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Logic Program Synthesis from First Order Logic
Specifications

Tadashi KAWAMURA
Institute for New Generation Computer Technology
1-4-28 Mita, Minato-ku, Tokyo 108, Japan
tkawamur@icot.or.jp

Abstract

In this paper, a logic program synthesis method from first
order logic specifications is described. The specifications
are described by Horn clauses extended by universally
quantified implicational formulae. Those formulae are
transformed into definite clause programs by meaning-
preserving unfold/fold transformation. We show some
classes of first order formulae which can be successfully
transformed into definite clauses automatically by un-
fold/fold transformation.

1 Introduction

Logic program synthesis based on unfold/fold transfor-
mation [1] is a standard method and has been investi-
gated by many researchers [2, 3, 5, 6, 11, 12, 19]. As
for the correctness of unfold/fold rules in logic program-
ming, Tamaki and Sato proposed meaning-preserving
unfold/fold rules for definite clause programs [20]. Then,
Kanamori and Horiuchi proposed unfold/fold rules for a
class of first order formulae [7]. Recently, Sato proposed
unfold/fold rules for full first order formulae [18].

In the studies of program synthesis, unfold/fold rules
are used to eliminate quantifiers by folding to obtain def-
inite clause programs from first order formulae. How-
ever, in most of those studies, unfold/fold rules were ap-
plied nondeterministically and general methods to derive
definite clauses were not known. Recently, Dayantis [3]
showed a deterministic method to derive logic programs
from a class of first order formulae. Sato and Tamaki [19]
also showed a deterministic method by incorporating the
concept of continuation.

This paper shows another characterization of classes of
first order formulae from which definite clause programs
can be derived automatically. Those formulae are de-
scribed by Horn clauses extended by universally quanti-
fied implicational formulae. As for transformation rules,
Kanamori and Horiuchi’s unfold/fold rules are adopted.
A synthesis procedure based on unfold/fold rules is given,
and with some syntactic restrictions, those formulae are
successfully transformed into equivalent definite clause
programs. This study is also an extension of those by

Pettorossi and Proietti {14, 15, 16] on logic program
transformations.

The rest of this paper is organized as follows. Section
2 describes unfold/fold rules and formalizes the synthesis
process. Section 3 describes a program synthesis proce-
dure and proves that definite clause programs can be suc-
cessfully derived from some classes of first order formulae
using this procedure. Section 4 discusses the relations to
other works and Section 5 gives a conclusion.

In the following, familiarity with the basic terminolo-
gies of logic programming is assumed[13]. As syntactical
variables, X,Y, Z,U,V are used for variables, A, B, H
for atoms and F,G for formulae, possibly with primes
and subscripts. In addition, 6 is used for a substitution,
F6 for the formula obtained from formula F' by applying
substitution 8, X for a vector of variables and Fg[G'] for

replacement of an occurrence of subformula G of formula
F with formula G'.

2 Unfold/Fold Transformation
for Logic Program Synthesis

In this section, preliminary notions of our logic program
synthesis are shown.

2.1 Preliminaries

Preliminary notions are described first.

A formula is called an implicational goal when it is of
the form Fy — F,, where F; and F;, are conjunctions of
atoms.

Definition 2.1 Definite Formula

Formula C is called a definite formula when C is of
the form

A= G AGy A NGy(n>0),

where G; is a (possibly universally quantified) conjunc-
tion of implicational goals for 1 = 1,2,...,n. A is called
the head of C, Gy AGy A ... A G, is called the body of
C and each G; is called a goal in the body of C.
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Note that the notion of a definite formula is a restricted
form of that in [7].

A set of definite formulae is called a definite formula
program, while a set of definite clauses is called a definite
clause program. We may simply say programs instead of
definite formula (or clause) programs when it is obvious
to which we are referring.

Definition 2.2 Definition Formula

Let P be a definite formula program. A definite for-
mula D is called a definition formula for P when all the
predicates appearing in D’s body are defined by definite
clauses in P and the predicate of D’s head does not ap-
pear in P. The predicate of D’s head is called a new
predicate, while those defined by definite clauses in P
are old predicates. A set of formulae D is called a defi-
nition formula set for P when every element D of D is
a definition formula for P and the predicate of D’s head
appears only once in D.

Atoms with new predicates are called new atoms, while
those with old predicates are called old atoms.

2.2 Unfold/Fold Transformation

In this subsection, unfold/fold transformation rules are
shown following [7]. Below, we assume that the logical
constant true implicitly appears in the body of every unit
clause. Further, we assume that a goal is always deleted
from the body of a definite formula when it is the logical
constant true, and a definite formula is always deleted
when some goal in its body is the logical constant false.

Further, we introduce the reduction of implicational
goals with logical constant true and false, such as
—true = false,true A F = F, and so on. (See [7] for
details.) Let G be an implicational goal. The reduced
form of G, denoted by G |, is the normal form in the
above reduction system.

Variables not quantified in formula F' are called global
variables of F'. Atoms appearing positively (negatively)
in formula F' are called positive (negative) atoms of F.

Definition 2.3 Positive Unfolding

Let P; be a program, C be a definite formula in P;,
@ be a goal in the body of C' and A be a positive old
atom of G containing no universally quantified variable.
Then, let Go be Ga[false] | and C}, be the definite for-
mula obtained from C' by replacing G with G,. Further,
let C1,Cs,...,C be all the definite clauses in P; whose
heads are unifiable with A, say by mgu’s 6,,6,,..., 0.
Let G; be the reduced form of G after replacing A6; in
G8; with the body of C;6;, and C be the definite formula
obtained from C0; by replacing G§; in the body with G;.
(New variables introduced from C; are global variables
of G;.) Then, Piy; = (P, — {CH U {C;,C1,C,...,CrL
Cs, C1,Ch, ..., Cy are called the results of positive un-
folding C at A (or G). '

Example 2.1 Let P be a definite clause program as fol-
lows :
Cy : List([]).
Cs : list([X|L]) « list(L).
Cs: 0 < suc(Y).
Cy = suc(X) < suc(Y) — X < Y.
Cs : member(U,[U|L}).
Cs : member(U,[V|L]) « member(U,L).
Let C7 be a definition formula for P as follows :
Cr : less-than-all(X,L) «~ :
list(L) A V Y(member(Y,L) — X<Y).
Suppose that Py = P U {C7}. Then, by unfolding C; at
list(L), program P; = P U {Cs, Cs} is obtained, where
Cs : less-than-all(X,[]) — V Y(member(Y,[]) — X<Y).
Co : less-than-all(X,[Z|L]) «
list(L) A ¥V Y(member(Y,{Z|L]) — X<Y).

Before showing the negative unfolding rule, we intro-
duce the notion of terminating atoms. Intuitively, atom
A is terminating when every derivation path of A is fi-
nite. See [7] for the precise definition.

Definition 2.4 Negative Unfolding

* Let P; be a program, C be a definite formula in P;,, G
be a goal in the body of C' and A be a negative old atom
of G such that every atom obtained from A by instanti-
ating all global variables in A to ground is terminating.
Let Cy,C,,...,Cy be all the definite clauses in P; whose
heads are unifiable with A, say by mgu’s 6,,0,,..., 6k,
where §; instantiates no global variable in G. Let Gy be
Galfalse] | and G; be the reduced form of GO; after re-
placing Af; in GO; with the body of C;0;. (New variables
introduced from C; are universally quantified variables in
Gi.) Let C' be the definite formula obtained from C by
replacing G in the body of C' with Go A G1 A ... A Gy.
Then, Py = (P, — {C}) U{C'}. C’ is called the results
of negative unfolding C' at A (or G).

Example 2.2 Let P and P; be programs in Exam-
ple 2.1. By unfolding Cs at member(X,[]), P, = P U
{Cy, C1o} is obtained, where
Cio ® less-than-all(X,[]) « VY (false = X <Y) |.
that is,
Cro: less-than-all(X,[]).
Further, by unfolding Cy at member(X,[Z|L]), Ps = P U
{C10,C11} is obtained, where
Ci1 : less-than-all(X,[Z|L]) « list(L) A
Y Y(false — X<Y)| A
V Y(true — X<Z)| A
V'Y (member(Y,L) — X<Y)|.
that is,
Ch : less-than-all(X,[Z|L]) « list(L) A
X <ZAVY (member(Y,L) - X <Y).

Definition 2.5 Folding
Let P; be a definite formula program, C be a definite
formula in P; of the form A « K AL and D be a definite



formula of the form B « K’, where K,K' and L are
conjunctions of goals. Suppose that there exists a sub-
stitution & such that K'0 = K holds. Let C’ be a clause
of the form A « B, L. Then P41 = (P, —{C}HU{C'}.

Note that when applying folding, some conditions have
to be satisfied to preserve the meanings of programs. See
[7] for details.

Example 2.3 Let P and P; be programs in Exam-
ple 2.2. By folding Cy; by C7, Py = P U {Cyo,C12} is
obtained, where
Ciz : less-than-all(X,[Y|L])
X < Y A less-than-all(X,L)

2.3 Program Synthesis by Unfold /Fold
Transformation

In this subsection, our program synthesis problem is for-
malized. Firstly, several notions are defined to formalize
the program synthesis processes.

Definition 2.6 Descendant and Ancestor Formula
Let P be a definite formula program, C be a definite
formula in P and P’ be a definite formula program ob-
tained from P by successively applying positive or nega-
tive unfolding to P. A definite formula C’ in P’ is called
a descendant formula of C when
(a) C'isidentical to C, or
(b) C' is the result of positive or negative unfolding of
a descendant formula of C.
Conversely, C is called an ancestor formula of C'.

Example 2.4 In Examples 2.1 — 2.3, definite formulae
Cy,Cs,...,Cy; are descendant formulae of C-.

Definition 2.7 U-selection Rule

A rule that determines what transformation should be
applied to a definite formula program is called a selection
rule. Let P be a definite formula program and C be a
definite formula in P. A selection rule R is called a U-
selection rule for P rooted on C when R always selects
positive or negative unfolding applied to a descendant
formula of C. C is called the root formula for R (or
of the transformation.) A definite formula program ob-
tained from P by successively applying transformation
rules according to R is called a definite formula program
obtained from P via R.

Definition 2.8 Closed Program

Let P be a definite clause program, C be a definition
formula for P, D be a definition formula set for P and R
be a U-selection rule for PU{C?} rooted on C. Let P’ be
a definite formula program obtained from PU{C} via R.
P’ is said to be closed with respect to triple < P,C,D >
when every descendant formula C' of C in P’ satisfies
one of the following:
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(a) C'is a definite clause.

(b) There exists a goal G consisting of positive atoms
only in the body of C’ such that an old atom in G is
not unifiable with the head of any definite clause in P’.

(c) By successively folding C' by clauses in {C}UD, a
definite clause can be obtained.

PU{C} is said to be closed with respect to D when there

exists a closed program with respect to < P,C,D > and

for every definition formula D in D there exists a closed
program with respect to < P,D, DU {C} >.

Example 2.5 Let P and P; be programs in Exam-
ple 2.2. Then, P; is closed w.r.t. < P,C7, 0 >. Further,
PU{Cy} is closed w.r.t. 0.

The above framework is an extension of the one shown
in [8], and also a modification of the one Pettorossi and
Proietti proposed [14, 15, 16] in their studies of program
transformation.

Now, our problem can be formalized as follows: for
given definite clause program P and definition formula
C for P, find a finite definition formula set D for P such
that P U {C} is closed with respect to D.

3 Some Classes of First Order
Formulae from Which Logic
Programs Can Be Derived

In this section, we specify some classes of first order for-
mulae from which definite clause programs can be de-
rived by unfold/fold transformation.

3.1 A Program Synthesis Procedure

In this subsection, we show a naive program synthesis
procedure. In the following, we borrow some notions
about programs in [15, 16]. We consider definite formula
(clause) programs with predicate =, which have no ex-
plicit definition in the programs. Predicate = is called
a base predicate, while other predicates are called de-
fined predicates. Atoms with base predicates are called
base atoms, while those with defined predicates are called
defined atoms. Transformation rules can be applied to
defined atoms only.

A formula containing base atoms can be reduced by
unifying arguments of =. When a universally quanti-
fied variable and a global variable are unified, the global
variable is substituted for the universal one. The above
reduction is called the reduction with respect to =. We
assume that no formulae are reduced w.r.t. = unless this
is explicitly mentioned.

Further, we assume that the following operations are
always applied implicitly to the results of positive or neg-
ative unfolding. Goals G is said to be connected when
at most one universally quantified implicational goal G’
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appears in G and each atom in G’ has common univer-
- sally quantified variables with at least one another atom
in G'. Let C be a definite formula such that all the goals
in its body are connected. Let C’ be one of the results of
positive or negative unfolding C at some goal. By logical
deduction, definite formulae Cy,Cj,...,Ch.(m > 1) are
obtained from C’ such that all the goals in the body of
C! are connected. (Note that some goal G in the body of
C’ is of the form Fy — F, or F; V F; and no universally
quantified variables appear in both F; and F, C’' can be
split into two formulae by replacing G' in C' with —F;
(or ) and Fy.)
Before showing our program synthesis procedure, a no-
tion is defined.

Definition 3.1 Sound Unfolding

Suppose that positive or negative unfolding is applied
to a definite formula at atom A. Then, the application
of unfolding is said to be sound when no two distinct
universally quantified variables in A are unified when
reducing the result of unfolding with respect to =.

Some syntactic restrictions on programs ensure the
soundness of all possible applications of unfolding. In
fact, the restriction shown in [3] ensures the soundness.
However, in the following, we assume that every applica-
tion of unfolding is sound, without giving any syntactic
restriction, for simplicity.

Now, we show our program synthesis procedure, which
is similar to partial evaluation procedures(cf.[9, 10]).
First, a procedure to synthesize new predicates is shown.

Procedure 3.1 Synthesis of New Predicates

Suppose that definite formula program P and definite
formula C in P of the form A « G1,G,,...,G, are
given. Let G} be the reduced formula obtained from G;
by removing all base atoms and by replacing all univer-
sally quantified variables appearing in every base atom
with distinct fresh global variables if global variables are
substituted for them when reducing G; w.r.t. =. Let D;
be of the form H; « G} for i = 1,2,...,n, where H; is
an atom whose predicate does not appear in P or Hj; for
¢ # j and whose arguments are all global variables of C
appearing in G. Then, Dy, D,,...,D, are returned.

Note that in Procedure 3.1, C' can be folded by
D1, D,,...,D, after reducing it w.r.t. = when C is the
result of sound unfolding, and the result of the folding is
a definite clause.

Example 3.1 Let P be a program as follows.
Cy : all-less-than(L,M) « list(L) A list(M) A
VU,V (member(U,L) A member(V,M) — U < V).
C5 : member(U,[V|X]) « U= V.
Cs : member(U,[V|X]) < member(U,X).
The definition of ‘<’ is given in Example 2.1. Suppose
that C’s body consists of only one goal. By applying

positive unfolding and negative unfolding to C succes-
sively, the following formulae are obtained. (The reduc-
tion w.r.t. = is done when no universally quantified vari-
able appears as an argument of =.)
Cy : all-less-than([},M) « list(M).
Cs : all-less-than([X|L],M) « (list(L) A list(M)) A
(List(L) A list(M) A
VU,V (U= X A member(V,M) - U < V)) A
(list(L) A List(M) A
VU,V (member(U,L)Amember(V,M) — U < V)).
Then, by Procedure 3.1, the following new predicates are
defined from Cs.
D : newl(X,L,M) « list(L) A list(M) A -
¥V V (member(V,M) — X < V).
D, : new2(L,M) « list(L) A list(M) A
VU,V (member(U,L) A member(V,M) — U < V).

Next, the whole procedure for program synthesis is
shown.

Procedure 3.2 A Program Synthesis Procedure
Suppose that definite clause program P and definition
formula C for P are given. Let D be the set {C}.

(a) I there exist no unmarked formulae in D, then re-
turn P and stop.

(b) Select an unmarked definition formula D from D.
Mark D ‘selected.” Let P’ be the set {D}.

(c) If there exist no formulae in P’ which do not satisfy
conditions (a) and (b) in Definition 2.8, then P :=
P U P and go to (a).

(d) Select a definite formula C’ from P’. Apply positive
or negative unfolding to C’. Let Ci,...,C, be the
results. Remove C’ from P’.

(e) Apply Procedure 3.1 to Cy,...,Cy. Let Dy,...,Dp
be the outputs. Add D; to D if it is not a definite clause
and there exists no formula in D which is identical to D;
except for the predicate of the head. Fold Ci,...,C,
by the formulae in D and add the results to P’.

(f) Go to (c).

Example 3.2 Consider the program in Example 3.1
again. We see that D, is identical to C' except for the
predicate of the head. C5 can be folded by D; and C
after reduction w.r.t. =. The result is as follows.

Cs : all-less-than([X|L],M) « list(L) A list(M) A

newl(X,L,M) A all-less-than(L,M).

Similar operations are applied to D, and finally, the
following clauses are obtained.

Ds : newl(X,L,[]) « list(L).

Dy : newl(X,L,[Y|M]) « X < Y A newl(X,L,M).

Note that Procedure 3.2 does not necessarily derive
a definite clause program from a definite formula pro-
gram. For example, when the following program is given
as input, Procedure 3.2 does not halt.

Cr: p(X)Y) « p(X,Z) A p(Z,Y)

Cz: h(X\Y) < VZ (p(X,Z) — p(Y,2))



3.2 Classes of First Order Formulae

In this section, we show some classes of definite formula
programs which can be transformed into equivalent def-
inite clause programs by Procedure 3.2.

Throughout this subsection, we assume that unfolding
is always applicable to every definite formula at an atom
when there exist definite clauses whose heads are unifi-
able with the atom. Note that the above assumption
does not always hold. This problem will be discussed
in 3.3.

After giving a notion, we show a theorem which is an
extension of the results shown in [15]. A simple expres-
sion is either a term or an atom.

Definition 3.2 Depth of Symbol in Simple Expression

Let X be a variable or a constant and F be a simple
expression in which X appears. The depth of X in E|
denoted by depth(X,E), is defined as follows.

(a) depth(X,X) = 1.

(b) depth(X,E) = max{depth(X,t)|X appears in t;
for = 1,...,n} + 1, if E is either f({;,...,1,) or
p(ty,...,t,), for any function symbol f or any predi-
cate symbol p.

The deepest variable or constant in E is denoted by

maxdepth(E).

Theorem 3.1 Let P be a definite clause program. Sup-

pose that for any definition formula C for P, there exists

a U-selection rule R for PU{C?} rooted on C such that R

is defined for all descendant clauses of C in which at least

one defined atom appears. Suppose also that there exist
two positive integers H and W such that every descen-
dant clause C’ of C in every program P’ obtained from

P U {C} via R satisfies the following two conditions.

(a) The depth of every term appearing in every goal in
the body of C’ is less than H.

(b) Let Gi,Gha,...,G, be connected goals in the body
of C'. Then, the number of atoms appearing in G; is
less than W, for 2 = 1,2,...,n.

Then, there exists a finite definition formula set D for P

such that P U {C} is closed with respect to D.

Proof. From hypothesis (2), only a finite number of dis-
tinct atoms (modulo renaming of variables) can appear
in the goals of all the descendant formulae of C. Then,
apply Procedure 3.2 to P and C. Note that every goal in
the body of every descendant formula of C is connected.
Then, for every goal of every descendant formula of C,
the number of atoms appearing in the goal is less than
W, from hypothesis (b). Hence, only a finite number of
distinct goals can appear in all the descendant formulae
of C. Thus, we can obtain a finite definition formula
set Dy for P such that there exists a closed program P’
w.r.t. < P,C, Dy >.

The above discussion holds for all the definition for-
mulae in Dy, since those formulae are constructed from
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bodies of the descendant formulae of C. Evidently, only
a finite number of distinct definition formulae can be de-
fined. Thus, there exists a finite definition formula set D
for P such that P U {C} is closed w.r.t. D. o

Theorem 3.1 shows that Procedure 3.2 can derive a
definite clause program when (a) a term of infinite depth
can not appear, or (b) an infinite number of atoms can
not appear in a connected goal during a transformation
process. In the following, we show some syntactic restric-
tions on programs which satisfy the above conditions.

Proietti and Pettorossi showed some classes of definite
clause programs which satisfy the conditions in Theo-
rem 3.1 in their studies of program transformation [15].
We show that some extensions of their results are appli-
cable to our problem.

The following definitions are according to [15]. The set
of variables occurring in simple expression E is denoted

by var(E).

Definition 3.3 Linear Term Formula and Program

A simple expression or a formula is said to be linear
when no variable appears in it more than once. A definite
formula (clause) is called a linear term formula (clause)
when every atom appearing in it is linear. A definite
formula (clause) program is called a linear term program
when it consists of linear term formulae (clauses) only.

A linear term formula (clause) is called a strongly lin-
ear term formula (clause) when its body is linear. A def-
inite formula (clause) program is called a strongly linear
term program when it consists of strongly linear term
formulae (clauses) only.

Note that the following definite clause is not a linear
term clause.
member(X,[X|L]).
However, it is easy to obtain an equivalent linear term
clause as follows :
member(X,[Y|L])— X=Y.

Definition 3.4 A Relation < between Linear Simple
Expressions

Let Ey and E; be linear simple expressions. When
depth(X,E;)<depth(X,E,) holds for every variable X in
var(Ey)Nvar(Es;), we write By < F,. (Both E; < E; and
E,; < E; hold when var(E;)Nvar(Ez)= 0. )

Definition 3.5 Non-Ascending Formula and Program

Let C be a linear term formula and H be the head of
C. C is said to be non-ascending when A < H holds
for every defined atom A appearing in the body of C. A
linear term program is said to be non-ascending when it
consists of non-ascending formulae only.

A definite formula (clause) is said to be strongly non-
ascending when it is a strongly linear term formula
(clause) and non-ascending. A definite formula (clause)
program is said to be strongly non-ascending when it
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consists of strongly non-ascending formulae (clauses)
only.

Definition 3.6 Synchronized Descent Rule
Let P be a linear term program, R be a U-selection
rule for P and C be any descendant formula of the root
formula for R. Let A4;,A,,..., A, be all the atoms ap-
pearing in the body of C. Then, R is called a synchro-
nized descent rule when
(a) R selects the application of positive or negative un-
folding to C at A; if and only if A; < A; holds for
j=1,...,n, and
(b) R is not defined for C, otherwise.

Note that synchronized descent rules are not neces-
sarily defined uniquely for given programs and definition
formulae.

The following theorem is an extension of the one shown
in [15, 16).

Lemma 3.2 Let P be a non-ascending definite clause
program, C be alinear term definition formula for P, and
R be a synchronized descent rule rooted on C. Let P’ be
a program obtained from PU{C} via R. For each defined
atom A appearing in the body of every descendant clause
of C in P’, the following holds :
maxdepth(4) <
max{maxdepth(B)| B is a defined atom in PU{C}}

Proof. By induction on the number of applications of
unfolding. O

Now we show some classes of definite formula programs
which satisfy the hypotheses of Theorem 3.1. In the fol-
lowing, for simplicity, we deal with definition formulae
with only one universally quantified implicational goal
in the body. The results are easily extended to the defi-
nite formulae witli a conjunction of universally quantified
implicational goals.

The following results are also extensions of those
shown in [15].

Theorem 3.3 Let P be a strongly non-ascending def-
inite clause program and C be a linear term definition
formula for P of the form H «— A, /\VX(A«Z — Aj), such
that the following hold.
(a) For every clause D in P of the form Hp « ByA...A
B, AB{A...AB], , where By, ..., B, are defined atoms
and By, ..., B], are base atoms, the following hold.
(a-1) Let ¢y be any argument of Hp. For every argu-
ment ¢; of B;, if {5 contains a common variable with
t;, then ¢; is a subterm of ¢p.

(a-2) For every argument ¢; of B;, if #; is a subterm
of an argument ¢y of Hp, then no other argument of
B; is a subterm of tg.

(b) There exist two arguments ¢; and s; of some A; (¢; #
8,7 = 1,2 or 3) such that the following hold.

(b-1) There exists an argument ¢; of 4; (2 # j) such
that
vars( A;)Nvars( Aj)=vars(t;)Nvars(t;), and
either t; is a subterm of t;, ¢; is 4 subterm of ¢; or
vars(t;)Nvars(t; )=0.
(b-2) There exists an argument si of Ay (k # 1,7)
such that the same relations as above hold for s; and
Sk
(b-3) A; contains no common variable with A.
Then, there exists a definition formula set D for P such
that P U {C?} is closed with respect to D.

