
- - - GA21-9331 -1 - - -- - - - - File No. S38-01 - --- ---- - - ---- - --- - • -

IBM System/38
Functional Reference Manual

. ' ..
•

-- ==:..- --- GA21-9331-1 - --- -_
:=: ----- File No. 538-01 - - - ----- ===-- --_. -

IBM System/38

IBM System/3S
Functional Reference Manual

Second Edition (February 1981)

This is a major revision of, and makes obsolete, GA21-9331-0. This revision
contains information about the 3203-5 Printer, secondary SDLC station support,
and miscellaneous changes. Because the changes and additions are extensive, this
publication should be reviewed in its entirety.

The information in this publication applies to the IBM System/38 Instruction Set.
The information herein is subject to change. These changes will be reported in
technical newsletters or in new editions of this publication.

Use this publication only for the purpose stated in the Preface.

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should be made to
your IBM representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use
the Reader's Comment Form at the back of this publication to make comments
about this publication. If the form has been removed, address your comments to
IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901.
IBM may use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of
course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1980, 1981

This publication describes the System/38 instruction
set. It describes the functions that can be performed by
each instruction and also the necessary information to
code each instruction. It provides reference information
for the systems engineer and the program support
customer engineer.

The information in this publication is arranged as
follows:

• Chapter 1 describes the basic information for coding
instructions.

• Chapters 2 through 19 contain detailed descriptions
of all the instructions.

• Chapter 20 contains explanations for the possible
exceptions that error conditions may signal.

• Chapter 21 contains detailed descriptions of the
events that the user can monitor.

• Chapter 22 contains the attributes; specifications; and
COT (object definition table), CDV (COT directory
vector), and DES (COT entry string) formats for each
program object of the machine interface.

• Chapter 23 provides the information to create the
objects necessary to support the input/output
devices.

• Chapter 24 provides information for communication
line connections.

• Chapter 25 provides the information to create the
objects necessary to support the load/dump function.

• Appendix A describes the functions used for machine
initialization.

• Appendix B provides a summary of all the
instructions and an abbreviated format for each
instruction.

Preface

It is assumed that you have read the Functional Concepts
Manual in its entirety. The Functional Concepts Manual
provides information for the machine interface and its
functions.

How To Use this Publication

Refer to Chapters 2 through 19 to find the information
needed to code the various instructions.

Refer to Chapters 20 through 22 to find detailed
specifications for the exceptions, events, and program
objects.

Refer to Chapters 23 through 25 to find specific
information required to create the various objects
necessary to support the input/ output devices.

Refer to Appendix A for descriptions of the various
functions used for machine initialization.

Refer to Appendix B for a summary of all instructions,
which contains the abbreviated description of the
instruction and the page number where the detailed
description of the instruction can be found.

Prerequisite Publication

IBM System/38 Functional Concepts Manual, GA21-9330

Related Publications

IBM Systems Network Architecture Format and Protocol
Reference Manual: Architecture Logic, SC30-3112

IBM Synchronous Data Link Control General Information
Manual, GA27 -3093

iii

iv

CHAPTER 1. INTRODUCTION
I nstruction Format

Operation Code Field
Operation Code Extender Field
Instruction Operands

Instruction Format Conventions Used in This Manual.
Definition of the Operand Syntax

CHAPTER 2. COMPUTATION AND BRANCHING
INSTRUCTIONS

Add Logical Character (ADDLC)
Add Numeric (ADDN)
And (AND)
Branch (B)
Compare Bytes Left-Adjusted (CMPBLAB or CMPBLAI)
Compare Bytes Left-Adjusted with Pad

(CMPBLAPB or CMPBLAPI) .
Compare Bytes Right-Adjusted

(CMPBRAB or CMPBRAI) . .
Compare Bytes Right-Adjusted with Pad

(CMPBRAPB or CMPBRAPI)
Compare Numeric Value (CMPNVB or CMPNVI) .
Compute Array Index (CAl)
Concatenate (CAT)
Convert Character to Hex (CVTCH)
Convert Character to Numeric (CVTCN)
Convert External Form to Numeric Value (CVTEFN)
Convert Hex to Character (CVTHC)
Convert Numeric to Character (CVTNC)
Copy Bytes Left-Adjusted (CPVBLA) . .
Copy Bytes Left-Adjusted With Pad (CPVBLAP) .
Copy Bytes Overlap Left-Adjusted (CPVBOLA) .
Copy Bytes Overlap Left-Adjusted with Pad (CPVBOLAP)
Copy Bytes Repeatedly (CPVBREP)
Copy Bytes Right-Adjusted (CPVBRA)
Copy Bytes Right-Adjusted With Pad (CPVBRAP)
Copy Hex Digit Numeric to Numeric (CPVHEXNN)
Copy Hex Digit Numeric to Zone (CPVHEXNZ)
Copy Hex Digit Zone to Numeric (CPVHEXZN)
Copy Hex Digit Zone to Zone (CPVHEXZZ)
Copy Numeric Value (CPVNV). .
Divide (DIV)
Divide with Remainder (DIVREM)
Edit (EDIT)
Exchange Bytes (EXCHBV) ..
Exclusive OR (XOR)
Extract Magnitude (EXTRMAG)
Multiply (MUL T). . .
Negate (NEG)
No Operation (NOOP)
Not (NOT) ...
Or (OR)
Remainder (REM)
Scale (SCALE)
Scan (SCAN) . .

1-1
1-1
1-1
1-3
1-6

1-10
1-11

2-1
2-1
2-2
2-4
2-5
2-6

2-8

2-9

2-11
2-12
2-14
2-15
2-16
2-17
2-19
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-31
2-32
2-33
2-34
2-36
2-38
2-40
2-48
2-49
2-51
2-52
2-54
2-56
2-56
2-58
2-59
2-61
2-63

Contents

Search (SEARCH)
Set Instruction Pointer (SETIP)
Subtract Logical Character (SUBLC)
Subtract Numeric (SUBN)
Test and Replace Characters (TSTRPLC)
Test Bits under Mask (TSTBUMB or TUSTBUMI)
Translate (XLATE)
Verify (VERIFV)

CHAPTER 3. POINTER/NAME RESOLUTION
ADDRESSING INSTRUCTIONS

Compare Pointer for Object Addressability
(CMPPTRAB or CMPPTRAI)

Compare Pointer Type (CMPPTRTB or CMPPTRTI)
Copy Bytes with Pointers (CPVBWP) .
Create Context (CRTCTX)
Destroy Context (DESCTX) ...
Materialize Context (MATCTX)
Modify Addressability (MODADR)
Rename Object (RENAME) ...
Resolve Data Pointer (RSLVDP) .
Resolve System Pointer (RSLVSP)

CHAPTER 4. SPACE OBJECT ADDRESSING
INSTRUCTIONS

Add Space Pointer (ADDSPP)
Compare Pointer for Space Addressability

(CMPPSPADB or CMPPSPADI)
Compare Space Addressability

(CMPSPADB or CMPSPADI) ..
Set Data Pointer (SETDP)
Set Data Pointer Addressability (SETDPADR)
Set Data Pointer Attributes (SETDPAT) . . .
Set Space Pointer (SETSPP)
Set Space Pointer with Displacement (SETSPPD)
Set Space Pointer from Pointer (SETSPPFP)
Set Space Pointer Offset (SETSPPO). . . .
Set System Pointer from Pointer (SETSPFP)
Store Space Pointer Offset (STSPPO) .
Subtract Space Pointer Offset (SUBSPP) . .

CHAPTER 5. SPACE MANAGEMENT INSTRUCTIONS
Create Space (CRTS)
Destroy Space (DESS)
Materialize Space Attributes (MATS)
Modify Space Attributes (MODS) .

CHAPTER 6. INDEPENDENT INDEX INSTRUCTIONS
Create Independent Index (CRTINX) . . .
Destroy Independent Index (DESINX)
Find Independent Index Entry (FNDINXEN) .
Insert Independent Index Entry (lNSINXEN) .
Materialize Independent Index Attributes (MATINXAT)
Remove Independent Index Entry (RMVINXEN) ...

2-65
2-66
2-67
2-69
2-71
2-72
2-73
2-75

3-1

3-1
3-3
3-4
3-5
3-8
3-9

3-12
3-14
3-15
3-17

4-1
4-1

4-2

4-3
4-5
4-6
4-7
4-8
4-9

4-10
4-11
4-12
4-14
4-15

5-1
5-1
5-4
5-5
5-8

6-1
6-1
6-5
6-6
6-8

6-10
6-13

v

CHAPTER 7. AUTHORIZATION MANAGEMENT
INSTRUCTIONS.

Create User Profile (CRTUP)
Destroy User Profile (DESUP) .
Grant Authority (GRANT) . . .
Materialize Authority (MATAU)
Materialize Authorized Objects (MATAUOBJ)
Materialize Authorized Users (MATAUU)
Materialize User Profile (MATUP)
Modify User Profile (MODUP) .
Retract Authority (RETRACT)
Test Authority (TESTAU) ..
Transfer Ownership (XFRO) .

CHAPTER 8. PROGRAM MANAGEMENT
INSTRUCTIONS

Create Program (CRTPG)
Delete ProgramObservability (DELPGOBS)
Destroy Program (DESPG) . .
Materialize Program (MATPG)

CHAPTER 9. PROGRAM EXECUTION
INSTRUCTIONS

Activate Program (ACTPG)
Call External (CALLX)
Call Internal (CALLI) . . .
De-activate Program (DEACTPG)
End (END)
Modify Automatic Storage Allocation (MODASA)
Return External (RTX)
Set Argument List Length (S.ETALLEN) .
Store Parameter List Length (STPLLEN)
Transfer Control (XCTL)

CHAPTER 10. EXCEPTION MANAGEMENT
INSTRUCTIONS

Materialize Exception Description (MATEXCPD)
Modify Exception Description (MODEXCPD)
Retrieve Exception Data (RETEXCPD)
Return from Exception (RTNEXCP). . . .
Sense Exception Description (SNSEXCPD)
Signal Exception (SIGEXCP)
Test Exception (TESTEXCP)

CHAPTER 11. PROCESS MANAGEMENT
INSTRUCTIONS

Create Process Control Space (CRTPRCS)
Destroy Process Control Space (DESPCS)
Initiate Process (lNITPR)
Materialize Process Attributes (MATPRATR)
Modify Process Attributes (MODPRATR)
Resume Process (RESPR)
Suspend Process (SUSPR) .
Terminate Process (TERMPR)

CHAPTER 12. QUEUE MANAGEMENT
INSTRUCTIONS '.

Create Queue (CRTQ) -.... .
Dequeue (DEQ, DEQB, or DEQI)
Destroy Queue (DESQ)
Enqueue (ENQ)
Materialize Queue Attributes (MA TQA T)

vi

"

7-1
7-1
7-4
7-6
7-8

7-10
7-12
7-15
7-17
7-19
7-21
7-24

8-1
8-1
8-6
8-7
8-8

9-1
9-1
9-4
9-7
9-8

9-10
9-10
9-12
9-13
9-14
9-15

10-1
10-1
10-4
10-6
10-8

10-10
10-13
10-16

11-1
11-1
11-4
11-5

11-13
11-20
11-25
11-26
11-28

12-1
12-1
12-5
12-8
12-9

12-11

CHAPTER 13. RESOURCE MANAGEMENT
INSTRUCTIONS

Create Access Group (CRTAG) ..
Create Duplicate Object (CRTDOBJ)
Destroy Access Group (DESAG) ..
Ensure Object (ENSOBJ)
Materialize Access Group Attributes (MATAGAT)
Materialize Resource Management Data (MATRMD)
Modify Resource Management Controls (MODRMC)
Set Access State (SET ACST)
Suspend Obje~t (SUSOBJ)

CHAPTER 14. OBJECT LOCK MANAGEMENT
INSTRUCTIONS,

Lock Object (LOCK)
Lock Space Location (LOCKSL) . . .
Materialize Object Locks (MATOBJLK)
Materialize Process Locks (MATPRLK)
Materialize Selected Locks (MATSELLK)
Transfer Object Lock (XFRLOCK)
Unlock Object (UNLOCK).
Unlock Space Location (UNLOCKSL) .

CHAPTER 15. EVENT MANAGEMENT
INSTRUCTIONS

Cancel Event Monitor (CANEVTMN)
Disable Event Monitor (DBLEVTMN) .. .
Enable Event Monitor (EBLEVTMN) .. .
Modify Process Event Mask (MODPEVTM)
Monitor Event (MNEVT) . . .
Retrieve Event Data (RETEVTD)
Signal Event (SIGEVT)
Test Event (TESTEVT, TESTEVTB or TESTEVTI) .
Wait on Event (WAITEVT)

CHAPTER 16. DATA BASE MANAGEMENT
INSTRUCTIONS

Activate Cursor (ACTCR)
Copy Data Space Entries (CPYDSE)
Create Cursor (CRTCR).
Create Data Space (CRTDS)
Create Data Space Index (CRTDSINX)
Data Base Maintenance (DBMAINT) .
De-activate Cursor (DEACTCR) . . .
Delete Data Space Entry (DELDSEN) .
Destroy Cursor (DESCR)
Destroy Data Space (DESDS)
Destroy Data Space Index (DESDSINX)
Ensure Data Space Entries (ENSDSEN) .
Insert Data Space Entry (lNSDSEN) . .
Insert Sequential Data Space Entries (lNSSDSE) .
Materialize Cursor Attributes (MATCRAT). . . .
Materialize Data Space Attributes (MATDSAT)
Materialize Data Space Index Attributes (MATDSIAT)
Release Data Space Entries (RLSDSEN)
Retrieve Data Space Entry (RETDSEN)
Retrieve Sequential Data Space Entries (RETSDSE)
Set Cursor (SETCR)
Update Data Space Entry (UPDSEN)

13-1
13-1
13-4
13-7
13-8
13-9

13-11
13-16
13-19
13-22

14-1
14-1
14-4
14-5
14-7
14-9

14-11
14-13
14-15

15-1
15-1
15-2
15-4
15-5
15-6

15-10
15-11
15-13
15-16

16-1
16-1
16-4
16-8

16-15
16-20
16-27
16-30
16-31
16-33
16-34
16-35
16-36
16-37
16-39
16-41
16-44
16-46
16-48
16-50
16-51
16-54
16-64

CHAPTER 17. SOURCE/SINK MANAGEMENT
INSTRUCTIONS

Create Controller Description (CRTCD) . .
Create Logical Unit Description (CRTLUD)
Create Network Description (CRTND)
Destroy Controller Description (DESCD)
Destroy Logical Unit Description (DESLUD)
Destroy Network Description (DESND) ..
Materialize Controller Description (MATCD)
Materialize Logical Unit Description (MATLUD)
Materialize Network Description (MATND)
Modify Controller Description (MODCD)
Modify Logical Unit Description (MODLUD)
Modify Network Description (MOON D)
Request I/O (REQIO)

CHAPTER 18. MACHINE OBSERVATION
INSTRUCTIONS

Cancel Invocation Trace (CANINVTR)
Cancel Trace Instructions (CANTRINS)
Materialize Invocation (MATINV)
Materialize Pointer (MATPTR)
Materialize Pointer Locations (MATPTRL)
Materialize System Object (MATSOBJ)
Trace Instructions (TRINS)
Trace Invocations (TRINV)

CHAPTER 19. MACHINE INTERFACE SUPPORT
FUNCTIONS INSTRUCTIONS

Diagnose (DIAG)
Materialize Machine Attributes (MATMATR)
Modify Machine Attributes (MODMATR) ..
Reclaim Lost Objects (RECLAIM)
Terminate Machine Processing (TERMMPR) .

CHAPTER 20. EXCEPTION SPECIFICATION,S ...
Machine Interface Exception Data
Exception List. . .

02 Access Group
04 Access State
06 Addressing .
08 Argument/ Parameter .
OA Authorization . .
OC Computation ...
OE Context Operation
10 Damage
12 Data Base Management
14 Event Management
16 Exception Management .
18 Independent Index . . .
1 A Lock State
1 C Machine-Dependent Exception
1 E Machine Observation .
20 Machine Support
22 Object Access. . . .
24 Pointer Specification .
26 Process Management
28 Process State . . .
2A Program Creation . .
2C Program Execution. .
2E Resource Control Limit
32 Scalar Specification
34 Source/Sink Management
36 Space Management . . .

17-1
17-1
17-8

17-14
17-22
17-24
17-25
17-27
17-30
17-34
17-37
17-43
17-51
17-56

18-1
18-1
18-2
18-3
18-5
18-8
18-9

18-12
18-13

19-1
19-1
19-2
19-8

19-10
19-12

20-1
20-1
20-2
20-4
20-4
20-4
20-6
20-6
20-8

20-10
20-11
20-13
20-21
20-22
20-23
20-23
20-24
20-29
20-29
20-30
20-33.
20-34
20-35
20-35
20-39
20-41
20-41
20-42
20-46

38 Template Specification
3A Wait Time-Out
3C Service

CHAPTER 21. EVENT SPECIFICATIONS
Event Definition Elements

Event Identification . . .
Compare Value Qualifier .
Event- Related Data

Event Definitions
0002 Authorization . . .
0004 Controller Description
0007 Data Space . . .
0008 Data Space Index . .
OOOA Lock
OOOB Logical Unit Description
OOOC Machine Resource .
0000 Machine Status . .
OOOE Network Description
OOOF Ownership
0010 Process
0012 Queue ..
0014 Timer ..
0016 Machine Observation
0017 Damage Set
0019 Service.

CHAPTER 22. PROGRAM OBJECT SPECIFICATION
General ODT Description

ODV
OES

ODT Entries In Detail
Data Object
Entry Point
Branch Point
Instruction Definition List
Operand List.
Constant Data Object . .
Exception Descriptions

..

References to OES Offsets Greater than 64 K-1

CHAPTER 23. SOURCE/SINK SPECIALIZATION
AND PROGRAMMING CONSIDERATIONS FOR
LOCAL DEVICES

Machine Console Programming Considerations
Machine Console Create Logical Unit

Description (CRTLUD) Template . .
Machine Console Modify Logical Unit

Description (MODLUD)
Machine Console Request I/O Instruction

(REQIO)
Source/Sink Request (SSR) .
Source/Sink Data (SSD) Area
Feedback Record (FBR)
Events
Exceptions.

5424 Programming Considerations .
Create Logical Unit Description (CRTLUD)

Instruction
Modify Logical Unit Description (MODLUD)

Instruction
Request I/O (REQIO) Instruction

Feedback Record and Error Recovery Procedure
Events
Exceptions

20-47
20-48
20-49

21-1
21-1
21-1
21-1
21-1
21-3
21-3
21-3
21-4
21-5
21-5
21-6
21-8
21-9

21-10
21-11
21-11
21-12
21-13
21-13
21-16
21-17

22-1
22-1
22-1
22-2
22-3
22-3

22-13
22-14
22-14
22-15
22-17
22-19
22-21

23-1
23-1

23-2

23-2

23-2
23-3
23-6
23-9

23-14
23-14
23-15

23-15

23-15
23-16
23-19
23-24
23-25

vii

3262/5211 Printer Programming Considerations.
3262/5211 Printer Create Logical Unit

Description (CRTLUD) Template . . ,
3262/5211 Printer Modify Logical Unit

Description (MODLUD)
LUD Device-Specific Area

3262/5211 Printer Request I/O (REOIO)
Instruction.

Print SCS Data Command (hex 41) .
Continue Printing After Error (hex 42)

Standard Character Stream (SCS)
SCS Commands

Null Command (hex 00)
Interchange Record Separator Command (hex 1 E)
Line Feed Command (hex 25)
Form Feed Command (hex OC) . . .
Carriage Return Command (hex 00) .
New Line Command (hex 15)
Format Command (hex 2B)
Bell Command (hex 2F)
Presentation Position (PP) Command (hex 34)

SCS Example
Standard Character Stream
Printed Output

3262/5211 Feedback Record and Error Recovery
Procedure ..

Events
Exceptions.

Diskette Magazine Drive Programming Considerations
Diskette Magazine Drive Create Logical Unit

Description (CRTLUD) Template
Retry Values
Error Threshold Values
Device-Specific Contents: Char(528)

Diskette Magazine Drive Modify Logical Unit
Description (MODLUD) Instruction

Diskette Magazine Drive Request I/O (REQIO)
Instruction.

Request Descriptor , . . .
Feedback Record and Error Recovery Procedures
Diskette Magazine Drive End-of-Volume Handling

23-25

23-26

23-26
23-27

23-27
23-28
23-28
23-29
23-29
23-29
23-29
23-29
23-29
23-29
23-29
23-30
23-30
23-30
23-32
23-32
23-32

23-33
23-39
23-40
23-40

23-41
23-41
23-41
23-42

23-44

23-45
23-46
23-54

for Data Interchange. 23-62
The Diskette Magazine Drive End-of-Volume Handling

for Load/Dump 23-62
Events 23-63
Exceptions. 23-63

3410/3411 Programming Considerations 23-64
3410/3411 Create Controller

Description (CRTCD) Template .
3410/3411 Create Logical Unit

Description (CRTLUD) Template
Retry Values
Error Threshold Values
Device-Specific Contents: Char(90) .

3410/3411 Modify Controller
Description (MODCD) Instruction .

3410/3411 Modify Logical Unit
Description (MODLUD) Instruction

3410/3411 Request I/O Instruction (REQIO)
Instruction.

Request Descriptor
3410/3411 Feedback Record and Error

Recovery Procedures
Events
Exceptions. . . .

viii

23-64

23-64
23-65
23-65
23-65

23-66

23-66

23-67
23-68

23-72
23-79
23-80

3203-5 Printer Programming Considerations
3203-5 Create Logical Unit Description

(CRTLUD) Template
3203-5 Printer Modify Logical Unit

Description (MODLUD)
LUD Device-Specific Area ...

3203-5 Printer Request I/O (REOIO) Instruction.
Print SCS Data Command (hex 41) .
Continue Printing After Error (hex 42)

Standard Character Stream (SCS) . . .
SCS Commands
3203-5 Feedback Record and Error Recovery

Procedure ..
Events
Exceptions .

CHAPTER 24. COMMUNICATIONS AND LOCALLY
ATTACHED WORK STATIONS

Machine Services Control Point (MSCP)
Modification of Source/Sink Objects
MSCP Operation

COMMUNICATIONS DEVICE MANAGEMENT
Programming Considerations
Instructions.

MODND (Vary On/Off) .
MODND (Enable/Disable)
MODND (Manual Answer/Abandon Call)
MODND (Start Data)
MODCD (Dial/Abandon Connection)
MODCD (Vary On/Off)
MODLUD (Vary On/Off). . . .
MODLUD (Activate/De-activate)
MODLUD (Quiesce) .
MODLUD (Reset)
MODLUD (Suspend)
MODLUD (Suspend, De-activate, and Activate)
Request I/O Instruction

Feedback Record
Events Signaled by Communications Support

Network Description Events . .
Controller Description Events.
Logical Unit Description Events.

Exceptions Signaled for Communication Devices .
Object Creation Data for Supported Devices

CD Template Data for 5251 Work Station .
Logical Unit Description Template Data for

5251 Display
Logical Unit Description Template Data for the

5252 Display
Logical Unit Description Template Data for the

5256 Printer
CD Template Data When System/38 Is Attached as

a Secondary Station
Logical Unit Description Template When
System/38 Is Attached as a Secondary Station

Communications Lines Specialization.
Communications Error Recovery Procedures
WORK STATION CONTROLLER MANAGEMENT

(LOCALLY ATTACHED) ..
Programming Considerations

23-80

23-80

23-81
23-81
23-82
23-82
23-83
23-83
23-83

23-84
23-88
23-89

24-1
24-1
24-1
24-3
24-8
24-8
24-9
24-9
24-9
24-9
24-9
24-9
24-9
24-9
24-9
24-9

24-10
24-10
24-10
24-10
24-15
24-18
24-18
24-18
24-19
24-20
24-21
24-21

24-23

24-24

24-25

24-26

24-29
24-30
24-33

24-42
24-42

Instructions.
MODCD (Var'l On/Off) .
MODLUD (Varry On/Off) .
MODLUD (Activate/Deactivate)
MODLUD (Ouliesce) .
MODLUD (Reset)
MODLUD (Suspend)
MODLUD (Suspend, De-activate, and Activate)
REOIO

Feedback Record
Events Signaled by Work Station Controller

Support ... "
Logical Unit Description Events.
Controller Description Events.

Exception Codes Signaled by Work Station Controller
Support

Object Creation D eta for Supported Devices
Work Station Gontroller

CHAPTER 25. LOIAD/DUMP OBJECT
MANAGEMENT . . .

Load / Dump Comnnands .
Session Types
Sequence of Operations
Dump Command (D) .
Load Command (L) . .
Create and Loald Command (CL)
Set User Profile! Command (SUP)
Set Context Command (SCTX) .
Read Object Idemtification Command (ROID)

Load/Dump Request I/O (REOIO)
Request Descriptor (RD) . .

Load/Dump Modify LUD ...
Load / Dump Feedbi:lck Record
Load / Dump Error F~rocessing .

Processing a M6dify LUD (Reset) Instruction
Load / Dump Events:
Load / Dump Author'tity
Load / Dump Data Biase Networks
Load / Dump Perforrnance. . . .
Load/Dump InterrulPted for Data Interchange
Load / Dump Object Availability

Commands
Errors Encounter'ed

Load / Dump Object Status after a System Failure

24-43
24-43
24-43
24-43
24-43
24-43
24-44
24-44
24-44.
24-49

24-52
24-52
24-53

24-53
24-54
24-54

25-1
25-1
25-1
25-1
25-2
25-2
25-4
25-5
25-5
25-5
25-6
25-6
25-8
25-9
25-9

25-13
25-13
25-14
25-14
25-16
25-16
25-17
25-17
25-17
25-18

APPENDIX A. MACHINE INITIALIZATION
Machine Initialization.
Machine Initialization Terms and Definitions.
Machine Initialization Overview . . .
Machine-To- Programming Transition

AIPL Source Data
IPL Encapsulated Data

AIPL/IPL Machine Attributes
Initial Process Definition Template
Machine Initialization Status Record Machine Attribute

APPENDIX B. INSTRUCTION SUMMARY
Number of Operands
Extender Usage
Resulting Conditions
Optional Forms. . .

Instruction Stream Syntax
Program Object Definitions
System Object Declarations
Resulting Conditions Definitions

Instruction Summary (Alphabetical Listing by
Mnemonic)

INDEX ..

A-1
A-1
A-1
A-2
A-2
A-2
A-3
A-4
A-4
A-4

B-1
8-1
8-1
8-1
8-2
8-2
8-3
8-3
8-4

8-5

X-1

ix

x

Abbreviations and Acronyms

ABI address bus in IAR instruction address register
ABO address bus out IC insert cursor
ACTLU activate logical unit IDL instruction definition list
ACTPU activate physical unit I/O input/ output
ACU auto-call unit 10C input/ output controller
AIMPL alternate initial microprogram load 10M input/ output manager
AIPL alternate initial process load IMPL initial microprogram load
ALU arithmetic and logic unit IMPLA initial microprogram load abbreviated

IPL initial program load
B byte
Bin binary K 1024 bytes
BOT beginning of tape
BSTAT basic status L/D load/dump

LEAR lock exclusive allow read
CA channel address LENR lock exclusive no read
CD controller description LIFO last in, first out
Char character LSRD lock shared read
eRC cyclic redundancy check LSRO lock shared read only
CRT cathode-ray tube LSUP lock shared update
CSA control storage address LU logical unit
CTS clear to send LUD logical unit description

OAF destination address field MB megabyte
OBI data bus in MCR machine configuration record
OCE data communications equipment MOT modified data tag
OS data space MISR machine initialization status record
OSI data space index MPL multiprogramming level
OSR data set ready MSCP machine services control point
o STAT device status
OTR data terminal ready NO network description

NRL name resolution list
EOF end of file NRZI non-return-to-zero (inverted)
EOT end of tape
EOV end of volume OOT object definition table
EPA encapsulated program architecture OOV ODT directory vector
ERP error recovery procedure OEM" original equipment manufacture

OES ODT entry string
FBR feedback record OMT object mapping table
FIFO first in, first out ORE operation request element
FOB function operation block OU operational unit
FMO function manager data OU# operational unit number

Abbreviations anti Acronyms xi

PAG process access group SBA set buffer address
PASA process automatic storage area SCS standard character stream
PCO process communication object SDLC synchronous data link control
PDEH process default exception handler SNA system network architecture
PSSA process static storage area S-PTR system pointer
PU physical unit SSCP system service control point

SSD source/ sink data
RD request descriptor SSR source/ sink request
RH request/ response header
RI ring indicator TH transmission header
RIU request information unit
RNR receive not ready VAT virtual address table
ROS ready-only storage VTOC volume table of contents
RPS rotation position sensor
RTS request to send WSC work station controller
RU request/ response unit

XID exchange identification

xii

This chapter contains the· following:

• Detailed descriptions of the System/3S instruction
fields and the formats of these fields

• A description of the format used in describing each
instruction

• A list of the terms in the syntax that define the
characteristics of the operands

You should read this chapter in its entirety before
attempting to write instructions.

INSTRUCTION FORMAT

This section describes the formats for the three fields in
an instruction. The three fields are:

• Operation code

• Operation code extender

• Operand

See the Functional Concepts Manual for an explanation of
how particular instruction fields are used, the
relationships between the fields, and other basic
concepts concerning instructions.

Chapter 1. Introduction

Operation Code Field

The operation code field of an instruction is a 2-byte
field that supplies information about the instruction
format, the instruction status, and the basic operation to
be performed by the instruction.

The format of the operation code field is as follows:

Bits
o 1 2 3 4 5 15
~ '.

Operation flag field (bits 0-4): I • Reserved ---------

• Branch target ------------1

• Format specifications --------..1
Computational format

- Noncomputational format

• Extender field present -----____ ...J

Operation specification field (bits 5-15) -------..1
The format of the operation specification field is as
follows for the computational format (bit 3 equals 1):

Bits
5 6

Optional instruction forms (bits 5-7): I
• Extender specification ~

- Branch form
- Indicator form

• Round form _________J

7 8 •••.•••••..••••••.•. 15
, I

• Short form -------------1
Basic functions (bits 8-15) ----------.........

For the noncomputational format (bit 3 equals 0), bits
5-15 define the basic function.

Introduction 1-1

Operation Flag Field (Bits 0-4)

The operation flag field (bits 0-4) specifies the
following:

Bits

0-1

2

1-2

Meaning

These bits are reserved. They must be 00.

Branch target

o This instruction is not a branch target.

This instruction is a branch target
operand in some branch instructions
elsewhere in the instruction stream.
This branch target includes branch
points defined in the ODT (object
definition table), branch targets defined
in an IDL (instruction definition list),
branch targets assigned to an
instruction pointer, immediate
instruction numbers used as branch
operands, and instructions referenced
as entry points.

Note: The bit encoding of the operation
code for each instruction assumes a 0 for
this bit.

3

4

Format specification

o = Noncomputational - The instruction
does not have the format of the
computational instructions and does
not allow any optional forms. The
definition of the operation and the
format of the instruction are completely
defined by the operation code
specification field (bits 5-15).

Computational - The instruction has
the computational instruction format.
The basic operation is defined in the
basic function field (bits 8-15) of the
operation code. However, the
instruction may allow one or more of
the optional instruction forms (indicated
by bits 5-7) that define additional
information about the operation to be
performed, the number of operands, or
the format of the instruction.

Extender field present

o = The instruction does not have an
operation code extender field.

The instruction has an operation code
extender field.

Operation Caete Specification Field (Bits 5-15)

The operation code specification field contains
information describing the operation to be performed by
the instructioln and possibly information about the
instruction. I ts contents depend upon whether this
instruction h:as a computational or a noncomputational
format.

• Computa1tional format:

Bits IVieaning

5

6

IExtender specification - The extender field
present flag must be on (bit 4 equals 1)

'before this field has meaning. If bit 4 equals
10, then bit 5 must equal O.

o = Indicator form - The format of this
instruction is an indicator form of the
computational format. An indicator
form instruction uses an operation
extender field and a character scalar
indicator(s) to specify the conditional
indicator option(s) and the indicators to
be set, respectively.

Branch form - The format of this
instruction is a branch form of the
computational instruction form. A
branch form instruction uses a standard
format operation extender field and
branch target operand field(s) to
specify the conditional branch option(s)
and location(s), respectively.

Round form

o This instruction is not a round form.

The fractional portion of the result of
the operation defined for this
instruction is to be rounded before
being truncated and placed in the field
specified by the receiver operand field.

7 Short form

o = This instruction is not a short form.
The format of this instruction is in its
normal form with all its required
operand fields present.

The format is in the optional short form
in which the receiver operand field acts
as the first source operand field and is
not duplicated as an operand.

8-15 Basic function - These bits indicate the
operation to be performed by this instruction
(for example, add numeric).

Noncomputational format:

Bits Meaning

5-15 Basic function - These bits indicate the
operation to be performed by this instruction
(for example, create program or set space
pointer).

Operation Code Extender Field

The operation code extender field of an instruction is a
2-byte field that further defines the operation to be
performed by the instruction and/or the format of the
instruction. The extender field is indicated by a 1 in bit
4 of the operation code.

The format and contents of this field are determined by
the specific instruction in which it appears. The two
types of operation codes extender fields, branch options
and indicator options, are described on the following
pages.

Introduction 1-3

Branch Options

The branch options operation code extender field
contains information needed by instructions that involve
conditional branching (comparison instructions and
optional branch forms of computational instructions).
This field indicates how many branch target operand
fields are in the instruction and which of the resulting
status conditions relate to each of these target
operands.

The following are allowed as branch targets:

• Branch point

• Absolute instruction number (unsigned immediate
operand value)

• Relative instruction number (signed immediate
operand value)

• Instruction pointer (simple operand that is not an
element of an array)

Up to three mutually exclusive status conditions can be
specified for a given instruction. The status conditions
can be one of the following:

• Ignored

• Associated with a branch target operand field such
that:

The branch occurs if the condition occurs.
- The branch occurs if the condition does not occur.

Only one of these three actions can be specified for
each condition. Only those conditions meaningful for a
particular instruction can have the last two actions
specified for them. Conditions that have either of the
last two actions specified for them are associated with
their branch target operands in left-to-right order.

Branch option operation code extender fields consist of
four 4-bit fields. Each of the fields defines one branch
condition. The fields must be specified in left-to-right
order and correspond to the order of the branch target
operands. A field of hex 0 indicates that no branch
target is associated with this condition and that no more
conditions are defined in any field to the right.

1-4

The following codes are valid for branch co!nditions:

Bit Hex Meaning

0000 0 No branch target, no further fields
are checked

0001 High, positive, mixed, zelro and carry

0010 2 Low, negative, ones, not·-zero and
no carry, exception ignoned

0011 3 Reserved

0100 .4 Equal, zero, zeros, zero alnd no carry,
signaled, exception deferred,
dequeued, authorized

0101 5 Reserved

0110 6 Reserved

0111 7 Unequal, not-zero and canoy

1000 8 Reserved

1001 9 Not high, not positive, not mixed,
not-zero and carry

1010 A Not low, not negative, not ones, not
not-zero and no carry

1011 B Reserved

1100 C Not equal, not-zero, not zeiros, not
dequeued, not-zero and nOI carry,
not signaled, not authorized

1101 D Reserved

1110 E Reserved

1111 F Not unequal, not not-zero sind carry

The branch options specified for an instruction must be
mutually exclusive. The user must not specify a branch
to more than one branch target on the same condition;
that is, two 4-bit fields cannot specify the samel
condition.

A not condition refers to any condition other than the
one specified. That is, not equal is satisfied with a high
or low condition. Therefore, the same condition cannot
be specified as negative and positive in the same
extender (for example, not equal and high cannot be
specified together).

The same branch target can be used for multiple
conditions. For example, if branch conditions high and
equal are specified separately, each of the
corresponding branch targets can reference the same
instruction. A not low condition with a single branch
target accomplishes the same function.

Examples

Hex 4000 means:

• One branch target is present in the instruction.

• Branch to the first branch target operand if an equal
condition occurs.

• Otherwise, execute the next sequential instruction.

Hex 1900 means:

• Two branch targets are present in the instruction.

• Branch to the first branch target operand if a high
condition occurs.

• Branch to the second branch target operand if a high
condition does not occur.

Hex 1210 is not allowed because branch condition 1
(high) is specified twice.

Hex 1 AOO is not allowed because condition 1 (high) is
also specified as part of condition A (not low).

Indicator Options

The indicator options operation code extender field
contains information needed by instructions that allow
conditional indicator setting (comparison instructions and
optional indicator forms of computational format
instructions). The field indicates how many indicator
operand fields are in the instruction and which of the
resulting status conditions relate to each of these
indicator operands.

The preceding discussion of the usage, conditions,
ordering, and encoding of branch options also applies to
indicator options.

If a condition that is being monitored by the indicator
option occurs, the leftmost byte of the associated
indicator target is assigned a value of hex F1; otherwise,
the leftmost byte of the indicator target is assigned a
value of hex FO.

Example

Hex 4000 means:

• One indicator target is present in the instruction.

• Assign a value of hex F1 to the indicator target if the
equal condition occurs.

• Assign a value of hex FO to the indicator target if the
equal condition does not occur.

In this example, the indicator form of the operand must
be a character or a numeric scalar data object. Only the
first byte of the operand is used. This operand must be
a simple operand and cannot be a compound subscript
operand, a compound substring operand, or a compound
based operand.

Introduction 1-5

Instruction Operands

~ach instruction requires from zero to four operands.
Each operand may consist of one or more 2-byte fields
that contain either a null operand specification, an
immediate data value, or a reference to an ODT object.

Null Operands

Certain instructions allow certain operands to be null. In
general, a null operand means that some optional
function of the instruction is not to be performed or that
a default action is to be performed by the instruction.

Immediate Operands

The value of this type of operand is encoded in the
instruction operand. Immediate operands may have the
following values:

• Signed binary - representing a binary value of
negative 4096 to positive 4095.

• Unsigned binary - representing a binary value of 0 to
8191.

• Byte string - representing a single byte value from
hex 00 to hex FF.

• Absolute instruction number - representing an
instruction number in the range of 1 to 8191.

• Relative instruction number - representing a
displacement of an instruction relative to the
instruction in which the operand occurs. This operand
value may identify an instruction displacement of
negative 4096 to positive 4095.

qor Object References

This type of operand contains a reference (possibly
qualified) to an object in the ODT. Operands that are
ODT object references may be simple operands or
compound operands.

1-6

Simple Operands: The value encoded in the operand
refers to a specific object defined in the ODT. Simple
operands consist of a single 2-byte operand entry.

Compound Operands: A compound operand consists of a
primary (2-byte) operand and a series of one to three
secondary (2-byte) operands. The primary operand is an
ODT reference to a base object while the secondary
operands serve as qualifiers to the base object.

A compound operand may have the following uses:

• Subscript references

An individual element of a data object array, a pointer
array, or an instruction definition list may be
referenced with a subscript compound operand. The
operand consists of a primary reference to the array
and a secondary operand to specify the index value
to an element of the array.

• Substring references

A portion of a character scalar data object may be
referenced as an instruction operand through a
substring compound operand. The operand consists
of a primary operand to reference the base string
object and secondary references to specify the value
of an index (position) and a value for the length of
the substring.

• Explicit base references

An instruction operand may specify an explicit
override for the base pointer for a based data object
or a based addressing object. The operand consists
of a primary operand reference to the based object
and a secondary operand reference to the pointer on
which to base the object for this operand. The
override is in effect for the single operand. The
displacement implicit in the ODT definition of the
primary operand and the addressability contained in
the explicit pointer are combined to provide an
address for the operand.

The explicit base may be combined with either the
subscript or the substring compound operands to
provide a based subscript compound operand or a
based substring compound operand.

Format of Instruction Operand

The format for an instruction operand (primary or
secondary) field is as follows:

Operand Field (bits 0·15)
o 1 2 3 ••••••••••••••••••••••••• 15
~' I

Type Specification ---------',

Operand Specification ------------

Operand Function Primary Operand

Type
Bits Operand

Simple ODT Reference or 000 o DT reference or
Null Operand null

Unsigned Immediate Value 001 Unsigned
immediate value

Subscript Compound 010 Array ODT
Operand reference

Substring Compound all String ODT
Operand reference

Explicit Base Compound 100 Based ODT
Operand object reference

Signed I.mmedi.ate Value 101 Signed
immediate value

Explicit Based Subscript 110 Based array ODT
Compound Operand reference

Explicit Based Substring 111 Based string
Compound Operand o DT reference

Type Specification Field: The type specification field
occupies bits 0-2 of the operand. It indicates whether
the operand is an immediate data value, a simple ODT
reference, or a compound ODT reference.

The following illustration shows the type specifications
allowed for primary operands and secondary operands.
Secondary operands may be simple ODT references or
immediate data values.

Secondary Operand

Number of
Secondary
Operand 1 2 3

a

0

1 Index

2 Index Length

1 Base pointer

a

2 Base pointer Index

3 Base pointer Index Length

Introduction 1-7

Operand Specification Field: The operand specification
field occupies bits 3-15. It can be an OOT reference or
an immediate value. The OOT reference occupies bits
3-15 of the operand field. It contains a binary integer
value indicating which ODV (object definition vector)
entry in the OOT to use for this operand's definition.
This value is an index value for the one-dimensional
array OOV, not a byte displacement into the OOT. Thus,
a maximum of 8191 OOV objects are addressable in any
program. The first OOT reference is 1. If the value of
the operand specification field is 0, the operand is null.

The following primary operands are allowed:

• OOT reference (type bits equal 000)

The operand consists of a simple OOT reference. The
value of bits 3-15 of the operand defines an index
into the OOT. The range of this value may be from 1
to the size of the OOT (maximum size of 8191).

• Null (type bits equal 000)

A null operand consists of a 0 value for bits 3-15 of
the operand. The null operand is used in several
instructions to indicate that a function is not to be
performed or that a default action is to occur.

• Unsigned immediate value (type bits equal 001)

The operand is interpreted as an unsigned immediate
data value. Three uses can be made of this form:

1-8

For numeric operands, an unsigned binary value
from 0 to 8191 can be specified in bits 3-15 of
the operand. -
For character (or byte) operands, a single a-bit
value can be specified in bits 8-15 of the operand.
For branch target operands, an unsigned binary
value of 1 to 8191 can be specified in bits 3-15;
that value is interpreted to contain an instruction
number. A value of 0 is invalid.

• Array OOT reference (type bits equal 010)

When the operand type bits are 010, the operand
specification (bits 3-15) .must be an OOT reference to
an array of scalars, an array of pointers, or an
instruction definition list.

A secondary operand is required to specify the array
index value.

• String OOT reference (type bits equal 011)

When the operand type bits are 011, the operand
specification (bits 3-15) must be an OOT reference to
a data object, data pointer, or a constant data object
that has the attributes of a character scalar. The
substring operation refers to a portion of this OOT
object.

Two secondary operands are required: one for the
index (position) and one for the length of the
substring.

• Based OOT object reference (type bits equal 100)

When the operand type bits are 100, this operand
specification (bits 3-15) must be an OOT reference to
a data object with based addressability.

A secondary operand is required to specify the
overriding base pointer.

• Signed immediate value (type bits equal 101)

The operand is interpreted as a signed immediate
data value. Negative values are represented in twos
complement form in bits 3-15. Bit 3 is the sign bit.
Two uses can be made of this form:

For numeric operands, a signed value can be
specified in the range of negative 4096 to positive
4095.
For branch target operands, a signed binary value
of negative 4096 to positive 4095 can be
specified, and it is interpreted as a relative
instruction number.

• Based array ODT reference (type bits equal 110)

When the operand type bits are 110, the operand
specification (bits 3-15) must be an ODT reference to
an array of scalars or an array of pointers with the
array based on a space pointer. Explicit basing and
array indexing are performed for the operand.

Two secondary operands are required: one for the
base pointer and one for the index value.

• Based string ODT reference (type bits equal 111)

When the operand type bits are 111, the operand
specification must be an ODT reference to either a
character scalar data object based on a space pointer
or a character scalar data pointer based on a space
pointer. Explicit basing and the substring function are
performed for the operand.

Three secondary operands are required: a base
pointer, an index value, and a length value.

The following are allowed as secondary operands. (Note
that secondary operands cannot be compound
operands.)

• Index

A secondary operand representing an index value
may be one of the following:

An ODT reference to a binary data object (type
bits equal 000)
An ODT reference to a binary constant data object
(type bits equal 000)
An unsigned immediate binary value (type bits
equal 001)

An exception is signaled if the value of the index is
not greater than 0 or if it is greater than the size of
the primary operand (number of bytes for strings,
number of elements for arrays, or number of
elements for an instruction definition list). The user
can suppress the verification of this valid index value
for substrings of character strings and elements of
arrays by specifying the appropriate constraint
attribute w~en the program is created.

• Length

A secondary operand representing a length value may
be one of the following:

An ODT reference to a binary data object (type
bits equal 000)
An ODT reference to a binary constant data object
(type bits equal 000)
An unsigned immediate binary value (type bits
equal 001)

An exception is signaled if the value of the length is
not greater than 0 or if the value of the index plus
the value of the length is greater than the number of
bytes in the primary operand. The user can suppress
verification of this valid index value for substrings of
character strings by specifying the appropriate
constraint attribute on program creation.

• Base pointer

If the primary operand is a data object, the base
pointer secondary operand must be an ODT reference
to a space pointer (type bits equal 000).

Introduction 1-9

Examples

The following are examples of instruction operands:

Operand Values
(hex)

0007

0000

2000

3FFF

AOOO

AFFF

BFFF

400A2006

E009000800070006

1-10

Meaning

A simple ODT reference to
ODT object 7

A null operand

An unsigned immediate
value of 0 (type bits equal
001)

An unsigned immediate
value of 8191 (type bits
equal 001)

A signed immediate value
of 0 (type bits equal 101)

A signed immediate value
of 4095 (type bits equal
101)

A signed immediate value
of minus 1 (type bits equal
101)

A subscript compound
operand reference to array
element 6 of the array
defined in ODT object 10

An explicit based substring
compound operand:

• ODT object 9 is a based
string.

• ODT object 8 is a space
pointer.

• ODT object 7 is a binary
data object that provides
the index.

• ODT object 6 is a binary
data object that provides
the length.

INSTRUCTION FORMAT CONVENTIONS USED IN
THIS MANUAL

The user of this manual must be aware that not every
instruction uses every field described in this section.
Only the information pertaining to the fields that are
used by an instruction is provided for each instruction.

In this manual, each instruction is formatted with the
instruction name followed by its base mnemonic.
Following this is the operation code (op code) in
hexadecimal and the number of operands with their
general meaning.

Example:

ADD NUMERIC (ADDN)

Op Code Operand Operand Operand
(hex) 1 2 3

1043 Sum Addend 1 Addend 2

This information is followed by the operands and their
syntax. See Definition of the Operand Syntax later in this
chapter for a detailed discussion of the syntax of
instruction operands.

Example:

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Optional Forms: The mnemonics and bit encodings for
the optional instruction operation codes are given along
with a brief description of the options.

The optional forms are short form, round form, branch
form, and indicator form. For a more detailed
description of these forms see Operation Code Field
earlier in this chapter.

Extender: A brief description of the extender options is
given.

Description: A detailed description and a functional
definition of the instruction is given.

Authorization Required: A list of the object authorization
required for each of the operands in the instruction or
for any objects subsequently referenced by the
instruction is given.

Lock Enforcement: Describes the specification of the
lock states that are to be enforced during execution of
the instruction.

The following states of enforcement can be specified for
an instruction:

• Enforcement for materialization

Access to a system object is allowed if no other
process is holding a locked exclusive no read (LENR)
lock on the object. In general, this rule applies to
instructions that access an object for materialization
and retrieval.

• Enforcement for modification

Access to a system object is allowed if no other
process is holding a locked exclusive no read (LENR)
or locked exclusive allow read (LEAR) lock. In
general, this rule applies to instructions that modify
or alter the contents of a system object.

• Enforcement of object control

Access is prohibited if another process is holding any
lock on the system object. In general, this rule
applies to instructions that destroy or rename a
system object.

Resultant Conditions: These are tbe conditions that can
be set at the end of the standard operation in order to
perform a conditional branch or set a conditional
indicator.

Events

The Events sections contain a list of events and the
corresponding event numbers (in hexadecimal form) that
can be caused by the instruction.

A detailed description of the events is in Chapter 21.

Exceptions

The Exceptions sections contain a list of exceptions that
can be caused by the instruction. (The detailed
description of exceptions is in Chapter 20.) Exceptions
related to specific operands are indicated for each
exception by the Xs under the heading operand. An
entry under the word, Other, indicates that the
exception applies to the instruction but not to a
particular operand.

DEFINITION OF THE OPERAND SYNTAX

Syntax consists of the allowable choices for each
instruction operand. The following are'the common
terms used in the syntax and the meanings of those
terms:

• Numeric: Numeric attribute of binary, packed
decimal, or zoned decimal

• Character: Character attribute

• Scalar:
Scalar data object that is not an array (see note 1)
Constant scalar object
Immediate operand (signed or unsigned)
Element of an array of scalars (see notes 1 and 2)
Substring of a character scalar or a character
scalar constant data object (see notes 1 and 3)

• Data Pointer Defined Scalar:
A scalar defined by a data pointer
Substring of a character scalar defined by a data
pointer (see notes 1 and 3)

• Pointer:
Pointer data object that is not an array
(see note 1)
Element of an array of pointers
(see notes 1 and 2)

• Array: An array of scalars or an array of pointers
(see note· 1)

• Variable Scalar: Same as scalar except constant
scalar objects and immediate operand values are
excluded.

Introduction 1-11

• Data Pointer: A pointer that is to be used as a data
pointer.

If the operand is a source operand, the pointer
storage form must contain a data pointer when the
instruction is executed.
If the operand is a receiver operand, a data pointer
is constructed by the instruction in the specified
area regardless of its current contents (see note 4).

• Space Pointer: A pointer that is to be used as a
space pointer.

If the operand is a source operand, the pointer
storage form must contain a space pointer when
the instruction is executed.
If the operand is a receiver operand, a space
pointer is constructed by the instruction in the
specified area regardless of its current contents
(see note 4).

• System Pointer: A pointer that is to be used as a
system pointer.

If the operand is a source operand, the specified
area must contain a system pointer when the
instruction is executed.
If the operand is a receiver operand, a system
pointer is constructed by the instruction in the
specified area regardless of its current contents
(see note 4).

• Relative Instruction Number: Signed immediate
operand.

• Instruction Number: Unsigned immediate operand.

• Instruction Pointer: A pointer object that is to be
used as an instruction pointer.

If the operand is a source operand, the specified
area must contain an instruction pointer when the
instruction is executed.
If the operand is a receiver operand, an instruction
pointer is constructed by the instruction in the
specified area regardless of its current contents
(see notes 4 and 5).

• Instruction Definition List Element: An entry in an
instruction definition list that can be used as a branch
target. A compound subscript operand form must
always be used (see note 5).

1-12

Notes:
1. All instruction operand in which the primary operand

is a scalar or a pointer may also have an operand
form in which an explicit base pointer is specified.

See oor Object References earlier in this chapter for
more information on compound operands.

2. A compound subscript operand may be used to
select a specific element from an array of scalars or
from an array of pointers.

See ODr Object References earlier in this chapter for
more information on compound operands.

3. A compound substring operand may be used to
define a substring of a character scalar, a character
constant scalar object, or a character scalar defined
by a data pointer. Character scalar operands can be
in the substring compound operand form, but variable
length secondary operands are not always allowed.
The secondary operand can be a constant data object
or an immediate operand value.

See ODr Object References earlier in this chapter for
more information on compound operands.

4. A compound subscript operand form may be used to
select an element from an array of pointers to act as
the operand for an instruction.

See ODr Object References earlier in this chapter for
more information on compound operands.

5. Compound subscript forms are not allowed on branch
target operands that are used for conditional
branching. Selection of elements of instruction
pointer arrays and elements of instruction definition
lists may, however, be referenced for branch
operands by the Branch instruction.

Alternate choices of operand types and the allowable
variations within each choice are indicated in the syntax
descripticns as shown in ~he following example.

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand, 3: Instruction number, branch point or instruction

pointer.

Operand 1 must be variable scalar. Operands 1 and 2
must be numeric. Operand 3 can be an instruction
number, branch point or instruction pointer.

When a length is specified in the syntax for the
operand, character scalar operands must be at least the
size specified. Any excess beyond that required by the
instruction is ignored.

Scalar operands that are operated on by instructions
requiring 1-byte operands, such as pad values or
indicator operands, can be greater than 1 byte in length;
however, only the first byte of the character string is
used. The remaining bytes are ignored by the
instruction.

Introduction 1-13

1-14

Chapter 2. Computation and Branching Instructions

This chapter describes all the instructions used for
computation and branching. These instructions are
arranged in alphabetic order. For an alphabetic summary
of all the instructions, see Appendix B. Instruction
Summary.

ADD LOGICAL CHARACTER (ADDLC)

Op Code Operand
(hex) 1

1023 Sum

Operand
2

Operand
3

Addend 1 Addend 2

Operand 1: Character variable scalar (fixed-length).

Operand 2: Character scalar (fixed-length).

Operand 3: Character scalar (fixed-length).

Optional Forms

Mnemonic

ADDlCS
ADDlCI
ADDlCIS
ADDlCB
ADDlCBS

Op Code
(hex)

1123
1823
1923
1C23
1023

Form Type

Short
Indicator
Indicator, Short
Branch
Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to four branch targets (for branch options) or one to four
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The unsigned binary value of the addend 1
operand is added to the unsigned binary value of the
addend 2 operand and the result is placed in the sum
operand.

The length of the operation is equal to the length of the
longer of the two source operands. The length can be a
maximum of 256 bytes. The shorter of the two
operands is padded on the right with binary D's.

The addition operation is performed according to the
rules of algebra. The result value is then placed
(left-adjusted) in the receiver operand with truncating or
padding taking place on the right. The pad value used in
this instruction is a byte value of hex 00.

If operands overlap but do not share all of the same
bytes, results of operations performed on these
operands are not predictable. If overlapped operands
share all of the same bytes, the results are predictable
when direct addressing is used. If indirect addressing is
used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the
results are not always predictable.

Resultant Conditions: The logical sum of the character
scalar operands is zero with no carry out of the leftmost
bit position, not-zero with no carry, zero with carry, or
not-zero with carry.

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-1

Exceptions

Operands
Exception 1 2 3

06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

08 Argument/ Parameter

01 Parameter reference violation X X X

10 Damage Encountered

04 System object damage state X X X

44 Partial system object damage X X X

1C Machine- Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer Specification

01 ,Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program Creation

05 Invalid op code extender field

06 I nvalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand

OA Invalid operand length X X X

OC Invalid operand ODT reference X X X

2C Program Execution

04 Branch target invalid

2-2

Other

X

X

X

X

X

X

X

X

ADD NUMERIC (ADDN)

Op Code
(hex)

1043

Operand
1

Sum

Operand
2

Addend 1

Operand
3

Addend 2

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Optional Forms

Op Code
Mnemonic (hex) Form Type

ADDNS 1143 Short
ADDNR 1243 Round
ADDNSR 1343 Short, Round
ADDNI 1843 Indicator
ADDNIS 1943 Indicator, Short
ADDNIR 1A43 Indicator, Round
ADDNISR 1B43 Indicator, Short, Round
ADDNB 1C43 Branch
ADDNBS 1D43 Branch, Short
ADDNBR 1E43 Branch, Round
ADDNBSR 1F43 Branch, Short, Round

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to three branch targets (for branch options) or one to
three indicator operands (for indicator options). The
branch or indicator operands immediately follow the last
operand listed above. See Chapter 1. Introduction for
the encoding of the extender field and the allowed
syntax of the branch and indicator operands.

Description: The signed numeric value of the addend 1
operand is added to the numeric value of the addend 2
operand, and the result is placed in the sum operand.

All operands must be numeric with any implicit
conversions occurring according to the rules of
arithmetic operations as outlined in the Functional
Concepts Manual.

For a decimal operation, alignment of the assumed
decimal point takes place by padding with 0' s on the
right end of the addend with lesser precision.

The operation uses the lengths and the precision of the
source and receiver operands to calculate accurate
results.

The addition operation is performed according to the
rules of algebra.

The result of the operation is copied into the sum
operand. If this operand is not the same type as that
used in performing the operation, the resultant value is
converted to its type. If necessary, the resultant value is
adjusted to the length of the sum, aligned at the
assumed decimal point of the sum operand, or both
before being copied. Length adjustment and decimal
point alignment are performed according to the rules of
arithmetic operations outlined in the Functional Concepts
Manual. If nonzero digits are truncated on the left end
of the resultant value, a size exception is signaled.

If operands overlap but do not share all of the same
bytes, results of operations performed on these
operands are not predictable. If overlapped operands
share all of the same bytes, the results are predictable
when direct addressing is used. If indirect addressing is
used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the
results are not always predictable.

If a decimal to binary conversion causes a size
exception to be signaled, the binary value contains the
correct truncated result only if the decimal value
contains 15 or fewer significant nonfractional digits.

Resultant Conditions: The algebraic value of the numeric
scalar sum operand is positive, negative, or O.

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

08 Argument/ Parameter

01 Parameter reference violation X X X

OC Computation

02 Decimal data X X

03 Decimal point alignment X X

OA Size X

10 Damage Encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine- Dependent Exception

03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program Creation

05 Invalid op code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X

OC Invalid operand ODT reference X X X

2C Program Execution

04 Branch target invalid X

Computation and Branching Instructions 2-3

AND (AND)

Op Code Operand Operand Operand
(hex) 1 2 3

1093 Receiver Source 1 Source 2

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Operand 3: Character scalar.

Optional Forms

Mnemonic

ANDS
ANDI
ANDIS
ANDB
ANDBS

Op Code
(hex)

1193
1893
1993
1C93
1D93

Form Type

Short
Indicator
Indicator, Short
Branch
Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduct~on for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The Boolean AND operation is performed
on the string values in the source operands. The
resulting string is placed in the receiver operand. The
operands must be character strings that are interpreted
as bit strings.

The length of the operation is equal to the length of the
longer of the two source operands. The shorter of the
two operands is logically padded on the right with hex
00 values. This assigns hex 00 values to the results for
those bytes that correspond to the excess bytes of the
longer operand.

2-4

The bit values of the result are determined as follows:

Source 1 Source 2 Result
Bit Bit Bit

1 1
0 1 0
1 0 0
0 0 0

The result value is then placed (left-adjusted) in the
receiver operand with truncating or padding taking place
on the right. The pad value used in this instruction is a
byte value of hex 00.

If operands overlap but do not share all of the same
bytes, results of operations performed on these
operands are not predictable. If overlapped operands
share all of the same bytes, the results are predictable
when direct addressing is used. If indirect addressing is
used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the
results are not always predictable.

Resultant Conditions: The bit values for the bits of the
scalar receiver operand is either ~II zero or not all zero.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions BRANCH (B)

Operands Op Code Operand
Exception 1 2 3 Other (hex) 1

06 Addressing 1011 Branch Target
01 Space addressing violation X X X
02 Boundary alignment X X X Operand 1: Instruction number, relative instruction number,
03 Range X X X branch point, instruction pointer, or instruction definition list

08 Argument/ Parameter element.

01 Parameter reference violation X X X
10 Damage Encountered

04 System object damage state X X X X Description: Control is unconditionally transferred to the
44 Partial system object damage X X X X instruction indicated in the branch target operand. The

1C Machine-Dependent Exception instruction number indicated by the branch target
03 Machine storage limit exceeded X operand must be within the instruction stream

20 Machine Support containing the branch instruction.
02 Machine check X
03 Function check X The branch target may be an element of an array of

22 Object Access instruction pointers or an element of an instruction
01 Object not found X X X definition list. The specific element can be identified by
02 Object destroyed X X X using a compound subscript operand.
03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X Events
02 Pointer type invalid X X X

2A Program Creation OOOC Machine resource
05 Invalid op code extender field X 0201 Machine auxiliary storage threshold exceeded
06 Invalid operand type X X X
07 Invalid operand attribute X X X 0010 Process
08 Invalid operand value range X X X 0701 Maximum processor time exceeded
09 Invalid branch target operand X 0801 Process storage limit exceeded
OA Invalid operand length X X X
OC Invalid operand ODT reference X X X 0016 Machine observation

2C Program Execution 0101 Instruction reference
04 Branch target invalid X

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-5

Exceptions COMPARE BYTES LEFT-ADJUSTED
(CMPBLAB or CMPBLAI)

Operand
Exception 1 Other Op Code Operand Operand Operand

(hex) Extender 1 2 3 [4, 5]
06 Addressing

01 Space addressing violation X 1CC2 Branch Compare Compare Branch
02 Boundary alignment X options operand 1 operand 2 target

03 Range X

08 Argument/ Parameter 18C2 Indicator Indicator

01 Parameter reference violation X options target

10 Damage Encountered

04 System object damage state X X Operand 1: Numeric scalar or character scalar.

44 Partial system object damage X X
Operand 2: Numeric scalar or character scalar.

1C Machine-Dependent Exception

03 Machine storage limit exceeded X Operand 3 [4, 5]:

20 Machine Support

02 Machine check X . Branch target - Instruction number, relative instruction

03 Function check X
number, branch point, or instruction pointer.

22 Object Access . Indicator target - Numeric variable scalar or character
01 Object not found X variable scalar.
02 Object destroyed X

03 Object suspended X

24 Pointer Specification Extender: Branch or indicator options.
01 Pointer does not exist X

02 Pointer type invalid X Either the branch or indicator option is required by the
2A Program Creation instruction. The extender field is required along with

06 Invalid operand type X from one to three branch targets (for branch option) or
07 Invalid operand attribute X one to three indicator operands (for indicator option).
09 Invalid branch target operand X The branch or indicator operands are required for
OC Invalid operand ODT reference X operand 3 and optional for operands 4 and 5. See

2C Program Execution Chapter 1. Introduction for the bit encoding of the
04 Branch target invalid X extender field and the allowed syntax of the branch and

indicator operands.

2-6

Description: This instruction compares the logical string
values of two left-adjusted compare operands. The
logical string value of the first compare operand is
compared with the logical string value of the second
compare operand (no padding done). Based on the
comparison, the resulting condition is used with the
extender field to:

• Transfer control conditionally to the instruction
indicated in one of the branch target operands
(branch form).

• Assign a value to each of the indicator operands
(indicator form).

The compare operands can be either character or
numeric. Any numeric operands are interpreted as
logical character strings.

The compare operands are compared byte by byte, from
left to right with no numeric conversions performed.
The length of the operation is equal to the length of the
shorter of the two compare operands. The comparison
begins with the leftmost byte of each of the compare
operands and proceeds until all bytes of the shorter
compare operand have been compared or until the first
unequal pair of bytes is encountered.

Resultant Conditions: The scalar first compare operand
has a higher, lower, or equal string value than the
second compare operand.

Events

OOOC Machine resource
0201 Machine "auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 3 [4, 5) Other

06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

08 Argument/ Parameter

01 Parameter reference violation X X X

10 Damage Encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-Dependent Exception

03 Machine storage limit X
exceeded

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program Creation

05 Invalid op code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X

OA Invalid operand length X X X

OC Invalid operand ODT reference X X X

2C Program Execution

04 Branch target invalid X

Computation and Branching Instructions 2-7

COMPARE BYTES LEFT-ADJUSTED WITH PAD
(CMPBLAPB or CMPBLAPI)

Op Code
(hex)

1CC3

18C3

Extender

Branch
options

Indicator
options

Operand
1

Compare
operand 1

Operand
2

Compare
operand 2

Operand 1: Numeric scalar or character scalar.

Operand 2: Numeric scalar or character scalar.

Operand 3: Numeric scalar or character scalar.

Operand 4 [5, 6]:

Operand
3

Pad

• Branch target - Instruction number, relative instruction
number, branch point, or instruction pointer.

• Indicator target - Numeric variable scalar or character

variable scalar.

Extender: Branch or indicator options.

Either the branch or indicator option is required by the
instruction. The extender field is required along with
from one to three branch targets (for branch option) or
one to three indicator operands (for indicator option).
The branch or indicator operands are required for
operand 4 and optional for operands 5 and 6. See
Chapter 1. Introduction for the bit encoding of the
extender field and the allowed syntax of the branch and
indicator operands.

Operand
4 [5, 6]

Branch
target

Indicator
target

The compare operands are compared byte by byte, from
left to right with no numeric conversions being
performed.

The length of the operation is equal to the length of the
longer of the two compare operands. The shorter of the
two compare operands is logically padded on the right
with the 1-byte value indicated in the pad operand. If
the pad operand is more than 1 byte in length, only its
leftmost byte is used. The comparison begins with the
leftmost byte of each of the compare operands and
proceeds until all the bytes of the longer of the two
compare operands have been compared or until the first
unequal pair of bytes is encountered. All excess bytes in
the longer of the two compare operands are compared
to the pad value.

Resultant Conditions: The scalar first compare operand
has a higher, lower, or equal string value than the
second compare operand.

Events

oooe Machine resource

Description: This instruction compares the logical string
values of two left-adjusted compare operands (padded if
needed). The logical string value of the first compare
operand is compared with the logical string value of the
second compare operand. Based on the comparison,

0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

the resulting condition is used with the extender field to:

• Transfer control conditionally to the instruction
indicated in one of the branch target operands
(branch form).

• Assign a value to each of the indicator operands
(indicator form).

The compare operands can be either character or
numeric. Any numeric operands are interpreted as
logical character strings.

2-8

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions COMPARE BYTES RIGHT-ADJUSTED
(CMPBRAB or CMPBRAI)

Operands
Exception 1 2 3 4 [5, 6] Other Op Code Operand Operand Operand

(hex) Extender 1 2 3 [4, 5]
06 Addressing

01 Space addressing violation X X X X 1CC6 Branch Compare Compare Branch
02 Boundary alignment X X X X options operand 1 operand 2 target

03 Range X X X X

08 Argument/ Parameter 18C6 Indicator Indicator

01 Parameter reference X X X X options target

violation

10 Damage Encountered Operand 1: Numeric scalar or character scalar.

04 System object damage X X X X X
state Operand 2: Numeric scalar or character scalar.

44 Partial system object X X X X X
Operand 3 [4, 5]:

damage

1C Machine-Dependent Exception . Branch target - Instruction number, relative instruction
03 Machine storage limit X number, branch point, or instruction pointer.

exceeded

20 Machine Support . Indicator target - Numeric variable scalar or character

02 Machine check X variable scalar.

03 Function check X

22 Object Access

01 Object. not found X X X X Extender: Branch or indicator options.

02 Object destroyed X X X X

03 Object suspended X X X X Either the branch or the indicator option is required by

24 Pointer Specification the instruction. The extender field is required along with

01 Pointer does not exist X X X X from one to three branch targets (for branch option) or

02 Pointer type invalid X X X X one to three indicator operands (for indicator option).

2A Program Creation The branch or indicator operands are required for

05 Invalid op code extender X operand 3 and optional for operands 4 and 5. See
field Chapter 1. Introduction for the bit encoding of the

06 Invalid operand type X X X X extender field and the allowed syntax of the branch and
07 Invalid operand attribute X X X X indicator operands.
08 Invalid operand value range X X X X

09 Invalid branch target X
operand

OA Invalid operand length X X

OC Invalid operand ODT X X X X
reference

2C Program Execution

04 Branch target invalid X

Computation and Branching Instructions 2-9

Description; This instruction compares the logical string
values of two right-adjusted compare operands. The
logical string value of the first compare operand is
compared with the logical string value of the second
compare operand (no padding done). Based on the
comparison, the resulting condition is used with the
extender field to:

• Transfer control conditionally to the instruction
indicated in one of the branch target operands
(branch form).

• Assign a value to each of the indicator operands
(indicator form).

The compare operands can be either string or numeric.
Any numeric operands .are interpreted as logical
character strings.

The compare operands are compared byte by byte, from
left to right with no numeric conversions performed.
The length of the operation is equal to the length of the
shorter of the two compare operands. The comparison
begins with the leftmost byte of each of the compare
operands and proceeds until all bytes of the shorter
compare operand have been compared or until the first
unequal pair of bytes is encountered.

Resultant Conditions; The scalar first compare operand
has a higher, lower, or equal string value than the
second compare operand.

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

2-10

Exceptions

Operands
Exception 1 2 3 [4, 5] Other

06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

08 Argument/Parameter

01 Parameter. reference violation X X X

10 Damage Encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine- Dependent Exception

03 . Machine storage limit X
exceeded

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program Creation

05 Invalid op code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target operand X

OA Invalid operand length X X

OC Invalid operand ODT reference X X X

2C Program Execution

04 Branch target invalid X X

COMPARE BYTES RIGHT-ADJUSTED WITH PAD
(CMPBRAPB or CMPBRAPI)

Op Code
(hex)

1CC7

18C7

Extender

Branch
options

Indicator
options

Operand
1

Compare
operand 1

Operand
2

Compare
operand 2

Operand 1: Numeric scalar or character scalar.

Operand 2: Numeric scalar or character scalar.

Operand 3: Numeric scalar or character scalar.

Operand 4 [5, 6]:

Operand
3

Pad

• Branch target - Instruction number, relative instruction
number, branch point, or instruction pointer.

• Indicator target - Numeric variable scalar or character

variable scalar.

Extender: Branch or indicator options.

Either the branch or the indicator option is required by
the instruction. The extender field is required along with
from one to three branch targets (for branch option) or
one to three indicator operands (for indicator option).
The branch or indicator operands are required for
operand 4 and optional for operands 5 and 6. See
Chapter 1. Introduction for the bit encoding of the
extender field and the allowed syntax of the branch and
indicator operands.

Description: This instruction compares the logical string
values of the right-adjusted compare operands (padded
if needed). The logical string value of the first compare
operand is compared with the logical string value of the
second compare operand. Based on the comparison,
the resulting condition is used with the extender field to:

• Transfer control conditionally to the instruction
indicated in one of the branch target operands
(branch form).

• Assign a value to each of the indicator operands
(indicator form).

The compare operands can be either character or
numeric. Any numeric operands are interpreted as
logical character strings.

Operand
4 [5, 6]

Branch
target

Indicator
target

The compare operands are compared byte by byte, (rom
left to right with no numeric conversions performed.

The length of the operation is equal to the length of the
longer of the two compare operands. The shorter of the
two compare operands is logically padded on the left
with the 1-byte value indicated in the pad operand. If
the pad operand is more than 1 byte in length, only its
leftmost byte is used. The comparison begins with the
leftmost byte of the longer of the compare operands.
Any excess bytes (on the left) in the longer compare
operand are compared with the pad value. All other
bytes are compared with the corresponding bytes in the
other compare operand. The operation proceeds until all
bytes in the longer operand are compared or until the
first unequal pair of bytes is encountered.

Resultant Conditions: The scalar first compare operand
has a higher, lower, or equal string value than the
second compare operand.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-11

Exceptions COMPARE NUMERIC VALUE
(CMPNVB or CMPNVI)

Operands
Exception 1 2 3 4 [5,6] Other Op Code Operand Operand Operand

(hex) Extender 1 2 3 [4, 5]
06 Addressing

01 Space addressing violation X X X X 1C46 Branch Compare Compare Branch
02 Boundary alignment X X X X options operand 1 operand 2 target

03 Range X X X X

08 Argument/ Parameter 1846 Indicator Indicator

01 Parameter reference X X X X options target

violation

10 Damage Encountered Operl(Jnd 1: Numeric scalar.

04 System object damage X X X X X
state Operand 2: Numeric scalar.

44 Partial system object X X X X X
Operand 3 [4,5]:

damage

1C Machine- Dependent Exception. . Branch target - Instruction number, relative instruction
03 Machine storage limit X number, branch point, or instruction pointer.

exceeded

20 Machine Support . Indicator target - Numeric variable scalar or character

02 Machine check X variable scalar.

03 Function check .X

22 Object Access

01 Object not found X X X X Extender: Branch or indicator options.

02 Object destroyed X X X X

03 Object suspended X X X X Either the branch or indicator option is required by the

24 Pointer Specification instruction. The extender field is required along with

01 Pointer does not exist X X X X from one to three branch targets (for branch option) or

02 Pointer type invalid X X X X one to three indicator operands (for indicator option).

2A Program Creation The branch or indicator operands are required for

05 Invalid op code extender X operand 3 and optional for operands 4 and 5. See

field Chapter 1. Introduction for the bit encoding of the

06 Invalid operand type X X X X extender field and the allowed syntax of the branch and

07 Invalid operand attribute X X X X indicator operands.

08 Invalid operand value range X X X X

09 Invalid branch target X
operand

OA Invalid operand length X X

OC Invalid operand ODT X X X X
reference

2C Program Execution

04 Branch target invalid X X

2-12

Description: The signed numeric value of the first Exceptions

compare operand is compared with the numeric value of
the second compare operand. Based on the comparison, Operands

the resulting condition is used with the extender field to: Exception 1 2 3 [4,5] Other

. Transfer control conditionally to the instruction 06 Addressing

indicated in one of the branch target operands 01 Space addressing violation X X X

(branch form). 02 Boundary alignment X X X

03 Range X X X

. Assign a value to each of the indicator operands 08 Argument/ Parameter

(indicator form). 01 Parameter reference violation X X X

OC Computation

Both the compare operands must be numeric with any 02 Decimal data X X

implicit conversions occurring according to the rules of 03 Decimal point alignment X X

arithmetic operations as outlined in the Functional 10 Damage Encountered

Concepts Manual. For a decimal operation, alignment of 04 System object damage state X X X X

the assumed decimal point takes place by padding with 44 Partial system object damage X X X X

0' s on the right end of the compare operand with lesser 1C Machine- Dependent Exception

precision. 03 Machine storage limit X
exceeded

The length of the operation is equal to the length of the
20 Machine Support

longer of the two compare operands. The shorter of the
02 Machine check X

two operands is adjusted to the length of the longer
03 Function check X

operand according to the rules of arithmetic operations
22 Object Access

outlined in the Functional Concepts Manual.
01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

Resultant Conditions: The first compare operand has a
24 Pointer Specification

higher, lower, or equal numeric value than the second
01 Pointer does not exist X X X

compare operand.
02 Pointer type invalid X X X

2A Program Creation

05 Invalid op code extender field X

Events
06 Invalid operand type X X X

07 Invalid operand attribute X X X

oooe Machine resource
08 Invalid operand value range X X X

0201 Machine auxiliary storage threshold exceeded
09 Invalid branch target operand X

OC Invalid operand ODT reference X X X

0010 Process
2C Program Execution

0701 Maximum processor time exceeded
04 Branch target invalid X

0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-13

COMPUTE ARRAY INDEX (CAl)

Op Code
(hex)

Operand
1

Operand
2

Operand
3

Operand
4

1044 Array index Subscript A Subscript B Dimension

Operand 1: Binary(2) variable scalar.

Operand 2: Binary(2) scalar.

Operand 3: Binary(2) scalar.

Operand 4: Binary(2) constant scalar object or immediate

operand.

Description: This instruction provides the ability to
reduce multidimensional array subscript values into a
single index value which can then be used in referencing
the single-dimensional arrays of the system. This index
value is computed by performing the following
arithmetic operation on the indicated operands.

Array Index = Subscript A + ((Subscript B-1) X
Dimension)

The signed numeric value of the subscript B operand is
decreased by 1 and multiplied by the numeric value of
the dimension operand. The result of this multiplication
is added to the subscript A operand and the sum is
placed in the array index operand.

All the operands must be binary with any implicit
conversions occurring according to the rules of
arithmetic operations. The usual rules of algebra are
observed concerning the subtraction, addition, and
multiplication of operands.

This instruction provides for mapping multidimensional
arrays to single-dimensional arrays. The elements of an
array with the dimensions (d1, d2, d3, ... , dn) can be
defined as a single-dimensional array with
d1 *d2*d3* ... *dn elements. To reference a specific
element of the multidimensional array with subscripts
(s1,s2,s3, ... sn), it is necessary to convert the multiple
subscripts to a single subscript for use in the
single-dimensional System/38 array. This single
subscript can be computed using the following:

s1 +((s2-1)*d1)+(s3-1)*d1 *d2)+ ... +((sn-1)*d*d2*d3* ... *dm),

where m=n-1

2-14

The CAl instruction is used to form a single index value
from two subscript values. To reduce N subscript values
into a single index value, N-1 uses of this instruction
are necessary.

Assume that S1, S2, and S3 are three subscript values
and that D1 is the size of one dimension, D2 is the size
of the second dimension, and the D1 D2 is the product
of D1 and D2. The following two uses of this
instruction reduce the three subscripts to a single
subscript.

CAl INDEX, 51, 52, D1 Calculates s1 +(s2-1)*d1

CAl INDEX, INDEX, 53, D1 D2 Calculates s1 +(s2-1)

*d1 +(s3-1)*d2*d1

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions CONCATENATE (CAT)

Operands Op Code Operand Operand Operand
Exception 1 2 3 4 Other (hex) 1 2 3

06 Addressing 10F3 Receiver Source 1 Source 2
01 Space addressing violation X X X X

02 Boundary alignment X X X X Operand 1: Character variable scalar.
03 Range X X X X

08 Argument/ Parameter Operand 2: Character scalar.

01 Parameter reference violation X X X X

10 Damage Encountered Operand 3: Character scalar.

04 System object damage state X X X X X

44 Partial system object damage X X X X X

1C Machine-Dependent Exception
Description: The character string value of the second

03 Machine storage limit X
source operand is joined to the right end of the

exceeded character string value of the first source operand. The

20 Machine Support resulting string value is placed (left-adjusted) in the

02 Machine check X receiver operand.

03 Function check X

22 Object Access The length of the operation is equal to the length of the

01 Object not found X X X X receiver operand with the resulting string truncated or is

02 Object destroyed X X X X logically padded on the right end accordingly. The pad

03 Object suspended X X X X value for this instruction is hex 40.

24 Pointer Specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X Events

2A Program Creation

06 Invalid operand type X X X X OOOC Machine resource

07 Invalid operand attribute X X X X 0201 Machine auxiliary storage threshold exceeded

08 Invalid operand value range X X X X

OC Invalid operand ODT reference X X X X 0010 Process

0701 Maximum processor time exceeded

0801 Process storage limit exceeded

0016 Machine observation

0101 Instruction reference

0017 Damage set

0401 System object damage set

0801 Partial system object damage set

Computation and Branching Instructions 2-15

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine-Dependent· Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

2-16

Operands
1 2 3 Other

X X X
X X X
X X X

X

X X X X
X X X X

X

X
X

X X X
X X X
X X X

X X X
X X X

X X X
X X X
X X X
X X X
X X X

CONVERT CHARACTER TO HEX (CVTCH)

Op Code
(hex)

1082

Operand
1

Receiver

Operand
2

Source

Operand 1: Character variable scalar.

Operand 2: Character -scalar.

Description: Each character (8-bit value) of the string
value in the source operand is converted to a hex digit
(4-bit value) and placed in the receiver operand. The
source operand characters must relate to valid hex digits
or a conversion exception is signaled.

Characters

Hex FO-hex F9
Hex Cl-hex C6

Hex Digits

Hex O-hex 9
Hex A-hex F

The operation begins with the two operands
left-adjusted and proceeds left to right until all the hex
digits of the receiver operand have been filled. If the
source operand is too small, it is logically padded on the
right with zero characters (hex FO). If the source
operand is too large, a length conformance or an invalid
operand length exception is signaled.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

OC Computation

01 Conversion

08 Length Conformance

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

Operands
1 2 Other

X X

X X

X X

X X

X

X

X X X

X X X

X

X

X

X X

X X

X X

X X

X X

X X

X X

X X

X

X X

CONVERT CHARACTER TO NUMERIC (CVTCN)

Op Code
(hex)

1083

Operand
1

Receiver

Operand
2

Source

Operand
3

Attributes

Operand 1: Numeric variable scalar or data-pointer-defined
numeric scalar.

Operand 2: Character scalar or data-pointer-defined character
scalar.

Operand 3: Character(7) scalar or data-pointer-defined

character scalar.

Description: The character scalar specified by operand 2
is treated as though it were a numeric scalar with the
attributes specified by operand 3. The character string
source operand is converted to the numeric forms of the
receiver operand and moved to the receiver operand.
The value of operand 2, when viewed in this manner, is
converted to the type, length, and precision of the
numeric receiver, operand 1, following the rules for the
Copy Numeric Value instruction.

The length of operand 2 must be large enough to
contain the numeric value described by operand 3. If it
is not large enough, a scalar value invalid exception is
signaled. If it is larger than needed, its leftmost bytes
are used as the value, and the rightmost bytes are

ignored.

Normal rules of arithmetic conversion apply except for
the following. If operand 2 is interpreted as a zoned
decimal value, a value of hex 40 in the rightmost byte
referenced in the conversion is treated as a positive sign
and a zero digit.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Computation and Branching Instructions 2-17

The format of the attribute operand specified by Exceptions
operand 3 is as follows:

Operands . Scalar attributes Char(7) -Exception 1 2 3 Other

Scalar type Char(l)
Hex 00 = Binary 06 Addressing

Hex 02 = Zoned decimal 01 Space addressing violation X X X

Hex 03 = Packed decimal 02 Boundary alignment X X X

Scalar length Bin(2) 03 Range X X X

If binary: 04 External data object not found X X X

Length (L) Bits 0-15 08 Argument/ Parameter

(where L =2 or 4) 01 Parameter reference violation X X X

If zoned decimal or packed OC Computation

decimal: 02 Decimal data X X

Fractional digits (F) Bits 0-7 OA Size X

Total digits (T) (where Bits 8-15 10 Damage Encountered

1 ~ T ~ 31 and 0 ~ F ~ T) 04 System object damage state X X X X

Reserved (binary 0) Bin(4) 44 Partial system object damage X X X X
1C Machine-Dependent Exception

03 Machine storage limit exceeded X

Events 20 Machine Support

02 Machine check X

OOOC Machine resource 03 Function check X

0201 Machine auxiliary storage threshold exceeded 22 Object Access

01 Object not found X X X

00 10 Process 02 Object destroyed X X X

0701 Maximum processor time exceeded 03 Object suspended X X X

0801 Process storage limit exceeded 24 Pointer Specification

01 Pointer does not exist X X X

0016 Machine observation 02 Pointer type invalid X X X

0101 Instruction reference 2A Program Creation

06 Invalid operand type X X X

0017 Damage set 07 Invalid operand attribute X X X

0401 System object damage set 08 Invalid operand value range X X X

0801 Partial system object damage set OA Invalid operand length X X
OC Invalid operand ODT reference X X X

32 Scalar Specification

01 Scalar type invalid X X X
02 Scalar attribute invalid X
03 Scalar value invalid X

2-18

CONVERT EXTERNAL FORM TO NUMERIC VALUE
(CVTEFN)

Op Code Operand Operand Operand
(hex) 1 2 3

1087 Receiver Source Mask

Operand 1: Numeric variable scalar or data-pointer-defined
numeric scalar.

Operand 2: Character scalar or data-pointer-defined character
scalar.

Operand 3: Character(3) scalar, nUll, or data-pointer-defined
character(3) scalar.

Description: This instruction scans a character string for
a valid decimal number in display format, removes the
display character, and places the results in the receiver
operand. The operation begins by scanning the
character string value in the source operand to make
sure it is a valid decimal number in display format.

The character string defined by operand 2 consists of
the following optional entries:

• Currency symbol - This value is optional and, if
present, must precede any sign and digit values. The
valid symbol is determined by operand 3. The
currency symbol may be preceded in the field by
blank (hex 40) characters.

• Sign symbol - This value is optional and, if present,
may precede any digit values (a leading sign) or may
follow the digit values (a trailing sign). Valid signs are
positive (hex 4E) and negative (hex 60). The sign
symbol, if it is a leading sign, may be preceded by
blank characters. If the sign symbol is a trailing sign,
it must be the rightmost character in the field. Only
one sign symbol is allowed.

)

• Decimal digits - Up to 31 decimal digits may be
specified. Valid decimal digits are in the range of hex
FO through hex F9 (0-9). The first decimal digit may
be preceded by blank characters (hex 40), but hex 40
values located to the right of the leftmost decimal
digit are invalid.

The decimal digits may be divided into two parts by
the decimal point symbol: an integer part and a
fractional part. Digits to the left of the decimal point
are interpreted as integer values. Digits to the right
are interpreted as a fractional values. If no decimal
point symbol is included, the value is interpreted as
an integer value. The valid decimal point symbol is
determined by operand 3. If the decimal point
symbol precedes the leftmost decimal digit, the digit
value is interpreted as a fractional value, and the
leftmost decimal digit must be adjacent to the
decimal point symbol. If the decimal point follows
the rightmost decimal digit, the digit value is
interpreted as an integer value, and the rightmost
decimal digit must be adjacent to the decimal point.

Decimal digits in the integer portion may optionally
have comma symbols separating groups of three
digits. The leftmost group may contain one, two, or
three decimal digits, and each succeeding group must
be preceded by the comma symbol and contain three
digits. The comma symbol must be adjacent to a
decimal digit on either side. The valid comma symbol
is determined by operand 3.

Decimal digits in the fractional portion may not be
separated by commas and must be adjacent to one
another.

Examples of external formats follow. The following
symbols are. used.

$ currency symbol
decimal point
comma

D digit (hex FO - hex F9)
b - blank (hex 40)
+ positive sign

negative sign

Format

$+DDDD.DD

DD,DDD-

-.000
$DDD,DDD-

b$b+bDD.DD

Comments

Currency symbol, leading sign,
no comma separators
Comma symbol, no fraction,
trailing sign
No integer, leading sign
No fraction, comma symbol,
trailing sign
Embedded blanks before digits

Computation and Branching Instructions 2-19

Operand 3 must be a 3-byte character scalar. Byte 1 of Exceptions

the string indicates the byte value that is to be used. for
the currency symbol. Byte 2 of the string indicates the Operands
byte value to be used for the comma symbol. Byte 3 of Exception 1 2 3 Other

the string indicates the byte value to be used for the
decimal point symbol. If operand 3 is null, the currency 06 Addressing

symbol (hex 58), comma (hex 6B), and decimal point 01 Space addressing violation X X X

(hex 4B) are used. 02 Boundary alignment X X X

03 Range X X X

If the syntax rules are violated, a conversion exception is 04 External data object not found X X X

signaled. If not, a zoned decimal value is formed from 08 Argument/ Parameter

the digits of the display format character string. This 01 Parameter reference violation X X X

number is placed in the receiver operand following the OC Computation

rules of a normal arithmetic conversion. 01 Conversion X

OA Size X

If a decimal to binary conversion causes a size exception 10 Damage Encountered

to be signaled, the binary value contains the correct 04 System object damage state X X X X

truncated _ result only if the decimal value contains 15 or 44 Partial system object damage X X X X

fewer significant nonfractional digits. 1C Machine-Dependent Exception
03 Machine storage limit exceeded X

20 Machine Support

Events 02 Machine check X

03 Function check X

oooe Machine resource 22 Object Access

0201 Machine auxiliary storage threshold exceeded 01 Object not found X X X

02 Object destroyed X X X

0010 Process 03 Object suspended X X X

0701 Maximum processor time exceeded 24 Pointer Specification

0801 Process storage limit exceeded 01 Pointer does not exist X X X

02 Pointer type invalid X X X

0016 Machine observation 2A Program Creation

0101 Instruction reference 06 Invalid operand type X X X

07 Invalid operand attribute X X X

0017 Damage set 08 Invalid operand value range X X X

0401 System object damage set OA Invalid operand length X X

0801 Partial system object damage set OC Invalid operand ODT reference X X X

32 Scalar Specification
01 Scalar type invalid X X X

02 Scalar attribute invalid X

2-20

CONVERT HEX TO CHARACTER (CVTHC)

Op Code
(hex)

1086

Operand
1

Receiver

Operand
2

Source

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Description: Each hex digit (4-bit value) of the string
value in the source operand is converted to a character
(8-bit value) and placed in the receiver operand.

Hex Digits

Hex 0-9
Hex A-F

Characters

Hex FO-F9
Hex C1-C6

The operation begins with the two operands
left-adjusted and proceeds left to right until all the
characters of the receiver operand have been filled. If
the source operand contains fewer hex digits than
needed to fill the receiver, the excess characters are
assigned a value of hex FO. If the source operand is too
large, a length conformance or an invalid operand length
exception is signaled.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Space addressing violation X X

02 Boundary alignment X X

03 Range X X

08 Argument/ Parameter

01 Parameter reference violation X X

OC Computation

08 Length conformance X

10 Damage Encountered

04 System object damage state X X X

44 Partial system object damage X X X

1C Machine- Dependent Exception

03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program Creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X X

OC Invalid operand ODT reference X X

02

Computation and Branching Instructions 2-21

CONVERT NUMERIC TO CHARACTER (CVTNC)

Op Code Operand Operand Operand
(hex) 1 2 3

10A3 Receiver Source Attributes

Operand 1: Character variable scalar or data-pointer-defined
character scalar.

Operand 2: Numeric scalar or data-pointer-defined numeric
scalar.

Operand 3: Character(7) scalar or data-pointer-defined

character(7) scalar.

Description: The source numeric value (operand 2) is
converted and copied to the receiver character string
(operand 1). The receiver operand is treated as though it
had the attributes supplied by operand 3.

Operand 1, when viewed in this manner, receives the
numeric value of operand 2 following the rules of the
Copy Numeric Value instruction.

The format of operand 3 is as follows:

• Scalar attributes
Scalar type

2-22

Hex 00 = Binary
Hex 02 = Zoned decimal
Hex 03.= Packed decimal
Scalar length
If binary:

Length (L)
(where L =2 or 4)

If zoned decimal or packed
decimal:

Fractional digits (F)
Total digits (T) (where
1 S T S 31 and 0 S F s T)

Reserved (binary 0)

Char(7)
Char(1)

Bin(2)

Bits 0 .. 15

Bits 0-7
Bits 8-15

Bin(4)

The byte length of operand 1 must be large enough to
contain the numeric value described by operand 3. If it
is not large enough, a scalar value invalid exception is
signaled. If it is larger than needed, the numeric value is
placed in the leftmost bytes and the unneeded rightmost
bytes are unchanged by the instruction.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions COPY BYTES LEFT-ADJUSTED (CPYBLA)

Operands Op Code Operand Operand
Exception 1 2 3 [4. 5] Other (hex) 1 2

06 Addressing 10B2 Receiver Source
01 Space addressing violation X X X
02 Boundary alignment X X X Operand 1: Character variable scalar, numeric variable scalar,
03 Range X X X data-pointer-defined character scalar, or data-pointer-defined

04 External data object not found X X X numeric scalar.

08 Argument/ Parameter
Operand 2: Character scalar, numeric scalar,

01 Parameter reference violation X X X data-pointer-defined character scalar, or data-pointer-defined
OC Computation numeric scalar.

02 Decimal data X
OA Size X

10 Damage Encountered Description: The logical string value of the source
04 System object damage state X X X X operand is copied to the logical string value of the
44 Partial system object damage X X X X receiver operand (no padding done).

1C Machine-Dependent Exception

03 Machine storage limit X The operands can be either character or numeric. Any
exceeded

numeric operands are interpreted as logical character
20 Machine Support

strings.
02 Machine check X
03 Function check X

The length of the operation is equal to the length of the
22 Object Access

shorter of the two operands. The copying begins with
01 Object not found X X X

the two operands left-adjusted and proceeds until the
02 Object destroyed X X X

shorter operand has been copied.
03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X
Events

02 Pointer type invalid X X X
2A Program Creation

OOOC Machine resource
06 Invalid operand type X X X

0201 Machine auxiliary storage threshold exceeded
07 Invalid operand attribute X X X

08 Invalid operand value range X X X
0010 Process

OA Invalid operand length X X
0701 Maximum processor time exceeded

OC Invalid operand ODT reference X X X
0801 Process storage limit exceeded

32 Scalar Specification

01 Scalar type invalid X X X 0016 Machine observation
02 Scalar attribute invalid X

0101 Instruction reference
03 Scalar value invalid X

0017 Damage set

0401 System object damage set

0801 Partial system object damage set

Computation and Branching Instructions 2-23

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

04 External data object not found

08 Argument/ Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

32 Scalar Specification

01 Scalar type invalid

2-24

Operands
1 2 Other

X X
X X
X X

X X

X X

X X X
X X X

X

X
X

X X

X X
X X

X X

X X

X X
X X
X X

X X
X X

X X

COpy BYTES LEFT-ADJUSTED WITH PAD
(CPYBLAP)

Op Code
(hex)

10B3

Operand
1

Receiver

Operand
2

Source

Operand
3

Pad

Operand 1: Character variable scalar or numeric variable
scalar, data-pointer-defined character scalar, or
data-pointer-defined numeric scalar.

Operand 2: Character scalar, numeric scalar,
data-pointer-defined character scalar, or data-pointer-defined
numeric scalar.

Operand 3: Character scalar or numeric scalar.

Description: The logical string value of the source
operand is copied to the logical string value of the
receiver operand (padded if needed).

The operands can be either character or numeric. Any
numeric operands are interpreted as logical character
strings.

The length of the operation is equal to the length of the
receiver operand. If the source operand is shorter than
the receiver operand, the source operand is copied to
the leftmost bytes of the receiver operand, and each
excess byte of the receiver operand is assigned the
single byte value in the pad operand. If the pad operand
is more than 1 byte in length, only its leftmost byte is
used. If the source operand is longer than the receiver
operand, the leftmost bytes of the source operand
(equal in length to the receiver operand) are copied to
the receiver operand.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions COpy BYTES OVERLAP LEFT-ADJUSTED
(CPYBOLA)

Operands
Exception 1 2 3 Other Op Code Operand Operand

(hex) 1 2
06 Addressing

01 Space addressing violation X X X 10BA Receiver Source
02 Boundary alignment X X X
03 Range X X X Operand 1: Character variable scalar or numeric variable scalar.
04 External data object not found X X

08 Argument/ Parameter Operand 2: Character scalar or numeric scalar.

01 Parameter reference violation X X X
10 Damage Encountered

04 System object damage state X X X X Description: The logical string value of the source

44 Partial system object damage X X X X operand is copied to the logical string value of the

1C Machine-Dependent Exception receiver operand (no padding done).

03 Machine storage limit exceeded X
20 Machine Support The operands can be either character or numeric. Any

02 Machine check X numeric operands are interpreted as logical character

03 Function check X strings.

22 Object Access

01 Object not found X X X The length of the operation is equal to the length of the

02 Object destroyed X X X shorter of the two operands. The copying begins with

03 Object suspended X X X the two operands left-adjusted and proceeds until the

24 Pointer Specification shorter operand has been copied. The excess bytes in

01 Pointer does not exist X X X the longer operand are not included in the operation.

02 Pointer type invalid X X X
2A Program Creation Predictable results occur even if two operands overlap

06 Invalid operand type X X X because the source operand is, in effect, first copied to

07 Invalid operand attribute X X X an intermediate result.

08 Invalid operand value range X X X
OA I nvalid operand length X X
OC Invalid operand ODT reference X X X X Events

32 Scalar Specification

01 Scalar type invalid X X oooe Machine resource

0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded

0801 Process storage limit exceeded

0016 Machine observation

0101 Instruction reference

0017 Damage set

0401 System object damage set

0801 Partial system object damage set

Computation and Branching Instructions 2-25

Exceptions COpy BYTES OVERLAP LEFT-ADJUSTED WITH
PAD (CPYBOLAP)

Operands
Exception 1 2 3 Other

Op Code Operand Operand Operand

06 Addressing
(hex) 1 2 3

01 Space addressing violation X X X
10BB Receiver Source Pad

02 Boundary alignment X X X
03 Range X X X Operand 1: Character variable scalar or numeric variable scalar.
04 External data object not found X X

08 Argument/ Parameter Operand 2: Character scalar or numeric scalar.

01 Parameter reference violation X X X
10 Damage Encountered Operand 3: Character scalar or numeric scalar.

04 System object damage state X X X X
44 Partial system object damage X X X X

lC Machine-Dependent Exception Description: The logical string value of the source

03 Machine storage limit exceeded X operand is copied to the logical string value of the

20 Machine Support receiver operand.

02 Machine check X
03 Function check X The operands can be either character or numeric. Any

22 Object Access numeric operands are interpreted as logical character

01 Object not found X X X strings.

02 Object destroyed X X X
03 Object suspended X X X The length of the operation is equal to the length of the

24 Pointer Specification receiver operand. If the source operand is shorter than

01 Pointer does not exist X X X the receiver operand, the source operand is copied to

02 Pointer type invalid X X X the leftmost bytes of the receiver operand and each

2A Program Creation excess byte of the receiver operand is assigned the

06 Invalid operand type X X X single byte value in the pad operand. If the pad operand

07 Invalid operand attribute X X X is more than 1 byte in length, only its leftmost byte is

08 Invalid operand value range X X X used. If the source operand is longer than the receiver

OA Invalid operand length X X operand, the leftmost bytes of the source operand

OC Invalid operand ODT reference X X X X (equal in length to the receiver operand) are copied to

32 Scalar Specification the receiver operand.

01 Scalar type invalid X X
Predictable results occur even if two operands overlap
because the source operand is, in effect, first copied to
an intermediate result.

2-26

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 3

06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

08 Argument/ Parameter

01 Parameter reference violation X X X

10 Damage Encountered

04 System object damage state X X X

44 Partial system object damage X X X

lC Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X
02 Pointer type invalid X X X

2A Program Creation

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

OA Invalid operand length X X

OC Invalid operand ODT reference X X X

Other

X

X

X

X

X

COpy BYTES REPEATEDLY (CPYBREP)

Op Code
(hex)

Operand
1

Operand
2

lOBE Receiver Source

Operand 1: Numeric variable scalar or character variable scalar
(fixed-length).

Operand 2: Numeric scalar or character scalar (fixed-length).

Description: The logical string value of the source
operand is repeatedly copied to the receiver operand
until the receiver is filled.

The operands can be either character or numeric. Any
numeric operands are interpreted as logical character
s~rings.

The operation begins with the two operands
left-adjusted and continues until the receiver operand is
completely filled. If the source operand is shorter than
the receiver, it is rereatedly copied from left to right (all
or in part) until the receiver operand is completely filled.
If the source operand is longer than the receive operand,
the leftmost bytes of the source operand (equal in
length to the receiver operand) are copied to the receiver·
operand.

Events

oooe Machine resource.
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System -object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-27

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

2-28

Operands
1 2 Other

X X

X X

X X

X X

X X X
X X X

X

X

X-

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

COpy BYTES RIGHT-ADJUSTED (CPYBRA)

Op Code
(hex)

10B6

Operand
1

Receiver

Operand·
2

Source

Operand 1: Character variable scalar, numeric variable scalar,
data-pointer-defined character scalar, or data-pointer-defined
numeric scalar.

Operand 2: Character scalar, numeric scalar,
data-pointer-defined character scalar, or data-pointer-defined

numeric scalar.

Description: The logical string value of the source
operand is copied to the logical string value of the
receiver operand (no padding done).

The operands. can be either character or numeric. Any
numeric operands are interpreted as logical character
strings.

The length of the operation is equal to the length of the
shorter of the two operands. The rightmost bytes (equal
to the length of the shorter of the two operands) of the
source operand are copied to the rightmost bytes of the
receiver operand. The excess bytes in the longer
operand are not included in the operation.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

04 External data object not found

08 Argument/ Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

32 Scalar Specification

01 Scalar type invalid

Operands
1 2 Other

X X
X X
X X
X X

X X

X X X
X X X

X

X
X

X X
X X
X X

X X
X X

X X
X X
X X
X X
X X

X X

COPY BYTES RIGHT-ADJUSTED WITH PAD
(CPYBRAP)

Op Code
(hex)

10B7

Operand
1

Receiver

Operand
2

Source

Operand
3

Pad

Operand 1: Character variable scalar, numeric variable scalar,
data-pointer-defined character scalar, or data-pointer-defined
numeric scalar.

Operand 2: Character scalar, numeric scalar,
data-pointer-defined character scalar, or data-pointer-defined
numeric scalar.

Operand 3: Character scalar or numeric scalar.

Description: The logical string value of the source
operand is copied to the logical string value of the
receiver operand (padded if needed).,

The operands can be either character .or numeric. Any
numeric operands are interpreted as logical character
strings.

The length of the operation is equal to the length of the
receiver operand. If the source operand is shorter than
the receiver operand, the source operand is copied to
the rightmost bytes of receiver operand, and each
excess byte is assigned the single byte value in the pad
operand. If the pad operand is more than 1 byte in
length, only its leftmost byte is used. If the source
operand is longer than the receiver operand, the
rightmost bytes of the source operand (equal in length
to the receiver operand) are copied to the receiver
operand.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-29

Exceptions COpy HEX DIGIT NUMERIC TO NUMERIC
(CPYHEXNN)

Operands
Exception 1 2 3 Other Op Code Operand Operand

(hex) 1 2
06 Addressing

01 Space addressing violation X X X 1092 Receiver Source
02 Boundary alignment X X X
03 Range X X X Operand 1: Numeric variable scalar or character variable scalar
04 External data object not found X X (fixed-length).

08 Argument/ Parameter

01 Parameter reference violation X X X Operand 2: Numeric scalar or character scalar (fixed-length).

10 Damage Encountered

04 System object damage state X X X X
44 Partial system object damage X X X X Description: The numeric hex digit value (rightmost 4

1C Machine-Dependent Exception bits) of the leftmost byte referred to by the source

03 Machine storage limit exceeded X operand is copied to the numeric hex digit value

20 Machine Support (rightmost 4 bits) of the leftmost byte referred to by the

02 Machine check X receiver operand.

03 Function check X
22_ Object Access The operands can be either character strings or numeric.

01 Object not found X X X Any numeric operands are interpreted as logical

02 Object destroyed X X X character strings.

03 Object suspended X X X
24 Pointer Specification

01 Pointer does not exist X X X Events

02 Pointer type invalid X X X
2A Program Creation oooe Machine resource

06 Invalid operand type X X X 0201 Machine auxiliary storage threshold exceeded

07 Invalid operand attribute X X X
08 Invalid operand value range X X X 0010 Process

OA I nvalid operand length X X X 0701 Maximum processor time exceeded

OC Invalid operand ODT reference X X X 0801 Process storage limit exceeded

32 Scalar Specification

01 Scalar type invalid X X 0016 Machine observation

0101 Instruction reference

0017 Damage set

0401 System object damage set

0801 Partial system object damage set

2-30

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand OOT reference

Operands
1 2 Other

X X
X X
X X

X X

X X X
X X X

X

X
X

X X
X X
X X

X X
X X

X X
X X
X X
X X
X X

COpy HEX DIGIT NUMERIC TO ZONE (CPYHEXNZ)

Op Code
(hex)

Operand
1

Operand
2

1096 Receiver Source

Operand 1: Numeric variable scalar or character variable scalar
(fixed-length).

Operand 2: Numeric scalar or character scalar (fixed-length).

Description: The numeric hex digit value (rightmost 4
bits) of the leftmost byte referred to by the source
operand is copied to the zone hex digit value (leftmost 4
bits) of the leftmost byte in the receiver operand.

The operands can be either character strings or numeric.
Any numeric operands are interpreted as logical
character strings.

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-31

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

2-32

Operands
1 2 Other

X X

X X

X X

X X

X X X

X X X

X

X

X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

COpy HEX DIGIT ZONE TO NUMERIC (CPYHEXZN)

Op Code
(hex)

Operand
1

Operand
2

109A Receiver Source

Operand 1: Numeric variable scalar or character variable scalar
(fixed -length).

Operand 2: Numeric scalar or character scalar (fixed-length).

Description: The zone hex digit value (leftmost 4 bits) of
the leftmost byte referred to by the source operand is
copied to the numeric hex digit value (rightmost 4 bits)
of the leftmost byte referred to by the receiver operand.

The operands can be either character strings or numeric.
Any numeric operands are interpreted as logical
character strings.

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument! Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

Operands
1 2 Other

X X

X X

X X

X X

X X X

X X X

X

X

X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

COpy HEX DIGIT ZONE TO ZONE (CPYHEXZZ)

Op Code
(hex)

Operand
1

Operand
2

109E Receiver Source

Operand 1: Numeric variable scalar or character variable scalar
(fixed-length).

Operand 2: Numeric scalar or character scalar (fixed-length).

Description: The zone hex digit value (leftmost 4 bits) of
the leftmost byte referred to by the source operand is
copied to the zone hex digit value (leftmost 4 bits) of
the leftmost byte referred to by the receiver operand.

The operands can be either character strings or numeric.
Any numeric operands are interpreted as logical
character strings.

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-33

Exceptions COpy NUMERIC VALUE (CPYNV)

Operands Op Code Operand Operand
Exception 1 2 Other (hex) 1 2

06 Addressing 1042 Receiver Source
01 Space addressing violation X X

02 Boundary alignment X X Operand 1: Numeric variable scalar or data-pointer-defined
03 Range X X numeric scalar.

08 Argument/ Parameter
Operand 2: Numeric scalar or data pointer-defined-numeric

01 Parameter reference violation X X

10 Damage Encountered scalar.

04 System object damage state X X X

44 Partial system object damage X X X
Optional Forms

lC Machine-Dependent Exception
03 Machine storage limit exceeded X

Op Code
20 Machine Support Mnemonic (hex) Form Type

02 Machine check X

03 Function check X CPYNVR 1242 Round

22 Object Access CPYNVI 1842 Indicator
CPYNVIR lA42 Indicator, Round

01 Object not found X X
CPYNVB lC42 Branch

02 Object destroyed X X CPYNVBR lE42 Branch, Round
03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X Extender: Branch or indicator options.
02 Pointer type invalid X X

2A Program Creation If the branch or indicator option is specified in the op
06 Invalid operand type X X code, the extender field must be present along with one
07 Invalid operand attribute X X to three branch targets (for branch options) or one to
08 Invalid operand value range X X three indicator operands (for indicator options). The
OA Invalid operand length X X branch or indicator operands immediately follow the last
OC Invalid operand ODT reference X X operand listed above. See Chapter 1. Introduction for

the encoding of the extender field and the allowed

syntax of the branch and indicator operands.

2-34

Description: The signed numeric value of the source Exceptions

operand is copied to the numeric receiver operand.

Operands
Both operands must be numeric. If necessary, the Exception 1 2 Other

source operand is converted to the same type as the
receiver operand before being copied to the receiver 06 Addressing

operand. The source value is adjusted to the length of 01 Space addressing violation X X

the receiver operand, aligned at the assumed decimal 02 Boundary alignment X X

point of the receiver operand, or both before being 03 Range X X

copied to it. Length adjustment and decimal point 04 External data object not found X X

alignment are performed according to the rules of 08 Argument/ Parameter

arithmetic operations outlined in the Functional Concepts 01 Parameter reference violation X X

Manual. If significant digits are truncated on the left end OC Computation

of the source value, a size exception is signaled. 02 Decimal data X

OA Size X

If a decimal to binary conversion causes a size exception 10 Damage Encountered

to be signaled, the binary value contains the correct 04 System object damage state X X X

truncated result only if the decimal value contains 15 or 44 Partial system object damage X X X

fewer significant nonfractional digits. 1C Machine-Dependent Exception
03 Machine storage limit exceeded X

20 Machine Support

Resultant Conditions: The algebraic value of the numeric 02 Machine check X

scalar receiver operand is positive, negative, or O. 03 Function check X

22 Object Access
01 Object not found X X

Events 02 Object destroyed X X X

03 Object suspended X X X

oooe Machine resource 24 Pointer Specification

0201 Machine auxiliary storage threshold exceeded 01 Pointer does not exist X X X

02 Pointer type invalid X X X

0010 Process 2A Program Creation

0701 Maximum processor time exceeded 05 Invalid op code extender field X

0801 Process storage limit exceeded 06 Invalid operand type X X

07 Invalid operand attribute X X

0016 Machine observation 08 Invalid operand value range X X

0101 Instruction reference 09 Invalid branch target operand X

OC Invalid operand ODT reference X X X

0017 Damage set 2C Program Execution

0401 System object damage set 04 Invalid branch target X

0801 Partial system object damage set 32 Scalar Specification
01 Scalar type invalid X X

Computation and Branching Instructions 2-35

DIVIDE (DIV)

Op Code
(hex)

104F

Operand
1

Quotient

Operand
2

Dividend

Operand
3

Divisor

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Optional Forms

Op Code
Mnemonic (hex) Form Type

DIVS 114F Short
DIVR 124F Round
DIVSR 134F Short, Round
DIVI 184F Indicator
DIVIS 194F Indicator, Short
DIVIR 1A4F Indicator, Round
DIVISR 1B4F Indicator, Short, Round
DIVB 1C4F Branch
DIVBS 1D4F Branch, Short
DIVBR 1E4F Branch, Round
DIVBSR 1F4F Branch, Short, Round

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is ~pecified in the op
code, the extender field must be present along with one
to three branch targets (for branch options) or one to
three indicator operands (for indicator options). The
branch or indicator operands will immediately follow the
last operand listed above. See Chapter 1. Introduction
for the encoding of the extender field and the allowed
syntax of the branch and indicator operands.

2-36

Description: The signed numeric value of the dividend
operand is divided by the numeric value of the divisor
operand, and the result is placed in the quotient
operand.

All of the operands must be numeric with any implicit
conversions occurring according to the rules of
arithmetic operations as outlined in the Functional
Concepts Manual.

If the divisor has a numeric value of 0, a zero divide
exception is signaled. If the dividend has a value of 0,
the result of the division is a zero value quotient.

For a decimal operation, alignment of the assumed
decimal point takes place if the dividend operand is of
lesser precision than the precision of the divisor plus the
precision of the quotient or if the divisor is of lesser
precision than the precision of the dividend minus the
precision of the quotient. The dividend is padded on the
right with a's to align it to the precision of the divisor
plus the precision of the quotient. The divisor is padded
on the right with a's to align it to the precision of the
dividend· minus the precision of the quotient.

If the dividend operand is shorter than the divisor
operand, it is logically adjusted to the length of the
divisor operand.

The division operation is performed according to the
rules of algebra.

The result of the operation is copied into the quotient
operand. If this operand is not the same type as that
used in performing the operation, the resultant value is
converted to its type. If necessary, the resultant value is
adjusted to the length of the quotient operand, aligned
at the assumed decimal point of the quotient operand,
or both before being copied to it. Length adjustment
and decimal point alignment are performed according to
the rules for arithmetic operations as outlined in the
Functional Concepts Manual. If significant digits are
truncated on the left end of the resultant value, a size
exception is signaled. A decimal point alignment
exception is also signaled when a division operation is
performed in decimal and one of the following
conditions occurs:

• The dividend operand is aligned, and the number of
fractional digits specified in the divisor operand plus
the number of fractional digits specified for the
quotient operand plus the number of significant
integer digits in the dividend operand exceeds 31.

• The divisor operand is aligned, and the number of
fractional digits specified for the dividend operand
minus the number of fractional digits specified for the
quotient operand plus the number of significant
integer digits in the divisor operand exceeds 31.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Resultant Conditions: The algebraic value of the numeric
scalar quotient operand is positive, negative, or O.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Space addressing violation X X X
02 Boundary alignment X X X
03 Range X X X

08 Argument / Parameter

01 Parameter reference violation X X X
OC Computation

02 Decimal data X X
03 Decimal point alignment X X
OA Size X
OB Zero divide X

10 Damage Encountered

04 System object damage state X X X X
44 Partial system object damage X X X X

1C Machine- Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X
02 Pointer type invalid X X X

2A Program Creation

05 Invalid op code extender field X
06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X
09 Invalid branch target operand X
OC Invalid operand ODT reference X X X

2C Program Execution

04 Invalid branch target X

Computation and Branching Instructions 2-37

DIVIDE WITH REMAINDER (DIVREM)

Op Code
(hex)

1074

Operand
1

Quotient

Operand
2

Dividend

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Operand 4: Numeric variable scalar.

Optional Forms

Operand
3

~ivisor

Operand
4

Remainder

(The optional forms apply to the quotient only.)

Op Code
Mnemonic (hex) Form Type

OIVREMS 1174 Short

OIVREMR 1274 Round

OIVREMSR 1374 Short, Round

OIVREMI 1874 Indicator

OIVREMIS 1974 Indicator, Short

OIVREMIR 1A74 Indicator, Round

OIVREMISR 1B74 Indicator, Short, Round

OIVREMB 1C74 Branch

OIVREMBS 1074 Branch, Short

OIVREMBR 1E74 Branch, Round

OIVREMBSR 1F74 Branch, Short, Round

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options. '

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to three branch targets (for branch options) or one to
three indicator operands (for indicator options). The
branch or indicator operands immediately follow the last
operand listed above. See Chapter 1. Introduction for
the encoding of the extender field and the allowed
syntax of the branch and indicator operands.

2-38

Description: The signed numeric value of the dividend
operand is divided by the numeric value of the divisor
operand; the quotient is placed in the quotient operand;
the remainder is placed in the remainder operand.

The operands must be numeric with any implicit
conversions occurring according to the rules for
arithmetic operations as outlined in the Functional
Concepts Manual.

If the divisor operand has a numeric value of 0, a zero
divide exception is signaled. If the dividend operand has
a value of 0, the result of the division is a zero value
quotient and remainder.

For a decimal operation, alignment of the assumed
decimal point takes place if the dividend operand is of
lesser precision than the precision of the divisor operand
plus the precision of the quotient operand or if the
divisor operand is less than the precision of the dividend
operand minus the precision of the quotient operand.
The dividend operand is padded on the right with a's to
align it to the precision of the divisor operand plus the
precision of the quotient operand. The divisor operand
is padded on the right with a's to align it to the
precision of the dividend operand minus the precision of
the quotient operand.

If the dividend operand is shorter than the divisor
operand, it is logically adjusted to the length of the
divisor operand.

The division operation is performed according to the
rules of algebra. The quotient result of the operation is
copied into the quotient operand. If this operand is not
the same type as that used in performing the operation,
the resultant value is converted to its type. If necessary,
the resultant value is adjusted to the length of the
quotient operand, aligned at the assumed decimal point
of the quotient operand, or both before being copied to
it. Length adjustment and decimal point alignment are
performed according to the rules of arithmetic
operations as outlined in the Functional Concepts Manual.
If significant digits are truncated on the left end of the
resultant value, a size exception is signaled. A decimal
point alignment exception is also signaled when a
division operation is performed in decimal and one of
the following conditions occurs:

• The dividend operand is aligned, and the number of
fractional digits specified in 'the divisor operand plus
the number of fractional digits specified for the
quotient operand plus the number of significant
integer digits in the dividend operand exceeds 31.

• The divisor operand is aligned, and the number of
fractional digits specified for the dividend operand
minus the number of fractional digits specified for the
quotient operand plus the number of significant
integer digits in the division operand exceeds 31.

After the quotient numeric value has been determined,
the numeric value of the remainder operand is calculated
as follows:

Remainder = Dividend - (Quotient*Divisor)

If the optional round form of this instruction is being
used, the rounding applies to the quotient but not the
remainder. The quotient value used to calculate the
remainder is the resultant value of the division. The
resultant value of the calculation is copied into the
remainder operand. The sign of the remainder is the
same as that of the dividend operand unless the
remainder has a value of 0, in which case its sign is
positive. If the remainder operand is not the same type
as that used in performing the operation, the resultant
value is converted to its type. If necessary, the resultant
value is adjusted to the length of the remainder operand,
aligned at the assumed decimal point of the remainder
operand, or both before being copied to it. Length
adjustment and decimal point alignment are performed
according to the rules of arithmetic operatiQns as
outlined in the Functional Concepts Manual. If significant
digits are truncated off the left end of the resultant
value, a size exception is signaled.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Resultant Conditions: The algebraic value of the numeric
scalar quotient is positive, negative, or O.

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-39

Exceptions EDIT (EDIT)

Operands Op Code Operand Operand Operand
Exception 1 2 3 4 Other (hex) 1 2 3

06 Addressing 10E3 Receiver Source Edit mask
01 Space addressing violation X X X X
02 Boundary alignment X X X X Operand 1: Character variable scalar or data-pointer-defined
03 Range X X X X character scalar.

08 Argument/ Parameter
Operand 2: Numeric scalar or data-pointer-defined numeric 01 Parameter reference violation X X X X
scalar.

OC Compuation

02 Decimal data X X Operand 3: Character scalar or data-pointer-defined character
03 Decimal point alignment X X scalar.
OA Size X X
OB Zero divide X

10 Damage Encountered Description: The value of a numeric scalar is
04 System object damage state X X X X X transformed from its internal form to character form
44 Partial system object damage X X X X X suitable for display at a source/sink device. The

1C Machine-Dependent Exception following general editing functions can be performed
03 Machine storage limit X during transforming of the source operand to the

exceeded receiver operand:
20 Machine Support

02 Machine check X · Unconditional insertion of a source value digit with a
03 Function check X zone as a function of the source value's algebraic

22 Object Access sign
01 Object not found X X X X
02 Object destroyed X X X X · Unconditional insertion of a mask operand character
03 Object suspended X X X X string

24 Pointer Specification

01 Pointer does not exist X X X X · Conditional insertion of one of two possible mask
02 Pointer type invalid X X X X operand character strings as a function of the source

2A Program Creation value's algebraic sign
05 Invalid op code extender field X
06 Invalid operand type X X X X · Conditional insertion of a source value digit or a mask
07 Invalid operand attribute X X X X operand replacement character as a function of
08 I nvalid operand value range X X X X source value leading zero suppression
09 Invalid branch target operand X
OC Invalid operand ODT reference X X X X · Conditional insertion of either a mask operand

2C Program Execution character string or a series of replacement characters
04 Branch target invalid X as a function of source value leading zero

suppression

· Conditional floating insertion of one of two possible
mask operand character strings as a function of both

the algebraic sign of the source value and leading
zero suppression

The operation is performed by transforming the source
(operand 2) under control of the edit mask (operand 3)
and placing the result in the receiver (operand 1).

The mask operand (operand 3) is limited to no more

than 256 bytes.

2-40

Mask Syntax: The source field is converted to packed
decimal format. The edit mask contains both control
character and data character strings. 80th the edit mask
and the source fields are processed left to right, and the
edited result is placed in the result field from left to
right. If the number of digits in the source field is even,
the four high-order bits of the source field are ignored
and not checked for validity. All other source digits as
well as the sign are checked, for validity, and a decimal
data exception is signaled when one is invalid.
Overlapping of any of these fields gives unpredictable
results.

Ten types of control characters can be in the edit mask,
hex AA through hex 83. Four of these control
characters specify strings of characters to be inserted
into the result field under certain conditions; one
indicates the end of a string of characters; and the other
five indicate that a digit from the source field should be
checked and the appropriate action taken.

A significance indicator is set to the off state at the start
of the execution of this instruction. It remains in this
state until a nonzero source digit is encountered in the
source field or until one of the four unconditional digits
(hex AA through hex AD) or an unconditional string (hex
83) is encountered in the edit mask.

When significance is detected, the selected floating
string is overlaid into the result field immediately before
(to the left of) the first significant result character.

When the significance indicator is set to the on state,
the first significant result character has been reached.
The state of the significance indicator determines
whether the fill character or a digit from the source field
is to be inserted into the result field for conditional
digits and characters in conditional strings specified in
the edit mask field. The fill character is a hex 40 until it
is replaced by the first character following the floating
string specification control character (hex 81).

When the significance indicator is in the off state:

• A conditional digit control character in the edit mask
causes the fill character to be moved to the result
field.

• A character in a conditional string in the edit mask
causes the fill character to be moved to the result
field.

When the significance indicator is in the on state:

• A conditional digit control character in the edit mask
causes a source digit to be moved to the result field.

• A character in a conditional string in the edit mask is
moved to the result field.

The following control characters are found in the edit
mask field.

End-ot-String Character

Hex AE This control character indicates the end of a
character string and must be present even
if the string is null.

Static Field Character

Hex AF This control character indicates the start of
a static field. A static field is used to
indicate that one of two mask character
strings immediately following this character
is to be inserted into the result field,
depending upon the algebraic sign of the
source field. If the sign is positive, the first
string is to be inserted into the result field;
if the sign is negative, the second string is
to be inserted.

Static field format:

Hex AF positive string ... hex AE negative
string ... hex AE

Computation and Branching Instructions 2-41

Floating String Specification Field Character

Hex 81 This control character indicates the start of
a floating string specification field. The first
character of the field is used as the fill
character; following the fill character are
two strings delimited by hex AE (the
end-of-string control character). If the
algebraic sign of the source field is positive,
the first string is to be overlaid into the
result field; if the sign is negative, the
second string is to be ove~laid.

The string selected to be overlaid into the
result field, called a floating string, appears
immediately to the left of the first
significant result character. If significance is
never set, neither string is placed in the
result field.

Conditional source digit positions (hex 82
control characters) must be provided in the
edit mask immediately following the hex 81
field to accommodate the longer of the two
floating strings; otherwise, a length
conformance exception is signaled. For
each of these 82 strings, the fill character
is inserted into the result field, and source
digits are not consumed. This ensures that
the floating string never overlays bytes
preceding the receiver operand.

Floating string specification field format:

Hex 81 fill character positive string ... hex
AE negative string ... hex AE hex 82 .. .

Conditional String Character

Hex 80

2-42

This control character indicates the start of a
conditional string, which consists of any
characters delimited by hex AE (the
end-of-string control character). Depending
on the state of the significance indicator,
this string or fill characters replacing it is
inserted into the result field. If the
significance indicator is off, a fill character
for every character in the conditional string
is placed in the result field. If the indicator
is on, the characters in the conditional string
are placed in theresult field.

Conditional string format:

Hex 80 conditional string ... hex AE

Unconditional String Character

Hex 83 This control character turns on the
significance indicator and indicates the start
of an unconditional string that consists of
any characters delimited by hex AE (the
end-of-string control character). This string
is unconditionally- inserted into the result
field regardless of the state of the
significance indicator. If the indicator is off
when a 83 control character is
encountered, the appropriate floating string
is overlaid into the result field before (to the
left of) the 83 unconditional string (or to
the left of where the unconditional string
would have been if it were not null).

Unconditional string format:

Hex 83 unconditional string ... hex AE

Control Characters That Correspond to Digits in the
Source Field

Hex 82 This control character specifies that either
the corresponding source field digit or the
floating string (hex 81) fill character is
inserted into the result field, depending on
the state of the significance indicator. If
the significance indicator is off, the fill
character is placed in the result field; if the
indicator is on, the source digit is placed.
When a source digit is moved to the result
field, the zone supplied is hex F. When
significance (that is, a nonzero source digit)
is detected, the floating string is overlaid to
the left of the first significant character.

Control characters hex AA, hex AS, hex AC, and hex AD
turn on the significance indicator. If the indicator is off
when one of these control characters is encountered,
the appropriate floating string is overlaid into the result
field before (to the left of) the result digit.

Hex AA This control character specifies that the
corresponding source field digit is
unconditionally placed in the 4 low-order
bits of the result field with the zone set to
a hex F.

Hex AS This control character specifies that the
corresponding source field digit is
unconditionally placed in the result field. If
the sign of the source field is positive, the
zoned portion of the digit is set to hex F
(the preferred positive sign); if the sign is
negative, the zone portion is set to hex D
(the preferred negative sign).

Hex AC This control character specifies that the
corresponding source field digit is
unconditionally placed in the result field. If
the algebraic sign of the source field is
positive, the zone portion of the result is
set to hex F (the preferred positive sign);
otherwise, the source sign field is moved to
the result zone field.

Hex AD This control character specifies that the
corresponding source field digit is
unconditionally placed in the result field. If
the algebraic sign of the source field is
negative, the zone is set to hex D (the
preferred negative sign); otherwise, the
source field sign is moved to the zone
position of the result byte.

Computation and Branching Instructions 2-43

The following table provides an overview of the results
obtained with the valid edit conditions and sequences.

Previous Resulting
Mask Significance Source Source Significance
Character Indicator Digit Sign Result Character(s) Indicator

AF Off/On Any . Positive Positive string inserted No Change

Off/On Any Negative Negative string inserted No Change

AA Off 0-9 Positive Positive floating string overlaid; On
hex F, source digit

Off 0-9 Negative Negative floating string overlaid; On
hex F, source digit

On 0-9 Any Hex F, source digit On

AS Off 0-9 Positive Positive floating string overlaid; On
hex F, source digit

Off 0-9 Negative Negative floating string overlaid; On
hex 0, source digit

On 0-9 Positive Hex F, source digit On

On 0-9 Negative Hex 0, source digit On

AC Off 0-9 Positive Positive floating string overlaid;
hex F, source digit

Off 0-9 Negative Negative floating string overlaid; On
source sign and digit

On 0-9 Positive Hex F, source digit On

On 0-9 Negative Source sign and digit On

AO Off 0-9 Positive Positive floating string overlaid; On
source sign and digit

Off 0-9 Negative Negative floating string overlaid; On
hex 0, source digit

On 0-9 Positive Source sign and digit On

On 0-9 Negative Hex 0, source digit On

Figure 2-1 (Part 1 of 2). Valid Edit Conditions and Results

2-44

Previous Resulting
Mask Significance Source Source Significance
Character Indicator Digit Sign Result Character(s) Indicator

BO Off Any Any Insert fill character for each BO Off
string character

On Any Any Insert BO character string On

B1 Off Any Any Insert the fill character for each No Change
(including B2 character that corresponds
necessary to a character in the longer of
B2s) the two floating strings

B2 (not for Off a Any Insert fill character Off
a B1 field)

Off 1-9 Positive Overlay positive floating string On
and insert hex F, source digit

Off 1-9 Negative Overlay negative floating string On
and insert hex F, source digit

On 0-9 Any Hex F, source digit

B3 Off Any Positive Overlay positive floating string On
and insert B3 character string

Off Any Negative Overlay negative floating string On
and insert B3 character string

On Any Any Insert B3 character string On

Figure 2-1 (Part 2 of 2). Valid Edit Conditions and Results

Notes:
1. Any character is a valid fill character, including hex AE.
2. Hex AF, hex B1, hex BO, and hex B3 strings must be terminated by hex AE even if they are null

strings
3. If a hex B 1 field has not been encountered (specified) when the significance indicator is turned on,

the floating string is considered to be a null string and is therefore not used to overlay into the result
field.

4. If the positive and negative strings of a static field are of unequal length, additional static fields are
necessary to ensure that the sum of the lengths of the positive strings equal the sum of the lengths
of the negative strings; otherwise, a length conformance exception is signaled because the receiver
length does not correspond to the length implied by the edit mask and source field sign.

Computation and Branching Instructions 2-45

The following figure indicates the valid ordering of
control characters in an edit mask field.

Expla nation:

Condition

o

2

3

AA, AB, AC, AD

Control
Character

Definition

X

~

AF

BO

B1

B2

B3

0

0

1

1

1

0

Control Character Y

AF BO B1 B2 B3

0 2 2 2 0

0 0 0 0 0

0 0 2 0 1

0 1 3 1 1

0 0 2 0 1

0 2 2 2 0

Both X and Y can appear in the edit mask field in either order.

Y cannot precede X.

X cannot precede Y.

Both control characters (two 81's) cannot appear in an edit mask field.

Violation of any of the above rules will result in an edit mask syntax exception.

Figure 2-2. Edit Mask Field Control Characters

2-46

The following steps are performed when the editing is
done:

• Convert Source Value to Packed Decimal
The numeric value in the source operand is
converted to a packed decim~1 intermediate value
before the editing is done. If the source operand
is binary, then the attributes of the intermediate
packed field before the edit are calculated as
follows:

• Edit

Binary(2) = packed (5,0) or
binary(4) = packed (10,0).

The editing of the source digits and mask insertion
characters into the receiver operand is done from
left to right.

• Insert Floating String into Receiver Field
If a floating string is to be inserted into the
receiver field, this is done after the other editing.

Edit Digit Count Exception

An edit digit count exception is signaled when:

• The end of the source field is reached and there are
more control characters that correspond to digits in
the edit mask field.

• The end of the edit mask field is reached and there
are more digit positions in the SOurce field.

Edit Mask Syntax Exception

An edit mask syntax exception is signaled when an
invalid edit mask control character is encountered or
when a sequence rule is violated.

Length Conformance Exception

A length conformance exception is signaled when:

• The end of the edit mask field is reached and there
are more character positions in the result field .

• The end of the result field is reached and more
positions remain in the edit mask field.

• The number of 82s following a 81 field cannot
accomodate the longer of the two floating strings.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-47

Exceptions EXCHANGE BYTES (EXCHBY)

Operands Op Code Operand Operand
Exception 1 2 3 Other (hex) 1 2

06 Addressing 10CE Source 1 Source 2
01 Space addressing violation X X X

02 Boundary alignment X X X Operand 1: Character variable scalar (fixed-length) or numeric
03 Range X X X variable scalar.

04 External data object not found X X X
08 Argument/ Parameter

Operand 2: Character variable scalar (fixed-length) or numeric

01 Parameter reference violation X X X
variable scalar.

OC Computation

02 Decimal data X
04 Edit digit count X

Description: The logical character string values of the

05 Edit mask syntax X
two source operands are exchanged. The value of the

08 Length conformance X
second source operand is placed in the first source

10 Damage Encountered
operand and the value of the first source operand· is

04 System object damage state X X X X
placed in the second operand.

44 Partial system object damage X X X X
1C Machine- Dependent Exception

The operands can be either character or numeric. Any

03 Machine storage limit exceeded X
numeric operands are interpreted as logical character

20 Machine Support
strings. Both operands must have the same length.

02 Machine check X
03 Function check X

22 Object Access
Events

01 Object not found X X X
02 Object destroyed X X X

oooe Machine resource

03 Object suspended X X X
0201 Machine auxiliary storage threshold exceeded

24 Pointer Specification

01 Pointer does not exist X X X
0010 Process

02 Pointer type invalid X X X
0701 Maximum processor time exceeded

2A Program Creation
0801 Process storage limit exceeded

06 Invalid operand type X X X
07 Invalid operand attribute X X X

0016 Machine observation

08 Invalid operand value range X X X
0101 Instruction reference

OA Invalid operand length X X
OC Invalid operand ODT reference X X X

0017 Damage set

32 Scalar Specification
0401 System object damage set

01 Scalar type invalid X X X
0801 Partial system object damage set

02 Scalar attributes invalid X

2-48

Exceptions

Operands
Exception 1 2

06 Addressing

01 Space addressing violation X X

02 Boundary alignment X X

03 Range X X

08 Argument/ Parameter

01 Parameter reference violation X X

10 Damage Encountered

04 System object damage state X X

44 Partial system object damage X X

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program Creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X X

OC Invalid operand ODT reference X X

Other

X

X

X

X

X

EXCLUSIVE OR (XOR)

Op Code
(hex)

109B

Operand
1

Receiver

Operand
2

Source 1

Operand
3

Source 2

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Operand 3: Character scalar.

Optional Forms

Mnemonic

XORS
XORI
XORIS
XORB
XORBS

Op Code
(hex)

119B
189B
199B
1C9B
1D9B

Form Type

Short
Indicator
Indicator, Short
Branch
Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The Boolean EXCLUSIVE OR operation is
performed on the string values in the source operands.
The resulting string is placed in the receiver operand.

The operands must be character strings and are
interpreted as bit strings.

The length of the operation is equal to the length of the
longer of the two source operands. The shorter of the
two operands is padded on the right. The operation
begins with the two source operands left-adjusted and
continues bit by bit until they are completed.

Computation and Branching Instructions 2-49

The bit values of the result are determined as follows: Exceptions

Source 1 Source 2 Result Operands
Bit Bit Bit Exception 1 2 3 Other

1 1 0 06 Addressing

0 0 0 01 Space addressing violation X X X

1 0 02 Boundary alignment X X X

0 03 Range X X X

08 Argument/ Parameter

The result value is then placed (left-adjusted) in the 01 Parameter reference violation X X X

receiver operand with truncating or padding taking place 10 Damage Encountered

on the right. 04 System object damage state X X X X

44 Partial system object damage X X X X

The pad value used in this instruction is a hex 00. 1C Machine-Dependent Exception

03 Machine storage limit exceeded X

If operands overlap but do not share all of the same 20 Machine Support

bytes, results of operations performed on these 02 Machine check X

operands are not predictable. If overlapped operands 03 Function check X

share all of the same bytes, the results are predictable 22 Object Access

when direct addressing is used. If indirect addressing is 01 Object not found X X X

used (that is, based operands, parameters, strings with 02 Object destroyed X X X

variable lengths, and arrays with variable subscripts), the 03 Object suspended X X X

results are not always predictable. 24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

Resultant Conditions: The bit values for the bits of the 2A Program Creation

scalar receiver operand are either all zero or not all zero. 05 Invalid op code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

Events 08 Invalid operand value range X X X

09 Invalid branch target operand X

OOOC Machine resource OA Invalid operand length X X X

0201 Machine auxiliary storage threshold exceeded OC Invalid operand ODT reference X X X

2C Program Execution

0010 Process 04 Branch target invalid X

0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

2-50

EXTRACT MAGNITUDE (EXTRMAG)

Op Code
(hex)

1052

Operand
1

Receiver

Operand
2

Source

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Optional Forms

Mnemonic

EXTRMAGS
EXTRMAGI
EXTRMAGIS
EXTRMAGB
EXTRMAGBS

Op Code
(hex)

1152
1852
1952
1C52
1052

Form Type

Short
Indicator
Indicator, Short
Branch
Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the alll)wed syntax of
the branch and indicator operands.

Description: The numeric value of the source operand is
converted to its absolute value and placed in the
numeric variable scalar receiver operand.

The absolute value is formed from the source operand
as follows:

• Binary
Extract the numeric value and form twos
complement if the source operand is negative.

• Packed / Zoned
Extract the numeric value and force the source
operand's sign to positive.

The result of the operation is copied into the receiver
operand. If this operand is not the same type as that
used in performing the operation, the resultant value is
converted to its type. If necessary, the resultant value is
adjusted to the length of the receiver operand, or
aligned at the assumed decimal point of the receiver
operand, or both before being copied to it. Length
adjustment and decimal point alignment are performed
according to the rules of arithmetic operations outlined
in the Functional Concepts Manual. If significant digits
are truncated on the left end of the resultant value, a
size exception is signaled. An attempt to extract the
magnitude of a maximum negative binary value to a
binary scalar of the same size also results in a size
exception.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Resultant Conditions: The algebraic value of the receiver
operand is either positive or O.

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 SY5tem object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-51

Exceptions MULTIPLY (MULT)

Operands Op Code Operand Operand Operand
Exception 1 2 Other (hex) 1 2 3

06 Addressing 104B Product Multiplicand Multiplier
01 Space addressing violation X X
02 B~undary alignment X X Operand 1: Numeric variable scalar.
03 Range X X

08 Argument/ Parameter Operand 2: Numeric scalar.

01 Parameter reference violation X X
OC Computation Operand 3: Numeric scalar.

02 Decimal data X
OA Size X

10 Damage Encountered Optional Forms

04 System object damage state X X X
Op Code

44 Partial system object damage X X X Mnemonic (hex) Form Type
1C Machine-Dependent Exception

03 Machine storage limit exceeded X MULTS 114B Short
20 Machine Support MULTR 124B Round

MULTSR 134B Short, Round 02 Machine check X
MULTI 184B Indicator

03 Function check X MULTIS 194B Indicator, Short
22 Object Access MULTIR 1A4B Indicator, Round

01 Object not found X X MULTISR 1B4B Indicator, Short, Round

02 Object destroyed X X MULTB 1C4B Branch

X X
M,ULTBS 1D4B Branch, Short 03 Object suspended
MULTBR 1E4B Branch, Round

24 Pointer Specification MULTBSR 1F4B Branch, Short, Round
01 Pointer does not exist X X
02 Pointer type invalid X X If the short instruction option is indicated in the op

2A Program Creation code, operand 1 is used as the first and second
05 Invalid op code extender field X operational operands (receiver and first source operand).
06 Invalid operand type X X Operand 2 is used as the third operational operand
07 Invalid operand attribute X X (second source operand).
08 Invalid operand value range X X
09 Invalid branch target operand X
OC Invalid operand ODT reference X X Extender: Branch or indicator options.

2C Program Execution

04 Branch target invalid X If the branch or indicator option is specified in the op

code, the extender field must be present along with one

to three branch targets (for branch options) or one to

three indicator operands (for indicator options). The

branch or indicator operands immediately follow the last

operand listed above. See Chapter 1. Introduction for

the encoding of the extender field and the allowed

syntax of the branch and indicator operands.

2-52

Description: The signed numeric value of the
multiplicand operand is multiplied by the numeric value
of the multiplier operand and the result is placed in the
product operand.

The operands must be numeric with any implicit
conversions occurring according to the rules of
arithmetic operations as outlined in the Functional
Concepts Manual.

If the multiplicand operand or the multiplier operand has
a value of 0, the result of the multiplication is a zero
product.

For a decimal operation, no alignment of the assumed
decimal point is performed for the multiplier and
multiplicand operands.

The operation occurs using the specified lengths of the
multiplicand and multiplier operands with no logical zero
padding on the left necessary.

The multiplication operation is performed according to
the rules of algebra.

The result of the operation is copied into the product
operand. If this operand is not the same type as that
used in performing the operation, the resultant value is
converted to its type. If necessary, the resultant value is
adjusted to the length of the product operand, aligned at
the assumed decimal point of the product operand, or
both before being copied to it. Length adjustment and
decimal point alignment are performed according to the
rules of arithmetic operations outlined in the Functional
Concepts Manual. If significant digits are truncated on
the left end of the resultant value, a size exception is
signaled.

If operands overlap but do not share all of the same
bytes, results of operations performed on these
operands are not predictable. If overlapped operands
share all of the same bytes, the results are predictable
when direct addressing is used. If indirect addressing is
used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts)' the
results are not always predictable.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Resultant Conditions: The algebraic value of the numeric
scalar product is positive, negative, or O.

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-53

Exceptions NEGATE (NEG)

Operands Op Code Operand Operand
Exception 1 2 3 [4, 5] Other (hex) 1 2

06 Addressing 1056 Receiver Source
01 Space addressing violation X X X
02 Boundary alignment X X X Operand 1: Numeric variable scalar.
03 Range X X X

08 Argument/ Parameter Operand 2: Numeric scalar.

01 Parameter reference violation X X X
OC Computation

02 Decimal data X X Optional Forms

OA Size X

10 Damage Encountered Op Code

04 System object damage state X X X X
Mnemonic (hex) Form Type

44 Partial system object damage X X X X NEGS 1156 Short
1C Machine-Dependent Exception NEGI 1856 Indicator

03 Machine storage limit X NEGIS 1956 Indicator, Short
exceeded NEGB 1C56 Branch

20 Machine Support NEGBS 1056 Branch, Short

02 Machine check X
03 Function check X

If the short instruction option is indicated in the op

22 Object Access
code, operand 1 is used as th.e first and second

01 Object not found X X X
operational operands (receiver and first source operand).

02 Object destroyed X X X
Operand 2 is used as the third operational operand

03 Object suspended X X X
(second source operand).

24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X Extender: Branch or indicator options.

2A Program Creation

05· Invalid op code extender field X
If the branch or indicator option is specifi'ed in the op

06 Invalid operand type X X X
code, the extender field must be present along with one

07 Invalid operand attribute X X X
to three branch target~ (for branch options) or one to

08 Invalid operand value range X X X
three indicator operands (for indicator options). The

09 Invalid branch target operand X
branch or indicator operands immediately follow the last

OC Invalid operand ODT reference X X X
operand listed above. See Chapter 1. Introduction for

2C Program Execution
the encoding of the extender field and the allowed

04 Branch target invalid X
syntax of the branch' and indicator operands.

2-54

Description: The sign of the numeric value in the source
operand is changed as if it had been multiplied by a
negative one (-1). The result is placed in the receiver
operand.

The sign changing of the source operand value (positive
to negative and negative to positive) is performed as
follows:

• Binary
Extract the numeric value and form the twos
complement of it.

• Packed/Zoned
Extract the numeric value and force its sign to
positive if it is negative or to negative if it is
positive.

The result of the operation is copied into the receiver
operand. If this operand is not the same type as that
used in performing the operation, the resultant value is
converted to its type. If necessary, the resultant value is
adjusted to the length of the receiver operand, aligned
at the assumed decimal point of the receiver operand, or
both before being copied to it. Length adjustment and
decimal point alignment are performed according to the
rules of arithmetic operations outlined in the Functional
Concepts Manual. If significant digits are truncated on
the left end of the resultant value, a size exception is
signaled. An attempt to negate a maximum negative
binary value to a binary scalar of the same size also
results in a size exception. If a packed or zoned 0 is
negated, the result is always positive O.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Resultant Conditions: The algebraic value of the receiver
operand is positive, negative, or O.

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2

06 Addressing
01 Space addressing violation X X
02 Boundary alignment X X
03 Range X X

08 Argument/ Parameter
01 Parameter reference violation X X

OC Computation
02 Decimal data X
OA Size X

10 Damage Encountered
04 System object damage state X X
44 Partial system object damage X X

lC Machine- Dependent Exception
03 Machine storage limit exceeded

20 Machine Support
02 Machine check
03 Function check

22 Object Access
01 Object not found X X
02 Object destroyed X X
03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X
02 Pointer type invalid X X

2A Program Creation
05 Invalid op code extender field
06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X
09 Invalid branch target operand
OC Invalid operand ODT reference X X

2C Program Execution
04 Branch target invalid

Other

X
X

X

X
X

X

X

X

Computation and Branching Instructions 2-55

NO OPERATION (NOOP)

Op Code

(hex)

0000

Description: No function is performed. The instruction
consists of an operation code and no operands. The
instruction may not be branched to and is not counted
as an instruction in the instruction stream.

The instruction may be used for inserting gaps in the
instruction stream. These gaps allow instructions with
adjacent instruction addresses to be physically
separated.

The instruction may precede or follow any machine
instruction except the End instruction, and any number
of No Operation instructions may exist in succession.

2-56

NOT (NOT)

Op Code Operand
(hex) 1

108A Receiver

Operand
2

Source

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Optional Forms

Mnemonic

NOTS
NOTI
NOTIS
NOTB
NOTBS

Op Code
(hex)

118A
188A
198A
1C8A
1D8A

Form Type

Short
Indicator
Indicator, Short
Branch
Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The Boolean NOT operation is performed
on the string value in the source operand. The resulting
string is placed in the receiver operand.

The operands must be character strings; they are
interpreted as bit strings.

The length of the operation is equal to the length of the
source operand.

The bit values of the result are determined as follows:

Source
Bit

Result
Bit

o
o

The result value is then placed (left-adjusted) in the
receiver operand with truncating or padding taking place
on the right. The pad value used in this instruction is a
hex 00 byte.

Resultant Conditions: The bit values for the bits of the
scalar receiver operand are either all zero or not all zero.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1 C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

05 Invalid op code extender

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

09 Invalid branch target operand

OA Invalid operand length

OC Invalid operand ODT reference

2C Program Execution

04 Branch target invalid

Operands
1 2 Other

X X
X X
X X

X X

X X X
X X X

X

X
X

X X
X X
X X

X X
X X

X
X X
X X
X X

X

X X
X X

X

Computation and Branching Instructions 2-57

OR (OR)

Op Code Operand Operand Operand
(hex) 1 2 3

1097 Receiver Source 1 Source 2

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Operand 3: Character scalar.

Optional Forms

Mnemonic

ORS
ORI
ORIS
ORB
ORBS

Op Code
(hex)

1197
1897
1997
1C97
1097

Form Type

Short
Indicator
Indicator, Short
Branch
Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or Indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The Boolean OR operation is performed on
the string values in the source operands. The resulting
string is placed in the receiver operand.

The operands must be character strings; they are
interpreted as bit strings.

The length of the operation is equal to the length of the
longer of the two source operands. The shorter of the
two operands is logically padded on the right with hex
00. The excess bytes in the longer operand are
assigned to the results.

2-58

The bit values of the result are determined as follows:

Source 1 Source 2 Result
Bit Bit Bit

1 1
0 1 1
1 0 1
0 0 0

The result value is then placed (left-adjusted) in the
receiver operand with truncating or padding taking place
on the right. The pad value used in this instruction is a
hex 00.

If operands overlap but do not share all of the same
bytes, results of operations performed on these
operands are not predictable. If overlapped operands
share all of the same bytes, the results are predictable
when direct addressing is used. If indirect addressing is
used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the
results are not always predictable.

Resultant Conditions: The bit values for the bits of the
scalar receiver operand are either all zero or not all zero.

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine- Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

05 Invalid op code extender field

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

09 Invalid branch target operand

OA Invalid operand length

OC Invalid operand ODT reference

2C Program Execution

04 Branch target invalid

Operands
1 2 3 Other

X X X
X X X
X X X

X X X

X X X X
X X X X

X

X
X

X X X
X X X
X X X

X X X
X X X

X
X X X
X X X
X X X

X
X X X
X X X

X

REMAINDER (REM)

Op Code
(hex)

1073

Operand
1

Remainder

Operand
2

Dividend

Operand
3

Divisor

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Optional Forms

Mnemonic

REMS
REMI
REMIS
REMB
REMBS

Op Code
(hex)

1173
1873
1973
1C73
1073

Form Type

Short
Indicator
Indicator, Short
Branch
Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational· operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to three branch targets (for branch options) or one to
three indicator operands (for indicator options). The
branch or indicator operands immediately follow the last
operand listed above. See Chapter 1. Introduction for
the encoding of the extender field and the allowed
syntax of the branch and indicator operands.

Description: The signed numeric value of the dividend
operand is divided by the numeric value of the divisor
operand, and the remainder is placed in the remainder
operand.

The operands must be numeric with any implicit
conversions occurring according to the rules of
arithmetic operations as outlined in the Functional
Concepts Manual.

Computation and Branching Instructions 2-59

If the divisor has a numeric value of 0, a zero divide
exception is signaled. If the dividend has a value of 0,
the result of the division is a zero value remainder.

For a decimal operation, alignment of the assumed
decimal point takes place if the dividend operand is of
lesser precision than the divisor or if the divisor is of
lesser precision than the dividend. The dividend is
padded on the right with 0' s to align it to the precision
of the divisor. The divisor is padded on the right with
0' s to align it to the precision of the dividend.

If the dividend is shorter than the divisor, it is logically
adjusted to the length of the divisor.

The division operation is performed according to the
rules of algebra. Before the remainder is calculated, an
intermediate quotient is calculated. The attributes of this
quotient are derived from the attributes of the dividend
and divisor operands as follows:

Dividend Divisor
Intermediate
Quotient

IM,SIM, or BIN(2) IM,SIM, or BIN(2) BIN(2)
IM,SIM, or BIN(2) BIN(4) BIN(4)
IM,SIM, or BIN(2) DECIMAL(P2,Q2) DECIMAL(5+Q2,0)
BIN(4) IM,SIM, or BIN(2) BIN(4)
BIN(4) DECIMAL(P2,Q2) DECIMAL(10+Q2,0)
DECIMAL(Pl,Ql) IM,SIM, or BIN(2) DECIMAL(Pl,O)
DECIMAL(Pl,Ql) BIN(4) DECIMAL(Pl,O)
DECIMAL(Pl,Ql) DECIMAL(P2,Q2) DECIMAL(Pl-Ql +Q,O)

1M = IMMEDIATE
SIM = SIGNED IMMEDIATE
DECIMAL = PACKED OR ZONED

Where Q = Larger
of Ql or Q2

After the intermediate quotient numeric value has been
determined, the numeric value of the remainder operand
is calculated as follows:

Remainder = Dividend - (Quotient*Divisor)

The sign of the remainder is the same as that of the
dividend unless the remainder has a value of O. When
the remainder has a value of 0, the sign of the
remainder is positive.

2-60

The resultant value of the calculation is copied into the
remainder operand. If this operand is not the same type
as that used in performing the operation, the resultant
value is converted to its type. If necessary, the resultant
value is adjusted to the length of the remainder operand,
aligned at the assumed decimal point of the remainder
operand, or both before being copied to it. Length
adjustment and decimal point alignment are performed
according to the rules of arithmetic operations as
outlined in the Functional Concepts Manual. If significant
digits are truncated on the left end of the resultant
value, a size exception is signaled.

An exception is also signaled when a decimal division
operation is performed and one of the following
conditions occurs:

• The dividend is aligned, and the number of fractional
digits specified in the divisor plus the number of
fractional digits specified for the quotient plus the
number of significant integer digits in the dividend
exceeds 31.

• The divisor is aligned, and the number of fractional
digits specified for the dividend minus the number of
fractional digits specified for the quotient plus the
number of significant integer digits in the divisor
exceeds 31.

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Resultant Conditions: The algebraic value of the numeric
scalar remainder is positive, negative, or O.

Events

oooe Machine resource
0201 Machine 9uxiliary storage threshold exceeded

/

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage object
0801 Partial system object damage set

Exceptions SCALE (SCALE)

Operands Op Code Operand Operand Operand
Exception 1 2 3 Other (hex) 1 2 3

06 Addressing 1063 Receiver Source Scale
01 Space addressing violation X X X factor
02 Boundary alignment X X X
03 Range X X X Operand 1: Numeric variable scalar.

08 Argument/ Parameter

01 Parameter reference violation X X X
Operand 2: Numeric scalar.

OC Computation
Operand 3: Binary(2) scalar.

02 Decimal data X X
03 Decimal point alignment X X
OA Size X

Optional Form
OB Zero divide X

10 Damage Encountered Op Code
04 System object damage state X X X X Mnemonic (hex) Form Type
44 Partial system object damage X X X X

1C Machine-Dependent Exception SCALES 1163 Short

03 Machine storage limit exceeded X SCALEI 1863 Indicator
SCALEIS 1963 Indicator, Short

20 Machine Support SCALEB 1C63 Branch
02 Machine check X SCALEBS 1D63 Branch, Short
03 Function check X

22 Object Access If the short instruction option is indicated in the op

01 Object not found X X X code, operand 1 is used as the first and second

02 Object destroyed X X X operational operands (receiver and first source operand).

03 Object suspended X X X Operand 2 is used as the third operational operand

24 Pointer Specification (second source operand).

01 Pointer does not exist X X X X
02 Pointer type invalid X X X X

2A Program Creation Extender: Branch or indicator options.

05 Invalid op code extender field X
06 Invalid operand type X X X If the branch or indicator option is specified in the op

07 Invalid operand attribute X X X code, the extender field must be present along with one

08 Invalid operand value range X X X to three branch targets (for branch options) or one to

09 Invalid branch target X three indicator operands (for indicator options). The

OC Invalid operand ODT reference X X X branch or indicator operands immediately follow the last

2C Program Execution operand listed above. See Chapter 1. Introduction for

04 Branch target invalid X the encoding of the extender field and the allowed

syntax of the branch and indicator operands.

Computation and Branching Instructions 2-61

Description: The scale instruction performs numeric
scaling of the source operand based on the scale factor
and places the results in the receiver operand. The
numeric operation is as follows:

Operand 1 = Operand 2 *(B**N)

where:

N is the binary integer value of the scale operand.
It can be positive, negative, or O. If N is 0, then
the operation simply copies the source operand
value into the receiver operand.

B is the arithmetic base for the type of numeric
value in the source operand.

Base Type B

Binary 2
Packed/Zoned 10

The operands must be of the numeric types indicated
with any implicit conversions occurring according to the
rules of arithmetic operations as outlined in the
Functional Concepts Manual. The scale operation is a
shift of N binary, packed, or zoned digits. The shift is to
the left if N is positive, to the right if N is negative.

If the source and receiver operands have different
attributes, the scaling operation is done in an
intermediate field with the same attributes as the source
operand. If the scaling operation causes nonzero digits
to be truncated on the left end of the intermediate field,
a size exception is signaled.

The resultant value of the calculation is copied into the
receiver operand. If this operand is not the same type
as that used in performing the operation, the resultant
value is converted to its type. If necessary, the resultant
value is adjusted to the length of the receiver operand,
aligned at the assumed decimal point of the receiver
operand, or both before being copied to it. Length
adjustment and decimal point alignment are performed
according to the rules of arithmetic operations outlined
in the Functional Concepts Manual. If nonzero digits are
truncated off the left end of the resultant value, a size
exception is signaled.

2-62

A scalar value invalid exception is signaled if the value
of N is beyond the range of the particular type of the
source operand.

Source Operand Type Maximum Value of N

Binary(2)
Binary(4)
DecimaI(P,Q)

-14 ~ N ~ 14
-30 ~ N ~ 30
-31 ~ N ~ 31

If a decimal to binary conversion causes a size exception
to be signaled, the binary value contains the correct
truncated result only if the decimal value contains 15 or
fewer significant nonfractional digits.

Resultant Condition: The algebraic value of the receiver
operand is positive, negative, or O.

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions SCAN (SCAN)

Operands Op Code Operand Operand Operand
Exception 1 2 3 Other (hex) 1 2 3

06 Addressing 1003 Receiver Base Compare
01 Space addressing violation X X X operand
02 Boundary alignment X X X

03 Range X X X Operand 1: Binary variable scalar or binary array.

08 Argument/ Parameter

01 Parameter reference violation X X X
Operand 2: Character scalar.

OC Computation

02 Decimal data X
Operand 3: Character scalar (fixed-length).

OA Size X

10 Damage ~ncountered
04 System object damage state X X X X

Optional Forms

44 Partial system object damage X X X X Op Code
1C Machine-Dependent Exception Mnemonic (hex) Form Type

03 Machine storage limit exceeded X

20 Machine Support SCANI 1803 Indicator

02 Machine check X
SCANB 1CD3 Branch

03 Function check X

22 Object Access
01 Object not found X X X

Extender: Branch or indicator options.

02 Object destroyed X X X

03 Object suspended X X X
If the branch or indicator option is specified in the op

24 Pointer Specification code, the extender field must be present along· with one

01 Pointer does not exist X X X
or two branch targets (for branch options) or one or two

02 Pointer type invalid X X X
indicator operands (for indicator options). The branch or

2A Program Creation indicator operands immediately follow the last operand

05 Invalid op code extender field X
listed above. See Chapter 1. Introduction for the

06 Invalid operand type X'X X
encoding of the extender field and the allowed syntax of

07 Invalid operand attribute X X X
the branch and indicator operands.

08 Invalid operand value range X X X

09 Invalid branch target X

OC Invalid operand ODT reference X X X
Description: The character string value of the base

2C Program Execution operand is scanned for occurrences of the character

04- Branch target invalid X
string value of the compare operand.

32 Scalar Specification

03 Scalar value inv~lid X
The. base and substring operands must both be

character strings. The length of the substring operand

must not be greater than that of the base string.

The operation begins at the left end of the base string

and continues character by character, from left to right,

comparing the characters of the -base string with those

of the substring operand. The length of the comparisons

are equal to the length of the substring value and

function as if they were being compared in the Compare

Bytes Left-Adjusted instruction.

Computation and Branching Instructions 2-63

If a set of bytes that match the compare operand is Exceptions

found, the binary value for the relative location of its
leftmost base string character is placed in the receiver Operands

operand. Exception 1 2 3 Other

If the receiver operand is a. scalar, only the first 06 Addressing

occurrence of the substring. is noted. If it is an array, as 01 Space addressing violation X X X

many occurrences as there are elements in the array are 02 Boundary alignment X X X

noted. 03 Range X X X
08 Argument/ Parameter

The operation "continues until no more occurrences of 01 Parameter reference violation X X X

the substring can be noted· in the receiver operand or 10 Damage Encountered

until the number of characters (bytes) remaining to be 04 System object damage state X X X X

scanned in the base string is less than the length of the 44 Partial system object damage X X X X

substring operand. When the second condition occurs, 1C Machine-Dependent Exception

the receiver value is set to O. If the receiver operand is 03 Machine storage limit exceeded X

an array, all its remaining elements are also set to O. 20 Machine Support

02 Machine check X
03 Function check X

Resultant Conditions: The numeric value(s) of the 22 Object Access

receiver operand is either 0 or positive. 01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X

Events 24 Pointer Specification

01 Pointer does not exist X X X

OOOC Machine resource 02 Pointer type invalid X X X

0201 Machine auxiliary storage threshold exceeded 2A Program Creation

05 Invalid op code extender field X

0010 Process 06 Invalid operand type X X X

0701 Maximum processor time exceeded 07 Invalid operand attribute X X X

0801 Process control limit exceeded 08 Invalid operand value range X X X
09 Invalid branch target X

0016 Machine observation OA Invalid operand length X X

0101 Instruction reference OC Invalid operand ODT reference X X X
2C Program Execution

0017 Damage set 04 Branch target invalid X

0401 System object damage set
0801 Partial system object damage set

2-64

SEARCH (SEARCH)

Op Code
(hex)

1084

Operand
1

Receiver

Operand
2

Array

Operand
3

Find

Operand
4

Location

Operand 1: Binary variable scalar or binary variable array.

Operand 2: Character array or numeric array.

Operand 3: Character scalar (fixed-length) or numeric scalar.

Operand 4: Binary scalar.

Optional Forms

Mnemonic

SEARCHI
SEARCHB

Op Code
(hex)

1884
1C84

Form Type

Indicator
Branch

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The portions of the array operand indicated
by the location operand are searched for occurrences of
the value indicated in the find operand.

The operation begins with the first element of the array
operand and continues element 'by element, comparing
those characters of each element (beginning with the
character indicated in the location operand) with the
characters of the find operand. The location operand
contains an integer value representing the relative
location of the first character in each element to be used
to begin the compare.

The integer value of the location operand must range
from 1 to L, where L is the length of the array operand
elements. A value of 1 indicates the leftmost character
of each element.

The array and find operands can be either character or
numeric. Any numeric operands are interpreted as
logical character strings. The compares between these
operands are performed at the length of the find
operand and function as if they were being compared in
the Compare Bytes Left-Adjusted instruction.

The length of the find operand must not be so large that
it exceeds the length of the array operand elements
when used with the location operand value. The array
element length used is the length of the array scalar
elements and not the length of the entire array element,
which can be larger in noncontiguous arrays.

As each occurrence of the find value is encountered, the
integer value of the index for this array element is
placed in the receiver operand. If the receiver operand is
a scalar, only the first element containing the find value
is noted. If the receiver operand is an array, as many
occurrences as there are elements within the receiver
array are noted.

The operation continues until no more occurrences of
elements containing the find value can be noted in the
receiver operand or until the array operand has been
completely searched. When the second condition
occurs, the receiver value is set to O. If the receiver
operand is an array, all its remaining elements are also
set to O.

Resultant Conditions: The numeric value(s) of the
receiver operand is either 0 or positive.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-65

Exceptions SET INSTRUCTION POINTER (SETIP)

Operands Op Code Operand Operand
Exception 1 2 3 4 Other (hex) 1 2

06 Addressing 1022 Receiver Branch
01 Space addressing violation X X X X target

02 Boundary alignment X X X X

03 Range X X X X Operand 1: Instruction pointer.

08 Argument/ Parameter

01 Parameter r'eference violation X X X X
Operand 2: Instruction number, relative instruction number, or

OC Computation
branch point.

08 Length conformance X

10 Damage Encountered

04 System object damage state X X X X X
Description: The value of the branch target (operand 2)

44 Partial system object damage X X X X X
is used to set the value of the instruction pointer

1C Machine-Dependent Exception
specified by operand 1. The instruction number

03 Machine storage limit X
indicated by the branch target must provide the address

exceeded of an instruction within the program containing. the Set

20 Machine Support Instruction Pointer instruction.

02 Machine check X

03 Function check X

22 Object Access Events

01 Object not found X X X X

02 Object destroyed X X X X OOOC Machine resource

03 Object suspended X X X X 0201 Machine auxiliary storage threshold exceeded

24 Pointer Specification

01 Pointer does not exist X X X X 0010 Process

02 Pointer type invalid X X X X 0701 Maximum processor time exceeded

2A Program Creation 0801 Process storage limit exceeded

05 Invalid op code extender field X

06 Invalid operand type X X X X 0016 Machine observation

07 Invalid operand attribute X X X X 0101 Instruction reference

08 Invalid operand value range X X X X

09 Invalid branch target operand X 0017 Damage set

OA Invalid branch length X 0401 System object damage set

OC Invalid operand ODT reference X X X X 0801 Partial system object damage set

2C Program Execution

04 Branch target invalid X

32 Scalar Specification

O~ Scalar type invalid X X X X
OA Invalid operand length X X X X

2-66

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

09 Invalid branch target operand

OC Invalid operand ODT reference

2C Program Execution

04 Branch target invalid

Operands
1 2 Other

X

X

X

X

X X X

X X X

X

X

X

X

X

X

X

X

X X

X

X

X

X X

X

SUBTRACT LOGICAL CHARACTER (SUBLC)

Op Code
(hex)

1027

Operand
1

Difference

Operand
2

Minuend

Operand
3

Subtrahend

Operand 1: Character variable scalar (fixed-length).

Operand 2: Character scalar (fixed-length).

Operand 3: Character scalar (fixed-length).

Optional Forms

Mnemonic

SUBLCS
SUBLCI
SUBLCIS
SUBLCB
SUBLCBS

Op Code
(hex)

1127
1827
1927
1C27
1027

Form Type

Short
Indicator
Indicator, Short
Branch
Branch, Short

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to three branch targets (for branch options) or one to
three indicator operands (for indicator options). The
branch or indicator operands immediately follow the last
operand listed above. See Chapter 1. Introduction for
the encoding of the extender field and the allowed
syntax of the branch and indicator operands.

Computation and Branching Instructions 2-67

Description: The unsigned binary value of the
subtrahend operand is subtracted from the unsigned
binary value of the minuend operand, and the result is
placed in the difference operand.

The length of the operation is equal to the length of the
longer of the two source operands. The length can be a
maximum of 256 bytes. The shorter of the two
operands is padded on the right with 0' s.

The subtraction operation is performed as though the
ones complement of the second operand and a
low-order l-bit were added to the first operand.

The result value is then placed (left-adjusted) into the
receiver operand with truncating or padding taking place
on the right. The pad value used in this instruction is a
byte value of hex 00.

If operands overlap but do not share all of the same
bytes, results of operations performed on these
operands are not predictable. If overlapped operands
share all of the same bytes, the results are predictable
when direct addressing is used. If indirect addressing is
used (that is, based operands, parameters, strings with
variable lengths, and arrays with variable subscripts), the
results are not always predictable.

Resultant Conditions: The logical difference of the
character scalar operands is zero with carry out of the
high-order bit position, not-zero with carry, or not-zero
with no carry.

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

2-68

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

05 Invalid op code extender field

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

09 Invalid branch target

OA Invalid operand length

OC Invalid operand ODT reference

2C Program Execution

04 Branch target invalid

32 Scalar Specification

01 Scalar type invalid

02 Scalar attributes invalid

Operands
1 2 3 Other

X X X

X X X

X X X

X X X

X X X X

X X X X

X

X

X

X X X

X X X

X X X

X X X

X X X

X

X X X

X X X

X X X

X

X X X

X X X

X

X X X

X X X

SUBTRACT NUMERIC (SUBN)

Op Code
(hex)

1047

Operand
1

Difference

Operand
2

Minuend

Operand
3

Subtrahend

Operand 1: Numeric variable scalar.

Operand 2: Numeric scalar.

Operand 3: Numeric scalar.

Optional Forms

Op Code
Mnemonic (hex) Form Type

SUBNS 1147 Short
SUBNR 1247 Round
SUBNSR 1347 Short, Round
SUBNB 1C47 Branch
SUBNBS 1047 Branch, Short
SUBNBR 1E47 Branch, Round
SUBNBSR 1F47 Branch, Short, Round
SUBNI 1847 Indicator
SUBNIS 1947 Indicator, Short
SUBNIR 1A47 Indicator, Round
SUBNISR 1B47 Indicator, Short, Round

If the short instruction option is indicated in the op
code, operand 1 is used as the first and second
operational operands (receiver and first source operand).
Operand 2 is used as the third operational operand
(second source operand).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
to three branch targets (for branch options) or one to
three indicator operands (for indicator options). The
branch or indicator operands immediately follow the last
operand listed above. See Chapter 1. Introduction for
the encoding of the extender field and the allowed
syntax of the branch and indicator operands.

Description: The signed numeric value of the subtrahend
operand is subtracted from the numeric value of the
minuend operand, and the result is placed in the
difference operand.

The operands must be numeric with any implicit
conversions occurring according to the rules of
arithmetic operations as outlined in the Functional
Concepts Manual.

For a decimal operation, alignment of the assumed
decimal point takes place by padding with 0' s on the
right end of the source operand with lesser precision.

The· operation uses the length and the precision of the
source and receiver operands to calculate accurate
results.

The subtract operation is performed according to the
rules of algebra.

The result of the operation is copied into the difference
operand. If this operand is not the same type as that
used in performing the operation, the resultant value is
converted to its type. If necessary, the resultant value is
adjusted to the length of the difference operand, aligned
at the assumed decimal point of the difference operand,
or both before being copied to it. Length adjustment
and decimal point alignment are performed according to
the rules of arithmetic operations outlined in the
Functional Concepts Manual. If significant digits are
truncated on the left end of the resultant value, a size
exception is signaled.

Computation and Branching Instructions 2-69

If operands overlap but do not share all of the same Exceptions

bytes, results of operations performed on these

operands are not predictable. If overlapped operands Operands
share all of the same bytes, the results are predictable Exception 1 2 3 [4, 5] Other

when direct addressing is used. If indirect addressing is

used (that is, based operands, parameters, strings with 06 Addressing

variable lengths, and arrays with variable subscripts), the 01 Space addressing violation X X X

results ~re not always predictable. 02 Boundary alignment X X X

03 Range X X X

If a decimal to binary conversion causes a size exception 08 Argument/ Parameter

to be signaled, the binary value contains the correct 01 Parameter reference violation X X X

truncated result only if the decimal value contains 15 or OC Computation

fewer significant nonfractional digits. 02 Decimal data X X

03 Decimal point alignment X X
OA Size X

Resultant Conditions: The algebraic value of the numeric 10 Damage Encountered

scalar difference is positive, negative, or O. 04 System object damage state X X X X
44 Partial system object damage X X X X

1C Machine-Dependent Exception

Events 03 Machine storage limit X
exceeded

oooe Machine resource
20 Machine Support

0201 Machine auxiliary storage threshold exceeded
02 Machine check X

03 Function check X

0010 Process
22 Object Access

0701 Maximum processor time exceeded
01 Object not found X X X

0801 Process storage limit exceeded
02 Object destroyed X X X

03 Object suspended X X X

0016 Machine observation
24 Pointer Specification

0101 Instruction reference
01 Pointer does not exist X X X

02 Pointer type invalid X X X

0017 Damage set
2A Program Creation

0401 System object damage set
05 Invalid op code extender field X

0801 Partial system object damage set
06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target X

OC Invalid operand ODT reference X X X
2C Program Execution

04 Branch t~rget invalid X

2-70

TEST AND REPLACE CHARACTERS (TSTRPLC)

Op Code
(hex)

Operand
1

Operand
2

10A2 Receiver Replacement

Operand 1: Character variable scalar.

Operand 2: Character scalar.

Description: The character string value represented by
operand 1 is tested byte by byte from left to right. Any
byte to the left of the leftmost byte which has a value in
the range of hex F1 to hex F9 is assigned a byte value
equal to the leftmost byte of operand 2.

Both operands must be character strings. Only the first
character of the replacement string is used in the
operation.

The operation stops when the first nonzero zoned
decimal digit is found or when all characters of the
receiver operand have been replaced.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Space addressing violation X X
02 Boundary alignment X X
03 Range X X

08 Argument/ Parameter

01 Parameter reference violation X X
10 Damage Encountered

04 System object damage state X X X
44 Partial system object damage X X X

1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X X
02 Object destroyed X X
03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X
02 Pointer type invalid X X

2A Program Creation

06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X
OA Invalid operand length X X
OC Invalid operand ODT reference X X

Computation and Branching Instructions 2-71

TEST BITS UNDER MASK
(TSTBUMB or TSTBUMI)

Operand Op Code
(hex) Extender 1

1C2A Branch
options

182A Indicator
options

Source

Operand
2

Mask

Operand 1: Character scalar or numeric scalar.

Operand 2: Character scalar or numeric scalar.

Operand 3 [4,5]:

Operand
3 [4, 5]

Branch
target

Indicator
target

• Branch target - Instruction number, relative instruction
number, branch point, or instruction pointer.

• Indicator target - Numeric variable scalar or character

variable scalar.

Extender: Branch or indicator options.

Either the branch option or the indicator option is
required by the instruction. The extender field is
required along with from one to three branch targets (for
branch option) or one to three indicator operands (for
indicator option). The branch or indicator operands are
required for operand 3 and optional for operands 4 and
5. See Chapter 1. Introduction for the bit encoding of
the extender field and the allowed syntax of the branch
and indicator operands.

2-72

Description: Selected bits from the leftmost byte of the
source operand are tested to determine their bit values.

Based on the test, the resulting condition is used with
the extender field to:

• . Transfer control conditionally to the instruction
indicated in one of the branch target operands
(branch form).

• Assign a value to each of the indicator operands
(indicator form).

The source and the mask operands can be character or
numeric. The leftmost byte of each of the operands is
used in the operands. The operands are interpreted as
bit strings.

The testing is performed bit by bit with only those bits
indicated by the mask operand being tested. A 1-bit in
the mask operand specifies that the corresponding bit in
the source value is to be tested. A 0-bit in the mask
operand specifies that the corresponding bit in the
source value is to be ignored.

Resultant Conditions: The selected bits of the bit string
source operand are all zeros, all ones, or mixed ones
and zeros. A mask operand of all zeros causes a zero
resultant condition.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 3 [4, 5]

06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

08 Argument/ Parameter

01 Parameter reference violation X X X

10 Damage Encountered

04 System object damage state X X X

44 Partial system object damage X X X

1C Machine-Dependent Exception

03 Machine storage limit
exceeded

20 Machine Support
02 Machine check

03 Function check

22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X
24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program Creation
05 Invalid op code extender field

06 Invalid operand type X X X
07 Invalid operand attribute X X X

08 Invalid operand value range X X X

09 Invalid branch target

OA Invalid operand length X X

OC Invalid operand ODT reference X, X X

2C Program Execution

04 Branch target invalid X

Other

X

X

X

X

X

X

X

TRANSLATE (XLATE)

Op Code Operand
(hex) 1

1094 Receiver

Operand
2

Source

Operand
3

Position

Operand
4

Replacement

Operand 1: Character variable scalar (fixed-length).

Operand 2: Character scalar (fixed-length).

Operand 3: Character scalar or null (fixed-length).

Operand 4: Character scalar (fixed-length).

Description: Selected characters in the string value of

the source operand are translated into a different

encoding and placed in the receiver operand. The
characters selected for translation and the character

values they are translated to are indicated by entries in

the position and replacement strings.

All the operands must be character strings. The source

and receiver values must be of the same length. The

position and replacement operands can differ in length.

If operand 3 is null, a 256-character string is used,

ranging in value from hex 00 to hex FF (EBCDIC

collating sequence).

The operation begins with all the operands left-adjusted

and proceeds character by character, from left to right

until the character string value of the receiver operand is

completed.

Each character of the source operand value is compared

with the individual characters in the position operand. If

a character of equal value does not exist in the position
string, the source character is placed unchanged in the

receiver operand. If a character of equal value is found

in the position string, the corresponding character in the

same relative location within the replacement string is

placed in the receiver operand as the source character
translated value. If the replacement string is shorter

than the position string and a match of a source to

position string character occurs for which there is no

corresponding replacement character, the source

character is placed unchanged in the receiver operand.
If the replacement string is longer than the position

string, the rightmost excess characters of the

replacement string are not used in the translation

operation because they have no corresponding position

string characters. If a character in the position string is

duplicated, the first occurrence (leftmost) is used.

Computation and Branching Instructions 2-73

If operands overlap but do not share all of the same Exceptions
bytes, results of operations performed on these
operands are not predictable. If overlapped operands Operands
share all of the same bytes, the results are predictable Exception 1 2 3 4 Other

when direct addressing is used. If indirect addressing is
used (that is, based operands, parameters, strings with 06 Addressing

variable lengths, and arrays with variable subscripts), the 01 Space addressing violation X X X X

results are not always predictable. 02 Boundary alignment X X X X

03 Range X X X X
08 Argument/ Parameter

Events 01 Parameter reference violation X X X X
10 Damage Encountered

(X)()C Machine resource 04 System object damage state X X X X X

0201 Machine auxiliary storage threshold exceeded 44 . Partial system object damage X X X X X

1C Machine-Dependent Exception

0010 Process 03 Machine storage limit X

0701 Maximum processor time exceeded
exceeded

0801 Process storage limit exceeded
20 Machine Support

02 Machine check X

0016 Machine observation
03 Function check X

0101 Instruction reference
22 Object Access

01 Object not found X X X X

0017 Damage set
02 Object destroyed X X X X

0401 System object damage set
03 Object suspended X X X X

0801 Partial system object damage set
24 Pointer Specification

01 Pointer does not exist X X X X
02 Pointer type invalid X X X X

2A Program Creation
06 Invalid operand type X X X X

07 Invalid operand attribute X X X X

08 Invalid operand value range X X X X

OA Invalid operand length X X X X

OC Invalid operand ODT reference X X X X

2-74

VERIFY (VERIFY)

Op Code
(hex)

1007

Operand
1

Receiver

Operand
2

Source

Operand
3

Class

Operand 1: Binary variable scalar or binary array.

Operand 2: Character scalar (fixed-length).

Operand 3: Character scalar (fixed-length).

