
T is a model of FT. It remains to show that 2 :::} 3. 

Let 4> be satisfiable in some model of FTo. Then we 
can apply the simplification rules to c/> and compute a 
normal form 'I/; such that c/> and 'I/; are equivalent in every 
model of FTo. Hence 'I/; is satisfiable in some model of 
FTo. Thus 'I/; -=I- ~, which means that 'I/; is solved. Hence 
we know by the preceding proposition that 'I/; is satisfiable 
in every model of FT. Since c/> and 'I/; are equivalent in 
every model of FTo~FT, we have that c/> is satisfiable in 
~~~~~~ 0 

4 Entailment, 
and Negation 

Independence 

In this section we discuss some general properties of con­
straint entailment. This prepares the ground for the next 
section, which is concerned with entailment simplifica­
tion in the feature tree constraint system. 

Throughout this section we assume that A is a struc­
ture, I and c/> are formulae that can be interpreted in A, 
and that X is a finite set of variables. 

We say that I dis entails c/> in A if I entails ,c/> in A. 
If I is satisfiable in A, then I cannot both entail and 
disentail :3X 4> in A. We say that I determines c/> in A if 
I either entails or disentails c/> in A. 



Given I, <P and X, we want to determine in an in­
cremental manner whether I entails or disentails :3X <p. 
Typically, I will not determine :3X <P when :3X <P is con­
sidered nrst, but this may change when I is strengthened 
to 1/\ I'. The basic idea leading to an incremental entail­
ment checker is to simplify <p with respect to the context 
, and the local variables X. Given" X and <p, simplin­
cation must yield a formula1/; such that 

The following facts provide some evidence that this IS 

the right invariant for entailment simplincation. 

Proposition 4.1 Let , 1= A :3X <p ~ :3X1/;. Then: 

1. , 1= A :3X <p iff , 1= A :3X1/;; 

2. ,1=A·:3X<p iff ,I=A·:3X1/;; 

3. if 1/; = ~, then ,I=A .:3X<p; 

4· if :3X1/; is valid in A, then, I=A :3X<P. 

Statements 1 and 2 say that it doesn't matter whether 
entailment and disentailment are decided for <p or 1/;. 
Statement 3 gives a local condition for disentailment, and 
Statement 4 gives a local condition for entailment. The 
entailment simplincation system for feature trees given 
in the next section will in fact decide entailment and 
disentailment by simplifying such that the condition of 
Statement 4 is met in the case of entailment, and that 
the condition of Statement 3 is met in the case of disen­
tailment. 

In practice, one can ensure by variable renaming that 
no variable of X occurs in ,. The next fact says that 
then it suffices if entailment simplification respects the 
more convenient invariant 

A 1= , /\ <p ~ , /\ 1/;. 

This is the invariant respected by our system (cf. Propo­
sition 5.4). 

Proposition 4.2 Let X n Vb) = 0. Then: 

1. if A 1= 1/\ <p ~,/\ 1/;, then, I=A :3X<p ~ :3X1/;; 

2. , 1= A .:3X <p iff , /\ <p is unsatisfiable in A. 

That is, the conjunction, /\ <p is satisfiable if and only if 
, either entails :3X <p, or it does not determine :3X <p. 

The so-called independence of negative constraints [7, 
14, 15] is an important property of constraint systems. 
If it holds, simplification of conjunctions of positive and 
negative constraints can be reduced to entailment sim­
plification of conjunctions of positive constraints. 

To define the independence property, we assume that 
a constraint system is a pair consisting of a structure 
A and a set of so-called basic constraints. From basic 
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constraints one can build more complex constraints using 
the connectives and quantiners of predicate logic. We 
say that a constraint system satisnes the independence 
property if 

for all basic constraints I, <PI, . .. ,<Pn and all finite sets 
of variables Xl, ... , X n . 

Proposition 4.3 If a constraint system satisfies the in­
dependence property, then the following statements hold 
h, <p and <PI, ... ,<Pn are basic constraints): 

5 

1. ,/\ .:3X1 <Pl /\ ... /\ .:3Xn<Pn unsatisfiable in A iff 
:3i: , I=A :3Xi<Pi; 

2. if ,/\.:3X1 <Pl/\ ... /\.:3Xn<Pn is satisfiable in A, then 
,/\.:3X1 <Pl/\ ... /\.:3Xn<Pn I=A :3X<p iffll=A :3X<P. 

Entailment Simplification 

We now return to the feature tree constraint system. 
Throughout this section we assume that, is a solved 
constraint and X is a finite set of variables not occurring 
in ,. We will calli the context, the variables in X local, 
and all other variables global. 

If T is a theory and <P and1/; are possibly open formu­
lae, we write <P I=T 1/; (read: <p entails1/; in T) ifV(<p ---+ 1/;) 
is valid in T. 

Theorem 5.1 For every basic constraint <p, the follow­
ing equivalences hold: 

Proof. Implication "2 =} 3" holds since FTo ~FT. Im­
plication "3 =} 1" holds since T is a model of FT. To 
show implication "1 =} 2", suppose I 1=7' .:3X <p. Then 
we know by Proposition 4.2 that, /\ <p is unsatisfiable 
in T. Thus we know by Theorem 3.7 that, /\ <p is un­
satisnable in every model of FTo. Hence we know by 
Proposition 4.2 that, I=FTo .:3X <p. 0 

For every basic constraint <p and every variable x we de­
fine 

<px := {y if x == ~ E <p and x is eliminated; 
x otherWIse. 

A basic constraint <p is X -oriented if x == y E <p always 
implies x E X or y (j. X. A basic constraint <p is pivoted 
if x == y E <p implies that x is eliminated in <p (and then 
y is a "pivot"). 

The following entailment simplification rules simplify 
basic constraints to basic constraints with respect to a 
context I and local variables X. 
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xfu /\ <P 
1. y fv E , /\ <p, <py = x 

u==v/\<p 

2. 
<pu == <pv /\ <p {

Xfu/\YfV~" 
<px = <py, <pu =I- <pv , 
<p X -oriented and pivoted 

S. x == Y /\ <p[x t- y] {

X =I- y, x E V( <p), 
(x E X or y ~ X) 

x==y/\<p 
6. x ~ X, Y E X 

y==x/\<p 

7. <p x==yE" XEV(<p) 
<p[x t- y] 

We say that a basic constraint <p simplifies to a constraint 
<p with respect to , and X if <p = 'IjJ or <p simplifies to 'IjJ in 
finitely many steps each licensed by one of the eight sim­
plification rules given above. The notions of normal and 
normal form with respect to , are defined accordingly. 

Example 5.2 Let, = xfu /\ yfv /\ Au /\ Bv and X = 
{z}. Then we have the following simplification chain 
with respect to , and X: 

x==z/\y==z 
*-y,x z == x /\ y == z 
*-y,x z == x /\ y == X 

*-y,x u == v /\ z == x /\ Y == X 

*-y,x ..l 

by Rule E6 
by Rule ES 
by Rule E2 
by Rule E3. 

Let us now take as context i' = xfu /\ yfv /\ Au. Then 
~ = u == v /\ z == x /\ y == x is normal with respect 
to i' and X. We shall see that this normal form tells 
us that l' does not determine~. If l' gets strengthened 
either to i' /\ Bv (as above), or to i' /\ x == y, then the 
strengthened context does determine: it disentails in the 
first and entails in the second case. The basic normal 
form of i' /\ x == y is yfu /\ Au /\ v == u /\ x == y; with 
respect to this context ~ simplifies to z == y. 0 

In the previous example, <p = z == x /\ y == x simplifies 
to <Pl = U == v /\ z == x /\ Y == x with respect to , = 

xfu/\yfv/\Au/\Bv and X = {z}. This corresponds to 
a basic simplification as follows: 

,/\<p= 
xfu /\ yfv /\ Au /\ Bv /\ z == x /\ y == x 

* xfu /\ xfv /\ Au /\ Bv /\ z == x /\ y == x 
* x fv /\ Au /\ Bv /\ u == v /\ z == x /\ Y == X 

" /\ <p~ 

We observe that , /\ <Pl is equal to " /\ <p~, modulo re­
naming y by <PlY = x and u by <P1U = v, and modulo the 
repetition of xfv. 

Lemma 5.3 Let <p simplify to <Pl with respect to , and 
X} not using Rule E6 (in an entailment simplification 
step). Then, /\ <p simplifies to some " /\ <p~ which is 
equal to ,/\ <Pl up to variable renaming and repetition of 
conjuncts. 

Proof. Clearly, each entailment simplification rule, ex­
cept for E6, corresponds directly to a basic simplification 
rule (namely, El and E2 to Bl, E3 to B2, E4 to B3, ES 
and E7 to B4, and E8 to BS). 

If the application of the entailment simplification rule 
to <p relies on a condition of the form <px = y or <px = <py 
where x =I- <px or y =I- <py, then x == <px E <p or y == <py E <p, 
and Rule B4 is first applied to , 1\ <p, eliminating x by 
<px (y by <py). 

When comparing ,/\ <Pl and " /\ <p~, renamings take 
account of these variable eliminations. Note that, if the 
rule applied to <p is E2, then " has one feature constraint 
x fv less than, - which, after renaming, has a repetition 
of exactly this constraint. 0 

Proposition 5.4 If <p simplifies to 'IjJ with respect to , 
and X J then ,/\ <p and ,/\ 'IjJ are equivalent in every model 
of FTo. 

Proof. Follows from Lemma S.3 and Proposition 3.2. 0 

Proposition 5.5 The entailment simplification rules 
are terminating} provided, and X are fixed. 

Proof. First we strengthen the statement by weakening 
the applicability conditions <py = x in Rules El and E4 
to <py = <px. Then from Lemma 5.3 follows: (*) Each 
entailment simplification rule applies to <Pl with respect 
to , and X if and only if it applies to <p~ with respect to " 
and X - except possibly for ES, when the corresponding 
variable has already been eliminated in an "extra" basic 
simplification step. 

If " has one conjunct of the form x fu less than" then 
(*) still holds; regarding a new application of E2 this is 
ensured by its (therefore so complicated ... ) applicability 
condition. 

With condition (*), it is possible to prove by induc­
tion on n: For every entailment simplification chain 



</>, </>1, ... ,</>n with respect to I and X, there exists a 
'basic plus Rule E6' simplification chain I /\ </>, 11 /\ 

</>~, ... "n+k /\</>~+k' where k ~ 0 is the number of "extra" 
variable elimination steps. Since, according to Propo­
sition 3.3, basic simplification chains are finite, so are 
entailment simplification chains. D 

So far we know that we can compute for any basic 
constraint </> a normal form 'lj; with respect to I and X 
by applying the simplification rules as long as they are 
applicable. Although the normal form 'lj; may not be 
unique, we know that 1/\ </> and ,/\ 'lj; are equivalent in 
every model of FTo. 

Proposition 5.6 For every basic constraint </> one can 
compute a normal form 'lj; with respect to I and X. Every 
such normal form 'lj; satisfies: I I=r ?JX </> iff I I=r ?JX'lj;, 
and I I=FT ?JX</> iff I I=FT ?JX'lj;. 

Proof. Follows from Propositions 5.4, 5.5, 4.2 and 4.l. 
D 

In the following we will show that from the entailment 
normal form 'lj; of </> with respect to I it is easy to tell 
whether we have entailment, disentailment or neither. 
Moreover, the basic normal form of 1/\ </> is exactly 1/\ 'lj; 
in the first case (and in the second, where I /\ 1- = 1-), 
and "almost" in the third case (cf. Lemma 5.3). 

Proposition 5.7 A basic constraint </> i- 1- is normal 
with respect to I and X if and only if the following con­
ditions are satisfied: 

1. </> is solved, X -oriented, and contains no variable 
that is bound by ,; 

2. if </>:v = y and xfu E I, then yfv rf. </> for every v; 

3. if</>:v = </>y andxfu E I andyfv E I, then<f>u = </>v; 

4. if </>:v = y and Ax E I, then By rf. </> for every B; 

5. if </>:v = </>y and Ax E I and By E I, then A = B. 

Lemma 5.8 If </> i- 1- is normal with respect to I and 
X, then 1/\ </> is satisfiable in every model of FT. 

Proof. Let </> #- 1- be normal with respect to I and X. 
Furthermore, let I = IN /\ IG and </> = </>N /\ </>G be the 
unique decompositions in normalizer and graph. Since 
the variables bound by IN occur neither in IG nor in </>, 
it suffices to show that IG /\ </>N /\ </>G is satisfiable in every 
model of FT. 

Let </>NbG) be the basic constraint that is obtained 
from IG by applying all bindings of </>N' Then IG /\ </>N /\ 
</>G is equivalent to </>N /\ </>N( IG) /\ </>G and no variable 
bound by </>N occurs in </>NbG) /\ </>G. Hence it suffices 
to show that </>N( IG) /\ </>G is satisfiable in every model of 
FT. With the conditions 2-5 of the preceding proposition 
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it is easy to see that cPN(!G) /\ cPG is a solved clause. 
Hence we know by axiom scheme Ax3 that cPN( ,G) /\ cPG 
is satisfiable in every model of FT. D 

Theorem 5.9 (Disentailment) Let 'lj; be a normal 
form of cP with respect to I and X. Then I I=r ...,?JX cP 
iff 'lj; = 1-. 

Proof. Suppose 'lj; = 1-. Then I I=r ...,::IX'lj; and hence 
I I=r ...,?JX cP by Proposition 5.6. 

To show the other direction, suppose I I=r ...,?JX cP. 
Then I I=r ...,?JX'lj; by Proposition 5.6 and hence 1/\ 'lj; 
unsatisfiable in T by Proposition 4.2. Since T is a model 
of FT (Theorem 2.1), we know by the preceding lemma 
that 'lj; = 1- (since 'lj; is assumed to be normal). D 

We say that a variable x is dependent in a solved con­
straint cP if cP contains a constraint of the form Ax, xfy 
or x ~ y. (Recall that equations are ordered; thus y is 
not dependent in the constraint x == y.) We use 1JV(cP) 
to denote the set of all variables that are dependent in a 
solved constraint cP. 

In the following we will assume that the underlying 
signature S l±J F has at least one sort and at least one 
feature that does not occur in the constraints under con­
sideration. This assumption is certainly satisfied if the 
signature has infinitely many sorts and infinitely many 
features. 

Lemma 5.10 (Spiting) Let cPl, ... , cPn be basic con-
straints different from 1-, and Xl, . .. , Xn be finite sets 
of variables disjoint from Vb). Moreover, for every 
i = 1, ... ,n, let cPi be normal with respect to I and Xi, 
and let cPi have a dependent variable that is not in Xi. 
Then 1/\ ...,?JX1cP1 /\ ... /\ ...,?JXncPn is satisfiable in every 
model of FT. 

Proof. Let I = IN /\ IG be the unique decomposition of 
I into normalizer and graph. Since the variables bound 
by IN occur neither in IG nor in any </>i, it suffices to show 
that IG /\ ...,?JX1 </>1 /\ ... /\ ...,?JXncPn is satisfiable in every 
model of FT. Thus it suffices to exhibit a solved clause 
6 such that IG ~ 6 and, for every i = 1, ... ,n, V(6) is 
disjoint with Xi and 6/\ cPi is unsatisfiable in every model 
of FT. 

Without loss of generality we can assume that every 
Xi is disjoint with V ( I) and V ( cPj) - X j for all j. Hence 
we can pick in every cPi a dependent variable Xi such that 
:Vi ~ Xj for any j. 

Let Zl, .•. ,Z/e be all variables that occur on either side 
of equation Xi == Y E cPi, i = 1, ... , n (recall that Xi is 
fixed for i). None of these variables occurs in any Xj 
since every cPi is Xi-oriented. Next we fix a feature 9 and 
a sort B such that neither occurs in I or any cPi. 

Now 6 is obtained from I by adding constraints as 
follows: if A:Vi E cPi, then add BXi; if xdY E cPi, then 
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add ;£d i; to enforce that the variables Zl, ... , Zk are 
pairwise distinct, add 

It is straightforward to verify that these additions to '1 
yield a solved clause {j as required. 0 

Proposition 5.11 If cP is solved and 'DV(cP) ~ X) then 
FT 1= V3XcP. 

Proof. Let cP = cPN 1\ cPG be the decomposition of cP in 
normalizer and graph. Since every variable bound by cP 
is in X, it suffices to show that V3X cPG is a consequence 
of FT. This follows immediately from axiom scheme Ax3 
since ¢G is a solved clause. 0 

Theorem 5.12 (Entailment) Let'lj; be a normal form 
of cP with respect to '1 and X. Then '1 1=7 3X cP iff 
'lj; i- -.L and 'DV ( 'lj;) ~ X. 

Proof. Suppose '1 1=7 3X cPo Then we know '1 1=7 3X'lj; 
by Proposition 5.6, and thus '11\ ,3X'lj; is unsatisfiable in 
T. Since '1 is solved, we know that '1 is satisfiable in T 
and hence that '11\ 3X'lj; is satisfiable in T. Thus 'lj; i- -.L. 
Since '1 1\ ,3X'lj; is unsatisfiable in T and T is a model 
of FT, we know by Lemma 5.10 that 'DV('lj;) ~ X. 

To show the other direction, suppose 'lj; i- -.L and 
'DV('lj;) ~ X. Then FT 1= V3X'lj; by Proposition 5.11, 
and hence T 1= V3X'lj;. Thus '1 1=7 3X'lj;, and hence 
'1 1=7 3X ¢ by Proposition 5.6. 0 

Theorem 5.13 Let ¢ be a basic constraint. Then '1 1=7 
3X¢ iff'1 I=FT 3X¢. 

Proof. One direction holds since T is a model of FT. To 
show the other direction, suppose '1 1=7 3X cPo Without 
loss of generality we can assum~ that cP is normal with 
respect to '1 and X. Hence we know by Theorem 5.12 
that cP i- -.L and 'DV( 'lj;) ~ X. Thus FT 1= V3X cP by 
Proposition 5.11 and hence '1 I=FT 3X¢. 0 

Theorem 5.14 (Independence) Let cPl, ... , cPn be ba­
sic constraints) and Xl, ... ,Xn be finite sets of variables. 
Then 

Proof. To show the nontrivial direction, suppose '1 1=7 
3X1 cP1 V ... V 3XncPn. Without loss of generality we can 
assume that, for all i = 1, ... , n, Xi is disjoint from Vb), 
cPi is normal with respect to '1 and Xl, and cPi i- -.L. Since 
'11\,3X1 cP11\ . . . 1\,3XncPn is un satisfiable in T and T is a 
model of FT, we know by Lemma 5.10 that 'DV( cPk) ~ X k 
for some k. Hence '1 1=7 3XkcPk by Theorem 5.12. 0 

6 Conclusion 

We have presented a constraint system FT for logic pro­
gramming providing a universal data structure based 
on rational feature trees. FT accommodates record­
like descriptions, which we think are superior to the 
constructor-based descriptions of Herbrand. 

The declarative semantics of FT is specified both alge­
braicly (the feature tree structure T) and logically (the 
first-order theory FT given by three axiom schemes). 

The operational semantics for FT is given by an incre­
mental constraint simplification system, which can check 
satisfiability of and entailment between constraints. 
Since FT satisfies the independence property, the sim­
plification system can also check satisfiability of conjunc­
tions of positive and negative constraints. 

We see four directions for further research. 
First, FT should be strengthened such that it sub­

sumes the expressivity of rational constructor trees [7, 8]. 
As is, FT cannot express that ;£ is a tree having direct 
subtrees at exactly the features 11, ... ,In. It turns out 
that the system CFT [24] obtained from FT by adding 
the primitive constraint 

(;£ has direct subtrees at exactly the features f1, ... ,fn) 
has the same nice properties as FT. In contrast to FT, 
CFT can express constructor constraints; for instance, 
the constructor constraint ;£ == A( y, z) can be expressed 
equivalently as A;£ 1\ ;£{1, 2} 1\ ;£ly 1\ ;£2z, if we assume 
that A is a sort and the numbers 1,2 are features. 

Second, it seems attractive to extend FT such that it 
can accommodate a sort lattice as used in [1, 3, 4, 5, 23]. 
One possibility to do this is to assume a partial order :S 
on sorts and replace sort constraints A;£ with quasi-sort 
constraints [A]x whose declarative semantics is given as 

[A]x == V B;£. 
B::;A 

Given the assumption that the sort ordering :S has great­
est lower bounds if lower bounds exist, it seems that the 
results and the simplification system given for FT carry 
over with minor changes. 

Third, the worst-case complexity of entailment check­
ing in FT should be established. We conjecture it to be 
quasi-linear in the size of '1 and cP, provided the available 
features are fixed a priory. 

Fourth, implementation techniques for FT at the level 
of the Warren abstract machine [2] need to be developed. 
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Abstract 
There are numerous applications of qualitative 

reasoning to diverse fields of engineering. The 
main application has been to diagnosis, but there 
are a few applications to design. We show a new 
application to design, suggesting valid ranges for 
design parameters; this application follows the 
step of structure determination. The application 
does not provide more innovative design, but it is 
one of the important steps of design. To implement 
it, we use an envisioning mechanism, which 
determines all possible behaviors of a system 
through qualitative reasoning. Our method: (1) 
performs envisioning with design parameters 
whose values are initially undefined, (2) selects 
preferable behaviors from all possible behaviors 
found by the envisioning process, and (3) calculates 
the ranges of those design parameters that give the 
preferable behaviors. 

We built a design-support system Desq (D..e.sign 
~upport system based on u,ualitative reasoning) by 
improving an earlier qualitative reasoning system 
Qupras (Q.u.alitative Rhysical reasoning ~stem). 
We added three new features: envisioning, 
calculating the undefined parameters, and 
propagating new constraints on constant 
parameters. The Desq system can deal with 
quantities qualitatively and quantitatively, like 
Qupras. Accordingly, we may someday be able to 
determine the quantitative ranges, if the 
parameters can be expressed quantitatively. 
Quantitative ranges are preferable to qualitative 
values, to support the determination of design 
parameters. 

1 Introduction 
Recently, many expert systems have been used 

in the diverse fields of engineering. However, 
several problems still exist. One is the difficulty of 
building knowledge bases from the experience of 
human experts. The other is that these expert 
systems cannot deal with unimaginable situations 
[Mizoguchi 87]. Reasoning methods using deep 
knowledge, which is the fundamental knowledge of 

a domain, are expected to solve these problems. 
One reasoning method is qualitative reasoning 
[Bobrow 84]. Qualitative reasoning determines 
dynamic behaviors, which are the states of a 
dynamic system and its state changes, using deep 
knowledge of the dynamic system. Another feature 
of qualitative reasoning is that it can deal with 
quantities qualitatively. So far, there have been 
many applications of qualitative reasoning to 
engineering [Nishida 88a, Nishida 88b, Nishida 
91]. The main application has been to diagnosis 
[Yamaguchi 87, Ohwada 88], but recently there 
have also been applications to design [Murthy 87, 
Williams 90]. 

In this paper, we show a new application to 
design that supports decisions by suggesting valid 
ranges for design parameters; it follows the step of 
structure determination. This application is not 
considered to be more innovative than the previous 
applications to design [Murthy 87, Williams 90], 
but it is one of the important steps of design 
[Chandrasekaran 90]. 

The key to design support is applying an 
envisioning mechanism, which predicts the 
behaviors of the dynamic system, to those design 
parameters whose values are undefined. If the 
envisioning is performed on condition that the 
design parameters whose values a designer wants 
to determine are undefined, all possible behaviors 
under the undefined design parameters can be 
predicted by the envisioning process. Some 
hypotheses are made to obtain each behavior. The 
main reason why hypotheses are made is that 
conditions written in the definitions of objects and· 
physical rules cannot be evaluated because the 
design parameters are undefined. Among the 
obtained possible behaviors, more than one 
behavior desired by the designer is expected to 
exist. The designer can select the behaviors which 
he/she exactly prefers. Although the designer may 
not know the values of the design parameters, 
helshe knows the desired. behavior. The values of 
the undefined parameters can be calculated from 
the hypotheses made to obtain the desired behavior. 



To sum up, the method of determining valid 
ranges for design parameters offers the following: 

(1) Performs envisioning for design parameters 
whose values are initially undefined, 

(2) Selects preferable behaviors from possible 
behaviors found by the envisioning process, 
and 

(3) Calculates the ranges of those design 
parameters that give the preferable behaviors. 

We used a qualitative reasoning system Qupras 
(Qualitative llhysical reasoning .system) [Ohki 86, 
Ohki 88, Ohki 92] to construct a decision support 
system Desq (~sign §.uppoit system based on 
,Qualitative reasoning) that suggests valid ranges 
for design parameters. 

Qupras, using knowledge about physical rules 
and objects after being given an initial state, 
determines the followings: 

(1) Relations between objects that are 
components of physical systems. 

(2) The subsequent states of the system following 
a transition. 

We extended Qupras to construct Desq as 
follows: 

(1) Envisioning 
In Qupras, if a condition of a physical rule 

or an object cannot be evaluated, Qupras 
asks the user to specify the condition. We 
extended Qupras to allow it to continue 
assuming an unevaluated condition. 

(2) Calculating the undefined parameters 
After envisioning all possible behaviors, 

Desq calculates the ranges of the undefined 
design parameters that give the behavior 
specified by the designer. 

(3) Propagation of new constraints on constants 
In the envisioning process, constraints 

related to some constant parameters 
become stronger because conditions in the 
definitions of physical rules and objects are 
hypothesized. The constraints propagate to 
the subsequent states. 

(4) Parallel constraint solving 
Qupras uses a combined constraint solver 

consisting of three basic constraint solvers: 
a Supinf method constraint solver, an 
Interval method constraint solver, and a 
Groebner base method constraint solver, all 
written in ESP. The processing load of the 
combined constraint solver was heavy, so 
we converted it to KL1 to speed up 
processing. 

Desq can deal with quantities qualitatively and 
quantitatively like Qupras. Accordingly, we may 
someday be able to get quantitative ranges, if the 
parameters can be given as quantitative values. 
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Quantitative ranges may be preferable for decision 
support. The usual qualitative reasoning like 
[Kuipers 84] gives qualitative ranges. 

Section 2 shows how Desq suggests ranges for 
design parameters, Section 3 describes the system 
organization of Desq, Section 4 shows an example 
of Desq suggesting the value of a resistor in a DTL 
circuit, Section 5 describes related works and 
Section 6 summarizes the paper. 

2 Method of determining 
design parameters 

In design, there are many cases in which a 
designer does not directly design a new device, but 
changes or improves an old device. Sometimes 
designers only change parameters of components 
in a device to satisfy the requirements. The 
designer, in such cases, knows the structure of the 
device, and needs only to determine the new values 
of the components. This is common for electronic 
circuits. We apply qualitative reasoning to the 
design decisions. 

The key process used to determine design 
parameters is envisioning. Our method is as 
described in Section 1: 

(1) All possible behaviors of a device are found by 
envisioning, with design parameters whose 
values are initially undefined. 

(2) Designers select preferable behaviors from 
these possible behaviors. 

(3) The ranges of the design parameters that give 
the preferable behaviors are calculated using 
a parallel constraint solver. 

If a condition in the definitions of a physical rule 
or an object cannot be evaluated, Desq hypothesizes 
one case where the condition is valid and another 
where it is not valid, and separately searches each 
case to find all possible behaviors. This method is 
called envisioning, and is the same as [Kuipers 84]. 
If a contradiction is detected, the reasoning is 
abandoned. If no contradiction is detected, the 
reasoning is valid. Finally, Desq finds several 
possible behaviors of a device. 

The characteristics of this approach are as 
follows: 

(1) Only deep knowledge is used to determine 
design parameters. 

(2) All possible behaviors with regard to 
undefined design parameters are found. 
Such information may be used in safety 
design or danger estimation. 

(3) Ranges of design parameters gIVIng 
preferable behaviors are found. If a designer 
uses numerical CAD systems, for example, 
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is satisfied. Desq similarly 
hypothesizes this condition. Finally, 
Desq finds two possible behaviors for 
the initial data. Then, Desq 
calculates the resistance Rb. The 
resistance must be larger than 473 
ohms to give the desired behavior, 
where the circuit acts as a NOT 
circuit because the transistor is 
"on". If the resistance is smaller 
than 473 ohms, the circuit shows 
another behavior which is not 
preferable. Thus, the resistance Rb 
must be larger than 473 ohms. This 
proves that Desq can deal with 
quantities qualitatively and 
quanti tatively. 

Conflict t 
Unevaluated condition: Base Voltage ofTr~ O. 7 V ? 

lHlypothesis 1 / " lHlypothesis 2 3 System organization 
(Base Voltage ofTr ~ 0.7 V (Tr On)) (Base Voltage of Tr < O. 7 V (Tr Oft)) 

This section describes the system 
organization of Desq. Figure 2 
shows that Desq mainly consists of 
three subsystems: 

Preferable behavior t Unpreferable behavior ~ 

Undefined parameter Rb ~473 0 473 0 > Undefined parameter Rb ~O 0 

Figure 1 An example of deciding an undefined parameter 
(1) Behavior reasoner 

SPICE, helshe need not simulate values 
outside the ranges. 

Figure 1 shows an example of suggesting 
ranges for a design parameter. This example 
illustrates the determination of a resistance value 
in a DTL circuit. The designer inputs the DTL 
structure and the parameters of the components 
except for the resistance Rb. 

Desq checks the conditions in the definitions of 
physical rules and objects. If they are satisfied, the 
equations in their consequences are sent to the 
parallel constraint solvers. But, it is not known 
what state the diode Dl is in, because the 
resistance Rb is undefined. The first condition is 
whether the voltage of Dl is-lower than 0.7 volts. 
Desq hypothesizes two cases; in the first the 
condition is not 
satisfied, and in the 
second it is. The first Initial data 

Qupras. 
behaviors. 

This subsystem is based on 
It determines all possible 

(2) Design parameter calculator 
This subsystem calculates ranges of 

design parameters. 
(3) Parallel constraint solver 

This subsystem is written in KLl, and is 
executed on PIM, Multi-PSI, or Pseudo 
Multi-PSI. 

When the designer specifies initial data, the 
behavior reasoner builds its model corresponding 
to the initial state, by evaluating conditions of 
physical rules and objects. The physical rules and 
objects are stored in the knowledge base. The 
model in Desq uses simultaneous inequalities in 

hypothesis is abandoned 
because the parallel 
constraint solver detects 
a conflict with the other 
equations. In the 
second hypothesis, no 
conflict is - detected. 
After some more 
hypotheses are made, 
another state is detected 
where it is not known 
whether or not the 
condition giving the 
state of the transistor Tr 

Output ~---.---., 
rr====ir=====;j m~C 

Simultaneous 
inequalities 

.... on PSI 
•••• 

••• •• Query •••• 
'" 

pariUllc:t6r> 
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~ 

on Pseudo Multi-PSI 

Figure 2 System organization 



the same way as that in Qupras. Simultaneous 
inequalities are passed to the parallel constraint 
solver to check the consistency and store them. If 
an inconsistency is detected, the reasoning process 
is abandoned. Conditions in the definitions of 
physical rules and objects are checked by the 
parallel constraint solver. If the conditions are 
satisfied, the inequalities in the consequences of 
the physical rules and objects are added to the 
model in the parallel constraint solver. If a 
condition cannot be evaluated by the parallel 
constraint solver, envisioning is performed. 
Finally, when all possible beh~viors are found, the 
design parameter calculator deduces the ranges of 
design parameters that give preferable behaviors. 

3.1 Behavior reasoner 
3.1.1 Qupras Outline 

Qupras is a qualitative reasoning system that 
uses knowledge from physics and engineering 
textbooks. Qupras has the following 
characteristics: 

(1) Qupras has three primitive representations: 
physical rules (laws of physics), objects and 
events. . 

(2) Qupras determines the dynamic behaviors of 
a system by building all equations for the 
system using knowledge of physical rules, 
objects and events. The user need not enter all 
the equations of the system. 

(3) Qupras deals with equations that describe 
basic laws of physics qualitatively and 
quantitatively. 

(4) Qupras does not require quantity spaces to be 
given in advance. It finds the quantity spaces 
for itself during reasoning. 

(5) Objects in Qupras can inherit definitions 
from their super objects. Thus, physical rules 
can be defined generally by specifying the 
definitions of object classes with super objects. 

Qupras is similar to QPT [Forbus 84], but does 
not use influence. The representations describing 
relations of values in Qupras are only equations. 
Qupras aims to represent laws of physics given in 
physics textbooks and engineering textbooks. Laws 
of physics are generally described not by usi ng 
influences in the textbooks, but by using equations. 
Therefore, Qupras uses only equations. 

The representation of objects mainly consists of 
existential conditions and relations. Existential 
conditions correspond to conditions needed for the 
objects to exist. Objects satisfying these conditions 
are called active objects. The relations are 
expressed as relative equations which include 
physical variables (hereafter physical quantities 
are referred to as physical variables). If existential 
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conditions are satisfied, their relations become 
known as relative equations that hold for physical 
variables of the objects specified in the physical 
rule definition. 

The representation of physical rules mainly 
consists of objects, applied conditions and 
relations. The objects are those necessary to apply 
a physical rule. The representations of applied 
conditions and relations are similar to those of 
objects. Applied conditions are those required to 
activate a physical rule, and relations correspond 
to the laws of physics. Physical rules whose 
necessary objects are activated and whose 
conditions are satisfied are called active physical 
rules. If a given physical rule is active, its 
relations become known as in the case of objects. 

Qualitative reasoning in Qupras involves two 
forms of reasoning: propagation reasoning and 
prediction reasoning. Propagation reasoning 
determines the state of the physical system at a 
given moment (or during a given time interval). 
Prediction reasoning determines the physical 
variables that change with time, and predicts their 
values at the next given point in time. The 
propagation reasoning also determines the 
subsequent states of the physical system using the 
results from the prediction reasoning. 

3.1.2 Behavior Reasoner 
The behavior reasoner is not much different 

from that of Qupras. The two features below are 
additions to that of Qupras. 

(1) Envisioning 
In Qupras, if conditions of physical rules 

and objects cannot be evaluated, Qupras 
asks the user to specify the conditions. It is 
possible for Desq to continue to reason in 
such situations by assuming unevaluated 
condi tions. 

(2) Propagation of new constraints on constants 
There are two types of parameters 

(quantities): constant and variable. In 
envisioning, the constraints related to some 
constant parameters become stronger by 
hypothesizing some conditions in the 
definitions of physical rules and objects. 
The constraints propagate to the subsequent 
states. 

Before the reasoning, all initial relations of the 
objects defined in the initial state are set as known 
relations, which are used to evaluate the conditions 
of objects and physical rules. Initial relations are 
mainly used to set the initial values of the physical 
variables. If there is no explicit change to an 
initial relation, the initial relation is held. An 
example of an explicit change is the prediction of 
the next value in the prediction reasoning. 
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Figure 3 Combined constraint solver 

Propagation reasoning finds active objects and 
physical rules whose conditions are satisfied by the 
known relations. If a contradiction is detected, the 
propagation reasoning is stopped. If no condition 
of physical rules and objects can be evaluated, the 
reasoning process is split by the envisioning 
mechanism into two process: one process 
hypothesizing that the condition is satisfied and 
other hypothesizing that it is not. 

Prediction reasoning first finds the physical 
variables changing with time from the known 
relations that result from the propagation 
reasoning. ,Then, it searches for the new values or 
the new intervals of the changing variables at the 
next specified time or during the next time 
interval. Desq updates the variables according to 
the sought values or intervals in the same way as 
Qupras. The updated values are used as the initial 
relations at the beginning of the next propagation 
reasoning. 

3.2 Design parameter calculator 

The method of calculating the design 
parameters is simple. After finding all possible 
behaviors, the designer specifies which design 
parameters to calculate. Then, the upper and 
lower values of the specified parameters are 
calculated by the parallel constraint solver. 

3.3 Parallel constraint solver 

The parallel constraint solver tests whether the 
conditions written in the definitions of physical 
rules and objects are proven by the known relations 
obtained from active objects and active physical 
rules, and from initial relations. 

We want to solve nonlinear simultaneous 
inequalities to test the conditions in the definitions 

of objects, physical rules and events. More 
than one algorithm is used to build the 
combined constraint solver, because we ·do 
not know of any single efficient algorithm for 
nonlinear simultaneous inequalities. We 
connected the three solvers as shown in 
Figure 3. The combined constraint solver 
consists of the following three parts: 

(1) Nonlinear inequality solver based on 
the interval method [Simmons 86], 

(2) Linear inequality solver based on the 
Simplex method [Konno 87], and 

(3) Nonlinear simultaneous equation 
solver based on the Groebner base 
method [Aiba 88]. 

If anyone of the three constraint solvers 
finds new resul ts, the resul ts are passed on 
to the other constraint solvers by the control 
parts. This combined constraint solver can 
solve broader equations than each individual 

solver can. However, its results are not always 
valid, because it cannot solve all nonlinear 
sim ul taneous inequalities. 

The reason why we can get quantitative ranges 
is that the combined constraint solver can process 
quantities quantitatively as well as qualitatively. 

4 Example 
4.1 Description of Model 

We show another example of the operator. We 
use a DTL circuit identical to that the same as in 
Figure 1. In this example, however, the input 
voltage and the resistance Rb are undefined. 

initial_state dtI 
objects -
Rl-resistor; 
Rg-resistor ; 
Rb-resistor ; 
Tr-transistor; 
Dl-diode; 
D2-diode2 ; 

initiaCrelations 
connect(ti !RI,tl !Rg) ; 
connect(t2!Rg,tI !DI,tI !D2) ; 
connect(t2!D3,tl!Rb,tb!Tr) ; 
connect(t2!RI,tc!Tr) ; 
resistance@RI=6000.0 ; 
resistance@Rg=2000.0 ; 
resistance@Rb>= 0.0; 
v@tI !R} = 5.0 ; 
v@t2!Dl >= 0.0; 
v@t2!Dl =< 10.0 ; 
v@te!Tr = 0.0 ; 
v@t2!Rb = 0.0 ; 

end. 

Figure 4 Initial state for DTL circuit 



The initial data is shown in Figure 4. The 
"objects" field specifies components and their 
classes in the DTL circuit. The "initial_relations" 
field specifies the relations holding in the initial 
state. For example, "connect(t2!Rg, t1!Dl, t1!D2)" 
specifies that the terminal t2 of the resistor Rg, the 
terminal t1 of the diode Dl, and the terminal t1 of 
the diode D2 are connected. The "!" is a symbol 
specifying a part. The "t2!Rg" expresses the 
terminal t2 which is one part of Rg. Rb is specified 
as a resistor in the "objects" definition. The "@" 
indicates a parameter. The "resistance@Rl" 
represents the resistance value of Rl. The 
"resistance@RI = 6000.0" specifies that RI is 6000.0 
ohms. The resistance Rb is constrained to be 
positive, and the input voltage, which is the voltage 
of the terminal t2 in the diode Dl, is constrained to 
be between 0.0 and 10.0 volts. Both values are 
undefined, and Rb is a design parameter. 

Figure 5 shows the definition of a diode. Its 
super object is a two_terminal_device, so the diode 
inherits the properties of the two_terminal_device, 
i.e., it has two parts, both of which are terminals. 
Each terminal has two attributes "v" for voltage 
and "i" for current. The diode has an initial 

object tenninal:Tenninal 
attributes 
v; 
i; 

end. 

object two_tenninal_device:TTD 
parts_of 
tI-terminal ; 
t2-terminal; 

end. 

object diode:Di 
supers 
two_tenninal_device; 

attributes 
v' , 
i; 
resistance-constant ; 

initial_relations 
v@Di=v@tl!Di-v@t2!Di ; 

state on 
conditions 

v@Di>=0.7; 
relations 

v@Di=0.7; 
i@Di>=O.O; 

state off 
condition 

v@Di<0.7; 
relations 

resistance@Di= 1 00000.0 ; 
v@Di=resistance@Di*i@Di ; 

end. 

Figure 5 Definition of diode 

physics three_conneccl 
objects 
TID1 - two_tenninaCdevice; 
TID2 - two_tenninal_device ; 
TID3 - two_tenninal_device ; 
T1-tenninal partname t1 part_ofTTDl ; 
T2-tenninal partname t1 part_ofTTD2; 
TI-tenninal partname t1 parcofTTD3; 

conditions 
connect(T1,T2,T3); 

relations 
v@T1 =v@T2; 
v@T2=v@T3; 
i@T1 + i@T2 + i@T3 = 0 ; 

end. 
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Figure 6 Definition of physics 

relation, which specifies the voltage difference 
between its terminals. The diode also has two 
states: one is the "on" state where the voltage 
difference is greater than 0.7, and the other is the 
"off' state where the voltage difference is less than 
0.7. If the diode is in the "on" state, it behaves like 
a conductor. In the "off' state, it behaves like a 
resistor. A transistor is defined like a diode, but it 
has three states, "off', "on" and "saturated" (In the 
example of Figure 1, we used a transistor model 
with two states, "off' and "on"). 

Figure 6 shows the definition of a physical rule. 
The rule shows Kirchhoffs law when the 
terminals t1 of three two_terminaLdevices are 
connected. It is assumed that the current into t1 of 
a two_terminal_device flows to the terminal t2. In 
fact, three two_terminal_devices can be connected 
in eight ways depending on how the terminals are 
connected. 

Table 1 All behaviors of DTL circuit 
State RanRe of input Ranl1.e ofresistance value RanRe of output 
10N-ON-SAT 1.40081 -1.5381 486.16 - infmity 0.2 
20N-ON-ON 1.4 -1.40081 482.75 - infinity 0.r5.0 
30N-ON-OFF 0.7-1.4 0-233,567 4.94 
40N-OFF-ON 0-1.4007 100,000 - infmitv 0.842-5.0 
50N-OFF-OFF 0-}.4 0-233,567 4.94 
6 OFF-ON-SAT 1.40081 -10.0 460.9 - infmity 0.2 
70FF-ON-ON 1.4 -10.0 457.8 - 488.53 0.2-5.0 
80FF-ON-OFF 0.rl0.0 0-484.1 4.94 

19 OFF-OFF- * ~onfhct 

4.2 Results 

Table 1 shows all behaviors of the DTL circuit 
obtained by envisioning. The state column 
indicates the states of the diode, the diode2 and the 
transistor. The following columns show the range 
of the input voltage (volts), the range of the 
resistance Rb (ohms), and the range of the output 
voltage (volts). As is shown, the envisioning found 
nine states. Because the input voltage and the 
resistance Rb were undefined, the conditions of the 
two diodes and the transistor could not be 
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evaluated. So, Desq was used to 
hypothesize both cases, and to search all 
paths. Figure 7 shows the relationship 
between the resistance and the input 
voltage. The reason why the ranges in 
Table 1 overlap is because the models of 200k 

the diodes and the transistor are 
approximate models. 

A designer can decide, by looking at 
Figure 7, the resistance Rb for the DTL 
circuit to behave as a NOT circuit. It is 
desired for Rb to be greater than about 0.5 
k ohms, and less than about 100 k ohms, 
so that the DTL 'circuit can output a low 
voltage (nearly 0 volts) when the input is 
greater than 1.5 volts, or can output a 
high voltage (nearly 5 volts) when the 
input is less than about 1.5 volts. The 
range is shown by the area enclosed by 
the dotted lines in Figure 7. 

5. Related Works 
Desq does not suggest structures of 

devices like the methods of [Murthy 87] 

1.0 2.0 10.0 

and [Williams 90]. Rather, it suggests the 
ranges of design parameters for 
preferable behaviors. The suggestion is 
also useful, because determining values 

Input voltage (volts) 

Figure 7 Relationship between Resistance and Input voltage 
of design parameters is one of the 
important steps of design [Chandrasekaran 90]. 

This approach may be regarded as one 
application of constraint satisfaction problem 
solving. There are several papers that deal with 
electronic circuits as examples, using constraint 
satisfaction problem solving [Sussman 80, Heintze 
86, Mozetic 91]. Sussman and Steele's system 
cannot suggest ranges for design parameters, 
because their system uses only equations. Heintze, 
Michaylov and Stuckey's work using CLP(R) to 
design electronic circuits is the most similar to 
Desq, but Desq is different from Heintze's work for 
the following points: 

(1) Knowledge on objects and laws of physics is 
more declarative for Desq. 

(2) Desq can design ranges of design parameters 
(of devices) that change with time. 

(3) Desq can deal with nonlinear inequalities, 
and Desq can solve nonlinear inequalities in 
some cases. 

In Mozetic and Holzbaur's work, numerical and 
qualitative models are used. In their view, our 
approach uses numerical models rather than 
qualitative models. But, if a constraint solver is 
used to solve inequalities, it is possible to use both 
numerical and qualitative calculations. 

6. Conclusion 
We have described a method of suggesting 

ranges for design parameters using qualitative 
reasoning, and implemented the method in Desq. 
The ranges obtained are quantitative, because our 
system deals with quantities quantitatively as well 
as qualitatively. In an example utilizing the DTL 
circuit, Desq suggested that the range of a 
resistance (Rb in Figure 1) should be greater than 
about 0.5 k ohms and less than about 100 k ohms to 
work the DTL circuit as a NOT circuit. If the 
designer wishes for a more detailed design, for 
example, to minimize the response time by 
performing numerical calculation, helshe need not 
calculate outside the range, and thus can save on 
the calculation cost, which is greater for direct 
numerical calculation (outside range). 

However, there are some possibilities that Desq 
cannot suggest valid ranges or the best ranges for 
design parameters. This is because of the 
following: 

(1) The ability to solve nonlinear inequalities in 
Consort is short 

Desq may suggest invalid or weak ranges 
because Consort cannot perfectly solve 
nonlinear inequalities. But, almost all 
results can be obtained by performing more 



detailed analysis using numerical analysis 
systems, for example, SPICE. 

(2) Inexact definitions are used 
It may be difficult to describe the 

definitions of physical rules and objects. 
This is because from inexact definitions, 
inexact results may be obtained. 

(3) The ability to analyze circuits is short 
The current Desq cannot analyze positive 

feedback. If there are any posi tive feedbacks 
in a circuit, Desq may return wrong 
results. 

The example in this paper does not change with 
time. We are currently working on how to 
determine ranges of design parameters (of 
circuits) that change with time, for example, a 
Schmidt trigger circuit. In such a case, we need 
to propagate new constraints on constant 
parameters. Moreover, we are investigating the 
load balancing of the parallel constraint solver to 
speed it up. 
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Abstract 

In this paper, we explore the logical system which reflect 
the dynamical model. First, we define the" causality" 
which requires "time reference". Then, we map the cau­
sation to the specific type of logical implications which 
requires the time fragment dt > 0 at each step when 
causal changes are made. We also propose a set of ax­
ioms, which reflect the feature of state-space and the 
relation between time and state-space. With these ax­
ioms and logical implications mapped from the dynam­
ical systems, the dynamical state transition can be de­
duced logically. We also discussed an alternative way of 
deducing the dynamical state change using time opera­
tors and state-space operators. 

1 Introduction 

Although the dynamical systems and logical systems are 
considered to be completely different systems, there are 
several elements in common. We mapped from dynami­
cal systems to logical systems to investigate the following 
questions: 

(1) How the fundamental concepts in dynamical sys­
tems such as observability, stability can be related to 
those in logical systems such as completeness, soundness 
? (2) In order to attain the dynamical simulation on the 
mapped logical systems, what are necessary? (3) Can 
the qualitative simulation be carried out by deducing 
the future state from the current state and some axioms 
characterizing time, state-space and their relations? 

We consider it is crucial to discriminate (physical) 
causality explicitly from logical deducibility. We stud­
ied a causality characterized by "the time reference" 
other than event dependency for the discussion of phys­
ical causality. The physical causality (or equivalently 
"change" through physical time) is intrinsically embed­
ded in a dynamical model which states the causal relation 
between what is changed and what makes the cha.nge. 

In this paper, we treat the physical causality as specific 
type of deduction which always requires the fact of the 
time fra.gment dt > 0 at each step. By mapping the dy-

namical model as well as some meta-rules which reflects 
that the state-space of dynamical systems is continuous 
to logical rules, the qualitative reasoning on dynamica 
systems can be done by logical deductions. 

Section 2 discusses the causality on the dynamica 
model. The causality is defined in terms of physica 
time. Then the causation is mapped to the logical im­
plication which requires time fragment (dt > 0) at each 
step. Cause-effect sequence is obtained by the deduction 
where the new fact dt > 0 is required at each step. Sec­
tion 3 discusses the relation between some concepts on 
dynamical models and those on logical systems. Section 
4 presents a set of axioms from which state transitions 
are deduced logically. Section 5 discusses an alternative 
formalization of logical systems for deducing the dynam­
ical changes. 

2 Mapping Causality in Dy­
namical Models to Logical Im­
plications 

2.1 Causality referring to time 

The causality has the following two requirements, which 
seem intuitively sound for a causality for the discussion 
of dynamical change. When we say "the event A caused 
the event B", we must admit 

(1) Time Reference: The event A occurred "before" 
the event B, (2) Event Dependency: The occurrence 0 

the event B must be "dependent on" the occurrence 0 

the event A. 
The "time reference" plays a crucial role to make 

clear distinction between "the causality" and logical de­
duction. In the original dynamical model of the form: 
dY/dt = X 

contains the "built-in causal" direction from the right 
hand side to the left hand side. We restrict ourselves to 
interpret the form dY / dt = X as follows: X > 0 caused 
dt > 0) or is capable of causing the event of Y increase 
dY > 0 ). The requirement of the new fact dt > 0 should 
be claimed to verify the "built-in causality". Thus the 



form will be mapped to the logical form: 

2.2 Language for dynamics 

In order to logically describe the constraint of dynamical 
model, we use the following First Order Predicate Cal­
culus. We use the 4-place predicates p(x,i), n(x,i), z(x,i) 
which should be interpreted as positive, negative, zero of 
the variable x at certain moment i. p(x,i), for example 
is interpreted as follows: 

( ') = {true, if x (at time i) > 0; 
P x, Z f al se, otherwise. 

Since the state must be unique at any moment, these 
predicates must satisfy the following uniqueness axioms 
U. 

U-(l) 'r/x'r/i(p(x, i) ~ (('" n(x, i)) 1\ ('" z(x, i)))) 
U-(2) 'r/x'r/i(n(x, i) ~ (('" p(x,i)) 1\ ('" z(x,i)))) 
U-(3) 'r/x'r/i(z(x, i) ~ ((rv n(x, i)) 1\ ('" p(x, i)))) 

We also use the 2-place predicate of inequality > 
(x, y). Other than these three predicates, we also use 
functions such as d/dt(time derivative), +(addition), 
-(substraction), . (multiplication) , /(division) defined on 
the time varying function x( t) in our language. 

With these predicates, the causality defined from X to 
Y can be written by: 

p(X(t),i) 1\ p(dt, i) ~ p(dY/dt, i) 

n(X(t), i) 1\ p(dt, i) ~ n(dY /dt, i) 

z(X(t), i) V z(dt, i) ~ z(dY /dt, i) 

2.3 Causality in dynamical models 

We formalize the" causality" by the propagation of sign 
in the dynamical model. In the propagation, time refer­
ence is included, since p(dt, i) is always needed to con­
clude the causation. 

Example 2.1. 

In order to compare 
the simulation results with those done by other quali­
tative simulation [de Kleer and Brown 1984], we use the 
same example of pressure regulator as shown in Fig. 1. 

We can identify the causality in the feedback path. 
The flow also is caused by a driving force and by the 
available area for the flow. Further, the pressure at a 
point is caused by the flow through the point. Reflecting 
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these causal path, the following model is obtained. 

d6Xs/dt = -a' 6Po - d· 6Xs 
d6Q/dt = b·(6Pi-6Po-c·(2X s·Q6Q-Q26X s)/ X s2 

d6Po/dt = e . (2Q6Q - f . 6Po) 

where a, b, c, d, e, and f are appropriately chosen pos­
itive constants. 6 x denotes the variance from the equi­
librium point of x. 

pi 
9 _~ 

Xs 
/ 

Po 

xxxxxxxxxxxxxx~xxxx~~xxxxxx 

Fig.1 A Schematic Diagram of 
Pressure Regulator 

The first equation of the model, for example, IS 

mapped to the logical formulae: 

n(6po(t), i) 1\ p(dt, i) ~ p(d6xs/dt, i) 

p(6po(t), i) 1\ p(dt, i) ~ n(d6xs/dt, i) 

z(6po(t), i) V z(dt, i) ~ z(d6xs/dt, i) 

With the set of logical formulae, which are mapped 
from the dynamical equations and the following axioms, 
we can obtain a cause-effect sequence by the causal de­
duction on this model. 

1-(1 ) 

'r/x'r/i'r/j(z(x, i) 1\ p(dx/dt, i) 1\ (j > i) ~ 

3k((j > k) 1\ (k > i) I\p(x,j,k))) 
I-(2) 

'r/x'r/i'r/j(z(x, i) 1\ n(dx/dt, i) 1\ (j > i) ~ 

3k((j > k)l\(k > i)l\n(x,j,k))) 

These are the instant change rules 
[de Kleer and Bobrow 1984]' which state that z(x, i) is 
a point with measure zero. 

Suppose Pi is disturbed p( 6Pi, 0) when the system 
is in a stationary state (all the derivatives are zeros 
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then the initial sign vector is (8Pi, 8Po, 8Q, 8X s) = 
(+,0,0,0). We will use this state-state vector nota­
tion when needed instead of an awkward notation of 
p(8Pi, 0), z(8Po, 0), z(8Q, 0), z(8Xs,0). 

By the causal deduction, p(8Q, N1) is first ob­
tained( first step). Including this new state as the fact, 
we can then obtain p(8Po, N2) by the causal deduc­
tion again(2nd step). Including this state as the new 
results and using third time fragment dt > 0, we obtain 
n(5Xs, N3) by the causal deduction (3rd step). 

3 Logical System and Dynami­
cal System 

In the previous section, we regarded the causality built­
in the dynamical model as logical implication. Then, the 
dynamical state change can be carried out in a similar 
manner to deduce the new fact from the logical formulae 
corresponding to the dynamical model and the time frag­
ment p( dt, i). In order to use the causal relation in the 
dynamical model, the dynamical model must be original 
one. That is, the original dynamical model must reflect 
causal path between two physical entities. 

In this section, we consider some correspondence be­
tween the important concepts in dynamical systems and 
those in logical systems. 

Theorem 3.1(observability and deducibility) 
The dynamical system is qualitative observable from 

a observer y iff the non-zero of the observer y can be 
deduced in the mapped logical system when the fact 
that some variables (corresponding to the dynamical sys­
tem)are non-zero is given. 

This result can be used to save some deduction pro­
cesses when some variables are known to be observable 
or not. Further, this result can also used to investigate 
the qualitative stability which can be known by the ob­
servability of the system [Ishida 1989]. 

Definition 3.2 (completeness and soundness) 
The mapped logical system is called complete (sound) 

if all the state which can (not) be attained by the corre­
sponding dynamical system in the finite time can (not) 
be deduced in the finite number of steps. 

Conjecture 3.3 
The mapped logical system is always complete but not 

always sound. 
This fact is often stated in qualitative reasoning, but 

not formally proved yet. Most formal discussion may be 
found in [Kuipers 1985,Kuipers 1986], stating that 

But, 

Each actual behavior of the system is necessar­
ily among those produced by the simulation. 

There are behaviors predicted by qualitative 
simulation which do not correspond to the be­
haviorof any system sarisfying the qualitative 
structure description. 

We will see the example showing the lack of soundness 
of the mapped logical system in the next section. The 
lack of soundness is due to the following fact. 

Proposition 3.4 
Two equivalent dynamical systems may be mapped to 

the different logical systems. 
That is, two dynamical systems which can be trans­

formed to each other, may be mapped to the different 
logical systems. In fact, a dynamical system is usually 
mapped to a part of the exact logical system. There­
fore, in order to make the mapped logical system close 
to the dynamical model, we must map from the multiple 
dynamical models which are equivalent as a dynamica 
model, and combine these mapped logical systems. We 
have not yet known what kinds of equivalent dynamica 
models suffice to make the mapped logical system exact. 

4 Reasoning about State by De­
duction 

Thp. causal deduction stated in the previous section can­
not say anything as to changes when some time interva 
passed. That is, when many variables approaching to 
zero, which one reaches zero first. In order to determine 
this, meta-rules which are implicit in dynamical models 
must be explicitly introduced. The following axioms re­
flect the fact that the state-space of the dynamical mod­
els are continuous. The lack of continuous and dense 
space in the logical system is the fundamental points 
which discriminate logical systems from dynamical sys­
tems. 

T-(l) 

'Vx'Vi(p(x, i) 1\ n(dx/dt, i) ~ 3j((j > i) 1\ z(x,j))) 

T-(2) 

'Vx'Vi(n(x, i) I\p(dx/dt, i) ~ 3j((j > i) I\p(x,j))) 

These axioms T-(1),(2) comes from value continuity 
rule stated in [de Kleer and Bobrow 1984]. This ax­
iom T does not correctly reflect the world of dynamica 
model. Even if x > ° and dx / dt < 0, x does not neces­
sarily become zero in the finite or infinite time. 



M-(1) 

\fx\fj1\fj2(p(x,j1) "n(x,j2)" (j2 > j1)) --+ 

3j3(z(x, j3) "(j3 > j1) " (j2 > j3))) 
M-(2) 

\fx\fj1\fj2(n(x,j1) "p(x,j2) " (j2 > j1)) --+ 

3j3(z(x, j3) "(j3 > j1) " (j2 > j3))) 

These axioms M-(1),(2) corresponds to the well-known 
intermediate value theorem, which reflects the continuity 
of the function x. Axioms T and M states the continuity 
of the state-space and that of the function from time to 
state-space. Other than axioms U,I,M,T, we need the 
following assumptions. That is, the state remains to be 
the same as the nearest past state unless otherwise de­
duced. We call this no change assumption. We could 
not formalize this assumption by a logical formula of our 
language so far. This seems to be a common problem 
to any formalization for reasoning about such dynamic 
concepts as state change, actions, and event. The situ­
ation calculus [McCarthy and Hayes 1969], for example, 
uses the Frame Axioms! to avoid this problem. 

Example 4.1. 
Let us consider the mass-spring system with friction 

[de Kleer and Bobrow 1984] (Fig. 2) whose model is of 
the form: 

( 4-1) dx / dt = v 
(4-2) dv /dt = -kx - fv where k and f are positive 

constants. 

(4-2) is the original form containing the built-in causal­
ity whereas (4-1) is the definition of v. 

-~----
3- X 

Fig.2 A Schematic Diagram of 
Mass-Spring System with Friction 

As for the initial sign patterns of (x, v, dv/dt), we 
consider oIily three cases; (+, -, -), (+, +, -), (+, -, +). 
Let G dm denote the set of logical formulae correspond­
ing to the dynamical model, and Gch those correspond­
ing to the axioms U,I,T,M. The sign pattern (+,+,+) 
and its opposite pattern (-, -, -) are are inconsistent, 

1 Frame axioms are collection of statements that do not change 
when an action is performed. 
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since (p(x,O) "p(v, 0)) U Gdm --+ n(dv/dt,O). This re­
sult n( dv /dt, 0) is inconsistent with the initial pattern 
p(dv/dt,O) under the uniqueness axiom U. 

We do not consider the initial sign pattern which con­
tains zero for any variables, since the pattern will change 
immediately to the sign pattern with only non zero pat­
terns by axiom I. Thus these three patterns cover all the 
possible sign combinations. 

We only show the deduction for the simulation of the 
case 1 when p(x,O), n(v,O), n(dv/dt, 0) are given as the 
initial pattern. Other cases can be deduced in a similar 
manner to this case 1 from the initial sign pattern, the 
set of logical formulae Gdm and Gch . By the axiom T, 

p(x, 0)" n(v, 0) --+ 3N1((N1 > 0)" z(x, N1) 

By the no change assumption, other variables are as­
sumed to remain the nearest past signs; that is 

n(v, N1), n(dv/dt, N1). 

However, 

(n( v, Nl) " z(x, N1)) U Gdm --+ p(x, Nl). 

Thus, we have 

z(x, Nl), n(v, Nl), p(dv/dt, Nl). 

Then by the axiom M, 

(N1) 0) "n(dv/dt, 0) "p(dv/dt, N1) --+ 3N2((N2 > 
0)" (N1 > N2)" (z(dv/dt, N2)) 

By the no change assumption, other variables at time 
N2 are assumed to remain the nearest past signs; that 
is p(x, N2), n(v, N2). Since n(v, N2) " z(dv/dt, N2) U 
Gdm --+ p(cPv/dt2 ,N2) 

and by the axiom I, 

p(d2v/dt2
, N2) " z(dv/dt, N2) ,,(Nl > N2) --+ 

3N3((NI > N3)" (N3 > N2) "p(dv/dt, N3)). 

Again by the no change assumption, 

p(x, N3), n( v, N3). 

By applying the axiom I to the state at N 1, 

n(v, Nl)" z(x, Nl) --+ 3N4((N4 > Nl) "p(x, N4)). 

n(v,N4) and p(dv/dt,N4) are obtained by the no 
change assumption. By applying the axiom T to the 
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state N4, 

n(v,N4) "p(dv/dt,N4) -+ 3NS((NS > N4)" 
(z(v, NS)). 

Again signs of other variables at NS remain to be the 
same as those at N 4. By applying the axiom I to the 
state NS, we have 

z(v, NS) " p(dv/dt, NS) -+ 3N6((N6 > NS)" 
p(v, N6)) 

In summary we have deduced, the set of the state 
at different time p(x, N2), n(v, N2), z(dv/dt, N2), 
p(x, N3), n(v, N3), p(dv/dt, N3), z(x, Nl), n(v, Nl), 
p(dv/dt, Nl), 
n(x,N4), n(v,N4), p(dv/dt,N4), n(x,NS), z(v,NS), 
p(dv/dt, NS), n(x, N6), n(v, N6), p(dv/dt, N6) and the 
order of time (0 < N2 < N3 < Nl < N4 < NS < N6). 
Tables 1 show the state transitions starting the initial 
patterns case 1, case2 and case3. 

Tables 1 State Transition by Logical Deduction 

0 + - -
1 + - 0 
2 + - + 
3 0 - + 
4 - - + 
S - 0 + 
6 - + + 

At step 6, the opposite pattern of the 
initial pattern comes. 

. case 2 
I t II x I dx/dt I d2x/dt2 I 

I!HI ~ I I 
At step 2, the same pattern as the initial 
pattern of case 1 comes. 

case 3 
I t II x I dx/dt I d2x/dt2 I 

I!II~I - I ! I 
At step 2, the opposite pattern of the 
initial pattern of case 2 comes. 

In the logical system mapper from the dynamical 
model (4-1) and (4-2), it is impossible to deduce the 
state which corresponds to the convergence to the point 

(x, dx/dt, d?x/dt2 ) = (0,0,0) which is attained when in­
finite time passed in the dynamical model. In fact, we 
only have periodic states as shown in Tables 1. How­
ever, the infinite sequences of deduction similar to this 
convergence can be found. When the initial sign pattern 
is (x, dx/dt, d?x/dt2

, ... ) = (+, -, +, ... ), apply the axiom 
T to n(dx/dt,O) then we have 

3Nl((Nl > 0)" z(dx/dt, Nl)). 

Then applying the axiom M to this result, we will have 

3N2((NI > N2)" z(d?x/dt2
, N2)). 

This application of the axiom M progressively to any 
higer order time derivative of x. That is we have 

3Ni + 1((Ni > Ni + 1)" z(di+1 x/dt i+1, Ni + 1)). 

This is an interesting corresponding between the dy­
namical model and the mapped logical systems. It may 
suggest to introduce some operations in the logical sys­
tem (other than deduction) which corresponds to the op­
eration limt-+oo x(t). 

We will show this convergence can be deduced even 
in the finite step using the logical implications mapped 
from a different (but equivalent) dynamical model. The 
dynamical model (4-1), (4-2) is equivalent to the dynam­
ical model: 

(4-3) E = x2 + l/k * (dx/dt)2 
(4-4) dE/dt = - f(dx/dt)2 

This states that E and hence x will event ually become 
zero as long as f > O. Table 2 shows the state transition 
of the mapped logical system. This convergence of the 
dynamical system is attained in the infinite time, and 
hence need not be deduced in the mapped logical sys­
tem. Since the current logical system does not have the 
concepts of convergence and infinite step, these concepts 
are out of scope of the mapped logical systems. 

The results show that the logical system mapped from 
the dynamical model (4-3)(4-4) is quite differet from that 
mapped from the dynamical model (4-1)(4-2), althogh 
these dynamical models are equivalent. Therefore, this 
example shows the correctness of Proposition 3.3. This 
point is also fundamental difference between dynamica 
systems and logical systems. 

Table 2 State Transition of Mass-Spring 
System(Energy Model) 

It" x I dx/dt I E I dE/dt I 

I~II~I ~ I~I 0 I 
* denotes any sign +, - o. 



5 Discussions 

We first discuss the temporal logic with the temporal 
operators F,P [Rescher and Urquhart 1971], where FA 
(PA) means A will(was) be true at some(past) future 
time. With the axiom schemata, the feature of these 
temporal operators, and even the features of time (e.g. 
whether it is transitive, dense, continuity) can be char­
acterized. However, since the logic does not tell anything 
about the feature of the state-space and the relation be­
tween the state-space and time, it is not possible to infer 
the change in the state-space. In fact, the axioms I, T, M 
given at section ? characterize the feature of the state­
space. An alternative to our approach is to define the 
space operators similar to the time operators. One way 
of defining space operator follows: 

Fx, Px where FxA(PxA) means that A is true at some 
point where x is larger(smaller) than the current value. 
With this definition, the previous time operator can be 
written as F t, Pt. 

With these space operators, the axioms I,T,M may be 
written as: 

1-(1) z(x) ~ GAp(x)) 
1-(2) z(x) ~ HAn(x)) 
T-(l) p(x) ~ Px(z(x)) 
T-(2) n(x) ~ Fx(z(x)) 
M-(l) p(x) AFAn(x)) ~ Fx(FAz(x))) 
M-(2) n(x) AFAp(x)) ~ Fx(FAz(x))) 

Since these axiom schemata I,T,M characterize the fea­
ture of only state-space itself, we need the following ax­
ioms TS which characterize the monotonic relation be­
tween time and state-space. 

TS-(l) p(dx/dt) ~ ((F A ~ FxA) A (PA ~ PxA)) 
TS-(2) n(dx/dt) ~ ((PA ~ FxA) A (F A ~ PxA)) 

Here, the time operators are used instead of the time 
index for the sign predicates p,n,z. The good point of this 
space operator approach is that it can be discussed as a 
natural extension of temporal logic with temporal oper­
ators. However, its critical point is that although these 
space/time operators can tell the temporal precedence of 
the event but it cannot describe that the different event 
A, B occurred at the same time. In the approach taken 
in section .4, it is described by putting the same time 
tags. 

When compared with the qualitative reasoning 
[de Kleer and Bobrow 1984], our way of qualitative rea­
soning is different from theirs in the following two points: 

t 1) In reasoning; we defined another causality which 
refers to time strictly. Causal reasoning is carried out 
by mapping causality in dynamical models to the deduc-
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tion under the condition of dt > O. Time independent 
relations are mapped to only deductions. Then causa 
reasoning is done by requiring the facts dt > 0 in every 
step. This logical reasoning can be implemented on the 
the logical reasoning system such as prolog by providing 
axioms so far proposed and the mapped dynamical mod­
els. (2) In modeling; since we use the causality built in 
the dynamical model, we skip qualitative modeling pro­
cess. That is, we use the dynamical model as qualitative 
model. However, the dynamical models must be care­
fully selected to insure the causal path in the dynamica 
models can be reflected on the mapped logical systems. 

6 Conclusion 

We discussed a mapping from dynamical systems to log­
ical systems to see the correspondence of the fundamen­
tal concepts in these two domains, to implement the 
causal reasoning system on a logical deduction system. 
To clearly separate the physical causality from the usua 
deduction, we defined causality in physical system by 
making time explicit. 

Many fundamental problems remains such as; whether 
or not the complete and sound logical system for a dy­
namical system exists? If yes, how the complete and 
sound logical system can be attained? 
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Abstract 
CLASSIC is a recently developed knowledge representa­
tion (KR) system, based on a view of frames as struc­
tured descriptions, with several important inferable re­
lationships, including description classification. While 
much about CLASSIC is novel and important in its own 
right, it is especially interesting to consider the system 
in light of its unusual (for Artificial Intelligence) intellec­
tual history: it is the result of over a d~cade of research 
and evolution in representation systems that trace their 
origins back to work on KL-ONE, arguably one ~f the 
most long-lived and influential approaches to KR III the 
history of AI. We outline some of the novel contributions 
of CLASSIC, but pay special attention to its roots, illus­
trating the maturation of some of the Qriginal features 
of KL-ONE and the decline and fall of others. A num­
ber of key ideas are analyzed-including the interpreta­
tion of frames as descriptions, the classification inference, 
and the role of a knowledge representation system in a 
knowledge- based application. The rare traceable rela­
tionship between CLASSIC and its ancestor gives us an 
opportunity to assess progress in a generation of knowl­
edge representation research. 

1 Introduction 
An unfortunately large fraction of work in Artificial In­
telligence is ephemeral, accompanied by much sound and 
fury, but, in the end, signifying virtually nothing. Work 
on systems with significant longevity to the basic ideas, 
such as STRIPS, appears to be the exception rather than 
the rule in AI. 

In the area of knowledge representation (KR), there 
are ideas that have lived on for years, but very few 
systems or approaches have seen more than a minimal 
number of users for a minimal number of years. l The 
KL-ONE system [7, 11] is different: it was "born" over a 
dozen years ago, and has had continuous evolution and 
influence ever since. Its offspring now number at least 
twenty significant projects worldwide, all based directly 
on its key ideas of classification and structured inheri­
tance. With well more than a decade behind us, this rich 

* Also with the Department of Computer Science, Rutgers 
University, New Brunswick, NJ. 

tElectronic mail addresses: rjb@research.att . com, 
borgida@cs.rutgers.edu, dlm@research.att.com, 
pfps@research.att.com,resnick@research.att.com. 

lSNePS and Conceptual Graphs are among the few 
exceptions. 

history bears closer examination, especially with the ad­
vent of the CLASSIC Knowledge Representation System, 
a recent development that clarifies and amplifies many of 
the central ideas that were more crudely approximated 
in the KL-ONE of 1978. CLASSIC goes substantially be­
yond KL-ONE in its treatment of individuals and rules, its 
clarification of subsumption and classification, its inte­
gration with its host language, and its concrete stand on 
the role of a KR system as a limited deductive database 
management system. 

While a description of the CLASSIC system would be 
interesting in its own right, its motivation and contri­
bution are more easily understood by placing it in the 
proper context. Thus, rather than describe the system 
in isolation, we here briefly explore some of its key prop­
erties in light of their intellectual debt to KL-ONE and its 
children. Besides making the case for CLASSIC, this will 
also provide us an opportunity to assess in retrospect the 
impact of some of the original ideas introduced by KL­
ONE. This is a chance to see how far we have come in a 
"generation" of knowledge representation research. 

2 KL-ONE: The First Generation 
KL-ONE was the first implementation (ca. 1978) of a rep­
resentation system developed in Brachman's thesis [7]. 
It was influenced in part by the contemporary Zeitgeist 
of "frames" (e.g., see [20]), with emphasis on structured 
objects and complex inheritance relationships. But KL­
ONE's roots were really in semantic networks, and it had 
a network notation of labeled nodes and links. 

Despite its appearance, in some key respects KL­
ONE was quite different from both the semantic net­
work systems that preceded it, and the frame systems 
that grew up as its contemporaries. Following papers 
by Woods [33] and Brachman [6], KL-ONE rejected the 
prevailing idea of an open-ended variety of (domain­
specific) link- and node-names, and instead embraced a 
small, fixed set of (non-domain-specific) "epistemolog­
ical primitives" [8] for constructing complex structured 
objects. These constructs-which represented basic gen­
eral relationships like "defines-an-attribute-of" and "is-a­
specialization-of," rather than domain-specific relation­
ships like "owns" or "has-employee"-were considered 
to be at a higher level of representation than the data­
structuring primitives used to implement them. They 
could be used as a foundation for building application­
dependent conceptual models in a semantically mean­
ingful way (rather than in the ad hoc fashion typical of 
semantic nets). 
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Figure 1: A KL-ONE Concept. 

In addition to its clear stand on the semantics of se­
mantic networks, the original KL-ONE introduced a num­
ber of important ideas, including these: 

• rather than manipulating "slots" -which are in real­
ity low-level data structures--KL-ONE looked at rela­
tionships as roles to be played; roles get their mean­
ings from their interrelations-just like the roles in 
a drama-and they are not just meaningless labeled 
fields of records or indistinguishable empty bins into 
which values are dropped; 

• a role taxonomy, which allowed roles to be subdivided 
into more specific roles; e.g., if child is a more specific 
role than relative, then being a child entails some­
thing more constrained than being a relative, but in­
cludes everything that being a relative in general does; 

• structural descriptions, which served to define the re­
lationships between role players; e.g., the difference 
between a buyer and a seller in a PURCHASE event 
would be specified by reference to other concepts that 
specified in which direction money and goods would 
flow. These concepts would give substance to the roles, 
rather than leaving their meanings open and subject 
only to human interpretation of strings like "buyer." 

• structured inheritance, which reflected the fact that 
concepts (KL-ONE'S name for frames/classes) were 
complex structured constructs and their parts were not 
independent items to be manipulated arbitrarily. 

The KL-ONE language showed its semantic-network 
heritage rather directly, in that KL-ONE structures 
were drawn in diagrams, with different link-types be­
ing indicated with different pictorial realizations. For 
example, Figure 1 illustrates a typical KL-ONE con­
cept: the "STARFLEET-MESSAGE" concept uses its parent, 
"MESSAGE," to create the description corresponding to "a 
MESSAGE whose Sender is a STARFLEET-COMMANDER." In 
general, a user built a KL-ONE net like this by calling 
rather low-level LISP functions, whose actions might be 
to "create a role node" or "add a superconcept link." 

After a number of years of use and reimplementation, 
it gradually became clear that KL-ONE's approach to 
structured objects was substantially different than that 
of virtually all of its contemporary systems. The pri­
mary realization was that those objects had previously 
been used for (at least) two purposes [6,9]: (1) to repre­
sent statements, usually of some typical properties (e.g., 
"elephants are gray"), and (2) to act as structured de­
scriptions, somewhat like complex mathematical types 
(e.g., "a black telephone," rather than "all telephones 
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are black"). In the KL-ONE community, the structured­
description aspect came to be emphasized over the as­
sertional one. 

Viewing frames as descriptional, rather than asser­
tional, emphasized the intensional aspects of knowledge 
representation. This had one primary benefit: it yielded 
the idea that the central inference to be drawn was 
subsumption-whether or not one description is neces­
sarily more general than another. Subsumption in turn 
led to the idea of description classification-taking a de­
scription and finding its proper place in a partial or­
der of other descriptions, by finding all subsuming (more 
general) descriptions and all subsumed (more specific) 
descriptions. KL-ONE-based classification systems were 
subsequently used in a number of interesting applica­
tions, including natural language understanding [11], in­
formation retrieval [27], expert systems [22], and more. 
Because of this view of frames, the research foci in the 
KL-ONE family gradually diverged somewhat from those 
of other frame projects, which continued to emphasize 
typicality and defaults. 

Another key issue in the KL-ONE community has 
been the tension between the need for expressiveness 
in the language and the desire to keep implementa­
tions computationally reasonable. Two somewhat dif­
ferent approaches can be seen: NIKL [17], and subse­
quently LOOM [19], added expressive power to the origi­
nal KL-ONE language, and admitted the possibility of in­
complete classification. KRYPTON [12], and subsequently 
KANDOR [26], on the other hand, emphasized computa­
tional tractability and completeness. While neither of 
these approaches is right for every situation, they pro­
vide an interesting contrast and highlight a significant 
current issue in knowledge representation. This topic is 
still under active exploration (see Sections 4.5-4.6). 

Over the last decade, systems based on the ideas in KL­
ONE have proliferated in the United States and Europe 
(with significant ESPRIT funding), with at least twenty 
related efforts currently underway (see [34]). The work 
has also inspired seven workshops, two recently being 
held in Germany (in 1991) and one coming soon in the US 
(1992). These workshops have attracted both theoretical 
and practical scientists from several countries, and made 
it clear that the class of "KL-ONE-like" representation 
systems has both important theoretical substance and 
practical impact. 

3 The CLASSIC System 
The CLASSIC Knowledge Representation System 2 repre­
sents a new generation of KL-ONE-like systems, empha­
sizing simplicity of the description language, a formal 
approach, and tractability of its inference algorithms. In 
this regard, it is most like KANDOR (and also BACK [32]), 
which, while setting important directions for limited 
subsumption-based reasoning, had a number of inade­
quacies. However, the CLASSIC system goes significantly 

2CLASSIC stands for "CLASSification of Individuals and 
Concepts." It has a complete, fully documented implemen­
tation in Common Lisp, and runs on SUN workstations, Ap­
ple Macintoshes, Symbolics Machines, etc. It has been dis­
tributed to numerous (> 40) universities for research use. 
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beyond previous description-based KR systems in many 
important respects, including its language, integration 
with the host system, treatment of individuals, and clar­
ity on the role of a KR system. 

In CLASSIC's language, there are three types of objects: 

• concepts, which are descriptions with potentially com­
plex structure', formed by composing a limited set of 
description-forming constructors; concepts correspond 
to one-place predicates; 

• roles, which are simple formal terms for properties; 
roles correspond to two-place predicates; within this 
class, CLASSIC distinguishes attributes, which are func­
tional, from multi-roles, which can have multiple fillers; 

• individuals, which are simple formal constructs in­
tended to directly represent objects in the domain of 
interest; individuals are given properties by asserting 
that they are described by concepts (e.g., "Chardonnay 
is a GRAPE") and that their roles are filled by other indi­
viduals (e.g., "Bell-Labs' parent-company is AT&T"). 

The CLASSIC description language is uniform and 
compositional-the meaning of a complex description is 
a simple combination of the meanings of its parts. 3 The 
complete description language grammar in Figure 2 il­
lustrates its simplicity. Besides the description language, 
the interface to CLASSIC has a small number of operators 
on knowledge bases for the creation of new concepts (and 
the assignment of names to them), which include defined 
concepts, with full necessary and sufficient conditions; 
primitive concepts, which have only necessary conditions 
(see [9]); and disjoint (primitive) concepts, which cannot 
share instances (e.g., MALE and FEMALE). There is also 
an operator to explicitly "close" a role; this makes the 
assertion that there can be no more fillers for the role 
(see below). 

It is important to emphasize that the description con­
structors and knowledge base operators were chosen only 
after careful study and extensive experience with numer­
ous KR systems. For example, virtually every object­
centered representation system has a way to restrict the 
type of an attribute; this yields our ALL constructor. All 
KR languages need to assert that a role is filled by an 
object; this corresponds to FILLS. CLASSIC's set cap­
tures the central core of virtually all KL-ONE-like sys­
tems in an elegant way: the constructors are minimal, 
in that one can not be reduced to a combination of oth­
ers; and they have a uniform, prefix notation syntax, 
which allows them to be composed in a simple and pow­
erful way. Rules (see Sec. 4.4), procedural tests, numeric 
ranges (MAX, MIN) and host language values expand 
the scope of KL-ONE-like concepts; these were included 
after clear user need was demonstrated. Certain more 
complex operators were excluded because they would 
have clearly made inference intractable or undecidable. 
Thus, CLASSIC's language is arguably the cleanest struc­
tured description language that tempers expressiveness 
of descriptions with tractability of inference (but see 
Section 4.5), elegantly balancing representational needs 
and inferential constraints in a uniform, simple, compo­
sitional framework. 

3CLASSIC has a formal semantics, but we will not be able 
to elaborate on it here. See [4]. 

CLASSIC has many novel features, and improves on 
its predecessors in a number of ways, one of the most 
telling of which is its treatment of individuals. Any­
thing that can be said about a concept can be said about 
an individual; thus, partial knowledge about individu­
als is maintained and used for inference. For example, 
we can assert that a person has at least three children 
((AT-LEAST 3 child)) without identifying them, or 
that all of the children-whoever they are-are female 
((ALL child FEMALE)). Individuals from the host lan­
guage (e.g., LISP), such as strings and numbers, can 
be freely used where CLASSIC-supported individuals can, 
with consistent treatment. When any individual is added 
or augmented, or when a new concept is defined, com­
plete propagation of properties is carried out, so that 
all individuals are continuously classified properly, and 
monotonic updates are treated completely. The role­
fillers of an individual are not considered under the usual 
closed-world assumption; this better supports the accu­
mulation of partial knowledge about individuals. Roles· 
can be "closed" explicitly when all of their fillers are 
known. Most crucially, an individual cannot be proven 
to satisfy an ALL restriction or an AT-MOST restric­
tion by looking at its fillers for the role unless all of those 
fillers are known. Previous systems either treated this 
aspect of assertions incompletely or incorrectly. 

Rather than delve further into CLASSIC's individual 
features, we will attempt to better articulate its more 
general contributions by examining its relation to the 
issues that started this whole line of thinking over a 
decade ago. In that respect we can not only appreciate 
gains made in CLASSIC, but understand the strengths 
and weaknesses of the original KL-ONE proposals. 

4 Key Intellectual Developments 
CLASSIC is innovative in a number of ways, and bears 
little surface resemblance to KL-ONE. But it is also very 
much a descendant of that system, which introduced a 
number of key ideas to the knowledge representation 
scene. While we will not have an opportunity here to 
delve into all of these ideas, we will examine a few of the 
more important issues raised by the original system and 
its successors. 

4.1 Subsumption as a Central Inference 
In KL-ONE, as in all semantic networks that preceded 
it (and most systems to follow), the backbone of a do­
main representation was an "IS-A" hierarchy. The IS-A 
("superc" in KL-ONE) link served to establish that one 
concept was a subconcept of another, and thus deserved 
to inherit all of the features of the superconcept. Virtu­
ally all of these systems forced the user to state directly 
that such a link should be placed between two explicitly 
named concepts. This type of user responsibility is still 
common in virtually all frame-based systems and expert 
system shells. 

In the early 1980's w~ discovered that in a 
classification-based system this was the wrong way 
around. In the KL-ONE-descendant languages of KRYP­
TON and KANDOR, where the meaning of a concept could 
be determined simply and directly from its structure (be-
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<concept-expression> ::= THING I CLASSIC-THING I HOST-THING I <concept-name> built-in names 
(AND < concept-expression> +) I 
(ALL <role-expression> <concept-expression> ) I 
(AT-LEAST <positive-integer> <role-expression> ) I 
(AT-MOST <non-negative-integer> <role-expression> ) 

conjunction 
universal value restriction 

minimum cardinality 
maximum cardinality 

role-filling 
role-filler equality 

test (CLASSIC concept) 
test (HOST concept) 

set of individuals 
numeric range limits 

(FILLS <role-expression> <individual-name> +) I 
(SAME-AS <attribute-path> <attribute-path» I 
(TEST-C <fn><argument>*) I 
(TEST-H <fn><argument>*) I 
(ONE-OF <individual-name> +) I 
(MIN <number» I (MAX <number» 

<individual-expression> ::= <concept-expression> I <individual-name> 
<concept-name> ::= <symbol> 
<individual-name> ::= <symbol> I <string> I <number> I '<COMMONLISP-expression> 
<role-expression> ::= <multi-role-name> I <attribute-name> 
<attribute-path> ::= «attribute-name> +) 
<fn> ::= a function in the host language (COMMON LISP) with three-valued logical return type 

Figure 2: The CLASSIC Description Language (comments in italics). 

cause the logic had a compositional semantics and neces­
sary and sufficient definitions), it became clear that IS-A 
relations were purely derivative from the structure of the 
concepts. In other words, the subsumption relation4 be­
tween two descriptions was determined without any need 
for a complete explicit hierarchy of IS-A connections. 

Of course, it might 'make a difference to the efficiency 
of the system if allsubsumption relationships that had 
been calculated were cached in some kind of structure 
that obviated the need to compute them a second time, 
and this is now common practice. But in a system like 
CLASSIC, it is clear that this is strictly an efficiency issue. 

In essence, systems that force a user to think only 
in terms of direct IS-A links place the entire burden of 
knowledge structuring on that user. Since every IS-A 
assertion is taken at its word, the system can provide 
no feedback that the correct relationship has been r~p­
resented; all responsibility is the user's. On the other 
hand, the CLASSIC system (and others like it) can reli­
ably decide under which concepts a new concept or indi­
vidual must fit, since it has a compositional interpreta­
tion of the parts of any concept. This provides valuable 
help to the user in structuring large knowledge bases, 
because it is all too easy for us to assume that just be­
cause we know something that a term (e.g., a complex 
concept, like RED-WINE) implies, the system will know 
it as well. This advantage has been documented in the 
LASSIE system [14], which uses classification to support 
a software information system. Systems that do not do 
classification do not have defined concepts, and therefore 
treat everything as primitive [9]. Thus we can be falsely 
lulled into assuming that when we assert that a partic­
ular WINE has color = Red, the system will know that 
it is a RED-WINE; but a non-classification system will not 
make that inference. 5 

4Subsumption is defined formally in [18] and [4]. Concept 
a subsumes concept b iff instances of b are instances of a in 
all possible interpretations. 

5Note that CLASSIC and its cousins all do normal inheri­
tance of properties. Most ofthese systems are strictly mono­
tonic for simplicity, but LOOM [19] has a default component. 

4.2 From LISP Functions to Languages 

The realization that the structure of a concept is the 
only source of its meaning, and that any IS-A hierarchy 
is induced by such structures, leads to another significant 
point of departure for the CLASSIC system. CLASSIC has 
a true knowledge representation language-a grammar 
of expressions. KL-ONE and even many of its succes­
sors treated a knowledge base as a set of data structures 
to be more or less directly manipulated by a user, and 
thus the user interface was strictly in terms of node- and 
link-managing functions. Instead (following KRYPTON) 
CLASSIC is really based on a formal logic, with a formal 
syntax, rules of inference, and a formal interpretation of 
the syntax (see [4]). 

Of all of the KL-ONE-like systems, the CLASSIC system 
has the cleanest language. As shown in Figure 2, the 
language is simple, uniform, and compositional. Fig­
ure 3 illustrates the difference in style between KL­
ONE structures and the lexical language of the CLAS­
SIC system.6 The advantages of a true logic over a set 
of data-structure-manipulating programs should be ob­
vious: one can write parsers and syntax checkers for the 
language, formal semantics can be specified, inference 
mechanisms can be verified to adhere to the semantics, 
etc. 

4.3 Attached Procedures 
One of the more popular features of the early frame 
systems was the ability to "attach" programs to pieces 
of the data structures. The ultimate incarnation of 
this idea was probably KRL [3], which had an elabo­
rate process framework, including "servants," "demons," 
"traps," and "triggers." The program fragments could 
be invoked at various times, and cause arbitrary com­
putations to occur. KL-ONE had its own elaborate pro­
cedure attachment and invocation framework. However, 
arbitrary access to LISP meant that KR systems with 
this feature ceded control completely to the user-an at-

6The symbols ~ and == indicate a primitive concept speci­
fication and a defined concept specification, respectively. The 
KL-ONE community has developed an algebraic notation that 
includes operators like these for all constructs in CLASSIC and 
related languages. 
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MESSAGE [;;; (AND (AT-LEAST 1 sender) 
(ALL sender PERSON) 
(AT-LEAST 1 recipient) 
(ALL recipient PERSON) 

(AT-LEAST 1 body) 
(AT-MOST 1 body) 
(ALL body TEXT)) 

PRIVATE-MESSAGE ~ (AND MESSAGE 

(AT-MOST 1 recipient)) 

So_ 
U.NIL) 

Figure 3: CLASSIC Expressions and KL-ONE Diagrams (adapted from [11]). 

tached procedure could alter any data structure in any 
way at any time. The semantics of KL-ONE networks 
and other frame systems thus became very hazy once 
attached procedures were utilized. 

In CLASSIC, we have invented an important way to 
control the use of such "escape hatches." Through the 
notion of the TEST-C and TEST~H constructors, we 
have isolated the use of procedures in the host language 
to testing predicates. As one can see from the gram­
mar, such concepts are treated syntactically uniformly 
with other concepts. The procedure simply provides a 
primitive sufficiency condition for the concept-it will 
be invoked only when trying to recognize an instance. 
These test functions are particularly useful when try­
ing to relate individuals from the host language, such as 
when two roles are filled with numbers, and one should 
be a multiple of another. In their use, the user agrees to 
avoid side-effects and to use only monotonic procedures 
(i.e., those whose value never changes from true to false 
or vice versa in the presence of purely monotonic up­
dates). While under arbitrary circumstances, resorting 
to program code for tests renders the semantics of the 
language useless, in CLASSIC, if the user abides by this 
"contract," the semantics of concepts with tests is man­
ageable, and the inferences that the system draws are 
still guaranteed to be sound. Indeed, tests work just like 
other restrictions on concepts as far as classification of 
individuals goes, but since the procedures are inscrutable 
they have the flavor of primitive concepts. While primi­
tive concepts allow primitive necessary conditions, tests 
give us primitive sufficient conditions. 

Another innovation in CLASSIC is the requirement that 
the test functions must be 3-valued. If a system like 
CLASSIC says that an individual does not satisfy a con­
cept, then that means only that it cannot be currently 
proven to do so. A complementary question can still 
be asked-whether it can be proven that the individual 
could never satisfy the description (i.e., that it is disjoint 
from the concept). For example, if Fred has exactly one 
child (i.e., (AND (AT-LEAST 1 child) (AT-MOST 
1 child))), but nothing is known about it yet, then he 
cannot be proven to satisfy the description (ALL child 
FEMALE) . But it is possible that at a later time he could 
be, if he were stated to have a known female child. On 
the other hand, if it were asserted that his child was 
Barney, who was known to be a MALE, and MALE and 
FEMALE were disjoint concepts, then it would be provable 
that Fred could never satisfy the description. Thus, in 
order to fit into the classification framework, procedural 
tests must provide the same facility-to differentiate be­
tween a guarantee never to satisfy a description and lack 
of ability to prove it given the current knowledge base. 

4.4 Definitions, Assertions, Individuals 

As mentioned, KL-ONE ultimately distinguished itself 
from other frame languages by its emphasis on struc­
tured descriptions and their relationships, rather than on 
contingent and typical facts. At one point in its develop­
ment, the system was in a strange state: there were facil­
ities for building complex concepts, but none for actually 
using them to describe individual objects in the domain. 
"Individual concepts" were KL-ONE's initial attempt to. 
distinguish between generic class descriptions and de­
scriptions that could apply only to single individuals. As 
it turned out, these were typically misused: an individual 
concept with two parent concepts could only really mean 
a conjunctive description. One example that was used of­
ten was the conjunction of DRIVING- IN-MASSACHUSETTS 
and HAZARDOUS-ACTIVITY, intended to express the fact 
that driving in Massachusetts is hazardous. However, in 
truth the concept including them both was just a com­
pound concept with no assertional force at all. 

While KL-ONE initially correctly distinguished between 
the import of different links between concepts, it failed to 
distinguish between those and a link that would make a 
contingent assertion about some individual. Eventually 
an alternative mechanism was proposed-the "nexus," 
to stand for an individual-but this was never really 
used. In the end, it took the work on KRYPTON to 
get this right. In KRYPTON, it was proposed that ter­
minological knowledge (knowledge about the structure 
of descriptions) and assertional knowledge (facts) 'are 
two complementary aspects of knowledge representation 
competence, and that they should be maintained by dis­
tinct components, with an appropriate logical connection 
between them. From this distinction arose the terms 
"TBox" and "ABox," which are used extensively in the 
KL-ONE community to refer to the two components. 

But KRYPTON went too far in another direction, inte­
grating an entire first-order logic theorem-prover as its 
assertional component. The CLASSIC system makes what 
we think is a better compromise: it has a limited object­
centered logic that properly relates descriptions and in­
dividuals. As is apparent from the grammar, CLASSIC 
treats assertions about individuals in a parallel and uni­
form manner with its treatment of the formation of sub­
concepts; but it also carefully distinguishes the logical 
meaning of the different relationships. Thus, for ex­
ample, while individuals can be used in concept .value 
restrictions (i.e., in a ONE-OF expression, e.g., (ALL 
wine-color (ONE-OF Red White Blush))), no con­
tingent property of an individual can be used in deter­
mining subsumption between two concepts (e.g., if Whi te 
just happens to be my favorite color for a wine, that fact 
cannot be used in any subsumption inference). 



As mentioned, CLASSIC also supports the propaga­
tion of information between individuals. If we assert 
that some individual is described by a complex descrip­
tion (e.g., that Rebecca is a PERSON whose mother is 
a DOCTOR), then that may imply some new properties 
about other related individuals (e.g., we should assert 
that Rebecca's mother, if known, is a DOCTOR). Such 
propagated properties can in turn cause other properties 
to propagate (e.g., that Rebecca's mother's office is 
a DOCTOR' S-OFFICE).7 This type of inference was never 
handled in KL-ONE, and only partially handled in some 
of its successors. Note that as soon as a property propa­
gates from one individual to another, the latter individ­
ual might now fall under some new descriptions. CLAS­
SIC takes care of this re-classification inference as well 
(as well as any further propagations that result, etc.). 

The CLASSIC system has two other features along these 
lines that distinguish it from its predecessors. First, 
the previously mentioned apparatus does not allow the 