Proof. Note that there exists an atom A in the body of C
s.t. an argument of A is a maximal term in the body of
C w.r.t. subterm ordering relation. Let C’ be any result
of unfolding C at A and G be any connected goal in the
body of C’ of the form Fy A VX (F; — Fj), where F; is a
conjunction of atoms. Then, from the hypothesis, it can
be shown that a similar property to hypothesis (b) holds
for G. Note that the number of implicational goals dose
not increase by applying positive unfolding and no global
variables are instantiated by applying negative unfolding.
Then, again there exists an atom in the body of C’ s.t.
one of its arguments is a maximal term in the body of
C’ w.r.t. subterm ordering relation. By induction on
the number of applications of unfolding, a synchronized
descent rule can be defined for every descendant formula
of C. Then, from Lemma 3.2, the depth of every term
appearing in every descendant clause of C' is bounded.
Note that the number of different subterms of a term
is bounded. Then, from the hypothesis, the number of
atoms appearing in every connected goal in the body of
every descendant formula of C' is bounded. Thus, P and
C satisfy the hypotheses of Theorem 3.1. Hence, there
exists a definition formula set D for P such that PU{C}
is closed with respect to D. O

Note that Theorem 3.3 holds for any nondeterministic
choice of synchronized descent rules in the above proof.
Note also that any program can be modified to satisfy
hypothesis (a) of Theorem 3.3 by introducing atoms with
= in the body.

Corollary 3.4 Let P be a strongly non-ascending defi-

nite clause program and P’ be a definite clause program

such that no predicate appears in both P and P’. Let

C be a linear term definition formula for P U P’ of the

form H « Ay A VX (Ay — As), where the predicates of

A; and A, are defined in P and that of Aj is defined in

P’. Suppose that the following hold.

(a) Hypothesis (a) of Theorem 3.3 holds for every clause
D in P.

(b) There exist arguments t; of A; and t; of A, such
that the following hold.

(b-1) vars(A;)Nvars(Az)=vars(t;)Nvars(ts).



(b-2) Either ¢; is a subterm of t5, t5 is a subterm of #;
or vars(t; )Nvars(ty)=9.
(c) No variable in Aj; is instantiated by applying posi-
tive or negative unfolding to C successively.
Then, there exists a definition formula set D for P U P’
such that P U P’ U {C} is closed with respect to D.

Proof. Suppose that unfolding is never applied at A;. A
synchronized descent rule can be defined by neglecting
As. Since variables in Aj are never instantiated, no other
atoms are derived from Aj. Thus, the corollary holds. O

In Corollary 3.4, no restrictions are required on the
definition of Az. This result corresponds to that in [3].
Note that any program can be modified to satisfy hy-
pothesis (c) of Corollary 3.4 by introducing atoms with
= in the body.

Example 3.3 The program and the definition formula
in Example 2.1 satisfy the hypotheses of Theorem 3.3 and
Corollary 3.4, if clause Cs is replaced with the equivalent
clause :

C% : member(U,[V|L]) « U=V.
In fact, a definite clause program can be obtained, as
shown in subsection 2.2.

Next, we show an extension of the results shown in
Theorem 3.3. Let P be a non-ascending definite clause
program and C be a definition formula for P of the form
H «— A/\‘V’X—(Fl — F3), where A is an atom, and F; and
F, are conjunctions of atoms. Let D; be the definition
clause for P of the form H; « F; for ¢« = 1,2. If D,
can be transformed into a set of definite clauses which
satisfies the hypotheses of Theorem 3.3, by replacing F;
with H;, we can show that P U {C} can be transformed
into an equivalent definite clause program.

The above problem is related to the foldability prob-
lem in [16]. The foldability problem is described infor-
mally as follows. Let P be a definite clause program and
C be a definition clause for P. Then, find program P’
obtained from P U {C} which satisfies the following : for
every descendant clause C’ of C' in P’, there exists an an-
cestor clause D of C’ such that C”’s body is an instance
of D’s.

Proietti and Pettorossi showed some classes of definite
clause programs such that the foldability problem can be
solved [16]. We show that their results are also available
to our problem.

A definite clause program P is said to be linear recur-
sive when at most one defined atom appears in the body
of each clause in P. Note that a linear recursive and
linear term program (clause) is a strongly linear term
program (clause).

Lemma 3.5 Let P be a linear recursive non-ascending
program and C be a non-ascending definition clause for
P of the form H «— Ay A Ay A By A ... A B, where A;
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and A, are defined atoms and B;, ..., B, are base atoms.

Suppose that the following hold.

(a) For every clause D in P of the form Hp «— Ap A
Bj A ... A Bl, where Ap is the only defined atom in
the body of D, the following hold.

(a-1) Let tg be any argument of Hp. For every ar-
gument t4 of Ap, if ty contains a common variable
with t4, then t, is a subterm of tg.

(a-2) For every argument t4 of Ap, if ¢4 is a subterm
of an argument tg of Hp, then no other argument of
Ap is a subterm of tg.

(b) There exist arguments ¢; of A; and ¢ of Aj such
that the following hold.

(b-1) vars(Aj)Nvars(A;)=vars(t;)Nvars(ts).

(b-2) Either ¢; is a subterm of t3, t; is a subterm of t;
or vars(t;)Nvars(tz)=0.

Then, from P U {C}, we can obtain a linear recursive

non-ascending program which define the predicate of H

by unfold/fold transformation.

Proof. As shown in [16], we can get a solution of the
foldability problem for P and C. Then, obviously, a
linear recursive program is obtained. a

Example 3.4 Let P be a linear recursive non-
ascending program as follows.

C) : subseq([],L).

Cy : subseq([X|L],[YIM]) « X =Y A subseq(L,M).

Cs : subseq([X]|L],[Y|M]) « subseq([X|L],M).

Let C be a non-ascending definition clause for P as fol-
lows.

C: csub(X,Y,Z) «— subseq(X,Y), subseq(X,Z).
Then, PU{C?} can be transformed into a linear recursive
non-ascending program as follows.

csub([],Y,Z).

csub([A|X],[B|Y],Z) «— A = B A cs(A,X,Y.Z).

csub([A}X],[B|Y],Z) « csub([A|X],Y,Z).

cs(AX)Y,[B|Z]) — A =B A csub(X,Y,Z).
cs(A,X,Y,[BIZ]) « cs(AX,Y,Z).

Though Proietti and Pettrossi showed one more
class [16], we will not discuss this here.
Now, we get the following theorem.

Theorem 3.6 Let P be alinear recursive non-ascending
program and C be a linear term definition formula for
P of the form H « A; AVX (A, A B, — A3 A B3), such
that the following hold.
(a) Hypothesis (a) of Lemma 3.5 holds for P.
(b) Let S; be the set of all the arguments of A;, and
S; be the set of all the arguments of A; and B; for
1 = 2,3. Then, there exist two terms t; and s; in
some S; (t; # sj,7 = 1,2 or 3) such that the following
hold.
(b-1) there exists a term tj in Si (§ # k) such that
vars(S;)Nvars(S)=vars(t;)Nvars(z), and
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- either t; is a subterm of ¢y, x is a subterm of ¢; or
vars(t; )Nvars(t;)=0.
(b-2) There exists a term s; of S; (I # j, k) such that
the same relations as above hold for s; and s;.
(b-3) S) contains no common variable with 5.
Then, there exists a definition formula set D for P such
that P U {C?} is closed with respect to D.

Proof. Obvious from Theorem 3.3 and Lemma 3.5. O

Note that it is easy to extend the result of Theorem 3.6
to allow the conjunction of an arbitrary number of atoms
to appear in the body of the definition formula. Note also
that it is possible to extend the result to allow arbitrary
definition of A3 and Bj, in a similar way to Corollary 3.4.

3.3 Further Consideration about Syn-
tactic Restrictions

As described in 3.2, the application of unfolding may
be prohibited in Kanamori and Horiuchi’s framework.
In this subsection, we discuss some methods to avoid
prohibition, though we do not necessarily give the pre-
cise syntactic restriction. (Due to space limitations, we
do not refer to the terminating property, though several
sufficient conditions are known to guarantee it.)

(1) Universally Quantified Variables Appearing
in Positive Atoms

Positive unfolding can not be applied to definite formulae
at positive atoms with universally quantified variables.
Thus, we have the following two problems.

(a) Synchronized descent rules can not be defined when
universally quantified variables are instantiated by neg-
ative unfolding.

(b) We can not unfold formulae of the form ¥X A when
A is an atom and some variables in X appear in A.
To avoid case (a), the following restriction is sufficient.
When applying negative unfolding, no universally quan-
tified variable is instantiated. Though the restriction
seems to be strong, most of significant examples of pro-
gram synthesis can be dealt with under the restriction.

Case (b) corresponds to the compilation failure in Sato
and Tamaki’s first order compiler [19]. They restricted
their language as follows. For every implicational goal
Fy — F, appearing in a formula, uvar(F;)2uvar(Fy)
holds, where uvar(#;) means the set of universally quan-
tified variables appearing in Fi.

The above condition is available for our problem. Note
that the application of positive unfolding does not af-
fect the condition. When applying negative unfolding at
atom A in universally quantified implicational goal G,
the following restrictions are also required. All the uni-
versally quantified variables appearing in A also appear
in some negative defined atom in each result of negative

unfolding G, or they are unified with terms consisting of
constants and global variables by reduction w.r.t. =.

We believe that techniques such as mode analysis are
available to guarantee that every applicable negative un-
folding satisfies the above conditions.

(2) Global Variables Appearing in Negative
Atoms

Negative unfolding should be applied without instantiat-
ing global variables. In some cases, this restriction may
be critical. However, we can deal with most of those
cases by adding positive atoms to the formula such that
the global variables can be instantiated by applying pos-
itive unfolding at those atoms. Atoms with predicates
which specify data types (cf. list) are available. For

_example, with the definitions of ‘member’ and ‘<’ in Ex-

ample 2.1, negative unfolding can not be applied to the
definite formula below.
less-than-all(X,L) «— V Y(member(Y,L) — X<Y).
However, we can apply negative unfolding to the formula
below, after positive unfolding list(L).
less-than-all(X,L) «
list(L) A V Y(member(Y,L) — X<Y).

(3) Sato’s Unfold/Fold Transformation

Recently, Sato proposed unfold/fold transformation rules
for full first order programs [18]. Their unfolding op-
eration does not require conditions like Kanamori and
Horiuchi’s. On the other hand, more complex condi-
tions are required when applying folding. Thus, when
we adopt Sato’s rules in place of Kanamori and Hori-
uchi’s, we need not consider the restrictions discussed
in (1) and (2) above, while some other difficulties are
introduced to satisfy the folding conditions.

4 Discussion

The work described here is an extension of Pettorossi and
Proietti’s work on program transformation [14, 15, 16].
They formalized the successful unfold/fold transforma-
tion in three ways, and showed that the problem of
whether a given program can be transformed successfully
or not is unsolvable. They also showed some classes of
definite clause programs which can be transformed suc-
cessfully. Our results owe much to their work, though
currently we do not know whether our problem is decid-
able.

Proietti and Pettorossi also showed that any defi-
nite clause program can be transformed successfully by
performing suitable generalization of the atoms to be
folded (15, 16]. However, the generalization technique
is not available for our problem. Folding by a definition
formula obtained by generalizing atoms with universally
quantified variables may not satisfy the conditions for



folding {7], since universally quantified variables can not
appear in the head of the formula.

Proietti and Pettorossi also showed a transformation
procedure called loop absorption [15, 16]. In this pro-
cedure, they found clause C' and its descendant clause
C' such that C"’s body is an instance of C’s (or a sub-
set of C"’s body is identical to C’s body). Then, a new
definition clause whose body is identical to that of C
is constructed. They also showed a procedure to elimi-
nate unnecessary variables [17]. We can modify our naive
procedure described in 3.1 by incorporating the loop ab-
sorption and the elimination of unnecessary variables.

- Programs obtained by the modified procedure are ex-
pected to be more efficient and have less code than those
obtained by the naive procedure.

There have been several studies on logic program syn-
thesis from universally quantified implicational formu-
lae [3, 4, 19). Our work is closely related to that of
Dayantis [3]. There, program synthesis was also consid-
ered from formulae of the form H « VX (A — B). They
showed that a class of those formulae can be transformed
into definite clauses by deductive derivation. They also
discussed the generality of the class using several exam-
ples. Their deductive method is analogous to unfold/fold
transformation and the derivation processes almost cor-
respond to those by our procedure when our procedure
does not apply positive unfolding. They also mechanized
their derivation processes. QOur notion of the sound-
ness of the application of unfolding is ensured by part of
their syntactic restrictions on the arguments of formulae,
though we have not discussed how this is ensured. How-
ever, the classes we have shown are still wider than those
they showed after we incorporate those restrictions.

Sato and Tamaki showed a deterministic algorithm to
transform logic programs with universally quantified im-
plicational formulae into definite clause programs [19].
In their method, unfold/fold transformation is applied
to universal continuation forms. Their method can be
applied to a wider class of first order formulas than ours,
while the results of the compilation are not necessarily
efficient and the code sizes of those results increase gen-
erally.

5 Conclusion

A logic program synthesis method from some classes of
first order logic specifications have been shown. The
method is based on unfold/fold transformation. Some
classes of first order formulae which can be transformed
into definite clause programs by unfold/fold transforma-
tion have been shown.
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Abstract

We present a procedure for partial deduction of logic pro-
grams, based on an automatic unfolding algorithm which
guarantees the construction of sensibly and strongly ex-
panded, finite SLD-trees. We prove that the partial de-
duction procedure terminates for all definite logic pro-
grams and queries. We show that the resulting program
satisfies important soundness and completeness criteria
with respect to the original program, while retaining the
essentially desired amount of specialisation.

1 Introduction

Since its introduction in logic programming by Ko-
morowski ([Komorowski, 1981]), partial evaluation has
attracted the attention of many researchers in the field.
Some, e.g. [Venken, 1984], [Venken and Demoen, 1988],
[Sahlin, 1990], have addressed pragmatic issues re-
lated to the impurities of Prolog. Others were at-
tracted by the perspective of eliminating the over-
head associated with meta interpreters. Some ex-
amples are: [Gallagher, 1986], [Levi and Sardu, 1988],
[Safra and Shapiro, 1986], [Sterling and Beer, 1989] and
[Takeuchi and Furukawa, 1986]. Finally, a firm the-
oretical basis for the subject was described in
[Lloyd and Shepherdson, 1991).

Just as in [Bruynooghe et al., 1991a], we use the
term “partial deduction” in this paper, rather than
the more familiar “partial evaluation”.  Following
[Komorowski, 1989], we do so because we want to leave
the latter term for works taking into account the non-
logical features of Prolog and the order in which answers
are produced. In the present paper, we adhere to the
viewpoint taken in [Lloyd and Shepherdson, 1991] which
states that the specialised program should have the same
answers as the original one.

*work partially supported by ESPRIT BRA COMPULOG
(project 3012)

TAll authors are supported by the Belgian National Fund for
Scientific Research. .

Indeed, the authors of [Lloyd and Shepherdson, 1991]
present important criteria which, when satisfied by the
specialised program, guarantee this to be the case. A
partial deduction procedure imposing these criteria, is
described in [Benkerimi and Lloyd, 1990]. However, ter-
mination of this procedure is not guaranteed, not even
for definite logic programs. In this paper, we propose
an alternative method which does terminate for all def-
inite logic programs. A central part of any partial
deduction procedure is an unfolding algorithm which
builds the SLD(NF)-trees used as starting point for
synthesising specialised clauses. In general, termina-
tion of this unfolding process is problematic in its own
right. In [Bruynooghe et al., 1991a], a general crite-
rion for avoiding infinite unfolding is presented. In the
present paper, we build on those results for formulat-
ing a terminating procedure for partial deduction, re-
specting the soundness and completeness conditions of

[Lloyd and Shepherdson, 1991].

The paper is organised as follows. In section 2, we
recapitulate (and adapt) some basic concepts in par-
tial deduction from {Lloyd and Shepherdson, 1991}, as
well as the criteria for soundness and completeness pre-
sented there. We sketch the partial deduction method
from [Benkerimi and Lloyd, 1990] and show an exam-
ple on which the unfolding rules mentioned there do
not terminate. In section 3, we introduce an au-
tomatic algorithm for finite unfolding, adapted from
[Bruynooghe et al., 1991a]. Next, in section 4, our par-
tial deduction procedure is presented. We give an al-
gorithm which implements it and prove its termination.
Moreover, we prove that the method satisfies the criteria
introduced in [Lloyd and Shepherdson, 1991]. We also
show that the intended specialisation is indeed obtained.
We conclude the paper in section 5 with a short dis-
cussion, including a brief comparison with the approach
of [Benkerimi and Lloyd, 1990] and some directions for
further research.
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2 Partial Deduction

2.1 Basic concepts, soundness and

completeness

We assume familiarity with the basics of logic pro-
gramming.  Definitions of the following concepts
can be found in [Lloyd and Shepherdson, 1991] . and
[Benkerimi and Lloyd, 1990]: most specificic general-
isation (msg), incomplete SLD-tree, resultant of a
derivation, partial deduction for an atom in a pro-
gram, partial deduction for a set of atoms in a pro-
gram, partial deduction of a program wrt a set of
atoms, independence of a set of atoms, A-closedness
of a set of formulas, A-coveredness of a program
and goal. In [Lloyd and Shepherdson, 1991] and
[Benkerimi and Lloyd, 1990], the definitions are given
for normal programs and using the term “partial eval-
uation”. In the present paper, we restrict ourselves
to definite programs and goals and, as mentioned
above, use the term “partial deduction”. The neces-
sary adaptations are straightforward (as exemplified in
[Bruynooghe et al., 1991a]).

We  adapt the following
[Lloyd and Shepherdson, 1991].

theorem  from

Theorem 2.1 Let P be a definite logic program, G a
definite goal, A a finite, independent set of atoms, and
P’ a partial deduction of P wrt A such that P'U{G} is
A-covered. Then the following hold:

e P'U{G} has an SLD-refutation with computed an-
swer 6 iff P U {G} does.

e P’U{G} has a finitely failed SLD-tree iff P U {G}

does.

In other words, under the conditions stated in this theo-
rem, computation with a partial deduction of a program
is sound and complete wrt computation with the original
program. This is clearly a very desirable characteristic
of any procedure for partial deduction. It is therefore
important to devise methods for partial deduction that
ensure the conditions of theorem 2.1 are satisfied.

In [Benkerimi and Lloyd, 1990], one such method is
presented. Basically, it proceeds as follows. For a given
goal G and program P, a partial deduction for G in P is
computed. This is repeated for any goal occurring in the
resulting clauses which is not an instance of one already
processed. Assuming the procedure terminates, one gets
in this way a set of clauses S and a set A of partially
deduced atoms such that S is A-closed. But one also
wants A to be independent. In order to achieve this, the
- procedure is modified as follows. Whenever a goal occur-
ring in S is not an instance (nor a variant) of one in A,
but has a common instance with it, the latter is removed
from A and a partial deduction is computed for their
msg (which itself is therefore added to A) and added to

S. The original partial deduction for the removed goal
is itself also removed from S. The process stops if A be-
comes independent and S A-closed. S can then be used
to synthesize a partial deduction of P wrt A which sat-
isfies the conditions of theorem 2.1 for any goal G' which
is an instance of G.

However, the tactic of taking msgs to make A inde-
pendent causes an unacceptable loss of specialisation in
the resulting partial deduction. To remedy this, the
authors of [Benkerimi and Lloyd, 1990] introduce a re-
naming transformation as a pre-processing stage be-
fore running their algorithm. It amounts to duplicat-
ing and renaming the definitions of those predicates, oc-
curring in the original goal G, which are likely to pose
specialisation problems. The details can be found in
[Benkerimi and Lloyd, 1990].

2.2 Unfolding

One question is left more or less unanswered until now:
How to obtain the (incomplete) SLD-trees used as a basis
for producing partial deductions? In other words, which
computation rule should be used for building these trees
(including the question of deciding when to stop the un-
folding) ? [Benkerimi and Lloyd, 1990] mentions 4 cri-
teria and proposes the following one as the best : The
computation rule R, selects the leftmost atom which is
not a variant of an atom already selected on the branch
down to the current goal. However, this rule fails to
guarantee the production of finite SLD-trees in all cases.
We present a counter-example. It is the well-known “re-
verse” program with accurnulating parameter.

Example 2.2

source program:
reverse([},L,L).
reverse([X|Xs|,Ys,Zs) « reverse(Xs,[X|Ys],Zs).

query:
«—reverse([1,2|Xs],[],Zs).

The reader can verify that R, generates an infinite SLD-
tree.

Some authors have therefore combined R, or other
computation rules with a depth  bound:
(a.0.) [Levi and Sardu, 1988}, [Sterling and Beer, 1986],
[Takeuchi and Furukawa, 1986]. This does of course

. guarantee finiteness, but it seems a rather ad-hoc so-

lution which does not reflect any properties of the
given unfolding problem. ~ We therefore proposed
an alternative solution in [Bruynooghe et al., 1991a].
(An extended version of this paper can be found in
[Bruynooghe et al., 1991b].)



3 An Algorithm for Finite Un-
folding

In [Bruynooghe et al., 1991a], a general criterion for
avoiding infinite unfolding during partial deduction and
a terminating unfolding algorithm based on it, are pre-
sented. In this section, we introduce a fully auto-
matic version of that algorithm, tuned towards unfold-
ing object-level definite logic programs. A slightly more
sophisticated approach may be desirable when dealing
with meta interpreters. We will not address that point
in the present paper and concentrate on object-level pro-
grams. Although a slightly more accurate presentation of
the algorithm itself is given, most of what follows now is
adapted from [Bruynooghe et al., 1991a]. The interested
reader is referred to that paper for a full (and more gen-
eral) account with all the technical details on the well-
founded measures underlying our approach. Here, we
only introduce what is necessary for a good understand-
ing of algorithm 3.6.

For technical reasons, we will assume a numbering on
the nodes of an SLD-tree (e.g. left-to-right, top-down
and breadth-first). We will use the following notation
for nodes in an SLD-tree: (G,1) where G is a goal of the
tree having ¢ as its associated number. (The notations
“(G@,1)” and “GQ” will be used interchangeably, as the
context requires.)

We first define a weight-function on terms. It counts
the number of functors in its argument.

Definition 3.1 Let Term denote the set of terms in the
first order language used to define the theory P. We
defire |.| : Term — IN as follows:

ft=f(t,..-ytn)yn >0

then |t| =1 4+ [t1] 4+ - - + |ta]

else |tj=0

It is then possible to introduce weight-functions on
atoms.

Definition 3.2 Let p be a predicate of arity n and S=
{e1,...,am} 1 < ar < n,1 <k <m, aset of argument
positions for p. We define |.|,,5 : {A|4 is an atom with
predicate symbol p} — IN as follows:

Ip(th [BK 7tﬂ)lp.s = Itdl‘ +oe Itﬂm‘

The next two definitions introduce useful relations on
literals and goals in an SLD-tree.

Definition 3.3 Let (G,7) = ((«41,...,4),...,4n),1)
be a node in an SLD-tree 7, let R(G) = A; be the
call selected by the computation rule R, let H «
B,,...,By be a clause whose head unifies with A;
and let § = mgu(A4;, H) be the most general uni-
fier. Then (G,i) has a son (G',k) in 7, (G',k) =
(((——Al, ey A]‘_l, B1, ceey Bm, A_H.], ey An)G, k) We
say that B16,..., B0 in G' are direct descendents of A;
in G and that A; in G is a direct ancestor of B,6, ..., B,,0
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in G'.

The binary relations descendent and ancestor, defined on
atoms in goals, are the transitive closures of the direct de-
scendent and direct ancestor relations respectively. For
A an atom in G and B an atom in G’, A is an ancestor
of B is denoted as A >,, B (“pr” stands for proof tree).

Notice that we also speak about one goal G’ being an an-
cestor (or descendent) of another goal G. This terminol-
ogy refers to the obvious relationships between goals in
an SLD-tree and should not be confused with the proof-
tree based relationships between literals, introduced in
the previous definition. The following definition does
introduce a relationship between goals, based on defini-
tion 3.3.

Definition 3.4 Let G and G' denote two different nodes
in an SLD-tree 7. Let R be the computation rule used
in 7. Then G' covers G iff

1. R(G') and R(G) are atoms with the same predicate
2. R(G") >, R(G)

Notice that G' covers G implies that G’ is an ancestor of
G.

We need one more piece of terminology.