Optional Forms

Mnemonic

VERIFYI
VERIFYB

Op Code
(hex)

1807
1C07

Form Type

Indicator
Branch

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: Each character of the source operand
character string value is checked to verify that it is
among the valid characters indicated in the class
operand.

The operation begins at the left end of the source string
and continues character by character, from left to right.
Each character of the source value is compared with the
characters of the class operand. If a match for the
source character exists in the class string, the next
source character is verified. If a match for the source
character does not exist in the class string, the binary
value for the relative location of the character within the
source string is placed in the receiver operand.

If the receiver operand is a scalar, only the first
occurrence of an invalid character is noted. If the
receiver operand is an array, as many occurrences as
there are elements in the array are noted.

The operation ·continues until no more occurrences of
invalid characters can be noted or until the end of the
source string is encountered. When the second
condition occurs, the current receiver value is set to O.
If the receiver operand is an array, all its remaining
entries are set to D's.

Resultant Conditions: The numeric value(s) of the
receiver is either 0 or positive.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Computation and Branching Instructions 2-75

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Space addressing violation X X X
02 Boundary alignment X X X

03 Range X X X

08 Argument/ Parameter

01 Parameter reference violation X X X

10 Damage Encountered

04 System object damage state X X X X
44' Partial system object damage X X X X

1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X
02 Pointer type invalid X X X

2A Program Creation

05 Invalid op code extender field X
06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X

09 Invalid branch target operand X
OA Invalid operand length X X
OC . Invalid operand ODT reference X X X

2C Program Execution

04 Branch target invalid X

2-76

Chapter 3. Pointer/Name Resolution Addressing Instructions

This chapter describes the instructions used for pointer
and name resolution functions. These instructions are in
alphabetic order. For an alphabetic summary of all the
instructions, see Appendix B. Instruction Summary.

COMPARE POINTER FOR OBJECT
ADDRESSABILITY
(CMPPTRAB or CMPPTRAI)

op Code
(hex)

1CD2

18D2

Extender

Branch
options

Indicator
options

Operand
1

Compare
operand 1

Operand
2

Compare
operand 2

Operand
3 [4]

Branch
target

Indicator
target

Operand 1: Data pointer, space pointer, system pointer, or
instruction pOinter.

Operand 2: Data pointer, space pointer, system pointer, or
instruction pointer.

Operand 3 [4]:

• For Branch Form - Instruction number, relative instruction
number, branch point, or instruction pointer.

• For Indicator Form - Numeric variable scalar or character

variable scalar.

Extender: Branch or indicator options.

Either the branch option or the indicator option is
required by the instruction. The extender field is
required along with one or two branch targets (for
branch option) or one or two indicator operands (for
indicator option). The branch or indicator operands are
required for operand 3 and optional for operand 4. See
Chapter 1. Introduction for the bit encoding of the
extender field and the allowed syntax of the branch and
indicator operands.

Description: The object addressed by operand 1 is
compared with the object addressed by operand 2 to
determine if both operands are addressing the same
object. Based on the comparison, the resulting condition
is used with the extender to transfer control (branch
form) or to assign a value to each of the indicator
operands (indicator form).

If operand 1 is a data pointer, a space pointer, or a
system pointer, operand 2 may be any pointer type
except for instruction pointer in any combination. An
equal condition occurs if the pointers are addressing the
same object. For space pointers and data pointers, only
the space they are addressing is considered in the
comparison. That is, the space offset portion of the
pointer is ignored.

For system pointer compare operands, an equal
condition occurs if the system pointer is compared with
a space pointer or data pointer that addresses the space
that. is associated with the object that is addressed by
the system pointer. For example, a space pointer that
addresses a byte in a space associated with a system
object compares equal with a system pointer that
addresses the system object.

For instruction pointer comparisons, both operands must
be instruction pointers; otherwise, an invalid pointer type
exception is signaled. An equal condition occurs when
both instruction pointers are addressing the same
instruction in the same program. A not equal condition
occurs if the instruction pointers are not addressing the
same instruction in the same program.

A pointer does not exist exception is signaled if a
pointer does not exist in either of the operands.

Pointer/Name Resolution Addressing Instructions 3-1

Resultant Conditions: Equal, not equal. Exceptions

Operands
Authorization Required Exception 1 2 3 4 Other

. Retrieve 06 Addressing

- Contexts referenced for address resolution 01 Space addressing violation X X X X
02 Boundary alignment X X X X
03 Range X X X X

Lock Enforcennent 08 Argument/Parameter

01 Parameter reference violation X X X X

. Materialize OA Authorization

Contexts referenced for ~ddress resolution 01 Unauthorized for operation X X
10 Damage Encountered

04 System object damage state X X X X X

Events 44 Partial system object damage X X X X X
1A Lock State

0002 Authorization 01 Invalid lock state X X

0101 Object authorization violation 1C Machine-Dependent Exception

03 Machine storage limit X

OOOC Machine resource
exceeded

0201 Machine auxiliary storage threshold exceeded
20 Machine Support

02 Machine check X

0010 Process
03 Function check X

0701 Maximum processor time exceeded
22 Object Access

0801 Process storage limit exceeded
01 Object not found X X X X
02 Object destroyed X X X X

0016 Machine observation
03 Object suspended X X X X

0101 Instruction reference
24 Pointer Specification

01 Pointer does not exist X X X X

0017 Damage set
02 Pointer type invalid X X X X

0401 System object damage set
2A Program Creation

0801 Partial system object damage set
05 Invalid op code extender field X
06 Invalid operand type X X X X
07 Invalid operand attribute X X X X

08 I nvalid operand value range X X X X
09 Invalid branch target operand X X
OA Invalid operand length X X
OC Invalid operand ODT reference X X X X

3-2

COMPARE POINTER TYPE
(CMPPTRTB or CMPPTRTI)

Op Code Operand Operand Operand
(hex) Extender 1 2 3 [4]

1CE2 Branch Compare Compare Branch
options operand 1 operand 2 target

or null

18E2 Indicator Indicator
options target

Operand 1: Data pointer, space pointer, system pointer, or
instruction pointer.

Operand 2: Character(1) scalar or null.

Operand 3 [4]:

• For Branch Form - Instruction number, relative instruction
number, branch point, or instruction pointer.

• For Indicator Form - Numeric variable scalar or character

variable scalar.

Extender: Branch or indicator options.

Either the branch option or the indicator option is
required by the instruction. The extender field is
required along with one or two branch targets (for
branch option) or one or two indicator operands (for
indicator option). The branch or indicator operands are
required for operand 3 and optional for operand 4. See
Chapter 1. Introduction for the bit encoding of the
extender field and the allowed syntax of the branch and
indicator operands.

Description: The instruction compares the pointer type
currently in operand 1 with the character scalar
identified by operand 2. Based on the comparison, the
resulting condition is used with the extender to transfer
control (branch form) or to assign a value to each of the
indicator operands (indicator form).

If operand 2 is null or if operand 2 specifies a
comparison value of hex 00, an equal condition occurs if
a pointer does not exist in the storage area identified by
operand 1.

Following are the allowable values for operand 2:

Hex 00 - A pointer does not exist at this location
Hex 01 - System pointer
Hex 02 - Space pointer
Hex 03 - Data pointer
Hex 04 - I nstruction pointer

Resultant Conditions: Equal, not equal.

Authorization Required

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

. 0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Pointer/Name Resolution Addressing Instructions 3-3

Exceptions COpy BYTES WITH POINTERS (CPYBWP)

Operands Op Code Operand Operand
Exception 1 2 3 4 Other (hex) 1 2

06 Addressing 0132 Receiver Source
01 Space addressing violation X X X X

02 Boundary alignment X X X X Operand 1: Character variable scalar, space pointer, data

03 Range X X X X pointer, system pointer, or instruction pointer.

08 Argument/ Parameter

01 Parameter reference violation X X X X
Operand 2: Character variable scalar, space pointer, data

OA Authorization
pointer, system pointer, instruction pointer, or null.

01 Unauthorized for operation X

10 Damage Encountered

04 System object damage state X X X X X
Description: The value of the byte string specified by

44 Partial system object damage X X X X X
operand 2 is copied to the byte string specified by

1A Lock State
operand 1 (no padding done),

01 Invalid lock state X

1C Machine- Dependent Exception
The byte string identified by operand 2 can contain the

03 Machine storage limit X
storage forms of both scalars and pointers. Normal

exceeded pointer alignment checking is not done. The only

20 Machine Support alignment requirement is that the space addressability

02 Machine check X alignment of the two operands must be to the same

03 Function check X position relative to a 16-byte multiple boundary. A

22 Object Access boundary alignment exception is signaled if the

01 Object not found X X X X alignment is incorrect. The pointer attributes of any

02 Object destroyed X X X X complete pointers in the source are preserved if they

03 Object suspended X X X X can be completely copied into the receiver. Partial

24 Pointer Specification pointer storage forms are copied into the receiver as

01 Pointer does not exist X X X X scalar data. Scalars in the source are copied to the

02 Pointer type invalid X X X X receiver as scalars. The length of the operation is equal

2A Program Creation to the length of the shorter of the two operands. The

05 Invalid op code extender X copying begins with the two operands left-adjusted and

operand proceeds until completion of the shorter operand.

06 Invalid operand type X X X X

07 Invalid operand attribute X X X X If operand 2 is null, operand 1 must define a pointer

08 Invalid operand value range X X X X reference; otherwise, an exception is signaled. When

09 Invalid branch target operand X X operand 2 is null, the byte string identified by operand 1

OA Invalid operand length X X X is set to the system default pointer does not exist value.

OC Invalid operand ODT reference X X X X

32 Scalar Specification

03 Scalar value invalid X

3-4

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Space addressing violation X X

02 Boundary alignment X X

03 Range X X

08 Argument/ Parameter

01 Parameter reference violation X X

10 Damage Encountered

04 System object damage state X X X

44 Partial system object damage X X X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program Creation

06 Invalid operand type X X

07 Invalid operand attribute X

08 Invalid operand value range X X

OA Invalid operand length X

OC Invalid operand ODT reference X X

CREATE CONTEXT (CRTCTX)

Op Code
(hex)

0112

Operand
1

Pointer for
address
ability to
created
context

Operand
2

Context
template

Operand 1: System pointer.

Operand 2: Space pointer.

Description: The instruction creates a context with the
attributes of the context template specified by operand
2 and returns addressability to the created context in a
system pointer stored in the storage area specified by
operand 1.

The format of the context template is:

• Template size specification
Number of bytes provided
Number of bytes available for
materialization

• Object identification
Object type
Object subtype
Object name

• Object creation options
Existence attributes
a = Temporary
1 = Permanent
Space attribute
a = Fixed-length
1 = Variable-length
Reserved (binary 0)
Access group
a Do not create as member

of access group
1 = Create as member of

access group
Reserved (binary 0)

• Recovery options
Automatic damaged
context rebuild option
a = Do not rebuild at 1M PL
1 = Rebuild at IMPL
Reserved (binary 0)

Char(8)
Bin(4)*
Bin(4)*

Char(32)
Char(1)*
Char(1)
Char(30)

Char(4)
Bit a

Bit 1

Bit 2
Bit 3

Bits 4-31

Char(4)
Bit a

Bits 1-32

Pointer /Name Resolution Addressing Instructions 3-5

• Size of space

• Initial vah .. e of space

• Performance class
Space alignment
o = The space associated with

the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align
ments within the the space.

Reserved (binary 0)
Main storage pool selection
o Process default main storage

pool is used for object.
Machine default main storage
pool is used for object.

Reserved (binary 0)
Block transfer on implicit
access state modification
o = Transfer the minimum storage

transfer .size for this object.
This value is 1 storage unit.

1 Transfer the machine default
storage transfer size. This
value, is 8 storage units.

Reserved (binary 0)

• Reserved (binary 0)

• Access group

Bin(4)

Char(1)

Char(4)
Bit 0

Bits 1-4
Bit 5

Bit 6
Bit 7,

Bits 8-31

Char(23)

System
pointer

Note: The values of the template entries annotated by
an asterisk are ignored by the instruction.

3-6

The template identified by operand 2 must be 16-byte
aligned.

If the created context is permanent, it is owned by the
user profile governing process execution. The owning
user profile is implicitly assigned all private authority
states for the context. The storage occupied by the
created context is charged to this owning user profile. If
the created context is temporary, there is no owning
user profile, and all authority states are assigned as
public. Storage occupied by the created context is
charged to the creating process.

The object identification specifies the symbolic name
that identifies the context within the machine. A type
code of hex 04 is implicitly supplied by the machine.
The object identification is used to identify the object on
materialize instructions as well as to locate the object in
the machine.

The existence attribute specifies whether the object is to
be created as a permanent or a temporary object. A
temporary context, if not explicitly destroyed by the
user, is implicitly destroyed when machine processing is
terminated. Permanent contexts have addressability
inserted in the machine context. Temporary contexts'
addressability may not be inserted in any context.

A space may be associated with the created object. The
space may be fixed or variable in size. The initial
allocation is as specified in the size of space entry. The
machine allocates a space of at least the size specified.
The actual size allocated depends on an algorithm
defined by a specific implementation. A fixed size space
of zero length causes· no space to be allocated. Each
byte of the space is initialized to a value specified by
the initial value of space entry. When the space is
extended in size, this byte value is also used to initialize
the new allocation. This entry is ignored if no space is
to be allocated.

If the access group creation attribute entry indicates that
the context is to be created in an access group, the
access group entry must be a system pointer that
identifies an access group in which the context is to be
created. The existence attribute of the context must be
identical to the existence attribute of the access group.
If the context is not to be created in an access group,
the access group entry is ignored.

The recovery options field indicates the rebuild option.
A binary 1 indicates the context is to be rebuilt if
damaged. This option is not available for temporary
objects. The Materialize Context instrllction may be
used to materialize the rebuild recovery option for a
context.

Note: If the machine context becomes damaged or
destroyed, it is implicitly rebuilt and/or recreated at IPL
time. If a permanent context becomes damaged, and
the context was created with the rebuild recovery
option, the context is implicitly rebuilt at I PL time.

The performance class parameter provides information
allowing the machine to more effectively manage a
context considering overall performance objectives of
operations involving the context.

Authorization Required

• Insert
- User profile of creating process

• Object Control
- Operand 1 if being replaced

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

• Modify
User profile of creating process

- Access group identified by operand 2

• Object Control
- Operand 1 if being replaced

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Pointer/Name Resolution Addressing Instructions 3-7

Exceptions

Exception

02 Access group

01 Object ineligible for access group

02 Object exceeds available space

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

OA Authorization

01 Unauthorized for operation

OE Context Operation

01 Duplicate object identification

10 Damage Encountered

02 Machine context damage state

04 System object damage state

44 Partial system object damage

1A Lock State

01 Invalid lock state

1C Machine-Dependent Exception

03 Machine storage limit exceeded

04 Object storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 I nvalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

2E Resource Control Limit

01 User profile storage limit
exceeded

38 Template Specification

01 Template value invalid

3-8

Operands
1 2

X
X

X X
X X
X X

X X

X

X

X X
X X

X

X

X X
X X
X X

X X
X X

X X
X X
X X

X
X X

X

X

Other

X
X
X

X

X
X

DESTROY CONTEXT (DESCTX)

Op Code
(hex) Operand 1

0121 Context

Operand 1: System pointer.

Description: The context addressed by the system
pointer specified by operand 1 is destroyed. If the
context contains addressability to any system object, no
exception is signaled. The context is destroyed and the
objects are, therefore, not addressed by any context. If
the context is a permanent object, the context is deleted
from the machine context. The system pointer identified
by operand 1 is not modified by the instruction, and a
subsequent reference to the context through the pointer
results in the object destroyed exception.

Authorization Required

• Object control
- Operand 1

Lock Enforcennent

• Modify
Access group

- User profile of object owner

• Object control
- Operand 1

Events

0002 Authorization

0101 Object authorization violation

oooe Machine resource

0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded

0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

Exceptions

Operand
Exception 1

06 Addressing
01 Space addressing violation X

02 Boundary alignment X

03 Range X
OA Authorization

01 Unauthorized for operation X
10 Damage Encountered

02 Machine context damage state
04 System object damage state X

44 Partial system object damage X
1A Lock State

01 Invalid lock state X
1C Machine-Dependent Exception

03 Machine storage limit exceeded
20 Machine Support

02 Machine check

03 Function check
22 Object Access

01 Object not found X

02 Object destroyed X

03 Object suspended X
24 Pointer Specification

01 Pointer does not exist X
02 Pointer type invalid X

03 Pointer addressing invalid object X
2A Program Creation

06 Invalid operand type X

07 Invalid operand attribute X

08 Invalid operand value range X

OC Invalid operand ODT reference X

Other

X

X

X

X

X

X

MATERIALIZE CONTEXT (MATCTX)

Op Code
(hex)

0133

Operand
1

Receiver

Operand
2

Permanent
context,
temporary
context,
or machine
context

Operand 1: Space pointer.

Operand 2: System pointer or null.

Operand
3

Materialization
options

Operand 3: Character scalar (fixed-length).

Description: Based on the contents of the materialization
options specified by operand 3, the symbolic
identification and / or system pointers to all or a selected
set of the objects addressed by the context specified by

operand 2 are materialized into the receiver specified by
operand 1. If operand 2 is nUll, then the machine
context is materialized.

The materialization control information requirements field
in the materialization options operand specifies the

information to be materialized for each selected entry.
Symbolic identification and system pointers identifying

objects addressed by the context can be materialized
based on the bit setting of this parameter. The
materialization control selection criteria field specifies the
context entries from which information is to be
presented. The type code, subtype code, and name
fields contain the selection criteria when a selective
materialization is specified.

When type code or type / subtype codes are part of the
selection criteria, only entries that have the specified
codes are considered. When a name is specified as part

of the selection criteria, the N characters in the search
criteria are compared against the N characters of the
context entry, where N is defined by the name length

field in the materialization options. The remaining
characters (if any) in the context entry are not used in
the comparison.

Pointer / Name Resolution Addressing Instructions 3-9

The materialization options operand has the following
format:

• Materialization control
Information requirements
(1 = materialize)
Reserved (binary 0)
System pointers
Symbolic identification
Selection criteria
Hex 00 All context entries
Hex 01 Type code selection
Hex 02 Type code/subtype

code selection
Hex 04
Hex 05

Hex 06

Name selection
Type code / name
selection
Type code/subtype
code / name selection

• Length of name to be used for
search argument

• Type code

• Subtype code

• Name

Char(2)
Char(1)

Bits 0-5
Bit 6
Bit 7
Char(1)

Bin(2)

Char(1)

Char(1)

Char(30)

If the information requirements parameter is binary 0,
the context attributes are materialized with no context
entries.

The first 4 bytes of the materialization output identify
the total number of bytes available for use by the
instruction. This value is supplied as input to the
instruction and is not modified by the instruction. A
value of less than 8 causes the materialization length
exception to be signaled. The instruction materializes as
many bytes and pointers as can be contained in the
receiver. If the byte area identified by the receiver is
greater than that required to contain the information
requested for materialization, the excess bytes are
unchanged. No exceptions are signaled in the event that
the receiver contains insufficient area for~ the
materialization, other than the materialization length
exception signaled above.

3-10

The format of the materialization is as follows:

• Materialization size specification
N umber of bytes provided for
materialization
<Number of bytes available for
materialization

• Context identification
Object type
Object subtype
Object name

• Context options
Existence attributes
o = Temporary
1 = Permanent
Space attribute
o = Fixed-length
1 = Variable-length
Reserved (binary 0)
Access group
o Not a member of access

group
Member of access group

Reserved (binary 0)

• Recovery options
Automatic damaged
context rebuild option
o Do not rebuild at IMPL
1 = Rebuild at 1M PL

• Size of space

• Initial value of space

Char(8)
Bin(4)

Bin(4)

Char(32)
Char(1)
Char(1)
Char(30)

Char(4)
Bit 0

Bit 1

Bit 2
Bit 3

Bit 4-31

Char(4)
Bit 0

Bin(4)

Char(1)

• Performance class
Space alignment
o = The space associated with

the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space. If
no space is specified for
the object, this value must
be specified for the

1
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align
ments within the the space.

Reserved (binary 0)
Main storage pool selection
o Process default main storage

pool is used for object.
Machine default main storage
pool is used for object.

Reserved (binary 0)
Block transfer on implicit
access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

Reserved (binary 0)

• Reserved (binary 0)

• Reserved (binary 0)

• Access group

• Context entry (repeated for
each selected entry)

Object identification (if requested)
Type code
Subtype code
Name
Object pointer (if requested)

Char(4)
Bit 0

Bits 1-4
Bit 5

Bit 6
Bit 7

Bits 8-31

Char(7)

Char(16)

System
pointer

Char(16-48)

Char(32)
Char(1)
Char(1)
Char(30)
System
pointer

The context entry object identification information, if
requested by the materialization options parameter, is
present for each entry in the context that satisfies the
search criteria. If both system pointers and symbolic
identification are requested by the materialization
options operand, the system pointer immediately follows
the object identification for each entry.

The order of the materialization of a context is by object
type code, object subtype code, and object name, all in
ascending sequence.

Authorization Required

• Retrieve
- Operand 2

Lock Enforcennent

• Materialization
- Operand 2

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016· Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Pointer/Name Resolution Addressing Instructions 3-11

Exceptions MODIFY ADDRESSABILlTV (MODADR)

Operands Op Code Operand Operand
Exception 1 2 3 Other (hex) 1 2

06 Addressing 0192 Receivil')g System
01 Space addressing violation X X X context object

02 Boundary alignment X X X
03 Range X X X Operand 1: System pointer or null.

08 Argument/ Parameter

01 Parameter reference violation X X X Operand 2: System pointer.

OA Authorization

01 Unauthorized for operation X
10 Damage Encountered Description: The system object referenced by operand 2

02 Machine context damage state X has its addressability inserted into a context, deleted

04 System object damage state X X X X from a context, or transferred from one context to

44 Partial system object damage X X X X another. If operand 1 addresses a temporary or

1A Lock State permanent context, addressability to the object is

01 Invalid lock state X inserted into the specified context. If the object is

1C Machine-Dependent Exception currently addressed by another context, this

03 Machine storage limit exceeded X X addressability is removed. If the object is currently

20 Machine Support addressed by the context referenced by operand 1, no

02 Machine check X operation takes place.

03 Function check X
22 Object Access If operand 1 is null, addressability is removed from the

01 Object not found X X X context that addresses the system object defined in

02 Object destroyed X X X operand 2. If the object referenced by operand 2 is not

03 Object suspended X X X currently addressed by a ,context, no operation takes

24 Pointer Specification place.

01 Pointer does not exist X X X
02 Pointer type invalid X X X If operand 2 refers to an object that may only be

03 Pointer addressing invalid object X addressed by the machine context, an object ineligible

2A Program Creation for context exception is signaled.

06 Invalid operand type X X X
07 Invalid operand attribute X X
08 Invalid operand value range X X Authorization Required

OA Invalid operand length X X
OC Invalid operand ODT reference X X X · Insert

32 Scalar Specification - Operand 1

02 Scalar attributes invalid X
03 Scalar value invalid X · Delete

38 Template Specification - Context currently addressing object

03 Materialization length exception X

· Object management

- Operand 2

· Retrieve

- Contexts referenced for address resolution

3-12

Lock Enforcennent Exceptions

. Modify Operands
Operand 1 Exception 1 2 Other
Operand 2
Context currently addressing object 06 Addressing

01 Space addressing violation X X

• Materialize 02 Boundary alignment X X

- Contexts referenced for address resolution 03 Range X X

08 Argument/ Parameter

01 Parameter reference violation X X

Events OA Authorization

01 Unauthorized for operation X X

0002 Authorization OE Context Operation

0101 Object authorization violation 01 Duplicate object identification X

02 Object ineligible for context X

OOOC Machine resource 10 Damage Encountered

0201 Machine auxiliary storage threshold exceeded 02 Machine context damage state X
04 System object damage state X X X

0010 Process 44 Partial system object damage X X X

0701 Maximum processor time exceeded 1A Lock State

0801 Process storage limit exceeded 01 Invalid lock state X X

1C Machine-Dependent Exception

0016 Machine observation 03 Machine storage limit exceeded X

0101 Instruction reference 04 Object storage limit exceeded X

20 Machine Support

0017 Damage set 02 Machine check X

0401 System object damage set 03 Function check X

0801 Partial system object damage set 22 Object Access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X

03 Pointer addressing invalid object X

2A Program Creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OC Invalid operand ODT reference X X

2E Resource Control Umit

01 User profile storage limit X
exceeded

Pointer/Name Resolution Addressing Instructions 3-13

RENAME OBJECT (RENAME)

Op Code
(hex)

0162

Operand
1

Operand
2

Object to New symbolic
be renamed identification

Operand 1: System pointer.

Operand 2: Character scalar (fixed-length).

Description: The permanent or temporary system object
addressed by the system pointer specified by operand 1
is assigned the symbolic identification (name and/or
subtype code) specified by operand 2. All objects that
can be addressed by a system pointer can be renamed.
System pointers currently addressing the object are not
affected by the instruction. The symbolic identification is
changed in the context (machine, temporary, or
permanent), if any, that addresses the object.

If the new symbolic identification is not unique in the
context currently addressing the object, a duplicate
object identification exception is signaled, and the object
is not renamed.

The format of operand 2 is:

• Rename option (1 = rename)
Subtype code
Name
Reserved (binary 0)

• Reserved (binary 0)

• Subtype code

• Name

Char(1)
Bit 0
Bit 1
Bits 2-7

Char(1)

Char(1)

Char(30)

Note: If either the subtype or the name is not to be
changed by the instruction, the corresponding entry on
the template is ignored.

3-14

Authorization Required

• Retrieve
- Contexts referenced for address resolution

• Object management
- Operand 1

• Update
- Context that addresses operand 1

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

• Modify
- Context that addresses operand 1

• Object Control
- Operand 1

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions RESOLVE DATA POINTER (RSLVDP)

Operands Op Code Operand Operand Operand
Exception 1 2 Other (hex) 1 2 3

06 Addressing 0163 Pointer for Data object Program
01 Space addressing violation X X address- identi-

02 Boundary alignment X X ability to fication

03 Range X X
data object

OA Authorization
01 Unauthorized for operation X

Operand 1: Data pointer.

OE Context Operation Operand 2: Character(32) scalar (fixed-length) or null.
01 Duplicate object identification X

10 Damage Encountered Operand 3: System pointer or null.

02 Machine context damage state X
04 System object damage state X X X
44 Partial system object damage X X X Description: A data pointer with addressability to and

1A Lock State the attributes of an external scalar data element is

01 Invalid lock state X returned in the storage area identified by operand 1.
1C Machine-Dependent Exception

03 Machine storage limit exceeded X The following describes the instruction's function when

20 Machine Support operand 2 is null:

02 Machine check X
03 Function check X · If operand 1 does not contain a data pointer, an

22 Object Access exception is signaled.

01 Object not found X X
02 Object destroyed X X · If the data pointer specified by operand 1 is not

03 Object suspended X X resolved and has an initial value declaration, the
24 Pointer Specification instruction resolves the data pointer to the external

01 Pointer does not exist X X scalar that the initial value describes. The initial value

02 Pointer type invalid X X defines the external scalar to be located and,

03 Pointer addressing invalid object X optionally, defines the program in which it is to be

2A Program Creation located. If the program name is specified in the initial

06 Invalid operand type X X value, only that program's activation entry is searched

07 Invalid operand attribute X X for the external scalar. If no program is specified,

08 Invalid operand value range X X programs associated with the activation entries in the

OA Invalid operand length X process static storage area are searched in reverse

OC Invalid operand ODT reference X X order of the activation entries, and operand 3 is
32 Scalar Specification ignored.

01 Scalar type invalid X X
02 Scalar attributes invalid X · If the data pointer is currently resolved and defines

03 Scalar value invalid X an existing scalar, the instruction causes no

operation, and no exception is signaled.

Pointer / Name Resolution Addressing Instructions 3-15

The following describes the instruction's function when
operand 2 is not null:

• A data pointer that is resolved to the external scalar
identified by operand 2 is returned in operand 1.
Operand 2 is a 32-byte value that provides the name
of the external scalar to be located.

• Operand 3 specifies a system pointer that identifies
the program whose activation is to be searched for
the external scalar definition. If operand 3 is null, the
instruction searches all activations in the process,
starting with the most recent activation and
continuing to the oldest. The activation under which
the instruction is issued also participates in the
search. If operand 3 is not null, the instruction
searches the activation of the program addressed by
the system pointer.

If the external scalar is not located, the object not found
exception is signaled. If an unresolved system pointer is
encountered when the program searches the activation
entries, the pointer not resolved exception is signaled. If
the PSSA chain being modified bit is on when this
instruction is executed, a stack control invalid exception
is signaled.

Authorization Required

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

3-16

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions RESOLVE SYSTEM POINTER (RSLVSP)

Operands Op Code Operand Operand Operand Operand
Exception 1 2 3 Other (hex) 1 2 3 4

06 Addressing 0164 Pointer for Object Context Authority
01 Space addressing violation X X X address- identi- through to be set

02 Boundary alignment X X X ability to fication which
object and object is to

03 Range X X X
required be located

04 External data object not found X author-
08 Argument/ Parameter ization

01 Parameter reference violation X X X

OA Authorization Operand 1: System pointer.

01 Unauthorized for operation X X
10 Damage Encountered Operand 2: Character(34) scalar (fixed-length) or null.

04 System object damage state X X X X Operand 3: System pointer or null.
44 Partial system object damage X X X X

1A Lock State Operand 4: Character(2) scalar (fixed-length) or null.
01 Invalid lock state X

1C Machine-Dependent Exception

03 Machine storage limit exceeded X Description: This instruction locates an object identified
20 Machine Support by a symbolic address and stores the' object's

02 Machine check X addressability and authority in a system pointer. A
03 Function check X resolved system pointer is returned in operand 1 with

22 Object Access addressability to a system object and the requested
01 Object not found X X X authority currently available to the process for the
02 Object destroyed X X X object.
03 Object suspended X X X
04 Pointer not resolved X Note: The ownership flag is never set in the system

24 Pointer Specification pointer.
01 Pointer does not exist X X X

02 Pointer type invalid X X X Operand 2 specifies the symbolic identification of the
04 Pointer not resolved X object to be located. Operand 3 identifies the context to

2A Program Creation be searched in order to locate the object. Operand 4
06 Invalid operand type X X X identifies the authority states to be set in the pointer.
07 Invalid operand attribute X X X First, the instruction locates an object based on
08 Invalid operand value range X X X operands 2 and 3. Then, the instruction sets the
OA Invalid operand ODT reference X appropriate authority states in the system pointer.
OC Invalid operand ODT reference X X X

2C Program Execution

03 Stack control invalid X

32 Scalar Specification

01 Scalar type invalid X X X

02 Scalar attributes invalid X

03 Scalar value invalid X

Pointer / Name Resolution Addressing Instructions 3-17

The following describes the instruction's function when
operand 2 is. null:

• If operand 1 does not contain a system pointer, an
exception is signaled.

• If the system pointer specified by operand 1 is not
resolved but has an initial value declaration, the
instruction resolves the system pointer to the object
that the initial value describes. The initial value
defines the following:

Object to be located (by type, subtype, and name)
Context to be searched to locate the object
(optional)
Minimum authority required for the object

If a context is specified, only that context is
referenced to locate the object, and operand 3 is
ignored. If no context is specified, the context(s)
located by the process name resolution list is used to
locate the object, and operand 3 is ignored. If the
object is of a type that can only be addressed
through the machine context, then only the machine
context is searched, and the context (if any) identified
in the initial value or identified in operand 3 is
ignored.

If the minimum required authority in the initial value is
not set (binary 0), the instruction resolves the
operand 1 system pointer to the first object
encountered with the designated type code, subtype
code, and object name without regard to the
authorization available to the process for the object.
If one or more authorization (or ownership) states are
required (signified by binary l' s)., the context(s) is
searched until an object is encountered with the
designated type, subtype, and name and for which
the process currently has all required authorization
states.

If the system pointer specified by operand 1 is
currently resolved to address an existing object, the
instruction does not modify the addressability
contained in the pointer and causes only the authority
attribute in the pointer to be modified based on
operand 4.

3-18

If operand 2 is not null, the operand 1 system pointer is
resolved to the object identified by operand 2 in the
context{s) specified by operand 3. The format of
operand 2 is as follows:

• Object specification
Type code
Subtype code
Object name

• Required authorization (1 = required)
Object control
Object management
Authorized pointer
Space authority
Retrieve
Insert
Delete
Update
Ownership
Reserved (binary 0)

The allowed type codes are as follows:

Hex 01 = Access group
Hex 02 = Program
Hex 04 = Context
Hex 08 = User profile
Hex OA = Queue
Hex OB = Data space
Hex OC = Data space index
Hex 00 = Cursor
Hex OE = Index
Hex 10 = Logical unit description
Hex 11 = Network description
Hex 12 = Controller description
Hex 19 = Space
Hex 1 A = Process control space

Char(32)
Char(1)
Char(1)
Char(30)

Char(2)
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bits 9-15

All other codes are reserved. If other codes are
specified, they cause a scalar value invalid exception
to be signaled.

Operand 3 identifies the context in which to locate the
object identified by operand 2. If operand 3 is null, then
the contexts identified in the process name resolution
list are searched in the order in which they appear in the
list. If operand 3 is not null, the system pointer
specified must address a context, and only this context
is used to locate the object. If the object is of a type
that can only be addressed through the machine
context, then only the machine context is searched, and
operand 3 and the process name resolution list are
ignored.

If the required authorization field in operand 2 is not set
(binary a's), the instruction resolves the operand 1
system pointer to the first object encountered with the
designated type code, subtype code, and object name
without regard to the authorization currently available to
the process. If one or more authorization (or ownership)
states are required (signified by binary 1's), the context
is searched until an object is encountered with the
designated type, subtype, name, and the user profiles
governing the instruction's execution that have all the
required authorization states.

Once addressability has been set in the pointer, operand
4 is used to determine which, if any, of the object
authority states is to be set into the pointer.

If operand 4 is null, the object authority states required
to locate the object are set in the pointer. This required
object authority is as specified in operand 2 or in the
initial value for operand 1 if operand 2 is null. If the
process does not currently have authorized pointer
authority for the object, no authority is stored in the
system pointer, and no exception is signaled.

If operands 2 and 4 are null and operand 1 is a resolved
system pointer, the authority states in the pointer are
not modified.

If operand 4 is not null, it specifies the object authority
states to be set in the resolved system pointer. The
format of operand 4 is as follows:

• Requested authorization
(1 = set authority)

Object control
Object management
Authorized pointer
Space authority
Retrieve
Insert
Delete
Update
Reserved (binary 0)

Char(2)

Bit a
Bit 1
Bit 2
Bit 2
Bit 4
Bit 5
Bit 6
Bit 7
Bits 8-15

The authority states set in the resolved system pointer
are based on the following:

• The authority already stored in the pointer can be
increased only when the process has authorized
pointer authority to the referenced object. If this
authority is not available and the pointer was resolved
by this instruction, the authority in the operand 1
system pointer is set to the not set state, and no
exception is signaled. If operand 2 is nUll, if operand
1 is a resolved system pointer containing authority,
and if authorized pointer authority is not available to
the process, additional authorities cannot be stored in
the pointer.

• If the process does not currently have all the
authority states requested in operand 4, only the
requested and available states are set in the pointer,
and no exception is signaled.

• The object authority currently available to the process
is cumulative based on the following:

Authority stored in a resolved system pointer. This
authority applies to this instruction when operand
2 is null and operand 1 is a resolved system
pointer with authority stored in it.
Public authority for the object.
Private authority specifically granted to the process
user profile or the most current adopted user
profile.
All object special authority available to the process
user profile or the most current adopted user
profile.

Pointer / Name Resolution Addressing Instructions 3-19

Authorization Required Exceptions

. Retrieve Operands
Contexts referenced for address resolution Exception 1 2 3 4 Other
(including operand 3)

06 Addressing

01 Space addressing violation X X X X

Lock Enforcennent 02 Boundary alignment X X X X
03 Range X X X X . Materialization 08 Argumentl Parameter

01 Parameter reference violation X X X X

Contexts referenced for address resolution OA Authorization

(including operand 3) 01 Unauthorized for operation X X
10 Damage Encountered

02 Machine context damage state X

Events 04 System object damage state X X X X X
44 Partial system object damage X X X X X

0002 Authorization 1A Lock State

0101 Object authorization violation 01 Invalid lock state X X
20 Machine Support

OOOC Machine resource 02 Machine check X

0201 Machine auxiliary storage threshold exceeded 03 Function check X
22 Object Access

0010 Process 01 Object not found X X X X

0701 Maximum processor time exceeded 02 Object destroyed X X X X

0801 Process storage limit exceeded 03 Object suspended X X X X
24 Pointer Specification

0016 Machine observation 01 Pointer does not exist X X X X

0101 Instruction reference 02 Pointer type invalid X X X X
04 Pointer not resolved X

0017 Damage set 2A Program Creation

0401 System object damage set 06 Invalid operand type X X X X

0801 Partial. system object damage set 07 Invalid operand attribute X X X X
08 Invalid operand value range X X X X
OA Invalid operand length X X
OC Invalid operand ODT reference X X X X

32 Scalar Specification

02 Scalar attributes invalid X X
03 Scalar value invalid X X

3-20

Chapter 4. Space Object Addressing Instructions

This chapter describes the instructions used for space
object addressing. These instructions are in alphabetic
order. For an alphabetic summary of all the instructions,
see Appendix 8. Instruction Summary

ADD SPACE POINTER (ADDSPP)

Op Code
(hex)

0083

Operand
1

Receiver
Pointer

Operand
2

Source
pointer

Operand 1: Space pointer.

Operand 2: Space pointer.

Operand 3: Binary scalar.

Operand
3

Increment

Description: This instruction adds a signed value to the
offset of a space pointer. The value of the binary scalar
represented by operand 3 is algebraically added to the
space address contained in the space pointer specified
by operand 2, and the result is stored in the space
pointer identified by operand 1. Operand 3 can have a
positive or negative value. The space object that the
pointer is addressing is not changed by the instruction.

Operand 2 must contain a space pointer when the
execution of the instruction is initiated; otherwise, an
invalid pointer type exception is signaled. When the
addressability in a space pointer is modified, the
instruction signals a space addressing exception only
when the space addres$ to be stored in the pointer has
a negative offset value or when the offset addresses
beyond the largest space allocatable in the object. This
maximum offset value is dependent on the size and
packaging of the object containing the space and is
independent of the actual size of the space allocated. If
the exception is signaled by this instruction for this
reason, the pointer is not modified by the instruction.
Attempts to use a pointer whose offset value lies
between the currently allocated extent of the space and
the maximum allocatable extent of the space cause the
space addressing exception to be signaled.

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 3 [4-6] Other

06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

08 Argument/ Parameter

01 Parameter reference violation X X X

10 Damage Encountered

04 System object damage state X X X X

44 Partial system object damage X X X X

1C Machine-Dependent Exception

03 Machine storage limit X
exceeded

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program Creation

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

OC Invalid operand ODT reference X X X

Space Object Addressing Instructions 4-1

COMPARE POINTER FOR SPACE ADDRESSABILITY
(CMPPSPADB or CMPPSPADI)

Op Code
(hex)

1CE6

18E6

Extender

Branch
options

Indicator
options

Operand
1

Compare
operand 1

Operand
2

Compare
operand 2

Operand 1: Space pointer or data pointer.

Operand
3 [4-6]

Branch
target

Indicator
target

Operand 2: Numeric variable scalar, character variable scalar,
numeric variable array, character variable array, space pointer,
or data pointer.

Operand 3 [4-6]:

• For Branch Form - Instruction number, relative instruction
number, branch point, or instruction pointer.

• For Indicator Form - Numeric variable scalar or character

variable scalar.

Extender: Branch or indicator options.

Either the branch option or the indicator option is
required by the instruction. The extender field is
required along with from one to four branch targets (for
branch option) or one to four indicator operands (for
indicator option). The branch or indicator operands are
required for operand 3 and optional for operands 4-6.
See Chapter 1. Introduction for the bit encoding of the
extender field and the allowed. syntax of the branch and
indicator operands.

Description: The space addressability contained in the
pointer specified by operand 1 is compared with the
space addressability defined by operand 2.

The value of the operand 1 pointer is compared based
on the following:

• If operand 2 is a scalar data object (element or array),
the space addressability of that data object is
compared with the space addressability contained in
the operand 1 pointer.

• If operand 2 is a pointer, it must be a space pointer
or data pointer, and the space addressability
contained in the pointer is compared with the space
addressability contained in the operand 1 pointer.

4-2

Based on the results of the comparison, the resulting
condition is used with the extender to transfer control
(branch form) or to assign a value to each of the
indicator operands (indicator form). If the operands are
not in the same space, the resultant condition is
unequal. If the operands are in the same space and the
offset into the space of operand 1 is larger or smaller
than the offset of operand 2, the resultant condition is
high or low, respectively. An equal condition occurs only
if the operands are in the same space at the same
offset. Therefore, the resultant conditions (high, low,
equal, and unequal) are mutually exclusive.
Consequently, if you specify that an action be taken
upon the nonexistence of· a condition, this results in the
action being taken upon the occurrence of any of the
other three possible conditions. For example, a branch
not high would result in the branch being taken on a
low, equal, or unequal condition.

Resultant Conditions: High, Low, Equal, Unequal

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions COMPARE SPACE ADDRESSABILITY
(CMPSPADB or CMPSPADI)

Operands
Exception 1 2 3 [4-6] Other

Op Code Operand Operand Operand

06 Addressing
(hex) Extender 1 2 3 [4-6]

01 Space addressing violation X X X 1CF2 Branch Compare Compare Branch
02 Boundary alignment X X options operand 1 operand 2 target
03 Range X X

04 External data object not found X X 18F2 Indicator Indicator

08 Argument/ Parameter options target

01 Parameter reference violation X X

10 Damage Encountered Operand 1: Numeric variable scalar, character variable scalar,

04 System object damage state X X X X numeric variable array, character variable array, pointer, or

44 Partial system object damage X X X X
pointer array.

1C Machine-Dependent Exception Operand 2: Numeric variable scalar, character variable scalar,
03 Machine storage limit X numeric variable array, character variable array, pointer, or

exceeded pointer array.

20 Machine Support

02 Machine check X Operand 3 [4-6]:

03 Function check X For Branch Form - Instruction number, relative instruction .
22 Object Access number, branch point, or instruction pointer.

01 Object not found X X X
02 Object destroyed X X X . For Indicator Form - Numeric variable scalar or character

03 Object suspended X X X variable scalar.

24 Pointer Specification

01 Pointer does not exist X X X
02 Pointer type invalid X X X Extender: Branch or indicator options.

2A Program Creation

05 Invalid op code extender field X Either the branch option or the indicator option is

06 Invalid operand type X X X required by the instruction. The extender field is

07 Invalid operand attribute X X X requif'ed along with from one to four branch targets (for

08 Invalid operand value range X X X branch option) or one to four indicator operands (for

09 Invalid branch target operand X indicator option). The branch or indicator operands are

OC Invalid operand ODT reference X X X X required for operand 3 and optional for operands 4-6.
See Chapter 1. Introduction for the bit encoding of the

extender field and the allowed syntax of the branch and

indicator operands.

Space Object Addressing Instructions 4-3

Description: The space addressability of the object
specified by operand 1 is compared with the space
addressability of the object specified by operand 2.
Based on the results of the comparison~ the resulting
condition is used with the extender to transfer control
(branch form) or to assign a value to each of the
indicator operands (indicator form). If the operands are
not in the same space, the resultant condition is
unequal. If the operands are in the same space and the
offset of operand 1 is larger or smaller than the offset
of operand 2, the resultant condition is high or low,
respectively. Equal occurs only if the operands are in
the same space at the same offset. Therefore, the
resultant conditions (high, low, equal, and unequal) are
mutually exclusive. Consequently, if you specify that an
action be taken upon the nonexistence of a condition,
this results in the action being taken upon the
occurrence of any of the other three possible conditions.
For example, a branch not high would result in the
branch being taken on a low, equal, or unequal
condition.

Resultant Conditions: High, Low, Equal, Unequal

Events

OOOCMachine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 3 [4-8] Other

06 Addressing

01 Space addressing violation X X X
02 Boundary alignment X X X

03 Range X X X
08 Argument/ Parameter

01 Parameter reference violation X X X

10 Damage Encountered

04 System object damage state X X X X

44 Partial system object damage X X X X
1C Machine-Dependent Exception

03 Machine storage limit X
exceeded

20 Machine Support

02 X
M

03 Function check X

22 Object Access

01 Object not found X X X

02 Object destroyed X X X
03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

2A Program Creation

05 Invalid op code extender field X

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X
09 Invalid branch target operand X

OC Invalid operand ODT reference X X X X

SET DATA POINTER (SETDP)

Op Code Operand
(hex) 1

0096 Receiver

Operand 1: Data pointer.

Operand
2

Source

Operand 2: Numeric variable scalar, character variable scalar,

numeric variable array, or character variable array.

Description: A data pointer is created and returned in
the storage area specified by operand 1 and has the
attributes and space addressability of the object
specified by operand 2. Addressability is set to the
low-order (leftmost) byte of the object specified by
operand 2. The attributes given to the data pointer
include scalar type and' scalar length. If operand 2 is a
substring compound operand, the length attribute is set
equal to the length of the substring. If operand 2 is a
subscript compound operand, the attributes and
addressability of the single array element specified are
assigned to the data pointer. If operand 2 is an array,
the attributes and addressability of the first element of
the array are assigned to the data pointer. A data
pointer can only be set to describe an element of a data
array, not a data array in its entirety.

When the addressability in the data pointer is modified,
the instruction signals the space addressing exception
when one of the following conditions occurs:

• When the space address to be stored in the pointer
would have a negative offset value.

• When the offset would address an area beyond the
largest space allocatable in the object. This maximum
offset value is dependent on the size and packaging
of the object containing the space and is independent
of the actual size of the space allocated.

If the exception is signaled by this instruction for one of
these reasons, the pointer is not modified by the
instruction.

Attempts to use a pointer whose offset value lies
between the currently allocated extent of the space and
the maximum allocatable extent cause the space
addressing exception to be signaled.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing

01 Space addressing violation
02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found
02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist
02 Pointer type invalid

2A Program Creation

06 Invalid operand type

08 Invalid operand value range
OC Invalid operand ODT reference

Operands
1 2

X X

X X

X X

X X

X X

X X

X
X X

X X

X X

X X

X X
X

X X

Other

X

X

X

X

X

Space Object Addressing Instructions 4-5

SET DATA POINTER ADDRESSABILITY
(SETDPADR)

Op Code
(hex)

0046

Operand
1

Receiver

Operand 1: Data pointer.

Operand
2

Source

Operand 2: Numeric variable scalar, character variable scalar,

numeric variable array, or character variable array.

Description: The space addressability of the object
specified for operand 2 is assigned to the data pointer
specified by operand 1. If operand 1 contains a resolved
data pointer at the initiation of the instruction's
execution, the data pointer's scalar attribute component
is not changed by the instruction. If operand 1 contains
an initialized but unresolved data pointer at the initiation
of the instruction's execution, the data pointer is
resolved in order to establish the scalar attribute
component of the pointer. If operand 1 contains other
than a resolved data pointer at the initiation of the
instruction's execution, the instruction creates and
returns a data pointer in operand 1 with the
addressability of the object specified for operand 2, and
the instruction establishes the attributes as a
character(1) scalar.

When the addressability is set into a data pointer, the
space addressing exception is signaled by the instruction
only when the space address to be stored in the pointer
has a negative offset value or if the offset addresses
beyond the largest space allocatable in the object. This
maximum offset value is dependent on the size and
packaging of the object containing the space and is
independent of the actual size of the space allocated. If
the exception is signaled for this reason, the pointer is
not modified by the instruction. Attempts to use a
pointer whose offset value lies between the currently
allocated extent of the space and the maximum
allocatable extent of the space cause the space
addressing exception to be signaled.

4-6

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process control limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

04 External data object not found

08 Argument/Parameter

01 Parameter reference violation

10 Damage Encountered

'\ 04 System object damage state

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

08 Invalid operand value range

OC Invalid operand ODT reference

Operands
1 2

X X

X X

X X

X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

Other

X

X

X

X

X

SET DATA POINTER ATTRIBUTES (SETDPAT)

Op Code
(hex)

Operand
1

004A Receiver

Operand 1: Data pointer.

Operand
2

Attributes

Operand 2: Character(7) scalar (fixed-length).

Description: The value of the character scalar specified
by operand 2 is interpreted as an encoded
representation of an attribute set that is assigned to the
attribute portion of the data pointer specified by operand
1. The addressability portion of the data pointer is not
modified. If operand 1 contains an initialized but
unresolved data pointer at the initiation of the
instruction's execution, the data pointer is resolved in
order to establish the addressability in the pointer. The
attributes specified by the instruction are then assigned
to the data pointer. If operand 1 does not contain a
data pointer at the initiation of the instruction's
execution, an exception is signaled.

The format of the attribute set is as follows:

• Data pointer attributes
Scalar type
Hex 00 = Binary
Hex 02 = Zoned decimal
Hex 03 = Packed decimal
Hex 04 = Character

Char(7)
Char(1)

Scalar length Bin(2)
If binary or character:

Length (only 2 or 4 for binary)
If zoned decimal or packed
decimal:

Fractional digits (F) Bits 0-7
Total digits (T) Bits 8-15
(where 1 ~ T ~ 31, 0 ~ F ~ T)

If character:
Length (L, where 1 ~ L ~ 32767)

Reserved (binary 0) Bin(4)

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing
01 Space addressing violation
02 Boundary alignment
03 Range
04 External data object not found

08 Argument/ Parameter
01 Parameter reference violation

10 Damage Encountered
04 System object damage state
44 Partial system object damage

1C Machine-Dependent Exception
03 Machine storage limit exceeded

20 Machine Support
02 Machine check
03 Function check

22 Object Access
01 Object not found
02 Object destroyed
03 Object suspended

24 Pointer Specification
01 Pointer does not exist
02 Pointer type invalid

2A Program Creation
06 Invalid operand type
07 Invalid operand attribute
08 Invalid operand value range
OA Invalid operand length
OC Invalid operand ODT reference

32 Scalar Specification
02 Scalar attributes invalid
03 Scalar value invalid

Operands
1 2

X X
X X
X X
X

X X

X X
X X

X X
X X
X X

X X
X X

X X
X X
X X

X
X X

X
X

Other

X
X

X

X
X

Space Object Addressing Instructions 4-7

SET SPACE POINTER (SETSPP)

Op Code
(hex)

Operand
1

Operand
2

0082 Receiver Source

Operand 1: Space pointer.

Operand 2: Numeric variable scalar, character variable scalar,
numeric variable array, character variable array, pointer, pOinter

array.

Description: A space pointer is returned in operand 1
and is set to address the lowest order (leftmost) byte of

the byte string identified by operand 2.

When the addressability is set in a space pointer, the

instruction signals the space addressing exception when

the offset addresses beyond the largest space

allocatable in the object or when the space address to

be stored in the pointer has a non positive offset value.

This offset value is dependent on the size and

packaging of the object containing the space and is
independent of the actual size of the space allocated. If

the exception is signaled for this reason, the pointer is

not modified by the instruction. Attempts to use a

pointer whose offset value lies between the currently
allocated extent of the space and the maximum

allocatable extent of the space cause the space

addressing exception to be signaled.

Events

oooe Machine resource

0201 Machine auxiliary storage threshold exceeded

0010 Process

0701 Maximum processor time exceeded

0801 Process storage limit exceeded

0016 Machine observation

0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set

4-8

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Space addressing violation X X

02 Boundary alignment X X

03 Range X X

08 Argument/ Parameter

01 Parameter reference violation X X

10 Damage Encountered

04 System object damage state X X X

44 Partial system object damage X X X

1C Machine- Dependent Exception

03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access
01 Object not found X

02 Object destroyed X X

03 Object suspended X X

24 Pointer Specification
01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program Creation
06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X X

OC Invalid operand ODT reference X X

32 Scalar Specification

01 Scalar type invalid X X

SET SPACE POINTER WITH DISPLACEMENT
(SETSPPD)

Op Code
(hex)

0093

Operand
1

Receiver

Operand
2

Source

Operand 1: Space pointer.

Operand
3

Displacement

Operand 2: Numeric variable scalar, character variable scalar,
numeric variable array, character variable array, pointer, or
pointer array.

Operand 3: Binary scalar.

Description: A space pointer is returned in operand 1
and is set to the space addressability of the lowest
(leftmost) byte of the object specified for operand 2 as
modified algebraically by an integer displacement
specified by operand 3. Operand 3 can have a positive
or negative value.

When the addressability is set in a space pointer, the
instruction signals the space addressing exception when
the space address to be stored in the pointer has a
negative offset value or when the offset addresses
beyond the largest space allocatable in the object. This
maximum offset value is dependent on the size and
packaging of the object containing the space and is
independent of the actual size of the space allocated. If
the exception is signaled for this reason, the pointer is
not modified by the instruction. Attempts to use a
pointer whose offset value lies between the currently
allocated extent of the space and the maximum
allocatable extent of the space cause the space
addressing exception to be signaled.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 3 Other

06 Addressing

01 Space addressing violation X X X
02 Boundary alignment X X X
03 Range X X X

08 Argument/ Parameter

01 Parameter reference violation X X X
10 Damage Encountered

04 System object damage state X X X X
44 Partial system object damage X X X X

1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X
02 Pointer type invalid X X X

2A Program Creation

06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X
OC Invalid operand ODT reference X X X

Space Object Addressing Instructions 4-9

SET SPACE POINTER FROM POINTER (SETSPPFP)

Op Code Operand Operand
(hex) 1 2

0022 Receiver Source pointer

Operand 1: Space pointer.

Operand 2: Data pointer, system pointer, or space pointer.

Description: A space pointer is returned in operand 1
with the addressability to a space object from the
pointer specified by operand 2.

The meaning of the pointers allowed for operand 2 is as
follows:

Pointer

Data pointer,or
space pointer

System pointer

Meaning

The space pointer returned
in operand 1 is set to address
the leftmost byte of the byte string
addressed by the source pointer for
operand 2.

The space pointer returned in
operand 1 is set to address the first
byte of the space contained in the
system object addressed by the
system pointer for operand 2. The
space object addressed is either the
created system space or an
associated space for the system
object addressed by the system
pointer. If the operand 2 system
pointer addresses a system object
with no associated space, the invalid
space reference exception is
signaled.

Authorization Required

• Space authority
- Operand 2 (if a system pointer)

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

Events

()(x)2 Authorization
0101 Object authorization violation

()(X)C Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions SET SPACE POINTER OFFSET (SETSPPO)

Operands Op Code Operand Operand
Exception 1 2 Other (hex) 1 2

06 Addressing 0092 Receiver Source
01 Space addressing violation X X

02 Boundary alignment X X Operand 1: Space pointer.
03 Range X X
04 External data object not found X Operand 2: Binary scalar.

05 Invalid space reference X

08 Argument/ Parameter
01 Parameter reference violation X Description: The value of the binary scalar specified by

OA Authorization operand 2 is assigned to the offset portion of the space

01 Unauthorized for operation X pointer identified by operand 1. The space pointer

10 Damage Encountered continues to address the same space object.

04 System object damage state X X X
44 Partial system object damage X X X Operand 1 must contain a space pointer at the initiation

1A Lock State of the instruction's execution; otherwise, an· invalid

01 Invalid lock state X pointer type exception is signaled.

1C Machine-Dependent Exception
03 Machine storage limit exceeded X When the addressability in the space pointer is

20 Machine Support modified, the instruction signals a space addressing

02 Machine check X exception when one of the following conditions occurs:

03 Function check X
22 Object Access . When the space address to be stored in the pointer

01 Object not found X X has a negative offset value.

02 Object destroyed X X
03 Object suspended X X . When the offset addresses beyond the largest space

24 Pointer Specification allocatable in the object. This maximum offset value

01 Pointer does not exist X X is dependent on the size and packaging of the object

02 Pointer type invalid X X containing the space and is independent of the actual

03 Pointer addressing invalid object ,X size of the space allocated.

2A Program Creation

06 Invalid operand type X X If the exception is signaled by this instruction for this

07 Invalid operand attribute X X reason, the pointer is not modified by the instruction.

08 Invalid operand value range X X
OC Invalid operand ODT reference X X Attempts to use a pointer whose offset value lies

between the currently allocated extent of the space and

the maximum allocatable extent cause the space
addressing exception to be signaled.

Space Object Addressing Instructions 4-11

SET SYSTEM POINTER FROM POINTER (SETSPFP)

Op Code Operand Operand
(hex) 1 2

0032 Receiver Source pointer

Operand 1: System pOinter.

Operand 2: System pointer, space pointer, data pointer, or

instruction pointer.

Description: This instruction returns a system pointer to
the system object address by the supplied pointer.

If operand 2 is a system pointer, then a system pointer
addressing the same object is returned in operand 1
containing the same authority as the input pointer.

If operand 2 is a space pointer or a data pointer, then a
system pointer addressing the system object that
contains the associated space. addressed by operand 2
is returned in operand 1.

If operand 2 is an instruction pointer, then a system
pointer addressing the program system object that
contains the instruction addressed by operand 2 is
returned in operand 1.

If operand 2 is an unresolved system pointer or data
pointer, the pointer is resolved first.

4-12

Authorization Required

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialization
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0801 Partial system object damage set

Exceptions Events

Operands oooe Machine resource

Exception 1 2 Other 0201 Machine auxiliary storage threshold exceeded

06 Addressing 0010 Process
01 Space addressing violation X X 0701 Maximum processor time exceeded
02 Boundary alignment X X 0801 Process storage limit exceeded
03 Range X X

04 External data object not found X X 0016 Machine observation
08 Argument/ Parameter 0101 Instruction reference

01 Parameter reference violation X

OA Authorization 0017 Damage set
01 Unauthorized for operation X 0401 System object damage set

10 Damage Encountered 0801 Partial system object damage set
02 Machine context damage X

04 System object damage state X X X

44 Partial system object damage X X X Exceptions
1A Lock state

01 Invalid lock state X Operands
1C Machine-Dependent Exception Exception 1 2 Other

03 Machine storage limit exceeded X

20 Machine Support 06 Addressing

02 Machine check X 01 Space addressing violation X X

03 Function check X 02 Boundary alignment X X

22 Object Access 03 Range X X

01 Object not found X 08 Argument/ Parameter

02 Object destroyed X X 01 Parameter reference violation X X

03 Object suspended X X 10 Damage Encountered

24 Pointer Specification 04 System object damage state X X X

01 Pointer does not exist X X 44 Partial system object damage X X X

02 Pointer type invalid X X 1C Machine- Dependent Exception

2A Program Creation 03 Machine storage limit exceeded X

06 Invalid operand type X X 20 Machine Support

07 Invalid operand attribute X X 02 Machine check X

08 Invalid operand value range X X 03 Function check X

OC Invalid operand ODT reference X X 22 Object Access

32 Scalar Specification 01 Object not found X X

01 Scalar type invalid X X 02 Object destroyed X X

03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program Creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OC Invalid operand ODT reference X X

Space Object Addressing Instructions 4-13

STORE SPACE POINTER OFFSET (STSPPO)

Op Code
(hex)

Operand
1

Operand
2

00A2 Receiver Source

Operand 1: Binary variable scalar.

Operand 2: Space pointer.

Description: The offset value of the space pointer
referenced by operand 2 is stored in the binary variable
scalar defined by operand 1.

If operand 2 does not contain a space pointer at the
initiation of the instruction's execution, an invalid pointer
type exception is signaled. If the offset value is greater
than 32 767 and operand 1 is a binary(2) scalar, a size
exception is signaled.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

4-14

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

OC Computations

OA Size

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OC Invalid operand ODT reference

Operands
1 2 Other

X X
X X
X X

X X

X

X X X
X X X

X

X
X

X X
X X
X X

X X
X X

X X
X

X X
X X

SUBTRACT SPACE POINTER OFFSET (SUBSPP)

Op Code
(hex)

0087

Operand
1

Receiver
pointer

Operand
2

Source
pointer

Operand 1: Space pointer.

Operand 2: Space pointer.

Operand 3: Binary scalar.

Operand
3

Decrement

Description: The value of the binary scalar specified by
operand 3 is algebraically subtracted from the space
address contained in the space pointer specified by
operand 2; the result is stored in the space pointer
identified by operand 1. Operand 3 can have a positive
or negative value. The space object that the pointer is
addressing is not changed by the instruction. If operand
2 does not contain a space pointer at the initiation of
the instruction's execution, an invalid pointer type
exception is signaled.

When the addressability in the space pointer is
modified, the instruction signals a space addressing
exception when one of the following conditions occurs:

• When the space address to be stored in the pointer
has a negative offset value.

• When the offset addresses beyond the largest space
allocatable in the object. This maximum offset value
is dependent on the size and packaging of the object
containing the space and is independent of the actual
size of the space allocated.

If the exception is signaled by this instruction for this
reason, the pointer is not modified by the instruction.

Attempts to use a pointer whose offset value lies
between the currently allocated extent of the space and
the maximum allocatable extent cause the space
addressing exception to be signaled.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OC Invalid operand ODT reference

32 Scalar Specification

01 Scalar type invalid

03 Scalar value invalid

Operands
1 2 3

X X X
X X X
X X X

X X X

X X X
X X X

X X X
X X X
X X X

X X X
X X X

X X X
X X
X X X
X X X

X X X
X X

Other

X
X

X

X
X

Space Object Addressing Instructions 4-15

4-16

This chapter describes the instructions used for space
management. These instructions are in alphabetic order.
For an alphabetic summary of all the instructions, see
Appendix 8. Instruction Summary.

CREATE SPACE (CRTS)

Op Code Operand Operand
(hex) 1 2

0072 Pointer for Space
space creation
address- template
ability

Operand 1: System pointer.

Operand 2: Space pointer.

Description: A space object is created with the
attributes that are specified in the space creation
template specified by operand 2, and addressability to
the created space is placed in a system pointer that is
returned in the addressing object specified by
operand 1.

Space objects, unlike other types of system objects, are
used to contain a space and serve no other purposes.

Chapter 5. Space Management Instructions

The template identified by operand 2 must be 16-byte
aligned in the space. The following is the format of the
space creation template:

• Template size specification
Size of template
Number of bytes available for
materialization

• Object identification
Object type
Object subtype
Object name

• Object creation options
Existence attribute
o = Temporary
1 = Reserved
Space attribute
o = Fixed-length
1 = Variable-length
Initial context
o Addressability is not

inserted into context
Addressability is
inserted into context

Access group
o Do not create as member

of access group
Create as member of
access group

Reserved (binary 0)

• Reserved (binary 0)

• Size of space

• Initial value of space

Char(8)*
Bin(4)*
Bin(4)*

Char(32)
Char(1)*
Char(1)
Char(30)

Char(4)
Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-31

Char(4)

Bin(4)

Chad1)

Space Management Instructions 5-1

• Performance class Char(4)
Space Alignment Bit 0
o = The space associated with

the object is allocated to
allow proper alignment of
pointers at 16-byte align-
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space
as well as to allow proper
alignment of input/output
buffers at 512-byte
alignments within the space.

Reserved (binary 0) Bits 1-4
Main storage pool selection Bit 5
o Process default main storage

pool is used for object.
Machine default main storage
pool is used for object.

Transient storage pool selection Bit 6
o = Default main storage pool

(process default or machine
default as specified for main
storage pool selection) is used
for object.

1 = Transient storage pool is used
for object.

Block transfer on implicit Bit 7
access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

Unit number
Reserved (binary 0)

Bits 8-15
Bits 16-31

• Reserved (binary 0) Char(7)

• Context

• Access group

5-2

System
pointer

System
pointer

Note: The instruction ignores the values associated with
template entries annotated with an asterisk (*).

If the created object is permanent, it is owned by the
user profile governing process execution. The owning
user profile is implicitly assigned all private authority
states for the object. The storage occupied by the
created object is charged to this owning user profile. If
the created object is temporary, there is no owning user
profile, and all authority states are assigned as public.
Storage occupied by the created context is charged to
the creating process.

The object identification specifies the symbolic name
that identifes the space within the machine. A type
code of hex 19 is implicitly supplied by the machine.
The object identification is used to identify the object on
materialize instructions as well as to locate the object in
a context that addresses the object.

The existence attributes specify whether the space is to
be created as temporary or permanent. A temporary
space, if not explicitly destroyed by the user, is implicitly
destroyed by the machine when machine processing is
terminated. A permanent space exists in the machine
until it is explicitly destroyed by the user.

The space may have a fixed size or a variable size. The
initial allocation is as specifed in the size of space entry.
The machine allocates a space of at least the size
specified. The actual size allocated depends on an
algorithm defined by a specific implementation. A fixed
size space of zero length causes no space to be
allocated.

Each byte of the space is initialized to a value specified
by the initial value of space entry. When the space is
extended in size, this byte value is also used to initialize
the new allocation. If no space is allocated, this value is
ignored.

If the initial context creation attribute entry indicates that
addressability is to be inserted into a context, the
context entry must contain a system pointer that
identifies a context where addressability to the newly
created space is to be placed. If addressability is not to
be inserted into a context, the context entry is ignored.

If the access group creation attributes. entry indicates
that the space is to be created in an access group, the
access group entry must be a system pointer that
identifies the access group in which the space is to be
created. Since access groups may ,be created only as
temporary objects, the existence attribute entry must be
temporary (bit 0 equals 1) when the access group object
is created. If the space is not to be created into an
access group, the access group entry is ignored.

The performance class parameter provides information
allowing the machine to more effectively manage the
space object considering the overall performance
objectives of operations involving the space. The unit
number field indicates the auxiliary storage unit on
which the space should be located, if possible.

Authorization Required

• Insert
User profile of creating process

- Context identified in operand 2

• Retrieve
- Context referenced for address resolution

• Object Control
- Operand 1 if being replaced

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

• Modify
Context identified in operand 2
User profile of creating process
Access group identified in operand 2

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Space Management Instructions 5-3

Exceptions DESTROY SPAC~ (DESS)

Operands Op Code Operand 1
Exception 1 2 Other (hex)

02 Access Group 0025 Space to be destroyed

02 Object exceeds available space X
.06 Addressing Operand 1: System pointer.

01 Space addressing violation X X
02 Boundary alignment X X
03 Range X X Description: The designated space is destroyed, and

08 Argument/ Parameter addressability to the space is deleted from a context if it
01 Parameter reference violation X X is currently addressing the object. The pointer identified

OA Authorization by operand 1 is not modified by the instruction, and a
01 Unauthorized for operation X

subsequent reference to the pointer causes an object
OE Context Operation

01 Duplicate object identification X destroyed exception.

10 Damage Encountered
04 System object damage state X X X
44 Partial system object damage X X X Authorization Required

1A Lock State
01 Invalid lock state X · Retrieve

1C Machine-Dependent Exception - Contexts referenced for address resolution
03 Machine storage limit exceeded X
04 Object storage limit exceeded X · Object control

20 Machine Support - Operand 1
02 Machine check X
03 Function check X

22 Object Access
Lock Enforcennent 01 Object not found X X

02 Object destroyed X X
03 Object suspended X X · Modify

24 Pointer Specification User. profile owning object
01 Pointer does not exist X X Context addressing object
02 Pointer type invalid X X Access group containing object
03 Pointer addressing invalid object X

2A Program Creation · Object Control
06 Invalid operand type X X Operand 1 -
07 Invalid operand attribute X
08 Invalid operand value range X
OC Invalid operand ODT reference X X

2E Resource Control Limit
01 User profile storage limit X

exceeded
38 Template Specification

01 Template value invalid X

5-4

Events

0002 Authorization
0101 Object authorization violation

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument / Parameter

01 Parameter reference violation

OA Authorization

01 Unauthorized for operation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1A Lock State

01 Invalid lock state

lC Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OC Invalid operand ODT reference

Operand
1

X
X
X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

Other

X
X

X

X

X

MATERIALIZE SPACE ATTRIBUTES (MATS)

Op Code
(hex)

0036

Operand
1

Receiver

Operand
2

Space object

Operand 1: Space pointer.

Operand 2: System pointer.

Description: The current attributes of the space object
specified by operand 2 are materialized into the receiver
specified by operand 1.

The first 4 bytes that are materialized identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes a materialization length exception.

The second 4 bytes that are materialized identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes· as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception described previously)
are signaled in the event that the receiver contains
insufficient area for the materialization.

Space Management Instructions 5-5

The template identified by operand 1 must be 16-byte
aligned in the space. The format of the materialization is
as follows:

• Materialization size specification
Number of bytes provided for
materialization
Number of bytes available for
materialization (always 96 for
this instruction)

• Object identification
Object type
Object subtype
Object name

Object creation options
Existence attributes
o = Temporary
1 = Permanent

Char(8)
Bin(4)

Bin(4)

Char(32)
Char(1)
Char(1)
Char(30)

Char(4)
Bit 0

Space attribute Bit 1
o = Fixed-length
1 = Variable-length
Context Bit 2
o = Addressability not in context
1 = Addressability in context
Access group Bit 3
o = Not member of access group
1 = Member of access group
Reserved (binary 0) Bits 4-31

• Reserved (binary 0) Char(4)

• Size of space Bin(4)

• Initial value of space Char(1)

5-6

• Performance class
Space Alignment
o = The space associated with

the object is allocated to
allow proper alignment of
pointers at 16-byte align-
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space
as well as to allow proper
alignment of input/output
buffers at 51 2 - byte
alignments within the space.

Char(4)
Bit 0

Reserved (binary 0) Bits 1-4
Main storage pool selection Bit 5
o Process default main storage

pool is used for object.
Machine default main storage
pool is used for object.

Transient storage pool selection Bit 6
o = Default main storage pool

(process default or machine
default as specified for main
storage pool selection) is used
for object.

1 = Transient storage pool is used
for object.

Block transfer on implicit Bit 7
access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

Unit number
Reserved (binary 0)

• Reserved (binary 0)

• Context

• Access group

Bits 8-15
Bits 16-31

Char(7)

System
pointer

System
pointer

Authorization Required Exceptions

· Operational or space authority Operands
- Operand 2 Exception 1 2 Other

· Retrieve 06 Addressing

- Contexts referenced for address resolution 01 Space addressing violation X X
02 Boundary alignment X X
03 Range X X

Lock Enforcennent 08 Argument/ Parameter

01 Parameter reference violation X X

• Materialize OA Authorization

Operand 2 01 Unauthorized for operation X

- Contexts referenced for address resolution 10 Damage Encountered

04 System object damage state X X X
. 44 Partial system object damage X X X

Events 1A Lock State

01 Invalid lock state X

0002 Authorization 1C Machine-Dependent Exception

0101 Object authorization violation 03 Machine storage limit exceeded X
20 Machine Support

OOOC Machine resource 02 Machine check X

0201 Machine auxiliary storage threshold exceeded 03 Function check X
22 Object Access

0010 Process 01 Object not found X X

0701 Maximum processor time exceeded 02 Object destroyed X X

0801 Process storage limit exceeded 03 Object suspended X X
24 Pointer Specification

0016 Machine observation 01 Pointer does not exist X X

0101 Instruction reference 02 Pointer type invalid X X
03 Pointer addressing invalid object X

0017 Damage set 2A Program Creation

0401 System object damage set 06 Invalid operand type X X

0801 Partial system object damage set 07 Invalid operand attribute X X
08 Invalid operand value range X X
OA Invalid operand length X
OC Invalid operand ODT reference X X

38 Template SpeCification

03 Materialization length exception X

Space Management Instructions 5-7

MODIFY SPACE ATTRIBUTES (MODS)

Op Code Operand
(hex) 1

0062 System
object

Operand
2

Space modification
template

Operand 1: System pointer.

Operand 2: Binary scalar.

Description: The space associated with the system
object identified by operand 1 is set to equal the size
specified by operand 2. Operand 1 may address any
system object that has an associated space with the
variable-length attribute.

Operand 2 is a binary value that specifies the total
number of bytes that are to be addressable within the
space. The extension and truncation of a space is done
in multiples of 512 bytes. The size of a space is equal
to the current size of the space plus or minus the
number of 512-byte blocks necessary to retain a space
of at least the requested size.

If the space associated with the object referenced by
operand 1 has a fixed size, or if the value of operand 2
is negative, or if the value indicates a size larger than
the largest space that can be associated with the object,
the space extension/truncation exception is signaled.

5-8

Authorization Required

• Object management
- Operand 1

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

• Object control
- Operand 1

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 Other

06 Addressing
01 Space addressing violation X X
02 Boundary alignment X X
03 Range X X

08 Argument/ Parameter
01 Parameter reference violation X X

OA Authorization
01 Unauthorized for operation X

10 Damage Encountered
04 System object damage state X X X
44 Partial system object damage X X X

1A Lock State
01 Invalid lock state X

1C Machine-Dependent Exception
03 Machine storage limit exceeded X

20 Machine Support
02 Machine check X
03 Function check X

22 Object Access
01 Object not found X X
02 Object destroyed X X
03 Object suspended X X

24 Pointer Specification
01 Pointer does not exist X X
02 Pointer type invalid X X
03 Pointer addressing invalid object X

2A Program Creation
06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X
OA Invalid operand length X
OC Invalid operand ODT reference X X

2E Resource Control Limit
01 User profile storage limit X

exceeded
36 Space Management

01 Space extension/truncation X X

Space Management Instructions 5-9

5-10

This chapter describes the instructions used for indexes.
These instructions are in alphabetic order. For an
alphabetic summary of all the instructions, see.
Appendix B. Instruction Summary.

CREATE INDEPENDENT INDEX (CRTINX)

Op Code Operand Operand
(hex) 1 2

0446 Index Index description
template

Operand 1: System pointer.

Operand 2: Space pointer.

Description: This instruction creates an independent
index based on the index template specified by operand
2 and returns addressability to the index in a system
pointer stored in the addressing object specified by
operand 1. The maximum length allowed for the
independent index entry is 120 bytes.

The format of the index description template described
by operand 2 is as follows (must be aligned on a
16-byte multiple):

• Template size specification
Number of bytes provided
Number of bytes available for
materialization

• Object identification
Object type
Object subtype
Object name

Char(8)
Bin(4)*
Bin(4)*

Char(32)
Char(1)*
Char(1)
Char(30)

Chapter 6. Independent Index Instructions

• Object creation options
- Existence attributes

o = Temporary
1 = Permanent
Space attribute
o = Fixed-length
1 = Variable-length

Char(4)
Bit 0

Bit 1

Initial context Bit 2
o Do not insert addressability

in context
Insert addressability in context

Access group Bit 3
o Do not create as member

of access group
1 Create as member

of access group
Reserved (binary 0)

• Reserved (binary 0)

• Size of space

• Initial value of space

Bits 4-31

Char(4)

Bin(4)

Char(1)

Independent Index Instructions 6-1

• Performance class
Space alignment

Char(4)

o = The space associated with
the object is allocated to
allow proper alignment of
pOinters at 16-byte align
ments within the space. If
no space is specified for
the object, 0 must be
specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
we" as to allow proper
alignment of input/output
buffers at 512-byte align
ments within the the space.

Reserved (binary 0)

Bit 0

Bits 1-4
Main storage pool selection Bit 5
o Process default main storage

pool is used for object.
Machine default main storage
pool is used for object.

Reserved (binary 0) Bit 6
Block transfer on implicit Bit 7
access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage- transfer size. This
value is 8 storage units.

Reserved (binary 0) Bits 8-31

• Reserved (binary 0) Char(7)

• Context System
pointer

• Access group System
pointer

6-2

• Index attributes
Entry length attribute
o = Fixed-length entries
1 = Variable-length entries
Immediate update
o = No immediate update
1 = Immediate update
Key insertion
o = No insertion by key
1 = I nsertion by key
Entry format
o = Scalar data only
1 = Both pointers and scalar data

Char(1)
Bit 0

Bit 1

Bit 2

Bit 3

Optimized processing mode Bit 4
o Optimize for random references
1 = Optimize for sequential

references
Reserved (binary 0)

• Argument length

• Key length

Bits 5-7

Bin(2)

Bin(2)

This instruction ignores the values associated with the
entries annotated with an asterisk (*).

The template identified by operand 2 must be 16-byte
aligned.

If the created object is permanent, it is owned by the
user profile governing process execution. The owning
user profile is implicitly assigned a" private authority
states for the object. The storage occupied by the
created .object is charged to this owning user profile. If
the created object is temporary, there is no owning user
profile, and a" authority states are assigned as public.
Storage occupied by the created context is charged to
the creating process.

The object identification specifies the symbolic name
that identifies the space within the machine. A type
code of hex OE is implicitly supplied by the machine.
The object identification is used to identify the object on
materialize instructions as well as to locate the object in
a context that addresses the object.

The existence attribute specifies that the index is to be
created as a temporary object. A temporary index, if
not explicitly destroyed by the user, is implicitly
destroyed by the machine when machine processing is
terminated.

A space may be associated with the created object. The
space may be fixed or variable in size. The initial
allocation is as specified in the size of space entry. The
machine allocates a space of at least the size specified.
The actual size allocated is dependent on an algorithm
defined by a specific implementation. Each byte of the
space is initialized to a value specified by the initial
value of space entry. When the space is extended in
size, this byte value is also used to initialize the new
allocation. If no space is allocated, this value is ignored.

If the initial context creation attribute entry indicates that
addressability is to be placed in a context, the context
entry must be a system pointer that identifies a context
where addressability to the newly created object is to be
placed. If the initial context indicates that addressability
is not to be placed in a context, the context entry is
ignored.

If the access group creation attribute entry indicates that
the object is to be created in an access group, the
access group entry must be a system pointer that
identifies an access group in which the object is to be
created. The existence attribute of the object must be
identical to the existence attribute of the access group.
If the object is not to be created in the access group,
the access group entry is ignored.

The performance class parameter provides information
allowing the machine to more effectively manage the
object considering the overall performance objectives of
operations involving the index.

If the entry length attribute field specifies fixed-length
(bit 0 = 0), the entry length of every index entry is
established at creation by the value in the argument
length field of the index description template. If the
length attribute field specifies variable-length, then
entries will be variable-length (the length of each entry
is supplied when the entry is inserted), and the
argument length value is ignored.

If the immediate update field specifies that an
immediate update should occur (bit 1 = 1), then every
update to the index will be written to auxiliary storage
after every insert or remove operation.

If the key insertion field specifies insertion by key (bit 2
= 1), then the key length field must be specified. This
allows the specification of a portion of the argument
(the key), which may be manipulated in either of the
following ways in the Insert Index Entry instruction:

• The insert will not take place if the key portion of the
argument is already in the index.

• The insert will cause the non key portion of the
argument to be replaced if the key is already in the
index.

The entry format field designates the index entries as
containing both pointers and scalar data or only scalar
data. The both pointers and scalar data entry can be
used only for indexes with fixed-length entries. If the
index is created to contain both pointers and data
(bit 3 = 1), then:

• Entries to be inserted must be 16-byte aligned.

• Each entry retrieved by the Find Independent Index
Entry instruction or the Remove Independent Index
Entry is 16-byte aligned.

• Pointers are allowed in both the key and non key
portions of an index entry.

• Pointers need not be at the same location in every
index entry.

• Pointers inserted into the index remain unchanged.
No resolution is performed before insertion.

If the index is created to contain only scalar data, then:

• Entries to be inserted need not be aligned.

• Entries returned by the Find Independent Index Entry
instruction or the Remove Independent Index Entry
instruction are not aligned.

• Any pointers inserted into the index will be
invalidated.

The optimized processing mode index attribute field is
used to designate whether the index should be created
and maintained in a manner that optimizes performance
for either random or sequential operations.

Independent Index Instructions 6-3

The key length must have a value less than or equal to . Exceptions

the argument length whether specified during creation
(for fixed-length entries) or during insertion (for variable Operands

length). The key length is not used if the key insertion Exception 1 2 Other

field specifies no insertion by key (bit 3 = 0).
02 Access Group

01 Object ineligible for access group X

Authorization Required 02 Object exceeds available space X

06 Addressing

· Insert 01 Space addressing violation X X

Context identified by operand 2 02 Boundary ,alignment X X

- User profile of creating process 03 Range X X

08 Argument/ Parameter

· Object Control 01 Parameter reference violation X X

- Operand 1 if being replaced OA Authorization

01 Unauthorized for operation X

· Retrieve OE Context

- Contexts referenced for address resolution 01 Duplicate object identification X

10 Damage Encountered

04 System object damage state X X X

Lock Enforcennent 44 Partial system object damage X X X

1A Lock State

· Modify 01 Invalid lock state X

Access group identified by operand 2 1C Machine- Dependent Exception

User profile of creating process 03 Machine storage limit exceeded X

Context identified by operand 2 04 Object storage limit exceeded X

20 Machine Support

· Materialize 02 Machine check X

- Contexts referenced for address resolution 03 Function check X

22 Object Access

01 Object not found X X

Events 02 Object destroyed X X

03 Object suspended X X

0002 Authorization 24 Pointer Specification

0101 Object authorization violation 01 Pointer does not exist X X

02 Pointer type invalid X X

OOOC Machine resource 03 Pointer addressing invalid object X

0201 Machine auxiliary storage threshold exceeded 2A Program Creation

06 Invalid operand type X X

0010 Process 07 Invalid operand attribute X

0701 Maximum processor time exceeded 08 Invalid operand value range X

0801 Process storage limit exceeded OC Invalid operand ODT reference X X

2E Resource Control Limit

0016 Machine observation 01 User profile storage limit X

0101 Instruction reference
exceeded

38 Template Specification

0017 Damage set
01 Template value invalid X

0401 System object damage set
0801 Partial system object damage set

6-4

DESTROY INDEPENDENT INDEX (DESINX)

Op Code Operand 1
(hex)

0451 Index

Operand 1: System pointer.

Description: A previously created index identified by
operand 1 is destroyed, and addressability to the object
is removed from any context in which addressability
exists. The system pointer identified by operand 1 is not
modified by the instruction, and a subsequent reference

to the destroyed index through the pointer results in an
object destroyed exception.

Authorization Required

• Object control
- Operand 1

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

• Object Control
- Operand 1

• Modify
Access group which contains operand 1
Context which addresses operand 1
User profile which owns index

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
,0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operand
Exception 1 Other

06 Addressing
01 Space addressing violation X
02 Boundary alignment X
03 Range X

08 Argument/ Parameter
01 Parameter reference violation X

OA Authorization
01 Unauthorized for operation X

10 Damage Encountered
04 System object damage state X X
44 Partial system object damage X X

1A Lock State
01 Invalid lock state X

1C Machine-Dependent Exception
03 Machine storage limit exceeded X

20 Machine Support
02 Machine check X
03 Function check X

22 Object Access
01 Object not found X
02 Object destroyed X
03 Object suspended X

24 Pointer Specification
01 Pointer does not exist X
02 Pointer type invalid X
03 Pointer addressing invalid object X

2A Program Creation
06 Invalid operand type X
07 Invalid operand attribute X
08 Invalid operand value range X
OC Invalid operand ODT reference X

Independent Index Instructions 6-5

FIND INDEPENDENT INDEX ENTRY (FNDINXEN)

Op Code
(hex)

0494

Operand
1

Receiver

Operand
2

Index

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 3: Space pointer.

Operand 4: Space pointer.

Operand
3

Option
list

Operand
4

Search
argument

Description: This instruction searches the independent
index identified by operand 2 according to the search
criteria specified in the option list (operand 3) and the
search argument (operand 4); then it returns the desired
entry or entries in the receiver field (operand 1). The
maximum size of the independent index entry is 120
bytes.

The option list is a variable-length area that identifies
the type of search to be performed, the length of the
search argument(s), the number of resultant arguments
to be returned, the lengths of the entries returned, and
the offsets to the entries within the receiver identified by
the operand 1 space pointer. The option list has the
following format:

· Rule option Char(2)

· Argument length Bin(2)

· Argument offset Bin(2)

· Occurrence count Bin(2)

· Return count Bin(2)

Each entry that is returned to the receiver operand
contains the following:

• Entry length Bin(2)

• Offset Bin(2)

6-6

The rule option identifies the type of search to be
performed and has the following meaning:

Search Value
Type (hex) Meaning

0001 Find equal occurrences of
operand 4.

> 0002 Find occurrences that are
greater than operand 4.

< 0003 Find occurrences that are
less than operand 4.

~ 0004 Find occurrences that are greater
than or equal to operand 4.

S 0005 Find occurrences that are less
than or equal to operand 4.

First 0006 Find the first index entry or
entries.

Last 0007 Find the last index entry or entries.

Between 0008 Find all entries between the two
arguments specified by operand 4
(inclusive).

The option to find between limits requires that operand
4 be a 2-element vector in which element 1 is the
starting argument and element 2 is the ending argument.
All arguments between (and including) the starting and
ending arguments are returned, but the occurrence count
specified is not exceeded.

If the index was created to contain both pointers and
scalar data, then the search argument must be 16-byte
aligned. For the option to find between limits, both
search arguments must be 16-byte aligned.

The rule option and the argument length determine the
search criteria used for the index search. The argument
length must be greater than or equal to one. The
argument length for fixed-length entries must be less
than or equal to the argument length specified when the
index is created.

The argument length entry specifies the length of the
search argument (operand 4) to be used for the index
search. When the rule option equals first or last, the
argument length entry is ignored. For the option to find
between limits, the argument length option specifies the
lengths of one vector element. The lengths of the vector
elements must be equal.

The argument offset is the offset of the second search
argument from the beginning of the entire argument
field (operand 4). The argument offset field is ignored
unless the rule option is find between.

The occurrence count specifies the maximum number of
index entries that satisfy the search criteria to be
returned. This field is limited to a maximum value of
4095. If this value is exceeded, a template value invalid
exception is signaled.

The return count specifies the number of index entries
satisfying the search criteria that were returned in the
receiver (operand 1). If this field is 0, no index
arguments satisfied the search criteria.

There are two fields in the option list for each entry
returned in the receiver (operand 1). The entry length is
the length of the entry retrieved from the index. The
offset has the following meaning:

• For the first entry, the offset is the number of bytes
from the beginning of the receiver (operand 1) to the
first byte of the first entry.

• For any succeeding entry, the offset is the number of
bytes from the beginning of the immediately
preceding entry to the first byte of the entry returned.

The entries that are retrieved as a result of the Find
Independent Index Entry instruction are always returned
starting with the entry that is closest to or equal to the
search argument and then proceeding away from the
search argument. For example, a search that is for <

(less than) or ~ (less than or equal to) returns the
entries in order of decreasing value.

All the entries that satisfy the search criteria (up to the
occurrence count) are returned in the space starting at
the location designated by the operand 1 space pointer.

If the index was created to contain both pointers and
scalar data, then each returned entry is 16-byte aligned.

If the index was created to contain only scalar data,
then returned entries are contiguous.

Every entry retrieved causes the count of the find
operations to be incremented by 1. The current value of
this count is available through the Materialize Index
Attributes instruction.

Authorization Required

• Retrieve
Operand 2

- Contexts referenced for address resolution

Lock Enforcement

• Materialize
Operand 2

- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Independent Index Instructions 6-7

Exceptions INSERT INDEPENDENT INDEX ENTRY (lNSINXEN)

Operands Op Code Operand Operand Operand
Exception 1 2 3 4 Other (hex) 1 2 3

06 Addressing 04A3 Index Argument Option list
01 Space addressing violation X X X X

02 Boundary alignment X X X X Operand 1: System pointer.
03 Range X X X X

08 Argument/ Parameter Operand 2: Space pointer.

01 Parameter reference violation X X X X

OA Authorization
Operand 3: Space pointer.

01 Unauthorized for operation X

10 Damage Encountered

04 System object damage state X X X X X
Description: This instruction inserts one or more new

44 Partial system object damage X X X X X
entries into the independent index identified by operand

1A Lock State 1 according to the criteria specified in the option list

01 Invalid lock state X
(operand 3). Each entry is inserted into the index at the

1C Machine-Dependent Exception appropriate location based on the EBCDIC value of the

03 Machine storage limit X
argument. The maximum length allowed for the

exceeded independent index entry is 120 bytes.

20 Machine Support

02 Machine check X The argument (operand 2) and the option list (operand

03 Function check X 3) have the same format as the argument and option list

22 Object Access for the Find Independent Index Entry instruction.

01 Object not found X X X X
02 Object destroyed X X X X The rule option identifies the type of insert to be

03 Object suspended X X X X performed and has the following meaning:

24 Pointer Specification
01 Pointer does not exist X X X X

Insert Value

02 Pointer type invalid X X X X
Type (hex) Meaning Authorization

03 Pointer addressing invalid X Insert 0001 Insert unique Insert
object argument

2A Program Creation

06 Invalid operand type X X X X Insert 0002 Insert argument, Update

07 Invalid operand attribute X X X X
with replacing the

08 Invalid operand value range X X X X
replacement nonkey portion

if the key is
OA Invalid operand length X X X X already in the
OC Invalid operand ODT reference X X X X index

38 Template Specification

01 Template value invalid X X
Insert 0003 I nsert argument Insert
without only if the
replacement k~y is not

already in
the index

6-8

The insert rule option is valid only for indexes not
containing keys. The insert with replacement rule option
and the insert without replacement rule option are valid
for indexes containing either fixed- or variable-length
entries with keys. The duplicate key argument exception
is signaled for the following conditions:

• If the rule option is insert and the argument to be
inserted (operand 2) is already in the index

• If the rule option is insert without replacement and
the key portion of the argument to be inserted
(operand 2) is already in the index

The argument length and argument offset fields are
ignored.

The occurrence count specifies the number of
arguments to be inserted. This field is limited to a
maximum value of 4095. If this value is exceeded, a
template value invalid exception is signaled.

If the index was created to contain both pointers and
data, then each entry to be inserted must be 16-byte
aligned. If the index was created to contain
variable-length entries, then the entry length and offset
fields must be specified in the option list for each
argument in the space identified by operand 2. The
entry length is the length of the entry to be inserted.

If the index was created to contain both pointer and
scalar data, the offset field in the option list must be
supplied for each entry to be inserted. The offset is the
number of bytes from the beginning of the previous
entry to the beginning of the entry to be inserted. For
the first entry, this is the offset from the start of the
space identified by operand 2.

The return count specifies the number of entries inserted
into the index. If the index was created to contain only
data, then any pointers inserted are invalidated.

Authorization Required

• Insert or update depending on insert type
- Operand 1

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

• Modify
- Operand 1

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Independent Index Instructions 6-9

Exceptions MATERIALIZE INDEPENDENT INDEX ATTRIBUTES

(MATINXAT)

Operands
Exception 1 2 3 Other Op Code Operand Operand

(hex) 1 2
02 Access Group

02 Object exceeds available space X 0462 Receiver Index
06 Addressing

01 Space addressing violation X X X Operand 1: Space pointer.
02 Boundary alignment X X X
03 Range X X X Operand 2: System pointer.

08 Argument/ Parameter

01 Parameter reference violation X X X
OA Authorization Description: The instruction materializes the creation

01 Unauthorized for operation X attributes and current operational statistics of the

10 Damage Encountered independent index identified by operand 2 into the

04 System object damage state X X X X space identified by operand 1. The format of the

44 Partial system object damage X X X X attributes materialized is as follows:

18 Independent Index

01 Duplicate key argument in index X · Materialization size specification Char(8)

1A Lock State Number of bytes provided for Bin(4)

01 I nvalid lock state X materialization

1C Machine- Dependent Exception Number of bytes available for Bin(4)

03 Machine storage limit exceeded X materialization

04 Object storage limit exceeded X
20 Machine Support · Object identification Char(32)

02 Machine check X Object type Char(1)

03 Function check X Object subtype Char(1)

22 Object Access Object name Char(30)

01 Object not found X X X
02 Object destroyed X X X · Object creation options Char(4)

03 Object suspended X X X Existence attributes Bit 0

24 Pointer Specification 0 = Temporary

01 Pointer does not exist X X X 1 = Reserved

02 Pointer type invalid X X X Space attribute Bit 1

03 Pointer addressing invalid object X 0 = Fixed -length

2A Program Creation 1 = Variable-length

06 Invalid operand type X X X Context Bit 2

07 Invalid operand attribute X X X 0 = Addressability not in context

08 Invalid operand value range X X X 1 = Addressability in context

OC Invalid operand ODT reference X X X Access group Bit 3

2E Resource Control Limit 0 = Not a member of access group

01 User profile storage limit X 1 = Member of access group
exceeded Reserved (binary 0) Bits 4-31

38 Template Specification

01 Template value invalid X · Reserved (binary 0) Char(4)
02 Template size invalid X

· Size of space Bin(4)

6-10

• Initial value of space

• Performance class
Space alignment
o = The space associated with

the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align
ments within the the space.

Char(1)

Char(4)
Bit 0

Reserved (binary 0) Bits 1-4
Main storage pool selection Bit 5
o Process default main storage

pool used for object.
1 = Machine default main storage

pool used for object.
Reserved (binary 0) Bit 6
Block transfer on implicit
access state modification
o = The minimum storage

transfer size for this
object is a value of 1
storage unit.
The machine default
storage transfer size
for this object is a
value of 8 storage units.

Reserved (binary 0)

• Reserved (binary 0)

• Context

• Access group

• Index attributes

Bit 7

Bits 8-31

Char(7)

System
pointer

System
pointer

Char(1)

· Argument length Bin(2)

· Key length Bin(2)

· Index statistics Char(12)
Entries inserted Bin(4)

Entries removed Bin(4)

Find operations Bin(4)

The number of arguments in the index equals the
number of entries inserted minus entries removed. The
value of the find operations field is initialized to 0 each
time the index is materialized. The value may not be
correct after an abnormal system termination.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged.

No exceptions other than the materialization length
exception described previously are signaled in the event
that the receiver contains insufficient area for the
materialization.

The template identified by the operand 1 space pointer
must be 16-byte aligned. Values in the template remain
the same as the values specified at the creation of the
independent index except that the object identification,
context, and size of the associated space contain current
values.

If the entry length is fixed, then the argument length is
the value supplied in the template when the index was
created. If the entry length is variable, then the
argument length entry is equal to the length of the
longest entry that has ever been inserted into the index.

Independent Index Instructions 6-11

Authorization Required Exceptions

· Operational Operands
- Operand 2 Exception 1 2 Other

· Retrieve 06 Addressing

- Contexts referenced for address resolution 01 Space addressing violation X X

02 Boundary alignment X X

03 Range X X

Lock Enforcennent 08 Argument/ Parameter
01 Parameter reference violation X X

• Materialize OA Authorization

Operand 2 01 Unauthorized for operation X

- Contexts referenced for address resolution 10 Damage Encountered

04 System object damage state X X X

44 Partial system object damage X X X

Events 1A Lock State

01 Invalid lock state X

0002 Authorization 1C Machine-Dependent Exception

0101 Object aut~orization violation 03 Machine storage limit exceeded X

20 Machine Support

OOOC Machine resource 02 Machine check X

0201 Machine auxiliary storage threshold exceeded 03 Function check X

22 Object Access

0010 Process 01 Object not found X X

0701 Maximum processor time exceeded 02 Object destroyed X X

0801 Process storage limit exceeded 03 Object suspended X X

24 Pointer Specification

0016 Machine observation 01 Pointer does not exist X X

0101 Instruction reference 02 Pointer type invalid X X

03 Pointer addressing invalid object X

0017 Damage set 2A Program Creation

0401 System object damage set 06 Invalid operand type X X

0801 Partial system object damage set 07 Invalid operand attribute X X

08 Invalid operand value range X X

OC Invalid operand ODT reference X X

38 Template Specification

01 Template value invalid X

03 Materialization length exception X

6-12

REMOVE INDEPENDENT INDEX ENTRY
(RMVINXEN)

Op Code Operand
(hex) 1

0484 Receiver

Operand
2

Index

Operand 1: Space pointer or null.

Operand 2: System pointer.

Operand 3: Space pointer.

Operand 4: Space pointer.

Operand
3

Option
list

Operand
4

Argument

Description: The index entries identified by operands 3
and 4 are removed from the independent index
identified by operand 2 and optionally returned in the
receiver specified by operand 1. The maximum length of
an independent index entry is 120 bytes.

The option list (operand 3) and the argument (operand
4) have the same format and meaning as the option list
and argument for the Find Independent Index Entry
instruction. The return count designates the number of
index entries that were removed from the index.

The arguments removed are returned in the receiver field
if a space pointer is specified for operand 1. If operand
1 is null, the entries removed from the index are not
returned. If neither space pointer nor null is specified
for operand 1, the entries are returned in the same way
that entries are returned for the Find Independent Index
Entry instruction.

Every entry removed causes the occurrence count to be
incremented by 1. The current value of this count is
available through the Materialize Index Attributes
instruction. The occurrence count field must be less
then 4096.

Authorization Required

• Delete
- Operand 2

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Modify
- Operand 2

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Independent Index Instructions 6-13

Exceptions

Operands
Exception 1 2 3 4 Other

02 Access Group

02 Object exceeds available space X

06 Addressing

01 Space addressing violation X X X X

02 Boundary alignment X X X X

03 Range X X X X

08 Argument/ Parameter

01 Parameter reference violation X X X X

OA Authorization

01 Unauthorized for operation X

10 Damage Encountered

04 System object damage state X X X X X

44 Partial system object damage X X X X X

1A Lock State

01 Invalid lock state X X

1C Machine-Dependent Exception

03 Machine storage limit X
exceeded

04 Object storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X X

02 Object destroyed X X X X

03 Object suspended X X X X

24 Pointer Specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

03 Pointer addressing invalid X
object

2A Program Creation

06 Invalid operand type X X X X
07 Invalid operand attribute X X X X

08 Invalid operand value range X X X X

OC I nvalid operand ODT reference X X X X

2E Resource Control Limit

01 User profile storage limit X
exceeded

38 Template Specification

01 Template value invalid X

6-14

Chapter 7. Authorization Management Instructions

This chapter describes the instructions used for
authorization management. These instructions are in
alphabetic order. For an alphabetic summary of all the
instructions, see Appendix B. Instruction Summary.

CREATE USER PROFILE (CRTUP)

Op Code Operand
(hex) 1

0116 User
profile

Operand
2

User
profile
creation
template

Operand 1: System pointer.

Operand 2: Space pointer.

Description: A user profile is created in accordance with
the user profile template specification. A system pointer
addressing the created user profile is returned in the
addressing object specified by operand 1.

A privileged instruction exception is signaled if the user
profile(s) governing the execution of the process is not
authorized to create) a user profile. An exception is
signaled if the new user profile is either for a privileged
instruction or for a special authorization state that is not
authorized the user profile(s) that governs the execution
of the instruction.

The template identified by operand 2 must be 16-byte
aligned in the space. Following is the format of the user
profile template:

· Template size specification Char(S)*

· Size of template Bin(4)*

· Number of bytes available for Bin(4)*
materialization

· Object identification Char(32)
Object type Char(1)*
Object subtype Char(1)
Object name Char(30)

· Object creation options Char(4)
Existence attribute Bit 0
1 = Permanent (required)
Space attribute Bit 1
o = Fixed-length
1 = Variable-length
Reserved (binary 0) Bits 2-31

· Reserved (binary 0) Char(4}

· Size of space Bin(4)

· Initial value of space Char(1)

Authorization Management Instructions 7-1

• Performance class
Space alignment
o = The space associated with the

object is allocated to allow
proper alignment of pointers
at 16-byte alignments within
the space. If no space
is specified for the object,
this value must be specified
for the performance class.
The space associated with the
object is allocated to allow
proper alignment of pointers
at 16-byte alignments within
the space as well as to allow
proper alignment of

Char(4)
Bit 0

input/ output buffers at 512-byte
alignments within the space.

Reserved (binary 0)
Main storage pool selection
o Process default main storage

pool is used for object.
Machine default main storage
pool is used for object.

Reserved (binary 0)
Block transfer on implicit
access state modification
o = Transfer the minimum storage

transfer size for this object.
. This value is 1 storage unit.

= Transfer the machine default
storage transfer size. This
value is8 storage units.

Reserved (binary 0)

• Reserved (binary 0)

• Privileged instructions
(1 = authorized)

7-2

Create logical unit description
Create network description
Create controller description
Create user profile
Modify user profile
Diagnose
Terminate machine processing
Initiate process
Modify resource management
control
Reserved (binary 0)

Bits 1-4
Bit 5

Bit 6
Bit 7

Bits 8-31

Char(39)

Char(4)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8

Bits 9-31

• Special authorizations
(1 = authorized)

All object authority
load (unrestricted)
Dump (unrestricted)
Suspend object (unrestricted)
load (restricted)
Dump (restricted)
Suspend (restricted)
Process control
Reserved (binary 0)
Service authority
Reserved (binary 0)
Modify machine attributes
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9

Char (4)

Bit 0
.Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bit 9
Bits 10-23
Bits 24-31
Bit 24
Bit 25
Bit 26
Bit 27
Bit 28
Bit 29
Bit 30
Bit 31

Note: Group 1 requires no authorization.

• Storage authorization - the
maximum amount of auxiliary
storage (in units of .1024 bytes)
that can be allocated for the
storage of objects owned by this
user profile

• Storage utilization - the.
current amount of auxiliary
storage (in units of 1024 bytes)
allocated for the storage of
objects owned by this .user profile

Bin(4)

Bin(4)

Note: The values associated with the template
parameters identified by an asterisk (*) are ignored by
the create user profile instruction.

The created user profile is owned by the user profile
governing process execution. All private object
authorization states are implicitly assigned to the owning
user profile. No user profile is charged for the storage
occupied by the newly created user profile.

The object identification specifies the symbolic name
that identifies the user profile within the machine. An
object type of hex 08 is implicitly supplied by the
machine. The object identification is used to identify the
object for materialize instructions as well as to locate
the object through the machine context. The object
identification for a user profile must be unique
throughout the machine.

The user profile is created as a permanent object and
exists until explicitly destroyed. Addressability to the
created user profile is implicitly inserted into the
machine context.

A space may be associated with the created user profile.
The size of the space may be fixed or variable. The
initial allocation is as specified in the size of space entry.
The machine allocates a space of at least the size
specified. The actual size allocated depends on an
algorithm defined by a specific implementation. A fixed
space size of zero length causes no space to be
allocated.

Each byte of the space is initialized to a value specified
by the initial value of space entry. When the space is
extended, this byte value is also used to initialize the
new allocation.

When a permanent object is created, it is owned by the
user profile governing process execution. The owning
user profile is implicitly assigned all private authority
states for the object. The storage occupied by the
associated space is charged to the owning user profile.

The performance class parameter provides information
that allows the machine to more effectively manage the
object by considering the overall performance objectives
of operations involving the context.

Authorization Required

• Privileged instruction

• Privileges and special authorizations being granted to
the created user profile

• Insert
- User profile of creating process

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Modify
- User profile of creating process

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0801 Partial system object damage set

Authorization Management Instructions 7-3

Exceptions

Exception

02 Access Group

01 Object ineligible for access group

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

OA Authorization

01 Unauthorized for operation

02 Privileged instruction

05 Create/ modify user profile
beyond level of authorization

OE Context Operation

01 Duplicate object identification

10 Damage Encountered

02 Machine context damage state

04 System object damage state

44 Partial system object damage

1A Lock State

01 Invalid lock state

1C Machine-Dependent Exception

03 Machine storage limit exceeded

04 Object storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OC Invalid operand ODT reference

2E Resource Control Limit

01 User profile storage limit
exceeded

38 Template Specification

01 Template value invalid

7-4

Operands
1 2

X

X X
X X
X X

X X

X

X

X

X X
X X

X

X

X X
X X
X X

X X
X X

X

X X
X X
X X
X X

X

X

Other

X

X
X
X

X

X
X

DESTROY USER PROFILE (DESUP)

Op Code
(hex) Operand 1

0125 User profile

Operand 1: System pointer.

Description: The user profile specified by operand 1 is
destroyed, and addressability to the profile is deleted
from the machine context. The system pointer specified
by operand 1 is not modified by the instruction, and any
future reference to the destroyed user profile through
the pOinter causes an object destroyed exception.

If the referenced user profile owns any object (other
than itself) when the Destroy User Profile instruction is
executed, an object not eligible for destruction exception
is signaled and the user profile is not destroyed. The
exception is also signaled if the process executing the
instruction is controlled by the user profile to be
destroyed.

Because a user profile is implicitly locked (LSRD) by the
machine when a process is initiated by the user profile,
an invalid lock state exception is signaled if any process
is currently initiated by the referenced user profile and
an attempt is made to destroy the user profile.

Authorization Required Exceptions

· Object control Operand
- Operand 1 Exception 1 Other

06 Addressing

Lock Enforcennent 01 Space addressing violation X

02 Boundary alignment X

· Modify 03 Range X

- User profile of owner of operand 1 08 Argument/ Parameter

01 Parameter reference violation X

· Object control OA Authorization

- Operand 1 01 Unauthorized for operation X
10 Damage Encountered

02 Machine context damage state X

Events 04 System object damage state X X

44 Partial system object damage X X

0002 Authorization 1A Lock State

0101 Object authorization violation 01 Invalid lock state X
1C Machine-Dependent Exception

OOOC Machine resource 03 Machine storage limit exceeded X

0201 Machine auxiliary storage threshold exceeded 20 Machine Support

02 Machine check X

0010 Process 03 Function check X

0701 Maximum processor time exceeded 22 Object Access

0801 Process storage limit exceeded 01 Object not found X
02 Object destroyed X

0016 Machine observation 03 Object suspended X

0101 Instruction reference 06 Object not eligible for destruction X
24 Pointer Specification

0017 Damage set 01 Pointer does not exist X

0201 Machine context damage set 02 Pointer type invalid X

0401 System object damage set 03 Pointer addressing invalid object X

0801 Partial system object damage set 2A Program Creation

06 Invalid operand type X

07 Invalid operand attribute X
08 Invalid operand value range X

OC Invalid operand ODT reference X
32 Scalar Specification

01 Scalar type invalid X

Authorization Management Instructions 7-5

GRANT AUTHORITY (GRANT)

Op Code
(hex)

0173

Operand
1

User
profile

Operand
2

System
object

Operand 1: System pointer or null.

Operand 2: System pointer.

Operand
3

Authorization
template

Operand 3: Character(2) scalar (fixed-length).

Description: This instruction grants authority to a
specified object. This authority may include all new
authority codes or a new authority code to be added to
the authority codes previously granted. Public authority
for an object can also be granted. If operand 1 is
addressing a user profile, that user profile will be
granted the private authorization states specified by
operand 3 for the system object specified by operand 2.
If the user profile previously had no authority for the
specified object, the object and the specified
authorization states are added to the user profile's set of
authorized objects. If the user profile previously had
some authority for the specified object, then the
authorization states specified by operand 3 are logically
ORed to those authorization states previously held. If no
private authorization states that apply to the designated
object type are defined in the authorization template
then no change is made to the user profile's
authorization.

If operand 1 is null, the instruction grants public
authorization. If public authorization has been previously
granted for the object, then the authorization states
specified by operand 3 are logically ORed to those
public authorization states previously granted. Operand
3 is a 2-byte character scalar and employs the following
bit representations to designate the authorization states:
(1 = authorized)

• Authorization template
Object control
Object management
Authorized pointer
Space authority
Retrieve
Insert
Delete
Update
Reserved (binary 0)

7-6

Char(2)
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bits 8-15

The four authorities (bits 4-7) - retrieve, insert, delete,
and update - constitute the operational authorities.
Granting any of these four authorities is sufficient for
instructions requiring operational authority. For those
objects (except space objects) that do not support these
operational authorities individually, all four of these
authorities must be granted when operational authority
is to be granted. The operational authority provided by
these bits is considered reserved for objects that do not
have any distinction between them.

The user profile governing the execution of the
instruction (process user profile or most current adopted
user profile) must have object management authority as
well as any authority state being granted for the object,
or it must indirectly have authority through the all-object
authority special authorization or through ownership of
the object.

Ownership or all-object authority is required in order to
grant object management authority. The owner is
always allowed to grant any authority, even if it has
been retracted from him. A nonowner must have the
authorities he is granting in addition to object
management authority. Authorization bits that do not
support any function for a particular object type are
considered reserved.

Authorization Required

• Authorities being granted with object management or
ownership
- Operand 2

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent Exceptions

. Materialize Operands

- Contexts referenced for address resolution Exception 1 2 3 Other

Modify
06 Addressing .

01 Space addressing violation X X X
- Operand 2 02 Boundary alignment X X X

03 Range X X X
08 Argument/ Parameter

Events 01 Parameter reference violation X X X
OA Authorization

0002 Authorization 01 Unauthorized for operation X

0101 Object authorization violation 03 Attempt to grant/ restrict X
authority state to that which is
not authorized

OOOC Machine resource 10 Damage Encountered
0201 Machine auxiliary storage threshold exceeded 02 Machine context damage state X

04 System object damage state X X X X
0010 Process 44 Partial system object damage X X X X

0701 Maximum processor time exceeded 1A Lock State

0801 Process storage limit exceeded 01 Invalid lock state X X X
1C Machine-Dependent Exception

0016 Machine observation 03 Machine storage limit exceeded X

0101 Instruction reference
04 Object storage limit exceeded X

20 Machine Support

0017 Damage set
02 Machine check X
03 Function check X

0201 Machine context damage set 22 Object Access
0401 System object damage set 01 Object not found X X
0801 Partial system object damage set 02 Object destroyed X X X

03 Object suspended X X
24 Pointer Specification

01 Pointer does not exist X X X
02 Pointer type invalid X X X
03 Pointer addressing invalid object X

2A Program Creation,
06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X
OA Invalid operand length X
OC Invalid operand ODT reference X X X

32 Scalar Specification
01 Scalar type invalid X X X
02 Scalar attributes invalid X
03 Scalar value invalid X

Authorization Management Instructions 7-7

MATERIALIZE AUTHORITY (MATAU)

Op Code
(hex)

0153

Operand
1

Receiver

Operand
2

System
object

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 3: System pointer or null.

Operand
3

User
profile

Description: This instruction materializes the specific
types of authority for a system object available to the
specified user profile. The private authorization that the
user profile specified by operand 3 is assigned to the
permanent system object specified by operand 2, and
the object's public authorization is materialized in
operand 1. If operand 3 is null, then only the object's
public authorization is materialized, and the private
authorization field in the materialization is set to
binary O.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A. value of less than 8
causes the materialization length exception.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized (12 for
this instruction). The instruction materializes as many
bytes as can ·be contained in the area specified as the
receiver. If the byte area identified by the receiver is
greater than that required to contain the information
requested, then the excess bytes are unchanged. No
exceptions (other than the materialization length
exception) are signaled in the event that the receiver
contains insufficient area for the materialization.

7-8

The format of the materialization is as follows:

• Materialization size specification
Number of bytes provided for
materialization
Number of bytes available for
materialization (contains a value
of 12 for this instruction)

• Private authorization
(1 = authorized)

Object control
Object management
Authorized pointer
Space authority
Retrieve
Insert
Delete
Update
Ownership (1 = yes)
Reserved (binary 0)

• Public authorization
(1 = authorized)

Object control
Object management
Authorized pointer
Space authority
Retrieve
Insert
Delete
Update
Reserved (binary 0)

Char(8)
Bin(4)

Bin(4)

Char(2)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bits 9-15

Char(2)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bits 8-15

Any of the four authorizations - retrieve, insert, delete,
or update - constitute operational authority.

If this instruction references a temporary object, all
public authority states are materialized. Private authority
states are not materialized.

Authorization Required Exceptions

· Operational Operands
- Operand 3 Exception 1 2 3 Other

Retrieve
06 Addressing · 01 Space addressing violation X X X

- Contexts referenced for address resolution 02 Boundary alignment X X X
03 Range X X X

08 Argument/ Parameter
Lock Enforcennent 01 Parameter reference violation X X X

OA Authorization

· Materialize 01 Unauthorized for operation X X

Operand 2 10 Damage Encountered

Operand 3 02 Machine context damage state X

Contexts referenced for address resolution 04 System object damage state X X X X
44 Partial system object damage X X X X

1A lock State

Events
01 Invalid lock state X X

1C Machine-Dependent Exception
03 Machine storage limit exceeded X

0002 Authorization 20 Machine Support
0101 Object authorization violation 02 Machine check X

03 Function check X
OOOC Machine resource 22 Object Access

0201 Machine auxiliary storage threshold exceeded 01 Object not found X X X
02 Object destroyed X X X

0010 Process 03 Object suspended X X X

0701 Maximum processor time exceeded 24 Pointer Specification

0801 Process storage limit exceeded
01 Pointer does not exist X X X
02 Pointer type invalid X X X
03 Pointer addressing invalid object X X

0016 Machine observation 2A Program Creation
0101 Instruction reference 06 Invalid operand type X X X

07 Invalid operand attribute X X X
0017 Damage set 08 Invalid operand value range X X X

0201 Machine context damage set OA Invalid operand length X

0401 System object damage set OC Invalid operand ODT reference X X X

0801 Partial system object damage set 38 Template Specification
03 Materialization length exception X

Authorization Management Instructions 7-9

MATERIALIZE AUTHORIZED OBJECTS
(MATAUOBJ)

Op Code
(hex)

0153

Operand
1

Receiver

Operand
2

User
profile

Operand
3

Materialization
options

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 3: Character(1) scalar (fixed-length).

Description: This instruction materializes the
identification and the system pointers to system objects
that are privately owned or that are owned by a
specified user profile. The materialization options
(operand 3) for the user profile (operand 2) are returned
in the receiver (operand 1). The materialization options
for operand 3 have the following format:

Value
(hex) Meaning

11

12

13

21

22

23

31

32

Materialize count of owned objects with no
description.

Materialize count of authorized objects with
no description (excludes owned objects).

Materialize count of all authorized and owned
objects with no description.

Materialize identification of owned objects
with short description.

Materialize identification of authorized
objects with short description (excludes
owned objects.)

Materialize identification of all authorized and
owned objects with short description.

Materialize identification of owned objects
with long description.

Materialize identification of authorized
objects with long description (excludes
owned objects).

33 Materialize identification of all authorized and
owned objects with long description.

7-10

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than S
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the
event that the receiver contains insufficient area for the
materialization.

The order of materialization is owned objects (if
requested by the materialization options operand)
followed by objects privately authorized to the user
profile (if requested by the materialization options
operand). No authorizations are stored in the system
pointers that are returned.

The template identified by operand 1 must be 16-byte
aligned in the space. It has the following format:

• Materialization size specification
Number of bytes provided for
materialization
Number of bytes available for
materialization

• Number of objects owned by
user profile

• Number of objects privately
authorized to user profile

• Reserved (binary 0)

ChartS)
8in(4)

8in(4)

8in(2)

8in(2)

Char(4)

If no description is requested in the materialization
options parameter, the above constitutes the information
available for materialization. If a description (short or
long) is requested by the materialization options
parameter, a description entry is present (assuming there
is a sufficient sized receiver) for each object materialized
into the receiver. Either of the following entries may be
selected.

• Short description entry
Type code
Subtype code
Private authorization
(1 = authorized)
Object control
Object management
Authorized pointer
Space authority
Retrieve
Insert
Delete
Update
Ownership (1 = yes)
Reserved (binary 0)
Reserved (binary 0)
System object

• Long description entry
Type code
Subtype code
Object name
Private authorization
(1 = authorized)
Object control
Object management
Authorized pointer
Space authority
Retrieve
Insert
Delete
Update
Ownership (1 = yes)
Reserved (binary 0)
Public authorization
(1 = authorized)
Object control
Object management
Authorized pointer
Space authority
Retrieve
Insert
Delete
Update
Reserved (binary 0)
Reserved (binary 0)
System object

Char(32)
Char(1)
Char(1)
Char(2)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bits 9-15
Char(12)
System
pointer

Char(64)
Char(1)
Char(1)
Char(30)
Char(2)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bits 9-15
Char(2)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bits 8-15
Char(12)
System
pointer

Authorization Required

• Operational
- Operand 2

• Retrieve
Contexts referenced for address resolution

- Operand 2 if materializing owned objects

Lock Enforcennent

• Materialize
Contexts referenced for address resolution

- Operand 2 if materializing owned objects

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Authorization Management Instructions 7-11

Exceptions MATERIALIZE AUTHORIZED USERS (MATAUU)

Operands Op Code Operand Operand Operand Exception 1 2 3 Other (hex) 1 2 3

06 Addressing
01 Space addressing violation X X X

0143 Receiver System Materialization

02 Boundary alignment X X X
object options

03 Range X X X
08 Argument/ Parameter

Operand 1: Space pointer.

01 Parameter reference violation X X X Operand 2: System pointer.
OA Authorization

01 Unauthorized for operation X Operand 3: Character(1) scalar (fixed-length).
10 Damage Encountered

02 Machine context damage state X
04 System object damage state X X X X
44 Partial system object damage X X X X Description: The instruction materializes the

1A Lock State authorization states and the identification of the user

01 Invalid lock state X profile(s). The materialization options (operand 3) for the

1C Machine-Dependent Exception system object (operand 2) are returned in the receiver
03 Machine storage limit exceeded X (operand 1). The materialization options for operand 3

20 Machine Support have the following format:
02 Machine check X
03 Function check X Value

22 Object Access (hex) Meaning
01 Object not found X X X
02 Object destroyed X X X

11 Materialize public authority with no 03 Object suspended X X
24 Pointer Specification description.

01 Pointer does not exist X X X
02 Pointer type invalid X X X 12 Materialize public authority and number of

03 Pointer addressing invalid object X privately authorized profiles with no
2A Program Creation description.

06 Invalid operand type X X X
07 Invalid operand attribute X X X 21 Materialize identification of owning profile
08 Invalid operand value range X X X with short description.
OA Invalid operand length X
OC Invalid operand ODT reference X X X 22 Materialize identification of privately

32 Scalar Specification
03 Scalar value invalid X

authorized profiles with short description.

38 Template Specification
03 Materialization length exception X 23 Materialize identification of owning and

privately authorized profiles with short

description.

31 Materialize identification of owning profile

with long description.

32 Materialize identification of privately

authorized profiles with long description.

33 Materialize identification of owning and

privately authorized profiles with long

description.

7-12

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the
event that the receiver contains insufficient area for the
materialization.

The order of materialization is an entry for the owning
user profile (if requested by the materialization options
operand) followed by a list (O to n entries) of entries for
user profiles having private authorization to the object (if
requested by the materialization options operand). The
authorization field within the system pointers will not be
set.

The template identified by operand 1 must be 16-byte
aligned in the space and has the following format:

• Materialization size specification
Number of bytes provided for
materialization
Number of bytes available for
materialization

• Public authorization
(1 = authorized)

Object control
Object management
Authorized pointer
Space authority
Retrieve
Insert
Delete
Update
Reserved (binary 0)

• Number of privately authorized
user profiles

• Reserved (binary 0)

Char(8)
Bin(4)

Bin(4)

Char(2)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bits 8-15

Bin(2)

Char(4)

If no description is requested by the materialization
options operand, the template identified by operand 1
constitutes the information available for materialization.
If a description (short or long) is requested by the
materialization options operand, a description entry is
present (assuming there is a sufficient sized receiver) for
each user profile materialized or available to be
materialized into the receiver. Either of the following
entry types may be selected.

. Short description entry Char(32)
User profile type code Char{1)
User profile subtype code Char(1)
Private authorization Char(2)
(1 = authorized)
Object control Bit 0
Object management Bit 1
Authorized pointer Bit 2
Space authority Bit 3
Retrieve Bit 4
Insert Bit 5
Delete Bit 6
Update Bit 7
Ownership (1 = yes) Bit 8
Reserved (binary 0) Bits 9-15
Reserved (binary 0) Char(12)
User profile System

pointer

. Long description· entry Char(64)
User profile type code Char{1 }
User profile subtype code Char{1)
User profile name Char(30)
Private authorization Char(2)
(1 = authorized)
Object control Bit 0
Object management Bit 1
Authorized pointer Bit 2
Space authority Bit 3
Retrieve Bit 4
Insert Bit 5
Delete Bit 6
Update Bit 7
Ownership Bit 8
Reserved (binary 0) Bits 9-15
Reserved (binary 0) Char(14)
User profile System

pointer

If this instruction references a temporary object, all
public authority states are materialized. The privately
authorized user and owner profile{s) description is not
materialized (binary 0).

Authorization Management Instructions 7-13

Authorization Required Exceptions

· Retrieve Operands

- Contexts referenced for address resolution Exception 1 2 3 Other

Object management
06 Addressing · 01 Space addressing violation X X X - Operand 2 02 Boundary alignment X X X

03 Range X X X
08 Argument/ Parameter

Lock Enforcennent 01 Parameter reference violation X X X
OA Authorization

· Materialize 01 Unauthorized for operation X

Operand 2 10 Damage Encountered

- Contexts referenced for address resolution 04 System object damage state X X X X
44 Partial system object damage X X X X

1A Lock State

Events
01 Invalid lock state X

1C Machine-Dependent Exception
03 Machine storage limit exceeded X

0002 Authorization 20 Machine Support
0101 Object authorization violation 02 Machine check X

03 Function check X
OOOC Machine resource 22 Object Access

0201 Machine auxiliary storage threshold exceeded 01 Object not found X X X
02 Object destroyed X X X

0010 Process 03 Object suspended X X X

0701 Maximum processor time exceeded 24 Pointer Specification

0801 Process storage limit exceeded 01 Pointer does not exist X X X
02 Pointer type invalid X X X

0016 Machine observation
2A Program Creation

06 Invalid operand type X X X
0101 Instruction reference 07 Invalid operand attribute X X X

08 Invalid operand value range X X X
0017 Damage set OA Invalid operand length X

0401 System object damage set OC Invalid operand ODT reference X X X
0801 Partial system object damage set 32 Scalar Specification

03 Scalar value invalid X
38 Template Specification

03 Materialization length exception X

7-14

MATERIALIZE USER PROFILE (MATUP)

Op Code
(hex)

013E

Operand
1

Receiver

Operand
2

User
profile

Operand 1: Space pointer.

Operand 2: System pointer.

Description: The attributes of the user profile specified
by operand 2 are materialized into the receiver specified
by operand 1.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the
event that the receiver contains insufficient area for the
materialization.

The receiver identified by operand 1 must be 16-byte
aligned in the space. The following is the format of the
materialized information:

• Materialization size specification
Number of bytes provided for
materialization
Number of bytes available for
materialization

• Object identification
Object type
Object subtype
Object name

• Object creation options
Existence attribute
1 = Permanent
Space attribute
o = Fixed-length
1 = Variable-length
Reserved (binary 1)
Reserved (binary 0)

• Reserved (binary 0)

• Size of space

• Initial value of space

• Performance class

• Reserved (binary 0)

• Reserved (binary 0)

• Reserved (binary 0)

• Privileged instructions
(1 = authorized)

Create logical unit description
Create network description
Create controller description
Create user profile
Modify user profile
Diagnose
Terminate machine processing
Initiate process
Modify resource management
control
Reserved (binary 0)

Char(8)
Bin(4)

Bin(4)

Char(32)
Char{1)
Char{1)
Char(30)

Char(4)
Bit 0

Bit 1

Bit 2
Bits 3-31

Char(4)

Bin(4)

Char(1)

Char(4)

Char(7)

Char(16)

Char(16)

Char(4)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8

Bits 9-31

Authorization Management Instructions 7-15

• Special authorizations
(1 = authorized)

All object authority
Load (unrestricted)
Dump (unrestricted)
Suspend object (unrestricted)
Load (restricted)
Dump (restricted)
Suspend object (restricted)
Process control
Reserved (binary 0)
Service authority
Reserved (binary 0)
Modify machine attributes
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9

Char(4)

BitO
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bit 9
Bits 10-23
Bits 24-31
Bit 24
Bit 25
Bit 26
Bit 27
Bit 28
Bit 29
Bit 30
Bit 31

Note: Group 1 requires no authorization.

• Storage authorization - the
maximum amount of auxiliary
storage (in units of 1024 bytes)
that can be allocated for the
storage of objects owned by this
user profile

• Storage utilization - the
current amount of auxiliary
storage (in units of 1024 bytes)
allocated for the storage of
objects owned by this user
profile

Bin(4)

Bin(4)

The attributes that the instruction can materialize are
described in the Create User Profile instruction.

7-16

Authorization Required

• Operational
- Operand 2

Lock Enforcennent

• Materialize
- Operand 2

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

OA Authorization

01 Unauthorized for operation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1A Lock State

01 Invalid lock state

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

38 Template Specification

03 Materialization length exception

Operands
1 2 Other

X X

X X

X X

X X

X

X X X

X X X

X

X

X

X

X X

X X

X X

X X

X X
X

X X

X X

X X

X

X X

X

MODIFY USER PROFILE (MODUP)

Op Code
(hex)

0142

Operand
1

User
profile

Operand
2

User
profile
modification
template

Operand 1: System pointer.

Operand 2: Space pointer.

Description: The user profile specified by operand 1 is
modified in accordance with the user profile modification
template specified by operand 2. The instruction
replaces the privileged instruction authorizations, special
authorizations, and resource authorization values in the
user profile with the new values specified in the user
profile template. All other values in the user profile are
unchanged.

A privileged instruction exception is signaled if the
instruction is operating under a user profile(s) that does
not have the modify user profile privileged instruction
authorization. If the instruction attempts to set a
privileged instruction authorization or special
authorization state for which its governing user profile(s)
is not authorized, an exception will also be signaled.

No exception is signaled when the resource
authorization parameter is set to a value that is less than
the amount of auxiliary storage currently allocated for
the storage of permanent· objects owned by the user
profile specified by operand 1. An exception is signaled
when storage is being allocated for a permanent object
and the new total exceeds the limit established by the
resource authorization parameter.

Following is the format of the user profile modification
template:

• Template size specification
Number of bytes provided
Number of bytes available for
materialization

• Objectidentification
Object type
Object subtype
Object name

• Object creation options

Char(S)*
Bin(4)*
Bin(4)*

Char(32)*
Char(1)*
Char(1)*
Char(30)*

Char(4)*

Authorization Management Instructions 7-17

• Reserved (binary 0)

• Size of space

• Initial value of space

• Performance class

• Reserved (binary 0)

• Privileged instructions
(1 = authorized)

Create logical unit description
Create network description
Create controller description
Create user profile
Modify user profile
Diagnose
Terminate machine processing
Initiate process
Modify resource management
control
Reserved (binary 0)

• Special authorization
(1 = authorized)

All object authority
Load (unrestricted)
Dump (unrestricted)
Suspend object (unrestricted)
Load (restricted)
Dump (restricted)
Suspend (restricted)
Process control
Default owner
Service authority
Reserved (binary 0)
Modify machine attributes
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9

Char(4)*

Bin(4)*

Char(l)*

Char(4)*

Char(39)*

Char(4)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8

Bits 9-31

Char(4)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bit 9
Bits 10-23
Bits 24-31
Bit 24
Bit 25
Bit 26
Bit 27
Bit 28
Bit 29
Bit 30
Bit 31

Note: Group 1 requires no authorization.

7-18

• Storage authorization - the
maximum amount of auxiliary
storage (in units of 1024 bytes)
that can be allocated for the
storage of permanent objects
owned by this user profile

• Storage utilization - the
current amount of auxiliary
storage (in units of 1024 bytes)
allocated for storage of objects
owned by this user profile

Bin(4)

Bin(4)*

Note: The template parameters identified by an asterisk
(*) are ignored by the Modify User Profile instruction.

The attributes defined in the template are included in the
description of the Create User Profile instruction.

Authorization Required

• Object management
- Operand 1

• Privileged instruction

Lock Enforcement

• Modify
- Operand 1

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions RETRACT AUTHORITY (RETRACT)

Operands Op Code Operand Operand Operand
Exception 1 2 Other (hex) 1 2 3

06 Addressing 0193 User System Authorization
01 Space addressing violation X X profile object template

02 Boundary alignment X X

03 Range X X Operand 1: System pointer or null.

08 Argument / Parameter

01 Parameter reference violation X X
Operand 2: System pointer.

OA Authorization

01 Unauthorized for operation X
Operand 3: Character(2) scalar (fixed-length).

02 Privileged instruction X

05 Create / modify user profile X Description: When operand 1 is addressing a user
beyond level of authorization

10 Damage Encountered
profile, the private authorization states (operand 3) for

04 System object damage state X X X
the permanent system object (operand 2) will be

44 Partial system object damage X X X
retracted from the specified user profile. Authorization

1A Lock State
may be retracted from the owning user profile.

01 Invalid lock state X

1C Machine-Dependent Exception
When operand 1 is null, the instruction is retracting

03 Machine storage limit exceeded X
public authorization. The process user profile or adopted

20 Machine Support
user profile(s) currently governing the execution of the

02 Machine check X
instruction when public or private authorization is being

03 Function check X
retracted must own the object specified by operand 2,

22 Object Access
have object management authority in addition to the

01 Object not found X X
authority being retracted, or have the all object authority

02 Object destroyed X X
special authorization.

03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X

03 Pointer addressing invalid object X

2A Program Creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OC Invalid operand ODT reference X X

38 Template Specification

01 Template value invalid X

Authorization Management Instructions 7-19

Authorization may be retracted from the owning user
profile. Ownership does not imply default authorization
to a specific object except as it applies for a specific
instruction. An object owner may, however, grant any
object authority to any user profile, including himself.

Operand 3 is a 2-byte character scalar and employs the
following bit representations to designate the
authorization states to be retracted:
(1 = retract authorization)

• Authorization template
Object control
Object management
Authorized pointer
Space authority
Retrieve
Insert
Delete
Update
Reserved (binary 0)

Char(2)
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bits 8-15

Note: Authority can be effectively retracted only if
pointer authorization has never been granted to the
object. A pointer with authority stored in it may be
saved and used after authority has been retracted.

If this instruction references a temporary object, no
operation is performed, and no exception is signaled.

7-20

Authorization Required

• Ownership or object management with authorization
states being retracted
- Operand 2

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

• Object control
- Operand 2

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions TEST AUTHORITY (TESTAU)

Operands Op Code Operand Operand Operand Exception 1 2 3 Other
(hex) 1 2 3

06 Addressing
10F7 Available System Required 01 Space addressing violation X X X

authority object authority
02 Boundary alignment X X X template template
03 Range X X X receiver

08 Argument/ Parameter
01 Parameter reference violation X X X Operand 1: Character(2) scalar or null (fixed-length)

OA Authorization
01 Unauthorized for operation X Operand 2: System pointer.
03 Attempt to grant/ retract authority X

state to that which is not Operand 3: Character(2) scalar (fixed-length). authorized
10 Damage Encountered

02 Machine context damage state X
04 System object damage state X X X X Optional Forms

44 Partial system object damage X X X X
1A Lock State Op Code

01 Invalid lock state X X Mnemonic (hex) Form Type
1C Machine-Dependent Exception

03 Machine storage limit exceeded X TESTAUI 18F7 Indicator
20 Machine Support TESTAUB 1CF7 Branch

02 Machine check X
03 Function check X

22 Object Access
Extender: Branch or indicator options 01 Object not found X X X

02 Object destroyed X X X
03 Object suspended X X X If the branch option is specified in the op code, the

24 Pointer Specification extender field must be present along with one or two

01 Pointer does not exist X X X branch targets. If the indicator option is specified in the
02 Pointer type invalid X X X op code, the extender field must be present along with
03 Pointer addressing invalid object X one or two indicator operands. The branch or indicator

2A Program Creation operands immediately follow operand 3. See Chapter 1.
06 Invalid operand type X X X Introduction for the encoding of the extender field and
07 Invalid operand attribute X X X

the allowed syntax of the branch and indicator operands.
08 Invalid operand value range X X X
OA Invalid operand length X
OC Invalid operand ODT reference X X X

32 Scalar Specification
02 Scalar attributes invalid X
03 Scalar value invalid X

Authorization Management Instructions 7-21

Description: This instruction verifies that the object
authorities and / or ownership rights specified by operand
3 are currently available to the process for the object
specified by operand 2. If operand 1 is not null, all of
the authorities and/or ownership specified by operand 3
that are currently available to the process are returned in
operand 1. The required authorities and/or ownership
are specified by the required authority template of
operand 3. This template includes a test option that
indicates whether all of the specified authorities are
required or whether anyone or more of the specified
authorities is sufficient. This option can be used, for
example, to test for operational authority by coding a
template value of hex OF01 in operand 3. Using the any
option does not affect what is returned in operand 1. If
operand 1 is not null and the any option is specified, all
of the authorities specified by operand 3 that are
available to the process are returned in operand 1. If the
required authority is available, one of the following
occurs.

• Branch form indicated
Conditional transfer of control to the instruction
indicated by the appropriate branch target
operand.

• Indicator form specified
The leftmost byte of each of the indicator
operands is assigned the following values.

Hex F1 - If the result of the test matches the
corresponding indicator option

Hex FO - If the result of the test does not match
the corresponding indicator option.

If no branch options are specified, instruction execution
proceeds to the next instruction. If operand 1 is null and
neither the branch or indicator form is used, an invalid
operand type exception is signaled.

7-22

The format for the available authority template
(operand 1) is as follows: (1 = authorized)

• Authorization template
Object control
Object management
Authorized pointer
Space authority
Retrieve
Insert
Delete
Update
Ownership (1 = yes)
Reserved (binary 0)

Char(2)
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bits 9-15

The format for the required authority template
(operand 3) is as follows: (1 = authorized)

• Authorization template
Object control
Object management
Authorized pointer
Space authority
Retrieve
Insert
Delete
Update
Ownership (1 = yes)
Reserved (binary 0)
Test option
o All of the above authorities

must be present.
Anyone or more of the above
authorities must be present.

Char(2)
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bits 9-14
Bit 15

The authority available to the process is accumulated
from the following sources:

• Authority stored in the operand 2 system pointer

• Public authority to the object

• Process user profile and adopted user profiles
Private authorization held by these user profiles
Ownership, if any, if one of these user profiles
owns the object
All authorities implied by all object special
authority in any of these profiles

This instruction will tolerate a damaged object Exceptions

referenced by operand 2 when the reference is a

resolved pointer. The instruction will not tolerate Operands

damaged contexts or programs when resolving pointers.
Exception 1 2 3 Other

Damaged user profiles contribute no authority to the 06 Addressing
process and are ignored. 01 Space addressing violation X X X

02 Boundary alignment X X X
03 Range X X X

Resultant Conditions: 08 Argument/ Parameter
01 Parameter reference violation X X X

· Required authority is available. Bin 0100 OA Authorization
01 Unauthorized for operation X

· Required authority is not available. Bin 1100 10 Damage Encountered
02 Machine context damage state X

04 System object damage state X X X X
44 Partial system object damage X X X X

Authorization Required 1A Lock State
01 Invalid lock state X

· Retrieve 1C Machine-Dependent Exception
- Contexts referenced for address resolution 03 Machine storage limit exceeded X

20 Machine Support
02 Machine check X

Lock Enforcement 03 Function check X

22 Object Access

Materialize 01 Object not found X X X ·
Contexts referenced for address resolution

02 Object destroyed X X X -
24 Pointer Specification

01 Pointer does not exist X X X
02 Pointer type invalid X X X

Events 2A Program Creation
05 Invalid op code extender field X

0002 Authorization 06 Invalid operand type X X X X

0101 Object authorization violation 07 Invalid operand attribute X X X

09 Invalid branch target operand X

OOOC Machine resource OC Invalid operand ODT reference X X X X

0201 Machine auxiliary storage threshold exceeded 2C Program Execution
04 Invalid branch target X

0010 Process
32 Scalar Specification

01 Scalar type invalid X X X
0701 Maximum processor time exceeded

03 Scalar value invalid X
0801 Process storage limit exceeded

0016 Machine observation

0101 Instruction reference

0017 Damage set

0201 Machine context damage set

0401 System object damage set

0801 Partial system object damage set

Authorization Management Instructions 7-23

TRANSFER OWNERSHIP (XFRO)

Op Code
(hex)

01A2

Operand
1

User
profile

Operand
2

System
object

Operand 1: System pointer.

Operand 2: System pointer.

Description: The ownership of a system object (operand
2) is transferred to the user profile (operand 1). A user
profile with all object authority may always transfer
ownership of an object. If a program which adopts a
user profile is being transferred, all object authority is
required. After ownership is transferred, the former
owning user profile retains the private object authorities
it had before the transfer. The new owner is implicitly
granted all of the object authorities to the transferred
object. All other user profile authorities are unchanged
as a result of this instruction.

An attempt to transfer ownership of a temporary object
causes the object ineligible for operation exception to be
signaled.

Authorization Required

• Object control
- Operand 2

• Retrieve
- Contexts referenced for address resolution

• Delete
- User profile owning operand 2

• Insert
- Operand 1

7-24

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Modify
Operand 1
Operand 2
User profile owning the object referenced by
operand 2

Events

OOOF Ownership
0101 Ownership changed

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 Other

02 Access Group

02 Object exceeds available space X

06 Addressing

01 Space addressing violation X X
02 Boundary alignment X X

03 Range X X

08 Argument/Parameter

01 Parameter reference violation X X

OA Authorization

01 Unauthorized for operation X X

10 Damage Encountered

02 Machine context damage state X
04 System object damage state X X X
44 Partial system object damage X X X

1 A Lock State

01 Invalid lock state X X

1C Machine-Dependent Exception

03 Machine storage limit exceeded X
04 Object storage limit exceeded X

20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X
02 Pointer type invalid X X

03 Pointer addressing invalid object X
2A Program Creation

06 Invalid operand type X X

07 Invalid operand attribute X X
08 Invalid operand value range X X
OC Invalid operand ODT reference X X

Authorization Management Instructions 7-25

7-26

Chapter 8. Program Management Instructions

This chapter describes all instructions used for program
management. These instructions are in alphabetic order.
For an alphabetic summary of all the instructions, see
Appendix B. Instruction Summary.

CREATE PROGRAM (CRTPG)

Op Code Operand Operand
(hex) 1 2

023A Program Program
Template

Operand 1: System pointer.

Operand 2: Space pointer.

Description: A program is created from the program
template (operand 2), and a system pointer to the
created program is returned in operand 1.

The program template (operand 2) has the following
format:

• Control information
Template size specification
Number of bytes provided
Number of bytes available
for materialization (used only
when the program is materialized)

Program identification
Type
Subtype
Name

Char(8)
Bin(4)
Bin(4)*

Char(32)
Char(1)*
Char(1)
Char(30)

Program creation options
Existence attributes

o = Temporary
1 = Permanent

Space attribute
o = Fixed-length
1 = Variable-length

Char(4)
Bit 0

Bit 1

Initial context Bit 2
o Do not insert addressability

into context.
Insert addressability
into context.

Access group
o Do not create as a member

of an access group.
Create as a member of
an access group.

Reserved (binary 0)
Reserved (binary 0)
Size of space
Initial value of space
Performance class
Space alignment
o = The space associated with

the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space. If
no space is specified for
the object, a zero value
must be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align
ments within the the space.

Bit 3

Bits 4-31
Char(4)
Bin(4)
Char(1)
Char(4)
Bit 0

Reserved (binary 0) Bits 1-4
Main storage pool selection Bit 5
o Process default main storage

pool is used for object.
Machine default main storage
pool is used for object.

Program Management Instructions 8-1

8-2

Transient storage pool selection
a = Default main storage pool

(process default or machine
default as specified for main
storage pool selection) is used
for object.

1 = Transient storage pool is used
for object.

Block transfer on implicit
access state modification
a = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

Reserved (binary 0)
Reserved (binary 0)
Context

Access group

Program attributes
Adopted user profile

a No adoption of user profile
1 :::: Adopt program owner's

user profile on invocation.
Array constraint

a = Arrays are constrained.
1 = Arrays are not constrained.

String constraint
a = Strings are constrained.
1 = Strings are not constrained.

User exit
a = Not allowed as user exit
1 = Allowed as user exit

Adopted user profile propagation
a = Adopted user profile

authorities are not
propagated to external
invocations.
Adopted user profile
authorities are propagated
to all subinvocations.

Bit 6

Bit 7

Bits 8-31
Char(7)
System
pointer
System
pointer
Char(2)
Bit a

Bit 1

Bit 2

Bit 3*

Bit 4

Static storage
a Initialize storage to

binary O.
Do not initialize storage
to binary O.

Automatic storage
a Initialize storage to

binary O.
Do not initialize storage
to binary O.

Reserved (binary 0)
Optimization options
Hex 00 = No optimization
Hex 80 = Optimization
Observation attributes
Hex 00 Program data cannot

be materialized
Hex FC Program data can

be materialized
Size of static storage
Size of automatic storage
Number of instructions
Number of ODV entries
Offset (in bytes) from beginning
of template to the instruction
stream component
Offset (in bytes) from beginning of
template to the ODV component
Offset (in bytes) from beginning of
template to the OES component
User data part 3
Length of data part 1
Offset (in bytes) from beginning of
template to the user data part 1
User data part 4
Length of user data part 2
Offset (in bytes) from beginning of
template to the user data part 2
Offset (in bytes) from beginning of
template to the object mapping
table (OMT) component

• Program data
Instruction stream component
ODV component
OES component

• User data parts 1 and 2

• Object mapping table*

Bit 5

Bit 6

Bits 7-15
Char(1)

Char(1)

Bin(4)
Bin(4)
Bin(2)
Bin(2)
Bin(4)

Bin(4)

Bin(4)

Char(4)
Bin(4)
Bin(4)

Char(4)
Bin(4)
Bin(4)

Bin(4)*

Note: The value associated with the template entry
annotated with an asterisk (*) is ignored by the
instruction.

The template identified by operand 2 must be 16-byte
aligned.

If the created object is permanent, it is owned by the
user profile governing process execution. The owning
user profile is implicitly assigned all private authority
states for the object. The storage occupied by the
created object is charged to this owning user profile. If
the created object is temporary, there is no owning user
profile, and all authority states are assigned as public.
Storage occupied by the created context is charged to
the creating process.

The existence attribute specifies whether the object is to
be temporary or permanent. A temporary program
object, if not explicitly destroyed by. the user,· is implicitly
destroyed by the machine when machine processing is
terminated. A permanent program object exists in the
machine until explicitly destroyed by the user.

The program identification specifies the symbolic name
that identifies the program within the machine. A type
code of hex 02 is implicitly supplied by the machine.
The program identification is used to identify the
program on materialize instructions as well as to locate
the program in the context that addresses it.

A space may be associated with the created program.
The space may be fixed or variable in size. The initial
allocation is as specified in the size of space entry. The
machine allocates a space of at least the size specified.
The actual size allocated depends on an algorithm
defined for a specific implementation. A fixed size
space of zero length causes no space to be allocated.

Each byte of the space is initialized to the value
specified by the initial value of space entry. When the
space is extended, this byte value is also used to
initialize the new allocation. If no space is allocated, this
value is ignored.

If the initial context creation attribute entry indicates that
addressability is to be inserted into a context, the
context entry must contain a system pointer that
identifies a context where addressability to the newly
created program is to be placed. Addressabilityis
inserted into the context based on the object
identification (type, subtype, and name). If addressability
is not to be inserted into a context, the context entry is
ignored.

If the access group creation attribute entry indicates that
the object is to be created in an access group, the
access group entry must contain a system pointer that
identifies an access group in which the object is to be
created. The existence attribute of the object must be
temporary because access groups are temporary objects.
If the object is not to be created in an access group, the
access group entry is ignored.

The performance class parameter provides information
that allows the machine to more effectively manage the
program by considering overall performance objectives
of operations involving the program.

The order and location of the program data and the user
defined data in the template are established by the
control information parameters. The entries in the
parameter need not be contiguous, but the number of
bytes provided entry must include any unused bytes
between entries.

The size of static storage entry consists of a 4-byte
binary value that defines the total amount of static
storage required for this program's static data. A value
of 0 indicates that the amount of static storage required
is to be calculated by the Create Program instruction
based upon the amount of static data specified for the
program. A value greater than 0 specifies the amount of
static storage required, and that value must be sufficient
to provide for the amount of static data specified for the
program. If it is not, a create program exception is
signaled.

The size of automatic storage entry consists of a 4-byte
binary value that defines the total amount of automatic
storage required for this program's automatic data. A
value of 0 indicates that the amount of automatic
storage required is to be calculated by the Create
Program instruction based upon the amount of
automatic data specified for the program. A value
greater than 0 specifies the amount of automatic storage
required, and that value must be sufficient to provide for
the amount of automatic data specified for the program.
If it is not, a create program exception is signaled.

Program Management Instructions 8-3

The ODV (object definition vector) component consists
of a 4-byte binary value that defines the total length of
the ODV and a variable-length vector of 4-byte entries.
Each entry describes a program object either by a
complete description or through an offset into the OES
(object entry string) to a location that contains a
description. If no program objects are defined, the ODV
can be omitted, and its absence is noted with a value of
o in the offset to ODV component entry. The ODV is
required if the OES is present.

The OES consists of a 4-byte binary value that defines
the total length of the OES and a series of
variable-length entries that are used to complete an
object description. Entries in the ODV contain offsets
into the OES. The OES is optional, and its absence is
indicated with a value of 0 in the offset to OES
component entry.

The format of the ODT (object definition table) (ODV
and OES) is defined in Chapter 22. Program Object
Specifications.

The instruction stream component consists of a 4-byte
binary value that defines the total length of the
instruction stream component and a variable-length
vector of 2-byte entries that defines the instruction
stream. The 2-byte entries define instruction operation
codes, instruction operation code extenders, or
instruction operands.

The format of the instructions is defined in Chapter 1.
Introduction. The instruction stream component is
optional (that is, instructions need not be defined), and
its absence is indicated by a value of 0 in the offset to
instruction stream component entry. If the instruction
stream is not present, an End instruction is assumed
and, should the program be executed, an immediate
Return External instruction results.

The user data components can be used by compilers to
relate high-level language statement numbers to
instruction numbers and high-level language names to
ODT numbers. The format of the user data components
is defined by the user.

If the observation attribute is specified, the program
data in the program template is available through the
Materialize Program instruction.

8-4

Less storage is used by the program when the program
is created without the capability to materialize. If the
program is created without the capability to materialize,
the program data (instruction stream, ODV, OES, break
offset mapping table, symbol table, and object mapping
table components) cannot be materialized by the
Materialize Program instruction.

If the adopted user profile attribute is specified, any
reference to a system object from an invocation of this
program uses the user profile of the owner of this
program and other sources of authority to determine the
authorization to system objects, privileged instructions,
ownership rights, and all authorizations. If the adopted
user profile propagation attribute is specified, then the
authorities available from the adopted user profile are
available to any further invocations while this program is
invoked. If the adopted user profile propagation
attribute is not specified, then the authorities available to
the program's owning user profile are not available to
further subinvocations and are available only to this
invocation. These attributes do not affect the
propagation of authority from higher existing
invocations. The adopted user profile propagation
attribute must not be specified if this program does not
have the adopted user profile specified; otherwise, a
template value invalid exception is signaled.

If constrainment (string or array) is not specified, the
references are assumed to be within the defined bounds
of the array or string. No execution time checks are
performed to ensure this is the case. However, if the
reference is outside the defined bounds, unpredictable
results may occur. There may be Significant savings in
performance if constrainment is not specified.

The user exit attribute is ignored when the program is
created, but is an attribute that can be materialized by
specifying that the program is allowed to be referenced
as a user exit program.

When a new invocation or activation for a program is
allocated, the automatic or static storage areas are
initialized to binary 0' s. The overhead for this service
can be eliminated with two program attribute options
which specify that this initialization is not to be done for
this program.

The object mapping table is a component constructed
by the machine and is available through the Materialize
Program instruction. It describes the location of pointers
and scalars that are defined in the program. See the
Materialize Program instruction for a description of this
component.

Whenever a new invocation or activation is allocated, Exceptions

the automatic or static storage areas are initialized to

bytes of binary O's, respectively. The static storage and Operands

automatic storage program attributes control this default
Exception 1 2 Other

initialization. There is a significant performance 02 Access Group
advantage when these areas are not initialized by 01 Object ineligible for access group X
default. However, initial values specified for individual 06 Addressing
data objects are still set. 01 Space addressing violation X X

02 Boundary alignment X X
03 Range X X

Authorization Required 08 Argument/ Parameter
01 Parameter reference violation X X

Insert OA Authorization ·
User profile of creating process

01 Unauthorized for operation X
OE Context Operation

- Context identified by operand 2
01 Duplicate object identification X

10 Damage Encountered

· Retrieve 04 System object damage state X X X
- Contexts referenced for address resolution 44 Partial system object damage X X X

lA Lock State
01 Invalid lock state X

Lock Enforcement lC Machine-Dependent Exception
02 Program limitation exceeded X

· Materialize 03 Machine storage limit exceeded X X

Contexts referenced for address resolution 04 Object storage limit exceeded X -
20 Machine Support

02 Machine check X · Modify 03 Function check X
User profile of creating process 22 Object Access
Context identified by operand 2 01 Object not found X X
Access group identified by operand 2 02 Object destroyed X X

03 Object suspended X X
24 Pointer Specification

Events 01 Pointer does not exist X X
02 Pointer type invalid X X

0002 Authorization 03 Pointer addressing invalid object X

0101 Object authorization violation 2A Program Creation
01 Program header invalid X
02 ODT syntax error X

OOOC Machine resource
03 ODT relation error X

0201 Machine auxiliary storage threshold exceeded 04 Operation code invalid X
05 Invalid op code extender field X

0010 Process 06 Invalid operand type X X
0701 Maximum processor time exceeded 07 Invalid operand attribute X X
0801 Process storage limit exceeded 08 Invalid operand value range X X

09 Invalid branch target operand X

0016 Machine observation OA Invalid operand length X

0101 Instruction reference OB Invalid number of operands X
OC Invalid operand ODT reference X X

0017 Damage set
2E Resource Control Limit

01 User profile storage limit X
0401 System object exceeded
0801 Partial system object damage set 38 Template Specification

01 Template value invalid X
02 Template size invalid X

Program Management Instructions 8-5

DELETE PROGRAM OBSERVABILITY (DELPGOBS)

Op Code Operand 1
(hex)

0211 Program

Operand 1: System pointer.

Description: The instruction eliminates the capability to
materialize the components, other than the control
information component, of the program template
associated with the program identified by operand 1.
After deleting observability, only the control information
component of the program template can be materialized.

In general, the instruction causes the amount of storage
used by the referenced program to be decreased. The
amount of storage released is equal to the size of the
program template and all of its components.

Authorization Required

• Object Control
- Operand 1

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Object Control
- Operand 1

8-6

Events

0002 Authorization
. 0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing
01 Space addressing violation
02 Boundary alignment
03 Range

08 Argument/ Parameter
01 Parameter reference violation

OA Authorization
01 Unauthorized for operation

10 Damage Encountered
04 System object damage state
44 Partial system object damage

1A Lock State
01 Invalid lock state

1C Machine- Dependent Exception
03 Machine storage limit exceeded

20 Machine Support
02 Machine check
03 Function check

22 Object Access
01 Object not found
02 Object destroyed
03 Object suspended

24 Pointer Specification
01 Pointer does not exist
02 Pointer type invalid
03 Pointer addressing invalid object

2A Program Creation
06 Invalid operand type
07 Invalid operand attribute
08 Invalid operand value range
OA Invalid operand length
OC Invalid operand ODT reference

Operand
1

X
X
X

X

X

X

X

X

X
X
X

X
X
X

X

X
X

X
X

Other

X
X

X

X
X

DESTROY PROGRAM (DESPG)

Op Code Operand 1
(hex)

0221 Program

Operand 1: System pointer.

Description: The program referenced by the system
pointer specified by operand 1 is destroyed. The
program's identification is deleted from the context
currently addressing the object if it is addressed by a
context. The system pointer identified by operand 1 is
not modified by the instruction. Any subsequent
reference to the destroyed object through the pointer
causes the object destroyed exception.

If the referenced program is currently activated in some
process, an attempt to invoke the program causes the
object destroyed exception to be signaled. If the
referenced program is currently invoked in some
process, execution of the next instruction in the program
causes the object destroyed exception. Any use of an
unresolved pointer that has its initial value specified by
this referenced program causes an object destroyed
exception.

Authorization Required

• Object control
- Operand 1

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

• Object control
- Operand 1

• Modify
Access group containing operand 1
Context which addresses operand 1
User profile owning operand 1

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operand
Exception 1 Other

06 Addressing
01 Space addressing violation X
02 Boundary alignment X
03 Range X

08 Argument/ Parameter
01 Parameter reference violation X

OA Authorization

01 Unauthorized for operation X
10 Damage Encountered

04 System object damage state X X
44 Partial system object damage X X

1A Lock State
01 Invalid lock state X

1C Machine-Dependent Exception
03 Machine storage limit exceeded X

20 Machine Support
02 Machine check X
03 Function check X

22 Object Access
01 Object not found X
02 Object destroyed X
03 Object suspended X

24 Pointer Specification

01 Pointer does not exist X
02 Pointer type invalid X
03 Pointer addressing invalid object X

2A Program Creation
06 Invalid operand type X
07 Invalid operand attribute X
08 Invalid operand value range X
OC Invalid operand ODT reference X

Program Management Instructions 8-7

MATERIALIZE PROGRAM (MATPG)

Op Code
(hex)

0232

Operand
1

Attribute
receiver

Operand
2

Program

Operand 1: Space pointer.

Operand 2: System pOinter.

Description: The program identified by operand 2 is
materialized into the template identified by operand 1.

Operand 2 is a system pointer that identifies the
program to be materialized. The format of the
materialization is identical to the program template
identified on the Create Program instruction. The values
in the materialization relate to the current attributes of
the materialized program. Components of the program
template, other than the control information component,
may not be available for materialization because they
were removed by the Delete Program Observability
instruction or because they were absent from the Create
Program instruction.

The template identified by operand 1 must be 16-byte
aligned.

The first 4 bytes of the materialization template identify
the total number of bytes in the template. This value is
supplied as input to the instruction and is not modified.
A value of less than 8 causes the materialization length
exception to be signaled.

The second 4 bytes of the materialization template are
modified by the instruction to contain a value identifying
the template size required to provide for the total
number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified by the receiver. If the
byte area identified by the receiver is greater than that
required to contain the. information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the
event that the receiver contains insufficient area for the
materialization.

8-8

The following attributes apply to the materialization of a
program:

• The existence attribute indicates whether the program
is temporary or permanent.

• The observation attribute entry specifies the template
components of the programs that currently can be
materialized.

• If the program has an associated space, then the
space attribute is set to indicate either fixed- or
variable-length; the initial value for the space is
returned in the initial value of space entry, and the
size of space entry is set to the current size value of
the space. If the program has no associated space,
the size of space entry is set to a zero value, and the
space attribute and initial value of space entry values
are meaningless.

• If the program is addressed by a context, then the
context addressability attribute is set to indicate this,
and a system pointer to the addressing context is
returned in the context entry. If the program is not
addressed by a context, then the context
addressability attribute is set to indicate this, and
binary 0' s are returned in the context entry.

• If the program is a member of an access group, then
the access group attribute is set to indicate this, and
a system pointer to the access group is returned in
the access group entry. If the program is not a
member of an access group, then the access group
attribute is set to indicate this, and binary D's are
returned in the access group entry.

• The performance class entry is set to reflect the
performance class information associated with· the
program.

• The user exit attribute defines if the referenced
program is allowed to be used as a user exit
program.

The program data cannot be materialized if a Delete
Program Observabi!ity instruction has been issued for
this program. If the program was created with an
observation attribute that cannot be materialized, the
program data (instruction stream, ODV, OES, user data,
and object mapping table components) cannot be
materialized by this instruction. If the program data
cannot be materialized, 0' s are placed in the fields of
the program template that describe the size and offsets
to the program data components. The only information
that can be materialized is that part of the program
template up to and including the offset to the OMT
(object mapping template) entry.

The offset to the OMT component entry specifies the
location of the OMT component in the materialized
program template. The OMT consists of a
variable-length vector of 6-byte entries. The number of
entries is identical to the number of ODV entries
because there is one OMT entry for each ODV entry.
The OMT entries correspond one for one with the ODV
entries; each OMT entry gives a location mapping for
the object defined by its associated ODV entry.

The following describes the formats for an OMT entry:

• OMT entry
Addressability type

Char(6)
Char(1)

Hex 00 = Base addressability
is from the start of

Hex 01

Hex 02

Hex 03

Hex 04

Hex FF

the static storage
area.
Base addressability is
from the start of the
automatic storage area.
Base addressability is
from the start of the
storage area addressed
by a space pointer.
Base addressability is
from the start of the
storage area of a
parameter.
Base addressability is
from the start of the
storage area addressed
by the space pointer
found in the process
communication object
attribute of the process
executing the program.
Base addressability not
provided. The object is
contained in machine
storage areas to which
addressability cannot be
given, or a parameter has
addressability to an object
that is in the storage of
another program.

Offset from base Char(3)
For types hex 00, hex 01, hex 02,
hex 03, and hex 04, this is a 3-byte
logical binary value representing
the offset to the object from the
base addressability. For type hex FF,
the value is binary O.
Base addressability Bin(2)
For types hex 02 and hex 03,
this is a 2-byte binary field
containing the number of the
OMT entry for the space pointer
or a parameter that provides
base addressability for this
object. For types hex 00, hex 01,
hex 04, and hex FF, the value
is binary O.

Program Management Instructions 8-9

Authorization Required Exceptions

. Retrieve Operands
Operand 2 Exception 1 2 Other

- Contexts referenced for address resolution
06 Addressing

01 Space addressing violation X X

Lock Enforcennent 02 Boundary alignment X X
03 Range X X . Materialize 08 Argument/ Parameter

Operand 2 01 Parameter reference violation X X

- Contexts referenced for address resolution OA Authorization

01 Unauthorized for operation X
10 Damage Encountered

Events 04 System object damage state X X X

44 Partial system object damage X X X

0002 Authorization 1A Lock State

0101 Object authorization violation 01 Invalid lock state X

1C Machine-Dependent Exception

OOOC Machine resource 03 Machine storage limit exceeded X

0201 Machine auxiliary storage threshold exceeded 20 Machine Support

02 Machine check X

0010 Process 03 Function check X

0701 Maximum processor time exceeded 22 Object Access

0801 Process storage limit exceeded 01 Object not found X X

02 Object destroyed X X

0016 Machine observation 03 Object suspended X X

0101 Instruction reference 24 Pointer Specification

01 Pointer does not exist X X

0017 Damage set 02 Pointer type invalid X X

0401 System object damage set 03 Pointer addressing invalid object X

0801 Partial system object damage set 2A Program Creation

06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X
OA Invalid operand length X
OC Invalid operand ODT reference X

38 Template Specification

03 Materialization length exception X

8-10

This chapter describes the instructions used for program
execution control. These instructions are in alphabetic
order. For an alphabetic summary of all the instructions,
see Appendix S. Instruction Summary.

ACTIVATE PROGRAM (ACTPG)

Op Code Operand Operand
(hex) 1 2

0212 Program Program
or program
activation
entry

Operand 1: Space pointer or system pointer.

Operand 2: System pointer.

Description: This instruction allocates and initializes
storage for static objects that are declared for a
specified program within the executing process. The
program identified by operand 2 is activated in the
executing process. The program is activated by
allocating an area in the PSSA (process static storage
area) to contain the program static storage. This static
storage is then available each time the program is
invoked within the process. The pointer object specified
by operand 1 receives a space pointer addressing the
activation of the referenced program. The activation
consists of storage for the Program's static objects as
well as a system pointer to the associated program, a
space pointer to the next activation entry (if one exists)
in the PSSA, a space pointer to the preceding activation
entry in the PSSA, and attributes specifying the status
of the activation.

Chapter 9. Program Execution Instructions

Each activation entry in the PSSA is 16-byte aligned
and has the following format:

• Previous activation entry pointer
(the first activation entry locates
the PSSA base entry)

• Next activation entry pointer
(undefined if this activation is
last in the PSSA chain)

• Associated program pointer

• Activation number

• Activation attributes
Activation status
o = Not currently active
1 = Currently active
Reserved (binary 0)

• Reserved (binary 0)

• I nvocation count

• Activation mark

• Length of this PSSA entry

• Program static storage

Space
pointer

Space
pointer

System
poii,ter

Bin(2)

Char(2)
Bit 0

Bits 1-15

Char(2)

Bin(2)

Bin(4)

Bin(4)

Char(*)

Program Execution Instructions 9-1

The PSSA is located by a space pointer specified when
the process was initiated. The location identified by the
space pointer is considered to be the beginning of the
PSSA and must be l6-byte aligned. At this location is a
96-byte PSSA base entry that consists of the following:

• Last activation entry in process PSSA Space
chain (addresses the base entry if no pointer
programs are activated)

. • First activation entry in process Space
(ignored if no programs are activated) pointer

• Next available storage location
in current space containing PSSA

• Reserved

• PSSA control
Chain being modified
o = Chain not being modified
1 = Chain being modified
Chain was modified.
o = Chain was not modified.
1 = Chain was modified.
Reserved (binary 0)

• Reserved (binary 0)

Space
pointer

Char(16)

Char(l)
Bit 0

Bit 1

Bits 2-7

Char(3l)

The user must properly initialize the PSSA base entry
before the first program is activated in the process.

A space pointer locating the PSSA can be materialized
using the Materialize Process instruction.

If the chain being modified bit is on and an attempt is
made to activate or de-activate a program with static
storage, a stack control invalid exception is signaled.

9-2

The program is activated by allocating an area in the
PSSA space sufficient to contain the activation entry.
The area used for allocating the first activation in a
space is located by the next available storage location
pointer in the PSSA base entry; otherwise, this pointer
locates the first free byte after all activation entries in
the space. This pointer must address a l6-byte aligned
area in the space, or a boundary alignment exception is
signaled. The pointer may be set to address beyond the
currently allocated storage in the space, which is
implicitly extended, and no exception is signaled. If the
space is not currently large enough to contain the entry
and if it is extendable, it is implicitly extended by the
machine. The owner's authority to the space is included
with the authority of the extending process when
checking for object management authority when the
space is extended. If the space is of a fixed size or
cannot be extended to contain the entry, a space
extension truncation exception is signaled.

The new activation entry is initialized as follows:

• The previous activation entry pointer is copied from
the most recent activation entry in the PSSA base
entry.

• The next activation entry pointer field is unchanged
by the instruction (the last activation is process
pointer in the PSSA base entry specifies the last
activation on the chain).

• The associated program pointer is copied from the
operand 2 system pointer.

• The activation number is set to a value one greater
than the activation number entry in the previous
activation.

• The activation is marked as active (the activation
status is set to binary 1).

• The invocation count is set to O.

• The activation mark is obtained by incrementing the
mark counter field in the PSSA base entry by one
and copying the resulting value.

• The length field is set to the number of bytes of
storage occupied by the PSSA header and the static
data following it.

• The reserved fields are set to binary O.

A space pointer addressing the new activation entry is
stored in the last activation entry pointer of the PSSA
base entry, and the next available storage location in the
PSSA base entry is set to address the next available
16-byte aligned area beyond the new activation entry.

If the referenced program's activation already exists
within the process PSSA chain when the Activate
Program instruction is executed, the program's static
storage is reused if the activation was active, and may
or may not be reused if the activation was inactive. In
either case, the storage is reinitialized, the activation is
set to the active state, and the operand 1 space pointer
is set to the reinitialized activation. No chain pointers
are modified, and the activation entry remains at the
same relative location in the chain of PSSA entries.

When a new activation is allocated or an existing
inactive allocation is reactivated, the mark counter in the
PAS A (process automatic storage area) base entry is
incremented by 1 and the resulting value is copied to
the active mark field of the activation. If an attempt is
made to activate an already active activation, the
activation mark and mark counter fields are not updated.

When a new activation is allocated, space occupied by
other activations in the inactive state may be used for
the new activation. The current PSSA space is the
space located by the next available location pointer
within the PSSA base entry.

PSSA entries that have all the following conditions are
removed from the PSSA chain:

• Inactive

• Reside in the current PSSA space

• Have an invocation count of D

• Have no active activations or activations with a
nonzero invocation count at a higher address in the
current PSSA space

• Appear as the last entries in the linked PSSA chain

The new activation is placed at the lowest address
within the current PSSA space that is higher than both
the address of any activation in the chain which is in the
current PSSA space and the address of any unallocated
space between previously existing noncontiguous
activations. If no previous activations remain in the
current PSSA space (after being removed under the
above conditions), the new activation is placed at the
lowest address (in the current PSSA space) of the
removed activations. If no previous activations existed in
the current PSSA space, the next available location
pointer in the PSSA base entry specifies the location
where the new activation is to be allocated.

If the program addressed by the operand 2 system
pointer addresses a program that requires no static
storage, no activation entry is allocated, and the operand
2 system pointer is copied to the operand 1 pointer.

Authorization Required

• Operational
- Program referenced by operand 2

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

DOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Program Execution Instructions 9-3

Exceptions CALL EXTERNAL (CALLX)

Operands Op Code Operand Operand Operand
Exception 1 2 Other (hex) 1 2 3

06 Addressing 0283 Program Argument Return
01 Space addressing violation X X list list
02 Boundary alignment X X
03 Range X X Operand 1: System pointer.

OA Authorization

01 Unauthorized for operation X
Operand 2: Operand list or null.

10 Damage Encountered
Operand 3: Instruction definition li~t or null.

04 System object damage state X X X
44 Partial system object state X X X

1A Lock State
Description: The instruction preserves the calling

01 Invalid lock state X
invocation and causes control to be passed to the

1C Machine-Dependent Exception
external entry point of the program specified by

03 Machine storage limit exceeded X
operand 1. Operand 1 is a system pointer addressing

20 Machine Support
the program that is to receive control.

02 Machine check X
03 Function check X

The instruction ensures that the program is properly
22 Object Access

activated in the process, if required. The following
01 Object not found X X

conditions are allowed:
02 Object destroyed X X
03 Object suspended X X . If the referenced program requires no static storage,

24 Pointer Specification
the program is invoked, and no activation is created.

01 Pointer does not exist X
02 Pointer type invalid X X

If operand 1 is a system pointer to a program that
03 Pointer addressing invalid object X

requires static storage, the program is implicitly
2A Program Creation

activated. The chain of activation entries located by
06 Invalid operand type X X

the PSSA (process static storage area) is searched for
07 Invalid operand attribute X X

an entry for the referenced program. If an entry is
08 Invalid operand value range X X

located that is not active, it is set to the active state,
OC Invalid operand ODT reference X X

and the static storage is reinitialized based on the
2C Program Exception

program definition. If no activated entry exists for the
03 Stack control invalid X

program, a new entry is allocated and initialized. See
36 Space Management

the Activate Program instruction for a definition of
01 Space extension/truncation X

this function. The activation mark value for a newly

created activation will be the same as the invocation

mark value described later.

9-4

After any needed static storage has been allocated or
located, automatic storage is allocated and initialized for
the newly invoked program. The automatic storage is
obtained from the PASA (process automatic storage
area).

Each invocation entry in the PASA is 16-byte aligned
and has the following format:

• Previous invocation entry pointer
(the first invocation entry
addresses the PASA base entry)

• Next invocation entry pointer
(not defined for the current
invocation entry)

• Associated program pointer (0 for
data base select/omit program)

• Invocation attributes
Invocation number
I nvocation type

. Hex 00 Data base select/ omit

Hex 01
Hex 02
Hex 03
Hex 04

Hex 05

Hex 06

Hex 07

program
Call external
Transfer control
Event handler
External exception
handler
Initial program in
process problem state
Initial program in
process initiation state
Initial program in
process termination
state

Reserved (initialized to binary 0)
Invocation mark

• User area

• Program's automatic storage

Space
pointer

Space
pointer

System
pointer

Char(8)
Bin(2)
Char(1)

Char(1)
Bin(4)

Char(8)

Char(*)

The PASA is located by a space pointer specified when
the process is initiated. The location identified by the
space pointer is considered to be the beginning of the
PASA and must be 16-byte aligned. At this location is
a 64-byte PASA header entry that consists of the
following:

• Current invocation entry in process
(if no programs are invoked, this
pointer must address the PAS A
base entry)

• First invocation entry in process
(ignored if no programs are invoked)

• Next available storage location

• Reserved

• Reserved (binary 0)

• Mark counter

• Reserved (binary 0)

Space
pointer

Space
pointer

Space
pointer

Char(16)

Char(12)

Bin(4)

Char(16)

The PASA base entry must be initialized by the user
before the process is initiated.

A space pointer locating the PASA can be materialized
by using the Materialize Process instruction.

The program is invoked by allocating an area in the
PASA space sufficient to contain the invocation entry.
The area used for allocation is located by the next
available storage location pointer in the PASA base
entry. This pointer must address a 16-byte aligned area
in the space, or a boundary alignment exception is
signaled. If the space is not currently large enough to
contain the entry and if it is extendable, it is implicitly
extended by the machine. The owner's authority to the
space is included with the authority of the process when
checking for object management authority when the
space is extended. If the space is of a fixed size or
cannot be extended enough to contain the entry, a
space extension/truncation exception is signaled.

Program Execution Instructions· 9-5

The new invocation entry is updated as follows:

• The previous invocation entry pointer is copied from
the most recent invocation entry in the PASA base
entry. This pointer locates the calling invocation
entry.

• The next invocation entry is not modified.

• The associated program pointer is copied from the
operand 1 system pointer.

• The invocation number is incremented by 1 beyond
that in the calling invocation. The first invocation in
the current process state has an invocation number
of 1.'

• The invocation type value is set to hex 01 to indicate
how the program was invoked.

• The mark counter in the PASA base entry is
incremented by 1 and the new value is copied to the
invocation mark field.

• The user area field is set to binary O.

• The program's automatic storage is initialized as
defined in the program definition.

• The invocation count, if any, in the associated
activation is incremented by 1.

A space pointer (addressing the new invocation entry) is
stored in the next invocation entry pointer of the
invoking invocation.

A space pointer (addressing the new invocation entry) is
stored in the current invocation entry pointer of the
PASA base entry, and the next available storage location
in the PASA base entry is set to address the next
available 16-byte aligned area beyond the new
invocation entry.

A program with no automatic data has a PASA entry
created for it. The created PASA entry consists of only
a stack control entry.

The user defines the invocation attribute entry. This
entry is not used after the program is initialized.

Following the allocation and initialization of the
invocation entry, control is passed to the invoked
program.

9-6

Operand 2 specifies an operand list that identifies the
arguments to be passed to the invocation entry to be
called. If operand 2 is nUll, no arguments are passed by
the instruction. A parameter list length exception is
signaled if the number of arguments passed does not
correspond t~ the number required by the parameter list
of the target program.

Operand 3 specifies an IDL (instruction definition list)
that identifies the instruction number(s) of alternate
return points within the calling invocation. A Return
External instruction in an invocation immediately
subordinate to the calling invocation can indirectly
reference a specific entry in the IDL to cause a return of
control to the instruction associated with the referenced
IDL entry. If operand 3 is nUll, then the calling
invocation has no alternate return points associated with
the call.

Authorization Required

• Operational
- Program referenced by operand 1

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions CALL INTERNAL (CALLI)

Operands Op Code Operand Operand Operand
Exception 1 2 3 Other (hex) 1 2 3

06 Addressing 0293 Internal Argument Return
01 Space addressing violation X entry list target
02 Boundary alignment X point

03 Range X
08 Argument/ Parameter Operand 1: Internal entry point.

01 Parameter reference violation X
Operand 2: Operand list or null.

02 Parameter list length violation X
OA Authorization Operand 3: Instruction pointer.

01 Unauthorized for operation X
10 Damage Encountered

04 System object damage state X X X X Description: The internal entry point specified by
44 Partial system object damage X X X X operand 1 is located in the same invocation in which the

1A Lock State Call I.nternal instruction is executed. A subinvocation is
01 Invalid lock state X defined, and execution control is transferred to the first

1C Machine-Dependent Exception instruction associated with the internal entry point. The
03 Machine storage limit exceeded X instruction does not cause a new invocation to be

20 Machine Support established. Therefore, there is no allocation of objects,
02 Machine check X and instructions in the subinvocation have access to all
03 Function check X invocation objects.

22 Object Access
01 Object not found X Operand 2 specifies an operand list that identifies the
02 Object destroyed X arguments to be passed to the subinvocation. If
03 Object suspended X operand 2 is nUll, no arguments are passed. After an

24 Pointer Specification argument has been passed on a Call Internal instruction,
01 Pointer does not exist X the corresponding parameter may be referenced. This
02 Pointer type invalid X causes an indirect reference to the storage area located
03 Pointer addressing invalid object X by the argument. This mapping exists until the

2A Program Creation parameter is assigned a new mapping based on a
06 Invalid operand type X X X subsequent Call Internal instruction. A reference to an
07 Invalid operand attribute X internal parameter before its being assigned an
08 Invalid operand value range X argument mapping causes a parameter reference
OC Invalid operand ODT reference X X X violation exception to be signaled.

2C Program Execution
03 Stack control invalid X Operand 3 specifies an instruction pointer that identifies

36 Space Management the pointer into which the machine places addressability
01 Space extension/truncation X to the instruction immediately following the Call Internal

instruction. A branch instruction in the called
subinvocation can directly reference this instruction
pointer to cause control to be passed back to the
instruction immediately following the Call Internal
instruction.