expression of general contingent rules about individu­
als. Thus, given only what is in the CLASSIC concept 
grammar, while we could form the concept of, for exam­
ple, a LATE-HARVEST-WINE, we could not assert that all 
LATE-HARVEST-WINEs are SWEET-WINEs. The sweetness 
is a derivative property-it is not part of the meaning 
of LATE-HARVEST-WINE, but rather a simple contingent 
property of such wines. In CLASSIC, one can also express 
general rules of a simple form. A rule has a named con­
cept as the left-hand side, with an applicability condition 
(filter) that limits the rule's firing to the desired sub cases 
(i.e., if x is a <concepta> with property <filter>, then 
x is a < conceptb > ). These rules are used only in rea­
soning about individuals, and do not affect subsumption 
relationships. 8 

Most KL-ONE-like systems were unclear about the sta­
tus of individuals that could easily be expressed in the 
host implementation language (i.e., numbers and strings 
in LISP). CLASSIC integrates such individuals in a sim­
ple and uniform way, and makes it virtually transparent 
whether an individual is implemented directly in the host 
language, or in the normal complex structure for CLASSIC 
individuals. This aspect of CLASSIC has proven critical in 
applications that deal with real data (for example, from 
a database), as in [29]. 

4.5 KR and Computational 
Complexity 

Once it was apparent that the clearly defined logical re­
lationship of subsumption was central to the KL-ONE 
family, a new factor could be introduced to the analy­
sis of frame- based knowledge representation systems. In 
1984, Brachman and Levesque gave a formal analysis of 
the complexity of computing subsumption in some frame 
languages [10]. That analysis showed that the apparent 

7In order to keep the complexity down, CLASSIC only 
propagates properties to known individuals. Thus, if 
Rebecca's mother were unknown, the system would not at­
tempt to create an individual about which to assert the 
DOCTOR description. If it did, it would then have to do very 
complex reasoning about existentials. 

8Some of the newer KL-oNE-derivatives, such as LOOM, 
have developed similar rule mechanisms. 
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simplicity of some frame languages could be deceptive, 
and that the crucial subsumption inference was co-NP­
hard. The original paper initiated a sequence of results 
on the complexity of computing in the KL-ONE family, 
culminating most recently in two that show that the orig­
inal language is in fact undecidable [24, 28]. 

This line of analysis has caused some major rethinking 
of the knowledge representation enterprise. No longer 
can we view language features as simply providing more 
expressiveness (which was the common view in the early 
years of knowledge representation). Rather, as in other 
areas of computer science, we must consider how expen­
sive it will be to add a feature to a language. The ad­
dition of new features may demand the excision of some 
others in order to maintain computational manageabil­
ity, or the system must be clear on where it is incomplete. 
In CLASSIC, subsumption is complete and tractable, but 
with respect to a slightly non-standard semantics; that 
is, it is clear what CLASSIC computes, and how fast it can 
compute it, but it does not compute all the standard log­
ical consequences of a knowledge base. In this regard, we 
have opted for a less conservative approach than in KAN­
DOR, but a more limited and disciplined approach than 
in LOOM. The consequences of this are explored briefly 
in the next section. We should point out that the viabil­
ity of our approach has been proven in practice: CLASSIC 
is the first KL-ONE-derived system to be deployed in a 
fielded (AT&T proprietary) product, used every day in 
critical business operations. It was expressive enough to 
do the job. 

4.6 The Role of a KR System 

The above developments in the KL-ONE saga give rise to 
an important general question that usually goes unasked 
in AI: what role is a knowledge representation system 
expected to play? There are clearly different approaches 
here. On one extreme we have the large commercial sys­
tems, or expert system shells, which include substantial 
knowledge representation apparatus. The philosophy of 
those systems seems to be that a KR system should pro­
vide whatever apparatus is necessary to support virtu­
ally any AI application. In that regard, such systems are 
like very powerful programming languages, with complex 
data-structuring facilities. 

But this is definitely not the only approach, and in 
many respects its requirements are overly demanding. 
Given the kind of complexity results mentioned above, 
users of such powerful systems must be very careful in 
"programming" their KR tools: predicting when a com­
putation will return is difficult or impossible in a very 
expressive logic. 

In many contexts (but not all, of course), it may be ap­
propriate for a knowledge representation system to act 
in a more constrained fashion, rather like the database 
component of an application system. This is the point 
of view explicitly espoused in CLASSIC. Users cannot ex­
pect to program arbitrary computations in CLASSIC, but 
in return they get predictable response time and clear 
semantics. The burden of programming an application, 
such as a medical diagnostician, must be placed on some 
other component of the overall system. Since most KR 
systems attempt to be application-independent, it is ap-
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propriate for them not to be asked to provide general di­
agnostic, planning, or natural language-specific support. 
What is gained in return for certain limitations (and this 
in part accounts for the appeal of databases) is a system 
that is both complete with respect to an intuitive and 
simple semantic model and efficient to use. 

Failure to acknowledge this general issue has been a 
source of difficulty with knowledge representation sys­
tems in AI. KL-ONE, uniformly with its contemporary 
KR systems (and subsequently NIKL), never really took 
a stand as to the role it should play. This has resulted, 
for example, in a pair of recent critiques of NIKL [15, 30], 
for failing to live up to a promise it perhaps was never 
intended to make. With CLASSIC, on the other hand, 
we expect to provide a powerful database service, but 
with limited deductive and programming support. This 
is a unique kind of database service, as it is both de­
ductive and object-oriented (see [5]). But nevertheless 
it is firmly limited. To use the CLASSIC system in the 
context of an expert system, for example, it would be 
appropriate to use it as a substitute for working memory 
in a rule-based programming system like OPS5, not for 
all computation to be done by the overall system. Sev­
eral recent applications ([14], [29], [23], and others) have 
shown convincingly that this approach, while not satis­
fying all needs for all applications, is quite successful in 
important cases. 

5 Perspective 
While CLASSIC is a "KL-ONE-like" system, it differs in 
so many ways from the original that it must be treated 
in its own right. While KL-ONE began the thinking on 
numerous key issues, it has taken us until CLASSIC to 
begin to truly understand many of them. Among its 
virtues, the CLASSIC Knowledge Representation System 

• isolates an important set of language constructs, dis­
tilled from many years of use of frame representations, 
and knits them together in an elegant, straightforward 
language with a compositional interpretation; novel 
language features include enumerated sets of individ­
uals treated in a uniform manner with other concepts 
(ONE-OF), and limited generic equalities between role 
fillers (SAME-AS); 

• treats individuals in a more complete way than its 
predecessors, supporting propagation of facts and re­
classification of individuals; 

• allows contingent universal rules that are automati­
cally applied, with the affected individuals being re­
classified and any derived facts being propagated; 

• offers tight, uniform integration of individuals from 
the host language, including numeric range concepts 
(MAX, MIN); 

• offers a facility for writing procedural 3-valued tests 
as primitive sufficiency conditions, and integrates such 
tests into the language and semantics in a clean way. 9 

9CLASSIC also allows retraction of any asserted fact, with 
full dependency maintenance, but we have not had room to 
discuss this here. 

CLASSIC offers these facilities in the context of complete 
computation of subsumption, while remaining computa­
tionally tractable. The CLASSIC system can be thought 
of as a limited, deductive, object-oriented database man­
agement system as well as a knowledge representation 
system, and has been used to support several real-world 
applications.1o . 

In this discussion, we have limited ourselves to consid­
ering the KL-ONE family and its contributions. Related 
work involving manipulation of types and their relations 
can be found in programming language research, in some 
semantic data modeling work, and in feature logics in 
support of (among other things) natural language pro­
cessing. We do not have room to draw comparisons with 
this other work, but in general it is clear that the bulk of 
that work does not include classification and description­
processing of the sort found so prevalently in KL-ONE-like 
systems. Recent work in some of these areas does bear 
a strong relationship to ours, but not by accident: work 
on KL-ONE and its descendants has had direct influence, 
for example, on LOGIN [lJ (a programming language), 
CANDIDE [2J (a DBMS), and feature logics [21J. 

There are still, of course, many open questions yet 
to challenge CLASSIC and its relatives. Technically, the 
notion of a "structural description," introduced by KL­
ONE, has still not been treated adequately (although the 
SAME-AS construct provides a limited form of relation­
ship between roles). And there are important compu­
tational questions to be answered so that CLASSIC can 
handle significant-sized databases, involving persistence 
of KB's, automatic loading of data from conventional 
DBMS's, and complex query processing. 

But perhaps chief among the remaining research ques­
tions is how exactly to cope with the tradeoff we are 
forced to make between expressive power and compu­
tational tractability. Is it even possible to provide the 
kind of knowledge representation and inference services 
demanded by AI applications in a computationally man­
ageable way? The CLASSIC Knowledge Representation 
System has provided convincing evidence that this is pos­
sible at least for a limited set of applications, but it is 
but one point in a large space of possibilities that we 
are still mapping out, after more than a dozen years of 
research inspired by KL-ONE. 
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Abstract 

This article introduces Morphe, a programming language 
aimed to support construction of open systems. In open 
systems, the programmer cannot completely anticipate 
the future use of his programs as components of new 
environments. When independently developed systems 
are integrated into an open system, we eventually have 
inconsistent representations of the same object. This is 
because knowledge about the world is partial and relative 
to a perspective. We show how Morphe treats relative 
(and eventually inconsistent) knowledge by incorporat­
ing the notions of situations and perspectives. 

1 Introduction 

In modeling complex systems, one is often required to 
work with mUltiple representations of some aspects of 
reality. The notion of situation has been studied in com­
puter science [Barwise 83][Barwise 89][Cooper 90] as an 
important concept in capturing the relative representa­
tion of knowledge about the world. The importance of 
such a notion stems from the epistemological assump­
tion that any representation of the world is partial and 
relative to some perspective-that of the observer. In 
the cognitive process, the observer abstracts from reality 
only those aspects that he finds relevant; irrelevant por­
tions are discarded. Sometimes this limited, abstracted 
representation is sufficient to allow one to perform cer­
tain tasks. In such cases we do not Heed to think about 
relative perspectives, and we can work as though our 
knowledge were an absolute and unique mapping of the 
real world. However, there are plenty of examples that 
show this is not true. In order to understand what is 
happening in the target world, we are forced to assume 

* Also with Keio Uuiversity. 3-14-1 Hiyoshi, Kohoku-ku. Yoko­
hama, 223 JAPAN e-mail: lllariocQlkeio.ac.jp 

that the representation we are working with is relative, 
and furthermore, that we must eventually change per­
spectives in order to capture the real properties of the 
system we are representing. This is often the case when 
we have ambiguous representations and we are not able 
to resolve this ambiguity until we have some further in­
formation at hand. 

Typically ambiguity arises when we try to combine 
information from different sources. For example, in di­
alogue understanding the knowledge of the one must 
be combined with the knowledge of the other to cap­
ture the exact meaning of an utterance [Numaoka 90]. 
Whenever there is some inconsistent information, the 
speakers must exchange further information in order 
to resolve the inconsistency. Other examples can be 
seen in multi-agent systems [Bond 88][Osawa 9I]-where 
we have different agents with different knowledge bases 
that must be partially shared-and versioning systems 
as used in software development tools and engineering 
databases [Katz 90]-where we have different versions of 
the same object. A ground for extensive use of the no­
tion of situation is in open systems [Hewitt 84], because 
in open systems the designer of a program cannot know 
a priori the nature of the environments in which their 
pieces of knowledge (called objects henceforth) will be 
used in the future. Along with its continuous evolution, 
an open system must be capable of integrating pieces of 
knowledge from different sources, and eventually these 
new pieces will conflict with existing ones. 

In this paper we formalize the notion of situation as 
embedded in Morphe, a knowledge base and program­
ming system which supports construction of open sys­
tems. Situation in Morphe is associated with a general 
notion of environment of interpretation. It represents a 
consistent set of properties (described by formulas) in a 
multi-version knowledge base. Rather than being a mere 
name for a part of the absolute real world, a situation 
has its own representation in Morphe, namely a routed, 



directed, acyclic, and colored graph. 
The notion of situation provides for two novel con­

cepts: compositional adaptation and situated polymor­
phic objects. With compositional adaptation component 
objects are grouped within composite objects so that a 
component object is made to adapt to the requirements 
of the environment represented by the composite object. 
Situated polymorphic objects are objects that have mul­
tiple representations which depend on the situation they 
are used in. Situation is used to disambiguate the am­
bivalent interpretation of situated polymorphic objects. 

The remainder of this paper is organized as follows: 
Section 2 gives an overview of Morphe's features through 
some examples. Morphe's formal syntax and semantics 
are sketched in Section 3 and Section 4, respectively. 
In this work we concentrate on the data modeling as­
pect of Morphe. Some important features (such as set­
valued attributes, distinction between local and sharable 
attributes, user-defined constraints, and dynamic gener­
ation of new situations at update transactions) were not 
treated in the presentation for the sake of brevity and 
clarity. In Section 4 we give emphasis in showing how 
the domain of colored dags fits well to representing dif­
ferent perspectives to a shared object. In the last section 
we conclude this work. 

2 Overview of Morphe 

Morphe is a programming language which integrates 
object-oriented programming, constraint-based logic 
programming, and situated programming. It features: 

• Querying capability for knowledge bases, 

• Incremental construction of systems with inheri­
tance and adaptive reuse of existent software, 

• Multiple representations, 

• Treatment of inconsistent knowledge through the 
notion of situation. 

The basic aim of Morphe is to provide a system that 
supports easy construction of open information systems. 
There are two areas of support that are essential: 

1. Easy integration of new pieces of knowledge, and 

2. Treatment of shared inconsistent knowledge. 

The Morphe system is a multi-version knowledge base 
with multi-versioned objects. We use the term multi­
version knowledge base following the notion of multi­
version databases as introduced by Cellary and Jomier in 
[Cellary 90]. Our approach differs from Cellary-Jomier's 
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in that in Morphe even in a single knowledge base ver­
sion we can have different object versions. The pro­
grammer can chose a particular version of the knowl­
edge base through situation descriptors-formulas that 
index terms-which can be used within programs or in 
queries. In the development phase of a system, Morphe 
keeps track of transaction updates and creates consistent 
versions of the knowledge base. 1 

2.1 Example: Mario Joins Sony CSL 

We will represent Sony CSL, a computer science labo­
ratory, where Mario works as a director. We know that 
a representation of Mario already exists in the system 
and we want to share that representation. The existing 
representation is of Mario as a professor at an university. 

1. person: [ 
name : string; 
age : integer; 
sex : {male, female}; 
age ~ 0]; 

2. laboratory : [ 
name : string; 
director : person; 
researcher :: person]; 

3. mario: person * [ 
name : "Mario"; 
age: 44]; 

4. scsI : laboratory * [ 
name : "Sony CSL"; 
director : person * [ 

machine: "NEWS"]]; 
5. scsl.director = mario. 

The first two expressions define the types for person 
and laboratory, and expressions 3 and 4 define mario 
and scsI as "instances" of person and laboratory, re­
spectively. Expression 5 makes mario join scsI as its 
director. 

Objects in Morphe are typed. For example, the ex­
pressions name: string and age: integer specify that 
the name of a person has type string and the age of 
a person has type integer. String and integer are 
primitive types provided in Morphe. The colon in those 
expressions represents a built-in predicate that specifies 
the type of the term on its left-hand side. Another built­
in predicate is the one represented by the equal sign, 
as in director = mario, which specifies that director 

IThe operational aspects of manipulating situations are not em­
phasized in this work. Instead we will emphasize the declarative 
(or modeling) aspects of objects and situations. 
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and mario should have the same type. Expressions com­
prising these built-in predicates are called formulas or 
constraints.2 

We can also construct complex types from primitive 
ones through object descriptors. An object descriptor 
is a set of formulas enclosed in brackets ("[]"). In the 
example, the expression person: [ .. :] introduces a new 
type named person defined by the object descriptor on 
the right hand side of the colon. 

As in unification grammar formalisms [Shieber 86] 
and some logic based programming languages [Kifer 89] 

[Yokota 92], Morphe does riot make a distinction between 
classes and instances. Strictly speaking, every expres­
sion in Morphe is a type expression, and the execution 
of a Morphe program consists of finding the appropriate 
types for the variables, or in other words, solving the 
set of type constraints. Morphe provides domain spe­
cific constraint solvers and allows users to define predi­
cates for new domains, as the predicate ;::: in the expres­
sion age ;::: o. In this article we concentrate on showing 
how Morphe treats the notions of situations and polymor­
phic objects, leaving the discussion of other forms of con­
straints for another paper. Expressions using the colon 
predicate resemble attribute-value pairs of feature struc­
ture grammars and hence we sometimes refer, though 
improperly, to terms on the left-hand side of the colon 
operator as attributes and those on the right-hand side 
as values. 

Besides object descriptors, there is another type of 
constructor: braces ("{}"). While object descriptors 
construct types intensionally, from formulas, braces con­
struct types extensionally, from terms. For exam pIe, 
the expression sex: {male, female} specifies that the 
attribute sex of a person has type male or female. 
Stated in another way, the same expression defines a 
new type person. sex as a set of two constant types 
{male, female}. 

A type can be made more and more specific as we 
add more restrictive constraints (formulas) into the as­
sociated object descriptor, and it becomes an "instance" 
when all the attributes are assigned constant types. In 
the code above, scsI is an instance of laboratory be­
cause the formulas in the object descriptor of the for­
mer are more restrictive than those in the object de­
scriptor of the latter. Because all terms are types, even 
scsI, which is an "instance", can be made more spe­
cific by adding more formulas into its object descrip­
tor. The way to do so is by composing object descrip-

2The term "constraint" used here follows the terminology of 
constraint logic programming framework as formalized by Jaffar 
and Lassez in [Jaffar 87J. 

tors through C C *' , , the composition operator. The code 
which defines mario composes the type person with the 
object descriptor [name: mario j age: 44]. The result­
ing object descriptor contains all the formulas of both 
operand types. The constraint solver then evaluates the 
most specific set of formulas in the resulting object de­
script or , yielding [name: "Mario" j age: 44] as the type 
of mario. Determining the most specific sets of formu­
las is the same as determining the greatest lower bound 
of a set of terms. The associated procedure for deter­
mining the greatest lower bound is called unification, 
following the terminology of feature-structure grammar 
formalisms [Shieber 86]. 

2.2 Compositional Adaptation 

With composition we can refine a type by giving more 
specific "values" for the attributes-as in mario above­
or we can add new properties to an existing type. The 
type laboratory. director in the example is defined as 
a person plus an additional attribute: machine. Morphe 
allows for creating new types in a very particular way. 
The type director is defined in a specific context: scsI. 
This is an essential aspect of what we call compositional 
adaptation[Honda 92]. 

With compositional adaptation we make an object 
"adapt" to a new environment by transforming the ob­
ject so that it obeys the type constraints specified in the 
environment. This process takes place when the predi­
cate C C =" is evaluated. When the expression director 
= mario is evaluated, it either succeeds or fails. If it suc­
ceeds, the object denoted by scsI. director is unified 
with the object denoted by mario, and the result of the 
unification can be accessed from both scsl.director 
and mario.3 The object enters a new environment "ac­
quiring" new properties and constraints. In the exam­
ple, mario acquires the additional attribute machine as 
specified in the environment scsI, and scsI. director 
acquires all the original properties of mario. 

2.3 Situated Polymorphic Objects 

In programming languages, the term polymorphism has 
been traditionally associated with the capability of giv­
ing different things the same name. Morphe's notion of 
polymorphism follows in the same vein. In Morphe the 

3The full version of Morphe allows programmers to specify 
which components of the type are private (i.e., local) and which 
are public (i.e., sharable). The public part of two objects must be 
compatible for the unification to succeed, while the private part is 
not affected in the unification. 



same object can have different versions, eventually in­
compatible with each other. Incompatible versions of an 
object are called morphes, and objects that have multiple 
morphes are called polymorphic objects. 

By incompatibility of morphes we mean incompatibil­
ity of their types.4 Different morphes of the same (poly­
morphic) object may fundamentally mean two things: 1) 
different states due to updates, or 2) different represen­
tations due to different perspectives. Each morphe of 
a polymorphic object is situated. The evaluation of a 
polymorphic object is the evaluation of a morphe, the 
selection of which is subordinated to the selection of a 
situation where the object participates. 

Each morphe is a consistent set of constraints that de­
scribe the behavior of the object in a given situation. 
For instance, a person may exhibit different and eventu­
ally contradictory behavior depending on the situation 
in which he acts. Inconsistent sets of constraints yield 
different values to be assigned to the same attribute. For 
example, suppose that the definition of mario, instead of 
that given in expression 3, had been: mario: person * 
[name: ' 'Mario' '; birthyear : 1947; sex : male; 
machine: ' 'Mac' ']; After mario joins scsi, the at­
tribute machine of mario is assigned the value' 'News' ) 
when he plays his role as scsi. director and a different 
value-' 'Mac) ) - in other situations. 

2.4 Specifying a Situation 

Morphe's notion of situation is tied to the notion of 
environment of interpretation. In the domain of inter­
pretation, a situation is a graph representing the pro­
gram being interpreted. Situations are used to disam­
biguate inconsistencies in the knowledge base. When an 
object participates in different environments (eventually 
created by independent programs) and is subject to in­
dependent transformations, it is often the case that the 
object must behave differently in each of them. Once 
the programmer wants a different view (or representa­
tion) for the object, the system creates a new version 
of the object in such a way that the situation is kept 
consistent. 

When evaluating an expression within a situation, the 
system keeps track of the path through which the object 
containing that expression is being accessed. Access to 
an object from different perspectives is realized as differ­
ent paths to the object. A path is a sequence of labels 
that allows one to navigate through the entire system, 

4Informally, incompatible types means that the values of a type 
cannot be the values of the other. We give a formal definition of 
type incompatibility in the next section. 
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along the arcs in the graph. For example, if we want 
to refer to Mario when he plays his role of a director 
at SCSL we use the path scsi. director. Paths can 
be combined with formulas which filters the morphes 
of an object referred from the same path. For exam­
ple, if we had several versions of Mario distinguished 
according to his age, we could access the representa­
tion of Mario at Sony CSL when he was at the age 
of 40 by using the expression: scsl.directorCO[age = 

40] . We can also change the perspective by switch­
ing the path in the navigation. For example, we can 
switch the view from mario to scsl.director with 
the path mario i scsl.director, which gives us the 
representation of mario from scsi. director's perspec­
tive. 

3 Syntax 

The alphabet of Morphe consists of: 1) A: a set of atoms, 
2) L: a set of labels, 3) X: an infinite set of variables, 4) 
the distinguished predicate symbols: ":" (colon) and "=" 
(equal), 5) the composition operator "*", 6) the logical 
connective "j", 7) the path constructors: ".", "j", and 
"@"j 8) the auxiliary symbols "( )", "[ 1", "{ }", ",", and 

"" 
Atoms denote primitive indivisible objects. Example 

atoms are: integer, string, 3, and "Mary'). Labels 

are the names of the objects. The distinguished label 
Home denotes the topmost object in a particular situa­
tion.5 In the semantic domain, the label names an arc 
which allows access to the objects down the (directed) 
graph. 

3.1 Terms (7) 

Objects are denoted by terms. Terms are defined by: 

7 ::= x I a I p I [Ill 7 * 7 

where x are variables, a are atoms, p are paths, I are 
formulas, and 7 * 7 are compositions. 

The terms of the form [fl are called object descriptors. 
Object descriptors construct complex objects through 
formulas, which are defined by: 

I ::= p : 7 I 7 = 71 Ij I 

A colon predicate is a typing constraint. An expression 
e : t, where e is a path and t is a term, specifies that the 

5 Typically, the object denoted by Home represents the user's 
"home object", which' is the user's entry-point into the Morphe 
system. 
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type of the object denoted by e has at least the properties 
defined by t. For example, the formula mario: person 
specifies that the mario has at least the properties spec­
ified by person. 

The equal predicate specifies object sharing. Given el : 
tl and e2 : t2, where el and e2 are paths, the expression 
el = e2 states that el and e2 denote the same object, 
and hence they have equal types. The shared object is 
"viewed" from different perspectives: any change to the 
object performed from a perspective must be reflected 
into other perspectives. 

Because the atomic predicates colon (":") and equal 
("=") impose a structure on the objects in the domain 
of interpretation (Le., graphs), they are called structural 
predicates, in contrast to other domain predicates and 
user defined predicates. In this article we discuss only 
the structural predicates and hence we call them simply 

predicates. 
A path names an object through a sequence of labels. 

Paths are defined by: 

p ::= lll.p I pip I p@[J] 

where l are labels. When an object is polymorphic due 
to different access paths, we select a morphe by the as­
sociated path. For example, in the subsystem: 

a: [b: [c: X]id: [c: Y]ia.b = a.d] 

the polymorphic value of c can be disambiguated through 
the appropriate path: a.b.c : x, and a.d.c : y. 

A path of the form PI i P2 is a path switch. It allows 
one to view the same object from a different perspective. 
For example, the value of a.b i d.c is y, instead of x. 

A path of the form p@[J] is called a conditional path. 
The formula enclosed in brackets on the right hand side 
of the @ sign is called a situation descriptor, because it 

specifies a family of situations which entail !. A condi­
tional path has a meaning only in the situations where 
the formula enclosed in the brackets is entailed. For no­
tational convenience we write 1: {tl@[fl], t2@[f2]} in­
stead of 1@[f1] : tli 1@[f2] : t2' Conditional paths are 
used to select version morphes of polymorphic objects. 
For example, given 

a: [b: {X,Y}iC: {w@[b: x],v@[b: y]}] 

where a, b, and c are labels and x, y, w, and v are 
atoms, there are two possible values of a. c, which depend 

on the possible values of b. The formulas b : Xi c : w) 
and b : Yi c : v determine two distinct situations of a. 
The value of a.c can be disambiguated by providing 
an appropriate conditional path: a.b.c@[b: x] : w, and 
a.b.c@[b : y] : v. 

Composition is a binary operation TxT --+ T which 
composes two terms to produce a new term. Given 
two terms tl and t2, their composition h * t2 is the 
union of the formulas contained in both terms. For ex­
ample, [name: "John"i age: "integer"] * [age: 23] == 
[name: "John"; age: integer; age: 23]. 

3.2 Ordering on Terms 

We have seen that terms denote objects in the intended 
domain, and formulas associate terms in order to rep­
resent complex structures in that domain. The colon 
operator specifies the structure of the object denoted by 
a given path. We can now amplify its use as a binary 
predicate over two terms to construct a partial ordering 
in the set of terms. We start with atoms. We assume 
that the atoms in A are partially ordered according to 
a binary relation represented by "~A'" For example: 

"Mary" ~A string, and 3 ~A integer. 
If x ~A y and y ~A X we say that x and yare congru­

ent, and write x ~ A y. The greatest lower bound of a set 
of elements B C A, denoted by 1 B is defined as usual: 

1 B = in! E A such that Vx E B. in! ~A x. 
For notational convenience, we will denote the greatest 

lower bound of two atoms x and y by x 1 y. The greatest 
lower bound does not always exist. The elements c of A 
such that x : c implies x ~ A C are called the constants of 
A. 

We extend the partial ordering to the set of terms 
with the binary relation ":", defined by the rules below. 
In these rules, r is a set of formulas which defines a 
situation. 

r f- x : y (if x, yEA and x S:A y) 

rf-t:O 

r, (e : t) f- e : t 

r f- e@[4>] : t 

r,4>f-e:t 

r f- tl : t~ ... r f- tn : t~ 

r f- [EI: tlj ... jln: tnj ... jlm: tmJ: [EI : t~j ... jln: t~J 

rf-t:t 

r f- tl : t2 r f- t2 : t3 

r f- tl : t3 



The congruence relation on the set of terms is defined 
by: x ~ y iff x : y and y : x. The operation! that gives 
the greatest lower bound of a set of atoms is also ex­
tended to terms. The rules below describe U, the great­
est lower bound of two terms, defined so that t1 U t2 : h 
and t1 U t2 : t2. 

[]ut~t 

xUy~xly 

[l : t] U [l : t'] ~ [1 : (t u t')] 

[h : t1] U [b : t2] ~ [h : t1j 12 : t2] 

[h : t1j ... ;In : tn;li : ti; ... ;I~ : t~] U [11 : t~j ... ;In : t~jl{ : 
t{; ... j Ii : ti] ~ [h : t1 U t~ j ••• j In : tn U t~j Ii : ti; ... j l~ : 

t~jh :t~j ... jIn :t~jl{ :tL···jl{ :4] 

t1 U t2 ~ t2 U t1 

t1 U (t2 u t3) ~ (t1 u t2) U t3 

tut ~ t 

Two terms t1 and t2 are incompatible iff h U t2 does not 
exist. 

4 Semantics 

The formal semantics of Morphe is based on the algebraic 
approach to graph grammars as described in [Ehrig 86] 
and [Ehrig 90]. The domain of interpretation of Morphe 
is a set of colored, rooted, directed, and acyclic graphs. 
Following [ParisiPresicce 86]6, we impose a structur~ in 
the coloring alphabet in order to represent unification in 
that domain. 

4.1 Definition: Colored Graphs 

Let X be an infinite set of variables, A the set of atoms, L 
the set oflabels (as introduced in Section 3), and 0 a set 
of identifiers. Let C = (C N, C A) be a pair of alphabets 
where CN = OuAuX and CA = L. The partial-order in 
A, SA, is extended on CN (and denoted SN) such that 
x SN y iff X SA y or y EX. A C-colored graph (or 
C-dag, for short) is a graph 9 over C defined as a tuple 

where: Ng is the set of nodes; Ag is the set of arcs; 
color: : Ng ---t CN associates a color to each node; 

6F. Parisi-Presicce, H. Ehrig, and U. Montanari allowed vari­
ables in graphs (and productions) so that they could represent 
composition of graphs using relative unification. A. Corradini, U. 
Montanari, F. Rossi, H. Ehrig, and M. Lowe [Corradini 90] fur­
ther extended that work to represent general logic programs with 
hypergraphs and graph productions. 
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color: : Ag ---t C A associates a color to each arc; 
srcg : Ag ---t Ng associates with each arc a unique source 
node; tgtg : Ag ---t Ng associates with each arc a unique 
target node; rootg is a distinguished node called the root 
of the graph. It satisfies: tgt-1(rootg) = 0. 

In what follows we refer to C-dags as graphs. A graph 
9 is a subgraph of g' (written g ~g g') iff Ng ~ Ngl, 
Ag ~ Agl, and the functions color:, color:, srcg, and 
tgtg are the restrictions of the corresponding mappings 
of g'. 

4.2 Definition: Graph Morphism 

A graph morphism I : 9 ---t g' is a pair of functions 
IN : Ng ---t Ngl and IA : Ag ---t Agl such that: 

1. IN and I A preserve the incidence relations: 
srcUA(a)) IN(src(a)) and tgtUA(a)) 
IN(tgt(a)), 

2. I A preserve the arc colors: 
Va E Ag. color:'UA(a)) = color:(a), and 

3. Vx ENg. cOlor:'UN(X)) ~ color:(x). 

A graph morphism indicates the occurrence of a graph 
within another graph. A graph morphism I = UN, I A) is 
called injective if both IN and I A are injective mappings, 
and it is called surjective if both IN and I A are surjective. 
If I : 9 ---t g' is injective and surjective it is called an 
isomorphism, and there is also an inverse isomorphism 
1-1 : g' ---t g. In this case we say that 9 and g' are 
congruent and write 9 ~g g'. 

4.3 Subsumption 

Subsumption is an ordering on graphs which corresponds 
to the relative specifity of their structures. A graph 9 

subsumes h (h ~9 g) iff there exists a graph-morphism 
I : 9 ---t h such that I(rootg ) = rooth. 

The semantic counterpart of the greatest upper bound 
of a set of terms (ref. Section 3.2) is the join of two 
graphs, which is their "most general unifier". The join 
of graphs gl and g2 (notated gl Uc g2) is a graph h such 
that h ~9 gl and h ~9 g2· 

4.4 Semantic Structure 

The semantic structure of Morphe is a tuple 

A =< 9*, ~g, Ug, T > 

where: 

1. 9*, the domain of interpretation, is the set of all 
variable-free (Le., ground) C-dags. 
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2. The relation ~g and the operation Ug are as defined 
above. 

3. Top (T) is the distinguished element of g* defined 
by: V 9 E g*. 9 ~g T. 

4.5 Interpretation 

A consistent set of formulas is represented with a C­
dag with variables. The C-dag representation of a set 
of formulas is called a situation. A Morphe program is 
mapped by the interpreter into a set of situations which 
are ordered according to the subsumption relation. The 
evaluation of a query is a mapping from the C-dag repre­
senting the query to the set of situations in the hierarchy. 
If no situation is specified, the interpreter evaluates in a 
default situation. While parsing its input, the interpreter 
keeps track of this situation in order to resolve eventual 
ambiguities. 

Let Io: : A ~ eN be a function that maps each atom 
in A to a node color in CN, and I>.. : L ~ CA another 
function that maps each label to an arc color in CA' 

Variable Assignment 

A variable assignment in a situation s is a mapping fJ, : 

X ~ g* which maps variables to ground C-dags. We 
extend the variable assignment to other terms with the 
following clauses: 

• If a is an atom, fJ,(s,a) = 9 s.t. Ng = {x},Ag = 
0, and colorN(x) = Io:(a). 

• If 1 is a label, fJ,( s, l) 
3a EA.,. colorA (a) 
roots and tgt(a) = rootg. 

9 ~g s s.t. 
I>..(l) and src(a) 

• If 1 is a label, and e is a path, fJ,(s, l.e) = fJ,(fJ,(s, l), e). 

• If e is a path and ¢ is a formula, fJ,( s, e@[¢]) = fJ,( s, e) 
if s 1= ¢. 

• fJ,(s, [4>]) = 9 ~g s s.t. 9 1= 4>. 

Formulas 

The "truthness" of a formula is relative to a specific sit­
uation. We say that a situation s models a formula ¢ 
under a variable assignment fJ, (written s 1=1' ¢) iff there 
is a subgrapll of s with the properties specified by the 
formula. 

S 1=1' e : t iff fJ,(s, e) ~g fJ,(s, t). 

s 1=1' el = e2 iff fJ,(s, el) ~g. fJ,(s, e2). 

s 1=1' ¢j'IjJ iff S 1=1' ¢ and s 1=1' 'IjJ 

5 Conclusion 

This paper has shown how the notions of situation 
and polymorphic objects in Morphe can handle situated 
knowledge in open systems. We claim that the Morphe 
features shown here are suited to support incremental 
development of a complex system. When a set of con­
straints is added to a situation, the new formulas may 
conflict with the old ones. Morphe helps the developer 
to find the locus of inconsistency, and in the cases where 
the programmer wants a new version of the system, Mor­
phe splits the inconsistent situation into new subsitua­
tions whenever it is possible. Some meta-rules based on 
domain-dependent heuristics may help the system to de­
cide on which actions to take in the presence of conflict. 

Syntactically, a situation was defined as a set of fOfllm­
las which define a hierarchy of versions of the knowledge' 
base. Situation descriptors can be used in programs in 
order to specify a priori the family of situations in which 
the program is expected to work. Once the system is pro­
vided with a way to determine the right situation, the 
associated morphe can be selected and then passed to the 
constraint solver in order to proceed with the evaluation 
of the program or the query. 

Most existing typed programming languages impose a 
distinction between types and values syntactically, and 
types are usually associated with the variables in order 
to check whether the value assigned to a variable is com­
patible with the associated type. Morphe does not im­
pose such a distinction at the syntactic level, though it 
bears both the notions of "types" and "values". An equal 
treatment of types and values was achieved in Morphe by 
imposing a partial order on the set of terms. This partial 
ordering was identified as the subsumption relation over 
directed acyclic graphs in the domain of interpretation. 

In this work we have shown only those features that 
we find most interesting to capture the intuitive notion 
of relative knowledge, perspective, and situations. Prob­
lems concerning changes of situations in the presence of 
transaction updates, locality of information and sharing 
(Le., unification), database querying facilities, and the 
operational semantics were not treated here. We hope 
however that the contents of this article have given the 
readers an insight on the problems and solutions concern­
ing relative representations of objects in open systems. 
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Abstract 

The event calculus is a general approach to the repre­
sentation of time and change in a logic programming 
framework. We present here a variant which main­
tains a historical database of changing objects. We 
begin by considering changes to the internal state of 
an object, and the creation and deletion of objects. 
We then present separately the modifications that are 
necessary to support the mutation of objects, that is 
to say, allowing objects to change class and inter­
nal structure without loss of identity. The aims are 
twofold: to present the modified event calculus and 
comment on its relative merits compared with the 
standard versions; and to raise some general issues 
about object-orientation in databases which do not 
come to light if dynamic aspects are ignored. 

1 Introduction 

There has been considerable research on combin­
ing logic-based and object-oriented systems, and rea­
soning with complex objects. Many proposals have 
been put forward for incorporating features of object­
oriented systems into logic programming and deduc­
tive databases [Abiteboul and Grumbach 1988, Zan­
iolo 1985, Chen and Warren 1989, Kifer and Lausen 
1989, Dalal and Gangopadhyay 1989, Maier 1986, 
Bancilhon and Khoshafian 1986]. But opinions vary 
widely as to what are the characteristic and benefi­
cial features of objects and comparatively little at­
tention has been given to the dynamic aspects of ob­
jects. Yet change in internal state of an object as it 
evolves over time is often seen as a characteristic fea­
ture of object-oriented programming; and the ability 
of object-oriented representations to cope gracefully 
with change has often been cited as a major advan­
tage of this style of representation. It is these dy­
namic aspects that we wish to address in this paper. 

We are not concerned with object-oriented program­
ming, but with object-oriented representation of data 
in (deductive) databases. We address such problems 
as how objects change state, how deletion and cre­
ation of objects can be described and how an evolving 
object can change its class over time. 

In order to avoid the discussion of destructive as­
signment, we formulate change in the context of a 
historical database which stores all past states of ob­
jects in the database. Historical databases are logi­
cally simpler than snapshot databases because change 
is then simply addition of new input. A snapshot of 
the historical database at any given time is an object­
oriented database in the sense that it supports an 
object-based data model. 

In this paper we present an object-based variant 
of the event calculus [Kowalski and Sergot 1986] which 
is a general approach to the treatment of time and 
change within a logic programming framework. We 
use this modified event calculus to describe changes 
to objects. The objectives of this paper are twofold: 
to present the object-based variant of the event cal­
culus; and to raise some general issues about object­
orientation in databases that we believe do not come 
to light if dynamic aspects are ignored. These more 
general points are touched upon in the course of the 
presentation, and identified explicitly in the conclud­
ing section. 

In the following section we give a brief summary 
of the original event calculus. Section 3 presents the 
basic data model that is supported by the object­
based variant. In section 4 we present this object­
based variant and discuss how it can be applied to 
describe changes in objects. In section 5 we address 
the mutation of objects, where objects are allowed to 
change their classes during their evolution. We con­
clude the paper by summarising, and making some 
remarks about object-based representations in gen­
eral. 



2 The Event Calculus 

The primitives of the event calculus are events to­
gether with some kind of temporal ordering on them, 
periods of time, and properties which are the facts and 
relationships that change over time. Events initiate 
and terminate periods of time for which properties 
hold. The effects of each type of event are described 
by specifying which properties they initiate and ter­
minate. Given a set of events and the times at which 
they occurred, the event calculus derives (computes) 
which facts hold at which times. As an example, 
consider a fragment of a departmental database. An 
event of type 

promote(X, New) 

initiates a period of time for which employee X holds 
rank New and terminates whatever rank X held at 
the time of the promotion: 

initiates(promote(X,New), rank(X,New)). 
terminates(promote(X, New), rank(X,_)). 

Given a fragment of data: 

happens(promote(jim, assistant), 1986). 
happens(promote(jim, lecturer ), 1988). 
happens(promote(jim,professor), 1991). 

the event calculus computes answers to queries such 
as : 

?- holds_at(rank(jim,R), 1990). 
R=lecturer 

?- holds_for(rank(jim,lecturer), P). 
P=1988-1991 

The original presentation of the event calculus 
showed how a computationally useful formulation can 
be ·derived from general axioms about the properties 
of periods. It gave particular attention to the case 
where events (changes in the world) are not necessar­
ily reported in the order in which they actually occur. 
For the purpose of this paper, it is sufficient to con­
sider only the simplest case, where the assimilation of 
events into a database is assumed to keep step with 
the occurrence of changes in the world, and where 
the times of all event occurrences are known. Under 
these simplifying assumptions, the event calculus can 
be formulated thus: 

holds_at(R, T) ;-
happens(Ev, Ts), Ts ::; T, 
initiates(Ev, R), 

. not broken(R, Ts, T). 

broken(R, Ts, T) ;­
happens(Ev* , T*), 
Ts < T* ::; T, 
terminates(Ev*, R). 
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We have omitted the clauses for holds_for which are 
similar. The interpretation of not as negation by fail­
ure in the last condition for holds_at gives a form of 
default persistence: property R is assumed to hold at 
all times after its initiation by event Ev unless there 
is information to the contrary. 

The event calculus has been developed and ex­
.tended in various different ways (see for instance [Sri­
pada 1991, Eshghi 1988]). But what is important for 
present purposes is to stress that the underlying data 
model in all of these applications is relational. The 
properties that events initiate and terminate are facts 
like rank(jim,professor). In database terms they are 
tuples of relations; in logic programming terms they 
are ground unit clauses or ground atoms or standard 
first order terms, depending on what is taken as the 
semantics of holds_at. A snapshot of the historical 
database at any given time is a relational database. 
In this paper we modify the event calculus in order 
to describe changes to a database which supports an 
object-oriented data model. 

Before moving on to present this modification, we 
wish to make one further remark about the repre­
sentation of events. One of the most common mo­
tivations for introducing object-oriented extensions 
to logic programming languages [Chen and Warren 
1989, Ait-Kaci and Nasr 1986, M. KiferandWu 1990] 
is to overcome the restrictions h:nposed by the fixed 
arity of predicates and functors. These restric­
tions are particularly evident in the representation 
of events: Jim was promoted to professor in 1989, 
Jim was promoted from lecturer, Jim was promoted 
by his department in 1989 could all be descriptions 
of the same promotion recording different amounts 
of information about the event. In general, it is diffi­
cult or impossible to devise a fixed arity representa­
tion for events, because these representations cannot 
cope gracefully with the range of descriptions that 
can be expected even for events of the same type. 
(The philosopher Kenny refers to this phenomenon 
as the 'variable polyadicity' of events.) The stan­
dard way of dealing with 'variable polyadicity' is to 
employ binary predicates. Thus [Kowalski and Sergot 
1986] represents events in the following style: 

event(e1). 
act(e1, promote). 
object(e1, jim). 
newrank(e1, prof). 
happens( e1,1989) . 

Chen and Warren [Chen and Warren 1989] have devel­
oped this usage of binary predicates and have given it 
a formal basis. Their language C-Iogic allows the use 
of structured terms which can be decomposed into 
subparts. These terms are record-like tuples with 
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named labels. In the syntax of C-Iogic (also resem­
bling the syntax of LOGIN [Ait-KaciandNasr 1986] 
and O-logic [Maier 1986]) the event e1 can be de­
scribed thus: 
happens(event :, e1[act => promote, object => jim, 

newrank => prof], 1989). 
e1 is an identity which uniquely determines the event, 
and the labels are used to complete the specifica­
tion of the event. Chen and Warren give a semantics 
to C-Iogic directly, and also by transformation to an 
equivalent first-order (Prolog) formulation that uses 
unary predicates for types and binary predicates for 
attributes. In this paper we use C-Iogic syntax as a 
convenient shorthand for describing events, and we 
exploit C-Iogic's transformation to Prolog by mixing 
C-Iogic and standard Prolog syntax freely. Thus we 
shall also write, for example, 
event:e1[act=>promote, object=> jim, newrank=?prof]. 
happens( e1,1989). 
Chen and Warren's transformation to Prolog make 
all of these formulations equivalent. 

3 The Data Model 

Our objective in this paper is to focus' attention on 
the dynamic aspects of objects. For this purpose, we 
take a very simple data model which exhibits only 
the most basic features associated with object orien­
tation. As will be illustrated, this simple data model 
already raises a number of important problems; fur­
ther elaborations of this data model are mentioned in 
the concluding section of the paper. 

The basic building block of the model is the con­
cept of an object. An object corresponds to a real 
world entity. Each object has a unique identity to dis­
tinguish it from other objects. The objects have at­
tributes whose values can be other objects (Le. their 
identities). We assume that all attributes are single­
valued. 

Objects are organized into class hierarchies, defined 
explicitly by is_a relationships among classes. A class 
denotes a set of object identities; the class-subclass 
relation (is_a) is the subset relation. A class describes 
the internal structure (state) of its instances by at­
tribute names. The state of an instance is determined 
by the values assigned to these attributes. A subclass 
inherits the structure (attribute names) of its super­
class(es). As an example consider the following class 
hierarchy: ' person 

(attributes:name, address) 

/""-student employee 
(attributes:section, supervisor) (attributes: dept, rank) 

The instances of the class student have the internal 
structure described by the attributes name, address, 
section and supervisor. Similarly the state of an em­
ployee instance is described by name, address, dept 
and rank. The class hierarchy is represented by is_a 
relations as: 

is_a(student, person). 
is_a(employee, person). 

The relation between a class and its instances is rep­
resented by the instance_ofrelation. The instances of 
a class C are also instances of the superclasses of C. 
The instance_of relation can be represented thus: 

instancLof(tom, student). 
instance_of(mary, employee). etc. 
together with 
instance_of(X, Class) +-

is_a(Sub, Class), instance_of(X, Sub). 

These definitions will be adjusted in later sections 
when we consider time dependent behaviour. 

Multiple inheritance without overriding can be ex­
pressed by the is_a and instance_of relationships. 
This type of multiple inheritance causes no additional 
difficulty and is not mentioned again. 

4 Object-Based Event Calculus 

Database applications require an ability to model a 
changing world. The world changes as a result of the 
occurrence of events and hence it is very natural to 
describe such a changing world using a description of 
events. Given a description of events, it is possible to 
construct the state of the world using the the event 
calculus. 

4.1 State, Changes 

One way of dealing with the evolution of an object 
over time (as suggested to us by several groups, inde­
pendently) is to view the changing object as a collec­
tion of different though related objects. Thus, if we 
have an employee object jim in the database, which 
changes over time, jim at time ti, jim at time t2, jim 
at time ts are all different objects. Their common 
time-independent attributes are inherited from jim 
by some kind of 'part_of' mechanism. This approach 
has a certain appeal, but a moment's thought reveals 
it must be rejected for practical reasons. Each time 
an object is modified a new object is created. This 
new object becomes the most recent state of the ob­
ject with a different identity. In this case, all other 
objects referring to the modified object should also be 
modified to refer to the new version. However updat­
ing them means creating other new objects in turn, 



which results in an explosion in the number of objects 
in the database. In [M. Kifer and Wu 1990] a system 
of this type is described. They have to' use equal­
ity in order to make certain denotations (i.e. object 
ids) in fact refer to the same object and provide some 
navigation methods through versions in order to get 
appropriate versions of an object. 

The alternative is to have one 'Object jim and to 
parametrize its attributes with times at which these 
attributes have various values. A state change in an 
object now corresponds to changing the value of any 
of its attributes. For instance if a person moves to a 
new place, the value of the address attribute changes; 
if an employee is promoted the rank attribute changes 
accordingly. Formulation of this idea in the spirit of 
the event calculus is straightforward. Instead of 

happens(promote(jim,professor}, 1991}. 
it is convenient to separate out the object that has 
been affected by the event : 

happens(jim, promote(professor}, 1991}. 
Now events are indexed by object; every object has 
associated with it the events that affected it. Events 
initiate and terminate periods of time for which a 
given attribute of a given object takes a particular 
value: 
initiates(Obj, promote(NewRank}, rank, NewRank}. 

Given a set of event descriptions which are indexed 
by object identities, the modified event calculus con­
structs the state of an object. We can ask queries to 
find out the value of an attribute of an object at a 
specific time or we can access the state of an object 
at any time by querying all of its attributes : 
?- holds_at(jim, rank, R, 1989}. 
?- holds_at(jim, Attr, Val, 1989}. 
The following is the basic formulation of the object­
based event calculus used to reason about the chang­
ing state of objects : 

holds_at(Obj, Attr, Val, T} ~ 
happens(Obj, Ev, Ts}, Ts ~ T, 
initiates(Obj, Ev, Attr, Val}, 
not broken(Obi, Attr, Val, Ts, T}. 

broken(Obj, Attr, Val, Ts, T} ~ 
happens(Obj, Ev·, T·}, 
Ts < T· ~ T, 
terminates(Obj, Ev·, Attr, Val}. 

terminates(Obj, Ev·, Attr, _} ~ 
initiates(Obj, Ev·, Attr, _}. 

Informally, to find the value of an attribute of an ob­
ject at time T, we find an event which happened be­
fore time T, and initiated the value of that attribute; 
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and then we check that no other event which termi­
nates that value has happened to the object in the 
meantime. The last clause for terminates is to satisfy 
the functionality constraint of the attributes. Since 
we are considering only single-valued attributes we 
can simply state that the value of an attribute is ter­
minated if an event initiates it to another value. (The 
usage of the anonymous variable '_' in this clause is 
not a mistake). 

The original event calculus can compute the peri­
ods of time for which a property holds. We can have 
the same facility for· the attributes of objects. The 
following compute the periods of time for which an 
attribute takes a particular value : 

holds_for(Obj, Attr, Val, (8 - E)} ~ 
happens(Obj, Ev, S}, 
initiates(Obj, Ev, Attr, Val}, 
terminated(Obj, Attr, Val, 8, E}. 

terminated(Obj, Attr, Val, 8, E} ~ 
happens(Obj, Ev, E}, 
terminates(Obj, Ev, Attr, Val}, 8 < E, 
not broken(Obj, Attr, Val, 8, E). 

holds_for is used to find the period of time for which 
an attribute has a particular value. The time period 
is represented by its start (8) and end (E) points. We 
also require another clause for holds_for to deal with 
periods that have no end-point (Le. an attribute is 
initiated but there is no event which terminated its 
value). This can be written in a similar style, which 
we omit. 

Since objects are organized into classes, it is nat­
ural and convenient to structure the specification of 
the effects of a given event according to the class of 
object it affects. If an event is defined to affect the 
instances of a class, then the same event specification 
applies to the instances of subclasses. For example, 
consider a departmental database in which objects 
are organized according to the class hierarchy given 
in section 3. We can specify the effects of these events 
in the following way : 

initiates( Obj, mover Address}, address,Address} ~ 
instance_of( Obi,person}. 

initiates(Obj,promote(N ewRank}, rank, N ewRank} ~ 
instance_of( Obj, employee}. 

The effects of changing the address are valid for all 
persons (Le. all students and employees as well). 
However promotion is a type of event which can hap­
pen to employee objects only. In the formulation as 
presented here, it is possible to assert that an object 
of class person was promoted - but this event has no 
effect (does not initiate or terminate anything) unless 
the object is also an instance of class employee. An 
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alternative is to arrange for event descriptions to be 
checked and rejected at input if the class conditions 
are not satisfied. This alternative requires more ex­
planation than we have space for; it is peripheral to 
our main points, and we omit further discussion. 

We have discussed how event calculus can be used 
to describe changes to the values of attributes of ob­
jects. Apart from the events that cause state changes 
of existing objects, there are other kinds of events 
which cause the creation of new objects or deletion 
of objects. 

4.2 Creation of Objects 

The creation of a new object of a given class means 
adding new information about an entity to the 
database. In the real world being modeled, there are 
events which create new entities. Birth of a person, 
manufacturing of a vehicle or hiring a new employee 
are examples of such events. We can think of describ­
ing object creation by events whose specification will 
provide the necessary information about the initial 
state of the object. 

For creation, we need to say what the class of an 
object is and specify somehow its initial state. In 
a practical implementation, generation of a unique 
identity for a newly created object can be left to the 
system; conceptually, all object identities exist, and 
the 'creation' of an object is simply assigning it to a 
chosen class. Assigning the new identity to the class 
initiates a period of time for which the new object 
is a member of that class. This makes it necessary 
to treat class membership as a time-dependent rela­
tionship. We introduce a new predicate assigns to 
describe instance addition to classes. For the time 
being we assume that once an object is assigned to a 
class it remains an instance of this class throughout 
its lifetime. Class changes are discussed separately in 
section 5. 

We can handle creation of objects by specifying 
which events assign objects to which classes. We use 
the same event description to initialize the state of 
the object. As an example consider registration of a 
student ali, which causes the creation of a new stu­
dent object in the database. The specification of the 
event and the necessary rules to describe creation are 
as follows: 

event: e23 [act => register, 
object => ali, 
section => Ip, 
supervisor => bob]. 

assigns(event:E[act=>register, object=> ObJJ, 
ObJ, student). 

initiates(Obj, E , section, B) +-

event : E[act=> register, object=> Obj, section=} Bj. 
initiates(Obj, E, supervisor, B) +-

event: E[act=> register, object=> Obj,supervisor=>Sj. 

The assigns statement is used to assign the identity 
of the object Obj to the class student; the initiates 
statements are used to initialize the object's state. 
Now the occurrence of the event is recorded by : 

happens(e23, 1991). 

To specify that the event has happened to the object 
ali we use the rule: 

happens(Obj, Ev, T) +-

happens(event:Ev[act=> register, object=} Obj}, T). 

Note that we have two happens predicates: one binary 
(for asserting that events happened at a given time), 
and one ternary (to index events by objeds affected). 

We have to notice also that creating a new object 
of class C, creates a new instance of the superclasses 
of C as well. There are several ways to formulate this. 
The simplest is to write: 

assigns(Ev, Obj, Class) +-

is_a(Bub, Class), assigns(Ev, Obj, Sub). 

4.3 Deletion of Objects 

There are two kinds of deletions that we are going to 
discuss in this paper. One is absolute deletion of an 
object where the object is removed from the database. 
The other one deletes an object from its class but 
keeps it as an instance of another class, possibly one 
of the superclasses. The second case is related to 
mutation of objects as they change class, which will 
be discussed in section 5. 

For the purposes of this section, we assume that 
when an object is deleted it is removed from the set 
of instances of its class and the superclasses, and that 
all its attribute values are terminated. For example, 
if a person dies, all the information about that per­
son is deleted from the database. We use a new predi­
cate destroys to specify events that delete objects and 
write the following: 

terminates(Obj, Ev, Attr, _) +- destroys(Ev, Obj). 

This rule has the effect that all attributes Attrdefined 
in the class of the object and also those inherited from 
super classes are terminated. If an event destroys an 
object 0 which is an instance of class C, then that 
event removes 0 from class C and all superclasses of 
C. 

There is one point to consider when deleting ob­
jects in object-oriented databases. If we delete an ob­
ject x, there might be other objects that have stored 



the identity of x as a reference. The deletion there­
fore can lead to dangling references. A basic choice 
for object-oriented databases is whether to support 
deletion of objects at all [Zdonik and Maier 1990]. We 
choose to allow deletion of objects and we eliminate 
dangling references by adding another rule for the 
broken predicate: 

broken(Obj, Attr, Val, Ts, T) .­
happens(Val, Ev*, T"'), 
Ts < T'" ::; T, 
destroys(Ev"', Val). 

We obtain the effect that the value Val of the at­
tribute Attr is terminated by any event .which de­
stroys the object Val. 

4.4 Class Membership 

As we create and delete objects the instances of a 
class change. Class membership, which is described 
by the instance_of relation, is a dynamic relation that 
changes over time. We can handle the temporal be­
haviour by adding a time parameter. We now have 
events that initiate and terminate periods of time for 
which an object 0 is an instance of a class C. The 
instance_of relation is affected when a new object is 
assigned to a class or when an object is destroyed. 
By analogy with holds_at, the following finds the in­
stances of a class at a specific time : 

instance_of(Obj, Class, T) .­
happens(Ev, Ts), Ts::; T, 
assigns(Ev, Obj, Class), 
not removed(Obj, Class, Ts, T). 

removed(Obj, Class, Ts, T) .-
happens(Obj, Ev"', T*), Ts < T* ::; T, 
destroys(Ev"' , Obj). 

With this time variant class membership we can ask 
queries to find the instances of a class at a specific 
time. For example: 

?- instance_of(Obj, employee, 1980). 

We can also write the analogue of holds_for to com­
pute periods, which we omit here. 

In the example we have been using, we have repre­
sented the rank of an employee object by including an 
attribute rank whose value might change over time. 
But suppose that instead of using an attribute rank, 
we had chosen to divide the class of employees into 
various distinct subclasses: 

is_a (lecture r, employee). 
is_a(professor, employee). 
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It is at least conceivable that this alternative rep­
resentation might have been chosen, assuming that 
all employee objects have roughly the same kind of 
internal structure. Is the choice between these two 
representations simply a matter of personal prefer­
ence? Not if we consider the evolution of objects over 
time. The first representation allows for change in 
an employee's rank straightforwardly, since this just 
changes the value of an attribute. The second does 
not, since no object can change class in the formula­
tion of this section. The only way of expressing, say, 
a promotion from lecturer to professor, is by destroy­
ing (deleting) the lecturer object and creating a new 
professor object. But then how do we relate the new 
professor object to the old lecturer object, and how 
do we preserve the values of unchanged attributes 
across the change in class? In the next section we 
will examine the problem of allowing the class of an 
individual object to change. 

5 Mutation of Objects: 
Changing the Class 

The ability to change the class of an object provides 
support for object evolution [Zdonik 1990]. It lets an 
object change its structure and behaviour, and still 
retain its identity. For instance, consider an object 
that is currently a person. As time passes it might 
naturally become an instance of the class student and 
then later an instance of employee. This kind of mod­
ification is usually not directly supported by most 
systems. It may be possible to create another ob­
ject of the new class and copy information from the 
old object to it, but one loses the identity of the old 
object. 

We want to describe this kind of evolution by event 
specifications. For example graduation causes a stu­
dent to change class. If we delete student ali from 
class student, then he will lose all the attributes he 
has by virtue of being a student, but retain the at­
tributes he has by virtue of being a person. The ef­
fects of this event can be described by removing ali 
only from class student and terminating his attributes 
selectively. The attributes that are going to be ter­
minated can be derived from the schema information. 
For dealing with this type of class change we use a 
new predicate removes in place of the predicate de­
stroys of section 4.3: 

removes(event: Ev[act => graduate, object=> ObJJ, 
Obj, student). 

terminates(Obj, E, Attr, _) .-
event:Ev[act=> graduate, object=> Obj}, 
attribute(student,Attr ). 
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The clauses for the time-dependent instance_of re­
lation must be modified too, to take removes into 
account: 

removed(Obj, Class, Ts, T) ~ 
happens(Obj, Ev*, T*), Ts < T*$ T, 
removes(Ev*, Obj, Class). 

The graduation of the student ali corresponds to 
moving him up the class hierarchy. Now consider 
hiring ali as an employee. This will correspond to 
moving down the hierarchy. The specification of an 
event causing such a change will likely include val­
ues to initialize the additional attributes associated 
with the subclass. So the effects of hiring ali will be 
to assign him to the employee class and initiate his 
employee attributes. The event might be: 

event: e21{act => hire, 
object => ali, 
dept => cs, 
rank => lecturer} 

And we can declare the following: 

assigns(event:E{act=>hire, object=> Obj}, Obj, employee). 
initiates(Obj, E, dept, D) ~ 

event:E{act=>hire, object=>Obj, dept=>Dj. 
initiates(Obj, E, rank, R) ~ 

event:E{act=> hire, object=> Obj, rank=> R}. 
Note that in changing class first from student to per­
son, then from person to employee, ali retains all the 
attributes he has as a person. 

We have described this class change by two sep­
arate events: graduation and hiring. We can also 
imagine a single event which would cause an object 
to change its class from student to employee directly, 
say hire-student event. We could then describe the 
changes using the description of this event: 

removes(event: E{act => hire-student, 
object => Obj}, Obj, student). 

assigns( event: E{act => hire-student, 
object => Obj}, Obj, employee). 

The initial values of the additional attributes will 
again be given in the event specification. As in the 
case of having two separate events, we have not lost 
the values of the attributes as a person, and we have 
not removed the object from class person. 

We have illustrated three kinds of class changes: 
changing from a class C to a direct superclass of C, 
changing from C to a direct subclass of C and chang­
ing from C to a sibling class of C in the hierarchy. 
In general, changing an object from class Cl to class 
C2 involves removing from Cl and assigning to C2 
and specifying in the event description how the ini­
tial values of C2 attributes are related to the values 
of old Cl attributes. 

6 Concluding Remarks 

We have presented a variant of the event calculus 
which maintains an object-based data model where 
the standard versions maintain a relational one. Sec­
tion 4 considered state changes of objects in this 
framework, and the creation and deletion of objects. 
Section 5 discussed the modifications that are neces­
sary to support also the mutation of objects - change 
of an object's class and its internal structure without 
loss of its identity. 

There are other object-oriented features that can 
usefully be incorporated into the object-based data 
model. Removing the restriction that attributes are 
all single-valued causes no great' complication. We 
are currently developing other extensions, such as 
the inclusion of methods in classes for defining the 
value of one attribute in terms of the values of other 
attributes, and we are investigating what additionaJ 
complications arise when the schema itself is subject 
to change. 

In object-oriented terminology, event types - like 
promote, change-address, and so on - correspond to 
methods: their effects depend on the class of object 
that is affected; the predicates intiates and termi­
nates for attribute values, and assigns, destroys and 
removes for objects and classes are used to imple­
ment the methods (they would be replaced by de­
structive assignment if we maintained only a chang­
ing snapshot database). Of course, execution of this 
event calculus in Prolog does not yield an object­
oriented style of computation. At the implementa­
tionallevel, objects are not clustered (except by Pro­
log's first argument indexing), and the computation 
has no element of message-passing. The implementa­
tion and the computational behaviour can be given 
a more object-oriented flavour by using for example 
the techniques described by [Chen 1990] for C-Iogic, 
or the class templates of[McCabe 1988]. We are cur­
rently investigating what added value is obtained by 
adjusting these implementational and computational 
details. 

The object-oriented version ofthe event calculus of­
fers some (computational) advantages over the stan­
dard relational versions, that we do not go into here 
for lack of space. Whatever the merits of the object­
based variant of the event calculus, we believe that 
its formulation forces attention to be given to impor­
tant aspects of object-orientation that are otherwise 
ignored. We limit ourselves to two general remarks: 

1) In the literature, the terms type and class are 
often used interchangeably. Sometimes type is used 
in its technical sense, but then it is common to see 
illustrative examples resembling 'Mary is of type stu-



dent'. If we consider the dynamics of object-oriented 
representations, then these examples are either badly 
chosen or the proposals are fundamentally flawed. 
'Mary' might be a student now but this will not 
hold forever. We could surely not contemplate an 
approach where an update to a database requires a 
change to the type system, and hence to the syntax of 
the representational language. These remarks do not 
apply to object-oriented programming where there is 
no need to make provision for updates that change 
the type of an object. 

The static notion of a type corresponds to the 
treatment of a class we presented in section 4: an ob­
ject mayor may not exist at a given time, but when it 
exists it is always an instance of the same class .. If we 
wish to go beyond this, to allow objects to mutate, 
then a dynamic notion of class is essential. This is 
not to say that types have no place in object-oriented 
databases. A student can become an employee over 
time, but a student cannot become a filing cabinet, 
and a filing cabinet cannot become an orange. Both 
static types and dynamic notions of class are useful. 
The consideration of the dynamics of objects - how 
they are allowed to evolve over time - suggests one 
immediate and simple criterion for choosing which 
notion to use: the type of an object cannot change. 

2) In section 4.3, we assumed that all attributes 
of an object are terminated when the object is de­
stroyed; in section 5, removal of an object from the 
class C terminates all attributes the object has by 
virtue of being an instance of the class C. The rea­
soning behind this assumption is this: attributes are 
used to represent the, possibly complex, internal state 
of an object. When an object ceases to exist, it is not 
meaningful to speak any more of its internal state. 
Of course, some information about an object persists 
even after it ceases to exist. It is still meaningful to 
speak of the father of a person who has died, but it 
is not meaningful to ask whether this person likes or­
anges or is happy or has an address. The development 
of these ideas suggests that we should distinguish be­
tween what we call 'internal attributes' and 'external 
relationships'. Internal attributes describe the state 
of a complex object, and they cease to hold when the 
object ceases to exist or ceases to be an instance of 
the class with which these attributes are associated. 
External relationships continue to hold even after the 
object ceases to exist. We are being led to a kind of 
hybrid data model together with some tentative cri­
teria for choosing between representation as attribute 
and representation as relationship with other objects. 
The analysis given here is rather superficial, but it 
indicates the general directions in which we are plan­
ning to pursue this work. 
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1 Introduction 

This paper introduces a panel to be held at the appli­
cation t.rack of FGCS'92 conference. This panel will be 
devoted to a future direction of new generation appli­
cations. The goal is to discuss about the applications 
with various paradigms which have been explored in the 
areas of knowledge representation, logic programming, 
machine learing and parallel processing. It is my hope 
that by expressing different perspectives of the panelists, 
we will understand the importance of the underlying 
paradigms, the real problem areas, and a direction of 
next generation applications. The word paradigm it­
self is originally come from T. Kuhn's book called "The 
Structure of Scientific Revolution (1962)". Recently, this 
word is referred by the AI researchers because of its so­
phisticated meanings which indicates a current research 
trend or a future direction. Here, I will use this word 
in this context that implies new bases and views for ex­
ploration of applications without too much philosophical 
discussion. 

In this short paper, I will attempt to outline the per­
spectives represented by the panelists. Althouth the 
ideas and the positions papers will be represented in t.he 
following pages in the proceedings, I will try to guide 
the rough views which will be necessary for this panel 
discussion. The context is my subjective impressions on 
the current trends and research directions. 

2 KR paradigm 

Ronald J. Brachman will talk about his knowledge rep­
resentation language called Classic and his experiences 
through the use of Classic for the developments in ap­
plications. He might refer the knowledge representation 
as K R which follows his research communi ty. KR might 
be the starting point for any AI based application sys­
tem. KR is one of the main paradigms of AI researches 
including natual language understanding and coginitive 
science. There are a lots of attempts in the design of KR 
language and systems such as KRL, FRL and KLONE in 
the late 1970's. The 1980's was the following productive 
period for KR system developments and theories. The 

first dedicated international KR conference was held re­
cently, and many important ideas and foundations were 
presented in the conference. This state of art has been 
reviewed by R.Brachman at the AAAI meeting in 1990. 
He has presented KR and issues which are related to the 
field, history, development of the 1980's, the future of 
KR and open research problems. I am especially inter­
ested in his highlights for the future of KR which predicts 
the current trends of common knowledge base and on­
tology. Now, KR should be standardized for the further 
developments for any knowledge systems. The related 
paper for Classic will be presented at the technical ses­
sion and he will talk about his position based upon his 
paper presentation. The panel will start with KR and 
related topics. 

3 CLP paradigm 

Catherine Lassez will represent the constraint logic pro­
gramming(CLP) which is a new face for handling con­
straints in Operations Research, Computational Geom­
etry, Robotics and Qualitative Physics. Reasoning with 
constraint is very important for these application areas. 
These problems aTe sometimes required heavy computa­
tional resource and are related to combinatorial char­
acteristics. The novel aspects of CLP is the unified 
framework of knowledge representation for numeric a,nd 
non-numeric constraints, solution algorithm and data 
query system. Also, CLP has been implemented as the 
programming languages such as CLP(R), CHIP, CAL, 
Prolog-III and Triton. These languages are used for the 
various application domains which are linkage between 
AI and OR. As for the financial applications, CLP is 
very good affinity for describing the financial equations 
and relations. Constraint is also useful to the handling 
qualitative knowledge in Computational Geometry and 
Naive Physics. In order to show the expressive power of 
CLP, it is necessary to demonstrate the speed and per­
formance for the same problems which are OR people's 
proposed. This is challenging for any AI researchers and 
Logic programmers to persuade other field researchers 
through the recent progress on programming which can 
avoid the brute forces of numerical calculation. She will 
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present her experiences on the developments on the the­
ories and applicat.ions. The details will be shown in her 
very intensive long position paper in this panel. 

4 ILP paradigm 

Stephen M uggleton will represent his'recent notion of in­
ductive logic programming(ILP) which uses the inverse 
resolution and relat.ive least general generalisation. ILP 
is newly formed research area in the integration of ma­
chine learning and logic programming. Machine learning 
is very attractive paradigm for knowledge acquisition and 
learning which any AI system is addressed. With the 
advent of machine learning research, there are a lots of 
developments in tools for classifying large data using con­
cepts learning and neural network methods. Muggleton's 
recent development for his ILP is called GOLEM which is 
a first order induction algorit.hm for generating rules from 
given examples. Each example is a first order ground 
atom and each rule is a first order Horn clause. Rules 
can be used to classify new examples. GOLEM is imple­
mented in SUN's using C and very efficient for inducing 
rules from examples. Another example of ILP will be 
presented in the invited speaker, Ivan Bratko and he will 
talk about learning qualitative model of dynamic system 
using GOLEM learing program. ILP is different from 
CLP, but in its spirit, idea is come from the logic pro­
gramming paradigm. As is well known, Shapiro's work 
on Model Inference System(MIS) is implemented using 
Prolog and it is very clear logical model for learning. Us­
ing logic programming paradigm, ILP is unified approach 
to induction and deduction which provides knowledge 
system with more powerfull inference facilities. Namely, 
as for inductive component, IPL is very useful for in­
ducing rules from data and then, using the rules, sys­
tem infers deductively data into known diagnostic states. 
Therefore, ILP is new approach to application with very 
large data which are further classified into categoriza­
tion. These kinds of applications are found in the area 
of protein engineering and fault diagnosis for satellites. 
He was the organizer of the first ILP workshop and the 
second workshop which will be held after the FGCS con­
ference. ILP is very young paradigm for machine learn­
ing and there will be another exploration in theory and 
application. He will talk about the recent research with 
the relationship between Valiant's PAC-Learning frame­
work. Machine learning is most active research area and 
it will be the next stage that it will deal with realistic 
problems. 

5 PP paradigm 

Kazuo Taki will represent the Parallel Processing(PP) 
paradigm which the Fifth Generation Computer System 
Project aims to explore and to develop both sides of 

hardware and software derived from the concurrent logic 
programming which shows affinity for both expressing 
concurrency and executing in parallel. With the con­
tinious efforts in langualge and implementation research 
in the FGCS project, KL-l has expressive for describ­
ing many complex applications programs with efficient 
performance. Most important aspects in the use of the 
concurrent system are to built large scale parallel soft­
ware which is further accumulated as the experiences 
in parallel programming. A new style of programming 
requires a new thinking way of programming and the 
model of computation. This is also true for KL-l lan­
guage and for applying it to complex applications such 
as VLSI-design, DNA analysis and legal reasoning sys­
tem. Basing upon these experiences, he will focuss on 
the parallel language culture which is necessary for the 
next generation computer like multi-PSI and PIM. The 
hardware progress has made rapidly compared with soft­
ware technology and the accumulation of parallel pro­
gramming experiences are very important for the re-use 
and the economy of coding. The current issue of parallel 
programming is how to transfer knowledge in software 
technology developed by the FGCS project in order to 
explore the culture of the concurrent system. Therefore, 
as for the future directions, PP paradigm is how to use in 
the widely adopted computational environment. He will 
talk about the issue of the parallel programming culture 
and the experiences in the use of KL-l for applications. 

6 Future directions 

I will introduce the various paradigms for knowledge 
information processing starting from KR to PP. Each 
paradigm has distinctive and novel features for explo­
rat.ion of applications. As for my position, I am inter­
ested in the research on the fusion of paradigms which is 
the integration of CLP and ILP for example. I will call 
this paradigm as Inductive Constraint Logic Program­
ming(ICLP not conference name!) which is the natural 
extension of constraint logic programming into induc­
tive inference for constraints in Spacial Geometry and 
Robotics. This framework is also useful for the Naive 
Physics and qualitative reasoning system without large 
amount of background knowledges for rules generations. 
We will examine our approach to Naive Kinematics and 
simple image processing for spacial reasoning. At this 
stage, the application domain is very simple, but for the 
research on Robotics t.hat learns, the inductive compo­
nent is very important in the knowledge acquisition on 
the constraints and then deductively use the constraints 
for the further moves. The fusion of paradigms will 
be necessary foundation for the next generation appli­
cations. We should re-examine the current paradigms 
for the different problems areas such as 0 R, Robotics 
and Computational Geometry. 
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Abstract 
Knowledge representation is one of the keys to Artificial 
Intelligence, and as a result will play a critical role in 
many next generation computer applications. Recent re­
sults in the field look promising, but success on paper 
may be misleading: there is a significant gap between a 
theoretical result or proposal and its ultimate impact in 
practice. Our recent experience in converting a fairly 
typical knowledge representation design into a usable 
system illustrates how many aspects of "reduction" to 
practice can significantly influence and force important 
changes to the original theoretical foundation. I briefly 
motivate our work on the CLASSIC representation system 
and outline a handful of ways in which practice had sig­
nificant feedback to theory. The general lesson for next 
generation applications is the need for us in our research 
on core technology to take more seriously the influence 
of implementation, applications, and users. 

1 Knowledge Representation 
Representation of knowledge has always been the foun­
dation on which research and development in Artificial 
Intelligence has rested. While no single representation 
framework has come to dominate the field, and while 
there are important challenges to the utility of conven­
tional· representation techniques from "connectionists" 
arid others, it is very likely that the next generation of 
AI and AI-related applications will still subscribe to the 
hypothesis that intelligent behavior can arise from for­
mal reasoning over explicit symbolic representations of 
world knowledge. 

The centrality of the need to represent world knowl­
edge in AI systems, expert systems, robots, and Fifth 
Generation applications has helped increase interest in 
formal systems for representation and reasoning-so 
much so that over the last decade, the explicit sub­
field of "Knowledge Representation" (KR) has taken on 
its own identity, with its own international conferences, 
IFIP working group, etc. This subfield has been prolific. 
It has attracted the attention of the greater AI commu­
nity with highly visible problems like the "Yale Shoot­
ing Problem" and systems like CYC. It has collected its 
own set of dedicated researchers, and has increasing num­
bers of graduate students working on formal logics, non­
monotonic reasoning, temporal reasoning, model-based 
diagnosis, and other important issues of representation 
and reasoning. 

It is probably fair to say that in recent years, formal 
and theoretical work has become preeminent in the KR 
community.l Concomitantly, it appears to be generally 

lThis has happened for numerous reasons, and while it 

believed that when the theory is satisfactory, its reduc­
tion to practice will be relatively straightforward. This 
transition from theory to practice is usually considered 
uninteresting enough that it is virtually impossible to 
have a technical paper accepted at a conference that ad­
dresses it; it seems to be assumed that all of the "hard" 
work has been done in developing the theory. 

This attitude is somewhat defensible: it is common 
in virtually all other areas of AI; and there often really 
isn't anything interesting to say further about a KR for­
malism as it is implemented in a system. However, my 
own group has had substantial recent experience with 
the transition of a knowledge representation system from 
theory to practice that contradicts the common wisdom, 
and yields an important message for KR research and 
its role in next generation applications. In particular, 
our view of what we thought was a clean and clear-and 
"finished" -formal representation system was substan­
tially influenced by the complexity and constraint of the 
process of turning the logic into a usable tool. 

2 The CLASSIC Effort 
As of several years ago, we had developed a relatively 
small, elegant representation logic that was based on 
many years of experience with description hierarchies 
and a key inference called classification. As described 
in a companion paper at this conference [Brachman et 
al., 1992], the CLASSIC system was a product of many 
years of effort on numerous systems, all descended from 
the KL-ONE knowledge representation system. Work on 
KL-ONE and its successors grew to be quite popular in 
the US and Europe in the 1980's, largely because of the 
semantic cleanliness of these languages, the appeal of 
object-centered (frame) representations, and their pro­
vision for some key forms of inference not available in 
other formalisms (e.g., description classification). The 
reader familiar with KR research will note that numer­
ous publications in recent years have addressed formal 
and theoretical issues in "KL-ONE-like" languages, in­
cluding formal semantics and computational complexity 
of variant languages. However, the key prior efforts all 
had some fundamental flaws, and work on CLASSIC was 
in large part launched to design a formalism that was 
free of these defects. 

Another central goal of CLASSIC was to produce a com­
pact logic and ultimately, a small, manageable imple-

may have some negative consequences (as addressed here), 
it is positive in many respects. The early history of the field 
was plagued by vague and inadequate descriptions of ad hoc 
solutions and computer programs; recent emphasis on for­
mality has encouraged more thorough and rigorous work. 
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mented representation and reasoning system. A small 
system has important advantages in a practical setting, 
such as portability, maintainability, and comprehensibil­
ity. Our intention was to eventually put KR technology 
in the hands of non-expert technical employees, to allow 
them to build their own domain models and maintain 
them. CLASSIC was also designed to fill a small num­
ber of application needs. We had had experience with 
a form of deductive information retrieval (most recently 
in the context of information about a large software sys­
tem [Devanbu et al., 1991]), and needed a better tool to 
support this work. We also had envisioned CLASSIC as a 
deductive, object-oriented database system (see [Borgida 
et al., 1989]; success on this front was eventually reported 
in [Selfridge, 1991]). 

After analyzing the applications, assessing recent 
progress in KL-ONE-like languages, and solving a number 
of the technical problems facing earlier systems, we pro­
duced a design for CLASSIC that felt complete; the logic 
was presented in a typical academic-style conference pa­
per in 1989 [Borgida et al., 1989]. In this design, some 
small concessions were made to potential users, includ­
ing a procedural test facility that would allow some es­
cape to the host implementation language for cases that 
CLASSIC could not handle. Given the clarity and simplic­
ity of this original design of CLASSIC, we ourselves held 
the traditional opinion that there was essentially no re­
search left in implementing the system and having users 
use it in applications. At that point, we began a typical 
AI programming effort, to build a version of CLASSIC in 
COMMON LISP. 

3 Influences in the "Reduction" 
to Practice 

As the research LISP version neared completion, we be­
gan to confer with colleagues in a development organiza­
tion about the potential distribution of CLASSIC within 
the company. Despite the availability of a number of AI 
tools in the marketplace, an internal implementation of 
CLASSIC held many advantages: we could maintain it and 
extend it ourselves, in particular, tuning it to real users; 
we could assure that it integrated with existing, non-AI 
environments; and we could guarantee that the system 
had a well-understood, formal foundation (in contrast to 
virtually all commercially available AI tools). Thus we 
undertook a collaborative effort to create a truly prac­
tical version of CLASSIC, written in c. Our intention 
was to develop the system, maintain it, create a training 
course, and eventually find ways to make it useful in the 
hands of AI novices. 

To make a long story short, it took at least as much 
work to get CLASSIC to the point of usability as it did 
to create the original logic that we originally thought 
was the culmination of our research. Our view of the 
language and knowledge base operations supporting it 
changed substantially as a result of this undertaking, in 
ways that simply could not be anticipated when consider 
a paper design of the logic. 

The factors that influenced the ultimate shape of CLAS­
SIC were quite varied, and in most cases, were not in­
fluences that we-or most other typical researchers, I 
suspect-would have expected to have forced more re­
search before the logic was truly finished. These ranged 
from the need to be reasonable in the release and main-

tenance of the software itself to some specific needs for 
key applications that could not really have been antic­
ipated until the system was actually put into practical 
use. Here is a brief synopsis of the five main types of 
issues that influenced the ultimate shape of the CLASSIC 
system: 

• the constraints of creating and supporting a system 
for real users caused numerous compromises. For one 
thing, upward compatibility of future releases is a crit­
ical issue with real software, and it meant that any 
construct in the language in which we were not com­
pletely confident might better be left out of the re­
leased system. Issues of run-time performance (which 
also dictated the exclusion of some features) also had 
surprising effects on what we could realistically include 
in the released version. 

• certain detailed implementation considerations played 
a role in determining what was included in the system. 
These included certain tradeoffs that affected the de­
sign, such as the tremendous space consequences an in­
verse relationship ("inverse roles") feature would have 
had, or the consequences of certain fine-grained forms 
of truth maintenance (to allow for later retraction of 
asserted facts). Some features (our SAME-AS con­
struct, for example) were just so complex to implement 
that they were better left out of the initial release. 

• concern for real users alerted us to issues easily ignored 
with a pure logic. These involved the sheer learn ability 
and usability of the language and the system. Error­
handling, for example, was of paramount concern to 
our real consumers, and yet the very idea never arose 
when considering the initial CLASSIC language. Sim­
ilarly, the uniformity of abstractions and the simplic­
ity of the interface were critical to acceptability of our 
system. The potential consequences of user "escapes" 
with side-effects was another related concern. Finally, 
explanation of the system's behavior-again, not an 
issue when we designed the logic-might make the dif­
ference between success and failure in using the system. 

• as soon as a system is put to any real use, mismatches 
in its capabilities and specific application needs become 
very evident. In this respect, there seems to be all the 
difference in the world between the few small examples 
given in typical research papers and the details of real, 
sizable knowledge bases. In the case of CLASSIC, our 
lack of attention to the details of numbers and strings 
in the logic meant substantial more work before imple­
mentation. Another issue that plagued us was the lack 
of attention to a query language for our KR system (a 
common lack in most AI KR proposals). 

• finally, what looked good (and complete) on paper did 
not necessarily hold up under the fire of real use. Even 
with a formal semantics, certain operators prove tricky 
to understand in practice, and subtle interactions be­
tween operators that arise in practice are rarely evi­
dent from the formal work. Simply being forced by 
an implementation effort to get every last detail right 
certainly caused us to re-examine several things we 
thought we had gotten correct in the original logic, 
and I suspect this would be the case with virtually ev­
ery sufficiently complex KR logic that ends up being 
implemented. 



4 Some Lessons 
The main lesson to be learned here is that despite the 
ability to publish pure accounts of logics and their the­
oretical properties, the true theoretical work on knowl­
edge representation systems is not really done until issues 
of implementation and especially of use are addressed 
head-on. The "theory" can hold up reasonably well in 
the transition from paper to system, but the typical KR 
research paper misses many make-or-break issues that 
determine a proposal's true value in the end. Arguments 
about needed expressive power, the impact of complex­
ity results, the naturalness and utility of language con­
structs, etc., are all relatively hollow until made concrete 
with specific applications and implementation consider­
ations. 

For example, in our context, the right decision was 
clearly to start with a small version of the system for 
release, and extend it only as needed. Given the com­
plexity of software maintenance, it may never make sense 
to try to anticipate in advance all possible ways that 
all possible users might want to express concepts. 2 A 
small core with an extension mechanism might in reality 
