

V-DC/EQU/ALL: Specifies whether the parameter list labels, DCs, or both, are
generated. If this operand is omitted, EQU is assumed.

DC Generates the sort parameter list used by the sort utility when it is
called by the $SORT macroinstruction.

EQU Generates the displacement labels for the loadable sort parameter list.
If V-EQU is specified or assumed, all other operands for $SRT are
ignored.

ALL Generates both the loadable sort parameter list and the corresponding

displacement labels.

OUTPUT: Specifies the name of the file that is to contain the sorted data. If this
operand is omitted, blanks are assumed. See Notes 1 and 2.

SOURCE: Specifies the name of the source member that contains the sort
specifications. If this operand is omitted, no entry is created for it in the
generated parameter list, and the 34-byte sort specifications must be placed
immediately after the generated portion of the sort parameter list.

Omit this operand if you want to supply the sort specifications.in the sort
parameter list. See Note 1.

USERLB: Specifies the name of the user library that contains the source member
specified in the SOURCE parameter, if any. If this operand is omitted, no entry
is created for it in the generated parameter list. #LIBRARY is assumed if a
source name is specified and USERLIB is omitted. Omit this operand if you
want to supply the sort specifications in the sort parameter list. See Note 1.

INPUT1: Specifies the name of the first, or only, input file to sort. If this
operand is omitted, blanks are assumed. See Notes 1 and 2.

INPUT2: Specifies the name of the second input file to sort. If this operand is
omitted, no entry is created for it in the generated parameter list. See Note 2.

INPUT3: Specifies the name of the third input file to sort. If this operand is
omitted, no entry is created for it in the generated parameter list. Before
INPUTS3 can be specified, INPUT2 must be specified. See Note 2.

INPUT4: Specifies the name of the fourth input file to sort. If this operand is
omitted, no entry is created for it in the generated parameter list. Before
INPUT4 can be specified, INPUT2 and INPUT3 must be specified. See Note 2.

INPUTS: Specifies the name of the fifth input file to sort. If this operand is
omitted, no entry is created for it in the generated parameter list. Before
INPUTS can be specified, INPUT?2 through INPUT4 must be specified. See Note
2.

INPUTG6: Specifies the name of the sixth input file to sort. If this operand is
omitted, no entry is created for it in the generated parameter list. Before
INPUT®6 can be specified, INPUT2 through INPUTS must be specified. See Note
2.

Chapter 5.Macroinstructions Supplied by IBM 5-67

INPUT7: Specifies the name of the seventh input file to sort. If this operand is
omitted, no entry is created for it in the generated parameter list. Before
INPUT?7 can be specified, INPUT2 through INPUT6 must be specified. See Note
2. '

INPUTS: Specifies the name of the eighth input file to sort. If this operand is
omitted, no entry is created for it in the generated parameter list. Before
INPUTS can be specified, INPUT2 through INPUT7 must be specified. See Note
2.

ALTSEQ: Specifies whether an alternative collating sequence table is contained
in bytes 1793 through 2048 (the last 256 bytes) of the loadable sort parameter list:
Y if yes, N if no. If this operand is omitted, N is assumed. If Y is specified, you
must place the alternate collating sequence table in bytes 1793 through 2048 of
the loadable sort parameter list.

KANJI: Specifies whether to invoke the extended sort utility, for sorting
ideographic data: Y if yes, N if no. If this operand is omitted, N is assumed.
Omit this parameter if non-ideographic data is to be sorted.

Notes:

1. Space is always reserved in the generated parameter list for an OUTPUT file
name and an INPUT!1 file name. If you want to reserve space in the
parameter list for other operands, specify names in $SRT for the operands
(actual names can then be inserted in the parameter list by your program).

2. All files named in $SRT must be defined by FILE statements before the
$SORT macroinstruction is used. Files named must correspond to the
NAME parameter on the FILE OCL statements for the respective files. The
files must be closed before $SORT is used.

5-68

Constructing a SORT Parameter List

The following example shows how to use $SRT to build a parameter list to be
passed to the loadable sort transient. In this example:

¢ The input file is named IN and has 100-byte records.

e The output file is named OUT and contains input file records sorted on
columns 1 through 10.

® The sort sequence specifications are included in the parameter list, not in a
source member.

® The specified alternative collating sequence sorts all characters except blanks,
uppercase alphabetic characters, and numeric characters to the end of the file.

PROGRAMMER I DATE INSTRUCTIONS | CHARACTER
- T o 40 45 8 50 5 53 55 56 57 ES:::‘;T‘SZSQSAGSGS 67 68 69 707!7’2737
Al SR -JALLL, [IINRUTIL-TIN, JadTiRdT]- JALTSEQ-M T] [T1] [

DC L1341 HSORT LIDA X122 ‘| | [SORT] DER SPEC
DC i ‘FINC 1 ’ Se| 9 | |1 [THRU s
DC cL34{" 1AL’ DATA IS E
DC * END/ E SORT] C
ORG ARM#X|* ! TE AL Q JAREA
D XL FF| CHARS F BL
DC 1Y) 1/ BLA
D L28XLILNFIF CH TERS [THRU A
D] | [fcay GHI" A TTHRU [T |
DC TXILIL FFL C T

DC CLA 7KL ’ J| THRU R l

DC BIXILILINFIF|” CHA E THRU S
DC" 8" STUVMXY(Z " S| THR 1

C 6XLIL FF "HARIAC THRU

C LA 31123456789 @ [THRU 19]

D OXLLMFIF Y REMAINING CHARAG S

RERRENREREREN
The following operation calls the loadable sort:
PROGRAMMER lDATE 'NST"UCTIONS CHARACTER
R PULIST- FARM
| isifii

Chapter 5.Macroinstructions Supplied by IBM 5-69

$TOD (Return Time and Date)

"The $TOD macroinstruction returns the time of day and the system date to the

program. The time of day is returned in the time field of the timer request block;

the system date is returned in the date field. The time and date fields are at

displacements $TRBTIME and $TRBDATE, respectively, in the timer request
block generated by $STRB. The date is returned in the format specified during
system configuration.

The.format of the $TOD macroinstruction follows:

o e ' pec)|
[label] $TOD [TRB-address] ,TYPE-{BIN}

TU

5-70

TRB: Specifies the address of theleftmost byte of the timer request block. If this
operand is omitted, the address of the timer request block is assumed to be in
register 2.

TYPE: Specifies how the time is to be returned in the timer request block. The
time is with respect to a 24 hour clock. The valid formats are:

DEC A 6-byte decimal number indicating the time in hours, minutes
and seconds (HHMMSS).

BIN A 32-bit binary number indicating the time in seconds. The

number is right-adjusted in bytes 4 through 7 of the time field of
the timer request block.

TU A 32-bit binary number indicating the time in timer units. One
timer unit is 8.192 milliseconds. The number is right-adjusted in
bytes 4 through 7 of the time field of the timer request block.

If this operand is omitted, DEC is assumed.

$TRAN (Generate an Interfaée to the Translate Routine)

The STRAN macroinstruction generates an interface to the translate routine for
EBCDIC-ASCII translation. See $TRTB and $TRL macros.

[label] $TRAN [TRL-address]

TRL: Specifies the symbolic address of the translate parameter list. If this
operand is omitted, the address is assumed to be in register 1. If the STRL
macroinstruction is used to generate the parameter list, this address should be the
label assigned to the STRL macroinstruction. The parameter list is described as

follows:

Field Length Field Description

2 Address of the translate table (Your program must define the
translate table.)

2 FROM field address, for translation

2 TO field address, for translation

2 Number of bytes to translate

1 Completion code: Hex 00 indicates translation complete, no

errors; hex FF indicates invalid character encountered

Chapter 5.Macroinstructions Supplied by IBM 5-71

$STRB (Generate Timer Request Block)

The $TRB macroinstruction generates a timer request block (TRB). You must
use $STRB if you use $SIT, SRIT, or $TOD in your program.

The format of the $TRB macroinstruction follows:

be
[label] $TRB |V-4EQU
ALL

V-DC/EQU/ALL: Specifies whether the parameter list labels, DCs, or both, are
generated for the $RIT, $SIT, and $TOD macroinstructions. If this operand is
omitted, DC is assumed. The following is the parameters and their meanings:

DC Generates the DC’s for the timer request block parameter list.

EQU ‘Generates the displacement labels for the timer request block.

ALL Generates the timer request block and the corresponding displacement
‘ labels.

5-72

$TRL (Generate a Translation Parameter List)
The $TRL macroinstruction generates a parameter list used by the translation
routine for EBCDIC-ASCII translation. See STRAN and $TRTB macros. $TRL

does not generate executable code.

The format of the $STRL macroinstruction follows:

[1abel} $TRL [To-address] [,FROM—address] [,LEN—decdig] [,TRT*address]

TO: Specifies the symbolic address of the leftmost byte of the field to which
the translated data will be moved.

FROM: Specifies the symbolic address of the leftmost byte of the data field
to be translated. This address may be the same as the address specified in the
TO operand.

LEN: Specifies in decimal the number of characters to be translated.

TRT: Specifies the symbolic address of the leftmost byte of the translate

table. If the $TRTB macroinstruction is used to generate the translate table,
this address should be the label assigned to the STRTB.

Chapter 5.Macroinstructions Supplied by IBM 5-73

$TRTB (Generate a Translation Table)

‘This macroinstruction’ generates an EBCDIC to ASCII or ASCII to EBCDIC

translation table. The table is generated in the format required by the STRL
macroinstruction, and the table can be addressed by $TRL when you translate
data. ' o

The format of the $TRTB macroinstruction follows:

e s s3] [ocne]

5-74

CODE: Specifies whether the data is to be translated from EBCDIC to
ASCII (E) or from ASCII to EBCDIC (A). If this operand is omitted, E is
assumed. If CODE-E is specified, $TRTB generates a 258-byte translation
table; if CODE-A is specified, STRTB generates a 130-byte translation table.

HEX: Specifies the hexadecimal digits with which to replace any invalid
characters found during translation. If the HEX operand is not specified, the
replacement character is hex 3F for ASCII to EBCDIC or hex 1A for
EBCDIC to ASCII.

Translation tables generated by the $TRTB macroinstruction are generated in
the following format:

Byte Field Description
0 Identifies a character that is not to be translated.
1 Substituted for characters that are not to be translated.

2 through 257 256-byte EBCDIC to ASCII translation table.
2 through 129 128-byte ASCII to EBCDIC translation table.

Construct the translation table so that the displacement from the beginning of the
table equals the hexadecimal representation of the untranslated character. The
contents of the location indicated by the displacement is the character to be
translated to. (For example, if you want to translate hex C1 to hex 41, you
should construct a translation table in which the value at displacement hex C1 in
the table is hex 41.)

The translate routine processes a field, specified by the $STRL macroinstruction,

I byte at a time. The byte at a given displacement is compared with the first byte
in the translate table (byte 0). If they are equal, the character is considered to be
invalid, and the following actions are performed:

e The completion code in the parameter list is set to indicate that an invalid
character was detected.

o The second byte of the translate area (byte 1) is substituted for the original
character.

e Translation continues with the next character. After the translate routine is
finished, control is returned to your program with a completion code in the
translate routine parameter list.

Chapter 5.Macroinstructions Supplied by IBM 5-75

$WIND (Generate Override Indicators for Display Station)

The $WIND macroinstruction generates a table of override indicators and offsets
for PUT and PUT overrides used by work station data management.

The format of the SWIND macroinstruction follows:

{1abel] SWIND [MAXIND*number]

MAXIND: Specifies in déci"niallthe highest number used by SFGR as an override
indicator for your program. If this operand is omitted, 99 is assumed.

$WSEQ (Generate Labels for Display Station)

This macroinstruction generates labels and offsets to reference certain work
station device-dependent values, such as identification (AID) bytes and bit
representations for the display screen attribute bytes and write control characters.

The format of the $WSEQ macroinstruction follows:

[label] SWSEQ

5-76

$SWSIO (Construct a Display Station Input/Qutput Interface) - .

‘The $WSIO macroinstruction builds the executable code to modify a display
station DTF using only the specified parameters, then issues a call to work station
data management to perform the specified operation. Before using $WSIO you
must provide a DTF for the file (see SDTFW) and establish the offsets for the
DTF (see $DTFO). If you will need the data in registers 1 and 2 later, save the
contents of those registers before issuing SWSIO. For a description of how to
code $WSIO for the interactive communications feature, see the manual,
Interactive Communications Feature: Reference Manual.

_ After each $WSIO macroinstruction, you should check the return code. The

return codes are defined in the $DTFO macroinstruction with WS-Y and
FIELD-Y. Return codes from $WSIO are described in Appendix F.

Chapter 5.Macroinstructions Supplied by IBM 5-77

The format of the $WSIO macroinstruction follows:

-

-

-

L

-

[label] SWSIO [DTF-address] [.OPMDD-code} [,0P0~code] [,OUTLEN-number]

-

U Y
,INLEN*number] [,RCAD-address] ,ROLDIR*{D} ,RLCLER4{N}

- ~ -

s STRTLN=-number [.ENDLN-number]

B L o

»ROLINE-number

» VARLIN-number

,INDA-address] [,FORMAT-name]

e L

‘ Y Y Y
.TERMID-name] .PRNT—{N} ,ROLL-{N} .CLEAR-{N}]

Y {f} {Y
»RECBKS-\N »HELP-\N » FKDATA-\N [,PID- id]

DTF
;PLa-address] [,CMDKEY-mask] ,CKNASK-{FORNAT}

{DTF }
,FKMASK~ | FORMAT

~ 5-78

DTEF: Specifies the address of the leftmost byte of the display station DTF to be
modified. If this operand is omitted, the address is assumed to be in register 2.

OPMOD: Specifies the operation code modifier to be generated. The codes and
their meanings are as follows:

ERROR: PUT for displaying information on the error line.

OVR: PUT for displaying only override fields and attributes. (If an override
indicator was specified on the SFGR S specification, this value is not
required.)

ROLL: Rolls the display with the specified operation.

UNF: The FORMAT parameter need not be specified. The stream of data
and control commands in the user’s program logical record area, beginning at
the RCAD specified address, is sent to the work station. The OUTLEN
parameter specifies the number of bytes to be sent. If an unformatted PUT is
specified and there are input fields defined in the data stream, the INLEN
value must be specified on the $WSIO macroinstruction.

Note: Sec the Functions Reference Manual for more information on display
station data streams.

PRINT: Prints the displayed data on the printer specified in the PID
parameter.

PRUF: PUT for read under format.

FMH: Use only with the interactive communications feature, which is
described in the Interactive Communications Feature: Reference Manual,
SC21-7910. This code indicates that a function management header precedes
the data associated with an evoke operation. The code is valid only for evoke
operations for the SNUF (SNA upline facility) subsystem.

CONFIRM: Use only with the interactive communications feature, which is
described in the Interactive Communications Feature: Reference Manual,
SC21-7910. This code indicates that a confirm indication is to be sent with
the data associated with the EVOKE, PUT, GET (in the send state only), and
INVITE (in the send state only) operations. This code is valid only for the
APPC subsystem. '
ZERO: Clear any previous OPMOD specification.

Notes:

1. The OPMOD keyword can be coded as OPM.

2. An OPC of PUT, PTG, PNW, or PTI must also be specified for OPMOD
values of OVR, UNF, or PRUF.

Chapter 5.Macroinstructions Supplied by IBM ~ 5-79

5-80

"OPC: Spemﬁes the operation requested of WSDM. The codes and their
meanings are ‘as follows (codes unique to the interactive communications feature
are descnbed in the manual Interactzve Commumcatzons Feature: Reference):

ZERO Sets the operation code field to hex 00. This code is used with
operation code modifiers for which you do not want a WSDM operation
code. For example, if you wanted to roll or print displayed data without
requesting any other work station operation in the call to WSDM, you could

‘use the ZERO operation code with the modifier ROLL or PRINT.

GET: Receives data from the display station specified by the TERMID
parameter. Control is returned to your program when the data is available in
the user record area. This operation ignores the OPMOD value.

PUT: Sends data to the display station specified by the TERMID parameter.
Control is returned to your program when data transfer is complete.