Program Execution Instructions 9-7

Events

0002 Authorization
0101 Object authorization violation

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 3

06 Addressing

01 Space addressing violation X
02 Boundary alignment X
03 Range X

08 Argument/ Parameter

01 Parameter reference violation X
10 Damage Encountered

04 System object damage state X X X
44 Partial system object damage X X X

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

24 Pointer Specification

01 Pointer does not exist X
02 Pointer type invalid X

2A Program Creation

06 Invalid operand type X X X
09 Invalid branch target X
OB Invalid number of operands X

OC Invalid operand ODT reference X X X

9-8

Other

X

X

X

X

X

DE-ACTIVATE PROGRAM (DEACTPG)

Op Code
(hex) Operand 1

0225 Program

Operand 1: System pointer or null.

Description: The instruction locates the activation entry
addressed through operand 1 and marks it as inactive if
the appropriate conditions are satisfied ..

If operand 1 is null, the program issuing the instruction
is to be de-activated. An activation in use by invocation
exception is signaled if the activation entry's invocation
count is not equal to 1.

If operand 1 is a system pointer to a program, then that
program's activation entry is de-activated if its
invocation count is O. Otherwise, an activation in use by
invocation exception is signaled.

In the previous two cases, if the program has no static
storage or no activation, no operation is performed and
n6 exception is signaled.

The activation is de-activated when the activation status
is set to not currently active (0). When the activation is
not active and its invocation count is 0, the storage
occupied by the activation is subject to reuse for
allocating other activations.

If the user de-activates a program by setting the
activation status bit with an instruction other than the
De-activate Program instruction, the following steps
must be taken to ensure proper stack operation:

1. The chain being modified and the chain was
modified bits must be turned on in the PSSA base
entry.

2. The contents and linking of the PSSA chain of
activation headers can be modified as necessary.

3. The chain being modified bit must be turned off.

4. The machine subsequently turns off the chain was
modified bit.

If the chain being modified bit is on and an attempt is
made to activate or de-activate a program with static
storage, a stack control invalid exception is signaled.

Authorization Required Exceptions

. Retrieve Operand
- Contexts referenced for address resolution Exception 1 Other

06 Addressing

Lock Enforcennent 01 Space addressing violation X
02 Boundary alignment X . Materialize 03 Range X

- Contexts referenced for address resolution 08 Argument/ Parameter

01 Parameter reference violation X
OA Authorization

Events 01 Unauthorized for operation X
10 Damage Encountered

0002 Authorization 04 System object damage state X X

0101 Object authorization violation 44 Partial system object damage X X
1A Lock State

OOOC Machine resource 01 Invalid lock state X

0201 Machine auxiliary storage threshold exceeded 20 Machine Support

02 Machine check X

0010 Process 03 Function check X

0701 Maximum processor time exceeded 22 Object Access

0801 Process storage limit exceeded 01 Object not found X
02 Object destroyed X

0016 Machine observation 03 Object suspended X

0101 Instruction reference 24 Pointer Specification

01 Pointer does not exist X

0017 Damage set 02 Pointer type invalid X

0401 System object damage set 03 Pointer addressing invalid object X

0801 Partial system object damage set 2A Program Creation

06 Invalid operand type X
07 Invalid operand attribute X
OA Invalid operand value range X
OC Invalid operand ODT reference X

2C Program Execution

03 Stack control invalid X
05 Activation in use by invocation X

32 Scalar Specification

01 Scalar type invalid X

Program Execution Instructions 9-9

END (END)

Op Code
(hex)

0260

No operands are specified.

Description: The instruction delimits the end of a
program's instruction stream. When this instruction is
encountered in execution, it causes a return to the
preceding invocation (if present) or causes termination of
the process phase if the instruction is executed in the
highest-level invocation for a process. The End
instruction must appear only as the last instruction of a
program; it delineates the end of the instruction stream.
When it is encountered in execution, the instruction
functions as a Return External instruction with a null
operand. Refer to the Return External instruction for a
description of that instruction.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0202 Process terminated
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference
0301 Invocation reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

1 C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

9-10

Other

x

x
X

MODIFY AUTOMATIC STORAGE ALLOCATION
(MODASA)

Op Code
(hex)

02F2

Operand Operand
1 2

Storage Modification
allocation size

Operand 1: Space pointer or null.

Operand 2: Binary scalar.

Description: The size of automatic storage assigned to
the invocation of the currently executing program is
extended or truncated by the size specified by operand
2. A positive value indicates that the storage allocation
is to be extended; a negative value indicates that the
storage allocation is to be truncated. The instruction
also returns addressability of the allocated or deallocated
storage area in the space pointer identified by operand
1. When allocating additional space, the space pointer
locates the first byte of the allocated area. If space is
deallocated, the space pointer locates the first byte of
the deallocated area. If operand 1 is null, the storage is
allocated or deallocated but no addressability is
returned. The space pointer identified by operand 1
always addresses storage that is on a 16-byte
boundary.

This instruction modifies the next available storage
location pointer in the PASA (process automatic storage
area) base entry. If it is necessary to extend the space
containing the PASA because of an extension of the
current invocation, the instruction implicitly extends this
space to contain the additional area.

The owner's authority to the space is included with the Exceptions

authority of the process when a space is extended and
when checked for object management authority. Operands

Exception 1 2 Other

If the space is extended, the new bytes contain the
initial value for the space; otherwise, no initialization is 06 Addressing

done to the allocated area. 01 Space addressing violation X X
02 Boundary alignment X X

A space extension/truncation exception is signaled if the 03 Range X X

space containing the PASA cannot be extended. A 08 Argument/ Parameter

scalar value invalid exception is signaled if truncation 01 Parameter reference violation X X

causes. the next available storage location pointer in the 10 Damage Encountered

PAS A to point to a location that precedes the beginning 04 System object damage state X X X

of the data of the automatic storage entry for the 44 Partial system object damage X X X

executing invocation. 1C Machine-Dependent Exception
03 Machine storage limit exceeded X

The storage allocated with this instruction is not 04 Object storage limit exceeded X

initialized to any value. If implicit space extension 20 Machine Support

occurs, however, the extended portion is initialized to 02 Machine check X

the default value specified for the space when it was 03 Function check X

created. 22 Object Access
01 Object not found X X
02 Object destroyed X X

Events 03 Object suspended X X
24 Pointer Specification

0002 Authorization 01 Pointer does not exist X X

0101 Object authorization violation 02 Pointer type invalid X X
2A Program Creation

OOOC Machine resource 06 Invalid operand type X X

0201 Machine auxiliary storage threshold exceeded 07 Invalid operand attribute X X
08 Invalid operand value range X X

0010 Process OA Invalid operand length X X

0701 Maximum processor time exceeded OC Invalid operand ODT reference X X

0801 Process storage limit exceeded 2C Program Execution
03 Stack control invalid X

0016 Machine observation 32 Scalar Specification

0101 Instruction reference 01 Scalar type invalid X X
02 Scalar attributes invalid X

0017 Damage set 03 Scalar value invalid X

0401 System object damage set 36 Space Management

0801 Partial system object damage set 01 Space extension/truncation X

Program Execution Instructions 9-11

RETURN EXTERNAL (RTX)

Op Code
(hex) Operand 1

02A 1 Return point

Operand 1: Binary (2) scalar or null.

Description: The instruction terminates execution of the
invocation in which the instruction is specified. All
automatic program objects in the invocation are
destroyed by removing the returning program's
automatic storage from the PASA (process automatic
storage area) by the updating of the PASA chaining
pointers.

A Return External instruction can be specified within an
invocation's subinvocation, and no exception is signaled.

If a higher invocation exists in the invocation hierarchy,
the instruction causes execution to resume in the
preceding invocation in the process' invocation hierarchy
at an instruction location indirectly specified by operand
1. If operand 1 is binary 0 or null, the next instruction
following the Call External instruction from which control
was relinquished in the preceding invocation in the
hierarchy is given execution control. If the value of
operand 1 is not 0, the value represents an index into
the IDL (instruction definition list) specified as the return
list operand in the Call External instruction, and the
value causes control to be passed to the instruction
referenced by the corresponding IDL entry. The first IDL
entry is referenced by a value of one. If operand 1 is
not 0 and no return list was specified in the C~II
External instruction, or if the value of operand 1 exceeds
the number of entries in the IDL, or if the value is
negative, a return point invalid exception is signaled.

The instruction sets the current invocation entry in the
PASA base entry to address the immediately preceding
invocation, and it also sets addressability to the
returning invocation into the next available storage
location entry in the PASA header.

9-12

If a higher invocation does not exist, the Return External
instruction causes termination of. the current process
state. If operand 1 is not 0 and is not null, the return
point invalid exception is signaled. Refer to the
Terminate Process instruction for the functions
performed in process termination.

If the returning invocation has received control to
process an event, then control is returned to the point
where the event handler was invoked. ·'n this case, if
operand 1 is not 0 and is nqt null, then a return point
invalid exception is signaled.

If the returning invocation has received control from the
machine to process an exception, the return instruction
invalid exception is signaled.

If the returning invocation has an activation, the
invocation count in the activation is decremented by 1.

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference
0301 Invocation reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment
03 Range

08 Argument/Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

2C Program Execution

01 Return instruction invalid

02 Return point invalid

Operand
1 Other

X

X

X

X

X X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

SET ARGUMENT LIST LENGTH (SETALLEN)

Op Code
(hex)

Operand
1

Operand
2

0242 Argument Length
list

Operand 1: Operand list.

Operand 2: Binary scalar.

Description: This instruction specifies the number of
arguments to be passed on a succeeding Call External
or Transfer Control instruction. The current length of the
variable-length operand list (used as an argument list)
specified by operand 1 is modified to the value indicated
in the binary scalar specified by operand 2. This length
value specifies the number of arguments (starting from
the first) to be passed from the list when the operand
list is referenced on a Call External or Transfer Control
instruction.

Only variable-length operand lists with the argument list
attribute may be modified by the instruction.

The value in operand 2 may range from 0 (meaning no
arguments are to be passed) to the maximum size
specified in the ODT definition of the operand list
(meaning all defined arguments are to be passed).

The length of the argument list remains in effect for the
duration of the current invocation or until a Set
Argument List Length instruction is issued against this
operand list.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010· Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Program Execution Instructions 9-13

Exceptions STORE PARAMETER LIST LENGTH (STPLLEN)

Operands Op Code

Exception 1 2 Other (hex) Operand 1

06 Addressing
0241 Length

01 Space addressing violation X
02 Boundary alignment X

Operand 1: Binary variable scalar.

03 Range X
08 Argument/Parameter

01 Parameter reference violation X
Description: A value is returned in operand 1 that

03 Argument list length modification X
represents the number of parameters associated with

violation
the invocation's external entry point for which arguments

10 Damage Encountered
have been passed on the preceding Call External or

04 System object damage state X X X
Transfer Control instruction.

44 Partial system object damage X X X
1C Machine-Dependent Exception

The value can range from 0 (no parameters were

03 Machine storage limit exceeded X
received) to the maximum size possible for the

20 Machine Support
parameter list associated with the external entry point.

02 Machine check X
03 Function check X

22 Object Access
Events

01 Object not found X
02 Object destroyed X

OOOC Machine resource

03 Object suspended X
0201 Machine auxiliary storage threshold exceeded

24 Pointer Specification

01 Pointer does not exist X
0010 Process

02 Pointer type invalid X
0701 Maximum processor time exceeded

2A Program Creation
0801 Process storage limit exceeded

06 Invalid operand type X X
07 I nvalid operand attribute X X

0016 Machine observation

08 Invalid operand value range X
0101 Instruction reference

OA I nvalid operand length X
OB Invalid number of operands X

0017 Damage set

OC Invalid operand ODT reference X X
0401 System object damage set

32 Scalar Specification
0801 Partial system object damage set

03 Scalar value invalid X

9-14

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended
24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

32 Scalar Specification

01 Scalar type invalid

02 Scalar attributes invalid

Operand
1 Other

X

X

X

X

X X

X X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

TRANSFER CONTROL (XCTL)

Op Code
(hex)

0282

Operand
1

Program

Operand
2

Argument
list

Operand 1: System pointer.

Operand 2: Operand list or null.

Description: The instruction destroys the calling
invocation and causes control to be passed to the
external entry point of the program specified by operand
1. Operand 1 is a system pointer addressing the
program that is to receive control.

The invocation count in the activation (if any) of the
calling program is decremented by 1. The instruction
ensures that the called program is properly activated in
the process, if required. See the Activate Program
instruction for a definition of this activation verification
process.

After any needed static storage has been allocated or
located, the invocation entry to the program issuing the
Transfer Control instruction is made available for the
new invocation. The new invocation's stack control
entry and automatic storage overlay that of the
invocation issuing the Transfer Control instruction. The
new invocation entry is allocated beginning at the same
location as that of the current (transferring) invocation.
See the Call External instruction for a definition of a
PASA (process automatic storage area) entry.

Program Execution Instructions 9-15

The new invocation's stack control entry is initialized as
follows:

• The previous invocation entry pointer and the next
invocation entry pointer are the same as that of the
invoking program's entry.

• The associated program pointer is copied from the
associated activation entry (or from the operand 1
system pointer if no activation entry exists).

• The invocation number entry is unchanged.

• The invocation type value is set to indicate that the
program was invoked via a Transfer Control
instruction (hex 20).

• The program's automatic storage is allocated and
initialized as specified in the program definition.

The invocation entry for the preceding invocation is
unchanged by the instruction. The current invocation
entry pointer in the PASA base entry is unchanged by
the instruction. The next available storage location entry
in the PASA base entry is set to address the next
available 16-byte aligned area beyond the new
invocation entry.

The program is invoked by allocating an area in the
PASA space that is sufficient to contain the invocation
entry. The area used for allocation is located by the
next available storage location pointer in the PASA base
entry. This pointer must address a 16-byte aligned area
in the space, or a boundary alignment exception is
signaled.

The maximum addressable location in the PASA space
limits the amount of storage that may be allocated for
PASA storage. If this limit is exceeded, the process
storage limit exceeded exception is signaled. If the
maximum addressable location entry does not address
the same space as that addressed by the next available
storage location entry, the stack control invalid exception
is signaled.

If insufficient space is available in the PASA for the
entire new entry, the PASA space is implicitly extended
by the machine. If the space is fixed size or may not be
extended enough to contain the entry, a space
extension / truncation exception is signaled.

9-16

Following the allocation and initialization of automatic
storage, control is passed to the invoked program.

Operand 2 specifies an operand list that identifies the
arguments to be passed to the invocation to which
control is being transferred. Automatic objects allocated
by the transferring invocation are destroyed as a result
of the transfer operation and, therefore, cannot be
passed as arguments. A parameter list length exception
is signaled if the number of arguments passed does not
correspond to the number required by the parameter list
of the target program.

If the transferring invocation has received control to
process an exception or an event, the return instruction
invalid exception is signaled.

Authorization Required

• Operand 1
- Operational

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Space addressing violation X
02 Boundary alignment X
03 Range X

08 Argument/ Parameter

01 Parameter reference violation X
02 Parameter list length violation X

OA Authorization

01 Unauthorized for operation X
10 Damage Encountered

04 System object damage state X X X
44 Partial system object damage X X X

1A Lock State

01 Invalid lock state X
1C Machine-Dependent Exception

02 Program limitation exceeded X
03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X
02 Object destroyed X
03 Object suspended X

24 Pointer Specification

01 Pointer does not exist X
02 Pointer type invalid X
03 Pointer addressing invalid object X

2A Program Creation

06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X
OC Invali~ operand ODT reference X X

2C Program Execution

01 Return instruction invalid X
03 Stack control invalid X

36 Space Management

01 Space extension / truncation X

Program Execution Instructions 9-17

9-18

Chapter 10. Exception Management Instructions

This chapter describes all instructions used for exception
management. These instructions are in alphabetic order.
For an alphabetic summary of all the instructions, see
Appendix B. Instruction Summary.

MATERIALIZE EXCEPTION DESCRIPTION
(MATEXCPD)

Op Code
(hex)

Operand
1

Operand
2

Operand
3

03D7 Attribute
receiver

Exception Materialization
description option

Operand 1: Space pointer.

Operand 2: Exception description.

Operand 3: Character(1) scalar.

Description: The instruction materializes the attributes
(operand 3) of an exception description (operand 2) into
the receiver specified by operand 1.

The template identified by operand 1 must be a 1S-byte
aligned area in the space if the materialization option is
hex 00.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to c,ontain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the
event that the receiver operand contains insufficient area
for the materialization.

Operand 2 identifies the exception description to be
materialized.

Exception Management Instructions 10-1

The value of operand 3 specifies the materialization
option. If the materialization option is hex 00, the
format of the exception description materialization is as
follows:

• Template size
Number of bytes provided
for materialization
Number of bytes available
for materialization

• Control flags

10-2

Exception handling action
000 = Do not· handle.

(Ignore occurrence of
exception and continue
processi ng.)

001 - Do ·not handle.
(Disable this exception
description and continue
to search this invocation
for another exception
description to handle
the exception.)

010 Do not handle.
(Continue to search for
an exception description
by resignaling the ex
ception to the preceding
invocation.)

100 Defer handling.
(Save exception data for
later exception handling.)

101 Pass control t() the
specified exception
handler.

No data
o Exception data is

returned
Exception data is not
returned

Reserved (binary 0)
User data indicator
o User data not present
1 User data present
Reserved (binary 0)
Exception handler type
00 External entry point
01 Internal entry point
10 Branch point
Reserved (binary O) .

Char(8)
Bin(4)

Bin(4)

Char(2)
Bits 0-2

Bit 3

Bit 4
Bit 5

Bits 6-7
Bits 8-9

Bits 10-15

• Instructionnl)mber to be given
control (if internal entry point
or branch point; otherwise, 0)

• Length of compare value
(maximum of 32 bytes)

• Compare value (size established
by value of length of compare
value parameter)

• Number of exception IDs

• System pointer to the exception
handling program if an external
exception handler is specified

• Pointer to user data (not present
if value of user data indicator
is binary 0)

• Exception ID (one for each
exception I D dictated by the
number of exception I Ds attribute)

Bin(2)

Bin(Z)

Char(32)

Bin(2)

System
pointer

Space
pointer

Char(2)

If the materialization option is hex 01, the format of the Events

materialization is as follows:
0002 Authorization

· Template size Char(8) 0101 Object authorization violation
Number of bytes provided Bin(4)
for materialization OOOC Machine resource
Number of bytes available Bin(4) 0201 Machine auxiliary storage threshold exceeded
for materialization

0010 Process

· Control flags Char(2) 0701 Maximum processor time exceeded
Exception handling action Bits 0-2 0801 Process storage limit exceeded
000 = Do not handle.

(Ignore occurrence of 0016 Machine observation
exception and continue 0101 Instruction reference
processing.)

001 Do not handle. 0017 Damage set
(Disable this exception 0401 System object damage set
description and continue 0801 Partial system object damage set
to search this invocation
for another exception
description to handle Exceptions

the exception.)
010 Do not handle. Operands

(Continue to search for Exception 1 2 3 Other

an exception description
by resignaling the ex- 06 Addressing

ception to the preceding 01 Space addressing violation X X

invocation.) 02 Boundary alignment X X

100 Defer handling. 03 Range X X

(Save exception data for 08 Argument/ Parameter

later exception handling.) 01 Parameter reference v;olation X X

101 Pass control to the 10 Damage Encountered

specified exception 04 System object damage state X X X X

handler. 44 Partial system object damage X X X X

No data Bit 3 1C Machine - Dependent Exception

0 Exception data is 03 Machine storage limit exceeded X

returned 20 Machine Support

Exception data is not 02 Machine check X

returned 03 Function check X

Reserved (binary 0) Bit 4 22 Object Access

User data indicator Bit 5 01 Object not found X X

a User data not present 02 Object destroyed X X

1 User data present 03 Object suspended X X

Reserved (binary 0) Bits 6-15 24 Pointer Specification
01 Pointer does not exist X X

If the materialization option is hex 02, the format of the 02 Pointer type invalid X X

materialization is as follows: 2A Program Creation
06 Invalid operand type X X X

· Template size Char(8) 07 Invalid operand attribute X X

N umber of bytes provided Bin(4) 08 Invalid operand value range X X

for materialization OA Invalid operand length X X

Number of bytes available Bin(4) OC Invalid operand ODT reference X X X

for materialization 32 Scalar Specification
03 Scalar value invalid X

· Compare value length Bin(2) 38 Template Specification

(maximum of 32 bytes) 03 Materialization length exception X

· Compare value Char(32)

Exception Management Instructions 10-3

MODIFY EXCEPTION DESCRIPTION (MODEXCPD)

Op Code
(hex)

Operand
1

Operand
2

03EF Exception Modifying
description attributes

Operand 1: Exception description.

Operand
3

Modification
option

Operand 2: Space pointer, or character(2) constant.

Operand 3: Character(l) scalar.

Description: The exception description attributes
specified by operand 3 are modified with the values of
operand 2.

Operand 1 references the exception description.

Operand 2 specifies the new attribute values. Operand 2
may be either a character constant or a space pointer to
the modification template. Operand 2 cannot be
specified as a character constant when operand 3 is not
a constant.

10-4

The value of operand 3 specifies the modification
option. If the modification option is hex 01 and operand
2 specifies a space pointer, the format of the modifying
attributes pointed to by operand 2 is as follows:

• Template size
Number of bytes provided for
materialization (must be at least 10)
Number of bytes available for
materialization

• Control flags
Exception handling action
000 = Do not handle.

001

010

(Ignore occurrence of
exception and continue
processing.)
Do not handle.
(Disable this exception
description and continue
to search this invocation
for another exception
description to handle
the exception.)
Do not handle.
(Continue to search for
an exception description
by resignaling the ex
ception to the preceding
invocation.)

100 Defer handling.
(Save exception data for
later exception handling.)

101 Pass control to the

No data
o

specified exception
handler.

Exception data is
returned.
Exception data is not
returned.

Reserved (binary 0)

Char(8)
Bin(4)

Bin(4)*

Char(2)
Bits 0-2

Bit 3

Bits 4-15

If the exception description was in the deferred state
prior to the modification, the deferred signal, if
present, is lost.

When the option to not return exception data is
selected, no data is returned for the Retrieve Exception
Data or Test Exception instructions, and the number of
bytes available for the materialization field is set to O.
This option can also be selected in the ODT definition of
the exception description.

If the modification option of operand 3 is a constant
value of hex 01, then operand 2 may specify a character
constant. The operand 2 constant has the same format
as the control flags entry previously described.

If the modification option is hex 02, then operand 2
must specify a space pointer. The format of the
modification is as follows:

• Template size
Number of bytes provided
(must be at least 10 plus the
length of the compare value in
the exception description)
Number of bytes available for
materialization

• Compare value length
(maximum of 32 bytes)

• Compare value

Char(8)
Bin(4)

Bin(4)*

Bin(2)*

Char(32)

Note: Entries shown here with an asterisk (*) are
ignored by the instruction.

The number of bytes in the compare value is dictated by
the compare value length specified in the exception
description as originally specified in the object definition
table.

An external exception handling program can be modified
by resolving addressability to a new program into the
system pointer designated for the exception description.

The presence of user data is not a modifiable attribute
of exception descriptions. If the exception description
has user data, it can be modified by changing the value
of the data object specified in the exception description.

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage 'set

Exceptions

Exception

06 Addressing

01 Space addressing violation

03 Range

08 Argument/Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine- Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

32 Scalar Specification·

03 Scalar value invalid

38 Tern plate Specification

01 Template value invalid

02 Template size invalid

Operands
123

X X

X X

X X

X X X

X X X

X X

X X

X X

X X

X X

X X X

X X

X X

X

X X X

X

X

X

Exception Management Instructions

Other

X

X

X

X

X

10-5

RETRIEVE EXCEPTION DATA (RETEXCPD)

Op Code
(hex)

03E2

Operand
1

Receiver

Operand
2

Retrieve
options

Operand 1: Space pointer.

Operand 2: Character(1) scalar (fixed-length).

Description: The data related to a particular occurrence
of an exception is returned and placed in the specified
space.

Operand 1 is a space pointer that identifies the receiver
template. The template identified by operand 1 must be
16-byte aligned in the space.

The value of operand 2 specifies the type of exception
handler for which the exception data is to be retrieved.
The exception handler may be a branch point exception
handler, an internal entry point exception handler, or an
external entry point exception handler.

An exception state of process invalid exception is
signaled to the invocation issuing the Retrieve Exception
Data instruction if the retrieve option is not consistent
with the process's exception handling state. For
example, the exception is signaled if the retrieve option
specifies retrieve for internal entry point exception
handler and the process exception state indicates that
an internal exception handler has not been invoked.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the
event that the receiver contains insufficient area for the
materialization.

10-6

After an invocation has been destroyed, exception data
associated with a signaled exception description within
that invocation is lost.

The format of operand 1 for the materialization is as
follows:

· Template size Char(8)
Number of bytes provided 8in(4)
for retrieval
Number of bytes available 8in(4)

for retrieval

· Exception identification Char(2)

· Compare value length 8in(2)
(maximum of 32 bytes)

· Compare value Char(32)

· Reserved (binary 0) Char(4)

· Exception specific data Char(*)

· Signaling program invocation Space
pointer

· Signaled program invocation Space
pointer

• Signaling program instruction address 8in(2)

• Signaled program instruction address 8in(2)

• Machine-dependent data Char(10)

The signaling program invocation address entry locates
the invocation entry in the PASA (process automatic
storage area) that corresponds to the invocation that
caused the exception to be signaled. For machine
exceptions, this space pointer locates the invocation
executing when the exception occurred. For
user-signaled exceptions, this space pointer locates the
invocation that executed the Signal Exception
instruction. The signaling program instruction address
entry locates the instruction that caused the exception to
be signaled.

The signaled program invocation entry locates the
invocation entry in the PASA that is signaled to handle
the exception. This invocation is the last invocation
signaled or resignaled to handle the exception. For
machine exceptions, the first invocation signaled is the
invocation incurring the exception. For user-signaled
exceptions, the Signal Exception instruction may initially
locate the current or any previous invocation. If the
invocation to be signaled handles the exception by
resignaling the exception, the immediately previous
invocation is considered to be the last signaled
invocation. This may occur repetitively until no more
prior invocations exist in the process and the signaled
program invocation entry is assigned a value of binary O.
If an invocation to be signaled handles the exception in
any manner other than resignaling or does not handle
the exception, that invocation is considered to be the
last signaled.

The signaled program instruction address entry specifies
the number of the instruction that is currently being
executed in the signaled invocation.

The machine extends the area beyond the exception
specific data area with binary O's so that the pointers to
program invocations are properly aligned.

The operand 2 values are defined as follows:

• Retrieve options Char(1)
Hex 00 Retrieve for a branch

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 Other

06 Addressing
01 Space addressing violation X X
02 Boundary alignment X X
03 Range X X

08 Argument/ Parameter
01 Parameter reference violation X X

10 Damage Encountered
04 System object damage state X X X
44 Partial system object damage X X X

point exception handler 16 Exception Management

- Hex 01

- Hex 02

Retrieve for an internal
entry point. exception
handler
Retrieve for an external
entry point exception
handler

If the exception data retention option is. set to 1 (do not
save), the number of bytes available for retrieval is set
to O.

Exception data is always available to the process default
exception handler.

1C

20

22

24

2A

32

38

02 Exception state of process invalid X
Machine-Dependent Exception
03 Machine storage limit exceeded X
Machine Support
02 Machine check X
03 Function check X
Object Access
01 Object not found X X
02 Object destroyed X X
03 Object suspended X X
Pointer Specification
01 Pointer does not exist X X
Program Creation
06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X
OA Invalid operand length X X
OC Invalid operand ODT reference X X
Scalar Specification
03 Scalar value invalid X
Template Specification
03 Materialization length exception X

Exception Management Instructions 10-7

RETURN FROM EXCEPTION (RTNEXCP)

Op Code
(hex) Operand 1

03E1 Return target

Operand 1: Space pointer.

Description: An internal exception handler subinvocation
or an external exception handler invocation is
terminated, and control is passed to the specified
instruction in the specified invocation.

The template identified by operand 1 must be 16-byte
aligned in the space. It specifies the target invocation
and target instruction in the invocation where control is
to be passed. The format of operand 1 is as follows:

• Invocation address

• Reserved (binary 0)

• Action
Reserved (binary 0)
Action Code
o = Reexecute the instruction

that caused the exception
or the instruction that
invoked the invocation.
Resume execution with the
instruction that follows the
instruction that caused the
exception or resume execution
with the instruction that
follows the instruction that
invoked the invocation.

Reserved (binary 0)

Space
pointer

Char(1)

Char(1)
Bits 0-6
Bit 7

Char(1)

The invocation address entry is a space pointer that
locates an invocation entry in the PASA (process
automatic storage area) chain to which control will be
passed. The current instruction in an invocation is the
one that caused another invocation to be created. If an
event handler was invoked, then the current instruction
is the instruction that executed prior to the invocation of
the event handler.

If the action code is 0, then the current instruction of
the addressed invocation is reexecuted. If the action
code is 1, execution resumes with the instruction
following the current instruction of the addressed
invocation.

10-8

When a Return From Exception instruction returns
control to an invocation that was interrupted by an
event, the action code in the operand 1 template is
ignored and execution continues at the point of
interruption. That is, the interrupted instruction is not
reexecuted and execution of the instruction is completed
as if no interruption occurred. For example, if a
Dequeue instruction is waiting for a message to arrive
on a queue when an event handler is invoked that
produces an exception, the exception handler returns
control to the interrupted Dequeue instruction and the
instruction continues to wait for the message.

The Return From Exception instruction may be issued
only from the initial invocation of an external exception
handling sequence or from an invocation that has an
active internal exception handler.

If the instruction is issued from an invocation that is not
an external exception handler and has no internal
exception handler subinvocations, the return instruction
invalid exception is signaled.

The following table shows the actions performed by the
Return From Exception instruction:

Invocation
Issuing
Instruction

Not handling
exception

Handling
internal
exception(s)

Handling
external
exception(s)

Handling
external
exception(s)
and internal
exception(s)

Addressing
Own
Invocation/Option

Error

Allowed 2

Error

Allowed 2

Addressing
Higher
Invocation/Option

Error

Allowed 3

Allowed 3

Allowed 3

1. A return instruction invalid exception is signaled. If
there are no more internal exception handler
subinvocations active and this invocation is not an
external exception handler, the instruction may not be
issued.

2.

3.

The current internal exception handler subinvocation
is terminated.

All invocations after the addressed invocations are
terminated and execution proceeds within the

addressed invocation.

Whenever an invocation is terminated, the invocation Exceptions

count in the corresponding activation entry (if any) is
decremented by 1. Operand

Exception 1 Other

An action code of 1 specifies completion of an

instruction rather than execution of the following 06 Addressing

instruction if the current instruction in the addressed 01 Space addressing violation X

invocation signaled one of the following exceptions: 01 Boundary alignment X

03 Range X

. Oe09 Significance 08 Argument/ Parameter

01 Parameter reference violation X

. OeOA Size 10 Damage Encountered

04 System object damage state X X

Note: The previous condition does not apply if any of 44 Partial system object damage X X

the above exceptions were explicitly signaled by a Signal 16 Exception Management

Exception instruction. 03 Invalid invocation X

1C Machine-Dependent Exception

A Return From Exception instruction cannot be used or 03 Machine storage limit exceeded X

recognized in conjunction with a branch point internal 20 Machine Support

exception handler. 02 Machine check X

03 Function check X

22 Object Access

Events 02 Object destroyed X

03 Object suspended X

0002 Authorization 24 Pointer Specification

0101 Object authorization violation 01 Pointer does not exist X

02 Pointer type invalid X

oooe Machine resource 2A Program Creation

0201 Machine auxiliary storage threshold exceeded 06 Invalid operand type X

07 Invalid operand attribute X

0010 Process 08 Invalid operand value range X

0701 Maximum processor time exceeded 09 Invalid branch target operand X

0801 Process storage limit exceeded OA Invalid operand length X

OC Invalid operand ODT reference X

0016 Machine observation 2C Program Execution

0101 I nstruction reference 01 Return instruction invalid X

0301 Invocation reference 38 Template Specification

01 Template value invalid X

0017 Damage set

0401 System object damage set

0801 Partial system object damage set

Exception Management Instructions 10-9

SENSE EXCEPTION DESCRIPTION (SNSEXCPD)

Op Code
(hex)

03E3

Operand
1

Attribute
receiver

Operand
2

Invocation
template

Operand 1: Space pointer.

Operand 2: Space pointer.

Operand 3: Space pointer.

Operand
3

Exception
template

Description: The Sense Exception Description instruction
searches the invocation specified by operand 2 for an
exception description that matches the exception
identifier and compare value specified by operand 3 and
returns the user data and exception handling action
specified in the exception description. The exception
descriptions of the invocation are searched in ascending
ODT number sequence.

The exception identifier in the exception description can
be specified in one of the following ways:

Hex 0000

Hex nnOO

Any exception 10 will result in a match

Any exception lOin class nn will result
in a match

Hex nnmm = Only exception 10 nnmm will result in a
match

If a match on exception lOis detected, the
corresponding compare values are matched. If the
compare value length in the exception description is less
than the compare value in the search template, the
length of the compare value in the exception description
is used for the match. If the compare value length in
the exception description is greater than the compare
value in the search template, an automatic mismatch
results.

10-10

If a match on exception 10 and compare value is
detected, the exception handling action of the exception
description determines which of the following actions is
taken:

IGNORE

DISABLE

RESIGNAL

DEFER

HANDLE

The operand 1 template is materialized.

The exception description is bypassed and
the search for an exception description
continues with the next exception
description defined for the invocation.

The operand 1 template is materialized.

The operand 1 template is materialized.

The operand 1 template is materialized.

If no exception description of the invocation matches
the exception 10 and compare value of operand 3, the
number of bytes available for materialization on the
operand 1 template is set to O.

The template identified by operand 1 must be 16-byte
aligned.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exception is signaled in
the event the receiver contains insufficient area for the
materialization, other than the materialization length
exception described previously.

The format of the attribute receiver is as follows:

• Template size
Number of bytes provided
for materialization
Number of bytes available
for materialization

• Control flags

Char(8)
Bin(4)

Bin(4)

Char(2)
Exception handling action Bits 0-2
000 Do not handle-ignore occurrence of

exception and continue processing
010 Do not handle-continue search for an

exception description by resignaling the
exception to the immediately preceding
invocation

100 Defer handling-save exception data for
later exception handling

101 Pass control to the specified exception
handler

No data Bit 3
o Exception data is returned

= Exception data is not
returned

Reserved (binary 0)
User data indicator
o = User data not present

= User data present
Reserved (binary 0)
Exception handler type
00 External entry point
01 = Internal entry point
10 = Branch point
Reserved (binary 0)

• Relative exception description
number

• Reserved (binary 0)

• Pointer to user data "(binary 0
if value of user data indicator is
binary 0)

Bit 4
Bit 5

Bits 6-7
Bits 8-9

Bits 10-15

Bin(2)

Char(4)

Space pointer

The relative exception description number entry
identifies the relative number of the exception
description that matched the search criteria. The order
of definition of the exception descriptions in the ODT
determines the value of the index. A value of 1
indicates that the first exception description defined in
the ODT matched the search criteria.

The template identified by operand 1 must be 16-byte
aligned. The invocation address entry is a space pointer
that locates an invocation entry in the PASA (process
automatic storage area). The invocation is searched for
a matching exception description. If the space pointer
locates the PASA base entry, the operand 1 template is
materialized with the number of bytes available for
materialization set to O. If the space pointer locates
neither a valid invocation entry nor the PASA base entry,
the invalid invocation address exception is signaled.

The first exception description to search entry specifies
the relative number of the exception description to be
used to start the search. The number must be a nonzero
positive binary number determined by the order of
definition of exception descriptions in the ODT. A value
of1 indicates that the first exception description in the
invocation is to be used to begin the search. If the
value is greater than the number of exception
descriptions for the invocation, the operand 1 template
is materialized with the number of bytes available for
materialization set to O.

The format of the invocation template is as follows:

• Invocation Address Space pointer

• Reserved (binary 0) Char(2)

• First exception description to search Bin(2)

The operand 3 exception template specifies the
exception-related data to be used as a search argument.
The format of the template is as follows:

• Template size
Number of bytes provided for
materialization (must be at least 44)
Number of bytes available for
materialization

• Exception identifier

• Compare value length (maximum
of 32)

• Compare value

Char(8)
Bin(4)

Bin(4)*

Char(2)

Bin(2)

Char(32)

Entries noted with an asterisk (*) are ignored by the
instruction.

Exception Management Instructions 10-11

Events Exceptions

0002 Authorization Operands
0101 Authorization violation Exception 1 2 3 Other

oooe Machine resources 06 Addressing

0201 Machine auxiliary storage exceeded 01 Space addressing violation X X X
02 Boundary alignment X X X

0000 Machine status 03 Range X X X

0101 Machine check 08 Argument/ Parameter

01 Parameter reference violation X X X

0010 Process 10 Damage Encountered

0701 Maximum processor time exceeded 04 System object damage X

44 Partial system object damage X

0016 Machine observation 16 Exception Management

0101 Instruction reference 03 Invalid invocation address X

1C Machine Dependent Exception

0017 Damage set 03 Machine storage limit exceeded X

0401 System object damage set 20 Machine Support

0801 Partial system object damage set 02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X
2A Program Creation

06 Invalid operand type X X X
07 Invalid operand attribute X X X

08 Invalid operand value range X X X
OA Invalid operand length X X X

OC Invalid operand ODT reference X X X

32 Scalar Specification

01 Scalar type invalid X X X

38 Template Specification

01 Template value invalid X X

02 Template size invalid X

03 Materialization length exception X

10-12

SIGNAL EXCEPTION (SIGEXCP)

Op Code
(hex)

10CA

Operand
1

Attribute
template

Operand
2

Exception
data·

Operand 1: Space pointer.

Operand 2: Space pointer.

Optional Forms

Mnemonic

SIGEXCPI
SIGEXCPB

Op Code
(hex) Form Type

18CA Indicator
1CCA Branch

Extender: Branch options or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The Signal Exception instruction signals a
new exception or resignals an existing exception to the
process. Optionally, the instruction branches to one of
the specified targets based on the results of the signal
and the selected branch options in the extender field, or
it sets indicators based on the results of the signal. The
signal is presented starting at the invocation identified in
the signal template.

The template identified by operand 1 specifies the signal
option and starting point. It must be 16-byte aligned in
the space with the following format.

• Signaled to invocation address

• Signal option
Signal / resignal option
o Signal new exception.
1 = Resignal currently handled

exception (valid only for an
external exception handler).

Invoke POEH (process default
exception handler) option
o = Invoke POEH if no

exception description
found for invocation.
00 not invoke POEH if
no exception description
found for invocation
(ignore if PASA base
entry specified).

Exception description
search control
o = Exception description

search control not
present

1 = Exception description
present

Reserved (binary 0)

• Reserved (binary 0)

• First exception description
to search

Space
pointer

Char(1)
Bit 0

Bit 1

Bit 2

Bits 3-7

Char(1)

Bin(2)

The signaled to invocation address entry is a space
pointer that locates an invocation entry in the PASA
(process automatic storage area). The exception is
signaled to this invocation. If the space pointer locates
the PASA base entry, the exception is signaled to the
POEH. If the space pointer locates neither a valid
invocation entry nor the PASA base entry, the invalid
invocation address exception is signaled. If the program
associated with the invocation has defined an exception
description to handle the exception, the specified action
is taken; otherwise, the POEH is invoked unless the
invoke POEH option bit is 1 (the exception is considered
ignored). If the PAS A base entry is addressed instead
of an existing invocation, the POEH will be invoked.

Exception Management Instructions 10-13

Exception descriptions of an invocation are searched in
ascending ODT number sequence. If the exception
description search control is not present, the search
begins with the first exception description defined in the
ODT. Otherwise, the first exception description to
search value identifies the relative number of the
exception description to be used to start the search.
The value must be a nonzero positive binary number
determined by the order of definition of exception
descriptions in the ODT. This value is also returned by
the Sense Exception Description instruction. A value of
1 indicates that the first exception description in the
invocation is to be used to begin the search. If the
value is greater than the number of exception
descriptions for the invocation, the template value invalid
exception is signaled.

The template identified by operand 2 must be 16-byte
aligned in the space. It specifies the exception-related
data to be passed with the exception signal. The format
of the exception data is the same as that returned by
the Retrieve Exception Data instruction. The format is as
follows:

• Template size
Number of bytes of data to be
signaled (must be at least 48 bytes)
Number of bytes available for
materialization

• Exception identification

• Compare value length
(maximum of 32 bytes)

• Compare value

• Reserved (binary 0)

• Exception specific data

Char(8)
Bin(4)

Bin(4)*

Char(2)

Bin(2)

Char(32)

Char(4)

Char(*)

Note: Entries shown here with an asterisk (*) are
ignored by the instruction.

Operand 2 is ignored if operand 1 specifies the resignal
option, because the exception-related data is the same
as for the exception currently being processed; however,
it must be specified when signaling a new exception.

The maximum size for exception-related data that is to
accompany an exception signaled by the Signal
Exception instruction is 32 608 bytes, including the
standard signal data.

10-14

If an exception I D in an exception description
corresponds to the signaled exception, the
corresponding compare values are verified. If the
compare value length in the exception description is less
than the compare value length in the signal template,
the length of the compare value in the exception
description is used for the match. If the compare value
length in the exception description is greater than the
compare value length in the signal template, an
automatic mismatch results. Machine-signaled
exceptions have a 4-byte compare value of binary a's.

An exception description may monitor for an exception
with a generic I D as follows:

Hex 0000 = Any signaled exception ID results in a
match.

Hex nnOO Any signaled exception I D in class nn
results in a match.

Hex nnmm = The signaled exception ID must be
exactly nnmm in order for a match to
occur.

An exception description may be in one of five states,
each of which determines an action to be taken when
the match criteria on the exception ID and compare
value are met.

IGNORE

DISABLE

No exception handling occurs. The Signal
Exception instruction is assigned a
resultant condition of ignored. If a
corresponding branch or indicator setting
is present, that action takes place.

The exception description is bypassed,
and the search for a monitor continues
with the next exception description
defined for the invocation.

RESIGNAL - The search for a monitoring exception
description is to be reinitiated at the
preceding invocation. A resignal from the
initial invocation in the process results in
the invocation of the process default
exception handler.

DEFER

HANDLE

The exception description is signaled, and
the Signal Exception instruction is
assigned the resultant condition of
deferred. If a corresponding branch or
indicator setting is present, that action
takes place. To take future action on a
deferred exception, the exception
description must be synchronously tested
with the Test Exception instruction in the
signaled invocation.

Control is passed to the indicated
exception handler, which may be a
branch point, an internal subinvocation,
or an external invocation.

If the exception description is in the ignore or defer
state and if the Signal Exception instruction does not
specify a branch or indicator condition or if it specifies
branch or indicator conditions that are not met, then the
instruction following the Signal Exception instruction is
executed.

When control is given to an internal or branch point
exception handler, all invocations up to, but not
including, the exception handling invocation are
destroyed. For each destroyed invocation, the invocation
count in the corresponding activation entry (if any) is
decremented by 1.

Resultant Conditions: Exception ignored or exception
deferred.

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference
0301 Invocation reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

16 Exception Management

02 Exception state of process invalid

03 Invalid invocation

1 C Machine- Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

05 Invalid op code extender field

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

09 Invalid branch target operand

OC Invalid operand ODT reference

38 Template Specification

01 Template value invalid

02 Template size invalid

Operands
1 2 Other

X X

X X

X X

X X

X X X

X X X

X

X

X

X

X

X X

X X

X X

X X

X X

X

X X

X X

X X

X

X X

X
X

Exception Management Instructions 10-15

TEST EXCEPTION (TESTEXCP)

Op Code
(hex)

104A

Operand
1

Receiver

Operand
2

Exception
description

Operand 1: Space pointer.

Operand 2: Exception description.

Optional Forms

Op Code
Mnemonic (hex) Form Type

TESTEXCPI
TESTEXCPB

184A
1C4A

Extender: Branch options.

Indicator
Branch

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator targets (for indicator options). The branch or
indicator targets immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The instruction tests the signaled status of
the exception description specified in operand 2, and
optionally alters the control flow or sets the specified
indicators based on the test. Exception data is returned
at the location identified by operand 1. The branch or
indicator setting occurs based on the conditions
specified in the extender field depending on whether or
not the specified exception description is signaled.

Operand 2 is an exception description whose signaled
status is to be tested. An exception can be signaled
only if the referenced exception description is in the
deferred state.

10-16

Operand 1 addresses a space into which the exception
data is placed if an exception identified by the exception
description has been signaled.

The template identified by operand 1 must be 16-byte
aligned in the space.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the
event that the receiver contains insufficient area for the
materialization.

If the exception description is not in the signaled state,
the number of bytes available for the materialization
entry is set to binary 0' s, and no other bytes are
modified. The format of the data returned in operand 1
is as follows:

• Template size
Number of bytes provided for
materialization
Number of bytes available for
materialization (0 if exception
description is not Signaled)

• Exception identification

• Compare value length
(maximum of 32 bytes)

• Compare value

Char(8)
Bin(4)

Bin(4)

Char(2)

Bin(2)

Char(32)

• Reserved (binary 0) Char(4)

• Exception-specific data Char(*)

• Signaling program invocation address Space
pointer

• Signaled program invocation address Space
pointer

• Signaling program instruction address Bin(2)

• Signaled program instruction address Bin(2)

• Machine-dependent data Char(10)

The area beyond the exception-specific data area is
extended with binary 0' s so that pointers to program
invocations are properly aligned.

If no branch options are specified, instruction execution
proceeds at the instruction following the Test Exception
instruction.

If the exception data retention option is set to 1 (do not
save), no data is returned by this instruction.

Resultant Conditions: Exception signaled or exception
not signaled.

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2

06 Addressing
01 Space addressing violation X

02 Boundary alignment X

03 Range X

08 Argument/ Parameter

01 Parameter reference violation X

10 Damage Encountered
04 System object damage state X X

44 Partial system object damage X X

16 Exception Management

01 Exception description status X
invalid

1C Machine- Dependent Exception
03 Machine storage limit exceeded

20 Machine Support
02 Machine check
03 Function check

24 Pointer Specification
01 Pointer does not exist X

02 Pointer type invalid X

2A Program Creation
05 Invalid op code extender field

06 Invalid operand type X X
09 Invalid branch target operand
OA Invalid operand length X

OC Invalid operand COT reference X X

38 Template Specification
03 Materialization length exception X

Other

X
X

X

X
X

X

X

Exception Management Instructions 10-17

10-18

Chapter 11. Process Management Instructions

This chapter describes instructions used for process
management. These instructions are in alphabetic order.
For an alphabetic summary of all the instructions, see
Appendix B. Instruction Summary.

CREATE PROCESS CONTROL SPACE (CRTPRCS)

Op Code Operand
(hex) 1

0322 Process
control
space

Operand
2

Creation
template

Operand 1: System pointer.

Operand 2: Space pointer.

Description: A process control space is created. That
space has the attributes contained in the creation
template specified by operand 2. Addressability to the
created process control space is placed in a system
pointer that is specified by operand 1.

A process control space is required as a machine work
area for an initiated process. A system pointer
addressing the process control space of an initiated
process is used to identify the process.

The size of the process control space is managed, by the
machine and is not specified by the user.

The template identified by operand 2 must be 16-byte
aligned within the control space. Following is the format
of the space creation template:

• Template size specification
Size of template
Number of bytes available for
materialization

• Object identification
Object type
Object subtype
Object name

• Object creation options
Existence attribute
o = Temporary (required)
Space attribute
o = Fixed-length
1 = Variable-length
Initial context
o Addressability is not

inserted into the context
Addressability is inserted
into the context

Access group
o Not created as member

of access group
Created as member of
access group

Reserved (binary 0)

• Reserved (binary 0)

• Size of space

• I nitial value of space

Char(8)*
Bin(4)*
Bin(4)*

Char(32)
Char(1)*
Char(1)
Char(30)

Char(4)
Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-31

Char(4)

Bin(4)

Char(1)

Process Management Instructions 11-1

• Performance class
Space alignment
o = The space associated with

the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align
ments within the the space.

Reserved (binary 0)
Main storage pool selection
o Process default main storage

pool is used for object.
Machine default main storage
pool is used for object.

Reserved (binary 0)
Block transfer on implicit
access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

Reserved (binary 0)

• Reserved (binary 0)

• Context

• Access group

Char(4)
Bit 0

Bits 1-4
Bit 5

Bit 6
Bit 7

Bits 8-31

Char(7)

System
pointer

System
pointer

Note: The values associated with template entries
annotated with an asterisk (*) are ignored by the
instruction.

11-2

The created process control space is temporary and has
no owning user profile. All authority states for the
object are considered to be public. The storage
occupied by the created process control space is
charged to the creating process.

The object identification specifies the symbolic name
that identifies the process control space within the
machine. A type code of hex 1 A is implicitly supplied by
the machine. The object identification identifies the
process control space on materialize instructions and
locates the process control space in a context that
addresses the process control space.

The existence attribute specifies that the process control
space is to be created as temporary. A process control
space, if not explicitly destroyed by the user, is implicitly
destroyed by the machine when machine processing is
terminated.

A space may be associated with the created process
control space. The length of the space may be fixed or
variable. The initial allocation is specified in the· size of
space entry. The machine allocates a space of at least
the size specified. The actual size allocated is
dependent on an algorithm defined by a specific
implementation. A fixed size space of zero length
causes no space to be allocated.

Each byte of the space is initialized to a value specified
by the initial value of space entry. When the space is
extended in size, the initial value of space byte is also
used to initialize the new allocation.

If the initial context creation attribute entry indicates that
addressability is to be inserted into a context, the
context entry must contain a system pointer that
identifies a context where addressability to the newly
created process control space is to be placed. If
addressability is not to be inserted into a context, the
context entry is ignored.

If the access group creation attribute entry indicates that
the process control space is to be created in an access
group, the access group entry must be a system pointer
that identifies the access group in which the process
control space is to be created. If the process control
space is not to be created in an access group, the
access group entry is ignored.

The performance class parameter provides information
that allows the machine to manage the process control
space with consideration for the overall performance
objectives of operations involving the space.

Authorization Exceptions

· Insert Operands
- Context identified in operand 2 Exception 1 2 3 4 Other

· Retrieve 02 Access Group

- Contexts referenced for address resolution 01 Object ineligible for access X
group

06 Addressing

Lock Enforcennent 01 Space addressing violation X X
02 Boundary alignment X X

· Materialize 03 Range X X

- Contexts referenced for address resolution 08 Argument/ Parameter

01 Parameter reference violation X X

· Modify OA Authorization

Context identified in operand 2 01 Unauthorized for operation X

- Access group identified in operand 2 OE Context Operation

01 Duplicate object identification X
10 Damage Encountered

Events 04 System object damage state X X X X X
44 Partial system object damage X X X X X

0002 Authorization 1A Lock State

0101 Object authorization violation 01 Invalid lock state X
1C Machine-Dependent Exception

OOOC Machine resource 03 Machine storage limit X

0201 Machine auxiliary storage threshold exceeded
exceeded

20 Machine Support

0010 Process
02 Machine check X

0701 Maximum processor time exceeded
03 Function check X

0801 Process storage limit exceeded
22 Object Access

01 Object not found X X

0016 Machine observation
02 Object destroyed X X

0101 Instruction reference
03 Object suspended X X

24 Pointer Specification

0017 Damage set
01 Pointer does not exist X

0401 System object damage set
02 Pointer type invalid X

0801 Partial system object damage set
03 Pointer addressing invalid X

object

2A Program Creation

06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X
OA Invalid operand length X
OC Invalid operand ODT reference X X

2E Resource Control Limit

01 User profile storage limit X
exceeded

38 Template Specification

01 Template value invalid X

Process Management Instructions 11-3

DESTROY PROCESS CONTROL SPACE (DESPCS)

Op Code
(hex) Operand 1

0311 Process control space
to be destroyed

Operand 1: System pointer.

Description: The designated process control space is

destroyed and addressability to the space is deleted
from a context if a context is currently addressing the

object. The system pointer identified by operand 1 is
not modified by the instruction, and a subsequent
reference to the destroyed process control space
through the pointer results in an object destroyed

exception.

If the process control space is currently being used by a

process, an object not eligible for destruction exception
is signaled.

Authorization Required

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Modification
Context addressing object

- Access group containing object

• Object Control
- Operand 1

11-4

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource

0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded

0801 Process storage limit exceeded

0016 Machine observation

0101 Instruction reference

0017 Damage set

0401 System object damage set
0801 Partial system object damage set .

Exceptions

Operand
Exception 1 Other

06

08

OA

10

1A

1C

20

22

24

2A

Addressing
01 Space addressing violation X
02 Boundary alignment X
03 Range X
Argument/ Parameter
01 Parameter reference violation X
Authorization
01 Unauthorized for operation X
Damage Encountered
04 System object damage state X
44 Partial system object damage X
Lock State
01 Invalid lock state X
Machine.:.Dependent Exception
03 Machine storage limit exceeded
Machine Support
02 Machine check
03 Function check
Object Access
01 Object not found X
02 Object destroyed X
03 Object suspended X
06 Object riot eligible for destruction X
Pointer Specification
01 Pointer does not exist X
02 Pointer type invalid X
03 Pointer addressing invalid object X
Program Creation
06 Invalid operand type X
07 Invaiid operand attribute X
08 Invalid operand value range X
OC Invalid operand ODT reference X

X
X

X

X
X

INITIATE PROCESS (lNITPR)

Op Code Operand Operand Operand Operand
(hex) 1 2 3 4

0324 Process Process Argument Lock
control definition list list
space template

Operand 1: System pointer.

Operand 2: Space pointer.

Operand 3: Argument list or null.

Operand 4: Space pointer or null.

Description: A process is established in the machine.

The process control space identified by operand 1
identifies a process to be established.

The process definition template specified by operand 2
defines the attributes of the process.

Operand 3 specifies an argument list to be presented to
the first program executed in the process problem
phase. When the operand is null, no arguments are
presented.

Operand 4 locates an area in. a space that identifies
object locks (that are to be transferred to the process
being established) currently held by the process issuing
the Initiate Process instruction. When the operand is
null, no locks are transferred.

When a new process is being established, the process
control space provided by operand 1 must not be
associated or used by any other active or suspended
process. If a process is already associated with the
process control space, the object not available to
process exception is signaled. Privileged instruction
authorization is required to establish ~ n~w process. The
number of initiated processes is dependent on the main
storage size and other current demands on main
storage. Each initiated process requires a minimum of
1024 bytes of main storage.

Because this instruction requires one process to act
upon another process, a portion of the function is
controlled by the issuing process, and the remainder of
the function is controlled by the new process. When
control is returned to the issuing process, the function
may not have been performed in its entirety. An event
is signaled when the process initiation is complete
(either successfully or unsuccessfully). The process
terminated event is signaled when the initiation of a
process is incomplete. An exception that indicates the
reason for the failure of the Initiate Process instruction
is signaled if the exception is detected prior to the new
process becoming a dispatchable entity in· the machine.

The process definition template specified by operand 2
establishes the attributes of the process being
established. The template identified by operand 2 must
be 16-byte aligned in a space.

The format of the process definition template is as
follows:

• Size of process definition template
Number of bytes provided
Number of bytes available for
materialization

• Process control attributes
Process type
o = Dependent process
1 = Independent process
Instruction wait access state
control
o Access state modification

is not allowed.
1 = Access state modification

is allowed if specified.
Time slice end access state control
o Access state modification

is not allowed.
1 = Access state modification

is allowed if specified.
Time slice event option
o = Time slice expired without

entering instruction wait
event is not signaled during
time slice
Time slice expired without
entering instruction wait
event is signaled

Char(8)*
Bin(4)*
Bin(4)*

Char(4)
Bit 0

Bit 1

Bit 2

Bit 3

Process Management Instructions 11-5

Reserved (binary 0) Bit 4
Initiation phase program option Bit 5
o = No initiation phase program

specified (do not enter
initiation phase)

1 = Initiation phase program specified
(enter initiation phase)

Problem phase program option Bit 6
o = No problem phase program

specified (do not enter
problem phase)

1 = Problem phase program specified
(enter problem phase)

Termination phase program option Bit 7
o = No termination phase program

specified (do not enter
termination state)
Termination phase program
specified (enter termination
state)

Process default exception handler Bit 8
option
o No process default exception

handler
1 = Process default exception

handler specified
Process name resolution list option Bit 9
o No process name resolution

list
1 Process name resolution list

specified
Process access group option Bit 10
o = No process access group

option
Process access group
specified

Reserved (binary 0) Bits 11-31

• Signal event control mask Char(2)

• Number of event monitors (0-256)

• Resource management attributes
Process priority

11-6

Process storage pool
identification
Maximum temporary auxiliary
storage allowed (in bytes)
Time slice interval
Default time-out interval
Maximum processor time allowed
Process multiprogramming
level class I D

Bin(2)

Char(1)
Char(1)

Bin(4)

Char(8)
Char(8)
Char(8)
Char(1)

• Modification control indicators Char(8)

Each indicator specifies the modification options for a
specific attribute of the process being controlled by
the process definition template that the modification
control indicators are part of. The values and bit
assignments are as follows:

00 = Modification of the attribute is not allowed.

01 = Modification is allowed only in the initiation
and termination phases, and only by the
executing process. Processes external to the
initiated process cannot modify this attribute.

11 = Modification is allowed in all phases and by
all processes.

The bit assignment is as follows:
Instruction wait access
state control
Time slice end access
state control
Time slice event option
Exception event option
Problem phase program option
Termination phase program option
Process default exception
handler option
Process N R L option
Signal event control mask
Process priority
Process storage pool
identification
Maximum temporary auxiliary
storage allowed
Time slice interval
Default wait timeout interval
Maximum processor time allowed
Process M PL class I D
User profile pointer
Process communication object
pointer
Process NRL pointer
Termination phase program pointer
Problem phase program pointer
Process default exception handler
Reserved (binary 0)

• Reserved (binary 0)

Bits 0-1

Bits 2-3

Bits 4-5
Bits 6-7
Bits 8-9
Bits 10-11
Bits 12-13

Bits 14-15
Bits 16-17
Bits 18-19
Bits 20-21

Bits 22-23

Bits 24-25
Bits 26-27
Bits 28-29
Bits 30-31
Bits 32-33
Bits 34-35

Bits 36-37
Bits 38-39
Bits 40-41
Bits 42-43
Bits 44-63

Char(9)

The format of the process pointer attributes is as
follows:

• Process user profile System
pointer

• PCO (process communication object) System

• Process N RL (name resolution list)

• Initiation phase program

• Termination phase program

• Problem phase program

• PO EH (process default
exception handler)

• PASA (process automatic
storage area)

• PSSA (process static
storage area)

• PAG (process access group)

• Process status indicators
(see the Materialize Process
Attributes instruction' for the
details of this attribute)

• Reserved (binary 0)

• Process resource usage attributes*
(see Materialize Process Attributes
instruction for the details)

• Subordinate process identification
Number of immediately
subordinate processes
Identification of
subordinate processes

pointer
Space
pointer
Data
pointer or
Char(16)

Space
pointer

System
pointer

System
pointer

System
pointer

System
pointer

Space
pointer

Space
pointer

System
pointer

Char(13)*

Char(3)

Char(14)*

Char(*)*
Bin(2)

System
pointer(s)

Note: The values of the entries associated with an
asterisk (*) are ignored by this instruction.

Authorization verification for all objects identified by
pointers in the process definition template (except the
process user profile) employs the user profile identified
in the template or employs the authorization previously
set in the system pointers. The initiator must have
object management authority for the new process user
profile or the new process user profile must be identical
to the initiating process user profile.

Process control attributes establish the basic process
characteristics. The attributes and definitions are as
follows:

• Process type (dependent/ independent): This attribute
denotes the upper boundary of the process hierarchy
(domain). Designating a process as independent
produces a direct-dependent relationship so that
destruction of the initiator of an independent process
does not cause implicit destruction of the
independent process and its dependent subordinates.
The initiator of an independent process, however, has
implied full authority over that independent process
and its dependents for explicit termination or
suspension.

• Instruction wait access state control: This attribute
specifies that the access state of the process access
group can be modified when the process enters a
wait as a result of a Dequeue, Lock, Wait On Event,
Suspend Process, or Set Cursor (for delete or update)
instruction. If the parameter equals binary 1 and the
instruction causing the wait also specifies an access
state modification, the access state of the process
access group is modified.

• Time slice end access state control: This attribute
has the same function as the instruction wait access
state control attribute, except for time slice end.

• Time slice event option (signal event/do not signal
event): This attribute specifies that an event is to be
signaled if a process has exhausted its time slice
without having entered a wait as a result of a
Dequeue, Lock, Wait On Event, Suspend, or Set
Cursor (for delete or update) instruction. The event is
signaled if the time slice event option is set to signal
event and the condition of the signal event is met.

• Initiation phase program option: This attribute
specifies that a system pointer to the initiation phase
program is supplied and that the initiation phase is to
be entered.

Process Management Instructions 11-7

• Problem phase option: This attribute specifies that a
system pointer to the problem phase program is '
supplied and that the problem phase is to be entered.
Either an initiation phase option or a program phase
option must be specified. The template value invalid
exception is signaled if one of the options is not
specified.

• Termination phase option: This attribute specifies
that a system pointer to the termination phase
program is supplied and that the termination phase is
to be entered.

• Process default exception handler option: This
attribute specifies that a system pointer to a program
is supplied as the process default exception handler.

• Process name resolution list option: This attribute
specifies that a space pointer is supplied for the
process N R L.

The signal event control mask controls the signaling of
conditionally specified events. If the conditional signal
mask in a Signal Event instruction is binary 0 or if one
or more matching bit positions in the conditional signal
mask and the signal event control mask are set to binary
1, the specified event is signaled.

The number of event monitors allows the machine to
more effectively manage event monitors. This number is
not a maximum; it represents a performance variable.
The allowable value in this entry is from 0 through 256.

11-8

Resource management attributes define a process's
limitations or restrictions in competing· for machine
resources. The attributes and definitions are as follows:

• Process priority: This attribute designates the relative
importance of this process to other processes in the
machine when contending for the processor and main
storage. A value of 0 is the highest priority.

• Process storage pool identification: This attribute
designates the main storage pool from which the
machine is to draw for storage of the process's
objects and machine overhead in support of a
process. The storage pool identification must be one
of the storage pools existing in the machine as
defined by the machine attribute. The storage pool
identification of hex 00 is reserved for the machine.

• Maximum temporary auxiliary storage allowed: This
attribute restricts the amount of auxiliary storage for
temporary system objects and machine overhead that
a process can consume in the course of its existence.

• Time slice interval: This attribute specifies the
amount of processor resource time to be given to the
process until it is made temporarily ineligible for the
processor.

• Default time-out interval: This attribute specifies a
realtime interval that restricts the amount of time the
process waits for an object to be made available, a
message to arrive on a queue,. or an event to occur.
This value supplies a default when a wait time-out
value is not specified on the Lock, Dequeue, or Wait
On Event instruction.

• Maximum processor time allowed: This attribute
specifies the maximum amount of processor time that
a process may consume during its existence. An
event is signaled when the specified value is
exceeded.

• Process MPL (multiprogramming level) class 10: This
attribute is used to associate the MPL class of the
new process with a previously specified M PL class
set as a machine attribute.

Modification control indicator attributes restrict the
modification of process attributes through the Modify
Process Attributes instruction. Modification of the
process can be disallowed, restricted to modification by
the process itself only in the initiation and termination
phases, or allowed in all phases by any process with
proper authority. External modification is allowed
implicitly to the initiator of this process, provided the
modification control indicators are set to allow
modification in all phases. Other processes are allowed
to modify this process if they have the special process
control authority within their process user profile or
current adopted user profile and the modification control
indicators of this process are set to allow modification in
all phases. The modification control indicators cannot be
modified.

The process user profile system pointer is required and
identifies the user profile that is to govern the execution
of the process. The user profile governing the process
issuing the Initiate Process instruction must have object
management authorization for the designated user
profile or must be identical to the designated user
profile. The process user profile provides the basic
authorization control for the process. Permanent system
object storage allocation and ownership of objects
created by the process are always reflected in the user
profile specified in the process definition template. A
process's authorization can be augmented through the
invocation of a program created with an adopted user
profile. Adopted user profiles are used in conjunction
with the process user profile to determine a process's
eligibility for access to existing objects, privileged
instructions, or special authorizations.

An implicit lock is applied to the process user profile for
the duration of the initiation of the process. If a process
holds an LENR lock on the user profile, an invalid lock
state exception is signaled. The implicit lock is removed
when the process is terminated.

The PCO (process communication object) pointer
provides addressability to a user object whose· use and
format is an external convention. The area may contain
a system pointer, a space pointer, a data pointer, or any
data value. The contents of the area are not verified by
the machine. If a PCO is not used, the associated
storage area may contain any value.

The process NRL (name resolution list) pOinter is a
space pointer that provides addressability to a list of
resolved system pointers addressing contexts to be used
by the machine for address resolution. The list of
system pointers is preceded by a binary(2) scalar
denoting the number of system pointers in the list. The
space pointer must address a 16-byte boundary that
has the following format:

• Number of pointers

• Reserved (binary 0)

• List of resolved system
pOinters to contexts

Bin(2)

Char(14)

System
pointer{s)

The process NRL is optional. If not specified, it causes
the object not found exception to be signaled when a
context is not specified for explicit or implicit system
pointer name resolution functions.

The initiation phase program pointer is optional. If
specified, it identifies the first program to be given
control by the machine at the completion of the Initiate
Process instruction. The initiation phase option
parameter establishes whether the initiation phase is to
be entered and whether the designated program is to be
invoked.

The termination phase program pointer is optional. If
specified, it indicates the program to be given control
when the process enters the termination phase. The
termination phase option parameter establishes whether
the termination phase is to be entered and whether the
designated program (if specified) is to be invoked.

The problem phase program pointer identifies the
program to be invoked when the process enters the
problem phase. The problem phase option parameter
establishes whether the problem phase is to be entered
and whether the designated program is to be invoked.

Process Management Instructions 11-9

The POEH (process default exception handler) pointer is
optional. If it is present, it identifies the program to· be I
given control when an exception is not handled by a
signaled program invocation. This program is invoked as
an external exception handler and as the most current
invocation in the process. No invocations within the
process are destroyed prior to invoking the POEH.
When no POEH is specified, the process is terminated if
a signaled invocation does not handle an exception. The
POEH is given control when an exception occurs
invoking the signaled invocation program. The exception
data intended for the signaled invocation program is
presented to the POEH.

The PASA (process automatic storage area) space
pointer is required and addresses a location in a space
the machine uses to allocate invocations. The space
pointer must address a 16-byte boundary. The space
pointer locates the PASA base entry. At this location,
the user must have constructed the PASA base entry.
The base entry consists of four space pointers. The
succeeding bytes in the space are then assumed to be
available for allocation for invocation entries. These
entries contain stack control pointers, data, and the
automatic storage allocated for program invocations.
See the Call External instruction, for a description of the
PASA.

The PASA base entry must be initialized prior to the
Initiate Process instruction that specifies the PASA base
entry in the PDT (process defintion template). The
initialization of the base entry consists of the fo"owing:

• Current invocation entry
(initialized to address the
PASA base entry)

• First invocation entry
(need not be initialized, and
any value present is ignored
by the machine)

11-10

Space
pointer

Space
pointer

• Next available storage location
(initialized to the byte location
in the space where the first
invocation entry is to be allocated)

Space
pointer

• Maximum addressable location in Space
the spa<:e containing the PASA pointer
(initialized to the highest space
address ·that may be allocated in
the space for use by the PASA.
This space pointer need not address
a currently allocated byte in the
space but must address the same
space as the next available storage
location entry. A process storage
limit exceeded exception is signaled
if the next available storage location
pointer exceeds the maximum addressable
location).

The space that contains the PASA can be permanent or
temporary and can be contained in an access group only
if the space is temporary.

The PSSA (process static storage area) space pOinter is
optional. If this pointer is present, it addresses a space
the machine uses to stack activations. The PSSA space
pointer is an optional parameter, provided no programs
executed within the process require static storage. The
space pointer must address a 16-byte boundary and
locates the beginning of the PSSA. The succeeding
bytes in the space are assumed to be available for
allocation for activation entries. These entries contain
stack control pointers, data, and the static storage
allocated for program activations. See the Activate
Program instruction for a description of the PSSA.

If a valid PSSA space pointer is not provided prior to
the first program activation or prior to the invocation
within the process that requires static storage, a pointer
does not exist, pointer type invalid, or a space
addressing violation exception is signaled at activation or
invocation of the program.

The PSSA base entry must be initialized prior to the
activation of the first program in the process. The base
entry consists of the following:

• Current activation entry Space
(initialized to address the pointer
PSSA base entry)

• First activation entry Space
(need not be initialized, and any pointer
value present is ignored by the
machine)

• Next available storage location Space
(initialized to the byte location pointer
in the space where the first
activation entry is to be allocated)

• Maximum addressable location Space
in space containing the PSSA pointer
(initialized to the highest space
address that may be allocated in
the space for use by the PSSA.
This space pointer need not address
a currently allocated byte in the
space but must address the same
space as the next available storage
location entry. A process storage
limit exceeded exception is signaled
if the next available storage
location pointer exceeds the
maximum addressable location).

The space containing the PSSA can be permanent or
temporary and can be contained in an access group only
if the space is temporary.

The PAG (process access group) system pointer is
optional. If this pointer is present, it addresses an
access group that will be managed by the machine at
instruction wait entry, at time slice end, and at process
predispatching times. The PAG access state
modification is controlled by the instruction wait access
state control and time slice end access state control
indicators, in conjunction with access state modification
options supplied with the Dequeue, Lock, Wait On
Event, Suspend Process, and Set Cursor (for delete or
update) instructions. The access group and its member
objects can be referenced by other processes at any
time.

Operand 3 can identify an argument list to be presented
to the process being initiated, or it can be null (no
arguments passed). The argument and parameter
functions are the same as defined for interinvocation
communications· (argument list on Call External and
Transfer Control instructions). Refer to Program
Execution in the Functional Concepts Manual for the
details on argument/ parameter correspondence.

The argument to parameter relationship is established
for only the first program invoked in the problem phase.
The process initiation and termination programs are not
given access to the argument list.

Operand 4 can identify a space that specifies system
objects whose locks are to be transferred to the new
process. The template identified by operand 4 must be
16-byte aligned in the space.

The space object is organized such that a 1 ;..byte lock
state selection entry exists in the space for each
addressing object· in the template. The addressing
objects must be system pointers if the associated lock
option entry is active; otherwise, an exception is
signaled. If the entry is not active, the associated
addressing object is ignored.

Process Management Instructions 11 -11

The format of the lock template is as follows:

• Number of lock transfer requests

• Offset to lock state selection entries

• Reserved (binary 0)

• Object lock(s) to be transferred
System pointer for each object
lock to be transferred

• Lock state selection entry
(repeated for each addressing
object in the template)

Lock state to transfer
(only one state may be
requested: 1 = transfer)

transfer LSRD state
transfer LSRO state
transfer LSUP state
transfer LEAR state
transfer LENR state

Set lock count option
o = Transfer the current

lock count
1 = Transfer a lock count of 1

Bin(4)

Bin(2)

Char(10)

System
pointer(s)

Char(1)

Bits 0-4

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5

Reserved (binary 0) Bit 6
Entry active indicator
o = Entry not active

(do not use this
entry and associated
system pointer)
Entry active
(transfer this lock)

Bit 7

Only one lock state can be transferred withi" each entry.

The initiating process must hold the locks in the states
that are to be transferred, or an exception is signaled.

The initiating process cannot transfer a subset of lock
states (to the new process) that would result in
conflicting locks. For example, the initiating process
could not hold an object locked in the LENR and LSRD
state and transfer only the LSRD state. The invalid lock
state exception is signaled if the transfer request results
in conflicting lock states.

See the Transfer Object Lock instruction for associated
functions and exceptions.

11-12

Authorization Required

• Privileged Instruction

• Object Management
User profile specified as the process user profile
when the user profile is different than user profile
of the process that issued the instruction.

• Retrieve
- Contexts referenced for address resolution

• Authorized Operational to Initiated Processes
Initiation phase program
Termination phase program
Problem phase program
Process default exception handler

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

• Modify
- Process control space

Implicit Locks

• User profile of process to be initiated is implicitly
locked LSRD.

Events

0002 Authorization
0201 Privileged instruction violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0102 Process initiated (to initiating process)
0202 Process terminated (to initiating process)
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions MATERIALIZE PROCESS ATTRIBUTES (MATPRATR)

Operands Op Code Operand Operand Operand
Exception 1 2 3 4 Other (hex) 1 2 3

06 Addressing 0333 Receiver Process Materialization
01 Space addressing violation X X X control options

02 Boundary alignment X X X space

03 Range X X X

08 Argument/ Parameter Operand 1: Space pointer.

01 Parameter reference violation X X X
Operand 2: System pointer or null.

02 Initiate process X

OA Authorization Operand 3: Character scalar(1).
01 Unauthorized for operation X

02 Privileged instruction X
10 Damage Encountered Description: The instruction causes either one specific

04 System object damage state X X X X X attribute or all the attributes of the designated process
44 Partial system object damage X X X X X to be materialized.

1C Machine-Dependent Exception
03 Machine storage limit X Operand 1 specifies a space that is to receive the

exceeded
materialized attribute values. The space pointer specified

06 Machine lock limit exceeded X
in operand 1 must address a 16-byte aligned area.

20 Machine Support
02 Machine check X

Operand 2 is a system pointer identifying the process
03 Function check X

control space associated with the process whose
22 Object Access

attributes are to be materialized. If operand 2 is null, the
01 Object not found X X X

process issuing the instruction is the subject process. If
02 Object destroyed X X X

the subject process's attributes are being materialized by
03 Object suspended X X X

another process, that process must be the original
05 Object not available to process X X

initiator of the subject process or the governing user
24 Pointer Specification

profile(s) must have process control special
01 Pointer does not exist X X X

authorization.
02 Pointer type invalid X X X
03 Pointer addressing invalid X X

Operand 3 is a character scalar(1) specifying which object
process attribute is to be materialized. A value of hex

2A Program Creation
00 results in all the attributes of a process being 06 Invalid operand type X X X X
materialized in the format described in the Initiate 07 Invalid operand attribute X X X X
Process instruction for the process definition template. 08 Invalid operand value range X X X
Other options allow materialization of specialized OC Invalid operand ODT reference X X X X
process· attributes. 38 Template Specification

01 Template value invalid X X

Process Management Instructions 11-13

The materialization template has the following general
format when a process scalar attribute is materialized: do

• Materialization size specification
Number of bytes provided for
materialization
Number of bytes available for
materialization

• Process scalar attributes

ChartS)
Bin(4)

Bin(4)

Char(*)

The materialization template has the following general
format when a process pointer attribute is materialized:

• Materialization size specification
Number of bytes provided for
materialization
Number of bytes available for
materialization

• Reserved (binary 0)

• Process pointer attribute

Char(S)
Bin(4)

Bin(4)

Char(S)

System
pointer
or
Space
pointer

Note: The values of the entry associated with an
asterisk (*) are ignored by this instruction.

11-14

The following attributes require materialization targets of
varying lengths. The attributes to be· materialized. and
their operand 3 materialization option values follow.

• Process Control Attributes

Values hex 01 through hex OB
cause theA-byte process
control attributes value to
be placed in the byte area
identified by operand 1. The
individual attributes and the
corresponding values are as follows:

Char(4)

Process type Bit 0
o = Dependent process
1 = Independent process
Instruction wait access state
control
o Access state modification

is not allowed
Access state modification
is allowed if specified

Time slice end access state
control
o Access state modification

is not allowed.
Access state modification
is allowed if specified.

Time slice end event option
o = Time slice expired without

entering instruction wait
event is not signaled.
Time slice expired without
entering instruction wait
event is signaled.

Bit 1

Bit 2

Bit 3

Reserved (binary 0) Bit 4
Initiation phase program option Bit 5
o = No initiation phase program

specified (do not enter
initiation phase)
Initiation phase program
specified (enter initiation
phase)

Problem phase program option Bit 6
o = No problem· phase program

specified (do not enter
problem phase)
Problem phase program
specified (enter problem
phase)

Termination phase program option Bit 7
o = No termination phase program

specified (do not enter
termination phase)
Termination phase program
specified (enter termination
phase)

Process default exception Bit S
handler option
o = No process default

exception handler
1 Process default exception

handler specified
Process name resolution list Bit 9
option
o = No process NRL specified
1 . = Process NRL specified
Process access group option Bit 1 D
o = No process access group

specified
1 = Process access group

specified
Reserved (binary 0) Bits 11-31

• Signal Event Control Mask

The materialization of the control mask
is as follows:
- Hex DC = Signal event control

mask

• Number of Event Monitors

The materialization of this attribute is
as follows:
- Hex 00 = Number of event

monitors

Char(2)

Bin(2)

The resource management attributes and data types are
as follows:

· Hex OE Process priority Char(1)

· Hex OF = Process storage Char(1)
pool 10

· Hex 10 Maximum temporary Bin(4)
auxiliary storage
allowed

• Hex 11 = Time slice interval ChartS)

· Hex 12 Default time-out ChartS)
interval

· Hex 13 = Maximum processor ChartS)
time allowed

· Hex 14 Process multipro- Char(1)
gramming level class 10

· Hex 15 Modification control ChartS)
indicators

Process Management Instructions 11-15

The modification control indicators are materialized
when the operand 3 value is hex 15. Each indicator
specifies the modification options allowed to a
process upon itself by the initiating process. The
possible values of each modification control indicator
are as follows:

00 = Modification of the attribute is not allowed.

01 = Modification is allowed in the initiation or
termination phases only.

10= Modification is allowed in all phases
(initiation, problem, and termination).

The bit assignments of the modification control
indicators are as follows:

11-16

Instruction wait access
state control
Time slice end access
state control
Time slice event option
Reserved (binary 0)
Problem phase program option
Termination phase program option
Process default exception
handler option
Process NRL option
Signal event control mask
Process priority
Process storage pool
identification
Maximum temporary auxiliary
storage allowed
Time slice interval
Default time-out interval
Maximum processor time allowed
Process M PL class I D
User profile pointer
Process communication object
pointer
Process NRL pointer
Termination phase program
pointer
Problem phase program pointer
Process default exception
handler
Reserved (binary 0)

Bits 0-1

Bits 2-3

Bits 4-5
Bits 6-7
Bits 8-9
Bits 10-11
Bits 12-13

Bits 14-15
Bits 16-17
Bits 18-19
Bits 20-21

Bits 22-23

Bits 24-25
Bits 26-27
Bits 28-29
Bits 30-31
Bits 32-33
Bits 34-35

Bits 36-37
Bits 38-39

Bits 40-41
Bits 42-43

Bits 44-63

• Hex 16 = Process user profile pointer

The system pointer with addressability to the user
profile is placed into the space addressed by operand
1. If the materialization option (hex (0) is specified in
operand 3, a reserved character(9) field is included at
this point. This user profile is the process user profile
assigned by the Initiate Process or Modify Process
Attribute instruction.

• Hex 17 = Process communication object (PCO)
pointer

. The PCO pointer is placed in the space addressed by
operand 1.

• Hex 18 = Process name resolution List

The space pointer to the NRl is placed in the space
addressed by operand 1.

• Hex 19 = Initiation phase program pointer

The system pointer to the program is placed in the
space addressed by operand 1.

• Hex 1A = Termination phase program pointer

The system pointer to the program is placed in the
space addressed by operand 1.

• Hex 1 B = Problem phase program pointer

The system pointer to the program is placed in the
space addressed by operand 1.

• Hex 1 D = Process automatic storage area

The space pointer with addressability to the PASA is
placed in the space addressed by operand 1.

• Hex 1 E = Process static storage area

The space pointer with addressability to the PSSA is
placed in the space addressed by operand 1.

• Hex 1 F = Process access group

The system pointer with addressability to the PAG is
placed in the space addressed by operand 1.

Process status indicators are materialized when the
value of operand 3 is hex 20. The format and
associated values of this attribute are as follows:

• Process states
External existence state
000 = Suspended
010 = Suspended, in instruction wait
100 = Active, in ineligible wait
101 = Active, in current MPL
110 = Active, in instruction wait
Reserved (binary 0)
Internal processing phase
001 = Initiation phase
010 = Problem phase
100 = Termination phase
Reserved (binary 0)

• Process interrupt status
(Bit = 1 denotes pending)

Time slice end pending
Transfer lock pending
Asynchronous lock retry pending
Suspend process pending
Resume process pending
Resource management attribute
modify pending
Process attribute modify pending
Terminate machine processing
pending
Terminate process pending
Wait time-out pending
Event schedule pending
Machine service pending
Reserved (binary 0)

Char(2)
Bits 0-2

Bits 3-7
Bits 8-10

Bits 11-15

Char(2)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5

Bit 6
Bit 7

Bit 8
Bit 9
Bit 10
Bit 11
Bits 12-15

• Process initial internal termination
status

Initial internal termination reason
Hex 80 = Return from first

invocation in

Hex 40

Hex 20

Hex 10

problem phase.
Return from first
invocation in
initiation phase,
and no problem
phase program
specified.
Terminate Process
instruction issued by
this process to itself.
Exception was not
handled by the
process.

Hex 00 = Process terminated
externally.

Initial internal termination code

Char(3)

Bits 0-7

Bits 8-23

The code is assigned in one of the following ways:
a. If the termination is caused by a Return External

instruction from the first invocation, then this
code is binary 0' s.

b. The code is assigned by operand 2 of the
Terminate Process instruction. This code is also
given to subordinate processes involved in the
termination.

c. code is assigned by the original exception code
that caused process termination to commence.
This code is also given to subordinate
processes involved in the termination.

• Process initial external termination Char(3)
status

Initial external termination reason: Bits 0-7
Hex 80 = Terminate Process

Hex 40

instruction issued
explicitly to this
process from another
process.
A superordinate
process has been
terminated.

Hex 00 = Process terminated
internally.

Initial external termination code:
This code is supplied by the
termination code in operand 2
of the Terminate Process
instruction.

Bits 8-23

Process Management Instructions 11-17

• Process final termination status Char(3)
Final termination reason: Bits 0-7
Hex 80 = Return instruction from

Hex 40

Hex 20

Hex 10

first invocation.
Terminate Process
instruction issued
by the process being
materialized.
Terminate Process
instruction issued
to the process being
materialized by another
process.
Exception not handled
by this process.

Hex 08 = Terminate Process

Hex 04

instruction issued
to superordinate of
the process being
materialized.
Superordinate process
of the process being
materialized completed
termination phase.

Final termination code
is assigned in one of
the following ways:
a. If the termination is

caused by a Return External
instruction from first
invocation, then this
code is binary 0' s.

b. The termination code is
assigned by the Terminate
Process instruction.

11-18

c. The termination code is
assigned by the original
exception code that
caused process termination.

The process final termination
status is presented as
event-related data in the
terminate process event.
Usually the event is the only
source of the process final

• termination status since the
process will cease to exist
before its attributes can be
materialized.

Bits 8-23

Process resource usage attributes are materialized when
the value of operand 3 is hex 21. The format and
associated values of this attribute are as follows:

Total temporary auxiliary storage used Bin(4)

• Total processor time used

Number of locks currently held by
the process (including implicit locks)

Char(8)

8in(2)

Subordinate processes identification attributes are
materialized when the value of operand 3 is hex 22. The
format and associated values of this attribute are as
follows:

• Materialization size specification
Number of bytes provided for
materialization
Number of bytes available for
materialization

• Number of immediately subordinate
processes

• Reserved (binary 0)

• System pointer to the process
control space for each subordinate
process (repeated for each
immediately subordinate process)

Char(8)
8in(4)

8in(4)

Bin(2)

Char(6)

System
pointer(s)

Process performance attributes are materialized when
the value of operand 3 is hex 23. The format and
associated values of this attribute are as follows:

• Materialization Size Specification
Number of bytes provided
for materialization
Number of bytes available
for materialization

• Number of page reads into main
storage associated with data base

• Number of page reads into main
storage not associated with data base

• Number of page writes from main
storage

• Number of transitions into ineligible
wait state

• Number of transitions into an
instruction wait

• Number of transitions into ineligible
wait state from an instruction wait

• Time stamp of materialization

Char(8)
Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(2)

Bin(2)

Bin(2)

Char(8)

Each of these counters has a limit of 32 767. If this
limit is exceeded, the count is set to 0, and no exception
is signaled.

The process performance attributes are not supplied
with materialization option hex 00.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception described previously)
are signaled in the event that the receiver contains
insufficient area for the materialization.

Authorization Required

• Process Control Special Authorization
For materializing a process other than the one
executing this instruction

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Process Management Instructions 11-19

Exceptions MODIFY PROCESS ATTRIBUTES (MODPRATR)

Operands Op Code Operand Operand Operand
Exception 1 2 3 4 Other (hex) 1 2 3

06 Addressing 0337 Process Modifi- Modify
01 Space addressing violation X X X control cation attribute
02 Boundary alignment X X X space template

03 Range X X X
08 Argument/ Parameter Operand 1: System pointer or null.

01 Parameter reference violation X X X
OA Authorization

Operand 2: Space pointer.

01 Unauthorized for operation X Operand 3: Character(1) scalar (fixed-length).
{)4 Unauthorized for process X

control

10 Damage Encountered

04 System object damage state X X X X X
Description: An attribute of the process identified by

44 ,Partial system object damage X X X X X
operand 1 is modified to the value specified by operand

1A Lock State
2. Operand 3 identifies the attribute that is to be
modified.

01 Invalid lock state X
20 Machine Support

02 Machine check X
If the process is attempting to modify itself (that is,

03 Function check X
operand 1 is null or operand 1 designates the process

22 Object Access
itself), the modification is allowed or disallowed based

01 Object not found X X X
on the modification control indicators specified in the

02 Object destroyed X X X
process definition template supplied with the Initiate

Process instruction. Modification is also conditioned on
03 Object suspended X X X

24 Pointer Specification
the internal phases: initiation, problem or termination

01 Pointer does not exist X X X
phase.

02 Pointer type invalid X X X
03 Pointer addressing invalid X

The initiating process always carries implicit modify

object
authority. Any other process can modify another

28 Process State
process if the process control· special authorization is

02 Process control space not X
defined in the process user profile or in a current

associated with a process adopted user profile, provided the modification control

2A Program Creation indicators are set to allow modification in all phases.

06 Invalid operand type X X X
07 Invalid operand attribute X X X Operand 1 is a system pointer addressing a process

08 Invalid operand value range X X X control space associated with a process.

OA Invalid operand length X
OC Invalid operand ODT reference X X X Because this instruction may require one process to act

32 Scalar Specification upon another process, a portion of the function is

03 Scalar value invalid X controlled by the issuing process, and the remainder of

38 Template Specification the function is controlled by the target process. When

03 Materialization length X control is returned to the issuing process, the function

exception may not have been performed in its entirety.

11-20

The action the machine takes upon modification of an
attribute may cause an immediate effect, or the effect
may be delayed. The immediacy of the effect is
determined by the attribute being modified. For
example, modification of an active process's priority
immediately influences an active process's execution.
However, if the process termination phase program is
changed, the modification does not influence the
process until the process enters the termination phase.

When a process scalar attribute is being modified, the
modification template has the following general format:

• Template size
Number of bytes provided
Number of bytes available
for materialization

• Scalar modification value

Char(S)
Bin(4)
Bin(4)

Char(*)

When a process pointer attribute is being modified, the
modification template has the following general format
(and must be aligned on a 16-byte multiple):

• Template size
Number of bytes provided
Number of bytes available
for materialization

• Reserved (binary 0)

• Process pointer attribute

Char(S)
Bin(4)*
Bin(4)*

Char(S)

System
pointer
or
Space
pointer

The template identified by operand 2 must be 16-byte
aligned in the space.

Operand 3 is a character(1) scalar specifying the process
attributes to be modified.

The following attributes require modification values of
varying lengths. The attributes and their operand 3
character(1) scalar values are as follows:

• Process Control Attributes

Bits that are not selected in this
option are ignored by this instruction.
The following attribute bits can be
selected:

- Hex 02 Instruction wait
access state control
o = Access state

modification
is not allowed.
Access state
modification
is allowed if
specified.

The machine recognizes the new
value at the next instruction wait
by the process.

Hex 03 = Time slice end
access state control
o = Access state

modification
is not allowed.
Access state
modification
is allowed if
specified.

The machine recognizes the new
value at the next time slice end
for the process.

Char(4)

Bit 1

Bit 2

Process Management Instructions 11-21

- Hex 04 Time slice event
option
o = No event is

signaled if
time slice
end occurred
without a long
wait during the
time slice.

= An event is
signaled if
time slice
end occurred
without a long
wait during the
time slice.

The machine recognizes the new
value at the next time slice end.

Bit 3

Hex 05 = Exception event Bit 4

- Hex 07

11-22

option
o = No event is

signaled upon
exception
occurrence

1 = An event is
signaled upon
exception
occurrence

Problem phase
program option
o = No problem phase

program specified
(do not enter the
problem phase)

1 Problem phase
program specified
(enter the
problem phase)

Bit 6

- Hex 08 = Termination phase
program option
o = No termination

phase program
specified
(do not enter
termination
phase)

1 = Termination
phase program
specified (enter
the termination
phase)

- Hex 09 = Process default
exception handler
option
o = No process

default
exception
handler
specified

1 Process
default
exception
handler
specified

- Hex OA = Process name
resolution list
option
o = No process

name resolution
list

= Process name
resolution list
specified

• Signal Event Control Mask

Bit 8

Bit 8

Bit 9

The modification of the control mask is:

- Hex OC = Signal event
control mask

The machine recognizes the
change on the next conditional
Signal Event instruction that is
encountered.

Char(2)

The resource management attributes and data types are
as follows:

• Hex OE = Process priority Char(1)

The scalar modification value replaces
the current process priority. If the
process is active, its position relative
to other processes contending for the
same resource is immediately adjusted.

• Hex OF = Process storage pool
identification

The scalar modification value replaces
the current process value. If the
process is active, subsequent main
storage requirements are satisfied
from the new storage pool. The release
of main storage acquired from other
storage pools is unpredictable.

• Hex 10 = Maximum temporary
auxiliary storage
allowed

The scalar modification value replaces
the current process value. The new
value is checked the next time auxiliary
storage is required to determine if the
scalar modification value has been
exceeded.

• Hex 11 = Time slice interval

The scalar modification value· replaces
the current process time slice value.
The new time slice. value takes effect
the next time the process· is dispatched.

• Hex 12 = Default time-out
interval

The scalar modification value replaces
the current process value. The new
new value is used the next time the
process executes a Dequeue Lock or
Wait On Event instruction that
specifies a zero time-out value.

Char(1)

Bin(4)

Char(8)

Char(8)

• Hex 13 Maximum processor
time allowed

The scalar modification value replaces
the current process value. The new
value is used at the end of the next
time slice to determine if the maximum
allowed processor time has been
exceeded.

• Hex 15 = Process multipro
gramming level class 10

The effect of the modification is
immediate, but the MPL rules are
not applied until the next instruction
wait or time slice end.

Char(8)

Char(1)

The process pointer attributes and· data types are as
follows:

• Hex 16 User profile pointer

Modification of this attribute is
reflected in the next authority
verification for the process or upon
creation of a permanent system
object by the process.

• Hex 17 = Process communi
cation object pointer

Modification of this attribute is
reflected only upon the next
Materialize Process Attributes
instruction.

• Hex 18 = Process name
resolution list
pointer

The machine references this list for
subsequent address resolutions.

• Hex 1A = Termination phase
program pointer

System
pointer

Space pointer,
system pointer,
data pointer,
or scalar

Space
pointer

System
pointer

The new program is to be used when
the process enters the termination
phase. The system pointer must
address a program.

Process Management Instructions 11-23

• Hex 18 Problem phase
program pointer

The new program is to be used when
the process enters the problem phase.
The system pointer must address a
program.

• Hex 1 C = Process default
exception pointer

System
pointer

System
pointer

The program is to be activated and
invoked if an exception is not handled
at the program invocation level. The
system pointer must address a program.

The modification control indicators can not be modified
through the Modify Process Attributes instruction.

Authorization Required

• Process Control Special Authorization

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

• Object Management
User profile (new) of the process if the process
user profile is to be changed.

Events

0002 Authorization
0301 Special authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

11-24

Exceptions

Operands
Exception 1 2 3 4 Other

06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

08 Argument/ Parameter

01 Parameter reference violation X X X

OA Authorization

01 Unauthorized for operation X

04 Unauthorized for process X
control

10 Damage Encountered

04 System object damage state X X X X X

44 Partial system object damage X X X X X

1A Lock State

01 Invalid lock state X

1C Machine-Dependent Exception

04 Object storage limit exceeded X

06 Machine lock limit X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X

02 Object destroyed X X X

03 Object suspended X X X

24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

03 Pointer addressing invalid X
object

28 Process State

02 Process control space not X
associated with a process

OA Process attribute modification X
not allowed

2A Program Creation

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

OA I nvalid operand length X X X

OC Invalid operand ODT reference X X X

32 Scalar Specification

03 Scalar value invalid X

38 Template Specification

01 Template value invalid X

RESUME PROCESS (RESPR)

Op Code
(hex)

0386

Operand
1

Process
control
space

Operand
2

Option
template

Operand 1: System pointer or null.

Operand 2: Character(1) scalar (fixed-length).

Description: The designated process or processes are
made eligible for the processor resource. The affected
processes are denoted by the operand 1 and operand 2
values.

If operand 1 is a system pointer, it must identify the
process control space associated with a process to be
resumed. If operand 1 is null, the executing process is
identified and its subordinate processes are resumed.

The process issuing the Resume Process instruction
requires no authority if the resuming process is the
initiator of the target process. If this condition is not
met, the resuming process must carry the process
control special authorization in its process user profile or
any current adopted user profile(s).

Operand 2 is a character scalar designating the resume
process option. The format is:

• Resume option
Resume domain
01 = Root process only
10= All subordinate

processes only
11 = Root process and all

subordinate processes
Reserved (binary 0)

Char(1)
Bits 0-1

Bits 2-7

If operand 1 identifies the issuing process, the resume
option must designate all subordinate processes only;
otherwise, the scalar value invalid exception is signaled.

The suspended process or processes are resumed in the
same internal processing phase as they existed in when
they were suspended. The phases may be initiation,
problem, or termination.

Authorization Required

• Process Control Special Authorization

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation
0301 Special authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0402 Process resumed

(signaled to initiating process)
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Process Management Instructions 11-25

Exceptions

Operands
Exception 1 2 3 4

06 Addressing
01 Space addressing violation X X
02 Boundary alignment X X
03 Range X X

08 Argument! Parameter
01 Parameter reference violation X X

OA Authorization
01 Unauthorized for operation X
04 Unauthorized for process X

control
10 Damage Encountered

04· System object damage state X X X X
44 Partial system object damage X X X X

1A Lock State
01 Invalid lock state

1C Machine-Dependent Exception
04 Object storage limit exceeded

20 Machine Support
02 Machine check
03 Function check

22 Object Access

01 Object not found X X
02 Object destroyed X X
03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X

03 Pointer addressing invalid X
object

28 Process State
02 Process control space not X

associated with a process
05 Resume process invalid

2A Program Creation
06 Invalid operand type X X

07 Invalid operand attribute X X
08 Invalid operand value range X X
OA Invalid operand length X X
OC Invalid operand ODT reference X X

32 Scalar Specification
01 Scalar type invalid X X
03 Scalar value invalid X

11-26

Other

X
X

X

X

X
X

X

SUSPEND PROCESS ·(SUSPR)

Op Code Operand . Operand
(hex) 1 2

0392 Process Option
control template
space

Operand 1: System pointer or nulL

Operand 2: Character(1) scalar.

Description: Designated processes are suspended
based on the process or processes identified by· operand

1 and· the suspend options specified in operand 2.

Operand 1 identifies the process to be suspended. The
operand 1 system pointer addresses the process control
space associated with the process to be suspended. If

operand 1 is null, the process issuing the instruction is
considered the process to be suspended.

No authorization is required if one of the following

conditions exists:

· The suspending process is the initiator of the target

process.

· The process is suspending itself.

If neither condition exists, the suspending process must
carry the process control special authorization in its
process user profile or currently adopted user profile(s).

Operand 2 is a character(1) scalar designating the

suspend option. The format is:

· Suspend Option Char(1)

Suspend domain Bits 0-1

01 = Suspend root process only
10= Suspend all subordinate

processes only
11 = Suspend root process and

all subordinates
Access state control· Bit-2

o = Access state is not modified

1 = Access state is modified

Reserved (binary 0) Bits 3-7

A process can be suspended in any internal processing
phase: initiation, problem, or termination.

If any process designated to be suspended has already Exceptions
been suspended, no operation is performed on the
process, and no exception is signaled. If the suspend Operands
option specifies subordinate processes and the Exception 1 2 3 4 Other

referenced process has no subordinates, no exception is
signaled. 06 Addressing

01 Space addressing violation X X

If the access state control parameter specifies modify 02 Boundary alignment X X

access state and the process's or processes' instruction 03 Range X X

wait access state control specifies allow access state 08 Argument/ Parameter

modification, then the access state of the process's 01 Parameter reference violation X X

access group is modified. OA Authorization
01 Unauthorized for operation X

Suspended processes retain locks. Processes in the 04 Unauthorized for process X

suspended state can be operated on with the Materialize
control

10 Damage Encountered
Process Attributes, Modify Process Attributes, Resume

04 System object damage state X X X X X
Process Attributes, and Terminate Process Attributes

44 Partial system object damage X X X X X
instructions.

1A Lock State
01 Invalid lock state X

Authorization Required
1C Machine-Dependent Exception

04 Object storage limit exceeded X

Process Control Special Authorization
20 Machine Support · 02 Machine check X

03 Function check X · Retrieve
22 Object Access

- Contexts referenced for address resolution
01 Object not found X X
02 Object destroyed X X

Lock Enforcennent 03 Object suspended X X
24 Pointer Specification

01 Pointer does not exist X X · Materialize
02 Pointer type invalid X X

- Contexts referenced for address resolution
03 Pointer addressing invalid X

object
28 Process State

Events 02 Process control space not X
associated with a process

0002 Authorization 06 Suspend process invalid X
0101 Object authorization violation 2A Program Creation

06 Invalid operand type X X
OOOC Machine resource 07 Invalid operand attribute X X

0201 Machine auxiliary storage threshold exceeded 08 Invalid operand value range X X
OA Invalid operand length X X

0010 Process OC Invalid operand ODT reference X X
0302 Process suspended 32 Scalar Specification

(signaled to initiating process) 03 Scalar value invalid X
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Process Management Instructions 11-27

TERMINATE PROCESS (TERMPR)

Op Code
(hex)

0332

Operand
1

Process
control
space

Operand
2

Termination
option

Operand 1: System pointer or null.

Operand 2: Character(3) scalar (fixed-length).

Description: The instruction causes the termination of
one or more processes. Because this instruction may
require one process to act upon another process, a
portion of the function is controlled by the issuing
process, and the remainder of the function is controlled
by the target process. When control is returned to the
issuing process, the function may not have been
performed in its entirety.

Operand 1 identifies the process that is to be
terminated. Operand 1 can be a system pointer that
addresses the process control space associated with the
process to be terminated, or it can be null. If operand 1
is null, the process issuing the instruction is considered
the process to be terminated.

11-28

Operand 2 is a character(3) scalar specifying the
termination option. The format of the termination option
is as follows:

• Termination specifications
Termination action
o = Initiate process destruction

against the designated
process and all the
subordinate processes.
Initiate process destruction
against the designated
process and all process
subordinates.

Char(l)
Bit 0

Conditional termination action Bit 1
o = Place process in termination

phase if not already there.
If the process is in the
termination phase, the
request is ignored
(conditional).
Place process in termination
phase if not already there.
If in termination phase,
immediate process
destruction results
(unconditional).

Reserved (binary 0)

• Termination code

Bits 2-7

Char(2)

A process can apply the terminate function to any
process in the machine except for a superordinate
process in whose domain the issuing process resides.

No authorization is required in the following
circumstances:

• The process issuing the instruction initiated the
process identified by operand 1.

• The process referenced by operand 1 is the process
issuing the instruction.

In all other cases, the process issuing the instruction
must be currently governed by a user profile having the
process control special authorization. The user profile
can be either the process's assigned user profile or a
currently adopted user profile.

The key element that dictates the function of Terminate
Process instruction is the subject process's process
status indicators. This attribute of a process supplies
information relative to the current state of the process
and the actions occurring both within and without that
have caused the process to be in the current state.
These indicators contain the following major categories
of information:

• Process states
External existence state
a. Active
b. Suspended
Internal processing phase
a. Initiation phase
b. Problem phase
c. Termination phase

• Process interrupt status

• Process initial internal termination status

• Process initial external termination status

• Process final termination status

The process initial internal termination status is
generated when a process takes termination action upon
itself. For example, this status is generated when the
Terminate Process instruction is executed with the
process itself as the target. The process and its
subordinate processes are then placed in the termination
phase. A subprocess's process initial external
termination status is generated, and it contains the same
information supplied in the superordinate process's
process initial internal termination status.

Subprocesses are not placed in the termination phase
when the superordinate process enters termination
phase as a result of a RETURN from the first invocation
in the initiation or problem phase, or when it is returned
as a result of an unhand led exception.

The process initial external termination status is
generated when action is taken against the process by
another process; for example, this status is generated
when the Terminate Process instruction is issued by one
process with another process as the target. This action
conditionally places the process in the termination phase
if the process is not already in that phase. The status is
also placed in the subprocess's process initial external
termination status.

The process is placed in the termination phase only if
the termination phase option process attribute is set to
enter the termination phase. The process can be
conditionally removed from the termination phase based
on the conditional termination action option. This option
allows orderly return from a termination phase. An
unconditional termination request results in an
immediate process destruction if the process is already
in the termination phase. A conditional request results in
the instruction not being performed.

The process final termination status either is generated
internally by the process's own termination action while
in the termination phase or is supplied by another
process while the target process is in the termination
phase.

All three termination status fields are supplied as
event-related data for the process terminate event.

When the Terminate Process instruction is executed by
a process itself, and the process is in the initiation or
problem phase, the machine stores the termination
status in the process initial internal termination status.
This status field is also filled in when returning from the
first invocation in the problem phase and upon an
exception not being handled by the process. The initial
internal termination status is propagated to any
established subprocess's initial external status indicators
only during Terminate Process instruction action. Refer
to the Materialize Process Attributes instruction, earlier
in this chapter, for the detailed format of the attribute.
The following information is recorded:

• Initial internal termination reason
Return from first invocation in problem phase
Return from first invocation in initiation phase
and no first program phase program supplied
Terminate Process instruction issued by process
itself
Exception not handled by the process

• Initial internal termination code

Process Management Instructions 11-29

The process's internal processing phase attribute is set
to indicate that the process is in the termination phase if
the process termination phase option specifies enter
termination phase. If the process's current attributes
indicate that a termination phase program is to be given
control. the process status indicators are set to the
active-termination state, an activation of the designated
program is established (if not already existing), an
invocation is created, and control is transferred to the
program's entry point. All program invocations are
destroyed prior to giving the process termination phase
program control. If no termination phase program is
defined, the machine sets the final termination status
field equal to the initial internal termination status field.
This indicates that a termination phase program was not
executed and the instruction proceeds immediately with
destruction of the process.

If a Return External instruction is executed in the highest
level invocation in the problem phase or an exception is
not handled in either the problem phase or initiation
phase, the same functions are applied as for the
explicitly specified terminate instruction described in the
previous paragraph. When control is returned from the
highest invocation, the initial internal termination code is
set to 0 or to the exception type for an exception that is
not handled.

When the Terminate Process instruction is issued by a
process to itself while it is in the termination phase, the
instruction stores information relative to the termination
in the process's final termination status field. All
subprocesses are destroyed regardless of their current
internal processing phase ..

The stored information is contained in the process
status indicators attribute materialized through the
Materialize Process Attributes instruction. The
information made available includes:

• Final termination reason
Return from first invocation
Terminate Process instruction issued by
the process itself
Terminate Process instruction issued to this
process by another process
Exception not handled by the process

• Final termination code

11-30

The machine immediately proceeds with the destruction
of the process.

If the Terminate Process instruction is executed in an
external process, the target process's initial external
termination code is supplied by the instruction's
termination option. If the target process is in the
initiation or problem phase, termination action proceeds
as described earlier; that is, the process internal
processing phase is set to the termination phase, and
the termination phase program is invoked.

If the initial external termination status had been
previously supplied; that is, the process has already
been the target of an external Terminate Process
instruction, immediate process destruction takes place
with the later termination option recorded as the final
termination status. If the status was not previously
supplied, then it is recorded in the initial external
termination status and the process is placed in the
termination phase.

The following information is recorded in the initial
external termination status:

• Initial external termination reason
Terminate Process instruction issued explicitly to
the process from another process.
Terminate Process instruction issued to
superordinate process of this process.

• Initial external termination code

If the process returns from the highest invocation or
receives an exception that is not handled during the
termination phase and if the process has active or
suspended subprocesses, the process and its
subprocesses are destroyed.

The same action occurs if the process that has active or
suspended subprocesses attempts to terminate itself
during the termination phase.

The functions performed by the instruction are
determined by the setting of the termination action
operand field in the Terminate Process instruction and
are described in the following paragraphs.

The first option (binary 0) specifies that all the Exceptions
designated process's subordinates are to be destroyed.

No exception is signaled if there are no subordinate Operands

processes. Exception 1 2 3 4 Other

The second option (binary 1) specifies that the 06 Addressing

designated process and all subordinates are to be 01 Space addressing violation X X

destroyed. 02 Boundary alignment X X

03 Range X X
08 Argument/ Parameter

Authorization Required 01 Parameter reference violation X X

OA Authorization

Process Control Special Authorization 01 Unauthorized for operation X ·
If not initiating process or process not terminating 04 Unauthorized for process X

control
itself

10 Damage Encountered

04 System object damage state X X · Retrieve
44 Partial system object damage X

- Contexts referenced for address resolution
1A Lock State

01 Invalid lock state X

Lock Enforcennent 1C Machine-Dependent Exception

03 Machine storage limit X
exceeded

· Materialize 20 Machine Support
- Contexts referenced for address resolution 02 Machine check X

03 Function check X
22 Object Access

Events 01 Object not found X X

02 Object destroyed X X
0002 Authorization 03 Object suspended X X

0101 Object authorization violation 24 Pointer Specification

01 Pointer does not exist X X
OOOC Machine resource 02 Pointer type invalid X X

0201 Machine auxiliary storage threshold exceeded 03 Pointer addressing invalid X
object

0010 Process 28 Process State
0202 Process terminated (to initiating process) 01 Process ineligible for operation X
0701 Maximum processor time exceeded 02 Process control space not X
0801 Process storage limit exceeded associated with a process

2A Program Creation

0016 Machine observation 06 Invalid operand type X X

0101 Instruction reference 07 Invalid operand attribute X X
08 Invalid operand value range X X

0017 Damage set OC Invalid operand ODT reference X X

0101 System object damage set 32 Scalar Specification

0801 Partial system object damage set 03 Scalar value invalid X

Process Management Instructions 11-31

11·32

Chapter 12. Queue Management Illstructions

This chapter describes the instructions used for queue
management. These instructions are in alphabetic order.
For an alphabetic summary of all the instructions, see
Appendix B. Instruction Summary.

CREATE QUEUE (CRTQ)

Op Code Operand Operand
(hex) 1 2

0316 Address- Queue
ability template
to created
queue

Operand 1: System pointer.

Operand 2: Space pointer.

Description: The instruction creates a queue based on
the parameters specified in the queue template (operand
2) and returns a system pointer in the pointer object
(operand 1) that addresses the created object.

The queue template (operand 2) has the following
format:

• Template size specification
Number of bytes provided
Number of bytes available for
materialization

• Object identification
Object type
Object subtype
Object name

Char{S)
Bin(4)*
Bin(4)*

Char(32)
Char(1)*
Char{1)
Char(30)

• Object creation options
Existence attributes
o = Temporary
1 = Permanent
Space attribute
o = Fixed-length
1 = Variable-length
Initial context
o Addressability is not

inserted in context
Addressability is inserted
in context

Access group
o Member of access group

is not created
Member of access group
is created

Reserved (binary 0)

• Reserved (binary 0)

• Size of space

• Initial value of space

Char(4)
Bit 0

Bit 1

Bit 2

Bit 3

Bits 5-31

Char(4)

Bin(4)

Char{1)

Queue Management Instructions 12-1

• Performance class
Space alignment
o = The space associated with

the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align
ments within the the space.

Reserved (binary 0)
Main storage pool selection
o Process default main storage

pool is used for object.
Machine default main storage
pool is used for object.

Reserved (binary 0)
Block transfer on implicit
access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

Reserved (binary 0)

• Reserved (binary 0)

• Context

• Access group

12-2

Char(4)
Bit 0

Bits 1-4
Bit 5

Bit 6
Bit 7

Bits 8-31

Char(7)

System
pointer

System
pointer

• Queue attributes
Message content
o Contains scalar data only
1 = Contains pointers and

scalar data
Queue type
00= Keyed
01 = Last in first out (LIFO)
10= First in first out (FIFO)
11 = Reserved
Queue overflow action
o = Signal exception
1 = Extend queue
Reserved (binary 0)

• Maximum number of messages

• Current number of messages

• Extension value

• Key length
(maximum key length = 256)

Maximum size of messages to be
enqueued (The maximum allowable
size of a queue message is
65 000 bytes.)

Char(1)
Bit 0

Bits 1-2

Bit 3

Bits 4-7

Bin(4)

Bin(4)*

Bin(4)

Bin(2)

Bin(4)

Note: The values of the parameters annotated with an
asterisk (*) are ignored by this instruction.

The template identified by operand 2 must be 16-byte
aligned.

If the created object is permanent, it is owned by the
user profile governing process execution. The owning
user profile is implicitly assigned all private authority
states for the object. The storage occupied by the
created object is charged to this owning. user profile. If
the created object is temporary, no owning user profile·
exists, and all authority states are assigned as public.
Storage occupied by the created context is charged to
the creating process.

The object identification specifies the symbolic name
that identifies the queue within the machine. A type
code of hex OA is implicitly supplied by the machine.
The object identification is used to identify the object on
materialize instructions as well as to locate the object in
a context that addresses the object.

The existence attribute specifies that the queue is to be
created as temporary. A temporary queue, if not
explicitly destroyed by the user, is implicitly destroyed
by the machine when machine processing is terminated.

A space may be associated with the created object. The
space may be fixed or variable in size. The initial
allocation is as specified in the size of space entry. The
machine allocates a space of at least the size specified;
the actual size allocated depends on an algorithm
defined by a specific implementation. Each byte of the
space is initialized to a value specified by the initial
value of space entry. When the space is extended, this
byte value is also used to initialize the new allocation. If
no space is allocated, this byte value is ignored.

If the initial context creation attribute entry indicates that
addressability is to be inserted into a context, the
context entry must be a system pointer that identifies a
context where addressability to the newly created queue
is to be placed. If the initial context indicates that
addressability is not to be inserted into a context, the
context entry is ignored.

If the access group creation attribute entry indicates that
the object is to be created in an access group, the
access group entry must be a system pointer that
identifies an access group in which the object is to be
created. Only temporary queues may be created in an
access group. If the object is not to be created in the
access group, the access group entry is ignored.

The message content attribute specifies whether the
messages to be enqueued will contain pointers and
scalar data, or scalar data only. If the messages are to
contain pointers the message text operand on Enqueue
and Dequeue instructions must be aligned on 16-byte
boundaries.

The queue type parameter establishes the basic
sequence in which messages are dequeued from the
queue.

The queue overflow action parameter establishes the
machine action when the number of messages resident
on the queue (enqueued and not yet dequeued) exceeds
the current maximum capacity of the queue. This value
is initially established by the value specified in the
maximum number of messages parameter. The queue
message limit exceeded exception and the queue
message limit exceeded event are signaled when the
number of resident messages exceeds this parameter
unless the extend queue option is specified. When the
extend queue option is specified, the value of the
maximum number of messages parameter is increased
by the amount specified by the extension value
parameter each time the number of enqueued messages
exceeds the current value of the maximum number of
messages parameter. When the extend queue option is
specified, the extension value parameter must contain a
value greater than O. If the signal exception option is
specified, the extension value parameter is ignored.

The current number of messages entry is reported in the
materialization of the queue's attribute, and the value of
the entry is ignored in the creation template.

The key length parameter establishes the size of the
queue's key. If the queue type parameter keyed is
specified, the value must be greater than O. The key can
contain pointers, but the pointers are considered to be
scalar data when they are placed on the queue by an
Enqueue instruction. If the queue type parameter
specifies UFO or FIFO, the key length can be equal to
or greater than 0; however, the queue is not treated as
a keyed queue.

The size of all messages to be enqueued is established
by the maximum size of messages to be enqueued
parameter. The Enqueue instruction may specify a size
(in the message prefix) that is greater than this value,
but the message is truncated to this length. The
maximum size of messages to be enqueued parameter
must have a value of 0 or greater, up to a maximum
value of 65 000 bytes. The maximum size of a queue,
excluding its associated space, cannot exceed 64 K
bytes. This value includes machine overhead associated
with the queue.

Queue Management Instructions 12-3

Authorization Required Exceptions

· Insert Operands
User profile of creating process Exception 1 2 Other

- Context identified by operand 2
02 Access Group

· Retrieve 01 Object ineligible for access group X

- Contexts referenced for address resolution 06 Addressing

01 Space addressing violation X X

· Object Control 02 Boundary alignment X X

- Operand 1 if replace option requested 03 Range X X

08 Argument/ Parameter

01 Parameter reference violation X X

Lock Enforcennent OA Authorization

01 Unauthorized for operation X X

• Materialize OE Context Operation

- Contexts referenced for address resolution 01 Duplicte object identification X

10 Damage Encountered

· Modify 04 System object damage state X X X

Access group identified by operand 2 44 Partial system object damage X X X

Context identified by operand 2 1A Lock State

User profile of creating process 01 Invalid lock state X X

1C Machine-Dependent Exception

· Object Control 03 Machine storage limit exceeded X

- Operand 1 if replace option requested 04 Object storage limit exceeded X

20 Machine Support

02 Machine check X

Events 03 Function check X
22 Object Access

0002 Authorization 01 Object not found X X

0101 Object authorization violation 02 Object destroyed X X

03 Object suspended X X

OOOC Machine resource 24 Pointer Specification

0201 Machine auxiliary storage threshold exceeded 01 Pointer does not exist X X

02 Pointer type invalid X X

0010 Process 03 Pointer addressing invalid object X

0701 Maximum processor time exceeded 2A Program Creation

0801 Process storage limit exceeded 06 Invalid operand type X X

07 Invalid operand attribute X

0016 Machine observation 08 Invalid operand value range X

0101 Instruction reference OA Invalid operand length X

OC Invalid operand ODT reference X X

0017 Damage set 2E Resource Control Limit

0401 System object damage set 01 User profile storage limit X

0801 Partial system object damage set exceeded

38 Template Specification

01 Template value invalid X

12-4

DEQUEUE (DEQ, DEQ8, or DEQI)

Op Code
(hex)

Operand
Extender 1

Operand
2

Operand
3

1033 Message Message Queue

1C33

1833

Branch
options

Indicator
options

prefix text

Operand 1: Character variable scalar (fixed-length).

Operand 2: Space pointer.

Operand 3: System pointer.

Operand 4-5:

• Branch Target - Branch point, instruction pOinter, relative
instruction number, or absolute instruction number.

• Indicator Target - Numeric variable scalar or character

variable scalar.

Extender: Branch or indicator options.

If the branch or indicator option is indicated in the op
code, the extender field is required along with one or
two branch operands (for branch option) or one or two
indicator operands (for indicator option). See Chapter 1.
Introduction for-the bit encoding of the extender field
and the allowed syntax of the branch and indicator
operands.

Operand
4-5

Branch
target

Indicator
target

Description: The instruction retrieves a queue message
based on the queue type (FIFO, LIFO, or keyed)
specified during the queue's creation. If the queue was
created with the keyed option, messages can be
retrieved by any of the following relationships between
an enqueued message key and a selection key specified
in operand 1 of the Dequeue instruction: -:p, >, <, S,
and ~. If the queue was created with either the LI FO or
FIFO attribute, then only the next message can be
retrieved from the queue.

If a message is not found that satisfies the dequeue
selection criterion and the branch or options are not
specified, the process is put into the wait state until a
message arrives to satisfy the dequeue or· until the
dequeue wait time-out expires. If branch or indicator
options are specified, the process is not placed· in the
dequeue wait state and either the control flow is altered
according to the branch options, or indicator values are
set based on the presence or absence of a message to
be dequeued.

Queue Management Instructions 12-5

A nonzero dequeue wait time-out value overrides any
dequeue wait time-out value specified as the current
process attribute. A zero wait time-out value causes the
wait time-out value to be taken from the current
process attribute. If all wait time-out values are 0 (from
the Dequeue instruction and the current process
attribute), an immediate wait time-out exception is
signaled.

A message is dequeued from the queue specified by
operand 3. The criteria for message selection are given
in the message prefix specified by operand 1 . The
message text is returned in the space specified by
operand 2, and the message prefix is returned in the
scalar specified by operand 1. The size of the message
text retrieved is returned in the message prefix. The size
of the message text can be less than or equal to the
maximum size of message specified when the queue
was created. If the message text on the queue contains
pointers, the message text operand must be 16-byte
aligned. Improper alignment results in an exception
being signaled. The format of the message prefix is as
follows:

• Time stamp of enqueue of message

• Dequeue wait time-out value
(ignored if branch options specified)

• Size of message dequeued
(The maximum allowable size of a
queue message is 65 000 bytes.)

12-6

Char(8)**

Char(8)*

Bin(4)**

• Access state modification option Char(1)*
indicator and message selection
criteria

Access state modification option Bit 0-1 *
When entering Dequeue wait Bit 0*
o = Access state is not modified.
1 = Access state is modified.
When leaving Dequeue wait Bit 1 *
o = Access state is not modified.
1 = Access state is modified.
Multiprogramming level option Bit 2*
o Leave current M PL set at

Dequeue wait
1 = Remain in current MPL set

at Dequeue wait
Reserved (binary 0) Bit 3*
Actual key to input key Bits 4-7*
relationship (for keyed queue)
0010: Greater than
0100: Less than
0110: Not equal
1000: Equal
1010: Greater than or equal
1100: Less than or equal

• Search key (ignored for
FIFO/UFO queues but must
be present for FIFO/UFO
queues with nonzero key
length values)

• Message key

Char(key
length)*

Char(key
length)**

Note: Fields shown here with one asterisk indicate
input to the instruction, and fields shown here with two
asterisks are returned by the machine.

The access state of the process access group is
modified when a Dequeue instruction results in a wait
and the following conditions exist: the process'
instruction wait initiation access state control attribute
specifies allow access state modification, the dequeue
access state modification option specifies modify access
state, and the multiprogramming level option specifies
leave MPL set during wait.

Operand 3 is a system pointer addressing the queue
from which the message is to be dequeued.

Resultant Conditions: Message dequeued, message not
dequeued.

Authorization Required Exceptions

. Retrieve Operands
Operand 3 Exception 1 2 3 Other

- Contexts referenced for address resolution
06 Addressing

01 Space addressing violation X X X

Lock Enforce~nt 02 Boundary alignment X X X

03 Range X X X . Materialize 08 Argument/ Parameter

Contexts referenced for address resolution 01 Parameter reference violation X X X

OA Authorization

01 Unauthorized for operation X X

Events 10 Damage Encountered

04 System object damage state X X X X

0002 Authorization 44 Partial system object damage X X X X

0101 Object authorization violation 1A Lock State

01 Invalid lock state X X

OOOC Machine resource 1C Machine-Dependent Exception

0201 Machine auxiliary storage threshold exceeded 03 Machine storage limit exceeded X
20 Machine Support

0010 Process 02 Machine check X

0701 Maximum processor time exceeded 03 Function check X

0801 Process storage limit exceeded 22 Object Access
01 Object not found X X

0016 Machine observation 02 Object destroyed X X X

0101 Instruction reference 03 Object suspended X X X
24 Pointer Specification

0017 Damage set 01 Pointer does not exist X X X

0401 System object damage set 02 Pointer type invalid X X X

0801 Partial system object damage set 03 Pointer addressing invalid object X

2A Program Creation

06 Invalid operand type X X X
07 Invalid operand attribute X

08 Invalid operand value range X
09 Invalid branch target operand X
OA Invalid operand length X

OC Invalid operand ODT reference X X X

32 Scalar Specification

03 Scalar value invalid X

3A Wait Time-out

01 Dequeue X

Queue Management Instructions 12-7

DESTROY QUEUE (DESQ)

Op Code Operand 1
(hex)

0325 Queue

Operand 1: System pointer.

Description: This instruction destroys the specified
queue and all currently enqueued messages. All
processes currently in the dequeue wait state for this
queue are removed from the dequeue wait state and an
object destroyed exception is signaled to the waiting
processes. Addressability is deleted from the context (if
any) that addresses the object. The system pointer
identified by operand 1 is not modified by the
instruction, and a subsequent reference to the destroyed
queue through the pointer results in an object destroyed
exception.

Authorization Required

• Retrieve
- Contexts referenced for address resolution

• Object control
- Operand 1

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

• Modify
Context which addresses operand 1
User profile which owns operand 1
Access group which contains operand 1

• Object control
- Operand 1

12-8

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operand
Exception 1 Other

06 Addressing
01 Space addressing violation X
02 Boundary alignment X
03 Range X

08 Argument/ Parameter
01 Parameter reference violation X

OA Authorization
01 Unauthorized for operation X X

10 Damage Encountered
04 System object damage state X X
44 Partial system object damage X X

1A Lock State
01 Invalid lock state X X

1C Machine-Dependent Exception
03 Machine storage limit exceeded X

20 Machine Support
02 Machine check X
03 .Function check X

22 Object Access
01 Object not found X
02 Object destroyed X
03 Object suspended X

24 Pointer Specification
01 Pointer does not exist X
02 Pointer type invalid X
03 Pointer addressing invalid object X

2A Program Creation
06 Invalid operand type X
OC Invalid operand ODT reference X

ENQUEUE (ENQ)

Op Code
(hex)

0368

Operand
1

Queue

Operand
2

Message
prefix

Operand 1: System pointer.

Operand 2: Character scalar.

Operand 3: Space pointer.

Operand
3

Message
text

Description: A message is enqueued according to the
queue type attribute specified during the queue's
creation.

If keyed sequence is specified, enqueued messages are
sequenced in ascending binary collating order according
to the key value. If a message to be enqueued has a
key value equal to an existing enqueued key value, the
message being added is enqueued following the existing
message.

If the queue was defined with either last in, first out
(LIFO) or first in, first out (FIFO) sequencing, then
enqueued messages are ordered chronologically with the
latest enqueued message being either first on the queue
or last on the queue, respectively. A key can be
provided and associated with messages enqueued in a
LIFO or FIFO queue; however, the key does not
establish a message's position in the queue. The key
can contain pointers, but the pointers are not considered
to be pointers when they are placed on the queue by an
Enqueue instruction.

Operand 1 specifies the queue to which a message is to
be enqueued. Operand 2 specifies the message prefix,
and operand 3 specifies the message text.

The format of the message prefix is as follows:

• Size of message to be enqueued

• Enqueue key value (Ignored
for FIFO/LIFO queues with
key lengths equal to O.
Must be present for all
other queues.)

Bin(4)*

Char(key
length)*

Note: Fields annotated with an asterisk indicate input to
the instruction.

The size of the message to be enqueued is supplied to
inform the machine of the number of bytes in the space
that are to be considered message text. The size of the
message is then considered the lesser of the size of the
message to be enqueued attribute and the maximum
message size specified on queue creation. The message
text can contain pointers. When pointers are in message
text, the operand 3 space pointer must be 16-byte
aligned. Improper alignment will result in an exception
being signaled.

If the enqueued message causes the number of
messages to exceed the maximum number of messages
attribute of the queue, one of the following occurs:

• If the queue is not extendable, the queue message
limit exceeded exception and the queue message limit
exceeded event are signaled. The message is not
enqueued.

• If the queue is extendable, the queue is implicitly
extended by the extension value attribute. The
message is enqueued. No exception is signaled, but
the queue extended event is signaled.

The maximum allowable queue size, including all
messages currently enqueued and the machine
overhead, is 65 536 bytes.

Queue Management Instructions 12-9

Authorization Required Exceptions

· Insert Operands
- Operand 1 Exception 1 2 3 Other

· Retrieve 06 Addressing

- Contexts referenced for address resolution 01 Space addressing violation X X X

02 Boundary alignment X X X

03 Range X X X

Lock Enforcennent 08 Argument/ Parameter

01 Parameter reference violation X X X

· Materialize OA Authorization

- Contexts referenced for address resolution 01 Unauthorized for operation X X

10 Damage Encountered

04 System object damage state X X X X

Events 44 Partial system object damage X X X X

1A Lock State

0002 Authorization 01 Invalid lock state X X

0101 Object authorization violation 1C Machine-Dependent Exception

03 Machine storage limit exceeded X X

OOOC Machine resource 20 Machine Support

0201 Machine auxiliary storage threshold exceeded 02 Machine check X

03 Function check X

0010 Process 22 Object Access

0701 Maximum processor time exceeded 01 Object not found X X X

0801 Process storage limit exceeded 02 Object destroyed X X X

03 Object suspended X X X

0012 Queue 24 Pointer Specification

0301 Queue message limit exceeded 01 Pointer does not exist X X X

0401 Queue extended 02 Pointer type invalid X X X

03 Pointer addressing invalid object X

0016 Machine observation 26 Process Management

0101 Instruction reference 02 Queue message limit exceeded X

2A Program Creation

0017 Damage set 06 Invalid operand type X X X

0401 System object damage set 07 Invalid operand attribute X

0801 Partial system object damage set OC Invalid operand ODT reference X X X

2E Resource Control Limit

01 User profile storage . limit X
exceeded

12-10

MATERIALIZE QUEUE ATTRIBUTES (MATaAT)

Op Code Operand Operand
(hex) 1 2

0336 Receiver Queue

Operand 1: Space pointer.

Operand 2: System pointer.

Description: The attributes of the queue specified by
operand 2 are materialized into the object specified by
operand 1. The format of the materialized queue
attributes must be aligned on a 1S-byte multiple. The
format is as follows:

• Materialization size specification
Number of bytes provided for
materialization
Number of bytes available for
materialization

• Object identification
Object type
Object subtype
Object name

• Object creation options
Existence attributes
o = Temporary
1 = Permanent
Space attribute
o = Fixed-length
1 = Variable-length
Initial context
o = Addressability not in context
1 = Addressability in context
Access group
o Not a member of access

group
Member of access group

Reserved (binary 0)

• Reserved (binary 0)

• Size of space

• Initial value of space

Char(8)
Bin(4)

Bin(4)

Char(32)
Char(1)
Char(1)
Char(30)

Char(4)
Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-31

Char(4)

Bin(4)

Char(1)

• Performance class
Space alignment
o = The space associated with

the object is allocated to
allow proper alignment of
pointers at 1S-byte align
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 1S-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align-
ments within the the space.

Reserved (binary 0)
Main storage pool selection
o Process default main storage

pool is used for object.
Machine default main storage
pool is used for object.

Char(4)
Bit 0

Bits 1-4
Bit 5

Reserved (binary 0) BitS
Block transfer on implicit Bit 7
access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

Reserved (binary 0) Bits 8-31

• Reserved (binary 0) Char(7)

Context System
pointer

• Access group System
pointer

Queue Management Instructions 12-11

• Queue attributes Char(1)
Message content Bit 0
o = Contains scalar data only
1 = Contains pointers and scalar data
Queue type Bits 1-2
00= Keyed
01 = Last in, first out
10= First in, first out
Queue overflow action
o = Signal exception
1 = Extend queue
Reserved (binary 0)

• Current maximum number
of messages

• Current number of
messages enqueued

• Extension value

• Key length

• Maximum size of message
to be enqueued

Bit 3

Bits 4-7

Bin(4)

Bin(4)

Bin(4)

Bin(2)

Bin(4)

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception described previously)
are signaled when the receiver contains insufficient area
for the materialization.

12-12

Authorization Required

• Operational
- Operand 2

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
Operand 2

- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Space addressing violation X X
02 Boundary alignment X X
03 Range X X

08 Argument/ Parameter

01 Parameter reference violation X X
OA Authorization

01 Unauthorized for operation X X
10 Damage Encountered

04 System object damage state X X X

44 Partial system object damage X X X
1A Lock State

01 Invalid lock state X X

20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X X
02 . Object destroyed X X

03 Object suspended X X
24 Pointer Specification

01 Pointer does not exist X X
02 Pointer type invalid X X
03 Pointer addressing invalid object X

2A Program Creation

06 Invalid operand type X X
07 I nvalid operand attribute X
08 Invalid operand value range X
OA I nvalid operand length X
OC Invalid operand ODT reference X X

38 Template Specification

03 Materialization length exception X

Queue Management Instructions 12-13

12-14

Chapter 13. Resource Management Instructions

This chapter describes the storage and resource
management instructions. These instructions are in
alphabetic order. For an alphabetic summary of all the
instructions, see Appendix B. Instruction Summary.

CREATE ACCESS GROUP (CRTAG)

Op Code Operand Operand
(hex) 1 2

0366 Address- Access
ability to group
created template
access
group

Operand 1: System pointer.

Operand 2: Space pointer.

Description: An access group with the attributes of the
template identified by operand 2 is created, and a
system pointer to the access group is returned in the
pointer identified by operand 1.

The access group template specified by operand 2 must
be 16-byte aligned and must have the following format:

• Template size specification
Number of bytes provided
in template
Number of bytes available
for materialization

• Object identification
- Object type

Object subtype
Object name

Char(8)*
Bin(4)*

Bin(4)*

Char(32)
Char(1)*
Char(1)
Char(30)

• Object creation options
Existence attributes
o = Temporary (required)
Space attribute
o = Fixed-length
1 = Variable-length
Initial context
o Insert addressability

in context is not allowed.
Insert addressability in
context is allowed.

Reserved (binary 0)

• Reserved (binary 0)

• Size of space

• Initial value of space

Char(4)
Bit 0

Bit 1

Bit 2

Bits 3-31

Char(4)

Bin(4)

Char(1)

Resource Management Instructions 13-1

• Performance class
Space alignment

Char(4)
Bit 0

o = The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align-
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align
ments within the the space.

Reserved (binary 0) Bits 1-4
Main storage pool selection Bit 5
o Process default main storage

pool is used for object.
1 = Machine default main storage

pool is used for object.
Reserved (binary 0) Bit 6
Block transfer on implicit Bit 7
access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

Reserved (binary 0) Bits 8-31

• Reserved (binary 0) Char(7)

• Context System
pointer

Note: The value associated with each entry shown here
with an asterisk (*) is ignored.

13-2

The storage occupied by the created access group is
charged to the creating process.

The object identification specifies the symbolic name
that identifies the access group within the machine. A
type code of hex 03 is implicitly supplied by the
machine. The object identification is used to identify the
access group on materialize instructions as well as to
locate the access group' in a context that addresses the
access group.

The existence attribute specifies that the access group is
to be created as temporary.· An access group, if not
explicitly destroyed by the user, is implicitly destroyed
by the machine when machine processing is terminated.
An access group can contain only other temporary
objects and not another access group.

A space may be associated with the created access
group. The space may be fixed or variable in size. The
initial allocation is specified in the size of space entry.
The machine allocates a space of at least the size
specified; the actual size allocated depends on an
algorithm defined by a specific implementation. A fixed
size space entry of 0 causes no space to be allocated.

Each byte of the space is initialized to a value specified
by the initial value of space entry. When the space is
extended, the byte space entry value is also used to
initialize the new allocation. If no space is allocated, this
entry is ignored.

If the initial context creation attribute entry indicates that
addressability is to be inserted into a context, the
context entry must contain a system pointer that
identifies a context in which addressability to the newly
created object is to be placed. If addressability is not to
be inserted into a context, the context entry is ignored.

The performance class parameter provides information
that allows the machine to manage the access group
with consideration for the overall performance objectives
of operations involving the access group.

Access groups are implicitly extended by the machine to
a size large enough to contain any objects inserted into
them. The maximum size of an access group is 4
megabytes.

Authorization Required Exceptions

. Insert Operands
- Context identified by operand 2 Exception 1 2 Other

06 Addressing

Lock Enforcennent 01 Space addressing violation X X

02 Boundary alignment X X . Modify 03 Range X X

- Context identified by operand 2 08 Argument/ Parameter
01 Parameter reference violation X X

OA Authorization

Events 01 Unauthorized for operation X

OE Context Operation

0002 Authorization 01 Duplicate object identification X

0101 Object authorization violation 10 Damage Encountered

04 System object damage state X X X

OOOC Machine resource 44 Partial system object damage X X X

0201 Machine auxiliary storage threshold exceeded 1A Lock State

01 Invalid lock state X

0010 Process 1C Machine-Dependent Exception

0701 Maximum processor time exceeded 03 Machine storage limit exceeded X

0801 Process storage limit exceeded 04 Object storage limit exceeded X

20 Machine Support

0016 Machine observation 02 Machine check X

0101 Instruction reference 03 Function check X

22 Object Access

0017 Damage set 01 Object not found X X

0401 System object damage set 02 Object destroyed X X

0801 Partial system object damage set 03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program Creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OC Invalid operand ODT reference X X

38 Tem~late Specification

01 Template value invalid X

Resource Management Instructions 13-3

CREATE DUPLICATE OBJECT (CRTDOBJ)

Op Code Operand Operand Operand
(hex) 1 2 3

0327 Address- Create Object
ability to duplicate to be
new object object duplicated

template

Operand 1: System pointer.

Operand 2: Space pointer.

Operand 3: System pointer.

Description: A copy of the object identified by operand
3 is created. The object may be a cursor or a space.

The new object is identical to the source object except
as modified by the creation template.

• A resolved pointer in the space portion of the source
object that has an address to an interior element in
the same space is not resolved to address the same
functional address in the new version of the object;
that is, pointers are not relocated.

• Any authorization established for the source object is
not duplicated into the new object.

• A cursor addressed by the instruction is duplicated in
its unactivated form. Any modifications that have
been made to the cursor after it was originally
created are not reflected in the new object.

A system pointer addressing the new object is returned
in the pointer specified by operand 1.

13-4

The Create Duplicate Object instruction template
specified by operand 2 must be aligned ona16...,byte
boundary. The format is:

• Template size specification
Number of bytes provided
Number of bytes available for
materialization

• Object identification
Object type
Object subtype
Object name

• Object creation options
Existence attributes
o = Temporary
1 = Permanent
Space attribute
o = Fixed -length
1 = Variable-length
Initial context
o Addressability is not

inserted in context.
Addressability is
inserted in context.

Access group
o Member of access

group is not created.
Member of access
group is created.

Reserved (binary 0)

• Reserved (binary 0)

• Size of space

• Initial value of space

Char(8)*
Bin(4)*
Bin(4)*

Char(32)
Char(1)*
Char(1)
Char(30)

Char(4)
Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-31

Char(4)

Bin(4)

Char(1)

• Performance class
Space alignment
o = The space associated with

the object is allocated to
allow proper alignment of
pointers at 16-byte align-
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align
ments within the the space.

Char(4)
Bit 0

Reserved (binary 0) Bits 1-4
Main storage pool selection Bit 5
o Proc¢ss default main storage

pool is used for object.
Machine default main storage
pool is used for object.

Transient storage pool selection Bit 6
o = Default main storage pool (as

specified for main storage pool
selection)

1 = Transient storage pool is used
for object.

Block transfer on implicit Bit 7
access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

Unit number Bits 8-15
Reserved (binary 0) Bits 16-31

• Reserved (binary 0) Char(7)

• Context

• Access group

System
pointer

System
pointer

Note: The value associated with each entry shown here
with an asterisk (*) is ignored.

If the created object is permanent, it is owned by the
user profile governing process execution. The owning
user profile is implicitly assigned all private authority
states for the object. The storage occupied by the
created object is charged to this owning user profile. If
the created object is temporary, there is no owning user
profile and all authority states are assigned as public.
Storage occupied by the created context is charged to
the creating process.

The object identification specifies the symbolic name
that identifies the object within the machine. A type
code identical to that of the source object is implicitly
supplied by the machine. The object identification is
used to identify the object on materialize instructions as
well as to locate the object in a context that addresses
the object.

The subtype code and name can be the same as or
different from the object being duplicated. If both
names and subtypes are the same, the new object
cannot be placed in the same context as the original
object. If the names or subtypes are different, the new
object may be placed in the same context.

The existence attribute specifies whether the duplicate is
to be a temporary object or a permanent object. The
temporary and the permanent object creation attributes
are supported for both the original object and the
duplicate object.

A temporary object, if not explicitly destroyed by the
user, is implicitly destroyed by the machine when
machine processing is terminated. A permanent object
exists in the machine until explicitly destroyed by the
user.

A space may be associated with the created object. The
space may be fixed or variable. The initial allocation is
specified in the size of space entry. The machine
allocates a space of at least the size specified; the
actual size allocated depends on an algorithm defined by
a specific implementation. A fixed size space entry of 0
causes no space to be allocated.

The contents of the original space (if any) are copied
into the duplicate space without modification. If the
duplicate space is shorter than the original space, the
information is truncated. If the duplicate space is longer,
each byte beyond that copied from the original is
initialized to a value specified by the initial value of
space entry. When the space is extended, this byte
value is also used to initialize the new allocation.

Resource Management Instructions 13-5

If the initial context creation attribute entry. indicates that
addressability is to be inserted into a context, the
context entry must contain a system pOinter that
identifies a context in which addressability to the newly
created object is to be placed. If addressability is not to
be inserted into a context, the context entry is ignored.

If the access group creation attribute entry indicates that
the object is to be created in an access group, the
access group entry must be a system pointer that
identifies the access group in which the object· is to be
created. Because access groups may only be created as
temporary objects, the existence attribute entry must be
temporary (bit 0 equals 0). If the object is not to be
created in an access group, the access group entry is
ignored.

Performance class parameters provide information that
allows the machine to manage the duplicate object with
consideration for the overall performance objectives of
operations involving the duplicate object.

The unit number field, which can be specified for space
objects only, indicates the auxiliary storage unit on
which the space 'should be located if possible.

Operand 3 identifies a system pointer addressing the
object to be duplicated.

Authorization Required

• Insert
User profile of creating process

- Context referenced by operand 2

• Retrieve
Operand 3 (object to be duplicated)

- Contexts referenced for address resolution

• Space Authority

13-6

Operand 3 (only if the object to be duplicated has
an associated space to be duplicated)

Lock Enforcennent

• Materialize
Operand 3 (object to be duplicated)

- Contexts referenced for address resolution

• Modify
User profile of creating process
Context referenced by operand· 2
Access group referenced by operand 2

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions DESTROY ACCESS GROUP (DESAG)

Operands Op Code
Exception 1 2 3 Other (hex) Operand 1

02 Access Group 0351 Access group

01 Object ineligible for access group X
06 Addressing Operand 1: System pointer.

01 Space addressing violation X X X
02 Boundary alignment X X X
03 Range X X X Description: The access group identified· by the system

08 Argument/ Parameter pointer (operand 1) is destroyed, and addressability is

01 Parameter reference violation X X X deleted from any context that addresses the access

OA Authorization group. The system pointer is not modified. Any

01 Unauthorized for operation X .X attempted reference to the destroyed access group

OE Context Operation through the pointer causes the object destroyed

01 Duplicate object identification X exception to be signaled.

10 Damage Encountered

04 System object damage state X X X If objects exist within the designated access group, the

44 Partial system object damage X X X X access group is not destroyed, and an object not eligible

1A Lock State for destruction exception is signaled.

01 Invalid .Iock state X X
1C Machine- Dependent Exception

03 Machine storage limit exceeded X
Authorization Required

04 Object storage limit exceeded X
20 Machine Support · Retrieve

02 Machine check
- Contexts referenced for address resolution

X
03 Function check X

22 Object Access Lock Enforcement
01 Object not found X .X X
02 Object destroyed X X X · Materialize
03 Object suspended X X X - Contexts referenced for address resolution
04 Object not eligible for operation X

24 Pointer Specification · Modify
01 Pointer does not exist X X X - Context that addresses access group
03 Pointer addressing invalid object X X

2A Program Creation · Object Control

06 Invalid operand type X X X - Operand 1

OC Invalid operand ODT reference X X X
2E Resource Control Limit

01 User profile storage limit X
exceeded

38 Template Specification

01 Template value invalid X

Resource Management Instructions 13,;. 7

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operand
Exception 1 Other

06 Addressing
01 Space addressing violation X
02 Boundary alignment X
03 Range X

08 Argument/ Parameter
01 Parameter reference violation X

OA Authorization
01 Unauthorized for operation X

10 Damage Encountered
04 System object damage state X X
44 Partial system object damage X X

1A Lock State
01 Invalid lock state X

1C Machine-Dependent Exception
03 Machine storage limit exceeded X

20 Machine Support
02 Machine check X
03 Function check X

22 Object Access
01 Object not found X
02 Object destroyed X
03 Object suspended X
06 Object not eligible for destruction X

24 Pointer Specification
01 Pointer does not exist X
03 Pointer addressing invalid object X

2A Program Creation
06 Invalid operand type X
07 Invalid operand attributes X
08 Invalid operand value range X
OC Invalid operand ODT reference X

13-8

ENSURE OBJECT (ENSOBJ)

Op Code
(hex) Operand 1

0381 Object to be ensured

Operand 1: System pointer.

Description: The object identified by operand 1 is
protected from volatile storage loss. The machine
ensures that any changes made to the specified object
are recorded on nonvolatile storage media. The access
state of the object is not changed by this instruction. If
operand 1 addresses a temporary object, no operation is
performed because temporary objects are not preserved
during a machine failure. No exception is signaled if
temporary objects are referenced.

Authorization Required

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801. Process storage limit exceeded

0016 Machine observation
0101. Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operand
Exception 1

06 Addressing

01 Space addressing violation X
02 Boundary alignment X
03 Range X

08 Argument/ Parameter

01 Parameter reference violation X
OA Authorization

01 Unauthorized for operation X
10 Damage Encountered

04 System object damage state X
44 Partial system object damage X

1A Lock State

01 Invalid lock state X
1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found X
02 Object destroyed X
03 Object suspended X

24 Pointer Specification

01 Pointer does not exist X
02 Pointer type invalid X
03 Pointer addressing invalid object X

2A Program Creation

06 Invalid operand type X
07 Invalid operand attributes X
08 Invalid operand value range X
OC Invalid operand ODT reference X

Other

X

X

X
X

MATERIALIZE ACCESS GROUP ATTRIBUTES
(MATAGAT)

Op Code
(hex)

03A2

Operand
1

Receiver

Operand
2

Access
group

Operand 1: Space pointer.

Operand 2: System pointer.

Description: The attributes of the access group and the
identification of objects currently contained in the access
group are materialized into the receiving object specified
by operand 1.

The materialization must be aligned on a 16-byte
boundary. The format is:

• Materialization size specification
Number of bytes provided for
materialization
Number of bytes available for
materialization

• Object identification
Object type
Object subtype
Object name

• Object creation options
Existence attributes
o = Temporary
1 = Reserved
Space attribute
o = Fixed-length
1 = Variable-length
Context
o = Addressability not in context
1 = Addressability in context
Reserved (binary 0)

• Reserved (binary 0)

• Size of space

• Initial value of space

Char(8)
Bin(4)

Bin(4)

Char(32)
Char(1)
Char(1)
Char(30)

Char(4)
Bit 0

Bit 1

Bit 2

Bits 3-31

Char(4)

Bin(4)

Char(1)

Resource Management Instructions 13-9

• Performance class
Space alignment

Char(4)
Bit(O)

o = The space associated with the
object is allocated to allow
proper alignment of pointers at
16-byte alignments within the
space. If no space is specified
for the object, this value must
be specified for the performance
class.
The space associated with the
object is allocated to allow
proper alignment of pointers at
16-byte alignments within the
space as well as to allow proper
alignment of input/output buffers
at 512-byte alignments within the
space.

Reserved (binary 0) Bits 1-4
Default main storage pool Bit 5
o Process main storage pool

is used for this object.
Machine default main storage
pool is used for this object.

Reserved (binary 0) Bit 6
Block transfer on implicit
access state modification

Bit 7

o = Minimum storage transfer size
for this object is transferred.
This value is 1 storage unit.
Machine default storage transfer
size is transferred. This
value is 8 storage units.

Reserved (binary 0) Bits 8-31

• Reserved (binary 0) Char(7)

• Context

• Reserved (binary 0)

• Access group size

• Amount of available space
in the access group

• Number of objects in the
access group

13-10

System
. pointer

Char(16)

Bin(4)

Bin(4)

Bin(4)

• Reserved (binary 0)

• Access group object system
pointer (repeated for each
object currently contained
in the access group)

Char(4)

System
pointer

The receiver space contains the access group's
attributes (as defined by the Create Access Group
instruction), the current status of the access group, and
a system pointer to each object assigned to the access
group.

The access group size represents the total amount of
space that has been allocated to the access group. The
amount of available space represents the amount of
space that is available in the access group for additional
objects.

There is one access group object system pointer for
each object currently assigned to the access group. The
authorization field within each system pointer is not set.

Authorization Required

• Retrieve
Operand 2

- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
Operand 2

- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions MATERIALIZE RESOURCE MANAGEMENT DATA
(MATRMD)

Operands
Exception 1 2 Other

Op Code Operand Operand

06 Addressing (hex) 1 2

01 Space addressing violation X X
02 Boundary alignment X X 0352 Receiver Control

03 Range X X
data

08 Argument/ Parameter
01 Parameter reference 'violation X X Operand 1: Space pointer.

OA Authorization
01 Unauthorized for operation X Operand 2: Character(8) scalar (fixed-length).

10 Damage Encountered
04 System object damage state X X X
44 Partial system object damage X X X Description: The data items requested by operand 2 are

1A Lock State materialized into the receiving object specified by
01 Invalid lock state X X operand 1. Operand 2 is an 8-byte character scalar.

1C Machine-Dependent Exception The first byte identifies the generic type of information
03 Machine storage limit exceeded X being materialized, and the remaining 7 bytes further

20 Machine Support qualify the information desired.
02 Machine check X
03 Function check X

Operand 1 contains the materialization and has the 22 Object Access
01 Object not found X X following format:

02 Object destroyed X X
03 Object suspended X X · Materialization size specification Char(8)

24 Pointer Specification Number of bytes provided for Bin(4)
01 Pointer does not exist X X materialization
02 Pointer type invalid X X Number of bytes available for Bin(4)
03 Pointer addressing invalid object X materialization

2A Program Creation
06 Invalid operand type X X · Time of day Char(8)
07 Invalid operand attribute X X
08 Invalid operand value range X X

Resource management data Char(*)
OA Invalid operand length X ·
OC Invalid operand ODT reference X X

38 Template Specification The remainder of the materialization depends on

03 Materialization length exception X operand 2 and on the machine implementation.

Resource Management Instructions 13-11

The following values are allowed for operand 2:

• Selection option

Hex 01 Materialize process
utilization data

Hex 02 Materialize auxiliary
storage information

Hex 04 Materialize storage
transient pool
information

Hex 05 = Materialize storage
pool information

Hex 06 = Storage management
counters

Hex OA = Materialize MPL
control information

• Reserved (binary 0)

Char(1)

Char(7)

The following defines the formats and values associated
with each of the above materializations of resource
management data.

Processor Utilization (Hex 01):

• Processor time since IPL
(initial program load)

Char(S)

Processor time since I PL is the total amount of
processor time used, both by instruction processes and
internal machine functions, since IPL. The significance
of bits within the field is, the same as that defined for
the time-of-day clock.

Auxiliary Storage Information (Hex 02):

• Number of auxiliary storage units

• Auxiliary storage capacity

• Auxiliary storage space available

• Auxiliary storage event threshold

• Auxiliary storage control flags
Error logging control flag

- Reserved

13-12

Bin(2)

Bin(S)

Bin(S)

Bin(S)

Char(1)
Bit(1)
Bit(3)

• Reserved

• Auxiliary storage unit utilization
(repeated once for each auxiliary
storage unit)

Device type
Reserved
Unit number
Reserved
Capacity
Space available
Device dependent information

Bytes transferred to
main storage
Bytes transferred from
main storage
Requests for data transfer
to main storage
Requests for data transfer
from main storage
Reserved

Char(S)

Char(64)

Bin(2)
Char(1)
Bin(1)
Char(4)
Bin(S)
Bin(S)
Char(40)
Bin(4)

Bin(4)

Bin(4)

Bin(4)

Char(24)

Number of auxiliary units is the number of logical and
physical devices that comprise the secondary store.

Auxiliary storage capacity is the total number of bytes of
auxiliary storage attached to the machine.

Auxiliary storage space available is the number of bytes
of space on secondary storage available for allocation;
that is, not currently assigned to objects or internal
machine functions.

Auxiliary storage event threshold is a number which,
should it exceed secondary storage space available, will
cause the event secondary storage threshold exceeded
to be signaled. When the event is signaled, the machine
resets this value to O.

Error logging control flag bit, when set to 1, specifies
that any temporary errors subject to threshold control
are logged on every occurrence. When set to 0, such
errors are logged only when the device specific
thresholds are reached.

Auxiliary storage unit utilization data is repeated once for
each logical device of the auxiliary storage. The
relationship of logical to physical devices, and portions
of the materialized utilization data, are
device-dependent. Data is associated with a device by
virtue of its logical position on the array.

Transient Storage Pool Information (Hex 04):

• Storage pool to be used for the
transient pool

Bin(2)

The pool number materialized is the number of the main
storage pool, which is being used as the transient
storage pool. A value of 0 indicates that the transient
pool attribute is being ignored.

Main Storage Pool Information (Hex 05):

• Machine minimum transfer size Bin(2)

• Maximum number of pools Bin(2)

• Current number of pools Bin(2)

• Main storage size Bin(2)

• Minimum size - pool 1

• Reserved (binary 0)

• Individual main storage pool
information (repeated once for
each pool, up to the current
number of pools)

Pool size
Pool maintenance
Process interruptions
(data base)
Process interruptions
(nondata base)
Data transferred to
pool (data base)
Data transferred to
pool (nondata base)

Bin(2)

Char(6)

Char(16)

Bin(2)
Bin(2)
Bin(2)

Bin(2)

Bin(4)

Bin(4)

Machine minimum transfer size is the smallest number
of bytes that may be transferred as a block to or . from
main storage.

Maximum number of pools is the maximum number of
storage pools into which main storage may be
partitioned. These pools will be assigned the logical
identification beginning with 1 and continuing to the
maximum number of pools.

Current number of pools is a user-specified value for
the number of storage pools the user wishes to utilize.
These are assumed to be numbered from 1 to the
number specified. This number is fixed by the machine
to be equal to the maximum number of pools.

Main storage size is the amount of main storage, in
units equal to the machine minimum transfer size, which
may be apportioned among main storage pools.

Minimum size - Pool 1 is the amount of main storage,
in units equal to the machine minimum transfer size,
which must remain in Pool 1. This amount is machine
and configuration dependent.

Individual main storage pool information is data in an
array that is associated with a main storage pool by
virtue of its ordinal position within the array. In the
descriptions below, data base. refers to all other data,
including internal machine fields. Pool size, pool
maintenance, and data transferred information is
expressed in units equal to the machine minimum
transfer size described above.

Pool size is the amount of main storage assigned to the
pool.

Pool· maintenance is the amount of data written from a
pool to secondary storage by the machine to satisfy
demand for resources from the pool. It does not
represent total transfers from the pool to secondary
storage, but rather is an indication of machine overhead
required to provide primary storage within a pool to
requesting processes.

Process interruptions (data base and nondata base) is
the total number of interruptions to processes (not
necessarily assigned to this pool) which were required to
transfer data into the pool to permit instruction
execution.

Data transferred to pool (data base and nondata base) is
the amount of data transferred from auxiliary storage to
the pool to permit instruction execution and as a
consequence of set access state, implicit access group
movement, and internal machine actions;

Resource Management Instructions 13-13

Storage Management Counters (Hex 06):

• Access pending 8in(2)

• Storage pool delays 8in(2)

• Directory look-up operations 8in(2)

• Directory page faults 8in(2)

• Access group member page faults 8in(2)

• Microcode page faults 8in(2)

• Microtask read operations 8in(2)

• Microtask write operations 8in(2)

Access pending is a count of the number of times that a
paging request must wait for the completion of a
different request for the same page.

Storage pool delays. is a count of the number of times
that processes have been momentarily delayed by the
unavailability of a main storage frame in the proper pool.

Directory look-up operations is a count of the number
of times that auxiliary storage directories were
interrogated, exclusive of storage allocation or
dea"ocation.

Directory page faults is a count of the number of times
that a page of the auxiliary storage directory was
transferred to main storage, to perform either a look-up
or an allocation operation.

Access group member page faults is a count of the
number of times that a page of an object contained in
an access group was transferred to main storage
independently of the containing access group. This
occurs when the containing access group has been
purged or because portions of the containing access
group have been displaced from main storage.

Microcode page faults is a count of the number of times
a page of microcode was transferred to main storage.

13-14

Microtask read operations is a count of the number of
transfers of one or more pages of data from· auxiliary
main storage on behalf of a microtask rather than a
process.

Microtask write operations is a count of the number of
transfers of one or more pages of data from main
storage to auxiliary storage on behalf of a microtask,
rather than a process.

Multiprogramming Level Control Information (Hex OA):

• Machine-wide M PL control
Machine maximum number
of M PL classes
Machine current number
of M PL classes
MPL (max)
Ineligible event threshold
M PL (current)
Number of processes
in ineligible state
Reserved

• MPL class information
(repeated for each M PL class,
from 1 to the current
number of MPL classes)

MPL (max)
Ineligible event threshold
Current MPL
Number of processes
ineligible state
Number of processes
assigned to class
Transitions (active to ineligible)
Transitions (active to M I wait)
Transitions (MI wait to ineligible)

Machine-Wide MPL Control:

Char(16)
8in(2)

8in(2)

8in(2)
8in(2)
8in(2)
8in(2)

Char(4)

Char(16)

8in(2)
8in(2)
8in(2)
8in(2)

8in(2)

8in(2)
8in(2)
8in(2)

Maximum number of MPL classes is the largest
number of MPL classes allowed in the machine.
These are assumed to be numbered from 1 to the
maximum.

Current number of MPL classes is a user-specified
value for the number of MPL classes in use. They
are assumed to be numbered from 1 to the current
number.

M PL (max) is the maximum number of processes
which may concurrently be in the active state in the
machine.

Ineligible event threshold is a number which, if
exceeded by the machine number of ineligible
processes defined below, will cause the machine
ineligible threshold exceeded event to be signaled.
When the event is signaled, this value is set by the
machine to 65 535.

MPL (current) is the current number of processes in
the active state.

Number of processes in the ineligible state is the
number of processes not currently active because of
enforcement of both the machine and class M PL
rules.

MPL Class Information:

M PL class controls is data in an array that is
associated with an M PL class by virtue of its ordinal
position within the array.

M PL (max) is the number of processes assigned to
the class which may be concurrently active.

Ineligible event threshold, MPL (current), and number
of processes in ineligible state are as defined above
but apply only to processes assigned to the class.

Number of processes assigned to class is the total
number of processes, in any state, assigned to the
pool.

Transitions count is the total number of transitions by
processes assigned to a class as follows:

1 . Active state to ineligible state

2. Active state to wait

3. Wait state to ineligible state

Note that transitions from wait state to active state
can be derived as (2-3) and transitions from ineligible
state to active state as (1 +3). These numbers are
unsigned Bin(2) and are maintained by the machine
without regard to overflow conditions.

Events

0002 Authorization
0101 Object authorization violation

OOOALock
0301 Object lock transferred

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Resource Management Instructions 13-15

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OC Invalid operand ODT reference

32 Scalar Specification

02 Scalar attribute invalid

03 Scalar value invalid

38 Template Specification

03 Materialization length exception

13-16

Operands
1 2 Other

X X
X X
X X

X X

X X
X X X

X

X
X

X X
X X
X X

X X
X X

X X
X X
X X
X X

X
X

X

MODIFY RESOURCE MANAGEMENT CONTROLS
(MODRMC)

Op Code
(hex)

0326

Operand
1

Receiver

Operand
2

Control
data

Operand 1: Space pointer.

Operand 2: Character(8) scalar (fixed-length).

Description: The control fields implied by operand 2 are
modified according to the template specified in operand
1. Operand 2 is an 8-byte character scalar. The first
byte generically identifies the type of controls being
modified, and the remaining 7 bytes further qualify these
controls. The allowable values for operand 2 are
machine-dependent.

Operand 1 specifies the values to be used in the
modification. The modification template is of the same
size and layout as the corresponding materialize resource
management data template. The instruction assumes
that all values that may be modified under a given value
for operand 2 are in fact being modified.

The values allowed for operand 2 and their
interpretations are:

• Selection option

Hex 02 Modify auxiliary storage
controls

Hex 04 Modify storage transient
pool identification

Hex 05 Modify main storage
pool controls

Hex OA = Modify MPL controls

• Reserved (binary 0)

Char(1)

Char(7)

Associated with these values are the following
modification templates, which are assumed to begin 16
bytes past the location specified by operand 1.

Auxiliary Storage Control (Hex 02):

• Reserved

• Auxiliary storage event threshold

• Auxiliary storage control flags
Error logging control flag

- Reserved

Char(1S)*

Bin(S)

Char(1)
Bit(1)
Bit(7)

Note: The value associated with each entry shown here
with an asterisk (*) is ignored.

Auxiliary storage event threshold is a number that, if
greater than the number of bytes of auxiliary storage
space available, causes the auxiliary storage threshold
exceeded event to be signaled. This number is set by
the machine to a whenever the event is signaled.

Error logging control flag, when set to 1, specifies that
any temporary errors subject to threshold control be
logged on every occurrence. When set to 0, such errors
are logged only when the device specific thresholds are
reached.

Modify Storage Transient Pool Identification (Hex 04):

• Storage pool to be used as the
transient pool

Bin(2)

The value specified identifies which of the main storage
pools is to be used for the transient pool. A value of a
indicates that the transient pool attribute is to be
ignored.

Main Storage Pool Control (Hex 05):

• Machine-wide storage pool control
Reserved
Current number of pools
Reserved

• Individual main storage pool
controls (repeated once for
each main storage pool, up
to the current number of pools)

Pool size
- Reserved

Char(4)*
Bin(2)
Char(10)*

Bin(2)
Char(14)*

Note: The value associated with each entry shown here
with an asterisk (*) is ignored.

Current number of pools equals the maximum number of
pools allowed.

Individual main storage pool controls are associated with
main storage pools by virtue of their logical position in
the array.

Pool size specifies the size of the pool. The unit
assumed is the machine minimum transfer size. The
sum of the values specified for all pools must equal
main storage size, and the value specified for pool 1
must be greater than or equal to the pool 1 minimum
size. This minimum value is machine and configuration
dependent and the value for any given machine may be
materialized using the Materialize Resource Management
Data instruction. A value of a means that no storage is
to be allocated for a pool. A nonzero value must be
greater than S.

Resource Management Instructions 13-17

Multiprogramming Level Control (Hex OA):

• Machine-wide M PL control
Reserved
Current number of MPL classes
MPL (maximum)
Ineligible event threshold
Reserved

• M PL class controls (repeated once
for each MPL class, up to the
current number of MPL classes)

MPL (maximum)
Ineligible event threshold
Reserved

Char(2)*
Bin(2)
Bin(2)
Bin(2)
Char(8)*

Bin(2)
Bin(2)
Char(12)*

Note: The value associated with each entry shown here
with an asterisk (*) is ignored.

Current number of MPL classes specifies the number of
MPL classes required by the user. These are assumed
to be numbered from 1. This value may not be modified
and is set by the machine to be equal to the machine
maximum number of MPl classes.

MPL (maximum) specifies the maximum number of
processes which may concurrently be in the active state.

Ineligible event threshold is a number which, if exceeded
by the number of processes in the machine in the
ineligible state, causes the machine ineligible state
threshold event to be signaled. When this event is
signaled, the threshold is reset by the machine
to 32 767.

MPL class controls are associated with an MPL class by
virtue of their ordinal position in the array.

M PL (maximum) and ineligible event threshold are as
defined for machine-wide MPL controls but apply only
to processes applied to a particular MPL class.

Authorization Required

Privileged Instruction

13-18

Events

0002 Authorization
0201 Privileged instruction violation

oooALock
0301 Object lock transferred

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing
01 Space addressing violation
02 Boundary alignment
03 Range

08 Argument/ Parameter
01 Parameter reference violation

OA Authorization
01 Unauthorized for operation
02 Privileged instruction

10 Damage Encountered
04 System object damage state
44 Partial system object damage

1C Machine-Dependent Exception
03 Machine storage limit exceeded

20 Machine Support
02 Machine check
03 Function check

22 Object Access
01 Object not found
02 Object destroyed
03 Object suspended

24 Pointer Specification
01 Pointer does not exist
02 Pointer type invalid

2A Program Creation
06 Invalid operand type
07 Invalid operand attribute
08 Invalid operand value range
OC Invalid operand ODT reference

32 Scalar Specification
02 Scalar attribute invalid
03 Scalar value invalid

38 Template Specification
01 Template value invalid

Operands
1 2 Other

X X
X X
X X

X X

X
X

X X
X X X

X

X
X

X X
X X
X X

X X
X X

X X
X X
X X
X X

X
X

X

SET ACCESS STATE (SETACST)

Op Code
(hex) Operand 1

0341 Access state
template

Operand 1: Space pointer.

Description: The instruction specifies the access state
(which specifies the desired speed of access) that the
issuing process has for a set of objects or subobject
elements in the execution interval following the
execution of the instruction. The specification of an
access state for an object momentarily preempts the
machine's normal management of an object.

The Set Access State instruction template must be
aligned on a 16-byte boundary. The format is:

• Number of objects to be
acted upon

• Reserved (binary 0)

• Access state specifications
(repeated as many times as necessary)

Pointer to object whose
access state is to be
changed

Access state code
Reserved (binary 0)
Access state parameter

Access pool 10
Space length
Reserved (binary 0)

Bin(4)

Char(12)

Char(32)

Space
pointer
or System
pointer
Char(1)
Char(3)
Char(12)
Char(4)
Bin(4)
Char(4)

The number of objects entry specifies how many objects
are potential candidates for access state modification.
An access state specification entry is included for each
object to be acted upon.

The pointer to object entry identifies the object or space
which is to be acted upon. For the space associated
with a system object, the space pointer may address
any byte in the space. This pointer is followed by
parameters that define in detail the action to be applied
to the object.

Resource Management Instructions 13-19

The access state code designates the desired access
state. The allowed values are as follows:

Access State
Code (hex) Function and Required Parameter

13-20

00 No operations are performed.

01 Associated object is moved into
main storage (if not already there)
synchronously with the execution of
the ins~ruction.

02 Associated object is moved into
main storage (if not already there)
asynchronously with the execution
of the instruction.

03

40

80

81

Associated object is placed in main
storage without regard to the current
contents of the object. This causes
access to secondary storage to be
reduced or eliminated.

Perform no operation on the
associated object. The main storage
occupied by this object is to be
used, if possible, to satisfy the
request in the next access state
specification entry.

Associated object not required in
main storage by issuing process.
Object is moved from main storage
synchronously with the execution of
the instruction.

Associated object not required in
main storage by issuing process.
Object is moved from main storage
asynchronously with the execution
of the instruction.

Access state code hex 03 may be used for spaces only.
The pointer to the object in the access state
specification must be a space pointer. Otherwise, the
pointer type invalid exception is signaled.

Access state code hex 40 may be used in conjunction
with access state codes hex 01, hex 02, or hex 03. The
access state specification entry with access state code
hex 40 must immediately precede the access state
specification entry with access state code hex 01, hex
02, or hex 03 with which it is to be combined. The
pointer to the object in both entries must be a space
pointer. Otherwise, the pointer type invalid exception is
signaled. The access state parameter field in the access
state specification entry with code hex 40 is ignored.
The access pool 10 and the space length in the entry
with access state code hex 01, hex 02, or hex 03 are
used.

The access/pool 10 entry indicates the desired main
storage pool in which the object is to be placed
(0000-0006). The storage pool 10 entry is treated as a
4-byte logical.binary value. When a 0000 storage pool
lOis specified, the storage pool associated with the
issuing process is used.

The space entry length designates the part of the space
associated with the object to be operated on. If the
pointer to the object entry is a system pointer, the
operation begins with the first byte of the space. If the
pointer to the object entry is a space pointer that
specifies a location, the operation proceeds for the
n~mber of storage units that are designated. No
exception is signaled when the number of referenced
bytes of the space are not allocated. When operations
on objects are designated by system pointers, this
operation is performed in addition to the access state
modification of the object.

Authorization Required

• Retrieve
- Contexts referenced for address resolution

Lock Entorcen1ent

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operand
Exception 1 Other

04 Access State

01 Access state specification invalid X

06 Addressing

01 Space addressing violation X
02 Boundary alignment X
03 Range X

08 Argument/ Parameter

01 Parameter reference violation X

OA Authorization

01 Unauthorized for operation X

10 Damage Encountered

04 System object damage state X
44 Partial system object damage X X

1A Lock State

01 Invalid lock state X

1C Machine-Dependent Exception

03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X

02 Object destroyed X
03 Object suspended X

24 Pointer Specification

01 Pointer does not exist X

02 Pointer type invalid X

03 Pointer addressing invalid object X

2A Program Creation

06 Invalid operand type X

07 Invalid operand attributes X

08 Invalid operand value range X

OC Invalid operand ODT reference X

38 Template Specification

01 Template value invalid X

Resource Management Instructions 13-21

SUSPEND OBJECT (SUSOBJ)

Op Code
(hex) Operand 1

0361 Object to be
suspended

Operand 1: System pointer.

Description: The object is truncated to the minimum size
needed to maintain its existence in the machine.

After this instruction has been executed, the operational
portion of the referenced object cannot be accessed.
Ownership and addressability to the object may still be
obtained, and some access to the object's attributes is
possible. However, any operation that involves access
to the operational part of the object results in an
exception. This instruction makes space in the system
available for other objects. The instruction should be
used after an object dump function to save the object
on a backup storage medium. An object load function
can be used to restore a truncated object to its
untruncated or normal state.

Only permanent objects may be suspended. The
following objects may be suspended:

• Space object

• Data space

• Data space index

• Index (except those with pointers)

• Program

13-22

The following instructions can reference objects that
have been suspended:

• Destroy (all suspend able objects)

• Grant Authority

• Lock Object

• Materialize Authority

• Materialize Authorized Users

• Materialize Object Lock

• Materialize System Object

• Modify Addressability

• Rename Object

• Request I/O (load and dump)

• Resolve System Pointer

• Restart Authority

• Transfer Object Lock

• Transfer Ownership

• Unlock Object

The object suspended exception is signaled if an
attempt is made to suspend an object that already is
suspended .

Authorization Required Exceptions

· Suspend (unrestricted) Operand
- Special authorization Exception 1 Other

· Suspend (restricted) 06 Addressing

Special authorization and object control authority 01 Space addressing violation X

on object 02 Boundary alignment X
03 Range X

· Retrieve 08 Argument/ Parameter

- Contexts referenced for address resolution 01 Parameter reference violation X

OA Authorization

01 Unauthorized for operation X

Lock Enforcennent 04 Special authorization required X
10 Damage Encountered

· Object Control 04 System object damage state X X

- Operand 1 44 Partial system object damage X X
1A Lock State

· Materialize 01 Invalid lock state X

- Contexts referenced for address resolution 1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

Events 02 Machine check X
03 Function check X

0002 Authorization 22 Object Access

0101 Object authorization violation 01 Object not found X

02 Object destroyed X

DOOC Machine resource 03 Object suspended X

0201 Machine auxiliary storage threshold exceeded 04 Object not eligible for operation X

24 Pointer Specification

0010 Process 01 Pointer does not exist X

0701 Maximum processor time exceeded 02 Pointer type invalid X

0801 Process storage limit exceeded 03 Pointer addressing invalid object X
2A Program Creation

0016 Machine observation 06 Invalid operand type X

0101 Instruction reference 07 Invalid operand attributes X
08 Invalid operand value range X

0017 Damage set OC Invalid operand ODT reference X

0401 System object damage set
0801 Partial system object damage set

Resource Management Instructions 13-23

13-24

Chapter 14. Object Lock Management Instructions

This chap'!:er describes the lock management
instructions. The instructions are in alphabetic order.
For an alphabetic summary of all the instructions, see
Appendix B. Instruction Summary.

LOCK OBJECT (LOCK)

Op Code
(hex) Operand 1

03F5 Lock request template

Operand 1: Space pointer.

Description: The instruction requests that locks for
system objects identified by system pointers in the
space object (operand 1) be allocated to the issuing
process. The lock state desired for each object is
specified by a value associated with each system pointer
in the lock template (operand 1).

The lock request template must be aligned on a 16-byte
boundary. The format is as follows:

Number of lock requests
in template

Offset to lock state
selection values

Bin(4)

Bin(2)

• Wait time-out value
for instruction

• Lock request options
Lock request type
00= Immediate request

If all locks cannot be
immediately granted,
signal exception.

01 = Synchronous request
- Wait until all locks

can be granted.
10= Asynchronous request

Allow processing to
continue and signal
event when the
object is available.

Char(S)

Char(1)
Bits 0-1

Access state modifications Bits 2-3
When the process is entering Bit 2
lock wait for synchronous request:

o Access state should not
be modified.

1 Access state should
be modified.

When the process is leaving
lock wait:

o Access state should
not be modified.

1 Access state should
be modified.

Reserved (binary 0)
Reserved (binary 0)

• Reserved (binary 0)

Bit 3

Bit 4*
Bits 5-7

Char(1)

Object Lock Management Instructions 14-1

• Object(s) to be locked

• Lock state selection
(repeated for each pointer
in the template)

Requested lock state
(1 = lock requested,
o = lock not requested)

System pointer
(one for each
object to be locked)

Char(1)

Bits 0-4

Only one state may be requested.
LSRD lock Bit 0

Bit 1
Bit 2
Bit 3
Bit 4

LSRO lock
LSUP lock
LEAR lock
LENR lock
Reserved (binary 0)

Entry active indicator
o Entry not active

- This entry is not used.
Entry active
- Obtain this lock.

Bits 5-6*
Bit 7

Note: Entries indicated with an asterisk are ignored by
the instruction.

Lock Allocation Procedure

A single Lock instruction can request the allocation of
one or more lock states on one or more objects. Locks
are allocated sequentially until all locks requested are
allocated.

When a requested lock state cannot be immediately
granted, any locks already allocated by this Lock
instruction are released, and the lock request option
specified in the lock request template establishes the
machine action. The lock request options are described
in the following paragraphs.

14-2

• Synchronous Request - This option causes the
process requesting the locks to be placed in the wait
state until all requested locks can be granted. If the
locks cannot be granted in the time interval
established by the wait time-out parameter specified
in the lock request template, the lock wait time-out
exception is signaled to the requesting process at the
end of the interval. No locks are granted, and the
lock request is canceled.

When the synchronous request option is specified
and the requested locks cannot be immediately
allocated, the access state modification parameter in
the lock request template specifies whether the
access state of the process access group is to be
modified on entering and / or returning from the lock
wait. The parameter has no effect if the process
instruction wait access state control attribute
specifies that no access state modification is allowed.
If the process attribute value specifies that access
state modification is allowed and the· wait on event
access state modification option specifies modify
access state, the machine modifies the access state
for the specified process access group.

If a synchronous lock wait is requested and the
invocation containing the lock instruction is
terminated, then the lock request is canceled.

• Immediate Request - If the requested locks cannot
be granted immediately, this option causes the lock
request not grantable exception to be signaled. No
locks are granted, and the lock request is canceled.

• Asynchronous Request - This option allows the
requesting process to proceed with execution while
the machine asynchronously attempts to satisfy the
lock request.

If the lock request is satisfied, then the object locked
event is signaled to the requesting process. If the
request is not satisfied in the time interval established
by the wait time-out parameter specified in the lock
request template, the wait time-out for pending lock
event is signaled to the requesting process. No locks
are granted, and the lock request is canceled. If an
object is destroyed while a process has· a' pending
request to lock the object, the object destroyed event
is signaled to the waiting process.

If an asynchronous lock wait is requested and the
invocation containing the Lock instruction is
terminated, then the lock request remains active.

The wait time-out parameter establishes the maximum
amount of time that a process competes for the
requested set of locks when either the synchronous or
asynchronous wait options are specified. Bit 41 of the
parameter represents 1024 microseconds. If the wait
time-out parameter is specified with a value of binary 0,
then the value associated with the default wait time-out
parameter in the process definition template establishes
the time interval.

When two or more processes are competing for a
conflicting lock allocation on a system object, the
machine attempts to first satisfy the lock allocation
request of the process with the highest priority. Within
that priority, the machine attempts to satisfy the request
that has been waiting longest.

If any exception is identified during the instruction's
execution, any locks already granted by the instruction
are released, and the lock request is canceled.

For each system object lock counts are kept by lock
state and by process. When a lock request is granted,
the appropriate lock count(s) of each lock state specified
is incremented by 1.

If a previously unsatisfied lock request is satisfied by the
transfer of a lock from another process, the lock request
and transfer lock are treated as independent events
relative to lock accounting. The. appropriate lock counts
are incremented for both the lock request and the
transfer lock function.