be better than a large, extraordinarily expressive-and 
complex-system. In the case of CLASSIC, we have been 
able to place in the hands of relatively naive users a fairly 
sophisticated, state-of-the-art inference system with a 
formal semantics and well-founded inference mechanism, 
and have them use it successfully, needing only to make a 
small number of key extensions to meet their real needs. 

There are several consequences here for next genera­
tion applications of knowledge representation research. 
First, it is important that the research community rec­
ognize as legitimate and important the class of issues 
that arise from implementation efforts-issues relating 
to size, for example, that have always been the legiti­
mate concern of the database community; issues relating 
to implementation tradeoffs and complexities; and issues 
relating to software release and maintenance. Second, 
unless our KR proposals are put to the test in real use 
on real problems, it is almost impossible to assess their 
real value. So much seems to be different when a pro­
posal is reduced to practice that it is unclear what the 
original contribution really is. Third, it is quite critical 
that at least some fraction of the community address di­
rectly the needs of users and the constraints and issues in 
their applications. Too much research with only mathe­
matics as its driving force will continue to lead KR (and 
other areas of AI research) farther afield. Not only that, 
it is clear that truly interesting research questions arise 
when driven from real rather than toy or imagined needs. 
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Constraints are key elements in areas such as Opera­
tions Research, Constructive Solid Geometry, Robotics, 
CAD/CAM, Spreadsheets, Model-based Reasoning and 
AI. Languages have been designed specifically to solve 
constraints problems. More recently, the reverse prob­
lem of designing languages that use constraints as prim­
itive elements has been addressed. Constraints handling 
techniques have been incorporated in programming lan­
guages and systems like CLP(~), CHIP, CAL, CIL, Pro­
log III, 2LP, BNR-Prolog, Mathematica and Trilogy. 

In the rule-based context of Logic Programming, the 
CLP scheme [5] provides a formal framework to reason 
with and about constraints. The key idea is that the 
important semantic properties of Horn clauses do not 
depend on the Herbrand Universe or Unification. These 
semantic properties and their associated programming 
methodology hold for arithmetic constraints and solv­
ability (and in many other domains including strings, 
graphs, booleans, ... ). The CLP scheme is a main exam­
ple of the use of constraints as the primitive building 
blocks of a class of programming languages, since logic 
formulae can be themselves considered as constraints. 

In the same spirit constraints have been introduced 
in committed choice languages in Maher [14], and in the 
work of Saraswat [15], and in Database querying lan­
guages by Kanellakis, Kuper and Revesz [6]. The link 
between classical AI work on constraints, and Logic Pro­
gramming has been described by van Hentenryck [17]. 

Not surprisingly there are many different paradigms 
reflecting the integration of constraints and languages. 
The main differences come from the aims of the lan­
guage: general purpose programming language, database 
or knowledge based query language, or a tool for problem 
solving. In mathematical programming the focus is on 
optimization, in artificial intelligence the focus is on con­
straint satisfaction and constraint propagation, in pro­
gram verification the focus is on solvability. This should 
be reflected in the design of appropriate languages, but 
constraint programming should also have its own focus 
and theory. 

We have developped a general framework for a sys­
tematic treatment of specific domains of constraints. We 
recall that a logic formula is viewed as an implicit and 

concise representation of its set of logical consequences 
and that the answer to a query Q is a set of substitutions 
which establish a relationship between the variables of Q, 
satisfied if and only if Q is a logical consequence of the 
formula. The-key point is that a single algorithm, Resolu-' 
tion, is sufficient to answer all queries. These properties 
of logic formulae have counterparts in other domains. In 
particular, Tarski's theorem for quantifier elimination in 
closed fields[16] establishes that an arithmetic formula 
can be viewed as representing the set of all its logical 
consequences, that is the set of all arithmetic formulae 
it entails. Furthermore, a single algorithm, Quantifier 
Elimination, is required in analogy with logic formulae 
and resolution. 

At the design and implementation level, however, the 
problems are far more difficult than for logic formulae. 
To try and circumvent these problems one must make 
heavy use of results and algorithms from symbolic com­
putation, operations research, computational geometry 
etc... Also, as in the case of logic formulae, we have 
to sacrifice generality to achieve acceptable efficiency by 
carefully selecting sets of constraints for which suitable 
algorithms can be found. 

Parametric 'queries Applying the paradigmatic as­
pects of reasoning with logic formulae to linear arith­
metic, we have that: 

• a set of constraints is viewed as an implicit repre­
sentation of the set of all constraints it entails 

• there is a query system such that an answer to a 
query Q is a relationship that is satisfied if and 
only if the query is entailed by the system. 

• there exists a single algorithm to answer all queries. 

Given a set S of arithmetic constraints as a conjunc­
tion of linear equalities, inequalities and negative con­
straints (disjunctions of inequations), we define a para­
metric query [7J as: 

3GYt, GY2, ••• , fJ 'Vxt, X2, •• , : S => GYIXI + GY2X2 + ... ::; fJ 
I\R(GYl' GY2, ••• , fJ)? 



where S is the set of constraints in store and R is a set 
of linear relations on the parameters aI, a2, ... , (3. 

Parametric queries provide a general formalism to ex­
tract information from sets of constraints and to express 
standard operations. For instance: 

1. is S solvable? If not, what are the causes of unsolv­
ability? 

2. does S contains redundancies or implicit equalities? 

3. is S equivalent to S'? 

4. is it true that x = 2 is implied by S? 

5. does there exist a such that x = a is implied by S? 

6. does there exist a linear relation ax + (3y + ... = , 
implied by S? 

7. does there exist a}, a2, ... (3 such that 
S::::} alX + a2Y'" ~ (3 and al = 2a2 - 1 ? 

The solvability query is typical of linear programming 
and corresponds to the first phase of the Simplex method. 
Finding the causes of unsolvability is a typical problem 
of constraints manipulation system where the constraints 
in store can be modified to restore solvability using feed­
back information provided by the solver. Queries 2 and 
3 both address the problem of constraint representa­
tion. Redundancy is a major factor of complexity in 
constraints processing and the removal of redundancies 
and the detection of implicit equalities are key steps in 
building a suitable canonical representation for the con­
straints [10] [12]. Queries 4 and 5 are classic Constr~int 
Satisfaction Problems (eSP) and queries 6 and 7 are 
generalization of CSP to linear relations: variables are 
bound to satisfy given linear relations instead of simply 
values. 

A priori, there does not seem to be any real con­
nections between these various queries. However, they 
can all be expressed as parametric queries which ask un­
der what conditions on the parameters aI, a2, ... , j3, the 
constraint in the query is implied by the constraints in 
store. By varying the parameters, specific queries can be 
formulated. For instance, 

• is x bound to a specific value a? 
3a}, a2, ... ,j3, s.t. S::::} a1x1 +a2x2+ ... = j3 with 
al = 1, a2 = 0, ... , j3 = a. 

• is x ground? 
same as above but with j3 unconstrained. 

• does S implies 2Xl + 3X2 ~ O? 
as above with a1 = 2, a2 = 3, ... , j3 = O. 

• what are the constraints implied by the projection 
of S the {XI, Y2}-plane? 
All parameters except aI, a2, j3 set to 0 
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The test for solvability and the classic optimization prob­
lem can also be expressed in this way: 

• is S solvable? . 
as above with all parameters aI, a2, ... set to 0 
except j3 2:: O. 
(by Fourier's theorem, which states that a set of 
constraints is solvable if and only if the elimination 
of all the variables results in a tautology) 

• what are the upper and lower bounds of f = Xl + 
X2 + X3? 
as above with al = 1, a2 = 1, a3 = 1, all other 
parameters are set to 0 except (3 2:: O. The an­
swer gives the upper and lower bounds for (3 that 
correspond to the minimum and maximun of f. 

Parametric queries generalize logic programming queries 
which ask if there exists an assignment of values to the 
variables in the query so that the query becomes a logical 
consequence of the program clauses. They also generalize 
esP's queries which are restricted to constraints of the 
type x = a. 

We now must address the problem of finding a finite 
representation for the answers to the queries. Paramet­
ric queries are more complex than simple conjunctions of 
constraints as they involve universal quantifiers, non lin­
earity and implication. However by using a result linked 
to duality in linear programming [8]' we can reduce the 
problem to a case of conjunction of linear constraints. 
The Subsumption Theorem states that a constraint is 
implied by a set of constraints S iff it is a quasi-linear 
combination of constraints in S. A quasi-linear combina­
tion of constraints is a positive linear combination with 
the addition of a positive constant on the righ-hand side. 
For instance, let S be the set 

{2x + 3y - z ~ 1, x - y + 2z ~ 2, x - Y + z ~ O} 

and Q be the query 

3a,j3, \:Ix, y, S::::} ax + (3y ~ 1? 

The following relations express that the constraint in Q 
is a quasi-linear combination of the constraints in S. 

2).1 + ).2 + ).3 = a 
3).1 - ).2 - ).3 = (3 
-).1 + 2).2 + ).3 = 0 
).1 + 2).2 + q = 1 
).1 2:: 0, ).2 2:: 0, ).3 2:: 0, q 2:: 0 

where the ).i'S are the multipliers of the constraints in 
S. It is from this simpler formulation that variables are 
eliminated. 

Variable elimination is the key operation to obtain 
answers to queries. It plays the role ofresolution in Logic 
Programming. With inequalities, the complexity prob­
lems are far more severe than in Logic Programming, 
even in the restricted domain of conjunctions of positive 
linear constraints. 
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Fourier's method The basic algorithm is Fourier's[2]. 
The severity of the problem is illustrated by the table 
below: 

Number of Number of Actual number of 
variables constraints constraints 

eliminated generated needed 

° 32 18 
1 226 40 
2 12,744 50 
3 39,730,028 19 
4 390,417,582,083,242 2 

The middle column gives the size of the output of Fourier's 
method to eliminate between 1 to 4 variables from an ini­
tial set of 32 constraints. The right most column gives 
the minimum size of equivalent outputs. Fourier's elim­
ination is in fact doubly exponential as it generates an 
enormous amount of redundant information. Even if we 
remove redundancy on the fly, we are still left with ex­
ponential size for intermediate computation and poten­
tial exponential size for output. To solve this problem, 
one must look for output bound algorithms (an impor­
tant area of study in computational geometry), that will 
guarantee an output when its size is small, bypassing the 
problem of intermediate swell. Also in the case where 
the size of the output is unmanageable, there is no point 
in computing it. However, we may sacrifice completeness 
and search for an approximation of reasonable size. That 
brings us back to avoiding intermediate swell. 

The extreme points method This method, derived 
from the formalism of parametric queries, is interesting 
as it shows that variable elimination can be viewed as 
a straightforward generalization of a linear program in 
its specification and as a generalization of the simplex 
in its execution. Let S = Ax :S; b and let V be the set 
of variables to be eliminated, the associated generalised 
linear program G LP is defined as: 

h! 
L: ).iail = G'l 

L: ).iaik = G'k 

L: \b i = f3 

~=l 
L: \aik+l = 0 

L: ).iai m = 0 
L:).i = 1 
).i ~ 0 

where extr denotes the set of extreme points. ~ repre­
sents the conditions to be satisfied by a combination of 
constraints of S that eliminates the required variables. 
The normalization of the ). 's ensures that ~ is a poly­
tope. extr(cp(~)), solutions of GLP, determine a finite 

set of constraints which defines the projection of S. The 
coordinates of the extreme points of cp(~) are the coef­
ficients of a set of constraints that define the projection. 
The objective function in the usual linear program can 
be viewed as a mapping from Rn to R, the image of the 
polyhedron defined by the constraints being an interval 
in R. The optimization consists in finding a maximum 
or a minimum, that is one of the extreme points of the 
interval. In a GLP, the objective function represents a 
mapping from Rn to Rm and instead of looking for one 
extreme point, we look for the set of all extreme points. 
At the operational level, we can execute this GLP by 
generalizing the simplex method. The extreme points of 
cp(~) are images of extreme points of~. So we com­
pute the set of extreme points of ~, map them by cp and 
eliminate the images which are not extreme points. It 
is important to note that although the extreme points 
method is better that Fourier in general because it elim- . 
inates the costly intermediate steps, there are still two 
main problems: the computation of the extreme points 
of ~ can be extremely costly even when the size of the 
projection is small and also the method produces a highly 
redundant output [1]. 

The convex hull method Variable elimination has 
long been treated as algebraic manipulations based on 
the syntax of the constraints rather than their semantics. 
Fourier's Procedure and EPM are no exceptions. Conse­
quently, the complexity of these methods is tied to the 
initial polyhedral set instead of to the projection itself. 
Quantifier elimination can also be viewed as an operation 
of projection. Exploiting this remark in a systematic way 
leads to more output bound algorithms which guarantee 
an output when its size is reasonable and an approxima­
tion otherwise [9]. In the bounded case, the idea is triv­
ial: by running linear programs we compute constraints 
whose supporting hyperplanes bound both the polytope 
to be projected and its projection. The traces of these 
hyperplanes on the projection space provide an approxi­
mation containing the projection. At the same time the 
extreme points provided by the linear programs project 
on points of the projection. The convex hull of these 
points is a polytope that is included in the projection. 
Iterating this process leads to the projection. Whether 
we have an output bound algorithm or not will however 
depend on the choice of points. The difficulties that re­
main are that we do not want to make any assumption 
on the input polyhedral set which can be bounded or 
not, full dimensional or not, redundant or not, empty 
or not. Standard linear programming techniques can be 
used to determine solvability and to transform the input 
if required into a set of equations defining its affine hull 
and a set of inequalities defining a full-dimensional poly­
hedral set in a smaller space. A straightforward variable 
elimination in the set of equations gives the affine hull 
of the projection which will be part of the final output. 



This simplification based on geometrical considerations 
allows us to eliminate as many variables as possible by 
using only linear programming and gaussian elimination 
before getting into the costly part of elimination. 

In the bounded case, the algorithm works directly 
on the input constraints. The projection is computed 
by successive refinements of an initial approximation ob­
tained by computing with linear programs enough ex­
treme points of the projection so that their convex hull is 
full-dimensional. Successive refinements consist in adding 
new extreme points and updating the convex hull. The 
costly convex hull construction is done in the projection 
space thus the main complexity of the algorithm is linked 
to the size of the output. The process stops when either 
the projection has been found or the size of the approx­
imation has reached a user-supplied bound. 

In the unbounded case, the problem is reformulated 
using the generalised linear program representation which 
is bounded by definition. cp(~) is computed by projec­
tion. The output will consist of the convex hull of cp(~) 
but also the set of its extreme points, from which the 
constraints defining the projection are derived. The ad­
vantage over the extreme points method is that we com­
pute directly the extreme points of the projection. We 
do not need to compute the extreme points of ~, this 
computation being the source of enormous intermediate 
computation and high redundancy in the output. 

Implicit equalities and causes of unsolvability 
Fourier's algorithm can be used to trace all subsets of 
constraints in S that cause unsolvability or that are im­
plicit equalities [11]. 

By using the quasi-dual formulation, we can acheive 
the same effects by running linear programs. The quasi­
dual formulation which corresponds to Fourier's algo­
rithm is 

CP: f3 = bT }. 

{

AT}. = 0, 
~: ~}.i=1,. 

}.i ~ 0 \;fz. 

Here CP maps ~m to ~, where m is the number of con­
straints in S. Since we want to compute the minimum 
of CP subject to ~ we need to solve the following linear 
program D: 

minimize 
subject to 

bT }. 

AT}. = 0 

~\ = 1 
}.i ~ 0 Vi. 

It is obvious that, in general, solving S in this manner is 
far more efficient than using Fourier's algorithm. Since 
D is a variant of the dual simplex in Linear Program­
ming, it inherits nice properties from the standard dual 
simplex such as good incremental behavior, no need to 
introduce slack variables and no restriction to positive 
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I Quasi-Dual D I Properties of S 

• Strongly solvable 
• Full dimensional 

Unsolvable • No implicit equalities 
• Unbounded and 
• no p~ojection has arallel facets 
• 
• Solvable 
• Full dimensional 
• No implicit equalities 
• Bounded or 
• exists projection with parallel facets · . . 
• Weakly Solvable 
• Not full dimensional 
• Exists implicit equalities 
• An evident minimal subset of 
im licit e ualities 
• 
• Unsolvable 
• An evident minimal infeasible subset 

variables. More importantly as a side effect of the solv­
ability test we obtain information about the algebraic 
properties of the constraints and about the geometric 
structure of the associated polyhedron. The properties 
of D are summarized in the table. 

Conclusion Much of the existing work on constraints 
has been done in diverse domains with their own dis­
tinctive requirements. Even in the restricted domain of 
linear arithmetic constraints, there is a wealth of knowl-
edge and algorithms. To build systems to reason with 
constraints requires borrowing and synthesizing various 
notions and this led to the emerging concept of a uni­
fied framework of a single representation, the parametric 
query, and solution technique, variable elimination, for 
handling all the different operations on constraints. This 
approach shares key aspects with Logic Programming, 
with variable elimination playing the rule of resolution. 
The viability of this approach, both from a knowledge 
representation and knowledge processing aspects, is bee­
ing tested with applications in the domain of spatial rea­
soning [3] and graphic user-interface [4]. Empirical re­
sults with an initial implementation have shown that a 
variety of small (about a hundred inequalities in two di­
mensions) and fairly large problems (up to about 2,000 
inequalities over 70 variables) can be processed in times 
ranging from less than a second to a few minutes. Ongo­
ing work includes the design and implementation of an 
integrated system based on the proposed framework and 
incorporating several solvers. The potential applicabil­
ity of more recent interior points method is also investi­
gated. Many properties of linear arithmetic constraints 
hold for constraints in other domains. These properties 
have been abstracted and generalized in [13]. 
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Abstract 

Inductive Logic Programming (ILP) is a research 
area formed at the intersection of Machine Learning 
and Logic Programming. ILP systems develop pred­
icate descriptions from examples and background 
knowledge. The examples, background knowledge 
and final descriptions are all described as logic pro­
grams. A unifying theory of Inductive Logic Pro­
gramming is being built up around lattice-based 
concepts such as refinement, least general general­
isation, inverse resolution and most specific correc­
tions. In addition to a well established tradition 
of learning-in-the-limit results, recently some results 
within Valiant's PAC-learning framework have been 
demonstrated for ILP systems. Presently success­
ful applications areas for ILP systems include the 
learning of structure-activity rules for drug design, 
finite-element mesh analysis design rules, primary­
secondary prediction of protein structure and fault 
diagnosis rules for satellites. 

1 Introduction 

Deduction and induction have had a long strategic 
alliance within science and philosophy. Whereas the 
former enables scientists to predict events from the­
ories, the latter builds up the theories from obser­
vations. The field of Inductive Logic Programming 
[6,8] unifies induction and deduction within a logical 
setting, and has already provided notable examples 
of the discovery of new scientific knowledge in the 
area of molecular biology [5, 7]. 

2 Theory 

In the general setting an ILP system S will be given 
a logic program B representing background knowl-

edge and a set of positive and negative examples 
(E+, E-), typically represented as ground literals. 
In the case in which B ~ E+, S must construct a 
clausal hypothesis H such that 

BAHpE+ 

where B, Hand E- are satisfiable. In some ap­
proaches [16, 13] H is found via a general-to-specific 
search through the latt.ice of clauses. This lattice is 
rooted at the top by the empty clause and is partially 
ordered by O-subsumption (H O-subsumes H' with 
substitution () whenever H() ~ H'). Two clauses 
are treated as equivalent when they both O-subsume 
each other. Following on from work by Plotkin [12], 
Buntine [1] demonstrat.ed that the equivalence rela­
tion over clauses induced by O-subsumption is gen­
erally very fine relative to the the equivalence re­
lation induced by entailment between two alterna­
tive theories with common background knowledge. 
Thus when searching for the recursive clause for 
member /2, infinitely many clauses containing the 
appropriate predicate and function symbols are 0-
subsumed by the empty clause. Very few of these 
entail the appropriate examples relative to the base 
case for member /2. 

Specific-to-general approaches based on Inverse 
Resolution [9, 14, 15] and relative least general 
generalisation [1, 10] maintain admissibility of the 
search while traversing the coarser partition induced 
by entailment. For instance Inverse Resolution is 
based on inverting the equations of resolution to find 
candidate clauses which resolve with the background 
knowledge to give the examples. Inverse resolution 
can also be used to add new theoretical terms (pred­
icates) to the learner's vocabulary. This process is 
known as predicate invention. 

Several early ILP authors including Plotkin [12] 
and Shapiro [16] proved learning in the limit results. 
Recently, ILP learnability results have been proved 
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within Valiant's PAC framework for learning a single 
definite clause [11] and in [3] for learning a multiple 
clause predicate definition assuming the examples 
are picked from a simple-distribution. 

3 Applications 

ILP is rapidly developing towards being a widely 
applied technology. In the scientific area, the ILP 
system Golem [10] was used to find rules relating 
the structure of drug compounds to their medicinal 
activity [5]. The clausal solution was demonstrated 
to give meaningful descriptions of the structural fac­
tors involved in drug activity with higher acuracy on 
an independent test set than standard statistical re­
gression techniques. 

In the related area of predicting secondary struc­
ture of proteins from primary amino acid sequence 
[7] Golem rules had an accuracy of 80% on an inde­
pendent test set. This was considerably higher than 
results of other comparable approaches. 

Golem has also been used for building rules for 
finite-element-mesh analysis [2] and for building 
temporal fault diagnosis rules for satellites [4]. 

4 Conclusion 

Inductive Logic Programming is developing into a 
new logic-based technology. The field unifies induc­
tion and deduction within a well-founded theoretical 
framework. ILP is likely to continue extending the 
boundaries of applicability of machine learning tech­
niques in areas which require machine-construction 
of structurally complex rules. 
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1 Introduction 

Processing power of the recent microprocessors grows 
very rapidly; It almost gets over the power of mainframe 
computers. Trends of the continuous improvement of 
the semi-conductor technology suggest that the process­
ing power of one-chip processor devices will reach 2000 
MIPS until the end of 1990s, and that the parallel com­
puter system with 1000 processors will be installed in a 
cabinet which will real~ze 2 TIPS (tera instructions per 
second) peek speed. 

Such a gigantic power hardware is no longer hard to 
imagine because recent large-scale parallel computers for 
scientific processing, just appeared in the market, sug­
gests a trend of large parallel computers. 

However, the software technology on the scientific par­
allel computers focuses on very limited application do­
mains. Hardware design is also shifted to the applica­
tions somewhat. The parallel processing paradigm on 
those systems is the data parallelism. Problem model­
ing, language specification, compiling technique, a part 
of OS design, etc. are all based on the data parallelism. 

The characteristics of the data-parallel computation 
are regular computation on uniform data or synchronous 
computation in other word. The coverage of this 
paradigm is limited to non-wide area of application do­
mains, such as dense matrices computation, image pro­
cessing, and other problems with regular algorithms on 
uniform data. 

To make full use of the gigantic power parallel 
machines in the future, the other parallel processing 
paradigms, that cover much wider range of application 
domains, are longed to be developed. 

2 New Domain of Parallel Ap­
plication 

Knowledge processing is the target application domain 
of FGCS project. Characteristics of knowledge process­
ing problems are different much from that of scientific 
computations based on the data-parallel paradigm. 

Dynamic and non-unif01'm computation often appear 
in the knowledge processing. For example, when a 
heuristic search problem is mapped on a parallel com­
puter, workload of each computation node changes dra.s­
tically depending on expansion and pruning of the search 
tree. Also, when a knowledge processing program is con­
structed from many heterogeneous objects, each object 
arises non-uniform computation. Computation loads of 
these problems are hardly estimated before execution. 

These large computation problems with dynamism 
and non-uniformity are called the dynamic and non­
uniform problems in this paper. When a system supports 
the new computation paradigm suitable for the dynamic 
and non-uniform problems, its coverage of the applica­
tion domain must expand not only to the knowledge pro­
cessing but also to some classes of large numerical and 
symbolic computation that have less data-parallelism. 

3 Research Themes 
The dynamic and non-uniform problems arise new re­
quirements mainly on the software technology. They 
need more complex program structure and more sophis­
ticated load balancing scheme than that of the data­
parallel paradigm. 

These items, listed below, have not been studied 
enough for the dynamic and non-uniform problems with 
large computation. 

1. Modeling scheme to realize large concurrency 

2. Concurrent algorithms 

3. Programming techniques 

4. Load balancing schemes 

.5. Language design 

6. Language implementation 

7. OS implementation 

8. Debug and performance monitoring supports 

The latter five items should be included in the topics 
of design and implementation of the system layer. The 
former three items should be included in the applica­
tion layer or more general framework of soft.ware devel­
opment. 

4 Approach 
Such an approach has been taken in the FGCS project 
that the system layer (including the topics 5 to 8 in sec­
tion 3) was carefully tailored to suit the dynamic and 
non-uniform problems and topics of the upper layer (1 
to 4) were studied on the system. 

Key Features in the System Layer: The system 
layer satisfies these items to realize efficient programming 
and execution of the target problems. 



1. Strong descriptive power for complex concurrent 
programs 

2. Easy to remove bugs 

3. Ease of dynamic load balancing 

4. Flexibility for changing the load allocation and 
scheduling schemes to cope with difficultv on esti­
mating actual computation loads before execution 

Mainly, the language feature realizes these characteris-
tics and the language implementation supports efficiency. 
The key language features are listed below. v 

• Small-grain concurrent processes: A lot 
of communicating processes with complex structure 
can be easily described, realizing large concurrency. 

• Implicit synchronization/communication : 
They are performed between concurrent processes 
even in remote processors, which helps to write less 
buggy programs. 

• Separation of concurrency description and 
mapping: Programmers firstlv describe concur­
rency of the program without conVcerning with map­
ping (load allocation). Mapping can be specified 
with a clearly separated syntax after the COllCur­
rency description is finished. Runtime support for 
the implicit remote synchronization enables it. 

• Handling a scheduling without destroying the 
clear semantics of the single-assignment language 

• Handling a group of small-grain processes as 
a task 

The language implementation realizes an efficient exe­
cution of these features, including a efficient as ker­
nel implementation of memory management, process 
scheduling, communication, virtual global name space, 
etc. [Taki 1992J. The other as functions, which are 
written i~ the language, realize an research and develop­
ment e!lvlronment of parallel software including a pro­
grammmg system, task management functions, etc. 

Research for the Upper Layer: Research topics of 
1 to 4 in section 3 have been studied. After toy prob­
lems have been tested enough, R&D on practical large 
applications become important. 

Strong cooperation of experts on application domain 
and on parallel processing is indispensable for those R 
& D. Several R&D teams have been made for each ap­
plication development. Firstly, the research topics have 
been studied focusing on each application, then com­
monly applicable paradigms and schemes are extracted 
and supported by the system as libraries, as functions 
or programming samples. 

5 Current Status 
System hnplementation: A concurrent logic pro­
gramming language KL1, which has those features listed 
in s~tion 4, has bee.n efficiently implemented on the par­
allel mference machme PIM. A parallel operating system 
PIMOS, which is written in KL1, supports an R&D en­
vironment for parallel software. 

Very low-cost implementation of those features 
[Taki 1992J encourages the research of load balancing 
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schemes. The language features helps the research of var­
ious concurrent algorithms and programming techniques. 

Application Development: Practical large applica­
tions have been implemented [Nitta 1992]. such as: 

• LSI-CAD system: Logic simulation / Placement 

• Genome analysis system: Protein sequence analysis 
/ folding simulation / structure analysis 

• Legal reasoning system 

• Go game playing system 

• Other eight application programs with different 
knowledge processing paradigms 

Most of them arise dynamic or non-uniform computa­
tion. Some measurements show very good speedup and 
absolute speed by parallel processing. 

Common Paradigms and Schemes: Efforts on 
extracting common paradigms and schemes from each 
application development have been continuing. Cate­
gorizing dynamic process structures and load distribu­
tion schemes have been carried on. Performance ana.lvsis 
methodologies have also been studied [Nitta 1992]. ' 

A multi-level dvnamic load distribution scheme for 
search problems i~ already supported as a library 'pro­
gram. A modeling. programming and mapping scheme 
based on (l lot of small conClIrl'ent objects have been com­
monly used among several application programs. 

6 Conclusion 
New paradigms of parallel processing, that can cover the 
dynamic and non-uniforrn pmblems, are expected to ex­
pand application domains of parallel processing much 
larger than ever. 

The dynamic and non-uniform problems must be a 
large application domain of parallel processing, coming 
next to the applications based on the data-pamllelism. 
Parallel processing systems, that support efficient pro­
gramming and execution of the dynamic and non­
uniform problems. will get close to the general-purpose 
parallel processing system. 

The KL1 language system, developed in the FGCS 
project. realize many useful features for efficient pro­
gramming and executioll of that problem domain. Mam' 
application developments have been proving effectivene~s 
of the language features and their implementation. 

R&D of problem modeling schemes. concurrent al­
gorithms, programming techniques and load balancing 
schemes for that problem domain have started in the 
project, and still have to be continued. The accumu­
lation of those software technology must make the true 
general-purpose parallel processing system. 
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Abstract 
We present in this paper a hybrid reasoning system for 
Explaining Mistakes In Chinese Writing, called EMICW. 
The aim of EMICW is to provide students of the chinese 
language with a means to memorize characters. The 
students write down from EMICW 's dictation. In case of 
graphic errors, EMICW will explain the reasons of this 
error by using either the etymology of characters or some 
efficient mnemonic techniques. 

EMICW has multiple representations associated to 
multiple reasoning methods. The coherence of the 
reasoning is ensured by means of a common logic 
formalism, the FLL-theories, derived from Girard's linear 
logic. 

1 Introduction 

The main aim of the system EMICW is to provide students 
of the chinese language with a means to memorize chinese 
characters without losing heart. The first obstacle for people 
accustomed to an alphabet is indeed the great number of 
characters to sink in. We propose to them to write down 
from EMICW's dictation. In the case where students are 
mistaken about a character, the system will explain the 
reasons of this graphic error either by using the origin of 
the character [Henshall 1988], [Ryjick 1981], [Wieger 
1978], or by invoking an efficient mnemonic technique. 

EMICW is a hybrid knowledge representation and 
reasoning system [Brachman, et al. 1985], [Kazmareck et 
al. 1986], [Nebel 1988]. It has multiple representations - a 
semantic network associated to inference rules expressed in 
the formalism of Gentzen's calculus [Gentzen 1969] -
associated to multiple reasoning methods. The set of 
inference rules defines the main cases of mistakes that the 
author of this article and school fellows could make during 
their own initiation into the chinese writing. The learning 
methods used are given in [Bellassen 1989], [De Francis 
1966], [Lyssenko and Weulersse 1987] [Shanghai Press 
1982]. 

To ensure a coherent reasoning, EMICW has a common 
logic formalism, the FLL-theories [Castaing 1991], 
borrowed from Girard's linear logic [Girard 1987, 1989]. 
The system essentially performs monotonic abduction 
[B y lander 1991]. So, let a be the correct chinese character 
the student should write down from EMICW 's dictation. 
Let b be the actual answer given by the student. If the 
student is mistaken, it means that the character a is different 
from b, the binary predicate Error (a, b) is then set to the 

value true. An explanation of a graphic error consists in 
finding a set of first-order formulas Sigma such that a proof 

of the linear sequent Sigma f-- Error (a,b) can be carried 
out in a FLL-theory. The set of the formulas of Sigma 
shows the different causes of the confusion of the 
characters a with the character b. For example, the two 
characters a and b may have the same sound (they are 
homophonic), or they may share the same graphic 
components, and so on. 

In this paper, we first briefly outline the history of 
chinese characters [Alleton 1970], [Henshall 1988], [Li 
1991] [Ryjick 1981], [Wieger 1978], so the reader can 
appreciate how a character is made up, how it acquired its 
structure and will make himself an opinion on the 
difficulties of the chinese writing. We also give the 
terminology we use. In the third section, we discuss the 
problem of characters representation and recognition which 
explains the limitation of our system. Then, after describing 
the system EMICW (section 4), we will give in section 5, 
an example of explanation in the FLL-theory T. The 
essential point of the section 6 is the proof of the 
tractability of our system. 

2 Chinese Writing 
The chinese characters originated between 3000- 2000 B.C 
in the Yellow River of China. They have been the subject of 
numerous studies. In this paper, we limit ourselves to 
mentioning what is essential for a good understanding of 
our work. 

The chinese characters, also called sinograms (letters 
from China) are written in square form with the help of 
strokes, for example, horizontal stroke, vertical stroke. A 
set of 24 strokes standardized by the Foreign Languages 
Institute of Beijing are now of general use (see section 3.1). 
Strokes must be written down according to established 
principles of stroke order (generally from top to bottom, 
and from left to right) called calligraphic order. A 
knowledge of these principles is important in order to 
achieve the proper shape and to write in the cursive style or 
semi-cursive style (the writing style of the chineses). 
Sinograms are monosyllabic, and each syllable has a 
definite tone. There are four basic tones in the official 
national language (called mandarin chinese too). The 
transliteration used in this article is based on the official 
Chinese phonetic system, called pinyin, which is a 
representation of the sounds of the language in the Latin 
alphabet. We mark tones with numbers from 1 to 4. 
Sinograms have traditionally been classified into six 
categories. However, in many cases the categorization is 



open to difference of opinion, and one sino gram can 
legitimately belong to more than one category. We list 
below the main categories that shed considerable light on 
the nature of sinograms. The students should consider these 
categories as guides to remembering sinograms. 
1. The simple pictogram: essentially a picture of si~le 
physical object. For example, woman ~ nu3, child -:r­
zi3. 
2. The complex pictogram: a picture of several physical 
objects normally indissociable. For example, good }tf 
ha03. 
3. The ideogram: a meaningful combination of two or 
more pictograms chosen for their meanings. For example, 
from pictograms sun a ri4, and moon A yue4, the 
ideogram intelligent is derived: 8~ 
4. The ideo- phonogram: the largest category, containing 
about 90% of the sinograms. Essentially a combination of 
a semantic element with a phonetic element. For example, 
the ideo-phonogram seed ~t zi3 obtained by combining 
the semantic element cereal* mi3, with the phonetic 
element child=f zi3, which gives to the character its reading. 
In fact, only about 30% of sinograms have a real phonetic 
component as in the example. Chinese (as any other 
language which is still spoken) has changed since the 
origin, so the phonetic element has lost its property. 

The classification of sinograms in dictionaries can be 
done with the help of several methods. The number of 
strokes method and the alphabetical order (based on the 
pinyin romanization) method are easy to apply. The four 
corner method considers particular strokes located at the 
four corner of the sinogram. These strokes are codified 
with the help of four (or five) digits, and the sinogram is 
located at the position given by its numerical representation. 
The radical method uses a particular element in a sinogram, 
the key element, which indicates the general nature of the 
character. For instance, the ideo-phonogram~.J zi3 is 
located under the radical * . 
The character dictionary Xin Bua Zi Dian (eds .. 1979) lists 
the sinograms with respect to 189 radicals. 

About five to seven thousand sinograms of up to ten or 
so strokes are needed in order to master the Chinese 
writing. The usual technique for learning consists in writing 
down a sinogram until it sinks in. We believe that the key 
to successful study of sinograms does not lie in rote 
learning. We propose a way to make the task a lot easier. 
For each case of mistake, our EMICW system gives an 
explanation based on the etymology of the characters. For 
instance, the character *= tian 1 (sky) can be confused 
with the following one ~ fu4 (adult), because they have 
similar graphics. In fac(,1he character ~ comes from .* 
da4 (tall), and from the graphic - yi 1 (one), which 
represents a hat, while the character.t;:. comes from 1:. ' 
and from the graphic- which means a hairpin. The position 
of the strokes can be meaningful. If such an explanation is 
given to the students in case of error, they progressively 
will be able to correct their own mistakes by reasoning, 
without relying heavily on memory. Moreover, they can 
consider these explanations as an introduction to the history 
of Eastern Asia. 

We list below the main cases of mistakes we have met in 
our study of the chinese language: 
1. Confusion of homophonic sinograms: about 
50000 sinograms share four hundred syllables. According 
to official statistics each syllable with its tone corresponds 
to an average of five distinct sinograms. So, the first 
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difficulty for students is to distinguish the homophonic 
sinograms. 
For exftmple, ten t shi2, moment EJ·t shi2, and to 
know1R shi2 w ich are homophonic sinograms can be 
confused in a dictation. 
2. Confusion of sinograms with similar graphics: 
For example,~ji3, e yi3, e si4 have similar graphics, * tian 1, fu4 adult have similar graphics too. It 
happens that t e mistaken graphic is not a sinogram. For 
example, instead of half.:f ban 1, the student (the author 
of this article) wrote':': . 
3. Confusion of si'hograms which share the same 
components: For example,;t..~ di4, and:1! chi2, 
which share the component ~ . " 
4. Confusion of sinograms which form a word: 
The sinograms are monosyllabic, but the chinese words are 
generally dissyllabic. For example, the words .iJ 1* 
~l].enlti3 (body),.Jt. fi] gong4tong2 (togeilier), and 
1& 1! shuolfiua4 (to talk). The students usually learn 
dissyllabic words. So, they happen to confuse a sinogram 
with another. 

We can also mention the case of confusion of simplified 
forms with non simplified forms of sinograms, of missing 
strokes: very complex sinograms may have about thirty 
strokes, so missing strokes is a very frequent mistake. 

3 The Graphics Capture 

Students write down sinograms from EMICW's dictation. 
A "good" method for representing graphics should allow 
the system to rapidly recognize the graphics drawn which 
are not automatically sinograms, because students 
can be mistaken. The different classification and search 
techniques in dictionaries that we have mentioned in the 
previous paragraph, permit to locate a character, but not to 
correct it. For instance, the four corners method does not 
take into account all the strokes drawn by the student, so, 
cannot be used to correct mistakes. The recognition 
problem of sinograms has been the subject of numerous 
studies. The last results can be found in rWang 1988] 
[Yamamoto 1991 J. 

3.1 Data Capture 

In our particular application, we have to "understand" 
graphics drawn by students in order to help them in case 
of error. Each graphic drawn is characterized by the type of 
strokes used, the calligraphic order of strokes, and their 
positions in a square. In order to capture all these data, the 
system displays the set of 24 standardized strokes. In fact, 
only six strokes are primary ones: the point l (pt), the 
horizontal stroke - (hr), the vertical stroke I (vt), the 
top to left bottom stroke ) (dg), the top to right bottom 
stroke '- (dd), and the back up stroke".- (rt). All 
other strokes derived from these primary ones. These 
strokes are implemented by means of graphical primitives 
such as line drawing, rectangle and arc drawing. The 
students arrange strokes to draw graphics inside a square, 
the pictures may be expanded or shrunk to fit their 
destination square. For instance, the sinogram ~ tian1 
(sky) can be written down in the following square by 
means of strokes of types hr, dg, and dd, according to the 
calligraphic order of writing (hr hr dg dd): 
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3.2 Graphic Feature of a Sinogram 

As the position of strokes can be meaningful, we propose 
to locate each stroke in terms of coordinates on a plane (the 
coordinate plane is a two-dimension grid, which 
corresponds to the square drawn above, the coordinate 
origin (0, 0) being at the left top corner of the square). 
We sort out strokes with respect to their coordinates: from 
top to bottom (top-down order) , from bottom to top 
(bottom-up order), from left to right (left-right order), from 
right to left (right-left order). So, every graphic is 
characterized by the set of following codifications: the 
calligraphic order of strokes, the top-down, the bottom-up, 
the left-right and the right-left orders of strokes. For 
instance, the graphic feature of the sinogram :t: tian 1 is 
given by the calligraphic order of strokes (hr lfrllg dd), the 
top-bottom order (hr dg hr dd), the bottom-top order (dg 
dd hr hr), the left-right order (hr hr dg dd), and the right­
left order (hr hr dd dg). We show now how all that 
knowledge can be used to explain graphic errors. 

4 Knowledge Representation 

The representation language of EMICW is a restricted 
version of the frame-based language KL-ONE [Brachman 
and Smolze 1985] - for instance it does not support 
structural dependency relations. 
EMICW has a terminological component, the data base 
associated to an assertional component. The assertional 
component is a set of rules expressed in terms of 
predicates which are defined in the terminological 
component. Let us first justify our choice, then we will 
describe the language. 

In order to deal with all the cases of mistakes listed in 
section 2, we need for a representation system which 
allows us to define all the links of "proximity" between the 
objects manipulated, i.e. graphics which are (or which are 
not) sinograms. For instance, homophonic links between 
two different sinograms, or graphic similarity between a 
graphic and its components. The inheritance link IS-A ( B 
IS-A A means intuitively that all instances of B are also 
instances of A), and the properties which correspond to 
roles fit very well our problem. For efficiency reasons, we 
have to find a trade-off between the expressive power of 
the representation language and the computational 
tractability of the relation IS-A (called subsumption 
relation). In [Castaing 1991], we analysed the relation B 
IS-A A, and we proved that providing some restrictions, a 
subsumption criterion can be defined. A matching 
algorithm based on this criterion computes subsumption in 
polynomial time. In the system EMICW, we increase the 
expressive power of our language by adding to the system 
an assertional component, which only deals with existential 
rules. In section (6), we will discuss the computational 
complexity of our system. 

4.1 Terminological component 

Concepts are labelled collections of (attribute, value) 
pairs. The main concepts are the following ones: 
Stroke, Graphic-Feature (abbreviated as G-F), 
Graphic-Meaning (abbreviated as G-M), Graphic-Sound 
(abbreviated into G-S), Syllable, Meaning. 
Individual concepts denoted by small letters are 
instances of concepts denoted by capital letters. 
Attributes are classified into the structural link IS-A and 
properties. 
The IS-A link is used for inheritance. So, if two concepts 
B and A are linked by means of the IS-A link, we say that 
A subsumes B, and that the concept B is of type A. 
Properties are related to the intrinsic features of 
concepts. The attribute values are concepts too. The main 
properties in the system are the following ones: c-o 
(abbreviation of stroke calligraphic order ), o-t-d 
(abbreviation of top-down order), o-b-u (abbreviation of 
bottom-up order), o-l-r (abbreviation of stroke order from 
left to right), o-r-l (abbreviation of stroke order from right 
to left), sound (pronunciation), etymo (abbreviation of 
etymology). 

We give below a general view of the classification of the 
main concepts in EMICW taxonomy. To make clear the 
presentation, we use an ordering graph (semantic network), 
where the bold arrow -> represents the IS-A relation, and 
the arrow -> represents the roles. 

In the taxonomy given above, there are only individual 
concepts of type Meaning. For instance, the words tall and 
hat are instances of Meaning. The concepts of type Syllable 
correspond to the syllables of the chinese language without 
tone. For instance, the concept Tian is of type Syllable. An 
instance of the concept Tian may be tian1 (first tone). The 
concepts of type Stroke correspond to ordered sequences of 
strokes. Let Sa and Sb be two concepts of type Stroke. Sb 
IS-A Sa if and only if the strokes in Sa also appear in Sb in 
the same order. For instance, the concept Sa which 
corresponds to the sequence of strokes (hr dg dd) 
subsumes the concept Sb given by the sequence (hr hr dg 
dd). Intuitively, this relation means that the graphics drawn 
by means of the ordered sequence of strokes (hr hr dg dd ) 
have been partially drawn by means of the ordered 
sequence (hr dg dd) too. The concepts of type G-F give the 
graphic features of sinograms. The meaning of a sinogram 



is given by the property etymo, and its reading is given by 
the property sound. It may happen that two different 
sinograms have the same graphic feature. For instance, to 
10vet'J' ha04, and good 1<:f ha03. So, we define concepts 
of type G-M (Graphic Meaning), and G-S (Graphic 
Sound), such that each sinogram in the data base can be 
considered as an instance of the concepts G-M and G-S. 
We now give an example of a sinogram representation. 

Example-I: 
Let alOO be the sinogram ~ tianl. Its graphic feature can 
be defined by means of the concept G-FIOO which is 
characterized by the following (attribute, value) pairs: 
G-FIOO = { (c-o, (hr, hr, dg, dd)), (o-t-d, (hr, dg, hr, 
dd)), (o-b-u, (dg, dd, hr, hr)), (o-l-r, (hr, hr, dg, dd)), (o­
r-I, (hr, hr, dd, dg»}. The sinogram alOO inherits its 
meaning (sound) from the concept G-MIOO (G-S 100) 
partially defined by the following sets of (attribute, value) 
pairs: 
G-MIOO = {(IS-A G-FlOO), (etymo, sky) } 
G-S 100 = {(IS-A G-FlOO), (sound, tian)} 
So, the sinogram alOO is an individual concept of type G­
FIOO defined by the (attribute, value) pairs: alOO ={(IS-A, 
G-FlOO), (etymo, sky), (sound, tianl) }. 
End of the Example-I. 

The graphics drawn by the student during a dictation are not 
automatically sinograms. So, we first consider them as 
concepts of type G-F (Graphic Feature). We solve the 
recognition problem of graphics by means of a classifier 
[Brachman and Levesque 1984]. 

4.1.1 Classifier 

Usually the role of the classifier in a KL-ONE taxonomy 
consists in placing automatically a concept at its proper 
location. For classifying concepts in EMICW taxonomy, 
we proceed in two steps: 
1. From the graphic drawn by the student, we define the 
concept CG (Complete- Graphic) related to the properties 
c-o, o-t-d, o-b-u, o-l-r, o-r-l of the components 
2. We look for the concepts A and B, such that A subsumes 
CG, CG subsumes B, and there does not exist a concept A' 
which can be located between A and CG, and a concept B' 
which can be located between CG and B. We place CG, 
and we say that CG is at its optimal location in EMICW 
taxonomy. It means that CG inherits from all its ancestors. 
A is said to be a father of CG. B is said to be a son of 
CG. In case the concepts A and B are identical, we say that 
CG has been identified with A (or with B). 

4.1.2 Recognition Problem 

The recognition problem consists in discovering an 
individual concept b of type Sino, which has the same 
graphic feature than CG. We proceed as follows: 
1. By means of the classifier, we place the concept CG at 
its optimal location. 
2. If CO can be identified with a concept G-Fn of type 
G-F, it means that there exists at least a sinogram which is 
an instance of G-Mn and G-Sn. Let cf be this particular 
instance of G-Mn andG-Sn. We identify CG with cf, and 
CG "wins" all the properties of cf, for example, the 
properties sound, and etymo. We give an example. 
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Example-2 
Let us suppose that the graphic drawn by the student is 
~ tianl (sky). The concept CG has the following 

properties (after sorting out the strokes with respect to 
their coordinates) 
CG = {(c-o, (hr hr dg dd)), (o-t-d, ( hr dg hr dd)), (o-b­
u, (dg dd hr hr)), (o-l-r, (hr hr dg dd)), (o-r-l, (hr hr dd 
dg))}. The concept CG placed at its optimal location can be 
identified with the concept G-FIOO (see the Example-I): 
G-FlOO = { (c-o, (hr hr dg dd)), (o-t-d, (hr dg hr dd)), 
(o-b-u, (dg dd hr hr)), (o-l-r, (hr hr dg dd)), (o-r-l, (hr hr 
dd dg))}, and so, can be identified with the instance alOO 
of G-MlOO and G-SIOO. The concept CG gains the 
properties sound and etymo of a I 00. 
End of the example-2. 

Our recognition procedure is a little drastic. It may 
happen in sinograms with multiple components that some 
strokes in a component have no link with those in another 
component. By sorting out all strokes, we consider that 
they are necessarily linked, so, we detect a graphic error 
and reject the graphic proposed by the student. Our 
recognition procedure suits sinograms (simple or complex) 
whose components are specified by the students. 

4.2 Rules 

The rules of the assertional component deal with the 
different cases of error in chinese writing. All the predicates 
manipulated are defined in the terminological component 
either as unary predicates (concepts) or as binary predicates 
(roles), except for the predicates Error, * (different), and = 
(equivalence). We explain now how the confusion of 
sino grams can be interpreted by means of the predicate 
Error. 

Let a be the sinogram of the dictation, and CG be the 
complete concept obtained from the graphic drawn by the 
student. The student's answer is considered correct (there is 
no error) if and only if: 
1. The concept CG is recognized as a sinogram denoted by 
b. 
2. The individual concepts a and b share exactly the same 
properties. 
Two cases of error are possible: 
1. The concept CG cannot be identified with a concept of 
type Graphic- Feature of a sinogram. It means that the 
graphic drawn is not a sinogram. 
2 The concept CG is recognized as a sinogram denoted by 
b, but the sinograms a and b do not share the same 
properties. 

In the first case, the concept CG is located at its optimal 
position, and has a father that we denote by B. We consider 
an individual concept b of type B, and we propose to 
explain the confusion of a with b.The choice of an 
individual b may depend on a strategy. For the time being 
in our application, we identify CO with an individual 
which has the same graphic feature as B. In the second 
case, we propose to directly explain the confusion of a with 
b. The individual concepts pointed out by our system 
during an explanation are the witnesses of the error. 
The rules of the assertional component have a limited 
syntax. Their general form is: "If there-exists x such that P 
(x) then Error (a, b)", where x is a vector of variables, 
and P is a finite conjunction of predicates. For instance, the 
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rule: "If there-exists z such that Syllable(z) & Sound(a, z) 
& Sound(b,z) then Error (a, b)", can be used in order to 
explain a mistake between two sinograms a and b which are 
homophonic. We give some examples ofrules expressed in 
sequent calculus formalism. 

rule-I: ::3 z Syllable(z) & Sound(a,z) & Sound(b, z) I- Error 
(a, b) 

rule-2: ::3 u z ml, rn2, G-M(u) & G-M(z) & Meaning (mI) 
& Meaning (m2) & ml:;t:m2 & u:;t: a & z:;t:b & Etymo (u, 
mI) &Etymo(z, m2) & Etymo (a, ml) & Etymo (b, m2) & 

Error Cu, z) I- Error (a, b) 
rule-3: ::3 s Stroke (s) & c-o(a, s) & c-o(b, s) I- Error (a, b) 

The rule-I deals with errors due to homophonic 
sinograms. The rule-2 explains that the confusion of a with 
b may come from a misunderstanding of the etymologies 
of some components of the sinograms a and b.The rule-3 
stresses the importance of the calligraphic order: two 
sinograms with the same calligraphic order can be 
confused. 

5 Explanation in term of Proofs 

In this section, we first present a formal description of 
EMICW by means of the FLL-theory T, then we will give 
an example of explanation. The FLL-theories use a 
fragment of linear logic (see also [Cerrito 1990], and 
[Masseron et a1. 19901 for some particular applications of 
this logic). We suppose the reader familiar with sequent 
calculus. In the next chapter, we will discuss the tractability 
ofEMICW. 

5.1 Formal Description of EMICW 

The FLL-theories are built from the linear fragment which 
consists of the connectives & (conjunction), the connective 
y (disjunction), and the linear negation denoted by ( )0. The 
essential feature of the fragment used is the absence of 
the contraction and weakening rules listed below: 

r, A, A 1- ~ (C-l) 

r, A 1- ~ 

r 1- ~ 
---=----'---=-- (W -I) 
r, A 1- ~ 

r 1- ~, A, A (C-r) 

r 1- ~, A 

r 1- ~ (W-r) 

r 1- ~, A 

The axiom and the rules of the fragment are the following 
ones: 

Axioms : A 1- A 

Cut r 1- ~, A A, r' 1- ~ , (C) 

r, r' 1- ~,~' 

Exchange rules: 

r, A, B 1- ~ (Ex-I) r I- ~, A, B (Ex-r) 

r,B,AI- ~ rl- ~,B,A 

Logical rules: 

r 1- A,~ (0_1) 

r,A°1- ~ 

r, A I-~ 

r 1- AO 

r, A I- ~ r', B 1- ~' 
(y-l) 

r, r', (A y B) 1- ~, ~' 

rl-A, B,~ 

r 1- (A Y B), ~ 
(y-r) 

e-r) 
~ 

r, A 1- ~ (&-11) _-=-r-2.,-=B,-,---I-~~"-----j(&_12) 
r,(A&B)1- ~ r,(A&B)I- ~ 

r I- A, ~ r 1- B, ~ (&-r) 

r I- (A&B), ~ 

r, A(t/x) I- ~ (V-I) r 1- A, ~ 

r, V x A 1- ~ r 1- V x A, ~ 
(V-r) 

r,A 1- ~ 

r,3x AI- ~ 
(3-1) r I- A(t/x) ,~ (3-r) 

rl- 3 x A, ~ 

In rules (\I -r) and (::3-1), x must not be free in rand L1 
A FLL-theory can be obtained from the above fragment 

by adding a finite set of proper axioms S, which. are 
sequents closed under substitution. In the cut rule gl.ven 
above, the formula A is the cut-formula. A proof In a 
FLL-theory is said to be cut-free, if all cut-formulas 
involved occur in some sequent of S. 

In our particular application, the set of proper axioms S 
which completely defines the FLL-theory T is made up of 
two subsets S 1 and S2. The subset of proper axioms S 1 
corresponds to the terminological component. They 

have the general form A I- B, where A and B are literals 
which interprete either concepts or roles. So, the 
terminological component of EMICW can be formally 
described by the FLL-theory Tl limited to the set of proper 
axioms Sl. The subset of proper axioms S2 is given by 
the rules of the assertional component. 

5.2 To Explain is To Prove 

EMICW combines the two following different reasoning 
methods: 
1. The classifier which performs inferences by means of 
the subsumption operation. 
2. A theorem prover which applies the cut-rule by only 
using the cut-formulas which appear in the rules of the set 
S2. 

An explanation of a graphic error consists in finding a 
finite conjunction of ground formulas Sigma == PI 

& ... & Pn such that a proof of the linear sequent Sigma I­
Error (a, b) can be carried out in the FLL-theory T. Let us 
show how we proceed generally. 
1. First 'case: the cut-formula doesn't contain the 
predicate Error. 



axiom of S2 

Sigma f-:3 x P(x) :3x P(x) f- Error (a, b) 
(Cut) 

Sigma f- Error (a, b) 

The proof of the sequent Sigma f-:3x P(x) consists in 
instantiating the existential quantifier. We define a 
component called instantiation component which 
performs the following operations: 
1. it defines a concept CP by using the properties given in 
the predicates P. 
2. it locates the concept CP at its optimal position with the 
help of the classifier, such that there exists a witness c 
which satisfies P in the taxonomy of EMICW. 

We obtain the new sequent to be proved, Sigma f- P(c). 
We "force" the proof of this sequent by setting Sigma = 
P(c) & P2 ... &Pn. The proof of the sequent P(c) & P2 

... &Pn f- P(c) is now straightforward by means of the 
(&-11) rule. 
2. Second case: the cut-formula contains the predicate 
Error. We are left with the following tree: 

Sigma f-:3x y P(x,y) & Error (x, y) 

Sigma f- Error (a, b) 

In the same way as indicated above, we use the instantiation 
component to point out two witnesses c and d which 
satisfy P. We obtain the following sequent to be proved: 

Sigma f- P(c,d) & Error (c,d). We apply the (&-r) rule and 
we obtain the new tree: 

Sigma f- P(c,d) Sigma f- Error (c,d) 
----------------------------------------- --------- (& -r) 

Sigma f- P(c,d) & Error (c,d). 

We set Sigma = P(c,d) & P2 ... & Pn, so, we are now left 

with the proof of the sequent: P(c,d) & P2 ... & Pn f­
Error(c,d). We progressively makes appear all the 
formulas of Sigma by iterating the same process. 

The sequent Sigma f- Error (a,b) may have several 
proofs. In this case, the system can give multiple 
explanations to the students. The best explanation must 
allow the students to better memorize the sinogram a. We 
think that a good criterion for the choice of the best 
explanation can be : 
1. The presence of the predicate Etymo in the explanation 
with the meanings of the components 
2. The shorter proof (a proof which applies the smaller 
number of rules ). 

5.3 An Exalnple of Explanation 

Let us explain the confusion of the sinogram ~ tian1 
(sky) with the sinogram:t. fu4 (adult) by means of 
proofs. Etymologists givt the following explainations: the 
sinogram sky comes from a person standing with arms 
spread out to look as tall as possible *- with a big head 
(or a hat) symbolised by the stroke ..... The sinogram adult 
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comes from tall '* with an ornamental hairpin through 
his hair (a sign of adulthood in ancient China) symbolised 
by the stroke _ . So, we propose the following taxonomy: 
1. The concepts G-F90 and G-M90 give the graphic 
feature of the sinogram ;(: da4 (tall), and its etymology 
G-F90 = { (c-o, ( hr dg dd», (o-t-d, ( dg hr dd», (o-b-u, 
(dg dd hr », (o-I-r, (hr dg dd», (o-r-l, (hr dd dg»}. 
G-M90 = {(IS-A, G-F90), (etymo, tall)}. 
2. The concept G-FOI corresponds to the graphic feature of 
the sinogram yi 1, 
G-FOI = {(c-o, ( hr », (o-t-d, ( hr », (o-b-u, ( hr », 
(o-l-r, (hr », (o-r-l, (hr »}. As the sinogram - yil has 
(at least) two different origins, hat and hairpin, we define 
two concepts of type G~M: 
G-MOlO = {(IS-A, G-FOl), (etymo, hat)} 
G-MOll = {( IS-A, G-FOl), (etymo, hairpin)} 
3. The concept G-M 100 defined as {(IS-A, G-FlOO), 
(etymo, sky)} (see the example-l of section 4.1) can be 
located now as: 
G-MlOO = {(IS-A, G-M90), (IS-A, G-MOlO)} . 
The sinogram ~ tian 1 represented by the individual 
concept alOO= {(IS-A, G-M 100), (IS-A, G-S 100), 
(sound, tianl), (etymo, adult)} inherits the properties 
(etymo, tall) and (etymo, hat) from the concepts G-M90 
and G-MOIO. 
In the same way, the sinogram:t . adult is represented by 
the individual concept b100~ l: (IS-A, G-MllO), (IS-A, 
G-S 110), (sound, fu4), (etymo, adult)}, and inherits the 
properties (etymo, tall), (etymo, hairpin) from the concepts 
G-M90 and G-MOIl. 

In order to prove the sequent Sigma f- Error (aIOO, 
bIOO), we propose to apply the cut-rule (C) with the cut­
formula appearing in the rule-2: 

:3 u z ml m2 G-M(u)& G-M(v) & Meaning (ml) & 
Meaning (m2) & ml ;j:. m2 & u ;j:. a & z;j:. b & Etymo(u, ml) 
&Etymo(z, m2) & Etymo (a, ml) & Etymo (b, m2) & 

Error( u, z) f- Error (a, b). We are left with the following 
sequent to be proved : 

Sigma f-:3 u z ml m2 G-M(u) & G-M(v) & Meaning (m1) 
& Meaning (m2) & ml ;j:. m2 & u ;j:. a100 & z;j:. blOO & 
Etymo(u, ml) & Etymo(z, m2) & Etymo (aIOO, ml) & 
Etymo (b100, m2) & Error( u, z). 
The instantiation component instantiates the variable ml to 
hat, and the variable m2 to hairpin (it has only this 
possibility), and defines the two individual concepts uC 
and vC whose etymologies correspond to these meanings: 
uC ={ (IS-A, G-MOIO), (etymo, hat)}, and vC= {(IS-A, 
G-M011) , (etymo, hairpin)}. 
Then, Sigma contains the following main ground formulas: 
Etymo(uC, hat) & Etymo(vC, hairpin) which shows that 

the reason of the confusion of a 100 with b 100 comes from 
a misunderstanding of the origins of the component - yi I 
which appears in these two sinograms. 
We invite the reader to try to apply the rule-3 in place of the 
rule-2. He will find that the confusion of a 100 with blOO 
may come from the fact that these two sinograms have the 
same calligraphic order. 

6 Computational COlnplexity 

In this chapter, we prove that EMICW is tractable. The 
main problem comes from subsumption. The subsumption 
opeartion has been particularly analysed in [Levesque and 
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Brachman 1987] and in [Schmidt-Schaub 1989]. Their 
approach are mainly based on semantics. In [Castaing 
1991], we have characterized a subsumption criterion by 
means of proofs in FLL-theories as Tl (see section 5.1). 
We briefly explain how we have proceeded. 

6.1 Tractability of Subsumption 

Let A and B be two concepts. We interpret A and B by 
means of first-order formulas, as in Brachman-Levesque's 
interpretation, then, we replace all classical connectives 
with linear ones. Let Ac = 3xAl(x) & ... An(x), and Bc = 
'yI zB 1 (z)& ... Bm(z), (where z and x can be vectors of 

variables, and Ai(x) = Ai 1 (x) y .. :y Aip(x), Bj(z) = Bj 1 (z) 

y ... y Bjq(z» be the conjunctive normal forms obtained. A 
subsumes B iff there exists a cut-free proof in Tl of the 

sequent Bc I- Ac. In the absence of contraction and 
weakening, we proved the following result : 

Theorem (subsumption criterion): A subsumes B iff Ac 
and Bc satisfy the following condition (C): there exists 
a, a substitution for x such that for each Ai, 1 ~ i ~n, there 
exists some Bj, l~ j ~m, and b, a substitution for z, such 

that there exists a cut-free proof of the sequent Bj.b I- Ai.a 
in the FLL-theory Tl. 

A matching algorithm can be easily derived from the 
condition C. It computes subsumption in polynomial time 
proportional to the length of the concepts, and to the 
cardinality of the set of proper axioms S 1. 

Without contraction and weakening, FLL-theories are 
decidable. There exists other decidable first-order theories 
which are based on classical logic [Ketonen and Weyhrauch 
1984], or [Patel-Schneider 1985, 1988]. The originality of 
our approach comes from the way we deal with the 
universal quantifiers (or with the existential ones). Let us 
show how we can explain the rise in complexity of 
subsumption by means of contraction. We consider the 
following cases: 

1. Bc and Ac satisfy condition (C) (the contraction 

rule is absent): the sequent Bc I- Ac is provable in 
polynomial times, then the complexity of subsumption is 
polynomial. 
2. Bc and Ac do not satisfy condition (C): let us suppose 

that the sequent Bc I- Ac is provable (for example, by 
means of an approach based on semantics), and the proof 

of the sequent Bc 1- A c necessitates the use of the 
contraction rule, (and possibly of the weakening rule): the 
search procedure for a proof can make sequents of the form 

'yIz B(z,a) I-~, (or of the form r I- :3 x A(x, a» appear at 
the nodes of the search-tree. Let us consider the case, 

where the sequent 'yIzB(z,a) I- ~ appears at a node of the 
search-tree: the search procedure can go back-up the tree by 
applying the universal and contraction rules. We can be left 
with the following tree: 

B (b I z, a), 'yIz B(z,a) 1- ~ 
---'----'--------,(~ -1) 
~ z B(z,a), 'yI z B(z,a) I- ~ (C-l) 

~zB(z,a) I- ~ 

The use of contraction may open a branch which 
terminates with a failure. Some back-tracking is then 
necessary. The complexity of the subsumption in this case 
is NP-hard. 

3. Bc I- Ac is not provable, then the use of the contraction 
rule may lead to duplicate infinitely the same formulas in 
the case where the set of instantiation terms (such as b) is 
infinite (for example in presence of functions) 

B (b/z,a), ~ zB (z,a), 'yI zB(z,a)l-~ 
(C-I) 

B(blz, a),'yIzB(z,a)l-~ 
---.:..~-,-,-----,-----,----,------,(~ -1) 

'yIz B(z,a),'yIz B(z,a) I- ~ 
--"-':'-~----':"""":--'------(C-l) 

'yIzB(z,a) I- ~ 

The subsumption turns to be undecidable. 

6.2 Tractabilty of EMICW 

The terminological component of EMICW has a restricted 
syntax. The condition (C) defined above gives an adequate 
subsumption criterion. In order to locate a concept at its 
optimal location, the classifier performs the subsumption 
operations in number limited by the diameter of the 
semantic network. Its computational complexity is then 
limited. The theorem prover applies the cut-rule, with cut­
formulas in some sequents of S2 (see section 5.2). 
Without contraction, the existential formulas which appear 
are never duplicated, and so, are only instantiated by 
means of the classifier. The cardinality of S2 is finite. 
Then, the proof of the sequent Sigma I- Error (a,b) can 
also be carried out in limited time depending on the 
cardinaly of the set of proper axioms S= S 1 + S2. The 
tractability of our system is then ensured. 

Conclusion 

A prototype of our EMICW system is implemented in 
LISP. For the time being, if the student writes down a 
graphic which is not recognised as a sinogram, the system 
has no particular strategy for discovering a "good" 
witness of the error. We are now investigating a strategy 
of choice of witnesses, which can take the context of the 
dictation, (the sinograms that the student have already 
drawn during the dictation) into account. Providing 
adequate rules, EMICW can also help students to learn 
japanese characters (kanjis) with the chinese or the 
japanese reading, or to learn classical vietnamese 
characters (nom). 
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Abstract 
We have proposed and developed an expert system tool 

ASPROGEN(Automatic §..earch ~m Generator) having a 
built-in the automatic generation function of a domain specific 
inference program. This function was based on search-based 
program specification and an abstract data type of search. 
ASPROGEN has interfaces for domain knowledge using an 
object-oriented approach and constraints which represent 
control knowledge. It is described by using domain knowledge 
and it can cover a detailed problem solving strategy 

We applied ASPROGEN to produce three kinds of 
scheduling systems. These generated systems have equivalent 
performance in comparison with knowledge processing 
systems implemented by the conventional tool. Further, a two­
thirds reduction of the program step numbers required as 
programmers' input was realized. 

1. Introduction 
Current expert system tools based on production rule 

and/or frame representation provide an environment to generate 
expert systems through formalizing and describing problems 
by production rules. They are powerful tools, and many 
practical expert systems have been produced by using them. 
Industrial field applications of expert system tools have 
sometimes met problems, the most important one being that 
tools based on the production system only prepare a rule based 
language, not a problem solving strategy. So, mapping the 
problem solving strategy to the production rules is difficult for 
users who are not knowledge engineers. 

Domain shells[ll, tools based on generic task method[2], 
half weak method[31, and SOAR[4] have been developed to 
overcome this difficulty. Domain shells are expert system tools 
which are restricted to the specified problem regions such as 
diagnosis, scheduling, and design. They have spread sheet 
type user interfaces and problem-specific inference programs. 
But, actual industrial problems include particular conditions, 
constraints, or problem solving knowledge, and domain shells 
do not have enough flexibilities to cover all of them. This leads 
to a conflict between tool flexibility and easy use. In general, 
the tool becomes more specific to some regions, so it becomes 
easy to use it, but loses flexibility. 

The generic task method and half weak method also 
have this conflict. The generic task method classifies problem 
solving methods into several types which are called generic 
tasks, and prepares generic task tools to provide them. Tool 
users select an appropriate generic task and supply domain 
knowledge to develop the knowledge processing system. The 
half weak method regards problem solving as a search and 
provides pre-defmed search modules. Tool users select an 
appropriate search module and add domain knowledge to the 
module. However, these methods, based on classification, do 
not necessarily give directions for systematic preparation of 
building blocks of knowledge processing systems. So, tool 
users must reformulate the problem definition according to the 
prepared building blocks. 

SOAR has more flexibility for defining the problem 
solving strategy. It can generate a search program by defming 
several search control rules. But, lack of functions to relate the 
search program and domain knowledge restricts the 
applicability of SOAR to toy problems. 

Then, we developed ASPROGEN(~utomatic §..earch 
!X.Qgram Generator). ASPROGEN is an expert system tool 
having a built-in automatic generation function of a domain 
specific inference program was built. To specify the problem to 
be solved, it has interfaces for describing the problem solving 
strategy as a search strategy, domain knowledge in an object­
oriented way, and the detailed problem solving strategy as 
constraints among the attribute values of the domain objects. 

2. Overview of ASPROGEN 
2.1 Building expert systems based on search 

ASPROGEN has no embedded inference mechanism. 
Instead, as shown in Fig. 1 , its parts include the search 
program and search program generating mechanism which 
produces inference programs according to user specifications 
of the search program, domain knowledge, and detailed 
constraints. 

The reason Why we use search as the inference 
program specification is that it covers almost every inference 
mechanism required for expert systems, and it is simple. But, a 
search is not easy to describe nor is it easy to prepare controls 
tightly directed to a particular problem by the search strategy. 



To describe detailed control strategies, ASPROGEN includes 
an interface for domain knowledge. Using the domain 
knowledge, the detailed controls or problem solving strategy 
can be described as constraints between attribute values of 
domain knowledge. The detailed control programs are 
complicated in the case of a scheduling system or CAD 
systems, and it is important to support their generation. In 
general, domain specific inference programs which have 
functional operators have complicated constraints. 
ASPROGEN combines these constraints to global search 
strategies, and generates domain specific inference programs. 
ASPROGEN users develop expert systems by following this 

procedure: 

Expert 

& constraints 

Genera! Search 
Program 

L_-~~~~~r;;;=~ Domain knowledg Q Constraints 

Knowledge processing module 

Fig. 1 Overview of ASPROGEN 

(1)Users specify a problem solving strategy from the 
viewpoint of a search strategy. 

(2)Users input the search strategy by selecting the classification 
items of the search classification tree which the tool 
prepares. This step is executed with the help of the tool 
interface. 

(3)Users input domain knowledge and constraints with the 
help of the tool interface. 

(4)ASPROGEN generates a domain specific inference program 
and data structures for domain knowledge. 

Although (1) is an interesting problem, we limit the 
present discussion to (2)-(4). 

2.2 Specification of problem solving strategy 
To specify the problem solving strategy as a search, we 

define a classification tree for the search strategy and a template 
of the search program. 

Figure 2 shows the classification tree. It comes from 
analyzing search trees used in various kinds of problem 
solving. A search tree consists of nodes and operators. We 
retrieve the classification items from the characteristics of the 
nodes and operators. The first classification item comes from 
the characteristics of the operators. There are two operator 
types. One is a functional operator which creates new nodes 
from parent nodes and adds them to the search tree. In the 
scheduling search program, a functional operator is used. The 
other type is a link operator. The link operator is used in the 
diagnosis search program which selects, suitable diagnosis 
nodes for the observed state. 

The second classification item comes from the 
characteristics of the nodes. They are evaluation functions to 
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select nodes in the search procedures, pruning functions, 
establishment conditions, and so on. The evaluation functions 
define a global search strategy, for example one which prefers 
the deepest nodes of the search tree corresponds to the depth 
first search. The characteristics of the search nodes are 
described by specification values of the nodes in the search tree 
which are depth, breadth, parent relations, sibling relations, 
and node attributes values. Their values are retrieved from the 
structure of the search tree, and we can prepare these 
specification values or functions to calculate them. On the other 
hand, node attribute values cannot be retrieved from the 
structure of the search tree, and it is difficult to cover all 
attribute values of the nodes to specify the problem solving 
strategy. 

Global search information 
Unknown Known 

I 
Knowledge-base retrieval 

I 
Heuristic search 

Link Operator type function 

Goal type. . st I d 
given as conditions . 

given as In anlce no e 

I Solution type Optimal 
Satisfactory I 

I . . Initial node type . . 
given as conditions given as Instance node 

I Node evaluation function type I 
fixed 

not fixed 

I Node evaluation function paramete~ I I d 
domain knowe ge 

search tree parameter I 
I pruning ~ 

Not prune II une 

I Prunig function parameter I 
search 1ree parameter 

Fig. 2 Search classification tree 

To mitigate this difficulty, we rank the attribute values 
from the viewpoint of their relation to the search tree operators. 
The attributes which search for the operator directly are called 
first-order attributes. For example, in the scheduling system 
starting time and ending time of each job are first order, and the 
resource constraints are not, if search operators are functions 
which adjust job scheduling. To describe programs in detail, 
not only first-order attributes but also multi-order attributes or 
variables are required. The ftrst-order attributes and the multi­
order attributes are domain knowledge. We do not embed 
detailed domain knowledge in ASPROGEN, instead an 
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interface is prepared to describe the domain knowledge and 
constraints of attributes of domain knowledge and global 
search strategy. By combining the global search strategy, 
described as a search strategy, and domain knowledge, 
ASPROGEN covers not only toy problems, but also 
applications for industrial uses. 

2.3 Representation of domain knowledge and 
constraints 
ASPROGEN has an interface for describing the domain 

knowledge. Domain knowledge is described by objects and 
attributes, attribute value ranges, and attribute constraints. 
There are two types of objects. One is a class objects which 
defmes attributes, and relations between other objects. The 
other type is an instance object which has instantiated attribute 
values. 

Figure 3 shows a representation scheme of domain 
knowledge for ASPROGEN. Nodes of the search tree are also 
objects. Node objects are related to other objects. The relations 
among objects are of three types. 

(1) Class-instance relations: Instance objects have the same 
attributes as class objects, and the values of the attributes are 
inherited from the class objects. 
(2) Attribute-value relations: The value region of the attributes 
can be described by he class objects. Thus, the attribute value 
region is a set of instance objects of the class objects. 
(3) Attribute-object relations: The attributes of the objects can 
be described by the class objects. Thus, the attributes of the 
nodes are instance objects of the class objects, and attribute 
values are those of the instance objects. 

C) Instance node of search tree 

~ Attribute-object relation 

...... Attribute-value relation 

--- Class-instance relation 

Fig.3 Scheme of knowledge reprsentation in ASPROGEN 

On the basis of these definitions of domain knowledge, 
ASPROGEN users describe constraints. ASPROGEN 
prepares a simplified language which can describe constraints 
by using object names and attributes. 

2.4 Generation of problem-directed inference 
program 

The inference program generated by ASPROGEN 
consists of two parts, the search program which corresponds 

to the global problem solving strategy, and constraint 
satisfaction programs which correspond to the domain 
knowledge. Figure 4 shows an outline of the inference 
program. The control program is embedded into ASPROGEN, 
and the global search program and constraint satisfaction 
programs are generated according to user input. If the inference 
program is completed, it behaves as follows. Using the global 
search strategy, the inference program activates an operator and 
generates or selects new node. Then, the constraint satisfaction 
programs activate and adjust the attribute values of the objects 
for every constraint. According to the result of the constraint 
satisfactions, the operator is activated again. This process 
continues until termination conditions are satisfied. The 
generating process of the inferen~e program consists of three 
steps. 
(1) Generate the search program which represents a 

global search strategy 
ASPROGEN has a general search program which is 

independent of domain and includes six search sub-functions 
as shown in Fig. 5. When completed, it becomes the global 
search program of Fig. 4. Constraint satisfaction programs are 
activated in the sub-function of 'Apply operator'. The 
difference between each search strategy is reflected in the 
difference of the six element functions. 

ASPROGEN prepares two reference tables and abstract 
data types for search[S],[6J• Parent function parent(c,k) which 
returns the parent of the node k of search tree c, and 
Left_most_child(c,k) which returns a child node which was 
first generated or selected are examples of abstract data types 
for search. Here, an abstract data type of search makes up the 
functions for the search program. The first reference table is a 
table intended for generation of search element functions. 

CSP: Constraint satisfaction progam 

Fig. 4 Outline of the inference progam Fig.5 General search progam 

Search element functions are program parts of sub-functions 
and Fig.6 shows some. They consist of the abstract data type 
of search and domain-dependent search functions. Examples 
functions are node evaluation function for domain dependent 
corresponding search element functions to the userspecified 
problem solving strategy. 

Figure 7 shows the generating process of the problem­
directed inference program. Referring· to the problem solving 
strategies using the reference table, the system decides the 
search element function. This is done by domain dependent 
search control functions such as evaluation function for node. 



Then, the same as in the definition process, sub-functions are 
dermed by abstract data jy~s of the search tree. 
Functions concerning search tree configuration 

(1) parent(c,k) :returns parent of c in search tree k. 
(2) Leftmose_child(c,k) :returns eldest son of c in search tree k. 
(3) Right_sibling(c,k) :returns next younger brother in search tree k. 
(4) Label(c,k) :returns label of c in search tree k. 
(5) Root(k) :returns root node of k. 
(6) Clear(k) :makes search tree k null set. 
(7) Deep(c,k) :returns depth of c in search tree k. 
(8) Height(c,k) :returns height of c in search tree k. 
(9) Leaf(c,k) :if c has no children returns yes; 

otherwise, return no. 

Functions concerning search tree operation§.(search element functions) 

(10) Evaluate(c,k) :evaluate c, and returns evaluation value. 
(11) Chllnge_e(n_t,S,k) :change evaluatioD function of node type n_t to S. 
(12) Search state(c,k) :if c is an open node returns Current; 

if c is a removed node returns Finished; 
otherwise returns Yet. 

(13) Jumping(c,k) :returns the node, when c is established. 
(14) Back_tracking(c,k) :returns the node, when c is not established. 
(15) Initial(c,k) :if node c is initialized state returns yes, 

(16) Kill(c,k) 
(17) Active_c(k) 
(18) Goal(c,k) 
(19) 

I Cond_Dode(n_t,c,k) 

(20) Cond_node_type( 
D_t,c_t,c,k) 

(21) Establish(c,k) 

otherwise returns no. 
:removes node c from the active node. 
:returns active node of search treeof k. 
:if c is a goal node returns yes. 
:if node c satisfies establish condition of node 
type 
of n_t, returns yes, 
otherwise returns no. 
:if node c satisfies establish conditions of node 
type of D_t, returns yes, othewise returns DO. 
:if c is established returns yes, 
otherwise returns no. 

Fig. 6 Search element functions 

Templale oJ generaJ 
search ro ram 

Global searell 
informalion 
unknown 

nequiHKI goat 
number:S 

Jound goal 
number 

Problem solving Program paris 
slralegy 

Optimal 
solulion 

Number oJ 
active nodes 
-0 

y 
I Sel search Iree I 

-t 
I Generated CheCKing~ \. 

function if terminated y 

successJully or nol J 
you~n~ goal number 

iN 

(
~eneraled checking y 
function if terminated -~ 
unsuccessJully or nol ~ 

IN /1" 

Search elemenl Junclion _l,,- -~"-:::;:--'--"=-I 
~--------~II-~ 

Problem-solving slralegy 

1.-----' 

'O""'"I'~"" I 

Generated inference 
program 

Fig. 7 Generating function of program-directed 
. inference program 

Figure 8 shows an example of the element function 
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generating process, which exemplifies the node evaluation 
function. According to the user-input problem solving strategy 
that the depth of the tree has a high evaluation value, the tool 
selects the depth function from abstract data types and 
completes the node evaluation function. 

Reference table 

classification selected 
item . value 

statement 

solution type satisfactory 

----------~------~ 
Evaluate(c, k) 

{ 

return ( 

user_define_func + 
I depth (c, k)1 

Fig. 8 Generation Example for search element functions 

Figure 9 shows an example of a sub function 
generating process, which exemplifies function (a) in Fig.S 
which is named SUCCES_END(c,k.) here. Since the optimal 
solution is requested in the problem-solving strategy, the tool 
generates the checking successful termination function which 
terminates the inference program only if an optimal solution is 
found. 

Reference table 

classificatiori selected statement 
item value 

solution type ~atisfactory -

ctive c (c, k) = {} && -'--

number of I::)GOAL:'NUM:;~:: GOAL NUM 

~ ____ ~~g~o~a~l~~£fJ[12jj1fJ1£i~==~:=~ ___________ ~----
~ 

SUCCES_END(c,k) 
( 

if~ctive_c(c,k) __ () && ~ __________________ ~ 

GOAL_c (c, k) >=/30AL_NUM) l~ _______ -, 

return (TRUE) ; 
else return(FALSE);) 

Fig.9 Generation Example for search sub-functions 

(2) Generate the constraint satisfaction programs, 
according to the user specifications in simplified 
language 

The object names and attribute names of the objects 
which the tool users input are registered in the ASPROGEN as 
key words for simplified language constraints description. We 
call the language, SCRL (Simple Constraint Representation 
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tenninal symbols. The SCRL compiler accepts only the 
following style sentence. 

[value clause] [comparing key words] [ value clause] 
A value clause consists of object name, attribute name 

and object relation key words. 
Table 1 lists key words and their meaning in SCRL. 

There are set operation key words, comparison key words, and 
object relation key words such as 'of'. Figure 10 shows an 
example of a constraint described by SCRL in which the 
number of persons required for each time span is less than the 
available personnel number. 

Constraint name: personnel 

sum«time_span of job), person) 
> 

time_span of avairable_person 

Fig. 10 Example of constraint 

Table 1 Example of key words of the SCRP 

Set operation keywords 

· A include B: A:2 B 
· A have e: e E B 
· SUM(A,B): sum up attribute value of B 

of all instance object of A 

Comparing keywords 
·x>y 

·x=y 
object relation key words 

. A of y: value of attribute y of object A. 

Constraint name: personnel 

sum«tima_span of job), person) 
> 

time_span of avairable-person 

Usar input 
domain 
knowladga Stap 3 

!SCRl Compiler 

Step. 1 

CSP 

Code C { 
for(t=O;t<TIME_SPAN_NUM;t++){ 

10r(i = 0; I<JOB_NUM; i++) 
sum=tima_span[tj->jobOl·person; 

iI(sum 
>= 

tima_span[tj.available-person) 
return(O) ;) 
raturn(1);) 

Coda C 

'-----4 ~!~~ng 
1----+1 Attributa function 

value sat (built in) 

Fig.11 Generating process of constraint satisfaction program 

ASPROGEN generates constraint satisfaction programs 
from the kernel of the constraint satisfaction programs. This 
kernel of the constraint satisfaction programs comes from the 
relation of attributes and their value range. The allotting 
mechanism of the\attribute values is built to ASPROGEN. The 
mechanism selects values from the value range. If constraints 
are not satisfied, other values are selected. ASPROGEN 
generates each constraint satisfaction program by setting the 

object attribute values and their range. 
Figure 11 shows an example of the constraint 

satisfaction program generating process. The constraint is like 
in Fig. 10, a personnel constraint. First, the sentence is pursed 
into the C language by the SCRL compiler (code C in Fig. 11). 
And attribute value range and code C are set to the allotting 
function which ASPROGEN prepares, and the constraint 
satisfaction program is completed. 

(3) Synthesize all constraint satisfaction programs 
and the search program 

Finally, ASPROGEN synthesizes all the constraint 
satisfaction programs and the search programs, and generates 
the domain specific inference program. The key point of the 
synthesis is to ensure consistency of the attribute values of the 
objects which the tool users define. To make the argument 
clear, we define the identity of the search node and scope of 
the attribute values. 
Identitv of the search node 

The identity of the node is defined by equality of the 
value set of the first-order attributes (cf. Section 2.2). Search 
tree operators operate them directly. So, it is possible that the 
inference programs generate different results, though the 
problem solving strategies are the same. 
Scope of the attribute values 

We define scope of the attribute values in the search tree 
node. The attribute value of the objects should have a 
consistency in the tree node, and the change of the attribute 
values in the process of the constraint satisfaction must 
propagate to other constraints. 

Set first-order atribute values 

Pick constraints which restricts 
first-order attribute values 

according to 

Fig. 12 Simplified procedure for constraint satisfaction 



Constraints 
C 1. x+y +f1 > 30 
C2. y+z +f2 < 15 
C3. x+z <10 
Region of values 

x E \5,10,15.20\ 
Y E {4.8\ 
Z E {3.6\ 

x,y,z: multi-order attributes 
f1 ,f2: first-order attributes 

R(s): suitable value set for s. 

r By search operator 
F1=10 
F2= 7 

J.. 
Initial set 
R(x)={5,1 0, 15,20} 
R(y)={4,8} 
R(Z)={3,6} 

1 
By C1 

R(x)={1 0, 15,20} 
R(y)={4,8,16} 
R(Z)={3,6} 

..1 
By C2 
R(x)={10,15,20} 
R(y)={4} 
R(Z)={3} 

1 
By C3 

R(x)=<I> 
R(y)={4} 
R(Z)={3} 

Fig. 13 Example of filterinq process 

Figure 12 shows a simplified mechanism to assure 
consistencies of the attribute values. At first, using the search 
tree operator, first-order attribute values are instantiated. In the 
next step, attributes which are constrained by the first-order 
attributes are instantiated by the allotting mechanism of the 
attributes. This process continues to survey all constraints. If 
the set of attribute values is found, then the first-order attribute 
set is suitable, and if not so, the node is unsuitable. But, this 
simple algorithm has a fatal defect, i.e. ineffectiveness of the 
allotting process. If global consistency among the constraints 
does not exist, the algorithm searches for every combination of 
the attributes until no solution is found. 

To avoid this ineffectiveness ASPROGEN deals with 
attributes as a set. In the first stage, using the search tree 
operator, first-order attribute values are instantiated. Then the 
available value set of multi-order attributes are filtered by the 
constraints. Figure 13 shows a simple example of the filtering 
process. At first the region of the attributes value set is a 
candidate for solution. Filtering by the constraints, inconsistent 
values are retrieved from the candidate set. The process 
continues until no retrieval value exists/or no suitable value 
exists for some attributes. 
4. Example and Result 

Using ASPROGEN, we built three kinds of scheduling 
systems. They were a maintenance scheduling system 
(Problem A), construction scheduling system (Problem B), 
and jobshop scheduling system (Problem C). 

Problem A is a scheduling system for maintenance 
scheduling of a nuclear power plant[7]. The generated program 
produces a schedule under constmints of maintenance 
personnel limitations and interferences between tasks. Problem 
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B is a plant construction scheduling program. The generated 
program produces a schedule under previous relations between 
tasks and personnel limitations. Problem C is a jobshop 
scheduling system. The generated program produces a 
schedule under constraints of resource limitations and 
appointed date of delivery. 

TabJe 2 Test problems 

Problem 
Characteristics Evaluation Variety of 

Constraints 
of solution function resources 

Maintenance . task 
scheduling 

optimal 2 
interference 

Construction 
satisfactory working 

I 
scheduling time . task 

execution 

Jobshop 
satisfactory 

order 

sche 
3 

The problems are shown in Table 2. Table 3 summaries the 
problem solving strategy for each scheduling problem. These 
problems differ regarding solution type and resource numbers. 

Figure 14 shows the domain model of each problem. 
They are the basis of ASPROGEN input. The framework of 
these problems is the same. This means that global search 
strategies are the same. First-order attribute values are the 
starting and ending times of each jobs. Preference of the node 
is total scheduling time. There are interference constraints that 
some jobs cannot be executed simultaneously. Domain 
knowledge differs. For example, problem A and problem B 
have personnel limitations, and problem C has machine 
constraints. 

Table 3 Specification of the test problem-- task specific knowledge 

Definition of problem solving method 

Items 
maintenance construction jobshop 
scheduling scheduling scheduling 

Number of goal 1 all 1 

Initial number I 1 1 

Global search 
information 

none none none 

'lYpe of operator function of adjusting schedule 

'lYpe of initial state state of representing work schedule 

'lYpc of goal state conditions that satisfies all constraints 

Solution type optimal satisfactory satisfactory 

Establish conditions 
about tree configuration 

none none none 

Evaluation function fixed fixed fixed 

Figure 15 shows program step numbers which 
programmers input. Comparing the inference programs 
implemented by using a conventional tool [8) , equivalent 
perlonnance is realized with two-thirds reduction in number of 
program steps required as programmer input. Of course, the 
reduction rate depends on the applications, for example, 
a diagnosis system has more domain knowledge, and the 
reduction rate may be smaller than for a scheduling system. 
But, overall some reduction of programmers load will result by 
the tool. 
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(1) Problem A 

(3) Problem C 
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Fig.14 Domain model of the problems 

o :ASPROGEN 
o : Conventional tool based on 

production system 

jlnference program 

Problem solving strategy 

Task implementation 

Problem Problem Problem 
ABC 

knowledge 

Problem A : Ma intenance scheduling 
Problem B : Construction scheduling 
Problem C : Jobshop scheduling 

Fig:15' -Program step numbers which programmers input 

5. Conclusions 
We have proposed and developed an expert system tool 

ASPROGEN(Automatic §..earch ~ Generator) in 
which the automatic generation function of a domain specific 
inference program was built in. This function was based on 
search-based program specification and an abstract data type of 
search. ASPROGEN has interfaces for domain knowledge 
using an object-oriented approach and constraints which 
represent control knowledge. It is described by using domain 

knowledge and it can cover a detailed problem solving strategy 
We applied ASPROGEN to produce three kinds of 

scheduling systems. These generated systems have equivalent 
performance in comparison with knowledge processing 
systems implemented by the conventional tool, and two-thirds 