PTG: Sends a combination of a put-no-wait (PNW) operation to the display
station specified by the TERMID parameter, followed by a GET request to
the same display station. ‘Control is returned to your program when the data
resultmg from the GET operatlon is available in the user record area.

INV: Enables the dlsplay station specified by the TERMID parameter to
send data to the system. The data entered by the display station operator is
presented to your program in response to a subsequent accept input (ACI)
operation or GET operation. Control returns to your program as soon as the
invite input (INV) is scheduled.

PNW: Sends data to the display station specified by the TERMID
parameter. Control is returned to your program when the operation is
scheduled, and the program’s DTF, record area, and indicators are available
for reuse. If a second put-no-wait (PNW) is issued to the same display
station, the first PUT must be complete before the second operation is
scheduled. The main difference between a PUT and PNW is the return code.
On a PUT, the return code reflects the status of the entire PUT operation,
while on a PNW, the return code reflects only the scheduling of the
operation.

PTI: Sends a combination of a put-no-wait (PNW) and an invite input (INV)
to the same display station. Control is returned to your program when the
invite input request is scheduled.

ACI: Requests data from any display station that responded to a previous
invite input operation. For example, suppose your program issues three invite
input operations to.display stations A, B, and C. The program could now
issue an accept input request, and be presented with data from any display
station (A, B, or C) that responds with a data transmission. The ID of the
display station that sent the data is returned at displacement SWSNAME in
the DTF. This operation ignores the OPMOD value.

ACQ: Allocates the display station specified by the TERMID parameter for
this program. ThlS operatlon ignores the OPMOD value.

REL: Releases from this program the display station specified by the
TERMID parameter. This operation ignores the OPMOD value.

GTA: Gets the attributes of the display station specified by the TERMID
parameter, and places them in the program’s record area. This operation
ignores the OPMOD value.

Following, a get attribute operation, the program’s record area appears as
follows: : '

Byte 0 Device Type
Cc'D’ Display type
C'N’ Nondisplay type

All remaining letters are reserved.

Byte 1 Display Size

cr 1920-character display
Byte 2 Attachment Type

c'r Local

CR’ Remote

The attachment type is C'R’ for a display station pass-through or DHCF
device.

Byte 3 Online/Ofﬁine Status

coO Device is online

C'F Device is offline

Byte 4 Allocation Status of Device
CA’ Device allocated to requester
CF Device allocated to other user
cv’ Not allocated but available
C'N Not allocated, not avaﬂable |
cu Device unknown to system
Byte 5 Invite Status of Device |
cYy’ Device is invited

C'N’ Device ‘not invited

Chapter 5.Macroinstructions Supplied by IBM 5-81

5-82

Byte 6 Completion Status of Device Invite

cy | Invite completed
C'N’ | Invite not completed
Byte 7 Inquiry Status

cy’ Device in inquiry
C'N’ Device not in inquiry

EGTA: Gets any other attributes of the display station specified by the
TERMID parameter, and places them in the program’s record area. This
operation also ignores the OPMOD value.

Following a get attribute operation, the program'’s record area appears as
follows:

Bytes 0-7 Same as for GTA.

Note: If the device is offline (Byte 3 = C'F’), the values found in Bytes 8-15
may not be accurate.

Byte 8 . Display type.

CA’ Alphanumeric/Katakana type.
CT - Idedgraphic type.

Byte 9 Keyboard type.

CA’ Alphanumeric/Katakana type.
(6 Ideographic type.

Byte lOV Sign-on type.

CA’ Alphanumeric/Katakana type.
CT ; Ideographic type.

Byte 11 \ Application help facility.

cyY’ Facility enabled.

oN' . Facility not enabled.

Byte 12 e | | 27x132 status.

clr , | 27x132 capable display station is in 24x80

mode.

c2 : 27x132 capable display station is in 24x132

mode.
C'N’ 24x80 capable only.
Bytes 13-15 Reserved. Hex A is returned.

GST: Gets the Advanced-Program-to-Program Communication session
status. See the Interactive Communications Feature: Reference Manual,
SC21-7910 for more information.

STI: Cancels a previously issued invite input request to the display station
specified by the TERMID parameter. If the stop invite fails (the operator
already pressed the Enter/Rec Adv key, a function key, or command key),
your program is informed by a return code, and the data remains at the
display station and is available for a subsequent request. If the program
issues a get or accept after the stop invite fails, the system handles any
disabled command or function key. The system waits until the Enter/Rec
Adv key or an enabled command or function key is pressed before giving data
or control back to the program. However, if an output request is issued to
the display station, the input data is lost.

Note: A stop invite is not required to override an existing invite input.
WSDM performs a stop invite when necessary. However, if input is already
available, the input data is lost.

RES: Resets the keyboard of the display station specified by the TERMID
parameter without requesting a format. This allows an application to ignore
keys that are not supported.

RTG: Performs a keyboard reset (RES) followed by a GET.
RTIL: Performs a keyboard reset (RES) followed by an invite input (INV).

ERS: Erases all modified input capable fields that are currently defined on
the display of the display station specified by the TERMID parameter. This
operation locks the keyboard and repositions the cursor to the first input
field. For a detailed explanation of how erase input fields works, see the
erase input fields entry (columns 31 and 32) under the $SFGR — Screen
Format Generator Utility Program in the Creating Displays: Screen Design
Aid and System Support Program.

ETG: Performs an erase input fields (ERS) followed by a GET.
ETI: Performs an erase input fields (ERS) followed by an invite input (INV).

CLR: Clears the entire display of the display station that was specified by the
TERMID parameter, including attribute bytes. This operation also destroys
any existing field definitions pertaining to that specific display station.

INQ: Determines the invite status of the display stations associated with this
program. This operation returns a 2-byte return code in index register 2. In
the high-order byte, hex 00 means no invites outstanding; hex 10 means at
least one invite outstanding; hex 30 means at least one invite outstanding, and
at least one completed invite. In the low-order byte, hex 00 means stop

Chapter 5.Macroinstructions Supplied by IBM 5—83

5-84

system is not in effect; hex 02 means stop system is in effect. This operation
has no associated DTF; register 2 need not contain a DTF address. Register
1 contents are not changed. If this operation code is specified, all other

-- specified parameters are ignored.

SIQ: Determines the invite status of the display stations associated with this
program. This operation performs a function similar to INQ, except SIQ uses
the DTF to issue the operation and return the data. Two, 1-byte return codes
are returned in the DTF as a result of this operation. In the DTF at
displacement $WSRSIQ, hex 00 means no invites outstanding; hex 30 means
at least one outstanding invite, and at least one completed invite. In the DTF
at displacement SWSRTC, hex 00 means stop system is not in effect; hex 02
means stop system is in effect. If this operation code is specified, any

* specified operation code modifier is ignored, and the operation code modifier
field in the DTF is cleared to hex 00.

STM: Specifies the time interval to wait before issuing a timer expired return
code. The first 6 bytes of the user record area specify the interval in the
format HHMMSS. A timer expired return code is returned on the first accept
following the expiration of the timer. When this return code is given, a
TERMID is not returned, and the TERMID field of the DTF is unchanged.

" If a previous set timer has not yet expired, the old time interval is replaced

- with the new. ‘

OUTLEN: Only required for OPMOD parameters ERROR and UNF, or OPC
parameters PUT, PTG, PNW, and PTI. If the operation is ERROR, the
OUTLEN value must be between 1 and 78. OUTLEN represents the amount of
data written from the logical record area to the error line at the display station.

If the operation has an OPMOD of UNF, the OUTLEN value must be between 2
and 4096. It represents the exact length of the data stream. If the operation is a
PUT, PTG, PNW, or PTI, OUTLEN represents the maximum amount of data
that'can be written from the logical record area to the output fields in the display
format. The OUTLEN value must be at least as large as the sum of the lengths
of all program output fields. If the operand is omitted, the DTF value is
unchanged. After a successful input operation, the actual length of data returned
is stored in this field. Therefore, OUTLEN should be respecified after every input
operation.

Note: If the execution time output data from the user’s logical record area also
contains MIC data, the user must reserve 6 bytes for each MIC to contain the
4-character digits and the 2-character message member identifier. This 6-byte
length must be included in the total OUTLEN value.

INLEN: Specifies in decimal the size of your input buffer; that is, the maximum
amount of input data that your program is prepared to receive. This number
must not be greater than 65535. If this operand is omitted, the DTF is
unchanged. The INLEN and PID(printer ID) parameters use the same field in
the DTF. Therefore, INLEN must be specified after each operation that specified
a PID. :

Note; If the operation being performed is an unformatted PUT, INLEN must
equal the total length of all input fields defined on the display.

RCAD: Specifies the symbolic address of the leftmost byte of the logical record
area. If this operand is omitted, the DTF is unchanged.

Note: If the operation being performed involves GET or ACI or UNF, the record
area must be on an 8-byte boundary.

ROLDIR: Specifies the direction to roll the diSplay when requested. This
operand must be specified in the first $WSIO you issue with a roll operation. If
this operand is subsequently omitted, the DTF is unchanged.

RLCLER: Specifies whether the lines vacated by a roll operation should be
cleared. This operation must be specified in the first $WSIO you issue with a roll
operation. If this operand is subsequently omitted, the DTF is unchanged.

ROLINE: Specifies in decimal the number of lines a roll operation should roll
the data being displayed. The maximum number is 24. If this operand is
omitted, the ROLINE-number in the DTF is unchanged.

STRTLN: Specifies in decimal the first line of the roll area on a roll operation.
The maximum number is 23. If this operand is omitted, the DTF is unchanged.

ENDLN: Specifies in decimal the last line of the roll area on a roll operation.
The minimum number is 02. The maximum number is 24. If this operand is
omitted, the DTF is unchanged.

VARLIN: Specifies in decimal the actual start line number if a variable start line
number was specified to SFGR for the format for this request. The maximum
number is 24. If this operand is omitted, the DTF is unchanged.

INDA: Specifies the symbolic address of the leftmost byte of the override
indicator area if override indicators were specified at SFGR time for this format.
The indicator area must not start at address hex 0000 because WSDM assumes no
indicator area exists at address hex 0000, and the indicators are assumed to be off.
If this operand is omitted, address hex 0000 is assumed.

FORMAT: Specifies the name of the display format to be used for this operation.
This operand is required only for formatted PUT operations. If this operand is
omitted, the DTF is unchanged.

TERMID: Specifies the symbolic name of the display station. This is the
2-character ID, which the user assigned either during system configuration or in
the SYMID parameter on the // WORKSTN statement that represents the display
station to which the request is directed. If this operand is omitted, the DTF is
unchanged.

PRNT: Specifies whether your program can process the Print key. If Y (yes) is
specified, the print key indicator is placed in the AID byte field of your program
DTF when the operator presses the Print key. If N (no) is specified, the system
attempts to print the current display with the optional heading and border on the
printer associated with the display station. If the operand is omitted, N (no) is
assumed.

ROLL: Specifies whether your program is able to process the Roll Up and Roll

Down keys. If Y (ves) is specified, the roll key indicator is placed in the AID
byte field of your program DTF when the operator presses a roll key. Data is

Chapter 5.Macroinstructions Supplied by IBM ~ 5-85

5-86

returned as if the Enter/Rec Adv key was pressed. If N (no) is specified, an error
message is displayed when the operator presses either roll key (see Note 1).

CLEAR: Specifies whether your program can process the Clear key. If Y (yes) is
specified, the clear key indicator is placed in the AID byte field of your program
DTF when the operator presses the Clear key. If N (no) is specified, an error
message is displayed when the operator presses the Clear key.

RECBKS: Specifies whether your program can process the record backspace (that
is,-the Home key when the cursor is in the home position). If Y (yes) is specified,
the record backspace indicator is placed in the AID byte field of your program
DTF when the operator presses the Home key. If N (no) is specified, an error
message is displayed when the operator presses the Home key.

HELP: Specifies whether your program can process the Help key. If Y (yes) is
specified, the help key indicator is placed in the AID byte of your program DTF
when the operator presses the Help key. If N (no) is specified, an error message is
displayed when the operator presses the Help key.

FKDATA: Specifies whether input data is returned along with a function control
key indicator for all enabled function control keys. If Y (yes) is specified, the
appropriate function control key indicator is placed in the AID byte field of your
program DTF when the operator presses an enabled function control key. Input
data is returned regardless of whether the operator modified any of the fields.
This function does not apply to remote work stations (see Note 2).

If N (no) is specified, the appropriate function control key indicator is placed in
the AID byte field of your program DTF when you press an enabled function
control key. No input data is returned (see Note 1).

Notes:

1. The FKDATA parameter has no effect on the operation of the Roll Up and
Roll Down keys. These keys always operate as specified by the ROLL
parameter.

2. You must use the FKDATA parameter with caution when you are
programming for a remote work station. Your job could permanently halt if
there are no modified input fields on the display of the remote work station
when a function control key is pressed while the FKDATA parameter is
active.

PID: Specifies the ID of the desired printer on a print request. Allowable values

are:

Code Meaning

SYSTEM . The system printer.

WSTN The printer associated with the display station specified by
the TERMID parameter nn.

XX Where XX is the 2-character ID of the desired printer.

If this operand is omitted, the DTF is unchanged. The INLEN and PID
parameters use the same field in the DTF; therefore, PID must be specified after
each input operation.

PL@: Used with the interactive communications feature. This parameter
specifies the address of an associated evoke parameter list, which is generated by
the SEVOK macroinstruction. $EVOK is described in the manual Interactive
Communications Feature: Reference. This operand must be specified for the first
evoke operation and is unchanged if not specified again.

CMDKEY: Specifies the command key mask to be placed in the DTF. The mask
is made up of 24 binary bits (bit 0 = CMDI1 through bit 23 = CMD?24) entered
as 6 hexadecimal digits. If this operand is omitted, hex FFFFFF is assumed.

CKMASK: Specifies whether WSDM should use the command key mask from
the display format or from the DTF. If this operand is not specified on any
$WSIO call, FORMAT is assumed. If it is specified on any $WSIO call, any
future $WSIO calls will leave the DTF unchanged if this parameter is omitted.

FKMASK: Specifies whether WSDM should use the function key mask from the
display format and the DTF (format is specified in the DTF), or just from the
DTF (DTF is specified). If this operand is not specified on any $WSIO call,
FORMAT is assumed. If it is specified on any $WSIO call, any future $WSIO
calls will leave the DTF unchanged if this parameter is omitted.

Chapter 5.Macroinstructions Supplied by IBM ~ 5-87

Programming Considerations

Coding Restrictions

5-88

The generated code for some macroinstructions uses register 1 and/or register 2.
The contents of the register must be saved before issuing the macroinstruction;
otherwise, the contents are destroyed. The $WSIO macroinstruction uses registers
1 and 2. These macroinstructions use register 2:

$ALOC
$CLOS
$FIND

$GETB

$GETD
$INFO

$LOAD
$LOG

$OPEN
$PUTB
$PUTD
$PUTP

$RIT
$SIT
$SNAP
$SORT
$TOD

Disk, printer, and work station data managements use work registers 4, 5, 6, and
7. Unless the contents of these registers are no longer needed, they must be saved

$GETD
$PUTD
$PUTP

$WSIO

~ before issuing any of the following macroinstructions:

The code generated by the macroinstructions is assigned labels; these labels begin
with the dollar sign (§). To avoid duplicate-label errors, do not use the dollar
sign as the first character of a label.

Binary Synchronous Communications

Macroinstructions

BSC macroinstructions can cause the IBM System/36 to function as any of the
following station types:

e Receive only (receive data from a remote terminal)
e Transmit only (transmit data to a remote terminal)

e Transmit and receive (no conversational reply) in one of three modes of
operation:

— Transmit a file, then receive another file

— Receive a file, then transmit another file

— Transmit records from one file while receiving records from another file.
Note: Because BSC closes the file in use before another file is to be used,
there is a delay between each transmit and receive operation. The remote
station might not be tolerant of this delay.

Every BSC program you write with the assembler language must do these two
things:

® Prepare BSC DTFs for data reception, data transmission, or both.

® Begin and end the transfer of data (receive data, transmit data, or both).