Authorization Required

• Some authority or ownership
- Objects to be locked

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOALock
0101 Object locked
0201 Object destroyed
0401 Asynchronous lock wait timeout

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Object Lock Management Instructions 14-3

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

OA Authorization

Operand
1

X
X
X

X

01 Unauthorized for operation X

10 Damage Encountered

04 . System object damage state

44 Partial system object damage

1 A Lock State

01 Invalid lock state

02 lock request not grantable

1 C Machine- Dependent Exception

03 Machine storage limit exceeded

06 Machine lock limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not· exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OC Invalid operand ODT reference

38 Template Specification

01 Template value invalid

3A Wait Time-out

02 lock

14-4

X
X

X

X
X
X

X
X

X

X
X
X

X

Other

X

X

X

X
X

X
X

X

LOCK SPACE LOCATION (LOCKSL)

Op Code
(hex)

03F6

Operand
1

Space
location

Operand
2

lock type request

Operand 1: Space pointer.

Operand 2: Char(l) scalar.

Description: The space location identified by operand 1
is locked according to the request specified by operand
2. Locking the space location does not prevent any byte
operation from referencing that location, nor does it
prevent the space from being extended, truncated, or
destroyed. Space location locks follow the normal
locking rules with respect to conflicts and waits but are
strictly symbolic in nature.

Following is the format of operand 2:

• Requested lock state

Hex 80
Hex 40
Hex 20
Hex 10
Hex 08

LSRD lock
LSRO lock
LSUP lock
LEAR lock
LENR lock

All other values are reserved

Char(l)

If the requested lock cannot be immediately granted, the
process will enter a synchronous wait for the lock, for a
period of up to the interval specified by the process
default time-out value. If the wait exceeds this time
limit, a space location lock wait exception is signaled,
and the requested lock is not granted. During the wait,
the process access state is modified.

Events

OOOC Machine resources
0201 Machine auxiliary storage exceeded

0000 Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2

06 Addressing
01 Space addressing violation X X
02 Boundary alignment X X
03 Range X X

08 Argument/Parameter
01 Parameter reference violation X X

10 Damage Encountered
04 System object
44 Partial system object damage

IC Machine Dependent Exception
03 Machine storage limit exceeded
06 Machine lock limit exceeded

20 Machine Support
02 Machine check
03 Function check

22 Object Access
02 Object destroyed X X

24 Pointer Specification
01 Pointer does not exist X X
02 Pointer type invalid X X

2A Program creation
06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X
OC Invalid operand ODT reference X X

2E Resource Control Limit
02 Process storage limit exceeded

32 Scalar Specification
01 Scalar type invalid X X
03 Scalar value invalid X

3A Wait Time-Out
04 Space location 19ck wait X

Other

X

X

X

X

X

X

X

MATERIALIZE OBJECT LOCKS (MATOBJLK)

Op Code
(hex)

Operand
1

Operand
2

033A Receiver System object or space location

Operand 1: Space pointer.

Operand 2: System pointer or space pointer.

Description: The current lock status of the object
identified by operand 2 is materialized into the template
(operand 1). If operand 2 is a system pointer, the
current lock status of the object identified by the system
pointer is materialized into the template specified by
operand 1. If operand 2 is a space pointer, the current
lock status of the specified space location is materialized
into the template specified by operand 1. The
materialization template identified by operand 1 must be
aligned on a 16-byte boundary. The format of the
materialization is as follows:

• Materialization size specification
Number of bytes provided for
materialization
Number of bytes available for
materialization

• Current cumulative lock status
Lock states currently allocated
(1 = yes)
LSRD
LSRO
LSUP
LEAR
LENR
Locks implicity set
Reserved (binary 0)
Lock states for which processes
are in synchronous wait (1 = yes)
LSRD
LSRO
LSUP
LEAR
LENR
Implicit lock request
Reserved (binary 0)
Locks states for which processes
are in asynchronous wait (1 = yes)
LSRD
LSRO
LSUP
LEAR
LENR
Reserved (binary 0)

Char(8)
Bin(4)

Bin(4)

Char(3)
Char(1)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bits 6-7
Char(1)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bits 6-7
Char(1)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bits 5-7

Object Lock Management Instructions 14..:5

· Reserved (binary 0) Char(1)

Number of lock descriptions Bin(2)
that follow

· Reserved (binary 0) Char(2)

· Lock state descriptors (repeated Char(32)
for each lock currently
allocated or waited for)

Process control space System
pointer

Lock state being described Char(1)
LSRD Bit 0
LSRO Bit 1
LSUP Bit 2
LEAR Bit 3
LENR Bit 4
Reserved (binary 0) Bits 5-7
Status of lock request Char(1)
Reserved Bits 0-2
Waiting because this Bit 3
lock is not available
Process in asynchronous Bit 4
wait for lock
Process in synchronous Bit 5
wait for lock
Implicit lock (machine- Bit 6
applied)
Lock held by process Bit 7
Reserved (binary 0) Char(14)

Locks may be applied by the machine (status code =
hex 02). If the implicit lock is held for a process, a
pointer to the associated process control space is
returned. Locks held by the machine but not related to a
specific process cause the process control space entry
to be assigned a value of binary O.

Only a single lock state is returned for each lock state
descriptor entry.

14 ... 6

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This total is supplied as input to the instruction and is
not modified by the instruction. A total of less than 8
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception described previously)
are signaled if the receiver contains insufficient area for
the materialization.

Authorization Required

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions MATERIALIZE PROCESS LOCKS (MATPRLK)

Operands Op Code Operand Operand
Exception 1 2 Other (hex) 1 2

06 Addressing 0312 Receiver Process
01 Space addressing violation X X control

02 Boundary alignment X X space

03 Range X X

08 Argument/ Parameter Operand 1: Space pointer.

01 Parameter reference violation X X

OA Authorizatio n
Operand 2: System pointer or null.

01 Unauthorized for operation X X

10 Damage Encountered

04 System object damage state X X X
Description: The lock status of the process identified by

44 Partial system object damage X X X
operand 2 is materialized into the receiver specified by

1A Lock State
operand 1. If operand 2 is null, the lock activity is

01 Invalid lock state X
materialized for the process issuing the instruction. The

1C Machine- Dependent Exception
materialization identifies each object for which the

03 Machine storage limit exceeded X
process has a lock allocated or for which the process is

20 Machine Support
in a synchronous or asynchronous wait. The format of

02 Machine check X
the materialization is as follows:

03 Function check X

22 Object Access · Materialization size specification Char(8)

01 Object not found X X
Number of bytes provided Bin(4)
for materialization

02 Object destroyed X X Number of bytes available Bin(4)
03 Object suspended X X for materialization

24 Pointer Specification

01 Pointer does not exist X X · Number of lock entries Bin(2)
02 Pointer type invalid X X

2A Program Creation · Reserved (binary 0) Char(6)

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X

OC Invalid operand ODT reference X X

38 Template Specification

03 Materialization length exception X

Object Lock Management Instructions 14-7

• Lock status (repeated
for each lock currently
allocated or waited for by
the process)

Object, space location, or
binary a if no pointer exists

Lock state
LSRD
LSRO
LSUP
LEAR
LENR
Reserved (binary 0)
Status of lock state for process
Reserved
Object or space location
no longer exists
Waiting because this lock
is not available
Process in asynchronous
wait for lock
Process in synchronous
wait for lock
Implicit lock (machine
applied)
Lock held by process

• Reserved (binary 0)

Char(32)

System
pointer or
space pointer
Char(1)
Bit a
Bit 1
Bit 2
Bit 3
Bit 4
Bits 5-7
Char(l)
Bits 0-1
Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Char(14)

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception described previously)
are Signaled if the receiver contains insufficient area for
the materialization.

14-8

Authorization Required

• Retrieve
- Context referenced by address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions MATERIALIZE SELECTED LOCKS (MATSELLK)

Operands Op Code Operand Operand
Exception 1 2 Other (hex) 1 2

06 Addressing 033E Receiver Object
01 Space addressing violation X X or
02. Boundary alignment X X space location
03 Range X X template

08 Argument/ Parameter Operand 1: Space pointer.
01 Parameter reference violation X X

10 Damage Encountered Operand 2: System pointer or space pointer.
04 System object damage state X X X

44 Partial system object damage X X X

1C Machine- Dependent Exception Description: The locks held by the process issuing this
03 Machine storage limit exceeded X instruction for the object or space location referenced by

20 Machine Support operand 2 are materialized into the template specified by
02 Machine check X operand 1. The format of the materialization template is
03 Function check X as follows:

22 Object Access

01 Object not found X X · Materialization size specification Char(8)
02 Object destroyed X X Number of bytes provi"ded for Bin(4)
03 Object suspended X X materialization

24 Pointer Specification Number of bytes available for Bin(4)
01 Pointer does not exist X X materialization
02 Pointer type invalid X X

03 Pointer addressing invalid object X · Cumulative lock status for all locks on Char(1)
28 Process State operand 2

02 Process control space not X Lock state Char(1)
associated with a process LSRD Bit 0

2A Program Creation LSRO Bit 1
06 Invalid operand type X X LSUP Bit 2
07 Invalid operand attribute X X LEAR Bit 3
08 Invalid operand value range X X LENR Bit 4
OA Invalid operand length X Reserved (binary 0) Bits 5-7
OC Invalid operand ODT reference X X

38 Template Specification · Reserved Char(3)
03 Materialization length exception X

· Number of lock entries Bin(2)

Object Lock Management Instructions 14-9

• Reserved
• Lock status (repeated for each lock

currently allocated or waited .for by
the process)

Lock state
Hex 80
Hex 40
Hex 20
Hex 10
Hex 08

LSRD lock request
LSRO lock request
LSUP lock request
LEAR lock request
LENR lock request

All other values are reserved
Status of lock
Reserved (binary 0)
Implicit lock
o = Not implicit, lock
1 = Is implicit lock
Reserved (binary 1)

Char(2)
Char(2)

Char(1)

Char(1)
Bits 0-5
Bit 6

Bit 7·

The first 4 bytes of the materialization identifies the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes. the materialization length exception to be
signaled.

The second 4 bytes of the materialization identifies the
total quantity of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area ·identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions are signaled
in the event that the receiver contains insufficient area
for the materialization, other than the materialization
length exception described previously.

14-10

Authorization

• Retrieve
- Context referenced by address resolution

Lock Enforcement

Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Authorization violation

OOOC Machine resources
0201 Machine auxiliary storage exceeded

OOOD Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object
0801 Partial system object damage set

Exceptions TRANSFER OBJECT LOCK (XFRLOCK)

Operands Op Code Operand Operand

Exception 1 2 Other (hex) 1 2

06 Addressing 0382 Receiving Lock

01 Space addressing violation X X
process transfer
control template

02 Boundary alignment X X space
03 Range X X

08 Argument/ Parameter Operand 1: System pointer.
01 Parameter reference violation X X

OA Authorization Operand 2: Space pointer.

02 Unauthorized for operation X
10 Damage Encountered

04 System object X X X Description: The receiving process (operand 1) is

44 Partial system object damage X allocated the locks designated in the lock transfer
1A Lock State template (operand 2). Upon completion of the transfer

01 Invalid lock state X lock request, the current process no longer holds the

1C Machine Dependent Exception transferred lock(s).

03 Machine storage limit exceeded X
20 Machine Support Operand 2 identifies the objects and the associated lock

02 Machine check X states that are to be transferred to the receiving

03 Function check X process. The space contains a. system pointer to each
22 Object Access object that is to have a lock transferred and a byte

01 Object not found X X which defines whether this entry is active. If the entry is

02 Object destroyed X X active, the space also contains the lock states to be

03 Object suspended X X transferred. Operand 2 must be aligned ona 16-byte
24 Pointer Specification boundary. The format is as follows:

01 Pointer does not exist X X

02 Pointer type invalid X X · Number of lock transfer Bin(4)

03 Pointer addressing invalid object X requests in template
28 Process State

02 Process state invalid X · Offset to lock state selection Bin(2)

2A Program creation bytes (1 byte for each lock

06 Invalid operand type X X transfer request)

07 Invalid operand attribute X X
08 Invalid operand value rnage X X · Reserved (binary 0) Char(8)*

OA Invalid operand Idngth X

OC Invalid operand OOT reference X X · Reserved (binary 0) Char(1)*

BO Resource Control Limit

02 Process storage limit exceeded X · Reserved (binary 0) Char(1)

32 Scalar Specification

01 Scalar type invalid X X

38 Template Specification

03 Materialization length exception X

Object Lock Management Instructions 14-11

• Object lock(s) to be transferred

• Lock state selection (repeated
for each pointer in the template)

Lock state to transfer. Only
one state may be requested.
(1 = transfer)
LSRD
LSRO
LSUP
LEAR
LENR
Reserved (binary 0)
Lock count
o The current lock count

is transferred.
A lock count of 1
is transferred.

Entry active indicator
o Entry not active

This entry is not used.
Entry active
This lock is transferred.

System
pointer
(one for
each object
lock to be
transferred)

Char(1)

Bits 0-4

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5*
Bit 6

Bit 7

Note: Entries indicated by an asterisk are ignored by
the instruction.

If the receiving process is issuing the instruction, then
no operation is performed, and no exception is signaled.
The lock count transferred is either the lock count held
by the transferring process or a count of 1. If the
receiving process already holds an identical lock, then
the final lock count is the sum of the count originally
held by the receiving process and the transferred count.

Only locks currently allocated to the process issuing the
instruction can be transferred. If the transfer of an
allocated lock would result in the violation of the lock
allocation rules, then the lock cannot be transferred. An
implicit lock may not be transferred.

No locks are transferred if an entry in the template is
invalid.

The locks specified by operand 2 are transferred
sequentially and individually. If one lock cannot be
transferred because the process does not hold the
indicated lock on the object, then exception data is
saved to identify the lock that could not be transferred.
Processing of the next lock to be transferred continues.

14-12

After all locks specified in operand 2 have been
processed, the object lock transferred event is signaled
to the process receiving the locks if any locks were
transferred. If any lock was not transferred, the invalid
object lock transfer request exception is signaled.

When an object lock is transferred, the transferring
process synchronously loses the record of the lock, and
the object is locked to the receiving process. However,
the receiving process obtains the lock asynchronously
after the instruction currently being executed is
completed. If the transferring process holds multiple
locks for the object, any lock states not transferred are
retained in the process.

Authorization Required

• Retrieve
- Contexts referenced for address resolution

Lock Enforcer,nent

Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOA Lock
0301 Object lock transferred

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions UNLOCK OBJECT (UNLOCK)

Operands Op Code Operand 1
(hex)

Exception 1 2 Other

03F1 Unlock template
06 Addressing

01 Space addressing violation X X Operand 1: Space pointer.
02 Boundary alignment X X

03 Range X X

08 Argument/ Parameter Description: The instruction releases the object locks
01 Parameter reference violation X X that are specified in the unlock template. The template

OA Authorization specified by operand 2 identifies the system objects and
01 Unauthorized for operation X the lock states (on those objects) that are to be

10 Damage Encountered released. The unlock template must be aligned on a
04 System object damage state X X X 16-byte boundary. The format is as follows:
44 Partial system object damage X X X

1A Lock State · Number of unlock requests Bin(4)
01 Invalid lock state X in template
04 Invalid object lock transfer X

request · Offset to lock state Bin(2)
1C Machine- Dependent Exception

selection bytes
03 Machine storage limit exceeded X

20 Machine Support · Reserved (binary 0) Char(8)*
02 Machine check X

03 Function check X
Unlock option Char(1) · 22 Object Access

Reserved (binary 0) Bits 0-3*
01 Object not found X X

Unlock type Bit 4
02 Object destroyed X X

0 Specific locks now
03 Object suspended X X

allocated to the process
24 Pointer Specification

1 = All locks the process is
01 Pointer does not exist X X

waiting for asynchronously
02 Pointer type invalid X X

Reserved (binary 0) Bits 5-7
03 Pointer addressing invalid object X

Reserved (binary 0) Char(1)
28 Process State

02 Process control space not X
associated with a process

2A Program Creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OC Invalid operand ODT reference X X

38 Template Specification

01 Template value invalid X

Object Lock Management Instructions 14-13

• Object to unlock (one
for each unlock request)

• Unlock options (repeated
for unlock request)

Lock state to unlock (only
one state can be selected)
(1 = unlock)
LSRD
LSRO
LSUP
LEAR
LENR
Lock count option
o Lock count reduced by 1
1 = All locks are unlocked

- The set lock count = 0
Reserved (binary 0)
Entry active indicators
o Entry not active

- This entry is not used.
Entry active
- These locks are unlocked.

System
pointer

Char(1)

Bits 0-4

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5

Bit 6*
Bit 7

Note: Entries indicated by an asterisk are ignored by
the instruction.

If all asynchronous lock waits are being canceled, then
system pointers to the objects and unlock options for
each object are not required. If the asynchronous lock
fields are provided in the template, then the data is
ignored.

When a lock is released, the lock count is reduced by 1
or, set to 0 in the specified state. This option is
specified by the lock count option parameter.

Specific locks can be unlocked only if they are allocated
to the process issuing the unlock instruction. Implicit
locks may not be unlocked with this instruction. No
locks are unlocked if an entry in the template is invalid.

Object locks to unlock are processed sequentially and
individually. If one specific object lock cannot be
unlocked because the process does not hold the
indicated lock on the object, then exception data is
saved, but processing of the instruction continues.

After all requested object locks have been processed,
the invalid unlock request exception is signaled if any
object lock was not unlocked.

14-14

Authorization Required

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

OA Authorization

01 Unauthorized for operation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1A Lock State

01 Invalid lock state

03 Invalid unlock request

1C Machine- Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OC Invalid operand ODT reference

38 Template Specification

01 Template value invalid

Operand
1 Other

X

X

X

X

X

X X
X X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

UNLOCK SPACE LOCATION (UNLOCKSL)

Op Code
(hex)

03F2

Operand
1

Space
location

Operand
2

Lock type

Operand 1: Space pointer.

Operand 2: Char(1) scalar.

Description: The lock type specified by operand 2 is
removed from the space location identified by operand 1
(the lock must be held by the process that issues the
instruction). The space location specified by operand 1
need not exist when this instruction is issued, although
the space pointer must be a valid pointer as used to
lock the space location. When multiple locks of the
same lock state for the same space location need to be
unlocked, this instruction must be issued for each lock
held for the space location. If an attempt is made to
unlock a space location lock not held by the process, an
invalid space location unlock exception is signaled.

Following is the format of operand 2:

• Lock state to be unlocked

Hex 80
Hex 40
Hex 20
Hex 10
Hex 08

LSRD lock
LSRO lock
LSUP lock
LEAR lock
LENR lock

All other values are reserved

Char(1)

Object Lock Management Instructions 14-15

Events Exceptions

oooe Machine resources Operands
0201 Machine auxiliary storage exceeded Exception 1 2 Other

0000 Machine status 06 Addressing

0101 Machine check 01 Space addressing violation X

02 Boundary alignment X

0010 Process 03 Range X

0701 Maximum processor time exceeded 08 Argument/ Parameter

01 Parameter refernnce violation X

0016 Machine observation 10 Damage Encountered

0101 Instruction reference 04 System object X X

44 Partial system object damage X

0017 Damage set IA Lock State

0401 System object 05 Invalid space location unlock X

0801 Partial system object damage set 1C Machine Dependent Exception

03 Machine storage limit exceeded X

06 Machine lock limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

02 Object destroyed X X

24 Pointer Specification

01 Pointer does not exist X

02 Pointer type invalid X

2A Program Creation

06 Invalid operand type X

07 Invalid operand attribute X

08 Invalid operand value range X

OC Invalid operand ODT reference X

2E Resource Control Limit

02 Process storage limit exceeded X

32 Scalar Specification

01 Scalar type invalid X X

03 Scalar value invalid X

14-16

This chapter describes all instructions used for event
management. These instructions are in alphabetic order.
For an alphabetic summary of all the instructions, see
Appendix B. Instructions Summary.

CANCEL EVENT MONITOR (CANEVTMN)

Op Code
(hex) Operand 1

0301 Event monitor
template

Operand 1: Character(48) scalar (fixed-length).

Description: An event monitor having exactly the same
qualifications as the template referenced by the operand
1 template is canceled, and the event monitor is
disassociated from the currently executing process. The
qualifications used to determine the event monitor are
based on event identification, compare value length, and
compare value. All event monitors currently associated
with the process are examined until a matching monitor
is located. If a monitor is not found within the process,
the event monitor not present exception is signaled.

The Cancel Monitor Event instruction template identified
by operand 1 is as follows:

• Option indicators
Compare value content
o = System pointer not present
1 = System pointer present
Reserved (binary 0)

• Reserved (binary 0)

• Event identification
Event class
Event type
Event subtype

• Compare value length

• Compare value

Char(2)
Bit 0

Bits 1-15

Char(8)

Char(4)
Char(2)
Char(1)
Char(1)

Bin(2)

Char(32)

Chapter 15. Event Management Instructions

If compare value content is set to system pointer
present, compare value length must be at least 16 and
the system pointer must be located in the first 16 bytes
of the compare value. The operand must be 16-byte
aligned.

If the compare value length entry is 0, the compare
value entry is ignored. If the event monitor has a
compare value qualifier, the compare value length and
compare values must be identical to that specified in the
monitor.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Event Management Instructions 15-1

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

14 Event Management

02 Event monitor not present

20 Machine Support

02 Machine check

03 Function ch~ck

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

32 Scalar Specification

02 Scalar attributes invalid

03 Scalar value invalid

15-2

Operand
1 Other

·X

X
X

X

X X
X X

X

X
X

X
X
X

X
X

X
X
X
X
X

X
X

DISABLE EVENT MONITOR (DBLEVTMN)

OpCode
(hex) Operand 1

0399 Event monitor
template

Operand 1: Character(48) scalar (fixed-length).

Description: The event monitor with the same
qualifications as the template referenced by operand 1 is
placed in the disabled state. When an event monitor is
disabled, the machine does not schedule execution of
the event handling routine associated with the event
monitor.

If the event monitor specifies that signals are to be held
while the event monitor is disabled, the signals and
event-related data are retained. The maximum number
of signals to be retained is denoted by an event monitor
attribute in the Monitor Event instruction. Signals and
event-related data received by the event monitor in
excess of the maximum number to be retained are lost.

If the event monitor specifies that signals are not to be
held while the event monitor is disabled, the signals and
event- related data are not recorded.

If an event monitor is signaled while it is in the disabled
state, the signals are retained, and the monitor's event
handler, if specified, is scheduled for execution when
the event monitor is enabled.

The operand 1 Disable Monitor Event instruction
template has the following format:

• Option indicators
Compare value content
o = System pointer not present
1 = System pointer present
Reserved (binary 0)

• Reserved (binary 0)

• Event identification
Event class
Event type
Event subtype

• Compare value length

• Compare value

Char(2)
Bit 0

Bits 1-15

Char(8)

Char(4)
Char(2)
Char(1)
Char(1)

Bin(2)

Char(32)

If compare value content is set to system pointer
present, compare value length must be at least 16 and
the system pointer must be located in the first 16 bytes
of the compare value. The operand must be 16-byte
aligned.

If the compare value length is 0, the compare value
entry is ignored by the instruction. The event monitor to
be disabled must also have a zero length compare value.

If no event monitor with an identical event identification,
compare value length, and compare value is found
within the executing process, the event monitor not
present exception is signaled.

If the event monitor is currently disabled, no operation
takes place, and no exception is signaled.

An event monitor monitoring timer event (class 0014)
cannot be disabled.

Events

oooe Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operand
Exception 1 Other

06 Addressing

01 Space addressing violation X
02 Boundary alignment X
03 Range X

08 Arg ument / Parameter

01 Parameter reference violation X
10 Damage Encountered

04 System object damage state X X
44 Partial system object damage X X

14 Event Management

02 Event monitor not present X
05 Disable timer event monitor X

invalid

20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X
02 Object destroyed X
03 Object suspended X

24 Pointer Specification

01 Pointer does not exist X
02 Pointer type invalid X

2A Program Creation

06 Invalid operand type X
07 Invalid operand attribute X
08 Invalid operand value range X
OC Invalid operand ODT reference X

32 Scalar Specification

02 Scalar attributes invalid X
03 Scalar value invalid X

Event Management Instructions 15-3

ENABLE EVENT MONITOR (EBLEVTMN)

Op Code
(hex) Operand 1

0369 Event monitor
template

Operand 1: Character(48) scalar (fixed-length).

Description: The instruction places an event monitor in
the enabled state. The event monitor may have been
initially established in the disabled state or may have
been disabled by the Disable Monitor Event instruction.

If the event monitor is currently enabled, no operation
takes place, and no exception is signaled.

If the event monitor currently has any retained signals,
the event handling program, if specified, is invoked.

The operand 1 template has the following format:

• Option indicators
Compare value content
o = System pointer not present
1 = System pointer present
Reserved (binary 0)

• Reserved (binary 0)

• Event identification
Event class
Event type
Event subtype

• Compare value length

• Compare value

Char(2)
Bit 0

Bits 1-15

Char(8)

Char(4)
Char(2)
Char(1)
Char(1)

Bin(2)

Char(32)

If compare value content is set to system pointer
present, compare value length must be at least 16 and
the system pointer must be located in the first 16 bytes
of the compare value. The operand must be 16-byte
aligned.

If the compare value length is 0, the instruction ignores
the compare value entry. The event monitor to be
enabled must have a zero length compare value.

If no event monitor with an identical event identification,
compare value length, and compare value is currently
associated with the executing process, the event monitor
not present exception is signaled.

15-4

Events

OOOC Machine resource
0201 ,Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operand
Exception 1 Other

06 Addressing

01 Space addressing violation X
02 Boundary alignment X
03 Range X

08 Argument! Parameter

01 Parameter reference violation X
10 Damage Encountered

04 System object damage state X X
44' Partial system object damage X X

14 Event Management

02 Event monitor not present X

20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X
02 Object destroyed X
03 Object suspended X

24 Pointer Specification

01 Pointer does not exist X
02 Pointer type invalid X

2A Program Creation

06 Invalid operand type X
OC Invalid operand ODT reference X

32 Scalar Specification

02 Scalar attributes invalid X
03 Scalar value invalid X

MODIFY PROCESS EVENT MASK (MODPEVTM)

Op Code Operand
(hex) 1

0372 Previous
mask
state

Operand
2

New mask
state

Operand 1: Binary(2) scalar (variable or nUll).

Operand 2: Binary(2) scalar (null).

Description: This instruction optionally modifies and
retrieves the state of the event mask in the process
executing this instruction. If the event mask is in the
masked state, the machine does not schedule signaled
event monitors in the process. The event monitors
continue to be signaled by the machine or other
processes. When the process is modified to the
unmasked state, event handlers are scheduled to handle
those events that occurred while the process was
masked and those events occurring while in the
unmasked state. The number of signals retained while
the process is masked is specified by the attributes of
the event monitor associated with the process.

The process is automatically masked by the machine
when event handlers are invoked. If the process is
unmasked in the event handler, other events can be
handled if another enabled event monitor within that
process is signaled. If the process is masked when it
exits from the event handler, the machine explicitly
unmasks the process.

Valid operand values are:

o masked
256 unmasked

Other values are reserved and must not be specified. If
any other values are specified, a· scalar value invalid
exception is signaled. If operand 1 is null, the current
mask state is not returned. If operand 2 is null, the
mask state is not modified. If both operands are null, an
invalid operand type exception is signaled. If both
operands are not null, the mask state is retrieved before
the state is modified.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Space addressing violation X X

02 Boundary alignment X X

03 Range X X

08 Argument/ Parameter

01 Parameter reference violation X X

10 Damage Encountered

04 System object damage state X X X

44 Partial system object damage X X X

1C Machine-Dependent Exception

03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X

02 Object destroyed X X

24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program Creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand COT reference X

OC Invalid operand COT reference X X

32 Scalar Specification

02 Scalar attributes invalid X X

03 Scalar value invalid X

Event Management Instructions 15-5

MONITOR EVENT (MNEVT)

Op Codes
(hex) Operand 1

0371 Event monitor
template

Operand 1: Space pointer.

Description: This instruction specifies an intent to
monitor for a specific event and defines a preliminary
event handling mechanism within the executing process.
It allows monitoring of both machine and user-signaled
events.

The monitor is in effect until a Cancel Monitor Event
instruction is issued or until the process terminates.

The event monitor template identified by operand 1 has
the following format:

• Template size specification
Number of bytes provided
Number of bytes available
for materialization

• Reserved (binary 0)

• Event handler specification
(program)

• Reserved (binary 0)

15-6

Char(S)
Bin(4)*
Bin(4)*

Char(S)

System
pointer

Char(2)

• Option indicators
Monitor domain
o = Machine-wide
1 = Process-directed
Reserved (binary 0)
Enabled I disabled option
o = Enabled state
1 = Disabled state
Signal retention option
o Signals are retained

while disabled.
Signals are not retained
while disabled.

Short form option
o Event-related data is

included with the signal.
Event-related data is not
included with the signal.

Event handler qualifier
o = Event handler not present
1 = Event handler present
Compare value content
o = System pointer not present
1 = System pointer present
Reserved (binary 0)

• Maximum number of signals to
be retained

• Event priority
(0-255; 0 = highest priority)

• Event identification
Event class
Event type
Event subtype

• Compare value length

• Compare value

Char(2)
Bit 0

Bits 1-7
Bit S

Bit 9

Bit 10

Bit 11

Bit 12

Bits 13-15

Bin(4)

Bin(2)

Char(4)
Char(2)
Char(l)
Char(l)

Bin(2)

Char(32)

This instruction ignores template entries annotated with
an asterisk.

The attributes of the event monitor have the following
meaning:

• Event handler specification - This entry is a system
pointer with addressability to a program that is to be
given control on the occurrence of the event. The
pointer must reference a program and the currently
adapted user profile or the process user profile must
carry operational authority for the program. The entry
is ignored if the event handler qualifier indicator is set
to not present.

• Option indicators

These indicators further describe the qualifications of
the event monitor.

The monitor domain attribute denotes whether the
event is to be monitored on a process-directed or
a machine-wide basis. If the monitor domain is
set to process-directed, the event monitor is
signaled to monitor machine events occurring
based on the execution of the monitoring process
or to monitor user-signaled events that are
specifically directed at the monitoring process~ If
the monitor domain is set to machine-wide, the
event monitor is capable of receiving both
process-directed or machine-wide signals.

Most machine events are signaled machine-wide,
which means that to monitor machine events, the
monitor domain must be specified as
machine-wide. However, a specific subset of
machine events is signaled directly to a process
because the event is associated with a function
initiated by the process. The following machine
events, for example, are signaled directly to a
process:
a. All timer types (time of day, interval, repetitive

interval)
b. REQIO complete (signaled to process issuing

the REQIO instruction)
c. Process initiated successfully/unsuccessfully

(signaled to the initiator of the process)
d. Process terminated (signaled to the initiator of

the process)
e. Pending lock granted (signaled to process

receiving the lock)
f. Object destroyed during asynchronous lock wait

(signaled to the requesting process)
g. Lock transferred (signaled to the receiving

process)
h. Asynchronous lock wait time-out (signaled to

the requesting process)

Events signaled through the Signal Event
instruction can be signaled to all processes in the
machine (machine-wide) or to a specific process.
The Signal Event instruction allows specification of
the domain of the signal - machine-wide or
process.
a. Enabled/disabled inittal state - This option

specifies whether the event monitor is to be
initially enabled for signals immediately. The
state can be altered by the Enable Monitor
Event and the Disable Monitor Event
instructions.

b. Signal retention option - This option specifies
whether signals are to be retained while the
event monitor is disabled. This option can be
used to limit the maximum number of signals to
be retained value.

c. Short form option - This option specifies
whether or not the specific event- related data
is to be appended to the standard event data
when the signal is presented. If the short form
option is set to do not include event-related
data with the signal, only the standard data is
presented upon retrieval of the signal. This
option has a performance advantage.

d. Event handler qualifier ~ This indicator specifies
whether the corresponding system pOinter entry
in the template is to be used. If this indicator
denotes the presence of a system pointer, the
pointer object must be a resolved or
initial-valued system pointer addressing a
program.

e. Compare value content - This option denotes
the presence or absence of a system pointer in
the compare value. The indicator is ignored if
the compare value length is O.

Event Management Instructions 15-7

• Maximum number of signals to be retained
This attribute indicates the number of signals that
the machine retains while the process is masked,
while an event monitor is disabled, or while the
event monitor is enabled with the events not being
handled as rapidly as they are being signaled. The
number must be greater than O. While this
number of signals is pending, any sign~ls received
are discarded.

• Event priority
This attribute specifies the relative importance of
this event compared to other events to be
monitored within a process. The event priority
value establishes the order in which event handlers
are scheduled if multiple events have occurred,
and it determines the preemptability when a
process is waiting for one event and another
occurs.

The duplicate event monitor exception (hex 1401)
is signaled if an identical event monitor exists but
it specifies a different event handling program. If
an identical event monitor already exists with the
same event handler specified, then no exception is
signaled.

• Event identification - This attribute is an identification
corresponding to a machine set of events or the
identification specified for a user-signaled event. An
event class value of hex 0000 is invalid. An event
type value of hex 00 denotes generic monitoring by
event class; that is, all types and subtypes within an
event class are monitored. An event subtype value of
hex 00 denotes generic monitoring by event class and
type; that is, all subtypes within an event class and
type are monitored. Timer events require the
specification of class, type, and subtype; that is,
there is no generic monitor capability for timer
events. The event class for machine events is in the
range of hex 0001 to hex 7FFF. User-defined events
may be signaled from classes hex 8000 and above.
See Chapter 21. Event Specifications for the event
identifications.

• The compare value length entry is used when the
machine event allows or requires a compare value,
and it must be equal to the length specified for the
event. The compare value length entry is also used
for user-signaled event monitoring to further qualify a
signal. For user events, the length cannot exceed 32
characters. A template value invalid exception is
signaled if the compare value length is less than 0 or
greater than 32 characters.

15-8

• The compare value entry is used to further qualify a
signal. If a compare value length of a is specified, the
compare value entry is ignored. Certain machine
events require a compare value to specify to the
machine under what conditions the event is to be
signaled. For example, the timer class machine
events require the specification of the time interval to
be monitored. For these events, the compare value
length must contain the proper value, and the
compare value must always be present. A scalar
value invalid exception is signaled if an invalid
compare value length or compare value is specified.

If the compare value qualifies the event monitor and
the length of the compare value specified in the event
monitor is greater than the length specified in an
event generated by the Signal Event instruction, the
event monitor is not signaled. If the compare value
length in the event monitor is less or equal to the
compare value length in an event generated by the
Signal Event instruction, the compare value length
from the event monitor is used as the comparison
length for the compare value. If the compare value is
not required and is not present, the event monitor
receives signals regardless of the signaled compare
value. Chapter 21. Event Specifications defines the
appropriate compare value length for machine events.

Authorization Required

• Operational
Contexts referenced for address resolution

- Program referenced as event handler

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operand
Exception 1 Other

06 Addressing

01 Space addressing violation X
02 Boundary alignment X

03 Range X

08 Argument/ Parameter

01 Parameter reference violation X

OA Authorization

01 Unauthorized for operation X

10 Damage Encountered

04 System object damage state X X
44 Partial system object damage X X

14 Event Management

01 Duplicate event monitor X
03 Machine event requires compare X

value

1C Machine-Dependent Exception

03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X
02 Object destroyed X
03 Object suspended X

24 Pointer Specification

01 Pointer does not exist X
02 Pointer type invalid X

03 Pointer addressing invalid object X
2A Program Creation

06 Invalid operand type X
OC Invalid operand ODT reference X

38 Template Specification

01 Template value invalid X

Event Management Instructions 15-9

RETRIEVE EVENT DATA (RETEVTD)

Op Code
(hex) Operand 1

0375 Receiver

Operand 1: Space pointer.

Description: The instruction retrieves the event-related
data associated with a signaled event monitor and
places it in the specified space object.

If an event handling program does not retrieve the
event- related data before it returns or terminates, the
signal and event-related data are lost. This instruction
causes the event-related data to be purged and
decrements the signals pending count.

If the instruction is issued from a program that is not an
event handler, the number of bytes available for retrieval
entry is set to binary S.

Operand 1 defines a template in which the event-related
data is to be placed. Unless the short form option is
used by the event monitor, the receiver must be 16-byte
aligned.

The following data is placed in the template by the
instruction:

• Template size specification
Number of bytes provided
for retrieval
Number of bytes available
for retrieval

• Reserved (binary 0)

• Event identification
Event class
Event type
Event subtype

• Compare value length (value
of 0 denotes the absence
of a compare value)

• Compare value

15-10

Char(S)
Bin(4)

Bin(4)

Char(24)

Char(4)
Char(2)
Char(1)
Char(1)

Bin(2)

Char(32)

• Origin of signal
Hex 00 Signal by machine

- Hex 01 = Signal by Signal
Event instruction

• Reserved (binary 0)

• Event-specific data length

For short form event monitors, the
event-specific data length value is
o and the following attributes
are not supplied:

• Signals pending count

• Time of event signal

This is a 64-bit field representing an
unsigned binary value where bit 41
is equal to 1024 microseconds.

• Process (causing signal - denoted
by process control space pointer)

This entry is set to binary 0
if the event signal is not related
to a process action. For example,
this attribute is set to binary 0
for a timer event.

• Event-specific data

Char(1)

Char(7)

Bin(2)

Bin(4)

Char(S)

System
pointer

Char(*)

The first 4 bytes of the retrieved output identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. If fewer than S bytes
are available in the space identified as the receiver
operand, a materialization length exception is signaled.
The second 4 bytes of the retrieved output identify the
total number of bytes available to be retrieved. The
instruction retrieves as many bytes as can be contained
in the area specified as the receiver. If the byte space
identified by the receiver is greater than that required to
contain the information requested for retrieval, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception described previously)
are signaled in the event that the receiver contains
insufficient area for the retrieval .

If the short form option is selected, the signals pending
count, time of event signal, process control space
pointer, size of event-specific data, and' event-specific
data entries are not made available.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operand
Exception 1 Other

06 Addressing
01 Space addressing violation X
02 Boundary alignment X
03 Range X

08 Argument/ Parameter
01 Parameter reference violation X

10 Damage Encountered
04 System object damage state X X
44 Partial system object damage X X

1C Machine-Dependent Exception
03 Machine storage limit exceeded X

20 Machine Support
02 Machine check X
03 Function check X

22 Object Access
01 Object not found X
02 Object destroyed X
03 Object suspended X

24 Pointer Specification
01 Pointer does not exist X
02 Pointer type invalid X

2A Program Creation
06 Invalid operand type X
07 Invalid operand attribute X
OA Invalid operand length X
OC Invalid operand OOT reference X

38 Template Specification
03 Materialization length exception X

SIGNAL EVENT (SIGEVT)

Op Code
(hex) Operand 1

0345 Signal event
template

Operand 1: Space pointer.

Description: The instruction causes an event to be
signaled. The instruction also causes any event monitor
currently associated with existing processes to be
located, signals these event monitors, and passes the
event-related data to them.

Operand 1 specifies the event qualifications, the process
to be signaled, the conditional signal mask, and the
event- related data. The format is as follows:

• Template size specification
Number of bytes provided
Number of bytes available for
materialization

• Reserved (binary 0)

• Process to signal

• Option indicators
Signal domain
o = Machine-wide domain
1 = Process domain
Compare value content
o = System pointer not present
1 = System pointer present
Reserved (binary 0)

• Conditional· Signal mask

• Reserved (binary 0)

• Size of event-specific data

• Event identification
Event class
Event type
Event subtype

• Compare value length (value
of 0 denotes the absence
of a compare value)

• Compare value

• Event-specific data

Char(8)
Bin(4)*
Bin(4)*

Char(8)

System
pointer

Char(2)
Bit 0

Bit 1

Bits 2-15

Char(2)

Char(4)

Bin(2)

Char(4)
Char(2)
Char(1)
Char(1)

Bin(2)

Char(32)

Char(*)

Event Management Instructions 15-11

An event class value of hex 0000 is invalid.

An event type value of hex 00 is invalid.

An event subtype value of hex 00 is invalid.

Events can be signaled directly to a process by
providing addressability to the process control space as
the process to signal attribute of the Signal Event
instruction template. If the event is to be signaled
directly to a process, the signal domain must be set to
process, and the system pointer addressing the process
control space must be supplied. If the process control
space is not currently associated with a process, the
process control space not associated with a process
exception is signaled. If the signal domain is
machine-wide, then the process to signal entry is
ignored.

A value of binary 0 in the conditional signal mask results
in the event being unconditionally signaled. If the value
is nonzero, the conditional signal mask is ANDed with
the process's signal event control mask with a non-zero
result causing the event to be signaled. If the result is
0, the event is not signaled. (See the Initiate Process
instruction in Chapter 11. Process Management
Instructions, for a description of the signal event control
mask.)

If no compare value is specified on the signal, then only
event monitors monitoring the event identification
without a compare value will be signaled. The compare
value presence is denoted by the compare value length
greater than 0 and less than or equal to 32 characters.
If a compare value is specified, then event monitors
monitoring the event will be signaled if the compare
value length in the signaled event is greater than or
equal to the compare value length in the event monitor
and the compare values match for as many bytes as
specified in the event monitor. The event monitor is also
signaled when it does not specify a compare value if the
event IDs match.

Since this instruction deals with one process acting
upon another process, a portion of the function is'
performed under control of the issuing process and the
remainder of the function is performed under control of
the target process. When control is returned to the
issuing process, the function may not have been
performed in its entirety.

A timer event (class 0014) cannot be signaled explicitly
through the use of this instruction.

15-12

Authorization Required

• Retrieve
-Context referenced for address resolution

Lock Enforcement

• Materialize
- Context referenced for address resolution

Events

nnnn Any machine or user-signaled event

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference
0301 Invocation reference

0017 Damage set
0401 'System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/Parameter

01 Parameter reference violation

OA Authorization

01 Unauthorized for operation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

14 Event Management

06 Signal time event invalid

1 A Lock State

01 Invalid lock state

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

Operand
1

X
X
X

X

X

X

X

X

X

01 Object not found X

02 Object destroyed X

03 Object suspended X

24 Pointer Specification

01 Pointer does not exist X

02 Pointer type invalid X

03 Pointer addressing invalid object X

28 Process State

02 Process control space not X
associated with a process

2A Program Creation

05 Invalid op code extender field

06 Invalid operand type X

07 Invalid operand attribute X

OC Invalid operand ODT reference X

38 Template Specification

01 Template value invalid X

Other

X

X

X

X
X

X

TEST EVENT (TESTEVT, TESTEVTB, or TESTEVTI)

Operand Op Code
(hex) Extender 1

10FA

1CFA

None

Branch
option

18FA Indicator
option

Event
related
data

Operand 1: Space pointer.

Operand
2

Event
monitor
template

Operand 2: Character(48) scalar or null (fixed-length).

Extender: Branch or indicator options.

If the branch or indicator option is specified in the op
code, the extender field must be present along with one
or two branch targets (for branch options) or one or two
indicator operands (for indicator options). The branch or
indicator operands immediately follow the last operand
listed above. See Chapter 1. Introduction for the
encoding of the extender field and the allowed syntax of
the branch and indicator operands.

Description: The instruction tests the signaled flag of
the event monitor that matches the event identification,
compare value length, and compare value specified by
the operand 2 template. If the event monitor has been
signaled, the instruction materializes the event-related
data into the are,a specified by operand 1.

If operand 2 is null, the instruction locates the highest
priority signaled event monitor associated with the
process.

If operand 2 is null and no event monitors are currently
active, the not signaled condition is returned and no
event data is returned.

Event Management Instructions 15-13

The format for the template addressed by operand 2 is
as follows:

• Option indicators
Compare value content
o = System pointer not present
1 = System pointer present
Reserved (binary 0)

• Reserved (binary 0)

• Event identification
Event class
Event type
Event subtype

• Compare value length

• Compare value

Char(2)
Bit 0

Bits 1-15

Char(8)

Char(4)
Char(2)
Char(1)
Char(1)

Bin(2)

Char(32)

If compare value content is set to system pointer
present, the compare value length must be at least 16
and the system pointer must be located in the first 16
bytes of the compare value. The operand must be
16-byte aligned.

If no event monitor associated with the process has the
matching attributes of event identification, compare
value length, and compare value, the event monitor not
present exception is signaled.

If the compare value length entry is 0, the instruction
ignores the compare value entry. The requirement of the
instruction is then met by a corresponding event
identification.

If an event monitor in the signaled state is found, the
instruction causes the event-related data to be moved
to the area located by operand 1 and decrements the
signals pending count by 1. Operand 1 is unchanged if
no event monitors are in the signaled state.

If branch options are specified, control flow may be
modified depending on whether the specified event
monitor is in the signaled or not signaled state. If
branch options are not specified for the instruction,
control is returned to the next sequential instruction.

The operation is independent of the enabled/disabled
state of the referenced event monitor or the
masked / unmasked state of the process.

The receiver must be 16-byte aligned.

15-14

The following data is placed in the operand 1 space
when the instruction is executed:

• Template size specification
Number of bytes provided
for retrieval
Number of· bytes available
for retrieval

• Reserved (binary 0)

• Event identification
Event class
Event type
Event subtype

• Compare value length (value
of 0 denotes the absence
of a compare value)

• Compare value

• Indicators
Origin of signal
o Signaled by machine
1 = Signaled by Signal Event

instruction
Compare value content
o = System pointer not present
1 = System pointer present
Reserved (binary 0)

• Reserved (binary 0)

• Event-specific data length

For short form event monitors, the
event-specific data length value is
o and the following attributes
are not supplied:

• Signals pending count

• Time of event signal

This is a 64-bit field representing
an unsigned binary value where bit 41
is equal to 1024 microseconds.

• Process (causing signal)

This attribute is ignored if the event
signal is not related to a process
action. For example, this attribute
is ignored for a timer event.

• Event-specific data

Char(8)
Bin(4)

Bin(4)

Char(2)

Char(4)
Char(2)
Char(1)
Char(1)

Bin(2)

Char(32)

Char(2)
Char(1)

Bit 1

Bits 2-15

Char(7)

Bin(2)

Bin(4)

Char(8)

System
pointer

Char(*)

The first 4 bytes of the retrieved output identify the total Exceptions

number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is Operands
not modified by the instruction. If fewer than 8 bytes Exception 1 2 Other
are available in the space identified as the receiver
operand, a materialization length exception is signaled. 06 Addressing
The second 4 bytes of the retrieved output identifies the 01 Space addressing violation X X
total number of bytes available to be retrieved. The 02 Boundary alignment X X
instruction retrieves as many bytes as can be contained 03 Range X X
in the area specified as the receiver. If the area

08 Argument/ Parameter
identified by the receiver is greater than that required to
contain the information requested forretrjeval, then the

01 Parameter reference violation X X

excess bytes are unchanged. No exceptions (other than 10 Damage Encountered

the materialization length exception described previously) 04 System object damage state X X X

are signaled in the event that the receiver contains 44 Partial. system object damage X X X

insufficient area for the retrieval. 14 Event Management

02 Event monitor not present X

1C Machine- Dependent Exception

Resultant Conditions: Event monitor is in the signaled or 03 Machine storage limit exceeded X
not signaled state. 20 Machine Support

02 Machine check X

03 Function check X
Events 22 Object Acc~ss

01 Object not found X X
oooe Machine resource 02 Object destroyed X X

0201 Machine auxiliary storage threshold exceeded 03 . Object suspended X X

0010 Process
24 Pointer Specification

0701 Maximum processor time exceeded
01 Pointer .doesnot exist X X

0801 Process storage limit exceeded 02 Pointer type invalid X X

2A Program Creation

0016 Machine observation 05 Invalid op code extender field X

0101 Instruction reference 06 Invalid operand type X X X

07 I.nvalid operand attribute X X

0017 Damage set 08 Invalid operand value range X X X
0401 System object damage set 09 Invalid branch target operand X
0801 Partial system object damage set OC Invalid operand ODT reference X X X

2C Program Execution

04 Invalid branch target X

32 Scalar Specification

02 Scalar attributes invalid X X

03 Scalar value invalid X

38 Template Specification

03 Materialization length exception X

Event Management Instructions 15-15

WAIT ON EVENT (WAITEVT)

Op Code
(hex)

0344

Operand
1

Event-
related
data

Operand
2

Event
monitor
template

Operand 1: Space pointer.

Operand
3

Time-out
value

Operand 2: Character scalar (fixed-length).

Operand 3: Character(8) scalar (fixed-length).

Operand 4: Character(1) scalar (fixed-length).

Operand
4

Access
state
modification
option

Description: The executing process is placed in the wait
state until an event is signaled to an event monitor
identified by operand 2 or until the time-out value
elapses. By waiting for an event to occur, the
instruction allows synchronization of the process with an
external source.

The instruction can specify a time-out value (operand 3)
which, when exceeded, causes the waiting process to
be made eligible for the processor resource and has an
exception signaled to the instruction. A default time out
value is alternatively supplied at process initiation time.

Event monitors have a priority associated with them.
The priority defines if the waiting process should be
made eligible for the processor in order to handle events
of equal or higher priority than the event that the
process is waiting for. If the waiting process is
monitoring events of lower priority than the event that it
is waiting for, the process remains in the wait state until
the event that it is waiting for occurs or the time-out
value is reached. If the number of event monitors is 0,
the wait is preempted by any event occurrence
monitored by the process.

The event monitor template addressed by operand 2 is
used to locate an event monitor that is associated with
the process and has matching event ID, compare value
length, and compare value. If a matching event monitor
is not found, the event monitor not present exception is
signaled. If the number of event n:lOnitors is 0, the wait
is completed by a signal to any event monitor that does
not have an event handler specified.

15-16

If the number of event monitors field in operand 4 is 0,
the event monitor template in operand 2 is ignored. The
number that is specified in the number of event
monitors field in operand 4 is the number of times that
the event monitor template in operand 2 will be
repeated. The format of the operand 2 template is as
follows:

• Option indicators
Compare value content
a = System pointer not present
1 = System pointer present
Reserved (binary 0)

• Reserved (binary 0)

• Event identification
Event class
Event type
Event subtype

• Compare value length

• Compare value

Char(2)
Bit a

Bits 1-15

Char(8)

Char(4)
Char(2)
Char(1)
Char(1)

Bin(2)

Char(32)

If the compare value length entry is 0, the instruction
ignores the compare value.

If the number of event monitors entry is 0, the wait is
completed by the signaling of any event monitor that
has no event handler. The signaling of an event monitor
which has an event handler causes the event handler to
be invoked, but the wait is not completed. Either of the
following conditions causes the wait to be completed,
and control is passed to the instruction following the
Wait On Event instruction:

• If one or more event monitors (each having no event
handlers) are in the signaled state, the highest priority
event monitor completes the wait. If two or more
event monitors have the same priority, the earliest
signaled event monitor completes the wait.

• If no event monitors are in the signaled state, the
first event monitor (having no event handler) to be
signaled completes the wait.

If the number of event monitors entry is 1, the wait is
completed only by the signaling of the specified event
monitor. The signaling of any other event monitor does
not complete the wait but does cause the action
specified by the event monitor to be performed
(invoking an event handler or recording the signa!), and
the wait is resumed. If the signaled event monitor has
an event handler specification, the event handler is given
control. The wait is completed when the event handler
returns control and control is passed to the instruction
following the Wait On Event instruction. Operand 1 is
not modified by the instruction. If the signaled event
monitor has no event handler, the data associated with
the occurrence of the event is stored in the area
designated by operand 1, the wait is completed, and
control is returned to the instruction following the Wait
On Event instruction.

Unless the short form option is used by the event
monitor, the receiver must be 16-byte aligned.

The following data is placed in the space object when
the wait is completed by an event and no event handler
is present:

· Template size specification Char(8)
Number of bytes provided Bin(4)
for retrieval
Number of bytes available Bin(4)
for retrieval

· Reserved (binary 0) Char(2)

• Event identification Char(4)
Event class Char(2)
Bit 0 = 0 - machine event
Bit 0 = 1 - user event
Event type Char(1)
Event subtype Char(1)

· Compare value length Bin(2)

· Compare value Char(32)

• Indicators
Origin of signal
o Signaled by machine
1 = Signaled by Signal

Event instruction
Compare value content
o = System pointer not present
1 = System pointer present
Reserved (binary 0)

• Event-specific data length

For short form event monitors, the
event-specific data length value is
o and the following attributes
are not supplied:

• Reserved (binary 0)

• Signals pending count

• Time of event signal

• Process (causing signal - denoted
by process control space pointer)

This attribute is ignored if the
event signal is not related to a
process action. For example,
this attribute is ignored for a
timer event or deadlock detected event.

• Event-specific data

Char(2)
Bit 0

Bit 1

Bits 2-15

Bin(2)

Char(4)

Bin(4)

Char(8)

System
pointer

Char(*)

Operand 3 is a character(8) scalar specifying a realtime
interval that the process will wait for the event to occur.
If the event does not occur within the interval, a wait
time-out exception is signaled, and the process is taken
out of the wait. If time interval is 0, the process default
wait time-out value is used. If the wait time-out value
is also 0, a wait time-out exception is signaled
immediately.

Event Management Instructions 15-17

Operand 4 is a character(l) scalar specifying the access Exceptions

state modification option. The operand has the following

values and meaning: Operands
Exception 1 2 3 4 Other . Access state modification option Char(l)

When entering event wait Bit a 06 Addressing

a = Access state is not modified. 01 Space addressing violation X X X X

1 = Access state is modified. 02 Boundary alignment X X X X

When leaving event wait Bit 1 03 Range X X X X

a = Access state is not modified. 08 Argument/ Parameter

1 = Access state is modified. 01 Parameter reference violation X X X X

Reserved (binary 0) Bit 2-7 10 Damage Encountered

04 System object damage state X X X X X

Operand 4 has no effect if the process instruction wait 44 Partial system object damage X X X X X

access state control attribute specifies that access state 14 Event Management

modification is not allowed. If the process attribute 02 Event monitor not present X

value specifies that access state modification is allowed 04 Wait on event attempted while X

and the wait on event access state modification option
masked

is modify access state, the process access group
1C Machine-Dependent Exception

defined for the process has its access state modification
03 Machine storage limit exceeded X

performed by the machine.
20 Machine Support

02 Machine check X

03 Function check X

Events
22 Object Access

01 Object not found X X X X

oooe Machine resource
02 Object destroyed X X X X

0201 Machine auxiliary storage threshold exceeded
03 Object suspended X X X X

24 Pointer Specification

0010 Process
01 Pointer does not exist X X X X

0701 Maximum processor time exceeded
02 Pointer type invalid X X X X

0801 Process storage limit exceeded
2A Program Creation

06 Invalid operand type X X X X

0016 Machine observation
07 Invalid operand attribute X X X

0101 Instruction reference
OA Invalid operand length X X X X

OC Invalid operand ODT reference X X X X

0017 Damage set
32 Scalar Specification

0401 System object damage set
02 Scalar attributes invalid X X X

0801 Partial system object damage set
03 Scalar value invalid X X

38 Template Specification

03 Materialization length exception X

3A Wait Time-out

03 Event X

15-18

Chapter 16. Data Base Management Instructions

This chapter describes the instructions used for data
base management. These instructions are in alphabetic
order. For an alphabetic summary of all the instructions,
see Appendix B. Instruction Summary.

ACTIVATE CURSOR (ACTCR)

Op Code Operand Operand
(hex) 1 2

0402 Cursor Activation
template

Operand 1: System pointer.

Operand 2: Space pointer or null.

Description: This instruction connects a previously
created cursor to a process, allowing data base .
operations to be performed with that cursor. The cursor
identified by operand 1 is temporarily modified with the
replacement values as specified by operand 2.

The data spaces and data space index specified in
operand 2 or addressed by the cursor specified in
operand 1 are implicitly locked LSRD (lock shared read)
by the machine.

The cursor is implicitly locked LEAR (lock exclusive allow
read) by the machine. Locking the cursor, data spaces,
and data space index prevents them from being
destroyed while in use.

An activated cursor can be operated on only by the
process that activated it. Activating a cursor prevents
any data base operations (except Cr~ate Duplicate
Object and Materialize Cursor Attributes instructions for
the creation template) from accessing the cursor unless
they are issued by the activating process.

The cursor may be either a permanent or a temporary
object and must not be currently activated. The resulting
activated cursor does not address an entry for retrieval
and has no locked entries associated with it.

The format of the cursor activation template is as
follows:

• Data space list pointer

• Length of data space list

• Cursor attributes
Reserved (binary 0)

Data space index
Replace values
o Use original cursor values
1 = Use replacement cursor values

for the activation

Space
pointer

Bin(2)

Bin(2)
Bit 0
Bit 1*
Bit 2

Disregard data space index Bit 3
o = Activation of the cursor

uses the data space index
over which it was created.

1 Activation of the cursor
does not use the data space
index over which it was created.

Reserved (binary 0) Bits 4~ 7
Processing mode
Index indicator

o = Random (or no index)
1 = Sequential

Data indicator
o = Random
1 = Sequential

Ensure activity
o Ensure data space entries

instruction will not be used
1 Ensure data space entries

instruction will be used
Reserved (binary 0)

• Unit of transfer

• Locked entry wait time

Notes:

Bits 8-9
Bit 8

Bit 9

Bit 10

Bits 11-15

Bin(2)

Char(8)

1. The cursor activation template and data space list
must each be aligned on a multiple of 16 bytes.

2. The value of the entry shown here with an asterisk (*)
is ignored by this instruction.

3. This template is a subset of the create cursor
template.

Data Base Management Instructions 16-1

The entry identified as data space list pointer must
provide a space pointer to a list of system pointers.
Each of these system pointers must address a data
space. The length of data space list indicates the
number of bytes in the data space list and must be a
multiple of 16 bytes.

The Activate Cursor instruction allows the user to
specify a subset of the data spaces that are associated
with the cursor to be selected for activation. Each
system pointer that identifies a data space that is to be
put in use under this cursor must occupy the same
position in the list that it occupied when the cursor was
created by the Create Cursor instruction. To identify
data spaces that are not to be used in this cursor
activation, 16 bytes of 0' s must be placed into the list in
place of that data space's system pointer. If the entire
data space list contains 0' s, then a pointer does not
exist exception is signaled.

A zero value in the length of data space list entry
indicates all data spaces associated with the cursor are
to be put in use and the pointer to the data space list is
ignored. If operand 2 is null, all data spaces associated
with the cursor are put in use and no replacement
values are applied.

If the replace values entry is 1, the new values for
processing mode, ensure activity, unit of transfer, and
locked entry wait time replace those in the cursor during
this activation. See the Create Cursor instruction for
definitions of these fields.

A disregard data space index value of binary 1 indicates
that this activation of the cursor does not result in the
use of the data space index over which the cursor was
created. No check is made to ensure the validity,
damage, or suspended state of the data space index.
The only operations allowed for the activation of the
cursor are those which would be allowed if the cursor
had been created directly over the data spaces identifiea
in the data space list. A value of binary 0 causes the
cursor to use the data space index over which it was
created. If the cursor was not created over a data space
index, this field is ignored.

16-2

The authority available to the process for each data
space to be referenced by a cursor is determined at the
time the cursor is activated. After activation of the
cursor, references through the activated cursor do not
take into consideration any further changes in the
authority environment (adopted user profiles, granting or
retracting authority). The authority stored at activate
time is the· sum ·of the following authority sources:

• Authority stored in a system pointer (in data space
list)

• Public authorization

• Authority of the process user profile

• Authority of the current adopted and / or propagated
user profiles

Authorization ·Required

• Operational
Operand 1

- Data spaces referenced by operand 1

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

• Implicit Locks
Cursor is implicitly locked LEAR.
Data spaces referenced are implicitly locked LSRD.
Data space index referenced is implicitly locked
LSRD.

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Space addressing violation X X
02 Boundary alignment X X

03 Range X X
08 Argument/ Parameter

01 Parameter reference violation X X
OA Authorization

01 Unauthorized for operation X X
10 Damage Encountered

04 System object damage state X X X
44 Partial system object damage X X X

12 Data Base Management

07 Data space index invalid X
16 Data space not addressed by X

cursor

1A Lock State

01 Invalid lock state X X
1C Machine-Dependent Exception

03 Machine storage limit exceeded X
06 Machine lock limit exceeded X

20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X X

02 Object destroyed X X
03 Object suspended X X

04 Object not eligible for operation X
05 Object not available to process X X X

24 Pointer Specification

01 Pointer does not exist X X
02 Pointer type invalid X X
03 Pointer addressing invalid object X X

2A Program Creation

06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X
OC Invalid operand ODT reference X X

38 Template Specification

01 Template value invalid X

Data Base Management Instructions 16-3

COpy DATA SPACE ENTRIES (CPVDSE)

Op Code
(hex)

048F

Operand
1

Cursor
(receiver)

Operand
2

Option
template

Operand 1: System pointer.

Operand 2: Space pointer.

Operand 3: System pointer.

Operand
3

Cursor
(source)

Description: All or part of the entries in the data space
referenced through the operand 3 cursor are copied into
the data space referenced through the operand 1 cursor
according to the specifications provided in the options
template (operand 2). Operands 1 and 3 may indicate
that the same data space is to be used as both source
and receiver. In this case, the result of the copy is
placed in the data space at the completion of the
operation. The data space entries and data space
referenced through the operand 3 cursor are left
unchanged. If a data space index is specified in the
options template, the data space entries are copied into
the receiving data space in the 'order they are referenced
by the data space index. Otherwise, the entries are
copied in ordinal entry sequence into the receiver. The
template can also specify both start and stop relative
entries or keys. The copy can be limited to a number of
entries to be copied. The copy can optionally skip
deleted entries. The copied data space entries can be
added to the end of the receiver data space or the
receiver data space may be optionally reset by the copy.
Data space entries may be selected or omitted from the
copy based on values in the entries. Data space entries
may be placed into the receiving data space in an order
other than their retrieval order on the basis of a set of
resequencing specifications. No input or output cursor
mapping can be performed.

16-4

The format of the copy options template is as follows:

• Copy options
Remove deleted entries
Data space index retrieval
Reset receiving data space
Reserved (binary 0)

• Copy specifications
Starting entry specified
Ending entry specified
Entry limit specified
User entry buffer specified
Reserved (binary 0)

• Number of entries copied

• Data space entry last processed

• Number of exceptions recorded

• Maximum number of entries

• Maximum number of exceptions

• Source data space number

• Receiver data space number

• Starting ordinal entry number

• Ending ordinal entry number

• Starting key field count

• Ending key field count

• Reserved (binary 0)

• Starting key

• Ending key

• User buffer entry

Char(2)
Bit 0
Bit 1
Bit 2
Bits 3-15

Char(2)
Bit 0
Bit 1
Bit 2
Bit 3
Bits 4-15

Bin(4)

Bin(4)

Bin(2)

Bin(4)

Bin(2)

Bin(2)

Bin(2)

Bin(4)

Bin(4)

Bin(2)

Bin(2)

Char(12)

Space
pointer

Space
pointer

Space
pointer

The copy options template must be aligned on a
16-byte boundary.

If the remove deleted entries field has a value of binary
1, deleted entries are not copied into the receiving data
space. This field is ignored if the data space index
retrieval option is used for retrieving the entries.

A data space index retrieval field value of binary 1
indicates the data space index referenced through the
operand 3 cursor is to be used to order the retrieval of
entries from the designated source data space. If the
data space index has a selection routine, those entries
omitted from the data space index are not cop"ied to the
receiver. As the entries are placed into the receiving
data space (if the same as the source data space), the
data space index is updated to reflect the new
organization of the data space entries. The data space
index must be valid. If this field has a value of binary 0,
the data spate entries are retrieved in ordinal number
sequence.

A reset receiving data space value of binary 1 indicates
the data space to receive the entries is to be reset to an
empty status before any of the copied entries are
added. If the receiving data space and the source data
space are the same, this field must be binary 1. See the
Data Base Maintenance instruction in this chapter for
details of the operation. If a value of binary 0 is
specified, the copied entries will be added to the end of
the receiving data space.

If the starting entry specified field has a value of binary
0, the copy retrieves entries from the source data space
beginning with the ordinal entry number equal to 1. If
the data space index is to be used for retrieval, the data
space entry identified by the first entry in the data space
,index becomes the first entry retrieved. In either case,
the copy continues through the data space or data
space index sequentially until terminated. If this field
contains a binary 1 and entry retrieval is not through a
data space index, the copy begins with the data space
ordinal entry number specified in the starting ordinal
entry number field. If the field contains a binary 1 and
entry retrieval is through a data space index, the starting
key and the starting key field count are used to
determine the first entry. The data space index is
searched for the first data space entry that has a key
that is equal to or after the specified argument key. If
the field contains a binary 1, retrieval is through a data
space index, and the starting key pointer has a value of
binary 0' s, the key of the data space entry designated
by the starting ordinal entry number will be used as the
first entry. Subsequent retrievals are performed
sequentially through the data space index. In this case,
if the designated entry has been omitted from the data
space index or is deleted, an exception is signaled.

If the ending entry specified field has a value of binary
1, the copy attempts to retrieve entries until end, of path
is encountered. If this field is a binary 1 and the
retrieval of entries is not through a data space index, the
copy does not retrieve any entries that have an ordinal
number that is greater than the ending ordinal entry
number. If this field is binary 1 and entries are being
retrieved through a data space index, the copy
terminates when an entry is retrieved with a key that
collates after the key defined by the ending key and the
ending key field count. If this field has a value of binary
1 and the ending entry logically precedes the starting
entry, no entries are copied.

Note: If an error is incurred while creating either of the
argument keys, a key mapping error exception is
signaled, and the instruction is terminated before any
entries are copied. If either key field count contains a
value of 0, only leading fork characters are used to
determine the key. If either key field count specifies
fewer than the actual number of fields represented in
the data space index, then a truncated generic key is
generated. Trailing fork characters are always used to
generate the key.

Data Base Management Instructions 16-5

If the entry limit specified field has a value of binary 1,
the copy inserts up to the number of entries specified in
the maximum number of entries field and then terminate
the copy. If the field has a value of binary 0, no limit is
placed on the number of entries to copy.

If the entries retrieved from the source data space are
shorter than entries inserted into the receiver data
space, the remainder of each inserted entry is filled with
data acquired from the corresponding positions of the
user buffer entry (if provided). When no such user
buffer entry has been provided, the remaining portion of
each inserted entry is padded with binary a's.

Upon completion of the instruction, the number of
entries copied field contains the total number of data
space entries that were inserted into the receiving data
space. This G,ount includes deleted entries if they were
copied to the receiver. The data space entry last
processed field contains the ordinal entry number of the
last data space entry successfully referenced in the
source data space before the instruction was completed.

The maximum number of entries indicates the upper
limit on the number of entries to be inserted into the
receiving data space. If the entry limit specified field is
binary 1, this field must not contain a negative value,
otherwise, it is ignored.

The maximum number of exceptions indicates the upper
limit on the number of certain types of exceptions to be
allowed before terminating the copy. If the record
exceptions field is binary 1, this field must contain a
value greater than 0, otherwise, it is ignored.

The source data space number designates which data
space referenced by the operand 3 cursor is to be the
source data space. This entry corresponds to the
position of the data space in the corresponding data
space pointer list associated with the cursor. This data
space must be in the cursor's data space list after
cursor activation. A value of 2 indicates the second data
space in the list, for example.

The receiver data space number designates which data
space referenced by the operand 1 cursor is to be the
receiving data space. This entry corresponds to the
position of the cursor's data space in the corresponding
data space pointer list associated with the cursor. A
value of 2 indicates the second data space in the list,
for example.

16-6

The starting ordinal entry number indicates which entry
is to be retrieved from the source data space first. It
corresponds to the ordinal entry number of the desired
entry in the source data space. If the starting entry
specified field is binary 1 and the retrieval of entries is
not through a data space index, this field must contain a
value greater than O. If the retrieval of the designated
entry would result in an end of path condition, no
entries are copied. This field is ignored if the starting
entry specified field is binary a or the retrieval is through
a data space index and a key is to be used.

The ending ordinal entry number indicates which entry is
to be retrieved last from the source data space. It
corr~sponds to the ordinal entry number of the desired
entry in the source data space. If the ending entry
specified field is binary 1 and the retrieval of entries is
not through a data space index, this field must contain a
value greater than O. This field is ignored if the ending
entry specified field is binary a or the retrieval is through
a data space index.

The starting key field count and ending key field count
indicate the number of fields assumed to be in the
starting key and ending key values. The key field counts
include only data fields supplied by the user of the
instruction and do not include fork characters. If the
starting entry specified field has a binary 1 value and the
retrieval of entries is through a data space index, the
starting key field count must be greater than or equal to
O. Otherwise, the starting key and the starting key field
count are ignored. If the ending entry specified field has
a binary 1 value and the retrieval of entries is through a
data space index, the ending key field count must be
greater than or equal to O. Otherwise, the ending key
and the ending key field count are ignored.

The user buffer entry, if specified, is used to obtain
default values in physical (not logical) representation for
the receiving data space when the source data space
does not provide them. It is assumed to be as large as
the physical (not logical) representation of each entry
that resides in the receiving data space.

The eursors identified by operands 1 and 3 must have
been activated to the issuing process. They may not be
positioned to an entry in any data space. If either of the
cursors is set, an object not eligible for operation is
signaled. At the completion of the instruction, the
cursors are not positioned to any data space entries.

If any cursor, other than those identified by operand 1
and operand 3 are active over the receiver data space,
an exception is signaled.

If this instruction does not complete normally, the
entries already copied may be placed into the receiving
data space. In the case of a system-generated
exception, entries already copied may appear in the
receiver (except when the source and receiving data
spaces are the same). In the case of a system failure,
the normal system recovery facilities control the entries
which appear in the data space used as a receiver
(except when the source and the receiving data spaces
are the same). If the source and receiving data spaces
are the same, the data space remains unchanged unless
the instruction terminates normally. If a data space
index was specified in the template and the source and
receiving data spaces are the same, the data space
index may be marked invalid if" the instruction terminates
abnormally. When this instruction completes, the
changed system objects are not ensured.

Authorization Required

• Insert
- The data space referenced by operand 1

• Retrieve
The data space referenced by operand 3

- Contexts referenced for address resolution

• Delete
The data space referenced by operand 1 (reset
option)

• Object management
The data space referenced by operand 1 (reset
option)
The data space referenced by operand 3 (if no
cursor mapping is specified and the cursor does
not have the direct map attribute)

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Implicit locks
Data space referenced by operand 3 is locked
LEAR
Data space referenced by operand 1 is locked
LENR

Events

0002 Authorization
0101 Authorization violation

0008 Data space index
0301 Data space index invalidated

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0000 Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Data Base Management Instructions 16-7

Exceptions CREATE CURSOR (CRTCR)

Operands Op Code Operand Op~rand
Exception 1 2 3 Other (hex) 1 2

06 Addressing 044A Cursor Cursor
01 Space addressing violation X X X template

02 Boundary alignment X X X

03 Range X X X Operand 1: System pointer.

08 Argument/Parameter

01 Parameter reference violation X X X Operand 2: Space pointer.

OA Authorization

01 Unauthorized for operation X X X

10 Damage Encountered Description: A cursor object is created according to the

04 System object damage state X X X X definition given in the cursor template specified by

44 Partial system object damage X X operand 2, and addressability to the cursor is returned in

12 Data Base Management the system pointer identified by operand 1.

01 Conversion mapping error X

02 Key mapping error X Upon successful completion of the instruction, the

04 Data space entry limit exeeded X created cursor contains addressability to the data

07 Data space index invalid X space(s) and data space index (if defined) specified in

08 Incomplete key description X the cursor template.

09 Duplicate key value X

20 Copy data space entries X The format of the cursor template is as follows:

termination

21 Unable to maintain unique key X · Template size Char(8)
DSI Number of bytes provided by user Bin(4)*

23 Data space index select routine X Number of bytes that can be Bin(4)*
failure materialized

1A Lock State

01 Invalid lock state X X · Object identification Char(32)
1C Machine- Dependent Exception Object type Char(1)*

03 Machine storage limit exceeded X Object subtype Char(1)
06 Machine lock limit exceeded X Object name Char(30)

20 Machine Support

02 Machine check X · Object creation options Char(4)
03 Function check X Existence attributes Bit 0

22 Object Access 0 = Temporary
01 Object not found X X X X 1 = Permanent
02 Object destroyed X X X X Space attribute Hit 1
03 Object suspended X X X X 0 = Fixed -length
04 Object not eligible for operation X X X 1 = Variable-length
05 Object not available to process X X Initial context Bit 2

24 Pointer Specification 0 Addressability is not
01 Pointer does not exist X X X inserted in context
02 Pointer type invalid X X X 1 = Addressability is
03 Pointer addressing invalid object X X inserted in context

2A Program Creation Access group Bit 3
06 Invalid operand type X X X 0 Not created as a member
07 Invalid operand attribute X X X of an access group
08 Invalid operand value range X X X 1 = Created as a member of
OA Invalid operand length X an access group
OC Invalid operand ODT reference X X X Reserved (binary 0) Bits 4-31

38 Template Specification

01 Template value invalid X · Reserved (binary 0) Char(4)

16-8

• Size of space Bin(4)

• Initial value of space Char(1)

• Performance class Char(4)
Space alignment Bit a
a = The space associated with

the object is allocated to
allow proper alignment of
pointers at 16-byte align-
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align
ments within the the space.

Reserved (binary 0) Bits 1-4
Main storage pool selection Bit 5
a Process default main storage

pool is used for object.
1 = Machine default main storage

pool is used for object.
Transient storage pool selection Bit 6
a = Default main storage pool

(process default or machine
default as specified for
main storage pool selection)
is used for object.

1 = Transient storage pool is used
for object.

Block transfer on implicit Bit 7
access state modification
a == Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

Reserved (binary 0)

• Reserved (binary 0)

• Context

Bits 8-31

Char(7)

System
pointer

• Access group

• Data space index pointer

• Mapping templates list pointer

• Data space list pointer

• Length of data space list

• Cursor attributes
Reserved (binary 0)
Data space index
a No data space index provided
1 = Access through a data space

index
Replace values
Reserved (binary 0)

Processing mode
Index indicator

a = Random (or no index)
1 = Sequential

Data indicator
o = Random
1 = Sequential

Ensure activity
a Ensure data space entries

instruction will not be used.
1 = Ensure data space entries

instruction will be used.
Reserved (binary 0)

• Unit of transfer

• Locked entry wait time

Notes:

System
pointer

System
pointer

Space
pointer

Space
pointer

Bin(2)

Char(2)
Bit a
Bit 1

Bit 2*
Bits 3-7
Bits 8-9
Bit 8

Bit 9

Bit 10

Bits 11-15

Bin(2)

Char(8)*

1. The cursor template, data space list, and mapping
templates list must each be aligned on a multiple of
16 bytes.

2. The values of the entries shown here with an asterisk
(*) are ignored by this instruction~

The object identification specifies the symbolic name
that identifies the cursor within the machine. A type
code of hex aD is implicitly supplied by the machine .
The object identification is used to identify the object on
materialize instructions as well as to locate the object in
a context that addresses the object.

Data Base Management Instructions 16-9

The existence attribute specifies whether the cursor is to
be created as temporary or permanent. A temporary
cursor, if not explicitly destroyed by the user, is
implicitly destroyed by the machine when machine
processing is terminated. A permanent cursor exists in
the machine until explicitly destroyed by the user.

If the created object is permanent, it is owned by the
user profile governing process execution. The owning
user profile is implicitly assigned all private authority
states for the object. The storage occupied by the
created cursor is charged to this owning user profile. If
the created cursor is temporary, there is no owning user
profile and all authority states are assigned as public.
The storage occupied by the created cursor is charged
to the creating process.

A space may be associated with the cursor. The space
may be fixed or variable in size. The initial allocation is
specified in the size of space entry. The machine
allocates a space of at least the size specified; the
actual size allocated depends on an algorithm defined by
a specific implementation. A fixed size space of zero
length causes no space to be allocated.

Each byte of the space is initialized to a value specified
by the initial value of space entry. When the space is
extended, this byte value is also used to initialize the
new allocation. If no space is allocated, this value is
ignored.

If the initial context creation attribute entry indicates that
addressability is to be inserted into a context, the
context entry must contain a system pointer that
identifies a context where addressability to the newly
created cursor is to be placed. If addressability is not to
be inserted into a context, the context entry is ignored.

If the access group creation attribute entry indicates that
the cursor is to be created in an access group, the
access group entry must be a system pointer that
identifies the access group in which the cursor is to be
created. Since access groups may only be created as
temporary objects, the existence attribute entry must be
temporary (bit a equals 0) when a cursor is created in an
access group. If the cursor is not to be created in an
access group, the access group entry is ignored.

The performance class parameter provides information
that allows the machine to manage the cursor with
consideration for the overall performance objectives of
operations involving the cursor.

16-10

If the data space index attribute specifies that the cursor
is to be created over a data space index, the data space
index pointer entry must be a system pointer. It must
address a data space index that is used in accessing the
data spaces through the cursor. If the data space index
attribute specifies that the cursor is not to be created
over an index, the data space index pointer .entry is
ignored.

The mapping templates list pointer must address a list
of mapping template space pointers, one for each data
space system pointer. The data space list pointer must
address a list of system pointers, each addressing a
data space. The length of data space list entry (which
must be a multiple of 16 bytes) specifies the length of
each of these lists.

The processing mode entry identifies the type of
processing to be accomplished with the cursor. This
entry indicates whether the access to the data and / or
index is random or sequential. This information is used
to optimize the internal method for transferring
information between main and auxiliary storage for both
data spaces and the data space index. The index
indicator indicates whether the index (independent of the
data) is accessed randomly or sequentially and must be
binary a if no index is specified in the cursor. The index
indicator is used to optimize usage of the index. The
data indicator indicates whether the entries (independent
of the index) are accessed randomly or sequentially by
arrival sequence and is used to optimize their transferral
to and from auxiliary storage. If the type of processing
is not known, binary a's should be specified for both.

The ensure activity attribute allows the cursor user to
indicate at creation or activation of the cursor his intent
to use the Ensure Data Space Entry instruction.

If the data indicator field is specified as a binary 1, the
unit of transfer argument specifies the minimum number
of data space entries that are to be transferred between
auxiliary and main storage. The transfer takes place any
time an entry residing outside the current transfer block
is referenced by the Set Cursor instruction, the Retrieve
Sequential Data Space Entries instruction, or the
Retrieve Data Space Entry instruction. If the unit of
transfer is binary a or the data indicator is binary 0, the
machine establishes the unit of transfer of 1.

Locked entry wait time is the amount of elapsed time
that a Set Cursor instruction is allowed to wait for an
entry that is already locked before signaling an
exception. Bit 41 of the value is equivalent to 1024
microseconds. If the field is 0, a machine default wait
time-out value of approximately 60 seconds is used.

The system pointers in the data space list identify the
data spaces the cursor is to reference. When a cursor is
used over multiple data spaces, the data spaces are
identified by a data space number derived from their
position in the data space list. This data space number
is used to uniquely identify each data space whenever
the cursor is referenced. The first data space in the list
is assigned the number 1, and the nth data space in the
list is assigned the number n.

If the cursor is created over a data space index, only a
subset of those data spaces visible through the index
that are intended to be referenced through the cursor
need to be specified in the data space list. The data
spaces must appear in the same position in the data
space list as they did when the data space index was
created. If a data space that is covered by the data
space index is not to be referenced through the cursor,
16 bytes of binary 1 must be placed in the data space
list in place of the data space system pointer. In the
event that the entire data space list contains 0' s, a
pointer does not exist exception is signaled.

For. each data space referenced by the data space list,
there must be a corresponding mapping template space
pointer in the same position in the mapping templates
pointer list. Each mapping template space pointer must
point to a mapping template that defines the view the
user is to have of the data space entries that reside in
that data space. Unused positions in the mapping
templates pointer list are ignored.

The format of the mapping template for a data space is
as follows:

• Number of bytes in the mapping
template

• Data space mapping type
Input mapping type

- Output mapping type

• Input mapping table (optional)
Number of fields described
Field specification (repeated
for each field in template)

Field location
Field attributes

Field type
Field length

• Output mapping table (optional)
Number of fields described
Field specification (repeated
for each field in template)

Field location
Field attributes

Field type
Field length

Bin(4)

Char(2)
Char(1)
Char(1)

Char(O-n)
Bin(2)
Char(6)

Bin(2)
Char(4)
Bin(2)
Bin(2)

Char(O-n)
Bin(2)
Char(6)

Bin(2)
Char(4)
Bin(2)
Bin(2)

The number of bytes in the mapping template indicates
the total number of bytes included in the number of
bytes field, the data space mapping type field, the input
mapping table, and the output mapping table for this
data space.

Data Base Management Instructions 16-11

The input mapping type entry specifies the type of
mapping to be used during the mapping of the data
from the interface buffer to the data space during insert
and update operations. Conversely, the output mapping
type entry specifies the mapping type to be used during
the mapping of the data from the data space to
interface buffer for the retrieve operation. The values
that can be associated with the mapping type entries are
as follows:

Input Mapping Type

Hex 00 = Direct mapping
Hex 01 = Mapping table provided

Output Mapping Type

Hex 00 = Direct mapping
Hex 01 = Mapping table provided
Hex 02 = Same as input mapping

Direct mapping signifies that the data space entry is to
be moved directly to or from the machine interface
buffer without conversion or field repositioning. The
mapping table provided specifies that conversion and / or
field repositioning are to· be performed as designated by
an associated mapping table defined in the mapping
template. When same as input mapping is specified, the
specifications for input mapping (input mapping type
specification and the input mapping table, if specified)
are also used for the output mapping function.

16-12

The input mapping table must be present only if the
input mapping type code specifies mapping table
provided. Similarly, the output mapping table must be
present only if the output mapping type code specifies
mapping table provided.

The number of fields entry specifies the number of
fields that are to be mapped between the interface
buffer and the data space. This entry must equal the
number of field specification entries in the associated
mapping table.

The field specification entry must be repeated for each
field in the template. The order of the field specification
entries in the mapping table implicitly specifies the order
of the fields in the interface buffer. The field location
entry is the relative location of the associated field in the
data space established by the Create Data Space
instruction. A value of 1 identifies the first field, and a
value of n identifies the nth field.

The following field types and specification codes are

allowed:

Field Type

Binary
Zoned decimal
Packed decimal
Character
Dummy

Specification Code
(hex)

0000
0002
0003
0004
0005

The permissible values for the field length entry vary
based on the value of the associated field type entry as
follows:

Field
Type

Binary

Zoned
decimal

Packed
decimal

Allowed Field Length Values

Bytes 1 - 2 - Length in bytes =
Binary 2 or 4

Byte 1 Fractional digits1 =
Binary 0 to total
number of digits

Byte 2 Total number of digits =
Binary 1 to 31

Byte 1 Fractional digits 1 =
Binary 0 to total
number of digits

Byte 2 Total number of digits =
Binary 1 to 31

Character Bytes 1 - 2 - Length in bytes =

Binary 1 to 32 767

Dummy Bytes 1-2 - Length in bytes =
Binary 1 to 32 767

1The number of fractional digits to the right of the
decimal point.

Character fields may not be specified as being mapped
to or from any of the numeric field types. Character
fields are padded with blanks (or truncated) on the right
when needed. Numeric fields are truncated or padded
with O's on the left or right as necessary.

The dummy field type indicates the number of bytes to
be skipped in the interface buffer when a data space
entry is being mapped to or from that buffer. When a
dummy field type is specified, the field location entry
must be O.

If the cursor is over a data space index, the key
requested (operand 4 of the Set Cursor instruction) must
have data attributes that match the output mapping
template. The key materialized by the Materialize Cursor
Attributes instruction and the key returned (operand 3 of
the Set Cursor instruction) have the fields ordered as
specified in the data space index (minus the fork
characters) and have the key field attributes as specified
in the cursor output mapping template. Fork characters
are never present in the request or materialized key and
are inserted by the machine during construction and
maintenance of the index.

If all of the key fields for a data space do not appear in
the output mapping template for that data space, then
the Set Cursor instruction that has a rule option
requiring a search which utilizes a user-supplied key,
signals an exception. When key fields are absent from
the output mapping template, the Materialize Cursor
Attributes and Set Cursor instructions cannot materialize
a key.

Data Base Management Instructions 16-13

Authorization Required Exceptions

· Retrieve Operands

- Contexts referenced for address resolution Exception 1 2 Other

Insert
02 Access Group · 01 Object ineligible for access group X

User profile of creating process 06 Addressing
- Context identified in operand 2 01 Space addressing violation X X

02 Boundary alignment X X

· Object Management 03 Range X X
Data spaces identified in operand 2 08 Argument/ Parameter

- Data space index identified in operand 2 01 Parameter reference violation X X
OA Authorization

01 Unauthorized for operation X

Lock Enforcennent OE Context Operation
01 Duplicate object identification X

Materialize
10 Damage Encountered · 04 System object damage state X X X

- Contexts referenced for address resolution 44 Partial system object damage X X X
12 Data Base Management

· Modify 13 Invalid mapping template X
Access group identified in operand 2 15 Data space not addressed by X
Context identified in operand 2 index

User profile of creating process 1 B Logical data space entry size limit X
exceeded

1 D Logical key size limit exceeded X
1A Lock State

Events 01 Invalid lock state X
1C Machine-Dependent Exception

0002 Authorization 03 Machine storage limit exceeded X
0101 Object authorization violation 04 Object storage limit exceeded X

06 Machine lock limit exceeded X

OOOC Machine resource 20 Machine Support

0201 Machine auxiliary storage threshold exceeded 02 Machine check X
03 Function check X

0010 Process 22 Object Access

0701 Maximum processor time exceeded
01 Object not found X X
02 Object destroyed X X

0801 Process storage limit exceeded 24 Pointer Specification
01 Pointer does not exist X X

0016 Machine observation 02 Pointer type invalid X X
0101 Instruction reference 03 Pointer addressing invalid object X

2A Program Creation

0017 Damage set 06 Invalid operand type X X

0401 System object damage set 07 Invalid operand attribute X X

0801 Partial system object damage set 08 Invalid operand value range X X
OC Invalid operand ODT reference X X

2E Resource Control Limit
01 User profile storage limit X

exceeded
38 Template Specification

01 Template value invalid X

16-14

CREATE DATA SPACE (CRTDS)

Op Code Operand Operand
(hex) 1 2

045A Data· Data space
space template

Operand 1: System pointer.

Operand 2: Space pointer.

Description: This instruction creates a data space
according to the data space template specified by
operand 2. The template describes the type of data
space to be created, the characteristics of that data
space, and the attributes of the fields that make up the
individual entries within the data space. Addressability
to the newly created data space is returned in~the
system pointer specified by operand 1.

The format of the data space template is as follows:

• Template size specification
Number of bytes provided
by the user
Number of bytes that can be
materialized

• Object identification
Object type
Object subtype
Object name

Object creation options
Existence attributes
1 = Permanent (required)
Space attribute
o = Fixed-length
1 = Variable-length
Initial context
o Addressability is not

inserted in context
Addressability is
inserted in context

Reserved (binary 0)

• Reserved (binary 0)

• Size of space

Char(8)
Bin(4)*

Bin(4)*

Char(32)
Char(1)*
Char(1)
Char(30)

Char(4)
Bit 0

Bit 1

Bit 2

Bits 3-31

Char(4)

Bin(4)

• Initial value of space

• Performance class
Space alignment
o = The space associated with

the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align
ments within the the space.

Reserved (binary 0)
Main storage pool selection
o Process default main storage

pool is used for object.
Machine default main storage
pool is used for object.

Reserved (binary 0)
Block transfer on implicit
access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

Reserved (binary 0)

• Reserved (binary 0)

• Context

• Reserved (binary 0)

Char(1)

. Char(4)
Bit 0

Bits 1-4
Bit 5

Bit 6
Bit 7

Bits 8-31

Char(7)

System
pointer

Char(16)

Data Base Management Instructions 16-15

• Data space attributes
Reserved (binary 1)
Reserved (binary 0)
Initial allocation
o Use default allocation
1 = Allocate for maximum

number of entries
Contiguous return
o Contiguous storage

not allocated
1 = Contiguous storage

allocated
Unit return
o Not allocated on

requested unit
1 = Allocated on requested

unit
Conversion error checking
o Conversion error checking

not enabled
1 = Conversion error checking

enabled
Contiguous allocation
Reserved (binary 0)

• Maximum number of entries

• Entry number increment

• Unit identification

• Compression threshold

• Length of the entry definition table

• Offset to the entry definition table

• Length of the default values entry.

• Offset to the default values entry

Char(2)
Bit 0
Bits 1-2
Bit 3

Bit 4*

Bit 5*

Bit 6

Bit 7
Bits 8-15

Bin(4)

Bin(2)

Char(1)

Char(1)

Bin(2)

Bin(4)

Bin(2)

Bin(4)

Note: The value of an entry shown here with an
asterisk (*) is ignored by this instruction.

The data space template must be aligned on a multiple
of 16 bytes.

The object identification specifies the symbolic name
that identifies the data space within the machine. A
type code of hex OB is implicitly supplied by the
machine. The object identification is used to identify the
data space on materialize instructions as well as to
locate the object in a context that addresses the object.

16-16

Data spaces are created as permanent objects and exist
in the machine until explicitly destroyed by the user. A
space may be associated with the created data space.
The space may be fixed or variable in size. The initial
allocation is specified in the size of space entry. The
machine allocates a space of at least the size specified;
the actual size allocated depends on an algorithm
defined by a specific implementation. A fixed size space
of zero length causes no space to be allocated. If no
space is allocated, this value is ignored.

Each byte of the space is initialized to a value specified
by the initial value of space entry. When the space is
extended, this byte value is also used to initialize the
new allocation. If no space is allocated, this value is
ignored.

The user profile governing process execution is assigned
ownership of the object, and the storage occupied by
the data space is charged to this user profile.

If the initial context creation attribute entry indicates that
addressability is to be inserted into a context, the
context entry must contain a system pointer that
identifies a context where addressability to the newly
created data space is to be placed. If addressability is
not to be inserted into a context, the context entry is
ignored.

The performance class parameter provides information
that allows the machine to manage the data space with
consideration for the overall performance objectives of
operations involving the data space.

The data space attributes entry specifies the type of
data space being created and its allocation requirements.

If the initial allocation attribute is specified (binary 1),
sufficient storage is allocated to contain the number of
data space entries specified by the maximum number of
entries field. Data spaces are implicitly extended. If
initial allocation is not specified (binary 0), a default
initial allocation and extension allocation are used.

The values of the contiguous return bit and unit return
bit are set by this instruction. The contiguous return bit
(binary 1) indicates the data portion of the data space is
contiguously allocated on auxiliary storage. The
contiguous return bit (binary 0) indicates either that the
data portion of the data space is not contiguously
allocated on auxiliary storage or that contiguous storage
was not requested. No exception is signaled as the
result of failing to obtain a contiguous allocation when
requested. The unit return bit (binary 1) indicates that
the data portion of the data space resides on the
requested auxiliary storage unit. A unit return bit (binary
0) indicates that some of the data space is not on the
requested unit. If the unit identification parameter is 0,
the unit return bit of 0 is returned.

The conversion mapping error exception will not be
signaled if the enable conversion error checking field has
a value of binary 0, and if a data conversion or
truncation error is encountered on a numeric field while
mapping to or from the interface buffer on RETDSEN,
RETSDSE, UPDSEN, INSDSEN, or INSSDSE
instructions. The erroneous data will be used in
generating the interface buffer or the data space entry.
If the enable conversion error checking field has a value
of binary 1, the conversion mapping error exception will
be signaled for each entry that produces a conversion or
truncation error. The indicated instructions will not
detect conversion or truncation errors if the fields in the
data space entry are not converted or truncated, as in

. direct mapping. The key conversion mapping error is
always signaled when encountered, regardless of the
value of the enable conversion error checking field.

If the contiguous allocation bit is binary 0, the system
attempts to allocate the data space contiguously on
auxiliary storage. If this bit is binary 1, the data space
may not be contiguously allocated on auxiliary storage.
If the initial allocation field is binary 0, the contiguous
allocation bit is ignored.

The maximum number of entries field specifies the
number of (undeleted) entries that can reside in a data
space before the data space entry limit exceeded
exception is signaled. If this field is 0, an
implementation-defined maximum is assumed. The
entry number increment field specifies an increment that
can be applied to the maximum number of entries field
through the use of the Data Base Maintenance
instruction to derive a new upper limit. The unit
identification entry (which is interpreted as a 1-byte
unsigned binary number) indicates the auxiliary storage
unit on which the data space should reside. Unit values
are installation dependent. If no specific unit is selected
(binary 0), the machine selects the unit for data space
storage and returns a value of binary 0 in the unit return
value. If the unit identification is nonzero, it must be
valid for the machine. The Materialize Resource
Management Data instruction provides the allowable
valid unit numbers. If the intended unit has insufficient
space to accommodate the data space, an alternative
unit is selected.

The compression threshold entry is interpreted as a
1-byte unsigned binary number that specifies the
percentage of deleted entries that can remain in the data
space before the data space compression threshold
exceeded event is signaled. The event is signaled on
any De-Activate Cursor instruction where the
compression threshold of a data space referenced by
that cursor has been exceeded. The compression
threshold represents a percentage expressed as a
number between 0 and 100 (inclusive). If the percentage
equals 0, the event is not signaled.

The entry definition table defines the format of the data
space entries for this data space. The offset to the
entry definition table defines the offset from the start of
the data space template to the first byte of the entry
definition table. The length of the entry definition table
identifies the number of bytes in the table.

Data Base Management Instructions 16-17

The default values entry is a character string equal in
length to the computed length of the data space entry.
This string defines the default values for the Insert Data
Space Entry instruction and the Insert Sequential, Data
Space Entries instruction to use for any field that is not
present in the input mapping template of a Create
Cursor instruction. This string also defines the default
values for an Update Data Space Entry instruction to
use when deleted entries are updated as well as the
values to be inserted by the insert default entries option
of the Data Base Maintenance instruction. The offset to
the default values entry defines the offset from the start
of the data space template to the first byte of the ,
default values entry. The length of the default values
entry identifies the number of bytes in the default values
entry.

No data validity checking is done on the contents of the
default values entry field. If the offset to the default
values entry is 0, no default entry is provided, and the
length field is ignored. If default values are not
provided, the default values supplied by the machine are
blanks. (hex 40) for character fields and O's (in the
appropriate representation) for numeric fields.

The entry definition table defines the field attributes, one
for each field in the data space entry. The number of
fields in the data space entry (number of entries in the
table) is the value of the length of the entry definition
table divided by 4 bytes per field attribute.

Each field attributes entry designates the attributes that
field processes in the data space entry.

16-18

The format of the field attributes is as follows:

• Field attributes
Field type

- Field length

Char(4)
Bin(2)
Bin(2)

The following field types and specification codes are
allowed:

Field Type

Binary
Zoned decimal
Packed decimal
Character

Specification
Code
(hex)

0000
0002
0003
0004

The permissible values for each of the field lengths are
as follows:

Field
Type

Binary

Zoned
decimal

Packed
decimal

Allowed Field Length Values

Bytes 1-2 - length in bytes =
Binary 2 or 4

Byte 1 Fractional digits 1 =
Binary 0 to total
number of digits

Byte 2 Total number of digits =
Binary 1 to 31

Byte 1 Fractional digits =
Binary 0 to total
number of digits

Byte 2 Total number of digits =
Binary 1 to 31

Character Bytes 1-2 - length in bytes =
Binary 1 to 32 766

lThe number of fractional digits to the right of the decimal
point.

Authorization Required Exceptions

· Insert Operands
Context identified in operand 2 Exception 1 2 Other

- User profile of creating process
06 Addressing

· Retrieve 01 Space addressing violation X X

- Contexts referenced for address resolution 02 Boundary alignment X X
03 Range X X

08 Argument/ Parameter

Lock Enforcennent 01 Parameter reference violation X X
OA Authorization

· Materialize 01 Unauthorized for operation X

- Contexts referenced for address resolution OE Context Operation

01 Duplicate object identification X

· Modify 10 Damage Encountered

Context identified in operand 2 04 System object damage state X X X

User profile of creating process 44 Partial system object damage X X X
12 Data Base Management

1 A Data entry size exceeded X

Events 1A Lock State

01 Invalid lock state X

0002 Authorization 1C Machine-Dependent Exception

0101 Object authorization violation 03 Machine storage limit exceeded X
04 Object storage limit exceeded X

OOOC Machine resource 20 Machine Support

0201 Machine auxiliary storage threshold exceeded 02 Machine check X
03 Function check X

0010 Process 22 Object Access

0701 Maximum processor time exceeded 01 Object not found X X

0801 Process storage limit exceeded 02 Object destroyed X X
03 Object suspended X X

0016 Machine observation 24 Pointer Specification

0101 Instruction reference 01 Pointer does not exist X X
02 Pointer type invalid X X

0017 Damage set 03 Pointer addressing invalid object X

0401 System object damage set 2A Program Creation

0801 Partial system object damage set 06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X
OC Invalid operand ODT reference X X

2E Resource Control Limit

01 User profile storage limit X
exceeded

38 Template Specification

01 Template value invalid X

Data Base Management Instructions 16-19

CREATE DATA SPACE INDEX (CRTDSINX)

Op Code
(hex)

046A

Operand
1

Data
space
index

Operand
2

Data space
index template

Operand 1: System pointer.

Operand 2: Space pointer.

Description: This instruction creates a data space index
that defines an alternate ordering over the entries in one
or more data spaces. The data space index orders keys
derived from the data space entries according to a
standard collating sequence or a user-provided alternate
collating sequence and can include all, or a subset, of
the entries in the associated data space(s).
Addressability to the newly created data space index is
returned in the system pointer specified by operand 1.

The format of the data space index template is as
follows:

• Template size
N umber of bytes provided
by the user
Number of bytes that
can be materialized

• Object identification
Object type
Object subtype
Object name

• Object creation options
Existence attributes
1 = Permanent (required)
Space attribute
o = Fixed-length
1 = Variable-length
Initial context
o Addressability is not

inserted in context
1 = Addressability is

inserted in context
Reserved (binary 0)

• Reserved (binary 0)

• Size of space

16-20

Char(8)
Bin(4)*

Bin(4)*

Char(32)
Char(1)*
Char(1)
Char(30)

Char(4)
Bit 0

Bit 1

Bit 2

Bits 3-31

Char(4)

Bin(4)

• Initial value of space

• Performance class
Space alignment
o = The space associated with

the object is allocated to
allow proper alignment of
pointers at 16-byte align-
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align
ments within the the space.

Char{1)

Char(4)
Bit 0

Reserved (binary 0) Bits 1-4
Main storage pool selection Bit 5
o Process default main storage

pool is used for object.
1 = Machine default main storage

pool is used for object.
Reserved (binary 0) Bit 6
Block transfer on implicit Bit 7
access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

Reserved (binary 0) Bits 8-31

• Reserved (binary 0) Char(7)

• Context System
pointer

• Reserved (binary 0) Char(16)

• Data space list pointer

• Alternate collating template pointer

• Selection template pointer

• Length of selection template

• Length of data space list

• Index attributes
Reserved (binary 0)
Alternate collating template
o = Template not provided
1 = Template provided
Validate index option
o = Create valid
1 = Created invalidated index
Unit return bit
o Not allocated on

requested unit
1 = Allocated on requested unit
Delayed maintenance
Optimized processing mode
o = Random
1 = Sequential
Reserved (binary 0)
Duplicate key rules
00 = Unique keys required
01 = LIFO duplicates permitted
10 = FI FO duplicates permitted
11 = Reserved

• Unit identification

• Reserved (binary 0)

• Length of the data space key
specifications

Space
pointer

Space
pointer

Space
pointer

Bin(2)

Bin(2)

Char(2)
Bits 0-7
Bit 8

Bit 9

Bit 10*

Bit 11
Bit 12

Bit 13
Bits 14-15

Char(1)

Char(1)

Bin(4)

The data space key specification is repeated for each
data space.

• Key field count

• Key field specification (repeated
for each field in the data space key)

Key field location
Key field attributes
Reserved (binary 0)
Ordering option

o = Ascending sequence
1 = Descending sequece

Numeric ordering
00 = Internal form
01 = Absolute value
10 = Algebraic
11 = Reserved

Fork character
o = No fork character specified
1 = Fork character specified

Alternate collating
o Machine default collating

sequence
Alternate collating sequence

Bin(2)

Char(4)

Bin(2)
Char(2)
Bits 0-7
Bit 8

Bits 9-10

Bit 11

Bit 12

Zone/digit force Bits 13-14
00 = No zone/digit force
01 = Digit force
10 = Zone force
11 = Reserved

Reserved (binary 0) Bit 15

Notes:
1. The data space index template, data space list, and

selection template must each be 16-byte aligned.
2. The values of the entries shown here with an asterisk

(*) are ignored by this instruction.

The data space index is owned by the user profile that
governs process execution. The owning user profile is
impliCitly assigned all authority states for the data space
index. The storage occupied by the data space index is
charged to this owning user profile.

The object identification specifies the symbolic name
that identifies the data space index within the machine.
A type code of hex OC is implicitly supplied by the
machine. The object identification is used to identify the
data space index on materialize instructions as well as to
locate the data space index in a context that addresses
the data space index.

The data space index is created as a permanent object
and exists in the machine until explicitly destroyed.

Data Base Management Instructions 16-21

A space may be associated with the data space index.
The'space may be fixed or variable in size. The initial
allocation is specified in the size of space entry. The
machine allocates a space of at least the size specified;
the actual size allocated depends on an algorithm
defined by a specific implementation. A fixed size space
of zero length causes no space to be allocated.

Each byte of the space is initialized to a value specified
by the initial value of space entry. When the space is
extended, this byte value is also used to initialize the
new allocation. If no space is allocated, this value is
ignored.

If the initial context creation attribute entry indicates that
addressability is to be inserted into a context, the
context entry must contain a system pointer that
identifies a context where addressability to the newly
created data space index is to be placed. If
addressability is not to be inserted into a context, the
context entry is ignored.

The performance class parameter provides information
that allows the machine to' manage the data space index
with consideration for the overall performance objectives
of operations involving the data space index.

The data space list pointer identifies a list of system
pointers. Each system pointer addresses a data space.
The length of data space list entry (which must be a
multiple of 16 bytes) indicates the number of bytes in
the list. Only these data spaces are addressable through
the data space index.

Subsequently, the ordering of the data space pointers in
the data space list is used to identify the data spaces
with a 2-byte number known as the data space number.
The first data space in the list is assigned the number 1,
and the nth data space in the list is assigned the
number n.

The ordering of the data spaces is significant in data
space indexes where duplicate keys are allowed because
duplicate keys from different data spaces appear in the
index in the same order as the data spaces appear in
the list.

Index keys are normally ordered by the machine's
standard collating sequence. The alternate collating
template pointer (if provided) points to a fixed-length,
256-byte alternate collating template. If the pointer is
not provided and any data space key specification
specifies alternate collating, an exception is signaled.

16-22

Data space entry selection allows the data space index
to address a selected subset of data space entries
covered by the data space index, rather than address all
data space entries. The number of bytes in the selection
template is indicated by the length of selection template.
A binary 0 in the length of selection template field
indicates that selection is not used for this data space
index and the selection template pointer is ignored.

The index attribute entry specifies general data space
index attributes. An alternate collating template attribute
value of binary 1 indicates that the alternate collating
template pointer addresses a 256-byte alternate
collating template. A binary 0 indicates that the pointer
is to be ignored.

The create invalidated index attribute indicates that a
data space index addressing no entries and marked
invalid should be created. This attribute has the same
effect as if the index had been operated on by the
invalidate data space index option of the Data Base
Maintenance instruction.

A value of 0 causes a valid, up-to-date index to be
created.

The unit return bit is set by this instruction. A value of
binary 1 indicates that the index is on the requested
auxiliary storage unit. A value of binary 0 indicates that
some of the index is not on the requested unit. If no
unit identification is specified (binary 0), the unit return
bit is O.

The delayed maintenance option, equal to binary 1,
delays changes to the data space until a cursor that
references the data space is activated. This delay is
used for performance reasons. Changes to the data
space index occur when an Activate Cursor instruction is
issued to a cursor that references the data space index
or when a Data Base Maintenance instruction is used to
explicitly rebuild the index. A value of 0 indicates that
immediate index maintenance is to be used. If duplicate
key rules are equal to the unique keys, the delayed
maintenance value must be O.

If the optimized processing mode field is binary 1, then
the data space index will be built and maintained in a
way that attempts to optimize performance for
sequential operations on the data space index.
Otherwise, the optimization will be done for random
access operations.

The duplicate key rules have the following meaning:

• If unique keys are specified, then duplicate keys are
not allowed in the index. During an index creation or
rebuild, the operation is terminated if duplicate keys
are detected. During insertion or modification of a
data space entry, detection of a duplicate key will
inhibit alteration of the data space. If the index has
been implicitly invalidated by the machine, changes to
the data space entries that could result in duplicate
keys are not allowed. In either case, an exception is
signaled.

• If duplicate keys are permitted, then the LI FO (last in,
first out), or the FI FO (first in, first out) rule
determines how duplicate keys are to be ordered
within the data space index.

The LIFO or FIFO rules only apply to the ordering of
duplicate keys acquired from entries that reside in the
same data space. If LI FO is specified, then the entry
with the largest ordinal number is ordered first. If FI FO
is specified, then the entry with the smallest ordinal
number is ordered first. When duplicate keys are
acquired from entries that reside in different data
spaces, the ordering is determined by the order of the
data spaces as they are specified in the data space
pointer list.

The unit identification entry is interpreted as a 1 - byte
unsigned binary number indicating a valid auxiliary
storage unit on which the data space index should
reside. If no unit identification is specified (binary a),
the machine selects an auxiliary storage unit for the data
space index. The value of the unit identification is
installation dependent.

Valid unit numbers can be obtained by using the
Materialize Resource Management Data instruction. If
the intended unit has insufficient space to accommodate
the data space index, an alternative unit is selected.

Each data space key specification entry defines a key for
a data space. A data space key specification must be
defined for each data space referenced by the data
space list, and its order must correspond to the order of
the data spaces in the list. If more than one key
specification is defined for a data space, then the data
space must appear in the data space list more than
once, and each entry in the data space provides more
than one key to the index.

I

The key field count entry specifies the number of key
field specification entries for a particular data space. A
key field specification entry appears for each field
extracted from the data space entry as well as each fork
character to be used in creating the key for a particular
data space. The key field location entry identifies the
relative position of the field in the data space entry. The
first field in the entry is relative position 1.

The key field attributes entry specifies the attributes of
the corresponding key field.

The ordering option attribute specifies whether the key
field is collated in ascending or descending sequence.
Decending sequence is valid with any field attribute
except fork character.

The numeric ordering attribute specifies whether numeric
fields are to be ordered based on their internal
representation value, algebraic value, or absolute
numeric value. The numeric ordering attributes of
algebraic or absolute value causes the specified numeric
ordering to be enforced independent of a field's numeric
type or internal physical representation.

If internal form numeric ordering is specified, ordering is
performed according to the physical storage
representation of the key field. For example, a packed
decimal number has its sign on the right. This causes
the ordering to alternate between positive and negative
numbers. For zoned decimal, the sign is in the left half
of the rightmost byte, which causes the ordering to be
10 positive numbers followed by 10 negative numbers.

Numeric ordering can be used with any data type except
character. Numeric ordering is valid with the ascending
and descending field attributes only. Any other attribute
specified with numeric ordering results in an exception.

Data Base Management Instructions 16-23

The fork character attribute indicates that a field within
the data space entry is not being specified and that the
key field location entry contains a fork character (rather
than the identity of a field within the data space entry
field) to be inserted into the composite key at this
position. Byte 1 of the key field location is ignored, and
byte 2 must contain the fork character to be inserted
into the composite key. It is important to note that the
data space index functions append information to the
rightmost portion of each key, and, t~erefore, it may be
necessary to place a fork character at the end of each
short key to ensure that the appended information does
not, affect the ordering of this key with respect to longer
keys. If the fork character option is specified, all other
key field attributes must be binary 0 or an exception is
signaled.

The alternate collating attribute indicates that the value
acquired from the data space entry is to be modified in
accordance with the alternate collating template before
being placed into the key. This modification is
performed after the zone or digit force changes have
been applied but before the descending sequence
changes, if either is specified. This attribute is valid for
character and zoned decimal fields only; it is also valid
with the descending sequence and either zone/digit
force key field attributes. Any other data type or key
field attributes result in an exception.

The zone/digit force attribute specifies a modification to
4 bits of every byte in the specified key field. Zone
force (10) causes the leftmost 4 bits (the zone portion)
of every byte in the field to be set to zeros. Digit force
(01) causes the rightmost 4 bits (the digit portion) of
every byte in the field to be set to 0' s. These attributes
are valid for the character and zoned data fields only;
they are also valid with the descending sequence and
the alternate collating key field attributes. Any other
data type or key field attributes result in an exception.

The order in which the key field specifications appear in
the template determines the order of the fields in the
resulting key. The data space key field count must
include both the data key fields extracted from the data
space entry as well as the fork characters that comprise
the resulting key.

16-24

The alternate collating template, if one exists, is used as
a translation table needed for a specific alternate
collating sequence. This translation table must consist
of a 256-byte table of replacement values. The
replacement value for a specific byte is located in the
table at an offset equal to the byte's binary value. For
example, if hex C 1 is to be replaced with hex F2, the
byte residing at offset hex C1 in the table must contain
the replacement value hex F2. When alternate collating
sequence is specified for a field, the field is translated
before being placed into the key. For the example
above, this means that when the keys are automatically
ordered, hex C1 = A is logically placed in the index
between hex F1 = 1 and hex F3 =3. Thus, an alternate
collating sequence of 1 A3 is achieved.

The example below shows how a translation table could
be organized to cause the numbers 0-9 (hex FO through
hex F9) to appear before the characters A-Z (hex C1
through hex E9) in a collating sequence. To accomplish
this ordering, the numbers 0 through 9 (hex FO through
hex F9) must take on the values hex C1 through hex CA
and the values hex C1 through hex EF must take on the
values hex CB through hex F9. The following translation
table causes this to happen.

00 01 02 03 04 05 06 07 08 09 OA 08 OC 00 OE OF

10 11 12 13 14 15 16 17 18 19 1A 18 1C 10 1E 1F .

20 21 22 23 24 25 26 27 28 29 2A 28 2C 20 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 38 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 48 4C 40 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 58 5C 50 5E 5F

60 61 62 63 64 65 6.6 67 68 69 6A 68 6C 60 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 78 7C 70 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 88 8C 80 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 98 9C 90 9E 9F

AO A1 A2 A3 A4 A5 A6 A7 A8 A9 AA A8 AC AD AE AF

80 81 82 83 84 85 86 87 88 89 8A 88 8C 80 8E 8F

CO C8 CC CO CE CF DO 01 02 03 04 05 06 07 08 09

OA 08 DC DO DE OF EO E1 E2 E3 E4 E5 E6 E7 E8 E9

EA E8 EC ED EE EF FO F1 F2 F3 F4 F5 F6 F7 F8 F9

C1 C2 C3 C4 C5 C6 C7 C8 C9 CA FA F8 FC FO FE FF

Note: co is translated to CO
C1 is translated to C8
EF is translated to F9
FO is translated to C1
F9 is translated to CA
FA is translated to FA

The format of the selection template is as follows:

• Selection routine pointer

• Selection routine program
template pointer

• Data space selection specification
(repeated for each data space in
the data space list)

System
pointer

Space
pointer

Char(*)

Note: The value of the entry shown here with an
asterisk (*) is ignored by this instruction.

The selection routine is a program to be invoked each
time addressability to a data space entry is to be placed
in or removed from the data space index. This routine
must satisfy the criteria for a user exit routine (see
Chapter 8. Program Management Instructions). To
ensure addressability at all times, a copy of the routine
is made and bound permanently to the data space index
during creation of the data space index. The selection
routine pointer is required for a Create Data Space Index
instruction and is not materialized by a Materialize Data
Space Index Attributes instruction.

The selection routine program template pointer contains
addressability to the program template used for the
creation of the selection routine (see Chapter 8.
Program Management Instructions). It is ignored by the
Create Data Space Index instruction and is materialized
by the Materialize Data Space Index Attributes
instruction.

When an entry's key is to be put into the data space
index, the selection routine is given a space pointer that
addresses an interface buffer. The storage for the
interface buffer is allocated from the process automatic
storage area. The first 2 bytes of the buffer are a return
value and must be set by the selection routine to
indicate whether addressability to the entry just passed
is to be placed in the index. Binary 0 indicates that
addressability to the entry is to be included in the index,
and any other value indicates that addressability is not
to be included in the data space index.

The second 2 bytes of the buffer contain the data space
number that indicates the data space from which the
fields have been extracted. This number corresponds to
the order of the data spaces as specified in the data
space list associated with the data space index
template.

The data space number is followed by the fields
mapped from the data space entry that is being passed
to the selection routine. The fields are presented in the
buffer as a continuous string.

If an error occurs in the selection routine, a data space
index selection routine failure exception is signaled, and
the data space entry is neither inserted nor updated.

The data space selection specification entry contains
locations and attributes of the fields that are to be
passed to the selection routine. The selection routine
determines 'whether or not addressability to the entry is
to be placed in the index. The fields are presented to
the selection routine in the order of specification and
with the attributes described in the template. This
implies that values residing in the data space entry may
need to be transformed (mapped) into equivalent values
while being assembled in the selection buffer. This
transformation process may involve conversions and
truncations that are data sensitive. If any such
conversion or truncation errors are encountered during
this transformation, the conversion error checking
attribute associated with the data space will govern
whether these errors are suppressed or reported as
events. The data space selection specification entry has
the following format:

• Data space selection specification (repeated for each
data space)

Number of selection fields
Field specification
(repeated for each field)

Field location
Field attributes

Bin(2)
Char(6)

Bin(2)
Char(4)

A data space specification entry must be present for
each data space defined for the data space index, and it
must be specified in the same order as the data spaces
are defined in the data space list. The argument and
number of selection fields designate the number of
fields (from the data space) that are to be passed to the
selection routine.

Data Base Management Instructions 16-25

If the number of selection fields is 0, the selection
routine is not invoked, and every entry's key is inserted
into the data space index for that particular data space.
A field specification entry determines the fields that are
passed to the selection routine. The order in which the
fields are specified establishes the order in which the
corresponding mapped field values appear in the
selection buffer for the selection routine. The number of
field specification entries must equal the number of
selection fields value for that data space. The field
location entry specifies the relative field position in the
data space entry of the field that .is to be passed to the
selection routine. The first field in the data space entry
is identified by relative position 1. The field attributes
entry specifies the attributes that the field is to have
when it is passed to the selection routine. The definition
and meaning of the field attributes is the same as the
field attributes in the Create Cursor instruction mapping
templates. The dummy field attribute may be used to
align data in the selection buffer, but the contents of the
dummy field are binary O. If a conversion or truncation
error occurs in mapping data to the selection buffer and
enable conversion error checking was specified for that
data space, a data space index selection routine failure
exception is signaled and the data space entry is neither
inserted nor updated in the data space. If checking was
not specified, the selection routine is presented the
invalid fields.

Inserting, updating, and deleting data space entries can
occur concurrently with creating or rebuilding a data
space index over the data space.

Authorization Required

• Retrieve
- Contexts referenced for address resolution

• Insert
User profile of creating process

- Context identified by operand 2

• Object Management
- Data spaces identified by operand 2

• Operational
- Selection routine identified by operand 2

16-26

Lock Enforcennent

• Materialize
Selection routine identified by operand 2

- Contexts referenced for address resolution

• Modify
User profile of creating process

- Context identified by operand 2

• Implicit Locks
The data space index being created is. implicitly
locked LENR for the duration of this instruction.
The data spaces addressed by operand 2 are
implicitly locked LSRD during this instruction,

Events

0002 Authorization
0101 Object authorization violation

0008 Data space index
0401 Data space entry not addressed by data

space index

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions DATA BASE MAINTENANCE (DBMAINT)

Operands Op Code Operand Operand Operand
Exception 1 2 Other (hex) 1 2 3

06 Addressing
0482 Data Mainte- Number of

01 Space addressing violation X X
space or nance entries

02 Boundary alignment X X data space option
03 Range X X index

08 Argument/ Parameter
01 Parameter reference violation X X Operand 1: System pointer.

OA Authorization
01 Unauthorized for operation X Operand 2: Character(1) scalar (fixed-length).

OE Context Operation
01 Duplicate object identification X Operand 3: Binary scalar or null.

10 Damage Encountered
04 System object damage state X X X
44 Partial system object damage X X X Description: This instruction performs the function

12 Data Base Management
identified by the option field in operand 2 on the data

OB Duplicate key value detected X
space or data space index identified by operand 1. while building a unique data

space index Operand 3 is required for options hex 06 and 07 and is
1 C Key size limit exceeded X ignored if present for options hex 01-05.
1 E Selection routine buffer size limit X

exceeded Maintenance
1F User exit routine criteria not X Option

satisfied Value Function to
22 Data space index with selection X (hex) be Performed Operand 1

routine build determination
1A Lock State 01 Rebuild index Data space index

01 Invalid lock state X
1C Machine-Dependent Exception 02 Invalidate index Data space index

03 Machine storage limit exceeded X
04 Object storage limit exceeded X 03 Reset data space Data space

06 Machine lock limit exceeded X
20 Machine Support 04 Reserved

02 Machine check X
05 Increment maximum Data space

03 Function check X
number of entries

22 Object Access
01 Object not found X X 06 I nsert deleted entries Data space
02 Object destroyed X X
03 Object suspended X X 07 Insert default entries Data space
05 Object not available to process X

24 Pointer Specification
01 Pointer does not exist X X
02 Pointer type invalid X X
03 Pointer addressing invalid object X

2A Program Creation
06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X
OC Invalid operand ODT reference X X

2E Resource Control Limit
01 User profile storage limit X

exceeded
38 Template Specification

01 Template value invalid X

Data Base Management Instructions 16-27

Rebuild Index - The invalid data space index identified
by operand 1 is rebuilt according to the definition
supplied when the data space index was created. If a
truncation or conversion error occurs when filling the
selection buffer and enable conversion error checking is
specified for the data space or if an error occurs within
the selection routine, a data space index with selection
routine build determination exception is signaled, and
the -rebuild is terminated. The data space index is not
available for the duration of the operation.

Invalidate Index - The data space index is invalidated
and no further maintenance is performed on it. The data
space index must be rebuilt before it is used again.
Storage held by the data space index keys is released.
The original definition of the index remains intact. The
data space index must not be currently in use by an
activated cursor.

Reset Data Space - The data space is reset to an empty
status (all data space entries are removed) and all
previously assigned ordinal numbers are available for
reassignment. Every data space index referencing this
data space must be invalid. If the data space was
defined with the initial allocation attribute and if
contiguous storage was available and allocated to the
data space, the contiguous storage is not truncated. If
contiguous storage was not allocated initially, the
existing storage is released, and an initial allocation,
based on the current maximum number of entries, is
acquired. If an initial allocation is not specified for the
data space, all storage is released, and a default initial
allocation is obtained. The data space must not be
currently in use.

Increment Maximum Number of Entries - The current
maximum number of entries limit for the data space
specified is incremented by the entry number increment
that was specified when the data space was created.
This option is used to respond to the data space entry
limit exceeded exception that is signaled by the Insert
Data Space Entry instruction, the Insert. Sequential Data
Space Entries instruction, the. Update Data Space Entry
instruction, the Copy Data Space Entries instruction, or
the initialize default entries option of the Data Base
Maintenance instruction.

16-28

Insert Deleted Entries - The number of entries specified
by operand 3 is inserted into the data space specified
by operand 1. Since the entries are deleted entries, this
operation will not cause the number of entries in the
data space to exceed the designated limit, but the
compression threshold may be exceeded. If the
compression threshold is exceeded, no event will be
signaled; however, a subsequent De-Active Cursor
instruction will recognize this condition and signal an
event. The number of entries value in operand 3 must
be greater than O.

Insert Default Entries - The number of entries specified
by operand 3 is inserted into the data space specified
by operand 1. The field values for the inserted entries
come from the default values entry in the specified data
space. If inserting the entries causes the number of
entries (undeleted) in the data space to exceed the
designated limit, the corresponding exception is signaled
and no entries are inserted. Inserting default entries
cannot result in the compression threshold event being
signaled. The number of entries value in operand 3
must be greater than o. An object not eligible for
operation exception is signaled if the data space has a
data space index defined over it prohibiting duplicate
keys. Every data space index defined over the data
space must be invalid.

Inserting, updating, and deleting data space entries can
occur concurrently with creating a data space index over
the data space.

Authorization Required

• Object Management
Data space (reset or insert entries option)

- Data space index (invalidate option)

• Retrieve
- Contexts referenced for address resolution

• Delete
Data space (reset option)

- Data space (insert deleted entries)

• Insert
Data space (insert default entries)

- Data space (insert deleted entries)

• Operational
Data space index (rebuild option)
Data space (increment maximum number of entries
option)

Lock Enforcennent Exceptions

· Materialize Operands
- Contexts referenced for address resolution Exception 1 2.3 Other

· Modify 06 Addressing

Data space if increment maximum number of 01 Space addressing violation X X X

entries or insert entries options are specified 02 Boundary alignment X X

03 Range X X X

· Object Control 08 Argument/ Parameter

- Data space index if invalidate option 01 Parameter reference violation X X X

OA Authorization

· Implicit Locks 01 Unauthorized for operation X

Rebuild option 10 Damage Encountered

Data spaces locked implicitly LSRD 04 System object damage state X X X X

for the duration of the instruction. 44 Partial syst~m object damage X X X X

Data space index locked implicitly LEAR 12 Data Base Management

for the duration of the instruction. 04 Data space entry limit exceeded X

Reset option 07 Data space index invalid X

Data space locked implicitly LEN R OB Duplicate key value detected X

for the duration of the instruction. while building a unique data
space index

22 Data space index with selection X
routine build determination

Events 1A Lock State

01 Invalid lock state X
0002 Authorization

0101 Object authorization violation
1C Machine~ Dependent Exception

03 Machine storage limit exceeded X

0008 Data space index
04 Object storage limit exceeded X

0301 Data space index invalidated
20 Machine Support

02 Machine check X

03 Function check X
OOOC Machine resource

0201 Machine auxiliary storage threshold exceeded
22 Object Access

01 Object not found X X X

0010 Process
02 Object destroyed X X X

0701 Maximum processor time exceeded
03 Object suspended X X X

04 Object not eligible for· operation X
0801 Process storage limit exceeded 05 Object not available to process X

0016 Machine observation
24 Pointer Specification

01 Pointer does not .exist X X X
0101 Instruction reference 02 Pointer type invalid X X X

0017 Damage set
03 Pointer addressing invalid object X

0401 System object damage set
2A Program Creation

06 Invalid operand type X X X
0801 Partial system object damage set 07 Invalid operand attribute X X X

08 Invalid operand value range X X X

OA Invalid operand length X X

OC Invalid operand ODT reference X X X

2E Resource Control Limit

01 User profile storage limit X
exceeded

32 Scalar Specification

01 Scalar type invalid X

03 Scalar value invalid X X

Data Base Management Instructions 16-29

DE-ACTIVATE CURSOR (DEACTCR)

Op Code
(hex) Operand 1

0401 Cursor

Operand 1: System pointer.

Description: If the cursor is activated to this process,
the cursor is de-activated. All entries locked to this
cursor are unlocked. Each data space in use by this
cursor is taken out of use. All changed data spaces
charged by this cursor are forced to nonvolatile storage.
The data space index, if present, is taken out of use. A
data space index is forced to nonvolatile storage when
the forcing of a changed data space referencing the data
space index causes the data space index to no longer
reference any changed data spaces.

The cursor is then disconnected from the process and is
available to any process for activation. An event is
signaled for each data space in use by the cursor that
currently exceeds its compression threshold. If the
cursor is not active to this process, an exception is
signaled.

Authorization Required

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

• Implicit Locks

16-30

Implicit LEAR lock removed from the cursor
Implicit LSRD lock removed from the data space
Implicit LSRD lock removed from the data space
index
Implicit LSUP lock removed from data space for
each locked data space entry

Events

0002 Authorization
0101 Object authorization violation

0007 Data space
0301 Data space compression threshold exceeded

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing
01 Space addressing violation
02 Boundary alignment
03 Range

08 Argument/ Parameter
01 Parameter reference violation

OA Authorization
01 Unauthorized for operation

10 Damage Encountered
04 System object damage state
44 Partial system object damage

1A Lock State
01 Invalid lock state

1C Machine-Dependent Exception
03 Machine storage limit exceeded

20 Machine Support
02 Machine check
03 Function check

22 Object Access
01 Object not found
02 Object destroyed

04 Object not eligible for operation
05 Object not available to process

24 Pointer Specification
01 Pointer does not exist
02 Pointer type invalid
03 Pointer addressing invalid object

2A Program Creation
06 Invalid operand type
07 Invalid operand attribute
08 Invalid operand value range
OC Invalid operand ODT reference

Operand
1 Other

X
X
X

X

X

X X
X X

X

X

X
X

X
X X
X
X

X
X
X

X
X
X
X

DELETE DATA SPACE ENTRY (DELDSEN)

Op Code
(hex) Operand 1

0481 Cursor

Operand 1: System pointer.

Description: The first entry referenced by the cursor's
locked entry queue is deleted from the data space in
which it resides. The cursor must be activated to this
process and must have previously been set (with the
lock entry option) to the entry to be deleted. If no entry
is locked, an exception is signaled. The deletion of a
data space entry from the data space in which it resides
does not affect the ordinal numbers assigned to other
entries in the same data space. The keys associated.
with the data space entry that is deleted are removed
from all data space indexes over the data space. An
implicit LSUP (lock shared update) lock is applied
against a data space only when the number of currently
locked entries to this cursor from this data space goes
from 0 to 1. This LSUP lock is removed only when the
number of entries currently locked to this cursor from
this data space goes from 1 to O. If this instruction
encounters an abnormal condition, the entry is not
deleted or unlocked.

Authorization Required

• Delete
- Data space affected

• Retrieve
- Contexts referenced for address resolution

Data Base Management Instructions 16-31

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Implicit locks
Implicit LSUP lock removed from the affected data
space

Events

0002 Authorization
0101 Object authorization violation

0008 Data space index
0301 Data space index invalidated

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

16-32

Exceptions

Operand
Exception 1 Other

06 Addressing
01 Space addressing violation X
02 Boundary alignment X
03 Range X

08 Argument/Parameter
01 Parameter reference violation X

OA Authorization
01 Unauthorized for· operation X X

10 Damage Encountered
04 System object damage state X X
44 Partial system object damage X X

12 Data Base Management
00 No entries locked X

1A Lock State
01 Invalid lock state X

1C Machine- Dependent Exception
03 Machine storage limit exceeded X

20 Machine Support
02 Machine check X
03 Function check X

22 Object Access
01 Object not found X
02 Object destroyed X
03 Object suspended X
05 Object not available to process X

24 Pointer Specification
01 Pointer does not exist X
02 Pointer type invalid X
03 Pointer addressing invalid object X

2A Program Creation
06 Invalid operand type X
07 Invalid operand attribute X
08 Invalid operand value range X
OC Invalid operand ODT reference X

DESTROY CURSOR (DESCR)

Op Code
(hex) Operand 1

0429 Cursor

Operand 1: System pointer.

Description: A previously created cursor is destroyed,
and addressability to the cursor is deleted from the
context (if any) that addresses the cursor. The system
pointer identified by operand 1 is not modified by the
instruction and a subsequent reference to the cursor
through the pointer causes an object destroyed
exception to be signaled. If the cursor is currently
activated to this process, the cursor is de-activated
before being destroyed. See De-activate Cursor
instruction for a description of the de-activate function's
authorities, locks, and exceptions. If the cursor is active
but not to this process, an exception is signaled. If the
cursor is damaged and its state cannot be determined, it
is destroyed.

Authorization Required

• Object control
- Operand 1

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Object Control
- Operand 1

• Materialize
- Contexts referenced for address resolution

• Modify
Access group which contains operand 1
Context which addresses operand 1
User profile owning operand 1

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing
01 Space addressing violation
02 Boundary alignment

03 Range
08 Argument/ Parameter

01 Parameter reference violation

OA Authorization
01 Unauthorized for operation

10 Damage Encountered
04 System object damage state
44 Partial system object damage

1A Lock State
01 Invalid lock state

1C Machine- Dependent Exception
03 Machine storage limit exceeded

20 Machine Support
02 Machine check
03 Function check

22 Object Access
01 Object not found
02 Object destroyed
05 Object not available to process

24 Pointer Specification
01 Pointer does not exist
02 Pointer type invalid
03 Pointer addressing invalid object

2A Program Creation
06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OC Invalid operand ODT reference

Operand
1

X
X
X

X

X

X
X

X

X
X
X

X
X
X

X
X
X
X

Other

X
X

X

X
X

Data Base Management Instructions 16-33

DESTROY DATA SPACE (DESDS)

Op Code
(hex) Operand 1

0421 Data space

Operand 1: System pointer.

Description: The data space referenced by operand 1 is
removed from the system, and addressability to the data
space is deleted from the context (in any) that addresses
that data space.

The system pointer identified by operand 1 is not
modified by the instruction, and a subsequent reference
to the data space causes the object destroyed exception
to be signaled.

If the data space is currently in-use by this or other
processes in the system, an exception is signaled and
the data space is not destroyed. In-use means that a
cursor is active over the data space, or that the Create
Data Space Index or Data Base Maintenance
instructions are currently using the data space.

If a data space index refers to this data space, an
exception is signaled, and the object is not destroyed.

If the data space is damaged so that its state or the
existence of data space indexes referencing it cannot be
determined, the data space is destroyed.

Authorization Required

• Object control
- Operand 1

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

• Object Control
- Operand 1

• Modify
Context which addresses operand 1

- User profile owning operand 1

16-34

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operand
Exception 1 Other

06 Addressing
01 Space addressing violation X
02 Boundary alignment X
03 Range X

08 Argument/ Parameter
01 Parameter reference violation X

OA Authorization
01 Unauthorized for operation X

10 Damage Encountered
04 System· object damage state X X
44 Partial system object damage X X

1A Lock State
01 Invalid lock state X

1C Machine-Dependent Exception
03 Machine storage limit exceeded X

20 Machine Support
02 Machine check X
03 Function check X

22 Object Access
01 Object not found X
02 Object destroyed X
06 Object not eligible for destruction X

24 Pointer Specification
01 Pointer does not exist X
02 Pointer type invalid X
03 Pointer addressing invalid object X

2A Program Creation
06 Invalid operand type X
07 Invalid operand attribute X
08 Invalid operand value range X
OC Invalid operand ODT reference X

DESTROY DATA SPACE INDEX (DESDSINX)

Op Code
(hex) Operand 1

0425 Data space
index

Operand 1: System pointer.

Description: The data space index referenced by
operand 1 is removed from the machine, and
addressability to the data space index is deleted from
the context (if any) that addresses the data space index.
The system pointer identified by operand 1 is not
modified by the instruction, and a subsequent reference
to the data space index causes the object destroyed
exception to be signaled.

If the data space index is currently in-use by this or
other processes in the system, an exception is signaled.
In-use means that a cursor is active over the data space
index or that some data base maintenance operation is
in progress against this object.

If the data space index is damaged and its state cannot
be determined, it is destroyed.

Authorization Required

• Object Control
- Operand 1

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Object Control
- Operand 1

• Modify
Context which addresses operand 1

- User profile owning operand 1

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operand
Exception 1

06 Addressing
01 Space addressing violation X

02 Boundary alignment X

03 Range X

08 Argument/ Parameter
01 Parameter reference violation

OA Authorization
01 Unauthorized for operation X

10 Damage Encountered
04 System object damage state X

44 Partial system object damage X

1A Lock State
01 Invalid lock state X

1C M achine- Dependent Exception
03 Machine storage limit exceeded

20 Machine Support
02 Machine check
03 Function check

22 Object Access
01 Object not found X

02 Object destroyed X
06 Object not eligible for destruction X

24 Pointer Specification
01 Pointer does not exist X

02 Pointer type invalid X

03 Pointer addressing invalid object X
2A Program Creation

06 Invalid operand type X

07 Invalid operand attribute X

08 Invalid operand value range X

OC Invalid operand ODT reference X

Other

X

X
X

X

X

X
X

Data Base Management Instructions 16-35

ENSURE DATA SPACE ENTRIES (ENSDSEN)

Op Code
(hex) Operand 1

0499 Cursor

Operand 1: System pointer.

Description: The instruction ensures that all changes to
data space entries that have resulted from operations
involving the identified cursor since it was activated to

this process are forced to nonvolatile storage. The
referenced cursor must have been activated to this
process. At the completion of the instruction, all data
base changes (entries that were inserted, updated, or
deleted) made through this cursor are recorded on

nonvolatile storage. The instruction does not directly
ensure the data space indexes that reference the data
space. Therefore, on a system failure, the indexes may
have to be rebuilt even though the Ensure Data Space
Entries instruction was issued. If, however, the ensuring

of a data space. results in no unensured data spaces
being referenced by a data space index, then the data

space index is also ensured to reduce the chance of it
being invalidated.

Authorization Required

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

16-36

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressin~

01 Space addressing violation
02 Boundary alignment
03 Range

08 Argument/ Parameter
01 Parameter reference violation

OA Authorization
01 Unauthorized for operation

10 Damage Encountered
04 System object damage state
44 Partial system object damage

1A Lock State
01 Invalid lock state

1C Machine-Dependent Exception
03 Machine storage limit exceeded

20 Machine Support
02 Machine check
03 Function check

22 Object Access
01 Object not found
02 Object destroyed
03 Object suspended
05 Object not available for process

24 Pointer Specification
01 Pointer does not exist
02 Pointer type invalid
03 Pointer addressing invalid object

2A Program Creation
06 Invalid operand type
07 I nvalid operand attribute
08 Invalid operand value range
OC Invalid operand ODT reference

Operand
1

X
X
X

X

X

X
X

X

X
X
X
X

X
X
X

X
X
X
X

Other

X

X

X

X

X

X

X

INSERT DATA SPACE ENTRY (INSDSEN)

Op Code
(hex)

Operand
1

Cursor

Operand
2

Option
list

Operand 1: System pointer.

Operand
3

Interface
buffer

Operand 2: Character(7) variable scalar (fixed-length).

Operand 3: Space pointer.

Description: Data values in the interface buffer
addressed by the operand 3 space pointer and control
values designated the operand 2-option list are used to
create and insert a new data space entry into the data
space identified by the operand 1 cursor (which must be
activated to this process). The order of the data fields in
the interface buffer is assumed to be the same order as
defined in the Create Cursor instruction input mapping
template for that particular data space.

The ordinal entry number assigned to the new data
space entry is returned in the option list upon
completion of this instruction. All valid data space
indexes addressing the data space are updated. A check
for duplicate keys is made on data space indexes that
have the unique attribute. If no duplicate keys are
found, all the indexes are updated. If a duplicate key is
found, no indexes are updated, and the entry is not
inserted into the data space. For any field not specified
in the cursor's input mapping template, the
corresponding value from the data space's default
values entry is used.

Any data sensitive mapping error encountered during the
presenting of the new entry to the user exit routine,
associated with a select/ omit data space index that
references the data space, causes the data space index
to be invalidated and an event is signaled.

The option list has the following format:

• Data Space requested

• Ordinal entry number assigned

• Control attributes
Forced write option

- Reserved (binary 0)

Bin(2)

Bin(4*)

Char(1)
Bit 0
Bits 1-7

Note: The value of the entry shown here with an
asterisk (*) is returned by this instruction.

The data space requested field must always be supplied
and indicates the data space into which the entry is to
be inserted. The value is the data space number which
corresponds to the data space in the data space list
identified by Create Cursor or Activate Cursor
instructions.

The forced write option bit causes the entry to be
written immediately to nonvolatile storage.

If an attempt is made to insert an entry that would
cause the maximum number of entries limit to be
exceeded, the data space entry limit exceeded exception
is signaled, and the entry is not inserted.

The current addressing of an entry by the cursor for
retrieving, updating, or deleting is unaffected by the
intervening execution of the Insert Data Space Entry
instruction.

Data Base Management Instructions 16-37

Authorization Required Exceptions

· Insert Operands
- Data space affected Exception 1 2 3 Other

· Retrieve 06 Addressing

- Contexts referenced for address resolution 01 Space addressing violation X X X
02 Boundary alignment X X X
03 Range X X X

Lock Enforcement 08 Argument/ Parameter

01 Parameter reference violation X X X

· Materialize OA Authorization

- Contexts referenced for address resolution 01 Unauthorized for operation X X
10 Damage Encountered

· Modify 04 System object damage state X X X

- Data space affected 44 Partial system object damage X X X
12 Data Base Management

01 Conversion mapping error X

Events 04 Data space entry limit exceeded X
09 Duplicate key value in existing X

0002 Authorization data space entry

0101 Object authorization violation 21 Unable to maintain unique key X
DSI

0008 Data space index
23 Data space index select routine X

failure
0301 Data space index invalidated 1A Lock State

01 Invalid lock state X X
OOOC Machine resource 1C Machine- Dependent Exception

0201 Machine auxiliary storage threshold exceeded 03 Machine storage limit exceeded X

0010 Process
04 Object storage limit exceeded X

20 Machine Support
0701 Maximum processor time exceeded 02 Machine check X
0801 Process storage limit exceeded 03 Function check X

22 Object Access
0016 Machine observation 01 Object not found X X X

0101 Instruction reference 02 Object destroyed X X X X

0017 Damage set
03 Object suspended X X X
05 Object not available to process X

0401 System object damage set 24 Pointer Specification
0801 Partial system object damage set 01 Pointer does not exist X X X

02 Pointer type invalid X X X
03 Pointer addressing invalid object X

2A Program Creation

06 Invalid operand type X X X
07 Invalid operand attribute X X X
08 Invalid operand value range X X X
-OA Invalid operand length X
OC Invalid operand ODT reference X X X

2E Resource Control Limit

01 User profile storage limit X
exceeded

32 Scalar Specification

01 Scalar type invalid X

02 Scalar attributes invalid X
03 Scalar value invalid X

16-38

INSERT SEQUENTIAL DATA SPACE ENTRIES
(lNSSDSE)

Op Code
(hex)

0487

Operand
1

Cursor

Operand
2

Option
template

Operand 1: System pointer.

Operand 2: Space pointer.

Operand 3: Space pointer.

Operand
3

Interface
buffer

Description: Information contained in the interface buffer
addressed by the operand 3 space pointer is used to
create and insert new data space entries into the data
space identified by the operand 1· cursor (which must be
activated to this process) and the operand 2 option
template. The order of the fields in each entry in the
interface buffer is assumed to be the same order as
defined in the Create Cursor instruction input mapping
template for that particular data space.

Each entry (the total number to be inserted is identified
in the option template) is assumed to begin in the first
position of the next interface buffer entry (the length of
each entry in the buffer is defined in the option
template).

All data space indexes addressing the data space are
updated accordingly.

The option template has the following format:

· Data space requested Bin(2)

· Control attributes Char(2)
Forced write option Bit 0

- Reserved Bits 1-15

· Buffer entry length Bin(2)

· Number of entries Bin(2)

· Ordinal entry number Bin(4)*

· Interface buffer position Bin(2)*

Note: The value associated with each entry shown here
with an asterisk (*) is modified by this instruction.

The data space requested field must always be supplied
and indicates the data space into which the entries are
to be inserted. The data space number must correspond
to the position this data space occupied .in the data
space list identified by the Create Cursor or the Activate
Cursor instructions.

A forced write option value of 1 causes the new entries
to be immediately written to nonvolatile storage.

The buffer entry length field defines the starting position
of each entry relative to the beginning of the previous
entry in the interface buffer. The first entry always
begins in position 0 of the interface buffer. If the buffer
entry length was 200, for example, the second buffer
entry would begin in position 200, the third in position
400, and so on. The data space entry is created by
performing the operations / conversions defined in the
input mapping template for the designated data space in
the Create Cursor instruction. Mapping begins with the
first position of the buffer entry and may continue into
other buffer entries. The buffer entry length must be
greater than or equal to O.

The number of entries field indicates the total number of
entries to be mapped from the interface buffer to the
data space. This field must have a value greater than O.

The ordinal entry number assigned to the last entry
inserted into the data space is returned in the option list
upon successful completion of this instruction.

The interface buffer position (identifying the entry in the
interface buffer that caused certain exception conditions)
are returned when those exceptions are signaled. A
value of 1 indicates the first entry, a value of 2 indicates
the second, and so on. A value of 0 indicates that there
were no exceptions.

A check for duplicate keys is made on data space
indexes (over the data space) that have the unique
attribute for each entry in the interface buffer. If a
duplicate is found (duplicates may occur among entries
within the interface buffer), the insert fails and none of
the entries are inserted. The interface buffer position is
updated to indicate which entry in the interface buffer
was a duplicate key. No attempts are made to find
subsequent errors. If no duplicate keys are found, all of
the indexes are updated for each entry. Conversion
mapping errors result in similar instruction completion.

Data Base Management Instructions 16-39

Any data sensitive mapping error that is encountered
during the presenting of one of the new entries to the
user exit routine (associated with a select/omit data
space index referencing the data space) causes the data
space index to be invalidated and an event to be
signaled.

If the insertion of one of the entries attempts to cause
the maximum number of entries to be exceeded, the
data space entry limit exceeded exception is signaled
and none of the entries are inserted.

For any field not specified in the cursor's input mapping
template, the corresponding value from the data spaee's
default values entry is used.

The current addressing of any entry by the cursor for
retrieval, updating, or deletion is unaffected by the
intervening execution of this instruction.

Authorization Required

• Insert
- The data space affected

• Retrieve
- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

• Modify
- Data space affected

16-40

Events

0002 Authorization
0101 Authorization violation

0008 Data space index
0301 Data space index invalidated

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0000 Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions MATERIALIZE CURSOR ATTRIBUTES (MATCRAT)

Operands Op Code Operand Operand Operand
Exception 1 2 3 Other (hex) 1 2 3

06 Addressing 043B Receiver Cursor Materialization
01 Space addressing violation X X X options

02 Boundary alignment X X X

03 Range X X X Operand 1: Space pointer.

08 Argument/ Parameter

01 Parameter reference violation X X X
Operand 2: System pointer.

OA Authorization

01 Unauthorized for operation X
Operand 3: Character(1) scalar (fixed-length).

10 Damage Encountered

04 System object damage state X X X X

44 Partial system object damage X X X X
Description: The operational statistics or the creation

12 Data Base Management
template associated with the cursor identified by the

01 Conversion mapping error X
operand 2 system pointer is materialized into the space

04 Data space entry limit exceeded X
identified by operand 1. The materialization options

09 Duplicate key value in existing X
specified by operand 3 determine the information to be

data space entry
materialized: Hex 00 signifies the creation template, and

1A Lock State
hex 01 signifies the statistics.

01 Invalid lock state X X

1C Machine-Dependent Exception
If statistics are requested and the cursor is not activated

03 Machine storage limit exceeded X
to the current process, an exception is signaled. If

04 Object storage limit exceeded X
statistics are requested, the cursor is activated to the

20 Machine Support
current process, and the cursor is not set, then only the

02 Machine check X
materialization length and cursor attributes portion of the

03 Function check X
statistics are materialized.

22 Object Access

01 Object not found X X X
If the creation template is specified, a similar template is

02 Object destroyed X X X X
materialized. (See the Create Cursor instruction, earlier

03 Object suspended X X X
in this chapter, for a definition of the template.)

05 Object not available to process X

24 Pointer Specification
The values in the new template are as specified at the

01 Pointer does not exist X X X
creation of the cursor except in the following cases:

02 Pointer type invalid X X X

03 Pointer addressing invalid ~bject X
. Current values are provided for the object

2A Program Creation
identification, initial context, context, and size of

06 Invalid operand type X X X
associated space.

07 Invalid operand attribute X X X

08 Invalid operand value range X X X
. The pointers specifying the various templates may

OA Invalid operand length X
differ because they are built contiguously in the

OC Invalid operand ODT reference X X X
receiver operand 1.

2E Resource Control Limit

01 User profile storage limit X
exceeded

38 Template Specification

01 Template value invalid X

Data Base Management Instructions 16-41

The format of the materialization output for statistics is
as follows:

• Materialization length
-; Number of bytes provided

by the user
Number of bytes that can be
materialized

• Cursor attributes
Cursor status
Reserved (binary 0)
Cursor addressability set

o = Cursor not set
1 = Cursor set

Char(8)
Bin(4)

Bin(4)

Char(10)
Char(2)
Bits 0-14
Bit 15

Number of locked entries referenced Bin(2)
by locked entry queue
Data space number of the first entry Bin(2)
referenced by the locked entry queue
Ordinal entry number of the first Bin(4)
entry referenced by the locked entry
queue

• Option list
Length of option list
Rule option
Search attributes
Control attributes
Key field count
Relative/ ordinal number
Data space key format
Data space number
Ordinal entry number
Number of data spaces in the
following restricted search list
Data space included in the
restricted search list (1 to 32);
repeated for each data space

• Data space entry key

16-42

Char(*)
Bin(4)
Char(l)
Char(l)
Char(l)
Char(l)
Bin(4)
Bin(2)
Bin(2)
Bin(4)
Bin(2)

Bin(2)

Char(*)

The cursor set attribute indicates that the cursor
currently addresses an entry for retrieval. The values in
the option list are those used in the last successful Set
Cursor instruction operation except key field count,
which is the number of fields in the materialized key. A
key count of 0 indicates a key is not materialized. The
restricted search list materialized does not contain
duplicate occurrences of the same data space; the
entries are in ascending order.

The data space entry ·key is the key associated with the
entry addressed for retrieval by the cursor. This key is
for the entry indicated by the data space number and
ordinal entry number materialized in the option list. A
key is materialized only if the cursor is over a data space
index, every key field was specified in the cursor output
mapping template for that data space, retrieve authority
for that data space is satisfied, and the entry is not
deleted from the data space or omitted from the data
space index. The fields within the key are ordered as
specified in the data space key specification for the data
space in the Create Data Space Index instruction; the
fields have the same attributes as specified in tn~ output
mapping template in the Create Cursor instruction. Fork
characters are not in the materialized key.

The first 8 bytes of the materialization output in both
forms of the materialization identify the total number of
bytes provided and the number of bytes that can be
materialized.

If fewer than 8 bytes are available in the space
identified by the receiver operand, a materialization
length exception is signaled. The instruction materializes
as many bytes as can be contained in the receiver's
space. If the space of the receiver is greater than that
required to contain the materialization, the excess bytes
are unchanged. When a key is materialized, additional
bytes are set to binary 0 if the key is shorter than the
longest key defined by the data space index and the
cursor output mapping template.

No exceptions (other than the materialization length
exception) are signaled when the receiver contains
insufficient space for the materialization. If the cursor
creation template is specified, the receiver must be
aligned on a multiple of 16 bytes.

Authorization Required Exceptions

· Retrieve Operands
Data space referenced, if a key is materialized Exception 1 2 3 Other

- Contexts referenced for address resolution
06 Addressing

· Operational 01 Space addressing violation X X X

- Operand 2 02 Boundary alignment X X

03 Range X X X

08 Argument/ Parameter

Lock Enforcennent 01 Parameter reference violation X X X

OA Authorization

· Materialize 01 Unauthorized for operation X

Contexts referenced for address resolution 10 Damage Encountered

- Operand 2 04 System object damage state X X X X

44 Partial system object damage X X X X

12 Data Base Management

Events 02 Key mapping error X

1A Lock State

0002 Authorization 01 Invalid lock state X

0101 Object authorization violation 1C Machine-Dependent Exception

03 Machine storage limit exceeded X

0008 Data space index 20 Machine Support

0301 Data space index invalidated 02 Machine check X

03 Function check X

OOOC Machine resource 22 Object Access

0201 Machine auxiliary storage threshold exceeded 01 Object not found X X X

02 Object destroyed X X X X

0010 Process 03 Object suspended X X X

0701 Maximum processor time exceeded 04 Object not eligible for operation X

0801 Process storage limit exceeded 05 Object not available to p'rocess X

24 Pointer Specification

0016 Machine observation 01 Pointer does not exist X X X

0101 Instruction reference 02 Pointer type invalid X X X

03 Pointer addressing· invalid object X

0017 Damage set 2A Program Creation

0401 System object damage set 06 Invalid operand type X X X

0801 Partial system object damage set 07 Invalid operand attribute X X X

08 Invalid operand value range X X X

OA Invalid operand length X

OC Invalid operand ODT reference X X X

32 Scalar Specification

03 Scalar value invalid X

38 Template Specification

03 Materialization length exception X

Data Base Management Instructions 16-43

MATERIALIZE DATA SPACE ATTRIBUTES
(MATDSAT)

Op Code
(hex)

0437

Operand
1

Receiver

Operand
2

Data
space

Operand 1: Space pointer.

Operand 2: System pointer.

Operand
3

Materialization
options

Operand 3: Character(1) scalar (fixed-length).

Description: The operational statistics or the creation
template associated with the data space identified by
the operand 2 system pointer is materialized into the
space identified by operand 1. The materialization
options specified by operand 3 determine the
information to be materialized: Hex 00 signifies the
creation template, and hex 01 signifies the operational
statistics.

If the creation template is requested, the instruction
materializes a copy of the template as defined in the
Create Data Space instruction. Values in the creation
template are as specified at the creation of the data
space, with the following exceptions. The object
identification, initial context, context, size of the
associated space, contiguous return, unit return, and the
maximum number of entries contain the current values.
The entry definition table and default values entry are
contiguous in the space provided. If no default values
entry was provided in the creation template, the
machine defaults are materialized.

16-44

If statistics are requested, the materialization has the
following format:

• Materialization length
Number of bytes provided by
the user
Number of bytes that can be
materialized

• N umber of entries

• Number of deleted entries

• Size of the data space

• Number of distinct data space
indexes over the data space

• Reserved (binary 0)

• Data space index pointer
(repeated for each distinct
data space index)

Char(8)
Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(4)

Bin(2)

Char(10)

System
pointer

The first 8 bytes of the materialization output in both
materialization options identify the total number of bytes
provided by the user for materialization and the total
number of bytes available to be materialized. If fewer
than 8 bytes are available in the space identified by the
receiver operand, a materialization length exception is
signaled. The instruction materializes as many bytes as
can be contained in the receiver's space. If the space of
the receiver is greater than that required to contain the
information requested for materialization, the excess
bytes are unchanged. No exceptions (other than the
materialization length exception described previously) are
signaled in the event that the receiver contains
insufficient space for the materialization. The receiver
must be aligned on a multiple of 16 bytes.

The number of entries is the number of retrievable
entries in the data space. This number is the number of
entries that have been inserted minus the number of
entries that are deleted.

Deleted entries occupy space in a data space, and the
number of deleted entries provides an indication of how
much space they occupy in this data space.

Exceptions

Exception

The number of entries and the number of deleted entries
returned by this instruction may not be accurate if 06

system failures occur during the data space update
functions (Delete Data Space Entry, or Update Data
Space Entry instructions). These values are used when
the data space entry limit exceeded exception or the 08

data space compression threshold exceeded event is
signaled. OA

The size of the data space indicates the total space 10

taken up on auxiliary storage by the data space.

A system pointer is provided for each distinct data 1A

space index addressing the specified data space.

Authorization Required

• Operational
- Operand 2

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
Operand 2
Contexts referenced for address
resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

1C

20

22

24

2A

32

38

Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

Arg ument/ Parameter

01 Parameter reference violation

Authorization

01 Unauthorized for operation

Damage Encountered

04 System object damage state

44 Partial system object damage

Lock State

01 Invalid lock state

Machine- Dependent Exception

03 Machine storage limit exceeded

Machine Support

02 Machine check

03 Function check

Object Access

01 Object not found

02 Object destroyed

03 Object suspended

Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object

Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

Scalar Specification

03 Scalar value invalid

Template Specification

03 Materialization length exception

Operands
1 2 3 Other

X X X

X X

X X X

X X X

X

X X X X

X X X X

X

X

X

X

X X X

X X X

X X X

X X X

X X X

X

X X X

X X X

X X X

X

X X X

X

X

Data Base Management Instructions 16-45

M~TERIALIZE DATA SPACE INDEX ATTRIBUTES
(MATDSIAT)

Op Code Operand Operand Operand
(hex) 1 2 3

0433 Receiver Data Materialization
space options
index

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 3: Character(1) scalar (fixed-length).

Description: The operational statistics or the creation
template associated with the data space index identified
by the operand 2 system pointer is materialized into the
space identified by operand 1. The materialization
options specified by operand 3 determine the
information to be materialized: Hex 00 signifies the
creation template; hex 01 signifies the operational
statistics without the resetting of the time stamp and
counts; and hex 02 signifies the operational statistics
with the resetting of the time stamp and counts.

If the creation template is requested, the instruction
materializes a copy of the creation templates as defined
in the Create Data Space Index instruction for the data
space index. Values in the template are as specified at
the creation of the data space index, with the following
exceptions. The object identification, initial context,
context, size of the associated space, and the unit return
bit contain current values. The pointers that specify the
various templates may be different because they are
built contiguously in the space provided. The pointer to'
the selection routine is set to 16 bytes of binary 0, and
a space pointer to the selection routine program
template is materialized. The program template that is
materialized has the following special values set:

• Number of bytes available for materialization is O.

• Initial context is binary O.

• Access group is binary O.

• Replace option is binary O.

• Size of space is set to O.

• Context pointer is null.

• Access group pointer is null.

16-46

If data space index operational statistics are requested,
the materialization has the following format:

• Materialization length
Number of bytes provided
by the user
Number of bytes that can be
materialized

• Size of the data space index

• Time stamp of this materialization

• Time stamp acquired from the data
space index

• Data space index status
Reserved (binary 0)
Data space index status
o Valid
1 = Invalid

• Data space status (repeated for each
data space addressed by the index)

Number of entries addressed by
the index
Number of entries not addressed
by the index
Number of accesses to the
data space using this index

Char(8)
Bin(4)'

Bin(4)

Bin(4)

Char(8)

Char(8)

Char(2)
Bits 0-14
Bit 15

Char(12)

Bin(4)

Bin(4)

Bin(4)

The size of the data space index indicates the total
space occupied on auxiliary storage by the data space
index. The time stamp of this materialization is the
current machine time stamp. The current time stamp is
also stored in the data space index if materialization
option hex 02 is specified. The time stamp from the
data space index is the time stamp stored in the object
at creation or at the last materialization with option hex
02 on this data space index. Time stamps are 64-bit
unsigned binary values. Bit 41 equals 1024
microseconds.

The data space index invalid status indicates that the
data space index needs to be rebuilt before it can be
used. If the data space index is invalid, the data space
status values are O.

For each data space addressed by the data space index,
the data space status indicates the number of entries in
the data space index and the number of accesses to the
data space index.

The number of entries for the data space does not
include entries that have been omitted by the data space
index selection routine. The number of entries not
addressed by the index indicates the number of entries
omitted by the selection routine. If this data space index
has been created with the delayed maintenance option,
then these numbers reflect the statistics at the time of
the most recent cursor activation over the data space
index or at the time of the most recent rebuild of the
data space index.

The number of accesses to the data space is the
number of times that the data space index (operand 2)
was employed in order to access an entry residing in the
specified data space. A materialization option of hex 02
resets this number to O.

The order of the data space status entries in the
materialization output is the same as the order in which
the data spaces were defined when the index was
created.

The first 8 bytes of the materialization output in the
materialization options identify the total number of bytes
provided by the user for materialization and the total
number of bytes available to be materialized. If fewer
than 8 bytes are available in the space identified by the
receiver operand, a materialization length exception is
signaled. The instruction materializes as many bytes as
can be contained in the receiver's space. If the space of
the receiver is greater than that required to contain the
information requested for materialization, the excess
bytes are unchanged. No exceptions (other than the
materialized length exception) are signaled in the event
that the receiver contains insufficient space for the
materialization. If the creation template is specified, the
receiver must be 16-byte aligned.

Authorization Required

• Retrieve
- Contexts referenced for address resolution

• Operational
- Operand 2

Lock Enforcement

• Materialize
Operand 2

- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Data Base Management Instructions 16-47

Exceptions RELEASE DATA SPACE ENTRIES (RLSDSEN)

Operands Op Code Operand Operand
Exception 1 2 3 Other (hex) 1 2

06 Addressing 048E Cursor Release
01 Space addressing violation X X X options

02 Boundary alignment X X

03 Range X X X Operand 1: System pointer.

08 Argument/ Parameter

01 Parameter reference violation X X X Operand 2: Character(1) scalar (fixed-length).

OA Authorization

01 Unauthorized for operation X

10 Damage Encountered Description: The instruction releases either the first data

04 System object damage state X X X X space ef1try or all data space entries currently locked to

44 Partial system object damage X X X X the process through the cursor. Data space entries are

1A Lock State locked to a process, one at a time, through applications

01 Invalid lock state X of the Set Cursor instruction specifying a lock entry

1C Machine-Dependent Exception option. They are unlocked during the updating or the

03 Machine storage limit exceeded X deleting of the entries through the Update Data Space

20 Machine Support Entry or Delete Data Space Entry instructions.

02 Machine check X

03 Function check X If they are to be unlocked without any change having

22 Object Access been made, the Release Data Space Entries instruction

01 Object not found X X X is used. This instruction specifies the cursor (which

02 Object destroyed X X X must be activated to this process) through which they

03 Object suspended X X X were locked.

24 Pointer Specification

01 Pointer does not exist X X X If the release option field has a value of hex 00, all data

02 Pointer type invalid X X X space entries currently identified by the locked entry

03 Pointer addressing invalid object X queue for this cursor are removed from the queue and

2A Program Creation unlocked; the respective LSU P (lock shared update)

06 Invalid operand type X X X implicit locks are removed from the data spaces. If the

07 Invalid operand attribute X X X option fi~ld has a value of hex 01, only the first entry in

08 Invalid operand value range X X X the queue (the entry that has been locked the longest) is

OA Invalid operand length X X unlocked and removed from the queue; the implicit'

OC Invalid operand ODT reference X X X LSUP lock is removed from the data space. No

32 Scalar Specification exception is signaled if there are no entries currently in

03 Scalar value invalid X the cursor's locked entry queue.

38 Template Specification

03 Materialization length exception X

16-48

Authorization Required Exceptions

· Retrieve Operands
- Contexts referenced for address resolution Exception 1 2 Other

06 Addressing

Lock Enforcement 01 Space addressing violation X X

02 Boundary alignment X

· Materialize 03 Range X X

- Contexts referenced for address resolutior 08 Argument/ Parameter

01 Parameter reference violation X X

· Implicit locks OA Authorization

Implicit LSUP locks are removed from the affected 01 Unauthorized for operation X

data spaces 10 Damage Encountered

04 System object damage state X X X

44 Partial system object damage X X X

Events 1A Lock State

01 Invalid lock state X

0002 Authorization 1C Machine-Dependent Exception

0101 Object authorization violation 03 Machine storage limit exceeded X

20 Machine Support

OOOC Machine resource 02 Machine check X

0201 Machine auxiliary storage threshold exceeded 03 Function check X

22 Object Access

0010 Process 01 Object not found X X

0701 Maximum processor time exceeded 02 Object destroyed X X

0801 Process storage limit exceeded 03 Object suspended X X

05 Object not available to process X

0016 Machine observation 24 Pointer Specification

0101 Instruction reference 01 Pointer does not exist X X

02 Pointer type invalid X X

0017 Damage set 03 Pointer addressing invalid object X

0401 System object damage set 2A Program Creation

0801 Partial system object damage set 06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X

OC Invalid operand ODT reference X X

32 Scalar Specification

03 Scalar value invalid X

Data Base Management Instructions 16-49

RETRIEVE DATA SPACE ENTRY (RETDSEN)

Op Code Operand Operand
(hex) 1 2

04BA Interface Cursor
buffer

Operand 1: Space pointer.

Operand 2: System pointer.

Description: The data space entry addressed by the
most recent Set Cursor instruction is retrieved.
Addressability to the entry is provided by the operand 2
cursor, which must be activated to the current process.
The fields are presented in the interface buffer,
identified by the operand 1· space pointer, in the format
and sequence established by the output mapping
template specifications provided in the Create Cursor
instruction. The entry retrieved is the entry addressed by
the most recent successful Set Cursor instruction using
the operand 2 cursor and not necessarily the entry at
the head of the locked entry queue associated with this
cursor.

If a key was used directly or indirectly by the Set Cursor
instruction in addressing the entry (that is, the cursor is
over a data space index and a set cursor option other
than relative or ordinal was used) and that key has
changed since the Set Cursor instruction, an exception is
signaled, and the entry is not retrieved. If the Set
Cursor instruction locked the entry and no intervening
release, update, or delete has been performed against
this cursor, no such key changes are possible.

16-50

Authorization Required

• Retrieve
Data space affected

- Contexts referenced for address resolution

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

0008 Data space index
0301 Data space index invalidated

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/Parameter

01 Parameter reference violation

OA Authorization

01 Unauthorized for operation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

12 Data Base Management

01 Conversion mapping error

03 Cursor not set

06 Data space entry not found

07 Data space index invalid

17 Key changed since set cursor

1 A Lock State

01 Invalid lock state

1 C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

05 Object not available to process

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

Operands
1 2 Other

x X
X X
X X

X X

x X
X X

X

X

X X
X X
X X

X

X X
X X

X

X

X

X

X
X

X

X

X
X

X

03 Pointer addressing invalid object X

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OC Invalid operand ODT reference

X X
X X
X X
X X

RETRIEVE SEQUENTIAL DATA SPACE ENTRIES
(RETSDSE)

Op Code
(hex)

048B

Operand
1

Interlace
buffer

Operand
2

Cursor

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 3: Space pointer.

Operand
3

Option
template

Description: This instruction retrieves multiple sequential
data space entries based on the current position of the
cursor identified in operand 2 and places them, in
sequence, in the space identified in operand 1 according
to the field mapping specifications defined at the
creation of the cursor. The cursor is repositioned during
the operation. The operand 2 cursor is modified to
address the next sequential entry referenced through the
underlying data space(s) or data space index. The data
space entry addressed by the cursor is then placed in
the interface buffer (operand 1) in the manner described
by the output mapping template specifications defined
during the Create Cursor instruction. These operations
are repeated until the number of entries requested in the
operand 3 option template have been placed in the
interface buffer. The entries are in the interface buffer in
the exact order that they were retrieved. Each entry in
the interface buffer has up to three separate pieces of
data that consist of:

• The data space number followed by the ordinal entry
number of the data space entry

• The key of the data space entry (optional)

• The mapped data space entry

At the completion of the instruction, the cursor
addresses the last data space entry retrieved by the
operation (except in key mapping exception conditions).

Data Base Management Instructions 16-51

The format of the option template referenced by
operand 3 is as follows:

• Control options
Reserved (binary 0)
Materialize data space and
ordinal number
Materialize key
Reserved (binary 0' s)

• Buffer entry length

• Data space and ordinal entry position

• Key position

• Data space entry position

• Number of entries requested

• Operation status
Key not returned indicator
Exception encountered indicator
Cursor not positioned indicator
Reserved (binary 0)

• I nterface buffer position

• Number of data spaces in
restricted search list

• Data space to be included in a
restricted search list (0 to n)

Char(2)
Bit 0
Bit 1

Bit 2
Bits 3-15

Bin(2)

Bin(2)

Bin(2)

Bin(2)

Bin(2)

Char(2)
Bit 0*
Bit 1*
Bit 2
Bits 3-15

Bin(2)

Bin(2)

Bin(2)

A value of binary 1 in the materialize data space and
ordinal number field results in the return of the data
space number and ordinal entry number in the interface
buffer for each entry. The position of these fields in the
buffer entry is defined by the data space and ordinal
entry position field. A value of binary 0 in the
materialize data space and ordinal number fields results
in the data space and ordinal entry number not being
placed in the interface buffer entry and the data space
and ordinal entry position field is ignored.

A materialize key value of binary 1 indicates that the key
of each entry retrieved should be returned in the
interface buffer. The position of the key in the interface
buffer is defined by the key position field. A value of
binary 0 in the materialize key field will result in the key
not being mapped into the interface buffer and the key
position field being ignored.

16-52

The buffer entry length field defines the length each
entry occupies in the interface buffer. The format of
each entry in the buffer is defined' by the. option
template. The start of the first buffer entry is the first
byte of the interface buffer. Each successive entry in
the buffer begins on the byte defined by the buffer
template length. For example, if the buffer entry length
is 200, the second entry starts in position 201 of the
interface buffer, the third entry in position 401, and so
on. The buffer entry length field must be greater than O.
Ea'ch entry is created as follows:

• If the materialize data space and ordinal number field
is binary 1, the 2-byte data space number is placed
into the buffer entry beginning in the position
designated by the data space and ordinal entry
position field. This field, if specified, must contain a
value greater than or equal to 0 and less than the
buffer entry length. The 4-byte ordinal entry number
of the data space entry is returned immediately
following the data space number in the interface
buffer.

• If the materialize key field has a value of binary 1, the
key for the data space entry is returned in the. buffer
entry beginning in the position designated by the key
positi.on field. This field, if specified, must contain a
value greater than or equal to 0 and less than the
buffer entry length.

• The data space entry is then presented, as defined by
the field mapping specifications defined at the
creation of the cursor, beginning in the first position
of the buffer entry defined by the data space entry
position field. This field must be provided and must
have a value greater than or equal to 0 and less than
the buffer entry length.

Note: If the remaining area in the buffer entry is not
large enough for the entry to be placed in the interface
buffer, the entry is mapped into the position immediately
following the' buffer entry. The data space entry may be
placed over the area in which the return fields were
specified.

The number of, entries requested field contains the
number of entries that are to be retrieved and presented
in the interface buffer. This field must contain a positive
value that is greater than O.

A key not returned value of binary 1 indicates that even
though a return of the key was requested, the system
was unable to provide the key in every returned entry.
See the Set Cursor instruction for the conditions which
can cause this field to be set to binary 1.

If the cursor not positioned indicator is returned with a
value of binary 0, then the cursor is set to the last
successfully retrieved entry that has been placed in the
interface buffer and has been indicated as returned in
the interface buffer position field. If the cursor not
positioned indicator is returned with a value of binary 1,
then the cursor is set to the next sequential entry, but
that entry is not returned in the interface buffer and the
interface buffer position field does not reflect the data
space entry to which the cursor is now set.

An exception encountered return value of binary 1
indicates an exception was encountered while implicitly
setting the cursor or retrieving the next sequential data
space entry. The following exceptions, listed with the
resultant cursor positioning, results in the indicator being
set to binary 1 :

• 1201-Conversion mapping error

The data space and ordinal entry number, if
requested, and the key, if requested, contain values
which identify the data space entry the cursor is set
to, but the entry has not been returned in the buffer.

• 1202-Key mapping error

The cursor is positioned to the last retrieved data
space entry. The data space and ordinal entry
number, if requested, has been created in the buffer
entry, but the key and data space entry is not placed
in the buffer entry.

• 120A-End of path

The number of entries retrieved field designates the
number of valid entries retrieved.

All other exceptions result in a· value of binary 1 in the
exception encountered field. The number of entries
retrieved field may not be updated.

The number of entries retrieved field contains the ordinal
entry number of the last entry mapped into the interface
buffer. Certain exception conditions (previously defined)
can result in slightly different settings of this field. A
value of 1 would indicate the first entry and so on.

If the cursor was not set (that is, is not addressing any
data space entry) prior to the execution of this
instruction, it retrieves the first entry or entries in the
data space or data space index indicated by the cursor.

This instruction does not lock any data space entries.
However, any entries previously locked to this cursor
remain locked to the cursor.

All deleted entries encountered are skipped.

Authorization Required

• Retrieve
Data space affected

- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

Events

0002 Authorization
0101 Authorization violation

0008 Data space index
0301 Data space index invalidated

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0000 Machine status
0101 Machine check

0010 Process
0701 Maximum· processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Data Base Management Instructions 16-53

Exceptions SET CURSOR (SETCR)

Operands Op Code Operand Operand Operand Operand
Exception 1 2 3 Other (hex) 1 2 3 4

06 Addressing 048C Cursor Option Returned Requested
01 Space addressing violation X X X template key key

02 Boundary alignment X X X

03 Range X X X Operand 1: System pointer.

08 Argument/ Parameter
Operand 2: Space pointer.

01 Parameter reference violation X X X

OA Authorization Operand 3: Character variable scalar or null.
01 Unauthorized for operation X

10 Damage Encountered Operand 4: Character scalar or null.
04 System object damage state X

44 Partial system object damage X X Description: This instruction is used to establish
12 Data Base Management addressability through the operand 1 cursor to a

01 Conversion mapping error X particular entry within a data space. The cursor must be
02 Key mapping error X activated to this process. The option template identified
07 Data space index invalid X by operand 2 governs the setting of the cursor.
OA End of path X

19 Invalid rule option X This instruction causes the cursor to address an entry in
1A lock State a data space according to the search arguments given in

01 Invalid lock state X operand 2 and operand 4. Addressability to the desired
1C Machine-Dependent Exception entry is stored in the cursor identified by the operand 1

03 Machine storage limit exceeded X system pointer. The key of the desired entry is
20 Machine Support optionally returned in operand 3.

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X

02 Object destroyed X X X X

03 Object suspended X X X

04 Object not eligible for operation X

05 Object not available to process X

24 Pointer Specification

01 Pointer does not exist X X X

02 Pointer type invalid X X X

03 Pointer addressing invalid object X

2A Program Creation

06 Invalid operand type X X X

07 Invalid operand attribute X X X

08 Invalid operand value range X X X

OC Invalid operand ODT reference X X X

38 Template Specification

-01 Template value invalid X

The option template has the following format:

• Length of option template

• Rule option

• Search attributes

• Control attributes

• Key field count

• Relative/ordinal number

• Data space key format

• Data space number (return value)

• Ordinal entry number (return value)

• Number of data spaces in restricted
search list (maximum of 32 entries)

• Data space to be included in a
restricted search list (0 to 32)

Bin(4)*

Char(1)

Char(1)

Char(1)

Char(1)

Bin(4)

Bin(2)

Bin(2)

Bin(4)

Bin(2)

Bin(2)

Note: The value of the entry shown here with an
asterisk (*) is ignored by this instruction.

The rule option indicates the type of search to be done.
The type of search that can be done through the cursor
depends on whether the cursor is addressing data
spaces through a data space index or it is addressing
data spaces directly. The following table indicates the
allowable values of the rule option and when they can
be used.

Cursor Over:
Data Data

Value Space Space(s}
Rule Option (hex) Index Directly

First 01 X X
Last 02 X X
Next 03 X X
Previous 04 X X
Next unique 05 X
Previous unique 06 X
Relative 07 X X
Ordinal 08 X X
Key - before 09 X
Key - equai or before OA X
Key - equal OB X
Key - equal or after OC X
Key - after 00 X

For a cursor activated over a data space index, the
meaning of each rule option is as follows:

• First - The cursor is set to address the entry
associated with the first key in the data space index.

• Last - The cursor is set to address the entry
associated with the last key in the data space index.

• Next - The cursor is set to address the entry
associated with the next key in the data space index
after the key currently referenced by the cursor.

• Previous - The cursor is set to address the entry
associated with the previous key in the data space
index before the key currently referenced by the
cursor.

• Next unique - The cursor is set to address the entry
associated with the next key in the data space index
after the key currently referenced by the cursor. The
entry must have a key value that is different (as
qualified by the key field count) from the key value of
the current entry.

• Previous unique - The cursor is set to address the
entry associated with the previous key in the data
space index before the key currently referenced by
the cursor. The entry must have a key value that is
different (as qualified by the key field count) from the
key value of the current entry.

• Relative - The cursor is set to address an entry in the
same data space as the current entry by adding the
specified relative/ordinal number to the ordinal
number of the current entry. If a key for the entry
exists in the data space index, the cursor is set so
that a subsequent rule option of next, previous, next
unique, or previous unique can be used.

Data Base Management Instructions 16-55

• Ordinal - The cursor is set to address an entry in the
data space indicated by the first entry in the
restricted data space search list having the ordinal
number specified by the relative or ordinal number
field. If a key for the entry exists in the data space
index, the cursor is set so that a subsequent rule
option of next, previous, next unique, or previous
unique can be used. The number of data spaces in
the restricted search list field must have a valid value
(from 1 through 32).

• Key operations - In the following key operations, the
key field count indicates the number of fields
provided in the operand 4 argument. The fields are
expected to be ordered as specified in the key format
(see the Create Data Space Index instruction, earlier
in this chapter) for the data space specified in the
data space key format field. The fields must also
have the field attributes as specified in the output
mapping template in the Create Cursor instruction.
No fork characters are in the operand 4 argument,
only data fields.

The cursor is set to address the entry associated with
the key found in the index as follows:

Key - before finds the first key in the data space
index before the specified key value.
Key - equal or before finds the first key in the
data space index before the specified key value
only when no key in the data space index matches
the specified key value.
Key - equal finds the first key in the data space
index that matches the specified key value.
Key - equal or after finds the first key in the data
space index after the specified key value only
when no key in the data space index matches the
specified key value.
Key - after finds the key in the data space index
after the specified key value.