Definition 3.5 Let G and G’ denote two different nodes
in an SLD-tree 7. We call G’ the youngest covering an-
cestor of G iff

1. G’ covers G

2. For any other node G” such that G” covers G, we
have that G" covers

We are now finally able to formulate the following al-
gorithm:

Algorithm 3.6

Input
a definite program P
a definite goal —A

Output

a finite SLD-tree 7 for P U {«A}
Initialisation

7:={(<A41)}

Pr:=¢

Terminated ;=

Failed:= 0

For each recursive predicate p/n in P and

for the derivation D in 7:
Spo:={1,...,n}

‘While there exists a derivation D in 7 such that
D ¢ Terminated do

Let (G, 1) name the leaf of D
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Select the leftmost atom p(t1,...,t,) in G
satisfying the following condition:
If p is recursive and there is
a youngest covering ancestor (G, j) of (G,t) in D
then |R(G')|p,s, pmew > [P(t1,- - - ,tn)|p,s, prew Where

Sp'Dnew = p,D \ Sp,DfemO’Ue and

Sp,DTEmallE —

{ar € Spp | 'p(th-'wtn)'p,{ak} > IR(G,)|Py(ﬂk}}
If such an atom p(¢y,...,t,) can be found
then

R(G) :=p(t1,...,tn)
Let Derive(G, ) name the set of all derivation steps
that can be performed
If Derive(G,i) =0
then
Add D to Terminated and Failed
else
Let Descend(R(G),4) name the set of
all pairs ((R(G),1),(B9,7)), where
-— B is an atom in the body of a clause
applied in an element of Derive(G,1)
— 6 is the corresponding m.g.u.
— 7 is the number of the corresponding
descendent of (G, 1)
Expand D in 7 with the elements of Derive(G,1)
Add the elements of Descend(R(G),t) to Pr
For every newly created extension D' of D and
for every recursive predicate ¢ in P:
if ¢ = p and (G, 1) has a covering ancestor in D
then Sy pr:= Sqp™"
else Sgpr := Sgp
else
Add D to Terminated

Endwhile
We have the following theorem.

Theorem 3.7 Algorithm 3.6 terminates. If a definite
program P and a definite goal <A are given as inputs,

its output 7 is a finite (possibly incomplete) SLD-tree for
PuU{—A}

Proof The theorem is an immediate consequence of
proposition 3.1 in [Bruynooghe et al., 1991a]. O

Example 3.8 The SLD-tree generated by algorithm 3.6
for the program and the query from example 2.2, are
depicted in figure 1. (“reverse” has been abbreviated to
((rev)l X

4 Combining These Techniques

4.1 Introduction

In the previous section, we introduced an algorithm for
the automatic construction of (incomplete) finite SLD-
trees. In this section, we present sound and complete

«— rev([1,21Xs),[],Zs)

- rev([21Xs],[1],Zs)

- rev(Xs,[2,1],Zs)

Zs=[2,1]
XS:[]

Xs=[X'"IXs']

0O - rev(Xs',[X’,2,1],Zs)

Figure 1: The SLD-tree for example 3.8.

partial deduction methods, based on it. Moreover, these
methods are guaranteed to terminate. The following ex-
ample shows that this latter property is not obvious, even
when termination of the basic unfolding procedure is en-
sured. We use the basic partial deduction algorithm from
[Benkerimi and Lloyd, 1990], together with our unfold-
ing algorithm.

Example 4.1 For the reverse program with accumulat-
ing parameter (see example 2.2 for the program and the
starting query), an infinite number of (finite) SLD-trees
is produced (see figure 2). This behaviour is caused by
the constant generation of “fresh” body-literals which,
because of the growing accumulating parameter, are not
an instance of any atom that was obtained before.

In [Benkerimi and Lloyd, 1989], it is remarked that a so-
lution to this kind of problems can be truncating atoms
put into A at some fixed depth bound. However, this
again seems to have an ad-hoc flavour to it, and we there-
fore devised an alternative method, described in the next
section.

4.2 An algorithm for partial deduction

We first introduce some useful definitions and prove a
lemma.

Definition 4.2 Let P be a definite program and p a
predicate symbol of the language underlying P. Then a
pp'-renaming of P is any program obtained in the fol-
lowing way:

o Take P together with a fresh—duplicate—copy of
the clauses defining p.

¢ Replace p in the heads of these new clauses by some
new (predicate) symbol p’ (of the same arity as p).



o Replace p by p’ in any number of goals in the bodies
of (old and new) clauses.

«— rev([1,21Xs],[1,Zs)

«— rev([2iXs],[11,Zs)

-— rev(Xs,[2,1),Zs)

Zs=[2,1] Xe=[X"Xs']
Xs=[]
O - rev(Xs',[X',2,11,Zs)

- rev(Xs',[X’,2,1],Zs)

Zs=[X",2,1] Xs'=[X"1Xs"]
Xs'=[]
(] -— rev(Xs",[X".X",2,1],Zs)

- rev(Xs",[X" X",2,11,Zs)

Figure 2: An infinite number of (finite) SLD-trees.

Lemma 4.3 Let P be a definite program and P, a pp'-
renaming of P. Let G be a definite goal in the language
underlying P. Then the following hold:

e P, U{G} has an SLD-refutation with computed an-
swer § iff P U{G} does.

e P, U {G} has a finitely failed SLD-tree iff P U {G}

does.

Proof There is an obvious equivalence between SLD-
derivations and -trees for P and P,. 0

Definition 4.4 Let P be a definite program and p a
predicate symbol of the language underlying P. Then
the complete pp'-renaming of P is the pp’-renaming of P
where p has been replaced by p’ in all goals in the bodies
of clauses.

Our method for partial deduction can then be formu-
lated as the following algorithm.
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Algorithm 4.5

Input
a definite program P
a definite goal « A =«p(t1,...,tn)
in the language underlying P
a predicate symbol p', of the same arity as p,
not in the language underlying P

Output
a set of atoms A
a partial deduction P, of P,
the complete pp’-renaming of P, wrt A

Initialisation
P, := the complete pp’-renaming of P
A := {A} and label A unmarked

While there is an unmarked atom B in A do
Apply algorithm 3.6 with P, and < B as inputs
Let 75 name the resulting SLD-tree
Form P, g, a partial deduction for B in P, from 7p
Label B marked
Let Ap name the set of body literals in P, p
For each predicate q appearing in an atom in Apg
Let msg, name an msg of all atoms having ¢
as predicate symbol in A and Ap
If there is an atom in A having q as predicate
symbol and it is less general than msg,
then remove this atom from A
-If now there is no atom in A having q as
predicate symbol
then add msg, to A and label it unmarked
Endfor
Endwhile
Finally, construct the partial deduction P’ of P, wrt A:
Replace the definitions of the partially deduced
predicates by the union of the partial deductions P, g
for the elements B of A.

We illustrate the algorithm on our running example.
Example 4.6

complete renaming of the reverse program:
reverse({],L,L).
reverse([X|Xs],Ys,Zs) « reverse'(Xs,[X|Ys],Zs).
reverse'({],L,L).
reverse'([X|Xs),Ys,Zs) « reverse'(Xs,[X|Ys],Zs).

partial deduction for «reverse({1,2|Xs],(],Zs):
reverse([1,2],{],12,1}).
reverse([1,2,X|Xs),[],Zs) « reverse'(Xs,[X,2,1],Zs).

partial deduction for «reverse/(Xs,[X,2,1],Zs):
reverse'([],[X,2,1],[X,2,1]).
reverse'([X'|Xs],[X,2,1],Zs) «
reverse'(Xs,[X',X,2,1],Zs).

msg of reverse’(Xs,[X,2,1],Zs) and
reverse'(Xs,[X',X,2,1],Zs): reverse'(Xs,[X,Y,Z|Ys|,Zs)
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partial deduction for «reverse/(Xs,[X,Y,Z|Ys],Zs):
reverse'([],1X,Y,Z|Ys],[X,Y,Z|Ys]).
reverse'([X'|Xs],[X,Y,Z|Ys|,Zs) «—
reverse’(Xs,[X',X,Y,Z|Ys],Zs).

resulting set A:
{reverse([1,2|Xs],[],Zs),reverse’(Xs,[X,Y,Z{Ys],Zs)}

resulting partial deduction:
reverse([1,2],[],[2,1]).
reverse([1,2,X|Xs],[),Zs) « reverse'(Xs,[X,2,1],Zs).
reverse'([],[X,Y,Z[Ys],[X,Y,Z|Ys]).
reverse'(|X/|Xs],[X,Y,Z|Ys],Zs)
reverse'(Xs,[X',X,Y,Z|Ys),Zs).

We can prove the following interesting properties of
algorithm 4.5.

Theorem 4.7 Algorithm 4.5 terminates.

Proof Due to space restrictions, we refer to
[Martens and De Schreye, 1992]. 0

Theorem 4.8 Let P be a definite program, A =
p(t1,...,t,) be an atom and p' be a predicate symbol
used as inputs to algorithm 4.5. Let A be the (finite) set
of atoms and P,’ be the program output by algorithm 4.5.
Then the following hold:

¢ A is independent.

e For any goal G =«A4,,..., A, consisting of atoms
that are instances of atoms in A, B’ U {G} is A-
covered.

Proof

o We first prove that A is independent.
From the way A is constructed in the For-loop, it
is obvious that A cannot contain two atoms with
the same predicate symbol. Independence of A is
an immediate consequence of this.

e To prove the second part of the theorem, let P,* be

the subprogram of P, consisting of the definitions
of the predicates in P’ upon which @ depends. We
show that P.* U {G} is A-closed.
Let A be an atom in A. Then the For-loop in algo-
rithm 4.5 ensures there is in A a generalisation of
any body literal in the computed partial deduction
for A in P,'. The A-closedness of P.* U {G} now
follows from the following two facts:

1. P/is a partial deduction of a program (P, ) wrt
A.

2. All atoms in G are instances of atoms in A.

(]

Corollary 4.9 Let P be a definite program, 4 =
p(t1,...,ts) be an atom and p’ be a predicate symbol
used as inputs to algorithm 4.5. Let A be the set of
atoms and B’ be the program output by algorithm 4.5.
Let G =«A,,...,A,, be a goal in the language under-
lying P, consisting of atoms that are instances of atoms
in A. Then the following hold:

o P.'U{G} has an SLD-refutation with computed an-
swer 6 iff P U {G} does.

e P’ U{G} has a finitely failed SLD-tree iff P U {G}
does.

Proof The corollary is an immediate consequence of
lemma 4.3 and theorems 2.1 and 4.8. O

Proposition 4.10 Let P be a definite program and A
be an atom used as inputs to algorithm 4.5. Let A be
the set of atoms output by algorithm 4.5. Then A € A.

Proof A is putinto A in the initialisation phase. From
definition 4.4, it follows that no clause in P, contains a
condition literal with the same predicate symbol as A.
Therefore, A will never be removed from A. O

This proposition ensures us that algorithm 4.5 does
not suffer from the kind of specialisation loss mentioned
in section 2.1: The definition of the predicate which ap-
pears in the query <A, used as starting input for the
partial deduction, will indeed be replaced by a partial
deduction for A in P in the program output by the al-
gorithm.

Finally, we have:

Corollary 4.11 Let P be a definite program, A =
p(t1,...,t,) be an atom and p’ be a predicate symbol
used as inputs to algorithm 4.5. Let P,’ be the program
output by algorithm 4.5. Then the following hold for any
instance A’ of A:

o P'U{«~A'} has an SLD-refutation with computed
answer § iff PU{—A'} does.

o P/ U {~A'} has a finitely failed SLD-tree iff P U
{~A'} does.

Proof The corollary immediately follows from corol-
lary 4.9 and proposition 4.10. ]

Theorem 4.7 and corollary 4.11 are the most impor-
tant results of this paper. In words, their contents can
be stated as follows. Given a program and a goal, algo-
rithm 4.5 produces a program which provides the same
answers as the original program to the given query and
any instances of it. Moreover, computing this (hopefully
more efficient) program terminates in all cases.



5 Discussion and Conclusion

In [Lloyd and Shepherdson, 1991], important criteria en-
suring soundness and completeness of partial deduc-
tion are introduced. In the present paper, we started
from a recently proposed strategy for finite unfolding
([Bruynooghe et al., 1991a]) and developed a procedure
for partial deduction of definite logic programs. We
proved this procedure produces programs satisfying the
mentioned criteria and, in an important sense, showing
the desired specialisation. Moreover, the algorithm ter-
minates on all definite programs and goals.

The unfolding method as it is presented in section 3
was proposed in [Bruynooghe et al., 1991a], but appears
here for the first time in this detailed and automati-
sable form, specialised for object level programs. It
tries to maximise unfolding while retaining termination.
We know, however, of two classes of programs where
the first goal is not achieved. First, meta programs
require a somewhat more refined control of unfolding.
This issue is addressed in [Bruynooghe et al., 1991a].
We refer the interested reader to that paper (or to
[Bruynooghe et al., 1991b]) for further comments on this
topic. Second, (datalog) programs where the information
contained in constants appearing in the program text
plays an important role, are not treated in a satisfactory
way. Further research is necessary to improve the unfold-
ing in this case. (A combination of our rule with the R,
computation rule seems promising.) As far as the used
unfolding strategy does maximise unfolding, however, it
probably diminishes or eliminates the need for dynamic
renaming as proposed in [Benkerimi and Hill, 1989].

We now compare briefly algorithm 4.5 with the par-
tial deduction procedure with static renaming presented
in {Benkerimi and Lloyd, 1990]. First, we showed above
that our procedure terminates for all definite programs
and queries while the latter does not. The culprit
of this difference in behaviour is (apart from the un-
folding strategy used) the way in which msg’s are
taken. We do this predicatewise, while the authors of
[Benkerimi and Lloyd, 1990] only take an msg when this
is necessary to keep A independent. This may keep more
specialisation (though only for predicates different from
the one in the starting goal), but causes non-termination
whenever an infinite, independent set A is generated (as
illustrated in example 4.1). Observe, moreover, that we
have kept a clear separation between the issues of control
of unfolding and of ensuring soundness and complete-
ness. The use of algorithm 3.6 — or further refinements
(see above) — guarantees that all sensible unfolding —
and therefore specialisation — is obtained. The way in
which algorithm 4.5, in addition, ensures soundness and
completeness, takes care that none of the obtained spe-
cialisation is undone. Therefore, it does not seem worth-
while to consider more than one msg per predicate. Note
that one can even consider restricting the partial deduc-
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tion to the predicate in the starting query and simply
retaining the original clauses for all other predicates in
the result program. This can perhaps be formalised as a
partial deduction where only a 1-step trivial unfolding is
performed for these predicates.

-Next, the method in [Benkerimi and Lloyd, 1990] is
formulated in a somewhat more general framework than
the one presented here. A reformulation of the latter
incorporating the concept of L-selectability and allow-
ing more than one literal in the starting query seems
straightforward. However, a generalisation to normal
programs and queries and SLDNF-resolution while re-
taining the termination property, is not immediate. In
e.g. [Benkerimi and Lloyd, 1990], it is proposed that
during unfolding, negated calls can be executed when
ground and remain in the resultant when non-ground.
This of course jeopardises termination, since termina-
tion of “ordinary” ground logic program execution is not
guaranteed in general. One solution is restricting at-
tention to specific subclasses of programs (e.g. acyclic
or acceptable programs, see [Aptand Bezem, 1990],
[Apt and Pedreschi, 1990]). Another might be to use an
adapted version of our unfolding criterion in the evalu-
ation of the ground negative call, and to keep the lat-
ter one in the resultant whenever the SLD(NF)-tree pro-
duced is not a complete one. Yet a third way might be
offered by the use of more powerful techniques related to
constructive negation (see [Chan and Wallace, 1989)).

Finally, [Gallagher and Bruynooghe, 1990] presents
another approach to partial deduction focusing both on
soundness and completeness and on control of unfolding.
The main difference is the control of unfolding by a con-
dition based on maximal deterministic paths, where our
approach is based on maximal data consumption, moni-
tored through well-founded measures.
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Abstract

We extend the notions ’recurrency’ and ’acceptability’
of a logic program, which were respectively defined in
the work of M. Bezem and the work of K. R. Apt and
D. Pedreschi, and which were shown to be equivalent
to respectively termination under an arbitrary computa-
tion rule and termination under the Prolog computation
rule. We show that these equivalences still hold for the
extended definitions. The main idea is that instead of
measuring ground instances of atoms, all possible calls
are measured (which are not necessarily ground). By
doing so, a more practical technique is obtained, in the
sense that "more natural” measures can be used, which
can easily be found automatically.

1 Introduction

In the last few years, a strong research effort in the field
of logic programuning has addressed the issue of termina-
tion. From the more theoretical point of view, the results
obtained by Vasak and Potter [1986], Baudinet [1988],
Bezem [1989], Cavedon [1989], Apt and Pedreschi [1990)],
and Bossi et al. [1991] have provided several frameworks
and basic techniques to formulate and solve questions
regarding the termination of logic programs in semanti-
cally clear and general terms. Other researchers, such
as Ullman and Van Gelder [1988], Plimer [1990}, Wang
and Shyamasundar [1990], Verschaetse and De Schreye
[1991], and Sohn and Van Gelder [1991] have provided
practical and automatable techniques for proving the ter-
mination of logic programs with respect to certain classes
of queries at compile time.

In this paper, we propose an extension of the theo-
retical frameworks for the characterisation of terminat-
ing programs and queries proposed in [Bezem 1989] and
[Apt and Pedreschi 1990]. The framework does not only
provide slightly more general results, but also increases
the practicality of the techniques in view of automation.

*Supported by the National Fund for Scientific Research.
tSupported by ESPRIT BRA COMPULOG project nr. 3012,

Let us recall some definitions from [Bezem 1989] in
order to explain our motivation and the intuition behind
our approach.

Definition 1.1 (see [Bezem 1989]; Definition 2.1) A level
mapping for a definite logic program P is a mapping
{}:Bp — INV.

Definition 1.2 (see [Bezem 1989]; Definition 2.2) A
definite logic programn P is recurrent if there exists a
level mapping |.|, such that for each ground instance
A—By,...,B, of a clause in P, |A| > |B,|, for each
t=1,...,n.

Definition 1.3 (see [Bezem 1989]; Definition 2.7) A defi-
nite logic program P is terminating if all SLD-derivations
for (P, «G), where G is a ground goal, are finite.

One of the basic results of [Bezem 1989] is that a pro-
gram is recurrent if and only if it is terminating. Al-
though this result is very interesting from a theoretical
perspective, it is not a very practical one in terms of au-
tomated detection of terminating programs and queries.
The problem comes from the fact that the definition of
recurrency requires that the level mapping ”compares”
the head of each ground instance of a clause with ev-
ery corresponding atom in the body and imposes a de-
crease. Intuitively, what would be preferable is to obtain
a well-founding based on a measure function (or level
mapping), which only decreases on each recursive call to
a same predicate. This corresponds better to our intu-
ition, since nontermination (for pure logic programs) can
only be caused by infinite recursion.

As we stated above, the problem is not merely related
to our intuition on the cause of nontermination, but more
importantly to the practicality of level mappings. Con-
sider the following example.

Example 1.4

p({))-
p([H|T])

q([])-
o([HIT]) — oT).

— q([H|T)),p(T).
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It is not possible to take as level mapping a function
that maps ground instances p(z) and ¢(z) to the same
level, namely list-length(z) if  is a ground list, and 0
otherwise. Instead, the definition of recurrency obliges
us to take a level mapping that has a "unnatural” offset
(1 in this case).

|p(2)]
la(=)|

In a naive attempt to improve on the results of
[Bezem 1989], one could try to start from an adapted
definition for a recurrent program, in which the relation
|A| > | B;] would only be required if A and B; are atoms
with the same predicate symbol. However, the equiv-
alence with termination would iminediately be lost —
even for programs having only direct recursion — as the
following example shows.

list-length(z) + 1
list-length(z).

I

Example 1.5

append([}, Z, L).
append([H|S], T, [H|U]) « append(S,T,U).

p([H|T]) « append(X,Y,Z),p(T).

An "extended” notion of recurrency, where the level
mapping only relates the measure of ground instances of
the recursive calls, would hold with respect to the level
mapping:

lp(2)]
|append(z, ¥, )|

Il

list-length(x)
list-length(z).

On the other hand, the program is clearly not terminat-
ing — if it would be terminating, then we would have
shown that append/3 terminates for a call with all three
arguments free.

The heart of the problem is that in the definition of
recurrency, the level mapping is used for two quite dis-
tinct purposes at the same time. First, the level mapping
does ensure that on each derivation step, the measure of
arecursive descending call is smaller than the measure of
the ancestor call (or at least: for each ground instance of
such a derivation step). Second, since we are only given
that the top level goal is ground (or, in a more general
version of the theorem, bounded) — but we have no in-
formation on the instantiation of any of the descending
calls — the level mapping is also used to ensure that we
have some upper limit on the measures for the calls of
the (independent) recursive subcomputation evoked by
the original call. In the current definition, this is done
by imposing that the level also decreases between a call
and its descendants that are not related through recur-
sion.

The way in which we address the problem here, differs
from the approach in [Bezem 1989] in three ways:

1. We first compute all atoms that can occur as calls
during any SLD-derivation for the top-level goal(s)
under consideration.

2. We use an extended notion of level mapping, defined
on all such atoms — not only the ground ones.

3. We have an adapted definition of recurrency, with
as its most important features:

(a) the condition |4] > |B;| is not imposed on
ground instances of a clause, but instead, on
each instance obtained after unification with a
(possible) call,

(b) the decrease |4| > |B;| is only imposed if A
and B; are calls to the same predicate symbol.
(This is for direct recursion — in the context of
‘indirect recursion, the condition is more com-
plex).

One of the side effects of taking this approach is
that there is no more necessity to start the analysis
for one ground or bounded goal. The technique works
equally well when we start from any general set of
atoms. The additional advantage that we gain here is
that in practice, we are usually interested in the ter-
mination properties of a program with respect to some
call pattern. Such call patterns can always be speci-
fied in terms of abstract properties of the arguments in
the goals through mode information, type information
or combined (rigid or integrated) mode and type infor-
mation (see [Janssens and Bruynooghe 1990]). Any such
call pattern corresponds to a set of atoms in the con-
crete domain, and can therefore be analysed with our
approach.

The paper is organised as follows. In the next sec-
tion we extend the equivalence theorem of [Bezem 1989]
in the way described above. In section 3 we take
a completely similar approach to extend results of
[Apt and Pedreschi 1990] on left termination. In sec-
tion 4, we illustrate the improved practicality of
the new framework. We also indicate how some
simple extensions are likely to provide full theoreti-
cal support for the automated technique proposed in
[Verschaetse and De Schreye 1991].

All proofs have been omitted from the paper. They
can be found in [De Schreye and Verschaetse 1992].

2 Recurrency with respect to a
set of atoms

We first introduce some conventions and recall some
basic terminology. Throughout the paper, P will de-
note a definite logic program. The extended Her-
brand Universe, U5, and the extended Herbrand Base,
BE, associated to a program P, were introduced in



[Falaschi et al. 1989]. They are defined as follows. Let
Termp and Atomp denote the sets of respectively all
terms and all atoms that can be constructed from the
alphabet underlying to P. The variant relation, de-
noted =, defines an equivalence. UZ and BE are re-
spectively the quotient sets T'ermp/ ~ and Atomp/ =.
For any term ¢ (or atom A), we denote its class in UF
(BE) as T (A). There is a natural partial order on UZ
(and BE), defined as: § < { if there exist represen-
tants s' of § and t' of ¥ in Termp and a substitution
6, such that s' = t'6. Throughout the paper, S will de-
note a subset of BE. We define its closure under < as:
Sc={Ae€BE|3BesS:A< B}

Definition 2.1 P is terminating with respect to S if for
any representant A' of any element A of S, every SLD-
tree for (P, —A4') is finite.

Denoting the classical notion of a Herbrand Base (of
ground atoms) over P as Bp, then with the terminology
of [Bezem 1989] we have:

Lemma 2.2 P is terminating if and only if it is termi-
nating with respect to Bp.

Lemma 2.3 If all SLD-derivations for ( P, —A) are finite,
and @ is any substitution, then all SLD-derivations for
(P, —Af) are finite.