reduction of the program step numbers required as programmer 
input was realized by ASPROGEN. \ 

We have applied ASPROGEN only to scheduling 
systems, we are now going to check its applicability to CAD 
systems and diagnosis systems. 
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Abstract 

Automated testing oflarge embedded systems is perhaps 
one of the most expensive and time-consuming parts of 
the software life cycle. It requires very complex and het­
erogeneous knowledge and reasoning capabilities. The 
Knowledge-based Interactive Test Script System (KITSS) 
automates functional testing in the domain of telephone 
switching software. KITSS uses some novel approaches 
to achieving several desirable goals. Telephone feature 
tests are specified in English. To support this KITSS has 
a statistical parser that is trained in the domain's tech­
nical dialect. KITSS converts these tests into a formal 
representation that is audited for coverage and sanity. 
To accomplish this, KITSS uses a customized theorem 
prover-based inference mechanism and a hybrid knowl­
edge base as the domain model that uses both a static 
terminological logic and a dynamic temporal logic. Fi­
nally, the corrected test is translated into an in-house 
automated test language that exercises the switch and 
its embedded software. This paper describes and moti­
vates the approach taken and also provides an overview 
of the KITSS system. 

1 Functional Testing Problem 

There is an increasing amount of difficulty, effort, and 
cost that is needed to test large software development 
projects. It is generally accepted that the development 
of large-scale software with zero defects is not possible. 
A corollary to this is that accurate testing that uncov­
ers all defects is also not possible [Myers, 1979]. This 
is because of the many inherent problems in the devel­
opment of large projects [Brooks, 1987]. As just a few 
examples, a large project provides support for many in­
teracting features, which makes requirements and spec­
ifications complex. Also, many people are involved in 
the project, which makes it difficult to ensure that each 
person has a common understanding of the meaning and 
functioning of features. Finally, the project takes a long 
time to complete, which makes it even harder to maintain 
a common understanding because the features change 

through time as people interact and come to undocu­
mented agreements about the real meaning of features. 

The consequence of these problems is that programs 
that do not function as expected are produced and there­
fore extensive and costly testing is required. Once soft­
ware is developed, even more testing is needed to main­
tain it as a product. The major cost of maintenance is in 
re- testing and re-deployment and not the coding effort. 
Estimates, as in [Myers, 1976] and [McCartney, 1991], 
are that at least 50%, and up to as much as 80%, of the 
cost in the life cycle of a system is spent on maintenance. 

We believe that the only practical way to drastically 
reduce the maintenance cost is to find and eliminate soft­
ware problems early and within the development process. 
Therefore, we designed an automated testing system that 
is well integrated into the current development process 
[Nonnenmann & Eddy, 1991]. The focus of our system is 
on "functional testing" [Howden, 1985]. It corresponds 
directly to uncovering discrepancies in the program's be­
havior as viewed from the outside world. In functional 
testing the internal design and structure of the program 
are ignored. This type of testing has been called black box 
testing because, like a black box in hardware, one is only 
interested in the input and how it relates to the output. 
The resulting tests are then executed in a simulated cus­
tomer environment. This corresponds to verifying that 
the system fulfills its intended purpose. 

KITSS achieves a good integration into the current 
development process by using the same expressive and 
unobtrusive input medium (English functional tests) as 
is used currently as well as generating tests in the existing 
automated test language as output. Additionally, KITSS 
checks the tests for consistency with its built-in extensive 
knowledge base of "telephony". 

Therefore, KITSS helps the test process by generating 
more tests of better quality and by allowing more fre­
quent regression testing through automation. Further­
more, tests are generated earlier, i.e., during the devel­
opment phase not after, which should lead to detecting 
problems earlier. The result is higher quality software at 
a lower cost. 

In this section, we motivated the need for the approach 
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chosen in KITSS. In the next section, we will describe 
KITSS in more detail. 

2 KITSS Overview 

The Knowledge-based Interactive Test Script System 
(KITSS) was developed at AT&T Bell Laboratories to re­
duce the increasing difficulty and cost involved in testing 
the software of DEFINITY@PBX switches1

. Although 
our system is highly domain dependent in its knowledge 
base and inference mechanisms, the approach taken is a 
general one and should be applicable to any functional 
software testing task. 

DEFINITY supports hundreds of complex features 
such as call forwarding, messaging services, and call rout­
ing. Additionally, it supports telephone lines, telephone 
trunks, a variety of telephone sets, and even data lines. 
At AT&T Bell Laboratories, PBX projects have many 
frequent and overlapping releases over their multi-year 
life cycle. It is not uncQmmon for these projects to have 
millions of lines of code. 

2.1 Testing Process 

Before KITSS, the design methodology involved writ­
ing test cases in English. They describe the details of 
the external design and are written before coding begins. 
The cases, which are written by developers based on the 
requirements, constitute the only formal description of 
the external functioning of a switch feature. The idea is 
to describe how a feature works without having coding 
in mind. 

Figure 1 shows a typical test case. Test cases are struc­
tured in part by a goal/action/verify format. The goal 
statement is a very high-level description of the purpose 
of the test. It is followed by alternating action/verify 
statements. An action describes stimuli that the tester 
has to execute. Each stimulus triggers a switch response 
that the tester has to verify (e.g., a specific phone rings, 
a lamp is lit, a display shows a message etc). 

Overall, there are tens of thousands of test cases for 
DEFINITY. All these test cases are written manually, 
just using an editor, and are executed manually in a test 
lab. This is an error prone and slow process that lim­
its test coverage and makes regression test intervals too 
long. 

Some 5% of the above test cases have been converted 
into test scripts written in an in-house test automa­
tion language. Tests written in this language are run 
directly against the switch software. As this software is 
embedded in the switching system, testing requires large 

1 A PBX, or private branch exchange, switch is a real-time sys­
tem with embedded software that allows many telephone sets to 
share a few telephone lines in a private company. 

GOAL: Activate CF2 using CF Access Code. 
ACTION: Set station B without redirect 

notification3
. Station B goes oflhook 

and dials CF Access Code. 
VERIFY: Station B receives the second dial 

tone. 
ACTION: Station B dials station C. 
VERIFY: Station B receives confirmation tone. 

The status lamp associated with the 
CF button at B is lit. 

ACTION: Station B goes onhook. 
Place a call from station A to B. 

VERIFY: No ring-ping (redirect notification) is 
applied to station B. 
The call is forwarded to station C. 

ACTION: Station C answers the call. 
VERIFY: Stations A and C are connected. 

Figure 1: Example of a Test Case 

investments in test equipment (computer simulations are 
not acceptable as they do not address the real-time as­
pects ofthe system). Running and re-running test scripts 
becomes very time consuming and actually controls the 
rate at which projects are completed. 

Although an improvement over the manual testing 
process, test automation has several problems. The cur­
rent tools do not support any automatic semantic check­
ing. The conversion from test case to test script takes a 
long time and requires the best domain experts. There 
are only limited error diagnosis facilities available as well 
as no automatic update for regression testing. Also, 
test scripts are cluttered with test language initializa­
tion statements and are specific to switch configurations 
and software releases. Test scripts lack the generality of 
test cases, which are a template for many test scripts. 
Therefore, test cases are easier to read and maintain. 

2.2 KITSS Architecture 

KITSS takes English test cases as its input. It trans­
lates all test cases into formal, complete functional test 
scripts which are run against the DEFINITY switch soft­
ware. To make KITSS a practical system required novel 
approaches in two very difficult and different areas. 

First, a very informal and expressive language needed 

2CF is an acronym for the call-forwarding feature, which allows 
the user to send his/her incoming calls to another designated sta­
tion. The user can activate or deactivate this feature by pressing 
a button or by dialing an access code. 

3Redirect notification is a feature to notify the user about an 
incoming call when he/she has CF activated. Instead of the phone 
ringing it issues a short "ring-ping" tone. 



to be transformed into formal logic. Test cases are writ­
ten in English. While English is undeniably quite ex­
pressive and unobtrusive as a representation medium, it 
is difficult to process into formal descriptions. It also re­
quires theoretically unbounded amounts of knowledge to 
satisfactorily resolve incompleteness, vagueness, ambigu­
ity, etc. In practice, however, test cases are written in a 
style that is considerably more restrictive than most En­
glish text. The test case descriptions are circumscribed 
in terms of the vocabulary and concepts to which they 
refer. Syntactic and semantic variations do occur, but 
the language is a technical dialect of English, a naturally 
occurring telephonese language that is less variable and 
less complex. These limits to a specific domain and style 
make it possible to transform the informal telephonese 
representation into a formal one. 

Second, incomplete test cases needed to be extended. 
Even though humans find it easier to write test cases 
in natural language as opposed to formal language, they 
still have difficulties specifying tests that are both com­
plete and consistent. They also have difficulties iden­
tifying all of the interactions that can occur in a com­
plex system. This is analogous to the difference between 
trying to define a word and giving examples of its use. 
Creating a good definition, like creating a complete test 
case with all the details, is usually the more challenging 
task; giving word-usage examples, like describing a test 
case in general terms, is easier. Therefore, the input test 
cases need to be translated into a formal representation 
and then analyzed to be corrected and/or extended. 

Both tasks have been attempted for more than a 
decade [Balzer et al., 1977] with only limited success. 
Most difficulties arise because of the many possible types 
of imprecision in unrestricted natural language specifi­
cations, as well as by the lack of a suitable corpus of 
formalized background knowledge to guide automated 
reasoning tools for most application domains. 

To address these two difficulties (see also 
[Yonezaki, 1989]), KITSS provides a natural language 
processor that is trained on examples of the telephonese 
sub-language using a statistical approach. It also pro­
vides a completeness and interaction analyzer that audits 
test coverage. However, these two modules have been 
feasible only due to the domain-specific knowledge-based 
approach taken in KITSS [Barstow, 1985]. Therefore, 
both modules are supported by a hybrid knowledge-base 
(the "K" in KITSS) that contains a model ofthe DEFIN­
ITY PBX domain. Concepts that are used in telephony 
and testing are available to both processes to reduce the 
complexity of their interpretive tasks. If, for example, 
a process gets stuck and cannot disambiguate the pos­
sible interpretations of a phrase, it interacts (the "I" in 
KITSS) with the test author. It presents the context in 
which the ambiguity occurs and presents its best guesses 
and asks the author to pick the correct choice. Finally, 
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Figure 2: KITSS Architecture 

KITSS also provides a translator that generates the ac­
tual test scripts (the "TS" in KITSS) from the formal 
representation derived by the analyzer. 

The two needs described above led to the architec­
ture shown in Figure 2. It shows that KITSS consists of 
four main modules: the domain model, the natural lan­
guage processor, the completeness and interaction ana­
lyzer, and the translator. The domain model (see Sec­
tion 3) is in the center of the system and supports all 
three reasoning modules (see Section 4). 

3 Domain Knowledge 

A domain model serves as the knowledge base for an ap­
plication system. Testing is a very knowledge intensive 
task. It involves experience with the switch hardware 
and testing equipment as well as an understanding of 
the switch software with its several hundred features and 
many more interactions. There are binders full of papers 
that describe the features of DEFINITY PBX software, 
but no concise formalizations of the domain were avail­
able before KITSS. One of the core pieces of KITSS is 
its extensive domain model. The focus of KITSS and the 
domain model is on an end-user's point of view, i.e., on 
(physical and software) objects that the user can manip­
ulate. 
The KITSS domain model consists of three major func­
tional pieces (see Figure 3): 
Core PBX model: It is split into two major parts. 
The static model is used by all reasoning modules. The 
dynamic model is used mainly by the analyzer. 
Test execution model: It includes details about 
the current switch configuration and all the necessary 
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DO M A IN MOD E L 

STATIC MODEL DYNAMIC MODEL 

CORE 
PBX 

MODEL 

• Major hardware 
components 

• Static data 
• Phenomena 
• Processes 
• Logical resources 

TEST • Configuration model 
EXECUTION • Automated test, 

MODEL language model 

LINGUISTIC • Telephonese statistics 
MODEL • Telephonese concepts 

• Predicates 
• Primitive stimuli 

, • Abstract stimuli 
• Observables 

• Integrity constraints 
- Invariants 
- Rules 

TERMINOLOGICAL LOGIC TEMPORAL LOGIC 

Figure 3: KITSS Domain Model 

specifics of the automated test language. This model is 
used mainly by the translator. 
Linguistic model: It is specific to the input language 
(telephonese) and is used mainly by the natural language 
processor. 

From a knowledge representational point of view, 
we distinguish between static properties of the domain 
model and dynamic ones [Brodie et al., 1984]. Static 
properties include the objects of a domain, attributes 
of objects, and relationships between objects. All static 
parts of the domain model are implemented in a ter­
minological logic (see Section 3.1). Dynamic properties 
include operations on objects, their properties, and the 
relationships between operations. The applicability of 
operations is constrained by the attributes of objects. 
Integrity constraints are also included to express the reg­
ularities of a domain. The dynamic part of the core PBX 
model is represented in temporal logic (see Section 3.2). 

3.1 Static Model 

This part of the domain model represents the static as­
pects of KITSS. By static we mean all objects, data, and 
conditions that do not have a temporal extent but may 
have states or histories. 
The static PBX model includes the following pieces: 

• Major hardware components, such as telephones and 
switch administration consoles as well as smaller 
subparts of theses components, e.g., buttons, lamps, 
and handsets. 

• Static data, e.g., telephone numbers, routing codes 
and administrative data such as available features, 
and current feature settings. 

• Phenomena, such as tones and flashing patterns 
which are occurrences at points in time. 

• Processes, such as static definition of types of calls 
(e.g. voice calls, data calls, priority calls) and types 
of sessions (e.g. calling sessions, feature sessions). 

• Logical resources, such as lines and trunks required 
by processes. 

The test execution model is divided as follows: 

• The configuration model describes the current test 
setup, i.e., how many simulated phones and trunk 
lines are available or which extension numbers be­
long to which phones/lines, etc. It also contains the 
dial plan and the default feature assignments. 

• The automated test language model defines the vo­
cabulary of the test script language. 

The linguistic model supports two pieces: 

• Telephonese statistics, which are frequency distribu­
tions of syntactic structures, help the natural lan­
guage processor by disallowing interpretations of 
phrases and concepts that are possible in English 
but not likely in telephonese. 

• Telephonese concepts make it easier to paraphrase 
KITSS' representations for user interactions. 

We used CLASSIC [Brachman et al., 1989] to repre­
sent the knowledge in our domain. CLASSIC belongs to 
the class of terminological logics (e.g. KL-ONE). It is 
a frame-based description system that is used to define 
structured concepts and make assertions about individu-. 
also CLASSIC organizes the concepts and the individuals 
into a hierarchy by classification and subsumption. Ad­
ditionally, it permits inheritance and forward-chaining 
rules. CLASSIC is probably the most expressive ter­
minological logic that is still computationally tractable 
[Brachman et al., 1990]. Queries to CLASSIC are made 
by semantics not by syntax. 

The static model incorporates multiple views of an ob­
ject from the various models into one (e.g., a station 
might have one name in the English test case, another 
in the automated test language and a third in the actual 
configuration). Thus, although each reasoning module 
might have a different view on the same object, CLAS­
SIC will always retrieve the same concept correctly. 



3.2 Dynamic Model 

This unique part of the domain model represents all dy­
namic aspects of the switch's behavior. It basically de­
fines constraints that have to be fulfilled during testing 
as well as the predicates they are defined upon. 
The dynamic PBX model includes the following 
pIeces: 

• Predicates, such as offhook, station-busy, connected, 
or on-hold, define a state which currently holds 
for the switch. The different phases of a call 
are described with predicates such as requesting­
connection, denied-connection, or call-waiting-for­
timeout. Each of the predicates has defined sorts 
that relate to objects in the static model. Synonyms 
(e.g., on-hold is a synonym for call-suspended) are 
allowed as well. 

• Stimuli can be either primitive or abstract. Stimuli 
appear in the action statements of test cases. 

A primitive stimulus defines an action being per­
formed by the user (e.g., dials-extension, goes­
offhook) or by the switch (e.g., timeout-call). The 
necessary pre- and post conditions (before and after 
the stimulus) are also specified. For instance, for 
a station to be able to go offhook the precondition 
is that the station is not already offhook and the 
postcondition is that the station is offhook after the 
stimulus4

. 

An abstract stimulus is not an atomic action but may 
have pre- and post conditions like a primitive stimu­
lus. However, there are several primitive stimuli nec­
essary to achieve the goal of a single abstract stim­
ulus (e.g., place-call, busy-out-station, or activate­
feature). The steps necessary for an abstract stim­
ulus are defined in one or many abstract stimulus 
plans. The abstract stimulus defines the conditions 
that need to be true for the goal to succeed whereas 
the abstract stimulus plans describe possible ways 
of achieving such a goal. 

• Observables are states that can be verified such as 
receives-tone, ringing, or status-lamp-state. Observ­
abIes appear in the verify statements of test cases. 

Additionally, the dynamic model includes two different 
types of integrity constraints: 

• Invariants are assertions that are true in all states. 
These are among the most important pieces of do­
main knowledge as they describe basic telephony be­
havior as well as the look €3 feel of the switch. The 
paraphrases of a few of the invariants are as follows: 

4N ote the difference between the state of being offhook and the 
action goes-offhook. 
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"Only offhook phones receive tones" or "You only 
get ringing of any kind when you are alerting" or 
"A forwarded call always alerts at the forwardee, 
never at the forwarder" or "You can't be be talking 
to an on-hold call". 

• Rules also describe low-level behavior in telephony. 
These are mainly state transitions in signaling be­
havior like "A tone must stop whenever another be­
gins" or "Stop dial-tone after dialing an extension" 
or "An idle phone starts to ring when the first in­
coming call arrives". 

Representing the dynamic model we required expres­
sive power beyond CLASSIC or terminological logics. 
For example, CLASSIC is not well-suited for represent­
ing plan-like knowledge, such as sequences of actions to 
achieve a goal, or to perform extensive temporal rea­
soning [Brachman et al., 1990]. But this is required for 
the dynamic part of KITSS (see above examples). We 
therefore used the WATSON Theorem Prover (see Sec­
tion 4.2), a linear-time first-order resolution theorem 
prover with a weak temporal logic. This non-standard 
logic has five modal operators holds} occurs} issues} be­
gins} and ends which are sufficient to represent all tem­
poral aspects of our domain. For example, the abstract 
stimulus plan for activating a feature is represented in 
temporal logic as follows. 

(abstract-stimulus-plan activate-feature-1 
«:plan-goal activate-feature) 
(:sorts 
«station s1) (feature f) (station s2))) 

(:preconditions 
«holds (onhook s1)))) 

( :plan-steps 
«(occurs (initiate-feature-session s1 f)) 

(begins (receives-tone s1 
second-dial-tone))) 

«occurs (dials-destination s1 s2)) 
(issues (receives-tone s1 

confirmation-tone))) 
«occurs (terminate-feature-session s1 f)) 

) ) ) ) ) 

The theorem proving is tractable due to the tight inte­
gration between knowledge representation and reasoning. 
Therefore, we specifically designed the analyzer using the 
WATSON Theorem Prover and targeting them for this 
domain. The challenging task in building the dynamic 
model was to understand and extract what the invari­
ants, constraints, and rules were [Zave & Jackson, 1991]. 
Representing them then in the temporal logic was much 
eaSIer. 
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3.3 Domain Model Benefits 

In choosing a hybrid representation, we were able to in­
crease the expressive power of our domain model and to 
increase the reasoning capabilities as well. The integra­
tion of the hybrid pieces did produce some problems, for 
example, deciding which components belonged in which 
piece. However, this decision was facilitated because of 
our design choice to represent all dynamic aspects of the 
system in our temporal logic and to keep everything else 
in CLASSIC. 

There were other benefits to building a domain model. 
It ensures that a standard terminology is used by all of 
the test case authors. The domain model also simplifies 
the maintenance of test scripts. In automated testing 
environments without a domain model, the knowledge is 
scattered throughout thousands of scripts. With the do­
main model a change in the functioning of the software 
is made in only one place which makes it possible to 
centralize knowledge and therefore centralize the main­
tenance effort. Additionally, the domain model provides 
the knowledge that r~duces and simplifies the tasks of 
the natural language processor, the analyzer, and the 
translator modules. 

4 Reasoning Modules 

4.1 Natural Language Processor 

The existing testing methodology used English as the 
language for test cases (see Figure 1) which is also 
KITSS' input. Recent research in statistical parsing 
approaches [Jones & Eisner, 1991] provided some an­
swers to the difficulty of natural language parsing in re­
stricted domains such as testing languages. In the KITSS 
project, the parser uses probabilities (based on training 
given by telephonese examples) to prune the number of 
choices in syntactic and semantic structures. Unlikely 
structures can be ignored or eliminated, which helps to 
speed up the processing. For instance, consider the syn­
tax of the following two sentences5

: 

Place a call to station troops in Saudi Arabia. 
Place a call to station "4623" in two minutes. 

Both examples are correct English sentences. Al­
though the second sentence on the surface matches in 
many parts the first one, their structure is very different. 
In the first sentence "station" is a verb, in the second a 
noun; "to" is an infinitive and a preposition respectively. 
"In Saudi Arabia" refers to a location whereas "in two 
minutes" refers to time. It is hard to come up with cor­
rect parses for both but by restricting ourselves to the 

5This example was given by Mark Jones. 

telephonese sublanguage this is somewhat easier. In tele­
phonese, the structure of the first sentence is statistically 
unlikely and can be ignored while the second sentence is 
a common phrase. 

The use of statistical likelihoods to limit search during 
natural language processing was used not only during 
parsing but also when assigning meaning to sentences, 
determining the scope of quantifiers, and resolving ref­
erences. When choices could not be made statistically, 
the natural language processor could query the domain 
model, the analyzer, or the human user for disambigua­
tion. The final output of the natural language proces­
sor are logical representations of the English sentences, 
which are passed to the analyzer. 

4.2 Completeness & Interaction 
Analyzer 

The completeness and interaction analyzer represents 
one of the most ambitious aspects of KITSS. It is based 
on experience with the WATSON research prototype 
[Kelly & Nonnenmann, 1991]. Originally, WATSON was 
designed as an automatic programming system to gen­
erate executable specifications from episodic descriptions 
in the telephone switching software domain. This was an 
extremely ambitious goal and could only be realized in 
a very limited prototype. To be able to scale up to real­
world use, the focus has been shifted to merely check­
ing and augmenting given tests and maybe generating 
related new ones rather than generating the full specifi­
cation. 

Based on the natural language processor output, the 
analyzer groups the input logical forms into several 
episodes. Each episode defines a stimulus-response-cycle 
of the switch, which roughly corresponds to the ac­
tion/verify statements in the original test case. These 
episodes are the input for the following analysis phases. 
Each episode is represented as a logical rule, which is 
checked against the dynamic model. The analyzer uses 
first-order resolution theorem proving in a temporal logic 
as its inference mechanism, the same as WATSON. 

The analysis consists of several phases that are specifi­
cally targeted for this domain and have to be re-targeted 
for any different application. All phases use the dynamic 
model extensively. The purpose of each phase is to yield 
a more detailed understanding of the original test case. 
The following are the current analysis phases: 

• The structure of a test case is analyzed to recog­
nize or attribute purpose to pieces of the test case. 
There are four major pieces that might be found: 
administration of the switch, feature activation or 
deactivation, feature behavior, and regression test­
ing. 



• The test case is searched for connections among con­
cepts, e.g., there might be relations between system 
administration concepts and system signaling that 
need to be understood. 

• Routine omissions are inserted into the test case. 
Testers often reduce (purposefully or not) test se­
quences to their essential aspects. However, these 
omissions might lead to errors during testing and 
therefore need to be added. 

• Based on the abstract plans in the dynamic model, 
we can enumerate possible specializations, which 
yield new test cases from the input example. 

• Plausible generalizations are found for objects and 
actions as a way to abstract tests into classes of 
tests. 

During the analysis phases, the user might interact 
with the system. We try to exploit the user's ease at 
verifying or falsifying examples given by the analyzer. 
At the same time, the initiative of generating the details 
of a test lies with the system. For example, some test 
case might violate the look B feel of the system, i. e., 
there is a conflict with an invariant. However, the user 
might want this behavior intentionally which will lead to 
a change in the look B feel itself. 

The final output of the analyzer is a corrected and 
augmented test case in temporal logic. As an example of 
the analyzer's representation after analysis, the follow­
ing shows the logical forms for the first few episodes .in 
Figure 1. Notice that the test case is expanded since the 
analyzer applied abstract stimulus plans. 

((OCCURS (GOES-OFFHOOK B)) 
(BEGINS (RECEIVES-TONE B NORMAL-DIAL-TONE))) 

((OCCURS (DIALS-CODE B 
(ACTIVATE-ACCESS-CODE CF))) 

(BEGINS (RECEIVES-TONE B SECOND-DIAL-TONE))) 
((OCCURS (DIALS-EXTENSION B C)) 

(ISSUES (RECEIVES-TONE B CONFIRMATION-TONE)) 
(BEGINS (STATUS-LAMP-STATE B (BUTTON CF) 

STEADY))) 

This representation is passed to the translator. 

4.3 Translator 

To make use of the analyzer's formal representation, 
the translator needs to convert the test case into an 
executable test language. This language exercises the 
switch's capabilities by driving test equipment with the 
goal of finding software failures. One goal of the KITSS 
project was to extend the life of test cases so that they 
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could be used as many times as possible. To accomplish 
this, it was decided to make the translator support two 
types of test case independence. 

First, a test case must be test machine independent. 
Each PBX that we run our tests on has a different con­
figuration. KITSS permits a test author to write a test 
case without knowing which particular machine it will be 
run on and assuming unlimited resources. The translator 
loads the configuration setup of a particular switch into 
the test execution model. It uses this to make the test 
case concrete with respect to equipment used, system ad­
ministration performed, and permissions granted. Thus, 
if the functional description of a test case is identical in 
two distinct environments, then the logical representa­
tion produced by the earlier modules of KITSS should 
also be identical. 

Second, a test case must be independent of the auto­
mated test language. KITSS generates test cases in an 
in-house test language. The translator's code is small 
because much of the translation information is static 
and can be represented in CLASSIC. If a new test lan­
guage replaces the current one then the translator can 
be readily replaced without loss of test cases, with min­
imal changes to the KITSS code, and without a rewrite 
of most of the domain model. 

5 Status 

The KITSS project is still a prototype system that has 
not been deployed for general use on the D EFINITY 
project. It was built by a team of researchers and de­
velopers. Currently, it fully translates 38 test cases 
(417 sentences) into automated test scripts. While this 
is a small number, these test cases cover a representa­
tive range of the core features. Additionally, each test 
case yields multiple test scripts after conversion through 
KITSS. The domain model consists of over 500 concepts, 
over 1,500 individuals, and more than 80 temporal con­
straints. The domain model will grow somewhat with 
the number of test cases covered, however, so far the 
growth has been less than linear for each feature added. 

All of the modules that were described in this paper 
have been implemented but all need further enhance­
ments. System execution speed doesn't seem to be a 
bottleneck at this point in time. CLASSIC's fast classi­
fication algorithm's complexity is less than linear in the 
size of the domain model. Even the analyzer's theorem 
prover, which is computationally the most complex part 
of KITSS, is currently not a bottleneck due to continued 
specialization of its inference capability. However, it is 
not clear how long such optimizations can avoid potential 
intractability. 

The current schedule is to expand KITSS to cover a 
few hundred test cases. To achieve this, we will shift our 
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strategy towards more user interaction. The version of 
KITSS currently under development will intensely ques­
tion the user to explain unclear passages of test cases. We 
will then re-target the reasoning capabilities of KITSS 
to cover those areas. This rapid-prototyping approach is 
only feasible since we have already developed a robust 
core system. Although scaling-up from our prototype to 
a real-world system remains a hard task, KITSS demon­
strates that our knowledge-based approach chosen for 
functional software testing is feasible. 

6 Conclusion 

As we have shown, testing is perhaps one of the most 
expensive and time-consuming steps in product design, 
development, and maintenance. KITSS uses some novel 
approaches to achieving several desirable goals. Features 
will continue to be specified in English. To support this 
we have incorporated a statistical parser that is linked to 
the domain model as well as to the analyzer. Addition­
ally, KITSS will interactively give the user feedback on 
the test cases written and will convert them to a formal 
representation. To achieve this, we needed to augment 
the domain model represented in a terminological logic 
with a dynamic model written in a temporal logic. The 
temporal logic inference mechanism is customized for the 
domain. Tests will continue to be specified independent 
of the test equipment and test environment and the user 
will not have to provide unnecessary details. 

Such a testing system as demonstrated in KITSS will 
ensure project-wide consistent use of terminology and 
will allow simple, informal tests to be expanded to for­
mal and complete test scripts. The result is a better 
testing process with more test automation and reduced 
maintenance cost. 
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Abstract 

A conventional expert system for plant control is based 
on heuristics, which are a priori knowledge stored in a 
knowledge base. Such a system has a substantial limi­
tation in that it cannot deal with "unforeseen abnormal 
situations" in a plant due to the lack of heuristics. To 
realize a flexible plant control system which can over­
come this limitation, we focus on model-based reason­
ing. Our system has three major functions: 1) model­
based diagnosis for unforeseen abnormal situations, 2) 
model-based knowledge generation for plant control, and 
3) knowledge-based plant control both with generated 
and a priori stored know ledge. 

In this paper, we focus on the function of model-based 
knowledge generation. First, we show an overview of 
our system which has an integrated architecture of deep 
reasoning with shallow reasoning. Next, we explain the 
theoretical aspects of model-based knowledge generation. 
Finally, we show the experimental results of our sys­
tem, and discuss the system's capabilities and some open 
problems. 

1 Introduction 

Currently in the field of diagnosis and control of ther­
mal power plants, the more intelligent and flexible sys­
tems become, the more knowledge they need. Conven­
tional diagnostic and control expert systems are based 
on heuristics stored a priori in knowledge bases, so they 
cannot deal with unforeseen abnormal situations in the 
plant. Such situations could occur if knowledge engineers 
forgot to implement some necessary knowledge. 

A skilled human operator is able to operate the plant 
and somehow deal with such unforeseen abnormal sit­
uations because he has fundamental knowledge about 
the structure and functions of component devices of a 
plant, the principles of plant operations, and the laws of 
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physics. His thought process is as follows. 

• Diagnosis of an unforeseen abnormal situation 

• Generation of plant control knowledge 

• Verification of generated knowledge 

A skilled human operator can deal with unforeseen 
abnormal situations by repeatedly executing these steps 
using the fundamental knowledge mentioned before. 
Therefore, the concepts of our diagnostic and control ex­
pert system are based on the same steps. 

In this paper, we focus on the generation and veri­
fication of plant control knowledge. First, we show an 
overview of our system. Next, we explain the model rep­
resentations and the model-based reasoning mechanisms. 
After that, we describe the experimental results and dis­
cuss the system's capabilities. Finally, we discuss some 
open problems and related work. 

2 A System Overview 

The model-based diagnostic and control expert system 
(Figure 1) consists of two subsystems: the Shallow Infer­
ence Subsystem (SIS) and the Deep Inference Subsystem 
(DIS). 

The SIS is a conventional plant control system based 
on heuristics, namely the shallow knowledge for plant 
control. It selects and executes plant operations accord­
ing to the heuristics stored in the knowledge base. The 
Plant Monitor detects occurrences of unforeseen abnor­
mal situations, and then activates the DIS. 

The DIS consists of the following modules: the Di­
agnosor, the Operation-Generator, the Precondition­
Generator, and the Simulation- Verifier. The Diagnosor 
utilizes the Qualitative Causal Model for plant process 
parameters to diagnose unforeseen abnormal situations. 
The Operation-Generator figures out which plant oper­
ations are necessary to deal with these unforeseen ab­
normal situation. It utilizes the Device Model and the 
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Operation Principle Model. The Precondition-Generator 
attaches the preconditions to each plant operation above, 
and as a result, generates rule-based knowledge for plant 
control. The Simulation- Verifier predicts plant behav­
ior which is to be observed when the plant is operated 
according to th~ generated knowledge. It utilizes the 
Dynamics Model, verifies the generated knowledge us­
ing predicted plant behavior, and gives feedback to the 
Operation- Generator to refine the knowledge if necessary. 

The knowledge compiled from models by the DIS is 
transmitted to the SIS. The SIS executes the plant op­
erations accordingly, and as a result, the unforeseen ab­
normal situations should be handled properly. 

Deep Inference Subsystem ------

Figure 1: An overview of the system 

3 Model-Based Generation and 
Verification of Knowledge 

The main purpose of this section is to present a genera­
tion and verification procedure for plant control knowl­
edge to deal with unforeseen abnormal situations. This 
knowledge is in IF-THEN format. 

3.1 Model Representation 

The Device Model and the Operation Principle Model are 
used to generate the knowledge. The Dynamics Model is 
used to verify the knowledge. We explain these models 
briefly. 

1. Device Model 

The Device Model represents the fundamental 
knowledge about the functions, structure and char­
acteristics of a plant. Because a plant consists of 

component devices, a Device Model can be defined 
for each component device. Figure 2 shows the De­
vice Model representation for a boiler-feeding-water­
pump, which supplies water to a boiler. 

name: 
demand: 

goal: 
states : 

operation : 

quality: 
flowJn: 
flow_out: 

system: 

a_bfp 
a_bl'f: ~ [tonlbrJ 
a _ bI'f =< capaclty( a_bIT) 

on ; capaclty( a bIT) = 615 [tonlbr) 
off ; capaclty( (.bIT) = 0 [tonlbr) 

off -.on ; time-lag = 0.1 [br) , dldt( a_bIT) = + 
on ~ ; time-lag = 0.1 [br), dldt( a_bIT) =-
dldt( a_bIT) = dldt( a_bflf) 
( defiMd III sys~". ) 
( dejiMd III sys~". ) 
bfp _system( a _ btf , a _ btlf ) 

Figure 2: An example of the Device Model 

The demands for each component device are de-· 
scribed in the demand slot, and their constraints 
to be satisfied are described in the goal slot. 

The functions of each component device are de­
scribed as possible states of each device in the states 
slot. The operations of a device are defined by the 
change of its state. 

Direct and indirect influences to plant processes 
by operations are described in the operation and 
quality slots respectively. 

The structure of a plant is described in the flow jn 
and flow _out slots. In addition, hierarchical mod­
eling can be done as shown in Figure 3. 

Figure 3: Hierarchical modeling of plant devices 

2. Operation Principle Model 

The Operation Principle Model is concerned with 
the principles for safe and economical plant control. 
It consists of the following two rules. 

• Strict Accordance Rule 

The purpose of this rule is to ensure plant 
safety throughout a series of plant operations. 
It consists of the following two components: a 
rule to use a device within its own allowable 
range, and a rule to keep a faulty device out of 
service. 



• Preference Rule 

The purpose of this rule is to ensure an econom­
ical plant operation. It consists of the following 
two components: a rule to keep the number of 
in-service devices to a minimum, and a rule to 
equalize the service-time of each device. 

3. Dynamics Model 

The Dynamics Model represents the dynamic char­
acteristics of the plant. In the area of plant con­
trol, the Dynamics lVlodel is concerned either with 
the functions of traditional plant controllers based 
on PID-controlor with the characteristics related to 
physical laws. Figure 4 shows the model of a water­
flow-controller. f{ p and T are constants. 1/ s means 
the integral operator. 

feeding 
water 

~~_~~.o~ ___ ~~~~ftow 

Figure 4: An example of the Dynamics Model 

3.2 Model-Based Reasoning Mecha­
nism 

We briefly explain the model-based reasoning mechanism 
of these modules: the Operation Generator, the Precon­
dition Generator and the Simulation- Verifier. 

1. Operation Generator 

This module determines the goal-state where all of 
the constraints defined by the Device Model and 
the Operation Principle Model are satisfied. Gen­
erally, an unforeseen abnormal situation causes a 
state change of a plant, and this change can make 
the above constraints unsatisfied. To estimate this 
unsatisfied constraints, the following functions are 
needed. 

(a) Verification of Constraints 

All the constraints defined by the Device Model 
should be verified to see if they are still satis­
fied after the unforeseen abnormal situation. 
This function (Figure 5) c'onsists of the follow­
ing two sub-functions: propagating the change 

110 1 

at each device to the others according to the 
connections of devices, and locally verifying the 
constraInts at each device. 

demand for A demand forB 

State change ... ·)(~arameterls -\1 
Le. operation" i value change 

: I.e. external 

\_ ..... ~~!:~~!.J 

Figure 5: Constraints verification function 

(b) Update of the Goal-State 

If some of the constraints at a certain device 
are proved not to be satisfied, a new state for 
this device should be sought in order to sat­
isfy them. This function (Figure 6) consists 
of the following sub-functions: searching for a 
state of each device where all of its demands 
can be satisfied, distributing the demands for 
a device of higher hierarchy to devices of lower 
hierarchy according to the constraints defined 
by the Operation Principle Model, and generat­
ing new demands for connected devices accord­
ing to the Device Model and propagating them. 
The plant operations are deduced by taking the 
difference between the initial goal-state and the 
updated one. 

New demand 
for C 

) ... 
Propagate 
new demand for D 

Figure 6: Goal-State update function 

2. Precondition Generator 

In the domain of thermal power plant control, 
preconditions of each plant operation can be 
classified into the following five generic classes 
[Konuma 1990J. 

• Preconditions for the state before an operation 

• Preconditions for the order of operations 



1102 

• Preconditions for safety during an operation 

• Preconditions for the timing of an operation 

• Preconditions for completion of an operation 

This module generates the above preconditions for 
each operation by analyzing the goal-state according 
to the constraints defined by the Device Model. An 
image of their generation process is shown in Figure 
7. 

Precnd. for order 

Precnd. for safety 

Precnd. for timing 

Precnd. for completion 

procedure GenelYlle&Test (M or DO , SO ) 
begin 

[ Se, Op] <= Operation_GenelYlle (M or DO, SO) ; 
Kl <= Precondition_GeMlYlle (SO, Se, Op ) ; 
PS <= Sim,,",~ (SO, Kl ) ; 

[NG, Dl, SI ] <= Verify (PS); 
IfNG ='= constraint violation 
tben return( Kl, Se ') ; 
else 

[ 10, S3 ] <= GeMra~&Test (Dl, SI ) ; 
[ K3, Se ] <= Generate&Test (M, S3 ) ; 

K4 <= FIX( Kl ) + 10 + K3 ; 
return( K4, Se ) ; 

endlf 
end. 

NOTATION: 
SI, Se : plant state 
DI : demand for a device 
PS : plant bebavlor 
KI : plan ~ plant operations 
[ ] : list expression 

M : output fIf Dlagnosor 
Op : plant operations 
NG : nag for allowable range 

violations 

<= : substitution expression 

Figure 8: Generate&Test algorithm of the knowledge 

4 Experiments 

We have implemented the expert system on Multi-PSI 
[Taki 1988]. To realize a rich experimental environment, 
we have also implemented a plant simulator instead of an 
actual plant on a mini-computer G8050. Both comput­
ers are linked by a data transmission line. This section 
describes the results of some experiments. 

~-----IF-part -------il t- THEN-part --i 4.1 Configuration of a Thermal Power 
Plant 

Figure 7: Generation process of preconditions 

3. Simulation Verifier 

This module predicts plant behavior using the Dy­
namics Model to verify the knowledge compiled 
from models by the Operation Generator and Pre­
condition Generator. The prediction of plant be­
havior can be realized through simulation methods 
[Suzuki 1990]. After the prediction, the module ex­
amines whether or not undesirable events have oc­
curred. Undesirable events can be defined by several 
criteria, but one of the most important is the tran­
sient violation of the allowable range for each pro­
cess parameter's value. The execution of plant op­
erations usually causes the transient change of pro­
cesses due to the dynamic characteristics of a plant. 
If this change is beyond the allowable range of a 
current plant state, it is detected as a violation. 

The Simulation- Verifier supports the Gener­
ateBTest algorithm of knowledge [Suzuki 1990] as 
illustrated in Figure 8. This process can be for­
malized as updating the goal-state according to the 
degree of the violation. 

Figure 9 shows the configuration of the thermal power 
plant. It consists of controllers (hatched rectangle) and 
devices. The condenser is a device for cooling the tur­
bine's exhaust steam; the steam is reduced to water us­
ing cooling water taken from the sea. The reduced wa­
ter is moved through the de-aerator to the boiler by the 
condensation-pump-system and the boiler-feeding-pump­
system. The cooling water is provided by the circulation­
pump-system. The fuel-system supplies pulverized coal 
to the boiler. 

4.2 Experimental Results 

The total of the Device Models in the system amounts 
to 78 (Table 1). In this table, the difference between the 
numbers in the left and right columns is due to hierar­
chical modeling. 

The experiments were performed as follows. 

1. First, we selected appropriate faults of the follow­
ing devices: a coal-pulver,izer, a boiler-feeding-pump, 
a condensation-pump, a circulation-water-valve, and 
a water-heater. We made these faults the malfunc­
tions of the plant simulator. We also set them up 
for multiple faults. 



Figure 9: Configuration of a thermal power plant 

2. Next, we extracted some specific knowledge for plant 
control from the knowledge base in the SIS. This 
specific knowledge was necessary to deal with the 
selected faults. As a result, the selected faults were 
equal to unforeseen abnormal situations. 

3. Finally, after activating the malfunctions of the 
plant simulator, we confirmed that the DIS com­
piled the knowledge from the models and that the 
SIS executed the operations accordingly. 

We explain the quality of generated knowledge for a 
single fault, because the results in multiple faults are the 
same as in a single fault. In the experiments, the con­
tents of generated knowledge are concerned with switch­
ing from a faulty device to a backup one. Table 2 sum­
marizes all the generated plant operations. In the case of 
a water-heater fault, the system failed to generate plant 
operations. In other cases, the system succeeded in gen­
erating plant operations. We estimate the quality of the 
generated knowledge in terms of its preconditions. This 
table lists columns consisting of the following items for 
each operation: the number of the preconditions encoded 
by a human expert (Nl), the number of the essential ones 

1103 

Table 1: The amount of devices and controllers 

~ Amount in Amount in 
the plant the Device Models 

Devices 43 63 

Controllers 7 15 

Total 50 78 

in Nl (N2), the number of generated ones by the system 
(N3), the covered ratio of N2 by the system (C Rl), and 
the uncovered ratio of N2 (ER), namely, the ratio of N2 
missed being generated or incorrectly generated by the 
system. (C R2 will be explained in Section5.) 

The difference between Nl and N2 is due mainly to 
the following reason. Although a human expert specifies 
the preconditions of the knowledge as generally as pos­
sible, the system generates specialized preconditions for 
each occurring unforeseen abnormal situation. With this 
point in mind, we determine N2 by eliminating unnec­
essary preconditions from Nl. CRi (i=1,2) and ER are 
calculated by the following formulas. 

CR
' = Success(N2) 
~ N2 

ER = Miss(N2) + Fail(N2) 
N2 

Success(N2) denotes the number of N2 generated by 
the system; Miss(N2) the number of N2 which were not 
generated; and Fail(N2) the number of N2 incorrectly 
generated. 

We also consider the following in evaluating 
Success(N2). 

• Although the generated preconditions enumerate 
the individual state of each device, a human expert 
often represents them succinctly. For example, the 
conjunctive precondition "a_bfp = on" 1\ "b_bfp = 
on" 1\ "c_bfp = off" are represented as "the number 
of activated bfp = 2". 

• The system often generates superfluous precondi­
tions that a human expert does not mention. 

• Although a human expert encodes preconditions for 
the selection of an in-service device, the system 
never generate them because they are already es­
timated in applying the Operation Principle Model. 

None of the above devalues the quality of generated 
knowledge because the system is "required only to gen­
erate specific preconditions for an occurring unforeseen 
abnormal situation. For this reason, we regard gen­
erated preconditions applicable to any of the above as 
Success(N2). 

We carried out the experiments under the following 
conditions. 
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Table 2: Quality of generated knowledge 

~
econd. The number of preconditions 

lunforeseen (OP) 
situation . Knowledge Knowledge Generated Covered (CRl) Error (ER) 

Operation in KB (Nl) in KB (N2) (N3) ratio [%] ratio [%] 
C.R. after (CR2) 
refinement [% ] 

1. activate 
Pulverizer a Pulverizer 12 6 11 100 0 100 

100 
Fault 2. halt 

a Pulverizer 8 8 12 100 0 
3. activate 

aBFP 42 18 8 22 78 100 
4. open 

a FWCV 26 10 8 40 60 90 
S.setFWCV 

BFP auto 
Fault 6. set FWCV 

hand 
7. close 

a FWCV 
8. halt 

aBFP 
9. activate 

CP aCP 
Fault 10. halt 

CWV 
Fault 

HTR 
Fault 

aCP 
11. activate 

aCWP 
12. open 

aCWV 
13. close 

aCWV 
14. halt 

aCWP 
15. open a HTR 

BvoassVLV 
16. close a HTR 

VLV 

32 

12 

14 

23 

17 

13 

8 

4 

4 

8 

4 

4 

8 

4 

6 

8 

7 

7 

7 

3 

3 

7 

3 

3 

• Once DIS was activated, no further unforeseen ab­
normal situation occurred. 

• The Diagnosor deduced the exact diagnostic results. 

Because of the above conditions, SIS interpreted all 
the generated knowledge and handled the unforeseen ab­
normal situations. Figure 10 shows the generated knowl­
edge and its corresponding knowledge encoded by a hu­
man expert for the operation no.5 in Table 2. We also 
show some additional information in Figure 10, which is 
referred to in the next section. 

5 Discussion 

In this section, we evaluate the system's capability to 
generate the necessary plant operations and to gener­
ate the correct preconditions for each operation. The 
former is concerned with performance of the Operation 
Generator' and the latter is concerned with that of the 
Precondition Generator. In addition, we discuss the pros 
and cons of using Multi-PSI and some open problems. 

1. Capability to generate plant operations 

8 

7 

9 

11 

6 

8 

7 

38 

75 

83 

87 

57 

86 

57 

62 

25 

17 

13 

43 

14 

43 

75 

100 

100 

100 

100 

100 

100 

7 67 33 100 

8 67 

8 71 
failed to failed to 

I aenerate OP aenerate OP 
failed to failed to 

I aenerate OP aenerate OP 

33 

29 
failed to 
generateOP 
failed to 
aenerateOP 

100 

100 
failed to 
generate OP 
failed to 
aenerate OP 

In the experiment, the system could generate all the 
necessary plant operations for each malfunction ex­
cept the water-heater fault. We briefly explain the 
reason for this failure bellow. 

At a boiler, the following approximation holds true 
for outlet steam pressure (P), inlet fuel flow (F), in­
let water temperature (T) and inlet water flow (G). 

Cl, C2 are positive constants, and al, a2 are correc­
tion terms related to other process parameters. 

The Operation Generator calculates F, G and T 
from P using this formula defined in the Device 
Model. P is the demand for the boiler. After that, 
the Operation Generator propagates F to the fuel­
system, and G and T to the water-heater as a new 
demand respectively. In this time, the Operation 
Generator must evaluate the above formula from left 
side to right side, but possible value combinations of 
F,G and T cannot be decided using the single input 
value P. To deal with this undecidability, the Op­
eration Generator utilizes the Operation Principle 



no.c: a fwcv ss = auto 
no.d: b- fwcv- ss = auto 
no.e: c-fwcv-= dose ------...... "-_ 
no.f: c~bfp fw_dev>.S[%] ----.. 
no.g: c_bfp fw_dev<S[%] 

Knowledge encoded by a human expert 

no.1: a fwcv ss = auto ----.. 
:-r-t---+--1~no.2: b-fwcv-ss =auto ----.. 

'--~I--" no.3: c -fwcv -ss = hand ----.. 
no.4: a-bfp ~ on -----.... 
no.5: b=bfp=on -----.... 
no.6: c bfp = on -----.... 
no.7: d;.aerator level> NML - 200 

~--..j,--__ no.8: c fwcv m >72-a[%] [mm] 
no.9: c=fwcv=m < 72 + a [%] 

Figure 10: Knowledge for cbfp controller 

Operation 
no.S 

1I1odel and approximation functions supplemented 
with the Device Model. The failure in water-heater 
fault is caused by this reasoning mechanism. We be­
lieve that additional principles are needed to evalu­
ate such a process balance. 

2. Capability to generate preconditions 

From CR1 and ER in Table 2, we can see that 
most of the generated preconditions are imperfect, 
namely ER > O. The reasons are as follows. 

• The Precondition Generator failed to generate 
preconditions related to devices not modeled 
in Device Model. An example is the set of pre­
conditions to establish the electric power sup­
ply for the pump. We can resolve this problem 
easily by augmenting the Device Model. 

• Although all the necessary preconditions could 
be checked in the goal-state search, the Precon­
dition Generator missed analyzing them. No.i 
to no.j in Figure 10 illustrates this point. The 
system focuses only on the neighbor devices 
of the operated device. Because the system 
is required only 'to generate specific precondi­
tions for an occurring unforeseen abnormal sit­
uation, we can resolve this problem easily by 
extending the focusing area. 

• The Precondition Generator generated incor­
rect preconditions for the timing of operations, 
as shown by no.8 to no.9 in Figure 10. Al­
though the system is based on the concept that 
the timing of operations can be determined 
from the maximum outlet process flow of each 
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device, this concept does not hold true for de­
vices such as PID-controllers or devices placed 
under the control of PID-controllers. 

Although we can resolve the former two problems 
easily, the last problem is serious because it is closely 
related to the basic concept for the generation of 
preconditions. It is still an open problem. In Table 
2, column C R2 represents the expected results after 
the refinements against the former two problems. 
The remaining uncovered parts for operations 4 and 
5 (ER is 10% and 25% respectively) are related to 
the last mentioned problem above. 

3. Real-time reasoning using Multi-PSI 

Although our system does not require of the severe 
real-time reasoning capability to cover either PID­
control or adaptive-control, it requires at least the 
ability to compile the knowledge within a few min­
utes. To guarantee this performance, we have been 
investigating a parallel reasoning mechanism with 
Multi-PSI [Suzuki 1991]. We can use KL1 language 
on Multi-PSI, which is a profitable language to im­
plement a multi-process system concisely. In par­
ticular, its process synchronization mechanism by 
"suspend" is an advantage for our system implemen­
tation. In spite of this point, it is very difficult to 
achieve a drastic speedup using KL1 and Multi-PSI. 
We have already demonstrated a threefold to five­
fold improvement of reasoning time by using Multi­
PSI with 16 processor elements. To achieve more 
improvement, we think we must make a more elab­
orate implementation. 

4. Utility of the compiled knowledge 

In contrast to the classical approach by shallow 
1mbwledge, our proposed model-based reasoning 
mechanism succeeded to deal with unforeseen ab­
normal situations in a plant. This point is the utility 
of the compiled knowledge. 

Although our proposed mechanism is powerful to 
deal with unforeseen abnormal situations, it is weak 
with respect to the acquisition of knowledge which 
is reusable in the SIS. Because the system generates 
specific knowledge only for occurring unforeseen ab­
normal situations, the generated knowledge is either 
too general with respect to the lack of some con­
junctive preconditions or too specific with 'respect 
to their enumerative representations from the view­
point of its reusability. 

5. Facility of model acquisition 

The system utilizes the Qualitative Causal Model, 
the Device Model, the Operation Principle Model 
and the Dynamics Model. These models could be 
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built from the plant design, and should be consis­
tent with each other. In the current implementation 
of the system, each model is built and implemented 
separately. Therefore, model sharing is not yet re­
alized. 

In a diagnostic task, Yamaguchi[Yamaguchi 1987] 
refers to the facility of model· acquisition. Some 
other related works are in the area of the qualitative 
reasoning. Crawford [Crawford 1990] attempted to 
maintain and support the qualitative modeling en­
vironment by QPT. 

6. Over-sensitive verification of the plant behavior 

In the current implementation of the Generate8Test 
algorithm for the knowledge, the priority of each 
allowable range is not considered at all. There­
fore, even though the violation of the range is slight 
enough to be ignored, the system tries to deal with 
this violation sensitively. This sensitivity is mean­
ingless for all practical purposes because a plant 
would be designed with enough capacity to absorb 
the violation. For this reason, the system should 
check the range with some allowable degree of vio­
lation. We are now investigating the mechanism. 

7. Monitoring the execution of the generated knowl­
edge 

In this paper, we supposed that the Diagnosor can 
diagnose unforeseen events exactly. However, in 
general, this supposition can be invalid. Diagnos­
tic results should be estimated by plant monitoring 
following the plant operations. 

As for the related work, Dvorak [Dvorak 1989] uti­
lizes the QSIM [Kuipers 1986] to monitor a plant. 
However, he does not refer to the generation of the 
knowledge for unforeseen events. 

6 Conclusion 

We proposed a diagnostic and control expert system 
based on a plant model. The main target of our approach 
is a system which could deal with unforeseen abnormal 
situations. Our approach adopts a model-based archi­
tecture to realize the thought process of a skilled human 
plant operator. 

In this paper, we focused on model-based generation of 
plant control knowledge, and explained the details of the 
model-based reasoning. Our system utilizes the follow­
ing models: the Device Model, the Operation Principle 
Model and the Dynamics Model. We also discussed its 
ability as demonstrated through some experimental re­
sults. The results encourage us to make sure the model­
based reasoning capabilities in plant control. 
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Abstract 
The expressiveness of metalogic programming enables 
a logically pure, structure preserving, easily updated 
representation of fragmentary, multilayered knowledge, 
which, since neither fully formalisable nor static, re­
quires assimilation of externally supplied knowledge as 
well as coping with changes. In legal reasoning, e.g., only 
schematic rule descriptions are available from which case 
specific rules are dynamically specialised. Such rule pro­
posals must be accepted by proposals for metarules of 
legal interpretation which, in turn, must be accepted by 
proposals for metametarules, etc. Inferencing between 
two adjacent levels corresponds to upward reflection; in 
contrast downward reflection is disallowed. Typically, 
formalising involves three distinct theories: the informal 
theory, the formal theory, and the informal metathe­
ory discussing the latter, but for multilayered, impre­
cise informal theories we propose instead a semiformal 
metatheory discussing both theories. It expresses legal 
knowledge as a Horn clause metaprogram, implemented 
in Prolog, which interactively constructs and presents 
metaproofs (proof terms) allowing users to assess, ac­
cept or reject derived conclusions. 

1. Introduction 
Metaprogramming is an important technique for the 
three interrelated topics "knowledge representation", 
"knowledge processing", and "knowledge assimilation" 
[Kowalski 1990]. The first deals with the apt choices 
of formalism and approach for building formal theories, 
the second with the construction of proofs of theorems 
from such theories and/or the identification of the ex­
istence of such proofs, and the third with the assimi­
lation of new knowledge into existing theories. We de­
scribe how these three topics and their interrelationships 
are involved in a semiformal metatheory characterizing 
fragmentary, multilayered, not fully formalisable legal 
knowledge as a metaprogram. This metaprogram inter­
actively constructs metaproofs and facilitates the study 
of the complexity of these interrelationships as well as 
the adequacy of the formalisation attempt. 

This study shows how upward reflection can be used 
as a powerful reasoning method. The potentials of re­
flection have been demonstrated in artificial domains, 
e.g., for representing. multiagent belief and knowledge 
[Kowalski 1990] and for exploiting properties of predi­
cates such as symmetry [Costantini 1990]. To our best 
knowledge, however, our study is the first illustrating 
reasoning with realistic knowledge which requires up-

ward reflection and we hope it will contribute to the un­
derstanding of reflection as a knowledge representation 
tool. For instance, it indicates that, while upward re­
flection has its informal counterpart in legal reasoning, 
applying downward reflection violates on the contrary 
the inherent structure of legal knowledge. Upward re­
flection in legal reasoning is connected to "rules of legal 
interpretation". Briefly, if we propose a legal rule for 
solving a legal case we must show that the rule's struc­
ture and content are in accordance with the (meta)rules 
of legal interpretation, otherwise the rule is legally in­
valid. Likewise in automatized legal reasoning, a for­
mula A representing a legal rule can be assumed in­
cluded in an object level theory OT representing legally 
valid rules if its inclusion accords with the metalevel the­
ory MT of formulas representing rules of legal interpre­
tation, i.e., assuming Demo defines provability we have 
Demo( QT, name(A)) <- Demo(MT, name(Demo( OT, 
name(A)))) where Demo holds for sentences belonging 
to or deducible from a theory, cf. Kowalski [1990]. 

Though inessential in principle, meta programming 
is often convenient in practice. Reasons may be its nat­
uralness of representing the domain knowledge or even 
the impracticability of giving perfect object level repre­
sentations. This is paralleled in law by the role of "rules 
of legal interpretation" which are "inessential in princi­
ple, in the sense that, although they are necessitated in 
practice by the imperfections and the dynamic charac­
ter of the existing systems, they would not be needed 
in a perfect, unambiguously formulated, consistent, and 
complete legal system, conformable to a stable social 
reality. The actual function of rules of legal interpre­
tation is to direct the identification of the existing sys­
tem and its continuous construction and readjustment." 
([Horovitz 1972]' p. 94). Since (meta)rules of legal in­
terpretation are imperfect as well, metametarules are 
also necessary etc., giving a whole multilayered hierar­
chy, which may roughly be axiomatized as a multilevel 
theory structure in a metalogic program. 

Kleene ([1980], pp. 65, 69) introduces three separate 
and distinct "theories" involved in the process of a for­
malisation: (a) the informal theory of which the formal 
system constitutes a formalisation, (b) the formal sys­
tem or object theory, and (c) the metatheory, in which 
the formal system is described and studied where (b), 
which is formal, is not a theory in the common sense, 
but a system of symbols and of objects built from sym­
bols described from (c). Theories (a) and (c) , which are 
informal, do not have an exactly determined structure, 
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as does (b). Consider the following two approaches for 
studying (b): (i) the formal theory (b) is "introduced 
at once in its full-fledged complexity" and investigated 
by methods without making use of an interpretation. 
(This is known as the metamathematical approach if 
the J?ethods are finitary.) (ii) the formal theory (b) is 
studIed by recognizing an interpretation of the theory 
under which ~t ~on~titutes a formalisation of (a), i.e., 
we analys.e eXIstmg mformal theories (a), "selecting and 
stereotypmg fundamental concepts, presuppositions and 
deductive connections, and thus eventually arrive at a 
formal system" , i.e., at the formal theory (b). 

Approach (i) presupposes that the complexity of the 
formal theory is fully understood. This does not hold 
in our domain where a realistic system can only have a 
partial axiomatization of the formal object theory. This 
axioma~ization can gradually be extended, though, by 
consultmg the user both for supply of metalinguistic en­
tities representing objects of the formal object theory 
a.nd for completing formal proofs in it. Thus, in a prac­
tical system we must adhere to approach (ii). 

However, an isolated study of "knowledge process­
ing" and "representation" within the formal object the­
ory (b) itself can be carried out along approach (i) if the 
problem of supplying and assimilating external knowl­
edge is disregarded from. In such a study [Hamfelt and 
H~nsson. 19~1a] we devised a Horn clause metalanguage 
aXIOmatizatIOn (c) of a formal object theory (b), as a 
theory of an n-Ievel language where each level i + 1 is 
the formal ~etalanguage of the language of level i, and 
where. the m.formal theory (a) being formalised in (b) 
was hIerarchIcal fragmentary legal knowledge. The in­
ves~igation could be carried out as though we had had 
an Id.eal full one-t~-one axiomatization (c) of the un­
derlymg formal object theory (b) by simply assuming 
that sufficient fragments were available for the particu­
lar cases studied, fragments that must be supplied from 
t~e outsi.d~ in .a "real life" application since it is impos­
SIble antIcipatmg what knowledge will be needed. 

This simplifying assumption has been removed in 
~he .present work which delves into the knowledge assim­
IlatIOn problem. Although the non-logical axioms of the 
formal object theory (b) cannot be enumerated in ad­
vance its possible content can nevertheless be discussed 
in a theory (c) of a metalanguage which may be informal 
but also formal or both. To this end we have devised a 
semiformal metalanguage-whose object language is the 
n-Ievel language of (b)-for a theory (c) which axioma­
tizes the "available" part of the formal object theory (b) 
and encodes rules for the assimilation into it of exter­
~al~y s~pplied knowledge fragments. Knowledge assim­
Ilat.IOn IS dependent on the deductive structure of (b), 
whIch can be accounted for in (c) since its objects of dis­
course include formal proofs, i.e., sequences of formulas 
of (b). Below, IT, OT and MT denote, respectively the 
(a), (b) and (c) of our system. 

2. The Informal Legal Theory 
Let us detail our conception of the structure of legal 
~nowledge, i.e., our informal legal theory IT, so as to 
Illustrate how rules at different levels operate together 
as shown in fig. 2.1. We refer to [Hamfelt 1990, Hamfelt 
and Hansson 1991a, 1991b] for a more thorough account 

(4) A proposal for a tertiary rule 
~ conun~rcial ~aw anogia legis may not be applied 
m a way unposmg burdens upon consumers 

~ 
(3) A tertiary schema 
A certain rule may be applied 
to a case not subswned, or at 
least not with certainty sub­
sumed, under the rule's lin­
guistic wording if the case is 
not the object of a particular 
explicit rule, if the case has a 
substantial similarity to those 
the rule is intended for, if 
interests of some importance, 
which the rule is intended to 
meet. support such an applica­
tion, and if no opposite inter­
ests exist reconunending the 
rejection of such an applica­
tion. 

(2) A proposal for a secondary 
rule 
SGA, sect. 5, may be applied to a 
case not subsumed, or at least not 
with certainty subswned, under its 
linguistic wording if the case is not 
the object of a particular explicit 
rule in any act belonging to com­
merciallaw, if according to the 
present conception of justice in 
conunerciallaw, the case has a 
substantial similarity to those sect. 
5 is intended for, if such an applica­
tion is without detriment to con­
sumers, and if protection of free 
enterprise does not reconunend the 
rejection of such an application. 

~ 
(1) A secondary schema A proposal for a 
SGA, sect. 5. primary rule 
If a sale of goods has If a hire of goods 
been made but no price has been made but 
settled then the vendee no price settled then 
should pay what the the hirer should pay 
vendor demands if what the letter de-
reasonable. mands if reasonable. 

Fig. 2.1. Schemata and rules. 

but the below description should suffice for this paper. 
Consider the provision 1 in fig. 2.1, an ordinary 

statutory rule from the Swedish Sale of Goods Act (sect. 
5, SGA). This provision is not only applicable to sale of 
goods. It could, e.g., be analogically applied to, e.g., 
hire of goods, or extensively interpreted, or interpreted 
by inversion (e contrario), etc., and embraces thus a lot 
of primary rules. One but only one of these is the rule 
given by a literal reading of the tokens building the pro­
vision and not even this rule has a legal validity which 
can be taken for granted. The provision 1 is a schema for 
all these rules and since this schema is about primary 
rules and thus conceptually belongs to the secondary 
level we call it a secondary schema. 

The relation between secondary schemata and pri­
mar~ rules is given by secondary rules. For example, the 
relation between the schema 1 and real primary rules is 
given by secondary rules such as rule 2 in fig. 2.1 which 
is just an example of how a secondary rule for analo­
gia legis in commercial law could possibly look. In the 
same way there exist tertiary schemata for secondary 
rules and tertiary rules that give the relation between 
these schemata and the secondary rules, etc. The sec­
ondary rule 2 originates from the tertiary schema 3 in 
fig. 2.1. Information about the relation between this 
schema and secondary rules such as rule 2 is given by 
tertiary rules, such as rule 4 in fig. 2.1. 

Schematic descriptions of rules at various levels are 
important. We have argued elsewhere [Hamfelt 1990] 
that a lawyer only has a schematic knowledge of legal 
rules; each adjudication comprises an interpretation of 
schemata for legal rules and results in the construction 
of specialised rules applicable only to the case at hand. 
An obvious example is our secondary rule 2 for analo­
gia legis in commercial law. It is not generally applica­
ble. The rule is the result of an interpretation at levels 



above the secondary and only "applicable" in an indi­
vidual adjudication, i.e., in a particular legal case. In 
another legal case the interpretation at the levels above 
the secondary may yield another formulation of the rule 
2. Rules, such as rule 2, are thus generated for each in­
dividual adjudication and there exists a diversity of pos­
sible formulations. What they have in common is that 
they all originate from a common schematic description 
3 which in this case conceptually belongs to the tertiary 
level. The schematic description 3 originates from the 
legal literature. Rule 4 is thus also, in its turn a possible 
specialisation of a quaternary schema, proposed by qua­
ternary rules which in their turn are specialisations of 
quinary schemata, etc. Fig. 2.2 illustrates the hierarchy 
of legal knowledge in which the levels have been made 
distinct by introducing, at each level i, the names for 
the rules of the level i-I. 

level 4 T4 quatern;uy rule 
~ 

quaternary "naIIles" for 

_sc~~_ 
level 3 T3 tertiary rule ,,----..... 

tertiary "naIIles" for 

~c~~ 
level 2 T2 second¥y rule 

~ 
secondary ''names'' for 

- - - - ~h 

level! T1 primary rule 

Figure 2.2. Levels of legal knowledge. 

The specialisation of schemata (principles) must 
yield meaningful rules which are legally acceptable for 
the current case. The first means that the rule only 
consists of legal concepts embraced by the principle, the 
second that its content in addition is legally adequate 
and its premises fulfilled so it in fact applies. The latter 
is recursively settled, i.e., a sentence is legally acceptable 
if either its content directly is accepted by rules at the 
higher adjacent level (base case), or it follows from other 
acceptable sentences at its own level (recursive case). 
The base case is thus informal upward reflection where 
the upper level enforces a sentence on a lower level. 

Till now rule specialisation has been described in a 
top-down perspective. Specialisations cannot, however, 
be carried out without interpretation data, the supply 
of which has a character of a bottom-up process, since 
these data mainly originate from a description of the le­
gal case. If C is a description in legal terminology of 
a legal case and J is a suggestion for a judicial deci­
sion, then J--C is a proposed primary rule. Establish­
ing that J -- C is accepted by the (secondary) metarules 
of legal interpretation coincides then with resolving the 
case. 

Levell in figure 2.2 may be understood as an ob­
ject level, level 2 as its metalevel, level 3 as its meta­
metalevel the object level of which is the pair of level 1 
and level 2, etc. The structure of IT could be under­
stood as a hierarchy of "theories" where the language of 
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each level i consists of all meaningful rules expressed by 
schemata and conditions for their specialisation on the 
level i+l. Each Ti is characterized in Ti+1 by schematic 
descriptions of its sentences and rules for deciding which 
specialisations of these are meaningful and legally ac­
ceptable. The same holds for the theory Ti +1 with re­
spect to a theory Ti+2' etc., and since no level has rules 
which do not require interpretation this proceeds ad in­
finitum. This can be handled by choosing some level n 
to be the "top-most" at which discretion is used for spec­
ifying schemata, thus making the validity of a primary 
rule proposed for resolving a case and of all rules on each 
level i, 1 :5 i < n, ultimately depending on discretion. 

IT can thus be characterized as a set of theories 
{T1 , T2 , •• • , Tn} where each theory Ti is understood as 
a collection of sentences fully determined by the higher 
adjacent theory Ti+l' i.e., if from theory Ti +1 it can be 
deduced a theorem expressing that a sentence Ai is prov­
able from theory Ti, then Ai belongs to theory Ti. We 
need a definition of the provability relationship between 
two adjacent levels i+1 and i ranging over n distinct 
levels (theories), and forming a hierarchy of dependent 
relations directed from the highest to the lowest level. 
On each level i this provability relation Ti f- Ai should 
coincide with the rules of logic. The hierarchical depen­
dence of the provability relationship, 1 :5 i < n, may be 
characterized as follows Ti f- Ai iff Ti+1 f- "Ti f- As", 
where "Ti f- A;" names Ti f- Ai. With theory Tn speci­
fied, the hierarchy decides the content of the object level 
as well as of all the other levels. That is to say, Tn de­
cides the contents of all the theories T1 , ••• , Tn - 1 • The 
definition constitutes the rules of acceptance of IT. 

3. The Formal Object Theory 
The provability definition in a formalisation OT of IT 
must support upward but prevent downward reflection. 
This is due to the imperfection of realistic legal sys­
tems. Both reflection principles would be allowed in 
Horovitz' unattainable perfect system where each Ti is 
an enumerable and decidable set which, for each of all 
the meaningful rules of its language, includes either the 
rule itself or its negation, but not both. Each theory 
Ti expresses Ti - 1 completely in a metalanguage exactly 
determining its content and conforms to both reflection 
principles since everything derivable from theory Ti - 1 

can be "simulated" in theory Ti and vice versa; in prin­
ciple, it would be sufficient to consider one of these the­
ories in an ideal formalisation. In reality, however, the 
formalisation of each Ti - 1 can only be partial, imperfect 
and schematic and applying the rules in Ti is necessary 
for assessing, accepting or rejecting the rules in Ti - 1 • 

This corresponds to upward reflection, where something 
proved on an upper level is forced upon a lower level. 
Downward reflection is unsound however since some­
thing 'proved' from imperfect knowledge on a lower level 
cannot be forced upon an upper level thereby perhaps 
contradicting rules accepted by the legal principles on 
this level. 

Thus, the amalgamated language of Bowen and 
Kowalski [1982] is inadequate for characterizing IT since 
its provability predicate Demo is founded on repre­
sentability (equivalence between object language and 
metalanguage proofs) and requires both reflection rules. 
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Demo represents provability on the object level thus pre­
supposing that an object level proof procedure exists 
which is not the case in our domain whose counterpart 
to Demo defines rather than represents a provability 
relation for an object language. However, Demo predi­
cates giving definitional non-conservative extensions of 
theories deviating from the represent ability notion are 
not unusual, e.g., metalevel definitions allowing upward 
reflection to enforce proofs on the object level which the 
object level theorem prover itself cannot carry out, cf. 
[Kowalski 1990]. This latter use of the Demo predicate 
accords with our understanding of IT and could be used 
to characterize its hierarchical structure. 

The complexity caused by IT's hierarchical struc­
ture is reduced, if each T;· is characterized "locally" to­
wards its immediate object of study, i.e., each metal 
object language relation is represented separately. A 
link between adjacent levels is obtained by character­
izing the Demo predicate as defining the provability 
relation on a lower level. For example, the formula 
Demo(name(T1),name((1.--C))) says (on level 2) that 
the primary rule 1.--C is provable from, and thus in­
cluded in, the object theory T1 • The declarative reading 
of the formula is rendered by taking Tl as a static theory 
implicitly consisting of all rules fulfilling the conditions 
for inclusion. Only the boundary between rules shown 
to satisfy the conditions and those not yet shown to sat­
isfy the conditions moves just as in Sergot's "query the 
user" [1983] the boundary between the facts given to the 
computer by the user and those not yet given, moves. 
Stated as a goal the formula reads "is 1.--C provable 
from the theory T1?" the proof of which corresponds to a 
line of arguments to the effect that the inclusion in Tl of 
1.--C should be regarded as in accordance with the (sec­
ond~ry) ~etarules of legal interpretation, thus showing, 
as hmted m sect. 2, that the rule is legally acceptable. 
The provability definition expresses the conditions for 
including l.--C in TI , i.e., the secondary rules whose in­
clusions in T2 depend in their turn on theories of higher 
levels, whose provability definitions are characterized in 
a similar way yielding a whole hierarchy of interdepend­
ing provability definitions, still however allowing us to 
describe and consider each Ti as a separate theory. 

Specifying the theory of primary rules TI metatheo­
retically in terms of what can be proved from TI seems 
thus natural. The topmost theory Tn gives an axiomatic 
definition of provability of theory Tn - 1 and indirectly of 
all theories _ Ti , i < n, hence, embracing all the non­
logical axioms of these theories. We have chosen an 
alternative perspective where the hierarchical structure 
of OT is taken as a composite object language which 
can be characterized in a theory MT of a separate met­
alanguage. This metalanguage takes thus the whole n­
level language of OT as its object language. In MT 
Prover(Demo( name( Tt), name(A)), ... , ... , Proo!) , e.g., 
expresses that a formalisation of a primary rule A is in­
cluded in the formal theory of OT, which represents the 
informal theory Tl of IT. In the metalanguage this in­
clusion is verified by a sequence Proof of statements 
each of which names an "object/object"-inference or 
a "m~tal.0bject"-inference of the object language, thus 
constItutmg a metaproof in MT of a formal proof in OT. 

4. The Semiformal Metatheory 

We now briefly describe our metatheory MT, mainly as 
a program partially characterizing OT whose intended 
interpretation is IT. Our metalogic consists of Horn 
clauses and the inference mechanism of Prolog. In this 
metalanguage MT is represented by formulas, i.e., in 
Horn clauses, and the language of OT by terms, i.e., 
terms of Horn clauses. 

To the formation rules and rules of inference (in­
cluding axiom schemata) of proof theory correspond the 
rules of meaningfulness and the rules of acceptance re­
spectively, both of which have a more vague chara~ter 
than their proof theory counterparts. It is a hard and 
sometimes impossible problem to state formation rules 
in the metatheory which can handle the vagueness of le­
gal concepts. Therefore, it seems necessary, in contrast 
to proof theory, to complement with an external set­
tlement of which rules are meaningful rules, and which 
rules are acceptable as true material implications. The 
specification of a formal theory is done from the starting­
point of an informal theory which is the intended inter­
pretation ,the formalism should capture. For example, a 
constant m the formal language of the formal theory is 
supposed to have a natural counterpart in the informal 
theory, e.g., to denote a specific individual or a specific 
category of individuals. In our case, we cannot predeter­
mine this connection between a formal and an informal 
theory, because we cannot decide in advance all legal 
concepts that can be relevant in a legal system. This 
is something that has to be resolved from case to case. 
Therefore, we leave it to the user to decide the formal 
counterpart of his informal understanding of a legal con­
cept, e.g., an informal legal concept "hirer" of IT will 
naturally get ~he constant "hirer" of the formal language 
of OT. That IS to say, we presuppose an immediate or 
autonymous relation between a symbol or symbols of 
the formal language and its informal counterpart. Thus, 
with external help a metatheory MT could be extended 
?,nd some of the gaps in its schemata for non-logical ax­
IOms of OT be filled in yielding a formalisation of rules 
of IT obtained by specialising the available vague de­
scri~tions of these rules. In that way, a program repre­
sentmg MT could construct, interactively with the user 
a metaproof in MT representing a formal proof in OT; 
at least for the proposal of a legal case under consider­
ation. In some sense this position could be understood 
as performing a specification in a metatheory of the for­
mal language of a formal theory as well as deciding its 
non-logical axioms in parallel with a derivation of some 
~onclusion from it. At the end of a session (of construct­
mg metaproofs) the relevant fractions of this theory, and 
the formal proof of a particular legal case could be pre­
sented to the user for a final examination by extracting 
the formal proof out of the metaproof. How adequately 
these formal proofs, represented in the metatheory MT 
correspond to IT is a matter of external judgements: 
Observe, that MT is a semiformal theory in the sense 
that it has both a formal part, consisting of sentences 
represented as Horn clauses, and an informal part con­
sisting of user interpreted sentences. 

,!,hus, the rule~ of meaningfulness in MT can only 
partIally characterIze sentences of the object language, 
I.e., the language of OT. In the representation in the 



metalanguage, we have to assume a fixed structure for 
designating a class of rules, i.e., a schema. Within this 
structure local differences must be met, i.e., different 
specialisations of the schema have to give different rep­
resentations of sentences (rules) of the object language. 
These local differences are expressed by metavariables 
which have to be filled in by a user and satisfy certain 
interactively investigated typing conditions. Let us il­
lustrate this with the program clause that characterizes 
a provision schema whose linguistic wording is the one 
specified for the metavariable Text. In the clauses below 
n( ... ) is a shorthand for name( ... ) for which we postulate 
an inverse law of naming, i.e., n(A)=n(B)-+A=B. As to the 
problem of naming in metaprogramming, observe that 
all variables are metavariables; there are no object vari­
ables. 

meaningfulsent(t(1),RulePropl,[ModAtl,unspec],LegSetl,Text):-
RulePropl = (legalcons(pay,X,Y,goods,price):-

and(actorl (X,goods),and(actoI2(Y,goods), 
and(unsettledprice(goods) ,and( demands(Y,price), 
reasonable(price,goods»») ), 

ModAtl = [Xjvendee,Y/vendor], 1YJ>es = [actor(X),actor(Y»), 
LegSetl = [[provisionno(sga(5»U,LegSetO], 
Text = the same text as in rule schema 1 in fig. 2.l. 
propertyping(t(1 ),RulePropl ,ModAtl ,Types,Text). 

In IT this provision is assumed open with respect to the 
concepts 'vendee' and 'vendor'. So, the assumed fixed 
structure of this provision is represented in the metalan­
guage as the term specified for the metavariable RulePropl 
with open places expressed by the metavariables X and 
Y. These variables have to be specialised interactively 
with the user. The predicate propertyping/5 is defined for 
this interaction. The metavariable ModAtl expresses the 
relation between the concepts of IT, i.e., the text of Text 
and its open parts, i.e., 'vendee' and 'vendor', and its 
formal counterpart in 07 partly specified in RulePropl. 
Thus, a proper typing carried out by the user gives a 
meaningf~l rule of the object language of levell, rep­
resented In the metalanguage by the specialised term of 
RulePropl. The metavariable LegSeU identifies what part 
of level 1 in IT is relevant for a particular case. 

The rules of acceptance may also only be partially 
characterized in the metalanguage. However, a user can 
interactively add interpretation data, thereby extending 
the partial characterization of OT in the theory MT of 
the metalanguage. What is hard characterizing is the 
determination of whether or not a meaningful rule be­
longs to a theory of IT, i.e., is legally acceptable, and 
thus should have a formal counterpart in OT. Presently, 
this is solved by assuming in MT that a rule is accept­
able when a user tries to apply it, and the conditions for 
its application are accepted, i.e., either follow by logic 
from other accepted rules or are included in the the­
ory by rules at the higher adjacent level in co-operation 
with the user. So, we presuppose that it is only the user 
who can determine the relevance of a specific principle. 
Consequently, at the end of a session these assumptions 
should be possible for a user to examine. 

These aspects are encoded in the prover clause [UP] 
(short for upward reflection). Observe that the prover 
clauses belong to MT which takes as object theory the 
whole multilayered OT. Their first demo argument de­
fines the formalisation in OT of logic provability between 
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a theory Ti of IT and a sentence of IT but though e.g., 
the fourth proof term argument has a counterpart in 
OT - a formal proof extending over the whole hierarchy 
of OT -it includes expressions solely of MT as well. 

[UP] 

prover(demo(n(t{l»,n(SentPropl»,ModI,LegSetI,ProofI):­
proposesent(t{l),SentPropl,Modl,LegSetI), 
J is I + I, 
ground([SentPropl,ModI,LegSetI]), 
permissible(t{l),SentPropl), 
prover(demo(n(t(J»,n(demo(n(t{l»,n(SentPropl»», 

[ModAtJ ,ModI] ,[LegSetAtJ ,LegSetI] ,ProoD), 
Proofl = (sentenceof(theory(I),SentPropl):­

proofof(theory(J),proved(theory(I),SentPropl),ProoD». 

permissible(t{l),SentPropl):-I = 1. 
permissible(t(I),SentPropl):-I ~ 2,\+ SentPropl = (Head:-Body). 

Clause [UP] encodes in MT upward reflection be­
tween two theories Ti and Tj of arbitrary adjacent lev­
els in IT, with formal counterparts t(l) and t(J) in OT. 
A sentence is assumed to belong to a theory Ti if this 
accords with the rules of theory Tj of the higher adja­
cent level. In MT, LegSetI and ModI identify and modify 
formula schemata corresponding to known fragments of 
sentences of the theory Ti • The predicate proposesent/4 is 
defined to specialise interactively with a user such mean­
ingfulsent schemata. Proofl is a metaproof in MT of the 
existence of a sequence of formulas in OT's formalisa­
tion of IT constituting a formal proof of the proposed 
sentence. 

Upward reflection must be constrained. If each sen­
tence were upward reflected directly when proposed, the 
reasoning process would ascend directly to the topmost 
level since the metarule proposed for assessing the sen­
tence would itself directly be upward reflected, etc. 
Therefore, at levels i, i ~ 2, only sentence proposals 
which are ground facts may be upward reflected, post­
poning the assessment of rules, which may only be pro­
posed as non-ground conditional sentences, till facts are 
activated by their premises. Under this reasoning 
scheme the content of all sentences involved in the rea­
soning process will eventually be assessed. The restric­
tion is maintained by the permissible subgoal. 

Clause [ANOI] handles A-introduction. In MT a the­
ory Ti of IT, with t(I) as formal counterpart in OT, is 
assumed to include a sentence which is a conjunction if 
both its conjuncts may be assumed included in Ti • 

[ANOI] 
prover(demo(n(t{l»,n(and(GI,G2»), 

[[ModGI ,ModG2] ,ModsBelow],LegSetI,Proofl):-
I ~ 2, 
prover(demo(n(t(I»,n(GI»,[ModGI,ModsBelow],LegSetI,ProofGl), 
prover( demo(n(t(l»,n(G2»,[ModG2,ModsBelow ],LegSetI,ProofG2), 
Proofl =(sentenceof(theory(I),and(G I ,G2»:-

and(proofof(theory(I),G I ,ProofG I), 
proofof(theory(l),G2,ProofG2»). 

Clause [MP] encodes our version of modus ponens. 
In MT a theory Ti of IT, with t{l) as formal counter­
part in OT, is assumed to include a sentence which is 
the consequence of a proposed implication of Ti whose 
antecedent can be assumed included in Ti • 
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[MP] 
prover( demo(n( t(I) ),n(HeadI) ),ModI,LegSetI,ProofI):-

I ~ 2, 
proposesent(t(I),(HeadI:-BodyI),ModI,LegSetI), 
prover(demo(n(t(I»,n(BodyI»,ModI,LegSetI,ProofBodyI), 
ProofI = (sentenceof(theory(I),HeadI):-

and(ruleof(theory(I) ,(HeadI: -Body I», 
proofof(theory(I),BodyI,ProofBadyI»). 

The knowledge of rules in IT for assessing sentence 
proposals for the adjacent lower level theory Ti will at 
some level j be too rudimentary for composing a theory 
Tj • At this level, Tj is considered to be the user's opin­
ion of the sentences proposed for T j • This is encoded in 
MY in the clause [TOP]. 

[TOP] 
prover(demo(n(t(J»,n(demo(n(t(l»,n(RulePropI»», 

ModJ ,LegSetJ ,ProoD):­
J ~ 2, 
\f. proposesent(t(J),(demo(n(t(I»,n(RulePropl):-BodyJ), 

ModJ ,LegSetJ), 
externalconfirmation( t(I) ),RulePropI,ModJ ,LegSetJ), 
ProoD = externallyconfirmed(sentenceof(theory(I),RulePropl)). 

Let us now partially trace the computation of a sam­
ple query 

>prover(demo(n(t(I»,n(RulePropI»,ModI,LegSetl,Proofl). 

This query could be read as "is there a metaproof Proofl 
stating that the theory Tl of level 1 includes a primary 
rule which is represented in OT by RulePropi and modi­
fied by ModI in the legal set ting LegSeU?" Since it is com­
pletely unspecified at this point what particular problem 
to solve the query can be stated in these general terms 
and be generated by the system. The goal resolves with 
the prover clause [UP] leading to six subgoals, the last 
of which builds the proof term to bind Proofl. Below, 
we refrain from discussing how the proof term is built 
during the computation. The first subgoal of [UP] is 

proposesent(t(l),SentPropl,Modl,LegSetl) 

which through user interaction selects a legal rule and 
modifies it for the current case. The unifying clause 

proposesent(Theory,RuleProp,Mod,LegSet):-
(Theory = t(l);RuleProp=(demo( _,J:-Body»,l 
findlegalseuing(Theory ,Leg Set ), 
meaningfulsent(Theory,RuleProp,Mod,LegSet,Text). 

identifies the relevant part of the legal domain from 
which it retrieves a proposal for a rule provided it is 
meaningful. The latter is sorted out by meaningfulsent 
clau~es, say, the one presented above. In this clause the 
propertyping condition is intended to promote that user 
proposed modifications preserve the rule's meaningful­
ness. Suppose now that the user interaction makes the 
first subgoal of [UP] return with the following ground 
argument bindings, i.e., the schemata from sect. 5 Sale 
of Goods Act is adapted into a primary rule proposal 
regulating a case of 'hire of goods', 

LegSetl = 
[[provisionno( sga( 5», 

provisioncategory(,Determination of Purchase Money'), 
legalfield('Commercial Law'»),unspec], call it (legsetl) 

1 The legal setting may be assumed unknown if any of these 
two conditions hold. 

ModI = [[hirer/vendee,letter/vendor],unspec], call it (modI) 
RulePropi = 

(legalcons(pay,hirer,letter ,goods,price):­
and(actorI(hirer,goods),and(actor2(letter,goods), 
and( unseUledprice(goods ),and( demands(letter,price), 
reasonable(price,goods»»», call it (ruleprop 1) 

Now it must be established whether it accords with 
the higher adjacent level, i.e., the theory T2 , to assume 
a primary rule with this proposed content is included in 
the theory T1 • This is accomplished through "upward 
reflection". Before a formula with content information 
is upward reflected it must be checked for groundness (a 
hack) and permissibleness. These are the tasks of the 
third subgoal of [UP] (where (name) is shorthand for an 
occurrence of the term named by name). 

ground([(rulepropl) ,(modI) , (legsetl) ]) 

and of the fourth subgoal of [UP] 

permissible(t(l), (ruleprop I», 

which permits a conditional rule on levell to be upward 
reflected. The fifth, "upward reflection" , subgoal of [UP] 

prover(demo(n(t(2»,n(demo(n(t(I»,n«(rulepropI»»), 
[ModAt2,(mod 1) ],[LegSetAt2,(legseU) ],Proof2), 

resolves with the prover clause [MP] leading to four sub­
goals (the first and last of which controls the index of the 
current level and builds the proof term, respectively). 
Now a secondary rule must be proposed for assessing 
the lower level expression. The second subgoal of [MP] 
is 

proposesent(t(2),(demo(n(t(I»,n«(rulepropl»):-Body2), 
(mod2) ,(legset2», 

where (mod2) is [ModAt2,(modl)], (modI) is [(modatl),unspec), 
(modatl) is [hirer/vendee,letter/vendor] and (legset2) is [LegSetAt2, 
(legsetl)] . 

Suppose the user chooses the analogia legis princi­
ple. The relation between primary rules of theory Tl 
and secondary rules for analogia legis of theory T2 is 
encoded in this clause: 

meaningfulsent(t(2),RuleProp2,Mod2,LegSet2,Text):­
RuIeProp2 = 

(demo(n(t(I»,n(RulePropl»:-
analogialegis(n(RulePropl),n(ModAtI),LegSetl», 

M0d2 = L,[ModAtl,J], 
LegSet2 = [[interpretationtheory(,analogia legis')IJ,LegSetl), 
Text = '''A primary rule proposal is legally valid (i.e., belongs to the 

theory tl of valid primary rules) if its inclusion accords with 
the secondary rule for analogia legis." .. .', 

propertyping(t(2),RuleProp2,[),[),Text). 

The second subgoal of [MP) returns with its second ar­
gument bound to 

(demo(n(t(I»,n«(ruleprop I) »:-
analogialegis(n( (ruleprop I) ),n( (modatl) ),(legsetl») 

and LegSetAt2 bound to [interpretationtheory('analogia legis')IJ. 
The third subgoal of [MP] is 

prover(demo(n(t(2) ),n(analogialegis(n( (ruleprop I», 
n«(modatl», 
(legsetl»», 

(mod2) ,(legset2) ,ProofBody2), 



which recursively calls [MP]. Now a meaningful proposal 
for an actual analogia legis secondary rule will, by the 
second proposesent subgoal of [MP], be retrieved from this 
clause 

meaningfulsent(t(2).RuleProp2, _.LegSet2,Text):­
RuleProp2 = 

(analogialegis(n«Cons:-Ante»,n(ModAtl),LegSetl):­
and(not( casuisticalinterpretation(LegalField, 