For a cursor activated directly over data spaces, the
meaning of the valid rule options is as follows. (For
multiple data spaces, the search continues into the next
data space when needed, except when restrict to
requested data spaces is specified.)

• First - The cursor is set to address the first undeleted
entry.

• Last - The cursor is set to address the last undeleted
entry.

• Next - The cursor is set to address the first
undeleted entry following the entry currently
addressed by the cursor.

• Previous - The cursor is set to address the first
undeleted entry preceding the entry currently
addressed by the cur~or.

• Relative - The cursor is set to address an entry in the
same data space as the current entry addressed by
the cursor by adding the specified relative/ordinal
number to the ordinal number of the current entry. A
relative/ ordinal number causing the search to exceed
the bounds of the data ~pace results in an end of
path exception.

• Ordinal - The cursor is set to address the entry in the
data space indicated by the first field entry in the
restricted data space search list and having the
ordinal number specified by the relative/ordinal
number field. The number of data spaces in the
restricted search list field must be greater than O.

The search attributes are used to modify the normal
operations of the searches indicated by the rule options.
The search attributes fields and their functions are as
follows:

Restricted to requested data spaces
Trailing fork characters
Deleted entry significance
Entry deleted return bit
Key return bit
Materialize key indicator
Reserved (binary 0)

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bits 6-7

• Restricted to requested data spaces - A value of
binary 1 causes the search indicated by the rule
option to continue until an entry is found in a data
space indicated by the restricted data space search
list. This search attribute is ignored in the following
situations:

Cursor over data spaces directly (no index) and
rule option = next, previous
Rule option = relative

If the restricted to requested data spaces attribute is
specified and an entry is not subsequently found, an
end of path exception is signaled, unless rule =
ordinal or key equal is used, for which an entry not
found exception is signaled. If rule = relative, the
resulting ordinal number is valid, and the designated
entry has been deleted, then an entry not found
exception is signaled. If the ordinal number is not
valid, then an end of path exception is signaled.

• Trailing fork characters - This attribute is considered
only when the key field count field is used. A value
of binary 0 indicates that fork characters following
the last key field indicated by key field count are not
to be used during the search. A value of binary 1
indicates that the fork characters immediately
following the last key field indicated by the key field
count field, should be used during the search.

• Deleted entry significance - Deleted entries are
generally skipped in all searches except when the rule
option is relative or ordinal. They result in entry not
found exceptions for relative or ordinal because a
specific entry is referenced. When the cursor is
directly over data spaces or when the rule option is
relative or ordinal and the cursor is over a data space
index, the deleted entry significance value of binary 1
allows the ordinal positions formerly occupied by
deleted entries to be addressed. When this attribute
is binary 1 and the search criterion leads to a deleted
entry, the entry is not skipped. Instead, the cursor is
set to address the deleted entry and the entry deleted
return bit is set in the option list. A subsequent
attempt to retrieve this entry results in an entry not
found exception, but an update allows a new entry to
be inserted into the space occupied by the deleted
entry. For such an update, values for fields not in the
input mapping template are supplied by the default
values entry.

• The entry deleted return value is altered only when
the deleted entry significance option is specified and
a deleted entry is addressed. A value of binary 1 for
deleted entry significance is invalid when the cursor is
over a data space index and the rule option is not
relative or ordinal.

• A key return value of binary 1 indicates the key of
the desired entry has been returned in operand 3. A
value of binary 0 indicates the key was not returned
for one or more of the reasons listed in the
discussion of the return key.

• A materialize key indicator value of binary 1 indicates
that the key of the desired entry should be returned
in operand 3 upon successful completion of the Set
Cursor instruction. If operand 3 is null or cannot
contain the entire key, a scalar value invalid exception
is signaled.

Data Base Management Instructions 16-57

The control attributes are options that control the status
of the entry upon completion of the Set Cursor
instruction. The control attributes field has the following
format:

Forced write option
Reserved (binary 0)
Data space entry lock option
00 = Shared use
01 = Lock entry with no wait
10= Reserved
11 = Lock entry with wait
Access state modifications
When entering lock wait for
a data space entry

o Do not modify access state
when entering wait

1 = Modify access state when
entering lock wait

When leaving lock wait

16-58

o Do not modify access state
when leaving lock wait
Modify access state when
leaving lock wait

Bit 0
Bits 1-3
Bits 4-5

Bits 6-7
Bit 6

Bit 7

Each of the control options is described as follows:

• Forced write option - If equal to binary 1, the data
space entry, when updated or deleted, is forced to
nonvolatile storage before the completion of the
associated instruction.

• Shared use - This option does not cause the entry to
be locked and does not check to see whether the
entry is currently locked. This option allows an entry
to be retrieved but not subsequently updated or
deleted.

• Lock entry with no wait - This option allows a data
space entry to be addressed so that it can
subsequently be updated or deleted. This request
causes the entry to be locked to the cursor. If the
entry is already locked, a data space entry locked
exception is immediately signaled.

• Lock entry with wait - If the entry is not presently
locked, this option is the same as lock entry with no
wait. If the entry is already locked to another
process, the requesting process is put in a wait state.
The process waits either until the entry becomes
available - in which case the request is honored - or
for a prespecified amount of time (specified at the
time the cursor was activated) elapses - in which
case a data space entry locked exception is signaled.
This exception is an indication of a potential
deadlock.

When an entry is locked, an implicit LSUP (lock
shared update) lock is applied to the data space. If
the implicit lock cannot be obtained, an exception is
signaled immediately and the entry is not locked. A
lock option value of binary 10 results in a template
value invalid exception being signaled.

• Access state modification - The access state
modification attributes control the changing of the
access state of the process access group for the
executing process during the entering of or leaving a
wait for a locked entry. The option has no effect if
the process instruction wait access state control
attribute specifies that access state modification is
not allowed. If the process attribute value specifies
that access state modification is allowed and the
option is modify access state, the process access
group defined for the process has its access state
modified.

A set cursor operation causes most of the results of the
previous set cursor operation to be negated. However, it
is possible to accumulate locks on data space entries for
purposes of updating or deleting multiple entries. This is
accomplished by issuing repetitive Set Cursor
instructions with the lock option set to lock entry. Each
successive Set Cursor instruction causes an additional
entry to be locked and addressability to the entry to be
put in a FIFO (first-in-first-out) locked entry queue
associated with the cursor.

Each combination of a Set Cursor instruction (with the
lock option specified) and a Retrieve Data Space Entry
instruction causes another entry to be locked (Set
Cursor instruction). The address of the entry is placed in
the FI FO queue (Set Cursor instruction), and the
retrieved entry is placed in the user's interface buffer
(Retrieve Data Space Entry instruction). The FIFO queue
identifies all entries that are locked by the cursor.

The entries can later be modified and unlocked from the
FI FO queue in one of the following manners:

• An Update Data Space Entry or Delete Data Space
Entry instruction is issued. Either of these instructions
causes the first entry referenced by the queue to be
removed from the queue (either updated or deleted)
and unlocked.

• A Release Data Space Entries instruction is issued.
This instruction causes one or all of the entries in the
queue to be removed from the queue and unlocked
(without modification). If the option is to release only
one entry, then this instruction causes the first entry
referenced by the queue to be removed from the
queue and unlocked.

If no entries are addressable by the FI FO queue when
an Update Data Space Entry or Delete Data Space Entry
instruction is issued, an exception is signaled.

Intervening Insert Data Space Entry instructions have no
effect on the FI FO queue or the positioning of the
cursor.

The key field count designates the number of fields
assumed to be in the key value (operand 4) to be used
for searching the data space index.

The key field count entry only includes data fields
supplied by the user for the Set Cursor instruction; it
does not include fork characters. If the key field count
is less than the actual number of fields in the key, then
a generic key search is performed. A key field count of
o is legal only if a fork character is defined as the first
element of the key. If the key field count is 0, then
operand 4 is ignored. The key field count is required
when the rule option is any of the key operations or
next unique or previous unique.

The relative/ordinal number is a positive or negative
integer scalar that is used in conjunction with the
relative or ordinal rule option. If the rule option is
relative, the number is a positive or negative number
indicating a relative positioning forward or backward in
the data space from the currently addressed entry
(including deleted entries). If the rule is ordinal, the
number is the absolute position in the data space
identified by the first entry in the restricted data space
search list. Ordinal numbers are greater than or equal to
1. A negative or 0 ordinal number causes an end of
path exception to be signaled. A relative number
causing the search to exceed the bounds of the data
space results in an end of path exception.

The data space key format field is required when the
cursor is over a data space index and the rule option is
any of the key operations. The. data space key format
indicates the variety of mapping and set of fork
characters to be used in building the internal key from
the provided key fields. The data space key format field
must contain a number that corresponds with the
position of an activated data space in the data space
pointer list for the operand 1 cursor.

The data space number field is a feedback area in the
option template for the Set Cursor instruction. The value
returned identifies the data space in which the data
space entry to which the cursor has been positioned
resides. This number corresponds with the position of
the system pointer within the data space pointer list for
the Create Cursor instruction.

The ordinal entry number field is a feedback area in the
option template for the Set Cursor instruction. When a
Set Cursor instruction operation is completed, the
ordinal entry number of the data space entry currently
being addressed is returned in the option template. The
ordinal entry number of a data space entry is not
affected by the Delete Data Space Entry instruction,
and, therefore, addressability by ordinal number is also
not affected by the Delete Data Space Entry instruction.

Data Base Management Instructions 16-59

The number of data spaces in the restricted search list
field identifies the number of data spaces in the
restricted search list. Only entries from these data
spaces will be used in the attempt to satisfy the search
criteria. Each restricted search list field contains a
number that corresponds with the position of the data
space in the data space pointer list for this cursor. The
ordering of entries in the restricted search list is not
important, and duplicate entries will be eliminated by the
Set Cursor instruction. The Materialize Cursor Attributes
instruction will always return an ordered list of restricted
data space entries without any duplicates.

Upon successful completion of the Set Cursor
instruction with the cursor activated over an index,
operand 3, if not null, will contain the composite key for
the data space entry whose addressability is set in the
cursor at the completion of this instruction; that is, the
key for the entry indicated by the data space number
and ordinal entry number returned in the feedback area
of the option template. The key is returned only if (1)
the cursor is activated over a data space index, (2) every
key field was specified in the cursor output mapping
template for that data space, (3) retrieve authority for
that data space is satisfied, (4) the entry is not deleted,
and (5) the entry has not been selected out of the data
space index. The fields within the key are ordered as
specified in the data space key specification for that
data space in the Create Data Space Index instruction
and have the same attributes as specified in the output
mapping template in the Create Cursor instruction. Fork
characters are not included in the returned key.

The following charts summarize the possible results of a
Set Cursor instruction for each of the valid requests.

16-60

Results of Set Cursor Without Data Space Index:

Results of Set Cursor

Entry not Cursor not
Set Cursor Rule found End of path set
Options to Address Current State Explanation before Set (exception (exception (exception
a Data Space Cursor Request Normal condition) condition) condition)

First or last 1. Data space not empty X

2. All data spaces or data spaces X
requested are empty.

Next or previous 1. Cursor set X

2. Cursor set to last or first entry and no X
adjacent data space is among the
active subset

3. Cursor set to last or first entry and an X
adjacent data space exists (see Note
1)

4. Cursor not set X

Relative 1. Cursor set X

2. New cursor setting would be set X
outside of data space bounds.

3. Cursor not set X

4. New setting designates deleted entry X

5. Data space entry deleted, and deleted X
entry significance option specified

Ordinal 1. Ordinal number within data space X
bounds

2. Ordinal number outside data space X
bounds

3. Data space entry deleted X

4. Data space entry deleted, and deleted X
entry significance option specified

Notes:
1. An adjacent data space must not be empty and must contain at least one nondeleted entry

unless deleted entry significance is specified.
2. The cursor setting remains unchanged for all exception conditions.

Data Base Management Instructions 16-61

Results of Set Cursor With Data Space Index:

Results of Set Cursor

Entry not Cursor not
Set Cursor Rule found End of path set
Options to Address Current State Explanation before Set (exception (exception (exception
a Data Space Index Cursor Request Normal condition) condition) condition)

First or last 1. Index not empty X

2. Index empty X

3. Index does not contain key for any X
data space entry as specified by
restricted search list.

Next, previous, next 1. Cursor set X
unique, or previous
unique

2. Cursor set to last (or first) key in the X
index

3. Cursor not set X

4. Cursor set to last (or first) key X
associated with restricted data space

Relative, ordinal (see Cursor Without Data Spaces Index Results chart)

Key equal 1. Key in index X

2. Key not in index X

Key before, 1. Equal key in index X
key-equal/before,
key-equal/after, key
after

2. Equal key not in index. Next/previous X
key is in index.

3. Key not in index. Either no key < this X
key in index or no key > this key in
index (depending on rule).

Note: The cursor setting remains unchanged for all exception conditions.

16-62

Authorization Required

• Operational
- Data space affected

• Retrieve
- Contexts referenced for address resolution

Lock Enforcement

• Materialize
- Contexts referenced for address resolution

• Implicit locks
Implicit LSUP lock applied to the data space
referenced by the cursor if lock option is lock

Events

0002 Authorization
0101 Object authorization violation

0008 Data space index
0301 Data space index invalidated

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 3 4 Other

06 Addressing

01 Space addressing violation X X X X

02 Boundary alignment X X X X

03 Range X X X X

08 Argument/ Parameter

01 Parameter reference violation X X X X

OA Authorization

01 Unauthorized for operation X

10 Damage Encountered

04 System object damage state X X X X X

44 Partial system object damage X X X X X

12 Data Base Management

02 Key mapping error X

03 Cursor not set X

05 Data space entry locked X

06 Data space entry not found X

07 Data space index invalid X

08 Incomplete key description X

OA End of path X

19 Invalid rule option X

1A Lock State

01 Invalid lock state X

1C Machine-Dependent Exception

03 Machine storage limit X
exceeded

06 Machine lock limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X X X

02 Object destroyed X X X X X

03 Object suspended X X X X

04 Object not eligible for X
operation

05 Object not available to process X

24 Pointer Specification

01 Pointer does not exist X X X X

02 Pointer type invalid X X X X

03 Pointer addreSSing invalid X
object

2A Program Creation

06 Invalid operand type X X X X

07 Invalid operand attribute X X X X

08 Invalid operand value range X X X X

OA Invalid operand length X X X

OC Invalid operand ODT reference X X X X

32 Scalar Specification

01 Scalar type invalid X X

02 Scalar attributes invalid X X

03 Scalar value invalid X X

38 Template Specification

01 Template value invalid X

Data Base Management Instructions 16-63

UPDATE DATA SPACE ENTRY (UPDSEN)

Op Code
(hex)

0492

Operand
1

Cursor

Operand
2

Interface
buffer

Operand 1: System pointer.

Operand 2: Space pointer.

Description: The first data space entry of the locked
entry queue associated with the operand 1 cursor (which
must be activated to the current process) is updated
with information provided in the interface buffer
addressed by operand 2. The fields to be updated must
be presented in the interface buffer in the format and
sequence established by the input mapping template
specification provided in the Create Cursor instruction.
Fields in the data space entry that are not included in
the input mapping template are unchanged in the data
space entry, unless the deleted entry update option was
previously specified when this entry was locked. In
which case, the unmapped fields receive default values.
All of the data space indexes referencing the data space
are updated to reflect the changes.

Any data sensitive mapping error encountered while
presenting the modified data space entry to the user exit
routine associated with a select/ omit data space index
referencing the data space not only causes the data
space index to be invalidated, but also causes the data
space index invalidated and data space entry not
addressed by data space index events to be signaled.

This instruction must have been preceded by a
successful Set Cursor instruction (with a lock entry
option specified) that caused the entry to be locked.
The implicit LSUP (Jock shared update) lock on the data
space caused by locked entries is applied only when the
number of currently locked entries within this data space
to this cursor goes from 0 to 1. This LSUP lock is
removed only when the number of the currently locked
entries to this cursor from this data space goes from 1
to O. At the successful completion of the instruction,
the updated entry is unlocked and the implicit LSUP lock
is removed from the data space. If no entry is locked,
then an exception is signaled. Errors in this instruction
cause the entry to remain locked.

16-64

If a deleted entry is being updated and the addition of
this entry causes the maximum number of undeleted
entries residing in the data space to be exceeded, the
entry is not updated or unlocked and a data space entry
limit exceeded exception is signaled. The Data Base
Maintenance instruction can then be used to increment
the maximum and the update can be reissued.

Authorization Required

• Retrieve
- Contexts referenced for address resolution

• Update
- Data space affected

Lock Enforcennent

• Materialize
- Contexts referenced for address resolution

• Implicit locks
Implicit LSUP lock removed from the affected data
space

Events

0002 Authorization
0101 Object authorization violation

0008 Data space index
0301 Data space index invalidated

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
01 01 I nstruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Space addressing violation X X
02 Boundary alignment X X
03 Range X X

08 Argument/ Parameter

01 Parameter reference violation X X
OA Authorization

01 Unauthorized for operation X X
10 Damage Encountered

04 System object damage state X X X
44 Partial system object damage X X X

12 Data Base Management

01 Conversion mapping error X
04 Data space entry limit exceeded X
09 Duplicate key value in existing X

data space entry

00 No entries locked X
21 Unable to maintain unique key X

DSI

23 Data space index select routine X
failure

1A Lock State

01 Invalid lock state X
1C Machine-Dependent Exception

03 Machine storage limit exceeded X
04 Object storage limit exceeded X

20 Machine Support

02 Machine check X
03 Function check X

22 Object Access

01 Object not found X X
02 Object destroyed X X X
03 Object suspended X X
05 Object not available to process X

24 Pointer Specification

01 Pointer does not exist X X
02 Pointer type invalid X X
03 Pointer addressing invalid object X

2A Program Creation

06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X
OC Invalid operand ODT reference X X

2E Resource Control Limit

01 User profile storage X
limit exceeded

Data Base Management Instructions 16-65

16-66

Chapter 17. Source/Sink Management Instructions

The following chapter describes the source/sink
management instructions. The instructions are in
alphabetic order. For an alphabetic summary of all the
instructions, see Appendix 8. Instruction Summary.

CREATE CONTROLLER DESCRIPTION (CRTCD)

Op Code Operand Operand
(hex) 1 2

0496 Controller Controller description
description template

Operand 1: System pointer.

Operand 2: Space pointer.

Description: A CD (controller description) is created in
accordance with the controller description template. A
system pointer that addresses the created CD is
returned in the pointer specified by operand 1. The
template identified by operand 2 must be 16-byte
aligned, and any pointers specified within the template
must also be 16-byte aligned. The format of this
template is as follows:

• Template size specification
Size of template
Number of bytes available
for materialization

• Object identification
Object type
Object subtype
Object name

Char(S)
Bin(4)
Bin(4)*

Char(32)
Char(1)*
Char(1)
Char(30)

• Object creation options
Existence attribute
1 = Permanent (required)
Space attribute
o = Fixed-length
1 = Variable~length
Reserved (binary 0)
Access group
o = Not member of access

group (required)
- Replacement option

o = Create as new (required)
Reserved (binary 0)

• Reserved (binary 0)

• Size of space

• Initial value of space

Char(4)
Bit 0

Bit 1

Bit 2
Bit 3

Bit 4

Bits 5-31

Char(4)

Bin(4)

Char(1)

Source/Sink Management Instructions .17-1

• Performance class
Space alignment
o = The space associated with

the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space. If
no space is specified for
the object, this value must
be speCified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/ output
buffers at 512-byte align
ments within the the space.

Reserved (binary 0)
Main storage pool selection
o Process default main storage

pool is used for object.
Machine default main storage
pool is used for object.

Reserved (binary 0)
Block transfer on implicit
access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

Reserved (binary 0)

• Reserved (binary 0)

• CD definition data
CD type
Hex 0000 = not attached to ND
Hex 0100 = attached to ND
Controller identification
Unit type
Model number
Reserved (binary 0)

• CD specific data

Char(4)
Bit 0

Bits 1-4
Bit 5

Bit 6
Bit 7

Bits 8-31

Char(39)

Char(16)
Char(2)

Char(8)
.Char(4)
Char(4)
Char(6)

Char(*)

.\lote: The value associated with each entry shown here
with an asterisk (*) is ignored by this instruction.

17-2

The created object is owned by the user profile
governing process execution. The user profile that owns
the object is implicitly granted all authority states to the
object. The storage occupied by the created object is
charged to this same user profile.

The template size specification entry within the CD
template must indicate the number of bytes to be used
in defining the CD to be created.

The object identification specifies the symbolic name
that identifies the object within the machine. A type
code of hex 12 is implicitly supplied by the machine.
The object identification is used on materialize
instructions to identify the object and also to locate the
object through the machine context.

Addressability to the CD is inserted in the machine
context.

A space that is fixed or variable in size can be
associated with the created object. The initial allocation
of storage for the space is as specified in the size of
space entry. The machine allocates a space at least the
size specified; the actual size allocated is machine model
dependent. (The maximum amount of storage that can
be specified for the associated space is approximately
16 M B minus 4 K.) Each byte of the space is initialized
to a value specified by the initial value of space entry.
When the space is extended in size, this byte value is
also used to initialize the new additional bytes in the
space. An associated space is not allocated for a fixed
size space of zero length. The maximum size of a CD
object is approximately 4 K bytes.

The performance class parameter provides information
that allows the machine to manage the object with
consideration for the overall performance objectives of
operations involving the context.

One format is defined to specify the creation of a CD. . Station control information Char(32)
The CO specific data entry defines this structure, and Exchange identification Char(21)
the CO type entry defines the structure of the remaining Byte a Char(1)
portion of the template. XIO format Bits 0-3

PU type Bits 4-7

· Forward object group Char(32) XID field length Char(1)

- Forward object pointer, NO System XIO Char(4)
For type 00, binary a pointer Block number Bit(12)
For type 10, forward NO Specific 10 Bit(20)
(if unspecified, binary 0) Reserved (binary 0) Char(2)

- Switched network forward, Syst~m Configuration flags Char(1)
NO connection pointer* Physical unit characteristics Char(1)
(if unspecified, binary 0) Maximum length received Char(2)

Reserved (binary 0) Char(4)

· Backward pointer list data Char(32) Frames limit Char(1)
Pointer to backward object list Space Reserved (binary 0) Char(4)
(if unspecified, binary 0) pointer - Station definition Char(1)
Number of backward object Bin(2) Line discipline Bits 0-1
pointers 10 = SOLC
Reserved (binary 0) Char(14) 00 = Other or not applicable

Switched network Bit 2
Physical definition data Char(16) a No (nonswitched network

Physical address Char(8) or not applicable)
For type 00, Yes (switched network)

Reserved (binary 0) Char(6) Role Bit 3
CO (OU number) address Bit(16) a Secondary SOLC

For type 10, station
Reserved (binary 0) Char(4) Primary SOLC
CO (station) address Bit(16) station
NO (OU number) address Bit(1~) Switched network backup feature Bit 4
(nonswitched line) (on nonswitched network)
(If switched line, binary 0) a = No

Power control Char(2) 1 = Yes
Hex 0000 = No Data rate select feature Bit 5
Hex 0100 = Yes a = No
Reserved (binary 0) Char(6) 1 = Yes

Reserved (binary 0) Bits 6-7

· State change / status definition Char(16) Reserved (binary 0) Char(2)
- State change / status field Char(6)* Path information unit type Char(2)
- Reserved (binary 0) Char(10) (SNA format 10, SOLC only)

- Reserved (binary 0) Char(6)

· NO candidate list data Char(32)
Pointer to NO candidate list Space . Selected mode data Char(16)
(binary a for CO types 00 and 10 pointer - Selected mode Char(2)
that are nonswitched and do not Reserved (binary 0) Bits 0-2
have the switched backup mode) Switched network backup mode Bit 3

- Number of NO candidate pointers Bin(2) a = Nonswitched mode
Reserved (binary 0) Char(14) 1 = Switched mode

Reserved (binary 0) Bits 4-15

- Delayed contact control Char(2)
Hex 0000 = No
Hex 0100 = Yes

- Reserved (binary 0) Char(12)

Source/Sink Management Instructions 17-3

• Activate physical unit information
ACTPU required
Hex 00 = No
Hex 01 = Yes
ACTPU parameters
Request code
Activation type
Profile number
SSCPID
Reserved (liinary 0)

• Dial digits
Reserved (binary 0)
Number of dial digits used
Dial digits field
Reserved (binary 0)

• Specific characteristics
Specific characteristics length
(contains the length
of the following
specific data area)
Specific data

• XID information area
XID information length
(contains the length of
the following XID data)
XID information data

• Unit-specific contents
Unit-specific length
(contains the length of

17-4

the following unit-
specific parameters)
Unit-specific modify length
(contains the length of the
specific area that can
be modified)
Unit-specific parameters
Area that can be modified
Area that can only be materialized

Char(16)
Char(1)

Char(9)
Char{1)
Char(1)
Char(1)
Char(6)
Char(6)

Char(32)
Char(6)
Bin(2)
Char(16)
Char(8)

Char(*)
Bin(2)

Char(*)

Bin(2)

Char{*)

Char(*)
Bin(2)

Bin(2)

Char(*)
Char(*)
Char{*)

• Backward object list, LUD System
pointer

This entry defines the list of backward objects LUDs
(logical unit descriptions) and is located by the
backward object list pointer. One pointer entry (or
binary O's) is present for each attached LUD (logical
unit description).

• NO candidate pointers, NO
(If not specified, binary 0)

System
pointer

This list, if present, defines the NO (network
description) candidates and is located by the NO
candidate list pointer. The number of entries in the
list is determined by the number of NO candidate
pointers.

Note: The value associated with each entry shown here
with an asterisk (*) is ignored by this instruction.

A CD logically represents a physical device controller or
a communications controller for devices in a
communications network. Two versions of CDs are
supported. A type 00 CD attaches directly to the
system. A type 10 CD attaches to the system through
an NO. The structure of the creation template (size and
order of entries) for each CD type is identical; however,
the values and meanings of certain entries may depend
on the type and, in some cases, on other values
specified in the template.

The unit type indicates the IBM product number or a
representative number for other equipment
manufacturers' products. The model number defines the
unit model number of the controller.

The forward object group indicates any association of
the CD with an NO. The forward object pointer
indicates a permanent association. For type 00 CDs, this
entry is not used and must be binary O. For type 10
CDs, this entry is used to specify the line that the CD is
attached to except when it is attached to a switched
network. This entry is optional in a create template. If a
forward object is not specified for type 10 (indicated by
binary 0' s), no association is made until a Create
Network Description instruction is executed that
specifies this CD as one of its backward objects. A type
10 CD that requires a forward ·object is unusable until
the forward object is specified. If a forward object
pointer is specified, then the object identified by the
system pointer must be in a varied off state to allow the
connection of this CD. If the object is not in the varied
off state, a source/sink state invalid exception is
signaled.

The switched network forward connection pointer is
used only for switched networks and can be materialized
to determine the NO currently used by the CD. This
. entry is ignored in the creation template.

The backward object list identifies the set of LUDs to be
associated with the CD. A pointer locates the list of
system pointers identifying the LU Os. This list is
optional and, if not specified (indicated by binary 0' s in
the pointer to backward object list entry), the association
of the CD to any LUDs is made when the LUDs are
created. Any LUDs specified as associated with this CD
cannot be associated with another CD.

The physical address defines a unique address by which
the controller is known in the system. The definition
depends on the CD type field as indicated in the
template.

For a type 00 CD, the operation unit number is
specified. For a type 10 CD, the CD station address and
the operational unit number of the associated NO are
specified. For switched connections, the NO operational
unit number is not specified on create (binary 0). For
switched connections and also for nonswitched
connections that have the switched network backup
feature, a unique address can be established only by an
association of the exchange identification (SSCP 10 for a
primary station) with the physical address. Exchange
identification (XID) or SSCP 10 assignments must be
made by the user to ensure a unique address. If a
unique address is not established, the source/sink
physical address exception is signaled by the Create
instruction.

The power control entry (allowed only for CD type 10)
specifies whether power to the control unit can be
remotely turned on or off from the system. If yes (hex
F1 FO), the control unit power is turned off or on through
the Modify Controller Description instruction.

The status change / status definition entry is used to
change the state of the CD through a Modify Controller
Description instruction or to determine the current state
of the CD through the Materialize Controller Description
instruction. No information can be specified on the .
Create Controller Description instruction.

The NO candidate list defines a set of network
descriptions that describe line appearances suitable to
the characteristics of the created CD. The list is used in
switched connections to define possible switched lines
with which this CD can communicate. The list is not
present (indicated by binary O's in the pointer to NO
candidate list entry) for a type 00 CD or for a type 10
CD that isnonswitched and does not have switched
network backup mode.

Source/Sink Management Instructions 17-5

The list of pointers for the N D candidate list must be
either system poir:ters to network descriptions or binary
O's. The desired number of ND candidates must be
supplied because the number of these pOinters cannot
be changed once the CD is created.

Station control information: This entry is made up of
subentries, which are as follows:

XID (Exchange identification): Station ID sequence
for establishing identity of the secondary station. The
contents of this field allow establishing a unique
identification of the physical unit that this CD object
is to represent. The block number and the specified
ID are assigned by the manufacturing plant at the
time of manufacture or installation for every physical
unit. Each unit can identify itself with this XID
information.
Station definition: The subentries for this entry are
defined as follows:
a. Line discipline: This entry defines the protocol to

be used for link level communications. All stations
communicating over the link must follow the same
protocol at any point in time.

b. Switched network: This entry establishes whether
or not the data link is established through the
public switched network. If not, a nonswitched or
private facility is implied.

c. Role: This entry indicates whether this CD
represents a primary or a secondary SDLC station.

d. Switched network backup: This entry indicates
that the station has a modem with the switched
network backup capability. The normal
communication facility is nonswitched. To use this
option, the selectable mode field bit for switched
backup operation must be set.

e. Data rate select: This entry indicates that the
station has a modem that is capable of operating
at either full speed or half speed. To use this
option, the selectable mode field bit for selected
rate must be set.

Path information unit type: This entry defines the
SNA format identifier supported by this controller.

Selected mode data: This field is used by modify
instructions and create instructions to initialize the
operating state of the CD for whichever options have
been defined for this station .. The switched network
backup mode bit determines if the CDS that are for
switched network backup are to be operated in
nonswitched or switched backup mode. The delayed
contact control indicator is used by nonswitched or loop
stations to periodically attempt to contact the station if
the initial contact was not successful. If the indicator is
set, the CD contact event will be signaled only after the
station is contacted. If the. indicator is not set, the CD
contact event (unsuccessful subtype) will be signaled
after an unsuccessful attempt to contact the station and
no further attempt will be made.

Activate physical unit parameters: This entry defines the
parameters used to establish the MSCP (machine
services control point) to the physical unit session. The
SSCP I D subentry is the identification of the SNA
system services control point in the network and, for the
case of primary controllers, must be established uniquely
within the System / 38 network.

Dial digits: This entry contains the number to be dialed
to establish a connection with the station represented by
this CD.

Specific characteristics: This entry defines the set of
characteristics that are described uniquely for each
controller at the time of object creation. See Chapter
23. Source/Sink Specialization and Programming
Considerations for Local Devices for the details
concerning this entry.

XID information area: This entry can be materialized and
defines the XID (exchange 10) data area. The two data
formats consist of a fixed-length format and a
variable-length format. The fixed-length format is a
subset of the variable-length format and identifies the
physical unit type and specific station. The variable
format provides the physical unit description, which
includes, configuration characteristics, information field
length, maximum output count, and addressing
characteristics. On a create template, only the XID
information length field is referenced to allocate the
proper amount of space in the CD. The remaining part
of the XID information is ignored.

Unit specific contents; This entry defines the set of
specific modifiable parameters and the parameters
which are supplied by the machine (materializable only)
for the controller unit described in this CD. The
non modifiable part of this entry is ignored on a create or
modify instruction. The modifiable part of this entry may
or may not be required to contain correct data at the
time of creation depending on the specific controller that
is to be created. Additional information about this entry
is contained in Chapter 24. Communications and Locally
Attached Work Stations and Chapter 23. Source/Sink
Specialization and Programming Considerations For Local
Devices.

The values supplied within the CD template must meet
the requirements to create a CD for the physical
controller being described. If the values are not
compatible with limitations and ranges known to the
machine, a template value invalid exception is signaled,
and the CD is not created.

The physical address and exchange identification
supplied within the template must be unique from any
existing CDs. If not, a source/sink duplicate physical
address exception is signaled and the CD is not created.
The physical controller and its associated machine
support components must be installed on the system
before the CD can be created. If the internal machine
configuration records do not indicate that these physical
components are installed, a source / sink resource not
available exception is signaled, and the CD is not
created.

Authorization Required

• Privileged instruction

• Insert
- User profile of creating proces~

• Operational
- Source / sink objects identified in operand 2

Lock Enforcement

• Modify
User profile that is to own this object
Source / sink objects specified as forward and
backward objects identified in operand 2

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Source/Sink Management Instructions 17-7

Exceptions CREATE LOGICAL UNIT DESCRIPTION (CRTLUD)

Operands Op Code Operand Operand Exception 1 2 Other (hex) 1 2

02 Access Group
049A

01 Object ineligible for access group X Logical Logical unit
unit description template

06 Addressing description
01 Space addressing violation X X
02 Boundary alignment X X

Operand 1: System pointer.
03 Range X X

08 Argument/ Parameter
Operand 2: Space pointer.

01 Parameter reference violation X X
OA Authorization

01 Unauthorized for operation X
02 Privileged instruction X Description: A LUD (logical unit description) is created in

OE Context Operation accordance with the fogical unit description template. A

01 Duplicate object identification X system pointer that addresses the created LUD is
10 .Damage Encountered returned in the pointer specified by operand 1. The

02 Machine context damage state X template identified by operand 2 must be 16-byte
04 System object damage state X aligned and any pointers specified within the template
44 Partial system object damage X must also be 16-byte aligned. A LUD template is

1A Lock State defined as follows:
01 Invalid lock state X

1C Machine-Dependent Exception
Template size specification Char(S)

03 Machine storage limit exceeded X ·
04 Object storage limit exceeded X Size of template Bin(4)

20 Machine Support Number of bytes available Bin(4)*

02 Machine check X for materialization

03 Function check X
22 Object Access · Object identification Char(32)

01 Object not found X X Object type Char(1)*
02 Object destroyed X X Object subtype Char(1)
03 . Object suspended X X Object name Char(30)

24 Pointer Specification
01 Pointer does not exist X X

Object creation· options Char(4) · 02 Pointer type invalid X X
Existence attribute Bit 0

03 Pointer address invalid object X
2A Program Creation 1 = Permanent (required)

06 Invalid operand type X X Space attribute Bit 1

07 Invalid operand attribute X X 0 = Fixed -length

08 Invalid operand value range X X 1 = Variable-length
OC Invalid operand ODT reference X X Reserved (binary 0) Bit 2

2E Resource Control Limit Access group Bit 3
01 User profile storage limit X 0 = Not member of access

exceeded
group (required)

32 Scalar Specification
01 Scalar type invalid X X

Replacement option Bit 4

34 Source/Sink Management 0 = Create as new (required)

01 Source/sink configuration inva·lid X Reserved (binary 0) Bits 5-31

02 Source/sink duplicate physical X
address · Reserved (binary 0) Char(4)

03 Source/sink invalid object state X
04 Source/s.ink resource not X · Size of space Bin(4)

available
38 Template Specification

01 Template value invalid X · Initial value of space Char(1)

02 Template size invalid X

17-8

• Performance class
Space alignment
o = The space associated with

the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.

1 = The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align
ments within the the space.

Reserved (binary 0)
Main storage pool selection
o Process default main storage

pool is used for object.
Machine default main storage
pool is used for object.

Reserved (binary 0)
Block transfer on implicit
access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.

1 Transfer the machine default
storage transfer size. This
value is 8 storage units.

Reserved (binary 0)

• Reserved (binary 0)

• UJD definition data
LUO type
00 = Attached directly to system
10= Attached to type 00 CO
30 = Attached to type 10 CD
LUO identification
Device type
Model number
Reserved (binary 0)

• LU 0 specific data

Char(4)
Bit 0

Bits 1-4
Bit 5

Bit 6
Bit 7

Bits 8-31

Char(39)

Char(16)
Char(2)

Char(8)
Char(4)
Char(4)
Char(6)

Char(*)

The created object is owned by the user profile
governing process execution. The user profile that owns
the LUO is implicitly granted all authority states to the
object and also charged for the storage occupied by the
created object.

The template size specification entry within the CD
template must indicate the number of bytes to be used
in defining the CD to be created.

The object identification specifies the symbolic name
that identifies the object. A type code of hex 10 is
implicitly supplied by the machine. The object
identification is used to identify the object on materialize
instructions and also to locate the object through the
machine context.

Addressability to the LUO is inserted in the machine
context.

A space that is fixed or variable in size can be
associated with the created object. The initial allocation
of storage for the space is as specified in the size of
space entry. The machine allocates a space of at least
the size specified; the number of bytes allocated is
machine model dependent. (The maximum amount of
storage that can be specified for the associated space is
approximately 16 MB minus 4 K.) Each byte of the
space is initialized to a value specified by the initial
value of space entry . When the space is extended in
size, this value is also used to initialize the additional
bytes in the space. A fixed size space with a zero
length causes no space to be allocated. The maximum
size of a LUD object is 4 K bytes.

The performance class parameter provides information
that allows the machine to more effectively manage the
object.

Three types of LUDs are defined:

Type Attachment

00 Attached directly to the system
10 Attached to a type 00 CD
30 Attached to a type 10 CD

This attachment mechanism defines the information
content and, therefore, the structure of the LU D
template.

Source/Sink Management Instructions 17-9

The following structure is used to define LUD type 00
(attached to system), type 10 (attached to CD), and type
30 (attached to CD and to ND).

Pointer group data Char(16)
- Forward object pointer System

(if unspecified, binary 0) pointer

· Physical definition data Char(16)
Physical address Char(8)

For LUD type 00,
a. Reserved (binary 0) Char(6)
b. LUD OU number Bit(16)

For LU D type 10,
a. Reserved (binary 0) Char(2)
b. LU address Char(2)
c. Reserved (binary 0) Char(2)
d. CD OU number Bit(16)

For LU D type 30,
a. Reserved (binary 0) Char(2)
b. LU address Bit(16)
c. CD station address Bit(16)
d. ND OU number (binary 0 Bit(16)

if switched line)

Power control Char(2)
Hex 0000 = No
Hex 0100 = Yes
Reserved (binary 0) Char(6)

· State/status definition Char(16)
State change / status field Char(3)*

- Reserved (binary 0) Char(13)

· Session definition data Char(32)
Session information Char(20)
Pacing (inbound) Bin(2)
Pacing (outbound) Bin(2)
RU size (buffer size) Bin(2)
Reserved (binary 0) Bin(2)
ACTLU required Char(1)

Hex 00 = No
Hex 01 = Yes

ACTLU parameters Char(3)
ACTLU response Char(8)*

- Reserved (binary 0) Char(12)

17-10

• Load / dump definition data
- Load/dump device

Hex 00 Not a

Hex 01

Hex 11

Hex 21

load/ dump device
Load/dump
device-noninterruptible
and nonexchangeable
Load/dump
device- interruptible
Load/dump
device-exchangeable

- Operating mode
Hex 00 Data interchange

mode-not load / dump
Hex 01 Load mode
Hex 02 Dump mode

- Load/dump pending
Hex 0000 = None
Hex 0100 = Load pending
Hex 0200 = Dump pending
Corresponding primary
address

- Load / dump exchange
status on material.ize
Reserved (binary 0)

• Specific characteristics
Specific characteristics length
(contains the length of
the following specific
characteristics area)
Specific data

• Retry value sets
Retry value length
(contains the length of the
following retry value area)

- Error type
- Error retry value
- Reserved (binary 0)

Char(16)
Char(1)

Char(1)

Char(2)*

Char(2)*

Char(3)*

Char(9)

Char(Y+2)
Bin(2)

Char(VAR)

Char(6Y+2)
Bin(2)

Char(2)
Bin(2)
Bin(2)

• Error threshold sets
Error threshold length
(contains the length of the
following error threshold area)
Error type
Threshold value
Reserved (binary 0)

• Device-specific contents
Device-specific length
(contains the length of
the following device
specific parameters)
Device-specific modify . length
(contains the length
of the device-specific
area that is modifiable)
Device-specific parameters
Modifiable area
Materializable only area

Char(8Y+2)
Bin(2)

Char(2)
Bin(2)
Bin(4)

Char(Y+4)
Bin(2)

Bin(2)

Char(VAR)
Char(VAR)
Char(VAR)*

Note: The value associated with each entry shown here
with an asterisk (*) is ignored by this instruction.

An LU 0 logically represents a physical device. An LU 0
can be associated with a CD (controller description)
through the forward object pointer contained .in. the
LUD. The CD represents the· physical controller, physical
I/O port, or communications line to which this device is
attached. The LU 0 can be associated directly with the
system when the physical device is directly attached to
the system.

The forward object pointer establishes addressability to
the associated forward objects through the forward
object pointers supplied in the LUD template.
\ddressability is also established within these associated
)bjects back to the LUD being created. It is not

mandatory that the associated object pointer be supplied
in the LUD template because as long as the pointer is
supplied, either in the LUD or within the creation
templates of these associated objects, proper
addressability is established by similar logic within the
Create instruction of the other source / sink objects.
When the associated object pointer is supplied, this
object must exist. If a forward object pointer is
specified, then the object identified by the system
pointer must be in a varied off state to allow this LUD
to be attached. If the object is not in a varied off state,
then the source/sink object state invalid exception is
signaled. When the associated object pointer is not
supplied, this pointer location in the template must
contain 16 bytes of binary 0' s.

When a forward object is not required (LUD type 00),
the forward pointer location in the template must be
binary O. If the LUD template pointer area does not
meet the previously mentioned requirements, an
exception is signaled and the LUD is not created.

The LUD device type entry defines the IBM product
number or a representation number for an end-use
mechanism.

The physical address defines the unique address by
which this device is known physically in the system.
The content of the physical address entry depends on
the attachment mechanism (LUD type) of the device.

The power control entry specifies whether the device is
capable of having its power turned on or off
independent of the system. If the. device has this
capability, it is done through the Modify Logical Unit
Description instruction.

The state / status definition entry is not used by the
Create Logical description instruction. But this entry can
be materialized (Materialize Logical Unit Description) to
show the current status of the LUD. This entry can be
modified (Modify Logical Unit Description) to change the
status of the LUD.

The session information entry defines parameters that
allow the machine to control the device while in use.
The following session parameters are defined:

• The pacing inbound and pacing outbound entries are
each comprised of a 2-byte count entry. For more
information about pacing, refer to Chapter 23.
Source/Sink Specialization and Programming
Considerations for Local Devices and to the IBM
Systems Network Architecture Format and Protocol
Reference Manual: Architecture Logic.

• The RU (request/ response unit) size entry defines the
size of the buffer in the unit described by this object.

• The ACTLU (activate logical unit) required entry
defines whether the ACTLU parameters and ACTLU
response entries have any meaning for this device.

Source/Sink Management Instructions 17-11

• The ACTLU parameters entry is used by the MSCP
(machine services control point) to establish the
MSCP-to-LU (logical unit) session and to provide the
data that can be received as a response to an ACTLU
sequence.

• The ACTLU response entry is a field in which the
only characters that can be materialized are the
response characters provided by the device when the
MSCP-to-LU sessiQn is established.

The load/dump indicator entry defines whether an I/O
device can be used for the load/dump function.

For those devices that can be used as load / dump
devices, the load/dump indicator further defines
whether the device is to be used in load mode, dump
mode, or normal mode. Noninterruptible load / dump
devices can operate in normal, load, or dump modes but
cannot change modes while in active or inactive session.
Interruptible load / dump devices can also change modes
while in an inactive session state, according to the set
of rules described in the Modify Lud instruction. For
these interruptible devices only, the load / dump pending
field indicates whether any pending load / dump activity
exists if the LUD is in an inactive session state. An

_ exchangeable load / dump device can exchange load or
dump request I/O operations wjth other exchangeable
load / dump devices if the devices are activated in the
same modes (all in load mode or all in dump mode) and
have the same corresponding primary device address.
The load / dump exchange status field of the Modify
LUD instruction is used to cause an exchange to occur
and indicates which device is current at any time. Only
the load / dump device indicator and the load / dump
operating mode indicators are used on a create
instruction. The load / dump pending field can be
materialized and is ignored by the create instruction.

17-12

The specific characteristics entry defines the set of
characteristics that uniquely describe each device during
the time an object is created. For the size and contents
of this entry for a particular device, refer to Chapter 23.
Source/Sink Specialization and Programming
Considerations For Local Devices and Chapter 24.
Communications and Locally Attached Work Stations.

The retry value sets entry contains values that specify
limits for various error types beyond which a higher level
error recovery is invoked.·

The error threshold sets values are used by the internal
error logging algorithms to determine the frequency for
adding device error information records to the error log.

The device-specific contents entry defines the set of
specific parameters that can be modified and also those
parameters that are supplied by the machine
(materializable only) for the device described in this
LUD. The materializable only area of this entry is
ignored by this instruction. The modifiable part of this
entry mayor may not be required to contain correct
data at the time of creation. Further definition of the
parameters for the various devices is contained in
Chapter 23. Source Sink Specialization and Programming
Considerations For Local Devices and Chapter 24.
Communications and Locally Attached Work Stations.

The values supplied within the LUD template must meet
the requirements to create an LUD for the physical
device being described. If the values are not compatible
with limitations and ranges known to the machine, a
.template value invalid exception is signaled, and the
LU 0 is not created.

The physical address that is supplied within the template
must be unique from any existing LUDs. If not, a
source/sink duplicate physical address exception is
signaled, and the LUD is not created. The physical
device and its associated machine support components
must be installed on the system before the LUD can be
created .. When the internal machine configuration
records do not indicate that these physical components
are installed, a source/sink resource not available
exception is signaled, and the LUD is not created.

Authorization Required Exceptions

· Privileged instruction Operands
Exception 1 2 Other

· Operational

Source/sink objects identified in operand 2
02 Access Group -

01 Object ineligible for access group X
06 Addressing

· Insert 01 Space addressing violation X X
- User profile of creating process 02 Boundary alignment X X

03 Range X X
08 Argument/ Parameter

Lock Enforcennent 01 Parameter reference violation X X
OA Authorization

· Modify 01 Unauthorized for operation X

User profile that is to own this object 02 Privileged instruction X

Source/sink object specified as the forward object
OE Context Operation

identified in operand 2
01 Duplicate object identification X

10 Damage Encountered
02 Machine context damage state X
04 System object damage state X

Events 44 Partial system object damage X
1A Lock State

0002 Authorization 01 Invalid lock state X
0101 Object authorization violation 1C Machine-Dependent Exception

03 Machine storage limit exceeded X

OOOC Machine resource 04 Object storage limit exceeded X

0201 Machine auxiliary storage threshold exceeded 20 Machine Support
02 Machine check X

0010 Process
03 Function check X

0701 Maximum processor time exceeded
22 Object Access

01 Object not found X X
0801 Process storage limit exceeded 02 Object destroyed X X

03 Object suspended X X
0016 Machine observation 24 Pointer Specification

0101 Instruction reference 01 Pointer does not exist X X
02 Pointer type invalid X X

0017 Damage set 03 Pointer address invalid object X

0201 Machine context damage set 2A Program Creation

0401 System object damage set 06 Invalid operand type X X

0801 Partial system object damage set 07 Invalid operand attribute X X
08 Invalid operand value range X X
OC Invalid operand ODT reference X X

2E Resource Control Limit
01 User profile storage limit X

exceeded
32 Scalar Specification

01 Scalar type invalid X X
34 Source/Sink Management

01 Source/sink configuration invalid X
02 Source/sink duplicate physical X

address
03 Source/sink invalid object state X
04 Source/sink resource not X

available
38 Template Specification

01 Template value invalid X
02 Template size invalid X

Source/Sink Management Instructions 17-13

CREATE NETWORK DESCRIPTION (CRTND)

Op Code
(hex)

Operand
1

Operand
2

049E Network Network description
description template

Operand 1: System pointer.

Operand 2: Space pointer.

Description: An ND (network description) is created in
accordance with the N D template. A system pointer that
addresses the created ND is returned in the pointer
specified by operand 1. The template identified by
operand 2 must be 16-byte aligned and any pointers
specified within the template must also be 16-byte
aligned. This template is defined as follows:

• Template size specification
Size of template
Number of bytes available
for materialization

• Object identification
Object type
Object subtype
Object name

• Object creation options
Existence attribute
1 = Permanent (required)
Space attribute
o = Fixed-length
1 = Variable-length
Reserved (binary 0)
Access group
o = Not member of access

group (required)
Replacement option
o = Create as new (required)
Reserved (binary 0)

• Reserved (binary 0)

• Size of space

17-14

Char(8)
Bin(4)
Bin(4)*

Char(32)
Char(l)*
Char(l)
Char(30)

Char(4)
Bit 0

Bit 1

Bit 2
Bit 3

Bit 4

Bits 5-31

Char(4)

Bin(4)

• Initial value of space Char(l)

• Performance class Char(4)
Space alignment Bit 0
o = The space associated with

the object is allocated to
allow proper alignment of
pointers at 16-byte align-
ments within the space. If
no space is specified for
the object, this value must
be specified for the
performance class.
The space associated with
the object is allocated to
allow proper alignment of
pointers at 16-byte align
ments within the space as
well as to allow proper
alignment of input/output
buffers at 512-byte align
ments within the the space.

Reserved (binary 0) Bits 1-4
Main storage pool selection Bit 5
o Process default main storage

pool is used for object.
Machine default main storage
pool is used for object.

Reserved (binary 0) Bit 6
Block transfer on implicit Bit 7
access state modification
o = Transfer the minimum storage

transfer size for this object.
This value is 1 storage unit.
Transfer the machine default
storage transfer size. This
value is 8 storage units.

Reserved (binary 0)

• Reserved (binary 0)

• ND definition data
ND type
00= CDs attached
Reserved (binary 0)

• N D specific data

Bits 8-31

Char(39)

Char(16)
Char(2)

Char(14)

Char(*)

Note: The value associated with each entry shown here
with an asterisk (*) is ignored by this instruction.

The template size specification entry in the N D template
must indicate the number of bytes of the N D that is to
be created.

The object identification specifies the' symbolic name
that identifies the object. A type code of hex 11 is
implicitly supplied by the machine. The object
identification identifies the object on materialize
instructions and also locates the object in the machine
context.

A space that is fixed or variable in size can be
associated with the created object. The initial allocation
of storage for the space is as specified in the size of
space entry. The machine allocates a space at least the
size specified; the actual size allocated is machine model
dependent. (The maximum amount of storage that can
be specified for the associated space is approximately
16 MB minus 4 K.) Each byte of the space is initialized
to a value specified by the initial value of space entry.
When the space is extended in size, this value is also
used to initialize the additional bytes in the space. A
fixed size space of zero length causes no space to be
allocated. The maximum size of an ND (network
description) object is approximately 4 K bytes.

Addressability to the ND is inserted into the machine
context.

The created object is owned by the user profile that
governs process execution. The user profile that owns
the created object is implicitly granted all authority
states to the object and charged for the storage
occupied by the created object.

The performance class parameter provides information
that allows the machine to manage the object with
consideration for the overall performance objectives of
operations involving the context.

One type of ND is defined. Type 00 defines the NDs
that are attached to one or more CDs.

• Backward object pointer group
Pointer to backward object list
(if unspecified, binary 0)
Switched network
Backward connection CD
(if unspecified, binary 0)

Char(48)
Space
pointer
System
pointer

Number of backward object pointers Bin(2)
Reserved (binary 0) Char(14)

• Physical definition data
Physical address
Reserved (binary 0)
Operational unit number
Reserved (binary 0)

• State I status definition
State change I status field

- Reserved (binary 0)

Char(16)
Char(8)
Char(6)
Bit(16)
Char(8)

Char(16)
Char(3)*
Char(13)

Source/Sink Management Instructions 17-15

• Line definition data
Line definition
Line data

Char(16)
Char(10)
Char(4)
Bits 0-3

17-16

Line discipline
1000= SOLC

Switched network Bit 4
o = No (nonswitched network)
1 = Yes (switched network)

Switched network backup Bit 5
o = No
1 = Yes

Data rate select
o = No
1 = Yes

SOLC role
o = Primary SOLC station
1 = Secondary SOLC station

Reserved (binary 0)
NRZI
{non-return-to-zero [inverted]}

o = No
1 = Yes

Reserved (binary 0)
Nonclocked modem

o = No
1 = Yes

OEM modem
o = No
1 = Yes

Wire
00 = Two-wire backup

line (if applicable),
two-wire normal line

01 = Two-wire backup
line (if applicable),
four-wire normal line

Bit 6

Bit 7

Bits 8-11
Bit 12

Bit 13
Bit 14

Bit 15

Bits 16-17

10= Four-wire switched backup
line, two-wire normal line

11 = Four-wire switched backup
line, four-wire normal line

Multipoint Bit 18
o = Point-to-point
1 = Multipoint

Reserved
Reserved (binary 0)

Bit 19
Bits 20-::'.

Switched data
Autodial

o = No
1 = Yes

Autoanswer
o = No
1 = Yes

Autoanswer sequence
o = Sequence 0
1 = Sequence 1

Answer tone generation
o = No
1 = Yes

Marks/spaces for answer tone
o = Transmit spaces
1 =, Transmit marks

Special answer tone
(Far-end modem that requires
2025 hertz answer tone)
o = No
1 = Yes

Char(1)
Bit 0

Bit 1

Bit 2

Bit 3

Bit ..,.

Bit 5

OCE (data communication Bits 6-7
equipment)

00 = Not applicable (nonswitched
line) or IBM integrated modem
not in US or Canada

01 = Switched line not in
US or Canada and not
IBM integrated modem

10= Switched line in US or Canada
including IBM integrated modem

11 = Reserved
Reserved (binary 0)
Line speed/100
Secondary address
(binary 0 for primary)

SOLC address
Reserved (binary 0)

Reserved (binary 0)

• Communications initialization data
Initialization data

- Reserved (binary 0)

• Exchange identification data
(binary 0)

Char(1)
Bin(2)
Char(2)

Bits 0-7
Bits 8-15
Char(6)

Char(16)
Char(8)*
Char(8)

Char(16)*

• Selectable mode data
Selectable modes
Network selections

Reserved (binary 0)

Char(16)
Char(2)
Char(1)
Bits 0-1

Switched network backup mode Bit 2
o = Nonswitched mode
1 = Switched mode

Selected rate
o = Full speed
1 = Half speed

Reserved (binary 0)
Switched network selections

Reserved (binary 0)
Switched connect method

00 = Nonswitched
10= Only dial in allowed
01 = Only dial out allowed
11 = Either allowed

Autodial mode
o = Manual dial
1 = Autodial

Autoanswer mode
o = Manual answer
1 = Autoanswer

Switched secondary
line inactivity
disconnect (SOLC only)

o = No time-out
1 = Time-out

Reserved (binary 0)
Reserved (binary 0)

• Communications subsystem
parameters data

Communications subsystem
parameters
Data terminal ready delay
Reserved (binary 0)
SOLC idle state detection timer
Nonproductive receive timer
Reserved (binary 0)

• Eligibility object group
Pointer to eligibility list
(if unspecified, binary 0)
Number of eligibility object
pointers
Reserved (binary 0)

Bit 3

Bits 4-7
Char(1)
Bits 0-1
Bits 2-3

Bit 4

Bit 5

Bit 6

Bit 7
Char(14)

Char(16)

Char(12)

Bin(2)
Char(6)
Bin(2)
Bin(2)
Char(4)

Char(32)
Space
pointer
Bin(2)

Char(14)

• Reserved group
Pointer to reserved list
(reserved, binary 0)
Number of list entries
(reserved, binary 0)
Reserved (binary 0)

• Specific characteristics
Specific characteristics length
(contains the length of the
following specific data area)
Specific data

• Retry value sets
- Retry value length

(contains the length of the
following retry value area)
Error type
Error retry value
Reserved (binary 0 on
creation template)

• Line-specific contents
Line-specific contents length
(contains the length of the
following specific data)

Char(32)
Space
pointer
Bin(2)

Char(14)

Char(Y+2)
Bin(2)

Char(VAR)

Char(6Y+2)
Bin(2)

Char(2)
Bin(2)
Bin(2)

Char(Y+4)
Bin(2)

Line-specific contents modify length Bin(2)
(contains the length of the line
specific area that is modifiable)
Line-specific parameters
Area that can be modified
Area that can only be materialized

• Backward object pointers
- CDs if NO type 00

Char(VAR)
Char(VAR)
Char(VAR)*

. System
pointer

This list of pointers is located by the backward object
list pOinter and defines the set of objects attached to
this NO. The number of entries is specified in the
number of backward objects entry.

• Eligibility object pointers
CDs if type 00

- Binary 0 if unspecified

System
pointer

The eligibility object pointers are located by the
pointer to eligibility list entry and contain an entry for
each object specified in the number of eligibility
objects entry.

Note: The value associated with each entry shown here
with an asterisk (*) is ignored by this instruction.

Source/Sink Management Instructions 17-17

An N D logically represents a physical I/O port or a
communications line adapter for a communications
network. As such, an ND always has one or more CDs
(type 00) that are associated with it through its list of
backward objects, which represent the physical devices
attached to the I/O port or line.

Addressability to the associated backward objects is
established, as appropriate, through the backward object
pOinters supplied in the N D template. Addressability is
also established within these associated objects back to
the newly created NO. It is not mandatory that the
associated object pointers be supplied in the N D
template because as long as the pointers are supplied
either in the ND or within the creation templates of the
associated objects, proper addressability is established
by similar logic within the Create instructions of the
other source/sink objects. When the associated object
pointers are supplied, the objects must exist and the
controller objects or the logical unit objects cannot be
associated with another ND. When associated object
pointers are not supplied, these pointer locations in the
template must contain 16 bytes of binary O. If the N D
template pointer area does not meet previous
requirements, an appropriate pointer specification
exception is signaled, and the ND is not created.

The switched network backup connection pointer is used
only for switched networks and can be materialized to
determine the CD or LUD currently connected to this
N D. This entry is ignored in the creation template.

The number of backward object pointers entry
represents the number of controllers that are attached to
this N D if it is a nonswitched line. This number is not
supplied at create N D time but is incremented once for
each Create Controller Description instruction for
controllers attached to this line. A maximum of 10
controllers are allowed on any primary line.

The physical address entry defines the unique address
by which the I/O port or communication lines is known
internally to the machine. The physical address being
supplied within the template must be unique. If not, a
source/sink duplicate physical address exception is
signaled, and the N D is not created. The physical I/O
port or communication lines and its associated machine
support components must be installed on the system
before the N D can be created. If the internal machine
configuration records do not indicate that these physical
components are installed, a source/sink resource not
available exception is signaled, and the ND is not
created.

17-18

The state/status definition entry is not used by this
instruction. This entry can be materialized (Materialize
Network Description instruction) to define the current
status of the ND; it can also be modified (Modify
Network Description instruction) to change the state of
the ND. See the descriptions of those instructions for a
complete definition.

The line definition entry is made up of a number of
subentries. These subentries are:

• Line discipline - This entry defines the protocol that
is used for link level communications. All stations
that communicate over the link must follow the same
protocol at all times.

• SDLC (synchronous data link control) establishes the
line discipline as synchronous data link control.

• Switched network - This entry indicates whether or
not the data link is established through the public
switched network (0 = no, 1 = yes). If 0 is specified,
a nonswitched or private facility is implied.

• Switched network backup - This entry indicates that
the modem installed on this communications line is
equipped with the switched network backup
capability. The normal communications facility is
nonswitched. To use this capability, the selectable
mode field switched network back operation must be
set.

• Data rate select - This entry indicates that the
modem on this line has the capability to operate at
either a full- or half-speed rate. The rate is selected
by setting the appropriate selectable mode.

• Role (primary/secondary) - When this entry is set,
System/38 assumes the role of a secondary station
on this line. Otherwise, System/38 assumes the role
of a primary station on this line.

• NRZI - When this entry is set, System/38 uses the
non- return-to-zero (inverted) transmission coding
method on this line. This coding method is necessary
when interfacing to data communications equipment
that does not provide received data timing (internal
clock required).

• Nonclocked modem - This entry indicates that the
clocking function (receive data timing) for this line is
provided by the machine. When 0 is specified, the
clocking function is provided by the data
communications equipment.

• OEM modem - This entry is set on if non-IBM data
communications equipment is installed.

• Wire - This entry indicates the physical line
configuration for the modem and the communications
channel and also the backup line configuration if
switched network backup exists.

• Multipoint - This entry indicates that the machine is
configured as a member of a multipoint network for
this line. If not set, it indicates a point-to-point
configuration.

• Autodial - This entry indicates that this switched
communication line is equipped with an autocall
interface. Any communications lines so equipped
require two line positions within the machine so that
the next sequential operational unit number cannot be
assigned as the physical address of another N D
object.

• Autoanswer - This entry indicates that the switched
communications line is equipped with a capability to
automatically connect incoming calls.

• Autoanswer sequence - This indicator specifies which
of two answer sequences is to be used in performing
autoanswer functions as determined by the
characteristics of the modems being used.

• Answer tone generation - This entry indicates that
the machine provides the answer tone signal required
by certain modems with the autoanswer capabiliy.

• Transient marks/spaces for answer tone - This
indicator specifie3 whether marks or spaces should
be transmitted for performing the answer tone
function as required by the modems with the
autoanswer capability.

• Special answer tone - This entry indicates whether or
not the 38LS integrated modem on this switched line
should respond with a 2025 hertz answer tone to the
switched line far-end modem.

• DeE (data communications equipment) - This entry
indicates the types of modems that can be used on
this line. This entry indicates the modem type (an
IBM integrated modem or another supported modem)
used on a switched line either for the US and Canada
or for all other countries.

• Line speed (rate) - This entry indicates the line speed
rate in units of 100 bits per second. If the modem
for this communications line has the data rate select
capability, this entry should be the full-speed rate.

• Secondary address - This entry contains the link level
address to be used by this line when acting in a
secondary SDLe station role. The address can be
specified in vlaues hex 01 through hex FE in the first
byte of this entry. For primary stations, specify hex
00.

The communications initialization data entry represents
the current set of operating parameters for the
communications facility represented by this ND object.
This entry can be materialized and is updated by the
machine during each activation of the line (Modify ND -
Vary On). It is a composite of the characterization of
this NO as defined by the line definition, the selectable
modes, and the communications subsystem parameters
of this ND. It is used only by maintenance personnel for
system maintenance.

Exchange identification data - This entry is uniquely
defined for this system when the system is installed,
and it contains the exchange identification used by
System/38 when acting as an SDLe secondary station
on a network. This entry can be materialized.

Source / Sink Management Instructions 17 -19

Selectable modes - This entry selects modes that can
be altered from one line activation to the next.

• Switched network backup (nonswitched/switched) -
When this entry is set to 1, the switched network
backup capability is in use, and the communications
channel exists via the switched network. When this
entry is set to 0, the normal nonswitched facility is in
use.

• Selected rate (full speed/half speed) - When this
entry is set to 1, the transmission speed on this line
is one half that specified in the line speed field. Data
rate select modem must be specified in order to run
at half speed. When this entry is set to 0, the
transmission speed specified in the line speed field is
used.

• Switched network selections - This field defines the
types of switched connection methods that are
allowed when the NO is varied on and enabled to the
switched enabled state. (but does not actually
establish the connection.) The following types of
switched connections can be defined in this field:

Allow only incoming calls
Allow only outgoing calls
Allow incoming and outgoing calls

• Autodial mode - When this entry is set to 1, the
switched line connection can be established through
the autocall unit. The autodial modem facility must
exist for this mode to be valid. When this entry is set
to 0, the switched connection is established using
manual dial methods.

• Autoanswer mode - When this entry is set to 1, the
switched line connection can be established through
the autoanswer facilities for incoming calls. The
autoanswer modem facility must exist for this mode
to be valid.

• Switched secondary line inactivity disconnect - When
this communications facility is configured as a
secondary station on a switched SDLC network, this
indicator causes the switched connection to be
disconnected if the communications line is inactive
for a period longer than the time indicated by the
nonproductive timer. When this entry is set to 0, no
disconnect occurs.

17-20

The communications subsystem parameters entry
describes the communications subsystem parameters.

• Data terminal ready delay - This entry defines the
units of time that the machine waits before ending a
command that resets the communications line. Each
unit of time is 200 milliseconds.

• SDLC idle state detection timer - For secondary
stations, this entry is ignored. For primary stations,
this entry specifies the number of 53.3-millisecond
periods that are necessary to satisfy the idle state
time considerations for SNA data link control. This
time should be greater than the sum of the following
conditions:

Transmission time to the secondary station
Processing time of the control unit's response at
the secondary station (not including customer
program processing time or operator response
time)
Clear-to-send time at the secondary station
modem
Transmission time from the secondary station

The maximum value allowed is 255, which allows a
13.6 second delay. If a value of 0 is specified, a
default value of 500 milliseconds is used. For more
information about idle state time considerations, refer
to IBM Synchronous Data Link Control General
Information Manual.

• Nonproductive receiver timer - For switched
secondary stations, this parameter specifies the
number of 500-millisecond periods that are allowed
for the line to be inactive. If valid frames of
information are not received within this time-out
period, the line is disconnected. Normally 30 seconds
is adequate, so a value of 60 should be used. The
maximum time that can be specified is 127.5
seconds. If 0 is specified, a default time of 128
seconds is used. For primary stations, this entry
specifies the number of 500-millisecond periods that
are necessary to satisfy the nonproductive receive
time considerations. The nonproductive receiver timer
is dependent upon the data rate (line speed field)
specified by the selected rate field. Use the following
table to determine, for a given line speed, the
recommended value that should be specified for the
nonproductive receiver timer. The times given in the
last column are the resulting maximum times in which
to receive intelligible data. They provide enough time
for 5250 devices, which can have a maximum number
of 266 bytes transmitted per frame.

Nonproductive
Receive Timer

Recommended Setting (266 bytes
line Speed Parameter Value per frame)

600 11 5.5 seconds

1200 6 3.0 seconds

2400 4 2.0 seconds

4800 2 1.0 seconds

9600 2 1.0 seconds

For more information about the nonproductive receive
time considerations, refer to IBM Synchronous Data
Link Control General Information Manual, GA27 -3093.

The pointer to eligibility list defines the CDs that are
eligible to be attached to the ND if the ND is used for
switched networks. The list contains a set of system
pointers that identify the appropriate CDs (type 00 ND).
The list is modifiable, but when the N D is created, the
list must define the maximum number of entries allowed
in the list. Undefined entries are specified by binary O's.
If the switched network protocol does not apply, the
pointer to the eligibility list entry contains binary 0' s.

The specific characteristics entry defines the set of
characteristics that uniquely describe the network. The
size and contents of this field are dependent on the
specific communications facility being defined.

The retry value sets entry contains values specifying
limits for various error types beyond which a
higher-level error recovery is invoked.

The line specific contents entry defines the
characteristics that are uniquely described for a specific
communication facility. These characteristics can be
modified according to the specific communication
requirements. The part of this entry that cannot be
modified is ignored by a create or modify instruction.
The modifiable part of this entry mayor may not be
required to contain correct data at the time of creation.
Additional information about this entry is contained in
Chapter 24. Communications and Locally Attached Work
Stations.

Authorization Required

• Privileged instruction

• Insert
- User profile of creating process

• Operational
- Source/sink objects identified in operand 2

Lock Enforcement

• Modify
User profile that is to own this object
Source/ sink objects specified as the backward
objects identified in operand 2

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Source/Sink Management Instructions 17-21

Exceptions DESTROY CONTROLLER DESCRIPTION (DESCD)

Operands Op Code
Exception 1 2 Other (hex) Operand 1

02 Access Group 04A1 Controller

01 Object ineligible for access group X description

06 Addressing
01 Space addressing violation X X Operand 1: System pointer.

02 Boundary alignment X X
03 Range X X

08 Argument/ Parameter Description: The CD (controller description) specified by
01 Parameter reference violation X X operand 1 is destroyed, and addressability to the CD is

OA Authorization deleted from the machine context.
01 Unauthorized for operation X
02 Privileged instruction X Addressability to this CD is also removed from the

OE Context Operation
associated NO (network description) and LU Os (logical

01 Duplicate object identification X
10 Damage Encountered unit descriptions). The associated LUDs are rendered

02 Machine conte~ damage state X unusable because they cannot be varied on or otherwise

04 System object damage state X X used for I/O operations until another CD is created to

44 Partial system object damage X replace this one. The associated LUDs themselves can

1A Lock State subsequently be destroyed. The CD destroyed event
01 Invalid lock state X data contains an indication of whether or not any

1C Machine-Dependent Exception associated LUDs were encountered during the
03 Machine storage limit exceeded X destroying of this CD.
04 Object storage limit exceeded X

20 Machine Support When the Destroy Controller Description instruction is
02 Machine check X

executed and the CD is not in the varied off state, an
03 Function check X

22 Object Access
exception is signaled, and the CD is not destroyed. If

01 Object not found X X the CO is the only CO attached to an NO, then that NO

02 Object destroyed X X must also be in the varied off state, or an exception is

03 Object suspended X X signaled and the CD is not destroyed.

24 Pointer Specification
01 Pointer does not exist X X If the CD is determined to be damaged during destroy
02 Pointer type invalid X X processing, then the addressability contained in NO and
03 Pointer address invalid object X X LUDs to the CD might not be removed. If the state of

2A Program Creation the CD cannot be determined, the destroy function is
06 Invalid operand type X X completed anyway.
07 Invalid operand attribute X X
08 Invalid operand value range X X
OC Invalid operand ODT reference X X

2E Resource Control Limit
01 User profile storage limit X

exceeded
32 Scalar Specification

01 Scalar type invalid X X
34 Source/Sink Management

01 Source/sink configuration invalid X
02 Source/sink duplicate physical X

address
04 Source/sink resource not X

available
38 Template Specification

01 Template value invalid X
02 Template size invalid X

17-22

Authorization Required Exceptions

· Object control Operand
- Operand 1 Exception 1 Other

06 Addressing

Lock Enforcement 01 Space addressing violation X

02 Boundary alignment X

· Modify 03 Range X

User profile with CD object ownership 08 Argument/Parameter

Network description that is a forward description 01 Parameter reference violation X

object for this CD, if any OA Authorization

Logical unit descriptions that are backward objects 01 Unauthorized for operation X

from this CD, if any 02 Machine context damage state X

10 Damage Encountered

• -Object control 04 System object damage state X

- Operand 1 44 Partial system object damage X

1A Lock State

01 Invalid lock state X

Events 1C Machine- Dependent Exception

03 Machine storage limit exceeded X

0002 Authorization 20 Machine Support

0101 Object ~uthorization violation 02 Machine check X

03 Function check X

OOOC Machine resource 22 Object Access

0201 Machine auxiliary storage threshold exceeded 01 Object not found X

02 Object destroyed X

0010 Process 03 Object suspended X

0701 Maximum processor time exceeded 24 Pointer Specification

0801 Process storage limit exceeded 01 Pointer does not exist X

02 Pointer type invalid X

0016 Machine observation 03 Pointer address invalid object X

0101 Instruction reference 2A Program Creation

06 Invalid operand type X

0017 Damage set 07 Invalid operand attribute X

0201 Machine context damage set 08 Invalid operand value range X

0401 System object damage set OC Invalid operand ODT reference X

0801 Partial system object damage set 32 Scalar Specification

01 Scalar type invalid X

34 Source/Sink Management

03 Source/sink object state invalid X

Source/Sink Management Instructions 17-23

DESTROY LOGICAL UNIT DESCRIPTION (DESLUD)

Op Code
(hex) Operand 1

04A9 Logical unit
description

Operand 1: System pointer.

Description: The LUD (logical unit description) specified
by operand 1 is destroyed, and addressability to the
LU 0 is deleted from the machine context.

Addressability to this LUD is removed from any
associated CD (controller description).

When this instruction is executed and the LUD is not in
the varied off state (or powered off state for those
devices that can have their power turned off separately),
an exception is signaled and the LUD is not destroyed.

If t~e LUD is determined to be damaged, then
addressability to the LUD might not be removed from
the associated CD. If the state of the LUD cannot be
determined, the destroy function is completed anyway.

17-24

Authorization Required

• Object control
- Operand 1

Lock Enforcement

• Modify
User profile with LUD object ownership
Controller description which is a forward object for
this LUD, if any

• Object control.
- Operand 1

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

"Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

OA Authorization

01 Unauthorized for operation

10 Damage Encountered

02 Machine context damage state

04 System object damage state

44 Partial system object damage

1A Lock State

01 Invalid lock state

1C Machine-Dependent Exception

03 Machine storage limit exceeded

04 Object storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer address invalid object

2A Program Creation

06 Invalid operand type

07 Invalid operand attribu-:.::::

08 Invalid operand value range

OC Invalid operand ODT reference

32 Scalar Specification

01 Scalar type invalid

34 Source/Sink Management

03 Source/sink object state invalid

Operand
1 Other

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

"-
X

X

X

X

DESTROY NETWORK DES'CRIPTION (DESND)

Op Code
(hex) Operand 1

O4AD Network
description

Operand 1: System pointer.

Description: The NO (network description) specified by
operand 1 is destroyed, and addressability to the NO is
deleted from the machine context.

Addressability to this NO is also removed from all
associated CDs (controller descriptions). These
associated CDs cannot be used (they cannot be varied
on or otherwise used for I/O operations) until a new NO
is created· to replace this one. When the NO is not
replaced, the CDs and LUOs themselves should be
destroyed. The NO destroyed event data contains an
indication of whether or not any associated CDs or
LUOs were encountered during the destroying of this
NO.

When this instruction is executed and the NO is not in
the varied off state, an exception is signaled, and the
NO is not destroyed.

If the NO is determined to be damaged, then
addressability to the associated CD might not be
removed. If the state of the NO cannot be determined,
the destroy function is completed anyway.

Source/Sink Management Instructions 17-25

Authorization Required Exceptions

· Object control Operand
- Operand 1 Exception 1 Other

06 Addressing

Lock Enforcement 01 Space addressing violation X

02 Boundary alignment X

· Modify 03 Range X

User profile with N D object ownership 08 Argument/ Parameter

- LUDs that are backward objects for this ND, if any 01 Parameter reference violation X

OA Authorization

· C?bject control 01 Unauthorized for operation X

- Operand 1 10 Damage Encountered

02 Machine context damage state X
04 System object damage state X

Events 44 Partial system object damage X
1A Lock State

0002 Authorization 01 Invalid lock state X

0101 Object authorization violation 1C Machine-Dependent Exception

03 Machine storage limit exceeded X

oooe Machine resource 04 Object storage limit exceeded X

0201 Machine auxiliary storage threshold exceeded 20 Machine Support

02 Machine check X

0010 Process 03 Function check X
0701 Maximum processor time exceeded 22 Object Access

0801 Process storage limit exceeded 01 Object not found X

02 Object destroyed X

0016 Machine observation 03 Object suspended X

0101 Instruction reference 24 Pointer Specification

01 Pointer does not exist X

0017 Damage set 02 Pointer type invalid X

0201 Machine context damage set 03 Pointer address invalid object X

0401 System object damage set 2A Program Creation

0801 Partial system object damage set 06 Invalid operand type X

07 Invalid operand attribute X

08 Invalid operand value range X

OC Invalid operand ODT reference X

32 Scalar Specification

01 Scalar type invalid X

34 Source/Sink Management

03 Source/sink object state invalid X

17-26

MATERIALIZE CONTROLLER DESCRIPTION
(MATCD)

Op Code
(hex)

0483

Operand
1

Receiver
template

Operand
2

Operand
3

Controller Materialization
description options

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 3: Character(2) scalar (fixed-length).

Description: Based on the materialization options
specified by operand 3, elements of the CD (controller
description) object specified by operand 2 are
materialized into the receiver specified by operand 1.

The first 4 bytes of the template size specification entry
contain a value that specifies the number of bytes that
can be used by the instruction. This value is supplied as
input to the instruction and is not modified by the
instruction. A value of less than 8 causes the
materialization length exception.

The second 4 bytes of the template size specification
entry contain a value that specifies the number of bytes
available to be materialized. The instruction materializes
as many bytes as can be contained in the area specified
as the receiver. If the byte area identified by the
receiver is greater than that required to contain the
information requested, then the excess bytes are
unchanged. No exception (other than the materialization
length exception) is signaled in the event that the
receiver contains insufficient area for the materialization.

The template identified by operand 1 must be 16-byte
aligned.

Authorization is not set in materialized system pointers.

The scalar specified in operand 3 cannot be defined by
a data pointer.

The following charts show the elements within the CD
materialization templates and the corresponding
materialization option values that are used to select
these elements. The materialization option value
specified for operand 3 must contain a value as follows:

Hex 8000 - Causes a materialization of the entire
contents of the CD as shown within
the following chart.

Hex znnn - Causes one of the following for z=1 or
z=4:

Hex 1 nnn Causes a materialization
of only the individual
element within the CD
that has the
corresponding value of
nnn.

Hex 4nnn - Causes a materialization
of any members of the
set of elements within
the CD that are
modifiable elements. The
nnn value in operand 3 is
formed by a logical OR
of the individual nnn
option values for the
desired elements as
shown in the following
charts.

Source/Sink Management Instructions 17-27

Sub- Materialize
Elements Contained in the CD Template (CD Element Element Option
Types 00, and 10) for Materialize CD Length Length Values

Template size specification Char(8)

Reserved (for all materialize templates except ones Char(8)
including object header data)

Object header data (includes template size) Char(96) 1003

CD definition data Char(16) 1007

Forward object group Char(32) 1005

Backward pointer list data Char(32) 1006

Physical definition data Char(16) 1009

State / status definition Char(16) zOO 1 . State change / status Char(6)

Byte(s) Bit(s) Meaning

0-1 Status CD Session Count Bin(2)
(number of LUDs in
session)

2-3 Status CD Active Count Bin(2)
(number of LUDs varied on)

4 Status

0 CD active, LUD(s) in session Bit(1)

1 CD active, LUD(s) varied on Bit(1)

2 Varied on state Bit(1)

3 Dialing out state Bit(1)

4 Vary on pending and LUD(s) Bit(1)
in vary on pending state

5 Vary on pending state Bit(1)

6 Reserved Bit(1)

7 Power on / vary off state Bit(1)

5 Status

0 Power off state Bit(1)

1-3 Reserved Bit(3)

4 Diagnostic mode Bit(1)

5 Diagnostic active indicator Bit(1)

6-7 Reserved Bit(2) . Reserved Char(10)

ND candidate list data Char(32) z002

Station control information Char(32) 1 ODD

Selected mode data Char(16) zOO4

Activate physical unit information Char(16) 100E

Dial digits Char(32) z008

Specific characteristics Char 100F
(y + 2)

XI D information area Char 1011
(y + 2)

17-28

Sub- Materialize
Elements Contained in the CD Template (CD Element Element Option
Types 00, and 10) for Materialize CD Length Length Values

Unit specific contents Char z010
(y + 4)

Backward object list Variable System 1006
number pointers
of system to LUDs
pointers

N D candidate list Variable System z002
number pointers
of system to NDs or
pointers null

y = Variable length of an element
z = Option value control digit. Valid values are:

z = 1 Materialize this individual element.
z = 4 Materialize this element along with any other elements

of the modifiable set by ORing together their option values.

Refer to the Modify Controller Description instruction for
details of the states in the CD object that can be
materialized and for the corresponding modify
operations to these states.

Authorization Required

• Operational
- Operand 2

Lock Enforcement

• Materialize
- Operand 2

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Source/Sink Management Instructions 17-29

Exceptions MATERIALIZE LOGICAL UNIT DESCRIPTION
(MATLUD).

Operands
Exception 1 2 3 Other Op Code Operand Operand Operand

(hex) 1 2 3
06 Addressing

01 Space addressing violation X X X 04BB Receiver Logical Materialization
02 Boundary alignment X X X template unit options

03 Range X X X description

08 Argument/ Parameter
01 Parameter reference violation X X Operand 1: Space pointer.

OA Authorization
Operand 2: System pointer.

01 Unauthorized for operation X
10 Damage Encountered Operand 3: Character(2) scalar (fixed-length).

02 Machine context damage state X
04 System object damage state X
44 Partial system object damage X X Description: Based on the materialization options

1A Lock State specified by operand 3, elements of the LUD (logical
01 Invalid lock state X unit description) object specified by operand 2 are

1C Machine-Dependent Exception materialized into the receiver specified by operand 1.
03 Machine storage limit exceeded X
04 Object storage limit exceeded X The first 4 bytes of the template size specification entry

20 Machine Support contain a value that specifies the number of bytes that
02 Machine check X can be used by the instruction. This value is supplied as
03 Function check X input to the instruction and is not modified by the

22 Object Access instruction. A value of less than 8 causes the
01 Object not found X X X materialization length exception.
02 Object destroyed X X X
03 . Object suspended X X X The second 4 bytes of the template size specification

24 Pointer Specification entry contain a value that specifies the number of bytes
01 Pointer does not exist X X X available to be materialized. The instruction materializes
02 Pointer type invalid X X X as many bytes as can be contained in the area specified
03 Pointer address invalid object X as the receiver. If the byte area identified by the

2A Program Creation receiver is greater than that required to contain the
06 Invalid operand type X X X information requested, then the excess bytes are
07 Invalid operand attribute X X X unchanged. No exception (other than the materialization
08 Invalid operand value range X X X length exception) is signaled in the event that the
OA Invalid operand length X X receiver contains insufficient area for the materialization.
OC Invalid operand ODT reference X X X

32 Scalar Spe~ification

01 Scalar type invalid X X X
02 Scalar attributes invalid X
03 Scalar value invalid X

34 Source/Sink Management

01 Source/sink configuration invalid X
38 Template Specification

03 Materialization length exception X

17-30

The template identified by operand 1 must be 16-byte
aligned.

Authorization is not set in materialized system pointers.

The scalar specified in operand 3 cannot be defined by
a data pointer.

The following charts show the elements within the LUD
materialization templates and the corresponding
materialization option values that are used to select
these elements. The materialization option value
specified for operand 3 must contain a value as follows:

Hex 8000 - Causes a materialization of the entire
·contents of the LUD as shown in the
following chart.

Hex znnn - Causes one of the following for z=1 or
z=4:

Hex 1nnn Causes a materialization
of only the individual
element within the LUD
that has the
corresponding value for
nnn.

Hex 4nnn - Causes a materialization
of any members of the
set of elements within
the LUD that are
modifiable elements. The
nnn value in operand 3 is
formed by a logical OR
of the individual nnn
option values for the
desired individual
elements as shown in the
following charts.

Source/Sink Management Instructions 17-31

Sub- Materialize
Elements Contained in the Template (LUD Types Element Element Option
00, 10,30) for Materialize LUD Length Length Values

Template size specification Char(8)

Reserved (for all materialize templates except ones Char(8)
including object header data)

Object header data (includes template size) Char(96) 1003

LUD definition data Char(16) 1007

Pointer group data Char(16) 1005

Physical definition data Char(16) 1009

State / status definition Char(16) zOO 1 . State change / status Char(6)

8yte(s) 8it(s) Meaning

0 Status

0-6 Reserved Bit(7)

7 Active session state Bit(l)

1 Status

0 Suspended session state Bit(l)

1 Quiesced session state Bit(l)

2 Reset session state Bit(l)

3 Varied on/no session state Bit(l)

4 Vary on pending state Bit(l)

5 Reserved Bit(l)

6 Power on/vary off state Bit(l)

7 Power off state Bit(l)

2 Status

0 Diagnostic mode Bit(.l)

1 Diagnostic active indicator Bit(l)

2-7 Reserved Bit(6)

3-5 Reserved Char(3) . Reserved Char(10)

Session definition data Char(32) z002

Load/dump definition data Char(16) z004

Specific characteristics Char 1012
(y + 2)

Retry value sets Char z008
(6y + 2)

Error threshold sets Char z010
(8y + 2)

Device-specific contents Char z020
(y + 4)

y = Variable length of an element
z = Option value control digit. Valid values are:

z = 1 Materialize this individual element.
z = 4 Materialize this element as part of a group of modifiable elements.

17-32

Refer to the Modify Logical Unit Description instruction Exceptions

for details of the states in the LUD object that can be
materialized and for the corresponding modify Operands

operations to these states. Exception 1 2 3 Other

06 Addressing

Authorization Required 01 Space addressing violation X X X
02 Boundary alignment X X X . Operational 03 Range X X X

- Operand 2 08 Argument/ Parameter

01 Parameter reference violation X X
OA Authorization

Lock Enforcement 01 Unauthorized for operation X
10 Damage Encountered . Materialize 02 Machine context damage state X

- Operand 2 04 System object damage state X
44 Partial system object damage X

1A Lock State

Events 01 Invalid lock state X
1C Machine- Dependent Exception

0002 Authorization 03 Machine storage limit exceeded X

0101 Object authorization violation 04 Object storage limit exceeded X
20 Machine Support

oooe Machine resource 02 Machine check X

0201 Machine auxiliary storage threshold exceeded 03 Function check X
22 Object Access

0010 Process 01 Object not found X X X

0701 Maximum processor time exceeded 02 Object destroyed X X X

0801 Process storage limit exceeded 03 Object suspended X X X
24 Pointer Specification

0016 Machine observation 0; Pointer does not exist X X X

0101 Instruction reference 02 Pointer type invalid X X X
03 Pointer address invalid object X

0017 Damage set 2A Program Creation

0201 Machine context damage set 06 Invalid operand type X X X

0401 System object damage set 07 Invalid operand attribute X X X

0801 Partial system object damage set 08 Invalid operand value range X X X
OA Invalid operand length X X
OC Invalid operand ODT reference X X X

32 Scalar Specification

01 Scalar type invalid X X X
02 Scalar attributes invalid X
03 Scalar value invalid X

38 Template Specification

03 Materialization length exception X

Source/Sink Management Instructions 17-33

MATERIALIZE NETWORK DESCRIPTION (MATND)

Op Code
(hex)

04BF

Operand
1

Receiver
template

Operand
2

Operand
3

Network Materialization
description options

Operand 1: Space pointer.

Operand 2: System pointer.

Operand 3: Character(2) scalar (fixed-length).

Description: Based on the materialization options
specified by operand 3, elements of the N D (network
description) object specified by operand 2 are
materialized into the receiver specified by operand 1.

The first 4 bytes of the template size specification entry
contain a value that specifies the number of bytes that
can be used by the instruction. This value is supplied as
input to the instruction and is not modified by the
instruction. A value of less than 8 causes the
materialization length exception.

The second 4 bytes of the template size specification
entry contain a value that specifies the number of bytes
available to be materialized. The instruction materializes
as many bytes as can be contained in the area specified
as the receiver. If the byte area identified by the
receiver is greater than that required to contain the
information requested, then the excess bytes are
unchanged. No exception (other than the materialization
length exception) is signaled in the event that the
receiver contains insufficient area for materialization.

17-34

The template identified by operand 1 must be 16-byte
aligned.

Authorization is not set in materialized system pointers.

The scalar specified in operand 3 cannot be defined by
a data pointer.

The following chart shows the elements within the ND
materialization templates and the corresponding
materialization option values that are used to select
these elements. The materialization option value
specified for operand 3 must contain a value as follows:

Hex 8000 - Causes a materialization of the entire
contents of the ND as shown in the
following chart.

Hex znnn - Causes one of the following for z=1 or
z=4:

Hex 1nnn Causes a materialization
of only the individual
element within the NO
that has the
corresponding value for
nnn.

Hex 4nnn - Causes a materialization
of any members of the
set of elements within
the ND that are
modifiable elements. The
nnn value in operand 3 is
formed by a logical OR
of the individual nnn
option values for the
desired elements as
shown in the following
charts.

Sub- Materialize
Elements Contained in the ND Template (NO Element Element Option
Type 00) for Materialize N D Length Length Values

Template size specification Char(8)

Reserved (for all materialize templates except ones Char(8)
including object header data)

Object header data (includes template size) Char(96) 1003

NO definition data Char(16) 1007

Backward object pointer group Char(48) 1006

Physical definition data Char(16) 1009

State/status definition Char(16) zOO 1 . State change / status Char(6)

8yte(s) 8it(s) Meaning

0-1 Status ND active count Bin(2)
(number of CDs varied on)

2 Status

0 Network active Bit(1)

1 Manual dial start state Bit(1)

2 Manual answer start state Bit(1)

3 Manual answer state Bit(1)

4 Dial pending state Bit(1)

5 Switched enabled state Bit(1)

6 Varied on state Bit(1)

7 Varied off state Bit(1)

3 Status

O~ Diagnostic mode Bit(1)

1 Diagnostic active indicator Bit(1)

2-7 Reserved Bit(6)

4-5 Reserved Char(2) . Reserved Char(10)

Line definition data Char(16) 100A

Communications initialization data Char(16) 100B

Exchange identification data Char(16) 100C

Selectable mode data Char(16) z002

Communications subsystem parameters data Char(16) z004

Reserved group Char(32) z010

Specific characteristics Char 1000
(y + 2)

Retry value sets Char z020
(6y + 2)

Source/Sink Management Instructions 17-35

Sub- Materialize
Elements Contained in the NO Template (NO Element Element Option
Type 00) for Materialize NO Length Length Values

Line-specific contents Char z040
(y + 4)

Backward object pointers Variable System 1006
number pointers
of system to CD or
pointers to LUD

y = Variable length of an element
z = Option value control digit. Valid values are:

z = 1 Materialize this individual element.
z = 4 Materialize this element along with any other elements of the modifiable

set by ORing together their option values.

Refer to the Modify Network Description instruction for
details of the states in the ND object that can be
materialized as shown above and for the corresponding
modify operations to these states.

Authorization Required

• Operational
- Operand 2

Lock Enforcennent

• Materialize
- Operand 2

17-36

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions MODIFY CONTROLLER DESCRIPTION (MODCD)

Operands Op Code Operand Operand Operand
Exception 1 2 3 Other (hex) 1 2 3

06 Addressing 04C3 Controller Controller Modification
01 Space addressing violation X X X description description options

02 Boundary alignment X X X modification

03 Range X X X template

08 Argument/ Parameter

01 Parameter reference violation X X
Operand 1: System pointer.

OA Authorization Operand 2: Space pointer.
01 Unauthorized for operation X

10 Damage Encountered Operand 3: Character(2) scalar (fixed-length).
02 Machine context damage state X

04 System object damage state X

44 Partial system object damage X X Description: This instruction modifies the CD (controller
1A Lock State description) specified by operand 1 to the new values

01 Invalid lock state X contained in the modification template specified by
1C Machine-Dependent Exception operand 2. The elements or groups of elements within

03 Machine storage limit exceeded X the CD are modified based on the modification options
04 Object storage limit exceeded X specified by operand 3.

20 Machine Support

02 Machine check X The scalar specified in operand 3 cannot be defined by
03 Function check X a data pointer.

22 Object Access

01 Object not found X X X The template identified by operand 2 and any pointer list
02 Object destroyed X X X referenced by it must be 16-byte aligned.
03 Object suspended X X X

24 Pointer Specification The following chart shows the modifiable elements that
01 Pointer does not exist X X X can be included in the template for operand 2. (Refer to
02 Pointer type invalid X X X the Create Controller Description instruction for detailed
03 Pointer address invalid object X descriptions of the elements). The template can contain

2A Program Creation any combination of these elements as indicated by the
06 Invalid operand type X X X option value in operand 3, by including only those
07 Invalid operand attribute X X X elements in the order shown here.
08 Invalid operand value range X X X

OA Invalid operand length X X The Set Diagnostic Mode and Reset Diagnostic Mode
OC Invalid operand ODT reference X X X commands are for use by service personnel.

32 Scalar Specification

01 Scalar type invalid X X X

02 Scalar attributes invalid X

03 Scalar value invalid X

34 Source/sink Management

01 Source / sink configuration invalid X

38 Template Specification

03 Materialization length exception X

Source / Sink Management Instructions 17 -37

Sub- Materialize
Elements Contained in the CD Template (CD Element Element Option
Types 00 and 10) for Modify CD Length Length Values

Template size specification Char(8)

Modify time-out value (for all modify templates) Char(8)

State / status definition Char(16) 4001 . State change / status Char(6)

Byte(s) Bit(s) Meaning

0-1 Reserved Bin(2)

2-3 Reserved Bin(2)

4 Commands

0-1 Reserved Bit(2)

2 Dial Bit(l)

3 Abandon connection Bit(l)

4 Reserved Bit(l)

5 Vary on Bit(l)

6 Vary off Bit(l)

7 Power on Bit(l)

5 Commands

0 Power off Bit(l)

1-3 Reserved Bit(3)

4 Set diagnostic mode Bit(l)

5 Reset diagnostic mode Bit(l)

6-7 Reserved Bit(2) . Reserved Char(10)

N D candidate list data Char(32) 4002

Selected mode data Char(16) 4004

Dial digits Char(32) 4008

Unit-specific contents Char 4010
(y + 4)

ND candidate list Variable Either 4002
number system
of system pointers
pointers to NDs or

null

y = Variable length of an element
Note: A combination of elements can be modified on the same Modify instruction
by supplying in operand 3 a value that is the result of performing a logical
OR on the modify option values of the desired elements.

17-38

Each modifiable element within a CD can be
successfully modified only when in certain operational
states of the controller description.

Refer to Figure 17-1 (Part 1 of 2) for a description of
the states that exist for the CD object and also for the
valid state changes that can be made by the Modify
Controller Description instruction. Figure 17 -1 (Part 2 of
2) shows the valid relationship for modifying other
elements in the CD.

When the state of the CD does not allow the
modification of a requested element, a source/sink
object state invalid exception is signaled and
modification is stopped. All elements that were modified
before the exception remain successfully modified. The
exception information identifies the element responsible
for the exception.

Modification options that include the state
change/status element of the CD and involve a vary
state change to this element have the following
additional exceptions that can be signaled if conditions
are not valid for the requested change:

• Source/sink object state invalid - This exception
occurs because an associated ND (network
description) or LUD (logical unit description) is not in
the proper state for this controller to be varied on or
varied off.

• Source/sink configuration invalid - This exception
occurs because the CD does not have a required valid
forward object pointer; therefore, the controller
cannot be associated with any communications line or
I/O port.

• Source/sink resource not available - This exception
occurs because the appropriate physical hardware or
machine support components are not installed on the
system to match this CD. This exception can also
occur because of a hardware failure occurring
anywhere in the communications network while the
system is attempting to establish the vary on function
for the CD.

The following describes the vary on function and the
'effect it has on the CD object. The CD for a
particular controller must be explicitly varied on by
using the Modify Controller Description instruction. If
the CD is attached to an ND (network description),
the N D object must be varied on before varying on
the CD. If the CD (controller description) has logical
unit descriptions (LUDs) attached, the CD must be
varied on before varying on any of the LUDs (this
check is made in the Modify LUD instruction).
However, the LUDs must be varied off before varying
off the CD. If the above conditions are not met, a
source/sink object state invalid exception is signaled,
and the instruction is stopped at that point.

Whether the CD is logically or physically varied on
depends on the attachment method used for this
controller.

The following describe the different attachment
methods and the resulting state of the CD object:

If the CD is type 00 (CD is not attached to an
ND), the following conditions apply:

1.

2.

3.

The physical connection is activated, and
initial contact with the station is established.
(If contact cannot be established, a resource
not available exception is signaled, and the
instruction is stopped at that point.)

The CD object is set to a vary on state.

A CD contact event is signaled.

If the CD is type 10 (CD is attached to an ND) and
the CD represents a station on a nonswitched line
or loop, the following conditions apply:

1.

2.

The CD object is set to a vary on pending
state and the Modify CD instruction is
completed. (The remaining activity is
performed asynchronously by the machine.)

If the CD object indicates that delayed
contact control is not present and the station
cannot be contacted, a CD contact event
(unsuccessful) is signaled, and the CD
remains in a vary on pending state.

Source/Sink Management Instructions 17-39

3.

4.

If the CD object indicates that delayed
contact control is present and the station can
be contacted, the CD contact event
(successful) is signaled, and the CO is
modified to varied on state.

If the CD object indicates delayed contact
control is present and the station cannot be
contacted, the CD object remains in a vary
on pending state and periodic attempts to
contact the station continue until contact is
established (CD goes to a vary on state) or
the CD is varied off. The CD contact event
is signaled when the station has been
contacted, and vary on is completed.

If the attachment method indicates that the CD is
attached to an NO and the CD represents a
controller that supports communications via the
switched network, the forward switched
connection pointer in the CD does not contain the
address of an NO object. The forward switched
connection pointer is set to null (binary 0) when
the CD object is created, when the CD is varied
off, or when the Modify Controller Description
Abandon Connection command sets the CD to a
vary on pending state. When the CD is set to a
vary on pending state, the Modify Controller
Description instruction completes execution. The
following describes how the CD goes from a vary
on pending state to a vary on state and also how
the forward address in the CD is set to address an
ND object:

17-40

Dial In

For dial in devices, the vary on pending state
exists until an activated line attachment accepts
an incoming call. If the ND associated with the
line is in the NO candidate list of this CD, the
forward switched connection pointer in the CD
is set to point to the ND object and the CD is
set to varied on state. (If the specified NO is
not in the list, the connection is abandoned, and
an event is signaled.) The address of the CD
object is put in the backward switched
connection of the NO object, and the CD object
is set to a vary on state. Any LUDs attached to
this CD that are in a vary on pending state are
set to a vary on state at this time. The CD
contact event and LUO contact event(s) are
signaled upon completion of the activity
associated with the incoming call.

Dial Out

For dial out devices,. the system initiates a dial
procedure to establish a switched connection at
the time a Modify CD Dial Connection
command is issued to the CD. To complete a
dial out connection, the NO candidate list in the
CD is again referenced. An ND that is in the
switched enabled state must be found in the
list, must be enabled for dial out, and must not
be in use. If an ND is not found, the
connection is not made and a resource not
available exception is signaled. Once an NO is
found, the CD is updated to dial pending state,
the switched connection forward pointer is set
to point to the NO that was selected, the N D
status is updated to dial pending state; the
backward connection pointer in the ND is set to
point to this CD; and the instruction completes
execution. The actual connecting of the line is
done asynchronously by the machine. A manual
intervention event can be signaled during this
interval if the connection requires manual
dialing. When the connection is made, the CD
goes to a vary on state, and the N D goes to the
active state. Any LUDs attached to this CD that
are in a vary on pending state are set to a vary
on state at this time. The CD contact event and
LUD contact event(s) are signaled upon
completion of this dial out activity.

The modify time-out value field is used to specify the
desired length of time (in standard time units) that the
machine should allow for the modification operation to
complete. The minimum time-out value is 10 seconds,
and the maximum time-out value is 5 minutes. If the
operation does not complete within the specified time,
the operation is terminated and the partial system object
damage exception is signaled. Error recovery procedures
must be invoked to perform any shutdown or cleanup
operations if this exception occurs. If no time-out, value
is specified in the modify template, a default time-out
value of 30 seconds is used. Any nonzero time-out
value supplied must fall within the time-out limits. This
time-out value should not be construed as a maximum
length of execution time for the modify instruction. The
time-out is only used internally to time some arbitrary
portion of the operation to prevent the Modify
instruction from never completing. Time-out does not
occur in less· than the specified time-out value.
However, execution may validly be much longer than the
time-out value when several elements are included in
one Modify instruction because each element operation
is timed separately.

All CD CD CD All All All All CD
Types

CD
Type 00 Types Type 10 Type 10 Type 10 Types Types Types

Diagnostic
State

Power
Off

Vary. Vary On CD Vary On Dial Vary CD Active CD Active
Off Pending LUD Pending Out On LUD Vary On LUD Session

~~w~!:..~_~
Power Off

~-.---:--- Vary
~--~~I------~I------~~I--------I

Off1

Set Diagnostic "-'--1
Set Diagnostic

Reset Diagnostic

Reset Diagnostic

Vary On (CD Type 00 only)

Vary On

Vary Off
Vary Off

LUD
Vary On

~~D.-.

~---...;..-- Activate

'wary Off

f-oc.!:~~-
Station Connected

++++++++++++++++++++++~

~ Station I Connected
++++++++++++++++++++++~

Dial Out ...
Dial Out

Dial

~+~ii~'f~+
Dial Failure

rc++++++++++++++

Dial Completed
+++++++++++++++~

Dial
Completed
+++++++.-.

.. . I Abandon Connection

Abandon ConnJction

I .. Abandon tnnection

Abandon Connection
I

~~i~'!.~
De-activate

Session
I--c:.....-----

Legend

__ ---I ... ~ State transitions
due to MODCD
operations

______ ~ Due to MODLUD on

the related LUD

State transitions
++++++++~

by system on

,

behalf of MODCD

State transitions as a
function of CD type
Each CD type supports
only those transitions

> where beginning and
ending states are both
allowed stated for that
CD type unless noted
differently on the
diagram.

1 For CD type 10 (switched line), a vary off from this state will cause an implicit abandon connection
and then a vary off.

Figure 17-1 (Part 1 of 2). CD State Change Rules

Vary CD Vary On CD
Modify On Pending LUD Active
Option Diagnostic Power Vary Pend- Vary On Dial Vary CD Active LUD
Values CD States State Off Off ing Pending Out On LUD Vary On Session

Element checking
sequence and allowable
states for modification

4002 1. NO candidate list No Yes Yes Yes Yes No No No No

4004 2. Selected modes No Yes Yes No No No No No No

4008 3. Dial digits No Yes Yes Yes Yes No No No No
4010 4. Unit-specific content No Yes Yes Yes Yes Yes Yes Yes Yes

Figure 17-1 (Part 2 of 2). CD State Change Rules

Source / Sink Management Instructions 17 -41

Authorization Required Exceptions

. Operational Operands
Operand 1 Exception 1 2 3 Other

System objects specified within the operand 2
space object, if any (NO candidate list entries). 06 Addressing

01 Space addressing violation X X X

02 Boundary alignment X X X

Lock Enforcennenf 03 Range X X X

08 Argument/ Parameter . Modify 01 Parameter reference violation X X

Operand 1 OA Authorization

The NO, which is specified by the forward object 01 Unauthorized for operation X

pointer of this CD, if any, and only when this 10 Damage Encountered

forward object is to be modified by the 02 Machine context damage state X

synchronous execution of this Modify CD 04 System object damage state X X X X

instruction on the status field of the CD object 44 Partial system object damage X

The LUDs that are specified by the backward 1A Lock State

object pointer list i/1 this CD, and only when this 01 Invalid lock state X
backward object is to be modified by the 1C Machine-Dependent Exception

synchronous execution of the Modify CD 03 Machine storage limit exceeded X

instruction on the status field of the CD object 04 Object storage limit exceeded X

20 Machine Support

Note: The state change diagrams provided with the 02 Machine check X

Modify Logical Unit Description and the Modify Network 03 Function check X

Description instructions show when the Modify 22 Object Access

Controller Description instruction causes these 01 Object not found X X X

modifications. 02 Object destroyed X X X

03 Object suspended X X X

24 Pointer Specification

Events 01 Pointer does not exist X X X

02 Pointer type invalid X X X

0002 Authorization 03 Pointer addressing invalid object X

0101 Object authorization violation 2A Program Creation

06 Invalid operand type X X X

0004 Controller description 07 Invalid operand attribute X X X

0401 Controller description successful contact 08 Invalid operand value range X X X

0402 Controller description invalid contact OA Invalid operand length X

0403 Controller description unsuccessful contact OC Invalid operand ODT reference X X X

0601 Controller description manual intervention 32 Scalar Specification

01 Scalar type invalid X X X

OOOC Machine resource 02 Scalar attributes invalid X

0201 Machine auxiliary storage threshold exceeded 03 Scalar value invalid X

34 Source/Sink Management

0010 Process 01 Source/sink configuration invalid X

0701 Maximum processor time exceeded 03 Source/sink object state invalid X X

0801 Process storage limit exceeded 04 Source/sink resource not X
available

0016 Machine observation 38 Template Specification
\

0101 Instruction reference 01 Template value invalid X

02 Template size invalid X

0017 Damage set

0201 Machine context damage set

0401 System object damage set

0801 Partial system object damage set

17-42

MODIFY LOGICAL UNIT DESCRIPTION (MODLUD)

Op Code
(hex)

04CB

Operand
1

Logical
unit
description

Operand
2

Logical
unit
description
modification
template

Operand 1: System pointer.

Operand 2: Space pointer.

Operand
3

Modification
options

Operand 3: Character(2) scalar (fixed-length).

Description: This instruction modifies the LUD (logical
unit description) specified by operand 1 to the new
values contained in the modifications template specified
by operand 2. The elements or groups of elements
within the LUD are modified based on the modification
options specified by operand 3.

Operand 2 must be 16-byte aligned. The scalar
specified in operand 3 cannot be defined by a data
pointer.

The following chart shows the modifiable elements that
can be included in the template for operand 2. (Refer to
the Create Logical Unit Description instruction for
detailed descriptions of the elements.) The template can
contain any combination of these elements as indicated
by the option value in operand 3, by including only
those elements in the order shown here.

The Set Diagnostic Mode and Reset Diagnostic Mode
commands are for use by service personnel.

Source/Sink Management Instructions 17-43

Sub- Modify
Elements Contained in the LUD Template (LUD Element Element Option
Types 00, 10, 30) for Modify LUD Length Length Values

Template size specification Char(8)

Modify time-out value Char(8)

State/ status definition Char(16) 4001 . State change / status Char(6)

Byte(s) Bit(s) Meaning

0 Commands

0-6 Reserved Bit(7)

7 Activate session Bit(1)

1 Commands

0 Suspend session Bit(1)

1 Quiesce session Bit(1)

2 Reset session Bit(1)

3 Deactivate session Bit(1)

4 Vary on Bit(1)

5 Vary off Bit(1)

6 Power on Bit(1)

7 Power off Bit(1)

2 Commands

0 Set diagnostic mode Bit(1)

1 Reset diagnostic mode Bit(1)

2-7 Reserved Bit(6)

3-5 Reserved Char(3) . Reserved Char(10)

Session definition data Char(32) 4002

Load/dump definition data Char(16) 4004

Retry value sets Char 4008
(6y + 2)

Error threshold sets Char 4010
(8y + 2)

Device-specific contents Char 4020
(y + 4)

y = Variable length of an element
Note: A combination of elements can be modified on the same Modify instruction
by supplying in operand 3 a value that is the result of performing a logical
OR on the modify option values of the desired elements.

17-44

Each modifiable element within an LUD can be
successfully modified only when in certain operational
states of the LU D.

Refer to Figure 17-2 for a description of the states that
exist for the LUD object, for the valid state changes that
can be made by the Modify Logical Unit Description
instruction, and for the valid relationship for modifying
elements in the LUD.

When the state of the LU 0 does not allow the
modification of a requested element, a source/sink
object state invalid exception is signaled and
modification is stopped. All elements that were modified
before the exception remain successfully modified. The
exception information identifies the element responsible
for the exception.

Modification options that include the state
change/status element of the LUD and involve a power
state, a vary state, or an activate session change to this
element have the following additional exceptions that
can be signaled if conditions are not valid for the
requested change:

• Source / sink object state invalid - This exception
occurs because the associated controller description
or network description is not in the proper state for
the logical unit to be varied on. This· exception also
occurs when the logical unit description itself is not in
the proper state to allow a power on, power off,
activate session, deactivate session, suspend,
quiesce, or reset modification.

• Source / sink configuration invalid - This exception
occurs because the LU 0 does not have a valid
forward object pointer; therefore, the logical unit
cannot be associated with any control unit or
communications line as part of a vary on
modification.

• Source/sink resource not available - This exception
occurs because the appropriate hardware or machine
support components are not installed on the system
to match this LUD. This exception can also occur
because of a hardware failure occurring anywhere in
the system while the system is attempting to
establish a power on, vary on, or activate session
function for the LUD.

The LUD for a particular device must be explicitly
varied on by using the Modify LUD instruction. If the
LUD is attached to a CD (controller description), the
CD must be in the varied on or the vary on pending
state before varying on the LUD. If not, a
source/sink object state invalid exception is signaled,
and execution of the instruction stops.

Whether the LUD is logically or physically varied on
depends on the attachment method used for this
device. The following paragraphs describe the
different attachment methods and the resulting state
of the LU 0 object.

When the attachment method indicates that the LU 0
can be attached directly (LUD type 00) or attached
only to a CD (LUD type 10), the device is initialized,
and the LUD object is set to the vary on state. A
LUD contact event is also signaled. If the device
cannot be initialized, a resource not available
exception is signaled, and execution of the instruction
is stopped.

When the attachment method indicates that the LUD
is attached to both a CD and an NO (LUD type 30)
and the CD represents a· station on a nonswitched
line or local loop, the device is initialized, and the
LUD is modified either to a vary on state if the CD
was in a varied on state or to a vary on pending state
if the CD was in a vary on pending state. If the
device cannot be initialized, the resource not available
exception is signaled, and execution of the instruction
is stopped. If the LUD is modified to a vary on
pending state, asynchronous to this Modify LUD
instruction, the LUD is then modified to a varied on
state; the LUD contact event is signaled whenever
contact is made with the station, and the CD is
modified to a varied on state.

Source/Sink Management Instructions 17-45

If the attachment method indicates that theLUD is
attached to both a CD and an NO (LUD type 30) and
the CD represents a station on a switched network, the
following conditions apply:

• When the connection to the CD has not been
established (CD is in a vary on pending state), the
LUD is modified to a vary on pending state. The LUD
is modified to a vary on state when the dial in or dial
out function is completed, the CD is set to a vary on
state, and the LUD contact event is signaled.

• If the connection to the CD has been established (CD
is in a varied on state), the LUD is modified to a
varied on state, and the LU 0 contact event is -. signaled.

• When the device cannot be initialized, a resource not
available exception is signaled.

The modify time-out value field is used to specify the
desired length of time (in standard time units) that the
machine should allow for the modification operation to
complete. The minimum time-out value is 10 seconds,
and the'maximum time-out value is 5 minutes. If the
operation does not complete within the specified time,
the operation is terminated and the partial system object
damage exception is signaled. Error recovery procedures
must be invoked to perform any shutdown or cleanup
operations if this exception occurs. If no time-out value
is specified in the modify template, a default time-out
value of 30 seconds is used. Any nonzero time-out
value supplied must fall within the time-out limits. This
time-out value should not be construed as a maximum
length of execution time for the Modify instruction. The
time-out is only u'sed. internally to time some arbitrary
portion of the operation to prevent the Modify
Instruction from never completing. Time-out will not
occur in less than the specified time-out value.
However, execution may validly be much longer than the
time-out value when several elements are included in
one Modify instruction because each element operation
is timed separately.

17-46

All LUD LUD All LUD All All All All All
Types Type 00 Types Type 30 Types Types Types Types Types

Diagnostic Power Power On Vary On Varied On/No Reset Quiesced Suspend Activate

State Off Vary Off Pendina Session Session Session Session Session

Power On
Power Off

Vary On ..
Vary Off

Vary On

Vary Off

CD Connection Made

Set
+++++++~
CD Abandon Connection

,Piagnostic ~------ Activate Session

Set Diagnostic D . cl~ Se . e-actlvate sSlon
Reset Reset !Session
Diagnostic Activate Session

Reset Diagnostic _ De-activate
Quiesce

Activate

De-activate
Sessiop

Suspend

I ~-:......--

Activate

De-activate ,

Notes:
1. De-activate from active state causes a state ch"nge first to quiesced state and then to varied on state.

Legend

~ State transitions
due to MODLUD
operations

.. +;-++~ State transitions
due to MODCD on
the related CD

----~ State transitions
by system on
behalf of MODCD

State transitions as a function
of LUD type
Each LUD type supports
only those transitions
where beginning and
ending states are both
allowed states for
that LUD type unless
noted differently on
the diagram.

De-activate from suspeneded state causes a state change first to reset state and then to varied on state.
2. For LUDs which are used for load/dump operations, de-activate is not allowed if load pending or

dump pending conditions are set. See Figure 17-2 (Part 3 of 4) for load/dump change rules.

Figure 17-2 (Part 1 of 4). LUD State Change Rules

Diagnostic Power Power Vary On Vary Reset Quiesced
LUD States State Off On Pending On Session Session

Element checking
sequence and allowable
states for modification

1. Session information No Yes Yes No No No No

2. Load/Dump indicator No Yes Yes Yes Yes Yes/No' Yes/No'

3. Retry value sets No Yes Yes Yes Yes Yes Yes

4. Error threshold sets No Yes Yes Yes Yes Yes Yes

5. Device-specific No Yes Yes Yes Yes Yes Yes
contents

Suspend
Session

No
Yes/No,·2

Yes

Yes

Yes

'Transition is allowed only if the load/dump device is defined as an interruptible or exchangeable device.

Activate
Session

No

Yes/No'

Yes

Yes

Yes

2Transition from load or dump mode to normal mode is allowed, but transition from normal mode to load or dump mode is not
allowed in suspended session state.

Figure 17-2 (Part 2 of 4). LUD State Change Rules

Source/Sink Management Instructions 17-47

LUD Load/Dump Indicator Change Rules (LUD Types 00, 10)

Load/Dump Mode Field in LUD

Normal Mode l Load Mode I Dump Mode

Normal to Load Mode

Conditions 1,2

Normal to Dump Mode

Conditions 1, 3

J.,oad to Normal Mode
Conditions 1,4

Dump to Normal Mode -
Conditions 1, 5

Load to Dump
Condition 1

Dump to Load
Condition 1

Conditions:
1. Allowed if LUD status is powered off, powered on/varied off, vary on pending, or varied on.
2. Allowed if LUD status is reset or quiesced and load pending is on. This change is allowed

only on interruptible load/dump devices and causes the load pending indicator to be reset.
3. Allowed if LUD status is reset or quiesced and dump pending is on. This change is allowed

only on interruptible load/dump devices and causes the dump pending indicator to be reset.
4. Allowed if LUD status is reset, quiesced or suspended. This change is allowed only on

interruptible load/dump devices and causes the load pending indicator to be reset.
5. Allowed if LUD status is reset, quiesced or suspended. This change is allowed only on

interruptible load/dump devices and causes the dump pending indicator to be set.

Figure 17-2 (Part 3 of 4). LUD State Change Rules

17-48

Load/Dump Indicator Field (hex)

Load/Dump Device

00 = Not a Load/Dump Device

01 = Noninterruptible/
Nonexchangeable

11 = Interruptible

21 = Exchangeable

Load/Dump Operating Mode (note 1)

00 = Normal

01 = Load Mode (primary device)

02 = Dump Mode (primary device)

21 = Load Mode (alternative device)

22 = Dump Mode (alternative device)

Load/Dump Pending

0000 = Normal

0100 = Load Pending

0200 = Dump Pending

Corresponding Primary Address (note
1)

nnnn = Logical unit address of the
primary device when this
device is an alternative mode
device

Load/Dump Exchange Status (note 3)

On Materialize:

010000 = This device is current.

000000 = This device is not current.

On Modify:
01 nnnn = Exchange to current when

nnnn is the sartle as the
logical unit address of the
previous current device

000000 = No modification requested

Notes:

Diagnostic Power Power Vary On Varied Reset Quiesced
State Off On Pending On Session Session

No

Not Modifiable Data
(ignored by MODLUD instruction)

Yes Note 2

Not Modifiable Data
(ignored by MODLUD instruction)

Suspended Active
Session Session

No

No Yes Ignored by MODLUD instruction

No
No

(template must contain hex 000000)
Yes

1. Load/dump mode settings and corresponding primary address settings must be compatible between this LUD and the
corresponding LUD(s) at session activation.

2. Mode changes from primary device mode to alternative device mode or the reverse direction are not allowed for LUD states
above varied on.

3. On modification, the other LUD with the logical unit address hex nnnn must be current, active, in a corresponding mode (load or
dump), and must have a corresponding primary address that either indicates this LUD or indicates the same primary as indicated
in this LUD. The other LUD will be changed to not current. Any unprocessed load/dump request I/O operations will be routed
to the new current LUD. If the exchange to current occurs while request I/O operations are in process (no terminating errors
such as EOV indicated), then the disposition of these requests is indeterminate.

Figure 17-2 (Part 4 of 4): LUD State Change Rules

Source/Sink Management Instructions 17-49

The following conditions are required when sessions are
activated or de-activated for exchanges:

• Activate session - If the lU 0 is in primary load mode
or primary dump mode, the lUD will become current
when activated. If the lUD is in alternative load
mode or alternative dump mode, the corresponding
primary lUD must be in active session and in a
matching primary mode.

• De-activate session - If the lUD is in primary mode,
it must be current and all alternative lUDs must
already be de-activated. De-activation will cause the
lUD to change to not current. If the lUD is in
alternative mode it must be not current.

Authorization Required

• Operational
- Operand 1

Lock Enforcennent

• Modify
Operand 1
The CD that is specified by the forward object
pointer of this lUD, if any, and only when this
forward object is to be modified by the
synchronous exeuction of this Modify lUD
instruction on the status field of the lU D object

Note: The state change diagrams provided with the
Modify Controller Description and Modify Network
Description instruction show when the Modify logical
Unit Description instruction causes these modifications.

17-50

Events

0002 Authorization
0101 Object authorization violation

0008 logical unit description
0601 logical unit description contact successful

(for all Modify lUD-Vary On instruction)
0602 logical unit description contact unsuccessful

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0201 Machine context damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions MODIFY NETWORK DESCRIPTION (MODND)

Operands
Op Code Operand Operand Operand Exception 1 2 3 Other
(hex) 1 2 3

06 Addressing
01 Space addressing violation X X X 04CF Network Network Modification

02 Boundary alignment X X X description description options

03 Range X X X
modification

08 Argument/ Parameter
template

01 Parameter reference violation X X
OA Authorization

Operand 1: System pointer.

01 Unauthorized for operation X Operand 2: Space pointer.
10 Damage Encountered

02 Machine context damage state X Operand 3: Character(2) scalar (fixed-length).
04 System object damage state X X X
44 Partial system object damage X

1A Lock State
01 Invalid lock state X X Description: This instruction modifies the ND (network

1C Machine- Dependent Exception description) specified by operand 1 to the new values

03 Machine storage limit exceeded X contained in the modification template specified by
04 Object storage limit exceeded X operand 2. The elements within the N D are modified

20 Machine Support based on the modification options specified by operand
02 Machine check X 3. Operand 2 must be 16-byte aligned.
03 Function check X

22 Object Access The scalar specified in operand 3 cannot be defined by
01 Object not found X X X a data pointer.
02 Object destroyed X X X
03 Object suspended X X X

24 Pointer Specification
The following chart shows the modifiable elements that

01 Pointer does not exist X X X can be included in the template for operand 2. (Refer to

02 Pointer type invalid X X X the Create Network Description instruction for detailed

03 Pointer addressing invalid object X descriptions of the elements.) The template can contain
2A Program Creation any combination of these elements as indicated by the

06 Invalid operand type X X X option value in operand 3 and by including only those
07 Invalid operand attribute X X X elements in the order shown here.
08 Invalid operand value range X X X
OA Invalid operand length X
OC Invalid operand ODT reference X X X

32 Scalar Specification
01 Scalar type invalid X X X
02 Scalar attributes invalid X
03 Scalar value invalid X

34 Source / Sink Management
01 Source/sink configuration invalid X
03 Source / sink object state invalid X X
04 Source/sink resource not X

available
38 Template Specification

01 Template value invalid X
02 Template size invalid X

Source/Sink Management Instructions 17-51

Sub- Modify
Elements Contained in the NO Template (NO Element Element Option
Type 00) for Modify NO Length Length Values

Template size specification ChartS)

Modify time-out value ChartS)

State/status definition Char(16) 4001 . State change / status Char(6)

Byte(s) Bit(s) Meaning

0-1 Reserved Bin(2)

2 Commands

0 Reserved Bit(1)

1 Abandon call Bit(1)

2 Manual start data Bit(1)

3 Manual answer Bit(1)

4 Disable Bit(1)

5 Enable Bit(1)

6 Vary on Bit(1)

7 Vary off Bit(1)

3 Commands

0 Set diagnostic mode Bit(1)

1 Reset diagnostic mode Bit(1)

2-7 Reserved Bit(6)

4-5 Reserved Char(2) . Reserved Char(10)

Selectable mode data Char(16) 4002

Communications subsystem parameters data Char(16) 4004

Retry value sets Char 4020
(6y + 2)

Line-specific contents Char 4040
(y + 4)

y = Variable length of an element
Note: A combination of elements can be modified of the same Modify instruction
by supplying a value in operand 3 that is the result of performing a logical
OR on the modify option values of the desired elemer.ts.

17-52

Each modifiable element within an ND can be
successfully modified only when in certain operational
states of the network description.

Refer to Figure 17-3 (Part 1 of 2) for a description of
the states that exist for the ND object and also for the
valid state changes that can be made by the Modify
Network Description instruction. Figure 17 -3 (Part 2 of
2) shows the valid relationship for modification of the
other elements in the ND.

When the state of the ND does not allow modification
of a requested element, a source/sink object state
invalid exception is signaled, and modification is
stopped. All elements that were modified before the
exception remain successfully modified. The exception
information identifies the element responsible for the
exception.

Modification options that include the state
change/status element of the ND and involve a vary
state change to this element have the following
additional exceptions that can be signaled if conditions
are not valid for the requested change:

• Source/sink object state invalid - This exception
occurs because an associated CD (controller
description) or LUD (logical unit description) is not in
the proper state for this ND to be varied off.

The ND for a particular line must be explicitly varied
on before the CDs are varied on by using the Modify
Network Description instruction. If the ND is not
varied on, a source/sink object state invalid exception
is signaled by the Modify Controller Description
instruction. Likewise, before the N D can be varied
off, the CDs must be varied off. If not, a source/sink
object state invalid exception is signaled by this
instruction.

• Source/sink resource not available - This exception
occurs because the appropriate hardware or machine
support components are not installed on the system
to match this ND. This exception can also occur
because of a hardware failure occurring anywhere in
the communications network while the system is
attempting to establish the vary on function for the
ND.

When the attachments for the line are activated, the
N D object is set to a vary on state. If the
attachments cannot be activated, a resource not
available exception is signaled, and the instruction is
stopped at that point.

When the attachments for nonswitched lines and
local loops are activated, the line is prepared for
transmitting to the attached devices.

When the N D is associated with a communications
attachment configured for switched network support,
the attachment is activated and made ready to
establish a switched connection. This connection can
be established in the following two ways:

Dial In

When an incoming call is received, if the ND is in
the ND candidate list of the CD that called in and
if that ND is in switched enabled state with dial in
allowed, the connection is made.

Dial Out

When a modify CD dial command is issued to the
CD, the ND candidate list in the CD is referenced
again. If an N D is found that is in a switched
enabled state with dial out allowed in the switched
connection method field and this N D is not in use,
the connection is established.

For both dial in and dial out, an event is signaled
upon completion of the activity. Also, the forward
and backward switched connection pointers in the
ND and CD are updated to complete the addressing
chain.

The modify time-out value field is used to specify the
desired length of time (in standard time units) that the
machine should allow for the modification operation to
complete. The minimum time-out value is 10 seconds,
and the maximum time-out value is 5 minutes. If the
operation does not complete within the specified time,
the operation is terminated and the partial system object
damage exception is signaled. Error recovery procedures
must be invoked to perform any shutdown or cleanup
operations if this exception occurs. If no time-out value
is specified in the modify template, a default time-out
value of 30 seconds is used. Any nonzero time-out
value supplied must fall within the time-out limits. This
time-out value should not be construed as a maximum
length of execution time for the Modify instruction. The
time-out is only used internally to time some arbitrary
portion of the operation to prevent the Modify
instruction from never completing. Time-out will not .
occur in less than the specified time-out value.
However, execution may validly be much longer than the
time-out value when several elements are included in
one Modify instruction because each element operation
is timed separately.

Source/Sink Management Instructions 1'7-53

, Diagnostic I Varied
State Off I Varied I Switched I Dial I Manual I Manual I Manual I Net~ork I

On J Enable Pending Answer Answer Start Dial Start Active I
Reset
~=:""--'l~ Vary On
Diagnostic

I
I §et
Diagnostic

}

All
. NOs

Vary On CD .

Vary Off

::~~~~====l~;E;~p[=================: 1 ~~~switched
Legend

Transitions
--~·"dueto

modify NO

Vary Off CD All Switched or
f+---------------------------------- ~ ·Switched Network

I I I I :backup NOs

Transitions
due to

Abandon Connection (CD)
~---------------------------------

I I Dial
--=--."""7~

(CD) Manual Start Data Manual
, Connection
t++++++~

Auto Dial Connection
+++++++++++++++++++++++++++++++~

Manual Connection Failure
rc+++++++++++++++++++++++++++++
'-.. I Aband~~ Con~ection (CD)
I~----------------------
1--- Abandon Connection (CD)

1++++ Auto Dial Failure

Manual Answer
Manual
Start ' Manual Connection
Data + ... ++++++++++++++~

Auto Answer I
++~

Manual IConnectionl Failure
~++++++++++++++++++++~

Abando~ Call I
Abandon Call

Figure 17-3 (Part 1 of 2). NO State Change Rules

Manual
Diagnostic Vary Vary Switched Manual Answer

NO States State Off On Enable Answer Start

Element checking sequence and
allowable states for modification

1. Selectable modes No Yes No No No No

2. Communications subsystem No Yes No No No No
parameters

3. Eligibility list No Yes Yes No No No

4. Retry value sets No Yes Yes Yes Yes Yes

5. Line-specific contents No Yes Yes Yes Yes Yes

Switched
Dial Out
NOs

Switched
Answer
NOs

Manual Dial
Start

No

No

No

Yes

Yes

---~ modify CD
instruction
on related
CDs

Due to
system on

t++++ .. behalf of

NDand CD
events

Network
Active

No

No

No

Yes

Yes

Note: Transition from load or dump mode to normal mode is allowed, but transition from normal mode to load or dump mode is
not allowed in suspended session state.

Figure 17-3 (Part 2 of 2). NO State Change Rules

17-54

Authorization Required Exceptions

. Operational Operands

Operand 1 Exception 1 2 3 Other

The CD which is specified by the lockword object
06 Addressing

pointer in this NO, if any, and only when this
01 Space addressing violation X X X

lockword object is to be modified by the 02 Boundary alignment X X X
synchronous execution of this Modify NO 03 Range X X X
instruction 08 Argument/ Parameter

01 Parameter reference violation X X
OA Authorization

Lock Enforcement 01 Unauthorized for operation X
10 Damage Encountered . Modify 02 Machine context damage state X

Operand 1 04 System object damage state X X X X

The CDs that are specified by the backward object
44 Partial system object damage X

1A Lock State
pointer list of this NO, and only when these

01 Invalid lock state X
backward objects are to be modified by the 1C Machine-Dependent Exception
synchronous execution of this Modify NO 03 Machine storage limit exceeded X
instruction on the status field of the NO object. 04 Object storage limit exceeded X

20 Machine Support
Note: The state change diagrams provided with the 02 Machine check X
Modify Controller Description instructions show when 03 Function check X

the Modify Logical Unit Description instruction will cause 22 Object Access

these modifications. 01 Object not found X X X
02 Object destroyed X X X
03 Object suspended X X X

Events
24 Pointer Specification

01 Pointer does not exist X X X
02 Pointer type invalid X X X

0002 Authorization 03 Pointer address invalid object X
0101 Object authorization violation 2A Program Creation

06 Invalid operand type X X X
OOOC Machine resource 07 Invalid .operand attribute X X X

0201 Machine auxiliary storage threshold exceeded 08 Invalid operand value range X X X
OA Invalid operand length X

OOOE Network description OC Invalid operand ODT reference X X X

0401 XID exchange failure 32 Scalar Specification
01 Scalar type invalid X X X
02 Scalar attributes invalid X

0010 Process
03 Scalar value invalid X

0701 Maximum processor time exceeded 34 Source/Sink Management
0801 Process storage limit exceeded 01 Source/sink configuration invalid X

03 Source/sink object state invalid X X
0016 Machine observation 04 Source/sink resource not X

0101 Instruction reference available
38 Template Specification

0017 Damage set 01 Template value invalid X

0201 Machine context damage set
02 Template size invalid X

0401 System object damage set

0801 Partial system object damage set

Source/Sink Management Instructions 17-55

REQUEST I/O (REQIO)

Op Code
(hex) Operand .1

0471 Source/sink
request (SSR)

Operand 1: Space pointer.

Description: Operand 1 references an area in a space
called the SSR (source/sink request). The SSR contains
the pointers and data that are required to define the
REOIO operation and must be 16-byte aligned.

The SSR contains three pointers. The first pointer
specifies the source/sink description object for the I/O
device or component to be used. The second pointer
identifies the queue to which final disposition of the
requested I/O operation is to be returned. The third
pointer locates the SSD (source/sink data), which is the
data area for the requested I/O operation.

The data contained in the SSR defines the type of
REOIO function to be performed, certain controls,
identification, sequencing functions, and the set of
operational orders or commands for the I/O device.

Certain checks are made on the objects referenced by
the SSR pointers and on the SSR data before the I/O
operation is started. For example, the SSR data area
must contain valid function and control fields but the
device operational orders (called request descriptors) are
not verified during the processing of the Request I/O
instruction.

The first pointer in the SSR must represent a proper
source/sink object that is authorized to this user. The
object must be in a lock state that allows its use. For a
normal or load/ dump REQIO function, the object must
be a LUD (logical unit description) in the active session
state.

17-56

The second pointer must represent a queue that is
authorized to this user. The queue must (1) be a keyed
queue with a key length of 10 bytes or larger, (2) have a
message size of 64 bytes of pointer and scalar data, and
(3) have a message element available.

The third pointer may reference a space as a data area.
If the preceding conditions are not satisfied, an
appropriate exception is signaled and the instruction is
terminated.

If the preceding conditions are satisfied, the requested
I/O operation is scheduled for execution and the
Request I/O instruction is complete.

The requested I/O operation is then processed
asynchronously. The completion of this request I/O
operation is indicated by the posting of a feedback
record to the request I/O response queue specified in
the SSR and also by the signaling of the request I/O
completed event (only when such event signaling was
specified in the SSR). Errors encountered during the
machine processing of this requested operation are
indicated in the feedback record. These errors include
those encountered within the RDs (request descriptors)
in the SSR, any authorization or lock enforcement
violations encountered within load/dump operations, or
any hardware errors detected while processing the I/O
operation.

Some failures may occur during an I/O operation that
may prevent the I/O operation from completion.
Because the Request I/O instruction does not provide a
time-out in these cases, indefinite waits or operator
intervention recovery actions may occur. The user must
prevent these waits or operator intervention recovery
actions by providing a time-out. The time-out can be
indicated in the Dequeue instruction by entering it in the
dequeue-wait-time-out parameter (see Dequeue
instruction in Chapter 12 for details). The time-out
values to be used are device-dependent and are a
function of the particular I/O operation being performed
by the device.

The sequence of events is as follows:

1. Request I/O instruction is executed.

2. The I/O operation is completed.

3. The Dequeue instruction is issued to retrieve the
feedback record.

4. Completion of the I/O operation is signaled by the

retrieval of the feedback record.

The SSR space object contains the following:

Template size specification
Size of template
Number of bytes available
for materialization

Reserved (binary 0)

Source/sink object

Response queue

Source/sink data area (or binary 0)

Optional pointer area

Reserved (binary 0)

Request priority

Request 10

Function field

Control field

Key length

Offset to key field

Request descriptor count

Offset to request descriptor field

Reserved (binary 0)

Variable-length entries:
Key field (variable 10-256 bytes)
Request descriptor field
(modulo 16, 2-byte aligned;
or modulo 96, 16-byte
aligned for load/dump requests)

ChartS)
Bin(4)
Bin(4)

ChartS)

System
pointer

System
pointer

Space
pointer

Char(16)

Char(16)

Bin(2)

Bin(2)

Char(1)

Char(1)

Bin(2)

Bin(2)

Bin(2)

Bin(2)

Char(2)

Char(*)
Char(*)

Request descriptor 1 Char(16) or (96)

Request descriptor n Char(16) or (96)

These entries are defined as described in the following
paragraphs. The information associated with service
request I/O, service functions, and service exceptions is
for use by service personnel.

Template size specification - This entry defines the
standard template header data. The size of the template
field must indicate a sufficient number of bytes to
contain all the following entries in the SSR including the
lengths and positions of all the variable length items in
the SSR. The number of bytes available for
materialization field is not used by the Request I/O
instruction.

Source/sink object - This entry can be a system pointer
to an LUO for a normal or load/dump request I/O
operation; can be a system pointer to an LUO, a CO, or
an NO for MSCP (machine service control point) request
I/O operations; or can contain binary 0 for service
request I/O operations.

Response queue - This entry is a system pointer to the
Request I/O response queue.

Source / sink data area - This entry can be a space
pointer to an SSO area for any request I/O operations,
or it can be binary O.

Optional pointer - This space must be null (binary 0) for
all operations except service requests. When the SSR
function field specifies service, this space will either
contain a space pointer or be null.

Request priority - This field defines the priority of each
Request I/O instruction relative to other Request I/O
instructions. As each Request I/O instruction is
processed, this field is used to schedule the priority of
each request with respect to any previously issued
requests that are still stacked for processing. Priority
values can be assigned in binary collating sequence with
hex 0000 being the highest priority and hex FFFF being
the lowest priority.

Source / Sink Management Instructions 17 -57

Request 10 - This field is used to assign unique
identification to each source/sink request. This unique
identification is copied into the feedback record
associated with this Request I/O instruction and thus
provides an external capability to correlate feedback
records with the Request.1 /0 instruction that generated
them. The request ID field is also used to control the
signaling of the request I/O completed event. When bit
o in the request I D field is 1, the request I/O completed
event is signaled when the feedback message is
enqueued. This event indicates that the processing of
this request is completed. When bit 0 in the request ID
is 0, no event is signaled.

Function field - This field defines the type of request
I/O as follows:

Bits 0-3= 1000 - normal request I/O
= 0100 - MSCP request I/O
= 0010 - load/dump request I/O
= 0001 - service request I/O

Bits 4-7 are function dependent and are defined for
each device or function in Chapter 23. Source/Sink
Specialization and Programming Considerations for
Local Devices.

If the function field indicates a load / dump request, then
the load/dump indicator in the LUD must indicate
load/dump mode or the source/sink invalid object state
exception is signaled.

Request control field - This field defines Request I/O
control functions as follows:

Hex D5 = Normal request I/O
Hex C3 = Request I/O continue

Request 1/ o continue is used for error recovery
situations. When a terminating error is posted in the
feedback record, normal request I/O processing is
inhibited until a request I/O continue command is
issued. Normal requests can be issued before the
request I/O continue command, but these requests
remain enqueued for processing until the continue
command is issued. The request I/O continue function
is internally assigned a higher priority than normal
requests, and, consequently, is processed before the
normal requests that are enqueued for processing.
When request I/O continue is indicated in the SSR, the
RD count must contain O. When request I/O normal is
indicated, the RD count must contain a value greater
than O.

17-58

Key length - This field indicates the length of the
request key field in this SSR. This value must also
match the key length attribute of the response queue
specified in this SSR. '

Offset to key field - This field indicates the location
within the SSR where the request key field' has been
placed. This offset value is defined from the beginning
of the SSR and must be a positive value.

Key field - This field is used by the machine to post the
feedback record onto the request I/O response queue.
This is the key value to be used by the Dequeue
instruction to retrieve the feedback record corresponding
to this Request I/O instruction. Feedback records are
posted to the response queue in binary collating
sequence order so that standard dequeue keyed rules
apply. Refer to the Dequeue instructions for details.

Request descriptor count - Bin(2) - This field indicates
the number of request descriptors contained in the
request descriptor field in this SSR.

Offset to request descriptors - This field indicates the
location within the SSR where the request descriptor
field has been placed. This offset defines a positive
value offset from the beginning of the SSR and must
define either a 2-byte aligned location for normal MSCP
or service requests, or a 16-byte aligned location for
load/dump requests.

Request descriptor field - This part of the source/sink
request contains the 16-byte RDs, which must be
halfword aligned (or 96-byte RDs, 16-byte aligned for
load/dump) for the RIUs (request information units)
and/or system pointers involved in the source/sink
operation. The RD is specifically tailored to a particular
device type, method of attachment, and / or the mode of
the Request I/O instruction. Refer to Chapter23.
Source/Sink Specialization and Programming
Considerations for Local Devices for the contents of
request descriptors for specific devices.

The SSD (source/sink data) located by the SSR, when it
is present for an I/O request, represents the data area
(I/O data buffer) associated with the particular request.
The contents of the SSD are also defined for each
device supported on a particular model of the system in
Chapter 23. Source/Sink Specialization and Programming
Considerations for Local Devices of this publication. The
significance concerning this SSD space is that it can be
subdivided into segments called RIUs (request
information units), which have a one-to-one
correspondence with the RDs in the SSR so that
feedback record subdivisions can be defined.

Unpredictable results can occur if the space object that
. contains the SSD is modified, destroyed, or truncated
when the space is being used to. complete the request
I/O operation.

The message associated with a Dequeue instruction is
called a feedback record only when the mess!3ge
resulted from a Request I/O operation associated with
this response queue. The message operand on the
Dequeue instruction has the following information
inserted into it to form the feedback record:

Field

Source/sink request address
Request 10
Error summary
RD number
RIU segment count
Device-dependent status

Format

Space pointer
Bin(2)
Bin(2)
Bin(2}
Bin(2)
Char(40)

Definitions of these feedback record fields follow:

Source/sink request address - This pointer locates
the SSR (source/ sink request) that the issuer of the
Request I/O instruction supplied as its operand. This
SSR can optionally have new data inserted into it
based on the Request I/O operation· that was
performed.

Request 10 - This field contains the same value as
the request 10 field within the SSR of the Request
I/O instruction that generated this feedback record.
It is used to correlate responses to requests.

Error summary - This field indicates the final
disposition of the request I/O operation. The
contents of this field are:

Byte 0 Byte 1

tnisffff r d nnnnnn

o 7 o 7

Source/Sink Management Instructions 17-59

Byte 0 - Error Attributes

Bits 0, 1 (t = terminate, n = nO'L "'"

00 Normal condition
01
11

Not normal, nonterminating error
Not normal, terminating error

Terminating errors are those for which
processing of subsequent request I/O
operations is suspended until higher- level
Request I/O Control instructions or
session state changes through the Modify
lUD instruction are requested.

Bit 2 (i = included)

o Device-dependent data is not included.
Device-dependent data is included in the
device-dependent status area of this feedback
message.

Bit 3 (s = specific error)

o Error code defined in byte 1.
Device- specific error code is defined in byte 1,
and none of the definitions for byte 1 apply.

Bits 4, 5, 6, 7 (f = function)

0000
01nn

1000

Normal function
load / dump function; nn is defined
in Chapter 25. Load/Dump Object
Management
MSCP function

1100 Service function

Byte 1 - Error Type

Bits 0, 1 (r = SSR, d = SSD)

00 Error type is not associated with the SSR
or the SSD.

10 Error type is associated with the SSR
(source/sink request).

01 Error type is associated with the SSD
(source / sink data).

11 Error type is associated with load/dump
operations.

Bits 2-7 Bits 2 through 7 are combined with the r
and d bits to provide the following byte 1
error type definitions.

17-60

Byte 1 Error Types Defined

Hex 00
Hex 08
Hex 09

No error conditions
Request I/O continue response
Partially processed request - terminated
because of a reset session, error on
quiesce session, or error on suspend
session

Hex OA = Unprocessed request - results from a

Hex OF

Hex 10
Hex 11
Hex 12
Hex 13
Hex 14
Hex 15
Hex 16
Hex 17
Hex 18

Hex 20
Hex 21
Hex 22
Hex 24
Hex 28
Hex 29
Hex 30
Hex 31
Hex 32
Hex 33
Hex 40
Hex 41

Hex 42
Hex 43
Hex 44
Hex 45
Hex 46
Hex 47
Hex 48

Hex 54

Hex 55
Hex 80
Hex 81

Hex 82
Hex 83
Hex 84

reset session, error on quiesce session,
error on suspend session, or a terminating
error
Reserved for use above the Machine
Interface
Unrecoverable error - lUD Type 00 or 10
Read terminated - device control error
Read completed - device control error
Data truncated - device control error
Command terminated - sequence error
Command terminated
End of file
End of volume
Command terminated - results from the
conditions sensed
Unrecoverable error - lUD type 30
line nonfunctional
Station nonfunctional
Send / receive error
Invalid information unit
Bind host pacing parameter error
MSCP-invalid lUD type
MSCP-lUD not varied on
MSCP-invalid request header (RH)
MSCP-invalid transmission header (TH)
Invalid source/sink data (SSD)
SSD object unusable (destroyed or

suspended)
Invalid SSD data
Invalid SSD boundary alignment
SSD byte space too small
SSD byte space too large
Invalid number of pointers in SSD
Invalid pointer in SSD
Pointer in SSD references an unusable
object (destroyed or suspended)
Respective session not active (SSCP to
lU or lU to lU)
Data traffic session not active
Invalid source/sink request (SSR)
SSR object unusable (destroyed or
suspended)
Invalid lUD pointer
Invalid response queue pointer
Invalid SSD pointer

Hex 85
Hex 86
Hex 87
Hex 88
Hex 89

Invalid function field
Invalid RD count field
Invalid RD
Invalid RD sequence
Invalid Control field - continue out of
sequence

Hex CO = Load / dump storage error
Hex Cl = Insufficient user profile space for create

and load
Hex C2 = Invalid lock
Hex C3

Hex C4
Hex C5

Hex C6

Insufficient size of user profile or context
for create and load

Duplicate object on create and load
Data space index sequence error on load
or create and load
Load / dump object destroyed

Hex C7 Data space field descriptor mismatch on
load or data space index key specification
mismatch

Hex C8 Reserved
Hex C9 Object name, type, subtype mismatch on

load
Hex CA = Data space or data space index is in use
Hex CB = Insufficient space to activate load/dump
Hex CC = Data base linkage problem
Hex CD = Load/dump object damaged
Hex CE Load/ dump invalid version level
Hex CF = Same request I/O - SSR not returned

after EOF (end of file), EOT (end of tape),
or EOV (end of volume)

Hex DO = Load/dump errors which are further
defined in model dependent
documentation

RD number - This number indicates the request
descriptor that is within the Request I/O instruction
and is appropriate for the ending status of that
instruction. Normally, it is the last RD in the request,
and in terminating error cases it is the RD on which
the failure occurred.

RIU segment count - This count indicates a further
breakdown to the segment within the RIU (request
information unit) associated with the RD number if
such a breakdown is meaningfully defined for each
device type.

Device-dependent status - This field indicates further
status associated with the error summary field. This
field is uniquely defined for each type of device
supported on the system.

Note: The Request I/O instruction normally initiates
I/O hardware operations that, under abnormal
circumstances or hardware failures, may fail to
complete. The Request I/O instruction does not
provide any time-out mechanism for these cases as
is provided by the Modify instructions. Whenever
possible, the user should provide time-out
mechanisms for Request I/O operations to prevent
these I/O failures from causing indefinite waits,
which ultimately require operator-initiated recovery
actions. Because the Request I/O instruction
execution is asynchronous to the actual hardware
operations (that is, the instruction completes before
the actual operation is started by the machine), timing
must be done on the Dequeue instruction, which
retrieves the feedback record that signals the actual
completion of the I/O operation. This timing can be
done by setting a time-out value for the
dequeue-wait-time-out parameter on the Dequeue
instruction. Time-out values to be used are
device-dependent and are a function of the particular
I/O operation being performed by that device.

Authorization Required

• Operational
- LUD, CD, or ND specified in the SSR

• Insert
Queue specified in the SSR (request I/O response
queue)

• Retrieve
- Contexts referenced for address resolution

• Service - special authorization

Specific authorization for load / dump operations is
described in Chapter 25. Load/Dump Object
Management.

Source/Sink Management Instructions 17-61

Lock Enforcement Exceptions

· Modify Operand
The LUD, CD, or NO specified by the first system Exception 1 Other

pointer in the SSR

The request I/O response queue specified by the 06 Addressing

second system pointer in the SSR 01 Space addressing violation X

02 Boundary alignment X

· Object control 03 Range X

Any system objects specified in the SSR for 08 Argument/Parameter

request I/O functions specifying load operations 01 Parameter reference violation X

OA Authorization

· Materialize 01 Unauthorized for operation X

Contexts referenced for address resolution 10 Damage Encountered

Any system objects specified in the SSR for 02 Machine context damage state X

Request I/O functions specifying Dump operations 04 System object damage state X

44 Partial system object damage X

1A Lock State

Events 01 Invalid lock state X

1C Machine-Dependent Exception

0002 Authorization 03 Machine storage limit exceeded X

0101 Object authorization violation 20 Machine Support

02 Machine check X

0008 Logical unit description 03 Function check X

0701 Operator intervention required (signaled 22 Object Access

asynchronously to execution of Request I/O 01 Object not found X

instruction) 02 Object destroyed X

0801 Device failure (signaled asychronously) 03 Object suspended X

0901 Request I/O completed (signaled 24 Pointer Specification

asynchronously to execution of Request I/O 01 Pointer does not exist X

instruction) 02 Pointer type invalid X

03 Pointer address invalid object X

OOOC Machine resource 26 Process Management

0201 Machine auxiliary storage threshold exceeded 02 Queue full X

2A Program Creation

0010 Process 06 Invalid operand type X

0701 Maximum processor time exceeded 07 Invalid operand attribute X

0801 Process storage limit exceeded 08 Invalid operand value range X

OC Invalid operand ODT reference X

0012 Queue 32 Scalar Specification

0401 Queue message limit reached 01 Scalar type invalid X

0501 Queue extended 34 Source/Sink Management

01 Source / sink configuration invalid X

0016 Machine observation 03 Source/sink object state invalid X

0101 Instruction reference 38 Template Specification

01 Template value invalid X

0017 Damage set 02 Template size invalid X

0201 Machine context damage set 3C Service

0401 System object damage set 01 Invalid service session state X

0801 Partial system object damage set 02 Unable to start service session X

17-62

Chapter 18. Machine Observation Instructions

This chapter describes all instructions used for machine
observation. These instructions are arranged
alphabetically. For an alphabetic summary of all the
instructions, see Appendix B. Instruction Summary.

CANCEL INVOCATION TRACE (CANINVTR)

Op Code
(hex) Operand 1

0581 T race options

Operand 1: Character(4) scalar.

Description: Based on the options specified in operand
1, this instruction causes the invocation reference event
to no longer be signaled as a result of the creation of a
new invocation or a return from an existing invocation.
The instruction locates a specific invocation by its
invocation number and allows cancellation of the trace
of either the invocation of subsequent invocations or the
return from the referenced invocation. No explicit
control exists for simply turning off the propagation
status; this is done implicitly by resetting the primary
status.

Operand 1 contains the following:

• Trace status Char(2)
Invocation trace Bit 0
o = Do not cancel invocation trace
1 = Cancel invocation trace
Return trace Bit 1
o Do not cancel return trace
1 = Cancel return trace

• Invocation number Bin(2)

Any currently existing invocation in the process may be
the target of this instruction. No exception is signaled if
no trace is in effect for the target invocation.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing
01 Space addressing violation
02 Boundary alignment
03 Range

08 Argument/ Parameter
01 Parameter reference violation

10 Damage Encountered

04 System object damage state
44 Partial system object damage

20 Machine Support
02 Machine check
03 Function check

22 Object Access
01 Object not found
02 Object destroyed
03 Object suspended

24 Pointer Specification
01 Pointer does not exist
02 Pointer type invalid

2A Program Creation
02 ODT syntax error
04 Operation code invalid
06 Invalid operand type
07 Invalid operand attribute
08 Invalid operand value range
OA Invalid operand length
OC Invalid operand ODT reference

32 Scalar Specification
02 Scalar attributes invalid
03 Scalar value invalid

Operand
1 Other

x
X

X

X

X X
X X

X

X

X

X

X
X
X

X
X

X
X

X

X

X

X
X

X

Machine Observation Instructions 18-1

CANCE.LTRACE INSTRUCTIONS (CANTRINS)

Op Code
(hex)

0562

Operand
1

Program

Operand
2

Instruction
lists

Operand 1: System pointer.

Operand 2: Space pointer or null.

Description: The instructions specified in operand 2 are
removed from the instruction trace of the program
referenced by operand 1.

The space pointer identified by operand 2 addresses a
list of instructions that are to be removed from the
instruction trace. If operand 2 is null, or if the number
of instructions referenced is 0, then all instructions
currently being traced in the program are removed from
the instruction trace. If operand 2 is specified, its format
must be as follows:

• Number of instructions referenced (N) 8in(2)

• I nstruction reference 1 8in(2)

• Instruction reference N 8in(2)

Instruction references are binary values representing the
address (number) of the instruction within the program
on which the trace is to be canceled.

Instructions currently being traced but not referenced in
the instruction list continue to be traced. References to
instructions not currently being traced are ignored.

An exception is signaled if an instruction number that is
not in the program being traced is specified.

18-2

Events

0002 Authorization
0101 Object authorization violation

oooe Machine· resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 3

06 Addressing
01 Space addressing violation X X
02 Boundary alignment X X
03 Range X X

08 Argument/ Parameter
01 Parameter reference violation X

10 Damage Encountered
04 System object damage state X X X
44 Partial system object damage X X X

1C Machine-Dependent Exception
03 Machine storage limit exceeded

20 Machine Support
02 Machine check
03 Function check

22 Object Access
01 Object not found X X
02 Object destroyed X X
03 Object suspended X X

24. Pointer Specification
01 Pointer does not exist X X
02 Pointer type invalid X X
03 Pointer addressing invalid object X

2A Program· Creation
06 Invalid operand type X X
07 Invalid operand attribute X
08 Invalid operand value range X
OC Invalid operand ODT reference X X

32 Scalar Specification
01 Scalar type invalid X

38 Template Specification
01 Template value invalid X

Other

X
X

X

X
X

MATERIALIZE INVOCATION (MATINV)

Op Code Operand Operand
(hex) 1 2

0516 Receiver Selection
information

Operand 1: Space pointer.

Operand 2: Space pointer.

Description: The attributes of the invocation selected
through operand 2 are materialized into the receiver
designated by operand 1.

Operand 2 is a space pointer that addresses a template
of the following form:

• Invocation number Bin(2)

• Offset to list of parameters Bin(4)

• Number of parameter ODT numbers Bin(2)

• Offset to list of exception descriptions Bin(4)

• Number of exception description ODT Bin(2)
(object definition table) numbers

The offset to the list of parameters and the offset to the
list of exception descriptions are both relative to the
start of the operand 2 template. Each list is an array of
Bin(2) ODT numbers. The number of parameter ODT
numbers and the number of exception description ODT
numbers define the sizes of the arrays.

Operand 1 is a space pointer that addresses a 16-byte
aligned template into which the materialized data is
placed. The format of the data is:

• Materialization size specification
Number of bytes provided for
materialization
Number of bytes available for
materialization

Object identification
Program type
Program subtype
Program name

ChartS)
Bin(4)

Bin(4)

Char(32)
Char(1)
Char(1)
Char(30)

• Trace specification
Invocation trace status
o = Not tracing new invocations
1 = Tracing new invocations

Char(2)
Bit 0

Return trace Bit 1
o = Not tracing returns
1 = Tracing returns
Invocation trace propagation Bit 2
o = Not propagating invocation trace
1 = Propagating invocation trace
Return trace propagation Bit 3
o = Not propagating return trace
1 = Propagating return trace
Reserved (binary 0) Bits 4-15

• Instruction number Bin(2)

• Offset to parameter values Bin(4)

• Offset to exception description values Bin(4)

• Parameters
For each parameter ODTnumber
specified, the address of the
parameter data is materialized
(If no parameter ODT numbers are
materialized, this parameter is
binary 0.)

• Exception description
- For each exception description

ODT number specified, the
following is materialized: I
Control flags
Exception handling action
000 = Ignore occurrence

of exception and

001

010

continue processing
Disabled exception
description
Continue search
for an exception
description by
resignaling the
exception to the
immediately preceding
invocation

100 Defer handling
101 Pass control to the

specified exception
handler

Reserved (binary 0)
Compare value length

- Compare value

Char(*)
Space
pointer

Char(*)
Char(36)

Char(2)
Bits 0-2

Bits 3-15
Bin(2)
Char(32)

Machine Observation Instructions 18-3

The first 4 bytes of the materialization identify the total
number of· bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then
excess bytes are unchanged.

No exceptions (other than the materialization length
exception) are signaled in the event that the receiver
contains insufficient area for the materialization.

The instruction number returned depends on how
control was passed from the invocation:

Exit Type

Call External

Event

Exception

Instruction Number

Locates the Call External instruction

Locates the next instruction to
execute

Locates the instruction that caused
the exception

The space pointers that address parameter values are
returned in the same order as the corresponding COT
numbers in the input array. The same is true for the
exception description values.

If the offset to the list of parameters or the number of
parameter ODT numbers is 0, no parameters are
returned and the offset to parameters value is O. If any
parameters are returned, they are 16-byte aligned. If
the offset to list of exception descriptions or the number
of exception description ODT numbers is 0, no
exception descriptions are returned and the offset to
exception description values are O.

18-4

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 Other

06 Addressing
01 Space addressing violation X X
02 Boundary alignment X X
03 Range X X

08 Argument/ Parameter
01 Parameter reference violation X X

10 Damage Encountered
04 System object damage state X X X

44 Partial system object damage X X X

1E Machine Observation
01 Program not observable X

20 Machine Support
02 Machine check X

03 Function check X

22 Object Access
01 Object not found X

02 Object destroyed X X

03 Object suspended X X

24 Pointer Specification
01 Pointer does not exist X X
02 Pointer type invalid X X

2A Program Creation
06 Invalid operand type X X
07 Invalid operand attribute X X
OB Invalid number of operands X

OC Invalid operand ODT reference X X
32 Scalar Specification

01 Scalar type invalid X X
02 Scalar attributes invalid X X

38 Template Specification
01 Template value invalid X
03 Materialization length exception X

MATERIALIZE POINTER (MATPTR)

Op Code
(hex)

0512

Operand
1

Receiver

Operand
2

Pointer

Operand 1': Space pointer.

Operand 2: System pointer, space pointer, data pointer, or
instruction pointer.

Description: The materialized form of the pointer object
referenced by operand 2 is placed in operand 1.

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the
event that the receiver contains insufficient area for the
materialization.

The format of the materialization is:

• Materialization size specification
Number of bytes provided for
materialization
Number of bytes available for
materialization

• Pointer type
Hex 01 = Data pointer
Hex 02 = Space pointer
Hex 03 = System pointer
Hex 04 = Instruction pointer

Char(8)
Bin(4)

Bin(4)

Char(1)

Pointer value materialization'depends on the pointer
type. One of the following pointer type formats is used.

• System pointer description Char(66)

The system pointer description identifies
the object addressed by the pointer and
the context which the object specifies as
its addressing context.

Context identification
Context type
Context subtype
Context name
Object identification
Object type
Object subtype
Object name
Pointer authorization
Object control
Object management
Authorization pointer
Space authority
Retrieve
Insert
Delete
Update
Ownership
Reserved (binary 0)

Char(32)
Char(1)
Char(1)
Char(30)
Char(32)
Char(1)
Char(1)
Char(30)
Char(2)
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bits 9-15

Note: If the object addressed by the system pointer
specifies that it is not addressed by a context or if
the context is destroyed, th~ context entry is hex 00.
If the object is addressed by the machine context, a
context type entry of hex 81 is returned. No
verification is made that the specified context actually
addresses the object.

The following lists the object type codes for system
object references:

Value
(hex) Object Type

01
02
04
08
OA
OB
OC
00
OE
10
11
12
19
1A

Access group
Program
Context
User profile
Queue
Data space
Data space index
Cursor
Index
Logical unit description
Network description
Controller description
Space
Process control space

Note: Only the authority currently stored in the
system pointer is materialized.

Machine Observation Instructions 18-5

• Data pointer description

The data pointer description describes
the current scalar and array attributes
and identifies the space addressability
contained in the data pointer.

Scalar and array attributes
Scalar type

Hex 00 = Binary
Hex 02 = Zoned decimal
Hex 03 = Packed decimal
Hex 04 = Character

Scalar length
If binary or character:

Length
If zoned decimal or packed
decimal:

Fractional digits
Total digits

Reserved (binary 0)
Data pointer space addressability
Context identification

Context type
Context subtype
Context name

Object identification
Object type
Object subtype
Object name

Offset into space

Char(75)

Char(7)
Char(1)

Char(2)

Bits 0-15

Bits 0-7
Bits 8-15
Bin(4)
Char(68)
Char(32)
Char(1)
Char(1)
Char(30)
Char(32)
Char(1)
Char(1)
Char(30)
Bin(4)

Note: If the object containing the space addressed
by the data pointer is not addressed by a context, the
context entry is hex 00. If the object is addressed by
the machine context, a context type entry of hex 81
is returned.

18-6 .

• Space pointer description Char(68)

The space pointer description describes
space addressability contained in the
space pointer.

Context identification
Context type
Context subtype
Context name
Object identification
Object type
Object subtype
Object name
Offset into space

Char(32)
Char(1)
Char(1)
Char(30)
Char(32)
Char(1)
Char(1)
Char(30)
Bin(4)

Note: If the object containing the space addressed
by the space pointer is not addressed by a context,
the context entry is hex 00. If the object is addressed
by the machine context, a context type entry of hex
81 is returned.

• Instruction pointer description

The instruction pointer description describes
instruction addressability contained in the instruction
pointer.

Context identification
Context type
Context subtype
Context name
Program identification
Program type
Program subtype
Program name
Instruction number

Char(32)
Char(1)
Char(1)
Char(30)
Char(32)
Char(1)
Char(1)
Char(30)
Bin(4)

If the program containing the instruction currently being Excef'\+: .' ~

addressed by the instruction pointer is not addressed by

a context, the context entry is hex 00. Operands
E:f, •• tion 1 2 Other

If the pointer is a system pointer or a data pointer and 00 Addressing
is initialized but unresolved, the pointer is resolved 01 Space addressing violation X X
before the materialization occurs. 02 Boundary alignment X X

03 Range X X

This instruction will tolerate a damaged object 04 External data object not found X

referenced by operand 2 when operand 2 is a resolved 08 Argument/ Parameter

pointer. The instruction will not tolerate a damaged 01 Parameter reference violation X X

context(s) or damaged programs when resolving 10 Damage Encountered

pointers. Also, as a result of damage or abnormal 04 System object damage state X X X

machine termination, this instruction can indicate that an
44 Partial system object damage X X X

object is addressed by a context, when in fact the
1C Machine-Dependent Exception

03 Machine storage limit exceeded X
context will not show this as an addressed object. The 20 Machine Support
Modify Addressability instruction can be used to correct 02 Machine check X
this problem. 03 Function check X

22 Object Access
01 Object not found X X

Events 02 Object destroyed X X

03 Object suspended X X

oooe Machine resource 24 Pointer Specification

0201 Machine auxiliary storage threshold exceeded 01 Pointer does not exist X X

02 Pointer type invalid X X

0010 Process 2A Program Creation

0701 Maximum processor time exceeded 06 Invalid operand type X X

0801 Process storage limit exceeded 07 Invalid operand attribute X X

08 Invalid operand value range X X

0016 Machine observation OC Invalid operand ODT reference X X

0101 Instruction reference 32 Scalar Specification
01 Scalar type invalid X

0017 Damage set 38 Template Specification

0401 System object damage set 03 Materialization length exception X

0801 Partial system object damage set

Machine Observation Instructions 18-7

MATERIALIZE POINTER LOCATIONS; (MATPTRL)

Op Code Operand Operand Operand
(hex) 1 2 3

0513 Receiver Source Length

Operand 1: Space pointer.

Operand 2: Space pointer.

Operand 3: Binary scalar.

Description: This instruction finds the pointers in a
subset of a space and produces a bit mapping of their
relative locations.

The area addressed by the operand 2 space pointer is
scanned for a length equal to that specified in operand
3. A bit in operand 1 is set for each 16 bytes of
operand 2. The bit is set to binary 1 if a pointer exists
in the operand 2 space, or the bit is set to binary 0 if no
pointer exists in the operand 2 space.

Operand 1 is a space pointer addressing the receiver
area. One bit of the receiver is used for each 16 bytes
specified by operand 3. If operand 3 is not a 16-byte
multiple, then the bit position in operand 1 that
corresponds to the last (odd) bytes of operand 2 is set
to O. Bits are set from left to right (bit 0, bit 1,,,.) in
operand 1 as 16-byte areas are interrogated from left to
right in operand 2. The number of bits set in the
receiver is always a multiple of 8. Those rightmost bits
positions that do not have a corresponding area in
operand 2 are set to O.

The format of the operand 1 receiver is:

• Template size specification
Number of bytes provided for
materialization
Number of bytes available for
materialization

• Pointer locations

Char(8)

Bin(4)

Bin(4)

Char(*)

Operand 2 must address a 16-byte aligned area;
otherwise, a boundary alignment exception is signaled.
If the value specified by operand 3 is not positive, the
scalar value invalid exception is signaled.

18-8

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This value is supplied as input to the instruction and is
not modified by the instruction. A value of less than 8
causes the materialization length exception to be
signaled.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the
event that the receiver contains insufficient area for
materialization.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions MATERIALIZE SYSTEM OBJECT (MATSOBJ)

Operands Op Code Operand Operand
Exception 1 2 3 Other (hex) 1 2

06 Addressing 053E Receiver Object
01 Space addressing violation X X X

02 Boundary alignment X X X Operand 1: Space pointer.
03 Range X X X

08 Argument/ Parameter Operand 2: System pointer.

01 Parameter reference violation X X X

10 Damage Encountered

04 System object damage state X X X X Description: This instruction materializes the identity and

44 Partial system object damage X X X X size of a system object addressed by the system pointer

1C Machine-Dependent Exception identified by operand 2. It can be used whenever

03 Machine storage limit exceeded X addressability to a system object is contained in a

20 Machine Support system pointer.

02 Machine check X

03 Function check X The first 4 bytes of the materialization identify the total

22 Object Access number of bytes that may be caused by the instruction.

01 Object not found X This value is supplied as input to the instruction and is

02 Object destroyed X X X not modified by the instruction. A value of less than 8

03 Object suspended X X X raises the materialization length exception.

24 Pointer Specification

01 Pointer does not exist X X X The second 4 bytes of the materialization identify the

02 'Pointer type invalid X X X total number of bytes available to be materialized. The

2A Program Creation instruction materializes as many bytes as can be

06 Invalid operand type X X X contained in the area specified as the receiver. If the

07 Invalid operand attribute X X X byte area identified by the receiver is greater than that

08 Invalid operand value range X X X required to contain the information requested, then the

OA Invalid operand length X excess bytes are unchanged. No exceptions (other than

OC Invalid operand ODT reference X X X the materialization length exception) are signaled in the

32 Scalar Specification event that the receiver contains insufficient area for the

03 Scalar value invalid X materialization.

38 Template Specification

03 Materialization length exception X

Machine Observation Instructions 18-9

The format of the materialization is:

• Materialization size specification
Number of bytes provided for
material ization
Number of bytes available for
materialization

• Object state attributes
Suspended state
o = Not suspended
1 = Suspended
Damage state
o = Not damaged
1 = Damaged
Partial damage state
o = No partial damage
1 = Partial damage
Existence of addressing context
o Not addressed by a

temporary context
1 = Addressed by a temporary

context
Reserved (binary 0)

• Context identification
Context type
Control subtype
Context name

• Object identification
Object type
Object subtype
Object name

• Time-stamp of creation

• Size of associated space

• Object size

• Owning user profile identification
User profile type
User profile subtype
User profile name

Char(8)

Bin(4)

Bin(4)

Bit 0

Bit 1

Bit 2

Bit 3

Bits 4-15

Char(32)
Char(1)
Char(1)
Char(30)

Char(32)
Char(1)
Char(1)
Char(30)

Char(8)

Bin(4)

Bin(4)

Char(32)
Char(1)
Char(1)
Char(30)

The time-stamp field is materialized as an 8-byte
unsigned binary number in which bit 41 is equal to 1024
microseconds.

18-10

If the object addressed by the system pointer specifies
that it is not addressed by a context or if the context is
destroyed, the context type entry is hex 00. If the object
is addressed by the machine context, a context type
entry of hex 81 is returned. No verification is made that
the specified context actually addresses the object.

If the object is a temporary object and is, therefore,
owned by no user profile, the user profile type entry is
assigned a value of hex 00.

This instruction will tolerate a damaged object
referenced by operand 2 when operand 2 is a resolved
pointer. The instruction will not tolerate a damaged
context(s) or damaged programs when resolving
pointers. Also, as a result of damage or abnormal
machine termination, this instruction can indicate that an
object is addressed by a context, when in fact the
context will not show this as an addressed object. The
Modify Addressability instruction can be used to correct
this problem. The existence of addressing context
attribute indicates whether the previously (or currently)
addressing context was (is) temporary. This field is 0 if
the object was (is) not addressed by a temporary
context.

Valid object type fields and their meanings are:

Value
(hex) Object Type

01
02
04
08
OA
08
OC
OD
OE
10
11
12
19
1A

Access group
Program
Context
User profile
Queue
Data space
Data space index
Cursor
Index
Logical unit description
Network description
Controller description
Space
Process control space

Authorization Required

• Retrieve
Contexts referenced for address resolution

Lock Enforcement

• Materialize
Operand 2

- Contexts referenced for address resolution

Events Exceptions

0002 Authorization Operands
0101 Object authorization violation Exception 1 2 3 Other

oooe Machine resource 06 Addressing
0201 Machine auxiliary storage threshold exceeded 01 Space addressing violation X X

02 Boundary alignment X X
0010 Process

03 Range X X
0701 Maximum processor time exceeded

08 Argument/ Parameter 0801 Process storage limit exceeded
01 Parameter reference violation X X

0016 Machine observation OA Authorization

0101 Instruction reference 01 Unauthorization for operation X

10 Damage Encountered

0017 Damage set 04 System object damage state X X X X
0401 System object damage set 44 Partial system object damage X X X X
0801 Partial system object damage set 1A Lock State

01 Invalid lock state X

1C Machine- Dependent Exception

03 Machine storage limit exceeded X

20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program Creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OC Invalid operand ODT reference X X

32 Scalar Specification

01 Scalar type invalid X X

38 Template Specification

03 Materialization length exception X

Machine Observation Instructions 18-11

TRACE INSTRUCTIONS (TRINS)

Op Code
(hex)

0552

Operand
1

Program

Operand
2

Instruction
list

Operand 1: System pointer.

Operand 2: Space pointer or null.

Description: This instruction causes the execution of the
program referenced by operand 1 within the current
process monitored for specific instruction executions.
When one of the instructions specified by operand 2
starts execution, an instruction reference event is
signaled. The event is signaled before any operands of
the instruction are accessed.

The space pointer identified by operand 2 addresses an
area that defines the instructions to be traced in a
format as follows:

• Number of instructions to be
traced (N)

• Instruction reference 1

• Instruction reference N

Bin(2)

Bin(2)

Bin(2)

The value of each instruction reference is interpreted as
the address (number) of an instruction to be traced. If a
value of 0 is specified for the number of instructions to
be traced entry or if operand 2 is null, all program
instructions are traced.

A template value invalid exception is signaled if any
specified instruction number is not in the program being
traced. If instructions in the referenced program are
already being traced, the instructions referenced in
operand 2 are added to those being traced. References
to instructions already being traced are ignored.

18-12

Any number of programs may be traced within the
process at the same time.

This instruction may not be performed in a process
when a service machine trace is in progress for the
process. A machine-dependent request invalid
exception (hex 1 C01) is signaled. The exception is also
signaled if the service machine trace is requested when
the trace instruction is in progress.

Authorization Required

• Retrieve
Operand 1

- Context referenced for address resolution

Lock Enforcement

• Materialize
.- Context referenced for address resolution

Events

0002 Authorization
0101 Object authorization violation

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

OA Authorization

01 Unauthorized for operation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1A Lock State

01 Invalid lock state

1C Machine- Dependent Exception

01 Machine dependent-request
invalid

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

32 Scalar Specification

01 Scalar type invalid

38 Template Specification

01 Template value invalid

Operands
1 2 3 Other

X X

X X

X X

X X

X

X X X X

X X X X

X

X

X

X

X

X X

X X

X X

X X

X X

X

X X

X X

X X

X

X X

X

X

TRACE INVOCATIONS (TRINV)

Op Code Operand 1
(hex)

0551 Trace specification

Operand 1: Character (4) scalar.

Description: The instruction causes the invocation
reference event to be signaled upon invocation of a
program or upon termination of the invocation of a
program. The following conditions may be traced:

• Call external

• Transfer control

• Invocation of an external exception handl~r

• Invocation of an event handler

• Invocation of an internal or branch point exception
handler

• Return external

• Return from exception

• Termination of an invocation to pass control to an
internal exception handler or to a branch point
exception handler in a previous invocation.

• Termination of an invocation to pass control from. an
external exception handler to an invocation other than
the invocation in which the exception occurred.

• Termination of an invocation to terminate a phase of
a process.

This instruction references only a single invocation
within the proce~s~nd causes the invocation reference
event to be signaled when that invocation returns or
when an invocation subsequent to it is created. The
instruction also allows the trace control attributes to be
propagated to subsequently created invocations.
Currently existing invocations within a process may be
designated through multiple executions of this
instruction. Specification of trace propagation in a
currently existing invocation does not cause propagation
to other currently existing invocations.

Machine Observation Instructions 18-13

Operand 1 contains the following information:

• Trace specification Char(2)
Invocation trace Bit a
a = Do not cancel new invocations
1 = Trace new invocations
Return trace Bit 1
a = Do not cancel trace return
1 = Trace returns
Trace propagation Bit 2
a Do not propagate trace to

subsequent invocations
1 = Propagate trace to subsequent

invocations
Reserved (binary 0) Bits 3-15

• Invocation number Bin(2)

If the referenced invocation is currently being traced, the
invocation trace, the return trace, or both may be added.
No exception is signaled if either or both are currently
being traced. If propagation of the trace control
indicator to lower level invocations is desired, then trace
new invocations, trace return, or both must also be set.
The propagated trace applies only to the trace action
specified by this instruction, not to the current trace
action in the referenced invocation.

Propagating of trace to a lower level invocation means
that any immediately subordinate invocations that are
created have trace controls that are identical to those of
the designated invocation. The only exception is that the
invocation trace is not propagated to an invocation
reference event handler.

On transfer control conditions, the new invocation
overlays the old invocation, and the invocation reference
event is signaled if either the trace new invocations or
the trace returns option is in effect.

When the initial invocation in a process phase returns,
the initial program in the next process phase is invoked,
and the trace status of the returning invocation becomes
the trace status of the new invocation.

18-14

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine- Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

03 Pointer addressing invalid object

2A Program Creation

02 ODr syntax error

04 Operation code invalid

06 Invalid operand type

07 Invalid operand attribute

OA Invalid operand length

OC Invalid operand ODT reference

32 Scalar Specification

02 Scalar attributes invalid

03 Scalar value invalid

Operand
1

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Other

X

X

X

X

X

X

X

Chapter 19. Machine I nterface Support Functions Instructions

This chapter describes all instructions used for machine
interface support functions. These instructions are
arranged in alphabetic order. For an alphabetic summary
of all the instructions, see Appendix B. Instruction
Summary.

DIAGNOSE (DIAG)

Op Code Operand Operand
(hex) 1 2

0672 Function Function dependent
code information

Operand 1: Binary scalar.

Operand 2: Space pointer.

Description: This instruction invokes diagnostic
functions and is intended for use by personnel who
service System/38. Each function has a separate and
unique purpose and is identified by the value in operand
1. Operand 2 identifies a template that contains either
information specified for the function or information to
be received from the function.

The instruction is a privileged instruction and its use
must be authorized to the user profile under which it is
executing.

Authorization Required

• Privileged instruction

Events

cx)()2 Authorization
0201 Privi,leged instruction violation

CX)()C Machine resources
0201 Machine auxiliary storage exceeded

CX)()O Machine Status
0101 Machine Check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Machine Interface Support Functions 19-1

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

OA Authorization

02 Privileged instruction

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine- Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

01 Diagnose

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

32 Scalar Specification

01 Scalar type invalid

03 Scalar value invalid

38 Template Specification

01 Template value invalid

19-2

Operands
1 2 Other

X X

X X
X X

X X

X

X
X

X

X X
X
X

X X
X X
X X

X X
X X

X X
X X
X X

X
X X

X X
X

X

MATERIALIZE MACHINE ATTRIBUTES (MATMATR)

Op Code
(hex)

Operand
1

Operand
2

0636 Material- Machine
ization attributes

Operand 1: Space pointer.

Operand 2: Character(2) scalar (fixed-length).

Description: The instruction makes available the unique
values of machine attributes. The values of various
machine attributes are placed in the receiver. Operand 2
options specify the type of information to be
materialized.

The machine attributes are divided into nine groups.
Byte 0 of the attribute selection operand specifies the
group from which the machine attributes are to be
materialized. Byte 1 of the options operand selects a
specific subset of that group of machine attributes.

The first 4 bytes of the materialization (operand 1)
identify the total number of bytes that can be used by
the instruction. This value is supplied as input to the
instruction and is not modified by the instruction. A
value of less than 8 causes the materialization length
exception to be signaled.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area. specified as the receiver. If the
byte area identified by the receiver is greater than that
required to contain the information requested for
materialization, then the excess bytes are unchanged.
No exceptions (other than the materialization length
exception) are signaled in the event that the receiver
contains insufficient area for the materialization.