* Chapter 5.Macroinstructions Supplied by IBM 5-89

Preparing BSC DTFs For Data Transfer

5-90

When writing a program for data transfer, always include the following three
steps:

1. Generate field displacements and labels for the BSC DTFs by using the
$DTFO macroinstruction coded with BSC-Y and FIELD-Y.

2. Prepare BSC data files. Define each BSC file ($DTFB), allocate it (SALOC),
and open it (SOPEN).

3. If data in your BSC files requires translation, either before it is transmitted or
after it is received, you must provide for data translation by constructing
translate tables (STRTB macroinstruction for EBCDIC/ASCII tables) and
generating a translate parameter list (STRL). When you translate data,
generate the interface to the translate routine (STRAN).

Note: If you want to transmit or receive ASCII data, be sure to give the polling
and addressing characters and station identification sequences in ASCII.

Initiating and Terminating the Transfer of Data
To initiate data transfer, you must issue the following requests:
® Get requests to receive data (3GETB)
® Put requests to transmit data (SPUTB).

The first get or put request causes BSC to establish line connection with the
remote station. How the data transfer is ended depends on whether the
System/36 is receiving data (SGETB) or transmitting data ($SPUTB). If System/36
is transmitting, then stop sending the data to the current file by one of the
following means:

e $PUTB with OPC-EOF. This transmits the last block of data ending with
ETX. The System/36 then transmits EOT. In 3740 mode, the System/36
waits for the next user operation and then sends either STX ETX or EOT.

e SPUTB to another transmit file. This transmits the last block of data from
the current file ending with ETX. System/36 sends EOT, and line
initialization for the new file takes place. The block ends with ETB when in
3740 mode. In 3740 multiple file mode, STX ETX replaces the EOT.

e S$SGETB to a receive file. This transmits the same sequences as issuing a
$PUTB to another transmit file.

® S$CLOS to the current file. This transmits the last block of data ending with
ETX and EOT (or DISC if switched lines). The last block ends with ETB
when in 3740 mode. In the case of 3740 multiple file mode, use $CLOS to
transmit EOT.

If the System/36 is receiving, the remote station initiates the end of data
transmission. You can detect this by coding EOF on the $GET macroinstruction
or by checking for hex 42 ($BSEOF) in the $SBSCMP field of the BSC DTF after
each $GETB request.

Issue successive SGETB requests until you detect EOF or an error. You can
detect a BSC error by coding REJECT on the SGETB macroinstruction. The
error code is returned in $BSCMP.

Chapter 5.Macroinstructions Supplied by IBM ~ 5-91

Using Move Mode

System/36 performs all BSC get and put requests in move mode. BSC moves data
from the BSC I/O buffers to the logical buffer on get requests, and from the
logical buffer to the BSC 1/O buffers on put requests.

A single get or put request does not necessarily result in the actual data
transmission over the communications line. For a get request, the remote station
transmits data only when its BSC I/O buffer is filled.

A put request transmits data to the remote station only if the record to be moved
to a BSC I/O buffer cannot be contained in the current I/O buffer. The first put
request begins line initialization. Data transfer begins after the second put
request, so your program is always at least one put request ahead of BSC.

5-92

Blank Truncétion

System/36 BSC can transmit and receive data with the trailing blanks removed.
For put files, BSC moves data from the logical buffer to the BSC I/O buffer with
all trailing blanks removed. After each record, BSC inserts an IRS character.

For get files, BSC scans the data in the BSC 1/O buffer for an IRS. BSC then
moves all data up to the IRS character to the logical buffer and blanks the
remainder of the logical buffer.

To use blank truncation, run the ALTERCOM procedure with the TRUNCATE
parameter or the $SETCF utility with a SETR utility control statement with
BLANK.-T parameter specified before running the BSC program.

Be aware of the following:

e Blank truncation will not operate in ITB mode. You can specify blank
truncation with transparent mode; however, the truncation will not be
performed. :

® When you use blank compression/expansion or blank truncation with blocked

records, the number of records per block vary depending on the number of
blanks in each record.

Chapter 5.Macroinstructions Supplied by IBM 5-93

Blank Compression/Expansion

5-94

In order to use the line more effectively and decrease communications line costs,
the System/36 BSC offers assembler users the capability of transmitting and
receiving data with all contiguous blanks (groups of 2 or more blanks) removed.
This is done by using the same format used by the IBM 3780.

For put files, BSC moves data from the logical buffer to the BSC I/O buffer with
contiguous blanks removed and compression control characters inserted. After
each record, BSC inserts an IRS.

If the record is to be printed from the logical buffer, it should be printed before a
put because BSC alters the record with IGS characters and count characters while
compressing the record.

For get files, the procedure is reversed as follows. The System/36 BSC removes
compression control characters, inserts blanks removed at the remote station,
recognizes the intermediate record separator and moves the record from the BSC
I/O buffer to the logical buffer.

To use blank compression/expansion, either run an ALTERCOM procedure with
the COMPRESS parameter before running the BSC program, or run a SETR
utility control statement with BLANK-C specified.

When you use blank compression/expansion or blank truncation with blocked
records, the number of records per block vary depending on the number of blanks
in each record.

Note: You cannot use blank compression/expahsion with transparent or ITB
mode.

Data Formats

System/36 BSC support uses the following data formats for transmission of data.
Use these formats when sending data to System/36 from a processing unit.

o Nontransparent, non-ITB:
STX-data-ETX(ETB)

o Nontransparent, non-ITB, blocked:
STX-rec 1/rec 2/.../rec n-1/rec n-ETX(ETB)

e Nontransparent, ITB:
STX-data-ITB-data-ITB-data-ETX(ETB)

o Transparent, non—ITB:v
DLE-STX-data-DLE-ETX(ETB)

® Transparent, non-ITB, blocked:
DLE-STX-rec 1/rec 2/.../rec n-1/rec n-DLE-ETX(ETB)

® Transparent, ITB (receive files only):

DLE-STX-data-DLE-ITB-DLE-STX-data-DLE-
ITB-DLE-STX-data-DLE-ETX(ETB)

Chapter 5.Macroinstructions Supplied by IBM ~ 5-95

Changing the BSC Environment

Errors

5-96

BSC configuration information is changed by the System/36 ALTERCOM or
SETCOMM procedure. When you run BSC programs from the job queue, the
configuration information from the system console is used for the job. The SSP
gets this information at the same time the job is run. If you want to change the
BSC environment when running from the JOBQ, first run ALTERCOM from the
system console before starting your job.

The ALTERCOM procedure runs the SSETCF utility. Instead of using this
procedure to change the BSC configuration, you can use the SETB and SETR
utility control statements of the $SETCF utility. For information on coding
System/36 procedure commands and utility control statements, see the System
Reference manual.

If an error occurs at either the sending or receiving station, System/36 retries the
operation the number of times specified by the SDTFB macroinstruction, or the
number of retries specified by the ALTERCOM procedure command, or the
SETB utility control statement. (See the System Reference manual for
information on the SETB utility control statement and the ALTERCOM
procedure.) ; , :

Note: Refer to the expansion within your program of the $DTFO macro for
possible error codes (following label SBSCMP). These will appear only when the
parameter BSC-Y is coded on the $SDTFO macro.

Automatic Call Support

When System/36 is configured with the MLCA (multiline communications
adapter) and the Autocall feature or the X.21 feature, remote locations can be
called without operator intervention. Because there is no reference to the autocall
or X.21 capabilities in user programs, existing programs can add autocall or X.21
without other modification. You specify autocall or X.21 by using the PHONE
parameter on the COMM OCL statement. The COMM statement is described in
the System Reference manual.

The phone list specified in the COMM statement can contain up to 120 phone
numbers and is generated by the DEFINEPN or the DEFINX21 procedure
described in the System Reference manual. When the first request during any
BSC job step is made to BSC data management, the phone list is searched for a
number to call. The first time the list is referred to, the search begins with the
first number. For each succeeding reference, the search begins with the next
available number. If a number cannot be reached, the value of the number of
retries is reduced by one and the next number is called. If no numbers in the list
can be reached, a no-line connection return code is passed to the user program.
A message is displayed to the system console indicating each number that could
not be reached. When a number is reached, a message is displayed indicating the
number reached, and communication proceeds in the same manner as for a
manual call line. When the job step ends, you can use the OCL statement with
the LISTDONE parameter to perform the step again and call the next number.
You can use the same phone list in a later step of the job.

If a batch BSC job is run on an autocall line and no phone list is specified in the
COMM statement (or there is no COMM statement), the call mode defaults to
the mode specified in the user’s DTF or the display station communications
configuration record. The mode can be manual answer, manual call, or
automatic answer. If the phone list is specified in the COMM statement but the
line is not an autocall line, or the autocall task was not loaded at IPL time, the
line is considered to be a manual or automatic answer line, depending on the
switch type defined for the line.

If a batch BSC job is run on a switched line under X.21 and no phone list is
specified, switch type automatic answer is assumed. If the X.21 task is not active,
an error message is displayed and the BSC program is not run. You must IPL
the system to make the X.21 task active.

The ability to call multiple locations within a single BSC job step is useful
primarily when the System/36 is receiving data from multiple locations. Because
any number may be called during a request, transmission of data to a particular
location should be performed using a phone list containing a single number.

If, during the receiving of data, a permanent error occurs, the phone number
associated with the data link is not reset. Because the number is not reset, it
cannot be called again on subsequent passes through the list. The recovery
associated with that particular job step is the responsibility of the user.

Chapter 5.Macroinstructions Supplied by IBM ~ 5-97

5-98

Chapter 6. Assembler Problem Determination

If a problem occurs while you are using assembler, the cause of the problem
may not be obvious. An error in your application or in system operation
could have caused the problem. The problem determination procedure in
this chapter can help you solve or circumvent the problem. If you need
more information refer to the System/36 System Problem Determination
manual, SC21-7919 for the 5360 System Unit, or to the System/36 System
Problem Determination manual, SC21-9063 for the 5362 System Unit, or to
chapter 13 in System/36 Operating Your Computer - 5364, SC21-9085 for the
5364 System Unit, before contacting your service representative.

How to Use this Procedure

This procedure is arranged in a sequence of questions that you can answer
with a Yes or No. Based on your answer, you are directed to another
question or to a recommendation for action.

Start at the beginning of the procedure and follow the question-and-answer
sequence, answering each question to which you are directed based on your
previous answer. If the problem is a condition that requires more detailed
procedures, you are referred to those procedures.

Identifying Assembler Problems

When a assembler problem occurs, you can use the following series of
questions to pinpoint its possible cause:

H Did you receive a message indicating that an operator needs to
do something to a device such as a printer or a display station?

No Yes

Take the actions indicated by the message and save any
automatic dumps printed as a result of the message. If the
action requires operator action, call your system operator.
If the action requires you to call for help, see Contacting
Your Service Representative on page 6-7.

When you examine a message for indicated actions, check
v the following:

Chapter 6. Assembler Problem Determination 6-1

6-2

e Second-level message text, which describes the
message in more detail. To get the second-level
message text press the Help key.

e Some messages contain a number of options for
possible recovery actions. These options are explained
in Chapter 1 of the Assembler Messages Manual,
SC21-7942.

If you still cannot solve your problem after fully
examining the message, see Contacting Your Service
Representative on page 6-7.

Are other system users having problems communicating with
the system?

No Yes
Call your system operator and describe the problem. Have
your operator use the procedures in the appropriate
System|36 System Problem Determination manual.

Is this the first time you have ever run the job or subroutine?

Yes No
You may have a system problem. Call your system
operator, describe your problem, and have the operator use
the appropriate System/36 System Problem Determination
manual.

Are you having a nonprogramming problem, such as spooled
output that is not produced or a device that is not working?

No Yes
You may have a system problem. Call your system
operator and have -the operator use the appropriate
procedure in the appropriate System/36 System Problem
Determination manual.

Are you using the current release of SSP?

Yes No _
‘ Install the current release of SSP.

Have all IBM-supplied program changes you have received that
apply to the current release of SSP been installed?

Yes No
| Install the program changes you have received that have
not yet been applied.

Are you using the current release of assembler? The release
number is printed on the first line of the source listing for any
assembler program.

Yes No
Install the current release of assembler and compile or run
the program again.

Have all IBM-supplied program changes you have received that
apply to the current release of assembler been installed?
(Check with your system operator)

Yes No
Install the program changes you have received that have
not yet been applied and run the program again.

Have any non-IBM changes been made to assembler or to SSP?

No Yes
If assembler has been changed, install its current release
and program changes, and run the program again. If SSP
has been changed, install its current release and program
changes.

Have changes been made to the user program since the last
time it ran successfully?

No Yes
Read on, but consider what has been changed. For
example: have operating procedures changed, has the data
within the files changed, are new device files being used,
or have program changes been applied recently? A good
starting point for problem determination is a changed
item.

Assembly Time Problems
Was unexpected assembler output produced?

No Yes
Check if:

e The NOLIST option was used. NOLIST specifies that
the assembler is not to produce the assembler listing.
Specify LIST to produce the complete assembler
listing.

o The program has the NOGEN option. NOGEN
suppresses the printing of statements generated by the
macroprocessor. Specify GEN to print statements
generated by the macroprcessor.

o The program has the PRINT OFF option. This option
overrides The GEN option. Specify PRINT ON in your
program.

Does the program have poor performance during
assemble-time?

Chapter 6. Assembler Problem Determination 6-3

No Yes
Check if:

e There is space allocated for the work area. Examine
the ASM procedure for allocation and enlarge the
allocated space.

o The macro processor was called, but no
macroinstructions were used. Examine the listing and
specify NOMAC in the ASM procedure.

o There are required macroinstructions in #ASMLIB.
Do a LISTLIBR OF #ASMLIB and move user written
macroinstructions to #ASMLIB.

e If you cannot solve or circumvent the problem contact
¥ your service representative.

Link Time Problems
Were errors encountered during linkage?

No Yes
Check if:

® There are any coding errors that occurred during
assembly. The assembler message should indicate
what the error is. Correct and re-assemble the
program until all the errors are corrected.

® The program has the NOOBJ option. NOOBJ specifies
that the assembler is not to place the object
(assembled) program in the library. Specify OBJ in
your program to place the object (assembled) program
in the library as a subroutine member.

e Refer to the IBM System|36 Overlay Linkage Editor
1‘ Guide, SC21-9041 for other considerations.

Execution Time Problems
Did errors occur when loading the program (via //LOAD OCL)?

No Yes
Check if:

e The load module exists by specifying LISTLIBR of the
load module.

o The object module (R module) is linked before
Y executing.

6-4

Was unexpected execution-time output produced?

No Yes
Check if:

o There is incorrect program data.

e There are assembler coding errors.

] e The program is in an infinite loop.
Did a task dump occur?

No Yes

e TFollow the system prompt to get a listing of the dump.
Examine the dump to find the cause of the problem.
Go to the next question about messages.

Did you get Message SYS—0015?
No Yes
e If the message SYS—0015 appears, make sure your

program does not try to execute data., The following
example of a program demonstrates this.

BH LABEL
DATA DC XL2'0000"
LABEL EQU *

If the branch does not take place, X’0000” is interpreted
as an instruction, but 00 is an invalid main storage
instruction.

e Make sure a valid instruction was not modified by the
program. This often happens when the base registers
XR1 and XR2 contain incorrect data. The following

Y example of a program, demonstrates this.

Chapter 6. Assembler Problem Determination 6-5

location

MOVE MVI 0(,XR1),X'00’
02A0 J LABEL
LABEL EQU *

If location X"02A0’ of the program is a JUMP
instruction, but at the point of execution of the MVI
instruction at label MOVE, XR1 contains X’02A0°. The
MVI instruction has modified the Jump instruction to

y ’00’, but 00 is an invalid instruction.

EB] Did you get Message SYS—0013 or Message SYS—0014 ?

No Yes

e If the messages SYS—0013 or SYS—0014 appear, the
program tried to access an address outside the region
size of the program. Check if the index registers
contain correct values. The following example of a
program demonstrates this.

MVC DATA1(2),0(,XR1)

DATAL bC : XL2'0000"'

If the program size is X"0400" bytes, but when
executing the MVC instruction, XR1 contains X’0600’,
v SYS-—0013 will occur.