n«not(Cons):-Ante»», 
and(intendedfor(ProvisionNo,n(TypeCase», 
and(substantialsimilarity(n(TypeCase) ,n(Ante) ,n(ModAtl», 
and(intendedtomeet(ProvisionN o,Interests,LegaIField), 
and(supports(ProvisionNo,n(ModAtl ),ProInt,Interests), 
and(recommendrejection(ProvisionNo,n(ModAtl), 

ContraInt,Interests ), 
outweigh(Prolnt,ContraInt»»»», 

LegSet2 = [[interpretationtheory('analogia legis')!J,LegSetl], 
LegSetl = [[provisionno(ProvisionNo), _,legalfield(LegalField)], J, 
Text = the same text as in rule schema 3 in fig. 2.1. 
propertyping( t(2).RuleProp2,[] ,[] ,Text). 

with these bindings (where (rulepropl) is «(consrulel):­
(anterule 1 ) ) ) 

analogialegis(n« (consrulel) :-(anterulel) »,n( (modatl) ),(legsetl) ):­
and(not(casuisticalinterpretationCCommercial Law', 

n«not(consrulel) :-(anterulel) »», 
and(iotendedfor(sga(5),n(TypeCase», 
and(substantialsimilarity(n(TypeCase),n«(anterulel),n«(modatl)), 
and(intendedtomeet(sga(5),Interests,'Commercial Law'), 
and(supports(sga(5),n( (modatl) ),ProInt,Interests), 
and( recommendrejection( sga( 5),n( (modatl ) ) ,Contralnt,Interests), 
outweigh(Prolnt,ContraInt»»») . 

Now it must be proved that with the proposed content 
the antecedent of the analogia legis rule (call it (albody)) 
is included in T2 • The third subgoal of [MP] is 

prover(demo(n(t(2»,n«(albody)), _, 
[[interpretationtheory('analogia legis')J.(legsetl)J. J, 

and each of the conjuncts in (albody) will be demonstrated 
in turn by the prover clauses [ANDI] , [MP], and [UP]. To 
illustrate how user proposed content for a sentence is 
accepted (or rejected) at higher levels let us focus on 
the fourth conjunct which gives rise to the goal 

prover(demo(n(t(2», 
n(intendedtomeet(sga(5),Interests,'Commercial Law'»), 

_,[[interpretationtheory('analogia legis')!J,(legsetl)]). 

An "intended to meet" sentence must be proposed by 
the user. The resul t may be a meaningful fact (uncondi­
tional sentence) whose inclusion in the theory T2 must 
be accepted by the rules of theory T3 or it may be a 
rule (conditional sentence) which is assumed included 
in T2 directly after the user's acceptance. The resolving 
clauses in the respective cases are [UP] and [MP]. Thus, 
in the first case upward reflection occurs immediately. 
In the second case upward reflection is postponed until 
backward inferencing by modus ponens at the current 
level leads to the proposal of a fact. Note that this 
guarantees that the application of the originally pro­
posed rule is not accepted unless all the components of 
its antecedent eventually are assessed and accepted. 

Suppose a fact is proposed. The goal will resolve 
with the prover clause [UP], whose recursive fifth sub­
goal resolves with the prover clause [MP] leading to the 
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application of tertiary rules for assessing the proposed 
(secondary) fact. Reasons of space force us to remove a 
part of the trace here. The inferencing at the tertiary 
level is similar to that just described for the secondary 
level. We conclude this section with a fragment of the 
trace in which a tertiary fact is proposed but no quater­
nary rules exist for assessing it. The upward reflected 
goal looks like 

prover(demo(n(t(4», 
n(demo(n(t(3», 

n(adequatetoequalize( 
, actors with similar economical positions', 
'consumer protection'/,hirer protection', 
'Commercial Law'»»), 

Mod4,LegSet4, J. 

For the theory T4 proposesent fails however to return any 
quaternary rules which may assess the adequatetoequalize 
fact. The goal resolves with the prover clause [1DP] and 
the user mayor may not accept the content of the "ad­
equate to equalize" rule. 

Provided the rule is accepted this completes the com­
putation of the fourth conjunct in the antecedent of the 
analogia legis rule. The following three conjuncts in 
the antecedent of the analogi a legis rule are computed 
likewise which completes the computation of the initial 
query. A conclusion is not considered as final before the 
line of arguments leading up to it has been considered 
and accepted by the user. To this end the user needs 
a comprehensible presentation of the proof term. We 
illustrate elsewhere [Hamfelt and Hansson 1991b] how 
derivations of goals can be entrusted to the user's accep­
tance or rejection by an interactive piecemeal unfolding 
of a term representing the proof of the goal. 

5. Coping with Change 
A program should be able to cope with changes in the 
frequently revised legal knowledge it formalises. Also it 
should be structure preserving ("isomorphic") modulo 
this knowledge, cf. [Sergot et al. 1986]. This is a conflict, 
Bratley et al. [1991] claim, since coping with changes re­
quires modifying "implicit or explicit rules which do not 
correspond directly to paragraphs in the text of law" . 

Our metalogic program MT, however, is a struc­
ture preserving formalisation of legal knowledge cop­
ing with changes. The schemata give a modular, di­
rect and easily changed description of statutory rules 
and (meta ... )metarules of legal interpretation. MT is 
modular both horizontally and vertically entailing that 
adjustments can be made locally to the schemata for the 
(higher level) rules of legal interpretation as well as to 
the schemata for the ordinary (low level) statutory rules. 
The level of the knowledge is identified and the appro­
priate adjustment made to its rule schemata, which then 
control the computation of accepted rules assumed in­
cluded in theories of the lower adjacent level. Also, since 
MT takes as its object language the whole n-Ievel lan­
guage of OT, we can encode in the formal part of MY, 
rules coping with global changes which are not possible 
to localize to rule schemata of a certain level. Further­
more, if the legal system has undergone an even more 
drastic revision, a large part of our system will neverthe­
less remain intact since the structure of principles such 
as analogia legis will hardly be affected. The structure 
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preserving model of the British Nationality Act [Sergot 
et al. 1986] is according to Kowalski and Sergot [1990] 
"of limited practical value" since it expresses a "lay­
man's reading of the provision" but in our MT expert 
knowledge may be incorporated e.g., for verifying the 
correctness of 01', modifying and augmenting it, and 
for suggesting promising ways for applying its rules. 

6. Flelated VVork 
Allen and Saxon [1991] discuss, in contrast to our mul­
tiple semantic interpretations, assistance for multiple 
structural interpretation of components of provisions, 
such as "if", "not", "provided that", e.g., by changing 
which component is taken as the main connective of a 
sentence. The logical relationship between theories com­
prising interpretative knowledge and interpreted theo­
ries is not analysed. 

Assessing and compiling persuasive lines of argu­
ments pro and contra different, often contradictory, legal 
decisions is important in legal reasoning. Proof terms 
should thus be objects of discourse and be reasoned 
about, which they are in MT. This is advocated also by 
Bench-Capon and Sergot [1988], who do not, however, 
propose a formalisation or a detailed informal theory, 
such as our IT, concerning how these aspects are sorted 
out in informal legal reasoning. 

7. Conclusions and Further VVork 
Above we have proposed a novel approach for repre­
senting fragmentary, multilayered, not fully formalis­
able knowledge, in which the informal metatheory of the 
usual formalisation approach is replaced by a semiformal 
metalogic program which interactively composes formal 
object theories to be accepted or rejected as formalisa­
tions of the knowledge by the user. Our representation 
easily copes with changes in the represented knowledge. 

Imprecise knowledge requires advanced user interac­
tion that promotes meaningful user answers and queries, 
constructs and intelligibly displays proof terms explain­
ing derived conclusions, and makes the system pose its 
questions in a natural order. These aspects have been 
considered and to some extent solved in our program 
[Hamfelt and Hansson 1991b]. 

Multiple semantic interpretations of provisions is re­
alised by allowing the user to fill schemata with mean­
ingful content referring to his fact situation whereupon 
the system accepts or rejects the thus proposed rule. In­
cluding multiple structural interpretations, e.g., adding 
premises, should raise no real obstacles provided rules 
of acceptance for such alteration can be established. 

In case law rules of legal interpretation are as im­
portant as in statute law and apart from the difficult 
problem of inducing schemata from precedent cases, we 
hypothesize that our framework needs only minor adap­
tations to catch the problem of case-based reasoning. 

Proof terms should, since the notion of being a per­
suasive line of arguments is vague, not only be displayed 
for user communication but also reasoned about. 
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Abstract 

This paper presents HELIC-II, a legal reasoning system 
on the parallel inference machine. HELIC-II draws legal 
conclusions for a given case by referring to a statutory 
law (legal rules) and judicial precedents (old cases). This 
system consists of two inference engines. The rule-based 
engine draws legal consequences logically by using legal 
rules. The case-based engine generates legal concepts by 
referencing similar old cases. These engines complemen­
tally draw all possible conclusions, and output them in 
the form of inference trees. Users can use these trees as 
material to construct arguments in a legal suit. 

HELIC-II is implemented on the parallel inference ma­
chine, and it can draw conclusions quickly by parallel 
inference. 

As an example, a legal inference system for the Pe­
nal Code is introduced, and the effectiveness of the legal 
reasoning and parallel inference model is shown. 

1 Introduction 

The primary knowledge source of a legal inference system 
is a statutory law. A statutory law is a set of legal rules. 
As legal rules are given as logical sentences, they are 
easily represented as logical formulae. Therefore, if a 
new case is described using the same predicates as those 
appearing in legal rules, we can draw legal conclusions 
by deductive reasoning. 

However, legal rules often contain legal predicates (le­
gal concepts) such as "public welfare" and "in good 
faith" . Some legal concepts are ambiguous and their 
strict meanings are not fixed until the rules are applied 
to actual facts. Predicates which are used to represent 
actual facts do not contain such legal concepts. As there 
are no rules to define sufficient conditions for legal pred­

icates, in order to apply legal rules to actual facts, inter­
preting rules and matching between legal concepts and 

facts are needed. To realize this, precedents (old cases) 
are often referenced because they contain the arguments 
of both sides (plaintiff vs. defendant or prosecutor vs. 
defendant) and the judge's opinions concerning interpre­
tation and matching. 

Consequently, legal reasoning can be modeled as 
a combination of logical inference using legal rules 
and case-based reasoning using old cases. Based on 
this model, several hybrid legal inference systems con­
sisting of two inference engines have been developed 

[Rissland et al. 1989] [Sanders 1991(a)]. However, as 
practical legal systems contain many legal rules and old 
cases, it takes a long time to draw conclusions. More­
over, controlling two engines often requires a complex 
mechanism. 

ICOT (Institute for New Generation Computer Tech­
nology) has developed parallel inference machines (Multi 
PSI and PIMs) [Uchida et al. 1988],[Goto et al. 1988]. 
These are MIMD-type computers, and user's programs 
written in parallel logic programming language KL1 
[Chikayama et al. 1988] are executed in parallel on 
them. 

The HELIe-II (Hypothetical Explanation construc­
tor by Legal Inference with Cases by 2 inference engines) 
is a legal inference system based on the hybrid model. It 
has been developed on the parallel inference machine, 
and draws legal conclusions for a given case by quickly 
referencing statutory law and old cases. 

In Section Two, we introduce the function and archi­
tecture of HELIC-II. In Section Three, we explain legal 
knowledge representation. In Section Four, we explain 
the reasoning mechanism of HELIC-II. In Section Five, 
a legal inference system of the Penal Code is explained. 

2 Overview of HELIC-II 

The function of HELIC-II is to generate all possible legal 
conclusions for a given case by referring to legal rules 
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and old cases. These conclusions are represented in the 
form of inference trees which include final conclusions 
and explanations of them. 

HELIC-II consists of two inference engines - the rule 
based engine and the case-based engine - and three 
knowledge sources - a rule base, a case base and a dic­
tionary of concepts (see Fig.I). The rule-based engine 
refers to legal rules and draws legal consequences log­

ically. The case-based engine generates abstract pred­
icates (legal concepts) from concrete predicates (given 
facts) by referring to similar old cases. 

HELIC-II draws legal consequences using these two 
engines. Since the reasoning of these engines is data­
driven, there are no special control mechanisms to man­
age this. A typical pattern of reasoning by HELIC-II 

is as follows. When a new case (original facts) is given 
to HELIC-II, the case-based engine initially searches for 
similar old cases and generates legal concepts which may 
hold in the new case. These concepts are passed to 
the rule-based engine by way of working memory(WM). 
Then, the rule-based engine draws legal consequences us­
ing original facts and legal concepts. 

These results are gathered by an explanation construc­
tor, which then produces inference trees. 

Figure 1: The architecture of HELIC-II 

3 Knowledge Representation 

In this section, we will explain the representation of legal 
knowledge in HELIC-II. We will show how to represent 
legal rules, old cases and legal concepts. 

3.1 Representation of Legal Rules 

A statutory law consists of legal rules. Each legal rule is 
represented as follows. 

RuleN ame( Comment, Rulelnfo, 

[AI ,A2 , ••• ,Ai]-+ [[BI, .. ,Bk],[CI, .. ,C1], •• ]). 

In this clause, RuleName is the rule identification, 
Comment is a comment for users and Rulelnfo is ad­
ditional information such as article number. The. 

LHS ([All A 2 , ••• , Ai]) is the condition part, and the 
RHS([[BI , .. , Bk ], [CI , .. , Cd, .. ]) is the consequence part. 

[BI, .. , B k ] and [CI, .. , Cd are combined disjunctively. 
Each literal of the LHS and RHS is an extended pred­
icate or its negation (denoted by""''' or "not"). An 
extended predicate consists of a predicate (concept), an 
object identifier and a list of attribute = value pairs. 
The following is an example of an extended predicate. 
An object "drivel" is an instance of a concept "drive". 
Two attribute = value pairs (agent = tom and car = 

toyotaI) are defined. 

drive(drivel, [agent = tom, car = toyotaI]). 

Internally, this extended predicate is treated as a set 

of the triplet {obj ect, attribute, value} as follows. 

{drivel, agent, tom} 
{drivel,car,toyota1} 

In a clause, we can use "not" (negation as failure) 

in addition to ""," (logical not). By introducing "not", 
nonmonotonic reasoning is realized, and the representa­
tion of exceptional rules and presumed facts are easily 
represented [Sartor 1991]. 

The following are examples of legal rules. 

homicideOI("example", [article = 199], 
[person(A) , person(B), 

action(Action, [agent = A]), 

intention (Intention, [agent = A, action = Action, 
goal = Result]), 

death(Result, [agent = BJ), 
caused(Caused, [event = Action,effect = Result2]), 
death(Result2, [agent = B]), 
riot( '" illegality( Illegal, [agent = A, 



action = Action, result = Result2])] 

[[crimeO f H omicide( Crime, [agent = A, 
action = Action, result = Result2])]]). 

legality01("example", [article = 38], 

[action(Action, [agent = A]), 
intention (Intention, [agent = A, action = Action, 

goal = Result]), 
selfDefence(Result, [object = Action]), 
caused( Caused, [event = Action, effect = Result2])] 

[["" illegality(Illegal, [agent = A, 
action = Action, result = Result])]]). 

The first rule is a definition of the crime of homicide, 
which is given by the Penal Code. 

The meaning of "not( "" illegality(Illegal, [ ... ])" is 
that illegality is presumed, in other words, if there 
isn't proof that """ illegality(Illegal, [ ... ])" holds then 
"not( "" illegality (Illegal, [ ... ])" is true. 

The second rule is an exception of the first 
rule. If a person did some action in defense, 
"illegality(Illegal, [ ... ])" is refuted. 

3.2 Representation of Cases 

A judicial precedent consists of the arguments of both 
sides, the opinion of the judges and a final conclusion. 
We represent a precedent (an old case) as a situation and 
some case rules, and represent a new case as a situation. 

(1) Situation 

A situation consists of a set of events/objects and their 
temporal relations. An event and an object are repre­
sented as an extended predicate as introduced in the pre­

vious section. The temporal relations are represented as 
follows. 

problem(CaseID, Comment, TemporalRelations). 

CaseID is the case identification, Comment is a com­
ment for users and TemporalRelations is a list of relations 
between events. To represent temporal relations between 

events/obj~cts, we use Allen's interval notation such as 
"before", "meets", "starts", and so on [Allen 1984]. 

The following is an example of a situation. 

problem(traf ficAccident112, "example", 

[before(dinnerl, drivel), during (accident1 , drivel)]). 

dinner(dinnerl, [agent = john,place = maxim's]). 

drive(drive1, [agent = john, car = toyota1]). 
accident(accident1, [agent = john]). 

person(john, [sex = male]). 
person(mary, [sex = female]). 
restaurant(maxim's, [rank = 5stars]). 
car(toyota1, [type = sportsCarl). 
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The meaning of this example is that the case 
"traf fic accident 112" consists of three events such as 

"dinner1", "drivel" and "accidentl". "Dinner1" oc­
curred before "drivel", and "accident1" happened dur­
ing "drivel". The event "dinned" is a lower concept of 
"dinner", and it is acted by "john" in "maxim's", etc .. 

(2) Case Rules 

Arguments by both sides are represented as a set of 
case rules. The following is the syntax of a case rule. 

RuleN ame( Comment, Rulelnfo, 

[AI, A 2 , ... , Ai] -+ [BI' B 2 , .. , Bk])' 

RuleName is the rule identification, Comment IS a 
comment for users and RuleInfo is additional information 

such as a related article, index for the opposing side's 
case rules, relation to judge's decision and so on. The 
LHS ([AI, A 2 , ... , Ai]) is the context of the opinion, and 
the RHS ([Bb B 2 , .. , B k]) is the conclusion insisted on by 
one side. 

The following is an example of a case rule. 

rule001("example" , 
[ article = 218, insisted = prosecutor, 

result = lost], 
[ drive(drive1, [agent = john/important, 

object = toyota1/trivial]), 
person(john, [sex = male/trivial]), 
person(mary, [sex = female/trivial]), 
accident(accident1, [agent = john/important]), 
caused( caused1, [event = accident1/important, 

effect = injury1/important]), 
injury(injury1, [agent = mary/trivial])] 

[ responsibility(resp1, [agent = john, 
object = ken, reason = accident1])]). 

The meaning of this case rule is:"In the case that a 
traffic accident caused by John injured Mary, John had 
a responsibility of care to Mary." This rule concerns ar­
ticle 218 of the Penal Code and was insisted on by the 

prosecutor, but the judge didn't employ this rule. On 
the LHS, "effect = injury1" is an important fact from 
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the legal point of view. Therefore, this fact is marked 
as "important". We can use "exact", "important" and 
"trivial" to represent levels of importance. This infor­
mation is used to calculate the similarity between two 
situations. 

Arguments in a case are sequences of case rules. As 
both sides try to draw contradictory conclusions, an old 
case contains case rules whose conclusions are inconsis­
tent. 

3.3 Representation of Concepts 

All concepts in legal rules and cases must he contained 
in the dictionary. In other words, each event and object 
in a situation are instances of these concepts. 

In the dictionary, a super concept, a concept and a list 
of attributes are defined as follows. 

obj ect( creature, []). 

creature(person, [age, sex)). 

person(person, []). 

person(infant, []). 

creature(lion, []). 

action(drive, [agent, car, destination]). 

The similarity between concepts is defined by the dis­

tance in the hierarchy (see Fig.2). For example, "baby" 

is closer to "infant" than to "lion" because it requires 
two steps for "baby" to reach "infant" but thr~e steps 
to reach "lion" in this hierarchy. 

creature 

/"" lion 

infant baby 

Figure 2: Hierarchy of concepts 

4 Reasoning by HELIC-II 

In this section, we will explain the reasoning mecha­
nisms of the rule-based engine and the case-based en­
gine. These engines are implemented in the parallel logic 
programming language KL1 and run on the parallel in­
ference machine. 

4.1 A Rule-based Engine 

The function of the rule-based engine is to draw all le­
gal consequences by the forward reasoning of legal rules, 
using original data (a new case) and results from a case­
based engine. 

The rule-based engine is based on the parallel 
theorem prover MGTP (Model Generation Theorem 
Prover)[Fujita et al. 1991] developed by ICOT. 

MGTP solves range restricted non-Horn problems by 
generating models. For example, let's take the following 
clauses. 

C1: true -4 p(a); q(b). 

C2: p(X) -4 q(X); r(X). 

C3: r(X) -4 s(X). 

C4: q(X) -4 false. 

M1 ={p(a)} 

/C2~ 
M3={p(a),q(a)} M4={p(a),r(a)} 

C4 C3 

M2={q(b)} 

C4 

x 

x M5={p(a),r(a),s(a)} 

Figure 3: MGTP proof tree 

MGTP calculates models which satisfy these clauses 
as follows (see Fig.3). The proof starts with null model 
MO = {¢>}. By applying C1, MO is extended into M1 = 
{p(a)} and M2 = {q(b)}. Then, by applying C2, M1 is 
extended into M3 = {p(a), q(a)} and M4 = {p(a), r(a)}. 

Using C4, M3 and M2 are discarded. By C3, M4 is 
extended to M5 = {p(a),r(a),s(a)}. M5 is a model 
which satisfies all clauses. 

In MGTP, each clause is compiled into a KL1 clause, 
and each KL1 clause is applied in parallel on the parallel 
inference machine. In the problem in which the proof 
tree has many branches, parallel inference performance 
becomes high. 

To use MGTP as a rule-based engine of HELIC-II, we 
extended the original MGTP as follows. 



1. Realization of "not (negation as failure)": We 
made MGTP able to treat "negation as failure" 
based on [Inoue et aI. 1991]. For example, the fol­
lowing C is treated as C', and the model is extended 
in two ways (see FigA). Here, "k" is a modal opera­
tor, and "k(r(X»" means that the model is believed 
to contain a datum which will satisfy reX) in the 
future. 

C: not(r(X» ~ seX). 
C': dom(X) ~ k(r(X»; '" k(r(X», seX). 

After MGTP generates models which satisfy all 
clauses, the rule-based engine examines each of 
them. For example, if a model contains both '" 
k(r(a» and rea), or if a model contains k(r(a)) and 
doesn't contain r( a), the model is discarded. 

~ ------

Figure 4: Negation as failure of MGTP 

2. Realization of the multiple context: The rule­
based engine uses both original facts (a new case) 
and results from the case-based engine as the ini­
tial model. The case-based engine may generate 
data which conflicts with each other such as "q(b)" 
and "", q(b)". Therefore, before reasoning, the rule­
based engine has to split the initial model into sev­
eral ones so that each model doesn't contain any 
conflicts (see Fig. 5). 

However, the case-based engine has not generated 
all results when the rule-based engine begins to rea­
son because the reasoning of both engines is data 
driven. To obtain the pipeline effect, we developed a 
function to register predicates which may cause con­
flicts, and to split the model when such predicates 
reach the rule-based engine. For example, in Fig.5, 
if '" q(b) reaches the rule-based engine, the model 
is split l?efore q(b) is reached. We implemented this 
mechanism by using a similar modal operator as the 
"k-operator" . 

3. Keeping justification: To' construct inference 
tr~es, th~ rule-based engine must keep the justifica­
tions for each consequence. A justification consists 
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The Case-based Engine 

plaintiff's defendant's 
opinion opinion 

{-q(b)} {q(b)} 

The Rule-based Engine 

initial models 

Figure 5: Splitting a model 

of a rule name and data which matches the LHS of 
the rule. 

4. Temporal reasoning: We prepared a small rule 
set of temporal reasoning [Allen 1984] to help in de­
scribing the temporal relation. The following are 
example rules. 

before(A, B), before(B, C) ~ before(A, C). 
meets(A,B),overlaps(C,B) ~ 

overlaps(A, C); during(A, C); starts(A, C). 

With these extensions, the rule-based engine has many 
proof tree branches even if clauses don't have the dis­
junction such as C1 and C2 in Fig.3. Therefore, the 
rule-based engine has a lot of parallelisms in its reason­
ing. 

4.2 A Case-based Engine 

The function of the case-based engine is to generate legal 
concepts by using similar old cases. The reasoning of the 
case-based engine consists of two stages (see Fig.6). 
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I New Case I situation Time 

I ~~ 
(Tom hits Mary }--~ 

causality ? 

Case1 
'---~------~==~~----------::~-Case2 

situation Time Case3 
I ~ I ~ 

( Jim kicks Bi II ) D (injury ) 

case rule --------------------
C)O 

Figure 6: Reasoning by the case-based engine 

1. Searching similar cases: 

The role of the first stage is to search for similar 
cases from the case base. At first, the case-based 
engine constructs a sequence of events for each case. 
As the situations of the new case and old cases are 
described as a set of events/objects and their tem­
poral relations, it is easy to coristruct a sequence of 
events for each situation. 

Then, the case-based engine tries to extract com­
mon subsequences from event sequences of the new 
case and each old case. For example, let's take the 
following two sequences. 

Sl: [ ... , meets(strike1, injury1), 
during(runAwayl, injuryl), .. ] 

S2: [ ... , before(kick2,sneak2), .. ] 

In this example, the temporal relation between 
"strikel" and "runAway1" is the same as that of 
"kick2" and "sneak2". Furthermore, "strikel" and 
"kick2" have a common upper concept "violence", 
and "runAway1" and "sneak2" have a common up­
per concept "escape" in the dictionary. Therefore, 

we regard [strikel, runAwayl] and [kick2, sneak2] as 
mapped subsequences of Sl and S2 (see Fig.7). 

violence escape 

strike 1 

I I 
injury 1 

81 
runAway 1 

I I 
kick 2 

82 It-----I 
sneak 2 

Figure 7: Subsequence of events 

The similarity between two cases is evaluated by the 
length of the longest mapped subsequence. Several 
cases whose similarities are beyond a threshold are 
selected in the first stage. 

2. Applying case rules: 

The role of the second stage is to apply the case 
rules of selected cases as follows [Branting 1989]. 

At first, the similarity between the LHS of a case 
rule and a new case is evaluated. For example, let's 
take "rule001" in section 3.2 and the following new 
case. 

person(bill, [D. 
baby(jane, O). 
cycle( cycle2, [agent = bill, object = honda2D. 
collision( collision2, [agent = bill]). 
sprain(sprain2, [agent = jane]). 

intention( intention2, [goal = injury2]). 
injury(injury2, [agent = jane]). 

The engine tries to map the LHS of "rule001" to 
a new case. As the following pairs of event/ohject 
have common upper concepts in the dictionary, we 
map these pairs (see Fig.8). 

john ~ bill 
mary ~ jane 
drivel ~ cycle2 
toyotal ~ honda2 



LHS of rule001 

Figure 8: Mapping networks 

accident! 
injuryl 
causedl 

+-+ collision2 
+-+ sprain2 
+-+ caused2 

agent 

The similarity is evaluated by counting the number 
of mapped links in Fig.8. As we explained in sec­
tion 3.2, an ann6tation (exact, important, trivial) is 
attached to each link in the network. These annota­
tions and the distances between concepts are used as 
weights to evaluate similarities. Even if some condi­
tions of a case rule are not satisfied, but the impor­
tant conditions are satisfied, then the LHS may be 
judged as similar to the new case. For example, in 
Fig.8, though there is no node which can be mapped 
to "negligencel", "ruleOOl" may be selected as sim­
ilar. 

Next, the case-based engine selects case rules whose 
LHSes are similar to the new case, and executes their 
RHSes. 

The matching and executing case rules are repeated 
until there are no case rules left to be fired. 

On the parallel inference machine, each stage is ex­
ecuted in parallel. In the first stage, before searching, 
cases are distributed to processors (PEs) of the parallel 
inference machine, and then a new case is sent to each 

PE. Each PE evaluates similarities between the new case 
and old cases, and selects similar ones. 
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new case 

{cycle2.agent.bill} •..... 

Figure 9: Rete-like networks of KLl processes 

In the second stage, case rules are distributed to PEs, 
and the LHSes of each case rule are compiled into a Rete­
like network of KLl processes (see Fig.9). Then, triplets 
({object,attribute,value}) which are facts of the new 

case are distributed to each PE as tokens. To realize 
matching based on similarity, each one-input node refers 
to the dictionary of concepts, and each two-input node 
not only examines the consistency of pairs of tokens but 
evaluates their similarities with the LHS. 

5 A legal reasoning system for 
the Penal Code 

We developed an experimental legal reasoning system for 
the Penal Code. 

In the Penal Code, general provisions and definitions 
of crimes are given as legal rules. Though they seem to be 
strictly defined, the existence of criminal intention and 
causality between one's action and its result often be­
comes the most difficult issue in the court. The concept 
of causality in the legal domain is similar to the concept 
of responsibility and is different from physical causality. 

Therefore, to judge the existence of causality, we have to 
take into account various things such as social, political 

and medical aspect. 

We show the function of the reasoning system of the 
Penal Code using Mary's case. We selected this case 
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from the qualification examination for lawyers in Japan. 

Mary's Case: 

On a cold winter's day, Mary abandoned her 
son Tom on the street because she was very 
poor. Tom was just 4 months old. Jim found 
Tom crying on the street and started to drive 
Tom by car to the police station. However, Jim 
caused an accident on the way to the police. 
Tom was injured. Jim thought that Tom had 
died of the accident arid left Tom on the street. 
Tom froze to death. 

The problem is to decide the crimes of Mary and Jim. 
The hard issues of this case are the following. 

1. Causality between Mary's action and Tom's 
death: 

If Mary hadn't abandoned Tom, Tom wouldn't have 
died. Moreover, the reason for his death wasn't in­
jury but freezing. Therefore, some lawyers will judge 
the existence of causality and insist she should be 
punished for the crime of "abandonment by person 
responsible resulting in death". On the other hand, 
other lawyers will deny any causality because causal­
ity was interrupted by Jim's action. 

2. Causality between Jim's action and Tom's 
death: 

Jim did several actions such as "pick up", "drive", 
"cause accident" and "leave Tom". Among them, 
"cause accident" will be punished by the crime of 
"injury by negligence in the performance of work" , 
and "leave Tom" will be punished by the crime of 
"d eath by negligence". Moreover, if there is causality 
between "cause accident" and Tom's death, Jim will 
be punished by the crime of "death by negligence 
in the performance of work" which is very grave. 
As the main reason of Tom's death is freezing, it is 
difficult to judge the causality. 

Though the Penal Code has no definite rule for the 
causality, lawyers can get hints from old cases. For ex­
ample, let's take Jane's case which was handled by the 
Supreme Court in Japan. 

Jane's Case: 

Jane strangled Dick to kill him. Though Dick 
only lost consciousness, Jane thought he was 

dead. Then, she took him to the seashore, and 
left him there. He inhaled sand and suffocated 
to death. 

In the court, there were arguments between the prose­
cutor and Jane. The prosecutor insisted Jane should be 
punished by the crime of homicide because of the follow­
ing reasons. 

PI: "Strangling" and "taking to the seashore" should be 
considered the one action of performing the homi­
cide. Therefore, it is evident that there was an in­
tention to kill Dick and causality between her action 
and Dick's death. 

P2: There is causality between "strangling" and "Dick's 
death" even though "strangling" wasn't the main 
reason for his death. 

On the contrary, Jane insisted her actions didn't sat­
isfy the condition of the crime of homicide because of the 
following reason. 

J1: "Strangling" should be punished be the crime of 
"attempted homicide, and "taking to the seashore" 
should be punished by the crime of "manslaugh­
ter caused by negligence" because there isn't causal­
ity between strangling and Dick's death, and there 
wasn't an intention to kill him when taking him to 
the seashore. 

We represent Mary's situation and Jane's case rule as 
follows. 

Mary's situation 
problem("mary's case", "example", ..... ). 
abandon(aba1, [agent = mary, object = tom]). 
pickup(pic2, [agent = jim, object = tom]). 

traf ficAccident(acc1, [agent = jim]). 

Jane's opinion 
rule002("Jane's case", 

[article = 218, insisted = defendant, 
result = lost], 
[ suf focate(suf1, [agent = jane/trivial, 

object = dick/trivial]), 
intention(int1, [agent = jane/trivial, 

object = act1/important, 
goal = deathl/important]), 

death(deathl, [agent = dick/trivial]), 



caused(causedl, [event = aetl/important, 
ef feet = lostl/important]), 

rv caused(causedl, [event = actl, 
ef feet = death3])]). 

The case-based engine of HELIe-II generated 
"rv caused(ID, [event = acc1, effeet = death9])" byap­
plying rule002. 

In Mary's case, HELIe-II generated 12 inference trees. 
Some of them are based on the prosecutor's opinion and 
others are based on the defendant's opinion. The root 
of each tree is a possible crime such as abandonment 
by a person responsible resulting in death, manslaugh­
ter caused by negligence, etc .. The leaves are the initial 
data of the new case, and intermediate nodes are conse­
quences by case rules or legal rules (see Fig.l0). 

......... f[e 4 

au I 

Figure 10: An Inference Tree 

We measured the calculation time to draw a conclusion 
for Mary's case on the experimental parallel inference 
machine Multi-PSI. The number of rules used was about 
20 and the number of cases used was about 30. 

Fig.s 11 and 12 show the performance of the case-based 
engine, and Fig.13 shows the performance of the rule­
based engine. These graphs show the effectiveness of the 
parallel inference. 

6 Conclusion 

We introduced the parallel legal reasoning system 
HELIe-II. The advantages of HELIe-II are as follows. 
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Figure 11: Performance of stage 1 of the case-based en­
gine 
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Figure 12: Performance of stage 2 of the case-based en­
gine 
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1. The hybrid architecture of HELIC-II is appropriate 
to realize legal reasoning. As the reasoning of both 
engines is data-driven, controlling these engines is 
easier. 

2. The knowledge representation and inference mech­
anisms of HELIC-II are simple' but convenient to 
represent legal rules. and old cases. 

3. By parallel inference, HELIC-II draws conclusion 
quickly. As the rule base and the case base of the 
legal domain are very large, quick searching and 
quick reasoning are important to develop practical 
systems. 

4. Though it is troublesome to represent cases in de­
tail, the rules of temporal reasoning help to describe 
cases. 

There are many tasks for extending HELIC-II. The 
following are examples. 

• Though the case-based engine IS focusing on 
the similarity between two cases, we have to 
develop a mechanism to contrast two cases 
[Rissland et al. 1987],[Rissland et al. 1989]. By 
comparing two inference trees, it is possible to con­
struct a debate system. 

• To describe legal rules in detail, we have to integrate 
an extended logic system such as the logic of belief 
and knowledge with temporal logic on MGTP. 

• To improve the power of the similarity based match­
ing of the case-based engine, we have to introduce a 
derivational analogy mechanism. 

• As inference trees are not suitable for allowing 
lawyers to understand the inference steps, they are 
represented in natural language. 
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Abstract 

Logic programs resemble context-free grammars. More­
over, Prolog's proof procedure can be viewed as a gener­
alization of a simple top-down parser with backtracking. 
Just as there are parsers with advantages over that sim­
ple one, it may be desirable to develop other proof pro­
cedures for logic programs than the one used by Prolog. 
The similarity between definite clauses and productions 
suggests looking at parsing to develop such procedures. 
We show that for an important class of logic programs 
(fixed-mode logic programs with ground data structures) 
the conversion of parsers into proof procedures can be 
straightforward. This allows for proof procedures that 
construct refutations that Prolog does not find and opens 
up opportunities for parallelism. 

1 Introduction 

A logic program consists of clauses that look like the pro­
ductions of a context-free grammar. This suggests con­
nections between proof procedures and parsers. In fact, 
Prolog's proof procedure can be regarded as a generaliza­
tion of a simple parser with backtracking. Although this 
language has found numerous applications, its execution 
mechanism has several disadvantages. For instance, if 
such a mechanism finds an infinite branch of the deriva­
tion tree, it enters a non terminating loop. Thus, it may 
be desirable to develop new proof procedures for logic 
programs. 

Simple parsers with backtracking also enter nontermi­
nating loops easily. This has motivated the design of 
other more sophisticated parsing methods. In contrast 
with proof procedures for logic programs, there already 
exists a great variety of parsers. The resemblance be­
tween definite clauses and productions suggests looking 
at parsers to develop new proof procedures. 

Pereira and Warren [1983] have adapted Earley's 
[1970] parsing algorithm, but the result is inefficient com­
pared with Prolog. It uses subsumption, which is NP­
complete [Garey and Johnson 1979]. We show that by 

considering a restricted class of logic programs, parsers 
can be readily adapted to proof procedures. This class is 
important: it consists of fixed-mode logic programs with 
ground data structures. Moreover, our proof procedures 
do not use subsumption and may be more efficient than 
Pereira and Warren's. 

Compositional programs. By using difference lists 
to represent strings, a logic program can be restricted to 
coincide with the productions of a context-free grammar. 
Hence, for this class of logic programs, parsers are proof 
procedures. Such a class, however, only has the expres­
sive power of context-free grammars. Assuming that we 
are interested in having a programming language, this 
suggests generalizing such programs without losing the 
close similarity with grammars. We do so by allowing the 
body of clauses to denote the composition of arbitrary 
binary relations; we call such programs "compositional." 
Prolog programs are not normally written in composi­
tional form. Thus, we consider programs in a larger class 
(fixed-mode programs with ground data structures) and 
transform [Rosenblueth 1991] them into compositional 
form. 

Fixed-mode programs. A "mode" for a subgoal is 
the subset of arguments that are variables at the time 
the subgoal is selected. Thus, the mode depends on the 
derivation tree for a program and a query. When we refer 
to a "fixed-mode logic program," we actually mean a pro­
gram and a query such that with Prolog's computation 
rule all subgoals with the same predicate symbol have 
the same mode. By further restricting these programs 
to have "ground data structures," we require all argu­
ments in a subgoal that are not variables to be ground 
terms when the subgoal is selected. This class of pro­
gram is important because it includes many programs 
occurring in practice. 

At first glance, it seems that the presence of differ­
ence lists causes a program to have data structures with 
variables. However, by separating both components of a 
difference list it is possible to write some programs using 
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difference lists as programs with ground data structures. 
(The usual quicksort program is such an example; the 
sorted list is then built backwards.) 

Overview of the paper. The rest of this paper is or­
ganized as follows. Section 2 reviews chart parsers. Sec­
tion 3 shows that such parsers are a,lso correct for com­
positional programs. Section 4 deals with a method for 
converting fixed-mode to compositional programs, thus 
making chart parsers proof procedures for the former 
class of programs. Section 5 compares these procedures 
with Pereira and Warren's. Section 6 concludes this pa­
per with some remarks. 

2 Chart parsers 

Charts. Chart parsers [Gazdar and Mellish 1989] are 
methods for parsing strings of context-free languages 
that can be regarded as a generalization of Earley's algo­
rithm. A chart is a set of "partially" applied productions, 
usually called edges. Each edge contains, in addition to 
the part of a production to be applied and the left-hand 
side of that production, two pointers to symbols of the 
string being parsed. The substring between these point­
ers corresponds to the part of that production that has 
already been applied. 

It is useful to classify edges into those that have not 
been applied at all: empty active edges, those that have 
already been applied completely: passive edges, and all 
the others: nonempty active edges. 

The fundamental rule. New edges are created ac­
cording to the following rule, often called the fundamen­
tal rule. 

If a chart contains: 

1. an active edge (either empty or nonempty) from 
point a to point b in which the next symbol to be 
applied is Q, and 

2. a passive edge with left-hand side Q, from point b 
to point c, 

then create a new edge from a to c in which the produc­
tion is the same as the one in the active edge, but with 
Q applied. Figure 1 illustrates this rule. In figures 
representing edges, we use the following notation. Each 
edge is labeled with an arrow, a symbol to the left of 
the arrow, and a possibly empty string to the right. The 
symbol is the left-hand side of the partially applied pro­
duction. The string is the part of that production that 
remains to be applied. 

Top-down and bottom-up parsing. The fundamen­
tal rule takes only existing edges to create new ones, and 
does not use information from the set of productions. 

P-+-R .. ·S 

a b c 

Figure 1: The fundamental rule. 

Therefore, a mechanism is needed for building edges from 
productions. Two main mechanisms for this purpose 
are used, commonly called "top-down" and "bottom-up" 
rules. The former builds parse trees from the root to­
wards the leaves, and the latter does so from the leaves 
towards the root. 

The top-down rule creates edges as follows. If an active 
edge from a to b is added to the chart, in which the next 
symbol to be applied is Q, then create one empty active 
edge from b. to b for every production having Q as lejt­
hand side and labeled with that production. Figure 2 
exemplifies this rule. 

a 

Q-+-S .. ·T 

b 

one new edge 
for every 

production 
Q-+-S .. ·T 

Figure 2: The top-down rule. 

Given a parse tree having a leaf Q and a node P as 
parent of Q, this rule allows for Q to be expanded by 
creating an empty active edge with Q as left-hand side. 
Hence, parse trees are built by expanding the leaves with 
nonterminals, which is a construction of parse trees from 
the root towards the leaves. 

The bottom-up rule creates edges as follows. If a pas­
sive edge from a to b is added to the chart, in which 
the left-hand side symbol is Q, then create one empty ac­
tive edge from a to a for every production having Q as 
first symbol on the right-hand side and labeled with that 
production. This rule is depicted in Figure 3. 

The bottom-up rule takes a passive edge, representing 
a parse subtree with Q as root. By creating an empty 
active edge with Q as first symbol to be applied, and P 
as left-hand side, Q becomes the child of a node P, which 
is the root of a new subtree. Thus, this rule builds parse 
trees from the leaves towards the root. 



one new edge 
for every 

production 
P-Q···R 

P-Q···R 

a 

Figure 3: The bottom-up rule. 

b 

Base of the chart. The fundamental rule takes two 
edges. One of them is active and the other one passive. 
The next symbol to be applied in the former must be 
the left-hand side of the latter. This means that the case 
where the next symbol to be applied is a terminal is not 
covered (all left-hand sides of productions are non termi­
nals). We can remedy this situation by assuming that 
the productions have been written in such a way that 
each terminal occurs only in productions with exactly 
one symbol (that terminal) on the right-hand side. Now 
we can create certain edges as follows. For each produc­
tion with a terminal occurring in the string being parsed, 
we create a passive edge from that terminal to the next 
one, labeled with that production. We can do so, because 
an edge represents a partially applied production (where 
"partially" may mean "completely") and all those pro­
ductions can be immediately applied. Now we can rely 
only on the fundamental rule to operate existing edges. 
We shall call the set of all edges created from terminals 
the base of the chart. 

Initialization. To initialize a parser using the bottom­
up rule, it suffices to create the base. The reason is that 
the creation of edges in the bottom-up rule depends only 
on the existence of a passive edge. In a parser using 
the top-down rule, however, we must also create empty 
active edges from the first symbol of the string being 
parsed to itself labeled with productions having the start 
symbol of the grammar as left-hand side. This is because 
such a rule uses an active edge to create another one. 

Agenda. The rules for producing edges that we have 
described only create edges, but do not add them to the 
chart. Normally, chart parsers store edges in two differ­
ent data structures: the chart and an agenda of the set 
of edges to be added to it. The choice of the procedure 
for selecting edges from the agenda to be added to the 
chart is a degree·of freedom relegated to the chart-parser 
designers. When an edge is removed from the agenda, 
it is added to the chart only if it has not been added 
before. 
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([], [a], [b]) ([a], [], [b)) ([a], [b]) ([],[a,b]) 

Figure 4: A char't constructed with the top-down rule. 

Example. Figure 4 shows a chart created by a parser 
using the top-down rule for the grammar with produc­
tions: 

a -- ko a kl 

a -- ([a], [], [b]) 
ko -- ([], [a], [b]) 
kl -- ([a], [b]) 

and the input string ([], [a], [b]) ([a], [], [b]) ([a], [b]) 
([], [a, b]). Terminals have been enclosed in angled brack­
ets. The last symbol ([], [a, b]) is not part of the string 
itself, but rather an end marker. This example will be 
used again to illustrate the chart created by a proof pro­
cedure when concatenating [a] to [b]. 

Phillips' variant of the bottom-up parser. 
Phillips observed [Simpkins and Hancox 1990] that the 
bottom-up chart parser can be modified so that some 
edges can be disposed of as the chart is built. The 
agenda, then, only keeps passive edges, ordered with re­
spect to the position of the symbol on the string they start 
from. The chart only keeps active edges. When the first 
passive edge E is removed from the agenda and momen­
tarily added to the chart, then 

1. the fundamental rule is applied as many times as 
possible, and 

2. the bottom-up rule is also applied if possible, fol­
lowed by applications of the fundamental rule. 

In both cases, if the resulting edges are active, they are 
added to the chart; otherwise they are added to the 
agenda. After this, E can be disposed of. The reason 
is that E cannot contribute to the creation of any more 
new edges. 
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3 Chart parsers as proof proce­
dures 

In this section we will show that chart parsers can be re­
garded as proof procedures for compositional programs. 

State-oriented computations. The difference-list 
representation of strings associates a production 

(1) 

with a clause of the form 

(2) 

and a production with a single terminal on its right-hand 
side 

(3) 

with 
(4) 

With a programming language having only those 
clauses we cannot compute all computable functions. 
But if we generalize (4) to 

p(t, t') +- (5) 

where t and t' are terms such that var(t') ~ var(t), we 
can. (Throughout, var( t) denotes the set of variables oc­
curring in term t.) This can be shown, for instance, by 
associating a logic program with a flowchart in such a 
way that both have the same set of computations [Clark 
and van Emden 1981]. A refutation for such a program 
and a query with a ground term in its first argument may 
be said to define a sequence of ground terms, resembling 
the sequence of states in a computation of a program­
ming language using destructive assignment. Thus we 
shall say that such a logic program defines state-oriented 
computations. 

Strings vs. state-oriented computations. There 
are two main differences between state-oriented compu­
tations and strings. One is that at a given point of a 
state-oriented computation, there may be more than one 
way to extend it. State-oriented computations are then 
said to be nondeterministic. This phenomenon does not 
occur in strings, which have a linear structure. 

The other difference is that whereas we do know all 
the symbols of the string before it is parsed, we do not 
know initially all the states in a computation. A proof 
procedure could in principle compute some sequence of 
states before trying to build a chart. However, it may 
not be convenient to do so, because not all sequences of 
states form the base of a chart. A better idea is to extend 
the computations one step at a time, guided by the part 
of the chart built so far. 

Chart parsers as proof procedures. We shall gen­
eralize chart parsers to proof procedures by establishing 
a correspondence between chart parsing and resolution. 

The difference-list representation of languages suggests 
that clauses of the form (2) should play the role of pro­
ductions with no terminals on the right-hand side (1). 
Clauses of the form (5) would then be the counterpart of 
productions with exactly one terminal on the right-hand 
side (3). 

Given this correspondence, we now turn our attention 
to edges. The fundamental rule of chart parsing takes 
two edges and produces another one. Resolution, on the 
other hand, takes two clauses and produces another one. 
This suggests identifying edges with clauses and the fun­
damental rule with a resolution step. 

The fundamental rule. If an edge from a to b labeled 
with Po ---7 Pi· .. Pn corresponds to a clause of the form 

(6) 

then the fundamental rule corresponds to a resolution 
step having (6) (which plays the role of the active edge) 
and 

Pi(b, c) +-

(which plays the role of the passive edge) as input 
clauses. The resolving clause of this resolution step is 

which corresponds to an edge from a to c labeled with 
Po ---7 Pi+1 ••• Pn . By correctness of resolution, the re­
solving clause is a logical consequence of the two input 
clauses. Thus, we have generalized the fundamental rule 
to a correct operation. 

The top-down and the bottom-up rules. Given 
the above identification of clauses with edges, the top­
down rule for parsing corresponds to the following. Let 
P be a program in compositional form. If a clause of the 
form 

is added to the chart, then create a clause of the form 

for every clause in P of the form 

The created clause is an instance of a clause in P, which 
is a logical consequence of P. The bottom-up rule can 
be generalized in a similar way. 



The base. The base can be extended one step at a 
time as follows. For each clause 

that is created, create a clause 

r(b, t'f)) ~ 

for each clause in P of the form 

r(t, t') ~ 

such that band t unify with unifier f) and there is a path 
from Pi to r. There is a path from p to r if 

1. pis r or 

2. there is a clause in P of the form 

and there is a path from q to r. 

4 Conversion of fixed-mode to 
compositional programs 

We have seen that chart parsers can be regarded as 
proof procedures for compositional programs. However, 
logic programs are hot normally written in compositional 
form. In this section we observe that it is possible to con­
vert a fixed-mode logic program with ground data struc­
tures into compositional form. The resulting program' is 
logically implied by an extension of the original one. 

First we define the class of programs transformable by 
our method and the class produced by it. Then we prove, 
for a particular example, the correctness of the resulting 
program. We omit the proof for the general case, which 
can be found in [Rosenblueth 1991]. 

4.1 Directed and compositional pro-
grams 

Direc.ted form. The class of transformable programs 
has fixed modes. Thus we assume, without loss of gen­
erality, that in each predicate, all input arguments have 
been grouped into one argument, and all output argu­
ments into another one. We write the input argument 
first, and the output argument second. A definite clause 
of the form 

where 

1. var(ti) n var(tJ = 0, for i,j = 0, ... , nand i i- j; 

2. var(tD ~ var(to) U '" U var(ti), for i = 0, ... , n; 
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3. each variable occurring in t~ occurs only once in t~, 
for i = 0, ... , n 

is a directed clause. A directed program is a logic pro­
gram having only directed clauses. Condition 1 causes 
the term constructed when a subgoal succeeds to have 
an effect only on the input of other subgoals. Condition 
2 causes the input argument of all selected subgoals to 
be ground if the input of the initial query is also ground 
and subgoals are selected in a left-to-right order. We in­
clude Condition 3 only for technical reasons. This is a 
minor restriction that considerably simplifies both stat­
ing our transformation and proving it correct. We call 
these "directed programs" because we can visualize the 
binding of a variable as flowing from one occurrence to 
subsequent occurrences. 

Compositional form. A compositional clause is a def­
ini te clause of the form 

p(t, t') ~ or 

where t and t' are terms such that var(t') ~ var(t), and 
the Xi are distinct variables. A logic program with only 
compositional clauses is a compositional program. 

We shall need various axioms. As with program 
clauses, we assume that each axiom is implicitly uni­
versally quantified with respect to its variables. 

Normally, an SLD-derivation is either successful, 
failed, or infinite. Sometimes, however, we shall use 
derivations that end in a clause that could possibly be 
resolved with a program clause. We shall refer to these 
derivations as partial derivations. 

A partial derivation with a single-subgoal initial query 
yields a conditional answer [Vasey 1986]. Such an an­
swer is a clause in which the head is the subgoal in the 
initial query of that derivation with the composition of 
the substitutions applied to it, and the body is the set 
of subgoals in the last query of that derivation. 

4.2 Example 

We illustrate our method with the following program for 
concatenating two lists. It defines the usual append rela­
tion, but its arguments have been grouped in such a way 
that its two inputs constitute the first argument, and its 
output, the second. a( (X, Y), (Z}) holds if Z is the con­
catenation of the list Y at the end of the list X. The 
angled brackets ( ) are an alternative notation for ordi­
nary brackets [], that we use to group input and output 
arguments. We do this for clarity. 

a( ([], Y), (Y}) ~ (7) 
a( ([WIX], Y), ([WIZ]}) ~ a( (X, Y), (Z)) (8) _______ ~ ~ '-v-" 

to ' t~ t~ tl 



1130 

We shall convert (8), which is directed, to compositional 
form. This process can be motivated as follows. 

Assume that we wish to construct an SLD-derivation 
for (7) and (8) with a query having a ground input that 
unifies with the head of (8). It is necessary, then, to 
remember the t~rm with which W unifies, to be able 
to add it to the front of the result of appending the 
lists that unify with X and Y. This lack of informa­
tion in the arguments of the subgoal of (8) prevents us 
from representing a computation by the composition of 
the relation denoted by a(X, Y) with itself. To be able 
to use relational composition for representing computa­
tions, we must provide the missing information to the 
arguments. A common technique in the implementation 
of state-oriented languages for recording values needed in 
subsequent steps of a computation is the use of a stack. 
This suggests storing the term unifying with W in a list 
that is treated as a stack. We thus define the predicate: 

a( (StoIX), (StlIY) H Sto = St l &, a(X, Y) (9) 

Although both Sto and Stl represent the same stack, it 
will be convenient to keep two names for this term, so 
that the input of this new predicate shares no variables 
with the output. Later we will see why we wish clauses 
in which the input and the output of their atoms share 
no variables. 

We will also use of the standaTd equality theoTY. This 
theory consists of the following axioms: 

X=Xf­
X=Yf-Y=X 
X=Zf-X=Y,Y=Z 

J(XI, ... ,Xn ) = J(y}, ... , 1';1) f-

Xl = Yi, ... , Xn = Yn 
p(U, V) f- U = X, V = Y,p(X, Y) 

which are called, respectively, reflexivity, symmetry, 
transitivity, function substitutivity, and predicate sub­
stitutivity. Note that the last two axioms are actually 
axiom schemas; an axiom is included for every function 
and predicate sy,mbol respectively. 

Next, we can derive another clause in which the in­
put and the output of the atoms have no variables in 
common: 

a( ([H1 IX], Y), ([vl"IZ])) f- TV = W', a( (X, Y), (Z)) 
(10) 

This clause can be obtained as a conditional answer, 
starting from the query f- a( U, V) and using function 
substitutivity to disassemble the term ([lVIZ)), and re­
flexivity to assemble it with lV' instead of TV. 

Next we can proceed as follows. Unfoldingl (10) on 

1 In program-transformation terminology, the "unfold" opera­
tion is a resolution step. The "fold" operation replaces the sub­
goals that unify with a conjunction of atoms by a single atom using 
a definition. . 

the "if" part of the definition of a (9) we obtain: 

a( (Sto, [WoIXo], Yo), (St l , [W1IZ1))) +-

Sto = St l , Wo = WI, a( (Xo, Yo), (ZI)) 

Next we fold the "iff" version [UIV] = [U'IV'] H U = 
U' & V = V' of the function substitutivity axiom for the 
list-constructor function symbol: 

a( (Sto, [WoIXoJ, Yo), (Stb [W1IZl]) +­

[lVoISto] = [WlISt l ], a( (Xo, Yo), (ZI)) 

and fold the definition of a: 
a( (Sto, [WoIXo], Yo), (Stb [WI I Zl)) ) f-

a( ([WoISto],Xo, Yo), ([WlISt l ], ZI)) (11) 

Now the head (Wo) of the first list in the original clause 
can be thought of as being removed from that list, and 
pushed onto the stack, then being removed from the 
stack with another name (WI) and finally added to the 
front of the result of appending the tail of the first list 
to the second. 

The fact that in (11) the inputs share no variables with 
the outputs allows us to fold the definitions of ko and kl : 

ko(U, V) H 3St03W0 3X03Yo.[(Sto, [WoIXo], Yo) = u 
& ([WoISto],Xo, Yo) = Vj 

kl(U, V) H 3St13W13Z1,[([WlIStl], Zl) = U 
& (St l , [T¥lIZl]) = V] 

in the following clause: 

a(Uo, U3) f- (Sto, [WoIXo], Yo) = Uo, 

([WoISto], Xo, Yo) = Ul , 

([WlIStd, Zl) = U2, 
(St l , [WlIZl )) = U3, 
a(Ub U2) 

which is a logical consequence of (11) and the standard 
equality theory. The resulting clause is: 

a(UO,U3) +- kO(UO,Ul),a(Ul,U2),kl(U2,U3) 

Using a result found, for instance, in [Shoenfield 1967 
p. 57, 58] we can prove that the fold steps preserve all 
models of the program. 

It may not be practical to transform a program with 
fold and unfold operations. The compositional form of 
a directed program may be obtained in a more straight­
forward manner based on the theorem in the Appendix. 

4.3 Example (continued) 

The compositional form of the append program used to 
concatenate lists is, then: 

a(Uo, U3 ) f- ko(Uo, U1 ), a(U1, U2), kl (U2, U3) 

a((St, [], Y), (St, Y)) f-
ko( (St, [WIXj, Y), ([WISt], X, Y) +­

kl(([WISt], Z), (St, [WIZ]) +-



The chart created by a proof procedure using the 
top-down rule for this program and the query .­
a( ([], [a], [b]), Z) was shown in Figure 4. 

5 A comparison with Pereira 
and Warren's Earley deduc­
tion 

Pereira and Warren [1983] have extended Earley's [1970] 
algorithm to a proof procedure for logic programs that 
they call "Earley deduction," and we shall now compare 
their work with ours. Their proof procedure has the 
advantage that it can be applied to any logic program. 

Two rules produce new clauses; when none can be ap­
plied, the process terminates. Since chart parsers are a 
generalization of Earley's algorithm, we can give such 
rules using the chart-parsing terminology. 

1. If the chart contains a clause C having a selected 
literal that unifies with a unit clause either in the 
chart or in the program, then create the resolvent of 
C with that unit clause. (This rule is the counter­
part of the fundamental rule as well as the extension 
of the base.) 

2. If the chart contains a clause having a selected literal 
that unifies with the head of a nonunit clause C in 
the program with most general unifier e, then create 
the clause ceo (This rule parallels the top-down rule 
of chart parsing.) 

A new clause is added to the chart only if there' is 
no clause already in the chart that subsumes the new 
one. Subsumption, however, is NP-complete [Garey and 
Johnson 1979]. 

Earley deduction terminates for some programs if sub­
sumption is replaced by a test for syntactic equality. 
This change results in a proof procedure that can be 
faster than the original Earley deduction and our meth­
ods. Our proof procedures, however, are preferable than 
this variant of Earley deduction in programs for which 
our methods terminate but such a variant does not. We 
now exhibit one such example. Given the directed pro­
gram 

p(O,X).- p(O,j(X)) 

and a chart initialized with the clause ans(Y) .­
p( 0, Y), Earley deduction with a syntactic equality test 
instead of subsumption produces the infinite sequence 

p((), Y) .- p(O, j(Y)) 

p(O,j(Y))'- p(O,j(f(Y))) 

, 
With subsumption, Earley deduction does terminate for 
this example. Our method, in contrast, does not require 
subsumption and yet also terminates. 
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We have implemented Earley deduction based on the 
top-down chart parser of [Gazdar and Mellish 1989, p. 
211, 212]. and using Robinson's [1965] subsumption al­
gorithm as modified in [Gottlob and Leitsch 1985]. We 
have also adapted both top-down and bottom-up parsers 
[Gazdar and Mellish 1989, p. 208-212] to proof proce­
dures for compositional programs: In addition, we have 
modified Phillips' variant of the bottom-up chart parser 
as presented in [Simpkins and Hancox 1990]. The fol­
lowing table summarizes execution times for several pro­
grams and queries. The tests were performed on a SUN 
SPARC station 1 using SICStus Prolog. 

PW1 top-down Phillips PW2 
time time su time su time su 

perm 48 46 1.0 11 4.4 7 6.9 
hanoi 36 21 1.7 9 4.0 2 18.0 
append 49 22 2.2 5 9.8 6 8.2 
qsort 249 30 8.3 7 35.6 17 14.6 

"perm" computes all permutations (four elements), 
"hanoi" solves the Towers of Hanoi problem using dif­
ference lists to store the sequence of steps of the so­
lution (five disks), "append" is the ordinary append 
used to concatenate lists (80 elements), and "qsort" is 
quicksort using difference lists (20 elements). "PW1" is 
Pereira and Warren's proof procedure, "top-down" and 
"Phillips" result from our method, and "PW2" is a vari­
ant of Pereira and Warren's proof procedure in which 
subsumption has been replaced by a syntactic equality 
test. "su" stands for "speedup." Times are in seconds. 

6 Concluding remarks 

Chart parsers work for a generalization of the difference­
list representation of context-free grammars. This gen­
eralization replaces the clauses representing productions 
with exactly one terminal by clauses having terms sub­
ject to only one syntactic restriction: all variables in the 
second argument must appear in the first (compositional 
programs). 

It is possible to transform [Rosenblueth 1991] fixed­
mode logic programs into this generalization by adding 
arguments that play the role of a stack. Consequently, 
chart parsers can be used as proof procedures for 
fixed-mode logic programs transformed by this method. 
Strings correspond to sequences of ground terms. 

Experiments have shown that programs so trans­
formed can be executed several times faster than with 
the previous adaptation of Earley's parser to a proof pro­
cedure done by Pereira and Warren [1983]. 

Phillips has modified [Simpkins and Hancox 1990] the 
bottom-up chart parser so that portions of the chart be­
ing built can be disposed of. It is essential in the doctored 
parser to keep edges ordered with respect to the string 
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being parsed. In compositional programs, computations 
form sequences and Phillips' idea can also be applied. 
It is not clear how to apply it to Pereira and Warren's 
method. 

Proof procedures obtained from chart parsers termi­
nate for some pr.ograms for which Prolog does not. In 
addition, it is possible to build charts in parallel [Trehan 
and Wilk 1988]. 
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Appendix 

Our method for converting fixed-mode programs to com­
positional form is based on the following theorem, which 
is proved in [Rosenblueth 1991]. 

Theorem 1 Let C be a directed clause 

Po( to, t~) t- PI (t~, td, P2( t~, t 2), ... ,Pn (t~_l' tn) 

and let 

I1i = (var(to) U··· U var(ti-l)) n (var(tD U··· U var(t~)) 

for i = 1, ... ,n. Then the clause 

Po(XO,X2n+t} t- ko(XO,Xt},PI(Xb X 2), 

kl (X2, X 3 ),P2(X3 ,X4 ), ••• , 

Pn(X2n- l , X 2n ), kn(X2n , X 2n+1) 

is logically implied by C, the standard equality theory, 
the "iff" version of the function substitutivity axiom for 
the list-constructor function symbol, and the following 
axzoms: 

Pi((St/X), (St'/Y}) H St = St' & Pi(X, Y) 

i = 0, ... ,n 

ko(U, V) H 3}},0" . 3Ymo ,0.[(St/to} = U 

& (EI/t~) = V] 
kl(U, V) H 3}},1'" 3Ym1 ,1.[(E1/t l } = U 

& (E2It~) = V] 

kn-I(U, V) H 3}},n-1 ... 3Ymn_l,n-I.[{En-l/tn-l) = U 

& (En/t~_l) = V] 
kn(U, V) H 3}},n'" 3Ymn,n.[(En/tn) = U 

& (Stlt~) = V] 

where }},i, ... ,Ym"i are the variables on the right-hand 
side of the definition of ki' except for U and V, for i = 
0, ... ,n; Ei is any list of the form [X1,i, ... ,Xd"i/St], and 
{X1,i, .. . ,Xd"d = ni, for i = 1, ... , n. 
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Abstract 
This paper presents a practical procedure for analyzing 
discourse structures for Japanese text, where the struc­
tures are represented by binary trees. In order to con­
struct discourse structures for Japanese argumentative 
articles, the procedure uses local thinking-flow restric­
tions, segmentation rules, and topic flow preference. The 
thinking-flow restrictions restrict the consecutive combi­
nation of relationships detected by connective expres­
sions. Whereas the thinking-flow restrictions restrict 
the discourse structures locally, the segmentation rules 
constrain them globally, based on rhetorical dependen­
cies between distant sentences. In addition, the topic 
flow preference, which is the information concerning the 
linkage of topic expressions and normal noun phrases, 
chooses preferable structures. Using these restrictions, 
the procedure can recognize the scope of relationships 
between blocks of sentences, which no· other discourse 
structure analysis methods can handle. The procedure 
has been applied to 18 Japanese articles, different from 
the data used for algorithm development. Results show 
that this approach is promising for extracting discourse 
information. 

1 Introduction 
A computational theory for analyzing linguistic discourse 
structure and its practical procedure are necessary to 
develop machine systems dealing with plural sentences; 
e.g., systems for text summarization and for knowledge 
extraction from a text corpus. 

Hobbs developed a theory in which he arranged three 
kinds of relationships between sentences from the text co­
herency viewpoint [Hobbs 1979]. Grosz and Sidner pro­
posed a theory which accounted for interactions between 
three notions on discourse: linguistic structure, inten­
tion, and attention [Grosz and Sidner 1986]. Litman and 
Allen described a model in which a discourse structure 
of conversation was built by recognizing a participant's 
plans [Litman and Allen 1987]. These theories all de-

*This work was supported by ICOT (Institute for New Gener­
ation Computer Technology), and was carried out as a part of the 
Fifth Generation Computer Systems research. 

pend on extra-linguistic knowledge, the accumulation of 
which presents a problem in the realization of a practical 
analyzer. The authors aim to build a practical analyzer 
which dispenses with such extra-linguistic knowledge de­
pendent on topic areas of articles to be analyzed. 

Mann and Thompson proposed a linguistic structure 
of text describing relationships between sentences and 

their relative importance [Mann and Thompson 1987]. 
However, no method for extracting the relationships from 
superficial linguistic expressions was described in their 
paper. Cohen proposed a framework for analyzing the 
structure of argumentative discourse [Cohen 1987], yet 
did not provide a concrete identification procedure for 
'evidence' relationships between sentences, where no lin­
guistic clues indicate the relationships. Also, since only 
relationships between successive sentences were consid­
ered, the scope which the relationships cover cannot be 
analyzed, even if explicit connectives are detected. 

This paper discusses a practical procedure for an­
alyzing the discourse structure of Japanese text. The 
authors present a machine analyzer for extracting such 
structure, the main component of which is a structure 
analysis using thinking-flow restrictions for processing of 
argumentative documents. These restrictions, which ex­
amine possible sequences of relationships extracted from 
connective expressions in sentences, indicate which sen­
tences should be grouped together to define the discourse 
structure. 

2 Discourse structure of Japa­
nese text 

2.1 Discourse structure 
This paper focuses on analyzing discourse structure, rep­
resenting relationships between sentences. In text, vari­
ous rhetorical patterns are used to clarify the principle of 
argument. Among them, connective expressions, which 
state inter-sentence relationships, are the most signifi­
cant. They can be divided into the ca.tegories described 
in Table 1. 

Here, connective expressions include not only nor­
mal connectives such as "therefore", but also idiomatic 
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expressions stating relations' to the other part of text 
such as "in addition" and "here is described." 
The authors extracted 800 connective expressions from 
a preliminary analysis of more than 1,000 sentences in 
several argumentative a.rticles [Ono et al. 1989]. Then, 
connective relationships were classified into 18 categories 

'as shown in Table 1. Using these relationships, linguistic 
structures of articles are captured. 

Table 1 is the current version of the relationship cat­
egories. The number of relationship categories necessary 
and sufficient to represent discourse structures must be 
determined through further experimentation. New cate­
gories will be formed as need becomes apparent; likewise, 
categories found to overlap in function will be merged. 
Final categorization can only be fixed after extensive 
analysis. 

Sentences of similar content may be grouped to­
gether into a block. Just as each sentence in a block 
serves specific roles, e.g., "serial", "parallel", and "con­
trast" , each block in text serves a similar function. Thus, 
the discourse structure must be able to represent hierar­
chical structures as well as individual relationships be­
tween sentences. In this paper, a discourse structure is 
represented as a binary tree whose terminal nodes are 
sentences; sub-trees correspond to local blocks of sen­
tences in text. 

Figure 1 shows a paragra.ph from an article titled 
"a zero-crossing rate which estima.tes the frequency of a 
speech signal," where underlined words indicate connec­
tive expressions. Figure 2 shows its discourse structure. 
Extension relationships are set to sentences without any 
explicit connective expressions. Although the fourth and 
fifth sentences are clearly the exemplification of the first 
three sentences, the sixth is not. Thus, the first five can 
be grouped into a block. 

Discourse structure can be represented by a formula. 
The discourse structure in Figure 2 corresponds to the 
following formula. 

[[[1 <EX> [2 <EX> 3JJ 
<EG> [4 <EX> 5JJ <SR> 6J. 

2.2 Local constraint for consecutive re-
lationships 

For analyzing discourse structure, a local constraint on 
consecutive relationships between blocks of sentences is 
introduced. The example shown in Figures 1 and 2 sug­
gests that the sequence of connective relationships can 
limit the accepted discourse structures to those most ac­
curately representative of original argumentative text. 
Consider the sequence [P <EG> Q <SR> RJ, where P, Q, 

R are arbitrary (blocks of) sentences. The premise of R 
is obviously not only Q but both P and Q. Since the ar­
gument in P and Q is considered to close locally, the two 
should be grouped into a block. This is a local constraint 
on natural argumentation. 

Table 1: Connective relationships. 

RELATION 
EXAMPLES and 

EXPLANATION 

serial connection tt. tJ~ ~ (thus, therefore), J: "? "C (then) 
<SR> dakara yotte 

negative connection tt. tJ~ (but), L tJ~ L (though) 
<NO> daga shikashi 

reason ~.tf 1J: ~ (because)~ 
<RS> nazenara 

~ (J) KR ti (the reason is ... ) 
sono wake wa 

parallel IiiJ Ifi te (at the same time), 
<PA> doujini 

c! ~. te (in addition) 
saram 

contrast -11 (however), & 00 (on the contrary) 

<CT> ippou hanmen 

exemplification -wtJ X. f'f (for example), 

<EO> tatoeba 

... ~-c: ~ Q (and so on) 
.,. nado dearu 

repetition l: ~ ? (J) ti (in other words), 
<:RF> toiunowa 

~ It, ti (it is ... ) 
sore wa 

supplementation t !:> .'?Iv (of course) 
<SF> mochiron 

rephrase "? 'i D , T 1J: :b !:> (that is ... ) 
<RH> tsumari sunawachi 

summarization tafiU(after all), 'i l: ~ Q l: (in sum) 

<SM> kekkyolcu matomeruto 

extension L It, ti (this is) 
<EX> /core wa 

definition L C -C" •.• l: T Q ( ... is defined as ... ) 
<DF> /co/co de ... to suru 

rhetorical question 1J:.tf ... 1J: (J) tt. ~ ? tJ~ (Why is it ... ) 
<RQ> naze .,. nanodarouka 

direction C C-c:ti ... ~~~Q 
<DI> Iwlcode wa .,. wo noberu 

(here ... is described) 

reference ~xte ... ~~~ Q (Fig.X shows ... ) 

<RF> ZIl X ni .. , wo noberu 

topic shift c! "'C, l: C -? -C:(well, now) 
<TS> sate tolcorode 

background ~ * (hitherto) 
<BO> juurai 

enumeration M- te (in the rust place), 

<EN> dai 1 ni 

M= te(in the second place) 
dai 2 ni 



1 

In the context of discrete-time signals, zero­
crossing is said to occur if successive sam­
ples have different algebraic signs. 

2 The rate at which zero crossings occur is a 
simple measure of the frequency content of a 
signal. 

3 : ~ particularly true of narrow band sig­
nals. 

4 For example, a sinusoidal signal of frequen­
cy R>, sampled at a rate Fs, has Fs/R> sam­
ples per cycle of the sine wave. 

5 : Each cycle has two zero crossings so that 
the long-term average rate of zero-cross­
ings is Z = 2R>/Fs 

6 : Thus, the average zero-crossing rate gives 
a reasonable way to estimate the frequency 
of a sine wave. 

Figure I: Text example 1. 

4 

<EX> : extension 
<EG> : exemplification 
<SR> : serial 

5 6 

Figure 2: Discourse structure for the text example 1.' 
(This structure can be represented as the form 

[[[1 <EX> [2 <EX> 3]] <EO> [4 <EX> 5]] <SR> 6].) 

Thinking-flow is defined by a sequence of connec­
tive relationships and the way in which the sequence fits 

into the allowable structure. The authors have investi­
gated all 324 (18 x 18) pairs of connective relationships 
and derived possible local structures for thinking.:flow re­
strictions. The pairs of connective relationships can be 
represented by (rl, r2), where the relations rl and r2 
are arbitrary connective relatioriships. They can be clas­
sified into the following four major groups. 

(1) POP-type: permitting [[P rl Q] r2 R] 
(eliminating [p rl [Q r2 R]]) 

ex. [[P <EG> Q] <SR> R], 
<EG> : exemplification, 
<SR> : serial. 

(2) PUSH-type: permitting [p rl [Q r2 R]] 
ex. [P <RS> [Q <SR> R]], 

<RS> : reason. 
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(3) NEUTRAL-type: permitting both (1) and (2) 
ex. [[p <PA> Q] <EG> R], 

[p <PA> [Q <EG> R]], 
<PA> : parallel. 

(4) NON-type: permitting non-structure 
[p rl Q r2 R] 

ex. [P <PA> Q <PA> R]. 

The relationship sequence of POP-type means that the 
local structure for the first two blocks should be popped 
up, because the local argument is closed. On the other 
hand, the relationship sequence of PUSH-type means 
that the local structure should be pushed down. 

The relationship sequence of NON-type permits non­
structure, which is of the form [P rl Q r2 RJ. There­
fore, to be exact, the discourse structure which contains 
the sequence of this type is not a binary tree. 

The thinking-flow restrictions can be used to elimi­
nate structures expressing unnatural argumentative ex­
tensions, by examining their local structures. Although 
the thinking-flow restrictions define local constraints on 
relationships to neighbors, the scope of rela.tionships is 
analyzed by recursively checking all local structures of a 
discourse structure. 

2.3 Distant dependencies 
The greater part of text ca.n be appropriately analyzed, 
using the above local constraints on connective relation­
ships to neighbors, if the relationships are extracted cor­
rectly. However, in real text, there are rhetorical depen­
dencies concerning distant sentences, which cannot be 
detected by examining only the normal relationships to 
neighbors. Two kinds of linguistic clues to distant depen­
dencies must be considered in the realization of a precise 
discourse analyzer: rhetorical expressions which cover 
distant sentences, and referential relations of words, in 
particular, topics. 

2.3.1 Rhetorical expressions stating global struc­
ture 

First, rhetorical expressions which relate to an entire ar­
ticle play an important role. Examples are: 

" ... ? ... ? The reason is, ... ", 
" ... as follows .... (TENSE=present). 
. .. (TENSE=present).", 

". " is not an exceptional case. '" ... ". 

Consider the text example in Figure 3, in which unnec­
essary words are omitted for expositional clarity. In this 
text the rhetorical expressions which relate to the entire 
paragraph affect its discourse structure. The expressions 
"first" and "second" in the last two sentences correspond 
to the expression "two pieces" in the first sentence; the 
second and the third sentences, therefore, cab be said to 
be connected by parallel relationship, as they have simi­
lar relations with the first sentence. Thus, the discourse 
structure in Figure 4 is a natural representation. 
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While, in real text, there is a wide variety of rhetor­
ical expressions of this type, those that are often used in 
argumentative articles can be determined through ana.ly­
sis. A robust discourse analysis system must detect these 
rhetorical expressions to restrict discourse structures. 

2.3.2 Topic frow 

The other significant phenomenon concerning the distant 
dependencies is reference. While English uses pronouns 
and definite noun phrases in reference, in Japanese, a 
phrase that is identical to or a part of the original noun 
phrase is used when referring to some other part of the 
text. By analyzing the appearance of the same expres­
sions, a restriction or a preference for building discourse 
structures can be determined. However, the same ex­
pressions tend to scatter in a text: and it is difficult 
to determine the referent for a reference without tasl<­
dependent knowledge [Sumita et al. 1991]. The author's 
aim is to create a system not dependent on such extra­
linguistic knowledge; the reappearance of certain expres­
sions is used as a preference for structure determination. 

Figure 5 shows a text example in Japanese, where 
the underlined words are the same expressions. Note 
that many underlined words are followed by the charac­
ter " Ii (wa)". This character is a postpositional particle 
topicalizing the preceding noun in a sentence. 

A topic of a sentence is an object indicating what the 
sentence is about; it can localize the reader's attention in 
the area that the object relates to. In contrast to topic 
processing for English (cf. [Schank 1977], [Sidner 1983]), 
we can use a linguistic device to extract topics for J ap­
anese; some postpositional words are said to indicate a 
topic of a sentence [Nagano 1986]. 

In this paper, topic information is used for prefer­
ence judgment of discourse structures, but not as an el­
ement of the structures. To simplify explanation, let 
us denote a topic of the sentence Q by TQ, and a case 
where TQ refers to a word in the previous sentence P 
by TQ => P. In the case of the text shown in Figure 5, 
T2 => 1, T3 => 2, and T4 => 3 hold. If a topic in a 
sentence refers to a word in the previous sentence, it is 
regarded as an elaboration of the earlier sentence. Thus, 
these sentences must be kept close together in their dis­
course structure; the structure depicted in Figure 6 is 
appropriate for this text. 

In addition, relative importance of relationship con­
necting sentences in text must be considered for the topic 
flow analysis. Connective relationships can be classi­
fied into three categories according to their relative im­
portance: left-hand, right-hand, and neutral type. For 
example, the exemplification relationship is a left-hand 
type; i.e., for [p <EG> QJ, P strongly relates to the 
global flow of argumentation beyond the outside of this 
block, and in this sense P is more important than Q. In 
contrast, the serial relationship is a right-hand type, and 
the parallel relationship is a neutral type. 

Consider the structure [[P rl QJ r2 RJ, where 'rl' 
is a left-hand type relationship, and 'r2' can be any rela­
tionship. If TR => P, the above structure is natural, even 
if there is the same word as TR in Q. However, if TR => Q, 

this structure is unnatural, in the sense of coherency. In 
this case, the structure [P rl [Q r2 RJ J is preferable 
to [[p r1 QJ r2 RJ. 

On the contrary, in the case .where 'r1' is a right­
hand type, [[P r1 QJ r2 RJ is a natural structure, even 
if TR => Q. In short, the naturalness of a discourse struc­
ture closely depends on the appearance position of topics 
and their referents, and the relative importance of the re-

ferred nodes. 

1 : Two pieces of X are relevant. 
2 : First, ... . 
3 : Second, ... . 

Figure 3: Text example 2 (X is a noun phrase.) 

~ /<n~ 

1 2 3 

<EN> enumeration 
<PA> parallel 

Figure 4: Discourse structure for the text example 2. 

1 : AttB C Ci3:l. b ~ ~ 0 

A wa B to C lcara naru 

A consists of Band C. 

2: ctt ... DcEK:5Ht bnQo 
C wa ... D to E ni wakerareru 

C is divided into D and E. 

3 : Dtt .... F~#f"'Jo 
D wa ... F wo motsu 

D has .,. F. 

4 : Ftt ... 0 

F wa .. , 

F is .... 

Figure 5: Text example 3 (A - F are noun phrases.) 

~EX> <EX> : extension 
<EX> 

«EX> 
123 4 

Figure 6: Discourse structure for the text example 3. 



3 Discourse structure analyzer 

3.1 System configuration 

Figure 7 shows the discourse structure analyzer, which 
consists of five parts: pre-processing, segmentation, can­
didate generation, candidate reduction and preference 
judgement. If input text consists of multiple paragraphs 
or multiple sections, every section or every paragraph in 
the text is analyzed individually. Figure 8 outlines the 
input/output data of each stage for a paragraph. The 
outline of each stage of the discourse structure analyzer 
is described in the following sections. 

3.1.1 Pre-processing 

In this stage, input sentences are analyzed, character 
strings are divided into words, and the dependency struc­
ture for each sentence is constructed. The stage consists 
of the following sub-processes: 

(1) Extracting the text of an article from chapters or 
sections. 

(2) Accomplishing morphological and syntactic analy­
sis. 

(3) Extracting topic expressions and the reappearance 
of the targeted expression. 

(4) Detecting connective relationships and construct­
ing their sequence. 

In Step (1), the title of an article is eliminated, and 
the body is extracted. Next, in Step (2), sentences in the 
body of the article, extra.cted in Step (1), a.re morpho­
logically and syntactically analyzed. In Step (3), topic 
expressions are extracted, according to a table of topic 
denotation expressions. The following are examples of 
topic expressions. 

" ... wa" (as for ... ), 
" ... niwa" (in ... ), 
" ... dewa" (in ... ), 
" ... nioitewa" (in ... ). 

In Step (4), a connecti ve expression is detected based 
on an expression table consisting of a word and its part 
of speech for individual connective relationships. In this 
step, connection sequence, a sequence of sentence iden­
tifiers and connective relationships, is acquired. For ex­
ample, a connection sequence is of the form 

[1 <EN> 2 <EX> 3 <EX> 4 <EN> 5 <SR> 6], 

as is shown as the final result in Figure 8. 

3.1.2 Segmentation 

In this stage, rhetorical expressions between distant sen­
tences, which define discourse structure, are detected. 
They form restrictions on segmentation of text. 

This stage is implemented as a rule-based proce-

Input 

Segmentation 
Rule 
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Thinking-flow 
Restriction 

Output 

Topics and 
their Referents 

Figure 7: System overview. 

Input sentences: 

1."0 2~1 tc"' o 3 (: Q) .. ·A .. ·o 4Ati· .. o 

dai 1 n; kono 
First, This 

5~2 tc ... 0 6 L. tc ;t~ "? -C ... 0 

dai 2 ni 
Second, 

shitagatte 
Thus 

t 
Pre-processing result: 

Awa 
Ais 

[1 <EN> 2 <EX> 3 <EX> 4 <EN> 5 <SR> 6] 

t 
Segmentation result: 

[1 <EN> {2 <EX> 3 <EX> 4} @<PA> 5 <SR> 6] 

t 
Candidate generation result: 

[[1 <EN> [[[2 <EX> 3] <EX> 4] <PA> 5]] <SR> 6] 
[[1 <EN> [[2 <EX> [3 <EX> 4]] <PA> 5]] <SR> 6] 
[1 <EN> [[[[2 <EX> 3] <EX> 4] <PA> 5] <SR> 6]] 
[l <EN> [[[2 <EX> [3 <EX> 4]] <PA> 5] <SR> 6]] 
[1 <EN> [[[2 <EX> 3] <EX> 4] <PA> [5 <SR> 6]]] 
[l <EN> [[2 <EX> [3 <EX> 4]] <PA> [5 <SR> 6]]] 

I 

Since «EN>, <SR» is POP-type, 
the 3rd and the 4th candidates 
are discarded. Also, since 
«PA>,<SR» is POP-type, the 
5th and the 6th candidates are 
discarded. 

Candidate reduction result: 
[[1 <EN> [[[2 <EX> 3] <EX> 4] <PA> 5]] <SR> 6] 
[[1 <EN> [[2 <EX> [3 <EX> 4]] <PA> 5]] <SR> 6] 

Final result: ! 
[[1 <EN> [[2 <EX> [3 <EX> 4]] <PA> 5]] <SR> 6] 

Figure 8: Output example of each process. 
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dure [0 no et al. 1991]. If-then rules, called segmentation 
rules, have been formulated in advance. The ifpart of a 
segmentation rule corresponds to linguistic surface pat­
terns to detect inter-sentence rhetorical expressions, e.g. 
"as follows. . .. First... ... Second ... ". The then­
part represents a connection sequence embedded with 
control operators discussed below. Also, the then-part 
can indicate an exchange of connectIve relationships. 

There are three kinds of control operators. They are 
'{' and '}', '(' and ')', and '<0'. Sentences enclosed by '{' 
and '}' must be grouped together as a block of sentences. 
Operators '(' and ')' are similar to '{' and '}'. They can 
be used singly, while the operators '{' and '}' must be 
used in pairs. The operator '<0' means that the position 
must not be a boundary of a sentence block. 

Figure 9 shows examples of the segmentation rules. 
The first example means that if the Nth sentence in­
cludes expression "tashikani" (of course), and the Mth 
sentence includes expression "shikashz~' (though), then 
from N+lst to M-lst sentences must be grouped to­
gether. 

For the input sentences and the connection sequence 
in Figure 8, the second rule is activated. The connection 
sequence is then converted into 

[1 <EN> {2 <EX> 3 <EX> 4}<O<PA> 5 <SR> 6]. 

This structure directs the next stage to generate 
discourse structure candidates whose second, third and 
fourth sentences are grouped into a block. 

At present, approximately 100 rules are available in 
the system. 

3.1.3 Candidate generation 

All possible discourse structures, described by binary­
trees which do not violate segmentation restrictions, are 
generated as discourse structure candidates. The gener­
ation is performed in a bottom-up manner of sentence 
parsing' by the CYK algorithm. After the generation 
of sub-trees for blocks directed by segmentation restric­
tions, the whole trees are generated based on these sub­
trees. In case of the example in Figure 8, only 6 can­
didates are generated, while 42 binary trees would be 
produced without the segmentation rules. 

3.1.4 Candidate reduction 

Local structures of generated structure candidates are 
checked by inspecting thinking-flow restrictions. The 
candidates, including a local structure violating the re­
strictions are discarded. Only legal candidates are passed 
on to the next stage. 

In order to show the effectiveness of the thinking­
flow restrictions, consider the following connection se­
quence. 

[1 <EX> 2 <EG> 3 <PA> 4 <SR> 5]. 

Figure 10 shows discourse structure candidates for the 

If-part : 

Sentence No.: N M 
Connective relationship: 

<EX> <EX> <NG> 
Input string: 

.... ·0 liE:6:.tc. .. ·o '''0 

tashikani 
of course 

then-part : 

L:6:. L .. ·o .. 

shikashi 
though 

["'{N <EX> {N+l ... M-l}} @<NG> M ... ] 

If-part : 

Sentence No.: N 
Connective relationship: 

<EN> 
Input string: 

..... ~ltc.· .. o 

doi 1 ni 
first, 

then-part : 

M 

<EN> 

~2tc· .. o .. 

doi 2 ni 
second, 

[ ... N-l <EN> {N ... M-l} @<PA> M ... ] 

Figure 9: Segmentation rule example. 

above sequence. There are 14 binary tree possibilities. 
The candidates violating the thinking-flow restric­

tions are eliminated. For example, the first structure is 
discarded, because it contains the local structure 
[2 <EG> [3 <PA> 4]], and the pair «EG>,<PA» is POP­
type. For the same reason, the seventh structure is 
also eliminated. This local structure would also be dis­
carded after the exemplification relationship ("<EG> [[3 
<PA>"). As a result of elimination through thinking-flow 
restrictions,l1 candidates can be discarded, and the sec­
ond the fourth and the tenth structures remain. 

'In the above example, in the case outlined in Fig­
ure 8 structure candidates unnatural from the viewpoint 
of thinking-flow are discarded. Since the third through 
sixth candidates violate thinking-flow restrictions, the 
candidates are reduced to two structures. 

The thinking-flow restrictions are represented in the 
system as a table of the applicable pa.irs of consecutive 
relationships and their acceptable local structures. 

3.1.5 Preference judgment 

The final result of discourse analysis is the structure with 
the lowest penalty score, a value associated with topic­
referent relationships. 

A penalty is set against each arc of path on a dis­
course structure, which leads from a sentence containing 
a topic to a sentence referred to by the topic. The con­
crete arc of a discourse structure, on which a. penalty is 
imposed, is either an arc to or from an unimportant node 
or an arc to an equally important node. For example, 
for the structure [[P <EG> Q] <EX> R] where TR =} Q, 



1: [[1 <EX> [2 <EG> [3 <PA> 4]]] <SR> 5] : NG 
«<EG>.<PA»:POP, "<EG> [3 <PA>" :NG) 

2: [[1 <EX> [[2 <EG> 3] <PA> 4]] <SR> 5] 

3: [[[1 <EX> 2] <EG> [3 <PA> 4]] <SR> 5] : NG 
«<EG>,<PA»:POP, "<EG> [3 <PA>" :NG) 

4: [[[1 <EX> [2 <EG> 3]] <PA> 4] <SR> 5] 

5: [[[[1 <EX> 2] <EG> 3] <PA> 4] <SR> 5] : NG 
«<EX>,<EG»:PUSH,"<EX> 2] <EG>" :NG) 

6: [1 <EX> [2 <EG> [3 <PA> [4 <SR> 5]]]] : NG 
«<PA>,<SR»:POP, "<PA> [4 <SR>" :NG) 

7: [1 <EX> [2 <EG> [[3 <PA> 4] <SR> 5]]] : NG 
«<EG>,<PA»:POP, "<EG> [[3 <PA>":NG) 

8: [1 <EX> [[2 <EG> 3] <PA> [4 <SR> 5]]] : NG 
«<PA>,<SR»:POP, "<PA> [4 <SR>" :NG) 

9: [1 <EX> [[2 <EG> [3 <PA> 4]] <SR> 5]] : NG 
«<EG>,<PA»:POP, "<EG> [3 <PA>" :NG) 

10: [1 <EX> [[[2 <EG> 3] <PA> 4] <SR> 5]] 

11: [[1 <EX> 2] <EG> [3 <PA> [4 <SR> 5]]] : NG 
«<PA>,<SR»:POP, "<PA> [4 <SR>":NG) 

12: [[1 <EX> 2] <EG> [[3 <PA> 4] <SR> 5]] : NG 
«<EG>,<PA»:POP, "<EG> [[3 <PA>":NG) 

13: [[1 <EX> [2 <EG> 3]] <PA> [4 <SR> 5]] : NG 
«<PA>,<SR»:POP, "<PA> [4 <SR>" :NG) 

14: [[[1 <EX> 2] <EG> 3] <PA> [4 <SR> 5]] : NG 
«<PA>,<SR»:POP, "<PA> [4 <SR>" :NG) 

Figure 10: Discourse structure candidates. 

a penalty is imposed on the arc from the parent node of 
P and Q to Q because the left node in an exemplification 
relationship is unimportant. 

The penalty of a discourse structure is defined as a 
sum of penalties for all paths concerning all topics in the 
paragraph. By selecting the structure candidate with the 
lowest penalty, the most coherent discourse structure is 
obtained. 

Of the two surviving structures of the ca.ndidate 
reduction process in Figure 8, the second structure is 
preferable. The difference is the structural relationship 
between the second and fourth sentences: the local struc­
ture for the first candidate is [[2 <EX> 3] <EX> 4], and 
that for the second candidate is [2 <EX> [3 <EX> 4]]. 
Since T4 => 3, a penalty is imposed on the first struc­
ture, but not on the second structure. As a result, the 
second structure candidate is chosen. 

While every paragraph can be analyzed respectively, 
a chapter or a section containing multiple paragraphs is 
analyzed in an analysis manner similar to that of a para­
graph. In case of a discourse structure for a chapter, 
or a section, paragraphs rather than sentences are used 
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as the terminal nodes of the structure. The connective 
relationship expressed in the first sentence of each para­
graph is used for making the connection sequence. After 
structure candidates are generated based on t.lle connec­
tion sequence, candidates unnatural from the viewpoint 
of thinking-flow are eliminated. Since every paragraph 
is analyzed into a discourse structure, each node of the 
discourse structure for a section also forms t.he discourse 
structure for the corresponding paragraph. 

3.2 Experiment 
To evaluate the discourse structure analyzer, 18 journal 
articles, different from the data used for algorithm de­
velopment or rule extraction, have been analyzed. The 
journal used is "Toshiba Review", which publishes short 
technical papers of three or four pages. An experiment 
has been carried out on every paragraph. Correct dis­
course structure for every paragraph was made manually 
in advance. The system's performance was evaluated by 
comparing the correct human-produced structures and 
the structures analyzed by the system, 

Table 2 shows analysis results. There are a total 
of 554 paragraphs. Nearly 50% of them consist of only 
one sentence and are excluded from consideration. For 
114 paragraphs consisting of more than three sentences, a 
correct analysis was produced for approximately seventy­
four percent. 
. There were 15 errors for all of the processed para­
graphs. Most of the errors are due to incorrect detection 
of relationships (60%), or incorrect candidate reduction 
(27%). For the former, the procedure failed to detect ex­
plicit connective expressions because of insufficient dic­
tionary data, which can be improved by refining the dic­
tionary data. Most of the latter type of errors occur in 
a paragraph in which the first or last sentence refers to 
information outside of the paragraph by such phrases as 
"as shown above" or "as follows." This suggests that the 
procedure should also take into account relationships to 

Table 2: Analysis results 

paragraph 
correct* correct* size 

(number of (unique) (other incorrect* Total * 

sentences) 
candidate) 

1 - - - 293 
2 - - - 147 - - - -- ------ ------ - - - -- ------
3 53 8 6 67 
4 12 5 7 24 
5 7 1 2 10 
6 3 0 0 3 
7 5 0 0 6 
8 2 0 0 2 
9 2 0 0 2 

Total 84 14 15 114+(554) 

* ~umbers indicate c~unts of paragraphs, except for the paragraph 
sIZe. 

+ Total nllmber of paragraphs consisting of more than 3 sentences. 
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neighboring paragraphs. 
In the segmentation stage segmentation rules were 

activated for 35 paragraphs, with 85% of the rules cor­
rectly used; 65% have contributed to structure determi­
nation for itemized parts of text, and 20% to relation­
ship determination. In addition, the preference judgment 
stage has increased the accuracy of the analysis by 3%. 
Except for the effects of these contributions, correct rela­
tionships have been detected in 73 paragraphs, and cor­
rect results have been obtained for ,5.5 paragraphs. Thus, 
if correct connective relationships are detected, 73% of 
discourse structures can be appropriately analyzed using 
thinking-flow restrictions only. . 

4 Concluding remarks 
A practical analyzer has been described for building dis­
course structures for Japanese argumentative or explana­
tory articles. To analyze structures, three types of knowl­
edge are used: thinking-flow rest.rictions, sf'gmentation 
rules, and topic-flow preference. They represent relative 
constraints between connective relationships or struc­
tural restrictions spanning a paragraph, as opposed to 
the relative importance between consecutive sentences 
on which other discourse structure analysis researchers 
depend. Using linguistic knowledge, global structures or 
the scope of relationships can be determined appropri­
ately. 

In addition, the above knowledge on which the pro­