Data-pointer-defined scalars are not allowed as a
primary operand for this instruction. An invalid operand
type exception is signaled if this occurs.

The format of the materialization is as follows:

• Materialization size specification
Number of bytes provided
for materialization
Number of bytes available
for materialization

• Attribute specification
(as defined by the attribute selection)

Char(8)
Bin(4)

Bin(4)

Char(*)

The machine attributes defined by operand 2 are
materialized according to the following selection values:

Selection
Value Attribute Description

Hex 0100 (continued)

The clock is incremented by adding a 1 in
bit position 41 every 1024 microseconds.
Bit positions 42 through 63 are used by
the machine and have no special meaning
to the user. Note that these bits (42-63)
may contain either binary l' s or binary
D's.

Unpredictable results occur if the time of
Selection day is materialized before it is set.

Value Attribute Description

Hex 0000 MCR (machine configuration record)

The MCR contains the internal
configuration of the machine. The MCR
machine attribute is provided for machine
maintenance only and has no meaning or
value to the user. The MCR is
materialized as a contiguous character
string of binary data.

Hex 0100 Time-of-day clock (can be materialized
and modified)

The time-of-day clock provides a
consistent measure of elapsed time. The
maximum elapsed time the clock can
indicate is approximately 143 years.

The time-of-day clock is a 64-bit
unsigned binary counter with the following
format:

0 41 42 reserved 63

The bit positions of the clock are
numbered from 0 to 63.

The maximum unsigned binary value that
the time of day clock can be modified to
contain is hex DFFFFFFFFFFFFFFF.

Hex 0104 Initial process definition template (can be
materialized and modified)

The initial process definition template is
used by the machine to perform an initial
process load. The initial process definition
template has the same format as the
process definition template defined by the
Initiate Process instruction. See Chapter
11. Process Management Instructions.

No check is made and no exception is
signaled if the values in the template are
invalid; however, the next initial process
Ibad will not be successful.

Hex 0108 Machine initialization status record (can be
materialized and modified)

The M ISR (machine initialization status
record) is used to report the status of the
machine. The status is collected at 1M PL
(initial microprogram load) or IMPLA
(initial microprogram load abbreviated).

Machine Interface Support Functions 19-3

Selection
Selection
Value Attribute Description

Hex 0108 (continued)

19-4

Modifying the MISR causes it to be reset.
The values in the operand 1 template of
the Modify Machine Attributes instruction
are ignored when this selection value is
specified. The materialize format of the
MISR is as follows:

• MISR status
Termination status
o Normal

(TERMMPR)
1 Abnormal
IMPL
o = Normal
1 = Automatic

Char(2)
Bit 0

Bit 1

Primary console status Bit 2
o = Normal
1 = Inoperative
Primary load/dump Bit 3
o = Normal
1 = Inoperative
Power status of Bit 4
Operator / Service
panel sequence
indicators
o = Normal
1 = Inoperative
Duplicate user Bit 5
profile (AI PL only)
o = Not duplicate,

new user pro
file created

1 = Duplicate found
and used by AIPL

Reserved (binary 0) Bit 6
Damaged machine Bit 7
context
o Not damaged
1 = Machine context

damaged
Power control Bit 8
initialization
o = Successful
1 = Failed
Recovery object
list status
o = Complete
1 = Incomplete
Recovery phase
completion
o Complete
1 = Incomplete

Bit 9

Bit 10

Selection
Selection
Value Attribute Description

Hex 0108 (continued)

Most recent machine Bit 11
termination
o Objects ensured
1 = Object(s) not

ensured at most
recent machine
termination

Last MISR reset Bit 12
o = Object(s) ensured

on every machine
termination
Object(s) not
ensured on every
machine termin-
ation since last
MISR reset

Console data Bit 13
storage test
o = Successful
1 = Failed
Reserved (binary 0) Bits 14-15

• Number of damaged
main storage units

• Number of e.ntries in
recovery object list

• Address of recovery
object list

• Process control space
created as the result
of IPL or AIPL

• Process static storage
area space

• Process automatic
storage area space

• Recovery object list
(located by recovery
object list pointer)

Recovery entry
(repeated for number
of entries)
Object pointer

Object type
Object status

Bin(2)

Bin(4)

Space
pointer

System
pointer

System
pointer

System
pointer

Char(*)

Char(32)

System
pointer
Char(1)
Char(15)

Termination status indicates how the previous IMPl was
terminated. If normal, the Terminate Machine
Processing instruction successfully terminated the
previous IMPl. If abnormal, the Terminate Machine
Processing instruction did not successfully terminate the
previous IMPl. This also implies that some cleanup of
permanent objects may be required by the user.

1M Pl indicates that the machine was automatically
powered on and an IMPl was initiated because the
previous IMPl was terminated as a result of a loss of
the machine's primary power supply.

Primary console status indicates that the primary
console is functioning normally or that it is inoperative.

Primary load / dump device status indicates that the
load/dump device is functioning normally or that it is
inoperative. This indicator is valid only if an I Pl has
been performed with the IMPl or IMPLA. If the primary
load/dump device is inoperative and an AIPl is to be
done, the machine terminates machine processing
because the data needed to perform the AIPl is read
from the load / dump device.

The power status for Operator/Service panel sequence
indicators (light emitting diodes) indicates whether the
sequence indicators on the Operator/Service panel are
operational or not.

The duplicate user profile is valid only for AI Pl and
indicates if a user profile that is the same as the AIPL
user profile to be created already exists in the machine
context. The machine in this instance does not create
the user profile for AI Pl but rather uses the one located
with the same name.

Damaged AIPl user profile indicates if the currently
existing user profile was detected as damaged and a
new user profile was created as specified in the AIPl
user profile creation template.

Damaged machine context indicates if damage was
detected in the machine context when an attempt was
made to locate the duplicate user profile or to insert
addressability to a newly created user profile. In either
case, all current addressability is removed from the
machine context, the new AI Pl user profile is created,
its addressability is inserted into the machine context,
and the AI Pl continues. Objects whose addressability
was removed may have it reinserted using the Reclaim
instruction for all objects or the Modify Addressability
instruction for a specific object.

Power control initialization indicates if the power
controller is operative or not.

The recovery object list status entry indicates that the
status is complete unless one of the following
conditions is true:

The recovery list was lost.
More objects were to be placed in the list but there
was insufficient space.

The recovery phase completion entry indicates that the
status is complete unless one of the following
conditions occurs:

An object to be recovered and / or inserted into the
Recovery object list no longer exists.
The objects to be recovered could not be determined
due to loss of internal machine indicators that
specified which objects were in use at machine
termination.

The most recent machine termination entry is set to 0
unless all objects were not ensured at the most recent
machine termination.

The last MISR reset entry is set to 0 if all objects were
ensured at every machine termination since the MISR
was last reset (to 0) using the Modify Machine
Attributes instruction.

The console data storage test indicates whether the
console data storage is usable or not. If this test fails,
the storage used by the IOC to operate the console is
not operating properly and attempts to perform console
operations may produce unpredictable results.

The number of damaged main storage transfer blocks
entry indicates the number of main storage transfer
blocks that were detected as damaged by the machine
during IMPl.

Machine Interface Support Functions 19-'5

The number of entries in the recovery object list entry
indicates how many objects are listed in the space
located by the address of recovery object list entry.

The address of recovery object list entry contains a
space pointer to the list of the potentially damaged
objects that were identified during machine initialization.
The machine maintains this list of objects until a Modify
Machine Attribute instruction for the MISR is executed
or until the next IMPl when a new list is generated.
The number of such objects is indicated by the numbet
of entries in the recovery object list entry.

The process control space created results from I Pl or
AI Pl and is identified by a system pointer returned in
this field.

Process static storage space system pointer addresses
the space object that contains the PSSA· created and
initialized at I Pl time. The space containing the PSSA is
a temporary space and is not addressed by a context.
This field contains binary a's if the machine to
programming transition is done via an IPl.

Process automatic storage area system pointer
addresses the space object that contains the PASA
created and initialized at I Pl time. The space containing
the PASA is a temporary space and is not addressed by
any context. This field contains binary a's if the machine
to programming transition is done via an I Pl.

19-6

The recovery object list identifies the objects that were
partially updated at machine termination. This list is
located by the recovery object list pointer .. Only data
spaces and data space indexes appear in the list. A
recovery entry exists in the list for every object that is
not fully. updated at IPl as not having been handled.
The object type identifies the type of the object and
defines the format of the object status field. The· object
pointer is a system pointer to the object in question.
Object type, object status, and the object pointer are
repeated for each· object in the list. The 15~byte object
status field definitions include the following:

• Data space
Status
Damaged

a = Not damaged
1 = Damaged

I ndexes detached from data space
a Indexes remain attached
1 = All indexes detached from

this data space
Reserved (binary 0)
Reserved (binary 0)
Ordinal entry number of last entry

• Data space index
Status
Damaged

a = Not damaged
1 = Damaged

Invalidated
a = Not invalidated
1 .= Invalidated

Reserved (binary 0)
Reserved (binary 0)

Char(1)
Bit a

Bit 1

Bits 2-7
Char(10)
Bin(4)

Char(1)
Bit a

Bit 1

Bits. 2-7
Char(14)

Data space - If object damage was detected during I PL,
the object is marked as damaged, damage is indicated
in the object status field, and no event is signaled. In
this case, the highest ordinal entry number is O. In
certain situations, the data space indexes over the data
space become detached and therefore must be
recreated. If the object is not damaged, the data space
is usable and the highest ordinal entry number is set.
The ordinal entry number of last entry indicates the last
entry in the data space. Updates are not guaranteed.
Updates may be out of sequence or partially applied and
must be verified by the user for correctness.

Data space index - If object damage was detected
during I PL, the object is marked as damaged, damage is
indicated in the object status field, and no event is
signaled. If the object was invalidated because changes
were made in a data space addressed by the data space
index, the data space index is included in the list and
marked as invalidated. The associated data space is
also included elsewhere in the recovery object list. Only
damaged or invalidated data space indexes are included
in the list.

Events

OOOC Machine resource
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Space addressing violation X X

02 Boundary alignment X X
03 Range X X

10 Damage Encountered

04 System object damage state X X X

44 Partial system object damage X X X
1C Machine-Dependent Exception

03 Machine storage limit exceeded X
20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X
02 Object destroyed X X
03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X
02 Pointer type invalid X X

2A Program Creation

06 Invalid operand type X X
07 Invalid operand attribute X X
08 Invalid operand value range X X
OA Invalid operand length X
OC Invalid operand ODT reference X X

32 Scalar Specification

01 Scalar type invalid X X

02 Scalar attributes invalid X
03 Scalar value invalid X

38 Template Specification

03 Materialization length exception X

Machine Interface Support Functions 19-7

MODIFY MACHINE ATTRIBUTES (MODMATR)

Op Code
(hex)

0646

Operand
1

Source

Operand
2

Attribute
value selection

Operand 1: Space pointer.

Operand 2: Character(2) scalar (fixed-length).

Description: The instruction alters the value of a specific
machine attribute. The value of the specified machine
attribute is altered to the value specified by operand 1.
Operand 2 options specify the type of information to be
materialized.

The machine attributes that may be modified are divided
into nine groups. Byte a of the attribute selection
operand specifies the group from which the machine
attributes are to be modified. Byte 1 of the operand
selects a specific subset of that group of machine
attributes.

The groups are indicated as follows:

Group
Value

Group (hex) Function

1 00 General attributes
2 80 Machine defined
3 40 Machine defined
4 20 Machine defined
5 10 Machine defined
6 08 Machine defined
7 04 Machine defined
8 02 Machine defined
9 01 Machine defined

Modification of attributes in groups two through nine
requires that the user profile controlling execution of the
instruction must have modify machine attributes
authority for the specific group to be modified.

The format of the source value modification template
defined by operand 1 is as follows:

• Template size specification
Number of bytes provided
Number of bytes available
for materialization

• Attribute specifications as defined
by the attribute selection operand

19-8

Char(8)
Bin(4)
Bin(4)

Char(8)

The machine attributes defined by operand 2 are
modified according to the following selection values:

Selection
Value Attribute Description

Hex 0000 MCR (machine configuration record)

The MCR contains the internal
configuration of the machine. The MCR
machine attribute is provided for machine
maintenance only and has· no meaning or
value to the user. The MCR is
materialized as a contiguous character
string of binary data.

Hex 0100 Time-of-day clock (can be materialized
and modified)

The time-of-day clock provides a
consistent measure of elapsed time. The
maximum elapsed time the clock can
indicate is approximately 143 years.

The time-of-day clock is a 64-bit
unsigned binary counter with the following
format:

041 42 reserved 63

The bit positions of the clock are
numbered from a to 63.

The clock is incremented by adding a 1 in
bit position 41 every 1024 microseconds.
Bit positions 42 through 63 are used by
~he machine and have no special meaning
to the user. Note that these bits (42-63)
may contain either binary l' s or binary
a's.

Unpredictable results occur if the time of
day is ~aterialized before it is set.

The maximum unsigned binary value that
the time of day clock can be modified to
contain is hex DFFFFFFFFFFFFFFF.

Selection
Value Attribute Description

Hex 0104 Initial process definition template (can be
materialized and modified)

The initial process definition template is
used by the machine to perform an initial
process load. The initial process definition
template has the same format as the
process definition template defined by the
Initiate Process instruction. See Chapter
11. Process Management Instructions.

No check is made and no exception is
signaled if the values in the template are
invalid; however, the next initial process
load will not be successful.

Hex 0108 Machine initialization status record (can be
materialized and modified)

The MISR (machine initialization status
record) is used to report the status of the
machine. The status is collected at 1M PL
(initial microprogram load) or IMPLA
(initial microprogram load abbreviated).

Modifying the MISR causes it to be reset.
The values in the operand 1 template of
the Modify Machine Attributes instruction
are ignored when this selection value is
specified.

Authorization Required

• Special authorization

Events

0002 Authorization
0301 Special authorization violation

OOOC Machine resources
0201 Machine auxiliary storage threshold exceeded

0010 Process
0701 Maximum processor time exceeded
0801 Process storage Imit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Machine Interface Support Functions 19-9

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

OA Authorization

08 Special authorization required

10 Damage Encountered

04 System object damage state

44 Partial system object damage

1C Machine-Dependent Exception

03 Machine storage limit exceeded

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

32 Scalar Specification

02 Scalar attributes invalid

03 Scalar value invalid

38 Template Specification

02 Template size invalid

19-10

Operands
1 2 Other

X X

X X

X X

X

X X X

X X X

X

X

X

X X

X X

X X

X X

X X

X X

X X

X X

X

X X

X

X

X

RECLAIM LOST OBJECTS (RECLAIM)

Op Code
(hex)

Operand
1

Operand
2

0686 Reclaimed Reclaim
objects
list

options

Operand 1: Space pointer.

Operand 2: Character(2) scalar.

Description: The instruction finds permanent objects,
which have been lost from their owning user profiles,
and optionally rebuilds the machine context; The
machine searches storage for permanent objects and
checks that the owning user profile specified by the
object actually exists and considers itself to own the
object. If not, the object is lost and an entry is returned
in the reclaimed objects list.

Any storage areas not identifiable as valid system
objects are destroyed. Following abnormal system or
instruction termination, there may be portions of objects
which continue to occupy storage space. The Reclaim
Lost Objects instruction can be used to free up this
storage space.

The machine context may optionally be updated to
ensure that it locates all objects that are to be
addressed by the machine context (contexts, user
profiles and source/sink objects). This option should be
used when the machine context loses entries or is
damaged. The machine initialization status record
machine attribute indicates whether AIMPL (alternate
initial microprogram load) detected machine context
damage.

When addressability to an object is to be inserted into
the machine context, it is possible that an object of the
same name, type and subtype is now addressed by the
machine context. This can occur if the newer object
was created after the currently existing object was lost.
If this occurs, a pointer is returned to the object and its
addressability is not inserted into the machine context.
The Rename Lost Objects instruction can be used to
change the .name of the object and to insert
addressability into the machine context.

Operand 2 specifies the verification of the machine
context. The format is as follows:

• Reclaim options
Machine context rebuild
o = Do not rebuild
1 = Rebuild
Reserved (binary 0)

Char(2)
Bit 0

Bits 1-15

Operan~ 1 identifies the reclaimed objects. This includes
objects with improper ownership entries as well as
those that are to be inserted into the machine context
but cannot be because the object identification is in
conflict.

• Materialization size specification
Number of bytes provided for
materialization
Number of bytes available for
materialization

• Number of objects lost from user
profile

Char(8)
Bin(4)

Bin(4)

Bin(4)

• Number of machine context duplicates Bin(4)

• Number of bytes reclaimed

• Reserved

• Reclaimed object entry
(repeated for each object)

Object pointer

Entry type
User profile

o = Not lost from user
profile
Lost from user profile

Machine context
o Not a machine context

duplicate
Machine context
duplicate

Reserved (binary 0)
Reserved (binary 0)

Bin(4)

Char(12)

Char(32)

System
pointer
Char(1)
Bit 0

Bit 1

Bits 2-7
Char(15)

No authorization is returned in the system pointers.

Information in each referenced object can be used to
restore the ownership of the object to a user profile
(transfer ownership).

The first 4 bytes of the materialization identify the total
number of bytes that may be used by the instruction.
This number is supplied as input to the instruction and
is not modified by the instruction. A number less than 8
causes the materialization length exception.

The second 4 bytes of the materialization identify the
total number of bytes available to be materialized. The
instruction materializes as many bytes as can be
contained in the area specified as the receiver. If the
byte area identified by the receiver is larger than that
required to conta,in the information requested, then the
excess bytes are unchanged. No exceptions (other than
the materialization length exception) are signaled in the
event that the receiver contains insufficient area for the
materialization.

Authorization Required

• Special (all objects authority)

Events

0002 Authorization
0101 Authorization violation

OOOC Machine resources
0201 Machine auxiliary storage exceeded

0000 Machine status
0101 Machine check

0010 Process
0701 Maximum processor time exceeded
0801 Process storage limit exceeded

0016 Machine observation
0101 Instruction reference

0017 Damage set
0401 System object damage set
0801 Partial system object damage set

Machine Interface Support Functions 19-11

Exceptions

Exception

06 Addressing

01 Space addressing violation

02 Boundary alignment

03 Range

08 Argument/ Parameter

01 Parameter reference violation

OA Authorization

01 Unauthorized for operation

10 Damage Encountered

04 System object damage state

44 Partial system object damage

20 Machine Support

02 Machine check

03 Function check

22 Object Access

01 Object not found

02 Object destroyed

03 Object suspended

24 Pointer Specification

01 Pointer does not exist

02 Pointer type invalid

2A Program Creation

06 Invalid operand type

07 Invalid operand attribute

08 Invalid operand value range

OA Invalid operand length

OC Invalid operand ODT reference

32 Scalar Specification

01 Scalar type invalid

03 Scalar value invalid

38 Template Specification

03 Materialization length exception

19-12

Operand
1 Other

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

TERMINATE MACHINE PROCESSING (TERMMPR)

Op Code
(hex)

0621

Operand
1

Terminate
options

Operand
2

Termination reason
information for
maintenance use

Operand 1: Character(2) scalar.

Operand 2: Space pointer or null.

Description: This instruction terminates machine
processing by destroying all processes in the machine
including the process that issued the instruction. The
values of the termination options (operand 1) determine
the functions to be performed. The following is the
format of operand 1.

• Termination options
Machine termination options
0001 = Terminate machine

processing and enter
the check-stop state.

0010 = Terminate immediately and
leave existing processes in
an internal machine state
that will retain information
for diagnostic purposes.

0100 = Destroy all processes
and turn off the
machine power supply.

All other values are reserved; if
any other values are specified,
they cause an exception.
Reserved (binary 0)
Termination code

Char(2)
Bits 0-3

Bits 4-7
Bits 8-15

If the machine termination option is 0001 or 0010,
then the termination code in bits 8-15 is displayed on
the sequence indicators of the operator / CE panel.
The allowed value is in the range from hex 80
through hex FF. Any other value causes a default
value of hex 00 to be displayed. A hex 00 value
indicates that an invalid termination code was
specified.

If any other machine termination option is specified,
this entry is ignored by the instruction.

Operand 2 identifies a space pointer that addresses an
area in a space. The space pointer locates information
that further defines the reason for machine termination.
If the space is not a permanent object, the information
will be destroyed by the machine because all temporary
objects allocated are destroyed when machine
processing is terminated.

Machine termination causes the following:

• The process is terminated and no additional
instructions are allowed to execute. The process
does not enter the termination phase.

• All permanent system objects are written to auxiliary
storage.

• If the power supply is to be turned off, an attempt is
made to turn off the power supply for all devices
associated with source / sink objects that have the
power control attribute. If one or more of the devices
associated with source / sink objects cannot be
powered off, the machine is placed in the
checkstopped state. If all source / sink objects are
powered off, the power supply for the machine is
turned off.

When mor~ than one process exists in the machine,
execution of the instruction causes termination of each
of the processes at the next instruction boundary. The
normal process termination functions as defined by the
Terminate Process instruction are not performed.

Authorization Required

• Privileged instruction

Events

0002 Authorization
0201 Privileged instruction violation

0017 Damage set
0801 Partial system object damage set

Exceptions

Operands
Exception 1 2 Other

06 Addressing

01 Space addressing violation X X

02 Boundary alignment X X

03 Range X X

08 Argument/ Parameter

01 Parameter reference violation X X

OA Authorization

02 Privileged instruction X

10 Damage Encountered

04 System object damage state X X

44 Partial system object damage X X X

1C Machine-Dependent Exception

03 Machine' storage limit exceeded -X
20 Machine Support

02 Machine check X

03 Function check X

22 Object Access

01 Object not found X X

02 Object destroyed X X

03 Object suspended X X

24 Pointer Specification

01 Pointer does not exist X X

02 Pointer type invalid X X

2A Program Creation

06 Invalid operand type X X

07 Invalid operand attribute X X

08 Invalid operand value range X X

OA Invalid operand length X

OC Invalid operand ODT reference X X

32 Scalar Specification

01 Scalar type invalid X

02 Scalar attributes invalid X

03 Scalar value invalid X

Machine Interface SuPPOrt Functions 19-13

19-14

Exception generation is the only facility for
synchronously communicating error conditions that are a
direct result of System/38 instruction processing.
Machine exceptions identify error conditions that require
processing before the next sequential System/38
instruction is executed. Instructions that cause a
particular exception may not function identically before
execution is stopped; however, each instruction
produces consistent results. These results ensure
machine integrity and reliability. The results are inherent
in a particular exception definition or in the detailed
instruction definition.

The user can monitor any number of exceptions. There
are three basic techniques for the user to handle an
exception. One technique is to provide detailed handling
specified by a program defined exception description
object. The second technique is to provide a default
exception handler for the process. This exception
handler is invoked whenever an invocation fails to
handle an exception. The third technique is to accept
the machine default of process termination by not
providing an appropriate exception handling mechanism.
See Exception Management in the Functional Concepts
Manual, for a general description of exception
management.

Chapter 20. Exception Specifications

MACHINE INTERFACE EXCEPTION DATA

Exception data is communicated across the machine
interface through a Retrieve Exception Data instruction.
Certain information is available for all exceptions when
an appropriate exception description has been defined
by the user. That information includes the following:

• Exception identification - This is a 2-byte
hexadecimal field formed by concatenating to the
high-order 1-byte exception group number a
low-order 1-byte exception subtype number. The
format of the exception identification is as follows:

y
Subtype Number

Group Number

• Compare value length

• Compare value

• Exception specific data

• Signaling program invocation address

• Signaled program invocation address

• Signaling program instruction address

• Signaled program instruction address

• Machine-dependent data identifying the component
that generated the exception

The exception-specific data provides additional pointers
and data that may be required for an individual
exception.

Exception Specifications 20-1

EXCEPTION LIST

The following is a list of all exceptions in alphabetic and
numeric order by group. The subtypes within each
group are in numeric order.

02 Access Group

01 Object ineligible for access group

04 Access State

01 Access state specification invalid

06 Addressing

01 Space addressing violation
02 Boundary alignment
03 Range
04 External data object not found
05 Invalid space reference

08 Argument/ Parameter

01 Parameter reference violation
02 Argument list length violation
03 Argument list length modification violation

OA Authorization

OC

01 Unauthorized for operation
02 Privileged instruction
03 Attempt to grant/ retract authority state to an

object that is not authorized
04 Special authorization required
05 Create/modify user profile beyond level of

authorization

Computation

01 Conversion
02 Decimal data
03 Decimal point alignment
04 Edit digit count
05 Edit mask syntax
08 Length conformance
OA Size
OB Zero divide

OE Context Operation

01 Duplicate object identification
02 Object ineligible for context

20-2

10

12

14

Damage Encountered

02 Machine context damage state
04 System object damage state
44 Partial system object damage state

Data Base Management

01 Conversion mapping error
02 Key mapping error
03 Cursor not set
04 Data space entry limit exceeded
05 Data space entry already locked
06 Data space entry not found
07 Data space index invalid
08 Incomplete key description
09 Duplicate key value in existing data space

entry
OA End of path
OB Duplicate key value detected while building

unique data space index
OD No entries locked
13 Invalid mapping template
15 Data space not addressed by index
16 Data space not addressed by cursor
17 Key changed since set cursor
19 Invalid rule option
1A Data space entry size· exceeded
1B Logical space entry size limit exceeded
1C Key size limit exceeded
1D Logical key size limit exceeded
1E Selection routine buffer size limit exceeded
1F User exit routine criteria not satisified
20 Copy data space entries termination
21 Unable to maintain a unique key data space

index
22 Data space index with selection routine build

termination
23 Data space index selection routine failure

Event Management

01 Duplicate event monitor
02 Event monitor not present
03 Machine event requires specification

of a compare value
04 Wait on event attempted yvhile masked
05 Disable timer event monitor invalid
06 Signal timer event monitor invalid

16 Exception Management 28 Process State

01 Exception description status invalid 01 Process ineligible for operation
02 Exception state of process invalid 02 Process control space not
03 Invalid invocation address associated with a process

05 Resume process invalid
18 Independent Index 06 Suspend process invalid

08 Mask or unmask process invalid
01 Duplicate key argument in index OA Process attribute modification invalid

1A Lock State 2A Program Creation

01 Invalid lock state 01 Program header invalid
02 Lock request not grantable 02 ODT syntax error
03 Invalid unlock request 03 ODT relational error
04 Invalid object lock transfer request 04 Operation code invalid
05 Invalid space location unlock 05 Invalid op code extender field

06 Invalid operand type
1C Machine-Dependent Exception 07 Invalid operand attribute

08 Invalid operand value range
01 Machine-dependent request invalid 09 Invalid branch target operand
02 Program limitation exceeded OA I nvalid operand length
03 Machine storage limit exceeded OB Invalid number of operands
04 Object storage limit exceeded OC Invalid operand ODT reference
06 Lock limit exceeded

2C Program Execution
20 Machine Support

01 Return instruction invalid
01 Diagnose 02 Return point invalid
02 Machine check 03 Stack control invalid
03 Function check 04 Branch target invalid

05 Activation in use by invocation
22 Object Access

2E Resource Control Limit
01 Object not found
02 Object destroyed 01 User profile storage limit exceeded
03 Object suspended
04 Object not eligible for operation 32 Scalar Specification
05 Object not available to process
06 Object not eligible for destruction 01 Scalar type invalid

02 Scalar attributes invalid
24 Pointer Specification 03 Scalar value invalid

01 Pointer does not exist 34 Source / Sink Management
02 Pointer type invalid
03 Pointer addressing invalid object 01 Source / sink configuration invalid
04 Pointer not resolved 02 Source/sink physical address invalid

03 Source/sink object state invalid
26 Process Management 04 Source/sink resource not available

02 Queue full 36 Space Management

01 Space extension / truncation

Exception Specifications 20-3

38 Template Specification

01 Template value invalid
02 Template size invalid
03 Materialization length exception

3A Wait Time-Out

01 Dequeue
02 Lock
03 Wait on event
04 Space location lock wait

3C Service

01 Invalid service session state
02 Unable to start service session

02 Access Group

0201 Object Ineligible for Access Group

20-4

An attempt was made to insert an object into an
access group. The operation could not be
performed for one of the following reasons:

• The object is temporary, or the object is
permanent and the access group is temporary.

• The object is restricted by the machine from
membership in an access group.

Information Passed:

• Access group

• Object to be inserted
(binary 0 for objects
not yet created)

Instructions Causing Exception;

System pointer

System pointer

• Any create instruction that specifies an access
group in the create template

• Signal Exception·

04 Access State

0401 . Access State Specification Invalid

An access state. not supported by the machine
was specified for an object.

Information Passed:

• The invalid access state Char(1)

Instructions Causing Exception:

• Set Access State

• Signal Exception

06 Addressing

0601 Space Addr.essing Violation

An attempt has been made to operate outside the
current extent of the space contained in a system
object.

Information Passed:

• Object referenced System pointer

• Offset specified Bin(4)

Instructions Causing Exception:

• Any instruction using a pointer or scalar as an
operand.

• Any instruction using a scalar as an index, a
length suboperand, or a space pointer as a base
suboperand.

• Signal Exception

0602 Boundary Alignment

A program. object has been referenced, and it does
not have the proper alignment relative to the
beginning of a space. Pointers must always be
16-byte aligned. Program objects that are not
pointers must have at least the alignment specified
by the ODT entry.

Information Passed:

• Addressability to pointer
or template

Instruction Causing Exception:

Space pointer

• Any instruction having a pointer operand or a
template operand that requires a specific
boundary alignment.

0603 Range

A subscript value in a compound operand array
reference is outside the range defined for the
array. A subscript value of less than 1 or greater
than the number of elements defined by the array
causes this exception.

A reference to a string has a· position and / or
length that exceeds the bounds of the string. A
compound operand that defines a character string
that does not completely fall within the bounds of
the base character string was referenced. A
substring with position (P) ~ 1 and length (L) ~ 1
does not meet. the following constraint (n is the
length of the base string):

P+L-1~n

Instructions Causing Exception:

• All instructions that use scalar or pointer
operands

• Signal Exception

0604 External Data Object Not Found

An unsuccessful attempt was made to resolve a
data pointer. The external data object specified by
the initial value of the data pointer was not found
in the process activations. If a program name was
specified in the symbolic address, then only that
program's activation is considered for resolution. If
no program was specified, then all of the
programs with activations in the process are
considered for data pointer resolution.

Information Passed:

• External data object name Char(32)

Instructions Causing Exception:

• Any instruction that references an external. data
object through a data pointer.

• Any instruction where a data pointer is used as
the scalar value for an index of a length
suboperand. This includes scalar and pointer
operands that may be subscripted.

• Signal Exception

• Compare Pointer Addressability

• Compare Pointer for Space Addressability

• Convert Character to Numeric

• Convert External Form to Numeric

• Convert Numeric to Character

• Copy Bytes Left Adjusted

• Copy Bytes Left Adjusted With Pad

• Copy Bytes Right Adjusted

• Copy Bytes Right Adjusted With Pad

• Copy Numeric Value

• Edit

• Materialize Pointer

Exception Specifications 20-5

• Resolve Data Pointer

• Set Data Pointer Addressability

• Set Data Pointer Attributes

• Set Space Pointer From Pointer

• Set System Pointer From Pointer

0605 Invalid Space Reference

An attempt was made to address a space
contained in an object that has no space.

Instruction Causing Exception:

• Set Space Pointer from Pointer.

08 Argument/Parameter

0801 Parameter Reference Violation

An attempt was made to reference an internal or
an external parameter for which no corresponding
argument was passed.

Instructions Causing Exception:

• Any instruction that references a parameter
operand

• Signal Exception

0802 Argument List Length Violation

20-6

An argument list does not properly correspond to
the length required by the parameter list.

Instructions Causing Exception:

• Call External

• Transfer Control

• Initiate Process

• Signal Exception

0803 Argument List Length Modification Violation

An attempt was made to change the length of a
variable-length argument list to a value less than 0
or greater than the maximum size of the argument
list.

Instructions Causing Exception:

• Set Argument List Length

• Signal Exception

OA Authorization

OAO 1 Unauthorized for Operation

A reference to a permanent system object is
invalid because the user profiles that provide
authorization for this process do not have
sufficient authorization for the object.

Information Passed:

• Object preventing execution System pointer

Instructions Causing Exception:

• Any instruction with operands or operand lists
that refer to an existing permanent system
object

• Signal Exception

OA02 Privileged Instruction

The user profiles that provide authorization for this
process do not authorize the use of this instruction
by the process.

Instructions Causing Exception:

• Create Controller Description

• Create Logical Unit Description

• Create Network Description

• Create User Profile

• I nitiate Process

• Modify Resource Management Control

• Modify User Profile

• Terminate Machine Processing

• Signal Exception

OA03 Attempt To Grant/Retract Authority State To An
Object That Is Not Authorized

An attempt has been made to grant or retract
authority states to a specified object. The user
profiles that provide authorization for this
instruction are not authorized to grant or retract
authorization.

Information Passed:

• System pointer to the object.

Instructions Causing Exception:

• Grant Authority

• Retract Authority

• Signal Exception

OA04 Special Authorization Required

An attempt has been made to execute an
instruction requiring special authorization. The user
profiles that provide authorization for the" process
do not have the proper authorization.

Instructions Causing Exception:

• Materialize Process

• Modify Process

• Suspend Process

• Resume Process

• Terminate Process

• Modify Machine Attributes

• Request I/O For Load or Dump Requests

• Set Access State

• Suspend Object

• Signal Exception

OAOS Create/Modify User Profile Beyond Level of
Authorization

A Create or Modify User Profile instruction has
attempted to set a privileged instruction or special
authorization state in the user profile that is being
created or modified. The user profiles that provide
authorization to the process that is executing the
create or modify instruction are not authorized.

Instructions Causing Exception:

• Create User Profile

• Modify User Profile

• Signal Exception

Exception Specifications 20-7

OC Computation

OCO 1 Conversion

20-8

A scalar value cannot be converted to the
necessary type in this instruction.

Instructions Causing Exception:

• Convert Character to Hex

• Convert External Form to Numeric

• Signal Exception

OC02 Decimal Data

The sign or digit codes of a decimal operand,
either packed or zoned, contain an invalid value.
For packed and zoned format, either the sign is
outside the valid range of A through F or a digit
field is outside the range 0 through 9.

Instructions Causing Exception:

• Add Numeric

• Compare Numeric Value

• Convert Character to Numeric

• Convert Numeric to Character

• Copy Numeric Value

• Divide

• Divide With Remainder

• Edit

• Extract Magnitude

• Multiply

• Negate

• Remainder

• Scale

• Subtract Numeric

• Sum

• Signal Exception

OC03 Decimal Point Alignment

The value of a numeric operand cannot be aligned
in a 31 -digit decimal field. Decimal point
alignment was attempted by padding with 0' s on
the right. Nonzero digits would have to be
truncated on the left to fit the aligned value into a
31-digit decimal field.

Instructions Causing Exception:

• Add Numeric

• Compare Numeric Value

• Divide

• Divide With Remainder

• Remainder

• Subtract Numeric

• Sum

• Signal Exception

OC04 Edit Digit Count

The number of digit position characters in the
mask operand of an Edit instruction is not equal to
the number of digits in the source operand value.

Instructions Causing Exception:

• Edit

• Signal Exception

OC05 Edit Mask Syntax

The characters of the mask operand do not follow
the valid syntax rules for an Edit instruction.

Instructions Causing Exception:

• Edit

• Signal Exception

OCOB Length Conformance

The operand lengths and / or resultant value length
do not conform to the rules of the instruction:

CVTHC - Twice the length of the source
operand must be less than or equal
to the length of the receiver
operand.

CVTCH - The length of the operand must be
less than or equal to twice the
length of the receiver operand.

EDIT The length of the resultant edited
value must be equal to the length of
the receiver operand.

SEARCH- The length of the find operand plus
the value of the location operand
must be less than or equal to the
length of an element of the array
operand.

Instructions Causing Exception:

• Convert Character to Hex

• Convert Hex to Character

• Edit

• Search

• Signal Exception

Exception Specifications 20-9

OCOA Size

An operand was too small to contain a result.

Instructions Causing Exception:

• Add Numeric

• Convert Character to Numeric

• Convert External Form

• Convert Numeric to Character

• Copy Numeric Value

• Divide

• Divide With Remainder

• Extract Magnitude

• Multiply

• Negate

• Remainder

• Scale

• Subtract Numeric

• Sum

• Signal Exception

OCOB Zero Divide

An attempt was made to divide by O.

Instructions Causing Exception:

• Divide

• Divide With Remainder

• Remainder

• Signal Exception

20-10

OE Context Operation

OEOI Duplicate Object Identification

An attempt was made to placeaddressability in a
context to an object having the same name, type,
and subtype as an existing entry in the context.

Information Passed:

• System pointer to the existing object

• Object identification
Object type
Object subtype
Object name

Instructions Causing Exception:

• All create instructions

• Modify Addressability

• Rename Object

• Signal Exception

Char(32)
Char(1)
Char(1)
Char(30)

OE02 Object Ineligible For Context

An attempt was made to delete addressability to
an object of a type that may be addressed only by
the machine context, or an attempt was made to
place addressability to an object in a temporary or
permanent context that may be addressed only by
the machine context.

Information Passed:

• System pointer to object

• Object identification
Object type
Object subtype code
Object name

Instructions Causing Exception:

• Mo~ify Addressability

• Signal Exception

Char(32)
Char(1)
Char(1)
Char(30)

10 Damage

1002 Machine Context Damage State

The machine context cannot be referenced
because it is in the damaged state. The machine
context rebuild option of the Reclaim instruction
can be used to correct the problem or an IPL can
correct the problem.

Information Passed:

• Reserved (binary 0) Char(16)

• VLOG dump 10 Char(8)

• Error class Bin(2)

• The error class codes for the
type of damage detected are
as follows:

Hex 0000

Hex 0001

Hex 0002

Hex 0003

Previously marked damaged

Detected abnormal condition

Locally invalid device sector

Device failure

• Auxiliary storage device
failure

This field is defined for error
classes hex 0002 and hex 0003.
It is the OU number of the
failing device or 0 for a
main storage failure.

• Reserved (binary 0)

Instructions Causing Exception:

• Materialize Context

• Resolve System Pointer

Bin(2)

Char(100)

• Any instruction that resolves a system object
that is located by the machine context

• Signal Exception

Exception Specifications 20-11

1004 System Object Damage State

A system object cannot be accessed because it is
in the damaged state.

Information Passed:

• System pointer to the
damaged object

• VLOG dump ID

• Error class

• The error class codes for the
type of damage detected are
as follows:

System pointer

Char(8)

Bin(2)

Hex 0000

Hex 0001

Hex 0002

Hex 0003

Previously marked damaged

Detected abnormal condition

20-12

Locally invalid device sector

Device failure

• Auxiliary storage device
indicator

Bin(2)

This field is defined for error
classes hex 0002 and hex 0003.
It is the OU number of the
failing device or a for a
main storage failure.

• Reserved (binary 0) Char(100)

Instructions Causing Exception:

• Any instruction that references a system object

• Signal Exception

1044 Partial System Object Damage

Partial damage to· a system object has been
detected.

Information Passed:

• System pointer to the
damaged object

• VLOG dump I D

• Error Class

• The error class codes for the
type of damage detected are
as follows:

System pointer

Char(8)

Bin(2)

Hex 0000

Hex 0001

Hex 0002

Hex 0003

Previously marked damaged

Detected abnormal condition

Locally invalid device sector

Device failure

• Auxiliary storage device
indicator

Bin(2)

This field is defined for error
classes hex 0002 and hex 0003.
It is the OU number of the
failing device or a for a
main storage failure.

• Reserved (binary 0) Char(100)

Instructions Causing Exception:

• Any instruction that references a system object

• Signal Exception

12 Data Base Management

1201 Conversion Mapping Error

During conversions of a numeric field from one
numeric data representation to another numeric
data representation, the source value was too large
to fit in the destination field, the digit (nonzone)
portion of a packed or zoned source field
contained an invalid numeric encoding, or the sign
encoding was invalid.

Information Passed:

The following data is provided:

Cursor

Data space number

Ordinal entry number
(0 if signaled during
an Insert Data Space
Entry or an Insert
Sequential Data Space
Entries instruction)

Number of fields in error

Field data (repeated for each
field that is in error)

Field number
- Error type

System pointer

Bin(2)

Bin(4)

Bin(2)

Bin(2)
Bin(2)

The field number is the relative location of the
field as specified when creating the cursor. A field
number of 1 is the first field in the data
interchange buffer.

The error type values are as follows:

• Hex 02 - Decimal Data: (1) Sign encoding is
invalid for packed or zoned format, or (2) digit
encoding is invalid for packed or zoned format.

• Hex OA - Size: The destination field is too
small to hold all significant digits of the source
field.

These errors are the data base equivalents of
exceptions numbered hex OC02 and hex OCOA and
occur for similar reasons.

Instructions Causing Exception:

• Copy Data Space Entries

• Insert Data Space Entry

• Insert Sequential Data Space Entries

• Retrieve Data Space Entry

• Retrieve Sequential Data Space Entries

• Update Data Space Entry

• Signal Exception

1202 Key Mapping Error

During conversions of a numeric field from one
numeric data representation to another numeric data
representation, the source value was too large to fit
in the destination field, the digit (nonzone) portion of
a packed or zoned source field contained an invalid
numeric encoding, or the sign encoding was invalid.

Information Passed:

The following data is provided:

Cursor System pointer

Data space number Bin(2)

Ordinal entry number (0 if Bin(4)
mapping the input key on Set
Cursor instruction)

Number of fields in error Bin(2)

Field data (repeated for each field that is in error)

Field number
Error type

Bin(2)
Bin(2)

Exception Specifications 20-13

The field number is the relative location of the field
as specified when creating the cursor. A field number
of 1 is the first field in the data interchange buffer.

The error type values are as follows:

• Hex 02 - Decimal Data: (1) Sign encoding is
invalid for packed or zoned format, or (2) digit
encoding is invalid for packed or zoned format.

• Hex OA - Size: The destination field is too small
to hold all significant digits of the source field.

These errors are the data base equivalents of
exceptions numbered hex OC02 and hex OCOA and
occur for similar reasons.

Instructions Causing Exception:

• Copy Data Space Entries (mapping from template)

• Materialize Cursor Attributes (mapping key out to
buffer)

• Retrieve Sequential Data Space Entries (mapping
key to buffer)

• Set Cursor (mapping key in / out)

• Signal Exception

1203 Cursor Not Set

An attempt was made to perform a data base
operation using a cursor that is not set to address
a data space entry.

Information Passed:

• System pointer to cursor

Instructions Causing Exception:

• Retrieve Data Space Entry

• Set Cursor

• Signal Exception

20-14

1204 Data Space Entry Limit Exceeded

The operation caused the user-provided maximum
number of entries limitation for the data space to
be exceeded.

Information Passed:

• Cursor (binary 0 for
instruction not involving
a cursor)

• Data space

Instructions Causing Exception:

• Copy Data Space Entries

System pointer

System pointer

• Data Base Maintenance (insert default entries
option)

• I nsert Data Space Entry

• Insert Sequential Data Space Entries

• Update Data Space Entry

• Signal Exception

1205 Data Space Entry Already Locked

An attempt has been made to lock a data space
entry using the Set Cursor instruction when the
data space entry is already locked to a cursor (this
cursor or another cursor).

Information Passed:

• Cursor

• Data space

• Ordinal entry number

• Return code (bit significant)
Hex 00 Locked to

Hex 01
another process
Locked to
current process

Instructions Causing Exception:

• Set Cursor

• Signal Exception

1206 Data Space Entry Not Found

System pointer

Bin(2)

Bin(4)

Char(1)

An attempt has been made to refer to a data
space entry that could not be found because the
entry has been deleted or its key has been omitted
from the data space index.

Information Passed:

• Cursor System pointer

Instructions Causing Exception:

• Retrieve Data Space Entry

• Set Cursor

• Signal Exception

1207 Data Space Index Invalid

The index specified for a data base operation is
not usable.

Information Passed:

• Cursor
(binary 0 for instructions
not involving cursor)

• Data space index

Instructions Causing Exception:

Activate Cursor

Copy Data Space Entries

System pointer

System pointer

• Data Base Maintenance (invalidate option)

• Retrieve Data Space Entry

• Retrieve Sequential Data Space Entries

• Set Cursor

• Signal Exception

1208 Incomplete Key Description

The cursor cannot be set by key for this data
space index because the output mapping template
used to create this cursor failed to provide a
description of each field that comprises the key.

Information Passed:

• Cursor System pointer

• Data space number Bin(2)

Instructions Causing Exception:

• Copy Data Space Entries

• Set Cursor

• Signal Exception

Exception Specifications 20-15

1209 Duplicate Key Value in Existing Data Space
Entry

An attempt has been made to insert or update a
data space entry in a data space over which a
unique keyed index has been built, and the data
space entry has a key value identical to an existing
data space· entry addressed by the index.

Information Passed:

• Cursor

• Data space index

• The data space number of
the entry associated with
the key already in the data
space index

System pointer

System pointer

Bin(2)

• The ordinal number of the Bin(4)

120A End· of Path

The end of an access path has been reached as
the result of the Set Cursor instruction.

Information Passed:

• Cursor System pointer

Instructions Causing Exception:

• Retrieve Sequential Data Space Entries

• Set Cursor

• Signal Exception

1208 Duplicate Key Value Detected

entry associated with the key While creating or rebuilding a data space index

20-16

already in the data with the unique key attribute, entries were found
space index to generate the same key value. The build

detected up to a maximum of 20 duplicate key
• The data space number of the Bin(2)

entry that was being added or
changed and caused the
exception

• The ordinal number of the Bin(4)
entry that was being changed
and caused the exception
(0 if an insert was being
attempted)

Instructions Causing Exception:

• Copy Data Space Entries

• Insert Data Space Entry

• Insert Sequential Data Space Entries

• Update Data Space Entry

• Signal Exception

values before terminating.

Information· Passed:

• Data space index System pointer

• Number of duplicates detected Bin(2)

• (Repeated for each duplicate)
Data space number of first Bin(2)
entry
Ordinal number of first Bin(4)
entry
Data space number of Bin(2)
second entry
Ordinal number of second Bin(4)
entry

Instructions Causing Exception:

• Create Data Space Index

• Data Base Maintenance (rebuild option)

• Signal Exception

1200 No Entries Locked

No data space entries were .Iocked to this cursor.

Information Passed:

• Cursor System pointer

Instructions Causing Exception:

• Delete Data Space Entry

• Update Data Space Entry

• Signal Exception

1213 Invalid Mapping Template

An error was detected in a mapping template. The
data space number indicates the template in the
mapping template list that contains the error. The
template field number indicates the field in the
template that has the error. A template field
number of 0 indicates the number of byte fields is
in error. A field of 1 indicates the input mapping
type. The field for specification is considered to
be one field for counting purposes. The possible
errors are an invalid value, a value that exceeds
the allowed range, a length that is invalid for a
specified type, or a type that is inconsistent with
the type specified for the field in the data space.

Information Passed:

• Data space number
(position in list)

• Template field number in error

Instructions Causing Exception:

• Create Cursor

• Signal Exception

Bin(2)

Bin(2)

1215 Data Space Not Addressed by Index

An entry in the data space list does not address
the same data space that is addressed by the
corresponding entry in the data space list defined
for the data space index.

Information Passed:

• Entry in the data space list of Space pointer
the Create Cursor instruction
template

Instructions Causing Exception:

• Create Cursor

• Signal Exception

1216 Data Space Not Addressed by Cursor

An entry in the data space list does not address
the same data space that is addressed by the
corresponding list that is defined for the cursor ..

Information Passed:

• Cursor

• Entry in the data space list
of the Activate Cursor
instruction template

Instructions Causing Exception:

• Activate Cursor

• Signal Exception

System pointer

Space pointer

Exception Specifications 20-17

1217 Key Changed Since Set Cursor

The data space index key for the entry currently
addressed by the cursor has changed since the
cursor was set. The former value of the key was
instrumental in finding the entry and is no longer
valid; therefore, the entry is no longer the
expected entry.

Infomation Passed:

• Cursor System pointer

Instructions Causing Exception:

• Retrieve Data Space Entry

• Signal Exception

1219 Invalid Rule Option

20-18

The cursor has addressability to a data space
index and the current cursor setting allows only
rule options of relative or ordinal.

Information Passed:

• Cursor System pointer

Instructions Causing Exception:

• Retrieve Sequential Data Space Entries

• Set Cursor

• Signal Exception

121A Data Space Entry Size Exceeded

The sum of the field lengths in the entry definition
template exceeds 32 766 bytes which is the
maximum size allowed for a data space entry.

Instructions Causing Exception:

• Create Data Space

• Signal Exception

1218 Logical Data Space Entry Size Limit Exceeded

The user's view of the data space entry (defined
by the mapping code) exceeds 32 766 bytes,
which is the maximum size allowed.

Information Passed:

• Template number 8in(2)
(position list)

• Template type Char(1)
Hex 00 Input mapping

template
Hex 01 Output mapping

template

Instructions Causing Exception:

• Create Cursor

• Signal Exception

121 C Key Size Limit Exceeded

The sum of the key field lengths plus the specified
fork characters exceeds 120 bytes, which is the
maximum size allowed for a data space index key.

Information Passed:

• Data space number Bin(2)

Instructions Causing Exception:

• Create Data Space Index

• Signal Exception

1210 Logical Key Size Limit Exceeded

The user's view of the data space index key
exceeds 32 766 bytes, which is the maximum size
allowed.

Information Passed:

• Data space number Bin(2)

Instructions Causing Exception:

• Create Cursor

• Signal Exception

121 E Selection Routine Buffer Size Limit Exceeded

The selection routine's view of the data space
entry as specified in the selection specification
exceeds 32 767 bytes, which is the maximum size
allowed.

Information Passed:

• Data space number Bin(2)

Instructions Causing Exception:

• Create Data Space Index

• Signal Exception

121 F User Exit Routine Criteria Not Satisfied

The specified user exit routine failed to meet the
criteria for a data space user exit routine.

Information Passed:

• User exit routine System pointer

Instructions Causing Exception:

• Create Data Space Index

• Signal Exception

Exception Specifications 20-19

1220 Copy Data Space Entries Termination

The maximum number of exceptions has been
reached for the Copy Data Space Entries
instruction.

Information Passed:

• Cursor (receiver) System pointer

• Cursor (source) System pointer

Instructions Causing Exception:

• Copy Data Space Entries

• Signal Exception

1221 Unable to Maintain a Unique Key Data Space
Index

20-20

An attempt has been made to insert or update a
data space entry in a data space over which a
unique keyed index exists that has been implicitly
invalidated.

Information Passed:

• Cursor System pointer

• Data space System pointer

• Data space index (invalidated) System pointer

Instructions Causing Exception:

• Copy Data Space Entries

• Insert Data Space Entry

• Insert Sequential Data Space Entries

• Update Data Space Entry

• Signal Exception

1222 Data Space Index With Selection Routine Build
Termination

While creating or rebuilding a data space index
that contains a selection routine, data space
entries that resulted in an error in the selection
routine were encountered. The build, before
termination, found up to 20 instances of these
types of errors. The instruction is terminated.

Information Passed:

• Data space index
(binary 0' s if signaled
during creation)

• Number of errors detected
(repeated for each selection
routine error)

• Error descriptor (repeated for
each selection routine error)

Data space number
Ordinal entry number
Reason code
Hex 01 Selection

Hex 02
mapping error
Selection routine
failure

Hex 03 = Error in invoking
selection routine

System pointer

Bin(2)

Char(8)

Bin(2)
Bin(4)
Char(1)

Reserved (binary 0) Char(1)

Instructions Causing Exception:

• Activate Cursor (over delayed maintenance data
space index)

• Create Data Space Index

• Data Base Maintenance (rebuild data space
index option)

1223 Data Space Index Selection Routine Failure

An attempt has been made to insert or update a
data space entry in a data space over which a data
space index with a selection routine exists, and an
error was encountered in the selection routine.

Information Passed:

• Cursor

• Data space

• Data space index

• Data space number (in the
data space list of the data
space index)

System pointer

System pointer

System pointer

Bin(2)

• Ordinal entry number Bin(4)
(0 if entry was being inserted)

• Reason code
Hex 01 Selection mapping error
Hex 02 Selection routine failure
Hex 03 Error invoking selection

routine

Instructions Causing Exception:

• Copy Data Space Entries

• Insert Data Space Entry

• Insert Sequential Data Space Entries

• Update Data Space Entry

• Signal Exception

14 Event Management

1401 Duplicate Event Monitor

This exception is signaled when identical event
monitors (the existing event monitor and the
requested event monitor) do not specify event
handlers or when the event monitors specify
different event handlers.

Information Passed:

• Addressability to the monitor Space pointer
event template

Instructions Causing Exception:

• Monitor Event

• Signal Exception

1402 Event Monitor Not Present

An event monitor with matching event ID, compare
value length, and compare value was not found in
the executing process.

Information Passed:

• A copy of the event monitor template being
tested

Instructions Causing Exception:

• Cancel Event Monitor

• Disable Event Monitor

• Enable Event Monitor

• Test Event

• Wait On Event

• Signal Exception

Exception Specifications 20-21

1403 Machine Event Requires Specification of a
Compare Value

The referenced machine event requires use of a
compare value.

Instructions Causing Exception:

• Monitor Event

• Signal Exception

1404 Wait On Event Attempted While Masked

The process was masked when the Wait On Event
instruction was issued.

Instructions Causing Exception:

• Wait On Event

• Signal Exception

1405 Disable Timer Event Monitor Invalid

An attempt was made to disable an event monitor
that is monitoring a timer event.

Instructions Causing Exception:

• Disable Monitor Event

• Signal Exception

1406 Signal Timer Event Monitor Invalid

20-22

An attempt was made to signal an event monitor
that is monitoring a timer event.

Instructions Causing Exception:

• Signal Event

• Signal Exception

16 Exception Management

1601 Exception Description Status Invalid

The tested exception description was not in the
deferred state.

Instructions Causing Exception:

• Test Exception

• Signal Exception

1602 Exception State of Process Invalid

An attempt was made to retrieve exception data or
resignal an exception when the process is not in
an exception handling state; that is, the process is
not in an external program, internal entry point, or
branch point exception handler. The resignal
option is valid only for an external exception
handler.

Instructions Causing Exception:

• Signal Exception

• Retrieve Exception Data

1603 Invalid Invocation Address

The invocation address specified in the space
pointer on a Return From Exception instruction or
Signal Exception instruction did not represent an
existing program invocation.

Information Passed:

• Space pointer

Instructions Causing Exception:

• Return From Exception

• Signal Exception

18 Independent Index

1801 Duplicate Key Argument in Index

An attempt was made to insert a key argument
that already exists in the index.

I nformation Passed:

• Independent index System pointer

Instructions Causing Exception:

• Insert Index Entry

• Signal Exception

1 A Lock State

lAO 1 Invalid Lock State

The lock enforcement rule or rules were violated
when an attempt was made to access an object.

Information Passed:

• Space pointer to the lock request template

• Failing request number
(relative entry position)

Instructions Causing Exception:

Bin(2)

• All instructions that enforce the lock rules.

• Signal Exception

1A02 Lock Reques.t Not Grantable

The lock request cannot be granted immediately
and neither the synchronous nor asynchronous
wait option was specified.

Information Passed:

• Pointer to lock request
template

• Failing request number
(relative entry position)

Instructions Causing Exception:

• Lock Object

• Signal Exception

1A03 Invalid Unlock Request

Space pointer

Bin(2)

An attempt was made to unlock a lock state not
held by the current requesting process.

Information· Passed:

• Pointer to unlock request
template

• Number of requests not
unlocked

• Request number (relative
entry position for each
lock not unlocked)

Instructions Causing Exception:

• Unlock

• Signal Exception

Space pointer

Bin(2)

Bin(2)

Exception Specifications 20 .. 23

lA04 Invalid Object Lock Transfer Request

An attempt was made to transfer locks that were
not held by the transferring process, or the
transfer lock request was not granted because the
lock granting rules would have been violated.

Information Passed:

• Pointer to lock transfer
request template

• Number of requests not
transferred

• Request number (relative
entry position for each
lock not transferred)

Instructions Causing Exception:

• Transfer Lock

• Signal Exception

lAOS Invalid Space Location Unlocked

Space pointer

Bin(2)

Bin(2)

An attempt was made to unlock a space location
lock not held by the current requesting process.

Information Passed:

• Space location process
attempted to unlock

• Unlock request

Instr"ctions Causing Exception:

• Unlock Space Location

• Signal Exception

20-24

Space poi nter

Char(1)

1 C Machine-Dependent Exception

1 CO 1 Machine-Dependent Request Invalid

A function requested by an instruction may not be
performed because of the current status of the
machine or process.

This exception is caused because of one of the
following conditions:

• An attempt is made to use an instruction trace
while the program event monitor is in use by
the service function.

• A contiguous region of 32 K bytes of auxiliary
storage cannot be obtained for an access
group.

Instruction Causing Exception:

• Machine-dependent

lC02 Program Limitation Exceeded

The program template contained objects or
instructions that caused at least one part of the
encapsulated program to exceed its machine
specification limit.

Information Passed:

• Instruction number Bin(2)
(0 is returned in this field
if the error code does not
apply to a specific instruction)

• Error code Char(2)

The error codes and their meanings for the Create
Program instruction are as follows:

Error
Code Meaning

0001 The data needed to initialize
static areas exceeds 65 535 bytes.
This includes storage for I DLs
(6 bytes for each entry in an IDL),
the values that are the initial
values for the static areas, and the
logic needed to copy these initial
values and to initialize pointers.

0002 The logic needed to initialize
automatic areas exceeds 65 535 bytes.
This includes the logic needed to
copy initial values into automatic
storage and to initialize pointers
in automatic storage.

0003 Certain internal constants, which are
encapsulated into the program and used
with specific machine interface
instructions, exceed 4096 bytes.

Error
Code Meaning

0004 The encapsulated form of an
instruction requires that the machine
address more data items than are
supported on one instruction. The
particular instruction in error is
identified by number in the
exception data for this exception.
Internal addressability is required
for the following types of operands:

• Compound operands, such as those
that specify subscripting,
substringing, or explicit basing.

• Operands that exist in other than
the first 4 K bytes of static or
automatic storage.

• Operands that are parameters or based.

• Constant operands for which the
encapsulated form exists in other
than the first 4 K bytes of the
internal program constant area.

• Operands for which the encapsulated
form exists in other than the first
4. K bytes of the internal machine
work space needed to support
the machine interface invocation.

0005 The constants that are built into
the encapsulated object from the
program template exceed 64 K bytes
minus 129 bytes. Constants defined
in the program template and initial
values for automatic storage are
included in this area.

0006 The work space needed by the machine
to support the machine interface
invocation for this program exceeds
65 535 bytes (see note).

Exception Specifications 20-25

Error
Code

0007

0008

Meaning

An instruction required more than
the maximum amount of storage
allowed for it in the encapsulated
program. The particular instruction
in error is identified by number in
the exception data for this
exception:

• Call External, Transfer Control,
and Call Internal instructions
cannot occupy more than 4800
bytes of storage. For these
instructions, passing a large
number of arguments or passing
arguments with many levels of
basing can cause the storage
limit to be exceeded.

• All other instructions are
limited to a maximum of
1000 bytes. For these
instructions, an extensive amount
of indirect basing in operand
addressability can cause the
storage limit to be exceeded.

Encapsulation of the machine
interface instruction results in a
requirement for more than
1016 K bytes.

0009 The number of items that the machine
needs to address exceeds 680. One
addressable item is needed for each
of the following:

20-26

• Each parameter

• The external parameter list

• Each nonarray pointer

• Each 4096 bytes of static
program objects

• Each 4096 bytes of automatic
program objects

• Each 4096 bytes of work space
needed by the machine to support

the machine interface
invocation (see note)

The error code and its meaning for the Transfer
Control instruction is as follows:

Error
Code Meaning

0006 The work space needed by the
machine to support the machine
interface invocation for the program
that is given control exceeds
65 535 bytes (see note).

Note: The total amount of storage allocated
to an invocation of a program excluding storage
allocated from the process automatic storage area
is 65 200 bytes.

The following objects cause storage to be
allocated in the invocation of a program:

Object Size (bytes for each)

Operand list

• Argument 2+
6 * number of elements

• Parameter (internal) 6 * number of elements

• Parameter (external) 2

Exception descriptions

• Fixed per entry (26 bytes)

• Variable-length per entry
(1 + length of compare value
if even; plus 1 if odd)

The storage allocated from the PASA is
determined by the space that was allocated by the
user for PASA use.

Instructions Causing Exception:

• Create Program

• Signal Exception

• Transfer Control

1 C03 Machine Storage Limit Exceeded

The storage capacity of the machine was
exceeded.

Instructions Causing Exception:

• This exception can be signaled during any
machine operation that causes auxiliary storage
to be allocated. The operations can include
creation or extension of system objects and
extension of auxiliary storage for machine
overhead supporting the established processes
in the machine.

• Signal Exception

1 C04 Object Storage Limit Exceeded

The maximum size for an object was exceeded.

The following maximum size limitations are defined
for the various system objects. listed with each
object is a specification of the size as well as a
definition of the characteristics on which the object
size depends. Size is independent of any
associated space that is considered elsewhere.

Object

Access
group

Context

Controller
description

Cursor

Data space

Data
space
index

Index

Logical unit
description

Network
description

Program

Queue

Space

User
profile

Maximum Size
Size Dependency

4 MB - 32 K Access group directory
and all objects contained
in the access group.

16 MB Context entries including
object identification and
address.

4K Controller description
definition as well as
relationships to LUDs
and NOs.

64 K Cursor definition
including entry mappings.

16 x 16 MB Data space definition,
information for each data
space index, and data
space entries.

16 MB + 64 K Data space index and key
information for every data
space in the index, and
the size of the user exit
routine for select/omit.

16 MB- Number and size of index
entries.

4K Logical unit description
definition and relationship
to other source/sink
objects.

4K Network description
definition and relationship
to other source/sink
objects.

20 MB Program definition
including object
definitions, instruction
stream, initial values,
and size of the program
template.

64 K Queue definition plus
entries enqueued to queue.

16 MB Space definition and its
associated space.

16 MB User profile definition
and entries for owned and
authorized objects.

Exception Specifications 20-27

The maximum size of the space in a system object
depends on the size and packaging of the system
object.

The maximum space size ensures that a space less
than or equal to this size may always be allocated
with the object. Fixed-length spaces can always
have this size. Variable-length spaces can always
be extended to at least this size. This value is
independent of the object's size.

The following is a list of the guaranteed maximum
sizes of associated space for various system
objects:

Guaranteed
Object Maximum Space

Access group Initial allocation

Context 16 MB - 32 B

Controller 16 MB - 4 K
description

Cursor 16 MB - 64 K

Data space 16 MB - 32 B

Data space 16 M B - 64 K - 32 B
index

Index 16 MB - 32 B

Logical unit 16 MB - 4 K
description

Network description 16 M B - 4 K

Program 16 MB - 32 K

Queue 16 MB - 64 K

Spa~e .16 MB - 160 B

User profile 16 MB - 32 B

20-28

Information Passed:

• Return object pointer
(binary 0 if the object
is being created)

Instructions Causing Exception:

• All Create instructions

System pointer

• All instructions that cause additional storage to
be allocated for an object

• Signal Exception

1 C06 Machine Lock Limit. Exceeded

The maximum number ot' currently held locks was
exceeded.

No more than 57 344 locks, implicit locks, data
base entry locks, and internal locks required for
machine operation. may exist at anyone time.

Instructions Causing Exception:

• Lock Object

• Activate Cursor

• Create Cursor

• Create Data Space Index

• Data Base Maintenance

• Set Cursor

• Initiate. Process

• Modify Process Attributes

• Dequeue

• Any instruction that acquires an implicit lock or
an internal machine lock

• Signal Exception

1 E Machine Observation

1 EO 1 Program Not Observable

The program observation functions were destroyed
for the program referenced by the executing
instruction.

Information Passed:

• Program System pointer

Instruction Causing Exception:

• Materialize Invocation

• Signal Exception

20 Machine Support

2001 Diagnose

An error or discrepancy was found when a
Diagnose instruction was processed.

Information Passed:

• Space element to the subelement in the
operand 2 object that was being processed

• Data Bin(4)

Subidentifier unique to the Bin(2)
requested function
Indicator of the pointer in Bin(2)
operand 2 that was being
processed

Instructions Causing Exception:

• Diagnose

• Signal Exception

2002 Machine Check

A machine malfunction affecting system-wide
operation has been detected during execution of
an instruction in this process.

Information Passed:

• Time stamp that gives the
current value of the machine
time-of-day clock.

Char(8)

• Error code indicating nature Char(2)
of machine check. (This value
is machine-dependent and is
only defined in the machine
service documentation.)

• Reserved (binary 0)

• VLOG dump 10

• Error class

The error class codes for the
type of damage detected are
as follows:

Char(6)

Char(8)

Bin(2)

Hex 0000

Hex 0002

Hex 0003 =

Unspecified
abnormal condition
Logically invalid
device sector
Device failure

• Auxiliary storage device
indicator

Bin(2)

This field is defined for error
classes hex 0002 and hex 0003.
It is the OU number of the
failing device or 0 for a
main storage failure.

• Reserved (binary 0) Char(100)

Instructions Causing Exception:

• Any instruction

• Signal Exception

Exception Specifications 20-29

2003 Function Check

The executing instruction has failed unexpectedly
during execution within the process.

Information Passed:

• Time stamp giving the Char(8)
current value of the machine
time-of-day clock.

• Error code indicating the Char(2)
nature of the function
check. (This value is
machine-dependent.)

• Reserved (binary 0) Char(6)

• VLOG dump ID Char(8)

• Error class Bin(2)

The error class codes for the
type of damage detected are
as follows:

Hex 0000

Hex 0002

Hex 0003 =

Unspecified
abnormal condition
Logically invalid
device sector
Device failure

• Auxiliary storage device
indicator

Bin(2)

This field is defined for error
classes hex 0002 and hex 0003.
It is the au number of the
failing device or 0 for a
main storage failure.

• Reserved (binary 0) Char(100)

Instructions Causing Exception:

• Any instruction

• Signal Exception

20-30

22 Object Access

2201 Object Not Found

An attempt to resolve addressability into a system
pointer was not successful for one of the following
reasons:

• The named object was not located in the
context specified in the symbolic address or in
any context referenced in the name resolution
list.

• An object with a corresponding name was
found but the user profile(s) governing
execution of the instruction did not have the
authority required for resolution.

Information Passed:

• Object identification
Object type
Object subtype
Object name

Required authorization

Instructions Causing Exception:

Char(32)
Char(l)
Char(l)
Char(30)

Char(2)

• Any instruction that references an object
through a system pointer

• Signal Exception

2202 Object Destroyed

An attempt was made to reference an object that
no longer exists.

Instructions Causing Exception:

• Any instruction that references an object
through a system pointer, a space pointer, or a
data pointer

• Any instruction that references a scalar or a
pointer operand when the object and the space
containing the scalar or pointer have been
destroyed

• Signal Exception

2203 Object Suspended

An attempt was made to reference an object that
is in suspended state and, with its contents
truncated, is not suitable for processing.

Information Passed:

• Object System pointer

Instructions Causing Exception:

• Instructions that reference space, queue, index,
data space, or data space index objects, except
for the following instructions:

Resolve System Pointer (to the target object)
Grant Authority
Retract Authority
Transfer Ownership
Modify Addressability
Lock Object
Unlock Object
Transfer Object Lock
Request I/O (for load / dump)
Materialize Object Lock
All Destroy instructions
Create Data Space Index (allows
suspended data space only)
Materialize System Object
Materialize Pointer

Signal Exception

2204 Object Not Eligible for Operation

An attempt to reference an object was
unsuccessful because the object was not eligible
for the operation requested for one of the
following reasons:

• An object that cannot be duplicated was
specified on a Create Duplicate Object
instruction.

• A data space or data space index was activated
when a Suspend instruction or a load/dump
operation was attempted.

• An index that can contain pointers was
referenced by a Suspend Object instruction or
was referenced for a load / dump operation.

• An attempt was made to activate a cursor that
is already activated to this process or is
activated to another process.

• A temporary object was referenced for a
load / dump operation.

• An attempt was made to replace a progarm
through a load operation.

• An attempt was made to materialize cursor
statistics when the cursor was not active for
this process.

• The receiving data space for a Copy Data Space
Entries instruction is active under more than one
cursor.

• An attempt was made to set a cursor (by a Set
Cursor or a Retrieve Sequential Data Space
Entries instruction) in an event handler while the
cursor is waiting for a lock for another Set
Cursor instruction. This can happen when an
event is handled during a data base entry lock
wait.

• The source or receiver cursor has had a set
cursor operation or another operation performed
on it that left the cursor set to a data space
entry after the cursor was activated and before
a Copy Data Space Entries instruction was
issued.

Exception Specifications 20-31

Information Passed:

• System pointer to the object

Instructions Causing Exception:

• Activate Cursor

• Ensure Data Space Entries

• De-activate Cursor

• Create Duplicate Object

• Delete Object From Access Group

• Data Base Maintenance (all options)

• Materialize Cursor Attribute

• Suspend

• Request I/O

• Copy Data Space Entries

• Retrieve Sequential Data Space Entries

• Set Cursor

• Signal Exception

20-32

2205 Object Not Available to Process

An attempt to reference an object was
unsuccessful because it was restricted, temporarily
or permanently, to another process for one of the
following reasons:

• An active cursor was restricted to the process
that activated it.

• Application of implicit locks failed.

Information Passed:

• System pointer to the object

Instructions Causing Exception:

• Activate Cursor

• Create Data Space Index

• Data Base Maintenance

• De-activate Cursor

• Delete Data Space Entry

• Ensure Data Space Entries

• Initiate Process

• Insert Data Space Entry

• Release Data Space Entries

• Retrieve Data Space Entry

• Set Cursor

• Update Data Space Entry

• Signal· Exception

2206 Object Not Eligible for Destruction

An attempt to destroy an object cannot be
processed because· one of the following conditions
exists within that object:

• A Destroy User Profile instruction refers to a
user profile that still owns objects or has a
process currently initiated for it.

• A Destroy Data Space instruction refers to a
data space that is being used through a cursor.

• A Destroy Data Space I ndex instruction refers
to a data space index that is being used
through a cursor.

• A Destroy Access Group instruction refers to an
access group that contains one or more objects.

Information Passed:

• System pointer to the object.

Instructions Causing Exception:

• Destroy Access Group

• Destroy Data Space

• Destroy Data Space Index

• Destroy User Profile

• Signal Exception

24 Pointer Specification

2401 Pointer Does Not Exist

A pointer reference has been made to a storage
location in a space that does not contain a pointer.

Instructions Causing Exception:

• Any instruction that has pointer operands

• Any instruction that references a base operand
(scalar or pointer) when the base pointer is not
a space pointer

• Any instruction that allows a scalar defined by a
data pointer to be an operand

• Any instruction that requires a pointer as part of
the input template

• Signal Exception

2402 Pointer Type Invalid

An instruction has referenced a pointer object that
contains an incorrect pointer type for the operation
requested.

Instructions Causing Exception:

• Any instruction that has pointer operands

• Any instruction that contains a base operand
(scalar or pointer) when the base pointer is not
a space pointer

• Any instruction that allows a scalar defined by a
data pointer to be an operand

• Any instruction that requires a pointer as part of
the input template

• Signal Exception

Exception Specifications 20-33

2403 Pointer Addressing Invalid Object

An instruction has referenced a system pOinter
that addresses an incorrect type of system object
for this operation.

Information Passed:

• The invalid system pointer

Instructions Causing Exception:

• Any instruction that references a system
pointer, either as an operand or within a
template operand, and that requires a specific
object type as a part of its operation

• Signal Exception

2404 Pointer Not Resolved

The operation did not find a resolved system
pointer. For example, NRL (name resolution list)
entries must be resolved system pointers that
address contents.

Information Passed:

• The invalid pointer

Instructions Causing Exception:

• Resolve System Pointer

• Any instruction that causes a system pointer to
be implicitly resolved when the NRL is used in
the resolution. A" entries in the NRL must be
resolved.

• Resolved Data Pointer

• Any instruction that causes a data pointer to be
implicitly resolved. A" activation entries in the
process must contain a resolved pointer to the
associated program.

• Signal Exception

20-34

26 Process Management

2602 Queue Full

An attempt was made to enqueue a message to a
queue that is full and is not extendable.

Information Passed:

• System pointer to the queue for which the
enqueue was attempted.

Instructions Causing Exception:

• Enqueue

• Request I/O

• Signal Exception

28 Process State

2801 Process Ineligible for Operation

An attempt was made by a subordinate process to
terminate a superordinate process.

Information Passed:

• Process control space system pointer to the
process to be terminated.

Instructions Causing Exception:

• Terminate Process

• Signal Exception

2802 Process Control Space Not Associated with A
Process

The process control space system pointer
referenced a process control space that was not
currently associated with an existing process.

Information Passed:

• Process control space System pointer

Instructions Causing Exception:

• Materialize Process Attributes

• Modify Process Attributes

• Resume Process

• Suspend Process

• Terminate Process

• Signal Event

• Signal Exception

280A Process Attribute Modification Invalid

The modification control indicators for a process
did not allow the process to modify this attribute.

Information Passed:

• System pointer to the process
control space

• Modification control indicators ChartS)
(bit significant)

• Modify attribute
(bit significant)

Instructions Causing Exception:

• Modify Process Attributes

• Signal Exception

2A Program Creation

2AO 1 Program Header Invalid

Char(1)

The data in the program header was invalid.

Instructions Causing Exception:

• Create Program

• Signal Exception

Exception Specifications 20-35

2A02 ODr Syntax Error

The syntax (bit setting) of an ODT (object
definition table) entry was invalid.

Information Passed:

• ODT entry number Bin(2)

Instructions Causing Exception:

• Create Program

• Signal Exception

2A03 ODr Relational Error

20-36

An ODT (object definition table) entry reference to
another ODT entry was invalid.

Information Passed:

• ODT entry number Bin(2)

Instructions Causing Exception:

• Create Program

• Signal Exception

2A04 Operation Code Invalid

One of the following conditions occurred.

• The operation code did not exist.

• The optional form was not allowed.

Information Passed:

• Instruction number of the
instruction being analyzed.

Instructions Causing Exception:

• Create Program

• Signal Exception

2A05 Invalid Op Code Extender Field

Bin(2)

The branch/indicator options were invalid.

Information Passed:

• Instruction number of the
instruction being analyzed.

Instructions Causing Exception:

• Create Program

• Signal Exception

Bin(2)

2A06 Invalid Operand Type

One of the following conditions was detected:

• An operand was not the required type (signed
immediate, immediate, constant data object,
scalar data object, pOinter data object, null,
branch point, or instruction definition list).

• An operand was described as an immediate or
constant data object. However, the instruction
specifies that the operand be modified to
something other than an immediate or constant
data object, or the instruction does not allow an
immediate or constant data object operand.

Information Passed:

• Instruction number of the
instruction being analyzed.

Instructions Causing Exception:

• Create Program

• Signal Exception

Bin(2)

2A07 Invalid Operand Attribute

One of the following conditions was detected:

• An operand did not have the attributes required
by the instruction (character, packed decimal,
zoned decimal, binary, scalar, array, assumed,
overlay, restricted, open, based, explicitly
based).

• The attributes of one operand did not match the
required attributes of another operand.

• At least one operand in the argument list for a
Transfer Control instruction was specified as
automatic.

Information Passed:

• Instruction number of the
instruction being analyzed.

Instructions Causing Exception:

• Create Program

• Signal Exception

Bin(2)

Exception Specifications 20-37

2A08 Invalid Operand Value Range

20-38

One of the following conditions was detected:

• An operand was a constant or immediate data
object and was used as an index into an array
or indicated a position in a character string, but
it was outside the range of the array or
character string.

• An operand was a constant or immediate data
object and did not conform to the value
required by the instruction.

Information Passed:

• Instruction number of the
instruction being analyzed.

Instructions Causing Exception:

• Create Program

• Signal Exception

Bin(2)

2A09 Invalid Branch Target Operand

One of the following conditions was detected:

• An operand was not an instruction pointer,
branch point, instruction number, or relative
instruction number.

• An operand was an instruction number or
relative instruction number but was outside the
range of the program.

• A branch target operand identified an
instruction that was not indicated as a branch
target.

Information Passed:

• Instruction number of the
instruction being analyzed.

Instructions Causing Exception:

• Create Program

• Signal Exception

2AOA Invalid Operand Length

Bin(2)

One of the following conditions was detected:

• The length attribute of an operand was not
greater than or equal to the length required Py
the instruction.

• The length attribute of an operand was invalid
based on its relationship to the length attribute
of another operand in the same instruction.

Information Passed:

• Instruction number of the
instruction being analyzed.

Instructions Causing Exception:

• Create Program

• Signal Exception

Bin(2)

2AOB Invalid Number of Operands

The number of arguments in a Call Internal
instruction was not equal to the number of
parameters in the called entry point.

Information Passed:

• Instruction number of the
instruction being analyzed.

Instructions Causing Exception:

• Create Program

• Signal Exception

2AOC Invalid Operand oor Reference

Bin(2)

The ODT reference was not within the range of
the ODV.

Information Passed:

• Instruction number of the
instruction being analyzed.

Instructions Causing Exception:

• Create Program

• Signal Exception

Bin(2)

2C Program Execution

2CO 1 Return Instruction Invalid

This exception was improper usage of the Return,
Transfer Control, or Return From Exception
instruction for one of the following reasons:

• A Return From Exception instruction was
executed in an invocation that was not defined
as an exception handler.

• A Return External or Transfer Control instruction
was issued from a first-invocation-Ievel
exception handler.

• A Transfer Control instruction was issued from
a first..;.invocation-Ievel event handler.

Instructions Causing Exception:

• Return External

• Return From Exception

• Transfer Control

• Signal Exception

Exception Specifications 20-39

2C02 Return Point Invalid

An attempt was made to use a Return External
instruction with a return point that was invalid for
one of the following reasons:

• The return point value was outside the range of
the return list specified on the preceding Call
External instruction.

• A nonzero return point was supplied, but no
return list was supplied on the preceding Call
External instruction.

• A nonzero return point was supplied when a
Return External instruction was issued in the
first invocation in the process.

• A nonzero return point was supplied when the
Return External instruction was issued by an
invocation acting as an event handler.

Instructions Causing Exception:

• Return External

• Signal Exception

2C03 Stack Control Invalid

20-40

Information Passed:

• Cause indicator Bin(2)

- Hex 0003 = The chain being modified bit
in the PSSA base entry was
on when it was necessary for
the machine to use the chain
of PSSA activations or it was
necessary for the machine to
modify the chain of PSSA
activations.

Instructions Causing Exception:

• Activate Program

• Call External

• De-activate Program

• Modify Automatic Storage Allocation

• Transfer Control

2C04 Branch Target Invalid

An attempt was made to branch to an instruction
defined through an instruction pointer, but the
instruction pointer was set by a program other
than the one that issued the branch.

Information Passed:

• Instruction pointer causing the exception

Instructions Causing Exception:

• All instructions that have a branch form

• Signal Exception

2C05 Activation in Use by Invocation

An attempt was made to de-activate a program
that has an existing invocation which is not the
invocation issuing the instruction.

Information Passed:

• Program System pointer

Instructions Causing Exception:

• De-activate Program

• Signal Exception

2E Resource Control Limit

2EO 1 User Profile Storage Limit Exceeded

The user profile specified insufficient auxiliary
storage to create or extend a permanent object.

Instructions Causing Exception:

• All create instructions creating a permanent
object

• All instructions extending a permanent object

• Signal Exception

32 Scalar Specification

3201 Scalar Type Invalid

A scalar operand did not have the following data
types required by the instruction:

• Character

• Packed decimal

• Zoned decimal

• Binary

Instructions Causing Exception:

• Any instruction using a late bound (data pointer)
scalar operand

• Signal Exception

3202 Scalar Attributes Invalid

A scalar operand did not have the following
attributes required by the instruction:

• Length

• Precision

• Boundary

Instructions Causing Exception:

• Any instruction using a late-bound (data
pointer) scalar operand

• Any instruction that verifies the length of a
character scalar in a space object operand

• Signal Exception

3203 Scalar Value Invalid

A character scalar operand does not contain a
correct value as required by the instruction.

Information Passed:

• Length of data passed

• Bit offset to invalid field
(relative to 0)

• Operand number

• Invalid data

Instructions Causing Exception:

Bin(2)

Bin(2)

Bin(2)

Char{*)

• Any instruction using a scalar operand

• Signal Exception

Exception Specifications 20-41

34 Source/Sink Management Defect
Code

3401 Source/Sink Configuration Invalid
(hex) Instruction Meaning

1204 CRTCD Backward or forward

A source/sink object associated with a object does not have
attributes that match

source/sink create, modify or request I/O this CD. Forward object
instruction was not properly configured to allow (NO) checks:

the requested operation. · NO cannot be a
switched NO.

Information Passed: · Role indicator must
indicate an opposite
role to that of . System pointer to the object that prevented this CD.

execution from completing. · If the NO is a
primary point to . Exception data - A defect Char(2) point configuration

code that provides a further that already has
one CD attached.

definition of the cause of
the exception as follows 1206 CRTCD Invalid NO candidate

(not switched, wrong (bit significant):
NO type or wrong line

Defect
discipline).

Code 1301 CRTLUD Forward object supplied
(hex) Instruction Meaning is of the wrong

source/sink object
1101 CRTND Backward object supplied sUbtype.

is of the wrong source/
sink object subtype. 2101 MODND Status change attempted

with no C Os or LU Os
1102 CRTND Backward object supplied attached to this NO

is already connected to (nonswitched).
another forward object.

2201 MODCD Status change attempted
1103 CRTND Duplicate backward with no LUDs attached.

pointers supplied.
2202 MODCD Status change attempted

1104 CRTND Backward object does with no valid forward
not have attributes pointer (nonswitched CD).
that match this NO:

2203 MODCD Dial attempted with no . CD cannot be a valid NO candidate list
switched CD. entries.

. Role indicator 2205 MODCD Invalid NO candidate
must indicate (not switched, wrong
an opposite role NO type or wrong line
to that of discipline).
this NO.

2301 MODLUD Status change attempted
1201 CRTCD Backward or forward with no valid forward

object supplied is of pointer.
the wrong source/sink
opject subtype. 3401 Request Request I/O response queue

I/O does not have proper
1202 CRTCD Backward object supplied attributes for the Request

is already connected to I/O instruction.
another forward object.

1203 CRTCD Duplicate backward
pointers supplied.

20-42

Instructions Causing Exception:

~ Create Controller Description

• Create Logical Unit Description

• Create Network Description

• Modify Controller Description

• Modify Logical Unit Description

• Modify Network Description

• Request I/O

• Signal Exception

3402 Source/Sink Physical Address Invalid

An attempt was made to create a source / sink
object with the same physical address and
exchange identification as an already existing
object of the same type, or the physical address
has a component part that does not match the
physical address of the related forward or
backward object specified.

The duplicate address exception data (hex 01) is
not signaled for the creation of CD objects for
5251 remote controllers or for the creation of CD
objects for the host system when these CD
objects have the switched line or the switched
backup attribute.

Information Passed:

• System pointer to the object preventing
execution of this instruction.

• Exception Data Char(1)
(bit significant)

Hex 01 Duplicate address
- Hex 02 = Related object

address mismatch

Instructions Causing Exception:

• Create Controller Description

• Create Logical Unit Description

• Create Network Description

• Signal Exception

Exception Specifications 20-43

3403 Source/Sink Object State Invalid

The source/sink object associated with a
source/sink create, destroy, modify, or request
I/O instruction was not in the proper state or
proper mode to allow execution of the instruction
to complete successfully.

Information Passed:

• Object preventing execution System pointer
of the instruction.

• Exception Data Char(16)
(bit significan1:)

Affected element within Char(2)
the source/sink object
(bit significant)
Source/Sink object status Char(6)
field for the object that
prevented execution of the
instruction (bit significant)
Reserved Char(8)

• Primary object for the System pointer
instruction (on a create,
this entry is binary 0)

• Template for the instruction
(binary 0 if not applicable)

Space pointer

The following chart shows the elements that can
be indicated in the exception data.

Instruction

Create Destroy
\

Element NO CD LUD NO CD LUD NO

ND Status X X X X X X

CD Status X X X

LUD Status X

Other N D Elements X

Other CD Elements

Other LU D Elements

20-44

Modify Request

CD LUD I/O

X X

X X

X X

X

X

Instructions Causing Exception:

• Create Controller Description

• Create Logical Unit Description

• Create Network Description

• Destroy Controller Description

• Destroy Logical Unit Description

• Destroy Network Description

• Modify Controller Description

• Modify Logical Unit Description

• Modify Network Description

• Request I/O

• Signal Exception

3404 Source/Sink Resource Not Available

An attempt was made to create a source/sink
object, but physical hardware or system support
for this hardware does not exist; or an attempt
was made to modify a source/sink object, but
hardware sequences cannot be completed
successfully.

Information Passed:

• A system pointer that identifies the object that
caused the instruction termination

• Exception data (bit significant) Char(4)
Generic error code Char(2)

- Device-specific error code Char(2)

The exception data consists of two 2-byte return
codes that define the cause of this exception. The
first 2-byte field provides a generic error code that
is common to all source/sink objects of that code,
and the second 2 bytes provide further
device-specific error code for the device in
question. The following list defines the generic
error codes that can be presented by this
exception. The generic error code values are
formatted as hex jknn, where:

j = 1

j = 2

k = 1

indicates a create instruction

indicates a modify instruction

indicates an N D object

k = 2 indicates a CD object

k = 3 indicates an LUD object

nn indicates the generic error code that
provides further definition of the
cause of the exception as follows:

Code
(hex) Instruction Meaning

1101 Create ND N D hardware not
installed

1201 Create CD CD hardware not
installed

1301 Create LUD LU D hardware not
installed

(The above error codes indicate that the object
creation being attempted, although potentially
valid on some system, does not agreee with the
hardware or support attributes currently
configured on this system.)

Exception Specifications 20-45

Code
(hex) Instruction Meaning

2102 Modify NO Vary on failure

2103 Modify NO Manual answer
failure

2105 Modify NO Enable failure

2202 Modify CD Vary on failure

2204 Modify CD Dial out failure

2206 Modify CD Power on failure

2207 Modify CD Power off failure

2300 Modify LUD Other-than-status
element failure

2302 Modify LUD Vary on failure

2303 Modify LUD Activate failure

2306 Modify LUD Power on failure

2307 Modify LUD Power off failure

2311 Modify LUD Resume failure

2312 Modify LUD Suspend failure

2313 Modify LUD Quiesce failure

The device-specific error codes are as follows:

Code
(hex) Meaning

0101 No MCR entry

0102 MCR entry not supported

0103 No MCR related OU

0104 Wrong related OU

0105 MCR device type or model number is
different

0106 MCR power control mismatch

Instructions Causing Exception:

• Create Controller Description

• Create Logical Unit Exception

• Create Network Description

• Modify Controller Description

• Modify Logical Unit Description

• Modify Network Description

• Signal Exception

20-46

36 Space Management

3601 Space Extension/Truncation

A Modify Space Attributes instruction made one of
the following invalid attempts to modify the size of
the space:

• Truncate the space to a negative size.

• Extend or truncate a fixed size space.

• Extend a space beyond the space allowed in
the referenced object.

Information Passed:

• System pointer to the space

Instructions Causing Exception:

• Activate Program

• Call External

• Modify Space Attributes

• Signal Exception

38 Template Specification

3801 Template Value Invalid

A template did not contain a correct value required
by the instruction.

Information Passed:

• Addressability to the template Space pointer

• Offset to invalid field
(leftmost byte) in bytes
(A value of 0 is the
first byte in the template.
An invalid field is considered
to be the lowest-level
character or numeric template
entry that contains the
information that is in error.)

• Bit offset in invalid field
field or 0 (A 0 value
indicates the leftmost bit
in the invalid field.)

• The number of bytes in the
invalid field

• Instruction operand number
(The first operand in an
instruction is 1.)

Instructions Causing Exception:

Bin(2)

Bin(2)

Bin(2)

Bin(2)

• Any instruction that has a space pointer as a
source operand

• Signal Exception

3802 Template Size Invalid

A source template was not large enough for this
instruction.

Information Passed:

• Addressability to the template Space pointer

Instructions Causing Exception:

• Any instruction that has a space pointer that
addresses a source template operand

• Signal Exception

3803 Materialization Length Exception

Less than 8 bytes was specified to be available in
the receiver operand of a materialize instruction.

Instructions Causing Exception:

• Any materialize instruction

• Any retrieve instruction

• Signal Exception

Exception Specifications 20-47

3A Wait Time-Out

3AO 1 Dequeue

A specified time period elapsed, and a Dequeue
instruction was not satisfied.

Information Passed:

• The queue waited for System pointer

• Time-out value Char (8)

Instructions Causing Exception:

• Dequeue

• Signal Exception

3A02 Lock

20-48

A specified time period elapsed, and a Lock Object
instruction was not satisfied.

Information Passed:

• System pointer to the object
waited for

• Time-out value

Instructions Causing Exception:

• Lock Object

• Signal Exception

Char(8)

3A03 Event

A specified time period elapsed, and a Wait On
Event instruction was not satisfied.

Information Passed:

• Number of event monitors

• Time-out value

• Template from operand 2
of the Wait On Event
instruction and repeated
for each number of event
monitors (0' s when number
of event monitors is 0)

Instructions Causing Exception:

• Wait On Event

• Signal Exception

3A04 Space Location Lock Wait

Bin(2)

Char(8)

Char(48)

A specified time period has elapsed and a Lock
Space Location instruction has not been satisfied.

Information Passed:

• Space location Space pointer

• Time-out value Char(8)

Instructions Causing Exception:

• Lock Space Location

• Signal Exception

3C Service

3CD 1 Invalid Service Session State

The process is not in the proper service session
for the request service command because of one
of the following conditions:

• No service session exits for the process, and
the command is other than start service
session.

• The process is in service session, and the
command is to start service session.

• The process is in service session, but a previous
stop service session command was issued.

Instructions Causing Exception:

• Request I/O (service)

• Signal Exception

3CD2 Unable to Start Service Session

The machine was unable to start a valid service
session.

Instructions Causing Exception:

• Request I/O

• Signal Exception

Exception Specifications 20-49

20-50

Events are managed by using the event management
instructions. See Chapter 15. Event Management
Instructions. Each event is identified by specifying the
event class, type, and subtype.

To monitor all the event types under an event class, a
hex 00 is entered in the event type element field. To
monitor all the event subtypes under an event type, a
hex 00 is entered in the event subtype element field.

EVENT DEFINITION ELEMENTS

Event definitions contain the following elements:

• Event identification
Class
Type
Subtype

• Optional compare value

• Event- related data
Standard

- Specific

Event Identification

Events are identified by class, type, and subtype as
follows:

Event Class

Events are divided into classes such as queue events,
process events, and machine status events. Valid entries
for this event identification element are hex 0001-7FFF.

Event Type

The event type within a class further describes the
event. Valid entries for this event identification element
are hex OO-FF. Type hex 00 is never signaled by the
machine. It is restricted to supporting the technique of
generic monitoring of the event type.

Chapter 21. Event Specifications

Event Subtype

This entry further describes the event type. Valid entries
for this event identification element are hex 00- FF.
Subtype hex 00 is never signaled by the machine. It is
restricted to supporting the technique of generic
monitoring of the event subtype.

Compare Value Qualifier

Certain classes of machine events allow a compare
value to be specified. The compare value can contain a
system pointer, but the system pOinter must be located
in the first 16 bytes of the compare value. The system
pointer can optionally be followed by a scalar; for
example, a counter value limit. The compare value can
be supplied to further qualify the event monitors.

For timer events, the compare value specifies the time
of day or the realtime interval that, when reached,
causes the event monitor to be signaled.

Event-Related Data

Associated with machine events is information made
available to the event monitor that is monitoring the
event when a signaled condition is met. Both standard
and specific event-related data are supplied with all
signals. This information can be materialized through the
use of the Retrieve Event Data instruction.

Event Specification 21-1

Standard Event-Related Data

The following format describes the standard
event-related data available for retrieval when an event
monitor has been signaled. The format of the data is:

• Template size specification
Number of bytes provided
for retrieval
Number of bytes in
event- related data

• Reserved (binary 0)

• Event ID
Class
Type
Subtype

• Compare value length

• Compare value

• Indicators
Origin of signal
o Signaled by the machine
1 = Signaled by the Signal

Event instruction
Compare value content
o = System pointer not present
1 = System pointer present
Reserved (binary 0)

• Event-specified data length

This value is 0 for short form
event monitors, and the following
attributes are not supplied.

• Signals pending count

• Time of event signal

This time is presented as a 64-bit
unsigned binary value in which bit 41
equals 1024 microseconds.

Char(8)
Bin(4)

Bin(4)

Char(24)

Char(4)
Char(2)
Char(1)
Char(1)

Bin(2)

Char(32)

Char(2)
Bit 0

Bit 1

Bits 2-15

Bin(2)

Bin(4)

Char(8)

• Process (causing signal is denoted by System
process control space system pointer) pointer

This attribute is ignored if the event
signal is not related to a process
action, such as a timer event.

• Event-specific data

21-2

Char(*)

Specific Event-Related Data

Machine events contain specific event- related data,
which is in addition to the standard event-related data
that accompanies the event signal.

This specific data is logically appended to the standard
event-related data when an event handler retrieves the
data.

The specific event- related data format is defined for
each machine event under Event Definitions, later in this
chapter.

EVENT DEFINITIONS

This section gives the definitions of the events that can
be monitored. They are arranged in numeric order by
event class. The types and subtypes within each event
class are in numeric order. Subheadings under each
event class give the combined type and subtype number
and name followed by the compare value and event
related data.

0002 Authorization

0101 Object Authorization Violation

Compare Value: None allowed

Event-Related Data:
- System pointer to the object

0201 Privileged Instruction Violation

Compare Value: None allowed

Event-Related Data: None

0301 Special Authorization Violation

Compare Value: None allowed

Event-Related Data: None

0004 Controller Description

0401 Controller Description Successful Contact

Compare Value: Allowed
System pointer to the controller
description

Event - Related Data:
System pointer to the controller
description
System pointer to the network description
(supplied only for CD type 10; otherwise,
binary 0)
Data length. (hex 0000) Bin(2)
Variable data None

0402 Controller Description Unsuccessful Contact

Compare Value: Allowed

System pointer to the controller
description

Event-Related Data:
- System pointer to the controller

description
System pointer to the network description
(supplied only for CD type 10; otherwise,
binary 0)
Data length Bin(2)
(2 to 66 bytes)
Variable data
(2 to 66 bytes)
Status
XID data or SSCP ID
data from the contacted
station (up to 64 bytes)

Char(*)

Char(2)
Char(*)

The following chart shows the status code
definitions for the vary on failures. The chart
also indicates if additional ID information is
available (6-byte SSP-ID field).

XID
Reason Status Data

Line failure 0001 No

Dial operation 0002 No
unsuccessful

XID data 0003 Yes
orSSCPID
data does
not match CD

ND not in 0004 Yes
candidate
list of
this CD

CD not varied 0005 Yes

on (CD
represents a
primary
nonswitched
station)

Event Specification 21-3

0403 Loss of Contact

Compare Value: Allowed

Event-Related Data:
System pointer to the
controller description
Data length (hexOOOE or
decimal 14
Status code Char(2)
Hex 0001 = disconnect received

from SDLC primary
Reserved Char(12)

0501 Controller Description Failure (station
inoperative)

0502 Controller Description Failure (protocol
violation detected)

0503 Controller Description Failure (SSCP to PU
session inactive)

Compare Value (for all subtypes): Allowed
- System pointer to the controller

description

Event-Related Data (for all subtypes):
System pointer to the controller
description
Data length (hex 001 E)

- Variable data
Error code (see

Bin(2)
Char(30)
Char(2)

Chapter 23. Source/Sink
Specialization and Programming
Considerations for Local
Devices and Chapter 24.
Communications and Locally
Attached Work Stations)
Time stamp
(if matching
error log
entry)
OU number
Optional data (see

Char(8)

Char(2)
Char(2)

Chapter 23. Source/Sink
Specialization and Programming
Considerations for Local
Devices and Chapter 24.
Communications and Locally
Attached Work Stations)
Optional system pointer Char(16)

0601 Controller Description Manual Intervention

Compare Value: Allowed
- System. pointer to the controller

description

Event-Related Data:
System pointer to the controller
description
System pointer to the network description
(binary a if not switched line)
Data length (hex OOOE) Bin(2)

- Variable data Char(14)
Status (manual dial Char(2)
operation hex 0001)
(see Chapter 23. Source/Sink
Specialization and Programming
Considerations for Local
Devices and Chapter 24.
Communications and Locally
Attached Work Stations)
Time stamp
OU number
Optional data

0007 Data Space

Char(8)
Char(2)
Char(2)

0301 Data Space Compression Threshold Exceeded

Compare Value: Allowed
- System pointer to the data space

Event-Related Data:
- System pointer to the data space

0008 Data Space Index

0301 Data Space Index Invalidated (signaled when
data space index was unexpectedly
invalidated)

Compare Value: Allowed
- System pointer to the data space index

Event-Related Data:
- System pointer to the data space index

0401 Data Space Entry Not Addressed By Data
Space Index

Compare Value: Allowed
- System pointer to the data space index

Event-Related Data:
- System pointer to data space

System pointer to data space
index
Data space index status Char(1)
code
Hex 00 Data space index

Hex 01
is being created
Data space index
is invalid but is
being rebuilt

Hex 02 = Data space index
is invalid

Reason code Char(1)
Hex 01 Selection mapping

error
Hex 02

Hex 03

Selection routine
failure
Problem in invoking
selection routine

Data space number Bin(2)
- Ordinal entry number Bin(4)

The event is not signaled for entries omitted
by the selection routine but rather when the
selection routine encounters an error.

The data space index system pointer field
contains binary 0' s if the data space index
has not completed creation.

OOOALock

0101 Object Locked (after asynchronous wait -
signaled to receiving process)

Compare Value: None allowed

Event-Related Data:
Space pointer to original lock request
template

0201 Object Destroyed (during asynchronous wait
- signaled to requesting process)

Compare Value: None allowed

Event-Related Data: None

0301 Object Lock Transferred (signaled to receiving
process)

Compare Value: None allowed

Event-Related Data:
A copy of the lock transfer template.
For lock or unlock, the lock transfer
template contains one entry for each lock
transferred. The template is binary 0
except for the number. of entries, the
offset to the selected bytes, the system
pointers, the lock state selection bit, and
the entry active bit. The system pointers
provided contain no authority.

0401 Asynchronous Lock Wait Time-Out (signaled
to requesting process)

Compare Value: None allowed

Event-Related Data: None

Event Specification 21-5

0008 Logical Unit Description

0401 Unformatted Supervisory Service Request

0402 Formatted Supervisory Service Request

Compare Value (for a/l subtypes): Allowed
System pointer to the logical unit
description

Event-Related Data (for all subtypes):
System pointer to the logical unit
description
Data length
Variable data (RU data as
received - up to 80 bytes
allowed)

Bin(2)
Char(*)

0501 Logical Unit Description Unsolicited Incoming
Messages Expedited

0502 Logical Unit Description Unsolicited Incoming
Messages Nonexpedited (with or without data)

0503 Logical Unit Description Unsolicited Incoming
Messages SSCP to LU Unsolicited Data

0505 Logical Unit Description Unsolicited Incoming
Messages Expedited (secondary)

0506 Logical Unit Description Unsolicited Incoming
Messages Nonexpedited (secondary)

Compare Value (for all subtypes): Allowed
System pointer to the logical unit
description

Event-Related Data (for all subtypes):
System pointer to the logical unit
description
Data length (hex 0000)
Variable data

Bin(2)
None

0601 Logical Unit Description Contact Successful

Compare Value:
System pointer to the logical unit
description

Event-Related Data:
System pointer to
the logical unit description
Reserved binary 0)
Data length (hex 0000)
Variable data

Char(16)
Bin(2)
None

0602 Logical Unit Description Contact Unsuccessful

Compare Value: Allowed
System pointer to the logical unit
description

Event-Related Data:
System pointer to the logical unit
description
Reserved (binary 0)
Data length (hex 0012)
Variable data
Status
Additional data

Char(16)
Bin(2)
Char(18)
Char(2)
Char(16)

The following status values are defined:

Reason Status Additional Data

Invalid response to 0001
ACTLU

Unable to commu- 0002
nicate with device

First 4 bytes of
ACTLU response

None

LU D not varied on 0005 None
(LUD and CD are
for a primary
station)

0701 Operator Intervention Required

Compare Value: Allowed
- System pointer to the logical unit

description

Event-Related Data:
System pointer to the logical unit
description

- Reserved (binary 0)
Data length (hex aaOE)

- Variable data
Status (see

Char(16)
Bin(2)
Char(14)
Char(2)

Chapter 23. Source/Sink
Specialization and Programming
Considerations for Local
Devices and Chapter 24.
Communications and Locally
Attached Work Stations)
Time stamp (if matching
error log entry)
OU number
Optional data

0801 Device Failure (inoperative)

0802 Device Failure (not available)

Char(8)

Char(2)
Char(2)

0803 Device Failure (SSCP to LU session inactive)

Compare Value (for all subtypes): Allowed
System pointer to the logical unit
description

Event - Related Data:
System pointer to the logical unit
description

- Data length (hex aOOE)
- Variable data

Error code (see

Bin(2)
Char(14}
Char(2)

Chapter 23. Source/Sink
Specialization and Programming
Considerations for Local
Devices and Chapter 24.
Communications and Locally
Attached Work Stations)
Time stamp of matching
error log entry
OU number
Optional data (see

Char(8)

Char(2)
Char(2)

Chapter 23. Source/Sink
Specialization and Programming
Considerations for Local
Devices and Chapter 24.
Communications and Locally
Attached Work Stations

Event Specification 21-7

21-8

0901 Session Related Event (request I/O completed
signaled to requesting process only when the
flag ;s set in the SSR)

Compare Value: Allowed
System pointer to the logical unit
description

Event-Related Data:
System pointer to the logical unit
description

- Data length Bin(2)
(hex 0000 to 0102)
Variable data
Key length
Key (10 to 256 bytes)
The variable data
includes a 2-byte
length of key and an
N - byte key from the SS R.

Char(2+N)
Char(2)
Char(N)

OAOI Request I/O Response Queue Destroyed
(signaled to requesting process only)

Compare Value: Allowed
System pointer to the logical unit
description

Event-Related Data:
- System pointer to the logical unit

description
Space pointer to the SSR
(source/sink request).
Data length (hex 0000) Bin(2)
Variable data None

oooe Machine Resource

0201 Machine Auxiliary Storage Threshold Exceeded

Compare Value: None allowed

Event-Related Data:
- Machine auxiliary storage Bin(8)

threshold (set to 0
when event is signaled)

- Current amount of auxiliary
storage used by the Bin(8)
machine

- Current amount of auxiliary
storage available in the Bin(8)
machine

0301 Machine Ineligible State Threshold

Compare Value: None allowed

Event~Related Data:
- Number of processes in

the ineligible state
- Machine ineligible

threshold value

Bin(2)

Bin(2)

0401 MPL (multiprogramming level) Class Ineligible
State Threshold

Compare Value: None allowed

Event-Related Data:
- MPL class 10
..... Number of processes in

ineligible state in the
MPL class

- MPL class ineligible
threshold value

Bin(2)
Bin(2)

Bin(2)

0000 Machine Status

0101 Machine Check

Compare Value: None allowed

Event-Related Data:

The machine check event-related data is
divided into three parts. The three parts are
machine-related data, process-related data,
and VLOG dump I D.

Machine-related data Char(16)

Machine- related data contains information
about the type of machine check and the
status of the machine. The following chart
shows the byte significance of the
machine-related data field.

Byte Bit Name Indicates

o Machine
check
status

Machine
check
occurrence

The severity of
the error

o = Permanent machine
check. An
unrecoverable
machine check
occurred.

Recovered machine
check. A machine
malfunction occurred,
and the machine
recovered.

I nformation is
available for a record
of recovered machine
checks. No special
recovery is required
as a result of a
recovered machine
check because these
checks do not affect
the process active at
the time of the
machine check.

Where the error
occurred

o = Occurred in a
process.

Occurred in a
machine component
unrelated to a
process.

Byte Bit Name

(continued)

2-7 Reserved
(binary 0)

2 0-7 Reserved
(binary 0)

3 0-7 Machine
check
type

4 0-7 Machine
check
log
status

5-6 0-15 Machine
check
log
length

7-8 0-15 Reserved
(binary 0)

9-16 0-63 Machine
check
time
stamp

Indicates

This type of machine
check for diagnostic
purposes only.

Whether or not
the machine check
is logged within
the machine.

Bit 0 = 1 Machine check
is logged and
can be
retrieved via
the machine
service
function.

Bit 0 o Machine check
is not logged.

The length of the
machine check log.

The time of day
the machine check
occurred. This field
can be used to
relate the machine
check event to a
machine check logged
within the machine.

Event Specification 21-9

21-10

Process-related data
System pointer to the
program
Instruction number
VLOG dump 10

- Time stamp (time
of machine check)
Error code that
indicates type
of machine check
(machine dependent)

- Reserved (binary 0)
VLOG 10
Error class
Hex 0000 Unspecified

Char(18)

Bin(2)
Char(8)
Char(8)

Bin(2)

Char(6)
Char(8)
Bin(2)

Hex 0002
abnormal condition
Logically invalid
device sector

Hex 0003 Device failure
- Auxiliary storage Bin(2)

device indicator.
Defined for error classes
hex 0002 and hex 0003. It
is the OU number of the
failing device or 0 for
a main storage failure.
Reserved (binary 0) Char(100)

0301 Device Error Data File Is 80 % Full

0302 Device Accounting Data File Is 80 % Full

0303 Device Activity Data File Is 80 % Full

0304 Device Error Data File ,Is 100 % Full

0305 Device Accounting Data File Is 100 % Full

0306 Device Activity Data File Is 80 % Full

Compare Value (for all subtypes): None
allowed

Event-Related Data (for all subtypes): None

OOOE Network Description

0401 SDLC XID Failure or SSCP 10 Failure

Compare Value: Allowed
- System pointer to the network description

Event-Related Data:
- System pointer to the network description
- Data length Bin(2)

(hex 0000 to hex 0040)
- Variable data (up to 64 Char(*)

bytes of XID data if
primary or 6 bytes of
SSCP 10 data if secondary)

0501 Network Description Line Failure

0502 Network Description SNA Protocol Violation

Compare Value: Allowed
- System pointer to the network description

Event-Related Data:
- System pointer to the network description
- Data length (hex OOOE) Bin(2)

Variable data Char(14)
- Error code (see Char(2)

Chapter 24. Communications)
- Time stamp of matching Char(8)

error log entry
- OU number Char(2)
- Optional data (see Char(2)

Chapter 24. Communications)

OOOF Ownership

0101 Ownership Changed

Compare Value: None allowed

Event-Related Data:
Object type Char(1)
Object subtype Char(1)
Object name Char(30)
Old user profile Char(1)
object type
Old user profile Char(1)
object subtype
Old user profile Char(30)
object name
New user profile Char(1)
object type
New user profile Char (1)
object subtype
New user profile Char (30)
object name

0010 Process

0102 Process Initiated (signaled to initiating
process)

Compare Value: None allowed

Event-Related Data:
System pointer to the process control
space pointer

0202 Process Terminated (signal to initiating
process)

Compare Value: None allowed

Event-Related Data:
System pointer to the process
control space
Termination type
Hex 01 Process

destroyed
Hex 02 Process failed

to initiate

Char(1)

Process status attributes Char(13)
(See the Materialize Process
Attributes instruction in
Chapter 11 for the format of
this scalar). This attribute
has no meaning if termination
type equals hex 02.
Exception-related data
This entry is used only if

Char(*)

the process terminated as a
result of an exception not
being handled by the process.
See Chapter 10. Exception
Management Instructions
for the details on
exception - related data format.

0302 Process Suspended (signaled to initiating
process)

Compare Value: None allowed

Event-Related Data:
System pointer to the process control
space

Event Specification 21-11

0402 Process Resumed (signaled to initiating
process)

Compare Value: None allowed

Event-Related Data:
System pointer to the process control
space

0501 Process Time Slice Expired Without Entering
Instruction Wait

Compare Value: Allowed
System pointer to the process control
space

Event-Related Data:
System pointer to the process control
space

0701 Maximum Processor Time Exceeded

Compare Value: Allowed
System pointer to the process control
space

Event-Related Data:
System pointer to the process control
space
Current amount of
processor time used

0801 Process Storage Limit Exceeded

Compare Value: Allowed

Char(8)

- System pointer to the process control
space

Event-Related Data: None

21-12

0012 Queue

0301 Queue Message Limit Exceeded

Compare Value: Allowed
- System pointer to the queue

Event-Related Data:
System pointer to the queue accessed
with .the Enqueue instruction
Maximum number of messages from the
queue attributes

0401 Queue Extended

Compare Value: Allowed
- System pointer to the queue

Event-Related Data:
System pointer to the
extended queue
New maximum number of Bin(4)
messages value

0014 Timer

0101 Time-of-Day Clock Reached or Exceeded
Specific Value

Compare Value: Required
- Time-of-day clock value ChartS)

Event-Related Data: None

0201 A Single Specific Time Interval Has Elapsed

This occurred since the event monitor was:
Created enabled

- Enabled after being established disabled

Compare Value: Required
- Time interval

Event-Related Data: None

ChartS)

0301 A Repetitive Time Interval Has Elapsed

This occurred since the event monitor was:
Established enabled
Enabled
Last signaled

The timer continues to be monitored for the
next interval.

Compare Value: Required
Time interval (minimum
repetitive time interval
is 1024 milliseconds)

Event-Related Data: None

0016 Machine Observation

ChartS)

0101 Instruction Reference (signal to process only)

Compare Value: None allowed

Event-Related Data:
System pointer to the associated program
pointer from PASA (process automatic
storage area)
Invocation attribute Char(16)
from PASA
Instruction number to
be executed

Bin(2)

0301 Invocation Reference (signal to process only)

Compare Value: None allowed

Event-Related Data:
System pointer to the
associated program pointer
from the old PAS A entry
System pointer to the
associated program pointer
from the new PASA entry
Invocation attribute from
the old PASA entry
Invocation attribute from
the new PASA entry

Char(16)

Char(16)

Old instruction number Bin(2)
New instruction number Bin(2)
Type of external reference Char(2)
Hex 0001 Call external
Hex 0002 Transfer control
Hex 0003 Event handler
Hex 0004 External exception

handler
Hex 0005

Hex 0006

Hex OOOS
Hex 0009

Hex OOOA

Hex 0008

Hex OOOC

Hex OOOE

Internal or branch
point exception
handler
Return from
exception handler
Return external
Invocation termi
nation due to
resignaling
exception to a
previous invocation
Invocation termination
due to return from
exception
Termination phase
termination
Termination due to
unhandled exception
Invocation termination

Event Specification 21-13

21-14

If there is no invocation for the old or new
instruction number, the program pointer,
invocation attributes, and instruction number
is 0;

Reference types hex 0001 through hex 0006
are signaled if the trace invocations bit is set
in the current (old) invocation.

Reference types hex 0002, 0008, 0009,
OOOA, 0008, OOOC, and OOOE are signaled if
the trace returns bit is set in the current (old)
invocation.

The following paragraphs describe each
reference type.

Call External: The old invocation issued a
CALLX instruction invoking the new
invocation. The old instruction number
locates the CALLX instruction. The new
instruction number locates the entry point of
the called program.

Transfer Control: The old invocation issued a
XCTL instruction, terminating the old
invocation and invoking the new invocation.
The old instruction number locates the XCTL
instruction. The new instruction number
locates the entry point of the transferred-to
program.

Event Handler: The old invocation sensed
that an event had been issued which the
process was monitoring, invoking the new
invocation (event handler). The old
instruction number locates the next
instruction to execute when the old
invocation resumes. The new instruction
number locates the entry point of the event
monitor.

External Exception Handler: An exception in
the old invocation, or one of the invocations
below it, caused an exception which this
invocation was handling, causing a new
invocation for the external exception handler.
The old instruction number locates the
excepting instruction, or the invoking
instruction if the exception was resignaled to
this invocation. The new instruction number
locates the entry point of the exception
handler.

Internal or Branch Point Exception Handler:
An exception occurred which is handled in
this invocation. No new invocation is
created. The old and new invocations are the
same. The old instruction number locates the
excepting instruction, or the invoking
instruction if the exception was resignaled to
this invocation. The new instruction number
locates the first instruction of the internal or
branch point handler.

Return from Internal Exception Handler: A
Return From Exception instruction was
executed, causing this in"ocation to resume
normal execution. No invocation is created
or destroyed, but the instruction number may
have changed. The old instruction number
locates the last instruction executed in this
invocation. The new instruction number
locates the instruction at which control
resumes. These may be the same. The old
and new programs are the same.

Return External: The old invocation issued a
Return External instruction, causing the old
invocation to be destroyed, and control
returned to the previous invocation. The old
instruction number locates the Return
External instruction. The new instruction
number locates the instruction at which
control resumes.

Invocation Termination Due to Resignaling
Exception: An exception occurred in the old
invocation that handled the exception by
resignaling it to the previous invocation. The
old instruction number locates the excepting
instruction. The new instruction number
locates the instruction to which control
would have returned.

Invocation Termination Due to Return from
Exception: A Return From Exception
instruction was executed by an external
exception handler, causing the invocation in
which the external exception handler was
running to be terminated. The old instruction
number locates the Return From Exception
instruction. The new instruction number
locates the instruction to which a return to
next operation would return.

Termination Phase Termination: The
termination phase of the process is
terminated, terminating the old invocation.
The old instruction number locates the
instruction at which the termination occurred.
The new instruction number locates the
instruction to which control would have
returned. All other invocations on the stack
will get type hex OOOE events.

Termination Due to Unhandled Exception: An
exception occurred for which no handler was
specified. The old instruction number locates
the excepting instruction. The new
instruction number locates the instruction to
which control would have returned. All other
invocations on the stack gets type hex OOOE
events.

Intervening Invocation Termination: Some
action occurred in an invocation below the
old invocation, causing the old invocation to
be terminated. The causes are:

• An exception was resignaled to the old
invocation and it, in turn, resignaled the
exception.

• A Return From Exception instruction at a
lower level returned to an invocation
above the old invocation.

• An unhandled exception occurred, causing
all invocations to be terminated.

• The termination phase terminated, causing
all invocations to be terminated.

The old instruction number locates the
instruction which invoked the lower level
invocation. The new instruction number
locates the instruction to which control
would have returned.

Event Specification 21 -15

0017 Damage Set

0201 Machine Context Damage Set

21-16

Compare Value: None allowed

Event- Related Data:
Reserved (binary 0)

- VLOG dump I D
Error class
This field indicates how
the damage was detected:

Hex 0000 = Previously
marked
damaged

Hex 0001 Detected

Hex 0002

abnormal
condition
Logically
invalid
device
sector

Hex 0003 = Device
failure

Auxiliary storage device
indicator
This field is defined for
error class 0002. It is

Char(16)
Char(8)
Bin(2)

Bin(2)

the OU number of the failing
device or 0 for main
storage failure
Reserved (binary 0) Char(100)

0401 System Object Damage Set

Compare Value: None allowed

Event-Related Data:
System pointer to the
object pointer

- VLOG dump I D
- Error class

This field indicates how
the damage was detected:

Hex 0000 = Previously
marked
damaged

Hex 0001 Detected

Hex 0002

abnormal
condition
Logically
invalid
device
sector

Hex 0003 = Device
failure

- Auxiliary storage device
indicator
This field is defined for
error class 0002. It is

Char(8)
Bin(2)

Bin(2)

the OU number of the failing
device or 0 for main
storage failure
Reserved (binary 0) Char(100)

0801 Partial System Object Damage Set

Compare Value: None allowed

Event-Related Data:
System pointer to the
system object
VLOG dump 10
Error class
This field indicates how
the damage was detected:

Hex 0000 = Previously
marked

Hex 0001

Hex 0002

damaged
Detected
abnormal
condition
Logically
invalid
device
sector

Hex 0003 = Device
failure

Auxiliary storage device
indicator
This field is defined for
error class 0002. It is

Char(8)
Bin(2)

Bin(2)

the OU number of the failing

0019 Service

device or 0 for main
storage failure
Reserved (binary 0)

0101 Machine Trace Table Full

Compare Value: None allowed

Event-Related Data: None

Char(100)

Event Specification 21-17

21-18

All attributes, specifications, and ODT (object definition
table) formats for each program object in the
System/38 Instruction Set are discussed in this chapter.
Charts in this chapter illustrate the combinations of
attributes and specifications. The detailed formats for
the ODV (ODT directory vector) and the OES (ODT entry
string) are also specified in this chapter.

GENERAL OOT DESCRIPTION

A program template is composed of a header followed
by several components, including an instruction stream
component and an object definition table (ODT)
component. The ODT contains the views of all objects
referred to in the instruction stream other than those
objects that are immediate value operands in the
instructions. The following objects are ODT definable:

• Data object
Scalar data object

- Pointer data object

• Constant data object

• Entry point

• Branch point

• Instruction definition list

• Operand list

• Exception description

The ODT entry consists of the ODV and the OES.

Chapter 22. Program Object Specification

OOV

The ODV is a vector of 4-byte character string entries in
a standard format. An ODV entry describes an object
completely or partially. If the ODV entry does not
completely describe the object, it must contain an offset
into the OES where the object is described completely.

An ODV entry is required for each object described in
the ODT. The index value for a particular object ODV
entry is used as an operand for instructions that operate
on the object. An ODT can contain 8191 entries. The
first entry has an index value of 1.

The structure of the ODV is designed to allow a
complete definition of commonly used objects. An
object that cannot be completely described in an ODV
entry must have an OES entry to complete its definition.

Each ODV entry generally consists of the following:

• Type information
The first 2 bytes of each ODV entry contain
information identifying the type and general
attributes of the object.

• OES offset or attribute information
The last 2 bytes of each ODV entry contain either
detailed attribute information or an offset into the
OES where the detailed attribute information is
found. The OES contains a 4-byte OES length
entry at the beginning of the OES component.
This means that the minimum valid offset is 4
bytes.

Object references in the System/38 instructions consist
of instruction operands that contain index values into the
ODV.

Program Object Specification 22...;1

OES

The OES consists of a series of variable-length entries
that complete an object's description.

If an OES entry exists for an object, its offset value into
the OES is specified in the ODV entry for that object.

Several ODV entries for different objects with identical
definitions can share the same OES entry. OES entries
do not exist for those objects that can be completely
described in the ODV.

Each OES entry consists of the following:

• OES header
One byte indicating which OES appendages are
present. A bit is included for each possible OES
appendage. A binary zero value for the bit means
the appendage is not present. A binary one value
for the bit means the appendage is present.

• OES appendages
A series of variable-length fields each containing a
specific collection of information about the object.

The following are examples of object attributes specified
in an OES entry.

• Object names

• Length / number of elements

• Explicit bases

• Explicit positions

• Initial values

22-2

When an OES entry is required to complete an object's
description, its appendages must be in the same order
as are the bits that indicated their presence in the OES
header.

For example, assume the following OES header:

B ' 1 0 0 000 0

I l'
Name Initial Value

The name appendage must immediately follow the OES
header, and the initial value appendage must
immediately follow the name appendage.

The OES may consist of a to 16 777 215 bytes.
Because the OES offset value may be a maximum of
65535 bytes, a means is provided to address an OES
offset beyond this maximum. A special object type
value (' 1111' B) in the ODV denotes an object description
in which:

• A 3-byte offset to the OES entry is specified.

• The entire object description is specified in the OES
entry (ODV, the OES header, and OES appendages).

See References to OES Offsets Greater Than 64 K -1,
later in this chapter for a detailed description of this
format.

ODT ENTRIES IN DETAIL

In this section, the detailed definitions for the various
ODT entries are discussed by object type. Each object
type description contains the following information about
its respective objects:

• Attribute combination charts - Summarize both the
attributes of a given object and the valid combination
of those attributes.

In the attribute combination charts, the following
rules are used:

A combination of attributes is allowed if the
attributes lie on a single path that progresses from
left to right through the diagram. For example:

c--.....

--A-......---B--t----D---t---

....... --E----

The attribute A can be used with Band C, Band
0, Band E, or E only; but C cannot be used with
o or E.

Optional attributes are noted where a solid line
bypasses one or more attributes.

• ODV Format - Describes the various bit settings of
the 4-byte ODV entry relative to the specific object
type.

• OES Format - Describes the various OES header bit
settings relative to the specific object type.

• Notes - Describe any unique characteristics
concerning the specifications of the object.

Note: Reserved bits are those bits not presently used
and should always be set to binary O.

Combinations of attributes not defined in these
specifications cause a create program exception-invalid
ODT exception to be signaled during the execution of
the Create Program instruction.

Data Object

Data objects provide operational and possibly
representational characteristics to data in a space.
Scalar data objects and pointer data objects are the two
basic categories of data contained in the space.

Scalar data objects provide operational and
representational characteristics for numeric and character
data contained in a space.

Pointer data objects provide operational characteristics
for pointer data cont~ined in a space.

The following chart shows the general characteristics of
data objects.

Program Object Specification 22-3

Static

Automatic

Binary {zoned Scalar P k ac ed
Character

Data
-Object Parameter

{D~a
P . t Instruction om er

System
Space Based

Defined
on Data
Object

Scalar Data Object

Attribute Combinations

Direct on
Static ---.---

Scalar . Scalar
--Data--Type

Object

Direct on
Automatic ----'

Scalar

Boundary

Space
Pointer

PCO

Position

Defined {~~!:~r
Defined --'--
on Static

Space

Array
Position

Boundary

Parameter __________ L..-___ ---'_.....I

22-4

Initial Value

Element
Arra Offset
Size -+--....-..---------1

Initial
Value

ODV Format

Bits

0-3

4

5-7

8

9-11

Meaning

Object type
0000 = Scalar data object

OES present
o OES is not present.
1 = OES is present because one or more of

the following is true:
Object is named and external.
Object has initial value (not system
default).
Object has based or defined
addressability.
Object has direct addressability with
explicit position.
Object is an array.

Addressability type
000 Direct static
001
010
011
100
101

Direct automatic
Based
Defined
Parameter
Based on peo (process commun-
ication object) space pointer

All others reserved

Abnormal value attribute
o Do not refetch base addressability

when base pointer is modified
Refetch base addressability when base
pointer is modified

Boundary
000 None
001 Multiple o(2
010 Multiple of 4
011 Multiple of 8
100 Multiple of 16
101-111 = Reserved

Boundary is assumed to be specified for
indirectly addressed program objects. A
higher alignment can improve performance
when the program object is referenced.

12 System default initial value
o Do not use the system default initial

value.
Use the system default initial value.

Numeric zero value for binary,
packed, or zone
Blank character value (hex 40) for
character strings

13-15 Scalar type
000 Binary
001 Reserved
010 Zoned decimal
011 Packed decimal
100 Character
101-111 = Reserved

16-31 OES offset or scalar length

• If bit 4 of the ODV is 1 (OES is present),
then bits 16-31 specify the offset to the
OES entry for this object.

If bit 4 of the ODV is 0 (OES not present),
bits 16-31 represent the scalar length of
the object as follows:

If binary, then:

Bits 16-31: Precision
Hex 0002 = 2

(binary only)
Hex 0004 = 4
All others reserved

If zoned or packed decimal, then:

Bits

16-23

24-31

Meaning

Digits (D) to the right of
assumed decimal point,
where 0 ~ 0 ~ T

Total digits (T) in field,
where 1 ~ T ~ 31

If character string scalar, then:

Bits 16-31: String length (L), where
1 ~ L ~ 32 767

Program Object Specification 22-5

OES Format

OES Header

Bits

o

2

3

4

5

6

Meaning

Name and external
o Object is not named and is not

externally accessible.
Object is named and is externally
accessible.

Scalar length present
1 = Length is present (required).

Array information present
o Array information is not present.
1 = Array information is present.

Base present
o Base is not present.
1 = Base is present.

Position present
o Position is not present (required if

boundary is specified).
1 Position is. present.

Initialvalue present in OES
o Initial value is not present.
1 = Initial value is present in OES.

Replications present in OES
o No replications in initial value.
1 = Replications in initial value (bit 5=1).

7 Reserved

Name Appendage

Bytes Meaning

0-1

2-L

22-6

Length (L) of name, where 1 S L S 32

L characters of symbolic name

Note: Names of external data objects and
the name of the program must be unique.

Scalar Length Appendage

Bytes 0-1 : Scalar length

Array Appendage

If binary, then:

Bytes 0-1 : Precision
Hex 0002 = 2

(binary only)
Hex 0004 = 4
All others reserved

If zoned or packed decimal, then:

Byte Meaning

o Digits (D) to the right of
assumed decimal point,
where 0 S 0 S T

1 Total digits (T) in field,
where 1 S T S 31

If character string scalar, then:

Bytes 0-1 : String length (L),
where 1 S L S 32 767

Bytes Meaning

0-3 Number (N) of elements in the array, where
1 S N S 16 777 215

4-5 Array element offset

If the array element offset attribute is
specified (bytes 4-5 are nonzero), this field
specifies the offset between initial bytes of
the elements of a defined on array.

Base Appendage

Bytes 0-1 : ODT reference for:
Pointer data object if based
Scalar data object or pointer data
object if defined

Position Appendage

Bytes 0-3: Position value for:
Direct if not defaulting to next
available byte or if no boundary
defined .
Based if not 1
Defined if not 1

Note: Position value is in terms of
bytes with the first byte in position 1.

Initial Value Appendage

Bytes O-L: Initial value in format and length as
determined by scalar type

In the initial value appendage, a noncharacter string
scalar must have an initial value of the proper size
and format (for example, 2-byte binary value for a
2-byte binary scalar).

For arrays and character strings, if the replication bit
in the DES is binary 1, the initial value portion must
consist of components of the following form:

2 bytes: Number of replications of associated
value

2 bytes: Length (L) of associated value

L bytes: Associated value

The entire object must be initialized contiguously and
byte by byte.

If the replication bit for an array is binary 0, the initial
value appendage must have the following form:

4 bytes: Length of initial value (less than or
equal to the total number of bytes in
the array)

L bytes: The initial value of proper size and
format to specify the initial values for
each element of the array that is to be
initialized

If the replication bit for a character string scalar is
binary 0, the initial value appendage must be a byte
string with a length equal to the object length.

Notes:
1. Scalar data objects with the external attribute must

be mapped (direct or defined on direct) onto the
static space. The names must be unique within the
program template.

2. When used for address resolution, the name of an
external data object is implicitly padded to 32 bytes
by extending on the right with blank characters (hex
40).

3. See Data Object Notes later in this chapter for general
notes concerning data objects.

Program Object Specification 22-7

Pointer Data Objects

Attribute Combinations

Pointer
Data
Object

Direct on
Static----

Direct on
Automatic

Defined·

Based

Array
Size

Scalar

Space

pea

Position

Position

Position

Parameter---------______ -..J

22-8

Pointer
Type

Array
Size

Initial
Value

Pointer
Type

Element
Offset

Array
Size

OOV Format

Bits

0-3

4

5-7

8

Meaning

Object type
0001 = Pointer data object

OES present
o OES is not present.
1 = OES is present because the object has

initial value, base, or position, or the
object is an array.

Addressability type
000 Direct static
001 Direct automatic
010 Based
011 Defined
100 Parameter
101 Based on PCO (process commun

ication object) space pointer
All others reserved

Optimization of value
o Normal value (can be optimized across

several instructions)
1 Abnormal value (cannot be optimized

for more than a single reference
because the value may be modified in
a manner not detectable by the Create
Program instruction)

9-11 Reserved

12-15 Pointer type (ignored unless initial value)
0001 = Space pointer
0010 = System pointer
0011 = Data pOinter
0100 = Instruction pointer
All others reserved

16-31 OES offset

• If bit 4 of the ODV contains a binary 0, no
OES is present, and bits 16-31 contain a
value of binary O.

• If bit 4 of the ODV contains a binary 1 i
then an OES header is present in the OES
at the offset specified in bits 16-31.

OES Format

DES Header

Bits Meaning

0-1 Reserved

2 Array information present
o Array information is not present.
1 = Array information is present.

3 Base Present
o Base is not present.
1 = Base is present.

4 Position present
o Position is not present.
1 = Position is present.

5 Initial value present
o Initial value not present.
1 = Initial value is present.

6-7 Reserved

Array Appendage

Bytes Meaning

0-3 Number (N) of elements in the array, where
1SNS1000000

4-5 Array element offset

If the array element offset attribute is
specified (bytes 4-5 are nonzero), this field
specifies the offset between initial bytes of
the pointers of a defined array. Value must
be a multiple of 16.

Base Appendage

Bytes 0-1: ODT reference for:
Pointer object if based
Data object or pointer object if
defined. Resulting location must be
a multiple of 16.

Program Object Specification 22-9

Position Appendage

Bytes 0-3: Position value for:
Direct if not defaulting to next
available byte (must be a multiple of
16)

- Based if not 1
Defined if not 1

Initial Value Appendage

If ODV bits 12-15 indicate instruction pointer:

Bytes 0-1 : ODT reference - Branch point or
instruction number (Bit 0 is 1 to
indicate immediate data; value is in bits
1-15.)

If ODV bits 12-15 indicate data pointer:

Bytes 0-1 : Number of names in name list. One or
two names may be specified as the
initial value.

22-10

• If one name is specified, it must
be in the name specification of
the data object in the following
format:
- Number of names Bin(2)

(value of 1)
Scalar data object Bin(2)
name length (N)

- Scalar data object Char(N)
name string, where
1 ~ N ~ 32

• If two names are specified, the
name of a program to be searched
and the name of the external data
object are specified as follows:
- Number of names Bin(2)

(value of 2)
- Program type Char(1)

(hex 02)
- Program subtype Char(1)

Program name Bin(2)
length (M)

- Program name Char(M)
string, where
1~M~30

- Scalar data object Bin(2)
name length (P)

- Scalar data object Char(P)
name string, where
1 ~ P ~ 32

If ODV bits 12-15 indicate space pointer:

Bytes 0-1 : ODT number of a data object or
pointer object that is direct or defined
on direct.

If ODV bits 12-15 indicate system pointer, one or two
names may be specified as the initial value.

• If one name is specified, it must be the name
specification of the object in the following format:

Number of names (value of 1)
Object type code

- Object subtype code
Minimum authority code
Object name length (N)
Object name string,
where 1 ~ N ~ 30

Bin(2)
Char(1)
Char(1)
Char(2)
Bin(2)
Char(N)

• If two names are specified, the entry must be a
context name and an object name in the following
format:

Number of names (value of 2)
Context type code (value of hex 04)

Bin(2)
Char(1)
Char(1) Context subtype code

Context name length (M) \ Bin(2)
- Context name string,

where 1 ~ M ~ 30
Object type code

- Object subtype code
Minimum authority code
Object name length (P)
Object name string,
where 1 ~ P ~ 30

Char(M)

Char(1)
Char(1)
Char(2)
Bin(2)
Char(P)

Notes:
1. The object type codes that may be specified for

system pointer initial values are as follows:

Code
(hex) Object Type

01 Access group
02 Program \
04 Context
08 User profile
OA Queue
OB Data space
OC Data space index
00 Cursor
OE Index
10 Logical unit description
11 Network description
12 Controller description
19 Space
1 A Process control space

All other codes are reserved and, if specified, cause
an exception to be signaled.

2. The minimum authority codes that may be specified
for system pointer initial values are as follows:

Bit Meaning

o Object control
1 Object management
2 Authorized pointer
3 Space authority
4 Retrieve
5 Insert
6 Delete
7 Update
8 Ownership
9-15 Reserved

A value of binary 1 indicates that the object must
have the specified authority in order for resolution to
be performed. Zero or more authority bits may be
specified, and if any are specified, all must be
satisfied.

Reserved bits must have a value of binary O.

A pointer with based addressability need not have a
base specified. If a base is specified, the pointer can,
in turn, be based on another pointer. An exception is
signaled if the final pointer in the chain is not direct,
is not defined on a direct data object, is not a
parameter, or is not defined on a parameter. An
exception is signaled if a base pointer in the chain is
based on a pointer that was previously specified in
the chain of based pointers.

3. A static space pointer may not be initialized to an
automatic scalar data or pointer object.

The last initialized pointer data object appearing in
the COT for a given storage location overlays all
previous pointer object initial values for that location.

4. A pointer data object defining an array may not be
initialized. See Data Objects Notes later in this
chapter.

5. When the initial value specified for a system pointer
or a data pointer is to be used for address resolution,
the name string entry is implicitly extended to the
standard length by padding with blank characters
(hex 40). The standard length for system object
names is 30 bytes and for external scalar data
objects is 32 bytes.

6. See Data Object Notes later in this chapter for general
notes concerning data objects.

Program Object Specification 22-11

Data Object Notes

The following notes apply to all declarations of data
objects, scalars, and pOinters. The term data object
applies to either scalar data objects or pointer data
objects unless explicitly qualified.

Notes:
1. Any specification of position uses position 1 as the

first position in storage. A position value of 0 is
invalid.

2. Data objects that are defined on other data objects
must follow (not necessarily immediately) their
associated bases in the DDT. If any data objects in a
chain of defined-on objects have an initial value,
none of the objects in the chain can have based or
parameter addressability, and the first object in the
chain must be direct on the static or automatic space.
An initial value associated with a defined data object
overlays all initial values associated with data objects
that preceded it in the chain. The portion of a scalar
data object initial value that overlays any part of an
initialized pointer data object is ignored.

If more than one data object initializes the same byte
(or bytes) in a space, the value associated with the
data object appearing last in the ODT overlays the
others.

3. For data objects with the direct mapping type but no
explicit position, the Create Program instruction
provides default position (position in the static or
automatic allocation) DDT information. DDT entries
for defaulting direct objects must appear in the order
desired. Declarations for other program objects can
be interleaved with these defaulting direct data and
pointer objects.

Two examples follow:

These ODT entries

A Char(2) Direct Static
B Pkd(3,3) Direct Static

o Pointer Direct Static

These ODT entries

A Char(4) Direct Static
B Char(4) Direct Static Pos(20)
C Char(4) Direct Static
o Char(4) Direct Static Pos(10)
E Char(2) Defined B
F Char(3) Direct Static

22-12

Would be treated as these:

A Char(2) Direct Static Pos(1)
B Pkd(3,3) Direct Static Pos(3)

o POinter Direct Static Pos(17)

Would be treated as these:

A Char(4) Direct Static Pos(1)
B Char(4) Direct Static Pos(20)
C Char(4) Direct Static Pos(24)
o Char(4) Direct Static Pos(10)
E Char(2) Direct Static Pos(20)
F Char(3) Direct Static Pos(28)

The default value for the position depends on
whether the boundary attribute is specified. Pointer
objects always have a default boundary attribute that
is a multiple of 16.

A boundary specification for a direct data object
causes the data object to be located at the next
available position having an offset value that is a
multiple of the boundary specified. If boundary is
specified, a value may not be specified for the
position attribute. The boundary specification for a
direct pointer object is always a multiple of 16. A
position specified for a direct pointer object must be
a multiple of 16.

If neither position nor boundary is specified for a
direct data object, the object is located at the next
available position without regard to boundary
alignment.

The size for the static and automatic spaces can also
be defaulted if the size of static (automatic) storage
entry in the program template is O. The value used is
such that the space is large enough to contain all
data objects with defaulted and explicit direct
mapping. An exception is signaled if a size that is
insufficient to contain defaulted and direct mapped
data objects is specified.

To summarize, the rules related to positioning data
objects and setting of the size through defaulted
directed data objects are:

A defined-on data object may extend beyond the
end of the data object it is defined on. It may not,
however, extend beyond the total allocated space
to which it maps.
Explicit positioning of a data object may be
intermixed with implicit positioning. That is, for
any DDT, a specification of the position for a data
object does not preclude a succeeding data object
requiring a default position.
A defaulted scalar data object is assigned to the
highest assigned position for a direct data object
plus 1. A defaulted pointer data object is assigned
to the next available 16-byte aligned position
beyond the highest assigned position. It is
possible, through explicit positioning, to create a
gap in a space. This gap is not filled in through
default positioning of a following data object or
pointer object. The defaulted object follows the
explicitly positioned data object.

Entry Point

Attribute Combinations

Internal

_Entry-[Internal

Point External--.----.,.....--r------:--i

Instruction
Number--

Breakpoint

ODV Format

Bits

0-3

4

5-14

15

Meaning

Object type
0010 = Entry point

OES present
a OES is not present
1 = OES is present because of entry

point parameters or the
instruction stream breakpoint

Reserved (binary 0)

Scope
a Internal
1 = External

16-31 OES offset or entry point value
OES offset if OES present (bit 4=1).
Entry point value equals the
instruction number if no entry
point parameters are listed.

OES Format

OES Header

Bits

0-2

3

4

5-6

7

Meaning

Reserved (binary 0)

Parameter information present
a Parameter information not present
1 = Parameter information is present

(required if there is an OES)

Instruction stream breakpoint
a Appendage not present
1 = Instruction stream breakpoint

appendage present

Reserved (binary 0)

Initial value present
1 = Initial value is required

Parameter Appendage

Bytes 0-1: ODT reference for operand list
describing entry point parameters

Initial Value Appendage

Bytes 0-1: Instruction number for entry point

Instruction Stream Breakpoint Appendage

Bytes 0-1:

Notes:

Instruction number for instruction
stream breakpoint identifies first
instruction of latter half of program that
is not executed in the normal path.

1. More than one internal entry point can reference the
same instruction.

2. An internal entry point and an external entry point
cannot reference the same instruction.

3. Only one external entry point can be defined in a
program.

4. An internal entry point can only reference an internal
parameter list; likewise, an external entry point can
only reference an external parameter list.

5. An instruction stream breakpoint can only be defined
with an external entry point. The instruction number
specified must be greater than that of the external
entry point.

Program Object Specification 22-13

Branch Point

Attribute Combinations

- Branch--Instruction Number
Point

OOV Format

Bits Meaning

0-3 Object type
0011 = Branch point

4 OES present
o = OES is never present

5-15 Reserved (binary 0)

16-31 Value

Instruction number (N) of branch point,
where 1 S N S 32 767.

OES Format

No OES is needed for branch points.

22-14

Instruction Definition List

Attribute Combinations

- Instruction-- Number of---N Instruction --
Definition Elements (N) Refereoce
List

ODV Format

Bits Meaning

0-3 Object type
0100 = Instruction definition list

4 OES present
1 = OES is present (always present to

contain the list information)

5-15 Reserved (binary 0)

16-31 OES offset

OES Format

OES Header

Bits Meaning

0-6 Reserved (binary 0)

7 Initial value present
1 = Initial value is required

Initial Value Appendage

Bytes Meaning

0-1 Number (N) of list elements, where
1 S N S 255

2-3 Instruction reference element 1

X-X+1 Instruction reference element N

Note: An instruction reference element may be either
an immediate instruction number (bit 0 is 1, bits 1 -15
contain a binary value representing an instruction
number) or an ODl reference to a branch point.

Operand List

Attribute Combinations

Operand
--List

Fixed- Number of

~
Length--Entries (N)-------..,

Argument
List

Variable- Maximum Initial
Length --Number of--Number of

Entries (N) Entries

Parameter
List--------,

Internal Fixed- Number of

Parameter
List

External

r----L-Length----Entries (N)-----t

Maximum Minimum
Variable-__ Number of--Number of

Length Entries (N) Entries

ODV Format

Bits Meaning

0-3 Object type
0101 = Operand list

4 OES present
1 = OES is always present because it

contains the operand list entries.

5 Argument list
o Not used as argument list
1 = Argument list (bits 6-7 must be

binary 0)

6-7 Parameter list (if not binary 0, bit 5 must be
binary 0)

00 = Not parameter list
01 = Reserved
10 = Internal parameter list
11 = External parameter list

8 Length attribute
o Variable-length
1 = Fixed -length

9-15 Reserved (binary 0)

16-31 OES offset
OES offset = OES is always present

N List
Entries

Program Object Specification 22-15

OES Format

OES Header

Bits Meaning

0-6 Reserved (binary 0)

7 Initial value present
1 = Initial value is required

Initial Value Appendage

Bytes Meaning

0-3 Number (N) of list elements, where
1 ~ N ~ 255

• For fixed-length lists (argument or
parameter)

Bytes Meaning

0-1 Number (N) of elements, where
1 ~ N ~ 255

2-3 Reserved (binary 0)

• For variable-length lists

Bytes Meaning

0-1 Maximum number (N) of
elements that the list can contain,
where 1 ~ N ~ 255

2-3 For argument lists, the initial
number (M) of elements to be
passed on a Call External or
Transfer Control instruction,
where 0 ~ M ~ N

For parameter lists, the minimum
number (M) of elements to be
received on entry,
where 0 ~ M ~ N

4-5 ODT reference 1

X-X+1 ODT reference N
N elements are required.

22-16

Notes:
1. An operand list cannot be both ~n argument list and

a parameter list.
2. Argument lists referenced on Call Internal instructions

must be fixed length.
3. Parameter lists referenced by internal entry points

must be fixed-length internal parameter lists.
4. Internal parameter lists and argument lists used on

internal calls can only be fixed-length.
5. The same object cannot appear in more than one

parameter list (internal or external) in a program
template.

6. All the ODT entries for the elements of an operand
list must appear before the ODT entry for that
operand list.

7. Variable-length lists must define ODT references for
every entry in the list.

8. Objects referenced in a parameter list must have the
parameter attribute.

Constant Data Object

Attribute Combination

-Constant:--- Scalar----Value
Data Attributes
Object

ODV Format

Bits

0-3

4

5

6

Meaning

Object type
0110 = Constant data object

OES present
o OES is not present (value in bits 8-15).
1 = OES ,is present because the value does

not fit in bits 8-15, and the system
default initial value is not used.

o No system default initial value
1 Use system default initial value

Numeric 0 for binary, packed, or
zoned
Blank character value (hex 40) for
character

Value in bits 8-15
o Value not in 8-15 in OES, or system

default value is to be used.
Value to be propogated in each byte is
in bits 8-15, and scalar type is
character.

7 Reserved (binary 0)

ODV Format (Continued)

Bits Meaning

8-15 Value specification

• If bit 6 is 1, then this byte contains a
value to be given to each byte in the
constant.

• If bit 6 is 0, then:

Bits Meaning

8-12 Reserved (binary 0)

13-15 Scalar type
000 Binary
001 Reserved
010 Zoned decimal
011 Packed decimal
100 Character
101-111 = Reserved

16-31 DES offset or scalar length

• If bit 4 of the ODV is 1 (OES is present),
then bits 16-31 represent the offset to
the OES entry for this object.

• If bit 4 of the ODV is 0 (OES is not
present), bits 16-31 represent the scalar
length of the object.

If binary, then:

Bits 16-31: Precision
Hex 0002 = 2

(binary only)
Hex 0004 = 4
All others reserved

If zoned or packed decimal, then:

Bits Meaning

16-23 Digits (D) to the right of
assumed decimal point,
where 0 $ D $ T

24-31 Total digits (T) in field,
where 1 $ T $ 31

If character string scalar, then:

Bits 16-31: String length (L), where
1 $ L $ 32 767

Program Object Specification 22-17

OES Format

OES Header

Bits Meaning

a

2-5

6

7

Reserved (binary 0)

length information present
1 = Scalar length information (required if

there is an OES)

Reserved (binary 0)

Value present
1 = Value is present (required if there is

an OES)

Replications present in OES
a No replications in initial value
1 = Replications in initial value (bit 6 = 1)

Value Appendage

Bytes O-l: Value in format and length as
determined by constant data object
scalar type.

• For noncharacter scalars, a value of
the proper size and format is
required; for example, a 2-byte
binary value is required for a 2-byte
binary data object.

• For character strings, if the
replication attribute specified in the
OES is binary 1, the value must
consist of components of the
following form:

2 bytes: N umber of replications of
associated value

2 bytes: length (l) of associated
Length Information Appendage value

Bytes Meaning

0-1

22-18

Scalar length

• If binary, then:

Bytes 0-1: Precision
Hex 0002 = 2 (binary
only)
Hex 0004 = 4
All others reserved

• If zoned or packed decimal, then:

Bytes Meaning

a Digits (D) to the right of assumed
decimal point, where a ~ D ~ T

Total digits (T) in field, where
1 ~ T ~ 31

• If character string scalar, then:

Bytes 0-1 : String length
a = length (l) beyond

2047, where 1 ~ l ~

2047

l bytes: Associated value

The total number of bytes specified
through all replications must equal
the length of the string (1 to 2047).

If the replication attribute is binary 0, the
value for a character constant view is a
byte string of length equal to the object
length.

Exception Descriptions

Attribute Combinations

Exception
Description

External S
. ystem

Exception -- P .
H dl

omter
an er

Internal Internal
Exception -- Entry
Handler Point

Branch
Branch Exception __
Point Handler

Compare User

Exception Exception [Value J C Data ~
---+- Handling - Identification -'-_____ --L __ _____

Action List

Program Object Specification 22-19

ODV Format

Bits

0-3

4

5

6-7

8-9

Meaning

Object type
0111 = Exception description

OES present
1 = OES present (required for exception

description)

Return exception data
o = Exception data is returned
1 = Exception data is not returned

Reserved (binary 0)

Exception handler type
00 = External entry point
01 = Internal entry point
10 = Internal branch point
11 = Reserved

10-12 Exception handling action
000 = Do not handle - ignore occurrence

of exception and continue
processing.

001

010

100

101

Do not handle - continue search for
another exception description to
handle the exception.
Do not handle - continue search for
an exception description by
resignaling the exception to the
immediately previous invocation.
Defer handling - save exception
data for later exception handling.
Pass control to the specified
exception handler.

110-111 = Reserved

13-15 Reserved (binary 0)

16-31 OES offset (required)

22-20

OES Format

Bits

o

1-4

5

6

7

Meaning

Target
1 = Present (always required for exception

description)

Reserved (binary 0)

Compare value
o Compare value not present
1 = Compare value present

User data
o User data not present
1 = User data present

Exception identifications
1 = List of exception identifications (always

present)

Target Appendage

Bytes 0-1: ODT reference to
Pointer data object if the exception
handler is an external entry point.
This pointer data object must be
either in the automatic or static
storage of this program and must be
directly referenced.
Internal entry point if the exception
handler is an internal entry point.
Branch point if the exception handler
is an internal branch point.

User Data Appendage

Bytes 0-1 ODT reference to
- Pointer data object
- Scalar data object
This data object must be either in the
automatic or static storage of this
program and must be directly
referenced.

Compare Value Appendage

Bytes

0-1

2-N

Meaning

Compare value length
(maximum value of 32)

Compare value

Exception Number Appendage

Bytes Meaning

0-1 Number (N) of exception numbers

2-(2n+1) N 2-byte exception numbers

Notes:
1. A pointer or scalar data object identified by the

exception description (external exception handler or
user data) must appear before the ODT entry for the
exception description.

2. The target appendage for a branch point may be an
immediate instruction number (if bit 0=1, bits 1-15
contain a binary value representing an instruction
number) or an ODT reference to a branch point.

3. The exception descriptions are searched in the same
order as they appear in the ODT when an exception
has been signaled. Because of this, the first
exception description that meets the conditions of the
exception directs subsequent execution.

References to OES Offsets Greater Than 64 K-1

ODV Format (References to OES Offset Greater
Than 64 K-1)

Bits

0-3

4-7

8-31

Meaning

Object type
1111 = References to OES greater than 64

K-1 (65 535)

Reserved (binary 0)

OES offset (3 bytes)

OES Format (Reference to OES Offset Greater Than
64 K-1)

OES Header

Bytes Meaning

0-1

2

3-N

First 2 bytes of standard ODV entry for this
object

OES header for this object

OES appendages for this object

Program Object Specification 22-21

22·22

Chapter 23. Source/Sink Specialization and Programming Considerations for Local
Devices

Source/sink specialization involves the creation,
modification, or destruction of the various source/sink
objects. These objects are called LUOs (logical unit
descriptions), CDs (controller descriptions), and NOs
(network descriptions). LUOs, CDs, and NOs are
necessary to support the physical input/output devices
on each machine. Because the devices that are attached
to each machine are variable and because each of these
devices can perform many functions, the source/sink
objects to be created must be tailored to match these
various characteristics. Some source / sink objects have
been created and shipped with the machine because the
device characteristics are known at that time. Examples
of these devices are the machine console, the machine
printer, and the load/dump device. Other source/sink
objects need to be created when the machine is
installed because devices such as communications
terminals are not necessarily known at the time of
manufacture. Other source/sink objects need to be
created subsequent to machine installation when new
devices are added as the machine usage increases.
Creation of the source/ sink objects is a prerequisite to
any use of the corresponding devices attached to the
machine.

Before source/sink objects are created, certain actions
must have taken place to ensure the uniqueness and
integrity of the source / sink objects. The machine
maintenance function is used to install the hardware
(I/O device, control unit, or communications adapters)
and to update the internal maintenance configuration
records to reflect this hardware. Creation of the
source / sink objects is not allowed to proceed if
confirmation of this maintenance activity has not been
completed. The extent of this confirmation is as follows:

• Maintenance configuration records must reflect the
installation of all hardware before creation of any
corresponding NO type 00, CD type 00, and LUO
type 00 objects.

• No checking of physical hardware installation is done
for any CD type 10, LUO type 10, or LUO type 30
objects.

This chapter describes the special programming
considerations and the instructions needed to operate
and control the various local devices.

The instruction formats and usage contained in this
chapter are specific for the individual devices. A
complete description of all fields in the instructions is
given in Chapter 17. Source/Sink Management
Instructions.

MACHINE CONSOLE PROGRAMMING
CONSIDERATIONS

The machine console is a unique I/O device in that
every machine has only one machine console device. It
is the primary interface by which the operator monitors
and operates the machine.

The basic object of control is the LUO (logical unit
description). All references to a device are made with
respect to the LUO. The Create LUO, Modify LUO, and
OestroyLUO instructions control the environment in
which the machine console operates. The Request I/O
instruction controls the machine console and causes
data to be passed to and from the machine console.

Before a Request I/O instruction can be accepted,
several steps must occur.

1.

2.

3.

An LUO must be created through the use of the
Create LUO instruction.

The machine console must be varied on through
the use of the Modify LUO instruction.

The LUO must be made active through the use of
the Modify LUO instruction.

Source / Sink Specialization 23-1

MACHINE CONSOLE CREATE LOGICAL UNIT
DESCRIPTION (CRTLUD) TEMPLATE

The fields of the LUD template (see Create Logical Unit
Description (CRTLUD) in Chapter 17) specifically needed
for the machine console are as follows:

Field Name Entry

Logical unit description Char 00
type

Device type Char CONS

Model number Hex 40404040

LUD operational unit Hex 0002
number

Power control Hex 0000

Session definition data Bin 0

Load/ dump indicator Bin 0

Specific characteristics Hex 0000
length

Retry value length Hex 0000

Error threshold length Hex 0000

Device-specific contents Hex 0000
length

Device-specific modify Hex 0000
length

23-2

MACHINE CONSOLE MODIFY LOGICAL UNIT
DESCRIPTION (MODLUD)

The following is a list of functions that the machine
console supports through the Modify Logical Unit
Description instruction:

• Vary On

• Vary Off

• Activate

• De-activate

• Suspend

• Quiesce

• Reset

• Resume (activate after suspend, quiesce, or reset)

See the Functional Concepts Manual for the meaning and
use of each function.

MACHINE CONSOLE REQUEST I/O INSTRUCTION
(REQIO)

The Request I/O instruction is used to send I/O
requests to the machine console. A source/sink request
(SSR) is always associated with a Request I/O
instruction. Source/sink data (SSD) is not always
required with a Request I/O instruction. Therefore, the
SSD is discussed as it applies to each type of console
request. An FBR (feedback record) containing
information about the execution of the Request I/O
instruction is posted for each Request I/O instruction
successfully issued.

Source/Sink Request (SSR)

The SSR for a Request I/O instruction to the machine
console contains the following values:

Fields

Source / sink object

Response queue

Source/sink data area
(SSD)

Optional pointer

Request priority

Request identification
field

Function field

Control field

Key length

Key offset

RD (request descriptor)
count

Values

Pointer to the LUD

Pointer to the response
queue

Space pointer

Reserved (binary 0)

See Request / /0 (REQ/O) in
Chapter 17.

See Request / /0 (REQ/O) in
Chapter 17.

Hex 80 (any '8n' value is
accepted)

Char N (Request I/O
instruction) or Char C
(Request I/O (continue
instruction))

Bin(2)

Bin(2)'

Hex 0000

Hex 0001

Request I/O
(continue)
instruction

Request I/O
instruction

RD (request descriptor) Bin(2)
offset

The RD count field specifies the number of 16-byte
request descriptor fields associated with the Request
I/O instruction. The machine console supports only one
RD per Request I/O instruction.

The RD count field is directly related to the control field.
If the control field data is N, then the RD count field
data should be hex 0001. If the control field data is C,
then the RD count field data should be hex 0000.

The RD offset field indicates the offset from the start of
the SSR to the 16-byte RD. The source/sink data area
(SSD) pointer points to the data being transferred
to/from the machine console corresponding to the
command in the RD.

The format of the 16-byte RD is as follows:

Byte 0 Command Char(1)
Hex 01 Write
Hex 04 Control
Hex 05 Write with

Control
Hex 12 Read Modified
Hex 22 Read Buffer
Hex 44 Cancel

Bytes 1-6 Command modifier

• Bytes 1-2
Bits 0-4

Bit 5
Bit 6

Bit 7

Bits 8-9
Bits 10-11

-Bits12-13

Control value
Reserved
(binary 0)
Erase screen
Erase 'unprotected
fields
Reset modified
data tags
Reserved (binary 0)
Keyboard
00 - Unchanged
10 - Lock
01 - Unlock
11 - Unlock
Alarm
00 - Unchanged
10 - On
01 - Off
11 - Off

- Bits 14-15 Attention light
00 - Unchanged
10 - On
01 - Off
11 - Off

Char(6)

Char(2)

• Byte 3
- Bits 0-1
- Bits 2-3

Precommand control Char(1)
Reserved (binary 0)
Keyboard
(precommand)
00 - Unchanged
10 - Lock
01 - Unlock
11 - Unlock

- Bits 4-7 Reserved (binary 0)

• Bytes 4-6 Reserved (binary 0) Char(3)

Bytes 7 -9 Reserved (binary 0) Char(3)

Bytes 10-11 Data length Bin(2)

Bytes 12-15 Reserved (binary 0) Char(4)

Source/Sink Specialization 23-3

The command byte is used to specify the exact function
to be performed during the execution of the Request
I/O instruction. Valid commands are Read, Write,
Cancel, Control, and Write with Control. The last 3 bits
of the command byte are used to specify the command
as shown in Figure 23-1.

0 1 234 567
0 XXXO XXX

~ Write
Read
Control

Read Modified (with bit 6)
Read Buffer (with bit 6)
Cancel (with bit 5)

Figure 23-1. Command Byte 0

Because the machine console can perform two different
read functions, bit 2 or 3 of the command byte is used
along with bit 6 to identify which function is being
requested. A special control function, to cancel an
outstanding Read Modified command that has not
completed, is specified with the combination of bits 1
and 5.

The command modifier bytes are used to control various
characteristics of the machine console. The control
value field is used only when a Control command is
requested (such as the Control or Write with Control
command) and must otherwise be binary O.

When combined with a Write command, the control
functions specified in the first byte of the control value
field are performed before the write operation, and the
control functions specified in the second byte are
performed after the write operation.

The erase screen function signifies a request to erase
the screen in preparation for writing a new format and
data. Because this function causes the entire display
buffer to be filled with blanks, all field attributes and
data are lost. An error occurs if the display buffer is left
containing no field attributes. Therefore, this erase
function should be requested only on a Write with
Control command that transmits the appropriate
characters to reformat the screen.

23-4

The erase unprotected fields function causes all input
fields (fields with the attribute byte specified as
unprotected) to be filled with blank characters (hex 40).
That is, any non blank characters contained in these
fields are effectively erased (replaced with blanks).

The reset modified data tags (MDT) function causes the
modified data tag in all field attribute characters to be
reset. This function is used to condition the input fields
so that completion of a Read Modified command results .
in the transfer of those fields that were modified by the
operator in the interim.

The bits of the second byte in the control value field are
used in pairs to provide control over the hardware
features of the machine console. The keyboard field is
used to specify that the keyboard should be locked or
unlocked. A locked keyboard means that all keys except
the system request key are inoperative. The operator is
unable to key data into the. display buffer. This is visibly
apparent since the cursor disappears when the keyboard
is locked. The audible alarm can be turned on or off by
setting the alarm field to the appropriate values. The
attention indicator light on the console is controlled in a
similar manner using the attention light field.

The precommand control field is valid only when a Read
Modified command is specified. The field allows
keyboard control before the read modified operation.

On a Write command, the data length field specifies the
number of bytes of data to be transferred from the SSD
to the machine console. On a Read command, the data
length indicates the maximum number of bytes that can
be placed in the SSD; that is, the data length field
indicates the size of the user's input buffer.

Write Command

The Write command causes data to be transferred from
the SSD to the machine console display buffer. The
data stream can contain special buffer control
information along with the field attribute characters and
displayable data that is written into the display buffer.
By properly constructing the data stream, a single Write
command can be used to define formatting fields,
display messages in scattered locations on the screen,
and position the cursor. Data stream formats are
discussed under Source/Sink Data (SSD) Area later in
this chapter.

Read Buffer Command

The Read Buffer command causes the entire contents of
the display buffer to be transferred to the SSD.

This com~and is normally used to save the entire buffer
contents so that the same display format and
displayable data can be restored later (in an error
situation, for example).

Read Modified Command

Operation of the Read Modified command is somewhat
different than the other commands discussed. A
Request I/O instruction specifying a Read Modified
command signifies that the program is ready to accept
data from the machine console and a data area has
been provided into which the data can be transferred.
The actual transfer of data and completion of the
request does not occur until the operator presses one of
the function keys (the Enter, Roll + (Roll Up), Roll '"
(Roll Down), Help, Sys Req, or one of the CF (command
function) keys). This command does not cause
immediate data transfer and it does not necessarily
complete in sequential order if followed by other
Request I/O instructions.

The data stream that is transferred when the Read
Modified command is executed includes the address of
the cursor, identification of which function key was
pressed, and the address and contents of all fields that
have the modified data tag (M DT) on in the field
attribute character. The first field following row 0 and
column 0 that has an attribute byte with the MDT bit on
is the first field in the data stream.

The machine console 10M always issues a Read
Modified command within 2 seconds after a Request
I/O instruction. The user can then interrupt the system
by pressing the System Request key on the console
which signals a supervisory service request event. The
user can then obtain a system request menu by issuing
a Request I/O instruction.

Depending on the values in the precommand control
field, the keyboard is locked or unlocked upon receipt of
a Read Modified command. Locking the keyboard
before the Read Modified command causes the operator
response to be limited to pressing the Sys Req key.
Completion of a Read Modified command causes the
keyboard to remain locked.

If the keyboard is unlocked and there is no outstanding
Read Modified command, the hardware will accept any
operator keying actions up to the pressing of one of the
function keys. At that point, the keyboard locks. If the
next command received by the machine console is a
Read Modified, the command completes immediately
with the buffered data. If any other command is
received, the data remains in the display buffer with the
MDT bits on and the new command is processed. A
subsequent Control command may turn off the MDTs
and a keyboard unlock causes the function key identity
to be lost.

The only valid commands when a Read Modify
command is outstanding is a Write or Cancel command.
Any other commands result in a sequence error.

Cancel Command

The Cancel command is used to request the return of an
incomplete Read Modified command and is only valid if
a Read Modify command is outstanding. Depending on
the relative timing of the Cancel command and the
operator pressing the Enter key, the Read Modified
command may complete with data being transferred
after the Cancel command has been issued. The FBR
(feedback record) of both the Read Modified and the
Cancel commands indicates whether the read completed
normally or was canceled. Completion of a Cancel
command causes the keyboard to be locked. The
command modifier and the data length fields are not
used with a Cancel command and must be binary O.

Source/Sink Specialization 23-5

Write with Read Modified Command Outstanding

A Read Modified command does not need to be
canceled to update displayed messages using a Write
command. The user cancels a command only when the
user wants to terminate or interrupt the interactive
session with the console and must, therefore, retrieve
the incomplete Read Modified command.

If a Write command is received while a Read Modified
command is outstanding, the machine cancels the Read
Modified command, issues the Write command to the
machine console, and reinstates the Read Modified
command. Care should be taken to ensure that the
Write command data stream does not overlay the data
entry area. The Write command must also put the
keyboard lock back into the state needed for the Read
Modified command.

Control Command

The Control command can be coded independently of a
Write command to enable the user to control the various
mode settings of the machine console. A Control
command may also be used in conjunction with a Write
command.

Sequencing Operations

The user can issue multiple commands to the console
without having to dequeue the FBR between each
command. Once the machine console has started
working on a command, it will not receive another
command until the first command has completed and
the FB R is posted. The only exception to this is the
Read Modified command. Because of the nature of the
Read Modified command, it must be possible to cancel
the Read Modified command or write data on the screen
while the Read Modified command is pending and the
operator is entering data. Therefore, it must be possible
for the machine console to receive either a Cancel or
Write command. If any other command is received, it is
flagged with a sequencing error, and the FBR for that
command is immediately returned to the user.

23-6

Source/Sink Data (SSD) Area

The SSD specified in an REDIO instruction is a user I/O
buffer either containing RIUs (request information unit)
to be transferred with a Write' command or receiving the
RIUs transferred with a Read command. (The console
defines an RIU as 1 byte.) The I/O buffer areas should
be doubleword aligned for performance considerations.
If the buffer is not doubleword aligned for Write
commands, the data is moved into an internal buffer
before processing begins. For Read command
operations, the data received from the device is always
moved into an internal buffer during processing and then
moved out to the user's I/O buffer. The data stream
transferred or received for each command is discussed
in this section.

Write Command Data Stream

The data stream for a Write command must contain
buffer control commands along with the characters that
are to be written into the display buffer. Each Write
command data stream must begin with a set buffer
address control order to specify where to begin writing
data into the buffer. The set buffer address control
order is a hex 11 immediately followed by a 2-byte
row / column address of the desired position on the
screen. The first address byte can assume values from
o to 15 (hex 00 to hex OF) to select one of the 16 lines
where data can be displayed. The second address byte
has a valid range of values from 0 to 63 (hex 00 to hex
3F) identifying one of the 64 columns (horizontal display
positions). Thus, a data stream to start writing in the
first buffer location (upper-left corner of the screen)
would specify hex 110000 followed by the data to be
written into the display buffer at that position. Multiple
set buffer address control orders can be included in the
data stream to write data at scattered locations in the
buffer. If fields are overlapped, the la~t set buffer
address control order will take precedence. The console
supports a maximum Write command data' stream
length of 2048 bytes.

The user controls the position of the cursor by including
an insert cursor control order in the data stream. The
insert cursor control order is a hex 13 and causes the
cursor to be inserted at the current buffer address. The
insert cursor control order does not cause the buffer
address to be incremented. The cursor can be inserted
and the next character written into the same display
buffer location.

A repeat through address control order causes a
character to be propagated throughout an entire field.
The control order is a hex 02 immediately followed by a
2-byte target address (row/column) and the hexadecimal
value to be propagated from the current buffer location
up to, and including, the target address location.

In addition to building a data stream containing buffer
control orders and displayable data, the user is also
responsible for formatting the display screen. A field in
the display buffer is defined as an attribute character
followed by all characters up to the next attribute
character. These attribute characters are nondisplayable
and unalterable characters that occupy one position in
the buffer and appear as blanks on the screen. The
attributes specified by the attribute character apply to all
the following positions until the next attribute character
is encountered. Because of automatic address wrap
around at the end of the display buffer, one attribute
character in any position defines the entire buffer as a
single field.

The format of the attribute character and the individual
bit assignments are shown in Figure 23-2. For example,
the attribute character for a nonunderlined, unprotected,
displayable field that has not been modified is hex 20.

012
001

3 4 5 6 7
XXXXO

~ Reserved (binary 0)
Nondisplay
Protected
Modified data tag
Underlined
Reserved (binary 001)

Figure 23-2. Attribute Character

All combinations of attributes are valid although some
combinations would probably not be used. For example,
if underline and nondisplay are specified, the characters
are not displayed but the underline is. As another
example, a protected field can be created with the MDT
(modified data tag) bit on, in which case the operator
cannot update the field, yet a Read command passes
the field back to the user.

The user must ensure that at least one attribute
character is always on the screen (one field defined).

If the Write command data stream contains any
unprintable characters, they are shown as blanks on the
screen but are read back with their original value.

The Write command data stream can be built in four
ways, which cause an error. The four causes are:

• Failure to begin the Write command data stream with
a set buffer address control order.

• Ending the data stream with a hex 11 (not enough
bytes for all 3 bytes of the set buffer address control
order).

• Ending the data stream with a hex 02 (not enough
bytes for all 4 bytes of the repeat through address
control order).

• A Write command data stream that· results in a
screen buffer with no attribute byte.

In each case, the console buffer is partially updated, and
the first byte of the control value field has been
processed. Therefore, for an invalid screen format error,
the programming system should re-create the entire
screen buffer before continuing.

Source/Sink Specialization 23-7

Read Buffer Command Data Stream

The 1027-byte data stream that is transferred on a Read
Buffer command has the following format:

Bytes 0-1

Byte 2

• Bits 0-1

• Bits 2-3

• Bits 4-5

• Bits 6-7

Cursor location

Keyboard status

Reserved (binary 0)

Keyboard
10 - Locked
01 - Unlocked

Alarm
10- On
01 - Off

Attention light
10 - On
01 - Off

Bytes 3-1026 Display buffer
contents

Char(2)

Char(1)

Char(1024)

The Read Buffer command data stream is truncated if
the data length field in the SSR specifies less than 1027
bytes. The keyboard status byte can be used directly in
the second byte of the control value field or the
precommand control field of the RD to re-create the
state of the machine console at the time the Read
Buffer command was executed.

23-8

Read Modified Command Data Stream

Completion of the Read Modified command is controlled
by the operator. When the operator presses an
Enter/Rec Adv, CF, Sys Req, Help, Roll t (Roll Up), or
Roll ... (Roll Down) key, the following information is
included in the data stream:

Byte 0 Function key identification Char(1)

Bytes 1-2 Cursor location
(row / column)

Bytes 3-5 Set buffer address
(of first field with
the MDT bit on)

• Data from that field

• Set buffer address
(of next field with
the MDT bit on)

• Data from that field
(and so on for all
fields with the MDT bit
on in the attribute byte)

Char(2)

Char(3)

Char(*)

Char(3)

Char(*)

The length of the data stream transferred is specified by
the RIU segment count field in the FBR. The data
stream may be truncated because of the entry in the
data length field of the RD.

The possible values of the function key identification
field are as follows:

Hex F1 ..;.. Enter Hex F3 - Help
Hex F4 - Roll ... (roll down) Hex F5 - Roll t (roll up)
Hex FC - System Request Hex B2 - CF14
Hex 31 - CF1 Hex B3 - CF15
Hex 32 - CF2 Hex B4 - CF16
Hex 33 - CF3 Hex B5 - CF17
Hex 34 - CF4 Hex B6 - CF18
Hex 35 - CF5 Hex B7 - CF19
Hex 36 - CF6 Hex B8 - CF20
Hex 37 - CF7 Hex B9 - CF21
Hex 38 - CF8 Hex BA - CF22
Hex 39 - CF9 Hex BB - CF23
Hex 3A - CF10 Hex BC - CF24
Hex 3B - CF11
Hex 3C - CF12

If the function key that has been pressed is either the
Help key or the Sys Req key, then an RIU segment
length of 3 is returned in the FBR. If any other function
key was pressed, the fields with the MDT bit on follow
in order.

If no fields have been modified, the data stream
consists only of the function key identification and the
cursor location. However, space should be provided in
the specified data area for the maximum amount of data
that could be transferred (the sum of the lengths of all
unprotected fields plus the necessary control and
address bytes). The maximum possible data stream that
could be returned (every display position an attribute
byte) is 4099 bytes.

Control Data Area

No data area need be reserved for use with control-only
commands because the control functions involve no data
transfer.

Cancel Data Area

No data area need be reserved for use with cancel
commands because cancel functions involve no data
transfer.

Feedback Record (FBR)

The FBR is the vehicle for signaling to the program that
the functions requested in a Request I/O instruction
have completed and for signaling whether they
completed successfully or not.

The format of the FBR is as follows:

Bytes 0-15 SSR address Space
pointer

Bytes 16-17 Request identification Bin(2)

Bytes 18-19 Error summary Bin(2)

Bytes 20-21 RD number Bin(2)

Bytes 22-23 RIU segment count Bin(2)

Bytes 24-63 Device-dependent Char(40)
area

· Bytes 24-25 Device-dependent Char(2)
error code

· Bytes 26-27 Hardware error Char(2)
code

• Bytes 28-35 Time stamp Char(8)

· Bytes 36-37 Operational unit Char(2)
number

• Bytes 38-63 Reserved (binary 0) Char(26)

See Request I/O (REQ/O) in Chapter 17 for descriptions
of the source / sink request address and request
identification fields.

The error summary field defines the status of the
Request I/O instruction as defined under Request I/O
(REQIO) in Chapter 17. The specific values possible for
the machine console are listed in Figure 23-3.

The RD number is the index of the last RD processed or
the RD in error if an error is indicated. For the console,
the RD number is always hex 01.

The RIU segment count is the number of bytes
transferred to the SSD by this request.

Source/Sink Specialization 23-9

The device-dependent area is all binary D's unless the
presence of device-dependent data is indicated by the
error summary value in the error summary field. (See
Description under Request I/O (REQIO) in Chapter 17 for
the error summary field definition.) If the
device-dependent data is present, the fields have the
values shown in Figure 23-3.

As shown in Figure 23-3, the device-dependent error
code is a further categorization of the hardware error
codes.

The hardware error code is the same as the data logged
in the hardware error log and indicates the specific
hardware error encountered. The possible values are
shown in Figure 23-3.

The time stamp and operating unit nu.mber are the same
values present in the hardware error log entry and in the
LU D event related data (see Chapter 21. Event
Specifications). These values are used to correlate the
FBR, the LUD event-related data, and the error log entry
for maintenance purposes.

Device-
Error Dependent
Summary Error Code
(hex) (hex)

0000 N/A

0008 N/A

4009 N/A

400A N/A

4014 N/A

Hardware
Error Code
(hex)

N/A

N/A

N/A

N/A

N/A

Meaning

Normal completion

REOIO (continue) response

REOIO partially
complete-MODLUD (reset)

REOIO not complete MODLUD
(reset)

Read Modified command
canceled

Figure 23-3 (Part 1 of 3). Machine Console Error Summary Values

23-10

Recovery Action

N/A

N/A

An MODLUD (activate) instruction must
be issued to restart processing, or an
MODLUD (reset) instruction followed by
an MODLUD (de-activate) instruction
must be issued to destroy the session.

An MODLUD (activate) instruction must
be issued to restart processing, or an
MODLUD (reset) instruction followed by
an MODLUD (de-activate) instruction
must be issued to destroy the session.

N/A

Device-
Error Dependent Hardware
Summary Error Code Error Code
(hex) (hex) (hex) Meaning Recovery Action

5014 N/A N/A Cancel command incomplete N/A
because Read Modified
command completed first

C010 N/A N/A Operational unit task failure LUD must be varied off.

C044 N/A N/A Read data truncated because of If MOTs were not reset, correct problem
insufficient buffer space and reissue command.

C045 N/A N/A SSD byte space too large on Correct RD, reissue REalO instruction,
Write command and issue REalO (continue) instruction.

C086 N/A N/A Invalid RD count Correct problem, reissue REalO
instruction, and issue REalO (continue)
instruction.

C087 N/A N/A Invalid RD command or Correct RD, reissue REalO instruction,
command modifier or reserved and issue REalO (continue) instruction.
fields set incorrectly

0080 N/A N/A Command out of sequence, Read Issue REalO (continue) and correct
command only problem.

Figure 23-3 (Part 2 of 3). Machine Console Error Summary Values

Source/Sink Specialization 23-11

Device-
Error Dependent Hardware
Summary Error Code Error Code
(hex) (hex) (hex) Meaning Recovery Action

E015 0001 I/O Error Call your service representative. The
LUO failure event is signaled for these
cases.

0101 - Channel error

0201 CRT cable disconnected

0202 Keyboard cable disconnected

0203 - Screen buffer parity

0204 Screen buffer and OBI parity

0205 - Keyboard overrun

0206 Invalid keyboard scan code

0301 Post event

0302 - Invalid disconnect

0401 Invalid BSTAT/OSTAT data

0402 FOB time-out

E015 0002 I/O Error Call your service representative.

0105 Command reject

0403 - Operating program error

E015 0003 blank I/O Error Correct problem, rewrite entire screen,
0104 - Invalid screen format reissue REalO instruction and issue

REalO (continue) instruction.