From lemma 2.3 it follows that in order to verify def-
inition 2.1 for a set S C BE, it suffices to verify the
finiteness of the SLD-trees for (P, —A) for only one rep-
resentant of each element in A. It also follows that P is
terminating with respect to a set S C BE if and only if it
is terminating with respect to S¢. In fact, given that P
terminates with respect to S, it will in general be termi-
nating with respect to a larger set of atoms than those in
S¢. It is clear that if all SLD-trees for ( P, — A) are finite,
and if H«B,,..., B, is a clause in P, such that A and
H unify, then all SLD-trees for (P, —B;6),i =1,...,n,
where § = mgu(A, H), are finite. We can characterise
the complete set of terminating atoms associated to a
given set S as follows.

Definition 2.4 For any T C BE, define 7, '(T) =
{B# € BE | A'is a representant of A € T, H
«— By,...,B, is a clause in P, 8 = mgu(4', H) and
1<i<n}.

Denote Hs = {T € 287 | S C T}. Hs is a complete
lattice with bottom element S°.

Definition 2.5 Rs: Hs — Hs: Rs(T) = TU T H(T)".
Lemma 2.6 R is continuous.

As a result, the least fix-point for Rs is Rsfw.
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Lemma 2.7 P is terminating with respect to S if and
only if P is terminating with respect to Rslw.

As a rtesult of our construction (in fact: as the very
purpose of it), RsTw contains every call in every SLD-
tree for any atomic goal of S. Formally:

Proposition 2.8 Let call(P, S) denote the set of all
atoms B, such that B is the subgoal selected by the
computation rule in some goal of some SLD-tree for a

pair (P, —A), with A the representant of an element of
S. Then, call(P, S) C Rslw.

We now introduce a variant of the definition of a level
mapping, where the mapping is defined on equivalence
classes of calls.

Definition 2.9 (level mapping)

A level mapping with respect to a set S C BE is a function
|| : Rstw — IN. A level mapping |.| is called rigid
if for all A € Rslw and for any substitution 4, |4]| =
| 48], i.e. the level of an atom remains invariant under
substitution.

With slight abuse of notation, we will often write |A|,
where A is a representant of 4 € BE. The associated
notion of recurrency with respect to S will not be de-
fined on ground instances of clauses, but instead on all
instances (H < By, ..., B,)0 of clauses H—B, ..., B, of
P, such that § = mgu(A, H), where A is a representant
of an element of Rglw. The definition in [Bezem 1989]
does not explicitly impose a decrease of the level map-
ping at each inference step. The level mapping’s values
should only decrease for ground instances of clauses. By
considering more general instances of clauses (as above),
we can explicitly impose a decrease of the level mapping’s
value during (recursive) inference steps. As a result, the
adapted level mapping no longer needs to perform dif-
ferent functionalities at once, and we can concentrate on
the real structure of the recursion.

Now, concerning this recursive structure, there are a
number of different possibilities for a new definition of
recurrency, depending on how we aim to deal with indi-
rect recursion. In order not to confuse all issues involved,
we first provide a definition for programs P, relying only
on direct recursion.

Definition 2.10 A (directly recursive) program P is re-
current with respect to S, if there exists a level mapping
|| with respect to S, such that:

o for any A' representant of A € RsTw,

¢ for any clause H«—B,,...,B, in P, such that
mgu(A', H) = 6 exists,

e for any atom B;,1 <1 < n, with the same predicate
symbol as H: |A'| > | B;6].
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What is expressed in this definition is that for any two
recursively descending calls with a same predicate sym-
bol in any SLD-tree for (representants of) atoms in S,
the level mapping’s value should decrease. This condi-
tion has the advantage of being perfectly natural and
therefore, of being easy to verify in an automated way.
The only possible problem in view of automation is that
it requires the computation of RsTw. But, this problem
is precisely the type of problem that can easily be solved
(or approximated) through abstract interpretation (see
section 4).

In the presence of indirect recursion, we need a more
complex definition, that deals with the problem that a re-
cursive call with a same predicate symbol as an ancestor
call may only appear after a finite number of inference
steps (instead of in the body of the particular instance
of the applied clause). This can be done in several ways.
We first provide a definition related to the concept of a
resultant of a finite (incomplete) derivation. Based on
this definition, we prove the equivalence with termina-
tion. After that, we provide a more practical condition,
of which definition 2.10 is an obvious instance for the
case of direct recursion.

First, we need some additional terminology.

Definition 2.11 Let 4 be an atom and (G = «A4),
Gy Gay..oyy Gyy (n > 0), a finite, incomplete SLD-
derivation for (P,«A). Let 6,...,6, be the cor-
responding sequence of substitutions, and let 6 =
0102---0,, and G, = «By,...,B,,. With the ter-
minclogy of [Lloyd and Shepherdson 1991] we say that
A@—B,..., B,, is the resultant of the derivation.

Definition 2.12 A resultant A#«B,,...,B,, of a
derivation (Gy = «A4),Gy,...,Gy, is a recursive resul-
tant for A if there exists ¢ (1 < 7 < m), such that B, has
the same predicate symbol as A4.

Definition 2.13 (recurrency wrt a set of atoms)
A program P is recurrent with respect to S, if there exists
a level mapping, |.|, with respect to .S, such that:

o for any A’ representant of A € Rslw,
e for any recursive resultant 4'6—B;,..., B,,, for A',

o for any atom B;, 1 < 1 < m, with the same predicate
symbol as A": |4'| > |B,].

Proposition 2.14 If P is recurrent with respect to 5,
then P terminates with respect to .S.

Just as in the framework of Bezem, the converse state-
ment holds as well.

Theorem 2.15

P is recurrent with respect to S if and only if it is ter-
minating with respect to S.

One of the nice consequences of this result is that we
can now relate the concept of a recurrent program in the
sense of [Bezem 1989] to recurrency with respect to a set
of (ground) atoms.

Corollary 2.16 P is recurrent if and only if it is recur-
rent with respect to Bp.

It may seem surprising to the reader that two appar-
ently very different notions such as recurrency and recur-
rency with respect to Bp coincide. It is our experience
from our work in termination of unfolding in the context
of partial deduction ([Bruynooghe et al. 1991]) that this
is not unusual. The reason is that conditions occurring
in these contexts require the "ezistence” of some well-
founded measure. The specific properties of such mea-
sures can take totally different form without loosing the
termination property. The only real difference lies in the
practicality.

We conclude the section by introducing a condition
that implies definition 2.13. This condition has the ad-
vantage over definition 2.13 that it does not rely on the
verification of some property for each of a potentially
infinite number of recursive resultants. Instead it only
requires such a verification for a finite number of clauses,
which can be characterised through the minimal, cyclic
collections of P.

Definition 2.17 (minimal cyclic collection)
A minimal cyclic collection of P is a finite sequence of
clauses of P:

1 1 1
A1 — Blv"'$A2v"'}Bn|

Am — By .. . ALy, BY
such that:

o for each pair (¢ # j), the heads of the clauses, 4;
and A4;, are atoms with distinct predicate symbols,

e A, and A! have the same predicate symbols (1 < ¢ <
m),

o Al ., has the same predicate symbol as 4;.

Only a finite number of minimal cyclic collections exists.
They can easily be characterised and computed from the
predicate dependency graph for P.

Proposition 2.18

Let S C BE and || a rigid level mapping with respect to
S, such that for any minimal cyclic collection of P (after
standardizing apart),

1 i 1
Al — .Bl,...,x‘lo‘,,..',.B"l

m 1 m
Am — BP . AL L.,..., BT



and for any A4;,..., A, € Rstw, with AY, ..., A" as
their respective representants, and 6; = mgu(A4;, A),
(1 < i < m), the following condition holds:

|46 = [43]

|A0m-1] > |AL

4
[T} > AL 11 Om]-
Then, P is recurrent with respect to S.

The conditions in proposition 2.18 seem rather unnat-
ural at first sight and need some clarification. First, ob-
serve that in the case of direct recursion — except for the
rigidity of the level mapping — the conditions coincide
with those of definition 2.10.

For the case of indirect recursion, the conditions that
one would intuitively expect, are that for each minimal
cyclic collection

1 1 1
Ay — BY...,A,... B

1
Am «— BP... A.,..., BT

and each A representant of A; € Rslw, such that § =
mgu( Af, 4;) and 6; = mgu(A}, 4;), 1 < i < m, exist and
are consistent, we have

|AY] > 1AL, 1166, -6,

The problem is that such a condition is not correct. Con-
sider the clauses:

pla,[1X]) < p(b,X). (1)

(b, X) — q(a,[-|X]). (cl2)

q(b, X) — p(a,[|X]). (cI3)

g(a, X)) « (6, X).  (cl4)
There are 4 associated minimal collections: (cll),
(c12,c13), (cl3,cl2) and (cl4). Consider for instance
the derivation «—p(a,[.,-]), «p(b,[]), —gla]--])

—q(b,[.]), —p(a [, ])-

The problem is caused by resultants associated to
derivations that start with a clause from one minimal
cyclic collection — say (cl2) in the collection (cl2,cl3) —
then shift to applying another collection, (cl4), and only
after this resume the first collection and apply clause
(c13). The head of the third clause, ¢(b, X), does not
unify with g(a,[-|X']), and therefore, the condition on
the cycle (cl2,cl3) can not be applied.

So, we have to impose the condition in proposition
2.18. It states that, even if the next call in the traversal
of a minimal collection (4!') is not really related — as
an instance — to a call we obtained earlier (A4}6;_,), but
if — through the intermediate computation in another
minimal collection — the level between these two has
decreased anyway, then the final conclusion between the
original call to the collection and the indirectly depend-
ing one must still hold. We will not discuss the condition
any further here, but we will return to its practicality in
section 4.

485

3 Acceptability with respect to
a set of atoms

All definitions and propositions from the previous sec-
tion can be specialised for the Prolog computation rule.
Following [Apt and Pedreschi 1990}, we call an SLD-
derivation that uses Prolog’s left-to-right computation
rule, an LD-derivation.

Definition 3.1 (left termination wrt S) Let S be
a subset of BE. A program P is left-terminating with
respect to S if for any representant A of any element of
S, every LD-derivation is finite.

Recall definitions 2.4 and 2.5. The motivation behind
these definitions was finding an overestimation of all calls
that are possible in any SLD-derivation using an arbi-
trary computation rule. The fact that no fixed compu-
tation rule is used, forces us to take the closure under all
possible instantiations in definition 2.5, and hence RsTw
contains in general a lot more calls than can really occur
when a particular computation rule is chosen,

In this section, we focus our analysis on computations
that use Prolog’s left-to-right computation rule. There-
fore, adapted definitions of the ’Tp"l and Rs functions are
needed.

Definition 3.2 For any T C BE, define: PpYT) =
{Bfo,---0;,_; € BE | A' is a representant of AeT,
H « B,,...,B,is aclause in P, § = mgu(4', H), 1 <
1< n, doy,...,0i-1, such that Vj=1,...,i—1: 0;is an
answer for (P, —B;foy---0;_1)}.

The answer substitutions o; are computed using LD-
resolution. Let H4" denote {T € 287 | § C T}.

Definition 3.3 Ry : HY" — HY™ : RE(T) = T U
PrUT)

In a completely analogous way as in the previous sec-
tion, we find that RY" is continuous. Hence, the least fix
point RS Tw contains all atoms that can possibly occur
as a call when P is executed under the Prolog computa-
tion rule, and when a representant of an element from S
is used as query.

Level mappings are now defined on R5 ™. Recursive re-
sultants are constructed using the left-to-right computa-
tion rule. This allows us to consider only recursive resul-
tants of the form p(s,, ..., s,)—p(t1,...,tn), B2,..., Bm.
The analogue of recurrency with respect to a set S of
atoms, is acceptability with respect to S.

Definition 3.4 (acceptability wrt a set of atoms)
A program P is acceptable with respect fo S,
if there exists a level mapping |.| with respect
to S, such that for any p(s;,...,s,.), represen-
tant of an element in R5"{w, and for any recur-
sive resultant p(sy,...,s$,)0—p(t1,...,t.), B2,..., B
Ip(s1y- ooy a)l > |p(tiy i t)l.
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Theorem 3.5
P is acceptable with respect to S if and only if it is left-
terminating with respect to S.

As in section 2, we provide a more practical, sufficient
condition. The result is completely analogous to propo-
sition 2.18.

Proposition 3.6

Let S C BE and || a level mapping with respect to S,
such that for any minimal cyclic collection of P (after
standardizing apart),

1 1 ! 1
A, « BL,...,B. A,..., B,

m m ! m
An & BP..., Bl AL, BT

and for any A;,...,4, € Ry"fw, with AY,..., A"
as their respective representants, and with 0, =
mgu(4;, A7) (1 < j < m) and o}, is a computed an-
swer substitution for (P, —Bi6;0% .- oi_ ) (1 < k < i;),
the following condition holds:

|436101 -0, | > |43

| A 10T ool > 4L

Em—1
|AY] > AL, 10moT - <ol s

Then, P is acceptable with respect to S.

4 Practicality and automation

A fully automated technique needs to address the follow-
ing issues:

e safe approximations of Rsfw and R%"Tw must be
computed,

e precise and natural level mappings are needed, and

o the conditions in propositions 2.18 and 3.6 must be
automatically verifiable.

For left termination, there is one extra issue:

e some properties of the answer substitutions for the
atoms in R% " Tw are needed; in particular, after ap-
plication of a computed answer substitution we want
an estimation of the relationship between the sizes
of the arguments of the atoms in R Tw.

Concerning the first issue, observe that in practice, the
sets of atoms S in the framework are likely to be specified
in terms of call patterns over some abstract domain. The
framework contains no implicit restriction on the kind of
abstractions that are used for this purpose. They could
be either expressing mode or type information, or even
combined mode and type information — as in the rigid

or integrated types of [Janssens and Bruynooghe 1990].
Abstract interpretation can be applied to automati-
cally infer a safe approximation of Rslw or RY7 1w (see
[Janssens and Bruynooghe 1990]).

Automated techniques for proving termination use
various types of norms. A normis amapping||.||: U§ —
IN. Several examples of norms can be found in the lit-
erature. When dealing with lists, it is often appropriate
to use list-length, which gives the depth of the rightmost
branch in the tree representation of the term. A more
general norm is term-size, which counts the number of
function symbols in a term. Another frequently used
norm is term-depth, which gives the maximum depth of
(the tree representation of) a term.

However, we restrict ourselves to semi-linear norms,
which were defined in {Bossi et al. 1991].

Definition 4.1 (semi-linear norm)
A norm ||.]] is semi-linear if it satisfies the folowing con-
ditions:

o ||[V]] = 0if V is a variable, and

o [[£(try- .o ta)ll = et |4+ - -+t || wherec € IV,
1< <<ty <nandec,ig,...,in, depend only

on f/n.

Examples of semi-linear norms are [ist-length and
term-size. '

As was pointed out in [Bossi et al. 1991}, proving ter-
mination is significantly facilitated if the norm of a term
remains invariant under substitution. Such terms are
called rigid.

Definition 4.2 (rigid term; see [Bossi et al. 1991])
Let ||.]| be a (semi-linear) norm. A term ¢ is rigid with
respect to ||.|| if for any substitution o, ||to|| = ||t]].

Rigidity is a generalisation of groundness; by using this
concept it is possible to avoid restricting the definition of
a norm to ground terms only, a restriction that is often
found in the literature.

Given a semi-linear norm and a set of atoms 5, a very

natural level mapping with respect to S can be associated
to them.

Definition 4.3 (natural level mapping)

Given is a semi-linear norm ||.|| and a set of atoms §.
|, the natural level mapping induced by S, is defined
as follows: Vp(iy,...,t,) € Rslw:

‘p(tly"':tn)}mﬂ ZieI”ti”: HI# 0

= 0 otherwise,
with I = {¢ ] Vp(u;, S Up) € Rglw ¢ v is rigid}.

Let us illustrate the practicality of such mappings —
and of the framework itself — with some examples.



Example 4.4

Reconsider example 1.4 from the introduction. Assume
that S = {p(z) | z is a nil-terminated list}. Let .||, be
the list-length norm. The argument positions of all atoms
in Rslw are rigid under this norm. So, |p(z)|,,, = ||z||,
and {g(z)|,.., = ||z|l;- The program is directly recursive,
so that it suffices to verify the conditions of definition
2.10.

For the clause p([H|T])—q([H|T]),p(T) and for each
call p(z) € Rslw, with 8§ = mgu(z,[H|T]), we have
|P(2)| e > 12(T)0|, .- By the same argument, the con-
dition on the clause ¢([H|T])«—¢(T) holds as well. Thus,
the program is recurrent with respect to S under the
natural, list-length level mapping with respect to S.

As a second example, we take a program with indirect
recursion. It defines some form of well-formed expres-
sions built from integers and the function symbols +/2,
*/2 and —/1.

Example 4.5

e(X+Y) f(X),e(Y). (cl1)
e(X) f(X). (c12)
)
)

T

f(X*Y) « g(X),f(Y). (cl8
f(X) — g(X). (cl4

9(=(X)) — e(X). (cl5)
g(X) — integer(X). (cl6)

The obvious choice for a level mapping for this program is
term-size. However, the program is not recurrent in the
sense of [Bezem 1989] with respect to this norm. Since it
is clearly terminating, a level mapping exists. The most
natural mapping (in the sense of [Bezem 1989]) we were
able to come up with is:

le(z)] = 3 x term-size(z) + 2
| F(=)] 3 x term-size(z) + 1
lg(z)] 3 x term-size(z).

In the context of our framework, consider the set S =
{e(z) | = is ground}. Through abstract interpretation,
we can find that RsTw C Bp.

Let ||.||, be the term-size norm. Again, the argument
positions of all atoms in Rslw are rigid (even ground) un-
der this norm. Thus, |e(z)|,,, = |||, |f(2)]... = |zl
and {g(z)l,,,, = |||l,- The program contains essentially’
6 minimal, cyclic collections: (cl1), (c13), (cl1, I3, cl5 ),
(cl1, cl4, cl5 ), (cl2, cl3, c15 ), (<12, cl4, cI5 ).

Let us consider, as an example, the third collection:

(X +Y) « f(X)eY)
J(X'+Y") = g(X"), f(Y').
9(=(X")  « e(X").

'Since collections are sequences of clauses, cyclic permutations
should be considered as well.

o
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Assume that e(z), f(y) and g(z) are any atoms with
ground terms z, y and z, and that:

6; = mgu(e(z),e(X + 1))

82 = mgu(f(y), F(X' *Y"))
03 = mgu(g(z), 9(—(X"))).

Also assume’ that |f(X)8;| > [f(y)| and |g(X')8;] >
lg(z)|. We then have le(z)| > |f(X)6:] = [f(y)| >
90| > lg(2) > [e(X")6sl, so that [e(2)] >

|e(X")6;], and the conditions of proposition 2.18 (for the
third cycle) are fulfilled. All other cycles can be verified
in a similar way. The conclusion is that the program is
recurrent with respect to S and the very natural term-
size level mapping.

In the context of left termination, definition 4.3 can be
adapted to produce equally natural level mappings with
respect to a set S. Obviously, RsTw should be replaced
by Ry "fw. In the context of left termination there is
an extra issue, namely, (an approximation of) the set of
possible answer substitutions for an atom is needed. The
next example illustrates how this is handled.

Example 4.6

(), 1))-
p(HIT),[GIS]) — d(G,[H|T),U),p(U,S).

d(H,[H|T), T).
d(G, [H|T),[H|U]) «— &G, T,U).

Assume that S = {p(z,y) | = is a nil-terminated list and
y is free}. Notice that Rslw contains the set {p(z,y) | z
and y are free variables}. We are not able to define a level
mapping on Rsfw that can be used to prove recurrency
with respect to S. This is not surprising, since P is not
terminating with respect to S. '

However, program P is left terminating with respect
to S. We prove this by showing that P is accept-
able with respect to S. The set Ry Tw is the union
of {p(z,y) | = is a nil-terminated list and y is free}
and {d(z,y,z) | = and z are free variables and y is a
nil-terminated list}. This can be found by using ab-
stract interpretation. Since there is only direct recur-
sion in program P, it suffices to show that: (1) for
any p(z,y) € RS 1w, |p(z,y)] > |p(U, $)00|, where
6 = mgu(p(z,y), p((H|T],[G|S])) and o is a computed
answer substitution for (P, — d(G,[H|T],U)8), and (2)
for any d(z,9,2) € R 1w, |d(=z,y,2)| > |d(G, T, V)4,
where § = mgu(d(z,y, z),d(G,[H|T], [H|U])).

Now, in practice, the statement "o is a computed an-
swer substitution for (P, — d(G,[H|T),U)8)" can be
replaced by ”||[H|T]6o||, = ||Ufc]|, + 17. This latter
statement is a so-called linear size relation, which ex-
presses a relation between the norms of the arguments
of the atoms in the success set of the program. Alterna-
tively, it can also be interpreted as a (non-Herbrand)
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model of the program. For more details we refer to
[Verschaetse and De Schreye 1992}, where we describe
an automated technique for deriving linear size relations.

By taking this information into account, and by taking
Ip(z,y)| = |||, for any p(z,y) € R%" Tw — notice that =
is rigid with respect to [|.|}; — we find: [p(z,y)] = [|z||, =
HITIll, = [[[#]|T)6ell, = |Uboll, +1 > [|Ua]], =
[p(U, S)fa|.

The second inequality, |d(z,y,z)| > |d(G,T,U)8], is
more easy to prove. This time, the list-length of the
second argument can be taken as level mapping. Since
both inequalities hold, we can conclude that the program
is acceptable with respect to the set of atoms that is
considered.

Automatic verification of the conditions for recurrency
and acceptability is handled by reformulating them into
a problem of checking the solvability of a linear system of
inequalities. This part of the work is described in more
detail in [De Schreye and Verschaetse 1992].
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Abstract

We present an efficient technique for the automatic genera-
tion of termination proofs for concurrent logic programs,
taking Guarded Horn Clauses (GHC) as an example. In con-
trast to Prolog's strict left to right order of evaluation, termi-
nation proofs for concurrent languages are complicated by a
more sophisticated mechanism of subgoal selection. We in-
troduce the notion of directed GHC programs and show that
for this class of programs goal reductions can be simulated
by Prolog-like derivations. We give a sufficient criterion for
directedness. Static program analysis techniques developed
for Prolog can thus be applied, albeit with some important
modifications.

1. Introduction

With regard to termination it is useful to distinguish between
two types of software systems or programs: transformational
and reactive [HAPS8S5]. A transformational system receives
an input at the beginning of its operation and yields an output
at the end. If the problem at hand is decidable, termination of
the process is surely a desirable property. Reactive systems,
on the other hand, are designed to maintain some interaction
with their environment. Some of them, for instance op-
erating systems and database management systems, ideally
never terminate and do not yield a final result at all. Based on
the process interpretation of Horn clause logic, concurrent
logic programming systems have been designed for many
different applications including reactive systems and trans-
formational parallel systems. While for some of them termi-
nation is not a desirable property, for others it is. In this pa-
per we discuss how automatic termination proofs for concur-
rent logic programs can be achieved automatically.

Automatic proof techniques for pure Prolog programs
have been described in several papers including [ULG88]
and [PLU90a). Prolog is characterized by a fixed
computation rule which always selects the leftmost atom.
Deterministic subgoal selection and strict left to right order of
evaluation cannot be assumed for the concurrent languages.

Static program analysis techniques, which are well estab-
lished for sequential Prolog, such as abstract interpretation,

inductive assertions and termination proof techniques, sub-
stantially depend on the strict left to right order of evaluation
in most cases and thus cannot easily be applied to concurrent
languages. Concurrent languages delay subgoals which are
not sufficiently instantiated. Goals which loop forever when
evaluated by a Prolog interpreter may deadlock in the context
of a concurrent language. These phenomena may suggest
that termination proofs for concurrent logic programs require
a different approach. This paper, however, shows that
techniques which have been established for pure Prolog are
still useful in the context of concurrency.

Our starting point is the question under which conditions
reductions of a concurrent logic program can be simulated by
Prolog-like derivations. We take Guarded Horn Clauses
(GHC, see [UEDS86]) as an example, but our results can
casily be extended to other concurrent logic programming
languages such as PARLOG, (Flat) Concurrent Prolog or
FCP(:). Our basic assumptions are the restriction of unifica-
tion to input matching, nondeterministic subgoal selection
and resuming of subgoals which are not sufficiently instan-
tiated. Since we consider all possible derivations, the commit
operator does not need special attention.

In general simulation is not possible: if there is a GHC-
derivation of g' from g, g' cannot necessarily be derived
with Prolog's computation rule.

One could now try to augment simulation by program
transformation. Let, for instance, P' be derived from P by
including all clause body permutations. Although P' may be
exponentially larger than P, there are still derivations which
are not captured.

Example 1.1:

Program: p ¢ q,f. ¢ ¢« S,L
s. v.