cedure is based is detected from superficial linguistic 
clues independent of topic areas in analyzed articles. The 
authors are convinced that the method is effective for any 
articles whose aim is persuasion or assertion. 

It should be noted that the relative importance of 
sentences can be evaluated, using the extracted discourse 
structure. For example, a left-hand node of a structure 
linked by exemplification relationship is more important 
than the right-hand node, as discussed in Section 2.3.2. 
By a recursive application of relative importance judg­
ment from the top node of discourse structure analyzed 
from a paragraph, the key-sentence in the paragraph can 
be extracted. 

In addition to the key-sentence extraction shown 
above, the extracted structure can be a promising clue to 
other various natural language processes, such as topic 
estimation and knowledge extraction. The authors in­
tend to polish up the presented restrictions and rules, 
and refine the procedure toward these natural language 
processes. 
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Abstract 

To account for the diversity and partiality of informa­
tion processing in the cognitive process, we need a de­
sign method for cognitive system without explicit stip­
ulation of domain/task dependent information flow, to­
gether with a control scheme for partial information pro­
cessing which does not commit us to global and crisp 
consistency or completeness. 

A computational architecture is proposed which con­
sists of a first-order logic program with a dynamics. In­
formation flow is controlled not by any domain/task de­
pendent procedures but by a control scheme emergent 
from the dynamics. The declarative semantics of the 
logic program is defined by formulating the degree of vi­
olation in terms of potential energy, and a control scheme 
for both analog and symbolic inferences is derived from 
an energy minimization principle. This inborn integra­
tion of the control scheme with the declarative semantics 
guarantees a natural reflection of semantic relevance in 
inferences. Ideas underlying inference mechanisms de­
veloped so far, such as weighted abduction and marker 
passing, are captured in terms of such a dynamics. 

1 Introduction 

It is practically impossible to delimit the information of 
the world potentially relevant to the benefit (typically. 
survival) of a cognitive agent. whereas the information­
processing capacity of the cognitive agent is severely re­
stricted. Here arises par'tiality of info'rmation: the in­
formation potentially relevant to the determination of a 
cognitive agent's action (including information process­
ing) is only partially reflected in its actual behavior. 

Only very relevant information must hence be selec­
tively reflected in the behavior of the cognitive agent. 
However, the distribution of relevant information. to­
gether with the degree of relevance, drastically changes 
depending on the context. Since only a very small part 
of the potentially relevant information is exploited at 
each context, dramatically different parts of the infor­
mation must be exploited at different contexts. in 01'-

* From April of 1992, the author is at Natural Language Section. 
Electrotechnical Laboratory, 1-1-4 Umezono, Tukuba, Ibaraki :305 
JAPAN. 

del' for the whole information the cognitive agent uses in 
various contexts to encompass as much of the relevant 
information as possible. 

This causes very diverse patterns of information flow, 
underlying the complex behavior of a cognitive agent. So 
cognition is complex, not entirely because the design of 
the cognitive agent itself is complex, but rather because 
it is situated in a complex world, which provides the 
diverse contexts of the cognitive agent's behavior. The 
cognitive agent is complex indeed, but still is far simpler 
than the behavior of the agent reflecting also the vastness 
of the world. 

To capture this situatedness and relative simplicity 
of a cognitive agent. the design of the cognitive system 
should largely abstract away the directions of informa­
tion flow (the temporal order of actions, among others). 
The models which stipulate the directions of information 
flow (that is, pl'oced'Ural programming) quickly become 
untractably complex, attributing too much of the com­
plexity of cognitive process to the complexity of thp cog­
nitive system itself. and thus failing to capturp the situ­
atedness of cognition. For instance, production systems 
(Anderson 1983) fail to serve as the functional archi­
tecture of cognition. This is where constraint paradigm 
comes 111. Constraint abstracts the direction of infor­
mation flow away from the design of a cognitive modeL 
keeping the model within tractable complexity. attribut­
ing most of the complexity to the world, and thus cap­
turing the situatedness of cognition. 

So the domain-dependent aspects of cogllitioll (lall­
guage. vision. etc.) should be designed basically in terms 
of declarative semantics rather than operational Sf'lllan­
tics. Symbolic logic is a typical formalism for cledarativp 
design. Some sort of logic at least as powerful as first­
order predic ate ('aleul us is considered necessary to design 
a cognitive system capable of combinatorial behaviors 
such as language use. 

However. such a powerful formalism commits us to 
untractable computation for maintaining global cOllsis­
tency, exhaustive examination of the possible hypothe­
ses. and so on. This applies to whate\'er logics have ever 
been fabricated, including non-monotonic logic. proba­
bilistic logic, fuzzy logic. paraconsistent logic. and so 
forth. There has been no formalism of logic which could 
support useful inferences under arbitrary sort of viola­
tion of' the constraint in question. The problem here is 
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essentially that symbolic logics provide no control over 
inferences ~ther than closure operation (exhaustive in­
ference). 

We need a declarative formalism which inherently 
supports partial and hence tractable computation, while 
approximately preserving the first-order expressive power 
and supporting diverse flow of information. To be useful 
at all, that computation must be about only very rele­
vant information, which will lead to a diverse information 
flow sensitive to the context. 

To implement all this, the present paper considers 
a system of constraint represented as a first-order logic 
program, and postulates a" dynamics of this constraint. 
The degree of violation is captured in terms of potential 
energy, which is a real-valued function of the state of 
the constraint. The constraint is thus provided with a 
fuzzy declarative semantics which is finer-grained than 
the usual crisp semantics. An operational semantics is 
also derived from the dynamics. That is, control schemes 
for analog and symbolic inferences are obtained on the 
basis of energy minimization principle. Such an inborn 
integration of declarative semantics and inference method 
not only supports concise design but also guarantees nat­
ural reflection of semantic relevance in inferences. 

The rest of the paper proceeds as follows. In the 
next section we outline the combinatorial structure of 
the constraint. Section 3 provides a declarative seman­
tics for this constraint. The components of the declara­
tive semantics are each formulated in terms of potential 
energy. Section 4 discusses the field of force induced from 
the potential energy, and analog information processing 
driven by this field of force. It will be shown that asso­
ciative inferences naturally emerge out of the dynamics. 
Section 5 defines a method of symbolic inference which is 
a sort of program transformation, and derives a control 
scheme for it on the basis of energy minimization princi­
ple. The proposed framework is pointed out to capture 
the ideas underlying some inference mechanisms tailored 
so far, such as weighted abduction (Hobbs et al. 1990, 
Stickel 1989) and marker passing (Charniak 1986, Norvig 
1989). Section 6 concludes the paper. 

2 Constraint Network 

A "constraint consists of clauses. A clause is a set of 
literals, and roughly means their disjunction, which is 
inclusive or exclusive to various degrees depending of 
their dynamical properties as discussed later. A literal 
is an atomic constraint preceded by a sign. An atomic 
constraint is an atomic j01'mula such as p(X,Y,Z) or an 
equation such as X= Y. Signs are' +' and '-' and st and for 
affirmation and negation, respectively. '+' is omitted in 
cases discussed below. Names beginning with capital let­
ters represent variables, and the other names predicates. 1 

1 A binding is also regarded as an atomic formula. For example, 
X=f(Y) is an atomic formula with binary predicate =f. 

A clause is written as a sequence of the included literals 
followed by a period. The order among literals is not sig­
nificant. So (1) and (2) represent the same clause, which 
means (3) in a rough, crisp approximation. 

(1) -p(U,Y) +q(Z) -U=f(X) -X=Z. 

(2) +q(X) -p(f(X),Y). 

(3) VU, x. Y {-'p( U, Y) V q(X) V U =I j(X)} 

A clause containing a literal with empty sign is called 
a definition clause of the predicate of that literal. The 
meaning of such a predicate is defined in terms of com­
pletion based on its definition clauses. For instance, if 
the definition clauses of predicate p are those in (4), then 
p is defined as in (5). 

(4) p(X) -q(X,a). p(f(X)) -r(X). 

(5) VA{p(A)"{:? {3Y(q(A, Y) /\ Y = a) V 
3X(A = j(X) /\ r(X))}} 

A definition clause of a zero-ary predicate true is 
called a top clause. A top clause corresponds to the query 
in Prolog. That is, top clause (6) represents top-level hy­
pothesis (7).2 

(6) true -p(X) +q(X,Y). 

(7) :lX, Y {p(X) /\ 'q(X, Y)} 

We postulate clause +true. to give rise to such a top­
level hypothesis. The computation is to tailor the best 
hypothesis to explain a top-level one. 

A constraint is regarded as a network. For instance, 
the following constraint may be graphically shown as in 
Figure 1. 

(i) +true -p(A) -q(B). 

(ii) +p(X) -r(X,Y) -p(Y). 

(iii) +r(X,Y) -q(X). 

Figure 1: Constraint Network. 

2Theoretically, Prolog uses false instead of true here so that the 
negation of the top clause amounts to the top-level hypothesis. 
In our formulation. a top clause itself directly means a top-level 
hypothesis. 



In such a graphical representation, a clause is a closed 
domain containing the atomic constraints constituting 
that clause. Short thick arrows indicate references to the 
atomic constraints as positive literals in clauses. Atomic 
constraints without such indication are negative literals. 
An argument of an atomic formula is shown either as a 
'.' or as an identifier. Equations between arguments are 
links. Equations in clauses are called intraclausal equa­
tions, and those outside of clauses are called extra clausal 
equations .. 

We will write a 0 (3 to mean that atomic formulas a 
and (3 are unifiable. We regard each part of constraint 
network as a set of instances, and a 0 (3 as meaning that 
whether l(a) n 1((3) = 0 or not is unknown. lis an in­
terpretation function which maps those instances to ob­
jects (state of affairs, in the case of atomic formulas) in 
the world. So unifiability is not transitive. We assume 
two atomic formulas are unifiable if and only if their 
corresponding arguments are directly connected through 
an extraclausal equation, and that every extraclausal 
equation connects two corresponding arguments of two 
unifiable atomic formulas. 3 For each zero-ary predicate. 
the constraint network contains only one atomic formula 
with it. 

3 Declarative Semantics 

Now we move on to dynamics to define a declarative 
semantics for the constraint network described above. 

Each atomic constraint a has an activation value Xcn 

which is a real number such that 0 < Xa < 1 and ma.y be 
regarded as the truth value (or a subjective probability 
of the truth) of a. The potential energy of a constraint 
network is a function of the activation values, and rep­
resents the degree of violation of the constraint. The 
potential energy U of the entire constraint is the sum of 
the potential energy of the parts of the constraint. 

The declarative semantics of the entire constraint is 
decomposed into several aspects. U is a sum of terms 
each representing one such aspect, so that U captures 
the whole declarative semantics. Each term of [C is the 
degree of violation of the aspect of declarative semantics 
in question. These aspects are enumerated below and 
each formulated by a term of potential energy. 

Normalization of activation value. In order to 
normalize the activation value of an atomic constraint 
a so that 0 < Xa < 1, let us employ a standard sig­
moid function sg( x) = 1 ( ) and postulate Xa = 

l+exp x 
sg( -FaiT) holds at equilibria of force, where Fa stands 
for the total force to a from outside of a, and T is a 
positive constant called the temperature. This amounts 
to assuming the following energy inherent in a. 

3There can hence be O(N2) extraclausal equations, for N dif­
ferent atomic formulas sharing the same predicate. So an efficient 
encoding schema would be necessary to avoid that space complex­
ity. We skip further details of this issue. 
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(8) T {.to log .l:o + T c, log ;l'o} 

Let us call this the normali::ation energy of o. For any 
v. v stands for 1 - l'. Here and henceforth. mathematical 
details are not very important; they are quite tentative 
indeed. The formulas are mainly motivated by conve­
nience. In fact, the fancy outlook of (8) is for the com­
putational ease of analog inference, though we do not go 
into details here. 

Disjunction of literals in a clause. The disjunc­
tion energy of a clause implements the ordinary disjunc­
tive meaning of the clause. For instance. consider the 
following clause. 

(9) -p +q. 

The ordinary disjunctive meaning of this clause is that 
--,p or q is true. The disjunction energy of this clause as 
follows captures this meaning. 

(10) 

D is a positive constant associated with clause (9). (10) 
is small iff either .rp or ;rq is small; keep in mind that the 
activation values are between 0 and 1 due to the normal­
ization energy. The semantics of (9) may be depicted 
like Figure :2. D in (10) represents how large the area b 

Figure 2: Venn Diagram for (9). 

is in comparison with a in this figure. 
Mutual exclusion of literals in a clause. B:' 'lIlU­

tual exclusion' we mean that at most one literal may be 
true ill a cla.use. In the case of (9), the mutual exclu­
sion will allow us to abductively assume p vvhen given 
q. and assume --,q when given --'p. The following term. 
called the f:.ulu.';ioll flurgyof (9), will take care of such 
inferen ces. 

(11) EXp:Tq 

E is a constant associated with clause (9). In Figure 2. 
E represents how large the area b is in comparison with 
c. If q means that you are in Japan, for instance. E is 
larger when p means that you are in Tokyo than when it 
means that you are in Imabari, a small city in the island 
of Sikoku. 

In the general form, the disjunction energy and the 
exclusion energy of clause <I> consisting of literals ll' 
1m are (12) and (13), respectively. 
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(12) (13) E<J> L TiYi 1'jYj 
ii=j 

Yi is the activation value of Ii. For any atomic constraint 
0:, the activation value of literal +0: is defined to be X' tY 
and that of -0: is defined to be Xa' Ti is a constant such 
that 0 < Ti ~ 1, and is called the relevance coefficient 
of Zi' In the digital approximation, (12) means that at 
least one literal should be true, whereas (13) means that 
at most one literal may be true. Incidentally, it is due to 
exclusion energy that top clause (6) means (7). In (9), 
(10) and (11), II =-p, l2 =+q, Y1 = x p , Y2 = x q , and 
1'1 = r2 = l. 

Completion of an atomic formula. We some­
what extend the notion of completion so that to complete 
atomic formula (not predicate) 0: positively (negatively) 
means that 0: (-'0:) should be inferred either ded ucti vely 
or abductively4 on the basis other than the one on which 
0: (-'0:) was first postulated. For example, if ~e have 
postulated q(X) (say, based on clause +p(X) -q(X)., ab­
ductively) and it is positively completed. then it must be 
inferred from another reason; typically, another atomic 
formula q(Y) could be closely related with q(X) (in the 
sense of assimilation to be discussed later) and is inferred 
on the basis of a clause such as +q(Y) -r(Y). deductively 
or -q(Y) +s(Y). abductively. As discussed later, comple­
tion implements assumability cost (Hobbs et al. 1990). 

The positive and negative completion energy of an 
atomic formula 0: are defined by (14) and (15), respec­
tively. 

C--'+ II--(14) 'axa sapxp (15) C;;xa II sal'xp 
aop aop 

C+ and C-: are positive constants, and are called the 
p:sitive co~pletion coefficient and the negative comple­

tion coefficient of 0:, respectively. Sap is a constant called 
the subsumption coefficient of 0: as to ,13. Sap represents 
how close 0: is related to 13, as seen also in the formu­
lation of assimilation below. 'We say 0: subsumes d to 
mean 1(0:) 2 1(,6). When 0: 0 ,13, Sap = 1 if 0: subsumes 
d. and otherwise Sap. = So for a small positive constant 
So. In the digital approximation, the positive (negative) 
completion energy means that some ,13 (-,;3 for some 13) 
satisfying 1600: should be true in order for 0: (-'0:) to be 
true:5 Since a subsumption coefficient usually equals to 
so, which is close to 0, completion energy and accordingly 
other types of energy often decrease if subsumption coef­
ficients increase, which is caused by symbolic operation 
discussed in the next section. 

The dynamics for definition clauses may be defined 
on the basis of exclusion energy and completion energy. 
but we do not go further into details here. 

Assimilation between atomic formulas. Two 
unifiable atomic formulas are the same if they have the 

41n this respect, only deduction is considered in Prolog. 
5The completion in Prolog corresponds to our positive comple­

tion. In Prolog (3 must be deduced only. 

same arguments for the corresponding argument places. 
By relaxing this, we obtain the notion of assimilation: 
two unifiable atomic formulas should have similar truth 
values to the extent that they share the same assignment 
of the arguments. So for instance p(X) and p(Y) tend to 
have similar activation values if X and Yare linked with 
a strongly activated equation. 

To capture this. we postulate assimilation energy. 
Suppose 0: 0 d for two atomic formulas 0: and ,13, and 
let b be the extracla.usal equation connecting their i-th 
arguments. Then the assimilation energy of b is defined 
as follows. 

1 1 
(16) -Arri (StY!3 + S,3c» Xs (xc> - '2)(xp - '2) 

A1Ci is a positive constant called the assimilation coeffi­
cient of the i-th argument place of the predicate 7r shared 
bv 0: and 3. The assimilation energy roughly means that 
x~-y and :1';3 should be similar (both close to 0 or 1) if X8 

is close to 1. and vice versa. 
Transitivity of equality. A transitive cycle is a cy­

cle of equations ~ = bob1 ... bk - 1 where either 6(i-1)modk 

or bimodk is an intraclausal equation for everyi. Note 
that no cycle of extraclausal equations is a transitive 
cycle. Transitivity of equality as to 6. is regarded as ex­
cluding the cases where just one equation in 6. is false. 
To capture this, we define the transitivity eneT'9Y U t::. of 
6. as below. 

(17) U = { -tIl(ei - 0) (ei < 0 ~or at most one i) 
t::. a (otherwIse) 

ei is the activation value of bi , and 0 is a constant such 
that 0 < 0 < 1. t is a positive constant called the tran­
sitivity coefficient. Note that the transitivity energy is 
large when just one equation in 6. has a small activation 
value. 

Since detection of cycles is a very costly computa­
tion, we will have to consider some approximate method 
for efficient processing of transitivity energy instead of 
guaranteeing perfect detection of transitive cycles. We 
do not go further into such implementation details. 

4 Analog Inference 

Potential energy gives rise to a field of force to change the 
state of the system so as to decrease the total potential 
energy. Suppose there are n distinct atomic constraints 
in the given constraint. and hence n activation values, 
Xl through Xn. Then the current analog state of the 
system is regarded as a point (18) in the n-dimensional 
Euclidean space, and the global potential energy C de­
fines a field offorce (19). 

( 18) (19) F = ( -:~ ) au 
-aXn 



F causes sp1'eading activation: when F #- 0, a change of 
Xi so as to reduce U influences the neighboring parts of 
the constraint network, which causes further changes of 
activation values there, and thus state transition propa­
gates across the network. In the long run, the assignment 
of the activation values will settle upon a stable equilib­
rium satisfying F = 0, under an appropriate scheme of 
spreading activation. The resulting state gives a mini­
mal value of U. 6 That is, it satisfies the constraint best 
in some neighborhood. 

Let us look at some typical patterns of analog in­
ferences emerging from the dynamics through spreading 
activation. First, the dynamics gives rise to associative 
inference based on syntactic similarity. Suppose for in­
stance that, as in Figure 3, the extraclausal equation 

Figure 3: Association due to Syntactic Silllilarity. 

(j connecting argument A of p(A,B) and argument C of 
p( C, D) is included in a transitive cycle as shown in the 
figure, and that the activation value of every equation 
in this cycle is greater than (). Then {j is excited due 
to the transitivity energy. This raises the tendency (due 
to the assimilation energy of (j) for peA, B) and p( C, D) 
to have similar activation values. Thus the assimilation 
energy of the extraclausal equation (J between Band D 
makes (J to have a high activation value, provided that 
the equations in the transitive cycle involving (J as shown 
in the figure are all highly activated. So each equa­
tion in a transitive cycle including (J could be excited 
even stronger due to the transitivity energy. This might 
make other pairs (such as the two q( .,.)s in Figure 3) of 
atomic formula with corresponding arguments on that 
transitive cycle have similar activation values, and so 
on. In general, two syntactically similar combinations 
of atomic constraints thus tend to have similar activa­
tion patterns, corresponding parts exciting each other or 
inhibiting each other. 

Transitivity energy also enhances semantic aSSOCIa­
tion. Consider the following discourse. 

(20) Tom took a telescope. He saw a man with it. 

We assume that he and it in the second sentence are 
anaphoric with Tom and the telescope, respectively, in 

6When if is not entirely attributed to potential energy, spread­
ing activation is not guaranteed to converge into a stable equi­
librium but may exhibit chaotic behaviors. Such a less restricted 
system may be more powerful and useful, but that is beyond the 
scope of the present discussion. 
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the first sentence. There is an attachment ambiguity 
in the second sentence. about whether the prepositional 
phrase with it modifies saw or a man. Let us assume 
that the structure of the constraint generated by pro­
cessing this discourse looks like Figure 4. Each region 

a telescope _------
"'. ,,' (a) 

Tom -___ ~. _ _::_--~~~~:--~~~~~~--
\" take(,) 

Figure 4: Semantic Association Concerning (20). 

in a dashed closed curve represents a cluster of clauses. 
Thest' clauses have been created by symbolic inference as 
described in the next section. (a) is a set of clauses in­
cluding the top clause. (b) and (c) represent two alterna­
tive readings of the second sentence of (20), each derived 
bv backward (abductive) inferences. The take(.,.) in (a) 
is" a part of the hypothesis obtained by interpreting the 
first sentence. Its first argument stands for Tom and the 
second argument the telescope, so that the whole thing 
means that Tom takes the telescope at some time. Thus, 
reading (b) means that Tom has the telescope when he 
sees the man, and (c) that the man has it when Tom sees 
him. Clause (d) is an inference rule to the effect that if A 
takes B then A will have B.7 Due to this inference rule, 
the take(.,.) in (a) can imply the have(.,.) in (b) but 
not that in (c), so (b) is more plausible than (c). 

Note that there are two transitive cycles both go­
ing through the take(.,.)s in (a) and (d). So these two 
atomic formulas tend to strongly excite each other due to 
assimilation energy, provided that every relevant equa­
tion is excited. These two cycles also both go through the 
have(.,.)s in (b) and (d), making them tend to strongly 
excite each other. too. On the other hand. there is 
only one transitive cycle which goes through both the 
have(.,.)s in (c) and (d). Hence the associative infer­
ence based on the take(.,.) in (a) through (d) supports 
the have(.,.) in (b) more strongly than it supports the 
have(.,.) in (c). 

'We ignore the temporal relation between the taking and the 
having here. 
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5 Symbolic Inference 

We consider just one type of symbolic operation called 
subsumption. It is a sort of program transformation to 
create a new subsumption relation. A subsumption op­
eration concerns 'a pair of unifiable atomic formulas. As 
shown in Figure 5, subsumption operation from atomic 

Figure 5: Subsumption Operation From Atomic Formula 
Q to (3. 

formula Q to (3 divides (3 into (3' and ;3". (3' is the maxi­
mum subset of (3 subsumed by Q, and (3/1is the rest of ,8: 
beta/l = (3 - (3'. Neither Q nor (3' is hence unifiable with 
(3/1, as indicated in the figure. If it is somehow known 
that Q subsumes (3 from the beginning, then no copy 
(division) need to happen. When the division of (3 actu­
ally takes place, then it causes a duplication of the clause 
containing (3, atomic formula ~ accordingly dividing into 
e and e'.8 Unlike in the division of (3, e and e' are 
unifiable both with each other and with all the atomic 
formulas unifiable with ~, because there is no reason to 
believe I(e) n I(C) = 0,and so on. 

We omit further details of combinatorial aspects of 
symbolic inference, due to the space limitation, and go 
on to the dynamical aspect. Subsumption generates new 
atomic constraints and thus redefines U. Sext3' is set to 1, 
because Q subsumes (3'. S~'~II and s~lIe are both set to So, 
because we are not sure about the subsumption relation 
between these atomic formulas. The other coefficients 
are simply inherited along with the copy of the part of 
the constraint network. 

Since subsumption is a local operation, it may take 
place in parallel at many different places. Now we con­
sider how to guide such computation based on the dy­
namics, without recourse to any centralized control. As 
the preference score for a subsumption, we could use the 
expected contribution of that subsumption to reduction 
of U at the equilibrium of spreading activation. As men­
tioned above, a subsumption from atomic formula Q to (3 
divides j3 into (3' and (3/1, setting Sext3' to 1. The expected 
influence of this to reduction of the total energy could 
be estimated by - ",EJP , where P is defined to be the 

VSo./3 

8If a and (3 belonged to the same clause, then a is also divided 
into a' and a", If a' and (3' belong to one clause and hence a" 
and .t3" belong to another, then a' and (3" subsume each other and 
0"1 and .13" are not unifiable, 

minimal Co (['0 under the condition F = 0) in a neigh­
borhood of the current x. Uo is a representative part 
of energy whose definition is not changed due to sym­
bolic operations. For instance, it could be the disjunc­
tion energy of clause +true.. At any rate, the symbolic 
computation is controlled so as to minimize some part 
of energy, whereas the analog computation to minimize 
the whole energy. By employing generalized backprop­
agation (Pineda 1988), ",op can be efficiently computed 

vSo./3 

for all 8 0 3. The space complexity of that computation is 
linear with regard to the size of the constraint network, 
and its parallel time complexity practically constant. See 
APPENDIX for mathematical details. 

Our method implements some important features of 
other inference mechanisms proposed elsewhere. First, 
weighted abduction (Hobbs et al. 1990, Stickel 1989) 
emerges from our method. In weighted abduction, just 
as in the current framework. one at tempts to tailor a best 
hypothesis to explain the observed fact. A hypothesis is 
a conjunction of (negated) atomic formulas. Each con­
junct in a hypothesis is assigned an assumability cost, 
which is a. cost of assuming the conjunct. A hypothe­
sis is better when the total assumability cost is smaller. 
Assumability cost may be reduced by unifying the con­
juncts. For instance, if the current hypothesis contains 
p(A) and p(B) one of which has a large cost, then this 
cost will be reduced by unifying them. Assumability cost 
is inherited through abduction. For example, a cost of 
p(A) in the current hypothesis is inherited down to q(A) 
and r(A) when p(A) is resolved by clause +p(X) -q(X) 
-r(X) .. 

Assumability cost is basically captured by our com­
pletion energy: the conjunct in question must be inferred 
otherwise than the way it was first postulated, or it would 
be inhibited due to its completion energy. So an inher­
ent cost is encoded by a completion coefficient of atomic 
formula Q. This gives rise to a. high preference score 
of subsumption from Q, because if Q comes to subsume 
another atomic formula (3 then perhaps the completion 
energy of Q is reduced due to Sap = 1, which will be 
indicated bv a large value of - ",oP . An inherited cost is 

v vSa /3 

captured along the same line. For example, when p(A) 
with a large cost subsumes p(X) in clause +p(X) -q(X) 
-r(X)., the completion energy of p(A) is probably still 
large, but it will decrease if q(X) and r(X) get more ex­
cited. So the preference score of subsumptions from q(X) 
and r(X) tend to be large, corresponding to the inherited 
cost in weighted abduction. 

Our framework is more flexible and dynamic than 
weighted abduction. That is, we allow inferences con­
cerning a hypothesis to influence the state of other hy­
potheses, whereas in weighted abduction assumability 
costs change only due to unification involving the atomic 
formulas carrying those costs. So our method is more 
appropriate to account for such phenomena as belief re­
vision. In this connection, our dynamical semantics is 
much more general than the probabilistic semantics of 



Charniak and Shimony (1990), which is restricted to 
propositional Horn logic. 

Second, marker passing (Charniak 1986, Norvig 1989) 
may be also understood as an emergent property of the 
dynamics, along the same line as above. Consider the 
following discourse for example. 

(21) Taro got a book. He paid one thousand yen. 

Figure 6 shows the network involved in the abductive in-

G1 P1 ! instance instance! 
get pay 

SUbC~ Ament 
buy 

Figure 6: Marker-Passing for (21). 

ference to assume that Taro bought the book. In the left 
is the marker-passing network encoded9 by the constraint 
network, which is in the right. A node in marker passing 
network corresponds to an argument or a predicate in 
our constraint. An edge between an argument node and 
a predicate node represents that the argument satisfies 
the predicate, and an edge between two predicate nodes 
represent a clause referring to the two predicates. The 
directions of the arrows are static, and irrelevant to the 
direction of marker passing. get(GI) and pay(Pl) are cre­
ated upon reading/hearing (21), where Gl and PI stand 
for the event of Taro's getting a book and that of his 
paying money, respectively. 

In marker passing, the abductive inference of Taro's 
buying the book will be suggested by a collision of mark­
ers passed down from GI and PI along the path between 
them. In our framework, the same abductive inference 
consists of three subsumption operations along the (copy 
of) extraclausal equations in the right of Figure 6. The 
preference scores of these subsumptions are probably all 
high, because of the path of clauses between get( GI) 
and pay(PI). If the activation value of get(GI) is larger 
than !, then it excites get(E) due to assimilation energy, 
get(E) excites buy(E) due to exclusion energy, buy(E) ex­
cites buy(B) due to assimilation energy, and buy(B) ex­
cites pay(P) due to disjunction energy. get(E) is simi­
larly excited indirectly by pay(PI). So get(E), buy(E), 
buy(B) and pay(P) are excited stronger than when there 
were no such path. The subsumptions along the extra­
clausal equations in the right of Figure 6 are therefore 
very promising for reduction of positive completion en­
ergy, so that the abductive inference mentioned above is 
suggested. 

A path of clauses between two very informative atomic 
formulas (ones with activation values close to 0 or 1) thus 
tends to raise the preference for subsumptions along it. 

9Charniak (1986) employs a similar encoding scheme. 
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This is what marker passing is designed to capture in 
general. Of course how much the preference for sub­
sumption increases depends on the dynamical properties 
of the path. For instance, the path in Figure 6 would 
not indicate the above abductive inference if the exclu­
sion coefficients of the two clause~ are small.lO Sugges­
tion of inference also depends on the length of the path. 
Obviously. shorter paths more readily suggest inferences. 

Subsumptiolls can also be promoted by associative 
inferences discussed in the previous section. because a 
subsumption between two atomic formulas will strongly 
affect P when SOllle ofthe extraclausal equations between 
them are strongly excited owing to transitive cycles in­
volving them. See Hasida (1991) for how generation of 
natural language sentence is controlled by heuristics re­
garded as approximating our control sche~e taking such 
associations into account. 

6 Concluding Remarks 

We have discussed a framework of constraint for design­
ing a cognitive system. To capture the partiality and the 
corresponding situatedness of cognition, the co~straint is 
situated in a field of force derived from potential energy 
representing the degree of violation. This field of force 
gives rise to analog inference as spreading activation, and 
also controls symbolic computation to transform the con­
straint. Not only nearly logical inferences and abductive 
inferences but also associative inferences emerge out of 
such a dynamics. 

A distinguished feature of our framework is that the 
control scheme for inference is derived from a dynamics 
which also provides the declarative semantics. In com­
parison, the other frameworks such as marker passing 
stipulate the inference control apart from the declara­
tive semantics. The inborn integration of declarative se­
mantics and inference control as in our method will not 
only provide a clear perspective of the design, but also 
guarantee emergent reflection of semantic relevance in 
information processing. In this connection, our method 
is integrated also in another sense that it controls ana­
log and symbolic inferences based on the same dynamics. 
This is a strong advantage over the methods such as in 
Waltz and Pollack (1985) which separate the two infer­
ence schemes. 

The current framework should be extended with re­
spect to several points. First, some partial processing 
method is necessary for dealing with transitive cycles, 
although at any rate a massively parallel computational 
system is essential to implement our theory. Second. 
deletion should be incorporated in addition t~ subsump­
tion, in order to prevent the constraint network from 
unlimited growth. Probably deletion is regarded as a re­
verse of subsumption, and hence the control of deletion 

lOWhat Charniak (1986) calls isa-plateau can be understood 
along the same lin",. 
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may be formulated along the same line as that of sub­
sumption. Third, the control method should take into 
account consistency checking as well. Consistency check­
ing pertaining to binding is discussed in Hasida (1991).11 
In order to handle consistency checking in general, we 
will have to give preferences not only to subsumptions 
which seem to decrease P but also to those which seem to 
increase P. Finally, learning is vitally necessary for both 
the coefficients (Suttner and Ertel 1990) and the sym­
bolic structure of constraint. Further scrutiny is open 
with regard to the role of the dynamics in learning. 

APPENDIX 

The equilibrium condition of the spreading activation 
concerning x is regarded in general as x = :ij, where .ij 
is a vector function of x and ,5. 12 Let s be a parameter 
in S. When il is differentiable. we get (22) where ~ is 
defined by (23). 

ax = ( ~ ) = ail ax ail 
(22) as . axas + as 

aXn 
as 

( 

~Yl . .. aYI) 
aXl aXn 

aYn aYn 
aXl aXn 

(23) 

(24) follows from (22), where I is the n-dimensional unit 
matrix. 

(24 ) ax = (I _ ail)-1 ail 
as ax as 

Let H be a scaler function of x and 5, and P be a scalar 
function of § such that P = H when x = :ij. Where H 
is differentiable, we get the following. 

OP oH 0- oH oH ( 0-)-1 0- oH 
- - _2 + - = £:\x- I - ~x- ~s + ~s (25) as - ox as as u u u u 

_ ;:j Qi + oH 
- N as as 

Here z is defined by (26), from which we obtain (27). 

(26) .... = aH (I _ ail)-l 
z ax ax (27) 7'- 7' ail aH - - - ax + ax 

Thus, z is computed via spreading activation based on 
(27). So as a whole we are to do double-layered spread­
ing activation, the first layer for x and the next for z. 
We omit mathematical discussions on the convergence of 
spreading activation. Finally, ~~ can be obtained from 
(25). We have avoided calculating ~, which would be a 
very complex computation. Note that W is not zero for 

a~ a~ 

most Xi, whereas ~ and fs are sparse. 

11Treatment of binding could probably be ascribed to the general 
case of consistency checking plus transitivity energy. 

121n the current formulation, Yi = l+e£p(Y,)' where Y; is a poly­
nomial not involving Xi. 
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Abstract 

Reliance on Artificial Intelligence suggests that Fifth 
Generation Computer Systems were intended as a sub­
stitute for thought. The more feasible and useful objec­
tive of a computer as an aid to thought suggests men­
tal ergonomics rather than Artificial Intelligence as the 
basis for new-generation computer systems. This objec­
tive, together with considerations of software technology, 
suggest logic programming as a unifying principle for a 
computer aid to thought. 

1 Introduction 

When surveying the literature on computing, it is re­
markably difficult to find work directly aimed at making 
computers usable as a tool for thought. Even when we 
go to publications specialized in Artificial Intelligence, 
we find mostly work aiming at simulating or automating 
human intellectual functions, but very little on how to 
use computers to augment the intellect in the way en­
visaged by pioneers such as Licklider, Engelbart, Taylor, 
and Kay. 

Until recently it was understandable that the goal of 
augmenting the intellect had to be deferred, and that top 
priority had to be given to the development of hardware 
and systems software that provided a functional basis on 
which to proceed towards the main goal. I believe that 
this basis now exists and that therefore the top priority 
in computing should be to use the existing machinery to 
make computers available as tools for thought. It seems, 
however, that at present it is still top priority to make 
computers faster, bigger, and cheaper. This can only be 
explained as a form of inertia: we feel comfortable in an 
enterprise blessed with past and continuing success and 
it is painful to change emphasis, even if it is towards 
what is now really important. 

Let us then take stock and see what progress has been 
made towards providing the basis for the goal of mak­
ing a computer into a tool for thought. The hardware 
dreamed of by the pioneers has arrived: fast processors, 
large memories,sophisticated and comfortable displays, 

high-performance networks; all of this available in thou­
sands of enterprises and institutions. Still, we do not use 
computers as tools for thought in the way the pioneers 
envisaged. Were they unrealistic in their expectations? 
Or is it the case that the remaining obstacles can be 
overcome? 

I believe that the latter is the case, and that the re­
maining barrier is the difficulty of using software. What 
is from the larger viewpoint but a tool among many, such 
as, for example, a database program, is so complex that 
it comes with a fat manual and a programming language 
of its own, so that to become an effective user is almost 
a career in itself. 

This is but one example of many, of a wider phe­
nomenon I refer to as concept fragmentation: that each 
job seems to require its own special-purpose solution; 
even worse, that the same job in a different context re­
quires a different solution. This, not hardware, is now 
the main barrier standing in the way of using computers 
to augment the intellect. 

In this paper I will argue that the best bet for a uni­
fying principle to overcome this barrier is logic program­
ming. As Artificial Intelligence often comes up in discus­
sions about how to make computers easier to use, it is im­
portant to distinguish the roles to be played by Artificial 
Intelligence and Mental Ergonomics l . For this reason, I 
sketch the argument from scratch: why there is reason to 
believe that computers can be tools for thought, before 
going on to explain in what way logic programming, as 
ergonomic principle, can help demolish the main barrier 
now holding up progress. 

2 A synopsis of the argument 

This section is what is sometimes called "executive sum­
mary." Each paragraph summarizes one of the following 
sections of the paper. 

1 Webster's Third International Dictionary: ergonomics - an 
applied science concerned with the characteristics of people that 
need to be considered in designing and arranging things that they 
use in order that people and things interact most effectively and 
safely. 
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Towards Computer-Aided Thought. Writing is 
paper-aided thought: while we can do simple sums in 
our head, we need help for more complex ones; help of­
fered traditionally by writing on paper.' Similarly, we 
can do simple thoughts in our head; to work out com­
plex thoughts, such as plans, proposals, essays, reviews, 
critiques, we need writing. 

Computers are now widely used as a more convenient 
writing tool than a pen on paper. The availability of 
programs for spreadsheets, databases, and communica­
tions provide a tantalizing glimpse of a more powerful 
aid to thought than the pen on paper ever was. Such 
a potent new mixture deserves a name. I chose one 
suggested by the familiar concepts of Computer-Aided 
Instruction (CAl) and Computer-Aided Design (CAD). I 
call it Computer-Aided Thought, CAT for short. Today's 
laptop computers already pack the hardware required to 
support a powerful CAT system. Thus you will be able 
to take it wherever you go, like a Sony Walkman. Let us 
call'such a package "CATMAN." 

And hardware trends suggest that CATMAN will be 
widely affordable, giving unprecedented power to intel­
lectual workers of all ages: school children as well as 
professionals, business persons, and scientists. 

Why Computer-Aided Thought is an underdevel­
oped area. In spite of spectacular advances in comput­
ing, both in large systems and in personal computers, no 
one, not even the most privileged researcher, has a com­
puter available as a congenial tool for intellectual work. 
At best she2 can call on a hodge-podge of language pro­
cessors, databases and application packages requiring a 
bevy of system gurus at her beck and call if she is to 
avoid devoting her career to mastering the mechanics of 
the various systems. 

Improvement is a matter of ergonomics, not AI. 
A congenial tool for intellectual work needs to handle a 
variety of tasks: including database work, text process­
ing, communication, constraint exploration, developing 
algorithms. This diversity of tasks has caused a prolifer­
ation of languages so that logically identical tasks need to 
be done in an exasperatingly different way, just because 
they occur in a different application. The problem is 
one of ergonomics (in this case Mental Ergonomics): the 
lack of a unifying concept makes current program inter­
faces conceptually fragmented. This is where we should 
look in the first place for help, rather than to Artificial 
Intelligence. 

Logic programming meets the requirements of 
Mental Ergonomics. I mention some ergonomic prin­
ciples that help to make computers easier to use and 

20r "he." Here, as elsewhere in my writings, no gender is to be 
inferred when none is implied b.y the context. 

review results showing how such principles can be imple­
mented by means of logic programming. 

3 Towards 
Thought 

Computer-Aided 

What is "thought"; what is "intellect"? Why do I con­
sider writing "paper-aided thought"? The analogy about 
complex thought spilling over to paper, just as complex 
sums do, is due to Susan Horton [1982], who took as 
starting point the familiar phenomenon that we don't sit 
down to write an essay with its main line of reasoning 
ready in our head. Instead, we only discover what we 
want to say as a result of initially unsuccessful and often 
frustrating attempts to write down inchoate, preliminary 
versions. In this way, Horton concludes, writing allows 
us to have thoughts too hard to do in our head. 

Another way of expressing Horton's idea is to say that 
writing "augments the intellect." In 1963 Douglas C. En­
gelbart published the paper" A conceptual framework for 
the augmentation of man's intellect" [Engelbart 1963]. 
Its first paragraph, which I quote in full, contains a bet­
ter description of "aids to thought" or "augmentation of 
intellect" than I can give. 

By "augmenting man's intellect" we mean 
increasing the capability of a man to approach 
a complex problem situation, gain comprehen­
sion to suit his particular needs, and to derive 
solutions to problems. Increased capability in 
this respect is taken to mean a mixture of the 
following: that comprehension can be gained 
more quickly; that better comprehension can 
be gained; that a useful degree of comprehen­
sion can be gained where previously the situa­
tion was too complex; that solutions can be pro­
duced more quickly; that better solutions can 
be produced; that solutions can be found where 
previously the human could find none. And 
by "complex situations" we include the profes­
sional problems of diplomats, executives, social 
scientists, life scientists, physical scientists, at­
torneys, designers - whether the problem situ­
ation exists for twenty minutes or twenty years. 
We do not speak of isolated clever tricks that 
help in particular situations. We refer to a way 
of life in an integrated domain where hunches, 
cut-and-try, intangibles, and the human "feel 
for a situation" usefully coexist with power­
ful concepts, streamlined terminology and nota­
tion, sophisticated methods, and high-powered 
electronic aids. 

Conventional computer applications are much further 
developed in the area of what Engelbart calls "powerful 



concepts, streamlined terminology and notation, sophis­
ticated methods." I regard the area of "hunches, cut­
and-try, intangibles and 'human feel for the situation' " 
the one where writing helps as an aid to thought in the 
sense of Horton. Engelbart's vision will be realized when 
a computer can be used as a congenial tool for writing, 
giving fluent access to spreadsheets, databases (local as 
well as remote), numerical and statistical libraries and 
so on. 

Other prophetic early papers that improved upon 
much later thinking are by Bush [1945] and Lick­
lider [1960]. For an overview of Engelbart's subse­
quent work in the Augmented Knowledge Workshop, see 
[Engelbart 1988]. 

4 Why 
Computer-Aided Thought is 
an underdeveloped area 

A present-day personal computer can provide a word pro­
cessor, a spelling checker and a thesaurus. This combi­
nation is a powerful advance over pen and paper, and 
therefore qualifies as a correspondingly powerful aid to 
thought. Personal computers can also run packages for 
databases, spreadsheets, and computer mail. But al­
though these are potentially valuable extensions, the re­
sulting combination is not easy enough to use to qualify 
as a computer tool for thought. The existence of the 
components conjures up a tantalizing vision of such a 
tool, but the reality of ergonomics turns the vision into 
a mirage. 

To appraise the situation, let us consider what per­
sonal computers have given us, and what's lacking. 

What we do have. The amazing thing about personal 
computers is that they have caused such large step in 
the direction of a computer tool for thought. The early 
computers were operated in a closed shop, to which users 
submitted their jobs, which were collected in batches and 
run. 

Timesharing brought a dramatic change: from a 
turnaround time of hours to instantaneous interaction. 
Effectively, the timesharing user has the machine to him­
self. And even in the sixties, these machines were not 
small compared to contemporary personal computers. So 
it was not obvious that a dramatic change would result 
from the next step, the introduction of the personal com­
puter. Yet .they made an enormous difference and that 
was because of their low cost. This has two effects: 

1. Small firms and individual software designers can 
afford machines of their own. 

2. The potential financial rewards in the software mar­
ket became much greater. 
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The result should convince sceptics of the power of a 
sufficiently free market: it resulted in an unprecedented 
improvement in user ·interfaces. 

This is the more amazing when we realize that since 
the early sixties timesharing computers have been used 
for word processing. These installations commanded the 
best in programming talent and were largely devoted to 
research. Yet nothing was produced that can compare 
with the better word processing packages that appeared 
on the market soon after personal computers took off. 
For most of the 1980's, Unix-based workstations, with 
more powerful hardware than personal computers, had 
word processors worse than those on personal comput­
ers. Spreadsheets are an even more striking example. 
This type of software, now considered obvious and in­
dispensable, was not even known before the advent of 
personal computers. 

Even a loaded PC does not come close. Yet, even 
this progress still falls far short of what is necessary to 
make a personal computer a congenial tool for thought. 
Progress has been in the application packages separately, 
not in ways to integrate. 

Consider, as an example of the need for integration, an 
engineer in his daily activities. He makes calculations, 
searches tables, standards, textbooks, draft reports, re­
ceives and sends mail, retrieves and studies drawings and 
textual library material, accesses databases (local and re­
mote) and so on. In all these activities separately, com­
puter programs exist that can help. The rapidly falling 
cost of hardware makes these programs potentially ac­
cessible to every engineer. But this is a mixed blessing: 
if he is to utilize the full potential of all available com­
puter tools, he needs several specialists in attendance, to 
be available at a few seconds' notice. 

Even then he will not be able to use the computer 
as a truly congenial tool: that is only possible when no 
intermediary is needed. At present he needs an inter­
mediary for many applications because of the complex 
and idiosyncratic interface provided by the required soft­
ware. And it does not help that every application pack­
age comes with its own, unique programming language, 
so that two logically identical jobs in different applica­
tions need to be done in an exasperatingly different way. 

Of course the situation sketched here is not unique 
to engineers, but is shared by professionals in public or 
business administration and in scientific research. 

What's lacking? A plan for improvement has to be 
based on a diagnosis of what is wrong. One common 
diagnosis can be summarized as: 

Computers are difficult to use because they are 
not enough like humans. To make progress we 
must make them more like humans. Therefore, 
before we work directly towards a congenial tool 
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for mental work, we need progress in Artificial 
Intelligence. 

But another diagnosis is possible: 

Computers are difficult to use because they are 
not enough like automobiles, that is, they are 
not a tool that one can easily learn to use as 
an extension of oneself. To make progress to­
wards a congenial tool for mental work, we need 
to work on the ergonomics of interfaces to soft­
ware. 

The Japanese Fifth Generation Computer System 
project [Moto-Oka 1982] is based on the first diagnosis. 
I will argue that to make most rapid progress towards 
CA TMAN we must work on ergonomics rather than on 
Artificial Intelligence. Moreover, that via ergonomics 
progress is predictable and will be rapid, as it will be 
a matter of elaborating existing software technology. In 
comparison, progress in Artificial Intelligence seems un­
predictable: the required results may indeed be around 
the corner, or it may be a long time before they materi­
alize (if at all). 

5 Improvement is a matter of 
ergonomics, not AI 

We saw that what stands in the way of CATMAN can be 
diagnosed as either a problem in Artificial Intelligence 
or as a problem in mental ergonomics. There are two 
episodes from the past that should help in deciding which 
diagnosis is more fruitful. 

In the late 1940's influential administrators perceived 
an acute shortage of experts available to translate Rus­
sian scientific publications into English. In that period 
there existed considerable optimism about the feasibil­
ity of fully automatic high-quality translation, result­
ing in several well-funded research projects. Lack of 
progress in the fifties, combined with devastating crit­
icism [Bar-Hillel 1964] of the scientific basis of machine 
translation, caused funding to be withdrawn. 

Let us consider two possible reactions to this failure to 
get computers to alleviate the shortage of translators. 

Reaction 1: The funds should have been spent on 
Artificial Intelligence. The consensus that emerged 
in the fifties and caused the demise of projects aiming 
at fully automatic high-quality translation, was that the 
text to be translated had to be understood, at least to a 
certain extent, by the translating agent, human or ma­
chine. Machine translation was therefore seen as a prob­
lem in Artificial Intelligence. Getting a computer to help 
in translation was therefore premature - progress in Ar­
tificial Intelligence was needed first. 

Reaction 2: The funds should have been spent 
on ergonomics. In the fifties, when the objective was 
to use computers to help alleviate the shortage in trans­
lators, the technology available to translators consisted 
of a typewriter (electro-mechanical at best) and some 
well-thumbed reference books. In the early eighties, af­
ter machine translation had long been forgotten, and in 
response to different pressures, there evolved a set of 
computer tools that have enormously increased the pro­
ductivity of translators: word processors, spelling check­
ers, thesauruses, dictionaries, checkers of style and dic­
tion. Such software could have been built soon after 1960 
when the first time-sharing systems became available. 

Thus in 1960, when it was clear that the approach to 
machine translation taken in the fifties was doomed to 
failure, it would have been possible to go on to achieve 
great increases in productivity at low cost. Instead, it 
was concluded that the least tractable stage of translation 
was to remain to receive top priority and that research 
in A rtijicial Intelligence was to be motivated in part by 
the desirability to use computers to increase productivity 
of translators. 

A lesson to be learned from this episode. There is 
a similarity between the situation now, in which we sus­
pect that computers can do more to help mental work 
than is actually the case and the situation in the fifties 
when it was hoped that computers could help in trans­
lation. In the case of translation, the least tractable as­
pect of the work was selected, leading to Artificial In­
telligence. In retrospect, more tractable, even mundane, 
aspects (namely ergonomics) could have been selected 
with great success, not only to increase the productivity 
of translators, but of other office workers as well. 

Similarly, when considering how to make a computer 
into a congenial tool for mental work, there seems to be 
a great temptation to fall into the same trap: to view 
Artificial Intelligence as panacea. 

To end this section on a positive note, I will conclude 
with an episode from the past where the right alternative 
was selected. There was a time when automobiles were 
difficult to use, for several reasons: for example, because 
of frequent need for tuning, maintenance, and repair. At 
that time, a Plutocrat requiring transportation solved 
this problem by retaining a chauffeur and a mechanic 
(ideally, but not necessarily, the same person). 

When considering. obstacles preventing more widely 
available transportation by automobile, the following di­
agnoses are possible: 

1. build robot chauffeur-mechanics 

2. make automobiles easier'to use, so that the chauf­
feuring can be done by the person to be transported 
and so that only an occasional visit to a garage is 
required for tuning, maintenance, and repair. 



The Japanese FGCS project3 has selected an alterna­
tive in the spirit of the first [Moto-Oka 1982]. 

6 Logic programming meets the 
requirements of Mental Er­
gonomics 

In this section I review some of the basic principles of 
Mental Ergonomics and comment how logic program­
ming can help implement them in CATMAN: Avoid try­
ing to do two things at a time, Allow the user to do the 
same thing in the same way (if desired), Exploit useful 
conservatism, and A void harmful conservatism. 

Avoid trying to do two things at a time. It is bad 
ergonomics to define a programming language in such a 
way that the declarative and the imperative aspects of 
programming are not easy to separate. Rather than to 
attempt to define these aspects, I will illustrate them by 
the example of computing an arithmetic expression using 
register- to-register machine operations. 

Two tasks have to be distinguished here: 

• To make sure that the correct expression is evalu­
ated ( what is computed; this is the declaraiive aspect 
of programming). What the correct expression is, is 
only determined by the application, independently 
of the machine on which the computation is to be 
performed. Thus, this task can also be thought of 
as that of solving the application problem. 

• To determine the sequence of register operations and 
transfers required to get the correct value in the de­
sired location (how it is computed; this is the imper­
ative aspect of programming). This task contains 
the above task. What belongs to this task over and 
above the application problem is to control the ma­
chine. To get this additional aspect right is to solve 
the control problem. 

The example of arithmetical expressions is useful be­
cause every programming language allows these to be 
evaluated without having to solve a control problem. 
Thus, every programmer, at the level of assembler lan­
guage and up, is familiar with declarative programming. 
The problem with conventional languages is that this 
type of programming is only possible with arithmetic ex­
pressions, on which the programmer spends only a small 
proportion of his time. Most of the work requires areas of 
the language where the application and control aspects 

31n its original 1982 version [Moto-Oka 1982]. What the project 
has actually done since then is more sensible. In fact, they have 
been a prolific contributor to logic programming, my proposed 
technical basis for CATMAN. But the preoccupation with paral­
lelism and with big machines remains, and this can only be traced 
back to the initially intended role of Artificial Intelligence. 
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of the task are intimately intertwined. As a result, it is 
possible for an error in control to cause a wrong answer. 
As a result, a programmer in such a language is forced 
to try to do two things at the same time. 

Logic as a programming language allows a decompo­
sition of an algorithm into what Kowalski [1979] calls 
its logic component (corresponding to the declarative as­
pect) and its control component (corresponding to the 
imperati ve aspect). A consequence of Kowalski's ap­
proach is that the declarative and imperative aspects are 
separated, so that an error in control cannot cause an er­
roneous answer to appear; at worst it will cause failure to 
find an answer. The advantage is that there is no need to 
solve the application and control problems at the same 
time. 

Allow the user to do the same operation in the 
same way (if desired). In the existing personal com­
puter systems, the closest approximations to CATMAN 

require the use of separate programming languages for 
databases, spreadsheets, intensive numerical computa­
tion, system programming, document preparation, the 
shell, and perhaps even other ones. This means that the 
same operation (such as procedure and data declaration, 
procedure call, case selection, iteration, and so on) has 
to be done in a different way in each of these different 
languages, violating a principle of ergonomics. 

It has been shown that logic programming can 
be the basis of many different types of program­
ming language: functional [Cheng et al. 1990], im­
perative [van Emden 1976, Rosenblueth 1989], object­
oriented [Davison 1988], stream-oriented [Taylor 1989], 
as well as for database querying [Ceri et al. 1990]. Of 
course, within this framework there are still many oppor­
tunities for violating the ergonomic principle by undue 
proliferation of variety. But by using logic as common 
framework for whatever different languages are needed, 
improvement is made easier. 

Exploit useful conservatism. A conceptual interface 
represents a beneficial kind of conservatism: it is an in­
terface modelled on a familiar concept so that the known 
operations on the concept can serve as model for the com­
puter operations that need to be learned. The prototyp­
ical example of a conceptual interface is the WYSIWYG 

editor, where the familiar concept is a sheet of paper. 
Examples of conceptual interfaces that fit well in logic 
programming are: the conversational partner, the pocket 
calculator, spreadsheets and tables, and the filling in oj 
blanks. I elaborate on these below. 

Lack of a conversational partner as conceptual inter­
face can lead to the kind of frustration eloquently voiced 
by John McCarthy, who complained4 that even to get a 
computer to acquire a simple symbol manipulation skill 

41n debate with Sir James Lighthill on BBC TV in 1974. 
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is like having to perform brain surgery. He explained 
that the goal of his research is to program computers in 
such a way that one just needs to tell them. That is, to 
model the interface on that of a conversational partner. 

This ideal has been realized to a certain extent by 
MYCIN [Shortliffe 1976], an early expert system. The 
user interacts with it in the following way. If the user 
lacks information, he asks a question to which the ma­
chine may respond with an answer. If the user knows 
something that the computer doesn't, he tells a fact, or 
a rule. If the user is puzzled by an answer, then he can 
request an explanation, which comes in the form of facts 
and rules chaining the facts to the answer. Sergot [1982] 
and Shapiro [1983], have shown that this conceptual in­
terface finds a natural home in logic programming. They 
added to the initial version embodied in MYCIN the possi­
bility of making the computer and user play symmetrical 
roles. 

The programming language LISP is an example of a 
conceptual interface, albeit in an inverted way. The basic 
interaction mode in LISP does not need to be learned 
because it is the same as that of a pocket calculator: 
enter expression to be evaluated, get in return its value. 
The curious inversion lies in the fact that the familiiH 
concept, the pocket calculator, is of more recent origin 
than the beneficiary of the conceptual model, namely 
LISP itself. 

In the early days, computers were used in a rigidly 
planned way. With the advent of time-sharing, users 
were given the illusion of having a machine of their 
own, allowing in principle an intimate, interactive, and 
spontaneous use. Software to exploit this possibility 
was slow in coming: only with the advent of pro­
grams modelled on the spreadsheet as conceptual in­
terface for personal computers has this mode of use 
been convincingly demonstrated. A similar, but signifi­
cantly different, interface is that of a table, where rows 
and columns play different roles. Both interfaces have 
been shown to be compatible with logic programming 
[van Emden et al. 1986, Cheng et al. 1988]. 

Filling in the blanks of a form is a useful, though 
not widely loved, conceptual interface. It has been ex­
ploited in Query-By-Example [Zloof 1977] to provide one 
of the more congenial query languages for databases. 
The queries of the logic programming language Prolog 
are similar [van Emden 1977, Kowalski 1979]. 

Avoid harmful conservatism. Exploiting a concep­
tual interface is a useful form of conservatism. Insisting 
that only English is fit for humans to communicate with 
our tools is not. The optimism about the utility of nat­
ural language for a user-computer interface is based in 
no small degree on the work of T. Winograd [1972], who 
himself, however, subsequently made the following ob­
servation [Winograd and Flores 1987]: 

Th~ practicality of limited natural language 
systems is still an open question. Since the 
nature of the queries is limited by the formal 
structure of the data base, it may well be more 
efficient for a person to learn a specialized for­
mal language designed for that purpose, rather 
than learning through experience just which 
English sentences will and will not be handled. 
When interacting in natural language it is easy 
to fall into assuming that the range of sen­
tences that can be appropriately processed will 
approximate what would be understood by a 
human being with a similar collection of data. 
Since that is not true, the user ends up adapting 
to a collection of idioms - fixed patterns that 
experience has shown will work. Once the ad­
vantage of flexibility has been removed, it is not 
clear that the additional costs of natural lan­
guage (verbosity, redundancy, ambiguity, etc.) 
are worth paying in place of a more streamlined 
formal system. 

An interface where the user is confronted with seem­
ingly random breakdowns and has to guess at what will 
work and what won't, is frustrating and inefficient -
bad ergonomics. 

A special-purpose notation can not only be a conve­
nience, but even a genuine augmentation of the intellect. 
Such a notation should be seen as evolution of language, 
helping further development of the intellect. Such co­
evolution of language and intellect should be allowed to 
continue in the computer age and should not be stifled by 
doctrinaire insistence that only English is fit for humans. 

"Natural, easy-to-use" interfaces are to be approached 
warily when they are slower in use than other interfaces. 
Windows and a mouse can be extremely enticing when a 
novice finds that already after the first half hour he can 
get simple jobs done on a computer. But an interface 
that takes ten times as long to learn and allows the user 
to work twice as fast is worth the extra trouble after 
four and a half hours of use. As most users spend over a 
hundred, or even over a thousand hours with a computer 
every year, it is clear that preference for the "natural and 
easy-to-use" can be a form of harmful conservatism. 

1 Concluding remarks 

If a moratorium on hardware improvement were to go 
into effect today, it would take decades before software 
caught up far enough to exploit hardware to a reasonable 
extent. Such a degree of exploitation includes the use of 
a computer as a congenial tool for thought, and deserves 
to be primary focus of computer science. 

To exploit the potential of computers as tools to aug­
ment the intellect, the Fifth-Generation Computer Sys­
tems Project has relied on expected advances in Artificial 



Intelligence. Experience in attempts to use computers to 
increase productivity in translation between texts in nat­
ural language suggests that more mundane approaches, 
summarized under Mental Ergonomics, are more effec­
tive. 

I have argued against the use of Artificial Intelligence 
and of natural language processing by computer. Lest I 
be misunderstood, let me emphasize that this concerned 
the particular applications addressed in this paper. Ar­
tificial Intelligence as cognitive science is as interesting 
and important as particle physics and cosmology. N atu­
rallanguage processing by computer has by now reached 
the stage where it can be a valuable aid to human trans­
lators, and to authors more generally. This is consistent 
with the reservations quoted from Winograd. 
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Abstract 
The overall aim of the studies reported is to explore the 
possibility of creating highly integrated knowledge support 
systems through the loose coupling of software tools 
developed independently at unrelated sites for different 
purposes. Three tools were integrated to form a combined 
knowledge acquisition and performance system. A 
hypermedia tool was used as a general-purpose knowledge 
acquisition tool for unstructured material in the form of text 
and diagrams. A knowledge acquisition tool was used to 
elicit knowledge more formally and structure it as a 
computable knowledge base. A knowledge representation 
and deduction tool was used to represent the elicited 
knowledge and perform inferences with it to generate 
advice in a performance situation. Strong synergy was 
created between the tools in that the annotation and 
explanation captured in the hypermedium system were 
available as context-sensitive help to the user of the expert 
system, and the expert system was used to validate the 
knowledge base generated by the knowledge acquisition 
tool and feed back anomalous cases as additional data for 
induction. 

1 Introduction 
This paper reports the results of a collaborative program of 
research between the Canadian Knowledge Science 
Institute (KSI) and the German National Research Centre 
for Computer Science (GMD) on the integration of 
knowledge acquisition and performance systems. 
Researchers at the GMD have developed a knowledge­
based systems shell, BABYLON, which combines object­
oriented knowledge representation with a number of 
powerful inference paradigms (Christaller, di Primio & 
Voss, 1989). Researchers at the KSI have developed a 
knowledge acquisition system, KSSO, which combines 
object-oriented knowledge representation with a number of 
powerful elicitation, visualization and induction paradigms 
(Shaw & Gaines, 1987). The Canadian researchers have 
also developed inter-program communication protocols 
enabling Apple's HyperCard to be used as an extension to 
KSSO for the textual and graphic annotation of knowledge 
structures (Gaines, Rappaport & Shaw, 1989). The 
outcome of the collaborative program is a system, Hyper­
KSE, combining hypermedia, knowledge acquisition and 
performance tools, to provide an environment supporting 
knowledge-based system development from acquisition, 
through application to maintenance. 

The approach we have adopted to system 
implementation is the heterogeneous integration of existing 
tools, involving substantial redevelopment but not the 
design and implementation of a monolithic system. This is 

an important issue in its own right and our logic for 
heterogeneous integration is manyfold (Gaines, 1990a); 
notably: the rapid pace of change of all the base 
technologies making systems obsolescent as they are 
implemented; the need to incorporate subsystems optimized 
for particular roles, probably by different organizations; 
and the overarching requirement for continuous upgrading 
and enhancement without a total system rebuild. All our 
current system development is based on highly modular 
systems communicating through servers and implemented 
as class libraries in object-oriented languages (Gaines, 
1991). 

2 The Principles Involved 
When combining tools in an integrated system it is 
important to have a clear systems architecture in terms of 
required functionality and how it is to be allocated among 
the tools. It is necessary to exclude some facilities 
provided by some tools because it is duplicated in others or 
inappropriate in the overall system. If this is not done, and 
the combined system does not project a clear model of its 
intended use, then users can become confused by excessive 
features. A functional model for the integrated system has 
been built at a high level of abstraction in terms of four 
dimensions of logical validation of a knowledge base, 
corresponding to similar dimensions in evaluating the truth 
of scientific theories (Rescher, 1979):-
• Coherence-the coherence of internal relationships 

between knowledge structures 
• Consistency-the lack of logical contradiction between 

knowledge structures 
• Correctness-the correctness of deductions from the 

knowledge structures checked against external data 
• Completeness-the adequate coverage of an intended 

scope for deductions from the knowledge structures. 
Figure 1 shows how the three tools relate to the four 

dimensions of validation. 
At the center of Figure 1, each of the tools provides 

means for visualizing the conceptual structures they 
support. For example, the knowledge acquisition tool 
provides various clustering algorithms for presenting case 
data graphically, the hypermedia tool is essentially visual, 
and the representation system provides its own knowledge­
base grapher. From a formal validation point of view such 
visualization supports the expert and knowledge engineer in 
evaluating the coherence truth of the knowledge 
structures-the internal relations between different 
representations. Such evaluation provides feedback 
through each of the tools to correct errors, improve 
expressiveness, and so on, that are made manifest through 
incoherence. 
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Fig. 1 Logical basis for modes of knowledge validation in the integrated system 

At the top left of Figure 1, the induction module in the 
knowledge acquisition tool derives plausible constraints on 
the database of case data in the form of entailments that 
eventually become expressed as rules. It supports the 
evaluation of these entailments for mutual consistency (can 
two rules arrive at different conclusions on the same case) 
and for consistency with the case data. Such evaluation 
again provides feedback through all the tools-for 
example, one may amend cases in the ~nowledge 
acquisition tool, amend rules in the representatIon tool, or 
make a note of the potential problem in the hypermedia 
tool. 

At the bottom of Figure 1, the running of new test 
cases, perhaps in routine system use, provides ~,:aluation of 
the correctness of the knowledge base as a deCISIon support 
tool. Again such evaluation provides feedback through all 
the tools, amendment of the case base and re-induction, 
direct editing of the knowledge structures, or commentary 
in hypertext. 

Finally, at the top right of Figure 1, it is shown that the 
hypermedia tool provides a far more significant logical 
validation role that its annotation duties may suggest. 
Systems intrinsically cannot validate themselves for 
completeness, and clearly there can be no guarantees of 
completeness in an open universe. However, in terms of 
validating the formal knowledge base completeness, the 
informal knowledge base held in hypermedia form plays a 
very significant role. Anything mentioned informally that 
has no referent formally leads to a suspicion of 
incompleteness requiring further investigation. 

3 The Integrated System Architecture and 
Operation 
The knowledge acquisition tool KSSO, providing repertory 
grid, conceptual clustering, conceptual c?mpariso~, 
empirical induction, and knowledge base creatIon tools, IS 
already configured as a set of mod~l~s around a speci~ist 
database. It focuses on medlatmg representations 
supporting the expert's modeling processes in moving from 
skilled performance to overt knowledge structure.s 
supporting its emulation in the computer. In recent years It 
has been extended to support the informal representations 
of knowledge that are prior to those within the tool, such as 
text, pictures, diagrams, semi-structured int~~iews, 
protocols, and so on. This has been done by prOVIding ~n 
interapplication protocol allowing KSSO to mteract With 
HyperCard to provide the appearanc~ ?f a sean;uess .sing~e 
application to users. KSSO-specific functIonahty In 
HyperCard is supported by scripts that allow conceptual 
structures on the KSSO side to be linked to informal sources 
and annotation on the HyperCard side. 

KSSO exports knowledge bases to a range of existing 
knowledge-based system shells, and a number of 
collaborative studies have been reported in which these 
shells have been integrated directly (Gaines, Rappaport & 
Shaw 1989; Gaines & Linster, 1990). Figure 2 shows the 
distributed knowledge base and inter-application protocols 
linking the hypermedia, knowledge acquisition and 
knowledge-based system shell in Hyper-KSE. 
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Imported 
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Fig. 2 Integration of hypermedia, knowledge acquisition and knowledge-based system shell 

~igure 3 shows a typical sequence of activity in using 
the mtegrated system to develop a knowledge base. The 
acquisition co~mences with parallel creation by the 
knowle?ge engmeer of a repertory grid in KSSO and 
annotatIon stack in HyperCard. The elicitation tools are 
then used by the expert to enter critical cases characterizing 
the domain together with their relevant distinctive attributes 
and annotation about both cases and attributes. In 
particular, this annotation can include descriptions of the 
procedures by which the expert characterizes a case in 
terms of the attributes, and tutorial examples of such 
characterization. At any time during this process the expert 
or knowled~e engineer can analyze the knowledge entered 
!o ~ate~ v1sually clus~ering it, deriving underlying 
1mphcatIons, and extendmg the knowledge structures and 
annotation in the light of such feedback. 

When the expert feels that a reasonable amount of 
knowl~dge has been entered it is exported to BABYLON 
where 1t can be consulted on test cases, including access to 
the annotation in HyperCard. If a test case leads to an error 
then this case can be posted back to KSSO with a corrected 
recommendation, re-analyzed and a revised knowledge 
base exported to BABYLON. 
. The fol1~wing sequence of screen dumps is based on a 
s~p~e tut~nal example on ~ushroom toxicity provided for 
trammg WIth Hyper-KSE. F1gure 4 shows the entity screen 
in KSSO where a list of mushrooms has been entered KSSO 
is automatically evaluating entity and attribute matches and 
sugges~n~ further elicitation, and the user has popped up a 
menu gIvmg access to commands, annotation in HyperCard 
and consultation in BABYLON. 

Figure 5 shows the way in which matching attributes 
are shown graphically in KSSO. The expert can change a 
rating just by dragging an entity along the scale. He or she 
may also respond to the prompt at the top to enter another, 
discriminating case. This graphic presentation has proved 
very effective in involving domain experts, and allowing 
them to enter knowledge directly into the computer without 
communicating it through a knowledge engineer. 

Figure 6 shows a cluster analysis of the data entered in 
KSSO. This analysis is available interactively at any time, 
providing a different perspective on the cases which both 
motivates the expert and allows the coherence of the data in 
terms of meaningful relations between entities and between 
attributes to be evaluated. 

Figure 7 shows the result of the user selecting 
HyperCard annotation on the popup menu over "Sweet 
scented Boletus" in Figure 5. The fields in the upper half 
are generated automatically from the case data, and those in 
the lower half are user-entered annotation, including a 
button to show further information. 

Figure 8 shows the result of the user selecting the 
"Show" button in Figure 7. The additional annotation can 
be of any form, access to a videodisc, sound replay, 
database, simulation, and so on. This is not computational 
information, but it is an important part of the interface of 
the knowledge base to a user, for example, in explaining 
terminology. 
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Fig. 3 Sequence of activities in using integrated system for knowledge base development 
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Fig. 8 Associated auxiliary annotation 

Figure 9 shows a consultation running directly in 
BABYLON using the knowledge base entered in KSSO. 
The popup dialog box allows the user to select one of the 
possible values, or to go to the HyperCard annotation if, for 
example, he or she does not understand the question and 
needs some explanation of how this attribute should be 
evaluated. 

Figure 10 shows the same consultation running in 
BABYLON with the requests for data being made through 
HyperCard using the attribute annotation cards for query 
purposes. This is the preferred mode for end users since 
HyperCard may be used to give a non-technical interface 
oriented to the particular domain with extensive help 
facilities. The availability of the direct mode as shown in 

Figure 9 is important to the knowledge engineer since it 
gives access to the extensive tracing and knowledge 
structure visualization facilities in BABYLON. 

Figure 11 shows how the knowledge engineer can edit 
the results of a consultation on a test case in BABYLON 
and then post it back as a new entity to KSSO---similar 
facilities are available to the expert or client during the 
equivalent HyperCard-based consultation. These facilities 
put the application of the knowledge-based system into the 
knowledge acquisition process. They model what must be 
achieved throughout knowledge-based systems if we are to 
develop systems in which knowledge-base maintenance is 
an integral feature of ongoing knowledge acquisition. 
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iii BABYLON Knowledge Base gene~ated f~om KSSO data, 24--Nov-90 12:26:27 
iii Design and implementation by B~ian Gaines and Marc Linste~ 
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Fig. 9 Direct consultation with BABYLON 
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4 Conclusions 
This simple example serves to illustrate the main features 
of the integrated system. Each of the tools supports very 
large knowledge bases and a variety of applications has 
shown that the system scales effectively to significant 
applications. The graphic case elicitation tools in KSSO 
operate effectively for some 20 to 50 cases which is enough 
to characterize the attributes of a coherent subdomain. The 
induction tool in KSSO has been shown to be effective with 
databases exceeding 10,000 cases (Gaines, 1991d), 
inducing rules and evaluating edited knowledge bases 
rapidly enough for interactive use. HyperCard, with 
appropriate indexing tools, is capable of annotating 
databases of 10,000 cases without loss of interactivity. 
BAB YLON has been used on a number of 
majorknowledge-based system developments, and has 
recently been reimplemented to support large scale 
industrial applications. 

The main weakness of Hyper-KSE is in the difficulty of 
sustaining the functional integration of the knowledge 
acquisition tools in the development and application of 
complex applications. In a straightforward diagnostic 
application, soluble through heuristic classification, the 
major part of the knowledge base is a single, large but 
coherent, case base, and induced and manually entered 
rules. The representation and inference system has a 
simple task and its knowledge structures do not extend 
beyond those of the acquisition tools. In more complex 
system developments involving multiple subdomains, the 
acquisition tools may be used to characterize each 
subdomain, but the problem-solving, strategic knowledge 
that is involved in using the subdomain knowledge 
effectively has to be entered directly into the representation 
and inference tool. As the balance of the system changes 
such that this knowledge becomes increasingly important, 
the involvement of the acquisition tools in knowledge base 
maintenance is reduced. 

This indicates the need for acquisition tools supporting 
problem-solving techniques, and knowledge-level 
integration based, for example, on generic problem-solving 
methodologies (Chandrasekaran, 1988). Some recent 
experiments have shown that multiple heuristic 
classification of subdomains may be used to solve complex 
procedural problems, such as sequential decision making in 
room allocation (Gaines, 1991e). As a wider range of 
structures for generic problem solving methodologies are 
developed it is becoming feasible to extend the type of 
system described here to include more meta-knowledge 
designed to manage the acquisition, validation, and 
maintenance phases systematically. Extensions to KSSO to 
support such methodologies have been reported recently 
(Gaines, 1991a,b,c), and many researchers are working to 
develop the problem solving methodologies and test them 
in applications. 
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Abstract 
A socio-economic model of generational infrastructure of 
information technology is presented as a tiered progression 
of 'learning curves' in mutually supportive technologies. 
This model is used to analyze trends in research and 
pr?duct, de,;elopment, an~ the transition from 'computer 
SCIence to know ledge sCIence' that characterizes the fifth 
generation. The achievements of fifth generation research 
are evaluated, and the expected directions of future 
generations research are projected. 

1 Introduction 
The Japanese Fifth Generation research program has had an 
important socio-economic impact internationally in raising 
government awareness of fundamental changes in the 
nature of information technology and its strategic role. It 
has been directly responsible for structural change in 
national computing policy such as the formation of the 
MCC within the US anti-trust ethos, and the ESPRIT 
program in Europe cutting across strongly entrenched 
national boundaries. One side-effect of this has been to 
bring i~to promi~ence what .wa.s previously seen only as a 
marketmg/techmcal descnptIon of the evolution of 
information technology in terms of its generational 
infrastructure. As the fifth generation program comes to an 
end, this raises policy questions as to the nature and 
significance. o~ the next ge~eration, and as to the utility of 
conceptuahzmg computmg research in terms of 
generational advances. 

This paper analyzes the questions in terms of a general 
model.of 'learning cu~es' whose ~ime scale is largely 
determmed by the medmm term busmess cycle of capital 
replacement. It highlights an important difference between 
computing and other industrial technologies in that the pace 
of chan~e in, the ~as~, vlsi, technology is so rapid that 
~onventIonal substitutIOn' effects are swamped by a tiered 
mfrastructure of learning curves involving major qualitative 
differences in technologies. A detailed account of the 
~nderlyi~g model and its fit to the past development of 
mformanon technology has been given elsewhere (Gaines 
& Shaw, 1986; Gaines, 1990, 1991), and this paper focuses 
on fifth generation and later issues. 

2 Electronic Device Technology 
The. initial breakthrough for computing was in electronic 
deVIce technology, and a de.finition of computer 

gener~tions in terms of hardware works well for the early 
machmes. However, as Rosen (1983) notes it blurs 
thereafter and "we are faced with an anomalous situation in 
which the most powerful computers of 1979-1980, the 
CDC Cyber 176 and the CRA Y 1, would have to be 
assigned to the second and third generations, respectively, 
while the most trivial of hobbyist computers would be a 
fifth-generation system." The reason for this anomaly is 
that the substitution effects of one form of technology for 
another are gradual and do not correspond to major 
structural changes. The enabling effects of changing 
technologies are far more dramatic: the change from 
mechanical to electronic devices made it possible to store 
programs as data and enabled the use of computers as a 
general-purpose tool and the development of language 
compilers; the transistor made reliable operation possible 
and enabled routine data processing and then interactive 
timesharing; integrated circuits reduced costs to the level 
where computers became commonplace and made possible 
the personal computer dedicated to a single user. 
Modem microelectronics commenced in 1956 when silicon 
planar process was invented and enabled integrated circuit 
technology to be developed. As Figure 1 shows, the 
number of devices on a chip follows Moore's law in 
doubling each year through the 1960s, and has continued to 
double every eighteen months through the 1970s and 1980s 
(Robinson, 1984). The current projected limit is some 
1,000,000,000 devices on a chip in the late 1990s when 
quantum mechanical effects will become a barrier to further 
packing density on silicon planar chips. However, three­
dimensional packing, semiconducting peptides optical 
devices, or, most likely, new materials not yet co~sidered, 
are expected to extend the growth. 

Microelectronics shows over 9 decades of performance 
increase in 40 years. Such exponential growth is common 
in many technologies, but never over more than 2 decades 
and then in periods of the order of 100 years. Computer 
technology is unique in being based on underlying devices 
wh<;>se performance has increased at a rate and over a range 
achIeved by no other technology. Logarithmic plots, such 
as that of Figure 1, do not adequately project the impact 
such a long-term sustained growth, but this is apparent in 
the linear plot of the devices on a chip by computer 
generation as shown in Figure 2. During each generation, 
changes have taken place that correspond in magnitude to 
those of some hundred years in other industries. These 
quantitative changes have led to major qualitative effects 
that are analyzed in the following sections. 



1166 

1,000,000,000 

100,000,000 

10,000,000 

1,000,000 

100,000 

10,000 

1,000 

100 

10 

1 

1---2 

~ 

V 

~1~ 
5XlO~ 
/ 

5X1 3/ 

/ 

/ 
V 

1956 1964 1972 1980 1988 1996 1956 1959 
ID ID ~ % ~ W 3G 4G SG 6G 

Figure 1 Growth of devices on a chip 

3 Learning Curves in Scientific and 
Technological Development 

Figure 2 Devices on a chip during six generations of computers 

the Atanasoff and Berry- experiments with tube-based 
digital calculations. Automation by 1980 had rea~hed the 
extreme level where silicon compilers allow a desIgner to 
implement ideas directly in devices with little further 
human intervention (Fields, 1983). 

There is a simple phenomenological model of 
developments in science technology as a logistic "learning 
curve" of knowledge acquisition (Ayres, 1968; Marchetti, 
1981). It has been found to be a useful model of the 
introduction of new knowledge, technology or product in 
which growth takes off slowly, begins to climb rapidly and 
then slows down as whatever was introduced has been 
assimilated. Such curves arise in many different disciplines 
such as education, ecology, economics, marketing and 
technological forecasting (Van Dujin, 1983; Stoneman, 
1983). 

It has also been noted in many disciplines that the 
qualitative phenomena during the growth of the logistic 
curve vary from stage to stage (Crane, 1972; De Mey, 
1982; Gaines & Shaw, 1986). The era before the learning 
curve takes off, when too little is known for planned 
progress, is that of the inventor having very little chance of 
success. When an inventor makes a breakthrough, very 
rapidly his or her work is replicated at research institutions 
world-wide. The experience gained in this way leads to 
empirical design rules with very little foundation except 
previous successes and failures. However, as enough 
empirical experience is gained it becomes possible to 
inductively model the basis of success and failure and 
develop theories. This transition from empiricism to theory 
corresponds to the maximum slope of the logistic learning 
curve. The theoretical models make it possible to automate 
the scientific data gathering and analysis and associated 
manufacturing processes. Once automation has been put in 
place effort can focus on cost reduction and quality 
improvements in what has become a mature technology. 

4 The Infrastructure of the Information 
Sciences 
The fast, sustained, learning curve for electronic devices, 
and the scope· for positive feedback in the information 
sciences, together result in a tiered infrastructure for the 
information sciences and technologies which is 
fundamental to their nature. It involves a succession of 
learning curves as rapid advances in one level of 
technology trigger off invention in others as shown in 
Figure 3. 

The breakthrough in electronic device technology leading 
to the zeroth generation is placed at 1940 about the time of 

The first breakthrough generating a computing 
infrastructure was the introduction of the stored program 
virtual machine architecture. Mauchly (1973) recognized 
the significance of stored programs, noting that subroutines 
create "a new set of operations which might be said to form 
a calculus of instructions." This was the key conceptual 
breakthrough in computer architecture, that the limited 
functionality provided directly by the hardware c<;luld be 
increased by stored programs called as subroutmes or 
procedures, and that the hardware and these routines 
together may be regarded as a new virtual machine. This is 
the foundation of the development of a variety of forms of 
virtual machine architectures (Weegenaar, 1978) that 
separates out computing science as a distinct discipline 
from other areas of electronic applications. 

The next level of breakthrough was in software to bridge 
the gap between machine and task through the development 
of problem-oriented languages. Work on the deSIgn of 
FORTRAN in 1954 and its issue in 1957 marks the 
beginning of the second generation era with. languages 
targeted to specific ~roblem areas of busme~s data 
processing, text processmg, database access, ma.chme tool 
control, and so on. A 1968 paper on the commg fourth 
generation notes that "progra~m~ng to~a¥ has no 
theoretical basis" and calls for a sCIenttfic baSIS m the next 
generation (Walter, Bohl & Walter, 1968). Sl;lre e~ough 
the theory linking languages to the underlymg VIrtual 
machines developed during the fourth generation era, for 
example that of abstract data types and initial algebras 
(Gogue~, Thatcher ~ ~agner, 197.8). In ~he fifth 
generation era the apphcatlon of expenence, deSIgn rules 
and theory to the automation of software production 
became the top priority (Balzer, Cheatham & Green, 1983). 

The next level of breakthrough was in interactive activity 
systems when continuous interaction ~oming a significant 
possibility as the mean time between fallures of computers 
began to be hours rather than minutes in the early 1960s. 
The move from batch-processing to direct human-~omputer 
interaction was made in 1963/1964 wIth the 
implementation of MIT MAC, RAND JOSS and 
Dartmouth BASIC systems. The study of such systems led 
to design rules for ~CI in the 1970s (Hans~n, 1971) and 
theoretical foundattons started to emerge m the 1980s 
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• Breakthrough: creative advance made 
• Replication period: experience gained by mimicing breakthrough 
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• Maturity: theories become assimilated and used routinely 

Figure 3 The infrastructure of the information sciences 
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~Alexa~der, 1987). The improvement of human-computer (Mic~alski & ~hilausky, 1980). In the fifth generation era 
mteractIOn was a major stated priority in the Japanese fifth ~achm~ le.armng became a highly active research area in 
generation development program (Karatsu, 1982). Other Its rephc~tlon phase (Michalski & Carbonell, 1983). The 
forms of interaction also became feasible as a result of general fIeld of knowledge acquisition has also seen a 
improved reliability such as direct digital control, and massive growth in research (Boose, 1989). 
various forms of digital communications systems. One may speculate that the growth of robotics will provide 
The next level of breakthrough was one of knowledge- the next .breakthroughs ip which goal-directed, mobile 
based systems supporting knowledge-processing, the co~put~t10?al systems wIll act autonomously to achieve 
hum~n capability t? store information through its inter- theIr obJectIves. The breakthrough into the sixth generation 
relatlons and make mferences about its consequences. The era commencing in 1988 will probably be seen as one of 
breakthrough in knowledge-based systems dates from the autonomous activity systems. It is possible to see the 
development of DENDRAL (Buchanan, Duffield & nascent con~epts for this breakthrough in the adoption of 
Robertson, 1971) for inferring chemical structures from the goal-~lrected programming paradigms of logic 
mass-spectrometry data and MYCIN (Shortliffe, 1976) for programmmg languages such as PROLOO. When, in a 
the diagnosis of microbial infections in the early 1970s. It robot, a .goal speci~ication is expanded by such a 
led to a spate of expert system development in the fourth programmmg system mto a sequence of actions upon the 
gen~ration era of the 1970s (Gevarter, 1983), and pragmatic world depende?t on conditions being satisfied in that world, 
deSIgn ~les for knowledge engineering in the current fifth then the behaVIOr of such a system will deviate sufficiently 
generation era (Hayes-Roth, 1984). The utilization of their f~om its top-level specification, yet be so clearly goal-
vlsi production capability (Gaines, 1984; Galinski, 1983) directed, as to appear autonomous. However to achieve 