Figure 23-3 (Part 3 of 3). Machine Console Error Summary Values

23-12

Machine Console Errors

The user of the machine console must know the state of
the machine console after an error occurs.

Cancel Command Error: If the user is attempting to
cancel a Read Modified command, a device error can
occur on either or both of the commands. If the console
detects a device error on the Read Modified command,
no retry is done and the value in the error summary field
of the Read command indicates that the command
canceled, and the error summary field in the Cancel
command indicates that the command completed. If the
device error condition still exists during ensuing
commands, normal error recovery takes place at that
time.

Write with Read Modified Command Error: The Write
with Read Modified command involves the console
canceling the outstanding Read Modified command,
executing the Write command, and then reissuing the
Read Modified command. If the Write command FBR is
returned with an error summary field indicating an error,
the Read Modified command has not been canceled and
is still outstanding. The machine console command has
to receive a Request I/O (continue) instruction before
the Read Modified command is reexecuted. It is
possible that the Read Modified command can complete
before it can be canceled. If the Read Modified
command completes with a device error, the Write
command does not execute until the machine console
receives a Request I/O (continue) instruction.

General Device Errors: Whenever the FBR error
summary field is returned with a value greater than hex
8000, the error conditions must be cleared by issuing a
Request I/O (continue) instruction, or by issuing a
Modify LU 0 instruction to reset the LU D.

If the FBR error summary field is returned with a value
of hex C010, the machine console is in a failure mode
and before it can be functional again, it must be varied
off and then varied on again. If the FBR error summary
field is returned with values of hex E015
(device-dependent codes of hex 0001 and hex 0003),
the state of the machine console is unknown and if the
user wishes t6 continue operations, the entire screen
and control states must be rewritten. If any of the other
summary error codes greater ,than hex 8000 are
returned, the state of the machine console is restored to
the state it was in before the error occurred. Only a
Request I/O (continue) instruction is needed to resume
operations.

If a Request I/O (continue) instruction is needed and the
user issues a normal Request I/O instruction, a time-out
most likely occurs when an attempt is made to dequeue
the FBR for the normal Request I/O instruction.

Source/Sink Specialization 23-13

Events

In addition to the events specified under Request I/O
(REQIO) in Chapter 17, the following events are also
signaled. For a complete description of the following
events, see Chapter 21.

• Supervisory service request event (hex OOOB 04 01)

This event is signaled by the 10M when a Read
Modified command completes with a System Request
key.

• LUD contact event (hex OOOB 0601, 02)

This event is signaled when the LU D vary on
processing is completed by the MSCP. Subtype hex
01 is signaled upon successful contact; however,
subtype hex 02 is never signaled for the machine
console. In this case the Modify LUD (Vary on)
instruction signals an exception.

• LU D failure event (hex OOOB 08 01)

The LUD failure event is signaled if the device should
not be used again until the problem is corrected. The
event is signaled if the recovery action for an error
requires that the user call his service representative.

The event-related data for this event consists of:

Bytes 0-1 Hardware error log code

Bytes 2-9 Error log time stamp

Bytes 10-11 Operational unit number (hex 0002)

Bytes 12-13 Optional data (not used)

• Request I/O complete event (hex OOOB 09 01)

The request I/O complete event is signaled if the
user requests it. See Request I/O (REQID) in Chapter
17 for details.

• Request I/O response queue destroyed event
(hex OOOB OA 01)

The response queue destroyed event is signaled if the
user truncates or destroys the request I/O response
queue while the machine is processing Request I/O
instructions.

23-14

Exceptions

The following table gives the cases where the
source / sink resource not available exception (hex 3404)
is signaled when a Modify LUD instruction for the
machine console LUD is executed.

Device-
Specific

Defect Return
Code Code

Command (hex) (hex) Meaning

Suspend 2312 1201 Suspend session
Session rejected because a Read

Modified command is
outstanding.

Quiesce 2313 1301 Quiesce rejected
Session because a Read Modify

command is outstanding.

1302 Quiesce rejected
because a terminating
error condition exists.

Note: See Chapter 20. Exception Specifications for
detailed descriptions of these exceptions. The
source/sink resource not available exception is not
signaled for the machine console vary on, activate, or
resume operations. If any hardware failures have
occurred, an LU D contact event is signaled. These
hardware failures cause additional Request I/O
instructions to fail; however, the state of the LUD is not
changed.

5424 PROGRAMMING CONSIDERATIONS

The basic object of control for the 5424 is the LUD
(logical unit description). All references to a device are
made relative to the LUD. The Create, Modify, and
Destroy LU D instructions establish and control the
environment in which the 5424 operates. The Request
I/O instruction controls the device and causes it to read,
feed, punch, and print cards.

Following power on and before requests for I/O
operations can be accepted, the following steps must
occur.

1. An LU D must be created through the use of the
Create LU D instruction.

2. The 5424 must be varied on through the use of
the Modify LUD instruction.

3. The 5424 must be made active through the use of
the Modify LUD instruction.

Create Logical Unit Description (CRTLUD)
Instruction

For the 5424, the following fields in the LU D instruction
template (see Create Logical Unit Description (CRTLUD)
in Chapter 17) must be initialized as shown:

Field Name Entry

LUD type Char 00

Device type Char 5424

Model number Choose one: Char 1) 1)A1,
Char 1) 1) K1, Char 1) 1) K2,
Char 1) 1) A2, or
Char 1) 1) K3

LUD operational unit Hex 0019
number

Power control Hex 0100

Session definition data All binary a

Load/dump indicator All binary a

Specific characteristics Hex 0000
length

Retry value length Hex 0000

Error threshold length Hex 0000

Device-specific contents Hex 0000
length

Device-specific modifiable Hex 0000
length

Modify Logical Unit Description (MODLUD)
Instruction

The following is a list of functions the 5424 supports
through the Modify LU D instruction.

• Power on

• Power off

• Vary on

• Vary off

• Activate

• De-activate

• Suspend

• Quiesce

• Reset

• Resume (activate after suspend quiesce, or reset)

Note: If a Modify LUD (reset) instruction is issued
while request I/O operations are pending in the
machine, the reset operation takes approximately 12
seconds to complete. This ensures that the device
can be halted without leaving cards in the transport.
If no request I/O operations are pending, the reset
operation completes normally.

See Chapter 17 for the meaning of each function.

Source / Sink Specialization 23-15

Request I/O (REQIO) Instruction

The Request I/O instruction is used to send I/O

requests to the device.

The SSR (see Create Logical Unit Description (CRTLUD)
in Chapter 17) for a Request I/O instruction to the 5424
contains the following values:

Field

Source/sink object

Response queue

Source/sink data area

Optional pointer

Request priority

Request identification

Function field

Control field

Key length

Key offset
RD count
RD offset

Value

Pointer to the 5424 LU D

Pointer to the response queue

Space pointer

Reserved (binary 0)

See Request I/O (REQIO) in
Chapter 17.

See Request I/O (REQIO) in
Chapter 17.

Hex 80

N or C

Bin(2)

Bin(2)
Bin(2)
Bin(2)

The 5424 supports multiple RDs in a Request I/O SSR.

The RD offset field indicates the offset from the start of

the SSR to the first 16-byte RD. The number of RDs is

specified by the RD count field. An RD represents a

command to the 5424 to process one or more cards.

The data representing one card is called a segment, and

the segment count field in the RD indicates the number

of cards to be processed by the RD.

The SSD space pointer identifies a contiguous data area

comprising, in the order processed, the segments within

an RD for the RDs corresponding to the SSR. The size

of the area needed is the sum over each RD of:

(number of bytes per segment) X (number of RIU

segments specified in the RD). The SSD space has no

boundary alignment requirements because all data is

placed in an internal buffer by the machine.

23-16

The format of the RD is as follows:

Byte 0 Command Char(1)
Hex 14 - Feed
Hex 02 - Read
Hex 11 - Punch
Hex 21 - Print 3 lines
Hex 61 - Print 4 lines
Hex 13 - Read and punch
Hex 23 - Read and

print 3 lines
Hex 63 - Read and

print 4 lines
Hex 31 - Punch and

print 3 lines
Hex 71 - Punch and

print 4 lines
Hex 33 - Read, punch, and

print 3 lines
Hex 73 - Read, punch, and

print 4 lines

Bytes 1-6 Command modifier Char(6)

· Byte 1 Char(1)
- Bit 0 Select feed path

0 Primary feed
path
Secondary feed
path

- Bit 1 Stacker select
0 = Default stacker

(chosen based
upon the
operation to
be performed)
Stacker number
specified in
following 2 bits

- Bits 2-3 Stacker number
00 = Stacker 4
01 = Stacker 1
10 = Stacker 2
11 = Stacker 3

- Bits 4-7 Reserved (binary 0)

· Byte 2 Multi-use data (MUD) Char(1)
field
0 = Each function with-

in the command uses
a separate data field
in the data area

3 Fields 2 and 3 are
the same field

· Bytes 3-6 Reserved (binary 0) Char(4)

Byte 7 RIU segment type Char(1)
Hex 00 = Contiguous segments

Bytes 8-9 Segment count Bin(2)

Bytes 10-11 Segment length Bin(2)

Bytes 12-15 Reserved (binary 0) Char(4)

The command field indicates the type of operation to be
performed. The four basic commands supported by the
5424 are the Feed, Read, Punch, and Print commands.

The Feed command moves a card from the specified
hopper to the corresponding wait station. The card is
not read during this command.

An error in feeding a card causes a summary status of
unrecoverable I/O error to be returned in the FBR, and
the appropriate device-dependent bits are turned on.

The Read command moves a card from the specified
hopper to the corresponding wait station. The data
contained in all 96 columns of the card is transferred to
the address specified by the data area. The data read is
checked to ensure that it is read correctly.

An error during a read operation causes a summary
status of unrecoverable error to be returned in the FBR,
and the appropriate device-dependent status bits are
turned on.

The Punch command moves a card from one of the wait
stations, through the punch station, cornering station,
and print station and to the stackers. As the card
passes through the punch station, data is punched in
the cards. The punching is checked to ensure that the
correct data is punched in the card. No printing is done
during the punch commands.

An error during a punch operation causes a summary
status of unrecoverable error to be returned in the FBR,
and the appropriate device-dependent status bits are
turned on.

The Print command moves a card from the selected
wait station, through the punch and cornering stations,
and into the print station where three or four lines of 32
characters each are printed on the card. After printing is
complete, the card is moved into the selected stacker.

The 96-byte or the 128-byte print data area is printed
on the card in the following manner:

Line 1 Leftmost address to byte 32

Line 2 Bytes 33 through 64

Line 3 Bytes 65 through 96

Line 4 Bytes 97 through 128
(if the fourth line of print is specified)

The 5424 prints any of the 64 characters in the card
code. Any of the characters in the 256-character
EBCDIC set, not included in the card code, print as
blanks without signaling the program.

An error during a print operation causes a summary
status of unrecoverable error to be returned in the FBR,
and the appropriate device-dependent status bits are
turned on.

These commands can be used separately or in
combination. Request I/O instructions specifying
combined operations proceed in the same manner
described for individual operations except that one card
is fed from the wait station and punched and/or printed
before stacking. The next card· is fed from the specified
hopper into the wait station during punching. If the
Read command is specified, the data in the card is read
into storage.

The command modifier field (byte 1) is used to control
the feed path and stacker selection. The MUD field
specifies the use of the data fields within the SSD.
Field 1 is the read field, field 2 is the punch field, and
field 3 is the print field. If the command includes 4 print
lines, the specified MUD is ignored, and it defaults to
MUD equals O. Command modifier bytes 3, 4, 5, 6, and
7 are reserved.

The RIU segment type field must be hex 00 for the
5424. This indicates that the RI U segments are
contiguous in the SSD and that there are no gaps or
control characters between segments in the SSD.

Source/ Sink Specialization 23-17

The segment count field contains the number of cards
to be processed. This entry can be1 through 32· 767. If
o is specified, One card is processed. A negative
number entered in the segment count field causes an
error to be signaled.

The segment length field is the total number of bytes to
be read, and/or punched, and/or printed on a single
card. When a read or punch operation is specified in
the Request I/O instruction. a segment length of 96
bytes is assumed. The print record is either 96 or 128
bytes long depending on whether 3 or 4 lines of print
are requested. When the 5424 punches and prints the
same data, the segment length field value for the
punch /print operation must be 96 bytes. The punch
record must always be 96 bytes long.

The following example shows the entries in the RD and
SSD fields to read five records of 96 bytes each.

Request Descriptor

Segment Segment
CMD MUD Reserved Count Length Reserved

02 0 5 96

Source/Sink Data Area

Read Data Read Data Read Data Read Data Read Data
Field 1 Field 1 Field 1 Field 1 Field 1

96 bytes 96 bytes 96 bytes 96 bytes 96 bytes

23-18

The following example shows the entries in the RD and
SSD fields to punch and print three cards with the same
data.

Request Descriptor

Segment Segment
CMD MUD Reserved Count Length Reserved

31 3 3 96

Source/Sink Data Area

Punch/Print Data Punch/ Print Data Punch/Print Data
Field 2/3 Field 2/3 Field 2/3

96 bytes 96 bytes 96 bytes

The following example shows the entries in the RD and
SSD fields to punch and print different data into one
card and read the next card.

Request Descriptor

Segment Segment
CMD MUD Reserved Count Length Reserved

33 0 1 288

Source/Sink Data Area

Read Data Field 1 Punch Data Field 2 Print Data Field 3

96 bytes 96 bytes 96 bytes

Note: The punch data (Field 2) and the print data (Field
3) will be printed on the card that was at the wait
station when the command was issued.

FEEDBACK RECORD AND ERROR RECOVERY
PROCEDURE

The format of the feedback record is as follows:

Bytes 0-15 SSR address

Bytes 16-17 Request identification

Bytes 18-19 Error summary

Bytes 20-21 RD number

Bytes 22-23 RIU segment count

Bytes 24-63 Device-dependent area

· Bytes 24-25 Device-dependent
error code

· Bytes 26-27 Hardware error code

• Bytes 28-35 Time stamp

• Bytes 36-37 Operating unit
number

• Bytes 38-39 BSTAT

• Bytes 40-47 DSTAT

Space
pointer

Bin(2)

Char(2)

Bin(2)

Bin(2)

Char(40)

Char(2)

Char(2)

Char(8)

Char(2)

Char(2)

Char(8)

• Bytes 48-63 Reserved (binary 0) Char(16)

See Request I/O (REQIO) in Chapter 17 for descriptions
of the request address and request I D fields.

The error summary field defines the status of the
Request I/O instruction as defined under Request I/O
(REQ/O) in Chapter 17. The specific values possible for
the 5424 are shown in Figure 23-4.

The RD number is the index of the last RD processed or
the RD in error if an error is indicated.

The device-dependent area is all binary 0 unless the
presence of device-dependent data is indicated by the
error summary value in the error summary field. (See
Description under Request I/O (REQIO) in Chapter 17 for
the error summary field definition.) If device-dependent
data is present, the field has the values shown in
Figure 23-4.

As shown in Figure 23-4, the device-dependent error
code is a further categorization of the hardware error
codes.

The hardware error code is the same value as that
logged in the hardware error log and indicates the
specific hardware error encountered. The possible
values are shown in Figure 23-4.

The time stamp and operating unit number are the same
values present in the hardware error log entry and are
used to correlate the FBR and the error log entry for
maintenance purposes.

Source/Sink Specialization 23-19

Device-
Error Dependent Hardware
Summary Error Code Error Codes
(hex) (hex) (hex) Meaning Recovery Action

0000 N/A N/A Normal completion N/A

0008 N/A N/A REalO (continue) response N/A

C009 N/A N/A Partially processed request An MODLUD (activate) instruction must
terminated because of reset be issued to restart processing, or an
session MODLUD (reset) instruction followed by

an MODLUD (de-activate) instruction
must be issued to destroy the session.

COOA N/A N/A Unprocessed request because An MODLUD (activate) instruction must
of reset session be issued to restart processing, or an

MODLUD (reset) instruction followed by·
an MODLUD (de-activate) instruction
must be issued to destroy the session.

C016 N/A N/A End of file An REalO (continue) instruction must be
issued to restart processing.

C044 N/A N/A SSD too small Correct SSD, reissue REalO instruction,
and issue an REalO (continue)
instructi9n.

C084 N/A N/A Invalid SSD pointer Correct SSD pointer, reissue REalO
instruction, and issue an REalO
(continue) instruction to restart
processing.

C085 N/A N/A Invalid function Correct REalO instruction, reissue
REalO instruction, and issue an REalO
(continue) instruction.

C087 N/A N/A Invalid RD Correct RD, reissue REalO instruction,
and issue an REalO (continue)
instruction.

Figure 23-4 (Part 1 of 3). 5424 Error Summary Values

23-20

Device-
Error Dependent Hardware
Summary Error Code Error Codes
(hex) (hex) (hex) Meaning Recovery Action

E010 N/A Retryable hardware errors Check the BST AT and OST AT fields

1916 Read check (defined later in this chapter) for error
bits and determine appropriate recovery.

1917 Punch invalid An REQIO (continue) instruction must be
issued to restart processing.

1918 Punch check

191A Emitter check

191F Command reject; command was
issued for a path with an empty
wait station (primary or secondary)
and the command was not a Feed
or a Read command

1980 Hopper check

E010 0001 1920 IOC parity error from OBI Call your service representative. An LUO
failure event is also signaled.

1921 IOC internal parity error

1922 CSA parity error

E010 0002 1901 Feed check 1 Check the BST AT and OSTAT fields

1902 Feed check 2 (defined later in this chapter) for error
bits and determine appropriate recovery.

1903 Feed check 3 An REQIO (continue) instruction must be

1904 Feed check 4 issued to restart processing.

1905 Feed check 5

1906 Feed check 6

1907 Feed check 7

1908 Feed check 8

1.909 Feed check 9

190A Feed check 10

190B Feed check 11

190C Feed check 12

1900 Feed check 13

Figure 23-4 (Part 2 of 3). 5424 Error Summary Values

Source/Sink Specialization 23-21

Device-
Error Dependent Hardware
Summary Error Code Error Codes
(hex) (hex) (hex) Meaning Recovery Action

E010 0002 190E Feed check 14

·190F Feed check 15

1910 Feed check 16

1911 Feed check 17

1912 Feed check 18

1913 Feed check 19

1914 Feed check 20

191E Power fault

E010 0003 191B Print sync check Check the BSTAT and DSTAT fields
191C Print home check (defined later in this chapter) for error
1910 Print clutch check bits and determine appropriate recovery.

An REOIO (continue) instruction must be
issued to restart processing.

E010 0004 Permanent hardware errors Call your service representative. An LUD
failure event is also signaled.

1915 Read cell defective

1919 Device address out of sequence

191F Command reject

1923 Invalid OU

1924 Invalid disconnect

1925 Channel error

1926 Function operation blocked
time-out

1928 Operation program error

1929 Invalid BSTAT /DSTAT data

192A Read sense / data store

E010 0005 N/A Cover open error Check the DSTAT field (defined later in
this chapter) for error bits and determine
appropriate recovery. An REOIO
(continue) instruction must be issued to
restart processing.

E010 0006 N/A Chip box full Correct the condition, reissue REOIO
instruction, and issue an REOIO
(continue) instruction.

E087 0001 N/A Reserved field in RD is not O. Correct the RD, reissue REOIO
instruction, and issue an REOIO
(continue) instruction.

Figure 23-4 (Part 3 of 3). 5424 Error Summary Values

23-22

BSTAT Field Definitions Byte Bit Description

Byte Bit Description
4 a Halt (same as DSTAT Byte a

Bit 2)
a a Reserved for the channel

1 Disconnect
1 Operation program error

2 Channel parity error
2 Halt

3 Device address recognition out
3 Channel error of sequence
4 I/O exception 4 Fire emitter check
5 Command reject 5 Print sync check
6 I/O error 6 Print home check
7 Command complete 7 Print clutch check

5 a Stacker full
a Power fault

1 Chip box full switch
1 Power on

2 Cover switch
2 Reserved

3-4 Indicates which stacker was
3 Hopper 1 empty selected for last card to leave
4 Hopper 2 empty the transport:

5 Stacker full

6 End of data delimiter Bits 3·4 Stacker

7 Reserved
01 1

DST AT Field Definitions 10 2

11 3
Byte Bit Description 00 4

a 0-7 Same as BSTAT byte a bits 5 Card in wait 2 (secondary
0-7 of previous command path)

0-7 Same as BST AT byte 1 bits 6 Card in wait 1 (primary path)
0-7 of previous command

7 Motor ready
2 a Hopper check

6 a Reserved
1 Reserved

Hopper cycle
2 Cover open error a = Hopper cycle complete
3-7 Feed check identifiers (hex 1 = Hopper cycle not

values 01 through 14 complete
correspond to feed checks 1 2-4 Reserved (binary 0)
to 20)

5-7 Count of cards in the
3 a Cells defective transport

Read check 7 0-7 Reserved
2 Reserved

3 N PRO 1 required

4 NPRO 2 required

5 Punch invalid

6 Punch check

7 Reserved

Source/Sink Specialization 23-23

Events

In add~tion to the events specified under Request I/O
(REQIO) in Chapter 17, the following events are
signaled. For a complete description of the following
events, see Chapter 21.

• LUD contact event (hex OOOB 06 01, 02)

This event is signaled when the LUD vary on
processing is completed by the MSCP. Subtype hex
01 is signaled upon successful contact; however,
subtype hex 02 is never signaled for the 5424. In this
case the Modify LUD (vary on) instruction signals an
exception.

• LUD failure event (hex 0008 08 01)

The LUD failure event is signaled if the device should
not be used again until the problem is corrected.

This event is signaled whenever the device has an
error in which the recovery action requires the user to
call his service representative. The MFCU LUD
should be varied off before varying it back on and
attempting further operations.

The event-related data for this event consists of:

Bytes 0-1 Hardware error log code

Bytes 2-9 Error log time stamp or 0' s

Bytes 10-11 Operational unit number (hex 0019)

Bytes 12-13 Optional data (not used)

23-24

• Operator intervention required event (hex OOOB 07·01)

This event is signaled after the machine detects that
an operator action is needed for the device.

The event-related data for this event consists of:

Bytes 0-1 Hardware error log code

Bytes 2-9 Error log time stamp

Bytes 10-11 Operational unit number (hex 0019)

Bytes 12-13 Optional data has the following
meaning:

Description and
Condition Operator Action

Byte 12, bit 0 Hopper 1 is empty. Make feed
path 1 ready. After correcting the
problem, press the start key.

Byte 12, bit 1 Hopper 2 is empty. Make feed
path 2 ready. After correcting the
problem, press the start key.

Byte 12, bit 2 A stacker is full or the device is
not ready. To recover, correct the
problem and press the start key.

The remaining bits of byte 12 and all of byte 13
are not used and are O.

• Request I/O complete event (hex OOOB 09 01)

This event is signaled if the user requests it. See
Request I/O (REQIO) in Chapter 17 for details.

• Request I/O response queue destroyed event (hex
OOOB OA 01)

This event is signaled if the user truncates or
destroys the request I/O response queue while the
machine is processing Request I/O instructions.

Exceptions

The following table gives the cases where the
source/sink resource not available exceptions (hex 3404)
are signaled when a Modify LUD instruction for the
machine console LUD is executed.

Device-
Specific

Defect Return
Code Code

Command (hex) (hex) Meaning

Vary On 2302 0001 I/O failure has occurred.
LU 0 failure event has
been signaled.

Power On 2306 0601 Power failure. LUD
failure event has been
signaled.

Power Off 2307 0601 Power failure. LU 0
failure event has been
signaled.

Suspend 2312 1203 Suspend session
Session rejected because an

operator intervention
condition exists.

Quiesce 2313 1302 Quiesce session rejected
Session because a terminating

error condition exists.

1303 Quiesce session rejected
because an operator
intervention condition
exists.

3262/5211 PRINTER PROGRAMMING
CONSIDERATIONS

The basic object of control for the 3262/5211 printers is
the Logical Unit Description (LUD). All references to a
device,are made with respect to the LUD. The Create,
Modify, and Destroy LUD instructions establish and
control the environment in which the printer operates.
The Request I/O instruction controls the device and
causes it to print data.

Before Request I/O operations can be accepted, several
steps must occur.

1. An LU 0 must be created through use of the
Create LUD instruction.

2. The printer must be varied on through use of the
Modify LUD instruction.

3. The LU D must be made active through use of the
Modify LUD (activate) instruction.

4. The device-specific area contents must be
initialized through use of the Modify LU 0
(device-specific area) before any print operations
can be performed. If the device-specific area
contents are not initialized, a command reject
feedback record will be returned for all requests to
print.

Source/Sink Specialization 23-25

3262/5211 PRINTER CREATE LOGICAL UNIT
DESCRIPTION (CRTLUD) TEMPLATE

The following fields of the logical unit description
template must be· initialized as indicated:

Field Name Entry

lUD type Char 00

Device type Char 5211 for the 5211
Char 3262 for the 3262

Model number Char 0002 for the 5211
Char fj fjA 1 for the attached
3262
Char fj fj B 1 for the stand-alone
3262

LUD operational unit
number

Hex 0018 for the first printer
Hex 0058 for the second
printer

Power control Hex 0100 for all models

Session definition data Bin 0

Load/dump indicator Bin 0

Specific characteristics
length

Hex 0000

Retry value length Hex 0000

Error threshold length Hex 0000

Device-specific contents 485
length

Device:"'specific modifiable 485
length

Device-specific area

Byte 0

• Bits 0-1

• Bit 2

• Bits 3-7

Control flags

Reserved (binary 0)

Write control
o No data

translation
Translate the
data

Reserved (binary 0)

Byte 1 Lines per inch

Byte 2 Lines per form

Bytes 3-4 Character set length

Bytes 5-292 Character set

Bytes 293-484 Translate table

23-26

Char(485)

Char(l)

Char(l)

Char(1)

Bin(16)

Char(288)

Char(192)

The device-specific parameters mayor may not be
supplied in the device-specific area of a create template.
If they are not supplied at create time, the create
template must still contain the 485-byte area and this
area should be set to O. The LUD will be created to
contain whatever is in the template, without validating
any of these parameters. These parameters are not
used until after the LUDis in the active session state.

3262/5211 PRINTER MODIFY LOGICAL UNIT
DESCRIPTION (MODLUD)

The following is a list of functions the 3262/5211
supports through the MODLUD instruction:

• Power on

• Power off

• Vary on

• Vary off

• Activate

• De-activate

• Suspend

• Quiesce

• Reset

• Resume (activate after suspend, quiesce, or reset)

Modify device-specific area

See Chapter 17 for the meaning of each function.

LUD Device-Specific Area

The device-specific area contains the information used
by the printer attachment to control the line spacing,
form size, belt image, and translate table used by the
printer. The device-specific area can be altered by a
Modify LUD instruction. If any part of the
device-specific area is changed, then all the
device-specific area parameters are written to the
printer. Changes to the device-specific area are
reflected when the machine processes the next Request
I/O instruction. The control flags field controls the
translate mode in the machine.

If translate data is specified, the data is translated
(based on the translate table) prior to printing.

For the 3262 and the 5211, the lines per inch must be
either 6 or 8. When 6 lines per inch is specified, the
number of lines per form can be from a minimum of 18
up to a maximum of 84. When 8 lines per inch is
specified, the number of lines per form can be from a
minimum of 24 to a maximum of 112.

A Modify LUD (device-specific area) instruction must be
issued any time after the LU D is in the varied on state
and before any printing operations are started. This
causes the printer to be initialized to the desired
parameters for line spacing, form size, belt image, and
translate table. This set of device-specific area
parameters is then used until the next Modify LUD
instruction is issued to change the device-specific area
parameters or until the LUD is varied off. If the Modify
LUD (device-specific area) occurs while Request I/O
instructions are outstanding, the new values take effect
before the next Request I/O instruction is processed.
The printer is not initialized in any other way.

If a printer cannot be initialized for a Modify LUD
(device-specific area) instruction due to a device
hardware failure, the subsequent Request I/O instruction
that requests a printing operation causes a feedback
record that indicates the hardware error condition
encountered.

If the device-specific area parameters supplied for a
Modify LUD instruction are invalid, a template value
invalid exception may be signaled. If the template value
invalid exception was not signaled, or if the
device-specific area has not been modified since the
LUD was varied on, a terminating error feedback record
is signaled for the next Request I/O instruction.

3262/5211 PRINTER REQUEST I/O (REQIO)
INSTRUCTION

The Request I/O instruction is used to request the
3262/5211 printer to perform its various I/O functions.

The SSR for a Request I/O instruction to the
3262/5211 printer contains the following values:

Field

Source / sink object

Response queue

Source/ sink data area

Optional pointer

Request priority

Request identification

Function field

Control field

Key length

Key offset

RD count

RD offset

Value

System pointer to LUD

System pointer to response
queue

Space pointer

Reserved (binary 0)

See Request I/O (REOIO)
in Chapter 17

See Request / /0 (REO/D)
in Chapter 17

Hex 80

N or C

Bin(2)

Bin(2)

o for Request I/O (continue)
instruction
1 for Request I/O instruction

Bin(2)

The 3262/5211 printer supports only one RD for each
Request I/O instruction. The RD count field must be
one for Request I/O (normal) operations; however, for
Request I/O (continue) operations, this field is ignored.
The RD offset field indicates the offset from the start of
the SSR to the 16-byte RD. The source/sink data area
(SSD) contains the data to be printed corresponding to
the command in the RD.

The format of the RD is as follows:

Byte 0 Commands Char(1)
Hex 41 = Print SCS data
Hex 42 = Continue printing

after error

Bytes 1-3 Command modifiers Char(3)

Bytes 4-15 Reserved (binary 0) Char(12)

Source/Sink Specialization 23-27

Print SCS Data· Command (hex 41)

The Print SCS Data command causes the data in the
SSD to be printed in the format specified by the SCS
command embedded in the SSD. The command
modifier bytes (bytes 1-3 of the RD) contain additional
information and have the following format:

Byte 1 Char(1)

• Bits 0-4 Reserved (binary 0)

• Bit 5 Unused

• Bit 6

• Bit 7

Unprintable character detection
o Signal unprintable character

detected error
Do not signal an error to
the user

Continue
o Start printing at

beginning of the SSD
= Retain any data saved

from previous Print
SCS Data command and
continue printing where
printing stopped

Bytes 2-3 Data block group count Bin(2)

Normally, the continue bit should be on to ensure that
all data is printed.

The data block group count field is the number of
8-byte groups in the SSD. The data block count must
be from 1 to 8192; otherwise, an error occurs.

The print data area must be loaded before the Print SCS
Data command is issued.

23-28

Continue Printing After Error (hex 42)

The Continue Printing After Error command (hex 42) can
be used to recover from an error that occurred on a
print Request I/O instruction that used a Print SCS Data
RD command (hex 41). When an error occurs, a Print
Request I/O instruction with a Continue Printing After
Error (hex 42) RD command can be issued to continue
printing as if the previous error had not occurred. The
SCS data is saved from the previous SCS print, and
printing is continued from where the error occurred. The
command modifier bytes (bytes 1-3 of the RD) contain
additional information and have the following format:

Byte 1 Char(1)

• Bits 0-5 Reserved (binary 0)

• Bit 6

• Bit 7

Bytes 2-3

Unprintable character detection
o Signal unprintable character

detected error
Do not signal an error to
the user

Reserved

Reserved

The SSD pointer value is ignored by this command.

This command should be used for only hardware errors
that do not require a response. If this command is used
for errors that require a response, the results are
unpredictable. The user of this command should not
change the print data area that was used by the
Request I/O instruction that encountered the error. An
invalid RD command error is signaled if the preceding
Request I/O instruction did not have a valid hardware
error.

A Request I/O (continue) must be issued to continue
processing.

I

STANDARD CHARACTER STREAM (SCS)

The SSD contains the SCS. The SCS is used by the
3262/5211 printer for transferring print data and SCS
commands from the system to the printer. With SCS,
Print Data and SCS commands are sent to the
attachment in free-form; that is, SCS commands can
appear anywhere within the print data stream. The SCS
commands have values of hex 00 through hex 3F, and
hex FF.

Print data characters have values from hex 40 through
hex FE. Any character not recognized as a printable
character prints as a blank and an unprintable character
condition is returned in the feedback record. If the
translate option is used (write control bit is on in the
LUD), characters are handled as defined by the user.

SCS COMMANDS

The SCS commands control carriage operations. For a
better understanding of the SCS command descriptions,
see the following illustration, which shows the format of
a printer form. View the form as a presentation surface
on which a presentation position (the print position after
an executed command) can be moved.

The contents of the print buffer will not be printed until
a command that moves the carriage or that causes the
horizontal print position to move left is received.

I ;
Left Margin

Number of Lines I
{bottom line is I Print

Position
132

maximum presentation I

line)LI

(print position 1)

Number of print poSitions set I
by the Set Horizontal Format I __ _
command (The rightmost print I
position is the maximum
presentation position). I

I

.... 1.------ Print Positions 1 through 132 -------1
Null Command (hex 00)

This command provides the no-op functions; that is, no
character is printed and no function is performed.

Interchange Record Separator Command (hex 1 E)

This command is the same as the new line command
described later in this section.

Line Feed Command (hex 25)

This command moves the print position to the same
print position of the next line. If the print position is on
the last line of a page, it is moved to the same print
position of the first line on the next page.

Form Feed Command (hex OC)

This command moves the presentation position to the
top line and left margin of the next page as specified by
the maximum print line parameter, which is set by the
vertical format operation described under Format
Command (hex 28) later in this section. If the print line
parameter is not specified, the maximum print line is
assumed to be 1, and the presentation position moves
the left margin of the next line.

Programming Note: Use the Form Feed command to
move the presentation position to a new form because
this command is used for page numbering by spool
intercept. Do not use the New Line command or the
absolute vertical parameter when moving the
presentation position from one form to the next.

Carriage Return Command (hex 00)

This command moves the presentation position to the
left margin of the same line. If the current presentation
position equals the left margin, the carriage is not
moved.

New Line Command (hex 15)

This command moves the presentation position to the
left margin of the next line. If a sequence of print
characters attempts to cause the presentation position
to go beyond position 132 (the maximum presentation
position), an automatic new line is generated.

Source/Sink Specialization 23-29

Format Command (hex 2B)

This command specifies the start of a formatting data
stream. It is used with one of the function bytes (hex
C1, C2, C7, and C8) described below. The function byte
is followed by a count byte that specifies the, number of
bytes (including the count byte) remaining in the
formatting data stream. All printer formats must be
assembled before any print or carriage operation is
performed.

The function bytes used with the Format command and
their descriptions are described in the following text.

Set Horizontal Format Command (2BCl)

This command specifies the horizontal format (maximum
presentation position) for the forms width. The format
code of 2BC1 is followed by a count byte of either hex
01 or hex 02. If the count byte is hex 02, a forms width
byte follows the count byte. If the count byte is hex 01,
the forms width byte has a default value of 132.

Set Vertical Format Command (2BC2)

This command is a no-op to the 3262/5211
attachment.

Set Chain Image Command (2BC7)

This command is a no-op to the 3262/5211
attachment.

Set Graphic Error Action Command (2BCB)

This command is a no-op to the 3262/5211
attachment.

23-30

Bell Command (hex 2F)

This command is a no-op to the 3262/5211
attachment.

Presentation Position (PP) Command (hex 34)

This command is used with four different function
parameters (hex 4C, CO, C4, and C8) to move the
presentation position. Each function parameter follows
the command in the data stream. A value parameter, a
1-byte number describing a position or line number,
follows the function parameter in the data stream.

The function parameters used with the Presentation
Position command are described in the following text.

Relative Horizontal PP Command (34CB)

This command moves the presentation position to the
right. The number of positions moved is contained in
the value parameter. If this causes the presentation
position to be moved past the maximum presentation
position, an invalid SCS error is signaled.

Absolute Horizontal PP Command (34CO)

An Absolute Horizontal PP command moves the
, presentation position to the position given in the value
parameter. If the value parameter is less than the
current presentation position, a carriage return is
executed before the presentation position is moved to
the designated location. If the value parameter is
greater than the maximum presentation position, an
invalid SCS error is signaled.

Relative Vertical PP Command (344C)

A Relative Vertical PP command causes the printer to
space or skip the number of lines contained in the value
parameter. The horizontal presentation position is not
changed. If the value parameter is greater than the
maximum presentation position, an invalid SCS error is
signaled.

Absolute Vertical PP Command (34C4)

. An Absolute Vertical PP command causes the printer to
skip to the line number contained in the value
parameter. The horizontal presentation position is not
chang~d. If the value parameter is 0 or is the current
line number, no operation is performed. If the value
parameter is less than the current line number, the
printer skips to the designated line on the next form. If
the value parameter is greater than the current line
number and less than or equal to the forms length, the
printer skips to the designated line on the present form.
If the value parameter is greater than the forms length,
an invalid SCS error is signaled.

Source/Sink Specialization 23-31

SCS EXAMPLE

This example shows commands and data embedded in
a standard character stream along with the resulting
printed output.

Standard Character Stream

Byte
0 8 16
2B C1 OAC1 C1 C1 C1 C1 25 C1 C1 C1 C1 C1 C1 C1

~I fJ II
16 24 32
C1 C1 15 C1 C1 C1 34 C8 04 C1 C1 1 E C1 34 CO 05

D-+II+m~
32 40 48
C1 C1 34 4C 02 C1 34 C4 OF 00 00 00 00 00 C1 OC

~IJ-+II I 0---1
48 56
C1 C1 C1 C1 C1 C1 C1 C1

I 1m
'1

Printed Output

Print Position
2 3 4 5 6 7 8 9 10 11 12 13

Line IfJ :a
1 A A A A A

II
2 A A A A A

3 A A A A

II II
4 A A A A A

II II
5 A A A

6

II
7 A

8

9

10

11

12

13

14

II
15 A

16

Next,
Form ---- ___________ 1 ______ _

1m I
A AAAAAAA

2

3

..
II

Set the horizontal format (2BC 1) to print
position 10 (OA).

Print five A's (C1's); then execute a Line Feed
command' (25).

II Print nine A's (new line is automatically
gener~ted after print position 10 because the
horizontal format was set to 10); then execute a
New Line command (15).

II Print three A's; then execute a Relative
Horizontal Print Position command (34C8) for
four print positions.

II Print two A's; then execute an Interchange
Record Separator command (1 E) (new line).

II Print one A; then execute an Absolute
Horizontal Print Position command (34CO) to
print position 5 (05).

II Print two A's; then execute a Relative Vertical
Print Position command (344C) for two lines
(02).

II Print one A; then execute an Absolute Vertical
Print Position command (34C4) to line 15 (OF).

II Execute five null commands and print one A;
then execute a Form Feed command (OC).

Print eight A's.

Note: The last eight A's will not be printed
until a command is received that causes the
carriage to move or that causes the horizontal
print position to move to the left.

3262/5211 FEEDBACK RECORD AND ERROR
RECOVERY PROCEDURE

The format of the feedback record is as follows:

Bytes 0-15 SSR address Space
pointer

Bytes 16-17 Request identification Bin(2)

Bytes 18-19 Error summary Bin(2)

Bytes 20-21 RD number Bin(2)

Bytes 22-23 RIU segment count Bin(2)

Bytes 24-63 Device-dependent Char(40)
area

· Bytes 24-25 Device-dependent Char(2)

error code

· Bytes 26-.27 Hardware error Char(2)
code

· Bytes 28-35 Time stamp Char(8)

• Bytes 36-37 Operating unit Char(2)
number

• Bytes 38-63 Reserved (binary 0) Char(26)

See Request //0 (REQ/O) in Chapter 17 for descriptions
of the request address and request ID fields.

The error summary field defines the status of the
Request I/O instruction as defined under Request //0
(REQ/O) in Chapter 17. The specific values possible for
the 3262 and 5211 printers are shown in
Figure 23-5.

Source/Sink Specialization 23-33

The RD number is the index of the last RD processed or
the RD in error if an error is indicated. For the 3262 and
5211 printers, the RD number is 1.

The RIU segment count is the number of forms
completed by the printer before an error occurred. If no
error occurred, this field is not defined.

The device-dependent area is all binary 0 unless the
presence of device-dependent data is indicated by the
error summary value in the error summary field. (See
Description under Request I/O (REQIO) in Chapter 17 for
the error summary field definition.) If device-dependent
data is present, the field has the values shown in Figure
23-5.

As shown in Figure 23-5, the device-dependent error
code is a further categorization of the hardware error
codes.

The hardware error code is the same value as that
logged in the hardware error log and indicates the
specific hardware error encountered. The possible
values are shown in Figure 23-5.

The time stamp and operating unit number are the same
values present in the hardware error log entry and are
used to correlate the FBR and the error log entry for
maintenance purposes.

23-34

Device-
Error Dependent Hardware
Summary Error Code Error Code
(hex) (hex) (hex) Meaning Recovery Action

0000 N/A N/A Normal completion. N/A

0008 N/A N/A REQIO (continue) instruction N/A
response.

C009 N/A N/A Partially processed request An MODLUD (activate) instruction must
terminated because of reset be issued to restart processing, or an
session. MODLUD (de-activate) instruction must

be issued to destroy the session.

C010 N/A N/A Request I/O instruction rejected The MODLUD (reset, de-activate, vary
because the device is disabled. off, vary on, and activate) instructions

must be issued to restart processing.

COOA N/A N/A Unprocessed request because of An MODLUD (activate) instruction must
reset session. be issued to restart processing, or an

MODLUD . (de~activate) instruction must
be issued to destroy the session.

C043 N/A N/A Invalid SSD boundary alignment. Correct the boundary alignment, reissue
an REQIO instruction, and issue an
REQIO (continue) instruction to restart
processing.

C044 N/A N/A SSD too small. Correct the SSD, reissue an REQIO
instruction, and issue an REQIO
(continue) instruction to restart
processing.

C084 N/A N/A Invalid pointer to SSD. Replace SSD pointer with a valid
pointer, reissue an REQIO instruction,
and issue an REQIO (continue)
instruction to restart processing.

C085 N/A N/A Invalid function field. Correct the function field value, reissue
an REQIO instruction, and issue an
REQIO (continue) instruction to restart
processing.

C086 N/A N/A Invalid RD count. Remove the extra RDs, reissue an
REQIO instruction, and issue an REQIO
(continue) instruction to restart
processing.

Figure 23-5 (Part 1 of 4). 3262/5211 Error Summary Values

Source/Sink Specialization 23-35

Device-
Error Dependent Hardware
Summary Error Code Error Code
(hex) (hex) (hex) Meaning Recovery Action

E010 0002 4450 Invalid SCS command Check SCS codes, correct command in
error, and reprint the form. Issue an
REOIO (continue) instruction to restart
processing.

E010 0003 5437 Forms jam Correct the forms jam and reprint the
form. Issue an REOIO (continue)
instruction to restart processing.

E010 0004 N/A CE switch in wrong position Check CE switch setting and retry
command. Issue an REOIO (continue)
instruction to restart processing.

E010 0005 3203 Unrecoverable I/O error The MODLUD (reset, de-activate, and
(OU task failure) vary off) instructions are· required to

clear this condition.

E010 0006 N/A Unprintable character detected The line has printed with blank
substitution. If blank substitution is
acceptable, reissue an REOIO
instruction, and issue an REOIO
(continue) instruction to restart
processing. If blank substitution is not
acceptable, correct the print data,
correct the translate table, or correct the
train image, and reprint the file. Issue
an REOIO (continue) instruction to
restart processing.

E010 0009 N/A I nterlock open Close interlock on printer and reprint
form. An REOIO (continue) instruction
must be issued to restart processing.

E010 0008 3215 Actual belt image length does Put correct belt on printer or change hex
not equal specified belt length, 00 in image data. Issue an REOIO
or hex 00 was detected in (continue) instruction to restart
image data processing.

Figure 23-5 (Part 20f 4). 3262/5211 Error Summary Values

23-36

Device-
Error Dependent Hardware
Summary Error Code Error Code
(hex) (hex) (hex) Meaning Recovery Action

E010 oooe 4008 Printer or hardware adapter Operator intervention is required.
4020 failures Disengage paper and restore to the top
4040 of the form. Issue an REOIO (continue)
4080 instruction to restart processing. Reprint
4447 the form. If the error persists, call your
5425 service representative.
5426
5427
5430
5432
5440
5441
5443

E010 0000 3203 System error Call the service representative.
3205
4034
4038
4452
9000

E010 OOOE 5434 Unrecoverable I/O error Call the service representative.
5435
5451

E010 OOOF 5431 Belt speed check Inspect belt and align forms. Issue an
5433 REOIO (continue) instruction to restart

processing.

E010 0010 5420 Forms alignment Align forms. Issue an REOIO (continue)
5423 instruction to restart processing.
5424
5442

E010 0011 5436 Ribbon check Inspect the ribbon. Issue an REOIO
(continue) instruction to restart
processing.

E010 0012 5421 Manual carriage check Inspect belt and align forms. Issue an
REOIO (continue) instruction to restart
processing.

E010 0014 5444 Power fault The MODLUD (reset, de-activate, vary
off, vary on,and activate) must be
issued to restart processing.

Figure 23-5 (Part 3 of 4). 3262/5211 Error Summary Values

Source/Sink Specialization 23-37

Device-
Error Dependent Hardware
Summary Error Code Error Code
(hex) (hex) (hex) Meaning Recovery Action

E010 0015 5422 Cable interlock The MODLUD (reset, de-activate, vary
off, vary on, and activate) must be
issued to restart processing.

E010 0016 N/A End of forms Add paper, make the printer ready,
reissue REOIO, and issue REOIO
(continue) instruction.

E087 0007 N/A Invalid RD command detected or Correct RD command byte, reissue the
a hex 42 RD command was issued REOIO instruction, and issue an REalO
that could not be accepted (continue) instruction.

E087 0008 N/A Zero data block field in the RD or Correct the data block field, reissue the
more than 8192 bytes of data REalO instruction, and issue an REalO

(continue) instruction.

E087 0017 N/A RD invalid, reserved field violated Correct the RD, reissue the REalO
instruction, and issue an REOIO
(continue) instruction.

F075 N/A 4104 Error during error recovery Call the service representative.
4102
4105
4106
4107
4108

Figure 23·5 (Part 4 of 4). 3262/5211 Error Summary Values

23-38

Events

In addition to the events specified under Request I/O
(REQIO) in Chapter 17, the following events are
signaled. For a complete description of the following
events, see Chapter 21.

• LUD contact event (hex OOOB 06 01)

This event is signaled when the MSCP when vary on
processing is completed for this device. Only subtype
hex 01 is signaled upon successful contact; however,
subtype hex 02 is never signaled since the MSCP
processing is synchronous to the Modify LUD (vary
on) instruction and an exception is signaled instead.

• LUD failure event (hex OOOB 08 01)

The LUD failure event is signaled if the printer has a
problem that requires the service representative to be
called. As part of the recovery action for this event,
the LUD should be varied off before attempting
further operations.

The event-related data for this event consists of:

Bytes 0-1

Bytes 2-9

Bytes 10-11

Bytes 12-13

Hardware error code

Error log time stamp or O's

Operational unit number (hex 0018
or hex 0058)

Optional data (not used)

This event is signaled only for those failures that have
hardware error codes that correspond to the error
summary codes hex F075 and hex E010 OOOE.

• Operator intervention required event (hex OOOB 07 01)

The operator intervention required event is signaled
when the device requires the operator to take some
action, but no error has occurred.

The 14-byte variable data returned with this event is
formatted as follows:

Bytes 0-1

Bytes 2-9

Status - code that was included in the
error log message if there was a
corresponding error log message;
otherwise, the status bytes contain a O.

Time stamp - contains the time stamp
of the corresponding error log
message; otherwise, the time stamp
is O.

Bytes 10-11 Operational unit number - hex 0018 or
hex 0058

Bytes 12-13 Optional data - format is as follows:

Condition

Byte 12
bit (0)

Indication Description

Ready light SCS command was
off received, and the

printer was not
ready. Printer
is stopped and is
not ready as a
result of a normal
stop condition, and
no errors exist.

Recovery Procedures

Press the Start key.

The remaining bits of bytes 12 and 13 are O.

• Request I/O complete event (hex OOOB 09 01)

This event is signaled if the user requests it. See
Request I/O (REQID) in Chapter 17 for details.

• Request I/O response queue destroyed event (hex
OOOB OA 01)

This event is signaled if the user truncates or
destroys the request I/O response queue while the
machine is processing Request I/O instructions.

Source/Sink Specialization 23-39

Exceptions

The following table gives the cases where the
source/sink resource not available exceptions (hex 3404)
are signaled when a Modify LUD instruction for the
machine console LUD is executed.

Device-
Specific

Defect Return
Code Code

Command (hex) (hex) Meaning

Vary On 2302 0001 I/O device failure has
occurred. LUD failure
event has been signaled.

Power On 2306 0601 I/O device power failure
has occurred. LUD
failure event has been
signaled.

Power Off 2307 0601 I/O device power failure
has occurred. LUD
failure event has been
signaled.

Suspend 2312 1203 Suspend session
Session rejected because an

operator intervention
condition exists.

Quiesce 2313 1302 Quiesce failure because
Session a terminating error

condition exists.

1303 Quiesce session rejected
because an operator
intervention condition
exists

23-40

DISKETTE MAGAZINE DRIVE PROGRAMMING
CONSIDERATIONS

The diskette magazine drive may be used for either
load / dump operations or data interchange operations.

The logical unit description (LUD) for the diskette
magazine drive is created and initialized by the Create
Logical Unit Description instruction. There must be
enough space reserved in the LUD for the
device-specific parameters needed by the diskette
magazine drive. The device-specific parameters are
used during session processing and are initially set to
O's by the Create Logical Unit Description instruction.

Before a Request I/O instruction can be accepted by
the diskette magazine drive, certain steps must occur.

1. The LUD must be created through the use of the
Create LUD instruction.

2. The diskette magazine drive must be varied on
through the use of the Modify LUD instruction.

3. The LU D must be made active through the use of
the Modify LUD instruction.

An active session allows creation of a file(s) or access to
a file(s) on the diskette. The Request I/O instruction
causes blocks of data to be transferred to the diskette
magazine drive or from the diskette magazine drive if
the device is in an active session for data interchange.
When the device is in an active session for load/dump
operations, objects are transferred to/from the diskette
magazine drive.

DISKETTE MAGAZINE DRIVE CREATE LOGICAL
UNIT DESCRIPTION (CRTLUD) TEMPLATE

The following fields of the logical unit description
template must be initialized as indicated for the diskette
magazine drive:

Field Entry

LUD type Char 00

Device type Char 72MD

Model number Char 1001

LUD operational number Hex 0012

Power control Hex 0000

Session definition data Bin 0

Load / dump device Hex 01

Operating mode Hex 00 (data interchange
mode)

Hex 01 (load mode)
Hex 02 (dump mode)

Specific characteristics Hex 0000
length

Retry value length Hex 0006 (one retry value)

Retry values Char(6)
(see Retry Values
later in this chapter)

• Error type Char(2)

• Error retry value Bin(2)

• Reserved (binary 0) Bin(2)

Error threshold length Hex 0008
(one error threshold)

Error threshold values Char(8)
(see Error Threshold Values
later in this chapter)

• Error type Char(2)

• Threshold value Bin(2)

• Reserved (binary 0) Char(4)

Device-specific contents Hex 0210 (528)
length

Modifiable length Hex 0105 (261)

Device-specific contents Char(528)
(see Device-Specific Contents
later in this chapter)

Retry Values

Error Error
Type Error Description Retry Value

Hex 0001 Data or ID eRe
error on Read
Data operation

Error Threshold Values

Value (40-80)
Suggested nominal
value = 40

Error
Type

Threshold
Error Description Value

Hex 0001 Data or ID eRe
error on Read
Data operation

Value (1-100)
Suggested nominal
value = 50

Source/Sink Specialization 23-41

Device-Specific Contents: Char(528) Bytes 133-260 File header Char(128)

Bytes 0-4 Active session flags Char(5) · Bytes 133-166 Unused Char(34)

· Byte 0 Char(1) · Bytes 167-171 End of extent Char(5)
- Bit 0 Diskette (CCHRR)

encoding
o = EBCDIC · Bytes 172-176 Unused Char(5)
1 = ASCII

- Bits 1-7 Reserved · Byte 177 Multivolume Char(1)
(binary 0) indicator

Hex 40 = Data set

· Bytes 1-4 Reserved Char(4) complete
(binary 0) on volume

Char C Data set
Bytes 5-132 Current volume Char(128) continued

label on another
volume

Bytes 5-75 Unused Char(71) Char L Last volume
of the data

· Byte 76 Type Char(1) set
Hex 40 1-sided,

FM mode · Bytes 178-179 Volume Char(2)
Char 2 2-sided, sequence number

FM mode Hex 4040 = Noncontinued
Char M = 2-sided, Char 01-Char 99 = Continued

MFM mode

· Bytes 180-206 Unused Char(27)

· Bytes 77-79 Unused Char(3)

· Bytes 107-211 End of data Char(5)

· Byte 80 Sector size Char(1) (CCHRR)
Hex 40 128-byte

sectors · Bytes 212-260 Unused Char(49)
Char 1 256-byte

sectors Bytes 261-266 Status flags Char(6)
Char 2 512-byte

sectors · Byte 261 Reserved Char(1)
Char 3 1024-byte (binary 0)

sectors

· Byte 262 Current slot Char(1)

· Bytes 81-132 Unused Char(52) number
(binary 0)

· Bytes 263-265 Bad cylinders Char(3)
(binary 0)

· Byte 266 Reserved Char(1)
(binary 0)

23-42

Bytes 267 - 394 L/ D volume label Char(128)
(binary 0)

Bytes 395-522 L/ D header label Char(128)
(binary 0)

Bytes 523-527 L/ D interrupt Char(5)
location
(binary 0)

· Byte 523 Interrupted slot Char(1)
number

· Byte 524 Interrupted Char(1)
cylinder

· Byte 525 Interrupted head Char(1)

· Byte 526 Interrupted sector Char(1)

· Byte 527 Interrupted sector Char(1)
size

The current volume label and file header fields are
ignored during a Create LUD instruction and would
generally contain binary O' s or blanks. The fields other
than the unused fields could be specified. if known, but
they are usually set after a Request I/O instruction for a
read VTOC operation has been executed. The normal
startup procedure is as follows:

MODLUD Vary on
MODLUD - Activate session
REQIO Increment diskette address

(loads diskette)
MODLUD Set encoding bit (if needed)
REQIO Read VTOC
MODLUD Modify the LUD device specific

contents (sets current volume label and
file header fields from read VTOC data)

REQIO Seek to address
REQIO Read/write

The current volume label and file header fields are
formatted as they are on the diskette so that they can
be set directly from the information read from the
VTOC. The values in the unused fields are ignored. The
end-of-extent and end-of-data fields have a
5-character CCHRR format in which:

CC Cylinder Char 01-Char 74 for end of extent
Char 011-Char 75 for end of data

H Head Char 0 or Char 1

RR Sector Char 01 (see Seek to Address
Command later in this chapter)

Source/Sink Specialization 23":'43

If a MODLUD (activate) instruction is issued, the type,
sector size, and the end of extent I end of data sector
number in the LUD device-specific contents area are
checked for valid values. If invalid values area specified,
the following defaults are used internally for 1/0
processing.

Type: 1-sided, FM mode

Sector size: 128-byte sectors

End of extent I end of
data sector number: If 0, default to 1

These defaults are used until a MODLUD instruction is
issued to modify the device specific area of the LUD. If
any of these values are found invalid at that time, the
MODLUD instruction is rejected and the template value
invalid exception is signaled.

The current slot number and bad cylinders fields are
feedback areas for the Materialize LUD instruction and
should be binary 0 for a Create LUD instruction. The
current slot number field is set whenever the Increment
Diskette Address command in the Request I 10
instruction is used; this field can have values of hex
01 -17. The bad cylinders field is set only when a
diskette is formatted by the Request I 10 instruction and
is initialized to hex FFFFFF. For bad cylinders, each byte
(for up to three bad cylinders) can have values of hex
00-4C.

The LID volume label, LID header label, and LID
interrupt location are used only with LI D operations.
See Chapter 25 for additional information about LI D
operations. The values are hex values and have the
following ranges:

Interrupted slot number: Hex 01-Hex 17

Interrupted cylinder number: Hex 01-Hex 4C

Interrupted head: Hex 00 or Hex 01

Interrupted sector: Hex 01-Hex 08

Interrupted sector size: Hex 03 for a
1024-byte sector

Note: The only valid sector size for LID operations
is 1024.

DISKETTE MAGAZINE DRIVE MODIFY LOGICAL
UNIT DESCRIPTION (MODLUD) INSTRUCTION

The following is a list of functions the diskette magazine
drive supports through the Modify Logical Unit
Description (MODLUD) instruction:

• Vary on

• Vary off

• Activate

• De-activate

• Suspend

• Quiesce

• Reset

• Resume (activate after suspend, quiesce, or reset)

• Modify device-specific contents

• Modify operating mode (load, dump, data
interchange)

• Modify retry values

• Modify error threshold values

See Chapter 17 for the meaning and use of each
function.

The following are special considerations taken by the
machine for the MODLUD functions listed previously:

• The vary on and de-activate functions eject a
diskette, if one is loaded, and cause the magazine to
go to the home position.

• The reset function causes the machine to cease
processing as soon as possible. Continuing the
session after a Reset function yields unpredictable
results.

• The first 261 (hex 105) bytes of device-specific
contents area of the LUD (the active session flags,
current volume label, and file header fields) may be
altered at any time through the use of the MODLUD
instruction. Note that any changes to the
device-specific area are reflected in the I/O
commands issued to the device. Generally, the area
is altered to set the volume label and file header
before file processing begins, not during the
processing of a file. If the user does alter the area
during file processing, the results are unpredictable
and may cause I/O errors. The status flags field,
load / dump volume label, header label, and interrupt
location fields are feedback areas meaningful only to
the MATLUD instruction and are not modifiable. The
other modifiable fields in the LU D template are
described under the Modify Logical Unit Description
(MODLUD) instruction in Chapter 17.

For normal data interchange, the load / dump definition
data in the LU D should be set as follows:

• Load / dump device
(set on the Create
. LUD instruction)

• Operating mode

• Load/dump pending

• Corresponding primary
address

• Load / dump exchange
status

Hex 01

Hex 00

Bin a

Bin a

Bin a

For load or dump data interchange, the operating mode
field can be set to hex 01 (load mode primary device) or
to hex 02 (dump mode primary device). All other fields
should be set the same as in normal mode.

DISKETTE MAGAZINE DRIVE REQUEST I/O
(REQIO) INSTRUCTION

The SSR (see Create Logical Unit Description (CRTLUD)
in Chapter 17) for a Request I/O instruction to the
diskette magazine drive contains the following values:

Field

Source/sink object

Response queue

Source/sink data area

Optional pointer

Request priority

Request identification

Function field

Control field

Key length

Key offset

RD count

RD offset

Value

Pointer to the diskette
magazine drive LUD

Pointer to the response queue

Space pointer

Reserved (binary 0)

See Request / /0 (REO/D)
in Chapter 17

See Request / /0 (REO/D)
in Chapter 17

Hex 80

N or C

Bin(2)

Bin(2)

Bin(2)

Bin(2)

The diskette magazine drive does not check the label
information except on a VTOC operation. On a write
VTOC operation, the first record in the SSD (volume
label) must begin with VOL 1 and any header labels to
be written must begin with HDR1. On a read VTOC
operation, the first record read from the diskette must
begin with VOL 1 and the only subsequent records
placed in the SSD are those that begin with HDR1 .

If the diskette encoding bit in the device-specific area of
the LUD specifies ASCII and it is a read operation, the
machine translates the ASCII data that is read into
EBCDIC. If ASCII is specified and it is a write operation,
the machine takes the EBCDIC data from the SSD and
translates it to ASCII before the write operation takes
place. If invalid EBCDIC characters are found during an
EBCDIC to ASCII conversion, an error is returned. Bytes
3-6 of the write RD contain an offset specifying the
byte in the SSD that is invalid. If EBCDIC is specified,
no translation takes place.

Note: If an error recovery action is to reissue the
REOIO instruction in error, the request descriptors and
the SSR should not be altered; otherwise, unpredictable
results could occur.

Source/Sink Specialization 23-45

Request Descriptor

A Request I/O instruction (other than continue) to the
diskette magazine drive I/O manager must contain one
or more RDs. Only one write or read RD is allowed for
each Request I/O instruction. A Request I/O instruction
with one read RD and one write RD results in an error.
Any number of Seek, Address, Format, Halt, or
Increment commands may exist in a Request I/O
instruction, with or without a single read or write RD.

The format of the RD is:

Byte 0

Bytes 1-6

• Byte 1
- Bit 0

- Bits 1-7

Command Char(1)
Hex 01 - Write
Hex 02 - Read
Hex 04 - Seek to Address
Hex 05 - Format Diskette
Hex OC - Increment Diskette Address
Hex 18 - Address
Hex lC - Halt

Command modifier Char(6)

Control Char(1)
Command controP
o = Perform command
1 = Ignore command
Command specific
(see Command

in this chapter)

• Bytes 2-6 Command specific
(see Command

Char(5)

in this chapter)

Byte 7 Reserved (binary 0) Char(1)

Bytes 8-9 Segment count Bin(2)

Bytes 10-15 Reserved (binary 0) Char(6)

1 Fields modified by the execution of a Request I/O
instruction

23-46

The command field indicates the type· of operation to be
performed. The specific operations are described with
the individual commands.

The control field indicates whether the RD is to be
ignored and generally is a binary 0 when the instruction
is issued. This field is set by the machine to a binary 1
when the RD is successfully completed. This
information is useful when the user restarts an operation
after an error. The Request I/O instruction can be
reissued; all RDs that were completed are ignored, and
the RD that failed is retried. After normal completion,
the control field must be reset before the SSR can be
reused.

The segment count field identifies the number of
consecutive sectors to be transferred by the operation.
This field must be 0 for a read VTOC function or a read
VTOC IPL function.'

Each segment corresponds to the sector size on the
diskette and is accessed sequentially. All RD commands
use the parameters specified in the device-specific area
of the LUD. All command modifier bytes must be
reinitialized unless the RD command reissued is a
partially complete Request I/O instruction.

Source Sink Data (SSD) Conventions

Sectors are placed in the SSD consecutively with no
control bytes between sectors. A reissued Request I/O
instruction begins at the position indicated by the
segment count, sectors transferred count, sectors
skipped count, and the sector size in the LUD. The SSD
area for any Read or Write command must be page
aligned.

Commands

The following are the commands supported by the
Request I/O instruction.

Read Command: The format of the RD for a Read
command is as follows:

Byte 0 Command (Hex 02) Char(1)

Bytes 1-6 Command modifier Char(6)

· Byte 1 Control Char(1)
Bit 0 Command controP

- Bits 1-2 Read control
Bin 00 = Normal read
Bin 10 = Read VTOC
Bin 01 = Read VTOC I PL

- Bits 3-7 Reserved (binary 0)

· Byte 2 Reserved (binary 0) Char(1)

· Bytes 3-4 Sectors transferred Bin(2)

count'

· Bytes 5-6 Sectors skipped Bin(2)

count'

Byte 7 Reserved (binary 0) Char(1)

Bytes 8-9 Segment count Bin(2)

Bytes 10-15 Reserved (binary 0) Char(6)

, Fields modified by the execution of a Request I/O
instruction

The three types of Read commands are normal, VTOC,
and VTOC I PL. The normal Read command is used to
read one or more sectors from any cylinder other than
O. The device must have been previously positioned to
the first sector to be read. The first sector read is
placed in the SSD at the offset indicated by the sectors
transferred count multiplied by the sector size in the
LUD.

The number of sectors to be read must be greater than
0, or an error is signaled. The number of sectors to be
read is the segment count minus the sectors transferred
count and the sectors skipped count. Normally, when an
RD is first issued, the sectors transferred count and
sectors skipped count fields are O. The sectors
transferred count in the RD is incremented for every
sector transferred to the SSD. The sectors skipped
count in the RD is incremented every time an error is
signaled due to the occurrence of a sector marked as
deleted or relocated. When the RD is marked as
successfully completed, the sum of the sectors
transferred count and the sectors skipped count equals
the segment count, and the SSD contains the number of
sectors indicated by the sectors read count. When a
sector marked as deleted or relocated is encountered
the count is increased, an error FBR is returned, nothing
from that sector is placed in the SSD, and the device is
positioned after the sector in question. The user only
has to issue a Request I/O (continue) instruction to clear
the error and reissue the Request I/O to continue
reading subsequent sectors. A bad sector error works
exactly the same way except that the sectors skipped
count is not incremented. This allows the user to either
quit reading or to note the sector that is missed and to
continue reading the rest of the file.

Each sector on the diskette has a sequential sequence
number preceding it. The sequence numbers are
checked by the machine when reading a diskette. Some
diskettes may not have sequential sector sequence
numbers. When a sector sequence number error is
encountered, the device is left positioned at the sector
in error and an error FBR is returned. The user has to
issue only a Request I/O (continue) and reissue the
Request I/O instruction to read the sector (since it is
now the starting sector of a new read command). If the
following sectors sequence number is not one larger
than the previously read one, another sector sequence
error is signaled.

Source/Sink Specialization 23-47

If an end of track is encountered while reading, the
read/write head is automatically moved to the next
sequential sector, to the other side of a two-sided
diskette, or to the next good cylinder.

End-of-volume and end-of-data conditions are checked
at all times, by using the volume and file header
information stored in the LUD. On end-of-volume, the
user, after issuing a Request I/O (continue) instruction,
causes a new diskette to be loaded, reads the VTOC,
modifies the LUD with the volume and file data, seeks
to the correct address, and then reissues the Request
I/O instruction to continue reading.

There are special requirements and limitations for a
normal read command when sectors are read from
cylinder 0 because cylinder 0 is unique. The segment
count field must be set to 1 which allows only one
sector to be read at a time.

The following fields in the device-specific area of the
LUD must be set to reflect the characteristics of the
particular sector to be read from cylinder 0 rather than
the characteristics of the data sectors on cylinders 1
through 74:

• Diskette encoding

• Type

• Sector size

EBCDIC or ASCII

1 -sided FM mode,
2-sided FM mode,
or MFM mode

128 or 256

The end of extent and the end of data must be set
beyond the sector to be read.

Sectors 1 through 3 of cylinder 0 are always in EBCDIC.
The remaining sectors may be either EBCDIC or ASCII.

Sectors on the front side of cylinder 0 are always 128
bytes (FM mode). If the diskette is two-sided, the
sectors on the back of cylinder 0 may be 128 bytes (FM
mode) or 256 bytes (MFM mode).

23-48

The Read VTOC command is used to read cylinder 0 for
the volume label (those having VOL 1 in the first 4
characters) and all undeleted valid header records (those
having HDR1 as the first 4 characters). Only the volume
label and the undeleted valid header records are placed
in the SSD. The SSD must be large enough to hold the
maximum number of records (40 for a one-sided
diskette, 46 or 72 for a two-sided diskette). Note that
VTOC records are always 128 bytes long. The sectors
transferred count is set to indicate the number of
records including the VOL that are placed in the SSD.
The maximum number of records possible on the front
side of a diskette (including the VOL) is 20. On the back
side of a diskette, the maximum number of headers
possible in FM mode is 26 or 52 if in MFM mode.

The segment count and sectors skipped count are not
used with a Read VTOC command and must be
binary O.

When a Read VTOC command is executed, the machine
does an implicit seek to the correct position on the disk.
Following the Read VTOC command, a seek must be
done to position for a normal Read or Write command.

Normal completion of a Read VTOC command results in
an error FBR and requires a Request I/O (continue)
instruction to continue operations. This is done to
facilitate end-of-volume processing. For example, the
end-of-volume sequence of events could be as follows:

1.

2.

3.

4.

5.

6.

7.

End-of-volume error on a Request I/O instruction.

Issue a Request I/O instruction to load the new
diskette. The new diskette should have a lower
key value to bypass Request I/O instructions
already on the queue.

Issue a Read VTOC command.

Issue a Request I/O (continue) instruction to
release the above Request I/O instructions.

Read VTOC command complete error. Analyze
header information.

Issue a Modify LUD instruction to modify VOL and
HDR fields.

Issue a Request I/O instruction to seek to the first
sector of the new file.

8. Reissue a Request I/O instruction to read VTOC.

9. Issue a Request I/O (continue) instruction to
release the above Request I/O instructions.

Encountering a bad sector causes the read to stop.
Sectors previously read are in the SSD. Subsequent
sectors are inaccessible.

The Read VTOC IPL command is used at IPL time and
reads the first 3 sectors of the VTOC (384 bytes) from
cylinder O.

At normal completion of a Read VTOC I PL command, an
error is signaled to allow the user to analyze the data.
To recover from this condition, the user need only issue
a Request I/O (continue) to continue processing. When
this command is to be executed, the machine does an
implicit seek to the correct position on the disk and the
former position is lost.

If the data read is to be converted from ASCII to
EBCDIC, any characters read that cannot be converted
to a corresponding EBCDIC character are replaced by an
asterisk (hex 5C) in the user buffer. This is done without
any error condition being returned to the user. The
exception to this is a read VTOC operation. If the first 4
bytes read from sector seven are not VOL 1 in ASCII
format, nothing is transferred to the SSD area. This is
also true if EBCDIC mode is specified and the first 4
bytes are not VOL 1 in EBCDIC format. Conversion does
not occur on a Read VTOC IPL RD command because
the data is always written and read in EBCDIC format.

Encountering a bad sector causes the operation to stop,
and subsequent sectors are inaccessible. The sectors
transferred count, sectors skipped count, and segment
count fields are not used with a Read VTOC IPL
command and must be binary O.

Source/Sink Specialization 23-49

Write Command: The format of the RD for a Write
command is as follows:

Byte 0 Command (Hex 01) Char(1)

Bytes 1-6 Command modifier Char(6)

· Byte 1 Control Char(1)
Bit 0 Command controll

- Bits 1-2 Write control
Bin 00 = Normal write
Bin 10 = Read VTOC
Bin 01 = Read VTOC I PL

- Bits 3-7 Reserved
(binary 0)

· Byte 2 Reserved Char(1)
(binary 0)

· Bytes 3-4 Sectors transferred Bin(2)
count1

· Bytes 5-6 Reserved Bin(2)
(binary 0)

Byte 7 Reserved (binary 0) Char(1)

Bytes 8-9 Segment count Bin(2)

Bytes 10-15 Reserved (binary 0) Char(6)

1 Fields modified by the execution of a Request I/O
instruction

A normal Write command is used to write one or more
sectors to any cylinder other than cylinder O. The device
must have been previously positioned to the first sector
to be written.

The number of sectors to be written must be greater
than 0 or an error is signaled. The number of sectors to
be written is the segment count minus the sectors
transferred count. Normally, when an RD is first issued,
the sectors transferred count field is O. The sectors
transferred count in the RD is incremented for every
sector written. The device does not write any deleted or
relocated sectors, but does write over deleted or
relocated sectors. When the RD is marked as
successfully completed, the sectors transferred count
equals the segment count.

23-50

If a sector media write error FBR is returned, the
read / write head is positioned after the sector that could
not be written.

If an end of track is encountered while writing, the
read/write head is automatically moved to the next
sequential sector, to the other side of a two-sided
diskette, or to the next good cylinder. End-of-volume is
indicated when the sector written corresponds to the
end of extent field in the file header record located in
the device-specific area of the LUD. If the
end-of-extent value is wrong (greater than the diskette
capacity), an I/O error occurs. In an end-of-volume
condition, the user must handle the situation and reissue
the Request I/O instruction being processed when the
error occurred.

The Write VTOC command is used to write all of
cylinder 0 (starting with sector 7) with a VOL label,
header labels, and deleted sectors.

If the first 128-byte record in the SSD does not begin
with VOL 1, an error is returned. All of the subsequent
128-byte records in the SSD starting with HDR1 are
also written. Records not starting with HDR1 are
ignored in the SSD. The segment count indicates the
number of 128-byte records in the SSD and must be
greater than O. The maximum number of records
possible on the front side of a diskette (including VOL)
is 20. On the back side of the diskette, the maximum
number of records possible in FM mode is 26, and the
maximum number of records possible in MFM mode is
52.

When the SSD is exhausted, the rest of cylinder 0 (both
sides if two-sided diskette) is written with deleted
records (records starting with DDR1). If the diskette
encoding bit in the LUD specifies ASCI/, the VOL header
and deleted records are written in ASCI/format. When
a Write VTOC is executed, the machine does an implicit
seek to the VTOC area. Following the Write VTOC
command, a seek must be done to position for a normal
read/write since the former position is not retained. It is
not possible to write more than cylinder 0 with this
command. The number of headers written (including the
VOL and excluding deleted headers) is returned in the
sectors transferred count field. Normal completion of
the Write VTOC command results in an error FBR and
requires a Request I/O (continue) instruction to
continue.

The Write VTOC IPL command is used to write the first
three sectors of cylinder 0 with 384 bytes of data from
the SSD. At the normal completion of a Write VTOC
IPL command, an error FBR is returned and the user
need only issue a Request I/O (continue) to continue
processing.

When a Write VTOC IPL command is executed, the
machine does an implicit seek to the VTOC area, and
the former position of the read / write head is not
retained. It is not possible to write more or less than
384 bytes with this command. The sectors transferred
count and segment count fields are unused and must be
binary O. An error in writing a sector causes the
operation to stop and a device error to be returned in
the FBR.

If the data is to be converted from EBCDIC to ASCII
format, the data is copied from the SSD area to an
internal buffer and then converted. If an EBCDIC
character is encountered that cannot be converted to
ASCII, the offset to the invalid data field in the RD
(bytes 3-6) is set to the offset of the byte in error in the
SSD area. For example, if the first byte in the SSD
contains an invalid character, the offset field in the RD
is set to O. Conversion is done only on a cylinder
boundary. If the data to be written requires more
sectors than are available on the cylinder to be written
on, any data successfully converted, on a cylinder basis,
is written and the position of the read / write heads will
increment to the next cylinder(s). If the user recovery
action is to correct the character in error (substitute a
valid EBCDIC character) and reissue the Request I/O
command, the offset to invalid data in the RD must be
reset (set to 0). Depending on how much data was
successfully converted and written, it may be necessary
to issue a Request I/O command to position the
read/write heads at the address that they were initially
at before reissuing the Write Request I/O command.
Conversion will not occur on a Write VTOC IPL RD
command because the data is always written in EBCDIC
format.

Seek to Address Command: This command allows the
user to specify an address, and the machine positions
the read head at that address. If the address specified
is invalid, an error is indicated in the status field of the
feedback record, and the former position of the
read/write head is retained.

The format of the RD for the Seek to Address command
is as follows:

Byte 0 Command (Hex 04) Char(1)

Bytes 1-6 Command modifier Char(6)

· Byte 1 Control Char(1)
Bit 0 Command control'

- Bits 1-7 Reserved
(binary 0)

· Byte 2 Cylinder Char(1)
Hex 01-Hex 4A (1-74)

· Byte 3 Head Char(1)
Hex 00- Hex 01

· Byte 4 Sector Char(1)
Hex 01 (dependent on

sector size;
see below)

· Bytes 5-6 Reserved Char(2)
(binary 0)

Bytes 7-15 Reserved (binary 0) Char(9)

, Fields modified by the execution of a Request I/O
instruction

Source/Sink Specialization 23-51

If the type field in the device-specific area of the LUD
specifies frequency modulation (hex 40 or char 2), the
valid sector sizes and ranges are:

Size

128
256
512

Maximum Number
Sectors/Track

26
15
8

If the type field in the device-specific area of the LUD
specifies multiple frequency modulation (char M), the
valid sizes and ranges are:

Maximum Number
Size Sectors/Track

256 26
512 15·

1024 8

Note: These sizes and ranges apply only to cylinders
other than cylinder O.

23-52

Format Diskette Command: The machine reformats the
diskette upon receiving this command.

When diskette formatting is requested, the entire
diskette is formatted by writing valid identifier fields
throughout all the sectors on the diskette. If any sector
is bad, the cylinder is marked defective. Formatting is
done by writing cylinder X head· 0, then cylinder X head
1. For a 33FD diskette, formatting head 1 is ignored.

The cylinder initialization pass follows the cylinder
formatting. The initialization pass is done by writing
worst case data sectors and verifying the write was
successful. This sequence is repeated cylinder by
cylinder for the entire diskette. Upon completion of
these Write commands, the volume header, along with
the error recovery map, is written in the VTOC area.
The volume header is taken from the device-specific
area. The error recovery map is constructed. If a sector
is found to be defective during the write operation, the
cylinder is marked bad, and the next cylinder is used. If
more than two cylinders are bad or if cylinder 0 is bad
or if none of the hex FF control records written on a bad
track can be read, the diskette is bad. For each
defective cylinder found, the device-specific area of the
logical unit description is updated with the bad cylinder
number.

The format of the RD for the Format Diskette command
is as follows:

Byte 0 Command (hex 05) Char(1)

Bytes 1-6 Command modifier Char(6)

· Byte 1 Control Char(1)
Bit 0 Command controP

- Bits 1-7 Reserved (binary 0)

· Byte 2 Slot number Char(1)
Hex 01-Hex 17 (1-23)

· Bytes 3-6 Reserved (binary 0) Char(4)

Bytes 7 -15 Reserved (binary 0) Char(9)

1 Fields modified by the execution of a Request I/O
instruction

Increment Diskette Address Command: This command
causes the device to replace the diskette currently in the
machine with one specified by the user. The valid
request range is 1 -3 for manual slots, 4-13 for
magazine 1 slots 1-10, and 14-23 for magazine 2 slots
1-10. Any other request results in an error. If 0 is
specified for the slot, the magazine goes to the home
position. This command always results in a seek to
cylinder O. If the current slot number is the one
requested, no magazine movement occurs.

The format of the RD for the Increment Diskette
Address command is as follows:

Byte 0 Command (hex OC) Char(1)

Bytes 1-6 Command modifier Char(6)

· Byte 1 Control Char(1)
Bit 0 Command control'

- Bits 1-7 Reserved (binary 0)

• Byte 2 Slot number Char(1)
Hex OO-Hex 17 (0-23)

• Bytes 3-6 Reserved (binary 0) Char(4)

Bytes 7 -15 Reserved (binary 0) Char(9)

1 Fields modified by the execution of a Request I/O
instruction

Address Command: This command indicates to the user
the current position of the read/write head on the
diskette. This information is returned in the request
descriptor command modifier byte. This address is the
internal position of the diskette read / write head;
therefore, there is no interface to the I/O devices.

The possible values returned in the slot number field are
0-23 (hex OO-hex 17) and represent the slot number of
the diskette loaded. If no diskette is loaded, the drive is
in the home position (slot number 0) and the cylinder,
head, sector, and sector size fields will be set to O.

The other fields can have the following values:

Cylinder:

Head:

Sector:

0-74 (hex OO-hex 4A)

0-1 (hex OO-hex 01)

1 (dependent on sector size; see
the Seek to Address Command)

Sector size: Hex 00 = 128-byte sectors
Hex 01 = 256-byte sectors
Hex 02 = 512-byte sectors
Hex 03 = 1024-byte sectors

For example, if the user started reading on diskette
13 (last diskette in magazine 1), written with
128-byte sectors, on cylinder 5, the primary side,
starting with sector 1 for 8 sectors and then this
command was issued, the values returned in bytes
2-6 would be 0005000900. If the user issued a Seek
to Address command and followed by an Address
command, the address returned would be the same
address as that for the Seek command.

Source/Sink Specialization 23-53

The format of the RD for the Address command is as
follows:

Byte 0 Command (hex 18) Char(1)

Bytes 1-6 Command modifier Char(6)

· Byte 1 Control Char(1)
Bit 0 Command control'

- Bits 1-7 Reserved (binary 0)

· Byte 2 Slot number' Char(1)

· Byte 3 Cylinder number' Char(1)

· Byte 4 Head' Char(1)

· Byte 5 Sector number' Char(1)

· Byte 6 Sector size' Char(1)

Bytes 7-15 Reserved (binary 0) Char(9)

, Fields modified by the execution of a Request I/O
instruction

Halt Command: This command halts further Request I/O
instructions from being processed. Processing is
terminated, and a feedback record is returned. Issuing a
Request I/O (continue) instruction restarts the process.

The format of the RD for the Halt command is as
follows:

Byte 0 Command (hex 1 C) Char(1)

Bytes 1-6 Command modifier Char(6)

· Byte 1 Control Char(1)
Bit 0 Command controP

- Bits 1-7 Reserved (binary 0)

· Bytes 2-6 Reserved (binary 0) Char(5)

Bytes 7-15 Reserved (binary 0) Char(8)

, Fields modified by the execution of a Request I/O
instruction

23-54

Feedback Record and Error Recovery Procedures

The format of the feedback record is as follows:

Bytes 0-15 Source / sink request Space
address pointer

Bytes 16-17 Request identification Bin(2)

Bytes 18-19 Error summary Bin(2)

Bytes 20-21 RD number Bin(2)

Bytes 22-23 RIU segment count Bin(2)

Bytes 24-63 Device-dependent Char(40)
area

· Bytes 24-25 Device-depen- Char(2)
dent error code

· Bytes 26-27 Hardware error Char(2)
code

· Bytes 28-35 Time stamp Char(8)

· Bytes 35-36 Operating unit Char(2)
number

· Bytes 38-63 Reserved Char(26)
(binary 0)

Descriptions of the request address and request 10

fields are given under Request I/O (REQIO) in
Chapter 17.

The error summary field defines the status of the
Request I/O instruction defined in the Request I/O
instruction description. The specific values possible for
the diskette magazine drive are listed in Figure 23-6.

The RD number is the index of the last RD processed or
the RD in error if an error is indicated.

The RIU segment count field is not used by the diskette
magazine drive and is set to binary o.

The device-dependent area is all binary O's unless the
presence of device-dependent data is indicated by the
error summary value. If device-dependent data is
present, the fields have the following definitions.

The device-dependent error code is a further
categorization of the hardware error codes shown in
Figure 23-6.

The hardware error code is logged in the hardware error
log and indicates the specific hardware error
encountered. The possible values are shown in
Figure 23-6.

The time stamp and operating unit number are the same
values present in the hardware error log entry and are
used to correlate the FBR and the error log entry for
maintenance purposes.

Figure 23-6 lists the error summary, device-dependent
error codes, the hardware error log codes that caused
the error, and the recommended recovery action. If the
error is the result of a load/dump operation, only the
last byte of the error summary field is shown. This is
concatenated with the load/dump code, resulting in the
error summary returned with the load / dump feedback
record and itemized in the load / dump description.

Source/Sink Specialization 23-55

Device-
Error Dependent Hardware
Summary Error Code Error Code
(hex) (hex) (hex) Meaning Recovery Action

0000 N/A N/A No error condition N/A

0008 N/A N/A REQIO (continue) instruction N/A
complete

4089 N/A N/A REQIO (continue) instruction N/A
rejected because of a normal
REQIO instruction currently being
processed

C009 N/A N/A Partially processed request An MODLUD (activate) instruction
terminated because of reset must be issued to restart processing,
session or an MODLUD (de-activate)

instruction must be issued to destroy
the session.

COOA N/A N/A Unprocessed request because of An MODLUD (activate) instruction
reset session must be issued to restart processing,

or an MODLUD (de-activate)
instruction must be issued to destroy
the session.

COlO N/A N/A An REQIO instruction rejected The MODLUD (reset, de-activate, vary
because the device operational off, vary on, and activate) functions
unit task failed must be issued to restart processing.

C016 N/A N/A End of file An REQIO (continue) instruction is
needed to start processing.

C017 N/A N/A End of volume An REQIO (continue) instruction is
needed to start processing.

C042 N/A N/A Data not valid (EBCDIC to ASCII Change the encode bit in the
translation error) device-specific area, reissue the

REQIO instruction, and issue an REQIO
(continue) instruction.

C043 N/A N/A Invalid buffer alignment Allocate the SSD to be page aligned,
reissue the REQIO instruction, and
issue an REQIO (continue) instruction.

C044 N/A N/A SSD area is too small Make a smaller request or make the
SSD larger, reissue the REQIO
instruction, and issue an REQIO
(continue) instruction.

Figure 23-6 (Part 1 of 6). Diskette Magazine Drive Error Summary Values

23-56

Device-
Error Dependent Hardware
Summary Error Code Error Code
(hex) (hex) (hex) Meaning Recovery Action

C084 N/A N/A Invalid SSD pointer Correct SSD pointer with a valid
pointer, reissue the REalO instruction,
and issue an REalO (continue)
instruction to restart processing.

C085 N/A N/A Invalid function field Correct the SSR, reissue the REalO
instruction, and issue an REalO
(continue) instruction to restart
processing.

C088 N/A N/A Invalid RD sequence User may have only one Read or Write
command per REalO instruction.
Correct and reissue the REalO
instruction and issue an REalO
(continue) instruction to restart
processing.

DOCF N/A N/A Halt RD encountered in RD Issue an REalO (continue) instruction
sequence to restart processing.

DOEF N/A N/A VTOC command has been Issue an REalO (continue) instruction
executed to restart.

FODF N/A 0101 Unrecoverable error because of a User should reset and terminate the
channel error session. The job may be restarted. If

the error persists, call the service
representative.

0504 Channel error on read sense during
channel error recovery procedure

E010 0001 0107 One-sided media in drive Request is invalid for a one-sided
diskette. Check request to see
whether logic is correct. An REQIO
(continue) instruction is needed to
restart processing.

E010 0003 N/A Device cover open Close cover, reissue the REalO
instruction, and issue an REalO
(continue) instruction to restart
processing.

Figure 23-6 (Part 2 of 6). Diskette Magazine Drive Error Summary Values

Source/Sink Specialization 23-57

Device-
Error Dependent Hardware
Summary Error Code Error Code
(hex) (hex) (hex) Meaning Recovery Action

E010 0007 N/A Diskette defective Replace diskette. Issue an REQIO
(continue) instruction to restart.

0403 Read data CRC error

0404 Write/verify data CRC error

0405 Read ID CRC error

0406 Write/verify ID CRC error

0407 Not oriented 1 error

0408 An incorrect address mark sequence
(not oriented 2)

E010 0009 I/O error media Issue an REQIO (continue) instruction
to restart. The machine is positioned
at the first sector beyond the failing
sector.

0403 Read data CRC error

0404 Write/verify data CRC error

0405 Read ID CRC error

0406 Write / verify I D C RC error

0408 An incorrect address mark sequence
(not oriented 2)

E010 OOOA 0407 Nonsequential sector sequence Operation will continue if the REQIO
detected (not oriented 1) instruction in error is reissued and an

REQIO (continue) instruction is issued
to restart processing. Note that this
sequence may have to be repeated for
each sector specified to be processed.

E010 0008 0303 Failed to pick a diskette (autoload A diskette was not at the slot number
motion check) requested, or the hardware is

malfunctioning. If a diskette is located
at the slot requested, call the service
representative.

Figure 23-6 (Part 3 of 6). Diskette Magazine Drive Error Summary Values

23-58

Error
Summary
(hex)

E010

E010

Device
Dependent
Error Code
(hex)

OOOF

0010

Hardware
Error Code
(hex) Meaning Recovery Action

0108 or N / A CTRL address mark with sequence The machine will be positioned at the

0100

0101

0103

0104

0105

0106

0107

0108

0201

0202

0203

0204

0205

0206

0207

0208

0301

0302

0303

0304

0306

0307

sector relocation was found, or a
deleted sector was found. Note
that the error log code is not
applicable if a deleted sector is
found because an error log entry
is not made for this condition.

I/O hardware error

Operation program error

Operational unit task failure

Overrun

Disconnect

Parity error 1

Parity error 2

Command reject

Control address mark

Wrap error

Autoload parity error

Invalid autoload function code

Function operation block time-out
during an Autoload command

Erase current error

Autoload command reject ~odifier
D (write / erase error)

Write gate error

Function operation block time-out
of non-autoload command

Autoload motion check

Autoload motion check

Autoload motion check

Autoload motion check

Autoload command reject (not
oriented)

Autoload command reject (out of
sequence)

first sector beyond the failing sector.
Reissue the REOIO instruction in error
and issue an REOIO (continue)
instruction.

Call the service representative. The
current position of the diskette is
indeterminate.

Figure 23-6 (Part 4 of 6). Diskette Magazine Drive Error Summary Values

Source/Sink Specialization 23-59

Device-
Error Dependent Hardware
Summary Error Code Error Code
(hex) (hex) (hex) Meaning Recovery Action

E010 0010 0405 ID CRC error on read data

0504 Read sense error on channel error

0505 Invalid BSTAT or DSTAT data

0506 Unexpected BSTAT on Read
sense

0507 Autoload parity error on read
sense

0508 Retry stack limit exceeded

050C Failed to read hex FF field on bad
cylinder during format operation

E010 0011 0108 Control address mark with The machine is positioned at the first
nonsequence sector relocation sector beyond the failing sector. Issue
found an REOIO (continue) instruction to

restart.

E010 0012 0308 Speed check Check diskette. If it is in backward,
insert it correctly, reissue the failing
REOIO instruction, and issue an REOIO
(continue) instruction to restart. If the
diskette is inserted correctly, the
hardware is failing. Call the service
representative.

E010 0013 0309 Cylinder /head/record mismatch or
the R D does not match the
diskette.

040A No record found. The diskette Ensure proper diskette is inserted.
mode (FM or MFM) is different Reissue the failing REOIO instruction,
than specified by user. and issue an REOIO (continue)

instruction to restart.

E010 0014 N/A Device cover open during error Close cover and issue a message to
recovery of a read or write operator to restart the job.
operation

E014 0004 N/A No diskette loaded Issue an Increment command, the
REOIO instruction that caused the
error, and an REOIO (continue)
instruction to restart processing.

Figure 23·6 (Part 5 of 6). Diskette Magazine Drive Error Summary Values

23-60

Device-
Error Dependent Hardware
Summary Error Code Error Code
(hex) (hex) (hex) Meaning Recovery Action

E087 0002 N/A Read / write of VTOC area Command modifier bits must be on to
attempted with control bits not set do a read or write on the VTOC.

Correct, reissue the REQIO instruction,
and issue an REQIO (continue)
instruction to restart processing.

E087 0005 N/A Seek address invalid Correct the RD, reissue the REQIO
instruction, and issue an REQIO
(continue) instruction.

E087 0006 N/A Diskette slot number invalid Correct the RD, reissue the REQIO
instruction, and issue an REQIO
(continue) instruction.

E087 0008 N/A Invalid command Replace the RD command with the
proper command, reissue the REQIO
instruction, issue an REQIO (continue)
instruction to restart processing.

E087 OOOC N/A No sectors specified, or number of Correct the RO, reissue the REQIO
sectors specified is equal to RD instruction, and issue an REQIO
bytes 3-4 (continue) instruction.

E087 0000 N/A Too many sectors or no sectors to Correct the RO, reissue the REQIO
write with VTOC command instruction, and issue an REQIO

(continue) instruction.

E087 OOOE N/A VTOC write buffer did not start Use one of these recovery actions:
with VOL 1 or VTOC data read did
not contain a VOL 1 in either
EBCDIC or ASCII.

1. Correct the buffer area, reissue the
REQIO instruction, and issue an
REQIO (continue) instruction.

2. Issue a message stating that the
diskette is improperly· formatted.

E087 0015 N/A Reserved field in the RD is not 0 Correct the RD, reissue the REQIO
instruction, and issue an REQIO
(continue) instruction.

Figure 23-6 (Part 6 of 6). Diskette Magazine Drive Error Summary Values

Source/Sink Specialization 23-61

Diskette Magazine Drive End-of-Volume Handling for
Data Interchange

In processing a multivolume file, the following sequence
should be followed.

1.

2.

3.

4.

The Request I/O instruction with the feedback
record marked as end of volume is returned to the
user. This is a terminating feedback record.

Processing stops as with any terminating
condition.

The user constructs the Request I/O instruction
necessary to address the next diskette. This
Request I/O instruction has a request priority less
than that of any other Request I/O instruction
waiting to be processed.

The user issues the Request I/O instruction.

5. The user issues a Request I/O (continue) to start
processing.

6.

23-62

The Request I/O instruction constructed in step 3
is the first one processed because of its 19wer key
value. Because it reads cylinder 0, this Request
I/O instruction is special and results in a feedback
record marked as terminating. This again stops
processing of requests.

7.

8.

9.

Repeat steps 3 through 6 until the proper diskette
is retrieved.

The device-specific area (the VOL and HDR
information) is updated if necessary to reflect the
attributes of the new diskette.

Any Request I/O instructions necessary to seek to
a starting point are constructed with a lower key
than the one in step 8. These Request I/O
instructions are then issued.

10. The Request I/O instruction that caused the
end-of-volume condition is reissued with a key
lower than any outstanding requests. No
modification to this Request I/O instruction is
necessary. Processing continues where it left off
in step 1.

11. The user should issue a Request I/O (continue)
instruction to continue processing.

The Diskette Magazine Drive End-of-Volume
Handling for load/Dump

Load / dump end-of-volume processing is handled like
that for data interchange except for steps 8 and 10.
(See End-ot-Volume Handling tor Data Interchange earlier
in this section.) These steps must have the load/dump
bit set on in the function field of the Request I/O
instruction involved.

Events

In addition to the events described under Request I/O
(REQIO) in Chapter 17, the following events are
signaled. For a complete description of the following
events, see Chapter 21. Event Specifications.

• LUD contact event (hex OOOB 06 01)

This event is signaled by the MSCP when vary on
processing is completed for this device. Only subtype
hex 01 is signaled upon successful contact; subtype
hex 02 is never signaled since the MSCP processing
is synchronous to the Modify LUD (vary on)
instruction and an exception is signaled instead.

• LUD failure (hex OOOB 08 01)

The LU D failure event is signal~d when the diskette
magazine drive has a problem that requires the
service representative to be called.

The 14-byte variable data returned with this event is
formatted as follows:

Bytes 0-1

Bytes 2-9

Hardware error code - code that
was included in the error log
message if there was a
corresponding error log message;
otherwise, the status bytes contain a
O.

Time stamp - contains the time
stamp of the corresponding error log
message; otherwise, the time stamp
is O.

Bytes 10-11 Operational unit number - Hex 0012

Bytes 12-13 Optional data - reserved (binary 0)

• Request I/O complete event (hex OOOB 09 01)

The Request I/O complete event is signaled when
the request has been processed if the user has
requested this event to be signaled.

• Response queue destroyed event (hex OOOB OA 01)

The response queue destroyed event is signaled if the
user truncates or destroys the Request I/O
instruction response queue while the machine is
processing Request I/O instructions.

Exceptions

The following table gives the cases where the
source / sink resource not available exceptions (hex 3404)
are signaled when a Modify LUD instruction for the
diskette magazine ..drive is executed.

Command

Vary On

Resume
Session

Quiesce
Session

Defect
Code
(hex)

2302

2311

2313

Device
Specific
Return
Code (hex) Meaning

0001 I/O device failure has
occurred. LUD failure
event has been
signaled.

0204

0001

1302

A correctable condition
such as cover open at
the device is preventing
device initialization for
vary on processing.

I/O device failure has
occurred. LUD failure
event has been
signaled.

Quiesce failure because
a teminating error
condition exists.

Source/Sink Specialization 23-63

3410/3411 PROGRAMMING CONSIDERATIONS

The 3410/3411 tape device may be used for either
load / dump operations or data interchange operations.

Each tape drive requires an LUD (logical unit description)
(type 10) object to be created for its support. A CD
(controller description) (type 00) object must be created
for the tape subsystem. These system objects must be
created and initialized by using the create logical unit
description and the create controller description
instructions. There must be enough space reserved in
each LUD for the device-specific parameters needed by
the machine. The device-specific parameters control the
processing performed during an active session.

A Request I/O instruction must be preceded by the
activate session function of the Modify Logical Unit
Description instruction. The Request I/O instruction
causes data to be transferred to or from the tape media.

3410/3411 CREATE CONTROLLER DESCRIPTION
(CRTCD) TEMPLATE

The fields of the CD template must be initialized for the
3411 tape controller as follows:

Field Name

CD type

Unit type

Model number

Physical address (CD OU
number)

Power control

Station control information

Selected mode data

Activate physical unit
information

Dial digits

Entry

Char 00

Char 3411

Char 0001, Char
0002, or Char 0003

Hex 0015

Hex 0100

Bin 0

Bin 0

Bin 0

Bin 0

Specific characteristics length Hex 0000

XID information length Hex 0000

Unit-specific contents length Hex 0000

23-64

3410/3411 CREATE LOGICAL UNIT DESCRIPTION
(CRTLUD) TEMPLATE

The following fields of the LUD must be initialized as
indicated for the 3410/3411 tape devices.

Field Name

LUD type

Device type

Model number

Forward object pointer

Physical address

• LU address

• CD OU number

Power control

Entry

Char 10

Char 3410

Char 0001, Char 0002, or
Char 0003

Pointer to CD

Hex 0000, Hex 0001, Hex
0002, or Hex 0003

Hex 0015

Hex 0000

Session definition data Bin 0

Load / dump definition data

• Load/dump device Hex 00 = Not used as a
load/dump device

Operating mode

- Normal

- Load mode

- Dump mode

Specific characteristics
length

Retry value length

Retry values (see Retry
Values later in this
chapter)

• Error type

• Error retry value

• Reserved (binary 0)

Error threshold length

Hex 01 = Used as a
noninterruptible and
nonexchangeable
load/dump device

Hex 21 = Used as an
exchangeable load / dump
device

Hex 00 = Normal

Hex 01 = Load mode

Hex 02 = Dump mode

Hex 0000

Hex OOOC (two retry values)

Char(6)

Char(2)

Bin(2)

Bin(2)

Hex 0010 (two error
threshold values)

Field Name Entry

Error threshold values Char(8)
(see Error Threshold
Values later in this
chapter)

• Error type Char(2)

• Threshold value Bin(2)

• Reserved (binary 0) Char(4)

Device-specific Hex 005A (90)
contents length

Modifiable length Hex 0056 (86)

Device-specific Char(90)
contents (see
Device- Specific

Contents later in this
chapter)

Retry Values

Error Error Retry Value
Type Error Description

Hex 0001 I/O error, 3411
I/O check, or
data check on
Read command

Hex 0002 I/O error, 3411
I/O check, or
data check on
Write command

Error Threshold Values

Error
Type Error Description

Hex 0001 I/O error, 3411
I/O check, or
data check on
Read command

Hex 0002 I/O error, 3411
I/O check, or
data check on
Write command

Value (10-20)
Suggested normal
value = 10

Value (15-30)
Suggested normal
value = 15

Threshold
Value

Value (1-10)
Suggested normal
value = 5

Value (1-64)
Suggested normal
value = 32

Device-Specific Contents: Char(90)

Bytes 0-5 Active session flags Char(6)

· Byte a Char(1)

- Bit a Tape encoding
a = EBCDIC
1 = ASCII

- Bit 1 Tape density
0= 1600 BPI
1 = 800 BPI

- Bits 2-7 Reserved (binary 0)

· Bytes 1-2 Block length Char(2)
Hex 0000 for
variable-length

· Byte 3 Reserved (binary 0) Char(1)

· Bytes 4-5 Load / dump block Char(2)
counter updated by
the number of blocks
transferred

Bytes 6-85 Value label Char(80)

Bytes 86-89 Reserved (binary 0) Char(4)

The first 86 bytes of the device-specific parameters (the
active session flags and volume label fields) are
modifiable through the Modify Logical Unit Description
instruction. The block length, for non-load/dump
operations is used only as an attribute of the tape
volume when logging hardware errors or volume SDRs
(statistical data records). When dumping objects under
load/dump, the block length is ignored. A block length
of 16 384 is always used when dumping objects.

For proper logging of volume SDRs, each time that a
different tape is mounted there must be a device
specific area change message issued through the Modify
Logical Unit Description instruction. This would normally
be required to update the block length and volume label
fields.

Source/Sink Specialization 23-65

3410/3411 MODIFY CONTROLLER DESCRIPTION
(MODCD) INSTRUCTION

The following is a list of functions the 3410/3411 tape
controller supports through the MODCD instruction:

• Power on

• Power off

• Vary on

• Vary off

See Chapter 17 for the meaning and use of each
function.

3410/3411 MODIFY LOGICAL UNIT DESCRIPTION
(MODLUD) INSTRUCTION

The following is a list of functions the 3410/3411 tape
device supports through the MODLUD instruction.

• Vary on

• Vary off

• Activate

• De-activate

• Suspend

• Quiesce

• Reset

• Resume (activate after suspend, quiesce or reset)

• Error threshold sets

• Retry value sets

• Load/dump definition data

• Device-specific contents

The device-specific area of the LUD (that portion that is
modifiable) may be altered at any time. It should be
noted that any changes to the device-specific area are
reflected in the machine processing. For this reason, the
area should be altered prior to beginning the processing
of the tape media and not during processing. Changes
in tape density will be effective only if the tape is
positioned at load point.

23-66

The machine maintains a copy of the load/dump block
counter. The value in the device-specific area is copied
when the LUD is varied on and when there is a
device-specific area change and is updated whenever a
load/dump message is returned. This requires the user
to initialize the counter and avoid making any
device-specific area changes while a load/dump
message is outstanding.

For the 3410 tape device to support the rewind or
rewind and unload commands with immediate response
(3410/3411 Request I/O instruction), the 10M may
require up to 4 minutes to complete a Modify LUD (vary
off) operation so that the physical rewind can complete
before the device is varied off. The user of a Modify
LUD (vary off), where rewind operations with immediate
response may still be outstanding, must ensure that the
Modify LUD time-out value is sufficient to allow the
rewind to complete or a partial damage (time-out)
exception condition will result.

The load/dump definition data field is used to specify
the load/dump operations performed by the 3410 tape
devices. The operations that are allowed for the 3410
tape devices are controlled by the value that was
specified in the load/dump device field at Create LUD
time. The following is a list of the load/dump device
entries followed by the operations that are allowed for
each entry.

Load/Dump
Field Name Entry Operation

Load/dump Hex 00 Not used for
device load/dump
The remaining
load/dump
definition data
fields are not
used. . Load/dump Hex 01 Noninterruptible
device and

nonexchangeable
device

Operating mode Hex 00 Normal mode (data
(use one of the interchange)
values) Hex 01 Load mode

Hex 02 Dump mode

The remaining
load/dump
definition data
fields are not
used.

Load/Dump 3410/3411 REQUEST I/O INSTRUCTION (REQIO)
Field Name Entry Operation INSTRUCTION . Load/dump Hex 21 Exchangeable

device The SSR for a Request I/O instruction to one of the

Operating mode Hex 00 Normal mode (data tape drives contains the following values:

(use one of the interchange)
values) Hex 01 Load Mode Fields Values

(primary device for
Source/sink object Pointer to the corresponding

exchanges)
Hex 02 Dump mode

tape LUD

(primary device for Response queue Pointer to response queue
exchanges)

Source / sink data Space pointer
Hex 21 Load mode

(alternate device
area

for exchanges) Optional pointer Reserved (binary 0)
Hex 22 Dump mode

(alternate device
Request priority See Request I/O (REQIO) in

for exchanges)
Chapter 17

Load/dump Hex 0000 Not used for Request See Request I/O (REQIO) in

pending exchange identification Chapter 17

operations Function field Hex 80
Corresponding Hex 0000 When the
primary address operating mode is Control field N or C

(use one of the hex 00, hex 01, or Key length Bin(2)
values) hex 02

Hex 0001 When the Key offset Bin(2)

Hex 0002 operating mode is RD count See below
Hex 0003 hex 21 or hex 22

use the logical unit RD offset Bin(2)

address of the
primary mode At least one RD (request descriptor) must exist with
device. each Request I/O instruction (except continue) or a

Load/dump Hex 000000 Normal mode (no template value invalid exception is returned. A Request

exchange status modification I/O (continue) instruction must have an RD count of O.

requested) Only one read or write RD may exist with each Request

Hex 010000 The last 2 bytes of I/O instruction. Any number of the other RDs may exist

Hex 010000 this field (hex with or without a read or write RD.

Hex 010001 0000, hex 0001,
Hex 010002 hex 0002, or hex All label processing must be done by the user. The

Hex 010003 0003) indicate, the machine will not check for this. An example is the

logical ,unit address sequence of trailer labels which must be issued to the

of the LU D that machine in accordance with the tape standards

this Modify specification.

instruction causes
to become current. The device-specific area in the LUD must specify ASCII

The other LU D is encoding when the tape is encoded (or is to be

modified to not encoded) in ASCII. The machine will convert the data

current. from ASCII to EBCDIC on a read operation or from

Load/dump Hex 000000 This device is not EBCDIC to ASCII on a write operation.

exchange status current.
(indications for Hex 010000 This device is
a Materialize current.
LUD instruction)

Source/Sink Specialization 23-67

Request Descriptor Byte 1 Controll Char(1)

The format of the RD is: . Bit 0 o = Perform command
1 = Ignore command

Byte 0 Command Char(1)

Hex 02- Read block . Bits 1-7 Reserved (binary 0)

Hex 01 - Write block Bytes 2-3 Operations performed1 Bin(2) .

Hex 12 - Read block backwards Bytes 4~5 Block size detected1 Bin(2)

Hex 14- Forward space block Byte 6 Reserved (binary 0) Char(1)

Hex 1C - Backward space block Byte 7 Reserved (binary 0) Char(1)

Hex 24- Forward space file Byte 8 Number of block in Char(1)

Hex 2C- Backward space file
error1

Hex 34- Rewind with delayed
Byte 9 Number of operations Char(1)

response
to perform

Hex 35- Rewind with immediate
Bytes 10-11 Block size 18-32 768 Bin(2)

response
bytes

Hex B4- Rewind and unload with
Bytes 12-13 Number of byte in Bin(2)

delayed response
error1

Hex B5- Rewind and unload with
Bytes 14-15 Reserved (binary 0) Bin(2)

immediate response

Hex 54- Write tape mark
1 Fields are modified by an REQIO execution.

Hex 4C- Tape clear

Hex OA- Check tape

23-68

The command field indicates the type of operation to be
performed. The specific operations are described with
the individual commands.

The control field indicates whether the RD is to be
ignored or not and is generally a binary 0 when the
instruction is issued. This field is set by the machine to
a binary 1 when the RD is successfully completed. The
command control field can be used in conjunction with
the current RIU segment field in restarting a request that
ended with an error. The already completed RDs will be
ignored and the RD that had the error will be
reexecuted. After normal completion, this field must be
reset before the SSR can be reused.

The operations performed field indicates the number of
operations which were completed satisfactorily before
the command ended. The field is normally set to 0
before issuing the REQIO instruction. The field is then
incremented as operations are completed successfully.
This field in conjunction with the control field of
previously processed RDs can be used to reissue a
REQIO instruction after an error.

The block size detected field indicates the block size read
if the block size is less than the block size specified. If
the block size read is greater than the block size
specified, the block size detected will be O. This allows
different tapes to be read because the maximum block
size can always be specified and this field will return the
actual size of the block read.

The number of block in error field contains the number
of the block which has invalid data (associated with the
data not valid error hex C042).

The number of operations to perform field contains the
number of blocks, files, tape marks to read, write, or
space operations to be performed. This must be greater
than O.

The block size field indicates the size of the block or
blocks to read or write. This must be greater than or
equal to 18 and less than or equal to 32 768.

The number of byte in error field contains the number of
the byte within the block indicated in the number of
block in error field which has invalid data (associated
with the data not valid error hex C042).

Commands

The following are the commands supported by the
Request I/O instruction.

Read Block: With this command the user may specify
from 1 to 255 blocks to read. If the number of blocks
specified is 0, an error will be returned. The number of
blocks specified must not be greater than the
source/sink data area buffer size (block count times
block size with the block size rounded up to a multiple
of 8) or an error will occur. The data area used must be
doubleword aligned unless the block size to be read is
greater than 32 256 in which case the buffer must be
page aligned. Page alignment is recommended even for
block sizes less than 32 256 to increase performance.
For normal and error completions, the operations
performed field indicates the number of blocks read. If
an I/O error occurs, the machine retrieves as much data
from the block as possible (this does not include
attempts to read the block in both directions). If a tape
mark is encountered, an error is returned.

If a retry to read an invalid block completes successfully,
the machine continues processing. If the error cannot
be corrected, the operation stops, the machine returns
as much data as possible, and an error is indicated. The
tape is positioned so the read head is positioned after
the block that caused the error.

If the block size read is different from the block size
specified, the machine will stop reading after this block
and the block size read will be returned. When a block
less than the specified size is read, the unused area is
left unchanged. If a block is read and the block size is
not a multiple of 8, the data will be transferred and the
buffer will be padded with hexadecimal 0' s until the
block size is a multiple of 8. Padding is based on the
specified block size, not the actual block size. For
example, an 18-byte block will result in 18 bytes of data
and 6 bytes of 0' s.

If variable sized blocks are to be read and the size of
the blocks is unknown, the maximum block size should
be specified. The block along with an indication of its
actual size will be returned to the user.

Tape density need not be specified for reading. Tape
encoding must be specified to ensure proper operation.

Source/Sink Specialization 23-69

If the data read is to be converted from ASCII to
EBCDIC, any characters read that cannot be converted
to a corresponding EBCDIC character will be replaced by
an asterisk (hex 5C) in the .user buffer. This is done
without an error indication being returned to the user.
This also applies to the Read Block Backward command.

Write Block: With this command, the user may specify
from 1 to 255 blocks to write. If the number of blocks
specified is 0, an error will be returned. The number of
blocks specified must not be greater than the
source/sink data area buffer size (block count times
block size with the block size rounded up to the next
multiple of 8) or an error occurs. The data area must be
page aligned if the block size to be written is greater
than 32 256; otherwise, the data area need only be
doubleword aligned. For any condition, the user is
notified of the number of blocks written. If the end of
tape marker is sensed when attempting to write a block,
the block is written and the user notified that this
occurred.

After the end of tape has been sensed, subsequent
write commands that are issued with the tape
positioned past the end of tape marker continues to
have this error indicated and only one block will be
written per request. There is a remote possibility that
the above will not occur if a recoverable error occurs in
the vicinity of the end of tape marker. If this happens,
the end of tape may be indicated only once.
Subsequent write commands could cause the tape to
run off the end of the reel.

If a write command results in an error and the machine,
after retrying the command, successfully completes the
operation, the machine will continue processing. If the
error is unrecoverable, the operation stops and an error
is indicated. The tape is moved until the write head is
over the area just after the block that caused the error.

If a block of data is written and the block size is not a
multiple of 8, the data bytes greater than the block size
but less than the next multiple of eight are ignored.
Tape density and tape encoding must be specified in the
LUD to ensure proper operation.

If the data is to be converted from EBCDIC to ASCII
format, the data is copied from the SSD area to an
internal buffer and then converted in the internal buffer.
If an EBCDIC character is encountered that cannot be
converted to ASCII, the number of block in error and
number of byte in error fields in the RD specifies which
byte in the SSD is invalid.

23-70

Read Block Backward: With this command, the user may
specify from 1 up to 255 blocks to read. If the number
of blocks specified is 0, an error will be returned. The
number of blocks specified must not be greater than the
source/ sink data area buffer size (block count times
block size with the block size rounded up to a multiple
of 8) or an error is indicated. The user supplies the
address of the low-order end of the buffer, as with the
Read Block command. The data area used must be
page aligned if reading a block greater than 32 256;
otherwise, the data area need only be doubleword
aligned. Page alignment is recommended even for block
sizes less than 32 256 to increase performance. If
beginning of tape or a tape mark is encountered, an
error will be returned. For any condition, the user is
notified of the number of blocks read. In the case of
reading a block and ani /0 error occurs, the machine
retrieves as much data as possible and the tape is
positioned after (in the direction of travel) the block in
error. The data is stored in the buffer from the
high-order address to the low-order address. For
reading blocks less than the specified size, the operation
transfers data from the high-order address toward the
low-order address leaving unchanged that low-order
area not used. If the block size is not correct, only one
block is read backward. If a block is read and the
number of bytes it contains is not a multiple of 8, it is
padded with hexadecimal 0' s to the next multiple of 8.
Padding occurs at the high-order address end of the
buffer.

If variable sized blocks are to be read and the size of
the blocks is unknown, the maximum block size should
be specified. The block along with an indication of its
actual size will be returned to the user. If the size of the
block read is not the size specified, the operation ends
with an error indication.

If the error 'tape moving backward at beginning of tape'
is returned, 8 bytes of 0' s will be transferred to the
user's buffer.

Tape density need not be be specified in the
device-specific area of the LUD. Tape encoding must
be specified to ensure proper operation.

Space Block and File Commands: With this group of
commands, the user may position the tape at a
particular block or file relative to the current tape
position. From 1 to 255 blocks or files can be spaced.
A space or skip of 0 blocks or files results in an error
response. When spacing the tape forward or backward,
the tape will stop beyond the block or file requested in
the direction of travel. If, when spacing the tape
forward, more blocks are requested than exist in the file
and a tape mark is detected, an error is returned. If the
tape is positioned in the inter-block gap before· a tape
mark and it is desired to have the tape positioned after
the tape mark, a Skip File command must be issued. If
the same conditions exist but no tape mark is detected,
an error is returned and the tape runs off the reel. If,
while spacing the tape forward, more files are requested
than exist on the tape, the tape will run off the reel and
an error is returned. An example of a Forward Space
Block command is if the current position is after block 1
and the request is to move two blocks, the resulting
position after processing will be after block 3.

The Forward Space File command moves the tape
forward and stops it immediately after the specified
number of tape marks are. sensed. For example, if the
request is made to move forward two files, the machine
will search for two tape marks and stop the tape when
the second tape mark is sensed.

The Backward Space File command operates in the
same manner as the Forward Space File command
except that the tape stops just after (in the direction of
tape travel) the specified number of tape marks have
been sensed or at the beginning of the tape, whichever
comes first. An example of a Backward Space File
command is, if the current position is in any file and the
request is to move backwards one file, the resulting
position after processing will be in the gap after the
tape mark encountered in the direction of travel or at
the beginning of the tape whichever occurs first.

Rewind/Rewind and Unload (hex 34, hex 35, hex B4, or
hex B5): These commands are used to rewind or
rewind and unload the tape. These commands position
the tape at its beginning or put it in a state to be
dismounted. If the command specifies delayed
response, the request is not returned to the user until
the operation completes. If the command specifies
immediate response, the request is returned to the user
when the operation begins unless other RDs follow this
command in the Request I/O.

Write Tape Mark: With this command, a special block is
written on the tape that indicates the end of a tape file.
The user can specify from 1 to 255 tape marks.

Tape Clear: This command erases the tape from its
current position to the end-of-tape marker. Any data
past the end-of-tape marker is not erased. Any data
past the end-of-tape marker can be erased by
repeatedly issuing this command. Each time this
command is issued w~th the tape· positioned past the
end of tape an additional 3.6 inches of tape is erased.

Check Tape: This command checks the status of the
specified tape drive and causes a mode set command to
be issued to the tape drive which sets the density
indicated in the device-specific area of the LUD. The
following tape drive status conditions may be indicated
in the feedback record as a result of this command.

• Tape drive ready and at load point (normal response)

• Tape drive ready but not at load point (error
response)

• Tape drive busy searching for load point (error
response)

• Tape not mounted on drive (error response)

• Start button not pressed (error response)

Source / Sink Specialization 23-71

3410/3411 FEEDBACK RECORD AND ERROR
RECOVERY PROCEDURES

The format of the feedback record is as follows:

Bytes 0-15 Source / sink request
address

Space
pointer

Bytes 16-17 Request identification Bin(2)

Bytes 18-19 Error summary Bin(2)

Bytes 20-21 RD number Bin(2)

Bytes 22-23 RIU segment count Bin(2)

Bytes 24-63 Device-dependent area Char(40)

· Bytes Device-dependent error Char(2)
24-25 code

· Bytes Hardware error code Char(2)
26-27

· Bytes Time stamp Char(8)
28-35

· Bytes Operating unit number Char(2)
36-37

· Bytes Reserved (binary 0) Char(26)
38-63

Descriptions of the request address and request I D
fields are given under Request I/O (REQIO) in Chapter
17.

23-72

The error summary field defines the status of the
Request I/O instruction defined in the Request I/O
instruction description. The specific values possible for
the tape subsystem are itemized in Figure 23-7 which
follows.

The RD number is the index of the last RD processed or
the RD in error if an error is indicated.

The RIU segment count is the number of blocks, tape
marks, or files transferred to or from the SSD by this
request.

The device-dependent area is all binary 0 unless the
presence of device-dependent data is indicated by the
error summary value. If the device-dependent data is
present, the fields have the following definitions.

The device-dependent error code is a further
categorization of the hardware error codes shown in
Figure 23-7.

The hardware error code is logged in the hardware error
log and indicates the specific hardware error
encountered. The possible values are shown in Figure
23-7. This code is also provided as event-related data
for the CD failure event or the LUD failure event when
these are also signaled.

The time stamp and operating unit number are the same
values present in the hardware error log entry and the
failure event data and are the values used to correlate
the FBR, the event, and the error log entry for
maintenance purposes.

Figure 23-7 lists the error summary, device-dependent
error codes, the hardware error log codes that caused
the error, and the recommended recovery action. If
more than one error occurs, the error status returned
will be returned on a worst condition basis. Example:
For invalid block size detected and a tape media failure,
the tape media failure condition is returned as the
status.

When the recovery action indicates that the tape job
must be restarted, this must include a de-activate
session.

Device-
Error Dependent Hardware
Summary Error Code Error Code
(hex) (hex) (hex) Meaning Recovery Action

0000 N/A N/A No error condition N/A

0008 N/A N/A Request I/O (continue) instruction N/A
complete

4000 N/A N/A I/O error occurred but was N/A
corrected

C009 N/A N/A Partially processed request, An MODLUD (activate) instruction must
terminated by reset be issued to restart processing, or an

MODLUD (de-activate)instruction must
be issued to destroy the session.

COOA N/A N/A Unprocessed request because of An MODLUD (activate) instruction must
reset session on error be issued to restart processing, or an

MODLUD (de-activate) instruction must
be issued to destroy the session.

C016 N/A N/A Tape mark encountered Issue REQIO (continue) to resume
processing.

C017 N/A N/A End of tape sensed End of tape sensed during an I/O
operation, issue REQIO (continue)
instruction to restart drive. Continued
use may cause tape to run off reel.

C042 N/A N/A Data not valid. EBCDIC to ASCII Correct character in error, reissue the
conversion error REQIO instruction, and issue an REQIO

(continue) instruction.

C043 N/A N/A Invalid buffer alignment Allocate SSD to the proper alignment,
reissue the REQIO instruction, and issue
an REQIO (continue) instruction.

C044 N/A N/A SSD area not large enough Make smaller blocks or larger SSD,
reissue the REQIO instruction, and issue
an REQIO (continue) instruction.

C084 N/A N/A Invalid pointer to SSD Correct pointer, reissue the REQIO
instruction, and issue an REQIO
(continue) instruction.

Figure 23-7 (Part 1 of 6). 3410/3411 Error Summary Values

Source/Sink Specialization 23-73

Error
Summary
(hex)

C085

C087

C088

E010

Device
Dependent
Error Code
(hex)

N/A

N/A

N/A

0001

Hardward
Error Code
(hex)

N/A

N/A

N/A

0000

1300
3100
3300
3400
6300
8800
8AOO
E110
E120
E130
E160
E210
1200
2300
E140
E150
E170
E290
C200
8200

Meaning

Invalid function field

Invalid RD

Recovery Action

Correct the REDID, reissue the REDID
instruction, and issue an REDID
(continue) instruction.

Correct the RD, reissue the REQID
instruction, and issue an REDID
(continue) instruction.

Invalid RD sequence User may have only one Read or Write
command for each request.

This problem was caused by an Correct the problem indicated by the
error that was indicated in a previous feedback record.
previous feedback record for this
device or another device in this
subsystem.

Subsystem failure Not correctable, call the service
representative. Tape position cannot be
determined. Any attempt should include
vary off and vary on CD. The CD failure
event is also signaled for these cases.

Figure 23-7 (Part 2 of 6). 3410/3411 Error Summary Values

23-74

Error
Summary
(hex)

E010

E010

Device
Dependent
Error Code
(hex)

0002

0003

Hardware
Error Code
(hex)

0000

B1XX
C1XX
74XX
77XX
B600
8COO
BOXX
B300
7100
7300
7600
8900
XX = OSTAT
15
0000

B400
B700
B800
B900
BBOO
BCOO
BOOO
BEOO
C600
BFOO
C300
C400
C500
C700
C800
C900
CAOO
CBOO
CCOO
B500
7500
7800
7900

Meaning

This problem was caused by an
error that was indicated in a
previous feedback record for this
device or another device in this
subsystem.

Tape drive failure

This problem was caused by an

Recovery Action

Correct the problem indicated by the
previous feedback record.

A permanent tape drive failure has
occurred. Rerun the job using a different
tape drive. The LUO failure event is also
signaled for these cases. Recovery
should include vary off and vary on
LUO.

Correct the problem indicated by the
error that was indicated in a previous feedback record.
previous feedback record for this
device or another device in this
subsystem.

Possible tape media failure Try a different tape or clean heads and
columns. If error persists call the service
representative.

Figure 23-7 (Part 3 of 6). 3410/3411 Error Summary Values

Source/Sink Specialization 23-75

Device-
Error Dependent Hardware
Summary Error Code Error Code
(hex) (hex) (hex) Meaning Recovery Action

E010 0004 8500 Enable/ disable switch in disable Abort all tape jobs, move switch to
8501 position enable position and issue a vary off CO

followed by a vary on CD.

E010 0005 8300 Subsystem power off Vary off the tape subsystem and then
8301 issue a power off command for it.

Power the subsystem back on and vary
it on again. Rerun all jobs. If this error
occurs again, a permanent failure has
occured.

E010 0006 8600 Write ring is missing Correct problem, reissue the REalO
instruction, and issue an REalO
(continue) instruction.

E010 0007 8BOO NRZI tape on PE only drive Rerun the job on a phase encoding
device that has the dual density feature
installed.

E010 0010 N/A Invalid RO command Correct the RO and reissue the REalO
instruction, and issue an REalO
(continue) instruction.

E010 0012 7200 Equipment check If all tape has run off the user's reel,
check tape to be sure that an
end-of-tape marker is located about 25
feet from the end of tape. If none is
present, attach one and rerun job. If
EOT marker is present, and error C017
has previously occurred, a program error
is indicated. If all tape has not run off
of user's reel, a permanent tape drive
failure has occurred. Rerun the job using
a different tape drive.

E010 0014 BAOO Phase encoding 10 burst error Move beginning-of-tape marker 2 cm
and restart job.

E014 0008 8100 At load point but not ready Make the drive ready and restart the job.

E014 0012 8200 Tape searching for load point Wait, reissue command and issue an
REalO (continue) instruction.

Figure 23-7 (Part 4 of 6). 3410/3411 Error Summary Values

23-76

Device-
Error Dependent Hardware
Summary Error Code Error Code
(hex) (hex) (hex) Meaning Recovery Action

E014 0013 8100 Tape not mounted on drive, or If tape is not mounted, mount the tape,
tape mounted on drive but not at make the drive ready and restart the job.
load point and Start key not If tape is mounted, make the drive ready
pressed. and restart the job.

E018 OOOA 8700 Tape moving backward at Check program to verify correct coding
beginning-of-tape and issue an REQIO (continue)

instruction.

E018 OOOB N/A Wrong length record detected by Check command modifier for correct
device block size, issue an REQIO (continue)

instruction.

E018 OOOC N/A Tape mounted and ready but not Issue rewind command and an REQIO
at load point (continue) instruction.

E087 0000 N/A Invalid block size specified block Correct the block size, reissue the
size < 18 or block size > 32768 REQIO instruction, and issue an REQIO

(continue) instruction.

E087 OOOE N/A Block count to read/write not Correct the block count, reissue the
given (0) or block count given REQIO instruction, and issue an REQIO
equals RO bytes 3-4 (continue) instruction.

E087 OOOF N/A Invalid number of blocks, files, or Insert the valid number of blocks, files,
tape marks; number must be from or tape marks, reissue th'e REQIO
1 to 255 instruction, and issue an REQIO

(continue) instruction.

E087 0015 N/A Reserved fields in RO not O. No Correct the RO, reissue the REQIO
processing on the REQIO has instruction and issue an REQIO
occurred and the RO number field (continue) instruction.
in the FBR contains O.

Figure 23-7 (Part 5 of 6). 3410/3411 Error Summary Values

Source I Sink Specialization 23-77

Device·
Error Dependent Hardware
Summary Error Code Error Code
(hex) (hex) (hex) Meaning

FODF N/A 4100 I/O error
1500
1100
2100
4200
4300
4400
5100
6100
1400
5200
5300
5400
5500
5501
5600
5700
62XX
8400
XX = DSTAT
15

Figure 23~7 (Part 6 of 6). 3410/3411 Error Summary Values

23-78

Recovery Action

All tape jobs must be restarted.
Recovery should include vary off and
vary on CD. If error persists, call the
service representative. The CD failure
event is also signaled for these error
cases.

Events

In addition to the events described under Request I/O
(REQIO) in Chapter 17, the following events are
signaled. For a complete description of the following
events, see Chapter 21. Event Specifications.

• CD contact event (hex 0004 04 01,02)

This event is signaled for the MSCP component when
the vary on processing is completed for this CD. This
processing is done synchronous to the execution of
the Modify CD (vary on) instruction so only subtype
01 (successful contact) is signaled. Subtype 02
(unsuccessful contact) is not signaled on behalf of
tape controllers since the Modify CD is terminated
and an exception is signaled instead.

• CD failure event (hex 0004 05 01)

The CD failure event is signaled and an error log
entry is made whenever the entire subsystem
receives a nonrecoverable error. As part of the
recovery action for this event, the CD should be
varied off and then varied back on before attempting
further operations. The variable data provided for this
event is formatted as follows:

Bytes 0-1

Bytes 2-9

Hardware error code: code that further
defines the specific error encountered

Time stamp: contains the time stamp
of the corresponding error log
message

Bytes 10-11 Operational unit number (hex 0015)

Bytes 12-13 Optional data: the 2-byte optional
data field returned with the event has
the following meaning:

Description and
Condition Operator Action

Byte 12, bit 0 Subsystem failure due to I/O
error. This case may be
retryable.

Byte 12, bit 1 Subsystem failure. This case is
not correctable. Seek hardware
assistance.

Remaining bits of byte 12 and all of byte 13 are
unused and are O.

• LUD contact event (hex OOOB 06 01,02)

This event is signaled when the LU D vary on
processing is completed by the MSCP. Subtype 01 is
signaled upon successful contact, however, subtype
02 (unsuccessful contact) is never signaled for Tape
devices. In these cases, the Modify LUD (vary on)
instruction signals an exception instead. This
exception case can occur for the same reasons that
the CD failure event is signaled.

• LUD failure event (hex OOOB 08 01)

The device failure event is signaled and an error log
entry is made whenever a tape drive has an
uncorrectable problem (that is, where the recovery
action is to call the service representative). As part of
the recovery action for this event, the LU D should be
varied off and then varied back on before attempting
further operations. The variable data provided for this
event is formatted as follows:

Bytes 0-1

Bytes 2-9

Hardware error code: code that further
defines the specific error encountered

Time stamp: contains the time stamp
of the corresponding· error log
message

Bytes 10-11 Operational unit number (hex 0015)

Bytes 12-13 Optional data: the 2-byte optional
data field returned with the event has
the following meaning:

Description and
Condition Operator Action

Byte 12, bit 0 Device failure due to I/O error.

Byte 12, bit 1 Device not attached. The status
bytes will contain hex A200 in
this case.

Byte 13,
bits 0-1

Drive number of device in error.

Remaining bits of bytes 12 and 13 are unused and

are O.

Source / Sink Specialization 23-79

• Reque~'t I/O instr~ction complete event (hex OOOB 09
01)

The Request I/O instruction complete event is
signaled if the user requests it in the Request I/O
instruction.

• Response queue destroyed event (hex OOOB OA 01)

The response queue destroyed event is signaled if the
user truncates or destroys the Request I/O
instruction response queue while the machine is
processing Request I/O instructions.

Exceptions

The following table gives the cases where the
source/sink resource not available exceptions (hex 3404)
are signaled when a Modify CD instruction for the
3410/3411 tape device CD is executed.

Device-
Specific

Defect Return
Code Code

Command (hex) (hex) Meaning

Power On 2206 0602 Power failure occurred.
The CD failure event has
been signaled.

Power Off 2207 0602 Same as above.

Vary On 2202 0001 I/O controller failure.
CD failure event has
been signaled.

The following table gives the cases where the
source/sink resource not available exceptions (hex 3404)
are signaled when a Modify LUD instruction for the
3410/3411 tape device LUD is executed.

Command

Quiesce
Session

23-80

Defect
Code
(hex)

2313

Device
Specific
Return
Code
(hex) Meaning

1302 Quiesce rejected due to
,terminating error
condition.

3203-5 PRINTER PROGRAMMING
CONSIDERATIONS

The basic object of control for the 3203-5 Printer is the
logical unit description (LUD). All references to a device
are made with respect to the LUD. The Create, Modify,
and Destroy LUD instructions establish and control the
environment in which the printer operates. The Request
I/O instruction controls the device and causes it to print
data.

Before request I/O operations can be accepted, several
steps must occur.

1.

2.

3.

An LUD must be created through use of the
Create LUD instruction.

The printer must be varied on through use of the
Modify LUD instruction.

The LUD must be made active through use of the
Modify LUD (activate) instruction.

3203-5 PRINTER CREATE LOGICAL UNIT
DESCRIPTION (CRTLUD) TEMPLATE

The following fields of the logical unit description
template must be initialized as indicated:

Field Name

LUD type

Device type

Model number (must be
stand-alone)

LUD operational unit
number

Power control

Session definition data

Load/ dump indicator

Specific characteristics
length

Retry value length

Error threshold length

Entry

Char 00

Char 3203

Char bbb5

Hex 0040 for the first
printer
Hex 0041 for the second
printer

Hex 0100

Bin a
Bin a
Hex 0000

Hex 0000

Hex 0000

Field Name

Device-specific contents
length

Entry

501

Device-specific modifiable 501
length

Device-specific area

Byte 0 Control flags

• Bits 0-1

• Bit 2

Reserved (binary 0)

Write control
0= No data

translation
1 = Translate the data

Char(501)

Char(1)

Bit(2)

Bit(1)

• Bits 3-7

Byte 1

Reserved (binary 0) Bits(4)

Lines per inch Char(1)

Byte 2 Lines per form Char(1)

Bytes 3-4

Bytes 5-308

Character set length Bin(16)

Universal character Char(304)
set buffer (USCB)

• Bytes 5-244 Train image

• Bytes 245-308 Dualing and
uncomparable
character table
(DUCT)

Bytes 309-500 Translate table

Char(240)

Char(64)

Char(192)

The device-specific parameters mayor may not be
supplied in the device-specific area of a create template.
If they are not supplied at create time, the create
template must still contain the 501-byte area and this
area should be set to O. The LUD will be created to
contain whatever is in the template, without validating
any of these parameters. These parameters are not
used until after the LU D is in the active session state.

3203-5 PRINTER MODIFY LOGICAL UNIT
DESCRIPTION (MODLUD)

The following is a list of functions the 3203 supports
through the MODLUD instruction:

• Power on

• Power off

• Vary on

• Vary off

• Activate

• De-activate

• Suspend

• Quiesce

• Reset

• Resume (activate after suspend, quiesce, or reset)

• Modify device-specific area

See Chapter 17 for the meaning of each function.

LUD Device-Specific Area

The device-specific area contains the information that is
passed to the printer attachment to control the line
spacing, form size, universal character set buffer, train
image, dualing and uncomparable character table, and
translate table used by the printer. This area may be
altered by Modify LUD instruction at any time. Changing
any portion of the device-specific area causes all
device-specific area parameters to be written to the
printer. If the number of lines per inch or the number of
lines per form is redefined, the line counter is set to the
top of the form and it may be necessary for the
operator to reposition the form to line one on the
printer. Changes to the device-specific area are
reflected when the machine processes the next Request
I/O instruction.

Source/Sink Specialization 23-81

3203-5 PRINTER REQUEST I/O (REQIO)
INSTRUCTION

The Request I/O instruction is used to request the
3203-5 Printer to perform its various I/O functions.

The SSR for a Request I/O instruction to the 3203-5
Printer contains the following values:

Field

Source/sink object

Response queue

Source/sink data area

Optional pointer

Request priority

Request identification

Function field

Control field

Key length

Key offset

RD count

RD offset

Value

System pointer to LU D

System pointer to response
queue

Space pointer

Reserved (binary 0)

See Request I/O (REQIO) in
Chapter 17

See Request I/O (REQIO) in
Chapter 17

Hex 80

N or C

Bin(2)

Bin(2)

o for Request I/O
(continue) instruction
1 for Request I/O
instruction

Bin(2)

The 3203-5 Printer supports only one RD for each
Request I/O instruction. The RD count field must be
one for request I/O (normal) operations; however, for
request I/O (continue) operations, this field is ignored.
The RD offset field indicates the offset from the start of
the of the SSR to the 16-byte RD. The source/sink
data area (SSD) contains the data to be printed
corresponding to the command in the RD.

The format of the RD is as follows:

Byte 0 Command Char(1)
Hex 41 - Print SCS data
Hex 42 - Continue printing

after error

Bytes 1 -3 Command modifiers Char(3)

Bytes 4-15 Reserved (binary 0) Char(12)

23-82

Print SCS Data Command (hex 41)

The PrintSCS Data command causes the data in the
SSD to be printed in the format specified by the SCS
command embedded in the SSD. The command
modifier bytes (bytes 1-3 of the RD) contain additional
information and have the following format:

Byte 1 Char(1)

• Bits 0-4 Reserved (binary 0)

• Bit 5 Force full completion
o Maximum throughput

(normal mode)
Return completion
status only after all
data is printed

• Bit 6 Unprintable character detection
o Signal unprintable

character detected error
Do not signal an error
to the user

• Bit 7 Continue

Bytes 2-3

o Start printing at
beginning of the SSD
Retain any data saved
from previous Print
SCS Data command and
continue printing where
printing stopped

Data block group
count

Bin(2)

The force full completion bit, set to 0, allows the
channel to be released for other operations before a
print line complete status is returned from the print
adapter for each line of print. The user should be aware
that an error on the last line of print will be indicated on
the next Request I/O instruction.

When the force full completion bit is set to 1, the
channel is not released until all the data is printed.

Normally, the continue bit should be on to ensure that
all data is printed.

The data block group count field is the number of
8-byte groups in the SSD. The data block count must
Qe from 1 to 8192; otherwise, an error occurs.

The print data area must be loaded before the Print SCS
Data command is issued.

Continue Printing After Error (hex 42)

The Continue Printing After Error command (hex 42) can
be used to recover from an error that occurred on a
print Request I/O instruction that used a Print SCS Data
RD command (hex 41). When an error occurs, a print
Request I/O instruction with a Continue Printing After
Error (hex 42) RD command can be issued to continue
printing as if the previous error had not occurred. The
SCS data is saved from the previous SCS print, and
printing is continued from where the error occurred. The
command modifier bytes (bytes 1 -3 of the RD) contain
additional information and have the following format:

Byte 1 Char(1)

• Bits 0-4 Reserved (binary 0)

• Bit 5

• Bit 6

• Bit 7

Bytes 2-3

Unused

Unprintable character
detection
o = Signal unprintable

character detected
error
1 = Do not signal an

error to the user

Unused

Unused

The SSD pointer value is ignored by this command.

This command should be used for only hardware errors
that do not require a response. If this command is used
for errors that require a response, the results are
unpredictable. The user of this command should not
change the print data area that was used by the
Request I/O instruction that encountered the error. An
invalid RD command error is signaled if the preceding
Request I/O instruction did not have a valid hardware
error.

A Request I/O (continue) instruction must be issued to
continue processing.

STANDARD CHARACTER STREAM (SCS)

The SSD contains the SCS. The SCS is used by the
3203-5 Printer for transferring print data and SCS
commands from the system to the printer. With SCS,
Print Data and SCS commands are sent to the
attachment in free-form; that is, SCS commands can
appear anywhere within the print data stream. The SCS
commands have values of hex 00 through hex 3F, and
hex FF.

Print data characters have values from hex 40 through
hex FE. Any character not recognized as a printable
character prints as a blank and an unprintable character
condition is returned in the feedback record. If the
translate option is used (write control bit is on in the
LUD), characters are handled as defined by the user.

SCS COMMANDS

The SCS commands control carriage operations. The
SCS commands for the 3203-5 Printer are the same as
the SCS commands for the 3262/5211 Printer. The
3262/5211 Printer section of this chapter has a detailed
description of the SCS commands.

Source/Sink Specialization 23-83

3203-5 FEEDBACK RECORD AND ERROR
RECOVERY PROCEDURE

The format of the feedback record is as follows:

Bytes 0-15 SSR address Space pointer

Bytes 16-17 Request Bin(2)
identification

Bytes 18-19 Error summary Bin(2)

Bytes 20-21 RD number Bin(2)

Bytes 22-23 RIU segment Bin(2)
count

Bytes 24-63 Device-dependent Char(40)
area

• Bytes 24-25 Device-dependent Char(2)
error code

· Bytes 26-27 Hardware error Char(2)
code

· Bytes 28-35 Time stamp Char(8)

· Bytes 36-37 Operating unit Char(2)
number

· Bytes 38-63 Reserved (binary Char(26)
0)

See Request I/O (REQIO) in Chapter 17 for descriptions
of the request address and request 10 fields.

The error summary field defines the status of the
Request I/O instruction as defined under Request I/O
(REQIO) in Chapter 17. The specific values possible for
the 3203-5 Printer are shown in Figure 23-8.

23-84

The RD number is the index of the last RD processed or
the RD in error if an error is indicated. For the 3203-5
Printer, the RD number is 1.

The RIU segment count is the number of forms
completed by the printer before an error occurred. If no
error occurred, this field is not defined.

The device-dependent area is all binary 0' s unless the
presence of device-dependent data is indicated by the
error summary value in the error summary field. (See
Description under Request I/O (REQIO) in Chapter 17 for
the error summary field definition.) If device-dependent
data is present, the field has the values shown in Figure
23-8.

As shown in Figure 23-8, the device-dependent error
code is a further categorization of the hardware error
codes.

The hardware error code is the same value as that
logged in the hardware error log and indicates the
specific hardware error encountered. The possible
values are shown in Figure 23-8.

The time stamp and operating unit number are the same
values present in the hardware error log entry and are
used to correlate the FBR and the error log entry for
maintenance purposes.

Device-
Error Dependent Hardware
Summary Error Code Error Code
(hex) (hex) (hex) Meaning Recovery Action

0000 N/A N/A Normal completion N/A

0008 N/A N/A REalO (continue) instruction N/A
response

C009 N/A N/A Partially processed request An MODLUD (activate) instruction must
terminated because of reset be issued to restart processing, or an
session MODLUD (de-activate) instruction must

be issued to destroy the session.

COOA N/A N/A Unprocessed request because of An MODLUD (activate) instruction must
reset session be issued to restart processing, or an

MODLUD (de-activate) instruction must
be issued to destroy the session.

C043 N/A N/A Invalid SSD boundary alignment Correct the boundary alignment, reissue
an REalO instruction, and issue an
REalO (continue) instruction to restart
processing.

C044 N/A N/A SSD too small Correct the boundary alignment, reissue
an REalO instruction, and issue an
REalO (continue) instruction to restart
processing.

C084 N/A N/A Invalid pointer to SSD Replace SSD pointer with a valid
pointer, reissue an REalO instruction,
and issue an REalO (continue)
instruction to restart processing.

C085 N/A N/A Invalid function field Correct the function field value, reissue
an REalO instruction, and issue an
REalO (continue) instruction to restart
processing.

C086 N/A N/A Invalid RD count Remove extra RDs, reissue an REalO
instruction, and issue an REalO
(continue) instruction to restart
prpcessing.

E010 0002 4450 Invalid SCS command Check SCS codes, correct command in
error, and reprint the form. An REalO
(continue) instruction must be issued to
restart processing.

Figure 23-8 (Part 1 of 3). 3203-5 Error Summary Values

Source/Sink Specialization 23-85

Device-
Error Dependent
Summary Error Code
(hex) (hex)

E010 0003

E010 0005

E010 0006

E010 0009

E010 OOOC

Hardware
Error Code
(hex)

5437

7030

N/A

N/A

N/A

4020
4040
4080
7004
7006
7014
7101
7102
7103
7106
7108
7109
7120
7121
7122

Meaning

Forms jam

Stacker full or jammed

Unrecoverable I/O error
(OU task failure)

Unprintable character detected

Interlock open

Printer or hardware adapter
failures

Figure 23-8 (Part 2 of 3). 3203-5 Error Summary Values

23-86

Recovery Action

Correct the forms jam and reprint the
form. An REQIO (continue) instruction
must be issued to restart processing.

Correct the stacker jam and reprint the
form. An REQIO (continue) instruction
must be issued to restart processing.

The MODLUD (reset, de-activate, and
vary off) instructions are required to
clear this condition.

A line has printed with blank
substitution. If blank substitution is
acceptable, issue an REQIO (continue)
instruction and reissue the failing REQIO
message. If blank substitution is not
acceptable, then either specify ignore
unprintable characters in the DSA,
correct the print data, correct the
translate table, or correct the train
image. An REQIO (continue) instruction
must be issued to restart processing.

Close interlock on printer and reprint
form. An REQIO (continue) instruction
must be issued to restart processing.

Operator intervention is required.
Disengage paper and restore to the top
of the form. Reprint the form. An
REQIO (continue) instruction must be
issued to restart processing. If the error
persists, call your service representative.

Device-
Error Dependent Hardware
Summary Error Code Error Code
(hex) (hex) (hex) Meaning Recovery Action

E010 OOOD 3203 System error Call the service representative.
3205
4034
4038
4452
7010

E010 0019 N/A Printer offline Attach the printer to the line, power on,
switch online, and make ready. Issue an
REQIO (continue) instruction and reissue
the failing REQIO message.

E010 001A N/A Out of forms Install forms. An REQIO (continue)
instruction must be issued to restart
processing.

E087 0007 N/A Invalid RD command detected or Correct RD command byte, reissue the
a hex 42 RD command was REQIO instruction, and issue an REQIO
issued that could not be (continue) instruction.
accepted

E087 0008 N/A Zero data block field in the RD or Correct the data block field, reissue the
more than 8192 bytes of data REQIO instruction, and issue an REQIO

(continue) instruction.

E087 0017 N/A RD invalid, reserved field violated Correct the RD, reissue the REQIO
instruction, and issue an REQIO
(continue) instruction.

F075 N/A 4101 Error during error recovery Call the service representative.
4102
4103
4110
4111

Figure 23-5 (Part 3 of 3). 3262/5211 Error Summary Values

Source/Sink Specialization 23-87

Events

In addition to the events specified under Request I/O
(REQIO) in Chapter 17, the following events are
signaled. For a complete description of the following
events, see Chapter 21.

• LU D contact event (hex OOOB 06 01)

This event is signaled when the MSCP when vary on
processing is completed for this device. Only subtype
hex 01 is signaled upon successful contact; however,
subtype hex 02 is never signaled since the MSCP
processing is synchronous to the Modify LUD (vary
on) instruction and an exception is signaled instead.

• LUD failure event (hex OOOB 08 01)

The LU D failure event is signaled if the printer has a
problem that requires the service representative to be
called. As part of the recovery action for this event,
the LUD should be varied off before attempting
further operations.

The event-related data for this event consists of:

Bytes 0-1

Bytes 2-9

Bytes 10-11

Bytes 12-13

Hardware error log code

Error log time stamp or O's

Operational unit number (hex 0040
or hex 0041)

Optional data (not used)

This event is signaled only for those failures that have
hardware error codes that correspond to the error
summary codes hex F075 and hex E010 0005.

23-88

• Operator intervention required event (hex OOOB 07 01)

The operator intervention required event is signaled
when the device requires the operator to take some
action, but no error has occurred.

The 14-byte variable data returned with this event is
formatted as follows:

Bytes 0-1

Bytes 2-9

Status - code that was included in the
error log message if there was a
corresponding error log message;
otherwise, the status bytes contain a O.

Time stamp - contains the time stamp
of the corresponding error log
message; otherwise, the time stamp
is O.

Bytes 10-11 Operational unit number - Hex 0040 or
Hex 0041

Bytes 12-13 Optional data - format is as follows:

Condition

Byte 12
bit (0)

Indication Description

Ready light SCS command was
off received, and the

printer was not
ready. Printer
is stopped and is
not ready as a
result of a normal
stop condition, and
no errors exist.

Recovery Procedures

Press the Start key.

The remaining bits of bytes 12 and 13 are O.

• Request I/O complete event (hex OOOB 09 01)

This event is signaled if the user requests it. See
Request I/O (REQIO) in Chapter 17 for details.

• Request I/O response queue destroyed event (hex
OOOB OA 01)

This event is signaled if the user truncates or
destroys the request I/O response queue while the
machine is processing Request I/O instructions.

Exceptions

The following table gives the cases where the
source/sink resource not available exceptions (hex 3404)
are signaled when a Modify LUD instruction for the
machine console LU D is executed.

Device-
Specific

Defect Return
Code Code

Command (hex) (hex) Meaning

Power On 2306 0602 I/O device power failure
has occurred. LUD
failure event has been
signaled.

Power Off 2307 0602 I/O device power failure
has occurred. LUD
failure event has been
signaled.

Suspend 2312 1203 Suspend session
Session rejected because an

operator intervention
condition exists.

Quiesce 2313 1302 Quiesce failure because
Session a terminating error

condition exists.

1303 Quiesce session rejected
because an operator
intervention condition
exists

Source/Sink Specialization 23-89

23-90

Chapter 24. Communications and Locally Attached Work Stations

MACHINE SERVICES CONTROL POINT (MSCP)

The MSCP coordinates supervisory service requests for
all users of the shared source/sink resources. Requests
for services are entered through the Modify NO, Modify
CD, Modify LUO, and Request I/O instructions and may
be processed directly by the MSCP or may be redirected
to other supervisory components that provide the
requested function. Supervisory service requests
include:

• Internal machine functions associated with varying on
and varying off a communications line or a device

• Switched connection support such as initiating and
completing calls

• Requests initiated at a remote device

Certain requests received by the MSCP cannot be
serviced within the machine. These requests result in an
event being signaled. To ensure that these requests are
properly serviced, there must always be a process with
the responsibility for handling these requests.
Depending on the conditions that exist and the event
signaled,. system protocol may require further
communication with the MSCP or with the device that
initiated the request.

Modification of Source/Sink Objects

Many of the functions provided by the MSCP are
implicitly requested when an instruction to modify a
source / sink object to a vary on or vary off state is
requested. Such functions as the activation of the local
or channel attached devices are not apparent to the
user; however, for communications devices such as
logical units on the shared communications links, the
availability, allocation, and use of these resources must
be understood by the user.

Modify Network Description (MODND)

During processing of the Modify NO (vary on)
instruction, the MSCP is requested to activate the link
represented by the NO. Activation of the link includes
all the logical and physical initialization required before
stations on that link can be contacted. When the NO
being activated (varied on) represents a connection into
the switched network, that communications adapter is
initialized but is not prepared for calls until it has been
placed in the switched enabled state by a Modify NO
(enable) instruction. Once placed in the switched
enabled state, the usage of the NO is governed by the
option specified in the switched connection method field
of the N D template. If only dial in allowed is specifed,
the link is activated for incoming calls. If only dial out
allowed is specified, the link is activated for outgoing
calls. If either allowed is specified, the link is activated
for incoming calls; however, if it is necessary to use this
facility for a dial out call before a dial in call has
occurred, the resource is available and can be allocated.
Allocation and use of switched line facilities is controlled
by the Modify NO, Modify CD, and Modify LUO
instructions to vary the source/sink objects on or off.
To control the allocations and use of switched line
facilities, an NO candidate list is maintained in the CD
for each controller capable of using the switched
network facilities.

Communications and Locally Attached Work Stations 24-1

Modify Controller Description (MODCD)

During the processing of a Modify CD (vary on)
instruction, a request is initiated to direct the MSCP to
establish contact with the appropriate station.

When a Modify CD (vary on) instruction is being
processed, the MSCP is always requested to contact a
station; however, contact with the station cannot always
be made at this time. The station cannot be contacted if
a switched connection is required and has not been
completed or if the station is not powered on. The CD
is placed in a vary on pending state until the time when
the contact is made. For remote stations, completion of
the vary on processing is always done asynchronous to
the Modify CD instruction.

Switched network resources are allocated and
connection to the station is established as a result of
receiving an incoming call or an explicit request (Modify
CD (dial) instruction) to dial out is initiated by another
process. Upon completion of the switched connection,
the MSCP receives the station identification information
as sent by the secondary station in response to an
Exchange Identification (XID) command. The MSCP
validates the identity of the secondary station and
completes the vary on processing based on the
following checks:

• The station identification matches the XID field in a
CD.

• This CD is in the vary on pending or dialing out state.

• The NO representing the line on which the call is
made is included in the NO candidate list of this CD.

If any of these checks fail, the connection is broken and
the controller description unsuccessful contact event is
signaled.

Contact with the station is established and completion
of the Modify CD (vary on) instruction always occurs
asynchronous to the process executing the Modify CD
instruction. When the Modify CD (vary on) instruction is
complete, the controller description successful contact
event (event class hex 0004, type hex 04, subtype hex
01) is signaled.

24-2

Modify Logical Unit Description (MODLUD) Instruction

When the LUD representing a local or direct attached
device is varied on, all necessary functions are
synchronously completed and the LUD goes to the vary
on state before the Modify LUD instruction completes.

Synchronous Data Link Control (SDLC) Logical Unit
Description

An LUD representing a logical unit attached to a station
on a leased line or a station using the switched network
facilities, attains the same states as the CD with which
it is associated. For example, the vary on pending state
is set until contact with the station is established, at
which time the MSCP completes all vary on pending
functions. At this time, the logical unit description
successful contact event (event class hex 0008, type
hex 06, subtype hex 01) is also signaled, provided a
positive response to the activate logical unit session
with device available indication has been received.

When the Modify LUD (vary on) instruction is being
processed, the MSCP sends the activate logical unit
session control message to the logical unit to establish
an MSCP-to-Iogical unit session. This session remains
active as long as the LUD is in the vary on state. It is
the responsibility of the MSCP to terminate this
MSCP-to-Iogical unit session as well as to control the
routing of all messages flowing on this session.

When the MSCP-to-Iogical unit session is established,
the logical unit can initiate unsolicited requests to the
MSCP. Since the MSCP cannot always service these
requests, machine events are used to make the
information available to other processes. The events,
request data, and the procedure for servicing the
request are discussed under Supervisory Service Events
later in this chapter.

MSCP Operation

The MSCP coordinates all supervisory service requests
but does not necessarily provide the requested
functions. That is, all supervisory service requests are
sent to the MSCP, but the MSCP may in turn route the
request on to the ultimate request processor. The
MSCP can communicate with all logical units and
physical units that are varied on by the MSCP-to-Iogical
unit and MSCP-to-physical unit sessions respectively.
However, when requests are initiated by or destined for
a process a different means of communication is
required.

Requests are signaled to a process by machine events.
The Request I/O instruction, with the function field in
the SSR set to indicate an MSCP message, is used by
the process to route a response or a new request to the
MSCP. As before, the MSCP is responsible for routing
the message to the appropriate destination.

Supervisory Service Events

Several events are defined which require definite action
to be taken by a process in order to continue normal
processing.

• Controller Description Manual Intervention Event

Event Class
Type
Subtype

Hex 0004
Hex 06
Hex 01

This event is signaled by the MSCP when a request
is received to establish a switched connection with an
SDLC (synchronous data link control) station and the
link attachment to be used does not support the
autodial feature. The event-related data returned with
the event includes a system pointer to the CD
representing the station to be called, a system pointer
to the N D representing the line on which to place the
call, and a 2-byte status field that indicates manual
dial operation is required. See Chapter 21 for a
detailed description of the event- related data. The
process must materialize the CD and ND if it is
necessary to retrieve additional information such as
the telephone number, N D name, or line number.
This information is used to generate and display a
message informing the operator that the manual dial
operation is to be performed.

When the connection is made, a Modify ND (manual
start data) instruction is issued and the vary on CD
processing is completed. If the operator response to
the process is that the call cannot be completed,a
Modify CD instruction may be issued to abandon the
dialing state of the CD (return to vary on pending
state).

• Controller Description Successful Contact

Event Class
Type
Subtype

Hex 0004
Hex 04
Hex 01

This event is signaled to indicate a successful
completion of the vary on processing for this
controller description for either communications or
locally attached controllers. For communications
stations the MSCP-to-physcial unit session is active
at this time because a positive response was received
from the far end secondary station to the activate
physical unit request or that the System/38 had a
positive response to the far end primary stations
activate physical unit request. Event-related data
returned with this event consists of a system pOinter
to the CD and a system pointer to the ND. The data
length field is set to O. The actual exchange
identification data received is not provided as event
data but is inserted directly into the exchange
identification area of the CD object.

Communications and Locally Attached Work Stations 24-3

• Controller Description Unsuccessful Contact

Event Class
Type
Subtype

Hex 0004
Hex 04
Hex 02

This event is signaled when the vary on processing
failed. The event-related data returned with this
event includes a system pointer to the CD, a system
pointer to the NO, and up to 66 bytes of data
including a 2-byte status code that defines the
reason for the failure. Also included in the
event-related data, if appropriate, is the exchange
identification data received from the failing station.
See Chapter 21 for a detailed description of the
event-related data.

• Controller Description Loss of Contact

Event Class
Type
Subtype

Hex 0004
Hex 04
Hex 03

This event is signaled to indicate loss of contact
whenever the primary SDLC station has sent a
disconnect command to System/38. The
event- related data returned with this event includes a
system pointer to the CD, a system pointer to the NO
(supplied for only CD type 10; otherwise, O's), and up
to 14 bytes of data including a 2-byte status code
that defines the reason for the failure. See Chapter
21 for a detailed description of the event-related
data.

24-4

• Logical Unit Description Unformatted Supervisory
Service Request Event

Event Class
Type
Subtype

Hex 0008
Hex 04
Hex 01

This event is signaled by the MSCP when an
unformatted supervisory service request is received
on the MSCP-to-Iogical unit session. The
supervisory service request can be initiated by an
operator at a work station by pressing the Sys Req
key, keying in the optional data, then pressing the
Enter key. When this procedure is followed, the
MSCP determines that the data is to be routed to a
process and then signals the event. The
event-related data consists of a system pointer to the
LU 0 that identifies the logical unit that initiated the
request. In addition, the data length field of the
event- related data indicates the number of bytes of
request unit data that follows.

• Logical Unit Description Formatted Supervisory
Service Request Event

Event Class
Type
Subtype

Hex 0008
- Hex 04

Hex 02

This event is signaled when the MSCP receives a
formatted supervisory service request on the
MSCP-to-Iogical unit session. An example of a·
formatted request is the request test message sent
when the Test Req key is pressed. The event-related
data includes a system pointer to the LUD associated
with the device that originated the request. The data
length field of the event-related data contains the
number of bytes of data in the message. The entire
message is included in the event-related data just as
for the unformatted request.

When the MSCP receives one of these requests on
the MSCP-to-Iogical unit sessions, the event is
signaled and the MSCP sends a positive response to
the device that originated the request.

• Logical Unit Description Successful Contact Event

Event Class
Type
Subtype

Hex 0008
Hex 06
Hex 01

This event is signaled to indicate a successful
completion of the vary on process for the logical unit.
The MSCP-to-Iogical unit session is active at this
time because a positive response was received to the
activate logical unit request and the device available
indicator in the logical unit description is set on. For
a secondary station, this event is signaled when an
activate logical unit request is received from the far
end primary station. If the device is not available, this
event is not signaled until a request is received by the
MSCP to indicate that the device is available. The
event-related data consists of a system pointer to the
LUD, a system pointer to the NO (if appropriate)' and
a data length field that is set to O.

• Logical Unit Description Unsuccessful Contact Event

Event Class - Hex 0008
Type - Hex 06
Subtype - ~ Hex 02

This event is signaled when the vary on LUD process
fails, as in the case where a negative response to an
activate logical unit is received by the MSCP. The
event-related data includes sense data or exchange
identification data and a reason code for the failure.
See Chapter 21 for a detailed description of the
event- related data.

• Logical Unit Description Device Not Available Event

Event Class
Type
Subtype

Hex 0008
Hex 08
Hex 02

This event is signaled by the MSCP when logical unit
status is received indicating that a previously active
device is now unavailable. The event-related data
includes a system pointer to the LUD, a data length
field of 14 bytes, and a status field containing the
SNA logical unit status message.

• Logical Unit Failure Event

Event Class
Type
Subtype

Hex 0008
Hex 08
Hex 03

This event is signaled by the MSCP whenever
System/38 is a secondary station and the far end
primary station has indicated that the SSCP to
physical unit session is no longer active.

Communications and Locally Attached Work Stations 24-5

• Network Description SDLC Exchange Identification
Failure Event

Event Class
Type
Subtype

Hex OOOE
Hex 04
Hex 01

This event is signaled by the MSCP when switched
line connection cannot be established for one of the
following reasons:

The exchange identification received from a
secondary SDLC station does not match the
exchange identification of any CD that is in the
vary on pending state.
A primary SDLC station has sent an Activate
Physical Unit Data command to System /38 but
the command SSCP identification does not match
the SSCP identification of any of the CDs that are
in the vary on pending state.

The event-related data includes a system pointer to
the NO, a data length field, and the actual exchange
identification (a maximum of 64 bytes) that was
received.

• Network Description Line Failure Event

Event Class
Type
Subtype

Hex OOOE
Hex 05
Hex 01

This event is signaled by the MSCP when an
unrecoverable line error occurs.

• Network Description SNA Protocol Violation Event

Event Class
Type
Subtype

Hex OOOE
Hex 05
Hex 02

This event is signaled for secondary support
situations when the far end primary station has
violated the SNA protocol. This event is signaled if
the far end station sends information frames before
the activate physical unit is processed by System/38.

24-6

Request I/O (MSCP) Instruction

The process that handles supervisory service requests
communicates with the MSCP by using the Request I/O
(MSCP) instruction. The MSCP-to-Iogical unit session is
accessible to the process by using the Request I/O
(MSCP) instruction with the object pointer in the SSR
addressing the appropriate LUD. The MSCP-to-physical
unit session is accessible to the process by using the
Request I/O (MSCP) instruction with the system pointer
in the SSR addressing the appropriate CD.

The format of the Request I/O (MSCP) instruction and
the required operands is described in Chapter 17. For
rules that apply to messages that flow on the
MSCP-to-Iogical unit and MSCP-to-physical unit
sessions, refer to the SNA Format and Protocol
Reference Manual, SC30-3112. In addition, the
functional specifications for the SNA device supported
must be referenced for additional restrictions or
requirements. Compliance with the protocol governing
data flow on the MSCP sessions is the responsibility of
the user.

MSCP Source/Sink Request (SSR): The SSR space
object used with a Request I/O (MSCP) instruction is
described in Chapter 17. The SSR must contain a
system pointer to an LUD, CD, a system pointer to a
response queue, and, optionally, a space pointer to the
SSD (source/sink data). The function field in the SSR is
used to identify the Request I/O instruction as being
directed to the MSCP.

The system pointer to an LUD or CD specifies the
logical unit or controller to which the message is
directed. Contrary to a normal Request I/O instruction,
the LUD need not be in the active session state when
the Request I/O (MSCP) instruction is executed. The
MSCP-to-Iogical unit and MSCP-to-physical unit
sessions are implicitly activated when the CD and LUD
are varied on. Therefore, a Request I/O (MSCP)
instruction using these sessions is valid anytime the CD
or LUD is in the vary on state.

The system pointer to the SSD space is used in the
Request I/O (MSCP) instruction the same way as it is
used in the normal Request I/O instruction since it
provides addressability to the optional input or output
data buffers as required by the RD fields in the SSR.

See Communications Device Management later in this
chapter for a more detailed definition of the format and
use of the RD as required in communicating with an
SNA device. The use of the SSD space on the MSCP
sessions follows the same rules as defined for a
Request I/O (MSCP) ins~ruction on the logical
unit-to-Iogical unit session.

MSCP Feedback Record (FBR): An FBR is generated
and sent to the response queue specified in the SSR for
each Request I/O (MSCP) instruction. The 2-byte error
summary field in the FBR contains the appropriate
information about the completion status of the Request
I/O (MSCP) instruction. The MSCP FBR does not
include any device-dependent error status in the
optional field.

FBR error summary codes used by the MSCP are as
follows:

Error
Summary
Code Description Meaning

Hex 4830 Invalid LUD The device represented by
or CD type this LUD or CD does not

support an
MSCP-to-Iogical unit or an
MSCP-to-physical unit.

Hex 4831 LUD or CD The MSCP-to-Iogical unit
not varied or the MSCP-to-physical
on unit sessions is not active.

Communications and Locally Attached Work Stations 24-7

Communications Device Management

This section describes the programming considerations
and specific device support requirements for
communications source/sink devices. For general
information regarding the commands and objects, see
the Functional Concepts Manual.

Communications device management operates in
support of a controller (station) and the logical units
(devices) attached to the controller. Device management
performs the system network functions necessary to
complete a Request I/O instruction. Communications
devices supported are as follows:

• 5251 Display Station (secondary device)

• 5252 Dual Display Station (secondary device)

• 5256 Printer (secondary device)

• Work Station Controller (primary device)

All communications devices require an LUD (logical unit
description) object to be created for their support.
These logical unit descriptions are a type 30 LUD, which
requires that both an ND (network description) object
and a CD (controller description) object be created to
communicate between the LUD and System/38. See
Figure 24-1. All information necessary to create LUDs
for each specific communications device is supplied in
the subsequent sections. The information common to all
LUDs, such as name, forward pointers, and backward
pointers is defined in Chapter 17.

~
L:;:-J

1

~----------------,

~ ~
L::.J L..:::-J

I I
1 I 1---------, I
I I I
I I I

LUD
Type 30

LUD
Type 30

LUD
Type 30

Figure 24-1. Communications Object Configuration

24-8

PROGRAMMING CONSIDERATIONS

Communications with a CPU, station, or device is
accomplished through system network sessions. For
primary device support, an MSCP (machine services
control pointer)-to-physical unit path is activated when
the station is varied on; an MSCP-to-Iogical unit path is
activated when a logical unit is varied on; and a logical
unit-to-Iogical unit path is activated when an MODLUD
(activate) instruction is executed. For secondary station
support, an SSCP (system service control
point)-to-physical unit path is activated when the ND
and CD are varied on and an activate physical unit
command is received; an SSCP-to-Iogical unit path is
activated when a logical unit is varied on and an activate
logical unit command is received; and a logical
unit-to-Iogical unit path is activated when a MODLUD
(activate) instruction is executed.

To manage these system network sessions paths, the
device management supports the following instructions.

• Modify Network Description (MODND)
Vary On/Off
Enable/Disable
Manual Answer/Abandon Call
Start Data

• Modify Controller Description (MODCD)
Vary On/Off

- Dial/Abandon Connection

• Modify Logical Unit Description (MODLUD)
Vary On/Off
Activate / De-activate
Suspend
Ouiesce
Reset

• Request I/O (REOIO)
Functions
Normal
MSCP
Control
Normal
Continue

Prior to using any ·of these instructions, the user must
create the ND describing the line, the CD describing the
station(s), and the LUD describing the device(s). This is
done by using the following instructions:

• Create Network Descriptor (CRTND)

• Create Controller Descriptor (CRTCD)

• Create Logical Unit Descriptor (CRTLUD)

INSTRUCTIONS

MODND (Vary On/Off)

These instructions are used to activate or de-activate
the communications line.

MODND (Enable/Disable)

These instructions are used on switched
communications lines to enable the line to accept
incoming calls or transmit outgoing calls based on the
entry in the switched connection method field in the ND.

MODND (Manual Answer/Abandon Call)

These instructions are used to synchronize the hardware
adapter signals with operator actions for completing or
discontinuing a switched manual answer connection.
Specifically, this instruction indicates that the operator
has established the connection and causes the machine
to initialize the line.

MODND (Start Data)

This instruction indicates that the operator has manually
placed the coupler in data mode, and the line is now
ready for data communications.

MODCD (Dial/Abandon Connection)

'These instructions are used to allow a station to be
dialed manually, automatically, or disconnected.

MODCD (Vary On/Off)

These instructions are used to establish or break the
communications path to the physical unit in the station
represented by the CD.

MODLUD (Vary On/Off)

For primary device support, this instruction is used to
establish or break the communications path from the
MSCP to the LU.

MODLUD (Activate/De-activate)

These instructions are used to establish or break the
communications path from the machine LU to the CPU
or station's LU. MODLUD (activate) is also used to
activate the logical unit-to-Iogical unit path when it is in
anyone of the three inactive states (suspended,
quiesced, or reset).

MODLUD (Quiesce)

When the device management receives this instruction it
completes all Request I/O instructions in progress or
waiting on the internal LU queue. Upon completing this
instruction, the device management comes to a normal
completion and all request I/O processing is
discontinued until the path is re-activated with a
MODLUD (activate) instruction.

The MODLUD (quiesce) instruction is rejected if the unit
is already in a terminating error mode upon receipt of
the quiesce, if the unit goes into a terminating error
mode while trying to complete the MODLUD (quiesce)
instruction, or if the quiesce cannot complete within the
time-out value specified because of a long running
REQIO instruction in process. In these situations, the
user must analyze the feedback record that is on the
return queue and perform the necessary recovery for the
terminating error situation.

Communications and Locally Attached Work Stations 24-9

MODLUD (Reset)

This instruction causes all Request I/O instructions to
be flushed back to the user's return queue, in an orderly
fashion, with a feedback status indicating the flushed
condition. The number of request descriptors processed
is also set in the feedback record. This instruction also
places the path in an inactive state, which can be
activated with an MODLUD (activate) instruction. All
available unsolicited data is relinquished by this
instruction. It is possible for the reset to cause partial
damage to the LUD. This would happen if the reset
were issued with a time-out value specified that is
shorter than the time needed to complete a transmit to
hardware. For printers or displays using a copy to
printer, this time may be as long as 60 seconds.
Therefore, the time specified in the reset must be 60
seconds or more to ensure the reset completes
normally.

MODLUD (Suspend)

This instruction ensures the user that all REalO
instructions for this logical unit are in the suspended
state. This means that all the REalO instructions that
have been started complete to a transmit/receive
request descriptor boundary. The REalO instructions
that are completed are placed on the return queue with
the appropriate feedback code and number of request
descriptors done. Any transmit/ receive type of REalO
with only the transmits complete is still on the logical
units queue. The suspend may be completed with a
reject status if the suspend cannot complete within the
time-out value specified because of a long running
REalO instruction in process.

Notes:
1. It is possible for MODLUD (suspend) to complete

normally and the logical unit to be placed in
terminating error mode. Therefore, it is recommended
that the user check the queue for any feedbacks
indicating a terminating error condition.

2. If an MODLUD (suspend) instruction is issued when a
transmission is in progress that causes input, the
input causes the unsolicited data event to be
signaled. This is because all I/O operations have
been suspended by this command from the viewpoint
of the machine but not the communications device.

24-10

MODLUD (Suspend, De-activate, and Activate)

This combination of MODLUD instruction operations can
be executed to perform a logical unit save type of
operation. This atomic set of instructions perform a
suspend, reset, de-activate, and activate. Therefore, the
user is assured that all REalO instructions are called
back and placed on the user's queue and that the logical
unit is in an active path state ready to process more
REalO instructions.

Note: A reset causes any available unsolicited data to
be relinquished, as the device management has no way
to give the data to the user.

Request I/O Instruction

This instruction is used for two purposes. First, it is
used to perform I/O on the various paths.

• Primary Devices
MSCP-to- Physical Unit
MSCP-to- Logical Unit
Logical Unit-to- Logical Unit

• Secondary Stations
Physical Unit-to-SSCP
Logical Unit-to-SSCP
Logical Unit-to- Logical Unit

Second, the Request I/O (continue) instruction is used
to return the logical unit to active path state after it has
encountered a terminating error. See Chapter 17 of this
manual for a detailed description of the Request I/O
instruction.

A Request I/O (normal) instruction can contain all the
transmit RDs (request descriptors), all the receive RDs,
or both transmit or receive RDs. All transmit RDs must
occur before the receive RDs.

A Request I/O (receive immediate) instruction is
indicated by the first RD being a receive with the
immediate bit set on and can contain only receive RDs.

A Request I/O (transmit immediate) instruction contains
only one transmit immediate RD and is processed before
any SNA normal flow transmit that is on the queue for
the LUD.

Note: A REalO transmit only on the any flow defaults
to a REalO transmit only on the normal flow.

Device Management Source/Sink Request (SSR) General

The bits in the SSR function field have the following
meanings for device management:

Bits 0-3

Hex 8 = Normal Request I/O
Hex 4 = MSCP Request I/O

Bits 4-5

These bits define the SNA flow that all the request
descriptors (RD) are to be processed on. The bit
values and their meanings are:

Bits

00 and 10

01

11

Bits 6-7

Meaning

The RDs are to flow on
the SNA normal flow.

The RDs are to flow on the SNA
expedited flow.

The RDs are to flow on either the
SNA normal or SNA expedited
flow.

Note: This bit setting is changed
to 10 (normal flow) if the first RD
is a transmit.

Reserved (binary 0)

Device Management Request Descriptor

This RD is used for communications devices. It contains
information for the transmission header and the
request/ response header. The RD also indicates the
length and location of the request unit (RU) in the
source/sink data area. Both transmit and receive RDs
may be specified in the source/sink data area, but all of
the transmit RDs must precede the receive RDs.

The request descriptor field format (in bytes) is:

o
RU Flow

Type

1-5

Reserved

6-7

RU Length

8-10

Request
Response

Header

11 12-15

Reserved RU Offset

Communications and Locally Attached Work Stations 24-11

The meaning of the request descriptor format is as
follows:

Byte

o

Meaning

Bit 0 of the RU flow type indicates
whether this is a transmit or receive RD.
If bit 0 has a value of 0, it is a transmit
RD. If bit 0 has a value of 1, it is a
receive RD.

Bit 1 indicates whether the RD has been
processed by the machine or is awaiting
processing. The device management
ensures that this bit is set to 0 when the
Request I/O instruction is received. This
bit cannot be used by the user to cause
device management to skip the RD. The
device management always assumes that
all the RDs in the REQIO instruction are to
be processed.

In a terminating or nonterminating error
situation, the RD completion count points
to the RD on which the error was
discovered. Bit 1 would indicate that this
RD was processed.

The values for bit 1 are:

o Not processed
Processed

Bits 2-7 for primary devices are reserved
and must be binary 0' s.

Bits 2-3 for secondary stations are
reserved and must be binary 0' s.

Bit 4 for secondary stations
o Normal I/O operation
1 = Immediate I/O operations

Bits 5-7 for secondary stations
must be binary O's.

1-5 Reserved (binary 0)

24-12

Byte

6-7

Meaning

For a transmit RD, this field contains the
length of the output RU. A length of 0
indicates no RU is associated with this RD.
For a receive RD, before it is processed, this
field specifies the space available for the RU
in the SSD. After the receive RD is
processed, this field contains the length of
the received RU. If a group of receive RDs is
specified in the SSR, the space available for
all of the RUs can be specified in the first
RD of the group. The RU length field in the
remaining RDs within the group is set to O.
When RDs in the group are processed, the
RU length and offset fields are updated to
the length and offset of the received RUs.
The SSR can have more than one group of
receive RDs. The RUs for all RDs in the SSR
must be located in the same SSD.

)

Byte Meaning

8-10 These 3 bytes contain the information for the
request/ reponse header (RH). For a transmit
RO, the information for the transmitted RH is
supplied by the machine in this field. For a
receive RO, the information from the
received RH is inserted in this field when the
RO is processed. All unused bits are
reserved and must be set to O.

Byte 8 (request header)

Bit 0 = 0 indicates this RU is an SNA
request.

Bits 1-2 identify which type of RU is
being processed. The bits and their
meanings are:

00= Function manager data (FMD)
01 = Network control
10= Data flow control
11 = Session control

Bit 3 is reserved (binary 0).

Bit 4 indicates which format is used in the
associated RU. The use of formats is
session and RU type dependent. One use
of this bit is to indicate the presence of
an FM header in the RU.

Bit 5

a Indicates a valid request
Indicates the first 4 bytes of the RU
are sense data for exception
requests. Sense data must always
be included on a response that
indicates an error condition.

Bits 6-7 indicate which element of a chain
of RUs is being sent. The bit settings are:

00= Middle of chain
01 = Last of chain
10= First of chain
11 = Only element in chain

Byte Meaning

8-10 (continued)

Byte 9 (request header)

Bits 0, 2, and 3 are used in combination
to specify the type of response required.
Bit a is always 1 (except isolated pacing
response) and bit 2 is always a for SNA
0081 implementation. If bit 3 is 0, a
definite response must be sent. If bit 3 is
1 (exception response mode), a negative
response is sent only if an error is
encountered; otherwise, no response is
sent.

Bit 1 is reserved (binary 0).

Bits 4-6 are reserved (binary 0).