Did a system message occur?
No Yes

The message should provide some information. Carefully,

check the usage of system macros, DTF’s, device file, OCL,
and return codes.

If you still cannot solve your problem after fully
examining the message, your program and procedures, see
| Contacting Your Service Representative on page 6-7.

E1 Does the program have poor performance during
execution-time?

No Yes
Check if:

e There is over utilization of some system resources, for
example disk usage. Your system operator can run the
System Measurement Facility to find the utilization of
system devices. Refer to the System Measurement
Facility Guide, SC21-9025 to find the optimal

Y configuration for your system.

If after using this procedure you or your system operator have not solved
the problem, consult the appropriate System/36 System Problem
Determination manual for your system unit before calling the service
representative.

Contacting Your Service Representative

If you cannot solve a problem by the problem determination procedures
listed in this chapter, and the appropriate System/36 System Problem
Determination manual, you may want to contact your service
representative. Before contacting your service representative, you will be
asked to provide the following:
e For compile time problems:

—~ A task dump at the time of the failure

— Run the APAR procedure and include the entire history file

— A diskette copy of the user program source and macro source

— A diskette copy of the user procedure

— An assembled source listing with cross-references
e For execution time problems, the above and the following:

— A diskette copy of the user files

~ A diskette copy of the user display screens

— A diskette copy of the user load module

— A diskette copy of the history file immediately after the problem
occurs

The procedures for obtaining the above information are explained in the
appropriate System/36 System Problem Determination manual.

Chapter 6. Assembler Problem Determination 6-7

6-8

Appendix A. Programming Examples

This appendix contains assembler programming examples, macroinstruction
definition examples, and related macroinstruction expansions.

Appendix A.Programming Examples A-1

BSC Programming Example

The following programming example illustrates the use of the BSC
macroinstructions in assembler programs.

Transmit
This program reads a file from disk (BSCFIL) and transmits it to another
System/36. :
Note: The following BSC examples (A2 to A8) are only representative portions of
larger programs; therefore, they are incomplete and should be used for illustrative
purposes only.
EE:%F:- 1BM System/34, System/36, Assembler Coding Form w.:::’:ﬁ’:_:,
[PROGRAM I'rvrma [G""’"c l l T I _L I i l L T I’AGE J
[Frochamcn [ome romenowsfomameten | | 1 T [T T T [[T]
Labet Operstion Operand — Remarks. . Sequance
1L ART] [
E 24 b tadiad ket adiindo ot adle
| ¢
TiE] [AND N CHATLIN 1aF] DS || I«
o | e
YTV 6 I EERE EDE 16 oJiadiad A K) K e L K
1$ALOC, PTF|-BSICOITF TE AL DTFS
PEN DITF- F EN_ALLL DITF' S
DX DEDDEDENE D DE D D DEDE KPOEDE DI DE
e tl
¥ TRANSMI[T [THE |FIILE *
1 1€
el laad be ¢ peaehrelaélael ¢ #P ¥ b e s xdad |
LIOOP1 3 ¥ L | ! |
D DTF|-DSKDTF, TOERR - ,[EOFCLOSE, OP
PUTB DITF|-BSCDIIF), IRE] - '
OFiL LO UNTIL [El FIIILE]
el ¢ e e e el b e loebi oy - e D6 i e e b e o
e L ¥
INT R OF] ’T}HlAN TlsISTON e
b
mmImme e el aeae e aefaeaelx i 3l sacais
| 0 O 5 O s ot i = -
T 1]] | T T
| | | []K]
MviCl | | PTIBUF+39((40) | ERRIL 39 15K E RI SSAGE! | [(isleiel -8l Forl IdeFlinfiFian)
Cl
i ; :
Vil || PTBUFT+39/(49) 2439 DS B5C| ERROR sielel A-3 Flolrl dlelfliinifFilon)
¥ | i
PUTH DT - F BERRE !
T F ; I
Tl 1
ek M adre e e i
4 * i
% TF]' |5 | BUFFERS],| AND EGUATE! .
* g
D De % e e e R i
RECL|- LKL - | BUFIFRIL:, F[TYP - [T TYIPE - i
CHAIN-P F VIID-[RCVX] [RCVICTI- 4] |SNDIDI- T} CT-4 | i |
BUFFRI b] |
C |] 1xCiae ad’
PRTDTF F O~ UF |, |LOAREA-PTII, RECLI-144,
,r IINTI- Y] CHATIN- IDSIKDTF |, ISPACEA-| 1], INAME]- PRINT]
ggg -Cd, IReC-82, IMAME-[BSCIFITIL], [TINREIC- E@l]
PTBU RU ¥ J_i
ClLad* 3 SFIUCLY| [TRANSMIIT|T 'P%RTITR * '

T2 34 5 6 7 8 4101012131415 161716 192021 22 2324 25 26 2/ 28 29 30 31 3233 34 35,36 37 38 39 4D 81 42 43 44 45 46 47 43 4950 51 52 63 54 55 56 57 50 5960 61 67 63 64 65 66 67 68 69 70 7172 73 74 75 76 77 /8 7980 8) 62 62 4 85 86 873 89 90 91 92 92 94 9~ %6
*A continuation record follows if the character in this column in non-blank and if a comma follows the last operand preceding this column.

A-2

Receive Program

The foliowing program receives data and prints that data:

GX21-9279-1
§§§=§ 1BM System/34, System/36, Assembler Coding Form Printed in US.A.
=

PROGRAM BSASM 2] rvema [oparme | L L LT T T T Jrme & |
PROGRAMMER l OATE l"‘"l“c'lﬂ"l rmumsu l r l I’ r r r r | h.,, 3 _l

STATEMENT Identification
Labet Opecation Opwand Romerks . Sequence
12 3 45 6 7 BJ90111213 14115[16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 32 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 56 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 74 75 76 77 7@ 79 80 81 82 83 84 85 86 875589 90 91 92 93 94 9596}

cM STIART]
AR droirdrirein DDA T
b h

X
X
X
X
X
R
X
X

[a)
{w]lwikS
~
]
=1
SIE
CNed

oo L

IR RTRRX
-
m
bl
2
\wi
3
2=
=N
==

EdmliwiiwIES

]

]
im
o

[]
)
Ind
0
e

[
=

FAEIF 3 >3
(=]
m
20
i
=
=]
303

L SF 3

K[e reheleeeebe el el pepeee 1 i

123 456 78 91011 121314151617 1819 20 23 22 23 24 25 26 27 26 29 30 31 32 33 34 35 36 37 36 39 40 41 42 43 44 45 46 47 48 4950 51 52 53 54 85 56 57 58 5960 61 62 63 64 65 66 67 68 69 70 73 72 73 74 7578 77 78 7580 61 62 83 84 85 86 8788 89 90 91 97 93 94 95 96
*A continuation record foflows if the character in this column in non-biank and if a comma follows the last operand preceding this column.

GX21-9278-1
E 5 IBM System/34, System/36, Assembler Coding Form Printed in U.S.A.

oo BSASM & Tome T T T T T T I T T [[2)
Py SR R o N O O W 0 O R B

STATEMENT
Label Operstion Operand Romarks . Sequence
12 3 a5 6 7 8[9H011 1213 141516 17 \l192021222:!2426262?2.29303\323334353637JIJSWM42‘3‘445“47ul'sﬂsls:s:“sﬁsﬁﬁ'!ﬂ!ﬁ‘ﬂsl62635!““61&56970717213147516777l79'381.2I:l‘sbwl"uﬂwmszs:s‘%w

TERET INEREN |RIRERN]
C| Fl+[719 gﬂ) ER +79 BsC] [ER S5
v D IIPB-i INT
€302 w6 ¥ aehehe o] 2¢a6rd)
F'

y SE

EIEIE S

L
()
(WIEES

(wiES!

B[O X
(m)
=i
1
NI

| [

123 456 7 8 910111213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 35 39 40 41 42 43 44 45 45 47 42 49 50 51 52 53 34 66 56 57 58 6060 51 62 63 64 65 66 67 68 €9 70 7172 73 74 7576 77 78 7980 81 82 83 84 85 66 8789 89 90 9) 97 93 94 95 96
*A continuation record follows if the character in this column in non-blank and if a comma follows the last opersnd preceding this column,

Appendix A.Programming Examples A-3

Gx21.92794
st 1BM System/34, System/36, Assembler Coding Form

mocmw BOASM 2

TYPING GRAPH! PacE 3
PROGRAMMER Ions INSTRUCTIONS | CHARACTER oF 3
STATEMENT
Labet * Operation Operand . * Romeria Soquens
1.2 3 45 6 7 8]9p0 11213145

iy .
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 36 37 38 39 40 41 42 43 44 45 45 47 48 49 50 51 52 53 54 65 56 57 58 50 60 61 62 63 64 66 66 67 68 69 7071 72 73 74 75 76 7778 79 80 81 82 B3 84 85 86 §7]

ING FITILE’

80 50 91 92 93 94 9598,

-

CLea R WHILL

=

a)
=
3
—

123 4 56 28 9 10111213 1415181718 192021222324 2526272829 3031 32 33 34 35 36 37 38 35 40.47 42 43 44 45 46 47 48 4950 51 5253“““!1u”“o'OZ.I““‘I.?C.””7'7.!7311157'77n7.ulll2'3u.5l“7“"w"'7039‘99“
*A continuation record follaws if the character in this column in non-blank and if a comma follows the fast operand preceding this column.

Transmit and Receive Program

This program receives two files from a 3741, then transmits two different files in
return. The data is transmitted from two disk files (BSFIL1 and BSFIL2). The
data received is printed.. Before running this program, run the ALTERCOM
procedure with MULTFILE specified.

IBﬁ 1BM System/34, System/36, Assembler Coding Form : mG.:‘lml
oo BSASM 3 P S N N O D S |
Proovumer [ove | Mwemfommew | { [| | T [[[| J» 5 |

1.2 3 45 6 7 890111213 14115116 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 :2sausuoru:snouun:uuaanuuws‘szsa545555s7stu.onon:uosecuum*mnn7aunununnalnnu:suw-lnsosnszs:mssu

AR T 111]
e

¥

X!

[
i bbbl 6
PJ{ND CHAIIN dF| DTiF*
e ¢
ad T

héheé] xFe

p []

EIED

El
o

X

s Liiata

—
hul

p
[[
=

=i

bl

(AN

0
_ﬁ.___i -
)
=
()
—
b 1R 3
—
—
[aa}

Q
]
G
=
Gl
il
0]
"
1)
=
™

(w)
<
—
A
%‘lﬂc
rliwilw]
(R
[
=
fFrme
M
IO
2
[)
m
10
x—‘-l'ﬁ*
X[m
Alm
n‘lﬁ p.JE 35 IF
3 X (al
L
uliul
o
=
)
I~

EIF.IEIE T
T

1
443 3096 G

v ﬁ? DTF: DT, [EOF|- M :
TF-PTRDTF ISPACER- 3
e TTTTTTTTT T [ﬁag oF Fli

42 3 45 6 7 8 9 1011121314151617 18 19 20 21 22 23 24 26 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 &1 ‘243“““47“!‘”5‘52535‘“5‘5’”9“6!02036‘“5567‘!””7I7.1737!75767?mnnu!l!l:l“3505l7“.999‘929391'5“
*A continustion record follows if the charscter in this column in non-blank and if a comma follows the lsst aperand preceding this column.

E3E
‘%
0
m
IO
-
|

GX21-9778.1

zggg; 1BM System/34, System/36, Assembler Coding Form Printed in US.A.

e BSASM B Tome T T T T T 1 1T T T [Te 2
PROGRAMMER Inn:]'W""ﬂ'm rCNARACYEIT 1 ‘ "[T ‘ I T T T 10; 5 ’]

Lebot J Operation [Lm.m Remarks . Sequence
12 3 45 6 7 8910111213145 ll7l8\9202|222324252627232930:":2::JAS:IJT3!3940"‘:‘3«'5“47“”505'3253s‘ﬁM51ﬁs!ws‘s?ial‘.ﬁasc?ﬂs?ﬂ“7273747576717!79“!‘IZ3354.685!7‘“-909‘9193949596
¥ ¥ el T ot
be ¥
u A 1T A FIILE b
i 1 | be!
% i el e *ik » Bk it
I E| ¢ aaal
HIGE]T Fl-IDKDTIF L IIOERN-D EloF|-XMI[Ti2 [GET] Al IRECO
PUTH DT TFi2|, REJECT-ERR3 TIRANSMIIT] IT]
1 | NTT IFl
hepel

TiL
e e e mj’f e

1 -
G ANSMI{T ANGTHER FIT|LE] e
pe 1] LI ¥
e beeel] seebelachelse el aag st el e neloe
XMIT e |
| D [DTF-DRDITFE, TPERR- JEcF- T A REC
UTH DIF TIF|3, |RETIECT]-EIRRI4] NSMLT| TH
Al

L.
=
Q
.
-4
—
(=]
—
Q)
bl
~
=
[d]

123 4 56 7 8 9 1011121341516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 36 39 40 41 42 42 44 45 46 47 48 4950 5) 52 52 54 56 56 57 58 5080 61 62 61 64 65 66 67 €8 €9 70 71 1.213 74 7576 77 78 7980 8) 82 83 84 85 86 8768 89 90 91 92 93 94 95 96
*A continuation record follows if the character in this column in non-blank and if a comma follows the last operand preceding this column.

Appendix A.Programming Examples A-5

IBM System/34, System/36, Assembler Coding Form

IEM

GX21-9279-1
Printed in US.A,

[novs-m BSASM 3 o | | T T 1 T 1

rrms 3

]

TYPING
l PROGRAMMER lenucrm

Lmu's

CHARACTER J l }

[1

r‘”

s |

STATEMENT

Lubel Operation Operand Remeris

Sequence

123 45 6 7 8]5 0111219 16fis16 17 16 19 20 21 22 29 26 25 26 27 26 20 30,01 32 33 34 36 36 37 38 39 40 41 42 43 44 45 45 47 48 49 50 51 53 53 54 56 36 57 58 59 60 63 52 5 64 6 68 67 68 69 7073 72 73 74 78 76 7778 79 B0 81 62 8 84 85 05 SWasdsw 50 1 52 93 54 9596
] he el S
" [i X
el IPERFIOR) AND| ERI 1 i
e LT | RERSNARRN
M eaelaehelhe e el el peidaelicheveoelloheldreerend e
DONE] [1]]
C H39(l4d) | 439

=)

| L=

J:i
=3

]

1

1

39

|
T
F

e

K

=

T

o

A DIF-P c

2 I 11

-+
123 456 28 510111213 151617 161920 21 22 23 24 25 26 2> 26 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 45 47 48 49 50 51 52 53 54 56 56 57 58 5960 61 52 63 64 85 66 67 65 69 70 71 72 73 74 7576 77 78 1980 81 82 83 34 85 66 8758 29 90 91 52 93 94 95 96

“A continuation record follows if the character in this column in non-blank and if a comma follows the last operand preceding this column,

Gx21.92781

z%%é 1BM System/34, System/36, Assembier Coding Form Printed in U.S.A.
erocran BSASM 3 TYRING lcmmlc 1 l L L L l 1 1 T l [nns 4 I
PROGRAMMER rDAYE _] INSTRUCTIONS lmAnAcreq —I | l I l 1 L T L J oF 5 I

Label [L Operation f [Qpweand S Remacks . Sequenco
el Taehel ¢l heele e aedael el el e peepefiche o
ad ¥
R DTF| ‘19 AND J0 ¥
i ol
(it i ¥4 i iadid b 4
Cl ‘ DTF - B5| 1 C L DTF’ IS

$EC: E Vet

96| 94 3424 #1961 K1 v el o haibhad 942096 3426 %0 badhaitad Emtale tad kb
Wl d
£ DTF'ls .| |8 S, | AND EQUATES d
e 1 %
6106 ¢ 36106 DD 614 e M e aad Fiﬁ

TF1 ECL- BILKL |~ FITYIPI- RCV, (TIY|PEI-MA, - AT JCHATIN- F

T TFE RECL-4d, BLKIL-4id FiTYIP-TisM, [TIYIPE}-MA, RCAD- DIKBUF |, ! - F

T RECL- KLl "IFTYPL- TISM, TIYPPE] MAT, IRCIAID- DIKBUF | CHATN- DKDITIF L

TIFlL DITF] S-1CG, RECU-4d, N FILIL [TIOAREIA-DKIC, i - DD,
D, T C! -C4 -4, INAME, I I - DHIO -PT

TF E%fFFA - PTIBUF, RRINT- Y], RECI- 4], NAVE|-PRINT '

kd

[L

123456 2 89 10107212 %4751617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 36 36 37 36 39 40 41 42 43 44 45 46 47 48 4950 51 52 53 54 55 56 57 58 5960 6162 63 64 6566 67 68 €9 70 71 72 73 74 7576 77 76 7980 81 82 83 84 85 66 8750 80 90 91 92 93 54 95 9

*A continuation record follows if the character in this column in non-blank and if a comma follows the last operand precading this column.