for the support of knowledge-based systems through significant results with such systems we n~ed to add 
PROLOG machines (Kitsuregawa & Tanaka, 1988) has perceptual acts to th.e 1?lanning structures of a language 
been the other major priority in the Japanese fifth such as ~IPE (WIlkInS, 1984) and develop logic 
generation development program (Moto-oka, 1982). programmIng languages that cope with the resulting 

t~mporal log~c (Allen, 1984 )-in these developments the 
Defining the upper levels of the infrastructure becomes Slxt~ gen.eratIOn b~eakthrOl.~gh will come to be recognized, 
more and more speCUlative as we move into the immediate pOSSI?ly m th~ nO~lon ~f "SItuated action" (Suchman, 1987) 
past of our. own era ~nd look for evidence of learning and Its applIcatIOn In subsumption architectures for 
curves that are at theIr early stages. It is reasonable to autonomous robots (Brooks, 1990; Connell,'1990). 
suppose that the level above the representation and 
processing of knowledge in the computer is that of One may speculate further that interaction between these 
know!edge acquisitic:n syste~, breakthroughs in machine systems will become increasingly important in enabling 
le~rIl1ng and expertIse modelIng. Two breakthroughs in them to cooperate to achieve goals and that the seventh 
t~lS area have ~en Lenat's AM learning mathematics by genera.tion era commencing in 1996 will be one of socially 
dIscovery (DaVIS & Lenat, 1982) and Michalski's inductive organzzed systems. The Japanese "Sixth Generation" 
inference of expert rules for plant disease diagnosis research program proposals emphasize emulation of 
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creativity and intuition and the development of inter­
disciplinary knowledge sciences (ST A, 1985; Gaines, 
1986a). This recognizes the distinction between "computer 
science" and "knowledge science" as shown in Figure 3, 
and that cutting edge innovation in the information sciences 
involves human and social considerations intrinsic to the 
nature of knowledge. 

It is also possible that building an adequate forecasting 
model based on the premises of this paper may undermine 
the very processes that we model. If we come to 
understand the dynamics of our progress into the future 
then we may be able to modify the underlying process-to 
make the next steps more rapidly when the territory is 
better mapped. 

5 Using the BRET AM Model 
The tiered infrastructure model of Figure 3 also shows the 
superimposed trajectories of invention, research, and so on. 
The intersection of these with the horizontal lines of the 
different information sciences may be used to model and 
predict the primary focus of different types of activity in 
each generation of computers: 
• Invention is focused at the BR interface where new 

breakthrough attempts are being made based on 
experience with the replicated breakthroughs of the 
technology below. 

• Research is focused at the R E interface where new 
recognized breakthroughs are being investigated using the 
empirical design rules of the technologies below. 

• Product Innovation is focused at the ET interface where 
new products are being developed based on the empirical 
design rules of one technology and· the theoretical 
foundations of those below. 

• Product Lines are focused at the T A interface where 
product lines can rest on the solid theoretical foundations 
of one technology and the automation of the technologies 
below. 

• Low-cost Products are focused at the AM interface where 
cost reduction can be based on the automated mass 
production of one technology and the mature 
technologies below. 

• Throw-away Products are at the MM interface where cost 
reduction has become such that maintenance and repair 
costs exceed replacement costs. 

For example, by the end of the fourth generation (1972-80): 
• BR: recognition of the knowledge acquisition possibilities 

of knowledge-based systems led to the breakthrough to 
inductive-inference systems. 

• R E: research focused on the natural representation of 
knowledge through the development of human-computer 
interaction, e.g. the Xerox Star direct manipulation of 
objects. 

• ET: experience with the human-computer interaction 
using the problem-oriented language BASIC led to the 
innovative product of the Apple II personal computer. 

• T A: the simplicity of the problem-oriented language RPG 
II led to the design of the IBM System/3 product line of 
small business computers. 

• AM: special-purpose chips allowed the mass-production 
of low-cost, high-quality calculators. 

By the end of the fIfth generation (1980-88): 
• B R: recognition of the goal-seeking possibilities of 

inductive inference systems led to breakthroughs in 
autonomous-activity systems. 

• R E: research focused on knowledge acquisition for 
knowledge-based systems. 

• ET: the advantages of the non-procedural representation 
of knowledge for human-computer interaction led to the 
innovative designs of Lisp and Prolog machines. 

• T A: the ease of human-computer interaction through a 
direct manipulation problem-oriented language led to the 
Apple Macintosh product line of personal computers. 

• AM: the design of highly-integrated language systems has 
allowed the mass-production of low-cost, high-quality 
software such as Turbo Pascal. 

• MM: calculators have become so low in cost that 
replacement is preferable to repair. 

By the end of the sixth generation (1988-96): 
• BR: recognition of the cooperative possibilities of 

autonomous intelligent systems will lead to a 
breakthrough in socially organized systems. 

• RE: research will be focused on autonomous intelligent 
behavior in systems such as neural networks and 
subsumption robots. 

• ET: the advances in inductive systems will lead to new 
products for extracting know ledge from large datasets. 

• T A: non-procedural problem-oriented languages will < 

become routinely available on main-frame computers. 
• AM: highly interactive personal workstations will drop in 

cost to a level where they become standard office 
equipment. 

• MM: workstation replacement will have become more 
effective than maintenance and repair. 

6 Significant Developments and Interactions 
The BRET AM model can be used to highlight the 
significant developments in information technology for 
purposes of planning research, development and 
applications. Figure 4 left shows the cross section of 
Figure 3 that is relevant to the state of the art in information 
technologies during the previous, fifth generation of 
computers. The top three levels on the right of invention, 
research and innovation show why the fifth generation· is 
generally recognized for its innovations in artificial 
intelligence. It was during this period that knowledge­
based system products such as expert system shells first 
became available. However, in terms of reliance upon 
proven technology, it is the lower levels of product lines 
and below that are significant. The fIfth generation was 
that in which human-computer interaction was dramatically 
improved through graphic users interfaces, object oriented 
languages brought control of complex system development 
in software engineering, and networking became 
ubiquitous. All these innovations took for granted 
advances in the underlying device technology that offered 
very fast powerful and reliable processors and large high­
speed memories at low-cost. 

Figure 4 right shows the equivalent picture of what is 
happening now as we progress through the sixth generation 
of computers. Hardware and networking have become 
almost negligible in cost and almost indefInitely powerful. 
Large-scale distributed systems are becoming readily 
available in terms of equipment and hardware architectures. 
Object oriented languages, and their associated application 
programming support environments (APSEs) and class 
libraries, are becoming routinely available at very low-cost. 
Graphic user interfaces (GUIs) are become standardized 
and portable across platforms as a routinely available 
technology. By the end of this generation the lowest level 
of knowledge-based system technology will have become 
available as well-supported product lines. These will 
support large-scale conceptual modeling at the enterprise 
level, the integration of heterogeneous information and 
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Figure 4 Significant technologies in the fifth and sixth generations . . 
. languages subject to verification of correct ~mplementatIon. 

processes at lower. levels, a~d the emulatIon of many The computer-support of CASE dia~ramr.nmg tools, group 
~sp<?cts of .human skill~ behavIOr. ~~!her they are cal~ed support, and theorem-proving venficatIon me~hods has 
object onented deduct~~e da~~bases, second generat~on been dependent on the availability of low-cost h~gh-pO\yer 

expert ,~ystem sh~lls, or kno,,:ledge r~presentatIon processors and displays from the. electromc devIce 
serv~rs, or somethmg co~plet~ly .different, IS a m~tter for technology level supporting workstation and ne!wo!ks at 
fashIOn, chaos theory, lmgUIStICS and marketmg, to the virtual machine architecture level. The applIcatIon of 
det~fI!1ine~we ~an .already defi?e their functionality and this low-level technology to CA~E has been de~endent .on 
exhIbIt therr applIcation and that IS enough. the development of graphic user mterface~ at the mteract~ve 
If one focuses on a particular area of development or activity systems level. The comp~exlty of reasomn~ 
application, the BRET AM model may be used to examine required in operating ~ fu~l CASE envrronment has made It 
the influences on it from technologies at different levels, a major target for apphcatIons of expert systems technology 
and hence in differing states of maturity. For example, at the knowledge-based systems level, an~ we ma~ expect 
Figure 5 shows the influences on the development of an increasing application of machine learmng techmques to 
Computer-Aided Software Engineering (CASE) tools support automatic programming as the knowledge 
during the fifth and sixth generations. CASE tools were acquisition systems level develops. 
developed as part of the automation phase for problem- Thus at any given level, there is dependency on the 
oriented languages and, while commercial tools are avail~bility of the more mature techno~ogies t;>elo,,:, and 
designed to support many paradigms, the full impact is support for further development from mnovatIons m the 
dependent on the development of formal specification less mature technologies above. 
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7 Current Issues at Each Level 
The levels in the BRETAM model can be used as the basis 
for a check list of current issues in information technology. 

In elec~ronic device technology the packing densities are 
becommg so great that to sustain the line of growth in 
Figure 1 new approaches are needed. Electron beam 
lithography has been used experimentally to fabricate 
devices with gate lengths down to 65nm and current efforts 
are targeted on 20nm (Allee, Broers & Pease, 1991). There 
is also extensive exploration of alternative materials to 
silicon for the fabrication of computing devices. Nonlinear 
interactions between material and photon streams are 
capa.ble. of supporting ~o~putation and maintaining 
contmum.g research actIVIties on optical computing 
technologIes (Lebreton, 1991). Research also continues on 
org~nic. semic~n~uctors (Gun.shor, 1988) where high 
fab~catI0!1 denSItIes ~e theoretIcally possible and genetic 
engIneenng techmques offer new manufacturing 
approa~hes. It is. significant to note that the technology of 
DNA, Its analysIs and fabrication, is not only critically 
dependent on information technology but also is itself a 
parallel "information processing technology"-in organic 
material rather than silicon. The most innovative advances 
in materials during the fifth generation era have been those 
targeted on nanotechnology, of system fabrication at the 
molecular level. The molecular 'train sets' of today 
(Stoddart, 1991) are a fascinating curiosity that illustrate a 
breakthrough in both fabrication and instrumentation at the 
molecular level, and offer opportunities for new 
technologies which are currently at the limits of our 
imagination. 

In virtual machine architecture the primary motivation has 
been to take advantage of the opportunities for parallel 
processil!g offered ~y modern vlsi technology. This has 
re~~l~ed m a very WIde range of approaches from machines 
utIlIzmg tens of thousands of conventional processor chips 
(Alder, 1988) to neural network technologies performing 
computations in radically different ways (Soucek, 1991). 
The essential tension between special-purpose computing 
and general-purpose computing that has existed since the 
earliest days of the digital computer underlies research 
activities and product innovations in this area. It is 
commonly stated as one of relation to the level above, of 
the provision of problem-oriented languages to interface 
computational requirements to computational resources, 
and It also a problem of integration, of combining special­
purpose functionality with general-purpose support 
technology. 

In problem-oriented languages the move towards a mature 
technology is apparent in many changing attitudes to the 
tech!l0l?gy as well as in new developments. The 
apphcatIon of a conceptual framework of manufacturing to 
software has become very fruitful and is a major thrust in 
Japan, Eur?pe and ,the USA (Fernstrom, 1991; Humphrey, 
1991,; BasIII, Caidlera & Cantone, 1992). However, the 
reqUIrements for zero-defect, maintainable software 
manufactured from reusable parts has generated new 
requirements in the base technology. The development of 
Ada and C++ have been two practical extensions to 
previous technology addressing issues of reusability such as 
abstraction and encapsulation. However, there are also 
more fundamental trends towards theoretically well­
founded languages such as PROLOG and ML that offer 
possibilities for combining verification with reasonable 
run-time performance. In the sixth generation era the 
combination of features and experience from logic 
programming, functional programming and object-oriented 

programming, functional programming and object-oriented 
pro~mming to provide new generation languages will be 
a major area of research and development-Ai't-Kaci's 
proposals for LIFE are an indication of what might be 
achieved (AH-Kaci & Podelski, 1991). 

In interactive activity systems the need to achieve 
interoperability between diverse equipment across high­
speed local and wide-area networks has been a major 
developmental thrust in the fifth generation leading to 
w!despread adoption of the ISO OSI standards (Day and 
ZImmerman, 1983), and to major standardization efforts at 
the upper levels concerned with data content and 
application integration (Modiri, 1991), There has been a 
parallel· thrust in human-computer interaction where the 
need to develop products with platform-independent 
graphic user interfaces has led to the adoption of CMU' s X­
Windows and OSF's Motif as virtual standards under Unix 
and the development of user interface management system~ 
such as OIT and XVT that allow a single interface 
definition to be implemented automatically on virtually all 
personal c0!llpu,ters and wor~~tation~, What is still missing 
m networkmg IS the capabIlIty to mtegrate communities 
across wide area networks such that the system appears as a 
single entity rather than a local having one set of functions, 
loosely and heterogeneously coupled to a global network. 
What i~ missing in the user interface are the capabilities to 
recogmze spoken language and to interact in natural 
language. These have been objectives since the first 
generation. of computers and it is reasonable to expect that 
advances m all the lower level technologies supporting 
knowledge-based systems together with the development of 
more powerful knowledge bases make speech and language 
attractive targets for sixth generation development. 

In knowledge-based systems the need to development 
secure theoretical foundations for knowledge representation 
may be seen as a major dynamic in all research. The 
acceptability of arbitrary heuristics in artificial intelligence 
systems declined in the fifth generation, and complexity 
an~lyse~ of bas!c k.n0~ledge representation systems began 
to IdentIfy the mtrInSIc problems of deductive knowledge 
representation systems (Brachman and Levesque, 1984; 
Nebel, 1988; Schmidt-SchauB, 1989). In the mid-1980s 
AYt-Kaci (1984, 1986) gave a lattice-theoretic model of 
knowledge base languages with operational semantics 
through term rewriting that resolved many of the issues of 
complexity and deduction algorithms for term subsumption 
knowledge representation systems. This 'I' -calculus is 
particularly interesting because it provides foundations for 
complex object representation in deductive databases, for 
type computation in functional programming languages, 
and for knowledge representation in artificial intelligence. 
Developments based on sound theory are now targeted on 
the provision of knowledge representation services, and 
effort is becoming increasingly focused on the development 
of standardized modular systems with layers of well­
defined and well-implemented functionality. This research 
is underway not only in the artificial intelligence 
community but also in the deductive database (Ohori, 
1990), logic programming (Yardeni and Shapiro, 1991) and 
functional programming communities (Fuh and Mishra, 
1990). This convergence of interests is to be expected as 
certain aspects of 'knowledge' and 'intelligence' are 
factored out to become realized by standard computational 
data structures and processes. 
In knowledge acquisition systems the replication era of 
pragmatic copying of techniques and tools in the 1980s has 
given way to attempts to integrate methodologies and 
understand their underlying basis in the 1990s. 



McDermott's (1988) role limiting methods are based on the 
abstraction of control knowledge from a family of related 
tasks, and the use of this to classify knowledge 
requirements and usage. As we identify role limiting 
methods we may come to rationalize them and develop 
alternative approaches that are more principled which is the 
basis of Chandrasekaran's (1988) analysis of generic tasks: 
The KADS research project (Akkermans, Harmelen, 
Shreiber and Wielinga, 1992) in the ESPRIT program has 
led to major advances in principled approaches to 
knowledge acquisition using a software engineering model. 
Apart from the development of more principled knowledge 
acquisition methodologies, we may also expect existing 
knowledge acquisition tools to be applied to the develop of 
large-scale knowledge bases in the sixth generation era. 
The Cyc project at MCC (Lenat & Guha, 1990) has been 
the outstanding example of such an attempt during the fifth 
generation, and the move towards knowledge interchange 
standards (Neches, Fikes, Finin, Gruber, Patil, Senator & 
Swartout, 1991) may be seen as supporting more 
widespread developments in the sixth generation. 

In autonomous activity systems we are only at the 
beginning of an understanding of the nature of situated 
action and the interplay between the activities we interpret 
as 'planning' and 'representation' and the underlying neural 
processes which seem completely different in nature 
(Clancey, 1990). It is probable that for advances in this 
area we shall have to adopt a much wider perspective on 
knowledge-based systems in computing that analyzes their 
essential relationships to the cognitive and social 
knowledge processes of the human species (Gaines, 1991). 
Similar considerations apply to the expected breakthrough 
in socially organized systems. Current experiments in 
computer-supported cooperative work, intelligent agents 
surrogates, and distributed artificial intelligence are the 
necessary preliminaries to a major advance, and are 
reflected in the emphasis on system integration at lower 
levels. Socially organized will be a very active but 
relatively uncoordinated area of research throughout the 
sixth generation era. 

8 Conclusions 
It is interesting to examine the fifth generation program, 
and its world-wide emulation, in the light of the BRETAM 
model. In terms of timing. the Japanese announcement in 
1982 came as knowledge-based system technology was 
moving into its empirical phase with expectations of 
significant product innovation by the late-1980s. The 
distinction between the lower four . levels of 'computer 
science' and the qualitative change in the nature of 
information technology innovation in a new era of 
'knowledge science' was also becoming apparent. The 
entire focus of the ICOT research and development 
program has been consistent with this rationale since it has 
concentrated on the enabling technologies for effective 
knowledge-based systems in terms of use of vlsi 
technology for new machine architectures supporting logic 
programming on interactive work stations. Thus the 
emphasis has been on the application of mature or maturing 
computer science technologies to provide a solid 
technological foundation for innovation in knowledge­
based systems. 

The parallel programs triggered off in the USA, UK and 
Europe, have not had such a specific focus but have tended 
to address the whole cross-section of fifth generation 
technology issues from chip encapsulation, through parallel 
architectures, specification languages, user interfaces, 
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network protocols, knowledge representation systems, 
knowledge acquisition and planning. They have also 
addressed specific application domains significantly 
impacted by fifth generation developments, such as office 
automation and computer-integrated manufacturing. These 
other areas have also been addressed in Japan but not as 
part of the specific 'fifth generation' initiative. 

As a final conclusion, it is reasonable to conjecture that the 
essence of sixth and seventh developments will that of 
treating 'knowledge' as the raw material to be processed 
rather than 'data.' This conclusion will not be surprising 
for anyone at this meeting, but it is one that may be given 
more quantitative substance and detail through the model 
presented in this paper. In particular, it is important to note 
that the shift towards a knowledge perspective in no way 
reduces our dependency on continuing advances in 
electronics, machine architectures, software engineering 
and improved human-computer interaction. These are the 
bedrock on which the foundations of knowledge-based 
systems are laid. 
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Abstract 

Co-HLEX is a co-operative hierarchical layout problem 
solver developed as an application program of parallel 
inference machines; Multi-PSI and PIM. The kernel of Co­
HLEX is a hierarchical recursive concurrent theorem prover 
nicknamed HRCTL. Due to its recursive nature, HRCTL has 
a size of only 0(1,000) lines in KL1; the kernel language of 
ICOT. Due to its stream-parallel and distributed-memory 
architecture, nearly linear time complexity could be attained. 
Moreover, shape and wire abutment among modules running 
in parallel could be made possible through message passing 
co-operation. In this paper, a brief overview of Co-HLEX is 
given with its application to bipolar-analog LSI layout. 

1 Introduction 

The main role of Co-HLEX development in Fifth Generation 
Computer System project was to find some answers to the 
following questions; 
(Ql) Are there any real-world problems which require 
symbolic, parallel problem solving? 
(Q2) If they exist, can we find any new parallel algorithms to 
solve them? 
(Q3) Can we find elegant descriptions of these algorithms? 
(Q4) Can we execute these descriptions effectively on Multi­
PSI or PIM? 
(Q5) What are the new break-throughs brought about? 
(Q6) What are the new problems to be pursued further? 
We picked up an LSI layout problem due to the following 
reasons; 
(R 1) It is and will be one of the gigantic real-world problems 
requiring massive computation power. At present, the 
number of rectangles contained in the layout of I cm2 

DRAM chip is almost equal to that of 100 m2 rectangles 
covering Japan. New ideas including parallel computation 
are greatly required to cope with this complexity. 
(R2) Both development and enhancement of a layout sy~tem, 
with more than 1 million-lined program codes, consume 
huge amount of programmers' unrewarded labour. The 
possibility of more elegant program descriptions should be 
investigated. 
One of our ideas is the use of the recursion principle to 

reduce it [Kleene 1952]. The other is the use of a streamed 
parallel process network computation model to give an 

. elegant description of mutually related layout objects. We 
nicknamed our algorithm HRCTL (Hierarchical Recursive 
Concurrent Theorem prover for Layout). The kernel 
language KL1, which runs on Multi-PSI and PIM, can be a 
powerful tool to implement them. 
(R3) The classical divide and conquer - the hierarchical 
problem solving - works well as long as subproblems 
correlate weakly. In case of LSI layout, this premise cannot 
be sufficed. Neighbouring modules are not independent in 
that they should have abutted shapes and wires to avoid dead 
spaces. Our idea is the use of communication among 
modules to solve this AND-typed dependency. 

In the following, Section 2, 3, 4, and 5 give basic 
concepts, an overview of Co-HLEX, a brief complexity 
consideration, and experiment results, respectively. Based on 
them, we hope to assert that parallel symbolic computation 
can contribute much to LSI design automation. 

2 Basic Concepts 

2.1 Layout Problem and Solution Representation 

The original layout problem which Co-HLEX solves can be 
specified by a Prolog goal: 

:- mode solve_a_Iayoutproblem( +,-,+,+). 
?- solve_a_Iayoutproblem(CirNet, LPlan, Proc, Constr). 

where arguments have the foIl wing meanings as shown in 
Figure 2.1. 
CirNet::= A circuit network represented by modules and 

module connection nets. 
LPlan::= [PQtree, Wires]. 
PQtree::= A quadtree [Samet 1984, Otten 1982, Luk et al. 

1986] representing a placement by a slice hierarchy each 
node of which carries a module name placed in the slice 
and peripheral connector names placed on north-, west-, 
south-, and east-edge of the slice. 

Wires::= [[Conns, Lines] I Wires]. 
Conns::= Set of peripheral- and inner-connectors of a net. 

Note that induced connectors are peripheral connectors of 
subnodes. Inner connectors include terminal points and 
vias. Vias are through-holes connecting different silicon 
layers on the chip. An induced connector is introduced at 
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each point where a wire crossses a slice edge. 
Lines::= Set of line segments spanning two connectors of a 

net. It includes connector names on both ends, the run 
layer name, and the line width. 

Proc::= LSI fabrication process name which affects 
geometrical shapes of modules, usable wiring layers, line 
width, minimum allowances among objects, and others. 

Constr::= A list of constraints including a set of proximity 
conditions of modules, usually called "Pairs", the topmost 
PL (planned layout - a planned chip size; Width and 
Height, and a set of planned peripheral connector 
placements). 

2.2 Recursive Problem Solving 

The slicing structure representation of a layout permits us the 
following recursive problem solving. 
(S 1) If the module is an indivisible leaf cell, import its layout 
from a library. If the module is a divisible block, divide the 
original layout problem, composed of a circuit data and a PL 
(planned layout), into at most 4 subproblems, each having a 
homologous structure with the original problem. 
(S2) Solve all the subproblems in parallel using the recursion 
principle. If much processing elements or PEs are available, 
fork these subproblems on different PEs. 
(S3) Aggregate finished layouts of subproblems following 
the placement plan given in (S 1) to generate the layout of the 
original problem. 

2.3 Problems and Solutions 

(SLl) Pre-compilation of circuit net into a quadtree 
In (S 1) above, the original planned area should be divided 
into at most four slices, the circuit should also be divided 
into relevant number of subcircuits, and their embedding 
plan into slices should be made. To avoid the untractable 
computational complexity caused by these two divisions and 
one embed, the CirNet is transformed into a quadtree-shaped 
process network named CMPN (Circuit Module Process 
Network) before layout generation. Each node in the CMPN 
is a process having message-passing streams among its 
upper and lower nodes. Each leaf node of CMPN represents 
a module in CirNet but a non-leaf node represents a block 
module newly defined in this transformation. Modules 
specified as a pair by Constr are compiled into an identical 
node near the leaf of CMPN to assure mutual proximity. The 
main role of CMPN is the layout generation, i.e., module 
placement and inter-module wire generation. If the module 
placement topology, i.e., in what quadrant each subcircuit 
should be placed, can be given in the stage of CMPN 
generation, later placement task is fairly simplified. 
(SL2) Vertical co-ordination of module shapes 
As subproblems are solved in parallel in (S2) above, non­
abutment of their final shapes might happen. In that case, 
chip area will be enlarged due to many dead spaces among 
modules. To avoid this, the planned shape of the subslice in 
which a subcircuit is being placed is descended down to the 
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Figure 2.1 Circuit and Layout Representations 

subcircuit as its planned shape. See Figure 2.2(1). 
(SL3) Horizontal co-operation in wiring 
Wire abutment among modules running in parallel had been 
an unsolved problem in LSI layout design automation. This 
problem is solved by way of runtime co-operation among 
nodes in CMPN. The induced connector processes (See 2.1) 
are used for this purpose. Each of them holds a CERW 
(Current Existence Range of a Wire on a slice edge). As the 
first task of wiring, each node process in CMPN tries to 
narrow CERWs of its peripheral connectors on the north-, 
west-, south-, and east-edges. If a CERW intersects with two 
internal subslices, then the CERW is narrowed to one of the 
two intersections. Among the two candidates, the one which 
has both enough wiring capacity and minimum wire length 
with inner connectors is selected. For feed-through nets, i.e., 
nets having no inner connectors, the CMPN node eagerly 
waits for a completion of narrowing action by some 
neighbour node to avoid useless wire bend generation. See 



19ure 2.2(2). 
;L4) Wiring direction control to reduce co-operation loads 
lthough the CER W narrowing co-operation is useful in 
lrallel wiring, it is expensive due to the repeated peripheral 
mnector inspections. This is particulary true for cell wiring 
here tremendously large number of cells attend in the co­
peration. To reduce useless co-operation, wiring direction is 
)-ordinated in cell wiring. First, in all the cells and for all 
ets, partial wires are generated that connect inner- and 
eripheral-connectors on south or east edges. Each CERW 
n these edges is narrowed into a point where the wire 
rrived (SE-wiring). Then, NW-wiring follows. Finallly, 
on-directional feed-through wiring (ND-wiring) is made. 
)ue to the CERW reductions in t\l/O previous steps, much 
ager-waiting co-operation in ND-wiring can be avoided. 
ee Figure 2.2 (3). 
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Figure 2.2 Problem Solving Heuristics 

3 Overview of Co-HLEX 

An overview of Co-HLEX is given in Figure 3.1. The main 
components of Co-HLEX include: a set of original data, I/O 
functions, a backup memory, a problem solving kernel based 
on CMPN, and a template library. 

3.1 The Problem Solving Kernel 

The problem solving kernel is a quadtree-shaped process 
network CMPN that generates a chip layout. Before the 
layout generation, each node of CMPN has only circuit data 
including a module name, the module property, a list of net 
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names connecting this module to others, and a list of 
subcircuit names. After the layout, a set of layout data is 
added to each node including; a name of the layoutframe 
(parameterized slicing template) used to slice the node, an 
enveloping rectangle size, a list of slicing points in the 
rectangle, a list of submodule names in each slice, a list of 
adopted wiring pattern name for each net, and a list of 
peripheral- and induced-connector names. 

3.1.1 Problem Solving Steps 

The overall layout problem solving is performed by the 
follwoing steps. 
(STl) Placement: A placement message containing a PL - a 
list of planned shape and planned peripheral connector 
placements - is sent to the top node of CMPN from the top 
level co-ordination process. Then a set of placement actions 
based on HRCTL is performed by CMPN processes. 
(ST2) Wiring preparation: Upon receiving the placement 
completion message from the top node of CMPN, the co­
ordinator sends a wiring preparation message to it. Then a 
set of wiring preparation actions are made by CMPN. 
(ST3) Wiring non-terminal power nets: Power supply nets -
Vcc and Vee - have different width from other signal nets. 
As they offend the latter, they are wired first. The co­
ordinator sends a message to the top node of CMPN to 
envoke recursive power wiring actions. 
(ST4) Wiring non-terminal signal nets: The co-ordinator 
sends a message to the top node of CMPN to generate signal 
nets. Then a set of wiring actions based on HRCTL is 
performed by CMPN processes. Recursion terminates when 
it reaches to a cell node. At that time, the CERWs held by 
connector processes contract to the magnitude of cell size. 
(ST5) Wiring nets in cells (SE-wiring): The co-ordinator 
sends a messages to the top node of CMPN to do SE-wiring. 
This message is passed down to cells. Cells which have inner 
connectors such as base-, emitter-, collector-contact, etc., 
that should be wired to peripheral connectors on south or 
east edges, wires all these nets. After this, each CER W on 
these edges reduces to a point where a wire reached. As 
layout rules such as wiring obstacle avoidance, minimun 
allowances between layout objects, etc., should be sufficed 
so the maze-router of Lee [Lee 1961] was used with some 
modifications. 
(ST6) Wiring terminal nets in cells (NW -wiring): Similar to 
that of (ST5). 
(ST7) Wiring terminal nets in cells (ND-wiring): The co­
ordinator sends a message to the top node of CMPN to do 
ND-wiring. This is for feed-through wires which only pass 
above the cell without any inner connectors. All the cell 
nodes make feed-through wires in parallel co-operation. 

3.1.2 Placement by HRCTL 

(STl) Termination of placement: When a terminal cell node 
in CMPN receives a placement message from above, it 
imports layout data from relevant layoutframe in the 
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template library. 
(ST2) Subproblem generation: When a node - call it CN - in 
CMPN is a non-terminal module, it generates subproblems 
as follows. It sends its own PL and a list of its subcircuits 
with their estimated areas to a subproblem generation 
planframe (planning frame) in the library. 
The planframe sends requests to all layoutframes to make 
and evaluate possible slicing of PL and embedding of 
subcircuits into derived slices. The evaluation is made in 
view of the estimated wire length among inner- and 
peripheral-connectors, the estimated layout area, and 
estimated distortions of realized layout from the PL. 
Receiving the best plan and the relevant layoutframe name 
from the planframe, CN memorizes them. Then inter-slice 
wiring is made by a wiring plan frame relevant to the chosen 
layoutframe. In the first step of this wiring, CERWs of 
peripheral connectors are narrowed. Then inter-slice wires 
are planned for each net. Only abstract wiring plan is made 
as shown in Figure 2.1. Wiring patterns attatched to the 
chosen layoutframe is used. As the final wireability largely 
depends on the wire congestion on slice edges, so the wiring 
resource consumption on these edges should be balanced. To 
do this, the idea of wiring resource vector is introduced. It is 
a list of maximum possible wires through slice edges. In 
selecting a wiring pattern for each net, the resource vector 
consumption is analyzed for all the possible patterns and the 
best one is selected. New induced connectors are given, each 
having a CERW identical to the edge length on which it was 
defined. Induced connector processes are newly spawned, 
each having a message stream to CN. Finally, subproblem 
definition planframe is envoked to give all the PLs for all 
subcircuits. The planframe defines PLs by using derived 
subslices and their peripheral connectors and descends them 
to lower CMPN nodes. Streams to peripheral connectors are 
also descended to assure subsequent narrowing actions by 
subnodes. Notice that by this combination of placement and 
wiring, PLs of subcircuits homologous to that of parent CN 
could be generated. 
(ST3) Recursion: All the subnodes of CN are invoked in 
parallel to solve their problems. When many PEs are 
available, they are spawned on different PEs. 
(ST4) Placement aggregation: Layout aggregation planframe 
is invoked by CN. It waits for the completion message from 
all subnodes and after eceiving the message, it aggregates all 
the realized layouts of subnodes to generate the CN layout. 
The layoutframe chosen in (ST2) is reused here to give an 
aggregation scheme. But when it gives a large dead space in 
CN layout, layoutframe swapping is tried. 

3.1.3 Wiring Preparation 

To make dead spaces usable in wiring, they are compiled 
into CMPN as dummy modules. Module placement points 
are determined in world co-ordinate with its origin at noth­
west corner of the chip. After the dead space compilation, 
connector processes generated in placement become 
unusable, so they are killed. A CWPN - Cell Wiring Process 

Network approximating the meshed cell - is newly generate 
under each cell sharing a communication stream with th 
cell. Wiring obstacles in each cell are examined by using th 
relevant layoutframe and written into CWPN. 

Constraints 

Process 
Name 

Figure 3.1 Overview of Co-HLEX 

3.1.4 Non-terminal Power Net Wiring by HRCTL 

(ST!) Termination of wiring: When CN is a terminal node 
having no inner power connectors, it only ascends a 
completion message to its upper node. Otherwise, a power 
wire termination planframe is invoked to generate power­
wire connectors in the cell. 
(ST2) Subproblem generation: When CN is a non-terminal 
block with inner power connectors, a planframe is invoked to 
extend power wires along slice edges reaching to subslices. 
(ST3) Recursion: All the subnodes of CN run in parallel to 
make power wires. 
(ST4) Wiring aggregation: Aggregation planframe for power 
wire is invoked by CN. It waits for the power wiring 
completion messages from subnodes and determines the 
width of CN power lines based on electrical considerations. 

3.1.5 Non-terminal Signal Net Wiring by HRCTL 

(ST!) Termination of wiring: When CN is a terminal node, it 



nly ascends a completion message. 
;T2) Subproblem generation: When CN is a non-terminal 
lock, it generates wiring subproblems by using the same 
lethod as explained in 3.1.2 (ST2). As the module 
lacement is already given, only wiring action is repeated. 
:ERWs of peripheral connectors are narrowed first. Then 
vires are made giving new induced connector processes. 
:beir names are descended down to subnodes for recursion. 
ST3) Recursion: All the subnodes of CN run in parallel to 
olve their problems. When many PEs are available, they are 
:pawned on different PEs. 
ST4) Wiring aggregation: When CN receives completion 
nessages from all subnodes, it ascends its own completion 
nessage. 

t1.6 Wiring Terminal Nets 

~STI) Wirable net detection: Each terminal CN, in this case 
a terminal cell, finds a net that has at least one fixed 
peripheral- or inner- connector. If such a net is found, CN 
broadcasts the net name, its connectors, and usable wiring 
layers at these connectors to its CWPN. 
(ST2) Pre-processing: Using the broadcasted information, 
CWPN changes the passage cost on its nodes. High costs are 
given to nodes in wire inhibition area. 
(ST3) Wiring a net: Modified maze-routing is performed on 
CWPN to find wires among given connectors. 
(ST4) Post-processing: Upon completion, the CWPN node 
on which a connector or a wire is placed is given a high 
passage cost. Finally a completion message is sent to CN. 
Then other net is tried from (STI). 
(ST5) Wiring other nets: After memolizing the reported 
wire, the cell repeats step (STl) untill all nets are wired. 

3.2 Template Library 

3.2.1 Plan Frames 

Planframes are a set of procedures used by CN as explained 
in 3.l. Many of them are layoutframe specific. 
(1) Choose an appropriate layoutframe for subproblem 
generation. 
(2) Evaluate a proposed plan for placement or wiring. 
(3) Generate subproblems for placement or wiring. 
(4) Descend subproblems down to subnodes. 
(5) Aggregate subproblem solutions for placement or wiring. 
(6) Other functions. 

3.2.2 Layout Frames 

Layoutframes are templates, or types in other words, for 
layout. 
(1) Block levellayoutframes: Slicing templates of arity 1, 2, 
3, and 4 containing several slicing structure variants. 
Template specific wiring patterns are included. 
(2) Cell level layoutframes: Parameterized configuration 
templates of transistors, resisters, capacitors, and connectors. 
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3.2.3 Layout Rules 

(1) Cell size definitions (depends on fabrication process). 
(2) Allowances (same, admissible gaps between objects). 
(3) Wiring rules (same, wiring layers and their usabiliy by 
signal and power nets). 

3.3 I/O Functions 

3.3.1 CMPN Generator 

(STI) Input data: The original circuit net CirNet and the PL 
of the topmost chip. 
(ST2) Process network generation: Circuit modules and nets 
are transformed into processes and their connections are 
replaced by streams giving a CMPN - Circuit Module 
Process Network. 
(ST3) Module shape alignment: Align-shape message is 
broadcasted to CMPN from the top co-ordinator. Divisible 
modules in CMPN such as resisters divide themselves to 
give aligned heights to those of standard transistors. As a 
result, an enlarged CMPN is given. 
(ST4) Hierarchy generation: The flat CMPN given by (ST3) 
is recursively partitioned to give a hierarchical CMPN. 

3.3.2 Assignment of Processes on PEs 

LAP (List of available processors) is given to the top node of 
CMPN. The top node divides LAP into the number of its 
subnodes in accordance with their computation loads. As an 
approximation of the load, total number of modules in the 
circuit is used. One of the PE is picked up from each subset 
and a subnode is spawned on the PE. This process is 
recurred until LAP becomes indivisible. After that, all 
subnodes in CMPN is spawned on the same PE. 

3.3.3 Other Functions 

Layout data in CMPN is written out to a display terminal. 

4 Computational Complexity of HRCTL 

Definitions. 
Let PrBPT(R,N) denotes a balanced CMPN with R subnodes 
and height N. Let leaf(PrBPT(R,N)) denotes the number of 
leaf nodes of PrBPT(R,N). Let no(PEs) denotes the number 
of parallel processing elements on which the problem 
PrBPT(R,N) is solved by the HRCTL algorithm. 

Suppositions. 
All the nodes of PrBPT(R,N) consume the same computation 
power. Instantaneous communication among processes is 
possible without any computation load. The total elapsed 
time of processing on one PE is proportional to its total 
computation load. 
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Theorem. 
For PrBPT, HRCTL has the time complexity of either 
O(log(leaf(PrBPT(R,N»» 

or O(log(no(PE) )+leaf(PrBPT(R,N) )/no(PE». 
The latter is the usual case where large problem is solved on 
limited PEs. 

Proof. 
Casel. no(PE) >= leaf(PrBPT(R,N» : The president PE is 
the bottleneck processor which receives the topmost node of 
PrBPT(R,N). It processes maximum number of nodes among 
PEs. The maximum number is 10g(leaf(PrBPT(R,N»). 
Case2. no(PE) =< leaf(PrBPT(R,N» : The president PE is 
also the bottleneck processor. Until the depth of 10g(no(PE» 
is reached on PrBPT(R,N), casel applies. After it, each PE is 
obliged to solve all the unsolved nodes in pseudo parallel 
mode. Here, the number of unsolved nodes is 
leaf(PrBPT(R,N»/no(PE). As the president PE faces the two 
situations sequentially, they should be added to give the 
loge no(PE) )+leaf(PrBPT(R,N) )/no(PE) complexity. QED. 

5 Experiments 

5.1 Experiment Design 

(1) Main objectives: The main objectives of the experiment 
are the verifications of; 
OE1. Parallel placement and wiring capability, 
OE2. Wire length and chip area reduction by vertical co­
ordination and holizontal co-operation, 
OE3. Enhanced computation speed, 
OE4. The program size reduction and maintenability. 
(2) Used circuit and fabrication process: A real bipolar 
analog circuit with 10 19 modules and 683 nets are used in 
the experiment. 149 pairs were given as Constr. After 
module shape alignment, CMPN had 1299 modules and 901 
nets. The height of generated CMPN was 14. From this 
original circuit, 254-, 489-, and 8l0-moduled subcircuits 
were extracted for computation speed measurement. A 
bipolar analog fabrication process with 3 wiring layers of 
ALl, AL2, and AL3 was assumed. The first two are for 
signal nets and the last one for power nets. For signal nets, as 
much ALl should be used as possible to attain high 
electrical quality. Traditionally, time consuming maze-router 
is usually applied to this problem. 

5.2 Experiment Results 

Figure 5.1: Example chip layout. 
Figure 5.2: Computation speed. 
Figure 5.3: PEs vs Speedup. 
Table 5.1 : Scale ofCo-HLEX. 

1299 modules, 683 nets, 623 sec/Multi-PSl.64PEs 
Figure 5.1 Bipolar Analog Circuit Layout by Co-HLEX 

5.3 Considerations 

(1) The possibility of parallel layout problem solving. 
This has been proved through the experiment. As far as we 
know, Co-HLEX is the first system that can abut layouts -
module shapes and wires - by runtime co-operation. 
(2) Quality of Generated Layout: Wire length and chip area. 
Through observations of Figure 5.1 we notice that both 
compact module placement and wires without useless bends 
could be generated. By the runtime wire abutment co­
operation, traditional channel areas to patch inter-submodule 
wires could be diminished. This contributes to chip area 
reduction. 
(3) Computational efficiency. 
Figure 5.2 shows the performance of both Co-HLEX on 
Multi-PSI/64PE and a practical layout system on a main 
frame. Co-HLEX has a time complexity of nearly O(Nl.o). 
Here N is the number of modules in the circuit. For the 1299 
moduled circuit, it took only 623 sec. This extraordinary 
outperforms the traditional system. Also, nearly linear 
peedup could be attained as shown in Figure 5.3. 
(4) Program size and maintainability. 
The 6,000-Iined Co-HLEX remarkably outperforms the 
O(l05)-O(l06)~sized traditional implementations. See 
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Table 5.1 Scale of Co-HLEX 

Subsystems KL1.Lines 

Kernel 620 

Planframes 2648 

Layoutframes 1180 

Layoutrules 684 

Utilities 865 

Total 5997 

Table.5.l. This is due to the recursive HRCTL algorithm. 
Highly modularized program description was possible on 
streamed-parallel dataflow computation model offered by 
KLl. 

6 Conclusions 

6.1 Results 

(1) A co-operative hierarchical layout problem solver named 
Co-HLEX was developed in FGCS project as an application 
program of Fifth Generation Parallel Inference Machines. 
(2) The kernel algorithm of Co-HLEX is HRCTL which is a 
hierarchical recursive concurrent theorem prover for layout. 
Taditional wiring channels could be avoided due to its 
runtime co-operation to abut module shapes and wiring 
connectors. 
(3) Due to the recursive nature of HRCTL, Co-HLEX is 
nearly 6,OOO-lined in KLI which remarkably outperforms 
traditional LSI layout program implementations. 
(4) Nearly O(Nl.o) time performance could be attained due 
to the streamed-parallel and distributed-memory architecture 
of Co-HLEX which greatly outperforms traditional methods. 

6.2 New Problems 

Programmers are in the well-known plan-do-see cycle. The 
non-repeatablity of parallel computation often destroyes the 
loop and deteriorates debugging efficiency. A programming 
environment for parallelism would be one of the most 
important issues to be studied further. 
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Abstract 

CAD systems that can quickly produce quality designs 

are needed for the expanding VLSI market. This paper pre­

sents a cooperative design mechanism in a cooperative logic 
design expert system on a multiprocessor, co-LODEX. co­

LODEX accepts constraints on area and speed, and outputs a 
CMOS standard cell netlist that satisfies the constraints. The 
user can even get an optimal circuit for area or speed by iter­

atively strengthening the corresponding constraint. Short 

turnaround is expected through the combination of parallel 

processing by several processors and their cooperation. 

The cooperative design mechanism is based on an evalu­

ation-redesign mechanism using assumption-based reason­

ing within a single processor. Design alternatives are con­

sidered as assumptions and constraint violations as contra­
dictions. Redesign is implemented as a contradiction resolu­
tion. The evaluate-redesign cycle repeats itself until the de­

sign satisfies the specified constraints. Global evaluation-re­

design takes place by processors exchanging design results 
for subcircuits in terms of gate counts and delays (in case of 

success) or justifications for constraint violations (in case of 

failure). 

Experimental results show that (1) co-LODEX can effi­
ciently carry out global optimization. For example, a circuit 

with the minimum number of gates has been obtained while 

satisfying constraint on speed. (2) Linear speedup has also 

been observed. 

1 Introduction 

CAD systems that can produce quality circuits quickly 

are needed for the expanding VLSI market. One of the most 

pressing problems is the lack of a means to iterate the cycle 

of evaluation and redesign until the design satisfies all con­

straints. Without it, it would be impossible to design a qual­

ity circuit with the desired characteristics (area and speed) by 

looking at the design from a global point of view. There is 

also demand for CAD systems that can do global optimiza­

tion for the whole circuit. With such systems, designers can 

get a circuit with the gate count minimized and the delays 
kept shorter than the given constraints or vice versa. 

Turnaround time seems to be another key issue. Short 

turnaround allows designers to rapidly implement a variety 

of architectural choices and to choose the solution best suited 

for their specific situation by comparing area and speed char­
acteristics. Designers can thus explore their options in a 

way that has not been practical before. 

Since design decisions may be retracted after later evalu­
ation, they can be thought of as assumptions. Assumption­

based reasoning uses both facts and assumptions that can be 

retracted [de Kleer 1986]. Justification, originally intro­

duced for truth maintenance [Doyle 1979], is the key con­

cept to manipulating information containing assumptions. In 

de Kleer's Assumption-based Truth Maintenance System 

(A TMS), all assumptions are enumerated in advance and all 

combinations are examined. In design, however, we are not 
interested in all combinations. This is because a decision's 
significance depends on decisions made earlier. We can 

prune a considerable number of combinations. 

A global optimization technique using as linear program­

ming (LP) was proposed [Kageyama 1990]; however, we 

can not get the exact optimal circuit, because the solution 

does not always give O's or 1 's for variables that must take 0 

or 1. 
We proposed an evaluation-redesign mechanism using 

assumption-based reasoning [Maruyama 1988]. In our eval­

uation-redesign mechanism, design alternatives are consid­

ered as assumptions and constraint violations as contradic­

tions. Redesign is implemented as contradiction resolution. 

Justifications for violations, called nogood justifications 
(NJs), playa central role in the mechanism. NJs enable us 

to drastically prune the search space for constraint satisfac­

tion or optimization problems [Maruyama 1991]. 

In this paper, we present a cooperative logic design ex-
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pert system on a multiprocessor, co-LODEX. co-LODEX 
divides the whole circuit to be designed into subcircuits in 

advance and designs each subcircuit on each processor to 
exploit parallel processing. Global evaluation-redesign takes 

place by processors exchanging design results (in case of 

success) or NJs (in case of failure). In our cooperative de­

sign mechanism, NJs received from other agents help nar­
row down the search space for an agent in the sense that NJs 
made out of the received ones enable the agent to prune the 

search space. That is the reason why we claim co-LODEX 
as "cooperative". Short turnaround is expected through the 
combination of parallel processing by several processors and 

their cooperation. co-LODEX also has the advantage of 

exact global optimization. 

The next section gives an overview of co-LODEX. 
Section 3 describes its cooperative design mechanism. We 
give some experimental results in Section 4 and concluding 

remarks in Section 5. 

2 co-LODEX Overview 

2.1 Inputs and Outputs 

The user specifies a behavioral specification, a block dia­
gram of the datapath, and constraints on area and speed. co­
LODEX outputs a CMOS standard cell netlist that satisfies 

the constraints. The resulting netlist can be input to an auto­

matic place-and-route system for CMOS standard cells. 

The specification language for behavior used in co­

LODEX is UHDL [Fujisawa 1989], an extension of DDL 

[Duley and Dietmeyer 1969]. Figure 1 shows the specifica­
tion for a circuit that solves a second-order differential equa-

UHDL; 
interface_view: interface_exampleOl; 

inputs: .xi(12) •. yi(12) •. dxi(12) •. ui(12) •. ai(12); 
outputs: .xo(12) •. yo(12); 

behaviocview: behaviocexampleOl; 
derme: constS = 5. const3 = 3; 
terminal: ul(12). u2(12). u3(l2). u4(12). u5(12). u6(12). yl(12). FF; 
operator: 2stage...,pipeline(Cmultiplier(x. y. z) = ( len = 2 ). z <- X * y; end_op; 
function: main: clk; 
while (FF) do 
2a: ·2stage...,pipelined_multiplier·(u. dx. ul); 
3a: ·2stage...,pipelined_multiplier·(x. constS. u2); 
4a: ·2stage...,pipelined_multiplier·(const3. y. u3); 
5a: ·2stage...,pipelined_multiplier·(u2, ul. u4). 

x<- x +dx; 
6a: ·2stage...,pipelined_multiplier·(u. dx. yl). 

FF<- x< a; 
7a: ·2stage...,pipelined_multiplier·(u3. dx. u5). 

u6 <-u -u4; 
8a: y <- yl + y; 
9a: u <- u6 - u5. xo := x. yo := y; 

enddo; 
la: stop(x<a). x <- xi. y <- yi. dx <- dxi. u <- ui. a <- ai; 

endUHDL. 

Figure 1. Example of behavioral specification 

tion (DiftEQ). The program might be used to describe a 

subsystem of a controller or have a digital signal processing 
application. [Brewer 1987] 

A block diagram of the datapath is shown in Figure 2. 
The boxes signify functional blocks. COMP, MULTI, 

ADD_SUB, MUX, REG, FF, and the others represent a 
comparator, a multiplier, an ALU(add/subtract), a multiplex­

er, a register, a flip-flop and input/output buffers. 

Constraints on area are expressed as inequalities in the 
gate count, for example, "(fotal gate count) S 2000." The 
user can specify as an area constraint the maximum gate 

Figure 2. Block diagram 



count that could be squeezed into a given LSI device. 
Constraints on speed are expressed as inequalities in the 
propagation delay, for example, "(Maximum delay) ~ 120 
ns." The user can specify as a timing constraint the clock 

cycle the LSI device should operate with. 
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circuit against constraints on area and time. 
An agent usually designs its subcircuit independently 

and in parallel with the other agents. However, since the de­
sign results of the other agents are necessary for evaluation 

against global constraints, agents exchange their results 
every time they finish design/redesign. An agent redesigns 

2.2 Brief Overview when it detects a constraint violation for which it is responsi-
ble, for example, if a path passing through it is too slow. If 

co-LODEX divides the whole circuit to be designed into it designs a standard cell netlist that satisties all the local con-
subcircuits. Each subcircuit is designed by a design agent. straints, it notifies the resulting gate count and delays. If it 

Figure 3 shows the five subcircuits for the DiffEQ example cannot, it notifies information about constraint violation. 
and the agents in charge. It should be noted that the control 
circuit, CTRL, is included. co-LODEX establishes a finite­

state machine from the behavioral specification and extracts 
the specifications for the control circuit in terms of logical 
expressions. It then divides the whole circuit so that the 
blocks along critical path candidates are distributed to as few 

agents as possible. It is likely that agents along a critical 

path candidate need a considerable amount of mutual com­
munication since agents sharing a constraint must communi­
cate with each other. 

Each agent designs given functional blocks hierarchically 

using the top-down method. It keeps splitting up functional 
block and sub blocks into sub-subblocks until all given 
blocks are implemented with CMOS standard cells. This is 

done by referring to the library that includes knowledge 

about functional block design, knowledge about technology 

mapping, and standard cells data. Then it counts the number 

of gates and estimates delays to evaluate the implemented 

3 Cooperative Design Mechanism 

We propose a cooperative design mechanism on a multi­
processor. It is based on the redesign mechanism within 

each agent. Moreover, (1) exchanging design results and 

NJs among agents and (2) combining the NJs received from 
other agents are necessary. Agents exchange the design re­
sults (gate counts and delays) of subcircuits when they suc­
ceed in design. They exchange the resulting NJs when they 

fail to design subcircuits without any stored NJ satisfied. 

3.1 Redesign within Each Agent 

The area a circuit requires and its delay are the sum of 

their constituent parts. The delay of a path, for example, can 
be attributed to that of the components along it. This fact 
lets us break a global condition into local conditions. A hier­

archical structure is useful for this. We explain a redesign 

Figure 3. Sub-circuits and agents 
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Figure 4. Hierarchical design description 

mechanism using assumption-based reasoning, which oper­
ates on a hierarchical design description. 

Hierarchical Design Description 

Design objects are represented in a hierarchy. Figure 4 
shows part of the hierarchy corresponding to Figure 3. 
There are three types of nodes; agent nodes (capsules), com­

ponent nodes (ovals) and alternative nodes (rectangles). An 
agent node is responsible for one or more component nodes. 

A component node associates alternative nodes as possibili­
ties of implementation. There is a special component node 

called the chip node that corresponds to the whole chip. An 

alternative node contains information about the connection 

between subcomponents and has the subcomponent nodes 
as children. An alternative is called either "in" or "out" 
based on whether it is adopted or discarded. Each compo­

nent node has at most one in alternative node. Other alterna­

tive nodes are stored in the out alternative list to be recalled 
later if necessary. 

Figure 4 shows the following: 

·The whole chip (Chip) consists of an input buffer (X), 

registers (REG_l and REG_ 4), multiplexers (MUX_3, 

MUX_4, MUX_5, and MUX_7), an add/subtract unit 
(ADD_SUB), and other parts. 

·AgentS is responsible for five components. 

·ADD_SUB consists of an adder (ADD) and an exclusive 
or (XOR). 

·ADD, the 12 bit adder, consists of three 4-bit CLA (carry­
lookahead adder) cells connected serially. Current out al­

ternatives might include a serial connection of six 2-bit 

CLA adder cells and 12 single-bit adder cells. 

Justifications for Constraint Violations (NJs) 

An NJ (no good justification) is a logical expression that 
must not hold during design. Satisfying an NJ means a con­
straint violation and invokes the redesign mechanism. 

The following default NJ at Chip (in Figure 4) is equiva­
lent to the original constraint on gate count in that any design 
violating the constraint satisfies it. 

X(a) + REG_l (a) + REG_ 4(a) + MIDC3(a) + MUX3(a) 

+ MUX_5(a) + MUX_6(a) + ADD_SUB(a) + .. , > CHIP (1) 

The form, "component ('a')", represents gate count of each 

component. This says that if the total gate count of the input 
buffer, the registers, the multiplexers, and so on, exceeds 

the value of variable CHIP, it means a constraint violation. 

CHIP is the variable that refers to the currently valid con­
straint value on gate count, for example 2000. co-LODEX 

transforms each constraint specified by the designer into de­
fault NJs. 

A timing constraint in terms of the clock cycle is trans­
formed into a set of default NJs, that is, an inequality repre­

senting that the sum of the delays of the components along a 

path from source to destination exceeds the constraint value. 

For example, one of the default NJs represents that the path 



from REG_1 via MUX_ 4, MUX_5, ADD_SUB, MUX_7, 
to REG_ 4 is longer than the clock cycle. It is as follows: 

REG_l(p2) + MUX_ 4(Pl) + MUX_5(p2) + ADD_SUB(p2) 

+ MillC7(p2) + REG_ 4(Pl) > CLOCK (2) 

The form, "component ('p' number)", represents a path 
within each component. CLOCK is the variable that refers 
to the currently valid constraint value of the clock cycle, for 
example, 120. 

Starting from default NJ s, new NJ s are added during re­

design through NJ expansion and generation as described 

below. NJs save us doing direct evaluation against con­
straints. All we have to do is to check to see if any NJ is 
satisfied. 

NJ Expansion 

NJ expansion is used to narrow the scope and go down 
the hierarchy to resolve contradictions, or constraint viola­

tions. NJ expansion is formally defined in the following 
three steps. The NJ to be expanded is the one that is satis­

fied at the moment. 

Step 1: Select a component appearing in the NJ to be ex­

panded. Call it C. 
Step 2: Replace C in the NJ with its in alternative's sub­

components. If the in alternative is at the leaf of the hierar­
chical structure (at the standard cell level), replace C with 

its actual gate count or its delay value. 

Step 3: Go down the hierarchy to the alternative node and 

store the NJ obtained in Step 2. 
(End) 

NJ Generation 

If every alternative of a component causes a constraint 
violation, NJ generation enables us to get a new NJ, the log­
ical product of the NJs corresponding to each alternative. 

The generated NJ does not refer to that component. It is put 

at the alternative node one level up. This procedure is justi­
fied by resolution [Robinson 1965]. In general, the generat­

ed NJ is a logical product of NJs about gate count and NJs 

about delay. 

Evaluation-Redesign Algorithm within Each Agent 

The redesign algorithm within each agent uses NJ expan­
sion and generation. Redesign is invoked when an NJ turns 
out to be true, since satisfying an NJ means a constraint vio­
lation. 

Step 1: Set ALT to the agent node and proceed to Step 2. 
Step 2: Check to see if there is any satisfied NJ at the an-

cestor alternative nodes (including itself) of ALT. If so, 
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set ALT to the alternative node where the satisfied NJ is 
put, and proceed to Step 3. Otherwise, go to Step 7. 

Step 3: If there is a subcomponent of ALT appearing in the 

NJ, proceed to Step 4. Otherwise, go to Step 5. 
Step 4: Expand the NJ. Set ALT to the current alternative 

node and return to Step 3. 
Step 5: Make ALT out. Select another alternative node that 

is not inhibited by an NJ, make it in, set AL T to it, and go 

to Step 2. If every alternative is inhibited by NJs, proceed 
to Step 6. 

S te p 6: Generate an NJ. Set AL T to the current alternative 

node and go to Step 3. If there is no alternative node one 
level up, output the generated NJ and exit (Fail!). 

Step 7: If there is no component node whose alternative 
nodes are all out, exit. (Succeed!). Otherwise, select an al­

ternative node that is not inhibited by NJs, make it in, set 
ALT to it, and go to Step 2. 

(End) 

In Step 5, selection is done either by recalling an out al­
ternative or by generating a new implementation. 

The above algorithm starts when an agent receives 
information from the other agents. Once the algorithm ter­

minates in success or failure, the agent sends information to 
the other agents. 

3.2 Cooperative Design Algorithm 

We propose a cooperative design algorithm by describ­

ing the procedure for each agent. 
Step 1: Design its subcircuit. Repeat redesign by the evalu­

ation-redesign algorithm. The gate counts and delays of 

the other subcircuits are assumed to be O. If any agent 
fails, the algorithm terminates in failure. Otherwise, pro­

ceed to Step 2. 
Step 2: Exchange the design results, that is the gate counts 

and delays of the subcircuits, with the other agents. 

Proceed to Step 3. 
Step 3: Set the gate counts and delays of the other subcir­

cuits to the design results received in Step 2. If no stored 

NJ is satisfied, go to Step 9. If some of the stored NJs are 

satisfied and the design results of each agent are the same 
as in the previous cycle (caught in a loop), go to Step 7. 

Otherwise, proceed to Step 4. 
Step 4: Redesign its subcircuit. If at least one agent suc­

ceeds in redesign without any stored NJ satisfied, go to 
Step 2. Otherwise (all agents fail), proceed to Step 5 

Step 5: Exchange the generated NJs with the other agents. 

Proceed to Step 6. 
Step 6: Combine the NJs received in Step 5. Go to Step 1. 
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Step 7: Set a temporary constraint and proceed to Step 8. 
Step 8: Design its subcircuit. Repeat redesign by the evalu­

ation-redesign algorithm until all the constraints induding 
the temporary one are met. The gate counts and delays of 
the other subcircuits are assumed to be O. If all the agents 

fail, the algorithm terminates in failure. Otherwise, go to 
Step 2. 

Step 9: Put together all the subcircuits. The algorithm ter­
minates in success. 

(End) 

Only default NJs are stored initially. As the algorithm 
proceeds, new generated NJs and combined NJs are added. 

In Step 7, select one of the violated constraints with the 
fewest agents related, and set the current value correspond­
ing to that constraint as a temporary constraint. 

Once the above algorithm terminates in success or failure 

(In Step 1, Step 8, and Step 9), the design run is finished, 

and the user can retry by changing the constraints. The user 

can look for a faster circuit by tightening the delay con­
straint, or can rerun by relaxing the constraints in case of 

failure. When the constraints are changed, the system up­
dates them and re-evaluates by checking all the stored NJ s. 
As more NJs are accumulated, the efficiency of the algo­
rithm is further improved. 

3.3 Combining NJ s 

When an agent fails in redesign with the evaluation-re­
design algorithm described in the above section, it generates 

an NJ and sends it out to the agents that share it. Each agent 
"combines" the NJs received from other agents and makes a 
new NJ out of them. Considering an NJ from an agent as a 
condition where design is impossible for the agent, the com­
bined NJ can be seen as a condition where design is impos­

sible for agents other than the recipient agent. Agents are re­
quired to design without any combined NJ satisfied. 

For example, suppose Agent5 received the following 
two generated NJs (3) and (4) originated from default NJ (1) 

and (2) from Agentl and Agent4, respectively ("A" signifies 

logical product): 
192 + Agent2(a) + Agent3(a) + Agent4(a) + Agent5(a) > CHIP 

1\ 19.2 + Agent5(pl) > CLOCK (3) 

Agentl(a) + Agent2(a) + Agcnt3(a) + 96 + Agent5(a) > CHIP (4) 

Agent5 combines the above NJs and makes the following 

new NJs: 
288 + Agent2(a) + Agent3(a) + Agent5(a) > CHIP 

1\ 19.2 + Agent5(pl) > CLOCK 

96 + Agent2(a) + Agent3(a) + Agent5(a) > CHIP 

(5) 

(6) 

NJ(2) NJ(2) 
CLOC'{I----...~....d--

f\ ... ~~-..... .l'I/J(l) 96 CHIP NJ(l) ..J--_..lociloJHIP_NJ(1) 

NJ(4) from Agent4 NJ(5) v NJ(6) 

Figure 5. Example of combining NJs 

(5) and (6) are added to Agent5. 
Figure 5 illustrates the above. The two axes of each 

graph correspond to default NJs (1) and (2). NJ (3) means 

that any design by Agentl is either 192 gates or more, or 
19.2 ns or longer along the path for default NJ (2). The left 

graph shows that Agent! cannot design inside the hatched 
part. Similarly, the middle graph shows that Agent4 cannot 
design inside the hatched part. Combining (3) and (4) gives 
a condition for the agents other than Agentl and Agent4 to 

be unable to design without violating any constraint. If the 
agents other than Agentl and Agent4 design inside the 
hatched part of the right graph, that will cause constraint vio­
lation. NJs (5) and (6) represent the hatched part. 

4 Experimental Results 

We implemented co-LODEX on Multi-PSI [Taki 1988] 
in KLI [Veda 1986] to evaluate the performance of the co­

operative design mechanism, and tested as examples to de­

sign a specific circuit and usual circuits. 

4.1 Optimization 

Optimization using co-LODEX proceeds as follows: 
First, co-LODEX requests the user for area and speed con­

straints and produces a solution satisfying the constraints. 
The user then changes area or speed constraint value to the 
value for the solution just obtained minus 1, and iterates as 

long as the constraints are satisfied. If constraint satisfaction 

fails, the previous solutionis used as the optimal solution. 

Figure 6 shows some of the results for the MAG exam-

ple. MAG approximates (a2 + b2)1!2. At first, the area con­

straint was large enough, and the timing constraint was 130. 
We obtained the circuit shown at the right. As the area con­
straint was strengthened, different results were achieved. 
The smallest circuit, we find is shown at the left. Finally, 

the above optimization failed in constraint satisfaction with 

NJ, 1224>CHIP. This means that design is impossible if 
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Figure 6. Experimental result for MAG circuit 

the specified set of constraints satisfies the NJ. We must 
thus relax the constraints so that the above NJ is not true any 
more. 

4.2 Speedup 

Speedups were examined by increasing the number of 
agents from 1 to 15. Agents correspond to processors on a 
one-to-one basis. We had one extra processor for distribut­

ing the functional blocks to the other processors and taking 
statistics, so we used up to 16 processors altogether. We 
expected that speedups would increase in proportion to the 
number of agents. 

Table 1. The number of combinations 
for design method 

inputs sum carry- number of 
out design methods 

1 1 0 1 

2 1 1 1 

3 1 1 1 

4 2 1 12 

5 2 2 30 

6 2 2 15 

7 3 2 105 

8 3 3 420 

9 3 3 84 
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Specific Circuit 
The example presented here is to design a multi-argu­

ment adder (array adder). The function of this circuit is to 
calculate the sum of nine integers represented in two's com­
plement format. This circuit is adopted in ALUs and multi­
pliers in other example circuits described below. This circuit 

consists of 122 one-bit adders. The function of a one-bit 
adder is to calculate the sum and the carry-out of one-bit in­

tegers. Each one-bit adder has many design methods, so the 

whole circuit has over 50 million design combinations. 
Table 1 lists the number of design methods with the number 
of inputs and outputs. Each one-bit adder can be implement­

ed with CMOS standard cells immediately. Thus, we have 
tested only the cooperative design mechanism of co­
LODEX. We used 30 default NJs. 

Figure 7 shows a part of this circuit. The boxes repre­

sent one-bit adders and the number inside them represent the 

number of input bits. The arrows represent default NJs. 

The upper and lower side or upper-left and lower-right side 
of the arrangement of neighboring blocks has a relationship 

to the same default NJ. Accordingly, co-LODEX divided 

the whole circuit and the boundary lines between subcircuits 
as vertical or slanting (from upper-left to lower-right). 

We averaged design costs to agents in this test. We as­
sumed that design costs depend on the total number of de­

sign methods for the agent in charge. Taking the number of 
design methods into account, co-LODEX divided the whole 

circuit into subcircuits as many as agents. The shaded areas 
in Figure 7. show two of the subcircuits, where the number 

of agents is 10. co-LODEX can easily divide this circuit 

with agents, since it is orderly. 

The relation between the number of agents and the 
speedups is shown in Figure 8, which shows a change in 

inputs 

Figure 7. Array adder 
outputs 
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Agents 

Figure 8. Relation between the number of agents and speedup 

design time according to the number of agents. The slanting 
straight line represents the ideal line. All agents are active in 
consequence of a change in area constraint, while some 
agents are active and others are inactive in consequence of a 
change in delay time constraint. A change in area constraint 

thus increases speedups and the result surpasses the ideal 
line. The reason seems to be that our cooperative mecha­

nism reduces the amount of computation by saving useless 

combinations of alternatives from each agent. Initial design 

time, time taken until evaluation-redesign occurs, is roughly 
constant, because the increase in distribution work of the en­

tire specification to agents cancels out the decrease in each 

agent's design work due to an increase in the number of 
agents. Figure 8 also shows the speedups for a design, in­
cluding initial design, when a set of constraints are given. 

Usual Circuits 
Table 2 lists the results of speedups for design of six 

usual circuits, including initial design, when a set of con­

straints are given, together with the optimal number of 

agents and the time. 
A block diagram of the datapath includes various func­

tional blocks. Some functional blocks such as ALU are 
complex, and others are simpler. We observed that one or 
two special agents work hard but that the other agents spend 
time waiting for messages from busy agents. Processing 
time depends on the busy agents which manage complex 

functional blocks. 
To take advantage of our cooperative design mechanism 

on a multiprocessor, distribution strategy would need, in ad­
dition to focusing on critical path candidates, (1) to look 

ahead in the library when distributing the functional blocks, 

and (2) to set up sub-agents if necessary. 

5 Conclusion 

We presented a cooperative logic design expert system 
on a multiprocessor, co-LODEX. co-LODEX divides the 

whole circuit to be designed into subcircuits in advance and 
designs each subcircuit on each processor to take advantage 
of parallel processing. Global evaluation-redesign takes 

place by processors exchanging design results or NJ s. A 

cooperative design algorithm based on assumption-based 

reasoning makes this possible. Short turnaround is expected 
through the combination of parallel processing by several 

processors and their cooperation. 
co-LODEX can efficiently carry out global optimization. 

For example, a circuit with the minimum number of gates 
has been obtained while satisfying constraint on speed. By 

Table 2. Results of experiments 

Circuit Number of Main Components Speedup 
Optimal # 

Components of Agents Time(sec) 

Greatest common devisor 11 1 subtracter, 1 comparator 1.1 2 1.7 
Differential equation 

28 
1 multiplier, 1 ALU(add/subtract) 

y" + 5xy' + 3y = 0 1 comparator 1.3 3 72 

MAG(I) 14 1 ALU(add/subtract), 1 comparator l.7 4 3.3 
1 two's complementer 

MAG(2) 13 1 ALU(add/subtract/compare) 1.2 3 6.4 1 two's complementer 

MAG(3) 16 1 adder, 1 subtracter, 1 comparator 5.0 15 3.7 2 two's complementers 

Correlational function RAMs, 1 ALU(multiply/add) 
N-l-j 22 1 adder, 1 comparator 2.1 4 113 

y[i] =j~l xfj] * xCi + j] 1 decrementer, 1 incrementer 



increasing the number of agents up to 15, the best linear 
speedup has been observed. 

Our future plans include working on parallel processing 

of design, evaluation, and redesign within an agent. 
Distribution strategy is also important for load balancing 
among processors. 
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Abstract 

This paper describes a parallel inductive learning al­
gorithm for adaptive model-based diagnosis. Although 
the model-based systems are more robust than the rule­
based systems, they require more computation time. 
This is because they lack heuristic knowledge. On the 
other hand, human experts can learn and utilize such 
knowledge from experience. Therefore, in order to re­
alize efficient model-based diagnosis, learning capability 
from experience is indispensable. We had proposed an 
inductive learning mechanism but unfortunately it took 
much computation time. In order to reduce the com­
putation time, this paper proposes a parallel learning 
algorithm. The experiential knowledge is represented as 
a fault probability model and the proposed algorithm 
searches the most appropriate one out of all the possible 
models. In order to search effectively, a partial order is 
introduced into the search space. By using this order­
ing, two kinds of search control mechanisms, that are 
local pruning and global pruning, are developed. The 
algorithm is implemented in KL1 language on a paral­
lel inference machine, Multi-PSI. The experimental re­
sults show the effectiveness of the mechanisms. It is also 
shown that the 16 PE implementation is about 11 times 
as fast as the sequential one. 

1 Introduction 

Since the creation of the MYCIN system[Shortliffe 1976], 
most of expert systems, have incorporated the idea of 
representing their knowledge in a form of symptom­
failure association rules. Those expert systems that take 
rule-based approach have two major inherent disadvan­
tages. First, those systems lack robustness because they 
cannot deal with unexpected cases which are not covered 
by rules in their knowledge bases. Second, their knowl­
edge bases are expensive to be created and maintained. 

There has been a series of research to tackle those 
problems. The most distinct ones are on model­
based methods, i.e. first-principle methods. Model­
based methods use design descriptions, such as structure 

and behavior descriptions [Davis 1984, de Kleer 1987, 
Genesereth 1984]. 

However, model-based diagnostic systems are gener­
ally not as efficient as rule-based ones since they require 
more complex computation. This is because they lack 
heuristic knowledge which human experts usually uti­
lize. We have been working on a research to explore 
a general architecture to realize an adaptive diagnostic 
agent and introduced its basic architecture[Koseki 1989]. 
Moreover, an experimental system based on the 
architecture [Koseki et al. 1990a, Koseki et al. 1990b, 
Ohta et al. 1991a, Ohta et al. 1991b] have been devel­
oped. The system realizes adaptability with learning ca­
pability from its experience. The experiential knowledge 
is represented in a form of a fault probability model of 
target system components. With this experiential knowl­
edge, it is able to diagnose a failing component faster 
with a fewer tests than pure model-based systems. 

However, it takes much computation cost to learn ex­
periential knowledge. This is because the hypothesis 
space to search grows rapidly with the size of the tar­
get problem. In order to reduce the computation time, 
we developed a parallel learning algorithm. 

The algorithm utilizes two kinds of search control 
mechanism, that are local pruning and global pruning. 
The search space is divided and assigned to each proces­
sor so that the transmission of local pruning information 
does not require interprocess communication. The in­
terprocess communication is restricted to the plausible 
global pruning information. 

The algorithm is implemented in KL1 language on a 
parallel inference machine, Multi-PSI. The experimental 
results show that the implementation using 16 PEs is 
about 11 times as fast as the sequential one. 

Section 2 presents the mechanism of the adaptive di­
agnostic system. In section 3, the probabilistic-model 
learning problem is described. A parallel learning algo­
rithm is presented in section 4, and experimental results 
are shown in section 5. 



2 Adaptive Diagnosis Mechanism 

This section presents the architecture of an adaptive 
model-based diagnosis. We can observe two kinds of 
intelligent behavior in maintenance expert's diagnostic 
procedure. First, they can quickly identify a faulty com­
ponent with a little information utilizing their experi­
ence. Second, even if a novel symptom arises, the expert 
can reach a conclusion, by consulting with other informa­
tion sources, such as design description manuals. They 
can reason which component might have gone wrong and 
caused the symptom to appear, by knowing how the sys­
tem is supposed to work. 

To realize those kinds of intelligent behavior, the sys­
tem consists of several modules as shown in Figure 2-
1. The knowledge base consists of design knowledge 
and experiential knowledge. The design knowledge rep­
resents a correct model of the target device. It consists 
of structural description which expresses component in­
terconnections and behavior description which expresses 
component behavior. The experiential knowledge is ex­
pressed as component failure probability for each com­
ponent. 

Test Pattern Diagnosis 
Selector I -+- Module 
Generator call call 

t 
Symptom 

~ t 
Test Test result 

create 

learning 
Module 

~ 
Suspects 

Fig. 2-1 Structure of the System 

The general flow of the diagnostic system is shown 
in Figure 2-2. The system keeps a set of suspected 
components as a suspect-list. And it takes eliminate­
not-suspected strategy[Tanaka et al. 1989] to reduce the 
number of the suspects in the suspect-list, repeating the 
test-and-eliminate cycle. 

It starts with getting an initial symptom. It calculates 
an initial suspect list from the given initial symptom by 
performing a model-based reasoning. After obtaining 
the initial suspect-list, the system repeats a test-and­
eliminate cycle, while the number of suspects is greater 
than one and an effective test exists. A set of tests is 
generated by the test pattern generator. Among the gen­
erated tests, the most cost effective one is selected as the 
next test to be performed. The selected test is suggested 
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and fed into the target device. By feeding the test into 
the target device, another set of observation is obtained 
as a test result. and .is used to eliminate the non-failure 
components. 

Fig. 2-2 Diagnosis Flow 

In order to compute test effectiveness, the system uses 
fault probability distribution for each component. The 
mechanism employed in the system is basically same as 
the one found in the reference [de Kleer 1989]. It is 
so called minimum entropy technique where entropy is 
calculated from the fault probability for each suspected 
component. Here, an entropy E(5L) of a suspect-list 
5 L is defined in terms of the estimated probabilities of 
each component in the list. Let 5 L denote the set of 
suspected components, 

and let PbP2, ... Pn( LPi = 1, Pi> 0) be failure proba­
bilities of suspects 5 b 52, ... 5n . Then an entropy E(5L) 
is defined as 

n 

E(5L) = - 2::Pilogpi. 
i=l 

The system evaluates gain(T) for all of the available 
tests. In addition to this value, the system considers 
the test execution cost to select a cost effective test. The 
system selects a test according to the following evalua­
tion function. 

gain(T) / cost(T) 

At first, the diagnostic system does not know the prob­
ability distribution for a target device. Therefore, it 
should assume that the all of the components have the 
same fault probability. However, the system becomes ef­
ficient as it acquires information on the fault probability 
from its experience.This is because it can estimate more 
precise probability distribution and can generate more 
effective test sequence. In the next section, a learning 
mechanism is presented. 
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3 Learning Probabilistic Models 

The performance of the diagnostic mechanism relies on 
the correctness of the presumed probability distribution 
of components. However, it is not easy to predict ap­
propriate probability for each component from observed 
data, especially when the number of observed data is 
small. 

For example, consider a diagnosis of a network sys­
tem with 100 modems and 100 communication terminals. 
Here, we assume that 10 modems have broken down in 
the past (once for each). A simple estimate concludes 
that each of the 10 components has higher fault proba­
bility than any other component. However, human may 
presume that a modem has higher fault probability than 
a terminal because modems have broken 10 times in the 
past and terminals have never broken. Therefore, it is 
important to select an appropriate estimation method 
to derive a precise probability distribution (probabilistic 
model). 

Here, we consider an example of a target device which 
consists of 16 components. The observed number of 
faults for each component is shown in Table 3-1. Sev­
eral attributes for each component are also shown in the 
table. 

Table 3-1 Example 

Component Attributes No. of Obs. 
Type Age (Times) 

1 a new 1 
2 a old 0 
3 b new 13 
4 b old 9 
5 c new 1 
6 c old 1 
7 d new 0 
8 d old 0 
9 e new 0 
10 e old 0 
11 f new 1 
12 f old 0 
13 g new 0 
14 g old 5 
15 h new 1 
16 h old 0 

First, we consider the relationship between the compo­
nent type and the fault frequency. A type b component 
seems to have a very high fault probability. And it may 
be natural to conclude that type g component has also 
slightly higher probability than the other components. 
On the other hand, it is dangerous to conclude that each 
of the other components has different fault probability, 
e.g., the fault probability of type c component is about 
twice as large as type a component's. Because the differ­
ence between the number of observation may be due to 
an accident. 

Next, we consider the relationship between component 
age and the fault probability. In the example, it seems 
that the component age does not affect the fault prob­
~bility. Therefore, in order to estimate the fault prob­
ability distribution precisely, it is important to consider 
component type. 

In general, some attributes are important to estimate 
the fault probability and the other attributes are not so 
important. Moreover, a combination of several attributes 
may be important. For instance, in the above example, 
we had better to consider component age, in the case of 
the component type is g. 

In order to estimate the probability distribution pre­
cisely, we must find relevant attributes (and/or their 
combination) and consider how to estimate with those 
attributes. 

Here we define the presumption problem. Consider 
a set of events X = {Xl, X2, ... , xm} and attributes 
aI, a2, •.. , an' Here, we assume that the events are ex­
haustive and mutually exclusive, and that the domain for 
each attribute aj (j = 1,2, ... , n) is a finite set Dom( aj). 

As shown in Table 3-2, for each event, Xi, a value, 
Vij (E Dom(aj)), for each attribute, aj, is given. Also, 
ni, the number of observations is given. 

Table 3-2 Table of events 

Event Attributes No. of Obs. 

al a2 ... an (times) 

Xl Vn Vl2 ... Vln nl 

X2 V21 V22 ... V2n n2 

X3 V31 V32 ... V3n n3 

Xm Vml Vm2 ... Vmn nm 

The problem is to presume the probability Pi for each 
event Xi, from the number of observations ni. If enough 
amount of data are given, it seems to be easy to estimate 
the probability appropriately. However, if only a few ob­
servation data are given, we must consider the noise af­
fection. Therefore, it is important to extract reliable in­
formation by avoiding the noise affection. In order to es­
timate the fault probability appropriately, we introduced 
an inductive learning mechanism [Nakakuki et al. 1990, 
Nakakuki et al. 1991b, Nakakuki et al. 1991c]. 

In the learning mechanism, a presumption tree is used 
to express a probabilistic model. U sing a presumption 
tree, all the events are classified into several groups. 
Here, each event ina group is assumed to have the same 
fault probability. Therefore, the probabilities for indi­
vidual events can be calculate from a presumption tree. 
The details are descri bed below. 
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G4 • : Branching node 

o : Leaf 

Fig. 3-1 Presumption tree 

As shown in Fig. 3-1, a presumption tree consists 
of several branching nodes and leaves. An attribute aj 
corresponds to each branching node, and subset Ajk of 
Dom( aj) corresponds to each branch. Here, each Ajk 

must satisfy the following conditions. 

A presumption tree classifies all possible events into sev­
eral groups. For example, the tree in Fig. 3-1 has four 
leaves, therefore, the events are classified into four groups 
by using the tree as a decision tree[Quinlan 1986]. 

For example, G1 is a group of events which corresponds 
to leaf 1. Each event in G1 is considered to have the same 
fault probability. Here, for each leaf k, let its correspond­
ing group of event be X k , and for all event Xi E X k , let 
the sum of ni be Ok. By using a presumption tree, the 
probability Pi for each event Xi E X k can be calculat'ed 
as follows: 

As shown above, a presumption tree represents a prob­
abilistic model. The problem is to find the most appro­
priate presumption tree for given data. 

As a criterion for the selection, we introduced the min­
imum description length (MDL) criterion[Rissanen 1978, 
Rissanen 1983, Rissanen 1986]. Rissanen argued that 
the least description length model is expected to fit for 
presuming the future events better than any other mod­
els. Here, description length for a model is defined as 
the sum of the model-complexity and model-fitness for 
the given data. The description length of a presumption 
tree is the sum of: 

(1) Code length of a tree, and 

(2) Log-likelihood(distance) between the tree and ob­
served data. 

The code length(model complexity), L1, for a presump­
tion tree is defined as follows[Nakakuki et al. 1991b]. 
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1 
L1 = L: log (n - dx + 1) + L: -log Ox + 

xEPUQ xEQ 2 
L: {log (kx - 1) + log c1(kx, Ix)} 
xEP 

Here, P is a set of all the branching nodes and Q 
is a set of all the leaves. For. each branching node 
X, Ix is the number of branches, dx is the depth of 
the node, kx = IDom(ai)1 (ai is a corresponding at­
tribute for node x), n is the number of attributes, and 
c1(kx, Ix) = C:~l) if Ix < kx, otherwise 1. On the other 
hand, log-likelihood (model fitness), L2, between a model 
and observed data is defined as follows. 

L2 = - L: ni log Pi 
i 

Here, Pi is the presumed probability that is derived by 
using the model. The total code length is the sum of L1 
and L2. 

4 A Parallel Learning Algorithm 

4.1 Local Pruning Mechanism 

As described in the previous section, the problem is to 
search the least description length tree out of all the 
possible presumption trees. A heuristic algorithm for 
the problem was implemented[Nakakuki et al. 1991b] for 
a sequential machine by using branch-and-bound tech­
nique. The following summarizes the algorithm and then 
proposes a parallel version of the algorithm. 

Here, let the length of a presumption tree T be denoted 
by L(T). It is the sum of model complexity(L1(T)) and 
the model fitness (L2(T)). Intuitively, a large tree has 
large model-complexity, and a small tree has large(bad) 
model-fitness[Nakakuki et al. 1991d]. In order to discuss 
such characteristics more precisely, we introduce a par­
tial order ">-" among the possible presumption trees. 
The order is defined as: 

{:::} 

def 
Presumption tree T2 can be obtained 
by replacing some leaves in presump­
tion tree Tl with branching nodes. 

For example, presumption tree n in Fig. 4-1 can be 
obtained by replacing leaf z in Ta , therefore, 

Similarly, 
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Intuitively, T2 ~ Tl means T2 is strictly larger than TI. 

al al 

x y z 

Ta Tb Tc 

Fig. 4-1 Example 

If T2 ~ T1 , then the following inequalities hold by the 
definition: 

L1(Tt} :::; L1(T2) 

L2(TI) ;::: L2(T2) 

Therefore, for a certain presumption problem, if a pre­
sumption tree T is a maximal one under the ordering, 
then L2(T) will take the least value, say L2M1N . L2MIN 
can be easily calculated in advance. By using these 
characteristics, we can effectively find a least description 
length tree. 

The proposed algorithm searches the space of possible 
presumption trees. It tests simpler tree before testing 
more complex ones. That is, if there are two presumption 
trees T and T' such that T' ~ T, the system calculates 
the length of T before trying T'. 

Here, consider that the length of a tree T has been 
tested. Then, the system considers the necessity of test­
ing T' which is more complex than T (i.e. T' ~ T). If it 
turned out to be unnecessary(i.e., there is no possibility 
that T' has shorter length than T), then all the trees 
which are more complex than T' also turns out to be un­
necessary to examine. The details of this technique are 
as follows. 

In order to decide the necessity, the algorithm tests 
the following pruning condition: 

log (n - dx + 1) + log(kx - 1) + log c1(kx, Ix) 

+L2MIN - L2(T) > 0 

Here, x is one of the leaves in T and its corresponding 
node in T' is a branching node. If the inequality holds, 
it is not necessary to calculate the length for T'. 

proof First, it is clear that the following inequality 
holds by the definition of L1: 

L1(T') - L1(T) 

;::: log (n - dx + 1) + log(kx - 1) + log c1(kx, Ix). 

Second, the following inequality holds obviously: 

L2(T') - L2(T) ;::: L2MIN - L2(T). 

Here, if the sum of the right hand sides of the above 
two inequalities is positive(Le., the pruning condition 
holds), then the sum of the left hand sides will be posi­
tive. Hence, 

L1(T') + L2(T') > L1(T) + L2(T). 

i.e. L(T') > L(T); 

Therefore, it is not necessary to test T'. 0 

Here we consider to implement a parallel version of the 
algorithm. It is natural to divide the search space and to 
assign each sub-space to individual processor. However, 
we must be careful when we divide the search space be­
cause the performance of the system is greatly affected 
by the dividing method. For example, in Fig. 4-2(a),' 
the search space is divided into four parts and each of 
them are assigned to processor PI to P4. Here, we as­
sume that P2 found that the hatched area in the figure 
can be eliminated from the search space. Then P2 must 
transmit that information to other processors. On the 
other hand, if we divide the search space as shown in 
Fig. 4-2(b), then P2 can reduce the search space with­
out communicating with other processors. Therefore, it 
is better to divide the search space so that the reduction 
can be done locally in a processor. 

(a) 

P3 

(b) 

Fig. 4-2 Search Space Division 

In the presumption problem, the search space has a 
tree structure. Each node in the search tree corresponds 



to a possible presumption tree. Moreover, for a internal 
node of the search tree, each of its child node corresponds 
to a presumption tree which has longer description length 
than the parent node's corresponding one. Therefore, for 
example, the root node of the search tree corresponds to 
the simplest presumption tree. 

If a search process examined node T, and the pruning 
condition for a child node of T is satisfied, then the sub­
tree below the child node can be pruned (Fig. 4-3(a)). 
This means that the pruned area is included in a subtree 
which has node T as a root. In other word, parallel search 
for multiple disjoint subtrees can be performed indepen­
dently. The algorithm we propose divides the search tree 
into several disjoint subtrees and searches each of them 
with individual processor (Fig. 4-3(b)). 

(a) 

(b) 

Fig. 4-3 Local Pruning 

4.2 Global Pruning Mechanism 

There is another kind of search tree pruning mechanism. 
If a certain process finds that a presumption tree To has 
less description length than ever known, then each pro­
cessor need not to test a tree that seems to have longer 
description length than To. The rest of this section de­
scribes details of this technique. 

Here we consider two presumption trees T and T' such 
that T' ~ T. Then 

L1(T') + L2(T') 

~ L1(T') + L2MIN 

> L1(T) + L2M1N. 

Here, if newly found tree To, which has shorter descrip­
tion length than ever known, satisfies the pruning con­
dition: 

L1(T) + L2MIN ~ L(To) 

then, from the above inequalities, we can conclude: 

L1(T') + L2(T') > L(To) 

i.e. L(T') > L(To). 
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Therefore, it is not necessary to examine T'. Therefore 
if we find a presumption tree which has shorter length 
than ever known, then some portion of the search space 
will be able to be eliminated. 

However, reducible part of the search tree may be dis­
tributed widely throughout the search space. In other 
words, the pruning information should be announced to 
all of the other processors. Therefore, it is important to 
consider the trade-off between the increase of communi­
cation cost and the reduction of computation cost. That 
is, in a searching process, if a presumption tree is found 
to have shorter length than ever known, then the length 
of the tree should not always be announced to the other 
processors. 

In order to solve the problem, a simple mechanism is 
incorporated. That is, the newly found length is trans­
mitted only if it is over x bits smaller than the previously 
known least length. Here, x is a threshold value. 

5 Implementation and Results 

The learning algorithm was implemented in KL1 lan­
guage on Multi-PSI, a distributed-memory multi proces­
sor machine. First, we implemented the algorithm with 
the local pruning mechanism. The experiments were per­
formed by using up to 16 PEs in parallel. As a sample 
data, a fault history which comprised about 100 fault ex­
amples was given. The computation time was measured 
5 times, and we took the average. The speedup curve of 
the example is shown in Fig. 5-1. 

Speedup 

10 

5 