Bit 7 is used by device management for
pacing control. Device management
ensures that it contains the correct
setting.

Byte 10 (request header)

Bits 0-1 are used for bracket control.
Bracket use is session dependent. Bit 0
set to binary 1 indicates the beginning of
a bracket. Bit 1 set to binary 1 indicates
the end of a bracket.

Bit 2 is a change direction indicator. It is
used in a half duplex environment to
control the orderly transmission of
messages. The bit settings are:

o Do not change direction.
Change direction.

Bit 3 is reserved (binary 0).

Bit 4 is a code selection indicator. It
allows the sender to specify that a
previously defined alternate code is used
in this RU.

Bits 5-7 are reserved (binary 0).

Communications and Locally Attached Work Stations 24-13

Byte Meaning

8-10 (continued)

24-14

Byte 8 (response header)

Bit 0 = 1 indicates this RU is an SNA
response.

Bits 1-2 identify which of the four types
of RUs is being processed:

00= Function manager data (FMD)
01 = Network control
10= Data flow control
11 = Session control

Bit 3 is reserved (binary 0).

Bit 4 indicates which of the format is used
in the associated RU. The use of the
formats is session and RU type
dependent.

Bit 5 indicates whether any sense data is
included in the response.

o Sense data not included
The first 4 bytes of the RU
contain sense data

Bits 6-7 indicate which element of a chain
of RUs is being sent. The bit settings are:

00 = Middle of chain
01 = Last of chain
10= First of chain
11 = Only element in chain

Byte Meaning

8-10 (continued)

11

Byte 9 (response header)

Bit

o

2

3

Meaning

Always binary 1 (except IPRs)

Reserved (binary 0)

Always (binary 0)

o
1

Positive response
Negative response

4-6 Reserved (binary 0)

7 Used by device management for
pacing control. Device
management ensures that it
contains the correct setting.

Byte 10 (response header)

All of byte 10 is reserved (binary 0).

Reserved (binary 0)

12-15 This 4-byte field indicates the displacement,
in bytes, to the beginning of an RU from the
beginning of the SSD space. An RU
associated with a specific RD can be located
by displacing into the SSD space an amount
equivalent to the RU offset. The RU offset
for a receive R 0 is updated by the machine
if the RU length in the RD is specified as 0
(that is, the RD is designated as a part of an
RD group).

The SSD for the device management RDs contains RUs
as defined by the RDs location in the SSR. One RD
defines one RU. The location of the RU within the SSD
is determined by the RU offset field in the RD.

For transmit RDs, the offset must be supplied to the
machine in the RD. For receive RDs, the offset can be
supplied for each RD or the offset can be supplied for
the first RD of a group and the machine determines the
offset for each subsequent RD in the group, based on
the length of the received RU. A receive RD is
considered a member of a group if its RU length is O.
More than one group of receive RDs can be specified in
an SSR but all of the RUs for those RDs must be
located in one SSD.

FEEDBACK RECORD

The feedback information for the device management
consists of the error summary field and the number of
request descriptors processed. All other status fields are
not used.

The following table gives the error conditions, the
severity code, and recovery procedures. The severity
codes are returned in the error summary field.

Note: All feedback codes may have the MSCP bit on.
This bit is turned on only if the REDIO function field
indicates an REDIO (MSCP). Normal completion for an
REDIO (MSCP) is hex 0800.

Error
Code

0000

0008

0018

Severity Error Condition

Normal None

Normal None

Normal REDIO Receive Immediate complete

Recovery Procedure

REDID completed normally; continue
normal processing.

REDID (continue) completed normally;
continue normal processing.

REDIO completed normally; continue
with no unsolicited data to be received normal processing.
on indicated SNA flow.

0044 Normal

4009 Nonterminating

400A Nonterminating

4013 Nonterminating

Source / sink data area too small. The
current request descriptor has an SSD
remaining length field that is smaller

1. Handle this feedback as if it were an
event for unsolicited data.

than the request unit received from the 2. Send device management an REDID to
station. get the data.

REDID partially complete due to the
execution of the MDDLUD (Reset)
command. Some RDs were processed.

3. If data is not desired, do an MODLUD
(Reset, Activate).

Note: This procedure also recalls all
outstanding REDIOs for this logical unit
and purges all unsolicited data.

Perform the reset cleanup process.

REDID complete due to the execution Perform the reset cleanup process.
of an MODLUD (Reset) command. No
RDs were processed.

Negotiable bind response received Do not allow the LU to LU SNA session to
which was not long enough to contain go to the bound state.
pacing information.

Communications and Locally Attached Work Stations 24-15

Error
Code

4024

4029

4088

C020

C021

24-16

Severity

Nonterminating

Nonterminating

Nonterminating

Terminating

Terminating

Error Condition

REalO Transmit Immediate completed
with a send / receive error.

Recovery Procedure

1. REalO Transmit Immediate was
attempted with a frame that was not
valid to be sent at this time.

2. Reissue at a later time or use the
nonimmediate REalO form.

Pacing error in the bind response. The 1. Vary the logical unit off.
terminal has attempted to override the
hosts pacing parameters. 2. This is probably a microcode problem in

Invalid RD sequence. A sequence of
transmit/ receive/transmit is not
allowed in an REalO operation.

LUD failure. The Logical Unit Session
was canceled due to some host
problem.

Line failure. The communications link
is broken.

the terminal.

Split the REalO operation into two REalO
operations. The first one does
transmit/ receive,' and the second one does
the remaining transmit.

Note: Device management REalOs must
be one of the following:

• Transmit only

• Transmit/receive

• Receive only

1. The logical unit must be varied off only
after it has been de-activated.

2. The specific logical unit failure reason
can be obtained by monitoring for LUD
event hex 0008, type hex 08, subtype
hex 01.

3. The error is also recorded in the error
log.

1. The station must be varied off only after
each LUD has been varied off.

2. See Communications Error Recovery
Procedures later in this chapter for the
specific line failure.

3. The error is also recorded in the error
log.

Error
Code

C022

C028

C045

C054

CO 55

C084

Severity

Terminating

Terminating

Terminating

Terminating

Terminating

Terminating

Error Condition Recovery Procedure

Station or CPU failure. The station has 1. The station must be varied off only after
encountered a catastrophic error. each LU 0 has been varied off.

An invalid information unit was
received.

The REQIO instruction has an RD in it
that specifies an output RU that is
larger than the allowable RU size for
this controller.

REQIO for LU-LU session attempted
prior to session being bound.

REQIO for LU-LU session attempted
prior to start data traffic occuring.

REQIO instruction has an invalid SSD
pointer. SSD pointer cannot be 0 if
the data length is not O.

2. The specific reason may be obtained by
monitoring for:

CD Event
Type
Subtype

Hex 4
Hex 5
Hex 1

3. The error is also recorded in the error
log.

1. Issue a MODLUD (reset, activate) or a
REQIO (continue).

2. Correct the situation.

Set the correct RU size in the RD. Reissue
the REQIO instruction after issuing an
REQIO (continue) instruction.

1. Issue a MODLUD (reset, activate) or a
REQIO (continue).

2. Prepare to receive a bind session from
the host system.

1. Issue a MODLUD (reset, activate) or a
REQIO (continue).

2. Prepare to receive a start data traffic
from the host system.

1. Correct either the SSD pointer or the
data length field.

2. Issue an REQIO (continue) instruction.

3. Reissue the REQIO instruction.

Note: Terminating error severity requires the user to use a Request I/O (continue) instruction to bring the path back
to an active path state. 'If an MODLUD (reset) instruction has been completed, the user can bring the path back to an
active path state by using an MODLUD (activate) instruction.

Communications and Locally Attached Work Stations 24-17

EVENTS SIGNALED BY COMMUNICATIONS
SUPPORT

Network Description Events

SDLC XID Failure Event (OOOE 04 01): This event is
signaled by the MSCP component whenever switched
line connection cannot be established to the
communications station.

The line connection cannot be established because of
one of the following reasons:

• A primary SDLC station has sent ACTPU data to
System/38 and the data contains an SSCP ID field
that does not match the SSCP 10 on any CD that is
in the vary on pending state.

• The XID received from a secondary SDLC station
does not match the XI D of any CD that is in the vary
on pending state.

Line Failure Event (OOOE 05 01, 02): This event is
signaled by the MSCP when an unrecoverable line error
has occurred.

Subtype 1 is signaled when the line 10M has an
unrecoverable hardware error indication.

Subtype 2 is signaled when System/38 is the secondary
station and the primary station violates the SNA
protocol (such as sending information frames prior to
the ACTPU command being processed by System/38).

24-18

Controller Description Events

Successful Contact, Unsuccessful Contact, and Loss of
Contact Events (0004 04 01, 02, 03): Subtype 1 of this
event is signaled to indicate successful completion of
the vary on processing for this communications
controller (CD type 10). The MSCP-PU session is active
at this time, which means that System/38 responded
positively to the far end station activate PU request.
Event-related data consists of a system pointer to the
CD and a system pointer to the ND. The data length
field is set to O. The actual XI D data received is not
provided as event related data but has been inserted
directly into the XID information area of the CD object.
Subtype 1 is also signaled for local controllers (CD type
00) directly upon completion of the Modify CD (vary on)
instruction. There are no XID exchanges in these cases.

Subtype 2 of this event is signaled when the vary on
processing fails. The event- related data includes a
system pointer to the CD, a system pointer to the ND,
and up to 66 bytes of data including a 2-byte status
code which defines the failure reason and, in appropriate
cases, the XID data received from the failing station.

Subtype 3 indicates a loss of contact whenever the
primary SDLC stations has sent a disconnect command
to System/38.

Station Inoperative and Protocol Violation Detected, and
SSCP-PU Session Inactive Events (0004 05 01, 02, 03):
Subtype 1 (station inoperative) is signaled by
communications management when an unrecoverable
station error has occurred. The event- related data
provides a 2-byte error code, a time stamp, and an
operational unit number.

Subtype 2 (protocol violation detected) is signaled by
communications management when an SNA path error
has been detected. Event-related data includes a 2-byte
error code, a time stamp, and the operational unit
number.

Subtype 3 is signaled by the MSCP and indicates that
System/38, as a secondary station, has received an
indication from the primary station that the SSCP- PU
session is inactive (for example, DACTPU received).

Controller Description Manual Intervention Event (0004
06 01): This event indicates that a manual dial
operation is required.

Logical Unit Description Events

Formatted and Unformatted Supervisory Services Request
Events (0008 04 01, 02): Subtype 1 is signaled by the
MSCP when an unformatted SNA request is received on
the MSCP-LU session. This request can I?e initiated by
an operator at a work station by pressing the Sys Req
(System Request) key, keying in the optional data, and
then pressing the Enter key. When this message is
received, the MSCP determines that the information is
to be routed to a process and signals the event. The
event-related data consists of a system pointer to the
LUD that identifies the logical unit initiating the request.
In addition, the data length field indicates the number of
bytes of SNA RU data that follows.

Subtype 2 is the machine event signaled when the
MSCP receives a formatted SNA request on the
MSCP- LU session. One example of a formatted request
is the request text message sent when the Test Req
(Test Request) key is pressed. Event-related data
includes a system pointer to the LU D associated with
the device that originated the request. The data length
field contains a count of the number of bytes of data in
the request test message. The entire message is
included in the event-related data just as for the
unformatted requests.

When the MSCP receives one of these requests on the
MSCP-LU session, the event is signaled and the MSCP
sends a positive SNA response to the device that
originated the request.

Expedited or Nonexpedited Unsolicited Incoming Messages
Event (0008 05 01, 02): This event indicates that
unsolicited data is available for this LU. The data can be
retrieved only by issuing a Request I/O instruction.

For the subtype 1 event, the data is on the expedited
SNA flow.

For the subtype 2 event, the data is on the normal SNA
flow.

This event is raised only for the first frame received and
anytime there are not enough receive RDs available.

Successful and Unsuccessful Contact Event (0008 06 01,
02): This event is signaled by the MSCP upon
completion of the vary on processing for the logical unit.

Subtype 1 of this event is signaled to indicate successful
completion of the vary on processing for the logical unit.
The MSCP-LU session is active at this time, meaning a
positive response was received to the ACTLU request
and the device available indicator is set. If the device is
not available, this event is not signaled until a request is
received that the device is available. Event-related data
consists of a system pointer to the LUD and a data
length field that is set to O.

Subtype 2 for this event is signaled when the vary on
LUD processing fails, as in the case where a negative
response to ACTLU. is received. The event-related data
includes sense data or XI D data and a reason code for
the failure.

Logical Unit Description Device Not Available Event (0008
08 02, 03): This event is signaled by the MSCP when
logical unit status is received indicating that a previously
active device is now unavailable. The event-related data.
includes a system pointer to the LUD, a data length field
of 14 bytes, and a status field cont(lining the SNA
logical unit status message.

Subtype 3 is signaled by the MSCP and indicates that
System/38, as a secondary station, has received an
indication from the primary station that the SSCP-PU
session is no longer active (for example, DACTLU
received).

Request I/O Complete Event (0008 09 01): This event
indicates that the Request I/O instruction asynchronous
processing has been completed. This event is signaled
only at the request of the user.

Request I/O Response Queue Destroyed Event (0008 OA
01): This event indicates that the return queue
specified in the Request I/O instruction has been
destroyed.

Communications and Locally Attached Work Stations 24-19

EXCEPTIONS SIGNALED FOR COMMUNICATION
DEVICES

The following table gives the cases where the
source/sink resource not available exception (hex 3404)
is signaled when a Modify ND instruction is executed.

Command

Vary On

Manual
Answer

Enable
Switched
Line

Exception Data

Generic
(hex) Specific

2102 Status code (activate link
failures)

2103

2105

Status code (initialize line
failures)

Status code (initialize line
failure)

The following table gives the cases where the
source/sink resource not available exception (hex 3404)
is signaled when a Modify CD instruction is executed.

Command

Dial Out

24-20

Exception Data

Generic
(hex) Specific

2204 Hex 0401 (dial out failure
because all N D candidates
in this CD are in use or
not enabled)

The following table gives the cases where the
source/sink resource not available exception (hex 3404)
is signaled when a Modify LUD instruction is executed.

Command

Vary On

Suspend

Quiesce

Exception Data

Generic
(hex) Specific

2302 Switched line

2312

2313

- Not signaled

Nonswitched line

Hex C821 if a line
failure occurred

Hex C822 if a station
failure occurred

Hex 0800 if an ACTLU
failure is indicated by
the device

Hex 1201 Suspend
time-out

Hex 1301 Quiesce
time-out Hex 1302 if
quiesce is rejected
because of a terminating
error condition

OBJECT CREATION DATA FOR SUPPORTED
DEVICES

This section defines the data needed to create the
objects necessary to attach a specific device to the
machine.

CD Template Data for 5251 Work Station

The following fields of the controller description
template must be initialized as indicated for the 5251
work station.

Field Name Length

CD type Char(2)

Unit type Char(4)

Model number Char(4)

Physical address Char(8)

· Reserved Bin(4)

· Station's line address Bin(2)

- Reserved Bin(1)

- Station's line address Bin(1)

· Operational unit number Bin(2)

Power control Char(2)

Station control information Char(32)

· XI D information Char(21)

XID format Bit(4)

Physical unit type Bit(4)

XI D information length Bit(8)

Station's block number Bit(12)

Specific ID Bit(20)

- Reserved Char(2)

Configuration flags Bit(8)

PU characteristics Bit(8)

Maximum length received Bin(2)

Reserved Char(4)

Frames limit Bit(8)

Reserved Char(4)

Entry

Char 10

Char 5251

Char 0002 for 960-character screen
Char 0012 for 1920-character screen

Bin 0

Bin 0

All values except hex 00 and hex FF (supplied by service
representative)

Same as in ND if nonswitched line; hex 0000 if switched line

hex 0000

Bin 0001

Bin 0001

Hex 14

Hex 020

User-assigned ID; must be uniquely assigned within the
user's network

Bin 0

Hex 00 = SDLC
Hex 02 = Loop

Hex BO

Hex 0105

Bin 0

Hex 0003 = Without remote cluster feature
Hex 0007 = With remote cluster feature

Bin 0

Communications and Locally Attached Work Stations 24-21

Field Name

· Station definition

SDLC link

- Link type

Station's role

Switched network backup

Data rate selection feature

· Reserved

· Path information unit type

· Reserved

Selected modes

Delayed contact control

Activate physical unit data

Dial digits (telephone number if
switched station)

• Reserved

• Length

• Digits

· Reserved

Specific characteristics

XID information area

· Length of XI D data

· XID data

Unit-specific data area

· Length of unit-specific area

· Length of modifiable area

Unit-specific contents area

24-22

Length

Char(1)

Bit(2)

Bit(1)

Bit(1)

Bit(1)

Bit(1)

Char(2)

Bin(2)

Char(6)

Char(2)

Char(2)

Char(16)

Char(32)

Char(6)

Bin(2)

Cl1ar(16)

Char(8)

Bin(2)

Bin(2)

Char(20)

Char(2)

Bin(2)

Bin(2)

Bin(2)

Entry

Bin 10

Bin 0 = Nonswitched
Bin 1 = Switched

Bin 0 = Secondary

Bin 0 = No
Bin 1 = Yes

Bin 0 = No
Bin 1 = Yes

Bin 0

Hex 0003

Bin 0

Hex 0000 = Leased
Hex 1000 = Switched network backup mode

Note: Switched Network Backup feature must be
specified in the station definition field and in the
corresponding N D.

Hex 0000 = Not in effect
Hex 0100 = In effect

Bin 0

Bin 0

Number of dial digits

Actual telephone number-May contain only digits 0 through 9
or separator (SEP) character Hex 7D or end-of-number (EON)
character Hex 5C. These two special characters are
represented by an apostrophe (') or an asterisk (*) key on an
EBCDIC keyboard.

Bin 0

Hex 0000

Hex 0014

Bin 0

Hex 0002

Hex 0002

Hex 0000

Logical Unit Description Template Data for 5251
Display

The following fields of the logical unit description
template must be initialized as indicated for the 5251
Display Station.

Field Name Length

LUD type Char(2)

Device type Char(4)

Model number Char(4)

Physical address ChartS)

· Reserved Bin(2)

· Logical unit address Bin(2)

· Station line address Bin(2)

· Operational unit number Bin(2)

Power control Char(2)

Session information Char(20)

· Inbound pacing Bin(2)

· Outbound pacing Bin(2)

· Request unit buffer size Bin(2)

· ACTLU Char(1)

· ACTLU parameters Char(3)

· ACTLU response ChartS)

Load / dump indicator Char(4)

Specific characteristics Bin(2)

Retry value sets Bin(2)

Error threshold sets Bin(2)

Device-specific data area Char(2)

· Length of device-specific area Bin(2)

· Length of modifiable area Bin(2)

Device-specific contents Bin(2)

Entry

Char 30

Char 5251

Char 0001 for 960-character screen
Char 0011 for 1920-character screen

Bin a

Hex 00 for first display
Hex 01 for second display on 5252
Hex 02-Hex 09 for displays attached through the remote
cluster feature

Same address as in CD to which this LUD attaches

Same as in CD and NO if nonswitched line; hex 0000 if
switched line

Hex 0000

Bin a
Hex 0000

Hex 0000

Hex 0100

Hex 01

Hex 000101

Bin a
Bin a

Hex 0000

Hex 0000

Hex 0000

Hex 0002

Hex 0002

Hex 0000

Communications and Locally Attached Work Stations 24~23

Logical Unit Description Template Data for the 5252
Display

The following fields of the logical unit description
template must be initialized as indicated for the 5252
Display Station. A separate LUD is needed for each
display screen.

Field Name Length

LUD type Char(2)

Device type Char(4)

Model number Char(4)

Physical address Char(8)

· Reserved Bin(2)

· Logical unit address Bin(2)

· Station's line address Bin(2)

· Operational unit number Bin(2)

Power control Char(2)

Session information Char(20)

· Inbound pacing Bin(2)

· Outbound pacing Bin(2)

· Request unit buffer size Bin(2)

· ACTLU Char(1)

· ACTLU parameters Char(3)

· ACTLU response Char(8)

Load/dump indicator Char(4)

Specific characteristics Bin(2)

Retry value sets Bin(2)

Error threshold sets Bin(2)

Device-specific data area Char(2)

· Length of device-specific area Bin(2)

· Length of modifiable area Bin(2)

Device-specific contents Bin(2)

24-24

Entry

Char 30

Char 5252

Char 0001 for 960-character screen

Hex 0000

Hex 02- Hex 09 for displays attached through the remote
cluster feature

Same address as in CD to which this LUD is attached

Same as in CD and ND if nonswitched line; hex 0000 if
switched line

Hex 0000

Hex 0000

Hex 0000

Hex 0100

Hex 01

Hex OD0101

Bin 0

Bin 0

Hex 0000

Hex 0000

Hex 0000

Hex 0002

Hex 0002

Hex 0000

Logical Unit Description Template Data for the 5256
Printer

The following fields of the logical unit description
template must be initialized as indicated for the 5256
Printer.

Field Name

LUD type

Device type

Model number

Physical address

· Reserved

· Logical unit address

· Station's line address

· Operational unit number

Power control

Session information

· Inbound pacing

· Outbound pacing

· Request unit buffer size

· ACTLU

· ACTLU parameters

· ACTLU response return area

Load/ dump indicator

Specific characteristics

Retry value sets

Error threshold sets

Device-specific data area

· Length of device-specific area

· Length of modifiable area

Device-specific contents

Length

Char(2)

Char(4)

Char(4)

Char(8)

Bin(2)

Bin(2)

Bin(1)

Bin(2)

Char(2)

Char(20)

Bin(2)

Bin(2)

Bin(2)

Char(1)

Char(3)

Char(8)

Char(4)

Bin(2)

Bin(2)

Bin(2)

Char(2)

Bin(2)

Bin(2)

Bin(2)

Entry

Char 30

Char 5256

Char 0001 for 40 characters per second
Char 0002 for 80 characters per second
Char 0003 for 120 characters per second

Hex 0000

Hex 02- Hex 09 for printers attached through the remote
cluster feature

Same address as in CD to which this LUD is attached

Same as in NO if nonswitched line; hex 0000 if switched line

Hex 0000

Hex 0000

Hex 0003

Hex 0100

Hex 01

Hex 000101

Bin 0

Bin 0

Hex 0000

Hex 0000

Hex 0000.

Hex 0002

Hex 0002

Hex 0000

Communications and Locally Attached Work Stations 24-25

CD Template Data When System/3S is Attached as
a Secondary Station

The following fields of the controller description
template, that represent the SDLC primary station, must
be initialized as indicated when the System/38 is
attached as a secondary station.

Field Name Length

CD type Char(2)

Unit type Char(4)

Modei number Char(4)

Physical address Char(8)

· Reserved Bin(4)

· Station's line address Bin(2)

- Reserved Bin(2)

· Operational unit number Bin(2)

Operational unit number Bin (2)
from the corresponding
N D if a nonswitched line

Zero if a switched line Bin (2)

Power control Char(2)

Station control information Char(32)

· XID information Char(21)

XID format Bit(4)

Physical unit type Bit(4)

XI D information length Bit(8)

Station's block number Bit(12)

Specific ID Bit(20)

- Reserved Char(2)

- Configuration flags Bit(8)

- PU characteristics Bit(8)

Maximum length received Bin(2)

Hex 0109 = 256-byte RUs with
9-byte TH + RH

Hex 0209 = 512-byte RUs with
9-byte TH + RH

- Reserved Char(4)

- Frames limit Bit(8)

- Reserved Char(4)

24-26

Entry

Char 10

PU2

Char 0000

Bin 0

Bin 0

Hex 0000

Hex 0000

Bin 0001

Bin 0001

Hex 14

Hex 000

User-assigned ID

Bin 0

Hex 00

Hex BO

Bin 0

Hex 07

Bin 0

Field Name length

· Station definition Char(1)

- SDLC link Bit(2)

Link type Bit(1)

Station role Bit(1)

Switched network backup Bit(1)

- Data rate selection Bit(1)

- Reserved Bit (2)

· Reserved Char(2)

· Path information unit type Hex 0002

· Reserved Char(6)

Selected modes Char(2)

Delayed contact control Char(2)

Activate physical unit data Char(16)

• Activate physical unit data required Char (1)

· Request code Char (1)

· Type activation Char (1)

· Profiles Char(1)

· SSCP identification Char (6)

- PU type 2 installation Char (1)

SSCP identification as defined Char (5)
for host (primary) system

· Reserved Char (6)

Dial digits Char(32)

· Reserved Char(6)

· Length Bin(2)

· Digits Char(16)

Entry

Bin 10

Bin 0 = Nonswitched
Bin 1 = Switched

Bin 1 = Primary station

Bin 0 = No
Bin 1 = Yes

Bin 0 = No
Bin 1 = Yes

Bin 00

Bin 0

Bin 0

Hex 0000 = Nonswitched
Hex 0001 = Switched network backup mode

Hex 0000 = Not in effect

Hex 00

Hex 11

Hex 01 = Cold start
Hex 02 = Error recovery procedure

Hex 01

Hex 05

SSC P identification

Bin 0

Bin 0

Number of dial digits

Actual telephone number may contain only digits 0 through 9
and separator character hex 7D and end-of-number character
hex 5C. These special characters are represented by the
apostrophe and the asterisk keys on an EBCDIC keyboard.

Communications and Locally Attached Work Stations 24-27

Field Name Length Entry

· Reserved Char(8) Bin a
Specific characteristics Bin(2) Hex 0000

XI D information area

· Length of XI D data Bin(2) Hex 0014

• . XID data Char(20) Bin a
Unit-specific data area Char(2)

· Length of unit-specific area Bin(2) Hex 0002

· Length of modifiable area Bin(2) Hex 0002

Unit-specific contents area Bin(2) Hex 0000

24-28

Logical Unit Description Template Data When
System/3S Is Attached as a Secondary Station

The following fields of the logical unit description, that
represent the SDLC primary station, must be initialized
as indicated when System/38 is attached as a
secondary station.

Field Name ~ength

LUD type Char(2)

Device type Char(4)

Model number Char(4)

Physical address Char(8)

· Reserved Bin(2)

· Logical unit address Bin(2)

· Station's line address Bin(1)

· Operational unit number Bin(2)

Power control Char(2)

Session information Char(20)

· Inbound pacing Bin(2)

· Outbound pacing Bin(2)

· Request unit buffer size Bin(2)

· ACTLU Char(1)

· ACTLU parameters Char(3)

· ACTLU response return area Char(8)

Load / dump indicator Char(4)

Specific characteristics Bin(2)

Retry value sets Bin(2)

Error threshold sets Bin(2)

Device-specific data area Char(2)

· Length of device-specific area Bin(2)

· Length of modifiable area Bin(2)

Device-specific contents Bin(2)

Entry

Char 30

PLU 1

Hex 0000

Hex 0000

Hex 0000 through Hex DOFF

Hex 0000

Same as in ND if nonswitched line; hex 0000 if switched line

Hex 0000

Hex 0000

Hex 0000

Hex 0100 for 256-byte RU or
Hex 0200 for 512-byte RU

Hex 00

Hex 000000

Bin 0

Bin 0

Hex 0000

Hex 0000

Hex 0000

Hex 0002

Hex 0002

Hex 0000

Communications and Locally Attached Work Stations 24-29

COMMUNICATIONS LINES SPECIALIZATION

Communications line specialization is the means by
which the proper microcode components are associated
with the protocol and hardware assigned to the line.

Since the microcode components are designed to
support various protocols and hardware based upon
parameters maintained in the NO, it is essential that the
complete line configuration be carefully analyzed so the
parameters match the desired support. For example,
failure to correctly specify modem characteristics such
as nonclocked modem, NRZI, or others results in a
poorly functioning or nonfunctioning line.

The following shows the field in the NO template used
in creating an NO and the specific entries in these fields
for each type of communications line.

NO Template Elements

NO Definition Data

- NO type

- Maximum number of CDs attached
to this NO

Physical Definition Data

- Physical address

Bytes 0-5

Bytes 6-7

(OU Number)

line Definition Data

line discipline

- Switched network

Switched network backup

Data rate select

Role

NRZI

Nonclocked modem

24-30

SOLC Primary/Secondary Line

Char 00

10

Hex 000000000000

Hex 0020 = First line (lOC-1)

Hex 0021 = Second line (lOC-1)

Hex 0022 = Third line (lOC-1)

Hex 0023 = Fourth line (lOC-1)

Hex 0060 = First line (lOC-2)

Hex 0061 = Second line (lOC-2)

Hex 0062 = Third line (lOC-2)

Hex 0063 = Fourth line (lOC-2)

SDLC

*
*
*
Primary / Secondary

*
*

SOLC Loop

Char 00

64

Hex 000000000000

Hex 0020 = First line (lOC-1)

Hex 0021 = Second line (lOC-1)

Hex 0022 = Third line (lOC-1)

Hex 0023 = Fourth line (lOC-1)

Hex 0060 = First line (lOC-2)

Hex 0061 = Second line (lOC-2)

Hex 0062 = Third line (lOC-2)

Hex 0063 = Fourth line (lOC-2)

SOLe

No

No

No

Primary

No

No

NO Template Elements

OEM modem

Four-wire line(s)

Multipoint

Loop

Autodial feature

Autoanswer feature

Autoanswer sequence

Answer tone generation

Marks/spaces for answer tone

Special answer tone

Data communications equipment

Line speed

Secondary address

Selectable Modes Data

Switched network backup

Selected rate

Switched connect method

Autodial mode

Autoanswer mode

Switched secondary inactive
time-out

Communications Subsystems

Parameters Data

Data terminal ready delay

Idle state detection timer

Nonproductive receive timer

Specific Characteristics

- Specific characteristic length

Retry Value Sets

Retry value length

Error type

Error retry value

Line-Specific Contents

Line-specific contents length

Line-specific contents modifiable
length

Line-specific contents

SOLC Primary/Secondary Line SOLC Loop

* No

* No

* No

No Yes

* No

* No

* No

* No

* No

* No

* None

12, 24, 48, 72, or 96* 192

* Hex 0000

* 0

* 0

* 0

* 0

* 0

* 0

0-15* 0*

0-255* 0-255*

0-255* 0-255*

Hex 0000 Hex 0000

144 Bytes 96 Bytes

See Figure 24-2 See Figure 24-3

See Figure 24-2 See Figure 24-3

Hex 0002 Hex 0002

Hex 0002 Hex 0002

Hex 0000 Hex 0000

*See Create Network Description (CRTND) in Chapter 17 for a description of the requirements for the NO creation.

Communications and Locally Attached Work Stations 24-31

Type Type
Code Recommended Code Recommended
(hex) Error Description Retry Value (hex) Error Description Retry Value

E324 Clear to send inactive 7 E626 Distant station connected

E2E4 Clear to send inactive before 7
inactive - ACR

request to send E2C4 Request to send inactive Same as for

E526 Data line occupied
E324

E566 Present next digit inactive
E506 General autodial error

after call request set (Autodial F4C2 Adapter overrun / underrun 7
feature)

F507 Unrecognizable SDLC control 7
E586 Present next digit active after field

digit present set (Autodial
F517 SDLC sequence number error 7

feature)
(Transmit)

E5E6 Present next digit inactive
after digit present resent F527 SDLC sequence number error 7
(Autodial feature) (Receive)

E606 Distant station connected F805 CRC error 7
inactive

F7C5 Frame abort detected (Pattern 7
E546 Present next digit inactive binary 01111111)

after call request set - ACR
F660 CPU buffer overflow (on input) 7 (abandon call and retry)

(Autodial feature) F705 Idle state detected 7

E5A6 Present next digit inactive F7A5 Nonproductive receive 7
after digit present set - ACR time-out
(Autodial feature)

F441 Data overrun (Receive) 7
E5C6 Present next digit inactive

after digit present reset - ACR F481 Data overrun (Transmit) 7

(Autodial feature)

Note: The allowable retry value entry is 0-21.

Figure 24-2. SOle Primary/Secondary Error Types and
Retry Values

24-32

Type
Code Recommended
(hex) Error Description Retry Value

E324 Clear to send inactive 7

E2E4 Clear to send active before 7
request to send

E2C4 Request to send inactive Same as for
E324

E685 Beacon detected 7

F660 CPU buffer overflow 7

F705 Idle state detected 7

F7A5 Nonproductive receive 7
time-out

F4C2 Adapter overrun / underrun 7

F441 Data overrun 7

F507 Unrecognizable SDLC control 7
field

F517 SDLC sequence number error 7
(Transmit)

F527 SDLC sequence number error 7
(Receive)

F805 CRC error 7

F7C5 Frame abort detected (Pattern 7
binary 01111111)

F481 Data underrun 7

F537 Station not responding 7

Figure 24-3. SOLC Loop Error Types and Retry Values

It is suggested that the line specialization interface to
the user categorize the preceding errors and allow
individual error retry specjfication only at the user's
request. Errors can be categorized as follows:

Error Category Type Codes (hex)

Dial errors E526, E566, E586, E5E6, E606,
E546, E5A6, E5C6, E626, E506

Telecommunications E324, E2E4, E2C4, F4C2, F507,
errors F517, F527, F805, F7C7, F660

F705, F7A5, F441, F481

COMMUNICATIONS ERROR RECOVERY
PROCEDURES

Device-specific error codes identifying the type of
communications errors are returned in the event-related
data when the following events are signaled:

• Event class name is controller description

Event class number is hex 0004

Event type and subtype is hex 0501 (controller
description lost contact)

• Event class name is network description

Event class number is hex OOOE

Event type and subtype is hex 0501 (network
description line failure)

When either of these events is received, the station
represented by the controller description or the
communications line represented by the network
description becomes inoperative. In addition to these
events, an error log entry that contains more detailed
information is recorded.

Device-specific error codes identifying the type of
communications errors are also returned in the exception
data for a source/sink resource not available exception
(hex 3404).

For controller descriptions, the source/sink resource not
available exception can occur on Modify CD instructions
that attempt to change the state of the CD to the vary
on, or dial out state.

For network descriptions, the source/sink resource not
available exception can occur on Modify ND instructions
that attempt to change the state of the ND to the vary
on, manual answer, manual start data, or enable
switched line states.

Since the exception device-specific error codes for the
Modify CD and Modify ND instructions are a subset of
those supplied as event data for the CD and ND failure
events, the recovery action should be based on the
event data rather than the exception data.

Communications and Locally Attached Work Stations 24-33

The following chart gives the device-specific error Device- Error
codes, error name and descriptions, and recovery Specific RecovEtry
procedures for the errors. Error Procedure

Code Error Name and Description Number
Device- Error
Specific Recovery 81C3 10C or CA parity error,
Error Procedure addressing modem port
Code Error Name and Description Number

· An 10C parity error on the

8049 Operational program error 2 OBI is detected during an
I/O Read command.

· The operational unit task
microcode set the program or

error bit in the BST AT of A channel address parity
an operation request error on the address bus
element on. out of the 10C is detected

808B Channel error during an I/O Read or I/O
Write command.

· The channel 10M detected
a channel error. or

80AC 10C command reject A channel address parity
error on the data bus out of

· 10C microcode detected a the 10C is detected during
command reject condition. an I/O Write command.

8103 Post event error 81E3 10C or channel address parity

· The 10C microcode error, addressing the autocall

detected an unrecoverable unit

hardware error. · See error code 81 C3.

8107 Invalid BSTAT 8204 Data terminal ready line

· The 10C returned an invalid inactive

BST AT encoding to the · Data terminal ready line is
10M. not active when expected.

8137 Read sense failure 8224 Data set ready line inactive 4

· A Read Sense command · Data set ready line inactive
issued to the 10C failed to for 7 seconds.
return in 15 seconds.

8244 Invalid autoanswer request 4

· Data set ready line is active
at the start of the
autoanswer operation.

8264 Data set ready line time-out 4
during autoanswer sequence

· Ring indicate line became
active but data set ready
line did not become active
within 30 seconds.

24-34

Device- Error Device- Error
Specific Recovery Specific Recovery
Error Procedure Error Procedure
Code Error Name and Description Number Code Error Name and Description Number

8284 Data set ready and ring 4 8401 I/O controller channel 3
indicate sequence error during disconnect
autoanswer sequence

· The IOC controller could

· Data set ready line became not transfer data because
active while ring indicate of a channel disconnect
line became inactive. condition.

84E2 Adapter interrupt request
or

time-out

Ring indicate line could not
A byte transfer request

be reset in 7 seconds. ·
failed because of a

8360 Line not initialized 2 hardware error.

Read Data or Enable
9207 SOLC command reject 15 ·

Switch Connection
Command reject received

commands pending for 100 ·
seconds without the line

from the secondary station.

being initialized. Secondary station
buffers may have

or overflowed.

Write Data, Autopoll, Auto
Secondary station may
have detected out of

Optional Response Poll, or
range sequence numbers

Auto Dial command
occurred during a transmit

or a nonsupported

operational unit task, before
command.

the Initialize command was 9217 SDLC disconnect mode 13
given. received

or · The far end station has
entered disconnect mode

The I/O controller entered when it should be in normal
a not initialized state mode.
because of a violation of

9227 SDLC out of range sequence 11
protocol.

numbers
8380 Switched line disconnect 2

time-out · The far end station is
sending out of range

· The adapter is not currently sequence numbers.
processing a command and

9237 Invalid SDLC address 11
has not received a
command from the I/O

The polled station
manager for 30 seconds. ·
The switched line has been

responded with the wrong

disconnected.
address.

Communications and Locally Attached Work Stations 24-35

Device- Error Device- Error

Specific Recovery Specific Recovery

Error Procedure Error Procedure

Code Error. Name and Description Number Code Error Name and Description Number

96A5 Request-to-transmit line A220 SOLC Command Reject

time-out · One or more of the
following conditions causes

· System/38 attempted to 11 command reject:
transmit data after line Invalid SOLC control
turnaround, and the far end field
station continued Out of range SOLC
transmitting for 10 sequence numbers
seconds. I-frame with control

A200 Unexpected SOLC 11
field that does not allow
information data

set-normal- response- mode · An SOLC command reject 11

An SOLC
has been sent to the · primary station.

set-normal-response-mode
command was received A230 Unexpected de-activate

when the secondary station physical unit

was already in · A OACTPU command was

normal-response-mode. received prior to receiving
the required number of

A210 Unexpected SOLC disconnect OACTLU commands. The
received secondary station 10M will:

Perform an abnormal

· An SOLC disconnect was OACTPU

received by the secondary Send a message to the
station 10M prior to MSC P indicating that an

receiving a de-activate abnormal OACTPU was

physical unit request from performed

the primary station. The Log the error

secondary station will: A250 Unexpected ACTPU received

Perform an 'abnormal · A second ACTPU was

de-activate physical unit' received prior to receiving a
OACTPU command. The

Send a message to the secondary station 10M will:
MSCP indicating Perform a second
, abnormal disconnect ACTPU function
received' (an abnormal Send a message to the
OACTPU was MSCP indicating that a
performed) / second ACTPU

Log the error
command was received
and requesting that the
MSCP validate the SSCP
10

Log the error

24-36

Device- Error Device- Error
Specific Recovery Specific Recovery
Error Procedure Error Procedure
Code Error Name and Description Number Code Error Name and Description Number

A380 Switched line disconnect 9 E506 Reset autocall unit time-out 6
time-out

· Any of the lines, present

· The adapter has not next digit, distant station
received an input frame on connecte~ or abandon
the line for the duration of call / retry are active for 3.4
the nonproductive receive seconds at the start of
time-out value. Autocall command

execution.
or

E526 Data line occupied time-out 6

The adapter has not
An attempt to reset the

received a command from ·
the 10M for 30 seconds

autocall unit failed and the

when it is not currently
data line occupied line

working on a command.
signal remained active for
3.4 seconds.

The switched line is E546 Abandon call / retry line active 6
disconnected to save tariff during a call request to the
charges. autocall unit

E2C4 Request-to-send line inactive E566 Present next digit line inactive 6
while abandon call/retry line

· Request-to-send line is active
became inactive when not

E586 Digit present line time-out 6
expected.

E2E4 Clear-to-send line active at 4 · Present next digit line
initialization continually active.

Clear-to-send line active
E5A6 Present next digit line active 6 · after digit present line is set

for 7 seconds when
initialization was attempted.

Present next digit line ·
E324 Clear-to-send line inactive 4 active after digit present

line is set during abandon

· Clear-to-send line did not call/retry.
become active within 3.4

E5C6 Digit present line time-out on 6
seconds.

first digit

or
No present next digit line ·

Clear-to-send line became
received during the initial

inactive during
call request.

transmission.

Communications and Locally Attached Work Stations 24-37

Device- Error Device- Error
Specific Recovery Specific Recovery
Error Procedure Error Procedure
Code Error Name and Description Number Code Error Name and Description Number

E5E6 Present next digit line 6 F4C2 Adapter overrun or an adapter 10
time-out underrun

· One or more digits · The channel adapter card
transferred, waiting for was not serviced by the
present next digit line and I/O controller microcode
digit present reset line to within 1-byte time.
become active.

E606 Distant station connected line 16
or

time-out
On a receive operation,

· No distant station
data is arriving too fast for

connected line received.
the adapter (adapter
overrun).

E626 Distant station connected line 5
inactive, abandon call/retry or
line active

On a transmit operation,

· Abandon call/retry line the adapter cannot send
signal received, waiting for data fast enough (adapter
distant station connected underrun).
line to become active.

F507 Unrecognizable SDLC control 11
E685 Beacon detected, loop 7 field

F441 Data overrun or channel 3
disconnect · The far end station sent an

invalid SDLC control field

· The I/O controller is unable (primary mode only). This

to transfer data to main error is reported as error

storage fast enough when code 9207 for secondary

receiving data from the mode.

secondary station. F517 SDLC sequence error, transmit 9

F481 Data underrun or channel 3 failure

disconnect
• The sequence numbers

· Data from main storage to indicate that frames were

the I/O controller was not lost on transmit. The

available to transmit. number of frames received
by the far end station does
not coincide with the
number of frames
transmitted by System/38.

24-38

Device- Error
Error Recovery Procedures

Specific Recovery
Error Procedure
Code Error Name and Description Number

Error
Recovery

F527 SOLC sequence error, receive 9
Procedure

failure
Number Error Recovery Procedures

· The sequence numbers
Hardware or hardware microcode

indicate that frames were
problem

lost on receive. The
number of frames received

Contact your service representative.

by System /38 does not
coincide with the number

2 Programming problem

of frames transmitted by
the far end station.

Contact your service representative.

F537 No response, loop 14 3 Resources may be overcommitted with
insufficient main storage or excessive

· A station is not responding paging.
when given an optional
response poll, and a Contact your service representative.
response is due.

F660 Main storage buffer overflow 2
4 Local modem or autoanswer problem

· The number of bytes of
1. If a stand-alone (external)

data received before the
modem, verify that power is

ending sequence occurred
turned on and that all switches

exceeded the value in bytes
are in the correct position.

2-3 of the Read Data
command.

2. If power is on and all switches
are in the correct position, then

F705 Idle state detected 8 contact your service

F7A5 Nonproductive receive 9
representative.

time-out
3. If not a stand-alone modem,

F7C5 Frame aborted 11 contact your service
representative.

· The SOLC abort sequence
was received. 5 Far end, local coupler, or autocall unit

F805 Redundancy check error (CRC) 12 problem

· There is a mismatch Contact your service representative.

between the System/38-
computed CRC and the
CRC sent by the far end
station.

Communications and Locally Attached Work Stations 24-39

Error
Recovery
Procedure
Number Error Recovery Procedures

6 Autocall unit problem

7

8

9

24-40

Verify that the autocall unit power is
turned on, that autocall unit and
modem switches are in the correct
position, and that the cable to the
autocall unit is connected. If all these
conditions are met, contact· your service
representative.

Customer loop problem or loop station
problem

Execute the communications problem
determination procedure. The problem
is before the station that is generating
the Beacon message or at the
generating station.

Idle state detected on the line

1. Verify that the line is connected.

2. Verify that the far end station and
the secondary modem is powered
on.

3.

4.

5.

Verify that the far end station
address agrees with the address
in the configuration area of the
CD.

Verify that the idle state detection
timer value in the NO object
provides sufficient time to
propagate this particular network.

If all of these conditions are met,
contact your service
representative.

Line, far end hardware, or local
hardware problem

Contact your service representative.

Error
Recovery
Procedure
Number Error Recovery Procedures

10 Adapter overrun or underrun

11

12

13

1.

2.

3:

Check the aggregate data rate for
the adapter.

Check the line speed selector on
both ends. Although this error
will not occur if the speeds do
not match, both speeds could be
set too high.

Contact your service
representative.

Far end problem

1 . Contact the far end operator and
report the symptoms of the
problem.

2. Contact your service
representative.

Cyclic redundancy check error

If switched:

1. Retry the switched connection.

2. Run the SOLC link test utility.

If remote or leased:

1. Run the SOLC link test utility.

Far end has entered disconnect mode

1. Contact the far end operator and
check for any possible error
conditions.

2. Contact your service
representative.

Error
Recovery
Procedure
Number

14

Error Recovery Procedures

Loop station not responding

1. Station may have to be powered
on.

2. Station may have to be plugged
into the loop.

3. The station address may not
agree with the address provided
by the user.

4. The station switches may be set
wrong.

15 SDLC command reject

1 . Reset the secondary station
(power off then power on).

2. Contact your service
representative.

16 Far end not responding to autodial

1. Check for correct telephone
number.

2. Check for busy line.

3. Check far end operating status.

4. Contact your service
representative.

Communications and Locally Attached Work Stations 24-41

Work Station Controller Management
(Locally Attached)

The work station controller management operates in
support of a work station controller and the devices
attached to the work station controller. The work station
controller management performs the system network
functions necessary to complete a Request I/O
instruction and to manage data flow to and from the
devices. The work station controller management
supports 5251 Displays, 5252 Displays, and the 5256
Printer.

All work station controller devices require a LUD to be
created for their support. These LUDs are type 10 LUDs
which require a controller description (CD) so they can
be attached to the machine.

Only one work station controller object configuration
exists for attachment of work station controller LUD
objects to the machine. See the following chart.

~
~

!- - - - - - - - -,

24-42

I I

LUD
Type 10

LUD
Type 10

PROGRAMMING CONSIDERATIONS

Communication with a work station controller or device
is accomplished through system network paths. An
MSCP-to-physical unit path is activated when the work
station controller is varied on, an MSCP-to-Iogical unit
path is activated when the logical unit is varied on, and
a logical unit-to-Iogical unit path is activated when a
Modify LUD (activate) instruction is executed. To
manage these system network paths the device
management supports the following instructions.

• Modify Controller Description (MODCD)
- Vary on/ off

• Modify Logical Unit Description (MODLUD)
Vary on/off
Activate / de-activate
Suspend
Quiesce

- Reset
Device-specific contents

• Request I/O (REQIO)
Functions
Normal
MSCP
Control
Normal
Continue

Before using any of these commands, the user must
create the controller description object describing the
work station controller and the LUDs describing the
device(s). This is done by using the following
instructions:

• Create Controller Description (CRTCD)

• Create Logical Unit Description (CRTLUD)

See Object Creation Data for Supported Devices later in
this chapter for the template data needed to create the
CD and LUD(s) for the work station controller and
supported device(s).

INSTRUCTIONS

MODCD (Vary On/Off)

This instruction is used to establish or break the
communications path to the physical unit in the work
station controller represented by the CD.

MODLUD (Vary On/Off)

This instruction is used to establish or break the
communications path from the MSCP-to-Iogical unit. It
also performs preliminary setup for the logical
unit-to-Iogical unit path.

MODLUD (Activate/De-activate)

This instruction is used to estaplish or break the
communications path from the machine logical unit to
the work station controller's logical unit. MODLUD
(activate) is also used to activate the logical
unit-to-Iogical unit path when the LUD is in anyone of
the three inactive states (suspended, quiesced, or reset).

MODLUD (Quiesce)

Once the work station controller management receives
this request, it completes all REOIOs that are in
progress or waiting on the internal LU queue. Upon
completion of this command, the device management
comes to a normal completion and all REOIO processing
is discontinued until the path is re-activated with an
MODLUD (activate) instruction.

The quiesce is completed with a rejected status in three
situations. The first is that the unit is already in a
terminating error mode when it receives the quiesce.
The second is that the unit goes into terminating error
mode while it is trying to complete the quiesce. The
third is that the quiesce cannot be completed within the
time-out value specified due to a long running REOIO in
process. In these situations, the user must analyze the
feedback record(s) that is on his return queue and
perform the necessary recovery for the terminating error
situation.

Note: If this instruction is issued when an REOIO with
a transmit containing a Read From Device instruction
exists, the work station controller management is
unaware of it. Therefore, the completion of quiesce is
dependent on the operator pressing the Enter key. If the
Read From Device instruction is not completed within
the time-out interval specified in the Modify LUD
instruction, a partial damage exception is signaled and
the LUD must be varied off to recover.

MODLUD (Reset)

This instruction causes all REOIOs to be returned to the
user's return queue, in an orderly fashion, with a
feedback status indicating that the REOIOs were
returned to the user's return queue. The number of
request descriptors processed is also set in the feedback
record. This instruction also places the path in an
inactive state, which can be reactivated with a MODLUD
(activate) instruction. All available unsolicited data is
discarded by this instruction.

The reset can cause partial damage to the LU D if the
reset is issued with a time-out value specified that is
shorter than the time needed to complete a transmit to
hardware. For printers or displays using a copy to
printer, this time may be as long as 60 seconds.
Therefore, the time specified in the reset must be 60
seconds or more to ensure the reset will be completed
normally.

Communications and Locally Attached Work Stations 24-43

MODLUD (Suspend)

This instruction ensures the user that all REQIOs for this
logical unit are in the suspended state. This means that
all the REQIOs that have been started are completed to
a transmit/ receive request descriptor boundary. The
REQIOs that are completed are placed on the return
queue with the appropriate feedback code and number
of RDs done. Any transmit/receive REQIO with only the
transmits complete is still on the logical unit's queue.
The suspend may be completed with a reject status if
the suspend cannot complete within the time-out value
specified because of a long running REQIO in process.

Note: An MODLUD (suspend) may complete normally,
and the logical unit may be placed in terminating error
mode. Therefore, the user should check the queue for
any feedback records indicating a terminating error
condition.

MODLUD (Suspend, De-activate, and Activate)

This combination of functions of the MODLUD
instruction can be executed to perform a logical unit
save operation. This atomic set of instructions perform
a suspend, reset, de-activate, and activate. Therefore,
the user is assured that all REQIOs are called back and
placed on the user's queue and that the logical unit is in
an active path state ready for a new set of REQIOs to
process.

Note: A reset causes any available unsolicited data to
be relinquished, because the device management has no
way to give the data to the user.

24-44

REQIO

This instruction is used for two purposes. First, it is
used to perform I/O operations on the various paths
(MSCP-to-physical unit, MSCP-to-Iogical unit, and
logical unit-to-Iogical unit). Second, the REQIO
(continue) is used to return the logical unit to active path
state after it has encountered a terminating error.

Notes:
1. An REQIO transmit only on the SNA any flow

defaults to an REQIO transmit only on the SNA
normal flow.

2. All transmit RUs should be doubleword aligned and
should not cross segment boundaries. The device
management takes care of these situations, but the
user encounters a performance degradation when the
transmit RUs are not properly aligned.

3. One REQIO cannot contain more than 32 transmit
RDs if it is to be sent to a display.

4. The display REQIO transmit RDs must begin with a
request header containing a first of chain entry and
end with a request header containing a last of chain
entry (full SNA chains only).

Device Management Source/Sink Request (SSR) General

The bits in the SSR function field have the following
meanings for device management.

Bits 0-3

Hex 8 = Normal Request I/O
Hex 4 = MSCP Request I/O

Bits 4-5

These bits define the SNA flow that all the request
descriptors (RD) are to be processed on. The bit
values and their meanings are:

Bits

00 and 10
10

01

11

Meaning

The RDs are to flow on
the SNA normal flow.

The RDs are to flow on the SNA
expedited flow.

The RDs are to flow on either the
SNA normal or SNA expedited
flow (that is, it implements a
receive any function).

Note: This bit setting is changed
to 10 (normal flow) if the first RD
is a transmit.

Bits 6-7 Reserved (binary 0)

Communications and Locally Attached Work Stations 24-45

Device Management Request Descriptor

This RD is used for communications devices. It contains
information for the transmission header (TH) and the
request/ response header (RH). The RD also indicates
the length and location of the request/ response unit
(RU) in the SSD (source/sink data area). Both transmit
and receive RDs may be specified in the SSR, but all of
the transmit RDs must precede any receive RDs.

The request descriptor field format (in bytes) is:

o
RU Flow

Type

1-3

Reserved

4-5

Sequence
Number

The meaning of the request descriptor format is as
follows:

Byte

o

Meaning

Bit 0 of the RU flow type indicates
whether this is a transmit or receive RD.

o Transmit RD
= Receive RD

Bit 1 indicates whether the RD has been
processed by the machine or is awaiting
processing. The device management
ensures that this bit is set to 0 when the
Request I/O instruction is received. This
bit cannot be used by the user to cause
the device management to skip the RD.
The device management always assumes
that all the RDs in the REQIO instruction
are to be processed.

In a terminating or nonterminating error
situation, the RD completion count points
to the RD on which the error was
discovered. Bit 1 is marked processed.
The bit values are:

o Not processed
Processed

Bits 2-7 are reserved and must be
binary O's.

1-3 Reserved (binary 0)

24-46

6-7 8-10 11 12-15

RU length Response
Header

Reserved RU Offset

Byte

4-5

6-7

Meaning

The 2-byte binary sequence number is
assigned and controlled by the machine. For
a transmit RD, the machine assigns a
sequence number and inserts it into the
sequence number field. For a receive RD,
the machine inserts the received sequence
number into the sequence number field.

For a transmit RD, this field contains the
length of the output RU. A length of 0
indicates there is no RU associated with this
RD. For a receive RD, before it is processed,
this field specifies the space available for the
RU in the SSD. After the receive RD is
processed, this field contains the length of
the received RU. If a group of receive RDs is
specified in the SSR, the space available for
all of the RUs can be specified in the first
RD of the group. The RU length field in the
remaining RDs within the group is set to o.
When the RDs in the group are processed
the RU length and offset fields are updated
to the length and offset of the received RUs.
The SSR can have more than one group of
receive RDs. The RUs for all RDs in the SSR
must be located in the same SSD.

Byte Meaning

8-10 These 3 bytes contain the information for the
request/ response header (RH). For a
transmit RD, the information for the
outbound RH is supplied by the machine in
this field. For a receive RD, the information
from the received RH is inserted in this field
when the RD is processed. All unused bits
are reserved and must be set to o.

Byte 0 (request header)

Bit 0 equals 0 indicates whether this RU
is an SNA request or an SNA response:

o SNA request
SNA response

Bits 1-2 identify which type of RU is
being processed. The bits and their
meanings are:

00 = Function manager data (FMD)
01 = Network control
10 = Data flow control
11 = Session control

Bit 3 is reserved (binary 0).

Bit 4 indicates which format is used in the
associated RU. The use of formats is
session and RU type dependent. One use
of this bit is to indicate the presence of
an FM header in the RU.

Bit 5

o Indicates a valid request
Indicates the first 4 bytes of the RU
are sense data for exception
request.

Bits 6-7 indicate which element of a chain
of RUs is being sent. The bit settings are
as follows:

00 = Middle of chain
01 = Last of chain
10 = First of chain
11 = Only in chain

Byte Meaning

8-10 (continued)

Byte 1 (request header)

Bits 0, 2, and 3 are used in combination
to specify the type of response required.
Bit 0 is always 1 (except isolated pacing
response) and bit 2 is always 0 for SNA
0081 implementation. If bit 3 is 0, a
definite response must be sent. If bit 3 is
1 (exception response mode), a negative
response is sent only if an error is
encountered, otherwise, no response is
sent.

Bit 1 is reserved (binary 0).

Bits 4-6 are reserved (binary 0).

Bit 7 is used by device management for
pacing control. Device management
ensures that it contains the correct
setting.

Byte 2 (request header)

Bits 0-1 are reserved (binary 0).

Bit 2 is a change direction indicator. It is
used in a half duplex environment to
control the orderly transmission of
messages. The bit settings are:

o Do not change direction
Change direction

Bits 3-7 are reserved (binary 0).

Communications and Locally Attached Work Stations 24-47

Byte Meaning

8-10 (continued)

24-48

Byte 0 (response header)

Bit 0 = 1 indicates this RU is an SNA
response.

Bits 1 - 2 identify which of the four types
of RUs are being processed:

00 = Function manager data (FM D)
01 = Network control
10 = Data flow control
11 = Session control

Bit 3 is reserved (binary 0).

Bit 4 is the same as for request header.

Bit 5 indicates whether any sense data is
included in the response.

o Sense data not included.
The first 4 bytes of the RU
contain sense data.

Bits 6-7 indicate which element of a chain
of RUs is being received. The bit settings
are:

00 = Middle of chain
01 = Last of chain
10 = First of chain
11 = Only in chain

Byte Meaning

8-10 (continued)

Byte 1 (response header)

Bit

o

2

3

4-6

7

Meaning

Same as the request header

Reserved (binary 0)

Same as the request header

o Positive response
Negative response

Reserved (binary 0)

Used by device management for
pacing control. Device
management ensures that it
contains the correct setting.

Byte 2 (response header)

All of byte 2 is reserved (binary 0).

Byte Meaning

11 Reserved (binary 0)

12-15 This 4-byte RU offset is the displacement, in
bytes, to the beginning of an RU from the
beginning of the SSD space. An RU
associated with a specific RD can be located
by displacing into the SSD space an amount
equivalent to the RU offset. The RU offset
for a receive RD is updated by the machine
if the RU length in the RD is specified as 0
(that is, the RD is designated as a part of an
RD group).

Note: It is strongly recommended that the
offsets for send RDs point to RUs on
double-word boundaries and that the RU
does not cross an SID boundary. If either of
these two conditions' exists, the device
management allocates storage and moves
the RU data. This action degrades
performance considerably. These alignments
are required by the machine's operational
units.

The SSD for the device management RDs contains RUs
as defined by the RD's location in the SSR. One RD
defines one RU. The location of the RU within the SSD
is determined by the RU offset field in the RD.

For transmit RDs, the offset must be supplied to the
machine in the RD. For receive RDs, the offset can be
supplied for each RD or the offset can be supplied for
the first RD of a group and the machine determines the
offset for each subsequent RD in the group, based on
the length of the received RU. A receive RD is
considered a member of a group if its RU length is O.
More than one group of receive RDs can be specified in
an SSR but all of the RUs for those RDs must be
located in one SSD.

FEEDBACK RECORD

The feedback information for the device management
consists of the error summary field and the number of
request descriptors processed. All other status fields are
not used by the work station controller.

The following table gives the error conditions, the
severity code, and recovery procedures. The severity
codes are returned in the error summary field.

Note: All feedback codes may have the MSCP bit on.
This bit is turned on only if the REalO function field
indicates an REalO (MSCP). (For example, normal
completion for an REalO (MSCP) is hex 0800 instead of
hex 0000.)

Communications and Locally Attached Work Stations 24-49

Code Severity

0000 Normal

0008 Normal

0044 Normal

4009 Nonterminating

400A Nonterminating

4031 Nonterminating

4088 Nonterminating

Error Condition Recovery Procedure

None REQIO completed normally; continue
normal processing.

None REQIO (continue) completed normally; the
station is no longer in terminating error
mode. Continue normal processing.

Source/sink data area too small. The 1. Handle this feedback as if it were an
current request descriptor has an SSD event for unsolicited data.
remaining length field that is smaller
than the request unit received from the 2. Send the device management a REQID
station. to pick up the data.

3. If data is not desired, do a MODLUD
(reset, activate).

Note: This also recalls all outstanding
REQIOs for this logical unit and purges all
unsolicited data.

REQIO partially complete due to the Perform the reset cleanup process.
execution of the MODLUD (reset)
command. Some RDs were processed.

REQIO complete due to the execution Continue performing the cleanup process.
of an MODLUD (reset) command. No
RDs were processed.

REQIO (continue) was executed, and
there was no trace of the object being
varied on.

Invalid RD sequence. A sequence of
transmit/ receive / transmit is not
allowed in a REQIO operation.

1. Vary on the object.

Split theREQIO operation into two REQIO
operations. The first one does
transmit/ receive and the second one does
the remaining transmit.

Note: Device management REQIOs can be
only of the following variety:

• Transmit only

• Transmit/ receive

• Receive only

Code Severity

C022 Terminating

C045 Terminating

C084 Terminating

C08B Terminating

C087 Terminating

Error Condition

Station/terminal failure. The
station/terminal has encountered a
serious error.

REQIO instruction has an RD in it that
specifies an output request unit that is
larger than the allowable request unit
size for this controller.

The REQIO instruction has an invalid
SSD pointer. The SSD pointer cannot
be 0 if the data length is not O.

The REQIO that was sent to a display

Recovery Procedure

1. The terminal receiving this feedback
code must be varied off. If the CD
event hex 0004 is received, the station
must be varied off only after each LU D
has been varied off.

2. For a station failure, the specific reason
may be obtained by monitoring for:

CD Event
Type
Subtype

Hex 4
Hex 5
Hex 1

Set the correct request unit size in the RD.
Reissue the REQIO instruction after issuing
a Request I/O (continue) instruction.

Correct either the SSD pointer or the data
length field.

Structure· the REQIOs so that they have n6
device has more than 32 transmit RDs more than 32 transmit RDs.
in it.

The REQIO that was sent to a display Make all REQIOs sent to displays, a
device was not a complete SNA chain. complete SNA chain.

Note: Terminating error severity requires the user to use a REQIO (continue) command to bring the path back to an
active session state ora MODLUD (reset, activate) to clear the path for normal traffic.

Communications and Locally Attached Work Stations 24-51

EVENTS SIGNALED BY WORK STATION
CONTROLLER SUPPORT

Logical Unit Description Events

Supervisory Service Request Event: Hex 0008

Type: 04

Subtype: 01

02

These events are signaled when an SNA FM data
request is received by the MSCP. See Machine Services
Control Point (MSCP) section in this chapter and
Chapter 21 for a more detailed description of this event.

The RU data provided by work station controller devices
for these events consists of up to 80 bytes of data as
indicated in the data length field for the event.

LUD Contact Event: Hex 0008

Type: 06

Subtype: 01 This subtype is signaled upon
successful LUD contact.

02 This subtype (unsuccessful LUD
contact), is never signaled for work
station controller devices. I n these
cases, the Modify LU D (vary on)
instruction signals a source/sink
resource not available exception.

This event is signaled when the LUD vary on processing
is completed by the MSCP. See Chapter 21 and the
Machine Services Control Point (MSCP) section in this
chapter for a more detailed description of this event.

24-52

Unsolicited Event: Hex 0008

Type: 05 This event indicates that unsolicited
data is available for this LU.

Subtype: 01 The data is on the expedited SNA
flow.

02 The data is on the normal SNA flow.

This event is signaled only for the first frame received
and any time not enough receive RDs are available. The
following events are signaled by the common function,
build feedback record, for device management.

LUD Failure Event: Hex 0008

Type: 08 The device failure event is signaled
whenever a varied on device goes to
a state where it can no longer be
used.

Subtype: 01 This subtype is never signaled for
work station controller devices.

02 This subtype is signaled when an
SNA LUST AT request is received on
the MSCP-LU session indicating
that the device is not available.

REQIO Complete Event: Hex 0008

Type: 09 This event indicates that the REQIO
is completed.

Subtype: 01 This event is signaled only if the
user requests it.

Queue Destroyed Event: Hex 0008

Type: OA This LUD event indicates that the
return queue specified in the REQIO
instruction has been destroyed.

Subtype: 01 Queue destroyed.

Note: This LU path is also placed in
terminating error mode.

Controller Description Events

CD Contact Event: Hex 0004

Type: 04

SUbtype: 01 This subtype is signaled upon
successful CD contact.

02 This subtype (unsuccessful CD
contact) is never signaled for work
station controller devices. In these
cases, the Modify CD (vary on)
instruction signals the source/sink
resource not available exception and
the CD failure event.

This .event is signaled when the CD vary on processing
is completed by the MSCP. See Chapter 21 and
Machine Services Control Point (MSCP) section in this
chapter for a more detailed description of this event.

CD Failure Event:" Hex 0004

Type: 05 This event indicates a CD failure.

Subtype: 01 The work station controller is not
capable of normal operations. If the
error code in the feedback record is
hex 0405, the optional pointer in the
event- related data will be a system
pointer to the LUD that is attached
to this CD, which had an invalid
data problem in the LUD
device-specific area.

02 Data is being received from a device
and the logical unit is not varied on
or the path is not activated.

EXCEPTION CODES SIGNALED BY WORK STATION
CONTROLLER SUPPORT

Modify CD Exceptions

For the work station controller CD object, the
source/sink resource not available exception (hex 3404)
is signaled only by the Modify CD (vary on) instruction.
In this case, the generic exception data is hex 2202 and
the specific data field contains the same error code
provided as event-related data for the concurrently
signaled CD event failure.

Modify LUD Exceptions

For the LU Os attached to the work station controllers,
the source/sink resource not available exception (hex
3404) is signaled by the Modify LUD instruction for the
following state changes.

Exception Data

Generic
State (hex) Specific

Vary On 2302 Hex C822. - Station failure
occurred. CD failure event
has been signaled.

Hex 0800 - Acti.vate
logical unit failure
indicated by the device.

Suspend 2312 Hex 1201 - Suspend was
rejected because it could
not be completed within
the time-out specified.

Quiesce 2313 Hex 1302 - Quiesce
rejected due to a
terminating error condition
on a Request I/O
instruction.

Hex 1301 - Quiesce was
rejected because it could
not be completed within
the time-out specified.

Communications and Locally Attached Work Stations 24-53

OBJECT CREATION DATA FOR SUPPORTED
DEVICES

This section defines the data needed to create the
objects necessary to attach a specific device to the
machine. A section is presented for each device
supported.

Work Station Controller

CD Template Data for Work Station Controller

Field Name Length

CD type Char(2)

Unit type Char(4)

Model number Char(4)

Physical address Char(S)

· Reserved Bin(4)

· Station's line address Bin(2)

· Operational unit number Bin(2)

Power control Char(2)

Station control information Char(32)

· XID information Char(21)

- XID format Bit(4)

- Physical unit type Bit(4)

- XID information length Bit(S)

Station's block number Bit(12)

- Specific identification Bit(20)

Reserved Char(4)

- Maximum length received i3in(2)

Reserved Char(4)

Frames limit Bit(S)

- Reserved Char(4)

· Station definition Char(1)

· Reserved Char(2)

· Path information unit type Bin(2)

· Reserved Char(S)

24-54

Entry

Char 00

Char WSCt>

All blanks

Bin a

Bin a

Hex 0030, Hex 0070, Hex OOBO, or Hex OOFO

Hex 0000

Bin 0000

Bin 0000

Hex 00

Hex 000

User-assigned 10 that must be uniquely assigned for each
work station controller within the system.

Hex 00000000

Hex 0000

Hex 00000000

Hex 0000

Hex 00000000

Hex 00

Hex 0000

Hex 0000

Bin a

CD Template Data for Work Station Controller (continued)

Field Name Length Entry

Selected modes Char(16) Bin a

Activate physical unit data Char(16) Bin a

Dial digits Char(32) Bin a

Specific characteristics Bin(2) Hex 0000

XI D information Char(2)

· Length of XI D data Bin(2) Hex 0000

Unit-specific data area Char(6)

· Length of unit-specific area Bin(2) Hex 0002

· Length of modifiable area Bin(2) Hex 0002

Unit-specific contents area Bin(16) Hex 0000

Communications and ,Locally Attached Work Stations 24-55

LUD Template Data for the 5251 or 5252 Display

Field Name

LUDtype

Device type

Model number

Physical address

• Reserved

• Logical unit address

· Station line address

· Operational unit number

Power control

Session information

· Inbound pacing

· Outbound pacing

· Request unit buffer size

· ACTLU

· ACTLU parameters

· ACTLU response

Load/ dump indicator

Specific characteristics

· Devi.ce descriptor

• Keyboard option

24-56

Length

Char(2)

Char(4)

Char(4)

Char(8)

Bin(2)

Bin(2)

Bin(2)

Bin(2)

Char(2)

Char(20)

Bin(2)

Bin(2)

Bin(2)

Char(1)

Char(3)

Char(8)

Char(16)

Bin(2)

Bit(16)

Bit(16)

Entry

Char 10

Char 5251 or Char 5252

Char b001 for 960-character screen 5251
Char 0011 for 1920-character screen 5251
Char 0001 for 960-character screen 5252

Hex 0000

Hex OOOO-Hex 0013 Select the lowest number for the first
LU D created. Best performance is obtained when these
logical session identification fields (LSID) are assigned
contiguously for each succeeding LU D starting with LSI D hex
0000.

Hex 0000

Same number as in CD to which this LUD attaches.

Hex 0000

Hex 0000

Hex 0000

Hex 0100 = 256 bytes
Hex OCOO = 3072 bytes
Select 256 bytes for the 5251 Model 2 or 12 compatibility
operation of the WSC display.

Hex 01

Hex OD0101

Bin a
Bin a
Hex 0014 = 20 bytes
Length of specific characteristics area

Hex 0041 = 5252
Hex 0081 = 5251 Model 0001
Hex 00C2 = 5251 Model 0011

Hex 0000 = No keyboard attached
Hex 0002 = Typewriter keyboard
Hex 0003 = ASCII keyboard
Hex 0004 = Data-entry keyboard

LUD Template Data for the 5251 or 5252 Display (continued)

Field Name

• Keyboard option
(continued)

• Cable address for this LU

• Head (station) address

• Reserved

• Katakana keyboard attached

• Translate table name

Length

Bit(16)

Bit(16)

Bit(16)

Bit(16)

Bit(16)

Char(8)

Entry

Hex 0005

Hex 0008

Hex 0009

Hex OOOA

Hex OOOB

Hex OOOC

Hex 0000

Data-entry keyboard with inverted key option
(proof)

International/ ASCII data-entry keyboard

International/ ASCII data-entry keyboard with
inverted key option (proof)

World Trade typewriter keyboard

International typewriter keyboard

World Trade data-entry keyboard

World Trade data-entry keyboard with
inverted key option (proof)

Hex DODO-hex 0007 or hex 0010-hex 0017

Cable address represents the physical address of a twinaxial
or coaxial cable. It is derived from the connector and OU
number as follows:

Connector numbers 0 through 15 are attached to OU 30;
connector numbers 16 through 31 are attached to OU 70;
connector numbers 32 through 47 are attached to OU BO;
connector numbers 48 through 63 are attached to OU FO.

Cable addresses 0-7 correspond to connectors 0-7 on OU
30, connectors 16-23 on OU 70, connectors 32-39 on OU
BO, and connectors 48-55 on OU FO. Cable addresses
10-17 correspond to connectors 8-15 on OU 30, connectors
24-31 on OU 70, connectors 40-47 on OU BO, and
connectors 56-63 on OU FO.

Hex DODO-Hex 0006 for 5251
Hex DODO-Hex 0005 for 5252

This is the physical address of a head (display or printer) on a
daisy chained twinaxial (Cable Thru feature). Allowable
addresses are 0-6 for the 5251 and 0-5 for the 5252.

The values (0-6) are selected via rocker switches on the
devices.

Hex 0000

Hex 0000 = Not attached
Hex 0001 = Attached

(See the following table.)

Communications and Locally Attached Work Stations 24-57

LUD Template Data tor the 5251 or 5252 Display (continued)

Translate Table Keyboard Language or Country WSC Char Generator

#TPNDAGB Data-Entry Austria / Germany Basic

#TPNDAGI Data-Entry Austria / Germany International

#TPNDBLB Data-Entry Belgium Basic

#TPNDBLI Data-Entry Belgium International

#TPNDBRB Data-Entry Brazil Basic

#TPNDBRI Data-Entry Brazil International

#TPNDCAB Data-Entry Canada (French) Basic

#TPNDCAI Data-Entry Canada (French) International

#TPNDDMB Data-Entry Denmark Basic

#TPNDDMI Data-Entry Denmark I nternationa I

#TPNDFAB Data-Entry French (Azerty) Basic

#TPNDFAI Data-Entry French (Azerty) International

#TPNDFNB Data-Entry Finland Basic

#TPNDFNI Data-Entry Finland International

#TPNDFQB Data-Entry French (Qwerty) Basic

#TPNDFQI Data-Entry French (Qwerty) International

#TPNDINB Data-Entry International Basic

#TPNDINI Data-Entry International International

#TPNDITB Data-Entry Italian Basic

#TPNDITI Data-Entry Italian International

#TPNDJEB Data-Entry Japan (English) Basic

#TPNDJEI Data-Entry Japan (English) International

24-58

LUD Template Data for the 5251 or 5252 Display (continued)

Translate Table Keyboard Language or Country WSC Char Generator

#TPNDKAB Data-Entry Japan (KATA) Basic

#TPNDNWB Data-Entry Norwegian Basic

#TPNDNWI Data-Entry Norwegian International

#TPNDPRB Data-Entry Portuguese Basic

#TPNDPRI Data-Entry Portuguese International

#TPNDSPB Data-Entry Spanish Basic

#TPNDSPI Data-Entry Spanish International

#TPNDSSB Data-Entry Spanish Speaking Basic

#TPNDSSI Data-Entry Spanish Speaking International

#TPNDSWB Data-Entry Swedish Basic

#TPNDSWI Data-Entry Swedish International

#TPNDUKB Data-Entry United Kingdom Basic

#TPNDUKI Data-Entry United Kingdom International

#TPNDUSB Data-Entry United States Basic

#TPNDUSI Data-Entry United States International

#TPNTAGB Typewriter Austria/Germany Basic

#TPNTAGI Typewriter Austria / Germany International

#TPNTBLB Typewriter Belgium Basic

#TPNTBLI Typewriter Belgium International

#TPNTBRB Typewriter Brazil Basic

#TPNTBRI Typewriter Brazil International

Communications and Locally Attached Work Stations 24-59

LUD Template Data for the 5251 or 5252 Display (continued)

Translate Table Keyboard Language or Country WSC Char Gener.ator

#TPNTCAB Typewriter Canada (French) Basic

#TPNTCAI Typewriter Canada (French) I nternationa I

#TPNTDMB Typewriter Denmark Basic

#TPNTDMI Typewriter Denmark International

#TPNTFAB Typewriter French (Azerty) Basic

#TPNTFAI Typewriter French (Azerty) I nternationa I

#TPNTFNB Typewriter Finland Basic

#TPNTFNI Typewriter Finland International

#TPNTFQB Typewriter French (Qwerty) Basic

#TPNTFQI Typewriter French (Qwerty) International

#TPNTINB Typewriter International Basic

#TPNTINI Typewriter International International

#TPNTITB Typewriter Italian Basic

#TPNTITI Typewriter Italian International

#TPNTJEB Typewriter Japan (English) Basic

#TPNTJEI Typewriter Japan (English) International

#TPNTKAB Typewriter Japan (KATA) Basic

#TPNTNWB Typewriter Norwegian Basic

#TPNTNWI Typewriter Norwegian International

#TPNTPRB Typewriter Portuguese Basic

#TPNTPRI Typewriter Portuguese International

#TPNTSPB Typewriter Spanish Basic

24-60

LUD Template Data for the 5251 or 5252 Display (continued)

Translate Table

#TPNTSPI

#TPNTSSB

#TPNTSSI

#TPNTSWB

#TPNTSWI

#TPNTUAB

#TPNTUAI

#TPNTUKB

#TPNTUKI

#TPNTUSB

#TPNTUSI

Field Name (continued)

Retry value sets

Error threshold sets

Device-specific contents

Keyboard

Typewriter

Typewriter

Typewriter

Typewriter

Typewriter

Typewriter

Typewriter

Typewriter

Typewriter

Typewriter

Typewriter

• Length of device contents

• Length of device-specific contents
modifiable and materializable

• Device-specific area

- Reserved

- Device format table length

Length
(continued)

Bin(2)

Bin(2)

Bin(2)

Bin(2)

Char(4)

Bit(16)

Bit(16)

Language or Country WSC Char Generator

Spanish International

Spanish Speaking Basic

Spanish Speaking International

Swedish Basic

Swedish International

United States (ASCII) Basic

United States (ASCII) International

United Kingdom Basic

United Kingdom International

United States Basic

United States International

Entry (continued)

Hex 0000

Hex 0000

Hex 0004

Hex 0004

Hex 0000

Hex 0001 = 256 bytes
Hex 0002 = 512 bytes
Hex 0003 = 768 bytes
Use as small a value as possible since this uses extended
data store shared with other devices on this WSC and could
limit the number of devices on this WSC.

Communications and Locally Attached Work Stations 24-61

LUD Template Data for the 5256 Printer

Field Name

LUD type

Device type

Model number

Physical address

• Reserved

• Logical unit address

· Station line address

· Operational unit number

Power control

Session information

· Inbound pacing

· Outbound pacing

· Request unit buffer size

· ACTLU

· ACTLU parameters

· ACTLU response

Load/dump indicator

Specific characteristics

· Device descriptor

· Keyboard option

24-62

Length

Char(2)

Char(4)

Char(4)

Char(8)

Bin(2)

Bin(2)

Bin(2)

Bin(2)

Char(2)

Char(20)

Bin(2)

Bin(2)

Bin(2)

Char(1)

Char(3)

Char(8)

Char(4)

Bin(2)

Bit(16)

Bit(16)

Entry

Char 10

Char 5256

Char 0001 for 40 characters per second
Char 0002 for 80 characters per second
Char 0003 for 120 characters per second

. Hex 0000

Hex DODO-hex 0013
Best performance is obtained when these logical session
identification fields (LSID) are assigned contigl,lously for each
succeeding LUD starting with LSID (hex 0000).

Hex 0000

Same as in CD to which this LUD attaches

Hex 0000

Hex 0000

Hex 0002-hex 0007
This field cannot be greater than the number of print buffers
specified in the device-specific area of the LUD.

Hex 0100 = 256 bytes

Hex 01

Hex 000101

Bin 0

Bin 0

Hex 0014 = 20 bytes
Length of specific characteristics· area

Hex 0020 = Printer

Always hex 0000

LUD Template Data for the 5256 Printer (continued)

Field Name

Specific characteristics
(continued)

• Cable address for this LU

• Head (station) address

• Reserved

• Katakana keyboard attached

• Translated table name

Retry value sets

Error threshold sets

Device-specific contents

Length

Bit(16)

Bit(16)

Bit(16)

Bit(16)

Char(8)

Bin(2)

Bin(2)

• Length of device contents Bin(2)

• Length of device-specific contents Bin(2)
modifiable and materializable

• Device-specific area Char(4)

- Reserved Bit(16)

- Number of 256-byte printer Bit(16)
buffers

Entry

Hex OOOO-hex 0007 or hex 0010-hex 0017
Cable address represents the physical address of a twinaxial
or coaxial cable. It is derived from the connector and OU
number as follows:

Connector numbers a through 15 are attached to OU 30;
connector numbers 16 through 31 are attached to OU 70;
connector numbers 32 through 47 are attached to OU BO;
connector numbers 48 through 63 are attached to OU FO.

Cable addresses 0-7 correspond to connectors 0-7 on OU
30, connectors 16-23 on OU 70, connectors 32-39 on OU
BO, and connectors 48-55 on OU FO. Cable addresses
10-17 correspond to connectors 8-15 on OU 30, connectors
24-31 on OU 70, connectors 40-47 on OU BO, and
connectors 56-63 ,on OU FO.

Hex 0000- Hex 0006
This is the physical address of a head (display or printer) on a
twinaxial cable (Cable Thru feature). Allowable addresses are
0-6.

The values (O-6) are selected via rocker switches on the
device.

Hex 0000

Always hex 0000

Always binary a
Hex 0000

Hex 0000

Hex 0004

Hex 0004

Hex 0000

Hex 0003-hex 0007
This field must be equal to or greater than the outbound
pacing.

Communications and Locally Attached Work Stations 24-63

24-64

The load/dump function enables the user to first save
(back up) certain permanent objects by dumping these
objects to a load/dump medium (such as diskettes or
magnetic tape) and then load (restore) these objects
when needed.

The objects that can be processed by the load / dump
function are:

• Data spaces

• Data space indexes

• Programs

• Space objects

• Independent indexes

Except for programs, these objects can be dumped,
loaded over an existing object, or loaded onto a system
where they currently do not exist.

An existing program cannot be overlaid (loaded) on the
system. Programs can only be loaded as new objects
with the Create and Load command.

LOAD/DUMP COMMANDS

The L/D (load/dump) function uses unique commands
to process permanent objects. The· L/ D commands are
as follows:

• Dump

• Load

• Create and Load

• Set User Profile

• Set Context

• Read Object Identification

Chapter 25. Load/Dump Object Management

Session Types

For the L/ D function, there can be two session types
(dump or load) in the LUD (logical unit description).
Only the Dump command is allowed for the dump
session; all other L/D commands are allowed for the
load session. When the Read Object Identification
command (load session) is issued, no other command
types are allowed in the Request I/O instruction.

Sequence of Operations

The following is an overview of an L/D function:

1.

2.

3.

4.

5.

An L/ D Modify Logical Unit Description (activate)
session is issued to open the L/ D session. The
LUD must be properly initialized to the operation
mode (load or dump) at this time.

A normal Request I/O instruction that points to an
SSR (source/sink request) is issued. This SSR
contains commands and pointers to the objects to
be loaded or dumped from the LD medium.

The L/ D function checks the Request I/O
instruction for errors and processes all commands.

The L/ D function sends a feedback message to
the Request I/O response queue to indicate the
completion of the function.

A Modify LUD ((de-activate) session is issued to
close the L/D session.

Note: The L/D function operates only in the EBCDIC
mode for tape and diskette; this function operates with
1 K byte sector sizes on the diskette. The user has no
control over these values, and any value the user puts in
the LUD is ignored. For tape operations, the user may
specify the block size by setting a field in the
device-specific area of the LUD or let block size default
to the optimum block size.

Load/Dump Object Management 25-1

Dump Command (D)

A permanent object is copied to the L/D medium.

Coding the Dump Command

1. The hex value (hex 01) for the Dump command is
placed in the command field of the RD (request
descriptor).

2.

3.

A system pointer to the object to be dumped is
placed in the RD pointer field.

The object I D (identification) of the object to be
dumped is placed in the RD object 10 field.

Programming Considerations

• The object need not be addressed by a context.

• Indexes with pointers are not dumped.

• Both observable and nonobservable programs can be
dumped.

• Dumping the object does not change the object.

• Damaged objects cannot be dumped.

• Partial damaged objects cannot be dumped.

• In a Request I/O instruction the same object can be
dumped any number of times.

• A suspended object can be dumped.

• The object name, type, and subtype (in the object 10
field) must match the object pointed to by the system
pointer in the RD.

• When dumping a data space index, all data spaces
must immediately precede the associated data space
index. (See Load/Dump Data Base Networks in this
chapter.)

Lock Enforcement

• Materialization
- On all objects to be dumped

25-2

Load Command (L)

A permanent object is copied from the L/D medium to
overlay an object on the system. The object I D field (in
the RD) is compared to the object 10 on the L/D
medium. When a match is found, that object is loaded,
replacing the object specified by the pointer field of the
RD. A value in the compare length of the RD specifies
the number of positions to be compared.

Coding the Load Command

1. The hex value (hex 02) for the Load command is
placed in the command field of the RD.

2. The compare length for the object 10 search is
placed in the compare length field of the RD.

3.

4.

A system pointer to the object in the system to be
replaced is placed in the pointer field.

The ID of the object is placed in the object 10 field
of the RD. This field may be initialized with 0-64
bytes of the object 10. The number of bytes
initialized should not be less than the compare
length in the RD. The object 10 field is only used
to search the L/D device and check for an object
10 match.

Programming Considerations

• A program object cannot be loaded. It can be only
created and loaded.

• The object in the system is truncated or extended as
necessary to fit the version being loaded. The object
owner's user profile is charged/credited for the
space.

• The size of the object and the associated space of
the object can be larger after a load than it was when
the object was dumped because of internal machine
allocations.

• The object that is to be overlaid on the system can
be suspended.

• The object that is to be loaded from the L/D medium
can be suspended.

• The authority (public and owners), object owner's
user profile, and context addressing object attributes
of the object to be overlaid are not changed by the
Load operation. All the other object attributes are
from the object just loaded.

• The DS (data space) and DSI (data space index) must
not have an active cursor in use.

• When a DS is being loaded, the entry definition table
of the object on the system must match the one to
be loaded before a load operation can take place.

• If, in the same Request I/O instruction, all the DSs
under a DSI are not loaded before the DSI, the DSI
is not loaded. Intertwined networks on the media can
be loaded (see Load/Dump Data Base Networks in this
chapter).

• The DSs under the DSI to be overlaid must also be
under the DSI to be loaded.

• The object that is to be overlaid on the system must
have the same name, type, and subtype as the object
on the L/ D media that is to be loaded.

• The pointers in a space object or in any associated
space are not resolved by a Load command. These
pointers are made to look like data. The user must
restore these pointers, if desired.

• The associated space of an object in the system is
replaced by the associated space of the object being
loaded.

• A data space index invalidated event is signaled for
any DSI that is not overlaid but addresses data
spaces that are overlaid.

• External links for DSls and DSs are resolved after the
DSI is loaded.

• If the object to be overlaid is damaged, the Load
operation does not take place.

• If the object to be overlaid is only partially damaged,
the load operation does take place.

• Only versions of objects that are older than or as old
as the version of the L/ D code are loaded. The
version level check is also done on the user exit
program in the DSI object.

• In a Request I/O instruction, the same object can be
loaded any number of times.

• When a DS is loaded, all DSls (even those that may
not be in the REQIO) over that DS must not be in
use, damaged, or destroyed.

• When a DSI is loaded, the DS key specification in
that DSI and in the DSI to be overlaid must match
and have the same number of records.

• The ID for the L/D media is the ID that was supplied
in the dump object ID field when the object was
dumped.

• The object to be overlaid need not be addressed by a
context.

Lock Enforcement

• Object control
On the objects to be loaded
On any DSI associated with a DS to be loaded
even if the DSI is not loaded

Load/Dump Object Management 25-3

Create and Load Command (CL)

The current file on the L/D medium is searched for the
object to be created by comparing the object I D field in
the RD to the object ID on the L/D medium. When a
match is found, the system allocates space for the
object and then loads the object into this space.
Addressability to the object is placed in the context
specified by the previous Set Context command only if
the addressability field in the RD equals hex 00. The
L/ D function provides addressability to the created
object by unconditionally inserting a system pointer in
the pointer field of the RD. Ownership of the object is
assigned to the user profile specified by the previous
Set User Profile command.

Coding the Create and Load Command

1.

2.

3.

4.

The hex value (hex 16) for the Create and Load
command is placed in the command field of the
RD.

The compare length for the object ID search is
placed in the compare length field of the RD.

The addressability field of the RD is set to hex 00
or hex 01 to indicate whether the object is to be
addressed by the context specified by the previous
Set Context command or whether the object is not
to be addressed by any context.

The object I D is placed in the object I D field of the
RD. This field may be initialized with 0-64 bytes
of the object ID. The number of bytes initialized
should not be less than the compare length in the
RD. This field is only used to search the L/ D
device and check for an object I D match.

Programming Considerations

• The pointer field is not initialized because the L/ D
function· returns a system pointer.

• If the addressability field of the RD is hex 00, there
must not be two objects of the same name, type,
and subtype in the context specified by the previous
Set Context command.

• The ID on the L/D media is the one that was
supplied when the object was dumped by the dump
object I D field.

25-4

• The associated space of the object on the L/ D
medium becomes the associated space of the object
created.

• Internal pointers within the object are corrected to
reflect address changes.

• External links only for DSI and DS are resolved after
the DSI is created and loaded.

• The pointers in a space object or in any associated
space are not resolved by a Create and Load
command. Thes~ pointers are made to look like data.
The user must restore these pointers, if desired.

• A Set User Profile command must precede any
Create and Load command within the same Request
I/O instruction.

• If the addressability field in the Create and Load
command RD is hex 00, a Set Context command
must precede this RD within the same Request I/O
instruction.

• If the addressability field in the Create and Load
command RD is hex 01, the addressability to the
object is not placed in any context.

• Only versions of objects that are older than or as old
as the version of the L/ D code are created. A
version level check is also done on the user exit
program in the DSI object.

• Except for the user profile and context, all attributes
of the created object are identical to the attributes it
had when it was dumped.

• When a DS or DSI is created, an attempt is made to
place it on the unit from which it was dumped.

• If, in the same Request I/O instruction, all the DSs
under a DSI are not loaded or created and loaded
before the DSI, the DSI is not loaded. Intertwined
networks on the media can be created (see
Load/Dump Data Base Networks in this chapter).

Lock Enforcement

• None

~t User Profile Command (SUP)

1e Set User Profile command must precede any Create
ld Load command within a normal Request I/O
struction because the SUP command specifies a user
'ofile for the object(s) created by the Create and Load
)mmand. The pointer field in the RD must contain a
'stem pointer that has addressability to the desired
)er profile. After a Set User Profile command is
'ocessed, all subsequent Create and Load commands
that same Request I/O instruction use that user

·ofile~ until another Set User Profile command is
1countered.

Dding the Set User Profile Command

The hex value (hex 24) for the Set User Profile
command is placed in the command field of the
RD.

A system pointer to the desired user profile is
placed in the RD pointer field.

rogramming Considerations

The object I D field is not used.

The user profile must not be damaged.

)ck Enforcement:

Modification
- On the user profile

Set Context Command (SCTX)

A specific context that can receive addressability to the
object(s) created by the Create and Load command is
selected. Within a normal Request I/O instruction, the
Set Context command must precede the first Create and
Load command that has a value of hex 00 in the
addressability field of the RD. This requirement exists
because the hex 00 value directs the L/ D function to
put addressability to the created object in a context.
The pointer field in the RD must contain the address of
this context. After a Set Context command is
processed, all subsequent Create and Load commands
with an addressability field equal to hex 00 in that same
Request I/O instruction, use that same context until
another Set Context command is processed.

Coding the Set Context Command

1.

2.

The hex value (hex 44) for the Set Context
command is placed in the command field of the
RD.

A system pointer to the desired context is placed
in the RD pointer field.

Programming Considerations

• The object I D field is not used.

• The context must not be damaged.

Lock Enforcement

• Modification
- On the context

Read Object Identification Command (ROID)

The data in the I D portion of an object on the L/ D
medium is retained and inserted into the I D field of the
RD. The retrieved data can then be used to compile a
listing of the objects on the file.

Coding the Read Object Identification Command

The hex value (hex 86) for the Read Object Identification
command is placed in the command field of the RD.

Load/Dump Object Management 25-5

Programming Considerations

• The pointer field is not used.

• No other command types may be issued in the same
Request I/O instruction.

Lock Enforcement

• None

LOAD/DUMP REQUEST I/O (REQIO)

The user's interface to the L/D function is the Request
I/O instruction. Two types of Request I/O instructions
are used, the normal Request I/O and Request I/O
(continue). The normal Request I/O instruction contains
commands and the needed information to load objects
in the system and dump objects from the system. The
Request I/O (continue) instruction is used for error
processing; it indicates that processing of the next
normal Request I/O instruction should continue from the
point where the error occurred (the user must build a
new SSR for the continued operation). The L/D
function uses the standard format of the SSR and an
extended RD. No SSD (source/sink data) object is
used.

Request Descriptor (RD)

The format of the RD in the SSR is as follows:

Command Char(l)

Compare length Char(l)

RD number for exception Bin(2)

Addressability Char(l)

Reserved Char(l)

Pointer Char(16)

Object ID Char(64)

25-6

The length of each RD must be 96 bytes; the RD must
be located on a 16-byte boundary.

Each RD must contain the necessary information to
process at least one object. The maximum number of
RDs allowed in the Request I/O SSR is 4000.

The L/ D function always processes request descriptors
in the order they appear in the source/sink request; that
is, the first request descriptor is processed first, and the
last request descriptor is processed last.

Command Field

The user must specify one of the following commands
for each RD:

• Load (hex 02)

• Create and Load (hex 16)

• Dump (hex 01)

• Set User Profile (hex 24)

• Set Context (hex 44)

• Read Object I D (hex 86)

Compare Length Field

If the command is Load or Create and Load, the
compare length field specifies how many bytes of the
object I D on the L/ D medium are to be compared with
the object ID field. The compare length can be any
value from 0 through 64. A length of 0 indicates that
the next object on the L/ D medium should be loaded.
A length of 64 indicates that an exact match of the
object ID is required before the load can occur.

Note: Because the tape and diskette are serial devices,
the user should exercise caution when a compare length
of less than 64 bytes is specified. This caution is
necessary because the device starts searching for a
match to the I D field from the point where the device
was last positioned. Therefore, the system may load the
wrong object if the user does not know the exact data
in the object IDs and the sequence of the objects on the
device.

RD Number for an Exception Field

If an exception error code is generated by a Request
I 10 instruction, the exception field can contain the RD
number that caused the exception. This field is used
only in the first RD of the SSR.

Addressability Field

The contents of the addressability field are meaningful
only when the associated command is Create and Load.
If this field contains a value of hex DO, addressability for
the object being created is put into the context specified
by the last Set Context command. If this field contains
a value of hex 01, addressability for the object being
created is not put into any context.

Reserved Field

This field is reserved for use by the machine and any
value put in it by the user will be overlaid.

Pointer Field

The pointer field provides addressability to some of the
objects associated with the LID function. The pointer
contained in this field for each LID command is as
follows:

• Dump - A system pointer to the object that is to be
dumped to the LID medium.

• Load - A system pointer to the object that is to be
overlaid by the object from the LID medium.

• Create and Load - The pointer field can be any value
(pointer or data) when the RD is built for this
command. The LID function inserts a system pointer
in this field after the object has been created and
loaded. The pointer contains addressability to the
created object. No authority is placed in this pointer.

• Set User Profile - A system pointer to the user
profile that is given ownership of the object(s) on all
subsequent Create and Load commands within the
same normal Request I 10 instruction.

• Set Context - A system pointer to the context where
addressability can be inserted for the objects created
by the Create and Load commands. Addressability to
the object is inserted in the context only if the
addressability field within the same normal Request
I 10 instruction contains a value of hex 00.

• Read Object 10 - the pointer field is not used for
Read Object 10 commands.

Load/Dump Object Management 25-7

Object 10 Field

The object I D field consists of an object name (30
characters), object type (1 character), object subtype (1
character), and an ID extension (32 characters). The use
of the object I D field depends on the specified L/ D
command.

Dump Command: The object name, type, and subtype
must be supplied. The ID extension is optional;
however, the entire object ID field and the object are
dumped to the L/ D medium.

Load Command: The object ID field is used when the
L/D medium is searched for the correct object(s}. The
search operation consists of comparing the object ID
field on the L/D medium to the object ID field in the RD
until an equal condition occurs. The number of
characters compared in the search operation is
determined by the value in the compare length field of

the RD.

Create and Load Command: The object ID field is used
when the L/ D medium is searched for the correct
object(s}. The search operation consists of comparing
the object ID field on the L/D medium to the object ID
field in the RD until an equal condition occurs. The
number of characters compared in the search operation
is determined by the value in the compare length field of

the RD.

Read Object ID Command: The 64-byte object ID is read
from the L/ D medium, and the data is inserted into this
field.

Set User Profile Command: The object ID field is not
used for this command.

Set Context Command: The object I D field is not used

for this command.

25-8

LOAD/DUMP MODIFY LUD

The L/D function conforms to the normal operation for
the various Modify LUD sessions except when the
session is changed from load to dump or dump to load.
To change the sessions from load to dump or dump to

load the user must:

1. Issue a Modify LUD (de-activate) instruction.

2. Change the operation mode byte in the LU D.

3. Issue a Modify LUD (activate) instruction.

The Modify LUD (reset) session (which may be required
after an error condition) causes the L/ D function to
immediately stop processing the current normal Request
I/O instruction and to send a feedback record for the
associated normal Request I/O instruction. I ncluded in
the feedback record is the proper error code and an
indicator that show how many RDs have already been
processed. The L/D function then flushes the
unprocessed Request I/O instructions by sending
feedback records for each Request I/O instruction with
the proper error code. After the L/ D queue has been
flushed, the Modify LUD (reset) operation is completed.
The L/D function does a cleanup procedure, if
necessary, on the RD it was processing when the
Modify LUD (reset) request was received. The Modify
LU D (reset) session state can leave the L/ D device
read/write head at an unknown location on the diskette;
therefore, it is the user's responsibility to correctly
position the L/D device read/write head after a Modify
LU D (reset) instruction is processed.

The Modify LUD (suspend) session is used to interrupt
the L/ D function so that data interchange can occur or
so that processing can be halted. The Modify LUD
(suspend) session causes the L/ D function to stop
processing the current Request I/O (normal) instruction
(1) on anRD boundary (2) at the end of a volume, or (3)
at the end of a file. A feedback record is sent for the
associated Request I/O (normal) instruction after the

suspend ~ession has occurred.

LOAD/DUMP FEEDBACK RECORD

For every Request I 10 instruction received, the LI D
function responds with a standard feedback record that
contains the status of that Request 110 instruction. The
feedback record is visible to the user when a Dequeue
instruction is processed. Load I dump does not respond
with the standard feedback record when the Request
I 10 instruction specifies dump and the object being
dumped has undetected partial damage.

LOAD/DUMP ERROR PROCESSING

In LID processing, there are four types of errors:
exceptions, severe errors (nonrecoverable), recoverable
errors (such as end of volume (EOV), end of file (EOF),
end of tape (EOT)), and other errors. How these errors
are processed depends on the type of error
encountered.

Exceptions

The exception errors are detected by the Request I 10
instruction. They result in an exception being generated
and signaled to the user's program. At this time, I 10
operations have not started because the LI D object
handler has not been invoked. To recover from an
exception, correct the error and resume the Request I 10
instruction.

Exception error codes (in addition to normal exceptions)
are generated by the Request I 10 instruction when the
associated preprocessing LI D errors are detected. The
number of the RD being processed when the error
causing the exception occurred can be found in the RD
number for exception fields of the first RD in the SSR.

The following is a list of exceptions and the exception
error codes signaled for LID and the command(s) that
could cause the exceptions.

Exception
Code Command Causing
(hex) Exception Exception

OA01 Unauthorized for All LI D commands
operation

OA04 Special All LI D commands
authorization
required

1004 Damaged system Load, Dump, Set User
object Profile, and Set

Context

1044 Partial system Dump
object damage

1A01 Invalid lock state Load, Dump, Set User
Profile, and Set
Context

1C03 Machine storage All LI D commands
limit exceeded

2201 Object not found Load, Dump, Set User
Profile, and Set
Context

2202 Object destroyed Load, Dump, Set User
Profile, and Set
Context

2204 Object not eligible Load and Dump
for operation

2401 Pointer does not Load, Dump, Set User
exist Profile, and Set

Context

2402 Pointer type invalid Load, Dump, Set User
Profile, and Set
Context

2403 Pointer addressing Load, Dump, Set User
invalid object Profile, and Set

Context

2E02 Process storage All L/ D commands
limit exceeded

3801 Template value All LID commands
invalid

Severe Errors

Severe errors are nonrecoverable errors, and they
seldom occur until after an I/O operation has started. A
Modify LUD (reset) or Modify LUD (de-activate)
instruction must be issued if this type of error occurs.

Load / Dump Object Management 25-9

The following is a list of the severe-error codes returned
in the status field and explanations of those error codes.

Error Code
(hex)

C4CO-C5CO

C4C1-C5C1

C4C2-C5C2 1

C5C3

C5C4

C4C5

Definition

Storage operation error or machine
storage exceeded.

The maximum auxiliary storage for
the permanent objects field in the
object owner's user profile has been
exceeded for a Load command or
Create and Load command.

Invalid lock (I/O processing has not
yet started except for the Create and
Load command).

User profile or context is full of
entries for the Create and Load
command.

Duplicate Object (an object of the
same name, type, subtype exists in
the context specified by the Set
Context command for this Create
and Load command).

Data base network violation on a
Load or Create and Load command.

• The OSI cannot be loaded
because the OSs under it were
created and loaded.

• All OSs under this OSI do not
immediately precede the OSI(s)
for this network.

• The OS(s) under the OSI to be
overlaid must be under the OSI to
be loaded and must be in the
same internal order.

• The number of key specification
records in the OSI to be loaded
does not match the OSI on the
system.

llf this error occurs on an RD that has a Create and Load
command, all RDs before this one have been processed.
The invalid lock, damaged object, or destroyed object is not
the one associated with the Create and Load RD; instead
either the user profile ownership is being put in, or the
context addressability is being put in for the object just
created.

25-10

Error Code
(hex)

C4C6-C5C61

C4C7

C4C8-C5C8

C4C9

C4CAl

C4CB

Definition

Object destroyed (I/O processing
has not yet started except for the
Create and Load command).

Invalid object

• The field descriptor table field in
the OS does not match the one
to be loaded.

• The OS key specification field in
the OSI does not match the one
to be loaded.

A serious problem that L/O cannot
handle occurred. An unexpected
condition occurred in L/O for an
unknown reason. The reason could
be a bad object, a hardware error, or
a software error. Information about
this error is logged. The RO number
in the feedback record indicates the
RO that L/O was working on when
the error occurred but that RO may
not be the reason for the error. If
the reason for the error is a bad
object, it could be the object in the
current RO or any object in the next
three ROs. If the error occurred
during loading of a data base object,
the bad object could also be any
previous OS or OSI immediately
preceding the current RD. The LUO
is marked partially damaged and the
partial system object damage set
exception is signaled. To recover
from this error, a Modify LUO (reset,
de-activate, and vary off) must be
issued.

Object name, type, and subtype of
the object to be loaded does not
match the one pointed to by the
user-supplied pointer.

OS or OSI has an active cursor in
use during the Load command (I/O
processing has not started).

Not used.

Error Code
(hex)

C5CC

Definition

All objects (DS or DSI) in this
network have been loaded but not
properly linked together. The RD
number field in the feedback record
contains the RD number of the
object in the network that is in error.
This is a serious machine problem
that occurs when data base objects
are damaged but not marked as
damaged. All the DS(s) within the
network and any DS(s) immediately
preceding the network are damaged
when the Modify Logical Unit
Description (reset) instruction is
issued.

C4CD-C5CD' Object is damaged (I/O processing
has not yet started except for the
Create and Load command).

C4CE

C4CF

C4DO

C4Dl

D4FF

Invalid version level on object to be
loaded or created.

Unmodified Request I/O instruction
was not returned while L/ D was in
a recoverable error mode. The RDs
were modified in the SSA.

Object cannot be dumped (I/O
processing has not started).

The reserved field of the first RD in
this SSR was not set to hex 00 for
this Request I/O instruction.

An attempt has been made to load
an object that has an invalid L/ D
object descriptor.

For error codes not listed in this section, see the error
codes listed for the individual devices in Chapter 23 of
this manual.

Note: Bits 4 through 7 of the status field for all errors
listed in this section indicate the following:

Hex 4

Hex 5

The object being processed will not be
damaged by the L/D function if a Modify
Logical Unit Description (reset) instruction
is issued.

A cleanup is done on the object being
loaded or created if a Modify Logical Unit
Description (reset) instruction is issued.

If the error occurs on a Load command,
the object being overlaid on the system
will be damaged. If the error occurs on a
Create and Load command, the space
allocated for the object being created is
destroyed.

The normal Request I/O and the Request I/O (continue)
instructions cannot be issued.

Load/ Dump Object Management 25-11

Recoverable Errors

When a recoverable error occurs (for example, an EOV
(end of volume), EOT (end of tape), EOF (end of file), or
suspended), the L/D function returns the feedback
record with the status of the error. The L/D function
does not process any other normal Request I/O
instructions until a Modify LUD (reset) instruction or a
Request I/O (continue) instruction is issued.

If the user can correct the error (for example, by
positioning the L/D medium on the next volume or at
the beginning of the file), the same normal Request I/O
instruction that encountered the error must be returned
unmodified and ahead of (lower value in the request
priority field of the SSR header) all other normal
Request I/O instructions that have been previously
issued. A Request I/O (continue) instruction must then
be issued.

A Modify LUD (reset) instruction must be issued when
the user cannot correct the EOV, EOT, or EOF error.

Use the Request I/O (continue) instruction to cause the
L/ D function to finish processing the next normal
Request I/O instruction from the point where the
recoverable error occurred.

The following is a list of the recoverable error codes
returned in the status field and the definition of those
error codes.

Error Code
(hex)

8417

C416-C516

C417-C517

C4DF

Definition

No error in the Request I/O
instruction but EOT was reached
while dumping to tape.

Device EOF

Device EOV or EOT

This Request I/O instruction was
suspended on an RD boundary
before all RDs were processed.

For error hex 8417 the same Request I/O instruction
should not be reissued but a Request I/O (continue)
must be issued if more Request I/O instructions are
to be processed on the next volume. For all other
recoverable errors, the same Request I/O instruction
must be reissued along with a Request I/O (continue)
instruction.

25-12

Other Errors

Other types of errors only indicate status. They do not
terminate the L/D function or take the L/D function into
or out of error mode.

The following is a list of the other error codes returned
in the status field and the definition of those error
codes.

Error Code
(hex)

0400

0408

4409-4509

440A

4489

Definition

No error on a Request I/O
instruction

No error on a Request I/O
(continue) instruction

Partially processed request because
of a Modify Logical Unit (reset)
instruction. If bits 4-7 equal hex 4,
the object was not damaged. If bits
4-7 equal hex 5, the object may
have been damaged by the cleanup
procedure. This depends on the
command being processed.

Unprocessed request because of
Modify Logical Unit Description
(reset) instruction.

Request I/O (continue) instruction
issued when the L/ D function is not
in a recoverable error mode.

Processing a Modify LUD (Reset) Instruction

During the processing of a Modify LUD (reset)
instruction after a severe error or a recoverable error,
the LID function executes a cleanup procedure, if
necessary, on the object that was being processed when
the error occurred; the LID function then returns a
feedback record for each pending Request I 10
instruction (unprocessed) and completes processing of
the Modify LUD (reset) instruction. The LID function is
then ready to process additional Request I 10
instructions.

The user must reposition the LID media at the correct
starting location after a Modify LUD (reset) instruction is
processed.

Cleanup Procedure

The cleanup procedure is p,erformed on an object that is
being processed when a Modify Logical Unit Description
(reset) instruction is issued and an error occurs. The
cleanup procedure depends on the command being
processed (Load or Create and Load).

If a Load command is being processed and the object
was partially loaded at the time the error occurred, the
object is flagged and logged as damaged. The object is
considered damaged because the contents of the data
portion of the object is unknown.

If a Create and Load command is being processed and a
space for an object was already allocated when the error
occurred, that space is destroyed.

If a Modify LU 0 (reset) instruction is issued before a
network has been completely restored, all DSs in the
network and any DSs immediately before the network
are left in the damaged state. The RD number returned
in the feedback record indicates the RD that is in error.
By using the RD number and the following rules, the
user can determine whether any DSs are damaged.

• If the RD that is in error was restoring a OS, all DSs
immediately before this RD are damaged.

• If the RD that is in error was restoring a DSI, all the
DSs in that network and all the DSs immediately
before that network are damaged.

• If the RD that is in error was creating and loading
any object and the previous RD contained a OS or
DSI, then damage to the DSs may occur for previous
RDs according to the first two rules.

A damaged object event is signaled for the previously
damaged DSs, but no DSI invalidated event is
signaled for the invalidated DSls.

LOAD/DUMP EVENTS

The following table gives the event that can be signaled
by the LID function. See Chapter 21, Event
Specifications in this manual for a detailed description of
the events and event identification.

0002 Authorization
0101 Authorization violation
0301 Special authorization, required

0008 Data Space Index
0301 Data space index invalidated

oooB Logical Unit Description
0901 Request I 10 completed

(signaled only if indicated
by the request lOin the
SSR)

OOOC Machine Resource
0201 Machine auxiliary storage exceeded

0017 Damage Set
0401 System object
0801 Partial system object damage set

Load/ Dump Object Management 25-13

·LOAD/DUMP AUTHORITY

The Request 110 instruction provides the required
authority checking to determine whether the proper
authorization is available for the LI D function. If the
proper authority is not available, an exception is
signaled. The following chart shows the possible
authorizations for each LID command; only one type of
authorization is needed to satisfy the requirements for
the LID command.

LID Commands Authorization

Dump • Unrestricted dump (special

Load

authorization)

• Restricted dump (special
authorization) and all object authority
(special authorization)

• Restricted dump (special
authorization), retrieve, object
management (if' OS object), and
space (if object has associated space)

• Unrestricted load (special
authorization)

• Restricted load (special authorization)
and all object authority (special
authorization)

• Restricted load (special authorization)
and object control

• Restricted load (special authorization)
and ownership

Create and Load • Unrestricted load (special
authorization)

Read Object 10

• Restricted load (special authorization)

• Unrestricted load (special
authorization)

• Restricted load (special. authorization)

Set User Profile • Unrestricted load (special

Set Context

25-14

authorization)

• All object Authority (special
authorization)

Insert

• Unrestricted load (special
authorization)

• All object authority (special
authorization)

• Insert

LOAD/DUMP DATA BASE NETWORKS

An LI D data base network consists of one or more data
space indexes and all the data spaces associated with
each data space index. When a network is dumped, the
LI D function saves the information that links a network
together. Then, when the network is loaded, the LI D
function restores the information that links the network
together.

The following rules apply during the use of LID data
base networks.

• Other (nonnetwork) objects can be processed in the'
same Request 110 instruction.

• Networks are supported by all the LID commands.

• A OSI cannot be dumped or loaded alone. All its
associated OSs must be dumped or loaded along
with the OSI.

• When a OSI within a network is loaded, the links to
the DSs within the same Request I 10 instruction are
connected.

• Any OSI that is over a OS that is being loaded is
invalidated if the OSI is not loaded in the same
Request 110 instruction.

• An event is generated when a OSI is invalidated.

• All OSs must appear immediately before all
associated OSls in a network.

Intertwined networks that are on the media may be
loaded or created and loaded as long as there are no
nondata base objects between them.

The following is an example of a network that was
dumped on the media:

OS-A
OS-B
OSI-1 (over OS-A)
OSI-2 (over OS-A and OS-B)
OSI-3 (over OS-B)

The two intertwined networks in the previous
example can be loaded by a Request I 10 instruction
as follows:

OS-A
OS-B
OSI-1 (over OS-A)
OSI-3 (over OS-B)

The LID function updates the two networks (OSI-1
over OS-A and OSI-2 over OS-B) after OSI-3 is
loaded.

• An active cursor (in use) may not be over a OS or
OSI when the OS or OSI is being loaded.

• When a OS is loaded, all OSls associated with it
must not be in use, damaged, or destroyed.

• When a OSI is loaded, the OS key specification field
in the OSI to be overlaid must match the key
specification field in the OSI to be loaded.

• A OSI is not loaded if any of the OSs associated with
it are created and loaded.

• When a OSI is loaded, the same OSs must be
associated with the OSI to be loaded and the OSI to
be overlaid. These OSs must also be in the same
internal order in the OSI.

An example of ordering objects in an SSR is as follows.
The objects to be processed Fire:

• Space object

• Network A

• Data space (non network)

• Program

• Network 8

Network A

OSI (A1)

OS (A1) os (A2)

Network 8

OSI (81) OSI (82)

OS (81) OS (82)

A way of ordering in the SSR is:

1. Space object
2. OS (Al) }
3. OS (A2)
4. OSI (A1)

Network A

5. Data space (non network)
6. Program
7. OS (81) }
8. OS (82)
9. OSI (81)
10. OSI (82)

Network 8

Load/Dump Object Management 25-15

LOAD/DUMP PERFORMANCE

To achieve maximum performance from the L/D
function, the user should follow these guidelines.

• Load the objects in the same order as they were
dumped. If objects A, S, and C were dumped in
alphabetic order, then objects A, S, and C should be
loaded in alphabetic order. This procedure minimizes
the number of EOV, EOF, and EOT conditions to be
processed.

• When processing objects in a dedicated mode, the
user can increase performance by taking advantage
of the asynchronous characteristics of the L/ D
function.

The greatest performance gain occurs when many
large objects are to be processed on a slow L/ D
device. The idea is to keep the machine busy while
I/O transfer is taking place. For example, if 500
objects are to be processed, have 50 objects in 10
Request I/O instructions. Build the first Request I/O
instruction and issue it soon as possible. This starts
the I/O operation. Then build and issue the second
Request I/O instruction.

The user can then look at the queue to see whether
the first Request I/O instruction has completed. If
the first Request I/O instruction has not completed,
the user should not wait for the feedback record;
instead, the user should build and issue the third
Request I/O instruction.

Each time a Request I/O instruction is issued, check
to see whether one of the previous Request I/O
instructions has completed, but never wait in the
queue.

• Put the RDs in the first 64 K bytes of the SSR.

• One large object can be processed faster than a
number of small objects; therefore, keep the data in
large objects.

25-16

LOAD./DUMP INTERRUPTED FOR DATA
INTERCHANGE

It is possible for an L/ D session to be interrupted by
data interchange if the load/dump device that is being
used supports interruptible load / dump operations. The
following steps should be followed if the L/D function is
to be interrupted for data interchange.

1.

2.

3.

4.

5.

6.

7.

8.

9.

Modify the LUD to the suspend session.

Modify the LUD to normal mode. At this time, a
copy of the information necessary (L/ D volume
label, L/D header label, and L/D interrupt location)
for repositioning (step 5) is put in the
device-specific area of the LUD.

Modify the LUD to the active session.

Issue Request I/O instructions for normal
processing.

The repositioning and verification to start L/ D
processing again can be done as the last Request
I/O instruction in data interchange mode or can be
done any time before step 9. The information
needed for this step was saved in the LU D at the
completion of step 2. No checking of this
sequence protocol is done by the L/ D function
and it is the user's responsibility to ensure that the
media is always positioned correctly.

Modify the LUD to a quiesce session.

Modify the LUD to an L/D mode.

Modify the LUD to an active session.

Issue the L/ D Request I/O instructions. It may be
necessary to issue the same Request I/O
instruction (with unmodified RDs) if the L/ D
function was suspended before completing the
Request I/O instruction. A Request I/O (continue)
instruction must then be issued.

LOAD/DUMP OBJECT AVAILABILITY

Sometimes objects processed by the LID function are
unavailable to the user for reading or modifying. The
term unavailable is not related to locks but is a means by
which the system avoids deadlocks (system hang ups)
and provides machine integrity.

The length of time and the extent to which the objects
are unavailable is dependent on the commands, errors
encountered, an.d LUO states.

Commands

Generally, before 110 processing starts and after the
Request I 10 instruction has been checked for errors,
objects are made unavailable. After an object has been
processed, it is made available. Therefore, the fewer the
number of objects to be processed in a Request I 10
instruction, the shorter the time the objects are
unavailable.

Dump Command

Objects to be dumped are made unavailable for
modifying before the Request I 10 instruction starts
processing. After each object is dumped (RO is
completed), it becomes available again.

Load Command

Objects to be loaded and OSls (even if they are not to
be loaded) associated with any OSs to be loaded are
made unavailable for reading and modifying before the
process starts. Space objects, indexes, and data spaces
that are not in a network become available after each
object is loaded (RO is completed). The objects within a
network (OSs and OSls that are being replaced and all
other OSls associated with any OSs that are being
replaced) become available after the last OSI in the
network is loaded.

Create and Load Command

Newly created and loaded objects are always available
because they are not on the system at the time they are
created and loaded.

Set User Profile and Set Context Commands

The user profiles and contexts associated with these
commands become unavailable for reading and
modifying after the object associated with the Create
and Load command is created. Once ownership and
addressability are inserted, the user profiles and the
context become available. This procedure is done for
each Create and Load command as it is processed.

Read Object ID Command

All objects are available for this command.

Errors Encountered

When a severe or recoverable error is encountered, the
object associated with the RO that has the error and any
unprocessed objects remain unavailable. If a network is
being restored and the error occurred on an RO within
that network, all objects associated with that network
are unavailable even though they have been processed.
The user then has control and must either correct the
recoverable error or issue a Modify LUO (reset)
instruction. It is extremely important that the user's
process does not attempt to read or modify any
unavailable objects being restored or to modify any
unavailable objects being saved. If this happens, the
user's process becomes deadlocked. User profiles and
contexts are always available when errors are
encountered.

Logical Unit Description (LUD) States

The two LUO states in which the LID function may
have objects unavailable and in which the user has
control (in a deadlock) are the active and suspend
states. When the LUO is in the reset, quiesce, or
de-activate state, all objects are available.

Active State

Objects can be unavailable and the user given control
when an error condition exists. See the first paragraph
under Errors Encountered, earlier in this chapter.

Load/Dump Object Management 25-17

Suspend State

If the LID function is to be suspended before a Request
I 10 instruction has completed processing, the objects
andlor networks that have not yet been processed are
unavailable. User profiles and contexts are always
available when they are in a suspend state. The user
must use extreme caution to avoid a deadlock when this
situation occurs. Should any unavailable objects be
accessed for modification on a save operation or for
reading and modification on a restore operation, a
deadlock could occur. A Modify LU D (reset) or Modify
LUD (de-activate) instruction to the LID function makes
these objects available.

Reset State

When a reset operation is completed, all objects that
were unavailable are made available.

Quiesce State

Once the quiesce process has completed successfully,
all Request 110 instructions issued have also been
completed; therefore, all objects are available. If an
error occurs while the LID function is processing a
Request 1/0 instruction and is attempting to obtain the
quiesce, the LID function aborts the quiesce process
and puts the LUD into an active state so that the error
can be handled.

De-activate State

After the de-activate process is completed, all objects
are available. If the LI D function was in an active state
and the user issued a Modify LUD (de-activate)
instruction, an implicit quiesce would be issued to the
LID function before the Modify LUD (de-activate)
instruction is issued. If the LID function was in a
suspend state when a Modify LUD (de-activate)
instruction is issued, an implicit reset operation would
be issued to the LI D function before the Modify LU D
(de-activate) instruction is issued.

Notes:
1. If a space object is unavailable for reading or

modifying, some arithmetic and computational
operations can still be performed.

2. A cursor cannot be activated or de-activated over a
DSI while the DSI is being dumped.

25-18

LOAD/DUMP OBJECT STATUS AFTER A SYSTEM
FAILURE

In the event of a system failure, objects being loaded or
created and loaded may be damaged. Objects being
dumped are not damaged. Any objects that are
damaged should be destroyed; then they should be
created and loaded after the system is restored.

The object being restored at the time of a system failure
is always left in a damaged state. If a system failures
should occur during the restore of a data base network,
all DSs (within the network and immediately preceding
the network) that have been restored will be damaged.
All DSls associated with the damaged DSs are
invalidated, but no event indicating that they are invalid
is signaled. The DSls that have been restored are not
damaged, but they are of little use because the
associated DSs are damaged.

This appendix describes the various functions used for
machine initialization.

MACHINE INITIALIZATION

Machine initialization is the means by which the machine
performs the functions required to support the
System/3S instructions and initiate a machine interface
process. The machine initialization function:

• Provides a consistent well-defined interface for
initialization of the machine.

• Provides a means for the machine to initialize itself
automatically without communicating with the
machine console.

• Provides a means to implicitly create the initial
process from user-provided data.

Appendix A. Machine Initialization

MACHINE INITIALIZATION TERMS AND
DEFINITIONS

The following are the terms associated with the machine
initialization functions and their definitions:

• Power on is the activation of the machine power
supply by a manual power on or an automatic power
on (auto-IMPL). Power on, whether manual or
automatic, always performs an implicit initiation of
machine processing.

• IMPLjlMPLA sequences are the functions performed
by the machine necessary to initiate machine
processing. IMPL/IMPLA always refers to the use of
internal storage as the data source for the initial
loading of microcode.

• IMPLjlMPLA halt causes the machine to enter the
check stop state as the result of a machine
malfunction while the IMPL/IMPLA sequence is
executing.

• Machine-to-programming transition is the mechanism
whereby a. machine function implicitly creates an
initial process as the final function of the machine
initialization sequence. The setting of the second
rotary switch on the operator / service panel is used to
determine whether an AIPL or IPL is to be performed.

• AIPL (alternate initial process load) is the loading of
the source data from external storage data media
(load/dump).

• IPL (initial process load) is the loading of the
encapsulated data from the machine internal storage.

Machine Initialization A-1

MACHINE INITIALIZATION OVERVIEW

The machine provides the user, through the
operator / service panel, the ability to perform the
function of installing and initiating a process
independent of the existence of an initiated process.

Installation of a process into System/38 is done by
using the AIPL (alternate initial process load) function.
AIPL always performs installation and initialization of a
process as a contiguous operation.

Initialization of a process by the machine can also be
done independent of the AIPL function. In this case, the
objects required to initialize a process exist within the
machine as encapsulated objects. This function is called
I PL (initial process load).

The machine initialization function also provides a means
of notifying the machine interface about the status of
the machine after it has been initialized. This
information resides in the machine as a machine
attribute called the MISR (machine initialization status
record).

The machine initialization function is divided into two
subfunctions that are performed in sequence. The first
subfunction is called IMPL (initial microprogram load) or
IMPLA (initial microprogram load abbreviated). These
subfunctions cause the machine to automatically initialize
itself. The second subfunction of machine initialization is
the machine-to-programming transition.

A-2

MACHINE-TO-PROGRAMMING TRANSITION

The machine-to-programming transition function
provides a means for the machine to initiate a process
independent of the execution of the Initiate Process
instruction. This function is always performed as the
final part of the machine initialization function.

The process that is initiated is defined from the data
that exists in one of the following forms:

• AI PL machine interface source data

• IPL machine interface encapsulated data

AIPL Source Data

The AIPL source data is loaded from the primary
load/dump device and must exist on the load/dump
device as either a character scalar (data interchange) or
a space object dumped by load / dump.

The source data required to perform an AIPL consists of
the following templates:

• User profile template

• Program template

• Process definition template

The templates are encapsulated into the corresponding
objects so that the final product is an initiated process.
If any abnormal condition occurs while the AIPL
templates are being encapsulated, the
machine-to-programming transition function terminates.
Termination causes an IMPL/IMPLA halt to occur.

AIPL User Profile Template

The format for the AIPL user profile template is shown
in Chapter 7. Because the user profile that is created
does not have an owning user profile created by the
machine, it owns itself. If a user profile exists in the
machine with the same name as is defined on the user
profile template, the machine uses the user profile
currently in the machine. If AIPL attempts to use the
user profile in the machine and the user profile is
damaged, it is destroyed, and a new one is created
according to the input user profile template. Because
addressability to the created user profile is also placed
in the machine context, the name of the user profile can
be obtained by using the Materialize Context instruction.
If the Materialize Context instruction is used to obtain
the name of the user profile, the user must know the
name of all the user profiles in the machine context so
that the user profile name created by the machine can
be selectively determined. If the machine context is
damaged during AIPL, the machine removes all entries
in the machine context. This is noted in the M ISR.

AIPL Program Template

The AI PL program template source data defines the
program that receives control when the initial process is
initiated. The format and description of the program
template are defined in Chapter 8. The machine only
encapsulates one problem program per AIPL.

AIPL Process Definition Template

The AIPL process definition template source data
defines the process to be initiated. The format and
description of the template are defined in Chapter 11.
The AIPL process definition template should contain no
resolved system pointers. The machine fills in the
system pointer to the user profile created from the AI PL
user profile template and the system pointer to the
program created from the AIPL program template. The
process control attribute (process type) of the AI PL
process definition template should be set to an
independent process. If the process type does not
indicate an independent process, the machine sets it to
an independent process before initiating the process.

All space objects required for the initiation of a process
are created by the machine-to-programming transition
function. The process automatic storage area, process
static storage area, and process control space are
created with temporary extendable attributes, System
pointers to these spaces may be obtained from the
MISR with the Materialize Machine Attributes
instruction.

IPL Encapsulated Data

The IPL function performs an implicit initiation of a
process from data residing in the machine as
encapsulated data. The data is a process definition
template for the Initiate Process instruction. This
process definition template is a machine attribute called
the initial process definition template. The IPL function
uses the process definition template to initiate the initial
process. The process control space, process static
storage area, and the process automatic storage area for
the I PL process are created by the machine. System
pointers to these spaces are saved in the MISR and
may be materialized with the Materialize Machine
Attributes instruction.

Machine Initialization A-3

AIPL/IPL MACHINE ATTRIBUTES

The AI PL/ I PL machine attribute provides a way to save,
within the machine, information required to perform the
machine-to-programming function. It also provides a
way of collecting the machine status associated with
events that occur before a process is initiated. The
attributes are called initial process definition template
and machine initialization status record.

Initial Process Definition Template

The initial process definition template is used to save,
within the machine, those parameter~ and encapsulated
objects required for the machine to perform an IPL. The
format of the initial process definition template is
defined in Chapter 11. The Modify· Machine Attribute
instruction, used to save the initial process definition
template in the machine, is defined in Chapter 19.

A program may materialize the initial process definition
template by using the Materialize Machine Attribute
instruction. This instruction is defined in Chapter 19.

Machine Initialization Status Record Machine
Attribute

The machine initialization status record is a machine
attribute that provides a means of passing to a program
the status of the machine as collected during machine
initialization. The status record contains the machine
event related information that is normally passed to the
machine interface by the events after an AIPL or IPL. A
program may materialize the machine initialization status
record at any time. The status record is created by the
machine. A process may delete the status record by
using the Modify Machine Attribute instruction defined
in Chapter 19.

A-4

This appendix provides an abbreviated format of all the
instructions. The instructions are listed alphabetically by
instruction mnemonic.

The summary list includes the following items for each
instruction.

• Operation Description - The name of the instruction.

• Mnemonic - The mnemonic assigned to the
instruction.

• Operation Code - The 2-byte hexadecimal operation
code assigned to the instruction. If an instruction
allows any optional forms a bit value of 0 is specified
for those positions. All instructions assume a bit
value of 0 for the branch target bit.

• Number of Operands - The number of operands
(excluding the extender) in the instruction.

• Extender - A description of the use of the extender
field.

• Operand Syntax - The objects allowed as operands in
the instruction.

• Resulting Conditions - The conditions that can be set
at the end of the standard operation in order to
perform a conditional branch or set a conditional
indicator.

• Optional Forms - A notation for the optional forms
that are allowed for the computational instructions.

Note: This summary list can also be used as an· index
to identify the page where a complete description of
each instruction can be found in this manual. The page
number is the last item included with each instruction in
this summary.

The following paragraphs further describe the summary
list format of the last five items in the previous list.

Appendix B. Instruction Summary

Number Of Operands

Certain computational instructions allow a variable
number of operands and are identified in the summary
list by the following form:

number+B

The number defines the number of fixed operands. The
B indicates the existence of variable operands (branch
targets or indicator operands). A pair of braces around
the letter indicates that the variable operands are
optional.

Extender Usage

Instructions that use an extender field have a brief
description of the use of the extender. Hyphens indicate
that the extender is not used. Brackets indicate that the
extender is optional. The abbreviation BR/IND is used
to mean branch or indicator options. The extender field
defines the use of the branch or indicator operands with
respect to the resulting conditions of the instruction.

Resulting Conditions

Resulting conditions are the status result of the
operation that is used for determining a branch target, if
any.

The following conditions are indicated in the instruction
summary.

P, N, Z
Z, NZ
H, L, E
E, NE
P, Z
H, L, E, U
Z, 0, M
[N]Z[N]C

S, NS
. DE, I

DO, NDO

Positive, negative, zero
Zero, not zero
High, low, equal
Equal, not equal
Positive, zero
High, low, equal, unequal
Zero, ones, mixed
Zero and no carry, not zero and
no carry, zero and carry, not
zero and carry,
Signaled, not signaled
Exception deferred,· exception ignored
Dequeued, notdequeued

Instruction Summary B-1

Optional Forms

All instructions are classified as computational or
noncomputational format. The format determines how
the operation code is interpreted and whether optional
forms of the instruction are allowed. (See Instruction
Format in Chapter 1. Introduction).

Certain computational instructions allow optional forms.
The following optional forms can be specified:

• B (Branch Form) - The resulting conditions of the
operation are compared with the branch options
specified in the extender field. If one of the options
is satisfied, a branch is executed to the branch target
corresponding to the branch option.

• I (Indicator Form) - The resulting conditions of the
operation are compared with the indicator options
specified in the extender field. If one of the options
is satisfied, the indicator corresponding to that option
is assigned a value of hex F1. The other indicators
referred to by the operation are assigned a value of
hex FO.

• S (Short Form) - The operand that acts as a receiver
in the instruction can also be one of the source
operands.

• R (Round Form) - If the result of the operation is to
be truncated before being placed in the receiver,
rounding is performed.

8-2

INSTRUCTION STREAM SYNTAX

In this instruction summary, the following metalanguage
is used to describe the machine interface instruction set
operand syntax.

Metasymbol

{ }

[]

.N.

DESC- { }

Notes:

Meaning

Choose from a series of alternatives

Enclose an optional entry or entries

OR - used to separate alternatives

Repeat previous entry, up to N times

Is defined as - define a metavariable
Metavariable ::= Metadefinition

Description of a metavariable in
English

1. Some of the computational op codes require an
extender field while on other op codes an extender
field is optional. Some computational op codes may
be optionally short, or round. When extender fields
or different instructional forms are present, the
second digit of the op code changes:

Extender and/or Form

Short

Round

Short, round

Indicator

I ndicator, short

Indicator, round

Indicator, short, round

Branch

Branch, short

Branch, round

Branch, short, round

Second Digit of
Op Code

2

3

8

9

A

B

C

D

E

F

2. If an instruction is the target of a branch instruction,
then the third bit of the op code is turned on.

Program Object Definitions

ARG-LiST ::= DESC- {operand list which defines an
argument list}

B-ARRAY ::= DESC- {array of binary variables}
B- PT ::= DESC- {branch point}
BIN ::= DESC- {binary}
BIN [N] ::= DESC- {binary object with precision N}
BT ::= DESC- {instruction number I relative instruction

number I instruction pointer I branch pointer I IDL
element}

C-ARRAY ::= DESC-{array of character string
variables}

CHAR ::= DESC- {character string which is either
variable or constant}

CHAR[N] ::= DESC-{string at least N bytes long}
CHARV ::= DESC- {char variable}
CHARC ::= DESC- {char constant}

D- PTR ::= DESC- {data pointer}

EXCP-DESC ::= DESC- {exception description}

F-BT ::= DESC- {instruction number I relative
instruction number I branch point}

IDL ::= DESC- {instruction definition list}
IT ::= DESC- {char I numeric variable used as an

indicator target}
I-ENT PT ::= DESC- {internal entry point}
I-PTR ::= DESC- {instruction pointer}

NULL ::= DESC- {indicates a null operand [X'OOOO,]}
NUMERIC::= DESC- {binary I zoned I packed I

numeric scalar}
N-ARRAY ::= DESC- {array of numeric variable}

OP- LIST ::= DESC- {operand list}

PROCESS::= DESC- {character string that names a
process} .

PTR ::= DESC-{a 16-byte, 16-byte-boundary-aligned
pointer element}

P-ARRAY ::= DESC-{an array of 16 bytes,
16-byte- boundary-aligned pointer(s)}

S-PTR ::= DESC- {system pointer}
SPP ::= DESC- {space pointer}
SPP-ARRAY ::= DESC- {an array of space pointer

variables}

Notes:
1. NUMERIC, CHAR, and BIN may be followed by the

special characters S, C, V. These characters further
qualify the object as being either scalar, constant or
variable, respectively.

2. All array objects are variable.

System Object Declarations

AG ::= DESC- {S- PTR that addresses an access group}
ACTV ENTRY ::= DESC- {SPP that addresses an

activation}

CD ::= DESC- {S-PTR that addresses a controller
description}

CONTEXT ::= DESC- {S-PTR that addresses a context}
CTR ::= DESC- {S- PTR that addresses a counter}
CURSOR ::= DESC- {S-PTR that addresses a cursor}

DATA SPACE ::= DESC- {S-PTR that addresses a data
space}

DS-INDEX ::= {S-PTR that addresses a data space
index}

INDEX ::= DESC- {S-PTR that addresses an index}

LUD ::= DESC- {S-PTR that addresses a logical unit
description}

ND ::= DESC- {S-PTR that addresses a network
descri ption}

PCS ::= DESC- {S-PTR to process control space}
PROGRAM ::= DESC- {S- PTR that addresses a

program}

SPACE::= DESC- {a system pointer pointing to a space
object}

QUEUE ::= DESC- {S-PTR that addresses a queue}

USER PROFILE ::= DESC- {S-PTR that addresses a
user profile}

Instruction Summary 8-3

Resulting Conditions Definitions

ZC ::= DESC- {zero with carry}
(

[N] ZC ::= DESC- {[not] zero with carry}

Z[N]C ::= DESC-bero with [no] carry}

[N]Z[N]C ::= DESC-{[not] zero with [no] carry}

DE ::= DESC- {defer}

DQ ::= DESC- {dequeued}

NDQ ::= DESC- {not dequeued}

E ::= DESC- {equal}

H ::= DESC- {high}

I ::= DESC- {ignore}

L ::= DESC- flow}

M ::= DESC-{XED}

N ::= DESC- {negative}

NE ::= DESC- {not equal}

NS ::= DESC- {not signaled}

NZ ::= DESC- {not zero}

o ::= DESC-{ones}

P ::= DESC- {positive}

S ::= DESC- {signaled}

U ::= DESC- {unequal}

Z ::= DESC- {zero}

8-4

INSTRUCTION SUMMARY (Alphabetical Listing by Mnemonic)

Operation Description

Activate Cursor

Activate Program

Add Logical Character

Add Numeric

Add Space Pointer

And

Branch

Compute Array Index

Call Internal

Call External

Cancel Event Monitor

Cancel Invocation Trace

Cancel Trace Instructions

Mnemonic

ACTCR

ACTPG

ADDLC

ADDN

ADDSPP

AND

B

CAl

CALLI

CALLX

CANEVTMN

CANINVTR

CANTRINS

Concatenate CAT

Compare Bytes Left-Adjusted CMPBLA

Compare Bytes Left-Adjusted CMPBLAP
With Pad

Compare Bytes Right-Adjusted CMPBRA

Compare Bytes Right-Adjusted CMPBRAP
With Pad

Compare Numeric Value CMPNV

Compare Pointer for Space CMPPSPAD
Addressability

Compare Pointer for Object CMPPTRA
Addressability

Compare Pointer Type CMPPTRT

Compare Space Addressability CMPSPAD

Copy Bytes Left-Adjusted CPYBLA

Copy Bytes Left-Adjusted With CPYBLAP
Pad

Copy Bytes Overlap
Left-Adjusted

Copy Bytes Overlap
Left-Adjusted With Pad

Copy Bytes Right-Adjusted

CPYBOLA

CPYBOLAP

CPYBRA

Copy Bytes Right-Adjusted With CPYBRAP
Pad

Copy Bytes Repeatedly

Copy Bytes With Pointers

Copy Data Space Entries

Copy Hex Digit Numeric to
Numeric

CPYBREP

CPYBWP

CPYDSE

CPYHEXNN

Copy Hex Digit Numeric to Zone CPYHEXNZ

Copy Hex Digit Zone to Numeric CPYHEXZN

Copy Hex Digit Zone to Zone

Copy Numeric Value

Create Access Group

Create Controller Description

Create Cursor

Create Context

Create Duplicate Object

CPYHEXZZ

CPYNV

CRTAG

CRTCD

CRTCR

CRTCTX

CRTDOBJ

Op No.
Code Opnds

0402 2

0212 2

1023 3+[B]

1043 3+ [B]

0083 3

1093 3+ [B]

1011

1044 4

0293 3

0283 3

03D1

0581

0562 2

10F3 3

10C2 2+B

10C3 3+B

10C6 2+B

10C7 3+B

1046 2+B

10E6 2+B

10D2 2+B

10E2 2+B

10F2 2+B

10B2 2

10B3 3

10BA 2

10BB 3

10B6 2

10B7 3

10BE 2

0132 2

048F 3

1092 2

1096 2

109A 2

109E 2

1042 2+[B]

0366 2

0496 2

044A 2

0112 2

0327 3

Extender

[BRIIND]

[BRIIND]

BRIIND

BRIIND

BRIIND

BRIIND

BRIIND

BRIIND

BRIIND

Operand Syntax

CURSOR, {SP~NULL}

{ACTV ENTR~PROGRAM}.PROGRAM

CHARV, CHARS.2., [BT.4.IIT.4.]

NUMERICV, NUMERICS.2., [BT.3.IIT.3.]

SPP.2., BINS

CHARV, CHARS.2., [BT.3.IIT.3.]

BT

BINV, BINS.3.

I-ENT PT, {ARG L1S~NULL}. I-PTR

PROGRAM, {ARG LlS~NULL}, {1D4NULL}

CHARS[48]

CHARS{4}

PROGRAM, {SP~NULL}
CHARV, CHARS.2.

{CHAR~NUMERICS}.2., {BT.3.IIT.3.}

{CHARSINUMERICS}.3., {BT.3.IIT.3.}

{CHARSINUMERICS} .2., {BT.3·IIT.3.}

{CHAR~NUMERICS}.3., {BT.3.IIT.3.}

NUMERICS.2., {BT.3.IIT.3.}

{SP~D-PTR} J {NUMERIC~CHAR~C-ARRA ~
N-ARRAy/SPI1D-PTR}

{D-PTRlsP~S-PTRII-PTR}.2.

{D-PTRlsP~S-PTRII-PTR}, {CHARS[1]NULL}

{ CHAR~C-ARRA~NUMERIC~N-ARRA~PTRI
P-ARRAY.2.

{NUMERIC~CHARV}. {NUMERIC~CHARS}

{NUMERIC~C~ARV}. {NUMERICslcHARS}.2.

{NUMERIC~CHARV}.2.

{NUMERIC~CHARV} .2., {NUMERIC~CHARS}

{NUMERIC~CHARV}, {NUMERICslcHARS}

{NUMERIC~CHARV}. {NUMERICslcHARS}.2.

{NUMERIC~CHARV}, {NUMERIC~CHARS}

{CHAR~PTR}, {CHAR~PTRINU LL}

CURSOR,SPP,CURSOR

{NUMERIC~CHARV}. {NUMERIC~CHARS}

{NUMERIC~CHARV}, {NUMERlcslcHARS}

{NUMERIC~CHARV}, {NUMERIC~CHARS}

{NUMERIC~CHARV}. {NUMERIC~CHARS}

[BRIIND] NUMERICV, NUMERICS, [BT.3.IIT.3.]

AG, SPP

CD, SPP

CURSOR, SPP

CONTEXT, SPP

S-PTR, SPP, S-PTR

Resulting
Conditions

[N]Z[N]C

P, N, Z

Z, NZ

H, L, E

H, L, E

H, L, E

H, L, E

H, L, E

H, L, E, U

E, NE

E, NE

H, L, E, U

P, N, Z

Optional
Forms

[BII. S]

[BII. S, R]

Page

16-1

9-1

2-1

2-2

4-1

2-4

2-5

2-14

9-7

9-4

15-1

18-1

18-2

2-15

2-6

2-8

2-9

2-11

2-12

4-2

3-1

3-3

4-3

2-23

2-24

2-25

2-26

2-28

2-29

2-27

3-4

16-4

2-30

2-31

2-32

2-33

2-34

13-1

17-1

16-8

3-5

13-4

Instruction Summary 8-5

Operation Description Mnemonic

Create Data Space CRTDS

Create Data Space Index CRTDSINX

Create Independent Index CRTINX

Create Logical Unit Description CRTLUD

Create Network Description CRTND

Create Process Control Space CRTPRCS

Create Program CRTPG

Create Queue CRTQ

Create Space CRTS

Create User Profile CRTUP

Convert Character to Hex CVTCH

Convert Character to Numeric CVTCN

Convert External Form to CVTEFN
Numeric Value

Convert Hex to Character CVTHC

Convert Numeric to Character CVTNC

Disable Event Monitor

Data Base Maintenance

De-activate Cursor

De-activate Program

Delete Data Space Entry

Delete Program Observability

Dequeue

Destroy Access Group

Destroy Controller Description

Destroy Cursor

Destroy Context

Destroy Data Space

Destroy Data Space Index

Destroy Independent Index

DBLEVTMN

DBMAINT

DEACTCR

DEACTPG

DELDSEN

DELPGOBS

DEQ

DESAG

DESCD

DESCR

DESCTX

DESDS

DESDSINX

DESINX

Destroy Logical Unit Description DESLUD

Destroy Network Description DESND

Destroy Process Control Space DESPCS

Destroy Program DESPG

Destroy Queue DESQ

Destroy Space DESS

Destroy User Profile DESUP

Diagnose

Divide

Divide with Remainders

Enable Event Monitor

Edit

End

Enqueue

Ensure Data Space Entries

Ensure Object

Exchange Bytes

Extract Magnitude

8-6

DIAG

DIV

DIVREM

EBLEVTMN

EDIT

END

ENQ

ENSDSEN

ENSOBJ

EXCHBY

EXTRMAG

Op No.
Code Opnds

045A 2

046A 2

0446 2

049A 2

049E 2

0322 2

023A 2

0316 2

0072 2

0116 2

1082 2

1083 3

1087 3

1086 2

10A3 3

0399

0482 2

0401

0225

0481

0211

1033 3+[B]

0351

O4A1

0429

0121

0421

0425

0451

O4A9

O4AD

0311

0221

0325

0025

0125

0672 2

104F 3+[B]

1074 4+[B]

0369

10E3 3

0260 0

0368 3

0499

0381

10CE 2

1052 2+[B]

Extender Operand Syntax

DATA SPACE, SPP

OS-INDEX, SPP

INDEX, SPP

LUD, SPP

NO, SPP

PCS, SPP

PROGRAM, SPP

QUEUE, SPP

S-PTR, SPP

USER PROFILE, SPP

CHARV, CHARS

NUMERICV, CHARS, CHARS[7]

NUMERICV, CHARS, {CHARS[3]INULL}

CHARV,CHARS

CHARV, NUMERICS, CHARS[7]

CHARS[48]

Resulting Optional
Conditions Forms

{DATA SPAC~DS-INDEX}, CHARS[1],BINsINULL

CURSOR

PROGRAMINULL

CURSOR

PROGRAM

[BRIIND] CHARV, SPP, QUEUE, [BT.2.IIT.2.]

[BRIIND]

[BRIIND]

AG

CD

CURSOR

CONTEXT

DATA SPACE

OS-INDEX

INDEX

LUD

NO

PCS

PROGRAM

QUEUE

S-PTR

USER PROFILE

BINS, SPP

NUMERICV, NUMERICS.2., [BT.3.IIT.3.]

NUMERICV, NUMERICS.2., NUMERICV

CHARS[48]

CHARV, NUMERICS, CHARS

QUEUE, CHARS, SPP

CURSOR

S-PTR

{CHAR~NUMERICV} .2.

[BRIIND] NUMERICV, NUMERICS, [BT.3.IIT.3.]

DQ, NDQ

P, N, Z

P, N, Z

P,Z

[BII, S, R]

[BII, S, R]

Page

16-14

16-19

6-1

17-8

17-14

11-1

8-1

12-1

5-1

7-1

2-16

2-17

2-19

2-21

2-22

15-2

16-26

16-29

9-8

16-30

8-6

12-5

13-7

17-23

16-32

3-8

16-33

16-34

6-5

17-24

17-26

11-4

8-7

12-8

5-4

7-4

19-1

2-36

2-38

15-4

2-40

9-10

12-9

16-35

13-8

2-48

2-51

Operation Description Mnemonic

Find Independent Index Entry FNDINXEN

Grant Authority GRANT

Initiate Process INITPR

Insert Data Space Entry INSDSEN

Insert Independent Index Entry INSINXEN

Insert Sequential Data Space INSSDSE
Entries

Lock Object LOCK

Lock Space Location LOCKSL

Materialize Access Group MATAGAT
Attributes

Materialize Authority MATAU

Materia.lize Authorized Objects MATAUOBJ

Materialize Authorized Users MATAUU

Materialize Controller Description MATCD

Materialize Cursor Attributes MATCRAT

Materialize Context MATCTX

Materialize Data Space Attributes MATDSAT

Materialize Data Space Index
Attributes

MATDSIAT

Materialize Exception Description MATEXCPD

Materialize Invocation MATINV

Materialize Independent Index MATI NXAT
Attributes

Materialize Logical Unit MATLUD
Description

Materialize Machine Attributes MATMATR

Materialize Network Description MATND

Materialize Object Locks MATOBJLK

Materialize Program MATPG

Materialize Process Attributes MATPRATR

Materialize Process Locks MATPRLK

Materialize Pointer MATPTR

Materialize Pointer Locations MATPTRL

Materialize Queue Attributes MATQAT

Materialize Resource MATRMD
Management Data

Materialize Space Attributes MATS

Materialize Selected Locks MATSELLK

Materialize System Object MATSOBJ

Materialize User Profile MATUP

Monitor Event MNEVT

Modify Addressability MODADR

Modify Automatic Storage MODASA
Allocation

Modify Controller Description MODCD

Modify Exception Description MODEXCPD

Modify Logical Unit Description MODLUD

Modify Machine Attributes MODMATR

Op No.
Code Opnds Extender Operand Syntax

0494 4

0173 3

0324 4

0483 3

O4A3 3

0487 3

03F5 - ..

03F6 2

03A2 2

0153 3

013B 3

0143 3

O4B3 3

043B 3

0133 3

0437 3

0433 3

03D7 3

0516 2

0462 2

04BB 3

0636 2

O4BF 3

033A 2

0232 2

0333 3

0312 2

0512 2

0513 3

0336 2

0352 2

0036 2

033E 2

053E 2

013E 2

0371

0192 2

02F2 2

O4C3 3

03EF 3

O4CB 3

0646 2

SPP, INDEX, SPP.2.

{USER PROFIL~NULL}. S-PTR.CHARS[2]

PCS, spp, {ARG-LlS~NULL}, {SP~NULL}

CURSOR, CHARV[7], SPP

INDEX, SPP.2.

CURSOR,SPP,SPP

SPP

SPP,CHARS[1]

SPP, AG

Spp, S-PTR, {USER PROFIL~NULL}

spp, USER PROFILE, CHARS[1]

SPP, S-PTR, CHARS[1]

spp, CD, CHARS [2]

spp, CURSOR, CHARS[1]

spp, {CONTEX~NULL}. CHARS

spp, DATA SPACE, CHARS[1]

SPP, DS-INDEX, CHARS[1]

Spp, EXCP-DESC,CHARS[1]

SPP.2.

spp, INDEX

Spp, LUD, CHARS[2]

Spp, CHARS[2]

spp, ND, CHARS[2]

spp, S-PTR

spp, PROGRAM

spp, {PC~NULL}. CHARS [1]

spp, {PC~NULL}

spp, {S- PTRID- PTRlsP~I-PTR}

SPP.2., BINS

spp, QUEUE

spp, CHARS[8]

Spp, S-PTR

spp, {S-PTRlspp}

spp, S-PTR

spp, USER PROFILE

SPP

{CONTEX~NULL}. S-PTR

{SP~NULL}, BINS

CD, spp, CHARS[2]

EXCP-DESC, spp, CHARS[1]

LUD, spp, CHARS[2]

spp, CHARS[2]

Resulting Optional
Conditions Forms Page

6-6

7-6

11-5

16-36

6-8

16-38

14-1

14-4.1

13-9

7-8

7-10

7-12

17-27

16-40

3-9

16-43

16-45

10-1

18-3

6-10

17-31

19-2

17-35

14-4

8-8

11-13

14-6

18-5

18-7

12-11

13-11

5-5

14-7.1

18-9

7-15

15-6

3-12

9-10

17-38

10-4

17-44

19-8

Instruction Summary 8-7

Operation Description Mnemonic

Modify Network Description MODND

Modify Process Event Mask MODPEVTM

Modify Process Attributes MODPRATR

Modify Resource Management MODRMC
Control

Modify Space Attributes MODS

Modify User Profile

Multiply

Negate

No Operation

Not

Or

Reclaim Lost Objects

Remainder

Rename Object

Request I/O

Resume Process

Retrieve Data Space Entry

Retrieve Event Data

MODUP

MULT

NEG

NOOP

NOT

OR

RECLAIM

REM

RENAME

REQIO

RESPR

RETDSEN

RETEVTD

Retrieve Exception Data RETEXCPD

Retract Authority RETRACT

Retrieve Sequential Data Space RETSDSE
Entries

Release Data Space Entries RLSDSEN

Remove Independent Index Entry RMVINXEN

Resolve Data Pointer

Resolve System Pointer

Return From Exception

Return External

Scale

Scan

Search

Set Access State

RSLVDP

RSLVSP

RTNEXCP

RTX

SCALE

SCAN

SEARCH

SETACST

Set Argument List Length SETALLEN

Set Cursor SETCR

Set Data Pointer SETDP

Set Data Pointer Addressability SETDPADR

Set Data Pointer Attributes SETDPAT

Set Instruction Pointer SETIP

Set System Pointer From Pointer SETSPFP

Set Space Pointer SETSPP

Set Space Pointer Wi.th SETSPPD
Displacement

Set Space Pointer From Pointer SETSPPFP

Set Space Pointer Offset SETSPPO

8..:.8

Op No.
Code Opnds

O4CF 3

0372 2

0337 3

0326 2

0062 2

0142 2

104B 3+[B]

1056 2+[B]

0000 0

108A 2+[B]

1097 3+[B]

0686 2

1073 3+[B]

0162 2

0471

0386 2

048A 2

0375

03E2 2

0193 3

048B 3

048E 2

0484 4

0163 3

0164 4

03El

02Al

1063 3+ [B]

10D3 3+[B]

1084 4+[B]

0341

0242 2

048C 4

0096 2

0046 2

004A 2

1022 2

0032 2

0082 2

0093 3

0022 2

0092 2

Resulting Optional
Extender Operand Syntax Conditions Forms Page

NO, SPP, CHARS[2]

{BINV[2]INULL}, {BINS[2]INULL}

{PC~NULL}, SPP, CHARS[1]

SPP, CHARS[8]

S-PTR, BINS

USER PROFILE, SPP

[B~IND] NUMERICV, NUMERICS.2., [BT.3.IIT.3.]

[BRIIND] NUMERICV, ,.MERICS, [BT.3.IIT.3.]

[BRIIND] CHARV, CHARS, [BT.3.IIT.3.]

[BRIIND] CHARV,CHARS.2., [BT.3.IIT.3.]

Spp, CHARS[2]

[BRIIND] NUMERICV, NUMERICS.2., [BT.3.IIT.3.]

S-PTR, CHARS

[BRIIND]

[B~INDJ
[BRIIND]

SPP

{PC~NULL}. CHARS[l]

Spp, CURSOR

SPP

Spp, CHARS[1]

{USER PROFIL~NULL}, S-PTR, CHARS[2]

Spp, CURSOR, SPP

CURSOR, CHARS[1]

{SP~NUlL}, INDEX, SPP.2.

D-PTR, {CHARS[32]INULL}, {s-PTRINULL}

S-PTR: {Cl)ARS[34]INULL}, {s-PTRINULL},
{CHARS[211NULL}

SPP

{BIN~NULL}

NUMERICV, NUMERICS, BINS, [BT.3.IIT.3.]

{BIN~B-ARRAY}, CHARS.2., [BT.3.IIT.3.]

{BIN~~-ARRAY}, {N-ARRAviC-ARRAY},
CHARSjNUMERICS,BINS

SPP

ARG-LlST, BINS

CURSOf\, SPP, CHARV[16], {CHAR~NULL},
{ CHARSjNULl}

P, N, Z

P, N, Z

Z, NZ

Z, NZ

P, N, Z

P, N, Z

P, Z

P, Z

D-PTR, {NUMERIC~N-ARRAvicHAR~C-ARRAY} -

D-PTR, {NUMERIC~N-ARRAv\cHAR~C-ARRAY} -

D-PTR. CHARS[7]

I-PTA. F-BT

S-PTR, {D-PTRlsP~S-PTRII-PTR}
SPP

1
{CHAR~C-ARRAviNUMERIC~N-ARRA~

PTRP-ARRAY

SSP, {CHAR~C-ARRA~NUMERICvlN-ARRAvi
PTRlp-ARRA Y

SPP, {S- PTRID- PTRjSPP}

Spp, BINS

17-50

15-5

11-20

13-16.

5-8

7-17

[BII. S, R] 2-52

[BII, S] 2-54

2-56

[BII. S]

[BII]

[BII]

2-56

2-58

19-10

2-59

3-14

17-56

11-25

16:"49

15-10

10-6

7-19

16-50

16-47

6-13

3-15

3-li

lO-E

9-12

2-61

2-63

2-65

13-19

9-13

16-53

4-5

4-6

4-7

2-66

4-12

4-8

4-9

4-10

4-11

Op No. Resulting Optional
Operation Description Mnemonic Code Opnds Extender Operand Syntax Conditions Forms Page

. Signal Event SIGEVT 0345 SPP 15-12

Signal Exception SIGEXCP 10CA 2+[B] [B~IND] SPP.2 .• [BT.2.IIT.2.] I. DE [~I] 10-10

Sense Exception Description SNSEXCPD 03E3 3 SPP.3. 10-9.1

Store Parameter List Length STPLLEN 0241 BINV 9-14

Store Space Pointer Offset STSPPO ooA2 2 BINV. SPP 4-14

Subtract Logical Character SUBLC 1027 3+[B] [B~IND] CHARV. CHARS.2., [BT.3.IIT.3.] [N]Z[N]C [BII. S] 2-67

Subtract Numeric SUBN 1047 3+[B] [B~IND] NUMERICV, NUMERICS.2., [BT.3.IIT.3.] p, N, Z [~1. S, R] 2-69

Subtract Space Pointer Offset SUBSPP 0087 3 SPP.2., BINS 4-15

Suspend Object SUSOBJ 0361 .;;:. S-PTR 13-22

Suspend Process SUSPR 0392 2 {PC~NULLr CHARS[1] 11-26

Terminate Machine Processing TERMMPR 0622 2 CHAR[2]. {SP~NULL} 19-12

Terminate Process TERMPR 0332 2 {PC~NULL}, CHARS[3] 11-28

Test Authority TESTAU 10F7 3 {CHARV[2]INULL}, S-PTR, CHARS[2] 7-21

Test Event TESTEVT 10FA .2+[B] [B~IND] SPP, {CHARS[48]INULL}. [BT.2.IIT.2.] s, NS [~I] 15-14

Test Exception TESTEXCP 104A 2+[B] [B~IND] SPP, EXCP-DESC, [BT.2.IIT.2.] s, NS [~I] 10-13

Trace Instructions TRINS 0552 2 PROGRAM, {SP~NULL} 18-11

Trace Invocations TRINV 0551 CHARS{4} 18-12

Test Bits under Mask TSTBUM 102A 2+B B~IND {CHAR~NUMERICS}.2., {BT.3.IIT.3.} Z, 0, M {~I} 2-72

Test and Replace Characters TSTRPLC 10A2 2 CHARV, CHARS 2-71

Unlock Object UNLOCK 03F1 SPP 14';10

Unlock Space Location UNLOCKSL 03F2 2 SPP,CHARS[1] 14-11.1

Update Data Space Entry UPDSEN 0492 2 CURSOR, SPP 16-63

Verify VERIFY 1007 3+[B] [B~IND] {BIN~B-ARRAY}, CHARS.2., [BT.3.IIT.3.] p, Z [BII] 2-75

Wait On Event WAITEVT 0344 4 SPP, CHARS, CHARS[8], CHARS[3] 15-16

Transfer Control XCTL 0282 2 PROGRAM, {ARG L1S~NULL} 9-15

Transfer Object Lock XFRLOCK 0382 2 PCS, SPP 14-8

Transfer Ownership XFRO 01A2 2 USER PROFILE, S-PTR 7-24

Translate XLATE 1094 4 CHARV, CHARS, {CHAR~NULL}. CHARS 2-73

Exclusive Or XOR 109B 3+[B] [BRIIND] CHARV. CHARS.2., [BT.3.IIT.3.] z, NZ [BII. S] 2-49

Instruction Summary 8-9

8-10

abbreviations and acronyms xi
absolute instruction number 1-6
acronyms and abbreviations xi
activate logical unit (ACTLU) 17-11
activate physical unit (ACTPU) 24-18
ACTLU (activate logical unit) 17-11
ACTPU (activate physical unit) 24-18
AIPL/IPL machine attributes A-4
AIPL machine interface source data A-2
array 1-11
array ODT reference 1-8
authority, load / dump 25-14
authorization management instructions 7-1
authorization required 1-11

based array ODT reference 1-9
based ODT reference 1-8
based string ODT reference 1 -8
basic functions 1-1, 1-3
basic status (BSTAT) 23-23
branch

conditions 1 -4
form 1-1, 1-3
options 1-4
point 22-14
target 1-3

BST AT (basic status) 23-23
byte string 1-6

cathode-ray tube (CRT)
CD (controller description)
character 1 -11

23-12
17-1, 23-1

commands
diskette magazine drive 23-47
machine console 23-4
3203-5 printer 23-82
3262/5211 printer 23-27
3410/3411 23-69
5424 23-17

communications 24-1
device management 24-8
error recovery procedures 24-33
lines specialization 24-30

compound operands 1-6
explicit base 1-6
subscript 1-6
substring 1-6

computation and branching
instructions 2-1

constant data object 22-17
control storage address (CSA) 23-21
controller description (CD) 17-1,23-1
CRe (cyclic redundancy check) 24-39
CRT (cathode-ray tube) 23-12
CSA (control storage address) 23-21
cyclic redundancy check (CRC) 24-39

data base management instructions 16-1
data base networks, load / dump 25-14
data bus in (DBI) 23-12
data communications equipment (DCE) 17-19
data object 22-3
data pointer 1-11
data pointer defined scalar 1-11
data space (DS) 25-3
data space index (DSI) 25-3
DBI (data bus in) 23-12
DCE (data communications equipment) 17-19
device-dependent error codes, 5424 23-20
device management request
descriptor 24-46

device status (DSTAT) 23-23
diskette magazine drive

commands 23-47
end-of-volume handling 23-62
error summary 23-56
events 23-63
exceptions 23-63
feedback record 23-54
programming considerations
request I/O 23-45

DS (data space) 25-3
DSI (data space index) 25-3
DST A T (device status) 23-23

end of file (EOF) 25-12
end of tape (EOT) 25-12
end of volume (EOV) 25-12
entry point 22-13
EOF (end of file) 25-12
EOT (end of tape) 25-12
EOV (end of volume) 25-12

23-40

Index

Index X-1

error codes, 5424 23-20
error recovery procedures,
communications 24-33

error summary
diskette magazine drive 23-56
machine console 23-10
3203-5 printer 23-85
3262/5211 printer 23-35
3410/3411 23-73
5424 23-20

errors
other 25-12
recoverable 25-12
severe 25-9

event management instructions 15-1
event specifications 21 -1
events 1-11

diskette magazine drive 23-63
load/dump 25-13
machine console 23-14
signaled by work station controller
support 24-52

3203-5 printer 23-88
3262/5211 printer 23-39
3410/3411 23-79
5424 23-24

exceptions 1 -11
codes signaled by work station
controller 24-53

description 22-19
diskette magazine drive 23-63
management instructions 10-1
specifications 20-1
3203-5 printer 23-89
3262/5211 printer 23-40
3410/3411 23-80

exchange identification (XID) 17-6
extender field 1 - 2
extender specifications 1 - 2, 1-3

FBR (feedback record) 23-5
feedback record (FBR)

diskette magazine drive 23-54
machine console 23-9
3203-5 printer 23-84
3262/5211 printer 23-33
3410/3411 23-72
5424 23-19

FI FO (first in, first out) 12-2
first in, first out (FIFO) 12-2
FMD (function manager data) 24-52
FOB (function operation block) 23-12
format specifications 1 - 2, 1-7

computational format 1-2, 1-3
noncomputational format 1-2, 1-3

format. instruction 1 -7
function manager data (FMD) 24-52
function operation block (FOB) 23-12

X-2

IDL (instruction definition list) 1-2
immediate operands 1-6
IMPL (initial microprogram load) 19-3
IMPLA (initial microprogram load
abbreviated) 19-3

independent index instructions 6-1
indicator form 1-1, 1-3
indicator options 1-5
indicator target 1-5
initial microprogram load (lMPL) 19-3
initial microprogram load abbreviated
(lMPLA) 19-3

input/output (I/O) 17-56
input/ output controller (lOC) 24-34
input/ output manager (10M) 24-34
instruction definition list 22-14
instruction definition list (lDU 1-2
instruction definition list element 1-12
instruction format 1 -7

authorization required 1-11
events 1-11
exceptions 1 -11
extender 1-10
lock enforcement 1 -11
optiona I forms 1 -10
resultant conditions 1 -11

instruction forms 1-1
number 1-12
operands 1-6, 1-7
pointer 1 -12

instruction summary B-1
instructions, page references (Appendix B.
Instruction Summary) B-5

10C (input/output controller) 24-34
10M (input/output manager) 24-34
I PL (initial program load) 19-6
IPL machine interface encapsulated
data A-2

L/D (load/dump) 25-1
LEAR (lock exclusive allow read) 14-2
LENR (lock exclusive no read) 14-2
load/dump

authority 25-14
commands 25-1
data base networks 25-14
error processing 25-9
events 25-13
interrupted for data base
interchange 25-16

object availability 25-17
object management 25-1
object status after a system
failure 25-18

performance 25-16
load/dump (LID) 25-1
lock enforcement 1 -11

lock exclusive allow read (LEAR) 14-2
lock exclusive no read (LENR) 14-2
lock shared read (LSRD) 14-2
lock shared read only (LSRO) 14-2
logical unit (LU) 24-9
logical unit description (LUD) 17-8, 23-1
LSRD (lock shared read) 14-2
LSRO (lock shared read only) 14-2
LSUP (lock shared update) 14-2
LU (logical unit) 24-9
LUD (logical unit description) 17-8,23-1

machine configuration record (MCR) 19-3
machine console 23-1

commands 23-7
error summary 23-10
events 23-14
request I/O 23-2

machine initialization A-1
machine initialization status record
(MISR) 19-3

machine interface support functions
instructions 19-1

machine observation instructions 18-1
machine services control point
(MSCP) 17-6, 24-1

machine to programming transition A-2
MB (megabyte) 17-15
MCR (machine configuration record) 19-3
MDT (modified data tag) 23-4
megabyte (MB) 17-15
MISR (machine initialization status
record) 19-3

modified data tag (MDT) 23-4
MPL (multiprogramming level) 11-8
MSCP (machine services control
point) 17 -6, 24-1

MSCP operation 24-3
multiprogramming level (MPL) 11-8

name resolution list (NRL) 11-9
ND (network description) 17-14, 23-1
network description (ND) 17-14, 23-1
non-return-to-zero (inverted)
(NRZI) 17-16

NRL (name resolution list) 11-9
NRZI (non-return-to-zero
(inverted)) 17 -16

null operand 1-8
null operands 1 -6

object
attributes 22-3
creation data for supported
devices 24-54

definition table (ODT) 22-1
definition vector (ODV) 22-1
entry string (OES) 22-1
lock management instructions 14-1

object mapping table (OMT) 8-9
objects, source sink 23-1
ODT (object definition table) 22-1
ODT object 1-6
ODT reference 1-8
ODV (object definition vector) 22-1
OEM (original equipment
manufacture) 17-19

OES (object entry string) 22-1
OMT (object mapping table) 8-9
operand

field 1-1
list 22-15
specification field 1-8
syntax 1-11

operands 1-6
operation code

extender field 1 -1, 1-3
field 1-1
flag field 1 -1, 1 - 2
specification field 1 -1

operational unit (OU) 17-3
original equipment manufacture (OEM) 17-19
other errors 25-12
OU (operational unit) 17-3

PAG (process access group) 11-11
PAS A (process automatic storage area) 9-5
PCO (process communication object) 11-16
PDEH (process default exception
handler) 11 -10

physical unit (PU) 24-21
pointer 1 -11
pointer data object 22-3, 22-8
pointer / name resolution addressing
instructions 3-1

primary operands 1-8
process access group (PAG) 11-11
process automatic storage area (PASA) 9-5
process communication object (PCO) 11-16
process default exception handler
(PDEH) 11-10

process management instructions 11 -1
process static storage area (PSSA) 9-1
program

execution instructions 9-1
management instructions 8-1
object specification 22-1

PSSA (process static storage area) 9-1

Index X-3

RD (request descriptor) 17-56
recoverable errors 25-12
relative instruction number 1-6, 1-12
request descriptor (RO) 17-56
request I/O

diskette magazine drive 23-45
3203-5 printer 23-82
3262/5211 printer 23-27
5424 23-16

request information unit (RIU) 23-6
request/response unit (RU) 24-11
resource management instructions 13-1
resultant conditions 1-11
RIU (request information unit) 23-6
round form 1-1
RU (request/response unit) 24-11

scalar 1-11
scalar data object 22-3
SCS (standard character stream) 23-28
SDLC (synchronous data link
control) 17 -18

secondary operands 1-8
base pointer 1-9
index value 1-9
length value 1-9

seconda ry station 24-26
severe errors 25-9
short form 1-1, 1-3
signed binary 1 -6
signed immediate value 1-9
simple operands 1-6
SNA (system network architecture)
source/sink

data area, 3203-5 23-82

24-11

data area, 3262/5211 23-27
data(SSO) area, machine console 23-6
management instructions 17-1
objects 23-1
specialization 23-1

source/sink request (SSR) 17-56
space management instruction 5-·1
space object addressing instructions 4-1
space pointer 1-12
SSCP (system service control point) 17-6
SSD (source/sink data), machine
console 23-6

SSR (source/sink request) 17-56
standard character stream (SCS) 23-28
string ODT reference 1-8
summary, instruction 8-1
synchronous data link control
(SOLC) 17-18

syntax definition
array 1-11
character 1-11
data pointer 1 -12
data pointer defined scalar 1-11

X-4

syntax definition (continued)
instruction definition list
element 1 -12

instruction number 1-12
instruction pointer 1 -12
numeric 1-11
pointer 1 -11
relative instruction number 1-12
scalar 1-11
space pointer 1 -12
system pointer 1-12
variable scalar 1 -12

system network architecture (SNA) 24-11
system pointer 1 -12
system service control point (SSCP) 17-6

translate table 24-58
type specification field 1 - 7

unsigned binary 1-6
unsigned immediate value 1-8

variable scalar 1-12
volume table of contents (VTOC)
VTOC(volume table of contents)

23-45
23-45

work station controller (WSC) 24-61
work station controller management 24-42
WSC (work station controller) 24-61

XID (exchange identification) 17-6

3203-5 printer
commands 23-82
error summary 23-85

3203-5 printer (continued)

events 23-88
feedback record 23-84
programming considerations 23-80

request I/O 23-82
source/ sink data area 23-82

3262/5211 printer
commands 23-28
error summary 23-35
events 23 - 39
feedback record 23-33
programming considerations 23-25
request I/O 23-27
source/sink data area 23-27

3410/3411
commands 23-69
error summary 23-73
events 23-79
exceptions 23-80
feedback record 23-72
programming considerations 23-64
request I/O 23-67

5251 display station object creation
data 24-21

5252 display station object creation
data 24-24

5256 printer object creation data 24-25
5424

commands 23-17
error summary 23-20
events 23-24
feedback record 23-19
programming considerations 23-15
request I/O 23-16

Index X-5

X-6

IBM System/38
READER'S COMMENT FORM

Functional Reference Manual

Please use this form only to identify publication errors or to request changes in publications. Direct any requests
for additional publications, technical questions about IBM systems, changes in IBM programming support, and so
on, to your IBM representative or to your nearest IBM branch office.

o If your comment does not need a reply (for example, pointing out a typing error) check this box
and do not include your name and address below. If your comment is applicable, we will include it
in the next revision of the manual.

o If you would like a reply, check this box. Be sure to print your name and address below.

Pagenumber(s) : Comment(s) :

GA21-9331-1

Please contact your nearest IBM branch office to request additional
publications.

IBM may use and distribute any of the information you supply
in any way it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the
information you supply.

No postage necessary if mailed in the U.S.A.

Name

Company or
Organization __________________ _

Address

City State Zip Code

GA21-9331-1

Fold and tape Please do not staple

I II II I

BUSINESS REPLY
FIRST CLASS PERMIT NO. 40

MAil
ARMONK, N. Y.

Fold and tape

POSTAGE WILL BE PAID BY .••

IBM CORPORATION
General Systems Division
Development Laboratory
Pu bl ications, Dept. 245
Rochester, Minnesota 55901

Please do not staple

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
U.S.A.
U nternational)

Fold and tape

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

Fold and tape

(")

S

I

."
(jj'

2
?
en
w
00

~

--..- -------',-_ -
-'.~--- --.. ------__ .~ _ _ .-.1IIII!IIIt

==-=-:= ®

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 3030,
(U.S.A. only)

General ,Business Group/International
44 South Broadway
White Plains, New York 10601
U.S.A.
(International)

GA21-9331-1

::0
~
(1)

Cil
:J
n
(1)

TI

CD
Z
o
en
w
00
6

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	02-51
	02-52
	02-53
	02-54
	02-55
	02-56
	02-57
	02-58
	02-59
	02-60
	02-61
	02-62
	02-63
	02-64
	02-65
	02-66
	02-67
	02-68
	02-69
	02-70
	02-71
	02-72
	02-73
	02-74
	02-75
	02-76
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-20
	16-21
	16-22
	16-23
	16-24
	16-25
	16-26
	16-27
	16-28
	16-29
	16-30
	16-31
	16-32
	16-33
	16-34
	16-35
	16-36
	16-37
	16-38
	16-39
	16-40
	16-41
	16-42
	16-43
	16-44
	16-45
	16-46
	16-47
	16-48
	16-49
	16-50
	16-51
	16-52
	16-53
	16-54
	16-55
	16-56
	16-57
	16-58
	16-59
	16-60
	16-61
	16-62
	16-63
	16-64
	16-65
	16-66
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	17-19
	17-20
	17-21
	17-22
	17-23
	17-24
	17-25
	17-26
	17-27
	17-28
	17-29
	17-30
	17-31
	17-32
	17-33
	17-34
	17-35
	17-36
	17-37
	17-38
	17-39
	17-40
	17-41
	17-42
	17-43
	17-44
	17-45
	17-46
	17-47
	17-48
	17-49
	17-50
	17-51
	17-52
	17-53
	17-54
	17-55
	17-56
	17-57
	17-58
	17-59
	17-60
	17-61
	17-62
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	18-12
	18-13
	18-14
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	19-13
	19-14
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	20-14
	20-15
	20-16
	20-17
	20-18
	20-19
	20-20
	20-21
	20-22
	20-23
	20-24
	20-25
	20-26
	20-27
	20-28
	20-29
	20-30
	20-31
	20-32
	20-33
	20-34
	20-35
	20-36
	20-37
	20-38
	20-39
	20-40
	20-41
	20-42
	20-43
	20-44
	20-45
	20-46
	20-47
	20-48
	20-49
	20-50
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	21-09
	21-10
	21-11
	21-12
	21-13
	21-14
	21-15
	21-16
	21-17
	21-18
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	22-08
	22-09
	22-10
	22-11
	22-12
	22-13
	22-14
	22-15
	22-16
	22-17
	22-18
	22-19
	22-20
	22-21
	22-22
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	23-07
	23-08
	23-09
	23-10
	23-11
	23-12
	23-13
	23-14
	23-15
	23-16
	23-17
	23-18
	23-19
	23-20
	23-21
	23-22
	23-23
	23-24
	23-25
	23-26
	23-27
	23-28
	23-29
	23-30
	23-31
	23-32
	23-33
	23-34
	23-35
	23-36
	23-37
	23-38
	23-39
	23-40
	23-41
	23-42
	23-43
	23-44
	23-45
	23-46
	23-47
	23-48
	23-49
	23-50
	23-51
	23-52
	23-53
	23-54
	23-55
	23-56
	23-57
	23-58
	23-59
	23-60
	23-61
	23-62
	23-63
	23-64
	23-65
	23-66
	23-67
	23-68
	23-69
	23-70
	23-71
	23-72
	23-73
	23-74
	23-75
	23-76
	23-77
	23-78
	23-79
	23-80
	23-81
	23-82
	23-83
	23-84
	23-85
	23-86
	23-87
	23-88
	23-89
	23-90
	24-01
	24-02
	24-03
	24-04
	24-05
	24-06
	24-07
	24-08
	24-09
	24-10
	24-11
	24-12
	24-13
	24-14
	24-15
	24-16
	24-17
	24-18
	24-19
	24-20
	24-21
	24-22
	24-23
	24-24
	24-25
	24-26
	24-27
	24-28
	24-29
	24-30
	24-31
	24-32
	24-33
	24-34
	24-35
	24-36
	24-37
	24-38
	24-39
	24-40
	24-41
	24-42
	24-43
	24-44
	24-45
	24-46
	24-47
	24-48
	24-49
	24-50
	24-51
	24-52
	24-53
	24-54
	24-55
	24-56
	24-57
	24-58
	24-59
	24-60
	24-61
	24-62
	24-63
	24-64
	25-01
	25-02
	25-03
	25-04
	25-05
	25-06
	25-07
	25-08
	25-09
	25-10
	25-11
	25-12
	25-13
	25-14
	25-15
	25-16
	25-17
	25-18
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	replyA
	replyB
	xBack