Goal: «p

r < u,v.

This goal can be reduced to < t,u by nondeterministic
subgoal selection, but not by a Prolog like computation,
even after adding the following clauses:

pergq qéets. revu

The reason is that in order to derive < t,u, the subderiva-
tions of «— q and < r have to be interleaved.
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The question arises whether there is an interesting sub-
class for which appropriate simulations can be defined. Such
a class of programs will be discussed in Section 3. The main
idea is to assume that if a subgoal p may produce some
output on which evaluation of another subgoal q depends,
then p is smaller w.r.t. some partial ordering. Whether a
program maintains such a property, which we will call di-
rectedness, is undecidable. We will then introduce the
stronger notion of well-formedness which can be checked
syntactically. Well-formedness is related to directionality,
which is discussed in [GRE87]. Well-formedness is suffi-
cient but not necessary for directedness, and it will turn out
that quite a lot of nontrivial programs (including for instance
systolic programs as discussed in [SHA87a] and most of the
examples given in [TIC91]) fall into this category. In Section
5 we will demonstrate how termination proof techniques
which have been established for pure Prolog can be
generalized such that they apply to well-formed GHC
programs.

The rest of this paper is organized as follows. Section 2
provides basic notions. Section 3 introduces the notion of di-
rected programs and shows that this property is undecidable.
It provides the notion of well-formedness and shows that it
is sufficient for directedness. Section 4 discusses oriented
and data driven computation and shows that after some sim-
ple program transformation derivations with directed GHC-
programs can be simulated by Prolog-like derivations.
Using the notion of S-models introduced in [FLP89], Sec-
tions 5 and 6 show how termination proofs can be achieved
automatically.

2. Basic Notions

We use standard notation and terminology of Lloyd [L1087]
or Apt [APT90]. Following [APP90] we will say LD-reso-
lution (LD-derivation, LD-refutation LD-tree) for SLD-reso-
lution (SLD-derivation, SLD-refutation SLD-tree) with the
leftmost selection rule characteristic for Prolog.

Next we define GHC programs following [UED87] and
[UEDS8].

A GHC program is a set of guarded Homn clauses of the
following form:

H « Gy,...,Gny | By,...,Bj.

where H, Gy,...,Gn and By,...,B, are atomic formulas. H
is called a clause head, the G;'s are called guard goals and
the B;'s are called body goals. The part of a clause before T
is called a guard, and the part after I' is called a body. One
predicate, namely '=', is predefined by the language. It uni-
fies two terms.

Declaratively, the commitment operator ‘' denotes con-
junction, and the above guarded Hom clause is read as "H is

(m>0,n>0)

implied by Gy,...,Gn and By,...,B,". The operational se-

mantics of GHC is given by parallel input resolution re-

stricted by the following two rules:

Rule of Suspension:

+ Unification invoked directly or indirectly in the guard of a
clause C called by a goal G (i.e. unification of G with the
head of C and any unification invoked by solving the
guard goals of C) cannot instantiate the goal G.

+ Unification invoked directly or indirectly in the body of a
clause C called by a goal G cannot instantiate the guard of
C or G until C is selected for commitment.

Rule of Commitment:

+ When some clause C called by a goal G succeeds in
solving (see below) its guard, the clause C tries to be se-
lected for subsequent execution (i.e., proof) of G. To be
selected, C must first confirm that no other clauses in the
program have been selected for G. If confirmed, C is se-
lected indivisibly, and the execution of G is said to be
committed to the clause C.

An important consequence is that any unification intended
to export bindings to the calling goal must be specified in the
clause body and use the predefined predicate '='.

The operational semantics of GHC is a sound - albeit not
complete - proof procedure for Hom clause programs: if
<« B succeeds with answer substitution 0, then V(B8) is a
logical consequence of the program.

Subsequently, we may find it convenient to denote a goal
g by the pair <G;0>, i.e. g=G0. A single derivation step
reducing the i-th atom of G using clause C and applying mgu
0" is denoted by <G;0> — j;c <G';00'>. Subscripts may
be omitted.

3. Directed Programs

An annotation dp for an n-ary predicate symbol p is a func-
tion from {1,...,n} to {+,-} where '+' stands for input and
"' for output. We will write p(+,+,-) in order to state that
the first two arguments of p are input and the last is output.

A goal atom A generates (consumes) a variable v if v oc-
curs at an output (input) position of A. A is generator for B,
if some variable v occurs at an output position of A and at an
input position of B; in this case, B is consumer of A.

Let { denote a tuple of terms. A derivation <p(f);e> —*
<G;0> respects the input annotation of p if v = v for every
variable v occurring at an input position of p(f).

A goal is directed if there is a linear ordering among its
atoms such that if A; is generator for A; then A; precedes A;
in that ordering. A program is directed, if all its derivations
respect directedness, i.e., all goals derived from a directed
goal are directed. Note that directedness of a goal is a static



property which can be checked syntactically. Directedness of
a program, however, is a dynamic property.

Theorem 3.1: It is undecidable, whether a program is di-
rected.

Proof: Let t,,(X) be a directed GHC simulation of a Turing
machine M for a language L which binds X to halt if and
only if M applied to the empty tape halts. Such a simulation
is for instance described in [PLU90b]. Next consider the
following procedures py, and q:

PMEY) ¢ ty(A), QA X.Y).

q(halt,X,X).
and the (directed) goal

« 1(X,Y), s(Y,2), py(X,2).
The following annotations are given:
tm(-) a(+-). py(-an). T(+,5). s(+,0).

If M halts on the empty tape, ty(A) will bind A to ‘halt',
pmX.Y) will identify X and Y and thus the given goal can
be reduced to the undirected goal « r(X,Y), s(Y,X).
Decidability of program directedness would thus imply solv-
ability of the halting problem: contradiction. m

Next we introduce the notion of well-formedness of a
program w.r.t. a given annotation and show that this prop-
erty is sufficient for directedness.

A goal is well-formed if it is directed, generators precede
consumers in its textual ordering, and its output is unre-
stricted. Output of a goal is unrestricted if all its output ar-
guments are distinct variables which do not occur (i) at an
output position of another goal atom and (ii) at an input po-
sition of the same atom.

A program P is well-formed if the following conditions
are satisfied by each clause H - Gy,...,Gp | By,...,.Byin P:
* ¢ By,...,B; is well-formed
« the input variables of H do not occur at output positions

of body atoms.

The predicate '=' has the annotation - = -'. It is conve-
nient to have two related primitives: '==' (test) and '<'
(matching) which have the same declarative reading as '='
but different annotations, namely '+ == +'and - & +",

Note that the goal < r(X,Y),s(Y,Z), py(X,Z) is not
well-formed because its output is restricted: Z has two output
occurrences.

The next example is taken from [UED86]:

Example 1: Generating primes

primes(Max,Ps). « truel
gen(2,Max,Ns),sift(Ns,Ps).
gen(N,Max,Ns) « N<MaxINlN + 1,

gen(NI,Max,Nsl), Ns «[N/Nsl].

gen(N,Max,Ns) « N> MaxINs<[].
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sift(P/Xs],.Zs)  « filter(P,Xs,Ys),sift(Ys,Zsl),
Zs < [P|Zs].
sift(/].Zs) « Ise<[].

filter(P,[X/Xs],YS) « X mod P == 0 | filter(P Xs,Ys).

filter(P,[X/Xs5],Ys) « X mod P #0 filter(P,Xs,Ys1),
Ys < [X/Ysl1].

« Yse[].

sift(+,-). filter(+,+,-).

filter(P,[],YS)
primes(+,-). gen(+,+,-).

The call primes(Max,Ps) returns through Ps a stream of
primes up to Max. The stream of primes is generated from a
stream of integers by filtering out the multiples of primes.
For each prime P, a filter goal filter(P,Xs,Ys) is generated
which filters out the multiples of P from the stream Xs,
yielding Ys.

In this example all input terms are italic and all output
terms are bold. It can easily be seen that this program is
well-formed.

Another example for a well-formed program is quicksort.
The call gsort([HIL],S) retumns through S an ordered version
of the list [HIL]. To sort [HIL] L is split into two lists L., and
L, which are itself sorted by recursive calls to gsort.
Example 2: Quicksort
q: gsort(/J,L)

q2: gsort([H/L],S)

« L&]].

<« split(L,H,A,B),
gsort(A,A,), gsort(B,By),
append(A,,/H/B,;].S).

sy: split({],X,Ly, L) « Ly (], Ly ]

s, split(/X/Xs],Y L', L) « X <Y1
split(Xs,Y,L,L,),

L,'= [X/L,].

syt split(/X/Xs],Y ) L,L,") < X > Y | split(Xs,Y,Ly,L,),
L,' & [X/L,].

ay; append(//,L;,L,) «Ly=L,

ay. append(/H/L;],.Ly)L3) < append(L;,L;L3"),
Ly &< [H/L,].

split(+,+,-,-). gsort(+,-). append(+,+,-).

Theorem 3.2: Let P be a well-formed program, g a well-
formed goal and g -* g' a GHC-derivation. Then g' is
well-formed.

Proof: See [PLU92].
Well-formed programs respect input annotations:

Theorem 3.3: Let <p(f),e> —* <G';6> be a derivation and v
an input variable of p(f). Then ve = v.

Proof: Goal variables can only be bound by transitions ap-
plying '=' or ‘<", since in the other cases matching substi-
tutions are applied. Since both arguments of '=' are output,
and '<' also binds only output variables, input variables
cannot be bound. W
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4. Oriented and Data Driven Computations

Our next aim is to show that derivations of directed pro-
grams can be simulated by derivations which are similar to
LD-derivations. In this context we find it convenient to use
the notational framework of SLD-resolution and to regard
GHC-derivations as a special case.

We say that an SLD-derivation is data driven, if for each
resolution step with selected atom A, applied clause C and
mgu 0 either C is the unit clause (X = X ¢ true.) or Cis
B < By,...,B, and A = B6. Data driven derivations are the
same as GHC derivations of programs with empty guards.
The assumption that guards are empty is without loss of
generality in this context.

Next we consider oriented computation rules. Oriented
computation rules are similar to LD-resolution in the sense
that goal reduction strictly proceeds from left to right. They
are more general since the selected atom is not necessarily
the leftmost one. However, if the selected atom is not
leftmost, its left neighbors will not be selected in any future
derivation step.

More formally, we define: A computation rule R is
oriented, if every derivation <Gp;e>— ..<G;;0;>— ... via
R satisfies the following property: If in G; an atom Ay is
selected, and A;(j < k), is an atom on the left of Ay, no
further instantiated version of Aj will be selected in any
future derivation step.

Our next aim is to show that, for directed programs, any
data driven derivation can be simulated by an equivalent data
driven derivation which is oriented. To prove the following
theorem, we need a slightly generalized version of the
switching lemma given in [LLO87]. Here g —j;c;6 g de-
notes a single derivation step where the i-th atom of g is re-
solved with clause C using mgu 6.

Lemma 4.1: Let gy, be derived from gi via

8k —i;Cicx1:0k+1 8k+1 j;Cis 20442 Bk+2 - Then there is a
derivation gk —j;Cy, 2041’ Zk+1" —;Cpy 130k42’ Bk+2' Such
that gy42' is a variant of gx2 and Cy41¢, Ck42' are variants
of Ck4+2 and Ciy1.

Proof: [LLO87] The difference between this and Lloyds
version is that the latter refers to SLD-refutations, while ours
refers to (possibly partial) derivations. His proof, however,
also applies to our version. W

Theorem 4.2: Let P be a directed program and <Gg;e> a
directed goal. Let D = <Gg;e>->...<Gy;8,> be a data driven
derivation using the clause sequence Cj,...,Cx. Then there is
another data driven derivation D': <Go;e>—...<Gy';0, ">
using a clause sequence G;,',...,.Cy' , where <ij,....,i,;>is a
permutation of <1,...,k>, each C;' is a variant of C; and
G0, ' is a variant of G0y, and D' is oriented.

Proof: Let g be the first goal in D where orientation is vio-
lated, i.e. there is the following situation:
8i: <B|,...,R,...,R', ...... ;9i>

R' is selected in g; and R is selected in g Now we
switch subgoal selection in 8j-1 and 8 and get a new
derivation D*. In D* we look again for the first goal
violating the orientation. After a finite number of iterations,
we arrive at a derivation D' which is oriented. It remains to
be shown that D* (and thus D') is still data driven,

Note that up to g; | both derivations are identical. Above,
the switching lemma implies that, from gj,1 on, the goals of
D' are variants of those of D.

Now let Q be the selected goal of G;.;. Since orientation
is violated for the first time in Gj, Q is to the right of R. (If
i=j-1then Q =R’, and otherwise j-1 would have the first
violation of orientation.) Since gj.; = <Gj.1;0j.1> is directed,
Q0j.1 is not a generator of Rej_1 and thus Rj.1 and R; are
variants. Let H be the head of the clause applied to resolve R
in <Gj;0;>. Since D is data driven, Rej_l = Ho for some o,
and so RO; = Ho' for some ¢'. Thus D' is data driven. m

Corollary 4.3: Let P be a directed program and g a di-
rected goal. Then g has an infinite data driven derivation if
and only if it has an infinite data driven derivation which is
oriented.

According to Corollary 4.3, in our context it is sufficient
to consider data driven derivations which are oriented. Such
derivations are still not always LD-derivations since the se-
lected atom is not necessarily leftmost. If it is not, however,
its left neighbors will never be reactivated in future deriva-
tion steps; thus w.r.t. termination they can simply be
ignored. The same effect can be achieved by a simple
program transformation proposed in [FAL88]:

Prg(P) = {p(-)-() < | p is an n-ary predicate appearing
in the body or the head of some clause of P
and X is an n-tuple of distinct variables)

Partg(P) = P U Prg(P)

Simulation Lemma 4.4: Let D=G, —...Gi.; » G; be
an oriented SLD-derivation of G and P where

Gi.1 =« By,...,Bj....By and

Gi  =¢ (BB 1.Ci" Bjypse-.Bn)O.

Ci* is the body of the Cj applied to resolve Bj. Then there is
an LD-derivation

D’ =Gy ...=...Gk.1'>Gy' with Partg(P), where
Gk-1' =« Bj....Byand ,

Gy =& (Ci+,Bj+1...,Bn)9i .

Proof: Whenever an atdm B is selected in D which is not
the leftmost one, first the atoms to the left of B are resolved



away in D' with clauses in Prg(P), and then D' resolves B in
the same way as D.m

An immediate implication is the following:
Theorem 4.5: If g has a non-terminating data driven ori-

ented derivation with P, then it has a nonterminating LD-
derivation with Partg(P).

The converse, however, is not true. Consider, for
instance, the quicksort example from above, extended by the
following clauses

qo: gsort(_, ).
So: split(_,_,_,_).
ay  append(,_,).

While the LD-tree for « gsort({2,1],X) is finite in the
context of the standard definition of gsort, it is no longer true
for the extended program. Consider the following infinite
LD-derivation:

« gsort([2,1],X)
byqa: < split({11,2,A,B), gsort(A,Ay),
gsort(B,B1), append(A1,[HIB{1,5).
by so: « gsort(A,A¢),
gsort(B,B1), append(A,[HIB{],S).

by q2: « split(_,_,_, ), ...
byso:  « gsort(_,),...

This derivation, however, is not data driven: resolving
gsort(A,A,) in the third goal with q; yields an mgu which is
not a matching substitution.

For data driven LD-derivations we get a stronger result:

Theorem 4.6: There is a nonterminating data driven ori-
ented derivation for g with P if and only if there is a non-
terminating data driven LD-derivation for g with Partg(P).

Proof: The only-if part is implied by the simulation lemma.
For the if-part, consider a nonterminating, data driven LD-
derivation D. By removing all applications of clauses in
Prg(P), one gets another derivation D'. D' is a nonterminat-
ing data driven oriented derivation. W

Restriction to LD-derivations which are data-driven
enlarges the class of goal/program pairs which do not loop
forever. In the general case, termination of quicksort
requires that the first argument is a list. Termination of
append requires that the first or the third argument is a list.
Restriction to data-driven LD-derivation implies that no
queries of quicksort or append (and many other procedures
which have finite LD-derivations only for certain modes)
loop forever. However, goals like « append(X,Y,Z) or «
quicksort(A,B) deadlock immediately.

5. Termination Proofs

In this section, we will give a sufficient.condition for termi-
nating data driven LD-derivations. We will concentrate on
programs without mutual recursion. In [PLU90b] we have
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demonstrated how mutual recursion can be transformed into
direct recursion. We need some further notions.

For a set T of terms, a norm is a mapping i...l: T — N.
The mapping ll...|l: A — N is an input norm on (annotated)
atoms, if for all B = p(ty,....ta), I Bll= Y., 1t; ], where I
is a subset of the input arguments of B.

Let P be a well-formed program without mutual recur-
sion. P is safe, if there is an input norm on atoms such that
for all clauses ¢ = By < Bjy,...,Bj,...,B, the following
holds: If B; is a recursive literal (Bg and B; have the same
predicate symbol), G a substitution the domain of which is a
subset of the input variables of B, and 6 is a computed
answer for < (By,...,Bj.1)0, then 1IBoo6ll > IIB;o6ll.

We can now state the following theorem:

Theorem 5.1: If P is a safe program and G = « A is well-
formed, then all data driven LD-derivations for G are finite.

PROOF: By contradiction. Assume that there is an infinite
data driven LD-derivation D. Then there is an infinite subse-
quence D' of D containing all elements of D starting with the
same predicate symbol p. Let dj and dj+1 be two consecutive
elements of D' and

dl = « p(tly---’tl’)t
di+1 = & p(l'l"--:lll')’ e
and ci =

P(S1,-..,81) « B1,....Bk,P(S'1,..-58),e0e
be the clause applied to resolve the first literal of dj, 6; the
corresponding mgu. Then there is a computed answer
substitution 6' for « (Bj,...,Bx)0; such that p(t'y,....t') =
p(s'1,...,8'1)0i0".

Since D is data driven, 6; is a matching substitution, i.e.
p(t,....t) = plt1,....t)0;. Since P is well-formed, Theorem
3.3 further implies p(ts,...,t) = p(t1,....t;)0;0'. We also
have p(ty,...,t;)0;0' = p(s1,...,$)0;0'". .

Since P is a safe program
lp(sy,...,8)0;0'll > lip(s'y,...,s')0;0'll and thus
lip(ty,...,tr)0i08' > lip(t'y,....t')6;0'll. Since the range of
Il...Il is a well-founded set, D' cannot be infinite.
Contradiction. m

The next question is how termination proofs for data
driven LD-derivations can be automated. In [PLU90b] and
[PLU91], a technique for automatic termination proofs for
Prolog programs is described. It uses an approximation of
the program’s semantics to reason about its operational
behavior. The key concept are predicate inequalities which
relate the argument sizes of the atoms in the minimal
Herbrand model of the program. Now in any program
Partg(P) for every predicate symbol p occurring in P there is
a unit clause p(X). Thus the minimal Herbrand model Mp of
P equals the Herbrand base By, of P, a semantics which is
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not helpful. To overcome this difficulty, we will consider S-
models which have been proposed in [FLP89] in order to
model the operational behaviour of logic programs more
closely. The S-model of a logic program P can be character-
ized as the least fixpoint of an operator Tg which is defined
as follows: '

Ts() = {B| 3 Bg « By,...,.Bx in P,3 B{',...,.B' € I,
3 & = mgu((By,...,Bx),(B1',....Bk")),
and B = Bgd}).
We need some notions defined in [BCF90] and [PLU91].

Let A be a mapping from a set of function symbols F to N
which is not zero everywhere. A norm | ... | for T is said to
be semi-linear if it can be defined by the following scheme:
lel = 0 if tis a variable
bl = AW + It ift=£(, ... t),
where I < {1,...,n} and I depends on f.
A subterm t; is called selected ifi € I,

Aterm tiszigid wr.t.anorm | ... lif It = | t6 for all
substitutions 0. Let t[v(i)<—s] denote the term derived from t
by replacing the i-th occurrence of v by s. An occurrence 70
of a variable v in a term t is relevant w.r.t. | ... | if
| 1[v(i)e~s] I # It | for some s. Variable occurrences which
are not relevant are called irrelevant. A variable is relevant if
it has a relevant occurrence. Rvars(t) denotes the multiset of
relevant variable occurrences in the term t.

Proposition 5.2: Let t be a term, t0 be a rigid term and V
be the multiset of relevant variable occurrences in t. Then for
a semi-linear norm |...| we have It01 = I + 3.\, V6L
Corollary 5.3: 1t0 | > [tl.

Proof: [PLU91]

For an n-ary predicate p in a program P, a linear predicate
inequality LIp has the form T pi+ ¢ 2 Xje pj» Where I
and J are disjoint sets of arguments of p, and c, the offset of
LI, is either a natural number or o or a special symbol like
v. I and J are called input resp. output positions of p (w.r.t.
LIp).

Let Mg be the S-model of P. Ll is called valid (for a
linear norm L..l) if p(ty,...,ts) € Mg implies 3; Il + ¢ 2
Yjes Il

Let A = p(ty,...,ty). With the notations from above we
further define:

- FALL) = Siell- Tjesl+c.
+ Vi(ALL) = Unrvars(t)

* Vouw(ALlp) = Urvars(t)

* Fin(ALLp) = Zierltl

* Fou(ALlp) = Xiejll

F(A,LL) is called the offset of A w.r.t. LI,

Theorem 5.4: Let Y1 pi+ ¢ 2 Xjey Pjbe a valid linear
predicate inequality, G = < p(ty,....tn)0 a well-formed goal,
V and W the multisets of relevant input resp. output variable
occurrences of p(ty,....tn) and 0 a computed answer for G.
Then the following holds:

) Yieltiodl+c 2 3. ool
i) dvev! voO I +F(p(t1,....tn),LIp =

ZWEW lwool.

Proof: According to [FLP89], p(ty,...,t,)00 is an instance
of an atom p(sy,...,Sp) in the S-model Mg of P. Since the
output of G is unrestricted, tjo0 = s; for all je J. Proposition
5.2 implies It;c61 2 It;| for all i€ I. Thus
Ziel“icelzziel I'si | and Zjel |tj0'91= Zje] ! §j !
which proves the first part of the theorem. The second part is
implied by Prop. 5.2. m

Theorem 5.4 gives a valid inequality relating variables oc-
curring in a single literal goal. Next we give an algorithm for
the derivation of a valid inequality relating variables in a
compound goal.

Algorithm 5.5 goal_inequality(G,LI,UW,A,b)

Input: A well-formed goal G = « Bjy,...,Bp, aset LI
with one inequality for each predicate in G, and
two multisets U and W of variable occurrences.
Output: A boolean variable b which will be true if a valid
inequality relating U and W could be derived, and
an integer A which is the offset of that inequality.
begin
M=W;A=0;V:=U;
Fori:=nto1do:
If M N Voui(B;,LIp) # @ then
M = (M\ Vou(Bj,LIp)) L (Vin(Bi,LIp) \ V);
V= V\'Vin(B;,LIp);
A := A + F(B;,LIp). fi
If M = @ then b:= true else b:= false fi
end.

Next we show that the algorithm is correct:
Theorem 5.6: Assume that the inequalities in LI are valid
and b is true, ¢ is an arbitrary substitution such that Go is

well-formed and 0 is a computed answer substitution for
GO.Then Y, _, vo0l+A > Y, o Iwo6l holds.
Proof: See [PLU92].
Algorithm 5.5 takes time O(m) where m is the length of G.
[PLU90b] gives an algorithm for the automatic derivation
of inequalities for compound goals based on and/or-dataflow
graphs which has exponential runtime in the worst case.
Algorithm 5.5 makes substantial use of the fact that G is
well-formed: each variable has at most one generator; which
makes the derivation of inequalities deterministic.



6. Derivation of inequalities for S-models

In Aection 5 it has been assumed that linear inequalities are
given for the predicates of a program P. We now show how
these inequalities can be derived automatically. We assume
that P is well-formed and free of mutual recursion. Let p<g q
if p # q and p occurs in one of the clauses defining q.
Absence of mutual recursion in P implies that <5 defines a
partial order which can be embedded into a linear order.
Thus there is an enumeration {p;.,...,py} of the predicates of
p such that p; < pj implies i < j. We will process the predi-
cates of P in that order, thus in analyzing p we can assume
that for all predicates on which the definition of p depends
valid inequalities have already been derived. Note that a
trivial inequality with offset o always holds.

Let in(A) and out(A) denote the sets of input resp. output
variables of an atom or a set of atoms according to the anno-
tation of the given programs.