~~~~-r~~~~~~~~~-#PE 
7 8 9 1011121314151 

Fig. 5-1 Speedup of the Algorithm 

The implementation using 16 PEs is about 11 times as 
fast as the sequential implementation (1 PE). There is a 
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possibility of further speedup by equalizing the load of 
each PE. An example of the overall load distribution is 
illustrated in Fig. 5-2. The difference of the load among 
the PEs may be improved by adding a dynamic load 
balancing mechanism into the system. Development of 
this mechanism is under investigation. 

Fig. 5-2 Load Distribution 

Next, we implemented the global pruning technique in 
addition to the local pruning mechanism. The threshold 
value for transmission is set to 2. This value was acquired 
empirically. 

The performance of the algorithm with both the local 
and global pruning mechanism is shown in Table 5-1. 

Table 5-1 Performance of the Algorithms 

(a) 
No. of Reductions 

Local Local+Global 

Example 1 870716 558661 
(ratio) 1.00 0.64 

Example 2 3602255 2588851 
(ratio) 1.00 0.71 

Example 3 30773602 23342853 
(ratio) 1.00 0.76 

(b) 
Execution Time (msec) 

Local Local+Global 

4522 3378 
1.00 0.75 

Example 2 16050 11282 
(ratio) 1.00 0.70 

Example 3 109892 89549 
(ratio) 1.00 0.81 

Each experiment is performed with three randomly 
generated examples. The number of reductions and the 
execution time are measured for the two versions of the 

algorithm. One is an algorithm with local pruning mech­
anism (Local), and another version incorporates both lo­
cal and global pruning mechanism (Local+Global). Both 
of them are executed with 16 PEs. 

The results show that the global pruning mechanism 
improved both of the number of reductions and execution 
time about 20% to 30% in comparison with the local 
pruning version. Fig. 5-3 shows an example of acquired 
presumption tree. 

[old] [new] [old] [n8. [01. [now] 
5.1231 1. 8837 7.8935 1. 37 1. 57 3.1527 

cur1ng] 

[low] 
9.1625 

Fig. 5-3 Example of Acquired Tree 

6 Conclusion 

This paper has described a parallel learning algorithm 
for adaptive model-based diagnosis. The algorithm is 
based on branch-and-bound technique, and local and 
global pruning mechanisms are incorporated into the al­
gorithm. The'16 PE implementation with local prun­
ing mechanism is shown to be about 11 times as fast as 
the sequential one. Moreover, the global pruning mecha­
nism is shown to have an ability to accelerate the parallel 
search. 

Future work is to improve the heuristics used in the 
pruning process. If we can find more effective global 
pruning criterion which can be computed with low time 
complexity, it seems to be possible to perform super­
linearly. 
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Abstract 

This paper focuses on parallel logic simulation. An effi­
cient logic simulator on a large-scale multiprocessor is 
targeted. The Time Warp mechanism, an optimistic 
method for time-keeping, was experimented and evalu­
ated. 

Synchronous mechanisms and conservative mecha­
nisms for time-keeping have been examined already, and 
their inefficiency on large-scale distributed memory ma­
chines has been noted. There have been few reports, 
however, on evaluation of the Time Warp mechanism 
although rollback processes have been presumed to be 
heavy. We aim at evaluating the efficiency of this mecha­
nism. Several devices, such as a local message scheduler, 
an antimessage reduction mechanism and a load distri­
bution scheme, are added in order to reduce rollback 
overhead. 

The simulator is implemented on the Multi-PSI, a dis­
tributed memory multiprocessor. The simulator is writ-' 
ten in concurrent logic language KLl. KL1 is expected 
to be suitable for parallel programming because it sup­
ports data-flow synchronization and global name space 
across the processor boundary. 

Experiments were done so that the speedup, perfor­
mance and influences of various overheads could be mea­
sured. Using 64 processors, 48-fold speedup and 99K 
events/ sec performance were obtained. The overhead 
measurements revealed that rollback processes slightly 
affected performance. These results showed that the 
simulator had fairly good performance as a full-software 
logic simulator and that the Time Warp mechanism 
worked efficiently. 

1 Introduction 

Logic simulation is used in order to verify not only the 
functions of designed circuits but also the timing of sig­
nal propagation. Since logic simulation is currently one 
of the most time-consuming stages in LSI design, faster 

simulators are urgently needed. A parallel logic simula­
tor is one likely way of producing quick simulation. 

Parallel logic simulation is usually treated as a typical 
application of parallel discrete event simulation (PDES). 
In PDES, performance essentially depends on the time­
keeping mechanism. 

The mechanisms broadly fall into three categories: 
synchronous, conservative and optimistic mechanisms. 
Since synchronous mechanisms require global synchro­
nization, they, apparently, do not work efficiently on dis­
tributed memory multiprocessors[Soule and Blank 1988]. 
Furthermore, conservative mechanisms tend to deadlock 
when circuits have feedback loops. A lot of computation 
power is needed to avoid this[Lubachevsky 1989, Misra 
1986, Shimogori and Kage 1989]. On the contrary, op­
timistic mechanisms cannot deadlock, however, they do 
expend some computation power on rollback processes 
[Fujimoto 1990, Jefferson 1985]. Only a few experiments 
with the optimistic mechanism were reported [Chung 
1989, Briner et aI. 1991] but the details have not been 
evaluated yet. 

We are targ~ting an efficient logic simulator on large­
scale MIMD multiprocessors, most of which will be dis­
tributed memory machines. We adopted the Time Warp 
mechanism, an optimistic mechanism, because the over­
heads of the mechanism were considered to be reduced 
using some devices such as a local message scheduler, an 
antimessage reduction mechanism and a load distribu­
tion scheme. By adding them to the Time Warp mech­
anism' we expected that it would become suitable for 
logic simulation on large-scale MIMD machines. 

We have implemented a parallel logic simulator on the 
Multi-PSI[Taki 1988] - an experimental parallel infer­
ence machine, a distributed memory multiprocessor. The 
simulator was written in concurrent logic language KLl. 
KL1 provides several advantages for quickly program­
ming parallel applications. Data-flow synchronization, 
global name space and dynamic memory allocation are 
expected to remove the causes of many bugs. 

Several benchmark circuits have been simulated on the 



simulator in order to evaluate the efficiency of the Time 
Warp mechanism. Performance, speedup, rollback over­
head and inter-PE (processor element) communication 
overhead have been measured. 

This paper firstly overviews our system. Remarkable 
devices to enhance efficiency, such as a load distribu­
tion scheme, a local message scheduler and an antimes­
sage reduction mechanism are mentioned. Secondly, KL1 
and the Multi-PSI are briefly introduced. Then, fairly 
good performance and speedup in actual execution are 
reported. Finally, we refer to the examination that re­
vealed the main causes affecting performance in our sim­
ulator. 

2 The Time Warp Mechanism 

Event simulation can be modeled so that several objects 
change their states by communicating with each other. 
An object is a state-automaton. A message has infor­
mation of an event whose occurrence time is stamped on 
the message (time-stamp). 

Jefferson proposed the Virtual Time paradigm and 
its implementation, the Time Warp mechanism[Jefferson 
1985]. He suggested that the Time Warp mechanism 
would be useful as the time-keeping mechanism for 
PDES. 

In the Time Warp mechanism, each object usually acts 
according to received messages and also records the his­
tory of messages and states, assuming that messages ar­
rive chronologically. But when a message arrives at an 
object out of time-stamp order, the object rewinds its 
history (this process is called rollback), and makes ad­
justments as if the message had arrived in correct time­
stamp order. After rollback, ordinary computation is 
resumed. If there are messages which should not have 
been sent, the object also sends antimessages in order to 
cancel those messages. 

In addition to the above, a global control mechanism 
sometimes works to update GVT (global virtual time) 
which is used for memory management. GVT must sat­
isfy the following two conditions. 

1. GVT is not greater than the minimum simulation 
time at any object. 

2. GVT is not greater than the minimum time-stamp 
values in the messages that have been sent but not 
yet re~eived. 

After the global control mechanism updates GVT, it no­
tifies all objects of the new GVT. As no objects rewind 
their histories before GVT, the memory area occupied 
by histories before GVT can be released. 
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3 System Overview 

3.1 System Specification 

The system simulates combinatorial circuits and sequen­
tial circuits that have feedback loops. It handles three 
values: Hi, Lo, and X (unknown). "A different delay time 
can be assigned to each gate (non-unit delay model). 
Since this system only treats gates, flip-flops and other 
functional blocks should be completely decomposed into 
gates. 

The supported functions are the minimum set for ex­
periments, but they can be easily expanded (e.g. to han­
dle more signal values). 

3.2 Load Distribution Scheme 

For efficient execution of parallel logic simulation on a 
distributed memory machine, the scheme of load distri­
bution is important at the following three points: load 
balancing, keeping inter-PE communication frequency 
low and deriving a lot of parallelism. 

In our simulator, target circuits are partitioned stat­
ically in the preprocessing phase. We propose a new 
partitioning strategy called "Cascading-Oriented Parti­
tioning" (COP, for short) for high-quality load distribu­
tion. 

COP makes several clusters by grouping gates that are 
connected to each other in a cascade form. A grouping 
operation starts from the primary input of the circuit. 
By tracing a path of the gate connection straightforward, 
subsequent gates are included in a cluster. If there are 
several candidates to be included, only one gate is se­
lected and the others are left to be the starting points 
for other grouping operations. 

After partitioning, small clusters that contain very few 
gates are merged into adjacent large clusters. Conversely, 
extremely long cascade-formed clusters are cut into sev­
eral smaller clusters so that they "do not cause load im­
balancing. 

Finally, clusters are assigned to PEs randomly; the 
only constraint is that each processor should contain a 
roughly equal number of gates. 

COP intends to exploit parallelism of the multiple 
fanouts. COP also guarantees that a gate has at least one 
adjacent gate in the same cluster. So, COP is effective 
in keeping the communication locality, that is, reducing 
inter-PE communication. The random distribution of 
clusters attains load balancing. 

In COP, the smaller each cluster, the better load 
balancing but the higher inter-PE communication fre­
quency. There is a performance trade-off between good 
load balancing and the low frequency of inter-PE com­
munication. It is necessary to decide the appropriate 
size of a cluster according to the number of gates in the 
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target circuit and the number of PEsI 
. 

COP may look similar to Agrawal's algorithm, how­
ever, COP is different from it in the next two points. 

• Agrawal's algorithm basically assumes simulation 
using the synchronous time-keeping mechanism. 
According to the gate delay value, the algorithm 
estimates the number of messages generated in each 
cluster at each tick for the purpose of load balanc­
ing. 

Conversely, an estimation such as the above is 
slightly beneficial to our simulator because messages 
with different time-stamps can be evaluated simul­
taneously in the Time Warp mechanism . 

• In Agrawal's algorithm, once a cluster is gener­
ated, it will never be decomposed into smaller ones. 
Therefore, the load is sometimes imbalanced. 

In COP, however, clusters that are too large are cut 
into several adequately sized clusters. This enables 
the system not only to be flexible for various num­
bers of PEs but also it to exploit more parallelism 
(i.e. pipeline parallelism). 

3.3 Local Message Scheduler 

In the simulation, there are usually several messages to 
be evaluated in a PE. When the Time Warp mechanism 
is used, the bigger time-stamp a message has, the more 
likely the message is to be rewound. For this reason, 
proper message scheduling in each PE is expected to re­
duce rollback effectively. 

In our system, a message scheduler resides in each PE. 
When a message is spawned, it is first registered in the 
scheduler in which the destination object belongs. The 
scheduler picks up the messages with the smallest time­
stamps and sends them to destination objects at the ap­
propriate moment. 

This scheduler ensures that rollback never happens as 
long as an object is receiving messages from other objects 
in the same PE. Only messages sent from other PEs may 
cause rollback. 

3.4 Reduction of Antimessages 

In Jefferson's original Time Warp mechanism, when roll­
back occurs, as many antimessages must be generated as 
the number of messages that need to be canceled (Figure 
1). However, the number of antimessages can be reduced 
when we assume the next condition: for any objects A 
and B, messages transmitted from A to B are received 
by B in the same order as they are sent by A (order­
preserved condition)[Fukui 1989]. 

1 For reference, clusters with 12 to 32 gates are generated for a 
circuit consisting of 12,000 gates in the simulation using 64 PEs. 
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to be canceled 

Figure 1: Cancellation with several antimessages 

to be canceled 

Figure 2: Cancellation with one antimessage 

to be canceled 

Figure 3: Cancellation with no antimessages 

Assume that MIl M 2 , .. , Mn are messages and AM is 
an antimessage. Also assume MI, M 2 , .. , Mn all satisfy 
the following three conditions: 

• M I , M 2 , .. , Mn were sent before AM, 

• M I , M 2 , .. , Mn were sent along the same channel that 
AM is sent along, 

• M I , M2 , .. , Mn have time-stamps greater than or 
equal to AM. 

Then it is clear that MI, M 2 , .. , Mn must be canceled. 
No other messages must be canceled. Only one antimes­
sage that corresponds to the canceled message with the 
smallest time-stamp need be sent (Figure 2 ). 

We advanced this idea one step further. Assume that a 
sender has to cancel messages M1 ,M2 , .. ,Mn which have 
already been sent in this order, and at the same time 
the sender knows that a new message Mnew will be sent 
whose time-stamp is equal to or less than that of MI. 

In this case, the sender sends Mnew but no antimes­
sage. When a receiver receives Mnew with a smaller time­
stamp than the Mn that the destination object received 
just before, the receiver can easily notice that an invalid 
situation has occurred, and ca,n cancel MI, M 2 , .. , Mn im­
mediately (Figure 3). 

In our system, the message streams of KL1 are used 
for communication between objects. Since KL1 keeps 
the order of messages in the stream, the order-preserved 



condition is satisfied. So, we adopted the above opti­
mization for reducing antimessages. 

4 Hardware and Language 

4.1 Hardware 

This simulator is implemented on the Multi-PSI[Taki 
1988], a distributed memory MIMD machine. The Multi­
PSI consists of 64 processing elements (PEs) connected 
to each other by a 2-dimensional mesh network. A PE is 
a 40-bit (8 bits for tag and 32 bits for data) CISC proces­
sor controlled by horizontal micro-instruction. The cycle 
time is 200 nsec. 

A network controller is paired with each PE, support­
ing message passing communication between PEs. The 
bandwidth of the controller is 5M bytes/sec. The net­
work has wormhole routing functionality. 

Since the Multi-PSI is a distributed memory machine, 
communication latency between objects in different PEs 
takes approximately twenty times longer than latency in 
the same PE. However, the distributed memory archi­
tecture can be scaled up easily. 

4.2 Language and Implementation 

This simulator is written in concurrent logic language 
KL1. 

KL1 is a language without destructive value assign­
ment to variables, that is a single assignment language. 
Due to its nature, data-flow synchronization is realized 
without significant overheads in the language implemen­
tation. Therefore, KL1 never compels programmers to 
describe synchronization explicitly at a primitive level. 

On the other hand, a single assignment language tends 
to consume storage rapidly. A dynamic memory alloca­
tion mechanism and several garbage collection mecha­
nisms are supported in the KL1 implementation. So, 
programmers are free from writing memory management. 

The KL1 language assumes a system-wide (global) 
name space even on a distributed memory machine. In 
KL1 programming, first, a programmer writes only the 
logical concurrency, relations among concurrent objects 
or data-flow. Then, the programmer adds the "pragma" 
to specify object allocation to a certain processor, as be­
low. 

... , B@processor(PE), ... 

where B is a "goal" of KL1, which represents an object. 
Inter-PE reference pointers among objects or variables 
are maintained automatically by the KL1 language sys­
tem at run time. Thus a programmer need not worry at 
all about the programming of inter-PE communication. 

Since the characteristics described above eliminate the 
causes of many bugs, KL1 enables us to develop parallel 
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programs much more easily than with the conventional 
languages (e.g. FORTRAN and C). In fact, it took one 
person just three months to complete the primary ver­
sion of the simulator, including the circuit partitioning 
module! Moreover, because of KL1, several different ex­
periments, which needed program modification, could be 
performed in a short period. 

4.3 Avoiding Asynchronous Copying 
GC 

As mentioned above, garbage collection (GC) is indis­
pensable for KL1. Two kinds of garbage collection (GC) 
mechanisms, a copying GC[Baker 1978] and the MRB 
GC[Chikayama and Kimura 1987], are implemented for 
intra-PE memory management on the Multi-PSI. 

For the Time Warp mechanism, the most important 
point in obtaining good performance is to keep the pace 
of simulation in each PE equal. However, the copying GC 
starts at different times in different PEs and disturbs the 
pace of simulation. 

Fortunately, since the MRB GC collects single refer­
ence data area without stopping KL1 execution, it is 
expected to stabilize the pace of simulation. We took 
great care to keep the data reference single so that all 
data areas can be collected by the MRB GC. Hence we 
succeeded in preventing the copying GC 2

• 

5 Measurements 
Slons 

and Discus-

Four sequential circuits, presented in ISCAS'89, were 
simulated on the Multi-PSI. The number of gates, aver­
age fan-ins and average fan-outs of the circuits are shown 
in Table 1. We measured system performance, speedup 
and overheads, such as rollback and inter-PE communi­
cation, in the experiments. 

Table 2 shows the system performance for various 
numbers of PEs. Figure 4 indicates speedup. Table 
3 shows the percentage of each process cost3

. Table 4 
shows the percentage of actual events4 and rewound mes­
sages. 

Table 5 shows the frequency of rollback fr, the av­
erage depth of rollback dr (i.e. the average number of 
rewound messages per rollback) and the frequency of 
inter-PE communication fe. fr is defined as Rj E, dr as 
Hr/ R, and fe as Me/Mall, where R is the total number 
of rollback occurrences, E is the total number of actual 
events, Hr is the total number of rewound messages, Me 

2 Consequently, when a certain circuit was simulated using 64 
PEs, an improvement in performance of approximately 37% was 
attained compared to the case where the copying GC occurred(see 
appendix). 

3These are the average values for 64 PEs. 
4Actual events are the messages that are not rewound. 
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Table 1: Target circuits 

Circuits II s1494 I s5378 I s9234 I s13207 I 
No. of gates 683 3,853 6,965 11,965 
Avg. fan-ins 2.15 1.70 1.57 1.66 

Avg. fan-outs 2.08 1.61 1.50 1.55 

Table 2: Performance (events/sec) 

I PEs \ Circuits II s1494 I s5378 I s9234 I s13207 I 
1 2,572 2,410 2,326 2,051 
4 5,662 8,401 7,709 9,092 
16 10,413 26,141 19,003 33,793 
64 10,943 64,013 35,118 99,299 

Speedu 
, 

60 Ideal , 

------ s13207 , 

50 s9234 , 
s5378 , 
s1494 

40 ,-
,-

30 

20 

10 

10 20 30 40 50 60 

No. of PEs 
Figure 4: Speedup 

is the total number of messages that are sent across PE 
boundaries and Mall is the total number of messages. 

5.1 Performance and Speedup 

As shown in Table 2 and Figure 4, the simulator attained 
approximately 99K events/sec performance and 48-fold 
speedup in the best case using 64 processors. This perfor­
mance is fairly good for a full-software logic simulator. 
This good speedup shows that the Time Warp mecha­
nism works efficiently. 

In some cases, however, comparatively poor speedup 
was measured. In order to ascertain the cause of lim­
ited speedup, we will discuss the inter-PE communica­
tion overhead, the rollback overhead and parallelism in 
the following subsections. 

Table 3: Percentage of time for each process (64PEs) 

I Process\ Circuits II s1494 I s5378 I s9234 I s13207 I 
Evaluating and 

scheduling 72.28 80.28 58.69 85.79 
messagest , etc. 

Rollback 5.32 2.50 1.61 1.53 
Inter-PE 13.13 8.24 4.38 2.12 

communication 
GVT updating 1.21 0.48 0.62 0.64 

History releasing 0.43 2.41 1.57 3.86 
Idling 7.63 6.09 33.13 6.06 

t This process is not only for actual events but also 

for messages rewound. 

Table 4: Percentage of actual events and rewound mes­
sages (64PEs) 

Circuits 

Actual events 
Rewound msgs. 

5.2 Inter-PE Communication Over­
head 

The cost per message for inter-PE communication was 
measured to be 0.503 msec5

• However, the average cost 
of the essential work, that is, evaluating and scheduling 
a message, was 0.362 msec. So, the inter-PE communi­
cation cost was not negligible6 • 

Tables 3 and 5, however, show that both the frequency 
and the percentage of inter-PE communication processes 
were low in the cases of s13207 and s9234. This means 
that our strategy for partitioning circuits worked effec­
tively and that inter-PE communication had only a slight 
effect on performance in these cases. Conversely, in 
the case of s1494, both the inter-PE communication fre­
quency and the percentage of its process were high com­
pared to other cases. s1494 has, on average, more fan-ins 
and fan-outs than the others (Table 1), and it tends to 

5 A message is 25 bytes of data 
6 However , the relative cost of inter-PE communication is far 

lower than systems where inter-PE communication is supported 
by the operating system. 



cause the high inter-PE communication overhead. 

5.3 Rollback Overhead 

Rollback frequency and its cost greatly attracted our in­
terest. Table 5 shows that the rollback frequency is not 
as high as we formerly suspected, except for s1494. 

The average cost per rollback, even for the highest 
case, s92347, amounted to 0.578 msec by our measure­
ment. Since the time for essential processes was 0.362 
msec, the rollback procedure is not extremely time­
consuming compared to the essential works, and con­
sequently the percentage of total rollback cost is not se­
riously high in itself, as shown in Table 3. 

5.4 Parallelism 

Parallelism suggests the upper limit of speedup. In 
practice, however, the actual speedup is usually different 
from the parallelism because of several overheads. 

We estimated the parallelism of each problem, as be­
low. We made another simulator to measure parallelism. 
In that simulator, all PEs work according to the global 
synchronization. Here, we call an interval between global 
synchronizations a "time slot". A PE evaluates only one 
message in a time slot. All output messages, if any, are 
also sent and registered to their destination schedulers 
within the time slot. When there is no message to be 
evaluated in a PE at a certain time slot, the PE simply 
idles. Assume that the simulation finishes after N syn­
chronization, and that M actual events, which are the 
messages that are not rewound, are measured in the sim­
ulation. Here, we define the parallelism of the problem 
as MIN. The parallelism means the speedup in such an 
environment where the cost for non-essential processes, 
such as rollback and inter-PE communication, can be 
ignored. 

On the other hand, to make clear the effect of the inter­
PE communication overhead and the rollback overhead, 
we measured the cost of releasing an unnecessary history 
area, which causes super-linear speedup[Matsumoto and 
Taki 1991]. Then we removed its effect from the mea­
sured speedup and recalculated the speedup. We named 
the recalculated speedup "modified speedup" . 

Table 6 compares the modified speedup and the par­
allelism of each problem using 64 PEs. The gap between 
the modified speedup and the parallelism is caused by 
the inter-PE communication overhead and the rollback 

7The cost is considered roughly proportional to the depth of 
rollback, and s9234 has the largest depth. 
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overhead. For s5378, s9234 and s13207, the parallelism 
is close to the modified speedup. This means that the 
limited speedup was caused by a lack of parallelism. We 
conclude that our system could show good speedup as 
long as target problems have sufficient parallelism. With 
respect to the exceptional case, s1494, as Table 4 shows, 
a considerable percentage of the messages are rewound. 
It is considered that the high percentage was caused in­
directly by the high inter-PE communication overhead 
or high rollback overhead, and resulted in further sup­
pression of speedup. 

6 Further Experiments 

Since neither the inter-PE communication cost nor the 
rollback cost are negligibly small, both of these costs are 
considered to affect performance not only directly but 
also indirectly. However, it is difficult to separate their 
infl. uences clearly. 

In this section, we report on the experiments that aim 
at clarifying which affects performance more, the inter­
PE communication cost or the rollback cost. We as­
sumed the model described below and made a system 
for the experiments. 

6.1 Model 

We assume that the only processes that need costs are 
the rollback, the inter-PE communication and an essen­
tial process. Here, an essential process consists of a mes­
sage evaluation work and a scheduling work. Any other 
processes, such as GVT updating and releasing unneces­
sary history area, do not need any costs at all. It is also 
assumed that the essential process cost is equal for any 
gates. 

In our model, the inter-PE communication cost Cc de­
composes into three factors as follows. 

(1) 

where Cpo is the time consumed in the sender PE for 
composing a message packet, C1 is the time from when 
the message leaves the sender until it arrives at the re­
ceiver (latency), and Cpr is the time taken by the receiver 
to decompose the message packet. 

As the rollback cost, tTl is roughly proportional to the 
number of rewound messages, tr is represented by the 
next equation. 

(2) 
where hr is the number of messages rewound in the his­
tory and Cr is a constant. 

In practice, Equations 1 and 2 give a fairly precise rep­
resentation of these costs. With regard to Cps and Cpr' 
they are· approximately equal[N akajima and Ichiyoshi 
1990] on the Multi-PSI, while the latency is negligible 
even if messages are transmitted between the most dis­
tant PEs. 
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6.2 Experimental System 

The experimental system is based on the simulator pre­
sented in the previous sections. By adding several 
dummy loads to the original simulator, the actual costs 
for rollback and inter-PE communication become negligi­
ble. Thus this system maintains its fidelity to the model 
as much as is possible .. 

In the system, the cost for an essential process is fixed 
to be heavy, whereas the rollback cost and the inter-PE 
communication cost are changeable. 

6.3 Results 

We performed two kinds of comparative examination, as 
below. 

1. The inter-PE communication cost is fixed so that 
its relative value to the essential process cost can 
be kept the same as in the actual simulation. With 
respect to rollback, kr and Cr in Equation (2) are 
varied but Cr / kr is kept equal to that in the actual 
simulation. 

2. The rollback cost is fixed so that its relative value 
to the essential process cost can be kept the same 
as in the actual simulation. The inter~PE commu­
nication cost is varied but the equality between Cps 
and Cpr in Equation (1) is kept because they were 
approximately equal in the actual simulation. 

We simulated s9234 and s1494. They involved approx­
imately the same parallelism, whereas both the inter­
PE communication frequency and the rollback frequency 
were very different. 

Figures 5 and 6 show the results. In Figure 5, the X 
axis shows the relative value of Cps + Cpr compared to the 
essential cost. In Figure 6, the X axis shows the relative 
value of Cr. The Y axis shows the relative performance 
(by solid lines) and the relative amount of rewound mes­
sages (by broken lines) compared to those when both the 
inter-PE communication cost and the rollback cost are 
set to zero. The arrows indicate the the actual propor­
tion points between these costs. 

For both circuits, the higher the inter-PE communi­
cation cost, the worse the performance. This appar­
ently shows that the inter-PE communication cost af­
fected performance adversely. Interestingly, the relative 
amount of rewound messages increased with the higher 
inter-PE communication cost for s1494, while the curve 
of the amount is approximately flat for s9234. The differ­
ence in declination of the performance curves was, there­
fore, caused not only by the difference in the inter-PE 
communication frequency but also by the difference in 
the amount of rewound messages. 

On the contrary, neither performance nor the amount 
of rewound messages varied remarkably even though the 
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cost of rollback increased. This means that rollback cost 
did not have a dominant effect on performance in our 
system. 

7 Summary and Conclusion 

We constructed a parallel logic simulator on the Multi­
PSI, a distributed memory multiprocessor. The simula­
tor was programmed in concurrent logic language KL1. 
Since the causes of many bugs are essentially reduced by 
KL1, the simulator was able to be programmed in only 
three months by one person. 

The Time Warp mechanism was adopted for time­
keeping in the simulator. Since rollback overhead in a 
naive Time Warp mechanism was considered heavy, we 
added several devices such as a local message scheduler, 
an antimessage reduction mechanism and a load distri­
bution scheme to reduce the overhead. 

Several benchmark circuits were simulated on our sys­
tem. Approximately 99K events/sec performance and 
48-fold speedup were attained using 64 PEs. The per-



formance is fairly good for a software logic simulator. 
The good speedup shows that the Time Warp mecha­
nism worked efficiently in the simulator. 

We also examined the factors that are considered to 
affect performance adversely. The experiments revealed 
that the rollback overhead did not affect performance se­
riously in our system, while the inter-PE communication 
over head decreased performance. 
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Appendix 

For the purpose of ascertaining the influence of the asyn­
chronous copying GC, we made another simulator and 
compared it to the original. The difference between the 
comparative simulator and the original is as follows. 

Original simulator : 
Only the MRB GC works for collecting garbage. 

Comparative simulator : 
The copying GC happens asynchronously in each 
PE. 

Table 7 compares the simulators when s13207 was 
simulated using 64 PEs. The result shows that asyn­
chronous out breaks of the copying GC in each PE in­
creased both rollback frequency and rollback depth. It 
certainly caused the poor performance of the simulator. 

Table 7: Influence of asynchronous copying GC 

Original Comparative 
simulator simulator 

Performance 
99.299 72.895 

(K events/sec) 

Frequency 0.0243 0.0261 
of rollback 

Depth 7.96 11.684 
of rollback 
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Abstract 

This paper shows, by presenting a number of Ma­
chine Learning (ML) applications, that the exist­
ing ML techniques can be effectively applied in 
knowledge acquisition for expert systems, thereby 
alleviating the known knowledge acquisition bot­
tleneck. Analysis in domains of practical interest 
indicates that the performance accuracy of knowl­
edge induced through learning from examples com­
pares very favourably with the accuracy of best hu­
man experts. Also, in addition to accuracy, there 
are encouraging examples regarding the clarity and 
meaningfulness of induced knowledge. This points 
towards automated knowledge synthesis, although 
much further research is needed in this direction. 
The state of the art of some approaches to Machine 
Learning is assessed relative to their practical ap­
plicability and the characteristics of a problem do­
main. 

1 Introduction 

Machine Learning is one of the most active areas of 
Artificial Intelligence. In the view of the technical 
results of this area, and the well known knowledge 
acquisition bottleneck in expert systems, sometimes 
known as the Feigenbaum bottleneck, it is surpriz­
ing that Machine Learning has not had a stronger 
impact on the practice of knowledge acquisition for 
expert systems. Even some known authorities on 
expert systems occasionally express a reserved view 
regarding automatic knowledge acquisition through 
machine learning.. For example, Chandrasekaran 
(1991) in a recent discussion posed the question: "It 

is often proposed that a way to avoid teasing exper­
tise from experts is to automatically learn from ex­
amples. Have you found this a useful strategy?" The 
answer from a leading practitioner from the com­
mercial side of expert systems technology was: " ... 
I have yet to see a situation where that is an effective 
way to go forward, especially when you're starting 
with somebody who knows something .... " 

The practice of AI applications in some labo­
ratories and companies shows, however, that this 
expresses an overly pessimistic view. This paper 
presents examples of ML applications in which ex­
isting techniques were effectively applied. 

The paper does not aspire to be in any way a com­
plete survey of the state-of-the-art ML techniques 
and their applications. However, the example appli­
cations and programs discussed are generally illus­
trative of the practically oriented ML research done 
at many AI laboratories. 

An early demonstration of the usefulness of Ma­
chine Learning from examples in knowledge acqui­
sition was induction-assisted knowledge base con­
struction for diagnosing soybean diseases (Chilausky 
and Michalski 1976; Michalski and Chilausky 1980). 
A comparison between a manually constructed 
knowledge base and one constructed with the assis­
tance of an inductive learning program showed the 
advantages of the latter approach. 

Michie (1989) describes another early interesting 
experience concerning the construction of a small ex­
pert system to decide whether a Space Shuttle pilot 
should lend manually or automatically. The deci­
sion depends on the current information about the 
stability, altitude and velocity estimates of the vehi­
cle etc. This project was an early demonstration of 
the experts' difficulty in explicitly formulating deci­
sion rules although all the relevant information was 
in their heads. Experience shows that experts' dif­
ficulty of this kind is a rather typical phenomenon. 
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Michie (1989) writes: 

"Early in 1984, to address a NASA requirement, 
the autolander's chief designer, Mr Roger Burke, 
with engineering colleagues, attempted to construct 
a computer program to map the real-time values of 
monitored variables to the alternative decisions use­
auto and noauto. Such a program running on an 
on-board computer was needed to display continu­
ally updated advice to the pilot. After some months 
of (noninductive) programming they concluded that 
further effort would not be rewarding. The trouble 
was later shown to have stemmed not from any in­
trinsic difficulty of the decision task but from the 
disability from which every expert suffers in articu­
lating what he or she knows, whether about plant 
pathology, about medical diagnosis, about process 
control, about how to play lightening chess or about 
the movements of the stockmarket. 

Mr Burke and his colleagues then attended a 
course in inductive programing given by Radian Cor­
poration in Austin, Texas, based on the commer­
cial induction software RuleMaster (Michie et. al. 
1984). Relieved from the struggle to read the needed 
rules directly from inside their own heads, they were 
able ( ... ) to construct the solution ' ... " 

Alth~>ugh a not very sophisticated tool was ap­
plied to a not very difficult problem, the NASA ex­
perience is very instructive. It illustrates the phe­
nomenon concerning the difficulty of eliciting ex­
plicit rules about a domain even if (1) there are 
experts that can solve concrete problems in the do­
main quite well, and (2) there is nothing inherently 
difficult about the domain. Even so, extracting ex­
plicit rules from the user turns out to be difficult. 
When the knowledge elicitation process is aided by 
a learning tool, the process suddenly appears triv­
ial. Finally, when the actual simple looking solu­
tion becomes obvious, there is typically a somewhat 
embarassing impression that "clearly, the problem 
should have been possible to solve without the use 
of machine learning". However, experience confirms 
that often only when a machine learning tool is even­
tually applied, the problem solution emerges as ob­
VIOUS. 

Another early and similar example of this phe­
nomenon is W. Leech's (1986) application of ML to 
the synthesis of control rules for process control at a 
Westinghouse nuclear fuel processing plant. Control 
rules synthesised from examples using another early 
ML tool ExpertEase improved the yield drammat­
ically. When analysing the project that led to this 
innovation, the company officially confirmed that 

the discovery of the new control rules only occurred 
when ML was used and the discovery would have 
been highly unlikely without it. 

A review (UrbanCic, Kononenko and Krizman 
1991) of AI applications done by my laboratory in 
Ljubljana also contains many applications with sim­
ilar scenario. Among over sixty AI applications in­
cluded in the review, almost half of them critically 
rely on the use of ML techniques. One more or 
less randomly chosen example among these appli­
cations, illustrating the same point as the NASA 
and Westinghouse experience, is from the Jesenice 
Steel Mill, Slovenia. Their problem was the con­
trol of the quality of the rolling emulsion for the 
Sendzimir rolling mill. The quality of rolling crit­
ically depends on the properties of emulsion. An 
expert therefore daily measured various parameters 
of emulsion in the rolling mill (concentration of iron, 
ashes, presence of bacteria, etc.) and decided on the 
appropriate action (e.g. change emulsion, add anti­
bacteria oil, no action, etc.). When the expert was 
expected to leave the company they attempted to 
construct an expert system, extracting his decision 
knowledge from him in the dialogue fashion. Only 
when after half a year there was no clear progress, 
they were prepared to apply a ML tool (Assistant 
Professional in this case; Cestnik et al. 1987) us­
ing example decisions from the expert's practice as 
learning examples. The resulting decision tree, im­
plemented as an expert system, is now used regularly 
and completely substitutes the decisions that were 
previously entirely made by the expert. 

The most practically successful form of learning 
has been attribute-based learning exemplified by the 
TDIDT approach (top-down induction of decision 
trees, e.g. Quinlan 1986). The next section presents 
results of applications of attribute-based learning in 
various domains of medical diagnosis and prognosis. 
These results are interesting also in that they en­
able a quantitative comparison of the performance 
of human experts and ML-based diagnostic systems. 
Although very effective in many domains of practical 
interest, attribute-based learning has some clear lim­
itations, pointed out in Section 3. These limitations 
are being overcome by the development of another 
generation of learning systems, implementing rela­
tional learning, such as ILP (Inductive Logic Pro­
gramming, Muggleton 1991). Section 4 presents an 
example application where the ability of relational 
learning is essential. ILP, although less mature than 
attribute-based learning, shows great potentials in 
application problems that are hard to tackle with 
attribute-based learning. Section 5 discusses the fu-



ture of ML with respect to knowledge synthesis. 

2 Applications in medical do­
mains 

Along with the development of various learning 
methods in the Ljubljana AI Laboratories, these 
methods were applied to a number of medical diag­
nosis/prognosis problems. These applications also 
served as a source of useful new ideas for further 
improvements of the learning methods. Some of 
our medical data (in particular the diagnosis in lym­
phography, location of primary tumor, and progno­
sis in breast cancer) were made available to other 
researchers and were used by many for experimen­
tation and direct comparison of various learning al­
gorithms. 

This section presents some results obtained in 
Ljubljana with various learning systems in several 
medical domains. Most of this work in medical ap­
plications was done with the Assistant system al­
though other programs were also used, including 
GINESYS (Gams 1988) and Log Art (Cestnik and 
Bratko 1988). Assistant belongs to the TDIDT fam­
ily of learning programs (top down induction of de­
cision trees, Quinlan 1986). Assistant is a successor 
of Quinlan's ID3 (Quinlan 1979) with a number of 
addidional mechanisms. Early experiments with a 
version of ID3 in learning of diagnostic rules for lym­
phatic cancers (Bratko and Mulec 1979) provided 
encouragement that led us to further exloration and 
substantial refinements of this approach that were 
implemented in Assistant. The new mechanisms, 
motivated and discovered through experiments in 
medical domains, include: automatic selection of 
good examples for learning, handling partially spec­
ified objects (missing data), forward pruning of de­
cision trees, post pruning (Niblett and Bratko 1986, 
Cestnik and Bratko 1991), binarisation of attributes 
(Kononenko et. al. 1985; Bratko and Kononenko 
1987). It should be noted that these techniques 
among some other important improvements to the 
basic TDIDT learning were contributed or indepen­
dently discovered by other researchers, for exam­
ple in the C4 program (Quinlan et al. 1989) and 
the CART system (Breiman et al. 1984). Mingers 
(1989a; 1989b) reviews various related techniques 
and makes an attempt at their comparison. 

TDIDT programs belong to attribute-based learn­
ing. They accept learning examples in the form of 
attribute-value vectors. Similarly, both GINESYS 

and LogArt are attribute-based learning programs. 
GINESYS generates if-then rules. The innovation 
of GINESYS was confirmation rules that accom­
pany the "main" rule and enable the system to ex­
ploit redundancy in the attribute-value data. Re­
dundancy is in principle useful in noisy domains, 
such as medicine, as a means for filtering out errors. 
The idea of exploiting redundancy (rule bases with 
redundancy) was later accepted as generally useful 
in learning in noisy domains, but GINESYS (Gams 
1989) was probably the first to build explicitly on 
this principle in Machine Learning. 

Unlike most other systems, LogArt (Cestnik and 
Bratko 1988) generates elimination rules. The rules 
are ordered according to their statistical credibil­
ity. In diagnosis, rules are applied in this order to 
eliminate all but one of the diagnostic possibilities. 
When this is not possible and there are more than 
one residual diagnostic possibilities, the Bayes clas­
sifier is employed as a tie-breaker. The credibility of 
induced rules is measured simply as the number of 
confirming observations in the learning data. These 
rules are extremely simple and thus also useful for 
straightforward explanation of the diagnostic deci­
sion. Despite this almost unbelievable simplicity, 
LogArt compares extremely well with other learning 
systems in respect of diagnostic accuracy. The key 
to Log Art 's performance lies in high number of sim­
ple elimination rules for each application which, sim­
ilar to GINESYS, facilitates the use of redundancy. 
This makes LogArt very robust with respect to noise 
in the learning data and also enables it to cope eas­
ily with missing data, that is unspecified attribute 
values. On the theoretical side, it was shown that 
LogArt's classification procedure can be viewed as a 
special strategy of evaluating the Bayes classification 
rule without the attribute independence assumption 
(Cestnik and Bratko 1988). LogArt's classification 
procedure tends to use those conditional probabili­
ties for whose estimation the learning data provides 
most evidence. 

Table 1 summarises the properties of eight med­
ical domains in which these learning systems have 
been applied. The domains are characterised by: 
the number of known examples (patients), the num­
ber of classes (that is: possible diagnoses), the num­
ber of attributes, the average number of possible at­
tribute values per attribute. More detailed descrip­
tion of these applications can be found for exam­
ple in (Bratko and Kononenko 1987), (Pirnat et al. 
1989) and (Roskar et al. 1986). 

Table 2 shows results of these applications in 
terms of diagnostic accuracy of learned diagnostic 
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majority average entropy 
domain examples classes class attributes no. values (bit) 
lymphography 1 148 4 55 % 18 3.3 1.23 
lymphography 2 150 7 46 % 18 3.3 2.11 
primary tumor 339 22 25 % 17 2.2 3.64 
breast cancer 288 2 80 % 10 2.7 0.72 
hepatitis 155 2 79 % 19 3.6 0.74 
thyroid 884 4 56 % 15 15.7 1.59 
rheumathology 355 6 66 % 32 9.1 1.70 
urinary tract m 1843 9 21 % 44 3.8 2.91 
urinary tract f 3580 9 25 % 45 6.5 2.59 

Table 1: Properties of the medical application domains. 

rules by the three systems. The performance of 
medical experts is also included for comparison in 
the cases when their performance has been experi­
mentally estimated on the same data as used by the 
systems. In one case (lymphography), the physi­
cians' performance is an expert's own estimate and 
was not experimentally confirmed. It is probably 
an optimistic over-estimate. Systems' accuracy on 
new data was estimated in the usual way: 70% of 
the available data was randomly chosen for learn­
ing, and the remaining 30% was diagnosed by the 
learned rule. The system's diagnoses on the "new" 
data were then compared with the known physi­
cian's diagnoses. This was repeated several times 
(usually ten times, to reduce statistical fluctuation) 
and the figures in Table 2 are the average of these 
repeated experiments. For comparison, the perfor­
mance of "naive Bayes" (that is Bayes classification 
under the assumption of attribute independence) is 
also included. It should be noted that this straight- . 
forward application of Bayes has the disadvantage 
that it does not support the usual style of expla­
nation in expert systems. It is therefore avoided in 
expert systems, although Michie (1990) describes a 
way to overcome this difficulty. 

Some accuracy results in Table 2 are surprizing 
as in some cases the system's or expert's accuracy 
are lower than the percentage of the majority class. 
For example, in the breast-cancer domain the spe­
cialists' performance is 64% and Assistant's perfor­
mance is 77%. These performances are both below 
the 80% percent likelihood of the majority class, so 
an almost uninformed clasifier, always just predict­
ing the majority class, would score better than both 
human experts and the learning programs. This re­
flects a drawback of simple accuracy measure as the 
criterion of success of a classifier. The accuracy cri­
terion does not take into account the relative dif­
ficulty of predicting particular classes and is there-

fore misleading, particularly in domains where the 
probabilities are extremely unequally distributed be­
tween classes, as in the breast cancer domain. This 
problem with accuracy as a performance measure 
is discussed in (Kononenko and Bratko 1991), and 
an information-based criterion is proposed. There­
fore classifiers' information scores (in bits) are also 
given wherever they were available. The informa­
tion scores are in all cases positive, indicating that 
the clasifiers are in fact always doing better than 
an uninformed classifier (which would, always clas­
sifying into the majority class, by definition of the 
information-based performance measure score zero). 

One conclusion indicated by Table 2 is that the 
knowledge bases induced from no more than a few 
hundreds of examples of patients in some narrow di­
agnostic domain, perform better than medical doc­
tors, including best specialists. Such a conclusion 
has been empirically confirmed by several other 
studies. This result should, of course, be taken with 
some qualifications. Namely, the criterion of per­
formance here is only in terms of classification acu­
racy (or inform·ation score) under the condition that 
both the human expert and the induced classifier 
are given the same information. In practice, the 
human expert might be able to use extra informa­
tion. Also, the medical doctor would typically have 
a much better global understanding of the problem 
and be capable of deeper explanation of the partic­
ular cases. 

3 Attribute-based learning 
vs. relational learning 

Applications of Machine Learning described above 
all rely on the use of attribute-based learning. Both 
learning examples and induced concept descriptions 
employ global attributes of objects and not reI a-
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doctors doctors naive 
domain nonspec. specialists Assistant GINESYS LogArt Bayes 
lymphography 1 76% 84% 79% 
lymphography 2 60% (D) 85% (D) 65% (A) 70% (C) 67% 
primary tumor 32% , 0.95 bit 42% , 1.22 bit 44 % , 1.38 bit 52% (C) 44% (B) 49% , 1.59 bit 
breast cancer 64% ,0.03 bit 64% , 0.05 bit 77% , 0.07 bit 74% (C) 78% (B) 79% , 0.06 bit 
hepatitis 83% 85% 84% 
thyroid 64% ,0.59 bit 73% , 0.86 bit 68% , 0.70 bit 
rheumathology 56% , 0.26 bit 61% , 0.46 bit 57% , 0.28 bit 
urinary tract m 70% (A) 67% 
urinary tract f 80% (A) 79% 

Table 2: Performance in terms of classification accuracy and information score (in bits) on new data of the 
three learning systems, physicians (specialists and non-specialists), and the Bayes classifier evaluated under 
the assumption of attribute independence. Labels A, B, C, D in the table mean: A - old implementation of 
Assistant on DEC-I0; B - in the case that more than one class remain un-eliminated by rules, naive Bayes 
is applied as tie-break; C - original data preprocessed so that unknown attribute values in data are replaced 
by the most likely value; D - expert physician's estimate (not measured experimentally). 

tions among their parts. Well known families of 
such learning programs are TDIDT (e.g. Quinlan 
1986), AQ (e.g. Michalsl\i 1983), CN2 (Clark and 
Niblett 1989). Attribute-based learning is a rela­
tively simple approach to learning and is therefore 
most widespread and widely used. The following ad­
vantages of attributional learning contribute to its 
success in practical applications: 

• Computational efficiency 

• Attributional learning is relatively well und~r­
stood 

• Attributionallearning process is easy to under­
stand by the users and it is straightforward to 
apply 

• The attribute-value language is natural in many 
domains and many users are used to this repre­
sentation 

• It is well understood how to handle noisy and 
incomplete data in attributionallearning; there 
are methods that handle noise very well 

However, attribute-based learning also has strong 
limitations: 

• Background knowledge can be expressed in 
rather limited form 

• Lack of relational descriptions makes the con­
cept description language inappropriate for 
some domains 

Attribute-based descriptions are essentially equiva­
lent to propositional logic. This is not sufficiently 
expressive for describing concepts in some applica­
tion areas. An example of such a problem area is 
the finite-element mesh design which is described in 
detail in the next section. 

The realization of the limitations of attribute­
based learning led to a number of recent develop­
ments towards learning at the level of first-order 
predicate logic, including programs CIGOL (Mug­
gleton and Buntine 1988), FOIL (Quinlan 1990), 
GOLEM (Muggleton and Feng 1990) and LINUS 
(Lavrac, Dzeroski and Grobelnik 1991). This led 
to the establishment of a special area of Machine 
Learning, named by Muggleton (1990) Inductive 
Logic Programming (ILP; see also Muggleton 1992). 
The learning problem in ILP is formalised as: given 
some background knowledge B expressed as a set 
of predicates, some examples E and some negative 
examples N, find a logic formula H, such that: 

BI\H'r-E 
and 

BI\HIfN 
The following section describes an application that 
illustrates the suitability of this approach. 

4 Application of ILP 
to finite-element mesh de­
sign 

Doisak and Muggleton (1991) describe an applica­
tion of ILP to a problem for which the attribute-
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Figure 1: A cylindrical object partitioned by mesh 
suitable for the finite element computation. (Doisak 
1991) 

based learning is unsuitable, and the relational rep­
resentation appears natural. Here we illustrate this 
application with more recent results reported in 
(Doisak 1991). 

The problem of finite-element mesh design arises 
in numerical computation. Given, for example, a 
machine part and forces acting on it, the problem is 
to compute the pressure and deformations through­
out the object. The finite-element method involves 
the partitioning of the given object into finite ele­
ments. Figure 1 shows an example. The resulting 
partition is called a finite element mesh. 

For each element of the mesh, constraints in the 
form of equations are stated. The constraints ap­
proximately state the physical laws modelling the 
behaviour of the individual elements. These approx­
imations are sufficiently accurate if the elements are 
sufficiently small. Generally, the finer the mesh, the 
smaller the error. However, a dense mesh results 
in a large number of equations, leading to a lengthy 
computation when solving the corresponding system 
of equations. The complexity of computation is of­
ten measured in days or weeks of CPU time and can 
easily become prohibitive. The problem, then, is to 
find a suitable compromise between the density and 
coarseness of the mesh. 

Normally some regions of the object require 
denser mesh whereas in other regi6ns a coarser 
mesh still suffices for good approximation. There is 
no known general method that would enable auto­
matic determination of optimal, or reasonably good 
meshes. However, expert users of finite element 
methods are capable of making good guesses about 

proper density of the mesh in various regions of the 
objects. Unfortunately, the experts have difficulties 
in forming general rules that would enable the au­
tomation of such guesses. 

In general, the mesh depends on the geometric 
properties of the object and forces acting on it. As 
pressure is transmitted between adjacent elements, 
the mesh density in a region of the object depends 
also on the adjacent regions. These general con­
siderations were captured in Dolsak's application as 
background knowledge for the ILP learning in the 
form of properties and relations, such as: 

short( Edge) 
usual_length( Edge) 
loaded( Edge) 
not_loaded( Edge) 
tvo_side_fixedC Edge) 
neighbour_xyC Edge1, Edge2) 
neighbour_xzC Edge1, Edge2) 

The meaning of these relations is straightforward. 
For example, an edge is "two-BideJixed" if it is fixed 
at both ends. neighbour_xyC Edge1, Edge2) 
means that the edges are adjacent and they are in 
the xy-plane. 

In an experiment to learn a characterisation of the 
density of a mesh in terms of these relations, five 
meshes known to work well were used as sources of 
examples for learning (Figure 2). The relation to be 
learned was: 

mesh( Edge, N) 

where Edge is' the name of an edge in the struc­
ture, and N is the recommended number of finite 
elements along this edge. The target definition of 
this relation is to be learned in terms of the proper­
ties and relations in the given structure. All the five 
rrieshes used comprised altogether 278 edges, that 
is 278 positive examples for learning. The number 
of finite elements along the edges varied between 1 
and 17. In edges with high partition, say 10, it was 
assumed that a similar partition would still make 
a good mesh, so 10 ± 1 was considered acceptable 
and sometimes used as another positive example. 
Negative examples were generated according to the 
closed-world assumption: if the given partitioning of 
an edge was 3, say, then partitionings such as 4, 5, 
etc. were taken as negative examples. This finally 
gives the following number of facts for learning in 



Figure 2: Two of the five meshes used for learning 
(Dolsak). 

this experiment (Doisak 1991): 

357 positive examples 
2840 negative examples 
2132 background facts 

Several relational learning algorithms were tried on 
this data: GOLEM (Muggleton and Feng 1990), LI­
NUS (Lavrac, Dzeroski and Grobelnik 1991) and 
FOIL (Quinlan 1990). The results obtained with 
GOLEM were judged to be the most satisfactory. 
GOLEM generated a large number of rules, some of 
them being practically irrelevant. For example, al­
though logically correct, they were computationally 
useless when applied to classifying new edges. On 
the other hand, some rules appeared useful. Fortu­
nately it was possible to formalise the criteria for 
distinguishing useful rules from the others. These 
criteria were implemented as a short Prolog program 
(Doisak 1991) for postprocessing the rules generated 
by GOLEM. 

The so resulting set of rules were of interest to 
expert users of the finite element methods. Accord­
ing to their comments, these rules reveal interesting 
relational dependences. The following is an exam­
ple of such a generated rule (the generated syntax is 
that of Prolog clauses): 

mesh( Edge, 7) 
usual_length( Edge), 
neighbour_xy( Edge, EdgeY), 
two_side_fixed( EdgeY), 
neighbour_zx( EdgeZ, Edge), 
not_loaded( EdgeZ). 

This rule says that an appropriate partitioning of 
Edge is 7 if Edge has a neighbour EdgeY in the xy­
plane so that EdgeY is fixed at both ends, and Edge 
has another neighbour EdgeZ in the xz-plane so that 
EdgeZ is not loaded. 

The following is a recursive rule also generated by 
GOLEM: 

mesh( Edge, N) 

equal( Edge, Edge2), 
mesh( Edge2, N). 

This observes that an edge's partition can be deter­
mined by looking for an edge of the same length and 
shape in the same object. Of course, for this rule 
to be computationally useful, at least some of such 
equivalent edges has to have its partition determined 
by its own properties and those of its neighbours. 
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The accuracy of the induce knowledge base was 
estimated by a cross-validation mehod. Thereby a 
subset of 10 % of the example edges was effectively 
removed from the training set. The remaining 90 % 
of the data was used for rule induction, and the so 
induced rules were applied to the removed 10 % of 
the data now used as a test set. This was repeated 
ten times. 

The results can be summarised as follows. On the 
average, the classification on the test set was correct 
in 78 % of the tested edges, incorrect in 2 % of the 
edges, and the edge remained unclassified (partition 
unknown) in 20 % of the test edges. An edge remains 
unclassified if there is no induced rule covering the 
edge. 

In another, more practically realistic evaluation 
attempt, the generated knowledge base was applied 
to determining a mesh for a completely new struc­
ture, one not used for learning (shown in Figure 1). 
In this case, 67 % of the edges were classified cor­
rectly, 22 % incorrectly, and 11 % remained unclas­
sified. 

These results were input into a commercial au­
tomatic mesh generator as a partial specification of 
the mesh. The partial mesh was then completed 
automatically by the mesh generator, resulting in 
the mesh shown in Figure 3a. This mesh is close 
to the known good mesh of Figure 1, but unfor­
tunately not quite acceptable with respect to the 
resulting numerical errors. Figure 3b shows the 
mesh generated by the commercial generator with­
out any guidance from the user. This mesh is cer­
tainly fine enough with respect to the numerical er­
rros, but completely unacceptable with respect to 
the computational complexity it requires. Figure 3c 
is again generated by the commercial generator, only 
this time guided by the user's advice regarding the 
"global" size of the elements in the mesh. This is 
again a deficient mesh which illustrates the genera­
tor's inability to adjust the density of the mesh in 
various regions of the object according to the criti­
cality of the region. Comparing the meshes in Fig­
ures 3a-c it becomes clear that the induced knowl­
edge base does "understand" the criticality of varios 
regions of the object and tries to adjust the density 
accordingly. 

The mesh resulting from the induced knowledge 
base can actually be easily improved. There is a 
well known rule of thumb in mesh design that in a 
rectangular mesh the ratio between the length and 
width of elements should not exceed 2. Applying 
this rule to mending the mesh of Figure 3a in fact 
results in the very good mesh of Figure 1. 

Figure 3: (a) A mesh generated by the induced 
knowledge base and completed by a commercial gen­
erator. (b) The mesh generated by the automatic 
mesh generator completely autonomously, without 
any guidance from the user. (c) A mesh, generated 
by the mesh generator, guided by the user's advice 
recommending the "global granularity" of 150 mm. 
(Doisak 1991) 



5 Towards knowledge synthe-. 
SIS 

As illustrated by the applications described in this 
paper, and concluding from many other applica­
tions, ML techniques have proved to be a useful tool 
for efficient construction of expert systems for tasks 
like classification, prediction, decision making etc. 
In our experience, for example in the medical do­
mains, employing ML it was possible to inductively 
construct competent diagnostic systems in the mat­
ter of months, weeks or even days (including time for 
defining the problem, choice of attributes, prepara­
tion of learning data, etc.) when it would take much 
longer without learning. 

Muggleton (1991) and Clark et al. (1991) de­
scribe another comparison between dialogue-based 
and induction-based knowledge acquisition for large 
expert systems with thousands or tens of thousands 
of rules. That comparison showed that in projects 
employing ML the knowledge acquisition effort in 
man years (relative to the number of rules) was one 
or two orders of magnitude lower than in dialogue­
based acquisition. It should be admitted that the 
basis for comparison was simply the number of rules 
in the knowldge-base per man-year invested. The 
quality of rules was not considered. Although the in­
ductively constructed knowledge bases perform ac­
curately, the question still remains whether auto­
matically synthesised knowledge represents symbol­
ically meaningful information. That is, does it tell 
the humans something about the problem domain 
in a transparent way that also fits nicely into the 
human's normal understanding of the domain. In 
other words, whatever has been induced from ex­
amples, does it deserve to be called knowledge? 

In ML there has been strong awareness of the 
importance of this comprehensibility criterion (for 
example Michie 1986 and 1988). There exist some 
standard techniques that help in this respect. For 
example, tree pruning in induction of decision trees, 
in addition to supressing noise, often improves the 
transparency of induced trees enormously by simply 
reducing the tree size to, say, 10% of its original size. 
It should be admitted, however, that compactness 
is only one measure that is usually correlated with 
meaningfulness. Human experts often prefer less 
compact, possibly redundant descriptions, because 
thay better correspond to the way the problem do­
main is structured in their heads, or to the way that 
the knowledge is to be used. The use of knowledge 
may require not only classification, but for example 

the achievement of certain goals, explanation, plan­
ning, or making decision on the basis of incomplete 
information. Criteria to decide whether given infor­
mation deserves to be called knowledge are intricate. 
Of course, these criteria do not exactly correspond 
to simple measures of accuracy or compactness of 
induced rules. Identifying and formalising these cri­
teria is an important research topic. Still, there has 
already been some success in the direction of auto­
matically inducing meaningful information. Knowl­
edge has been generated through ML that was of 
interest and revealing to human experts. 

I will illustrate this by an example from the KAR­
DID project (Bratko, Mozetic and Lavrac, 1989). 
In KARDIO, a deep qualitative model of the heart 
was compiled for efficiency reasons into a large shal­
low diagnostic knowledge base. This was then com­
pressed, using ML techniques, into a small number 
of equivalent prediction and diagnostic rules. It was 
interesting to compare these mechanically synthe­
sised descriptions with human-synthesised descrip­
tions that can be found in the medical literature. 

Here is an example of a synthesised prediction rule 
which tells what are the characteristic features in 
the ECG signal in the case of the disorder called AV 
block of the third degree (avb3 for short, possibly 
combined with any number of other defects in the 
heart ): 

[av_conduct 
[rhythm_QRS 
[relation_P_QRS 

avb3] is characterised by 
regul ar] and 

independent_P_QRS] 

This rule is in the VL1 formalism, normally used in 
the AQ family of programs (Michalski 1983). The 
propositions have the form [attribute = value]. 
Figure 4 illustrates what essentially happens in the 
case of the avb3 defect. 

For comparison, one of the classical books on ECG 
(Goldman 1976) describes this arrhythmia as fol­
lows: "In this condition the atria and ventricles 
beat entirely independently of one another. 
The ventricular rhythm is usually quite regular 
but at a much slower rate (20-60)." Some words 
here are in bold face to help the comparison be­
tween Goldman's description and the machine syn­
thesised description. It is easy to notice strong sim­
ilarities between both descriptions. It is nice that 
even the same qualitative descriptors, such as inde­
pendent or regular appear in both descriptions. 
Goldman notices that the ventricular rate is usu­
ally much lower (20-60) which is not mentioned in 
the machine generated description. This is in fact 
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Atrial 
signal 

Ventricular 
signal 

Figure 4: The mechanism of the heart disorder 
called av-block of the third degree. In the normal 
heart, the atrial signal reaches the ventricles through 
the AV-conductance and affects the QRS complex. 
In the case of the av-block, the atrial signal cannot 
propagate to the ventricles and has no effect on the 
QRS complex. 

the only essential difference between both descrip­
tions. The reason that the ventricular rate is not 
mentioned in the machine-generated description is 
that it is redundant with respect to distinguishing 
between those conditions of the heart in which avb3 
appears, and those in which it does not. Another 
authority on ECG, Phibbs (1973) describes avb3 as: 
"(1) The atrial and ventricular rates are differ­
ent: the atrial rate is faster; the ventricular rate is 
slow and regular. (2) There is no consistent re­
lation between P waves and QRS complexes." 
Again, some descriptors are in bold face to facilitate 
comparison with the machine-generated description. 
The comparison is rather straightforward in this case 
as well. 

The example above shows how well some of the 
synthesised descriptions correspond to those in the 
standard medical literature. On the other hand, 
some of the synthesised descriptions are consider­
ably more complex than those in the literature. 
Machine-generated descriptions in such cases give 
much more detail that may not be necessary for an 
intelligent reader with a physiological background. 
Such a reader can usually infer the missing de­
tail from the background knowledge. Making in­
duced descriptions appealing to humans requires 
adding some redundancy or leaving out some in­
formation that can be usually recovered from back­
ground knowledge. How to add and leave out just 

the right amount is an open research problem. 

6 Conclusions 

A large number of ML applications confirm the 
practical importance of this technology. Experience 
shows that inductive knowledge-acquisition is typ­
ically an iterative process whereby the representa­
tion, background knowledge and example sets are 
gradually refined through experiments and feedback 
obtained from the domain expert. ML tools are re­
peatedly applied. Induction from examples can be 
viewed as a way of compiling a high level specifica­
tion where the specification consists of examples and 
background knowledge. The practical advantage of 
this approach lies in the fact that it is often easier 
to obtain examples (e.g. from the domain expert) 
than to extract from the expert explicit general laws 
about the domain. 

Until now, attribute-based learning has enjoyed 
most success in practice. However, the recent impor­
tant developments in inductive logic programming 
(ILP) go beyond the limitations of the attribute­
based learning. Recent applications of ILP include, 
in addition to the mesh design described in this pa­
per, the prediction of protein secondary structure 
(Muggleton et al. 1992). Another exciting area fa­
cilitated by ILP is automated construction of quali­
tative models from observed behaviours. Work that 
has been done in this direction includes (Mozetic 
1987a,b; also described in Bratko et al. 1989), 
(Coiera 1989), (Bratko et al. 1991) and (Krann et 
al. 1991) 
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