6X21.82781
IBM 1BM System/34, System/36 Assembler Coding Form Printed in US.A.

PROGRAM BSASM 3 “TYPING I“""""‘ l T‘[T r r J l l L ["G‘ 5 j
PROGRAMMER Lnus]'Mn\umwsjw““nll J l L L J J L [L Io; 5]

Label Operation Operand Remarks . Sequence
1.2 3 466 7 8oh011121318)15]16 17 18 19 20 21 22 20 24 25 26 27 28 29 30 31 32 33 34 36 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 66 66 6/ 68 69 7071 72 73 74 75 76 77 78 79 BO 81 82 83 84 85 56 87]99489 50 91 92 93 94 9596

T
a1
AN

‘ﬁ_ IMIING FIIRST FILE"

Wﬁin*nx

=
=4
[oad
M M 1™
—
=]
()
N
=4
-

Lo) ()

2 L&F‘ IIL

()|

[

[

(m)E 30l
i nd

B

=)

[

=

<

()

=
—
.
=
=
(i
=
S

(w0
(X
1)
i
T
—
i
i

T

123456 789101 121314151617 1819 20 21 22 23 24 26 26 27 28 29 30 31 32 33 34 36 36 37 38 9 40 41 42 43 44 45 46 47 48 4950 51 52 53 54 55 56 57 58 5960 61 62 63 64 65 66 67 68 69 70 71 72 73 74 7576 77 78 79 80 81 82 83 84 85 86 8708 39 90 91 92 93 94 95 96
*A continuation record follows if the character in this column in non-blank and if a comma follows the last operand preceding this column,

Appendix A.Programming Examples A-7

System Date/Time Program

DTIM START O .
T T R R I T Y YT
* PROGRAM: DTIM - PRINT THE SYSTEM DATE/TIME

* DESC : THE PROGRAM USES THE MACRO $TOD TO ACCESS THE SYSTEM
* DATE AND TIME, IT PRINTS THEM IN THE FORMAT

* TIME = HH.MM

* DATE = MM/DD/YY

* INPUT : SYSTEM DATE AND TIME

OUTPUT : PRINT DATE AND TIME *
Ry I)

EE R Y Y R R R TR E TR Y X
* ALLOCATE THE PRINTER FILE *
LR R R R RS TS S E RS S SRS EE SRS SRR RS SRS E SRR R R RS RS E R SRS AR SRR EEEEEERESS)
. ,

* ¥ X ¥ ¥ *

*

SALOC DTF-PRT ALLOCATE THE PRINTER FILE

EJECT
*
R T L R T X,
* OPEN THE PRINTER FILE ‘ *

EEX R R R RS R XSS SRR LRSS AR A E RS SRR RS R AR S E SRS AR SRR SRR RS EREREEEEERESEERERSESS
*

$OPEN DTF-PRT OPEN THE PRINTER FILE
EJECT .

A-8

LR EEE SRR RS SR SRR RS SR RS S R RS AR RS R R R R RS R EEEEEESE SRR EREEEEEREESE RS
* GET THE TIME/DATE AND PRINT THEM *
khkkkkhkkhhkkhkhkkkhkhhhkhkhkhkhkhkhhhkhhkhkhhkhhhkhhhkhhhkhkhkkhkhkhkhhkhkhhkhhkhhkhkhhkhkhhhkdkhkhhkhkhhkhkhhkkkx
*

$TOD TRB-TIMDAT CALL MACRO
MVC PTIME(2),$TRBTIME-2(,XR2) GET MINUTES
MVC PTIME-3(2),$TRBTIME-4(,XR2) GET HOURS
MVC PDATE(2) ,STRBDATE (,XR2) GET YEAR

MVC PDATE-3(2),$TRBDATE-2(,XR2) GET DAY
MVC PDATE-6(2),$TRBDATE-4(,XR2) GET MONTH

MVC PRTBUFL+5(6) ,DTIME MOVE TIME DESC TO PRINTER BUF
MvC PRTBUFR(5) ,PTIME MOVE THE TIME TO PRINTER BUFF
SPUTP DTF-PRT PRINT THE TIME

MVC PRTBUFL+5(6) ,DDATE MOVE DATE DESC TO PRINTER BUF
MVC PRTBUFR(8) ,PDATE MOVE THE DATE TO PRINTER BUFF
$PUTP DTF-PRT PRINT THE DATE

EJECT :

*
AKhkkhkkhkhkAhkAhkIAhkkIRkhrhIkRhkkkAk Xk krAhhkhbhkhkhhkdhkdohkhhkhkhkhkrhrhbhrrkhkdhkrhkdhkhkrhkhrkrohhkhkrdhdk
* CLOSE THE PRINTER FILE AND GO TO END OF JOB *
kkkkkhkhkkhkkkhkkkkhkhkhkhhkhhkhkhhkkhkhhkhkhkhhkhkhkhkhkdhhkhkhkhhkhkhkhkkhkhhhhkkdhkhhhhkhkhkkhhkhkhhhhxdhkxd
*

$CLOS DTF-PRT CLOSE THE PRINTER FILE
SEOJ

*
RS R EE R SRR EEE LSRR RS SR R EEEEEEREESEEEEREREEEEEEEREREREEREEEEES SRR EEEEEEEEE]

* DEFINE THE DATA AREAS *
T I T T Ty

*
PRT $DTFP NAME-PRTFILE,RCAD-PRTBUFL, IOAREA~PRTIO,RECL-20,SPACEB-1

Appendix A Programming Examples

A-9

* :
PRTBUFL EQU * PRINTER BUFFER

PRTBUFR DC XL20'00" PRINTER BUFFER INITIALIZED
*
PRTIO EQU * PRINTER INPUT/OUTPUT
DC XL20'00"' PRINTER INPUT/OUTPUT INITIALIZED
* : .
DTIME DC CL6'TIME =' TIME DESCRIPTION
DDATE DC CL6'DATE =' DATE DESCRIPTION
PTIME DC cLs' . ! ‘ TIME FIELD
PDATE DC cLg' / /! "~ DATE FIELD
*) .
XR1 EQU 1 ~ INDEX REGISTER 1
XR2 EQU 2 L INDEX REGISTER 2
EJECT
* . . .)
TIMDAT $TRB V-ALL o MACRO FOR TIME/DATE REQUEST BLOC
EJECT o a -
* o
$DTFO PRT-Y GENERATE DTF OFF-SETS
END : ’

A-10

Workstation and Print Program

WSASM START O SET LOCATION COUNTER VALUE

PRINT NOGEN
e T Ty Xy
* PROGRAM: WSASM - WORK STATION OPERATION
* DESC : THIS PROGRAM ASSUMES THE EXISTENCE OF A DISPLAY FORMAT
* 'FMTNM' IN A FORMAT LOAD MEMBER 'WSFMT'.
* THE PROGRAM ISSUES A 'PUT AND GET' OPERATION TO THE
* WORK STATION MANAGEMENT WHICH PUTS OUT A DISPLAY SCREEN
* AND PASSES THE INPUT DATA FROM THE SCREEN TO THE
* PROGRAM. THE PROGRAM WILL THEN PRINT OUT THE SCREEN
* INPUT. THE ABOVE PROCESS CONTINUES UNTIL THE WORK
* STATION OPERATOR INDICATES SO ON THE DISPLAY SCREEN.
* INPUT : THERE ARE FOUR INPUT FIELDS FROM THE DISPLAY FORMAT
* AN EOJ INDICATOR - 1 BYTE
* 'Y' IF END OF JOB IS DESIRED
* NAME FIELD - 3 BYTES
* STREET FIELD - 19 BYTES
* CITY FIELD - 20 BYTES
* OUTPUT : THE NAME FIELD, STREET FIELD, AND CITY FIELD FROM THE
* SCREEN INPUT WILL BE PRINTED. '
* ENTRY : DISPLAY FORMAT 'FMTNM' HAVE BEEN CREATED AND COMPILED.
* EXIT : NORMAL
B T

* CONSTANTS, BUFFER, AND EQUATES *

dkkhhhkhkhhkhhhhhhhhhkhhhhkhkhhhhhdhhhhhhhbhhbhkhhhhhdhhhhhhdhkhhohkrhxhhhrhkxk

¥k % ¥ Gk F % ¥ X X F ¥ % X F % ¥ ¥ F

Appendix A.Programming Examples A-11

XR2

*

*

PRTDTF

*

PRTBUF
PRTNM

PRTST

A-12

SPACE
EQU
SPACE

SPACE
$DTFO

EJECT

SPACE
EQU
$DTFP

SPACE

SPACE
ORG
EQU
DS

DS

DS

DS

INDEX REGISTER 2

DTF DISPLACEMENTS ~ = = *

DISPLACEMENTS FOR PRINTER - c
DISPLACEMENTS FOR WORK STATIONS

1
2
2

*
1
PRT-YES,
WS-YES

*
1

*

RCAD-PRTBUF,
IOAREA~-PRTAREA,
NAME-PRTFILE,
CHAIN-WSDTF,
RECL-7O

2

*

1
*, 8
*
CL10
CL3
CL7

‘CL19

fu

PRINTER DTF R

kkkkhkkhdkhkhkhhhhhhhhhkbhhdbrdbdrkrrrbhrhhd

ADDR OF LEFMOST BYTE OF PRT DTF
ADDRESS OF LOGICAL BUFFER
ADDRESS OF PHYSICAL BUFFER

NAME OF PRINT FILE

POINTER ‘TO WORK STATION DTF
RECORD LENGTH

[oXoNoXe!

) LOGICAL PRINT BUFFER B
khkkkkkkkkkhhkhhhhhhhhhhrkhhhhhhrkrhdd

SET LOCATION COUNTER TO 8 BYTE BOUNDARY
. POINTER TO LEFT BYTE OF PRT BUFFER
' BUFFER POSITIONAL PADDING

NAME FIELD

' POSITIONAL PADDING

STREET: FIELD -

PRTCT

*

PRTAREA

* * ¥ * ¥ %

WSDTF

* ¥ X ¥ X ¥

WSINDX

DS
DS
SPACE

SPACE
EQU
DS

DS
EJECT

SPACE
EQU
$DTFW

SPACE

SPACE
EQU
DS

CL11

POSITIONAL PADDING

CL20 CITY/STATE FIELD
2 _
khkkkkkkhkhkhkhkhkhhkhkhkhkhhkhhkhkkkhkkhkkkhkkhkkkk
* PHYSICAL PRINT BUFFER *
d ke kK ok Kk dkodk ok ok ok ok ok kk ok ok kodkdkddkdodkdkokkkkkdkkkkkk
1
* LEFT ADDRESS OF PHYSICAL PRINT BUFFER
CL70 PHYSICAL PRINT BUFFER
CL19 + ROOM FRO IOB
khkkkhkkhkhkhkhkhkhkhkhkkhkhkkkhkhkhkkhkkkkkkkkkkkk
* *
* WORK STATION *
* DTF *
* *
Khkkhkhkhkhkhkhkkkkhkhkhkhkhkkkhkhkkhkkhhkkhhkkhkhhkkkkk
1 ,
* WORK STATION DTF
MEMBER-WSFMT, FORMAT LOAD MEMBER NAME c
INLEN-43 TOTAL LENGTH OF ALL INPUT FIELDS
2 , ‘

* *
* WORK STATION INDEX AREA AND *
* LOGICAL BUFFERS *
* *
kkhkkhkkhkhkhkhhhkhkhhkhhkhkhkkhkhkhhkhhkkhkkkhkkkkk
1
* WORK STATION INDEX AREA
CL16 EACH FORMAT REQUIRES 16 BYTES

Appendix A.Programming Examples

A-13

SPACE 2 e o
ORG *,8 . LOC CTR'SET TO 8 BYTE BOUND FOR GET OP

WSLBUF EQU * ' _LEFT -ADDR'WORK STATION LOGICAL BUFFER
WSIND DS CL1l:" '~ " WS OPERATOR END OF JOB INDICATOR
NAME DS CL3 " \NAME INFORMATION STORAGE
STREET DS CL19 " . ADDRESS INFORMATION STORAGE
CITY DS CL20 ADDRESS INFORMATION STORAGE
EJECT ’

* ' MAINLINE ROUTINE ' *
khkhkkhkhhkhkhhkdbhhhkdhhkhkhhkrhhhhhhkrhhhbhkrhhhdhhhhhrhbhhkhddhrhkdbhrhkhdrhkdohhrdrrhokdrhkdx
SPACE 1 P :
START $ALOC DTF-PRTIDTF ALLOCATE PRINTER
; $OPEN DTF-PRTDTF = OPEN PRINTER
NXTREC B GETWS GET RECORD FROM WORK STATION
B PRINT GO MOVE DATA TO PRINT BUFFER
CLI EOJIND,X'O1l' PROGRAM END OF JOB INDICSATOR ON?
BNE NXTREC NO - GO PROCESS NEXT RECORD
$CLOS DTF-PRTDTF ' CLOSE PRINTER
$EOJ GO TO END OF JOB
SPACE 2
IR AR EEEEE R R RIS EEEE S SRR SRS E SRR AR AR EREREEEEEREEEEERESEEE]
* ROUTINE 1 - PRINT ROUTINE *
hhkkhkhkhkhkhkhhkrhhkhhhhhhddrdhkdkdkhhkhkhhkhkkhhhhkhkdhhodkhhhhkhkhhkhbhhodkhkhkrhhkhrhhkrxhhkhrdxk
SPACE 1
PRINT ST RETURN1+3,ARR STORE RETURN ADDR
USING PRTBUF,XR2 SYMBOLVALUE TO USE IN DISP CALC
LA PRTBUF,XR2 LOAD @ PRT BUFFER INTO BASE REGISTER
B CLRBUF GO CLEAR PRINT BUFFER
MVC ~ PRTNM(3,XR2),NAME = MOVE NAME TO NAME FIELD

MVC PRTNM(19,XR2),STREET MOVE ADDRESS TO STREET FIELD

A-14

MvC PRTCT(20,XR2) ,CITY MOVE CT/STATE TO CITY FIELD

DROP XR2 STOP BASE DISP CALCULATION
$PUTP DTF-PRTDTF, POINT TO PRINTER DTF o
SKIPB-20, SKIP TO LINE 20 BEFORE PRINTING c
SPACEA-2 SPACE TWO SPACES AFTER PRINTING
RETURN1 B *ox RETURN TO CALLER'S NSI
SPACE 2
khkkkkkkkhhhkhkkhhkhkhhkhhkhhkhhhhkkhkkhkhkhhkhhhkhkkhkhkhhkhhkhkhkhkkhkkkkhhhkhkdhkhhhkrkhkhkk
* ROUTINE 2 - CLEAR BUFFER *
kkkhkhhkhkhhkkhdhhhkhhdhhhhhkhhkrhhhhhkhhkhrhhohhkkhhhhhhkhhkhhhhhhhhhhhhkhhhkhkhkhdhk
SPACE 1 , :
ARR EQU 8 ADDRESS RECALL REGISTER VALUE
CLRBUF ST RETURN2+3,ARR SAVE CALLER'S RETURN ADDRESS
MVI PRTCT,BLANK PUT BLANK IN RTMOST POS OF BUFFER
MVC PRTCT-1,PRTCT(69) PROPAGATE THRU REST OF BUFFER
RETURN2 B *ok RETURN TO CALLER'S NSI
BLANK EQU X'40'
EJECT
* khkkkhhkhkhhkkkhhhhhkkhhkhhhkkhhkhkhhkhkhkhhhhhhk
* * *
* * PUT AND GET FROM DISPLAY STATION *
* * CALL TO WORK STATION MANAGEMENT *
* * *
* hkkkkhkkhkhkhhhkhkhhhkhhhkhhkkhhkhhkhhkhhkhhkhkkhkkdhkkk
SPACE 1
GETWS ST RETURN3+3,ARR STORE RETURN ADDR
$WSIO DTF-WSDTF, ADDRESS OF LEFT BYTE OF WS DTF c
OPC-PTG, PUT UP FORMAT AND GET RECORD c
INLEN-43, MAX AMOUNT OF DATA FROM WS c
RCAD-WSLBUF, LEFTMOST ADDR OF WS BUFFER c
FORMAT-FMTNM FORMAT NAME IN LOAD MEMBER
CLI WSIND,C'Y' END OF JOB IND BY OPERATOR?
BNE RETURN3 NO - GO PROCESS THE NEXT RECORD
SBN EOJIND,B'00000001' YES - SET PROG END OF JOB INDICATOR
RETURN3 B *k RETURN TO CALLER'S NSI
EOJIND DS BL1 PROGRAM END OF JOB INDICATOR
END START PROGRAM ENTRY POINT

'Appendix A.Programming Examples A-15

The program uses the following display format:

(| A

SAMPLE DISPLAY FORMAT

_END OF JoB YES - Y

NO = ANY CHARACTER
NAME......
STREET....
CITY......