Algorithm 6.1: predicate_inequalities(P,LI):
Input: A well-formed program P defining py,...,pn
Output: A set LI of valid inequalities for the predicates of P.

begin
LI:=0
For i:= 1 ton do:
begin
Let cy,....cm be the clauses defining p;.
Let M, N be the input resp. output arguments of p;.
L= oMl +72 Y
b; := true.
For j:= 1tom do:
begin
Let c;be Bg « By,...,Bxk.
goal_inequality((« B1,...,By),
LIu(li},Vin(Bo),Vout(Bo), Ai,by)
c:= Aj + Fou(Bo,li) - Fin(Bo.li).
®;=b;
If c contains 'o' then @; := ®; A false
™ elseif c is an integer then ®; :=®; A (Y 2¢)
(**) elseif c=y+dA d<0then ®; ;= d; A true
elseif ¢ =7+ d A d>0 then ®; := ®; A false
(***) elseif c=k*y+na k>1,
then @; := ®; A (Y < n/(1-k).
end
If @; is satisfiable then let §; be the smallest value for
¥ which satisfies @;
else let §; be 'oo'.
Replace vy in 1i by §;.
LI:=LIu (1}
end
end

Theorem 6.2: The inequalities derived by the algorithm
are valid.

Proof: By induction on the number of predicates n in P.
The case n = 0 is immediate. For the inductive case, assume
that the derived inequalities for the predicates py,...,pn-1 are

ve NIp\,l.
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valid. Let Iy be the minimal S-model of P restricted to the
predicates py,...,Pn-1. In the context of the program which
consists of the definition of p, only, let T = Ip and TT" =

T,(T™?). Its limes equals the minimal S-model of P

restricted to the predicates py,...,pn. Now we have to show
that the inequality li derived for p,, is valid w.r.t. T; . The

- proof is now by induction on m. The case m = 0 is implied

by the induction assumption on n. Assume that the theorem
holds for n - 1. We have to show that the inequality for p,
holds for the elements of T;. Now lett B € Ty and
By < Bj,...,Bx be the clause applied to derive B. We have
B = B9, where 0 is a computed answer substitution for
< Bj,...,Bk, which is a well-formed goal. Let V = in(By)
and W = out(B). Let LI be the set of inequalities derived by
Algorithm 6.1, and A be the result of calling
goal_inequality((« By,...,By),LLV,W, A, b;). Theorem 5.6
and the induction assumption imply

@B DpevVOI+AZ Y L iwel
Since B = B, we have Fip(B,li) = Fip(Bo li) + Y, Iv6l
and Fu(B,li) = Fou(BoJli) + 3, . /WOl Let o be the
offset of li. We have to show

P  Fin(BJi) + 0. 2 Fy(B,li).
If b; is false or A is oo, we are done since in that case ot is o.
Three more cases remain. (*) and (**) immediately imply

(311 o2 A +Fg(Bgli) - Fip(By,li).
(**¥) implies o < n/(1-k) and thus o 2 n + k*o for some n -
such that n + k*a = A + F;1(Bg,li) - Fj(By,li). Again
(3+4) follows. (1) and (311) together now imply (11). =

Note that Algorithm 6.1 again has run-time complexity
O(n), where n is the length of the given program P.

Algorithm 6.1 is not yet able to derive pj 2 p; for a unit
clause like p(X,Y) with mode(p(+,-)). This inequality, how-
ever, holds since in a well-formed goal the output argument
of p will always be unbound. To overcome this difficulty,
we assume that before calling predicate_inequalities(P,LI), P
will be transformed to P' in the following way:

Define freevars(Bg « Bi,...,.By) =
(out(Bo) \ out(Bj,...,Bp)) L in(By,...,Bp) \ in(Bg)).

Now for the clause ¢ = Bg « Bj,...,B, in P let freevars(c)
= {Y1,...,Ym}. Replace ¢ by Bg < q(Y1,...,Ym),B1,...,.Bn
where a new predicate q is defined by the unit clause )
q(X1,...,Xm) with mode(q(+,...,+)). Note that, after that
transformation, P' is well-formed if P is well-formed, and if
an inequality is valid for P’ it is valid for P as well. In the
example mentioned above, input for Algorithm 6.1 will be
the program P = {q(X). , p(X,Y) < q(Y)} and the output
will be {0 2 q1, p1 2 p2). i

Another improvement can be made by considering subsets of
the input arguments in order to achieve stronger inequalities.
This, however, makes the algorithm less efficient.



496

7. Example

We finally discuss how, with the techniques given so far, it
can be shown that the GHC program for quicksort specified
in Section 3 terminates for arbitrary goals.

Corollary 4.3 and Theorem 4.5 imply that is suffices to
consider data-driven LD-derivations of the extended program
for gsort including the clauses s, ag and qo. According to
Theorem 5.1 we only have to show that the three predicates
of the program are safe. This is easy to show for split and
append. In fact these procedures are structural recursive. It
is more difficult to prove of gsort because in q; both
recursive calls contain the local variables A and B. For this
reason we need a linear predicate inequality for split which
has the form split; + 7y 2 split3 + splity. After the
transforamtion mentioned at the end of the last paragraph sp
will have the following form:
so- split(L,L,,Lq.Ly) « q(L3, Ly

Now sg and s; give Y= 0 (case * in Algorithm 6.1), while s
and s3 give 'true’ (case **). Thus we get split; + 0 2 split3 +
split4. In order to prove safety of gsort, we only have to
consider qz. Using this inequality Algorithm 5.5
immediately shows ligsort({HIL],S)6Il > ligsort(A,A1)0ll and
llgsort([HIL],S)8! > ligsort(B,B1)0Il for all answer
substitutions 0 for split(H,L,A,B). Thus gsort is safe.
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Abstract

Approaches to learning by examples have focused on gener-
ating general knowledge from a lot of examples. In this paper
we describe a new learning method, called analogical gener-
alization, which is capable of generating a new rule which
specifies a given target concept from a single example and
existing rules. Firstly we formulate analogical generalization
based on the similarity between a given example and existing
rules from the logical viewpoint. Secondly, we give a new pro-
cedure of inductive learning with analogical generalization,
called ANGEL. The procedure consists of the following five
steps: (1) extending a given example, (2) extracting atoms
from the example and selecting a base rule out of the set of
existing rules, (3) generalizing the extracted atoms by means
of the selected rule as a guide. (4) replacing predicates, and
(5) generating a rule. Through the experiment for the system
for parsing English sentences, we have clarified that ANGEL
is useful for acquiring rules on knowledge based systems.

1 Introduction

Machine learning has a great contribution to improving per-
formance through automated knowledge acquisition and re-
finement, and so far, various types of machine learning
paradigms have been considered. In particular, learning from
examples, which can form general knowledge from specific
cases given as input examples, has been well studied and a
lot of concerned methods have been proposed{Mitchell 1977,
Dietterich and Michalski 1983, Ohkawa et al. 1991].

Generally, in learning from examples, we have to give a
lot of examples to the learner. Why are so many examples
required? We thiuk the reason for this is that the bias for
restricting the generalization is relatively weak, because it is
independent of the domain. Hov;ever, when a human being
acquires new knowledge, he would not always require a lot of
examples. As the case may be, he can learn from one exam-
ple. We think this is because he decides a strong bias for the
generalization according to the domain, and generalizes the
examples based on the bias. That is, in order to generalize a
few examples appropriately, a strong bias which depends en
the domain is indispensable.

It is necessary to consider how the strong bias should
be provided. Let us recall the behavior of a human being
again. When acquiring new knowledge, he often utilizes sim-
ilar knowledge which is already known. In other words, the

existence of similar knowledge may help for him to associate
new knowledge. This process is called analogy. Analogy is
considered promising to realize learning from a few examples.
Since analogy will be regarded as one of the most effective
way for restriction on generalization, modeling its process
will make it possible to provide a domain dependent bias.

In this paper, we propose a new learning method, called
ANGEL (ANalogical GEneraLization), which is capable of
generating a new rule from a single example. In ANGEL,
both the rules and the examples are represented as logical for-
mulas. We introduce the notion of analogy[Winston 1980],
namely, the similarity between the example and the exist-
ing rules as the bias for the generalization[Mori et al. 1991].
The similarity is determined by comparing the atoms of both
the example and the existing rules. Based on the similarity,
firstly, ANGEL extracts atoms from the example and selects
a rule out of the existing rules; next, it generates a new rule
by generalizing the extracted atoms by means of the selected
rule as a guide.

The next section describes the definition of analogical gen-
eralization. In this section we consider analogical generaliza-
tion from the logical viewpeint. Section 3 gives the procedure
of ANGEL which is a method for learning based on analogi-
cal generalization. In this section, we also give consideration
to the experimental result of learning by ANGEL. Finally in
section 4, we clarify the originality of ANGEL through its
comparison to other related works.

2 Analogical generalization

To represent knowledge, we use the form which conforms
to first order predicate logic. Two kinds of forms, called a
fact and a rule, are provided. A fact is represented as an
atom, while a rule is represented as a Horn clause, which is
expressed in the form of

Oél-—ﬂl,...,ﬁn,

where «,f1,...,0, are atoms. Letting » be a rule o «
Bi, ..., Pn, we denote the consequence of rule 7, namely o, by
cons(r), and denote the premise of rule 7, namely 31,...,0Gn,
by prem(r).

The underlying notion of analogical generalization is that
a new rule is generated by generalizing an input example,
which consists of facts, based on the similarity between the
example and the existing rules. Before formulating analogical
generalization, we define the similarity between two atoms,
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and next formalize the similarity between two finite sets of
atoms.

2.1 Similarity between two atoms

First, we define some basic notations. A substitution is a
finite set of the pair v/t, where v is a variable, ¢ is a term,
and the variables are distinct. Let § = {v1/t1,...,vn/ta}
be a substitution and e be an expression, which is either a
literal or a conjunction or disjunction of literals. Then ef is
the expression obtained from e by replacing each occurrence
of the variable v; in e by the term ¢;. If S is a finite set
of expressions and @ is a substitution, S0 denotes the set
{ed| e e S}.

Let 0 be a substitution and S be a finite set of atoms. If 56
is a singleton, S is unifiable by 6 and we write unifiable(S).

Now, we give the following two functions, and define the
similarity between atoms by means of these functions. Let
R be a set of existing rules, and o and o be atoms.

Definition 1 ( R-deducible set )
®(R,a) def {8 RU{a} |- 8,8 is an atom}.
Definition 2 (R-similar set )
{818 ca(R,a), % € ¥(RQ),
unifiable({8,4'})}.

V(R,a,d')

R-deducible set means all of newly obtained information
when a certain fact has been known. Thus the intuitive
meaning of R-similar set is newly obtained information in
common when each of two distinct facts has been known.
Therefore we can say that R-similar set represents the rele-
vance between two facts under the background knowledge.

Definition 3 (Similarity between atoms) Let o, o
and ay be atoms. If the following relation holds, a is more
similar to a3 than a; with respect to R.

Y(R,a,01) C U(R,a,a2)

And if the following holds, the similarity between o and
a1 is equal to the similarity between o and az with
respect to R.

‘Il(R9 «, al) = \I,(R1 a7a2)

Since R-similar set reflects the relevance between two given
facts, the similarity between a certain fact and two distinct
facts can be evaluated in terms of the subsumption relation
between R-similar sets reasonably .

For example, let R; be a set of rules shown as follows.

R; = {parent(z,y) < father(z,y),
parent(z,y) « mother(z,y),
family(z,y) « parent(z,y),
family(z,y) « brother(z,y),
hates(z,y) « kills(z,y),
hates(z,y) « hurts(z,y),
hates(z,y) «— strikes(z,y)}

Let wus consider the similarity of father(z,y) to
mother(Jim,Betty) and brother(Tom, Joe). For each atom,
the following R-deducible sets are derived as

®(Ry, father(z,y)) = {father(a:,y),parent(.;:,y),family(m, )}
&(R;,mother(Jim, Betty))
= {mother({Jim, Betty), parent(Jim, Betty),
family(Jim,Betty)}
®(Ry,brother(Tom, Joe))
= {brother(Tom, Joe), fanily(Tom, Joe)}.

R-similar sets of father(z,y) for mother(Jim,Betty) and
brother(Tom, Joe) are as follows.

U(Ry, father(r,y),mother(Jim,Betty))

= {parent(z, y), fanily(z,y)}
¥(Ry,father(z,y),brother(Ton, Joe)) = {family(z,y)}

Accordingly  father(x,y) is more similar to
mother(Jim,Betty) than brother(Tom, Joe) with respect to
R;. This result matches our intuition very well.

2.2 Similarity between two finite sets of atoms

The similarity between two finite sets of atoms is determined
by the similarity between elements of each set. In this case,
we also have to consider the matching between atoms in each
set. We begin with the definition of correspondence between
two sets of atoms.

Definition 4 (Correspondence ) Let A and B be finite
sets of atoms. Correspondence ¢ of A to B is defined as
follows, :

1. ¢ is a relation on 4 and B.

2. There is a substitution 8 and for all (a,B) € ¢8,

arity(a) = arity(B),
arg(a,n) = arg(B,n) (n=1,2,...),

where arity(a) indicates the number of arguments of
and arg(a,n) indicates the value of n-th argument of a.

3. For all a € A, there is an atom B such that (a, ) € ¢.
And for all B € B, there is an atom a such that (a,3) €

®.

For example, let A; and B; be sets of atoms shown as
follows.

Ay = {father(z,y),kills(y,z)}
B; = {mother(Jim,Betty), hurts(Betty, Jim)}

In this case, two correspondences ¢i,¢p2 of A; to B; are
obtained.

o1 = {(father(z,y),mother(Jim, Betty)),
(kills(y, z),hurts(Betty, Jim))}

@2 = {(father(z,y),hurts(Betty, Jim)),
(kills(y, z),mother(Jim, Betty))}

Definition 5 (Precedence of correspondence)
Let A and B be sets of atoms, ¢; and @3 be two distinct
correspondences of A to B. Then



o For all @ in A, a is similar to By such that (o, 1) € @1
than By such that (a, B2) € @2, or the similarity between
o and By is equel to the similarity between o and B2 with
respect to R, and

o There ezists o in A, which is similar to $1 such that
(at, B1) € @1 than B2 such that (o, B2) € @2, with respect
to R,

if and only if we say that correspondence ¢; precedes
@9 with respect to R. For a correspondence ¢ of A to
B, if there is no correspondence that precedes ¢, we call ¢ a
maximally preceding correspondence of A to B with
respect to R.

Maximally preceding correspondence represents the
matching between the most similar atoms in two sets of
atoms with binding variables consistently.

In the above example, ¢; precedes another corre-
spondence, namely, ¢, with respect to R;, because
father(z,y) is more similar to mother(Jim,Betty) than
hurts(Betty,Jim) and likewise kills(y,z) is more similar
to hurts(Betty,Jim) than mother(Jim,Betty). Therefore
1 is a maximally preceding correspondence of A; to By with
respect to Rj.

Definition 6 (Similarity between sets of atoms) )
Let A, A', B and C be sets of atoms, ¢p be a mazimally
preceding correspondence of A to B with respect to R and
¢ be a mazimally preceding correspondence of A’ to C with
respect to R. Then

e Forallain ANA', o is similar to Bp such that (a,3B) €
@B than Bc such that (a,fBc) € @c, or the similarity
between « and Bp is equal to the similarity between a
and B¢ with respect to R, and

o There exists a in AN A', which is similar to Bg such
that (o, BB) € @B than B¢ such that (o, Bc) € pc, with
respect to R,

if and only if we say that the similarity between A and B
is stronger than the similarity between A' and C with
respect to R, denoted by

R
[A:B]~[4':C).
Now, we assume C is the following set of atoms.

C} = {brother(Tom, Joe), strikes(Joe ,Mark)}

A maximally preceding correspondence of A; to C; with
respect to R; is shown as

{(fathexr(z,y), brother(Tom, Joe)),
(kil1s(y, z), strikes(Joe,Mark))},

and therefore,

[A]_ : B'_[] ;l [A1 : Cl]
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2.3 Formulation of analogical generalization

In this section, we proceed to formulate analogical general-
ization. First we give a logical consideration on analogical
generalization under five conditions to generate a rule, dis-
cussing these conditions briefly.

Let 7 be a non-ground atom which represents a target
concept, and E be an example, that is, a set of ground atoms
which is relevant to the target concept. In this case a non-
ground atom is an atom containing variables and a ground
atom is an atom containing no variable. We assume that
E contains 7/, called target instance, such that unifiable({r,
7'}). Let E' be a set given by removing target instance 7/
from E, and E” be a set of ground atoms deduced by RUE.
Analogical generalization is formulated as follows.

Definition 7 (Analogical generalization) Given
R,E,7, and +f
RUE' 7, (1)

then generating a rule v such that

RUE' U{r} 7, (2)
RUE'"U{r} is consistent, and (3)
r satisfies the following five conditions, (4)

is celled analogical generalization.

e Selection condition
There is a substitution § such that

()9 C B,

cons(r)8 = ',
where TI(r) denotes a set of all atoms that constitute ».

e Similarity condition
There 1s a rule (€ R), provided that

1. There is a correspondence of IL(r") to II(r)6, which
contains (cons(r'), ') 1.

2. For an arbitrary set of atoms A(C E"), the follow-
ing relation does not hold.

(I(r') : A] & [T(") : T1(r)8).

3. For an arbitrary rule v (€ R) and an arbitrary set
of atoms A(C E"), the following relation does not
hold.

[4: T & me)e : 1.

o Significance condition
For a rule v which satisfies similarity condition 2, letting
¢ be a correspondence of I1(»') to II(r)0,

U ¥®&pm 0.
(ex,B)eep

16 indicates the same substitution in selection condition.
2We call r' a base rule.
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o Generality condition
For a base rule 1/, letting p be a correspondence of I1(r')
to I1(r),

Y(0, ) € ¢, arg(a,n) = arg(8,n) (n=1,2,...).

o Applicability condition
For a base rule v', let 1 be a correspondence of II(+')
to I(r)8. Let w2 be a correspondence of I(r') to
A(C E") which contains 1/, provided that po contains
(cons(r'),7"). For all « € W(r'), if RU {a} ¥ B2 or
{a} & B2 such that (,f2) € w2, RU{B1} ¥/ B2 or
B1 = Bo such that (o, 1) € ¢1 has to holds.

Since there are, in general, many rules satisfying the equa-
tion (2) and (3), we have introduced the five conditions as
constraints for the rule r.

Selection condition means that the rule » is generated mak-
ing use of predicates which are used for representing given
examples and existing rules.

Similarity condition is a condition for the purpose of gen-
erating a rule which is similar to an existing rule. A base
rule, which is the most similar rule to a given example in ex-
isting rules, is selected appropriately due to this condition.
Moreover, it guarantees that, with respect to the similarity,
relevant atoms are extracted from the example for the se-
lected base rule. That is, this condition is regarded as a bias
depending on the domain specific knowledge.

Similarity condition is a condition for checking the valid-
ity of a base rule based on a relative comparison of the sim-
ilarities between a base rule and an example, while signifi-
cance condition investigates absolutely the relevance between
a base rule and an example by means of R-similar set. Rules
not satisfying significance condition should be regarded as
absurd rules.

Generality condition removes constants which occur in an
example from the generated rule. It aims at the versatility
of the generated rule.

If an atom « forms a rule r and RU {a} is able to deduce
another atom ', a rule formed by an atom o instead of «
also satisfies the equation (2) and (3). In this case, the latter
rule is more applicable than the former. Applicability condi-
tion guarantees the most applicable rule can be adopted.

3 ANGEL

3.1 Procedure

This section presents ANGEL in detail. If the set of exist-
ing rules R, an example F and target concept 7 are given,
ANGEL generate a new rule by means of analogical general-
ization. We show the overview of ANGEL in Figure 1.

If R consists of recursive rules, R-deducible set will be infi-
nite. Then, we assume R has no recursive rule for computing
the similarity between atoms practically.

The procedure of ANGEL consists of five steps: (1) ex-
tending an example, (2) extracting atoms from the example
and selecting a base rule out of the set of existing rules, (3)
generalizing the extracted atoms, (4) replacing predicates,

ritepy,..B,

generalization ——eijmm—— 1 : 0 Bl’,..., Bn’

selectﬂ

bias

| E:cxample ) R: existing
rules

T : target
concept

Figure 1: Overview of ANGEL

and (5) generating a rule. We show briefly each step as be-
low.

STEP1 Extending an example
Generate a set of ground atoms which are deduced by
RUF and denote it by E. If an atom a(€ E) can be
deduced by RU {¢'} (o' # a, ' € E), remove the atom
o from E.

STEP2 Extracting atoms and selecting a base rule
For each rule r' € R, make correspondences of I1(r') to A
which is an arbitrary subset of £. At this time, cons(r’)
will certainly correspond to the target instance. If a set
A’(# A) such that,

R
[(r') : 4] > [1(+') : 4],
A'CE
does not exist, regard the correspondence of II(r') to
A as a candidate of useful correspondence; otherwise

abandon the set A. Note that once abandoned sets for
a certain rule are never adopted for other rules.

For all candidates of useful correspondences, evaluate
the similarities between subsets of an example and rules.
And if a correspondence of A’ to II(r”) such that,

(A TI(")] = [A < T()],
A CE,
" eR

does not exist, adopt the correspondence of 4 to I(r')
as a useful correspondence.

STEP3 Generalizing atoms

Generalization is performed by turning constants to
variables. As a result of STEP2, there is at least one
useful correspondence ¢ of II('), in which r’ is selected
out of R, to A, which is a subset of E. Now, turn con-
stants in atoms in the set A to variables which occur at
the same position of II(r') according to the correspon-
dence ¢.



STEP4 Replacing predicates

For each pair of atom (a, 8) in ¢ which is a useful cor-
respondence of II(r') to A, if ®(R,3) contains an atom
which consists of the same predicates as «, replace the
predicate of 8 with the predicate of a. Otherwise, let S
be a set of atoms in ®(R, 3) provided that none of whose
predicates occurs in (R, a). Replace the predicate of
B with the predicate of y(€ S) such that

Yy €S, ®(R,)2 ®(R,).

STEPS5 Generating a rule
Finally, generate a new rule r in which cons(r) consists
of the atom which is generalization of the target instance
and prem(r) consists of the atoms which are generaliza-
tions of the atoms in the set A except the target instance.

3.2 Examples and discussions

In this section, we present the two examples of learning by
ANGEL. And we clarify the effectiveness of ANGEL by con-
sidering the experimental results.

First, we show a simple example in order to follow the
behavior of ANGEL. A set Ry which consists of seven existing
rules defines relations of family. E; is an example for the
target concept “grandmother(s,t)”.

R, = { grandfather(z,z) «— parent(z,y),father(y,z), ---(rl)
uncle(z, z) « parent(z,y), brother(y, z), < (r2)
cousin(z,y)

«— parent(z,v), parent(y, w), brother(v, w), (r3
parent(z,y) « mother(z,y), (r4
parent(z,y) «— father(z,y), G
family(z,y) « parent(x,y), (r6
family(z,y) « brother(z,y)} (r7

E, = {grandmother(Peter, Mary),
mother(Paul, Mary),
father(Peter, Paul),
mother(Peter, Lucy),
likes(Paul,Mary),
engineer(Peter),
student(Paul)}

If F is given, ANGEL starts to extend the example. In
this case, since no atom has been deduced, the extension of
FE is Fy itself.

In STEP2, candidates of useful subsets of F; are found for
the rule 71 as follows.

{grandmother(Peter, Mary),
father(Peter, Paul),

mother(Paul,Mary)} oo (s1)
{grandmother(Peter, Mary),

father(Peter,Paul),

likes(Paul, Mary)} - (s2)

In these sets, since the relation

[[(r1) : s1) & [I(r1) : 52

holds, the set s2 is abandoned. As a result, only sl are
adopted as the useful set of atoms. Likewise, sl is adopted
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for the rule r2. And no set of atoms is adopted for other
rules 3 ~ r7.

Next, the similarity between II(r1) and II(r2) is evaluated.
As a result, the rule r1 is adopted as a useful rule, because
the relation

[s1:T(r1)] 5 [ s1: TI(r2)]

holds.

In STEP3, the generalization will be accomplished. Now,
there have been the following correspondences of II(r1) to
sl.

{(grandfather(z, z), grandmother(Peter, Mary)),
(parent(z,y),father(Peter,Paul)),
(father(y, z), nother(Paul, Mary))}

Therefore, the set of generalized atoms are obtained as fol-
lows.