ENTER - TO INPUT DATA

This display was created from the following format listing:
WSEFMT S FMT 11/09/84 14.38 000003 ‘

SFMTNM ,

DFLO001 21 630Y CSAMPLE DISPLAY FORMAT
DFL0O002 10 9ley CEND OF JOB

DFL0OO003 1 929 Y

DFL0004 7 949y " CYES - Y

DFL0OO0O0S5 191049Y CNO - ANY CHARACTER
DFLO0006 101216Y CNAME......

DFLO0O0O7 31229 Y Y i

DFL0008 10141e6Y CSTREET....

DFL0O009 191429 Y

DFLOO10 101616Y CCITY......

DFL0011 201629 Y

DFL0012 212018Y CENTER - TO INPUT DATA

A-16

Alternative Index and Noncontiguous Keys: Program

This is a sample program that illustrates some of the features of disk support.
This program does a keyed access to retrieve a record by key from a file that has
a 39 byte noncontiguous key. The program assumes the existence of a file that
has three noncontiguous keys. This file was created as a sequential file by a
COBOL program and had an alternative index built using the BLDINDEX
procedure. For more information on the BLDINDEX procedure, please refer to
the System Reference Manual, SC21-9020.

KEYASM START O
*

********‘**

* PROGRAM: KEYASM - KEYED ACCESS NONCONTIGUOUS AND GREATER THAN 29 BYTES *
* DESC : THIS PROGRAM ASSUMES THE EXISTENCE OF AN INDEXED FILE WITH AN *
* ALTERNATIVE INDEX WITH NONCONTIGUOUS KEYS. *
* THIS PROGRAM DOES AN INDEXED GET USING THE GENERALIZED ACCESS *
* METHOD (GAM) WITH A KEY *
* ' SMITH ' + 'LUMBERJACK '+ 'IC' + '1234567' *
* (SMITH LUMBERJACK ', 'IC' AND '1234567' ARE THE 3 *
* KEYS) *
* IF THE RECORD IS FOUND, IT IS PRINTED. *
* INPUT : INDEX FILE . y *
* ALTERNATIVE INDEX FILE WITH NONCONTIGUOUS KEY *
* FORMAT: *

Appendix A.Programming Examples A-17

* ; *
* INITIALS *
* \ | *
* 111111112222222222222222222234456666666 LAST NAME (KEY1l) *
* NAME OCCUPATION A | NUMBER OCCUPATION (KEY1l) *
* BLANKS BLANK *
* o ~ INITIALS (KEY2) *
* == == : BLANK , *
* KEY 1 ‘ NUMBER (KEY3) *
* C == ‘ *
* . KEY 2 *
* ======= . %
* KEY 3 *
* v *
* OUTPUT : PRINT THE RECORD ' *
* ENTRY : PROCEDURE THAT CREATES THE INDEX FILE THEN BUILDS THE INDICES *
* EXIT : NORMAL : *
* ERROR - THE KEY IS NOT FOUND *

khkkhhhkkhhhhkhkhhhhhhhhhhhhhhhhhhhhhkdhhhhhhhhrhhrbrbhhhhhdhhbhbhhhhhbbrdhhohkkhdhrdrkx
X E R E RS R R E SRS RS EE R R R R R R SRR R R R AR R R SRR AR SRR EESRER R R R R SRR ER R R ERES KRS

* ALLOCATE THE DISK AND PRINTER FILES ' *
e R e T
* v *
SALOC DTF-IND ALLOCATE THE DISK FILE
SALOC DTF-PRT ALLOCATE THE PRINTER FILE
EJECT :

*
R I I I I I I I T I I I

* OPEN THE DISK AND PRINTER FILES *

IR RS R E RS RS SRR LR R R RS AR R R R R R R R RS SRR LR EEREEREEEEEREEEEES]
* .

SOPEN DTF-IND OPEN THE DISK FILE

SOPEN DTF-PRT . OPEN THE PRINTER FILE
EJECT

A-18

khkkhkkhhkhkhkhhhkhhhkrhhkhhhhhhhhhhhhhhhhdhkhkhhkhdhhdhhhhhhhdhhohhhhhhhkhhhhrhrrkrhhhhhhhhk

* GET THE RECORD FROM THE INDEXED FILE *
L Yy
*

'MVC PRTBUFR(80) ,IMSG INFO MSG: INDEXED FILE

$SPUTP DTF-PRT PRINT THE MSG

$GETD DTF-IND,OP-KEY,NRF-NOFOUND GET THE RECORD

MVC ~ PRTBUFR(39),IDSKBUFR MOVE THE RECORD TO PRINTER BUF

$PUTP DTF-PRT PRINT THE RETRIEVED RECORD

MVC ~ PRTBUFR(80),SMSG INFO MSG: TEST SUCESSFUL

$PUTP DTF-PRT PRINT THE MSG

EJECT
khkhkkhkhkkhhhhhhkhhhhkhhkhhhkhkhhhhhdhhhhhkhkkhhhkhhhhhkhhhhhhkhkhhkhhhrkhhdihhhkhkhhhkhhhhrhhhkk
* CLOSE DISK AND PRINTER FILES AND GO TO END OF JOB *
LRSS S A RS R R R EE R AR RS R RS R R R R RS SR SRR SRR R R LR EE SRR SRR RS ERREREREEEEE R TS S S
* .
EOJ $CLOS DTF-IND ‘ CLOSE THE DISK FILE

$CLOS DTF-PRT CLOSE THE PRINTER FILE

$EOJ : :

* ,

Ly T T T T T R P T T T s
* IF THE RECORD WAS NOT FOUND, PRINT THE "NOT FOUND" MESSAGE AND END *
ey s
*

NOFOUND MVC PRTBUFR(80) ,NMSG INFO MSG: TEST FAILED
SPUTP DTF-PRT PRINT THE MESSAGE
J EOJ
EJECT

Appendix A.Programming Examples A-19

hkhkAkkhkkhrRhhbhkAhhkhkd kA rrkrhdhbhhrrhbh bk khhkhhdhhhhhhhhdhdhrhdhrddkhhkdhhhdhhrhhhx

* DATA AREAS . *
R e R e T X xn

* DISK DTF - NOTE THAT THE RECORD LENGTH IS 39 BYTES. THE KEY DIS- *
* PLACEMENT (KDISP) IS X'FFFF'. THIS KDISP VALUE IS A *
* REQUIREMENT TO TELL THE SYSTEM THAT THIS FILE HAS *
* NONCONTIGUOUS KEYS. ALSO, THE KEY FOR THE DESIRED *
* RECORD IS PASSED IN DATA AREA INDKEY. NOTE THAT THE *
* KEY IS PASSED AS IF IT WAS A CONTIGUOUS FIELD WHEN *
* THE FILE CONTAINS BLANKS BEFORE AND AFTER 'IC'. *
khkhkhkdkhhhhkdkdohhhdhodhhkhhhhhhdhhhkhhhhrhhhhhhdhhbhhdhhdbhhkhhhhhhrhhkhhrdbrbhbkrdidkdhkx
*
IND $DTFD NAME-KEYNCK,ACCESS-GAM,KEY-0,RECL-39, X
INREC-IDSKBUFL, IOMSG-Y,KEYL-37 ,KDISP-NCKEY ,ORDER-KEY
* : ’
INDKEY DC CL8'SMITH' " INITIALIZE KEY - NAME
DC CL20 ' LUMBERJACK ' INITIALIZE KEY - JOB
DC CL9'IC1234567" INITIALIZE KEY - INITIALS, #
NCKEY EQU X'FFFF' A KEY DISPLACEMENT
*
PRT $DTFP NAME-PRTFILE,RCAD-PRTBUFL,IOAREA-PRTIO,RECL-80,SPACEB-1
* .
IDSKBUFL EQU * RECORD BUFFER
IDSKBUFR DC XL39'00" INITIALIZE RECORD BUFFER
*
PRTBUFL EQU * PRINTER BUFFER
PRTBUFR DC XL80' 00" INITIALIZE PRINTER BUFFER
*
PRTIO EQU ¥ PRINTER INPUT/OUTPUT AREA
DC XL80'00" INITIALIZE I/O AREA
R R R R X R R RS RS E SRS EE RS S S SRR L EE S AR R RS SRS X EEESEEEREEEERERES]
* PRINTED MESSAGES *
hhkkkhhhkrRhrhhhhkhhhhhhhhdhrhhhrhhhhrhkhhhkhhhhhhhrhkrhhhhhhhhbhhdhhhhdhrrhhkhhhdkdx
IMSG DC CL80' INDEXED FILE -- NONCONTIGUOUS KEY'
NMSG DC CL80'TEST FAILED!! RECORD NOT FOUND'
SMSG DC CL80'TEST SUCCESSFUL! ! RECORD FOUND'
EJECT
*
$DTFO DISK-Y,PRT-Y GENERATE THE DTF OFFSETS
END

A-20

Appendix B. Character Sets

The coded character set for EBCDIC (extended binary coded decimal interchange
code) and ASCII (American National Standard Code for Information
Interchange) in the following tables.

Appendix B.Character Sets B-1

EBCDIC

B-2

Main Storage Main Storage Bit Positions 0, 1,2,3

Bit Positions . ‘ r T)

4567 |o0o|1|23|4a]s5|6|7]|8]29 F
O(NUL|DLE|DS| [b | & | - 0
1 [SOH| DC1]|S0S / a | i 1
2 | sTX|DC2| Fs [SYN b | k 2

™
3 |ETX|DC3 c |1 3
. — [DC3
4 | PF | RES|BYP| PN d | m 4
5| HT| NL | LF | RS | e | n 5
—[EOB
6| LC| BS uc flo 6
| é d
PRE | ,
7 |DEL| IL EOT g | p 7
8 CAN ' h | q 8
9 | RLF| EM il or 9
A [sMm| cC | sm ¢ | v LVM
B| vT|cu1|cu2|cus $ |, | #
c| FF | IFs DAl < | * | % | @
D| crR|IGS[ENQINAK| (|) | _ |
E| so | IRs [ACK +]| >
F| st {ws{seclsu| 1 |1 | 2|~ EO
Duplicate Assignment

ASCII

Main Storage Main Storage Bit Positions 0, 1, 2, 3
Bit Positions
4,5,6,7 0 1 2 3 4 5 6 7 8 9 B Cc D E F
O [NUL|DLEjSP | O | @ | P p
1 [SOH|DC1| ! 1 A Q a q
2 |STX|DC2| " 2 B R b r
3 |ETX|DC3| # 3 c S c s
4 [EOT|DC4| $ | 4 | D | T | d t
5 [ENQ|NAK]| % 5 E U e u
6 |ACK|SYN| & 6 F Vv f v
7 |BEL|{ETB| ' 7 G w g w
8 | BS |[CAN| (8 H X h X
9| HT |EM |) 9 | Y i y
A | LF |suB| * J z i z
BIVT|ESC| + | ; | K | [|k | {
CIFF|Fs| , [<L |{N] 1|}
DICR|GS| - |=|M]|] |m]}
E | SO | RS > N 1 n ~
Flstjus| /| 2o _1|o |DEL

Appendix B.Character Sets

B-3

Appendix C. Assembler Coding Forms

Assembler Coding Form GX21-9279-2

IBM

L PROGRAM

1BM System/34, System/36 Assembler Coding Form

GX21.92191
Printed in U.S.A,

] rvema

l PROGRAMMER

lum«c‘ [

N A O N I

l PAGE

Tons

] INSTRUCTIONS Inu.u:“ll T

|

loF

|

STATEMENT

Label
123456 7 8]

Operation
011 12 13 14}

Operand
s,

16 17 18 19 20 21 22 23 24 25 26 27 78 29 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 80 61 62 63 64 85 66 67 68 69 7071 72 73 74 76 76 77 78 79 80 A1 82 83 34 85 86 97

Remarks

Bequence

99 50 91 92 93 94 9596|

L

L

123456 2891011213 14151617 1819 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 36 37 30 39 40 41 42 43 44 45 46 47 4B 49 50 51 53 53 54 55 56 67 58 6960 61 62 63 64 85 66 67 68 69 70 71 7273 74 78 76 77 787980 41 82 43 84 86 86 8765 B8 90 91 92 53 94 95 4

A continuation record follows if the character in this column in non-blank and if a comma follows the last operand preceding this column.

Appendix C.Assembler Coding Forms

C-1

C-2

Notes:

Appendix D. Assembler Machine Instruction Formats

Assembler Instruction Formats

Op Code
Two-Add 1 (0 d 1/0p d 2) One Address
Direct/ |Direct/ |Direct/ |XR1/ XR1/ XR1/ XR2/ XR2/ XR2/
Mnemonic | Function Direct | XR1 XR2 Direct XR1 XR2 Direct XR1 XR2 Direct XR1 XR2 Control
A Add to register 36 76 B6
ALC Add logical character OE 1E 2E 4E 5E 6E 8E 9E AE
AZ Add zoned decimal 06 16 26 46 56 66 86 96 A6
BC Branch on condition co [»]0) EQ
BC Branch on ARR FO
CLC Compare logical character 0D 1D 2D 4D 5D 6D 8D 9D AD
(o8] Compare logical immediate 3D 7D BD
ED Edit 0A 1A 2A 4A 5A 6A 8A 9A AA
ITC Insert and test characters 0B 1B 28 48 58 68 88 98 AB
JB Jump backward F1
JC Jump on condition F2
L Load register 35 75 85
LA Load address Cc2 D2 E2
LPMR Load program mode register Fé
MvC Move characters oc 1c 2C ac 5C 6C 8C ' 9c AC
MVI Move logical immediate 3C 7C BC
MvVX Move hex character 08 18 28 48 58 68 88 98 A8
S Sub from register 37 77 87
SBF Set bits off masked 3B 78 BB
SBN Set bits on masked 3A 7A BA
SLC Subtract logical character OF 1F 2F 4F 5F 6F 8F 9F AF
St Subtract logical immediate 3F 7F BF
SRC Shift right character 3E 7E BE
ST Store register 34 74 B4
svC Supervisor -call F4
Sz Subtract zoned d | 07 17 27 47 57 67 87 97 A7
TBF Test bits off masked 39 79 B9
TBN Test bits on masked 38 78 B8
XFER Transfer control F5
ZAZ Zero and add zoned 04 14 24 44 54 64 84 94 Ad

Appendix D.Assembler Machine Instruction Formats

D-1

D-2

Notes:

Appendix E. Disk Data Management Considerations

Access Methods

Figure E-1 lists the actions caused by Allocate and Open when the various access
methods are used to access the three types of files. The following situations are
covered on the chart:

o The combination of the file type and the access method is allowed. These
situations are indicated by a blank entry in the chart.

e The combination of the file type and the access method is not allowed either
by allocate or by open. For these situations, the issuer and the message
number of the message issued are given in the chart.

e In several situations, a load-to-old will occur to the file. Load-to-old includes
the following:

— The contents of the old file are destroyed.

— A new file is created using the current file’s location and space.

— The new file’s type is determined by the access method and other
parameters specified in the DTF.

For these situations, load-to-old and the type of file created — sequential, direct, or
indexed —are given in the chart.

Note: Please refer to the Distributed Data Management Guide, SC21-8011 for
remote file considerations when using Assembler.

Appendix E.Disk Data Management Considerations E-1

SEQUENTIAL FILES

DISP Not
Specified, DISP Not
o DISP-SHRMM or | Existing Specified,
DISP-OLD |DISP-NEW ‘| DISP-SHRRR ‘| DISP-SHRRM |DISP-SHRMR |DISP-SHR File New File
CG Access Sequential Aloc 1356
File Created
CU Access Sequential Open 2217 Open 2217 Aloc- 1356
File Created) ;
CA Access Sequential |Open 2217 Open 2217 Sequential
File Created File Created
CO Access Load-to-old |Sequential [Aloc 1360 Aloc 1360 “|Aloc 1360 Aloc 1360 Aloc 1359 Sequential
Sequential File Created ‘ : File Created
File Created
DG/DGA Access Direct File Aloc 1356
Created
DU/DUA Access Direct File |Open 2217 Open 2217 Aloc 1356
Created
DO/DOA Access Load-to-old | Direct File |Aloc 1360) Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 | Direct File
Direct File Crgated Created
Created)
IR Access Open 2203 [Indexed File |Open 2203 Open 2203 Open 2203 Open 2203 Open 2203 - | Aloc 1356
Created
IRU Access Open 2203 |Indexed File |Open 2217 Open 2217 Open 2203 Open 2203 Open 2203 |Aloc 1356
i : . Created ~
1IA/IRA/IRUA Access Open 2203 |Indexed File |Open 2217 Open 2217 Open 2203 Open 2203. Open 2203 |Aloc 1356
Created))
10 Access Load-to-old |Indexed File |Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Indexed File
Indexed File |Created Created
Created
IS Access Open 2203 |Indexed File |Open 2203 Open 2203 Open 2203 Open 2203 Open 2203 |Aloc 1346
Created
ISU Access |Open 2203 |Indexed File |Open 2217 Open2217 Open 2203 Open 2203 Open 2203 |Aloc 1356
Created

Figure E-1. (Part 1 of 6). Access Method and File Type Combinations

SEQUENTIAL FILES

DISP Not
Specified, |DISP Not
DISP-SHRMM or | Existing Specified,
DISP-OLD |DISP-NEW |DISP-SHRRR |DISP-SHRRM |DISP-SHRMR |DISP-SHR File New File
Indexed File

ISA/ISUA A Open 2203 |Created Open 2217 Open 2217 Open 2203 Open 2203 Open 2203 |Aloc 1356

GAM Access Sequential
ORDER-RECORD File Created |Open 2217 Open 2217 Aloc 1356

GAM Access
ORDER-RECORD, Direct File
AEOD-N Created Open 2217 Open 2217 Aloc 1356

GAM Access
ORDER-RECORD Sequential
AEOD-N, ARRN-N File Created |Open 2217 Open 2217 Aloc 1356

GAM Access
ORDER-RECORD,

AEOD-N, ARRN-N, Direct File

GSEQ-N Created Open 2217 Open 2217 Aloc 1356
GAM Access '

ORDER-RECORD,

AEOD-N, ARRN-N, Sequential
GSEQ-N, GRAN-N File Created |Open 2217 Open 2217 - Aloc 1356

GAM Access Load-to-old
ORDER-RECORD, Sequential | Sequential . i Sequential
CREATE-S File Created |File Created |Aloc 1360 Aloc 1360 Aloc 1360 - Aloc 1360 Aloc 1359 File Created

GAM Access Load-to-old
OWNER-RECORD, Direct File Direct File Direct File
CREATE-D Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Created

GAM Access Load~to-old
ORDER-RECORD, Indexed File |indexed File , Indexed File
CREATE-| Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Created

GAM Access indexed File
ORDER-KEY Open 2203 |Created Open 2217 Open 2217 Open 2203 Open 2203 Open 2203 | Aloc 1356

Load-to-old

GAM Access Sequential | Sequential Sequential
ORDER-KEY, File Created |File Created File Created
CREATE-S Open 2203 |Open 2203 |Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Open 2203

Load-to-old o '

GAM Access Direct File Direct File Direct File
ORDER-KEY, Created Created Created
CREATE-D Open 2203 |Open 2203 |Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Open 2203

GAM Access Load-to-old
ORDER-KEY, Indexed File |indexed File Indexed File
CREATE-I Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Created

Figure E-1. (Part 2 of 6). Access Method and File Type Combinations
Appendix E.Disk Data Management Considerations E-3

DIRECT FILES

DISP Not
Specified, |DISP Not
DISP-SHRMM or | Existing Specified,
DISP-OLD |DISP-NEW |DISP-SHRRR |DISP-SHRRM |DISP-SHRMR |DISP-SHR File New File
Sequential
CG A File Created Aloc 1356
Sequential
CU Access File Created |Open 2217 Open 2217 Aloc 1356
Sequential - . Sequential
CA Access Open 2202 |File Created |[Open 2217 Qpen 2217 Open 2202 Open 2202 Open 2202 | File Created
Load-to-oid ' '
Sequential Sequential Sequential
CO A File Created |File Created | Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 File Created
Direct File ’ '
DG/DGA Access Created Aloc 1356
Direct File
DU/DUA Access Created Open 2217 Open 2217 Aloc 1356
Load-to-old
Direct File Direct File . Direct File
DO/DOA Access Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 [Created
Indexed File
IRA Open 2203 . |Created Open 2203 Open 2203 Open 2203 Open 2203 Open 2203 | Aloc 1356
Indexed File ‘
IRU Access Open 2203 |Created Open 2217 Open 2217 Open 2203 Open 2203 Open 2203 | Aloc 1356
Indexed File
1A/IRA/IRUA Access Open 2203 |Created Open 2217 Open 2217 Open 2203 QOpen 2203 Open 2203 |Aloc 1356
Load-to-old
Indexed File |Indexed File : Indexed File
10 Access Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Created
Indexed File
IS Access Open 2203 |Created Open 2203 Open 2203 Open 2203 Open 2203 Open 2203 | Aloc 1356
i Indexed File i
ISU Access Open 2203 |Created Open 2217 Open 2217 Open 2203 Open 2203 Open 2203 | Aloc 1356
Indexed File
ISA/ISUA Access Open 2203 |Created Open 2217 Open 2217 'Open 2203 Open 2203 Open 2203 | Aloc 1356

Figure E-1. (Part 3 of 6). Access Method and File Type Combinations

E-4

DIRECT FILES

DISP Not
Specified, DISP Not
DISP-SHRMM or | Existing Specified,
DISP-OLD |DISP-NEW |DISP-SHRRR |DISP-SHRRM |DISP-SHRMR |DISP-SHR File New File
GAM Access Sequential
ORDER-RECORD File Created |Open 2217 Open 2217 Aloc 1356
GAM Access
ORDER-RECORD, Direct File
AEOD-N Created Open 2217 Open 2217 Aloc 1356
Gam Access
ORDER-RECORD, Sequential
AEOD-N, ARRN-N File Created |Open 2217 Open 2217 Aloc 1356
GAM Access
ORDER-RECORD,
AEOD-N; ARRN-N, Direct File
GSEQ-N Created Open 2217 Open 2217 Aloc 1356
GAM Access
ORDER-RECORD,
AEOD-N, ARRN-N, Sequential
GSEQ-N, GRAN-N File Created |Open 2217 Open 2217 Aloc 1356
GAM Access Load-to-old
ORDER-RECORD, Sequential | Sequential Sequential
CREATE-S File Created |File Created |Aloc 1360 Aloc 1360 Aloc 1360 Aioc 1360 Aloc 1359 File Created
GAM Access Load-to-old
ORDER-RECORD, Direct File Direct File Direct File
CREATE-D Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Created
GAM Access Load-to-old
ORDER-RECORD, Indexed File |Indexed File Indexed File
CREATE-I Created Created Aloc 1360 Aloc 1360 - | Aloc 1360 Aloc 1360 Aloc 1359 Created
GAM Access Indexed File
ORDER-KEY Open 2203 |Created Open 2217 Open 2217 Open 2203 Open 2203 Open 2203 |Aloc 1356
Load-to-old
GAM Access Sequential Sequential Sequential
ORDER-KEY, File Created |File Created File Created
CREATE-S Open 2203 |Open 2203 |Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Open 2203
Load-to-old
GAM Access Direct File Direct File Direct File
ORDER-KEY, Created Created Created
CREATE-D Open 2203 |Open 2203 |Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 13569 |Open 2203
Load-to-old
GAM Access Indexed File {Indexed File Indexed File
ORDER-KEY, CREATE-| |Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Created
Figure E-1. (Part 4 of 6). Access Method and File Type Combinations
Appendix E.Disk Data Management Considerations E-5

INDEX FILES

DISP Not
Specified, |DISP Not
DISP-SHRMM or | Existing Specified,
DISP-OLD |DISP-NEW |DISP-SHRRR |DISP-SHRRM |DISP-SHRMR |DISP-SHR File New File
Sequential
CG Access File Created Aloc 1356
Sequential :
CUA File Created |Open 2217 Open 2217 Aloc 1356
Sequential Sequential
CA Access File Created |Open 2217 Open 2217 File Created
) Load-to-old
Sequential | Sequential Sequential
CO A File Created |File Created |Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 File Created
Direct File
DG/DGA Access Created Aloc 1356
Direct File
DU/DUA A Created Open 2217 Open 2217 Aloc 1356
Load-to~old
Direct File Direct File Direct File
DO/DOA Access Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Created
Indexed File
IRA Created Aloc 1356
Indexed File
IRU Access Created Open 2217 Open 2217 Aloc 1356
Indexed File
1A/IRA/IRUA Access Created Open 2217 Open 2217 Aloc 1356
Load-to-old
Indexed File |Indexed File Indexed File
10 Access Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Created
Indexed File
IS A Created Aloc 1356
indexed File
ISU Access Created Open 2217 Open 2217 Aloc 1356

Figure E-1. (Part 5 of 6). Access Method and File Type Combinations

INDEX FILES

DISP Not
Specified, |DISP Not
DISP-SHRMM or | Existing Specified,
DISP-OLD |DISP-NEW |DISP-SHRRR |DISP-SHRRM |DISP-SHRMR |DISP-SHR File New File
ISA/ISUA |Indexed File
A Created Open 2217 Open 2217 Aloc 1356
GAM Access Sequential
ORDER-RECORD File Created |Open 2217 Open 2217 Aloc 1356
GAM Access
ORDER-RECORD, Direct File
AEOD-N Created Open 2217 Open 2217 Aloc 1356
GAM Access
ORDER-RECORD, Sequential
AEOD-N, ARRN-N File Created |{Open 2217 Open 2217 Aloc 1356
GAM Access
ORDER-RECORD,
AEOD-N, ARRN-N, Direct File
GSEQ-N Created Open 2217 Open 2217 Aloc 1356
GAM Access
ORDER-RECORD,
AEOD-N, ARRN-N, Sequential
GSEQ-N, GRAN-N File Created |Open 2217 Open 2217 Aloc 1356
GAM Access Load-to-old
ORDER-RECORD, Sequential | Sequential Sequential
CREATE-S File Created |File Created |Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 File Created
GAM Access Load-to-old
ORDER-RECORD, Direct File Direct File Direct File
CREATE-D Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Created
GAM Access Load-to-old
ORDER-RECORD, indexed File |indexed File Indexed File
CREATE-| Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Created
GAM Access Indexed File
ORDER-KEY Created Open 2217 Open 2217 Aloc 1356
GAM Access Load-to-old
ORDER-KEY, Sequential | Sequential Sequential
CREATE-S File Created |File Created |Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 File Created
GAM Access Load-to-old
ORDER-KEY, Direct File | Direct File Direct File
CREATE-D Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Created
GAM Access Load-to-oid
ORDER-KEY, indexed File |Indexed File Indexed File
CREATE-1 Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Created
Figure E-1. (Part 6 of 6). Access Method and File Type Combinations
Appendix E.Disk Data Management Considerations E-7

Data Management Control Blocks and Interface Areas

To use data management to process disk files, you are required to provide storage
space for interface information.

DTF

The DTF is the major control block for communication between you and data
management. The DTF provides the information needed to allocate, open,
access, and close a file on a disk. It also contains pointers to other control blocks
and areas needed to interface with data management. The DTF must be available
to the system from the time it is allocated until it is closed, and must not be
moved or overlaid from the time it is opened until it is closed. The DTF is

78 bytes long for record (nonkeyed) accesses and 98 bytes long for keyed
accesses. For more information on generating a disk DTF, see SDTFD (Define
the File for Disk) in Chapter 5.

Input Record Area

When data is being read from disk through any type of get operation, you must
provide an input record area. This is the location in your program where
data management will place the record read from disk. This area can be the same
area as the output record area described below. The location of this area (as
specified in the DTF) can be changed at any time. This area corresponds to the
INREC parameter of the SDTFD macroinstruction.

Output Record Area

When data is being written to disk through an output, an add, or the output
portion of an update, you must provide an output record area which is the
location in your program where data management will get the record to write to
disk. This area can be the same area as the input record area described above:
The location of this area (as specified in the DTF) can be changed at any time.
This area corresponds to the OUTREC parameter of the SDTFD
macroinstruction.

Key Area

While processing under an indexed random input-capable access method, you use
the key area to provide to data management the key of the record to read from
disk. These access methods are IR, IRU, IRA, IRUA, and GAM with GRAN-Y
and order-key specified or assumed. The length of the key area must equal the
key length. This area corresponds to the KEY parameter of the $SDTFD
macroinstruction.

Key Limits Area

When you request the use of key limits by using the LIMIT-Y parameter of the
$DTFD macroinstruction, you must provide an area to contain the low and high
key limits. The length of this area must equal two times the key length. The
location of this area should not change after the file is opened. The low key is in
the left half and the high key is in the right half. Limits are established when the
first get-next operation is issued. This area corresponds to the HIGH parameter
of the $DTFD macroinstruction.

Label Return Area

When processing disk files, data management can return a file label when certain
conditions occur. If you want this file label returned, you must provide an 8-byte
label return area. The location of this area should not change after the file is
opened. A file label is returned in the area under the following conditions:

e Duplicate key in another index. An add or update operation would cause the
creation of a duplicate key in another index over the file, or in this index if
the file is being accessed by a nonkeyed access method. The label of the file
in which the duplicate would have been created is returned in the label area.

e Update key error. An update operation would cause a key to be changed in a
file that does not allow key updates. The label of that file is returned in the
label area.

® Permanent I/O error. The label of the file where the error occurred is
returned in the label area.

This area corresponds to the LABEL parameter on the $DTFD macroinstruction.

Appendix E.Disk Data Management Considerations E-9

Allocating and Opening the File CUT g

E-10

- Before processing data from any disk file, the file must be allocated (JALOC) and
- opened (OPEN). $ALOC:and $OPEN perform the following operations:

e - If the file is new, space for the file is reserved and initialized on the disk.

+ @ Tests:are performed to ensure that the access method and file organization are

compatible and that all necessary information about the file was provided.

"~ e Space in main storage (but not in your program) is allocated for buffers and

data management required control blocks: - The.control blocks are initialized.
— . The DTF is formatted to a postbpen state. -
For more information on the SALOC and $OPEN macroinstructions, see SALOC

(Allocate File or Device) and $SOPEN (Prepare a Device or File for Access) in
Chapter 5.

Accessing Records in a File

After the file is allocated and opened, you can begin accessing records in that file.
The interface between your program and data management is the same DTF that
was used for allocating and opening your file. Some fields in the DTF
communicate from your program to data management, some communicate from
data management to your program, some are bidirectional and communicate both
ways, and still others are for data management internal use only.