{grandmother(z, z),father(z,y),mother(y, z)} ---(sl’)

Next, in STEP4, predicates in s1’ are replaced with
more applicable one. In this case, predicate father in
s1' is replaced with predicate parent, because predicate
parent occurs in ®(Rp,father(z,y)). While predicate
mother in sl’ is not replaced, because predicate father
never occurs in ®(Ry,mother(y,z)) and atom mother(y, z)
is the only one atom in ®(Ry,mother(y, z)) except atoms in
®(Rg,father(y,z)). As a result of the replacement of pred-
icates, a set of atoms are modified as

{grandmother(z, z), parent(z,y),mother(y, z)}. ---(s1")

In STEPS, finally, according to the above set s1”, the fol-
lowing new rule is generated and added to Rs.

grandmother(z, z) « parent(z,y),mother(y,z) ---(r8)

The rule 78 satisfies the requirement for analogical gener-
alization given at Definition 7, and it is just appropriate rule
about the target concept. In this case, good learning has
been performed, because the rule which is closely similar to
the rule for target concept is in the existing knowledge bhase.

In rule based systems, generally, the lack of rules causes ei-
ther interruptions or mistakes on inference. ANGEL is useful
for such a situation, because it is possible to continue infer-
ence by generating new rules from given examples.

Next we show an example of acquiring rules for the system
for parsing simple English sentences. The target system is
capable of parsing English sentences by means of syntactic
rules shown as Figure2. In this system a sentence is treated
as a list. For example the sentence “The sun rises in the
east” is represented as the list,

[the, sun,rises, in, the, east]
And

noun _phrase([the,sun,rises,in,the,east],
[rises,in,the,east])

indicates that [the, sun] is noun phrase. The system exam-
ines whether or not a given sentence is grammatically valid
by a backward chaining inference by means of the syntax
rules.
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sentence(s,e) «— noun phrase(s,v;), verb_phrase(vi,e).
sentence(s,e) < noun_phrase(s,v; ), verb_phrase(vy,v2),
prepositional phrase(v,,e).

sentence(s,e) — present_progressive(s,e).

sentence(s,e) — present_passive_voice(s,e).

sentence(s,e) «— present_perfect(s,e).

noun_phrase(s,e) « determiner(s,v; ), noun(vy, e).

noun_phrase(s,e) — noun(s,e).

prepositional_phrase(s,e) « preposition(s,v),

noun_phrase(v;, ).

verb_phrase(s,e) « verb(s,e).

verb_phrase(s,e) « verb(s,v;),noun _phrase(v;,e).

present_progressive(s,e) « noun_phrase(s,v1),
present_BE(vq, v2), present_participle(vs,e)

present_progressive(s,e) « noun phrase(s,v;),
present_BE(vy, vz), present_participle(vz, v3),
noun phrase(vs,e)

verb(s,e) < BE(s, e).

verb(s,e) «— main_verb(s,e).

verb(s,e) «— present_verb(s,e).

verb(s,e) — past_verb(s,e).

BE(s, €) « present_BE(s,e).

BE(s,e) « past_BE(s, e).

main_verb(s,e) « present_main_verb(s,e).

main_verb(s,e) «— past_main_verb(s,e).

present_verb(s,e) « present _BE(s, e).

past_verb(s,e) «— past_BE(s,e).

present_verb(s,e) «— present_main_verb(s,e).

past_verb(s,e) «— past_main_verb(s,e).

auxiliary_verb(s,e) «— present_auxiliary verb(s,e).

auxiliary.verb(s,e) « past_auxiliary verb(s,e).

participle(s,e) — present_participle(s,e).

participle(s,e) — past.participle(s,e).

determiner(s,e) — THE(s,e).

noun(s, e) « SUN(s, e).

noun(s,e) « EAST(s,e).

noun(s,e) — DOOR(s,e).

noun(s,e) « HER(s,e).

noun(s,e) « HE(s, €).

noun(s,e) — I(s,e).

noun(s,e) — HOMEWORK(s, €).

present_main_verb(s,e) «— HAVE(s, e).

present_main_verb(s,e) «— RISES(s,e).

present_auxiliary verb(s,e) « HAVE(s, €).

present BE(s,e) « IS(s,e).

past_participle(s,e) < CLOSED(s,e).

past_participle(s,e) «- RESPECTED(s, e).

past_participle(s,e) « FINISHED(s,e).

preposition(s,e) — IN(s,e).

preposition(s,e) « BY(s,e).

Figure 2: A part of rules in existing knowledge base

As Figure2 indicates, initially, the rule to define syntax
about the present passive voice is insufficient. Then we have
tried to generate a lacking rule by ANGEL.

For the target concept “present_passive_voice(s,e)”, we
have given the following example E3 to ANGEL.

E; = { present_passive_voice([the,door,is,closed], [1),
THE( [the,door,is,closed], [door,is,closed]),
DOOR([door,is,closed], [is,closed]),
IS([is,closed], [closed]),

CLOSED( [closed], [1)}

Firstly, the given example E3 has been extended to the
following set E5.

Ez = { present_passive_voice([the,door,is,closed], []),
THE([the,door,is,closed], [door,is,closed]),
DOOR([door,is,closed], [is,closed]),
IS([is,closed], [closed]),

CLOSED([closed], [1),
noun_phrase([the,door,is,closed], [is,closed]),
sentence([the,door,is,closed], [closed])}

Then, the useful correspondence has been found as follows
by using a rule for “present_progressive” as a base rule.

{(present_progressive(s,e),
present_passive_voice([the,door,is,closed],[1)),
(noun_phrase(s, v1),
noun phrase([the,door,is,closed], [is,closed])),
(present_BE(v1,v2), IS([is,closed], [closedl)),
(present_participle(vs,e),CLOSED([closed], [1))}

As a result, we have confirmed that ANGEL generates the
following one rule successfully.

present_passive_voice(s,e) «— noun_phrase(s,v),
present_BE(vy,v2),
past_participle(vz,e) ---(r9)

The generated new rule 79 is added to the knowledge base.
Again we have given an example sentence “A mouse is

caught by a cat.” for the same target concept.

In this case, two distinct rules 710 and r11 are generated
by using the identical base rule in the existing knowledge
base.

present_passive_voice(s,e) — noun_phrase(s,vy),
' present _BE(vq,v,),
past_participle(vs,vs),
prepositional_phrase(v;,e)

-+ (r10)
present_passive_voice(s,e) «— sentence(s,v;),
participle(vy,vs),
preposition(vs,vs),
noun_phrase(v;, €)
.o (r11)

Like the above, ANGEL sometimes generates several rules
for one example. It is now important to examine whether
each of the generated rules is appropriate. For instance, The
rule r10 is a suitable rule, whereas the rule r11 is obviously
strange. The reason for this is none of the rules in the existing
knowledge base are really similar to the given example. Since
atom noun_phrase(vs, e) in selected base rule

present_progressive(s, e) «— noun_phrase(s,v;),
present_BE(vy,v2),
present_participle(vs,vs),
noun_phrase(vs, e)



corresponds to atom prepositional phrase(vs,e) in the
rule r10 and atom noun_phrase(vs,e) in the rule r1l
(namely, the given example is regarded as the sentence con-
sisting of some phrases and noun_phrase), the similarity be-
tween the base rule and the rule 711 are stronger than the
one between the base rule and the rule 710 in respect of these
atoms.

Next, we have supplied a sentence “He was killed by them.
? to attempt to generate a rule for another target concept
past_passive_voice(s,e). ANGEL could generate a new
rule 712 by employing a rule 710 generated just now.

past_passive_voice(s,e) «— noun phrase(s,v;),
past _BE(vq,72),
past_participle(vsz,vs),
prepositional phrase(vs,e)
S (r12)

In this case, since an appropriate base rule, which does
not exist initially, has occurred in knowledge base, a good
rule is generated accurately by selecting it. ANGEL is capa-
ble of growing knowledge base gradually by employing rules
generated by ANGEL itself as base rules.

Let us discuss the computational complexity of ANGEL.
In order to evaluate the similarity between atoms, ANGEL
has to compute deductive closures of each of the atoms. And
the similarities between atoms in arbitrary correspondences
have been estimated to find the most suitable pair of the
atoms in the given example and the base rule. Therefore,
procedure of ANGEL may be expensive as a whole, although
hypothesis space to be considered is small. In fact, as a
result of implementing ANGEL on Sun SPARC Station2 with
SICStus Prolog, it took a few minutes to generate a English
syntax rule.

The approach evaluating similarities between atoms based
on their deductive closures is theoretically interesting, but it
may not be practical. For the purpose of practical learning,
some restrictions on either forms of the background knowl-
edge or the hypothesis language are required like Muggleton’s
GOLEM[Muggleton 1990]. We think we will have to improve
the practicability of ANGEL in the near future.

4 Related works

In this section, we characterize ANGEL from a viewpoint of
general machine learning framework.

ANGEL belongs to the category of learning from exam-
ples, in the sense that it generates new rules by generalizing
given examples. In inductive fearning methods, generally,
pre-defined generalization rules are used for generalizing ex-
amples. ANGEL also uses three kinds of generalization rules
corresponding to dropping condition rule, turning constants
to variables rule and constructive generalization rule based
on logical implications [Michalski 1983}, all of them are con-
sidered as the primary generalization rules in learcing from
examples. However, ANGEL differs from the ordinary in-
ductive learning methods in using the existing rules as the
bias. That is, ordinary inductive learning uses no existing
rules, even if so, it uses them for the constructive induction.
Oun the other hand, ANGEL employs the similarity between

503

the existing rules and the given example in order to drop
conditions, so it can reduce the hypothesis space extremely.

ANGEL is related to inductive logic programming (ILP),
because it generates rules represented as Horn clauses by
induction. ILP is also capable of learning new rules with
reference to existing rules. Both Muggleton and Bun-
tine’s CIGOL[Muggleton and Buntine 1988] and Wirth'’s
LFP2[Wirth 1989], which are typical examples of ILP sys-
tem, use operators based on inverting resolution to aug-
ment incomplete clausal theories. The difference between
these systems and ANGEL is the way of employing existing
background knowledge. That is, in both of their systems,
background knowledge is not employed as biases at all. In
fact, rules can be acquired under no background knowledge.
Therefore the interaction between user and system is in-
evitable in their systems to derive reasonable rules. Whereas,
ANGEL employs background knowledge as a bias. A given
example is generalized through mapping a structure of a rule
in existing knowledge base. It provides a strong restriction
for induction and serves to generate a few useful new rules.

ANGEL evaluates a similarity between existing rule and a
given example to learn a new rule. Therefore it can also be
regarded as a kind of method for learning by analogy. Davies
and Russell [1987] have defined, in their paper, reasoning by
analogy as the process of inferring that a property @ holds of
a particular situation T (called the target) from the fact that
T shares a property P with another situation S (called the
source) that has property Q. In analogy, it is very important
to match between the target and the source. Similarly, in
ANGEL, the matching between existing rules and a given
example, which is called correspondence in this paper, must
be found successfully. Now we compare ANGEL with several
methods with respect to the way of matching.

Haraguchi and Arikawa [1986] have formalized the reason-
ing by analogy on a deduction system. In their method,
the domain for reasoning is represented by a set of definite
clauses, and the similarity between objects is defined as the
identity of predicates. Therefore the matching is performed
by pairing the atoms which are described with the same pred-
icate. On the other hand, ANGEL finds a correspondence
between atoms based on their similarities, that is, it will not
require identity of predicates. And it enables ANGEL to
generate completely novel rules.

Recently, Arima [1991] has analyzed analogy from the
point of logical relevance. His formulation is based on the
idea as follows.

1. The property to be projected from the source to the
target must be justified.

2. The similarities, which means the properties shared by
both the source and the target, should be formed by the
minimun justifications.

Unlike ANGEL, the shared properties must be represented
by the same predicates both with the source and with the
target.

Gentner [1983] has also developed a method, called Struc-
ture Mapping, for the matching between the target and the
source. In her method, first an atom is matched with an-
other atom, when both of them are described with the same
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predicates, and next, the object in each atom is matched.
And the process of the matching is repeated based on newly
matched objects. ANGEL is similar to Structure Mapping,
because the matching between atoms is achieved based on
the matched objects. However, there are the following two
differences between them.

1. Although Structure Mapping requires the identity to
several kinds of predicates (e.g. greater, cause, etc.)
in order to match between atoms, ANGEL will not re-
quire the identity of predicates at all.

2. In Structure Mapping, the similarity between descrip-
tions is defined by the identification of predicates and
the number of matched descriptions. On the other hand,
in ANGEL, it is defined as the subsumption between
deductive closures of atoms based on the logical consid-
eration.

ANGEL is also related to both the explanation-based
learning (EBL)[Mitchell et al. 1986] and Russell’s single-
instance generalization (SIG)[Russell 1987], because all of
them are capable of learning from one example and back-
ground knowledge. However, EBL has to need completeness
for background knowledge, so rules produced by EBL are lim-
ited to ones which are deducible from background knowledge.
In this sense, EBL cannot generate really new rules. SIG re-
quires weak background knowledge, called determinations,
in stead of complete one. That is, it can learn rules under
comparatively insufficient background knowledge in contrast
to EBL. Properly new rules cannot, however, be generated,
because it does not deal with non-deductive reasoning.

5 Conclusion

This paper has described an approach to learning from an
example by analogical generalization.
The notable features of ANGEL are shown as follows.

1. ANGEL is able to generate a new rule from a given single
example by analogical generalization.

2. A similarity between an existing rule and an example
can be evaluated a similarity between atoms forming
each of them.

3. A similarity between atoms is defined based on the sub-
sumption relation between deductive closures of atoms,
and it enables to compute similarities formally.

Through the experiment for the domain of parsing English
sentences, we have confirmed that ANGEL is useful for ac-
quiring knowledge on knowledge based systems.

In this paper, from the inductive learning point of view,
we have highlighted the methoed to generate a new rule from
a given example. The definition of similarity introduced here
is not specific for inductive learning. We plan to apply this
idea to other various reasoning paradigms (e.g. ordinary ana-
logical reasoning, deductive reasoning and so on) to improve
performance and applicability of them.

This work was supported partly by the Grant-in-Aid for
scientific research from the Ministry of Education.
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Abstract: This paper treats a general type of analog-
ical reasoning which is described as follows: when two
objects, B (thebase) and T (the target), share a prop-
erty S (the similarity), it is conjectured that T satisfies
another property P (the projected property) which B sat-
isfies as well.

Through a formal analysis of this type of analogy, a
logical relation is explored which is necessarily satisfied
by the tuple, T, B, S, P, under an axiom, A. Unlike pre-
vious studies on analogy, this work does not give any
particular assumption a priori to the tuple.

By the analysis, it is shown to be reasonable that ana-
logical reasoning is possible only if a certain form of rule,
called the analogy prime rule, is a deductive theorem of
a given theory, and that, from the rule. together with
two particular conjectures, an analogical conclusion is
derived. Also, a candidate is shown for a non-deductive
inference system which can yield both conjectures.

1 Introduction

When we explain a process of reasoning by analogy, we
may say, “An object T is similar to another object B
in that T shares a property S with B and B satis-
fies another property P. Therefore, T also satisfies P”.
We may express this more formally using the following
schema.

S(B) A P(B)
S(T)
P(T)

Here, T will be called the target, B the base, S the sim-
ilarity between T and B, and P the projected property.

‘The above description of the process of analogy is,
however, insufficient. Researchers studying analogy have
come to recognize the necessity of revealing some implicit
condition which influences the process but does not ap-
pear in the above schema. The importance of this has
already been discussed enough in [3]. The implicit con-
dition to be satisfied by appropriate analogical factors,

T. B, S. and P. can, formally, be characterized only by
a given theory (axiom), written as A. The objective of
this paper is to explore the particular relation of analogy
which T, B, S, P and A necessarily satisfy.

In the study of analogy, the following have been central
problems:

1) what object should be selected as a base w.r.t a tar-
get,

2) which property is significant in analogy among prop-
erties shared by two objects, and

3) what property is to be projected w.r.t. a certain sim-
ilarity.

Many significant works have been vigorously conducted
on these problems, though they were only partially suc-
cessful in answering these questions. that is, by giving in-
tuitive and strong assumptions a priori. In many works.
a base case was assumed to be given w.r.t. a target case
[4. 11, 10]. In almost all works, the important similar-
ity (or similarity measure) was defined a priori indepen-
dently of what property was projected {20, 6, 10, 7. 5].
In logical works [8, 5], especially in [3], nice logical rela-
tions among the analogical factors could be seen. though
they, like others, were given without sufficient examina-
tions which would show why and how their relations were
necessary.

Unlike previous studies on analogy, this work does not
give any particular assumption a priori to the analogical
factors. Clarifying the relation between the factors, T,
B, 5, P and A, will be enough to answer the above
three problems once and for all. The relation shown by
this paper is a general solution for them and might show
how useful a formal treatment is in analyzing analogical
behavior.

First, through a logical analysis of analogy, it is shown
to be reasonable that, when an analogical inference is
done under a theory A, a particular form of rule must
be a logical conclusion (a theorem) of A and that ana-
logical inference is accomplished by two particular types
of (generally non-deductive) conjectures. Then, a non-
deductive inference is proposed, which is shown to be an
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adequate candidate to yield the conclusions of both these
conjectures.

2 A Logical Analysis

2.1 Preparations

In this paper, we use standard formal logic and notations,
while defining the following. An n-ary predicate U is
generally expressed by Az, where z is a tuple of n object
variables, @ is a formula in which no object variables
except variables in z occur free. If ¢ is a tuple of n terms,
U(t) stands for the result of replacing each occurrence of
(elements of) = in Q with (each corresponding element
of) t simultaneously. For any formulas A and F., when
A& F and i/ F (that is, F is not valid), we say F is a
genuine theorem of A and express it simply as 4 |—-F.

We will use a closed formula of first order logic A for a
theory, (generally n) terms T for a target and (generally
n) terms B for a base. A property is expressed by a pred-
icate, for instance, a similarity and a projected property
are expressed by predicates, S and P respectively.

2.2 Approach To A Seed of Analogy

We can understand analogical reasoning as follows:

(1) Example-based Information:
“An object, 2’ (corresponding to a base). satisfies
both properties S and P (3z'.(S(z') A P(2'))).”

(2) Similarity-based Information: “Another object,
z (corresponding to a target), satisfies a shared
property S with @' (S(z)).”

(3) Analogical Conclusion: “The object x would sat-
isfy the other property P (P{z)).”

Then,
“Analogical reasoning is to reason (3) from A
together with (1)+(2).” (A)

Let this understanding be our starting point of analy-
sis. ,

As analogy is not, generally, deductive, this starting
point may, unfortunately, be expressed only as follows.
In the notation of proof theory,

A, 32’ (S5(z’) A P(a")),S(z) i P(z). (1)

As analogy, however, infers P(z) from the premises, it
implies that some knowledge is assumed in the premise
part of (1). Let the assumed knowledge be F(z), provid-
ing that it depends on the z in general. That is,

A, 3z’ (S(2') A P(2)),8(x), F(z) + P(z). (2)

Thus, the essential information newly obtained by anal-
ogy is F(z) in the above rather than the explicit pro-
jected property P . Making J(z) stand for the con-
junction of the example-based information and F(x). the
above meta-sentence is transformed equivalently to

Ak Ve.(J(z) A S(2) D P(e)), (3)

because A is closed. This implies that a rule must be
a theorem of A and that the rule concludes any object
which satisfies J(z) to satisfy P when it satisfies S. Once
J is satisfied, (by reason of (S(z) D P(z)),) the analog-
ical conclusion (“an object satisfies P”) can be deduced
from the similarity-based information (“the object sat-
isfies §). For this reason, this rule will be called the
analogy prime rule (it will be specified in more detail
later), J will be called the analogy justification.

Moreover, it is improbable that the analogy prime rule
is a valid formula, because, if so, any pair of predicates’
can be an analogical pair of a similarity and a projected
property independently of A. Thus, the analogical prime
rule must be a genuine theorem of A,

A =Va2.(J(z) A S(z) D P(z)). (4)

Consequently, an object T which satisfies S is concluded
to satisfy P from an analogy prime rule by analogical
reasoning that assumes that T satisfies the analogy jus-
tification (J(T')). That is, our starting point (A) can be
specified from two aspects.

“An analogical conclusion can be obtained from

‘an analogy prime rule together with example-

based information and similarity-based informa-
tion.” (B)

“A non-deductive jump by analogy, if it occurs,
is to assume that the analogy justification of the
prime rule is satisfied.” (C)

In the following part of this paper, the analogy jus-
tification and non-deductivity will be further explored.

Before beginning an abstract discussion, it may be use- ™~

ful to see concrete examples of analogical reasoning. The
next section introduces “target” examples of analogical
reasoning to be clarified here.

2.3 Examples

Examplel: Determination Rule[3]. “Bob’s car
(CBob) and Sue’s car (Csye) share the property of being
1982 Mustangs (Mustang). We infer that Bob’s car is
worth about $3500 just because Sue’s car is worth about
$3500. (We could not, however, infer that Bob’s car is
painted red just because Sue’s car is painted red.)”
Example-based Information:

Model(Csye, Mustang) A Value(Cgsye,$3500),  (5)



Similarity-based Information:

Model(CBoy, Mustang), (6)

Example2: Brutus and Tacitus [1]. “ Brutus feels
pain when he is cut or burnt. Also, Tacitus feels pain
when he is cut. Therefore, if Tacitus is burnt. he will
feel pain.”

Example-based Information:

(Suffer(Brutus,Cut) O FeelPain(Brutus)) (7)
A(Suf fer(Brutus, Burn) O Feel Pain(Brutus)) (8)

Similarity-based Information:

Suf fer(Tacitus,Cut) D FeelPain(Tacitus) (9)

Example3: Negligent Student!. “ When I discov-
ered that one of the newcomers (Studentr) to our lab-
oratory was a member of an orchestra club (Orch), re-
membering that another student (Studentp) was a mem-
ber of the same club and he was often negligent of study
(Study), I guessed that the newcomer would be negligent
of study, too.”

Example-based Information:

Member_of(Studentp,Orch)
ANegligent_of(Studentg, Study) (10)

Similarity-based Information:
Member_of(Studentr,Orch) (11)

2.4 Logical Analysis: a rule as a seed
of analogy

In treating analogy in a formal system, as the informa-
tion of a base object being S and P is projected into
a target object, it is desirable to treat such properties
as objects so that we can avoid the use of second or-
der language. As an example, the fact that Bob’s car is
a Mustang is represented by “Model(Cp.p, Mustang)”
rather than simply as “Mustang(Cgy)”. In the remain-
ing part, we rewrite S(z) to X(z, S) and P(z) to II(z, P).
¥ will be called a similar attribute, Il will be a projected
attribute, S as an object will be a similar attribute value,
and P as an object will be a projected attribute value.
Then, (4) is rewritten

A Vz,s,p.(J(z,3,p) AX(z,8) D II(z, p)), (12)

considering the most general case that the analogy jus-
tification J depends on all of these factors.

Again, when 3-tuple < object: X, similar attribute
value: S, projected attribute value: P > satisfies the
analogy justification J, object X is conjectured to sat-
isfy the projected property Az.Il(z, P) (analogical con-
clusion) just because X has the similarity Az.X(z,S).

!The author thanks Satoshi Sato (Hokuriku Univ.) for showing
this challenging example.
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That is, J(x,s,p) can be considered a condition. where
x could be concluded to be p from z being s by analogical
reasoning.

Now, recalling that an analogical conclusion is ob-
tained from the analogy prime rule with example-based
information and similarity-based information, consider
what information can be added by the information in
relation to the analogy prime rule.

1) Example-based Information: This shows that
there exists an object as a base which satisfies a
similarity and a projected property ( Jz’.(X(2’..S) A
[I(z', P)) ). It seems to be adequate that the base,
B. satisfying Y(z’,5) can also be derived to sat-
isfy II(2', P) from the prime rule. because B can be
considered a target which has similarity S. That is,
3-tuple < B, S, P > satisfies the analogy justifica-
tion. Comnsequently, from arbitrariness in selection
of an object as a base in this information, what is
obtained from this information is 3z’. J(z', S, P).

2) Similarity-based Information: This shows that
an object as a target, T, satisfies the same prop-
erty S in the above. Just by this fact, an analogical
conclusion is obtained, by assuming that the object
satisfies J by some conjecture. That is, there ex-
ists some attribute value p’ and 3-tuple < 7', S,p' >
satisfies J (3p'. J(T,5,p')).

3) Analogical Conclusion: With the above two
pieces of information, an analogical conclusion. “T'
satisfies II(x,P)”, is obtained from the analogy
prime rule. Therefore, such 3-tuple < T.5,P >
satisfies J ( J(T,S,P) ).

In the above discussion, T, S, and P are arbitrary.
Therefore, the following relation about the analogy jus-
tification turns out to be true:

S Va,s,p.( 32’ J(2", s.p) A TP T (2, 5,D)
D J(z,s,p) ). (13)

(13) is able to represent it equivalently as follows:

J(%S,P) = att(s’p)/\']obj(zws)v (14)

where both J,; and J,; are predicates, that is, each of
them has no free variables other than its arguments.

The point shown by this result is that any analogy
justification can be represented by a conjunction in which
variable x and variable p occur separately in different
conjuncts.

By (12) and (14), the analogical prime rule can be
defined as follows.

Definition 1 Analogy Prime Rule
A rule is called an analogy prime rule w.r.t.
< X(z, s);Il(z,p) >, if it has the following form:
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YV, s, p(Jare(s.p) A Jopj (2. 8) A X(z,s) D Il(z.p)), (15)

where Joy, Jopj. © and I are predicates. (That is, each of
Jart(5,0), Jopj(2.5), B(x,s) and (. p) ts a formula in
which no variablé other than its arguments occurs free.)
m]

In (15), Juu(s.p) will be called the attribute justifica-
tion and Jo;(z,s) will be called the object justification.

Also, by the above discussion, the following two con-
jectures can be considered as causes which make analogy
non-deductive.

¢ Example-based Conjecture (EC): An object
shows a existing concrete combination of a similar-
ity and a projected property. This specializes the
prime rule and allows it to be applicable to a simi-
lar object. Assuming some generally non-deductive
inference system under A, “hA” (we will propose
such a system later),
J2.(Z(2, ) A 1L(z, P)) pA Jare(S.P).  (16)
¢ Similarity-based Conjecture (SC): Just be-
cause an object satisfies S, application of the spe-
cialized prime rule to the object is allowed.

(2, 8) A (2, §). (17)

In case that the attribution justification (J,u(s,p))
is a valid formula, example-based information becomes
unnecessary in yielding analogical conclusion. Thus, it
could, in general, be essential in analogical reasoning to
guess J,;(s,p) which is not a valid formula. The ob-
ject justification (Jop;(x, ) is, still, important in another
sense, because it can be considered to express a really sig-
nificant similarity. It is not an unusual case when a really
significant similarity is not observable. Consider a case
of Example 2. Having a nervous system will be a suffi-
cient condition for an object to feel pain. thus, whether
an object has a nervous system is a significant factor in
making a conjecture on feeling pain. In this case, how-
ever, we could, without dissection, not obtain a direct
evidence which shows that Tacitus and Btutus have ner-
vous systems, while we obtain only a circumstantial evi-
dence that the both feel pain when they are cut. Thus,
the similarity-based conjecture is to guess such a really
significant but implicit similarity, the object justification
(Jopj{z.s)), from an observed similarity X(x.s).

To summarize, a logicai analysis of analogy could draw
conclusions as follows.

Analogical reasoning is possible only if a certain ana-
logical prime rule 1s a genuine theorem of a given theory

and the process of analogical reasoning can be divided
into the following 3 steps: 1) the attribute justification
part of the rule is satisfied by EC from example-based in-
formation. 2) the object justification part of the rule is
satisfied by SC' from similarity-based information, and,
3) from similarity-based information and the analogy
prime rule specialized by the two preceding steps, an
analogical conclusion is obtained by deduction.

A question remains unclear, that is, what inference
is EC and what SC? Though we cannot identify the
mechanism underlying each of the conjectures, we can
propose a (generally) non-deductive inference system as
their candidates. The next section shows this.

3 Non-deductive Inference for’
Analogy

This section explores a type of generally non-deductive
inference by which a conjecture G is obtained from a
given theory A with additional information K.

Generally speaking, what properties should be satis-
fied by a. generally, non-deductive inference? It might
be desirable that a non-deductive inference satisfies at
least the following conditions. First, it should subsume
deduction, that is, any deductive theorem is one of its
theorems, because any deductive conclusion would be
desirable. Secondly, any conclusion obtained by it must
be able to be used deductively, that is, from such a con-
clusion, it should be possible to yield more conclusions
using, at least, deduction. And, thirdly, any conclusion
obtained must be consistent with given information. We
define a class of inference systems which satisfy the above
three conditions.

Definition 2 An inference system under a theory A
(written ) is deductively ezpansible if the following
conditions are satisfied. For any set of sentences A and
K and any sentences G and H,

i) Subsuming deduction:

if AKFG then KpRAG.

i) Deductive usefulness:
if Kp*G and AK,G+H. then Kp*H.
iii) Consistency:
if K G and AUK is consistent, then
AU K U{G} is consistent.

The following inference system is an example of a de-
ductively expansible system.



Definition 3 G is a conjecture from A based on K by
(atomic) circumstantial reasoning (written K 2 G) 2.

iof
i)y AKFG, or
i) AEFFG

if there exists a minimal set of atomic formulas® E
st. AEF K, and AUE is consistent if
AUK is consistent®.

Proposition 1
If K*G and K,G 2 H, then K * H.

Corollary 1 If K A G, then K A G.

Corollary 1 shows that circumstantial reasoning is de-
ductively expansible, and proposition 1 (together with
the corollary) shows that inference done by multiple ap-
plications of circumstantial reasoning is also deductively
expansible.

Circumstantial reasoning (K p2 G) implies a very
general and useful inference class in that so many types
of inference used in Al can be considered as circumstan-
tial reasoning. Deduction and abduction, for example,
are obviously circurnstantial reasoning. Moreover, if we
loosen the condition “atomic formulas” to “clauses”, in-
ductive learning from examples is the case where A is
empty in general, K is “examples” and G is inductive
kriowledge obtained by “learning”® ©

Now, we assume that both EC and SC are circumstan-
tial reasoning, but based on different information. Then,
we can see analogical reasoning in more detail.

Let an analogy prime rule w.r.t. < X(z,s):d(z,p) >
be a theorem of A. Then, when example-based informa-
tion, (B, S) A II(B, P), is introduced, by circumstan-
tial reasoning from the prime rule, some justifications are
satisfied, that is,

Y(B,8) AL(B, P) b2 Jou(S, P) A Jop;(B.S).  (18)

which concludes a specialized prime rule,

2Circumstantial reasoning is essentially equivalent to “abduc-
tion” + deduction [13, 15]. However, “abduction” has many defi-
nitions and various usages in different contexts, so we like to intro-
duce a new term for the type of inference in Definition 3 to avoid
confusion.

3 Atoms, that is, formulas which contain only one predicate
symbol.

4If there exists such a minimal set of atomic formulas E, the
case i) involves the case i) apparently. Thus, the case i) can often
be neglected in a usual application, for instance, if K is a universal
formula which has the form Vz.F(z), where F' is quantifier-free.
Note that a clause is universal.

5In this case, G = E in Definition 3, which implies that G is a
minimal set to explain “example” K. Indeed, such minimality is
very common in this field. .

5Such a unified aspect of various reasoning in Al was pointed
out by Koich Furukawa (ICOT) in a private discussion and a sim-
ilar and more intuitive view can be seen in [5].
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Vo (Jopj(2, ) A T2, §) D (e, P)). (19)

Even if similarity-based information ¥(7,S) is intro-
duced. to obtain analogical conclusion II(T, P) by cir-
cumstantial reasoning, some information apart from the
prime rule turns out to be needed in .A. And, both EC
and SC' are generally needed to accomplish analogical
reasoning. which implies that multiple application of cir-
cumstantial reasoning is necessary. Even in such a case.
circumstantial reasoning remains worthwhile (Proposi-
tion 1).

4 Classification of Analogy and
Examples

Each EC and SC has two cases: a deductive one and
a non-deductive one. According to this measure, ana-
logical inference can be divided into 4 types. A typical
example is shown in each class and explored.

4.1 deductive EC + deductive SC

Typical reasoning of this type was proposed by T.Davies
and S.Russell [3]. They insisted that, to justify an ana-
logical conclusion and to use information of the base case.
a type of rule, called a determination rule, should be a
theorem of a given theory. The rule can be written as
follows:

Vs.p.( 32'.(Z(a’,s) ATI('. p))
D Ve.(X(z,s) D I(z.p)) ) (20)

Example 1 (continued). In this example, the follow-
ing determination rule is assumed to hold under A.

Vs,p.( 3z'.(Model(z',s) A Value(a',p))
D Ve.(Model(z.s) D Value(z.p)) ) (21)

This rule is an analogy prime rule. because

Jj(z.8) = T(x.3) = Model(z.s),
Jun(s.p) = (2. Model(z,s) A Value(x. p)),
I(z,p) = Value(z, p).

Moreover.

EC: Model(Csy., Mustang) A Value(Cs,e, $3500)

F Jau(Mustang, $3500), (22)

SC:
Model{Coy, Mustang) & Jopj(Cgos. Mustang). (23)

This illustrates that reasoning based on determination
rules belongs to the “deductive EC' + deductive SC™ type
and that it can also be done by circumstantial reasoning.
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4.2 deductive EC 4 non-deductive

SC

This type of analogical reasoning was explored by the au-
thor [1]. It was concluded that, once we assumed the fol-
lowing two premises for analogical reasoning, it seemed
to be an inevitable conclusion that analogical reasoning
which infers P(T) from S(T'), S(B), and P(B) satisfies
the illustrative criterion. And if an inference system sat-
isfies the criterion, the system is called an illustrative
analogy.

Premise 1: “Analogy is done by projecting properties
(satisfied by a base) from the base onto a target.”

Premise 2: “The target is not a special object.”

Premise 2 is also assumed in this paper, it is translated
into an arbitrary selection of a target object. Premise
1 was translated as follows: J(B), (where J is the jus-
tification in (4) and B stands for a base object) must
be a theorem of A, because it is essential in analogical
reasoning to project J(B) onto a target object T. That
is, the non-deductive part in this reasoning is just SC
which conjectures the property of the target object, and
EC must be deductive.

Example 2 (continued). By illustrative analogy, a
target is conjectured to satisfy properties used in an
explanation of why a base satisfies a similarity. In
this example, to explain the phenomena of the base
case,“Brutus feels pain when he is cut or burnt”, the
following sentences must be in A.

Vz,i.( Nervous_Sys(z) A Destructive(t) A Suf fer(z,?)
D FeelPain(z) ), (24)
ANervous_Sys( Brutus) (25)
ADestructive(Cut) A Destructive( Burn) (26)

From (24), the following follows:
Vz,s,p.( Nervous_Sys(z)
ADestructive(s) A Destructive(p)
A(Suffer(z,s) D FeelPain(z))
D (Suffer{z,p) D FeelPain(z)) ), (27)

which is an analogy prime rule, that is,

Jovj(x,8) = Nervous_Sys(z), :
Jaut(8, p) = Destructive(s) A Destructive(p).
E(z,s) = Suffer(z,s) D FeelPain(z),
Il(z,p) = Suf fer(x,p) D FeelPain(z).

Jar(Cut, Burn) (“Both cut and burn are destruc-
tive”) is a deductive theorem of A and a non-deductive
conjecture, Jop;(Tacitus, Cut) (“Tacitus has a ner-
vous system”), is obtained by circumstantial reasoning
from (24) based on the similarity-based information,
Suf fer(Tacitus, Cut) D Feel Pain(Tacitus).

4.3 non-deductive EC +4 deductive
SC

As far as the author knows, this type of analogy has never
been discussed. Example 3 seems to show this type of
analogy.

Example 3 (continued). First, let us consider what
we know from example-based information in this case.
From the fact that a student (Studentp) was a mem-
ber of the same club (Orch) and often neglected study
(Study), we could find that “the orchestra club keeps
its members very busy (BusyClub(Orch))” and that
“activities of the club are obstructive to one’s study
(Obstructive_to(Orch, Study))”. This implies that we
knew some causal rule like “If it is a busy club and its
activities are obstructive to something, then any member
of the club neglects the thing.”

Va,s,p.( BusyClub(s) A Obstructive_to(p,s)
AMember_of(z,s)
D Negligent_of(z,p) ) (28)

Using this rule, we found the above information.

Thus. the above rule is assumed to be a theorem of
A. BusyClub(Orch) and Obstructive_to(Orch, Study)
are non-deductive conjectures and it can be obtained by
circumstantial reasoning based on the above rule which
is just an analogy prime rule, as follows:

Joi(z,s) = X(z,s) = Member_of(z,s),
Jute(s,p) = BusyClub(s) A Obstructive_to(p, s),
II(x,p) = Negligent_of(z,p).

4.4 non-deductive EC + non-

deductive SC

As an example of this type, we can take Example 2 again.
We might know neither “Brutus has a nervous system”
nor “Both cut and burn are destructive”, which corre-
sponds to the case that {25) and (26) are not in A (nor
any deductive theorem of A) in the previous Example 2.
However. by circumstantial reasoning from (24) based on
example-based information (“Brutus feels pain when he
is cut or burnt”), “Both cut and burn are destructive”
(and “Brutus has a nervous system”) can be obtained,
and based on similarity-based information ( “Tacitus feels -
pain when he is cut”), “Tacitus has a nervous system”, a
really significant but implicit similarity, is obtained sim-
ilarly to the previous example. Consequently, the ana-
logical conclusion (“Tacitus would feel pain when he is
burnt”) is derived from (27) (or (24)) together with the
above conjectures.



5 Conclusion and Remarks

e Through a logical analysis of analogy. it is shown
to be reasonable that analogical reasoning is pos-
sible only if a certain analogy prime rule is a de-
ductive theorem of a given theory. From the rule,
together with an ezample-based conjecture and a
similarity-based conjecture, the analogical conclusion
is derived. A candidate is shown for a non-deductive
inference system which adequately yields both con-
jectures.

Results shown here are general and do not depend
on particular pragmatic languages like the purpose
predicate {10] nor on some numeric similarity mea-
sure [20]. These results can be applied to any normal
deductive data bases (DDB) which consist of logical
sentences.

Application of this analogical reasoning to DDB
may be one of the most fruitful. It is. generally
speaking, very difficult to build a DDB which in-
volves perfect knowledge about an item. Analogi-
cal reasoning will increase the chance of answering
queries adequately, even when its deductive opera-
tion fails to answer. In a DDB, it is very common
to see inheritance rules and transitivity(-like) rules,
which have the form of the analogy prime rule, for
instance,

Gran_pa(x,y) : —Parent(x,z),Parent(z,y). (29)

This is an analogy prime rule w.r.t. <
Parent(z,y); Gran_pa(x,y) > (z is a variable for the
similar attribute value and x is a variable for the
projected attribute value). Assume that a query
“?-Gran_pa(x, Tom)” is given to a database 4 which
involves the above rule and the following facts:

Parent(Sue, Tom). (30)
Gran_pa(John, Bob). (31)
Parent(Sue,Bob). (32)

The database cannot answer the query deductively,
because it does not know who is a parent of Sue.
If the database uses the proposed type of analogi-
cal] reasoning, it is able to guess Gran_pa(John, Tom)
from Bob’s case just because Tom is similar to Bob in
that their parents is the same.

Interestingly, a method which discovers an analogy
prime rule from knowledge data-base CYC is ex-
plored independently([17]. Such methods make ana-
logical reasoning more common in DDB.

By the side effect of this analysis, it becomes
possible to compare analogy with other reason-
ing formally which have been studied vigorously
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in the area of artificial intelligence.  Analogi-
cal reasoning differs from other reasoning, ab-
ductive and deductive, in that analogical reason-
ing actually uses example-based information (the
base information). Consider the difference from.
this time. abduction in the above database case.
Even if the database uses (ordinal) abductive rea-
soning in the query, it cannot specify an ade-
quate grandparent of Tom. the possible answer
will be x s.t. Gran_pa(x,Tom), Parent(x,Sue),
(Jz.)(Parent(x,z), Parent(z, Tom)), or Sue assum-
ing Parent(Sue, Sue), etc [2, 14, 18, 9]. The reason
for this failure is that abduction tries to explain only
the target case.

Moreover. comparing with enumerative induction
and case-based reasoning (CBR) in which the use
of examples are essential similarly to analogical rea-
soning, analogical reasoning has a salient feature in
more strongly depending on a background knowl-
edge (a given theory). Analogy can be seen as a
single instance generalization as Davies and Russell

~ pointed out [3]. Take an example, Example 3. From

the analogy prime rule (28) and example-based in-
formation of an base case (Studentg), some non-
deductive inference (ex. circumstantial reasoning)
yields a more specified analogy prime rule,

VYa.( Member_of(z,Orch)
D Negligentof(z, Study) ). (33)

which is a generalization of the example-based in-
formation,

Member_of(Studentp,Orch)
ANegligent_of{Studentp, Study). (34)

We should note that, in the process of this single
instance generalization, an analogy prime rule in a
background knowledge is used as an intermediary,
and it might be considered the reason why analogy
seems more plausible than a simple single instance
generalization such that it yields (33) just from (34).

In the research of formal inductive inference [16, 12],
a back ground knowledge does not play such an im-
portant role. So, plenty of examples are needed un-
til a plausible conclusion is obtained. Concerning
CBR [19], though it uses base cases like analogi-
cal reasoning and, in order to retrieve their base
cases, it uses an indexr which corresponds to the
similarity S, the index is assumed to be given in
spite of using background knowledge. Intuitively
speaking, these methods will be very useful when
a background knowledge is rather poor or difficult
to formulate, and when the background knowledge
is extremely strong or able to be formulated per-
fectly. deduction will be most useful. on the other
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hand, the proposed type of analogy will be useful
when rather strong and difficult to formulate.

An implementation system for this type of analogy
has been developed. Given a theory A, a target
T and a projected attribute II(z,p) (from a query,
“?- I(T,p)”), this system finds a base B, a simi-
larity ¥(z,S) and a projected property Il(z, P) (ie.
“II(T', P)” is the answer of the query) by the process
with backtracking, according to the following steps:

1) Find a separate rule SepR s.i. AF SepR,
where SepR = Il{x,p) 1= Guu(s,p), Gauj(a,s).

2) Take a similar attribute L(z, s)
st B(z,8) 2 Gopi(z, 8).

3) Obtain the similar attribute value S
by the side effect of a proof At 3s.3(T,s).

4) Retrieve a base B and obtain the projected
attribute value P
by the side effect of a proof
At 3z, p.(E(z, 5) AN1(z, p)).

Here, a separate rule (w.r.t. II(z,p)) is a Horn clause
in which the head is II(z, p), and any variable of =
and any variable of p does not appear in the same
conjunct in the body. This system guesses success-
fully for the examples shown here, though each of
them is translated into a set of Horn clauses.

Significant restrictions are needed on the time com-
plexity of this process. Details of this system will
be reported elsewhere.

Acknowledgment

I especially wish to thank Satoshi Sato for his frank
comments and challenging problems. I am also grateful
to Koichi Furukawa, Hideyuki Nakashima, Natsuki Oka,
and five anonymous referees for their constructive com-
ments, Makoto Haraguchi and members of ANR-WG,
which was supported by ICOT, for discussions on this
topic, Katsumi Inoue and Hitoshi Matsubara for discus-
sions on abduction and CBR respectively, and Kazuhiro
Fuchi for giving me the opportunity to do this work.

References

(1]

2]

Arima, J.: A logical analysis of relevance in anal-
ogy, in Proc. of Workshop on Algorithmic Learning
Theory (ALT’91), (1991). :

Cox P.T. and Pietrzykowski T.: Causes for events:
their computation and applications, in: Proc. of
Eighth International Conference on Automated De-
duction, Lecture Notes in Computer Science 230
(Springer-Verlag, Berlin, 1986) pp. 608-621.

[3]

(5]

[7]

(8]

[9]

[10]

[11]

[12]

13]

[14]

(15]

Davies, T. and Russell, S.J.: A logical approach
to reasoning by analogy, in IJCAI-87, pp.264-270
(1987).

Evans, T,G.: A program for the solution of a class
of geometric analogy intelligence test questions, in:
M.Minsky (Ed.), Semantic Information Processing
(MIT Press, Cambridge, MA, 1968).

Falkenhainer, B.: A unified approach to explanation
and theory formation, in: J.Shrager & P.Langley
(Ed.). Computational Models of Scientific Discovery
and Theory Formation, (Morgan Kaufmann, San
Mareo, CA, 1990).

Gentner, D.: Structure-mapping: Theoretical
Framework for Analogy, in: Cognitive Science,
Vol.7. No.2, pp.155-170 (1983).

Greiner, R.: Learning by understanding analogy,
Artificial Intelligence, Vol. 35, pp.81-125 (1988).

Haraguchi, M. and Arikawa, S: Reasoning by Anal-
ogy as a Partial Identity between Models, in Proc. of
Analogical and Inductive Inference (ALL’86), Lec-
ture Notes in Computer Science 265, (Springer-
Verlag, Berlin, 1987) pp 61-87.

Inoue. K.: Linear Resolution for Consequence-
Finding, in Artificial Intelligence (To appear).

Kedar-Cabelli, S.: Purpose-directed analogy, in the
7th Annual Conference of the Cognitive Science So-
ciety, Hillsdale, NJ: Lawrence Erlbaum Associates,
pp.150-159 (1985).

Kling, R.E.: A paradigm for reasoning by analogy,
Artificial Intelligence 2 (1971).

Muggleton, S. and Buntine, W.: Machine Invention
of First-Order Predicates by Inverting Resolution,
In: Proc. of 5th International Conference on Ma-
chine Learning, pp 339-352 (1988).

Peirce C.S.: FElements of Logic, in: C. Hartshorne
and P. Weiss (eds.), Collected Papers of Charles
Sanders Peirce, Volume 2 (Harvard University
Press, Cambridge, MA, 1932).

Poole D., Goebel R. and Aleliunas R.: Theorist:
a logical reasoning system for defaults and diag-
nosis, in: N. Cercone and G. McCalla (eds.), The
Knowledge Frontier: Essays in the Representation
of Knowledge (Springer-Verlag, New York, 1987)
331-352.

Pople, H.E.Jr.. On the mechanization of abduc-
tive logic, in: Proceedings IJCAI-73, Stanford, CA
(1973) 147-152.



[16] Shapiro, E.Y..

—

Inductive Inference of Theories
From Facts, TR 192, Yale Univ. Computer Science
Dept. (1981).

Shen ,W.:Discovering Regularities from Knowledge
Bases, Proc. of Knowledge Discovery in Databases

Workshop 1991, pp 95-107.

Stickel M.E.: Rationale and methods for abduc-
tive reasoning in natural-language interpretation,
in: R. Studer (ed.), Natural Language and Logic,
Proceedings of the International Scientific Sympo-
stum, Hamburg, Germany, Lecture Notes in Artifi-
cial Intelligence 489 (Springer-Verlag, Berlin, 1990)
233-252.

Schank, R.C.: Dynamic Memory: A Theory of Re-
minding and Learning in Computers and People
{Cambridge University Press, London. 1982).

Winston, P.H.: Learning Principles from Precedents
and exercises, Artificial Intelligence, Vol. 19, No. 3
(1982).

513

Appendix

Proposition 1.
If K AG and K.G 2 H, then K A H.

- Proof of Proposition 1.

For any formula G, if K 4 G and K.G h2 H. we
write K 2 H.

i) Subsuming deduction:
if AKFH them KpAH.
(proof )
K " K. (from subsuming deduction of “j*”)
AKFH = Kp2H. (from Definition 3 i))
Therefore, K |~;2 H.

ii) Deductive usefulness:
if K AH and AK.HF L. then
(proof)
ARKHFL & AFKAHDL
For any formula G s.t. & ~* G and K.G 2 H.

KA L

case-i) AKN.GFH (from K.G 2 H)
From the premises. A K. GF L.
Therefore. K.G 2 L. (from Definition 3 1))

case-ii) otherwise. for some minimal set of atomic
formulas E s.t. 4. EF KNG,
AEFKAH. (from K.G 2 H)

Therefore. A,EF L.
Thus. K.G RAL

Thus K.G p2 L.

iii) Consistency:
if K %t H and AUK is consistent, then
AUK U{H} is consistent.
(proof)
AU K is consistent.
= AURKU{G} is consistent. (from A 4 ()
= AUE is consistent. (from K.G 2 H)
= AUKU{H}. (because A.LEF K AH)

Corollary 1.
If K AG. then K G

Proof of Corollary 1.
K A K (from subsuming deduction)
If K b* K and K.K 2 G, then K 4 G, (from
Proposition 1