Figure E-2 describes the DTF fields that make up the data passed back and forth.
Each field in the DTF has a name as defined in the $DTFO macroinstruction
expansion. Those field names are used in Figure E-2 to identify specific DTF
fields. The length of each DTF field is given with the initial field description.
Several DTF fields are pointers or offsets to main storage areas in your program,
and are identified as such. All DTF fields not described in this figure are reserved
for internal data management use and should not be altered or otherwise used by
any calling program.

Appendix E.Disk Data Management Considerations E-11

Field
Name

Field
Description

Access
Methods
Applic-
able

Macro
Used

Key-
word
Used

Can Be
Altered
After
Allocate

Interf
To/[Fr

D/M

$F1DEV

Disk DTF device
code, 1 byte. Set by
the $SDTFD
macroinstruction to
hex AO to indicate
this is a disk DTF.

All

None

None

No

To

$F1CCQ

Completion code
qualifier, 2 bytes. In
certain error
situations, data
management issues
error messages to the
operator. If control is
returned to he
program, the number
of the message issued
is returned in this
field. '

All

None

None

Yes

From

$SF1UPS

External indicators
(UPSI), 1 byte. Used
to condition open files.
Masked against the
external switch settings
set by the // switch
OCL statement.

All

‘$DTFD

UPSI

No

To

$SF1CHB

DTF forward chain
field, 2 bytes. S
Contains a pointer to
the next DTF ina -
chain of DTFs if the
program chooses to
allocate, open or close
multiple DTFs with
one call. The last
DTF in the chain
should not specify the
CHAIN parameter.

All

SDTFD

CHAIN

No

To

Figure E-2 (Part 1 of 11). Disk DTF Field Description

Field
Name

Field
Description

Access
Methods

Applic- -

able

‘Used

‘Macro

| Key-
:| word

Used

Can Be
Altered
After

Allocate

Interf
To/Fr
Disk
D/M

SF10UT

Output Record area
address, 2 bytes.
Contains a pointer to
the output record area
in your program. Data
management gets the

| record to write to disk

from this area for
output, add, and
update operations.
This DTF field can be
changed at any time.
The output record
area address can be
the same as the record
area address (SF1INP)
described below.

GAM,
CA CO,
CU, DO
DOA,
DU .
DUA, IA,
10 ISA,
ISU’
ISUA,
IRA IRU,
IRUA

$DTFD

OUTREC

' Yes

To

$SF1CMP

Completion code, 1
byte. Set by data
management to

| indicate successful or

unsuccessful
completion of the
operation requested of
data management.

All

None

None

Yes

From

SF10PC

Operation code, 1
byte. Set by the
program to indicate
what operation data
management is to
perform.

All

§DTFD

| sPUTD

OP OP

Yes

To

$F1AT1

| Attribute byte 1, 1

byte. Defines in
general the type of
access, and the

-| operation codes

allowed under the
access method. The
other attribute bytes
(2-5) described below
can further define the
access and allowable
operation codes.

All

$DTFD

ACCES
GRAN
GSEQ
AEOD
ARRN -
UPDATE
‘DELETE

[N

No

To

Figure E-2 (Part 2 of 11). Disk DTF Field Description

Appendix E.Disk Data Management Considerations

E-13

Field
Name

Field
Description

Access
Methods
Applic-
able

Macro

.| Used

Key-
word
Used

Can Be
Altered
After
Allocate -

Interf

To/Fr
Disk -
D/M -

SF1AT2

Attribute byte 2, 1
byte. Further defines
the type of access.
Indicates if the access
is by record or key.
Indicates if this is
ACCESS-PSEUDO.
Indicates if the file has
been opened.

All

$DTFD

ACCESS.,
ORDER

No

To

SF1AT3

Attribute byte 3, 1
byte. Further defines
the type of access.
Indicates what type of
file to create
(sequential, direct, or
indexed) for output
accesses. Indicates if
data management
should ensure keys are
in ascending order
when keyed output or
add is done. Indicates
whether the relative
record number or
argument value for
ARRN, RRN, PLUS,
or MINUS operations
is binary or decimal.
Default for o
ACCESS-CG is binary
if SDTFD ARG
parameter is not
specified.
ACCESS-DGA
/DOA/DUA implies
binary RRNs/ values,
ACCESS-DG,
DO/DU implies
decimal RRNs/ values.
Indicates if the file
has been allocated.

Figure E-2 (Part 3 of 11). Disk DTF Field Description

E-14

Field
Name

Field
Description

Access
Methods
Applic-
able

Macro
Used

Key-
word
Used

Can Be
Altered
After
Allocate

Interf
To/Fr
Disk
D/M

SF1AT4

Attribute byte 4, 1
byte. Indicates whether
or not return
permanent disk errors
to the program.
Indicates whether to
allow option 2 on
permanent disk error
messages issued.
Indicates if key limits
are used for this keyed
access. Indicates if
data management is to
check if the requested
record is already
owned by the task.

All

$DTFD

IOMSG
RETURN
LIMIT
LOCKCK

No

To

$SF1RCL

Record length field, 2
bytes. Defines the
record length of the
records in the file
being accessed through
this DTF.

All

SDTFD

RECL

No

To

SFINAM

File name field. 8
bytes. Indicates the
name of the file being
accessed through this
DTF. The name
specified in the DTF
must be the same as
the name specified in
the NAME parameter
on the // FILE OCL
statement for the file.
The name is
left-justified in this
field.

All

$DTFD

NAME

No

To

Figure E-2 (Part 4 of 11). Disk DTF Field Description

Appendix E.Disk Data Management Considerations

E-15

The input record area
address can be the
same as the output
record area address
($F1OUT) described
previously.

Access Can Be Interf
; Methods , Key- Altered To[Fr
Field Field Applic- Macro word After Disk
Name Description able Used Used Allocate | D/M
$F1INP Input record area GAM, SDTFD | INREC | Yes To
address, 2 bytes. CG, CU, :
Contains a pointer to DG,
the input record area DGA,
in your program. Data | DU,
management places the | DUA, IS,
record read from the ISA, ISU,
disk in the area for all ISUA,
input operations. This IR, IRA,
DTF field can be IRU,
changed at sny time. IRUA

Figure E-2 (Part 5 of 11). Disk DTF Field Description

E-16

Field
Name

Field
Description

Access
Methods
Applic-
able

Macro
Used

Key-
word
Used

Can Be
Altered
After

Allocate

Interf
To/Fr

Disk

D/M

$SF1DBF

Data blocking factor,
2 bytes. Specifies the
number of records to
be moved between
main storage and disk
for each disk I/O
operation. A default
of 1 is assumed if the
$DTFD DBLOCK
parameter is not
specified. Allowed
blocking factors are
from 1 to 65535.
Buffer space is
reserved by the open
function based on this
factor, the index
blocking factor
($F1IBF described
below), the record
length, and the type of
access. The maximum
size buffer space is
45056. If the blocking
factors, record length,
and access type dictate
a buffer space larger
than the maximum
allowed, the buffer
space is set to 45056
bytes, and divided as
equally as possible
between data buffers
and index buffers (if

any).

All

$DTFD

DBLOCK

No

To

$F1IMD1

Modifier byte 1, 1
byte. Set by SGETD
LIMIT parameter to
indicate if new key
limits should be set by
data management for
this GET request.

GAM
(GSEQ-Y
and
ORDER
-KEY) IS,
ISU

$GETD

LIMIT

Yes

To

Figure E-2 (Part 6 of 11).

Disk DTF Field Description

Appendix E.Disk Data Management Considerations

E-17

Access | Can Be Interf
Methods Key- Altered To/Fr

Field Field Applic- Macro word After Disk .
Name Description able Used Used Allocate | D/M
$F1ARG | Argument field, 8 GAM None None Yes To/Fr

bytes. Relative record (GRAN-Y

number (RRN) or and

argument value. For | ORDER. -

certain I/O operations, | -RECORD)

the program is DG,

required to pass an DGA,

RRN or an argument DU,

value to data DUA,

management in the DO,

field. This value can DOA

be specified in binary

or in zoned decimal.

$F1RRNB, described

below, redefines this

field for decimal

values. See

descriptions following

for additional

information.
SF1RRNB | Binary argument field, | GAM None None Yes To/Fr

3 bytes. This field is (GRAN-Y

defined over the &

leftmost 3 bytes of the | ORDER

SF1ARG field, -RECORD)

described above. If DGA,

you are passing a - | DUA,

binary argument, place | DOA

it as a 3-byte number

in this field.See the

$DTFD ARG

parameter for

information on how to

specify that the

argument is in binary.
SF1RRND | Decimal argument GAM None None Yes To/Fr

field, 8 bytes. This (GRAN-Y

field is defined over and

the entire 8 bytes of ORDER-

the SF1ARG field, RECORD),

described above. If DG, DU,

you are passing a DA

decimal argument,

place it as an

unsigned, 8-byte

decimal number in this

field. See the SDTFD

ARG parameter for

information on how to

specify that the

argument is.in

decimal.

Figure E-2 (Part 7 of 11). .Disk DTF Field Description

E-18

Access : Can Be Interf
Methods Key- Altered To/Fr
Field Field Applic- Macro word After Disk
Name Description able Used Used Allocate | D/M
SF1FBL Feedback label offset All $DTFD | LABEL No To
field, 2 bytes. This
field is an offset from
the end of the DTF to
the leftmost byte of
the 8-byte feedback
label area in your
program. This area
must be after the
DTF. The last byte of
this area must be less
than 2048 bytes away
from the first byte of
the DTF. In some
situations, data
management can
return a file label in
this area.
SF1ATS Attribute byte 5, 1 None None None No -
byte. This attribute.
byte is for expansion
purposes only.
SFIKEY | Key area offset field,2 | GAM $DTFD | KEY No To
bytes. This field is an (GRAN-Y
offset from the last and
byte of the DTF to the | ORDER
first byte of the key -KEY)
area in your program. IR, IRA,
| The area length must IRU,
be equal to the key IRUA
length. This area must
be after the DTF. The
last byte of this area
must be less than 2048
bytes from the first
byte of the DTF. The
key area must contain
the key of the record
to.be read from disk
for indexed random
input-capable access
methods.
$F1KL Key length field, 2 GAM $DTFD | KEYL No To
bytes. This field (ORDER
contains the key length | -KEY),
of the file being 10, IS,
accessed through this ISA, ISU,
DTF. ISUA,
: IR, IRA,
IRU,
IRUA

Figure E-2 (Part 8 of 11). Disk DTF Field Description

Appendix E.Disk Data Management Considerations

E-19

is 0, the second is 1,
and so on. The
maximum
displacement is 4095
bytes.

Access Can Be | Interf
Methods Key- Altered To/Fr
Field Field Applic- Macro word After Disk
Name Description able Used Used Allocate | D/M -
$F1KD Key displacement GAM $DTFD | KDISP No To
field, 2 bytes. This (ORDER
field contains the -KEY),
displacement into the 10, IS,
record of the ISA, ISU,
rightmost byte of the ISUA,
key in the record. The | IR, IRA,
displacement of the IRU,
first byte in the record | IRUA

Figure E-2 (Part 9 of 11). Disk DTF Field Description

E-20

IBLOCK parameter is
specified. Allowed
blocking factors are
from 1 to 65535. The
actual blocking factor
may be larger because
the index buffer is
always a multiple of
256 bytes and thus
may hold more entries
than requested. (Index
entries do not cross
256 byte boundaries in
the index buffer.)
Buffer space is
reserved by SOPEN on
this factor, the data
blocking factor
($F1DBF described
above), the record
length, and the type of
access. Maximum size
buffer space is 45056
bytes. If the blocking
factors, record length,
and access type dictate
a buffer space larger
than the maximum
allowed, the buffer
space is set to 45056
bytes, and divided as
equally as possible
between data and
index buffers.

Access Can Be | Interf
Methods Key- Altered To/Fr
Field Field Applic- Macro word After Disk
Name Description able Used Used Allocate | D/M
- $SF1IBF Index blocking factor GAM $SDTFD |{IBLOCK {No To
field, 2 bytes. Gives (ORDER
the number of index -KEY),
entries (key length 10, ISA,
+3) moved between ISU,
main storage and disk ISUA,
for each I/O IR, IRA,
operation. Default is IRU,
1 if the SDTFD IRUA, IS

Figure E-2 (Part 10 of 11).

Disk DTF Field Description

Appendix E.Disk Data Management Considerations

E-21

" | Can Be*

Interf

your program. The
key limits area length
must be equal to two
times the key length.
This area must be
after the DTF. The
last byte of this area
must be less than 2048
bytes away from the
first byte of the DTF.
Use this field to pass
the low and high key
limits to data
management if this
access is keyed within
limits.

Access
Methods Key- Altered To/Fr
Field Field Applic- Macro word . After Disk
Name Description , able | Used Used | Allecate | D/M
SF1LIM | Key limits area offset - | GAM SDTFD | HIGH No To
field, 2 bytes. This { (GSEQ
field is an offset from- |and = -
the end of the DTF to | ORDER |
the leftmost byte of -KEY), |
| the key limits area in IS, ISU

Figure E-2 (Part 11 of 11).

E-22

Disk DTF Field Description

Completion Conditions

Figure E-3 describes all currently defined completion conditions, and the access
methods and I/O operations to which they apply. The completion condition
indicates whether the I/O operation was successful or not, and is returned to your
program by disk D/M in the completion code field (SF1CMP) in the DTF. The
labels and hex values generated by the SDTFO macroinstruction for the
completion conditions are used in Figure E-3.

Appendix E.Disk Data Management Considerations E-23

$GETD OP-PREV
parameter is attempting
to read before the first
record in the file. A
$GETD OP-NEXT
issued after a SGETD
OP-NEXT, which
received an EOF, also
received an EOF. A
$GETD OP-PREV
issued after a $GETD
OP-PREV which
received an EOF, will
also received an EOF.
This $SGETD
OP-READE is
attempting to read a
record whose key is not
equal to the key specified
by the key parameter in
the $SDTFD.

, Applicable Applicable
$DTFO Value | Completien Condition Access Operation
Label (hex) | Description Methods Codes
$SF1CCSUC | 40 Normal. The operation . All All

completed normally.
$SF1CCPER | 41 Permanent I/O Error. An | All except All except
unrecoverable software PSEUDO RELEASE
or hardware error
occurred. Refer to the
$DTFD IOMSG and
RETURN parameters
for message options that
can be requested for this
error. Also, if the
$DTFD LABEL
parameter is specified,
the file label is returned
~ | in the label return area.
$F1CCEOF | 42 End of File (EOF). This GAM Get NEXT,
$GETD OP-NEXT (GSEQ-Y), PREYV,
parameter is attempting CG, CU, IS, READE
to read past the last ISA, ISU,
record in the file, or this ISUA

Figure E-3 (Part 1 of 6). Completion Condition Descriptions

E-24

is invalid for the access
method in the DTF or
for the type of file being
accessed. SGETD,
OP-KEY/KEYEA/KEYA
/RRN/FIRST/LAST
were issued, but the
access is not
random-get-capable.
$GETD,
OP-NEXT/PREV/PLUS/
MINUS issued, but the
access is not
sequential-get-capable.
$GETD, LIMIT-Y was
issued, but LIMIT-Y
was not specified on
$DTFD
macroinstruction.
$GETD, OP-UPDATE
were issued, but access is
not update-capable.
$GETD, OP-DELETE
issued, but access or file
is not delete-capable.
$PUTD OP-AEOD was
issued, but the access is
not
add-at-end-data-capable.
$PUT OP-ARRN issued,
to a sequential file that is
not delete-capable, to a
direct file that is not
delete-capable, to an
indexed access DTF, or
to an access that is not
random-add-capable.
Issue $PUTD OP-AEOD
to a direct file.

Applicable Applicable
$DTFO Value | Completion Condition Access Operation
Label (hex) Description Methods Codes
SF1CCIOP |43 Invalid Operation Code. All except i All except

The operation requested PSEUDO RELEASE

Figure E-3 (Part 2 of 6).

Completion Condition Descriptions

Appendix E.Disk Data Management Considerations

E-25

and the completion code
from the previous
$GETD or $PUTD was
48.

; Applicable Applicable
$DTFO Value | Completion Condition Access Operation
Label (hex) Description Methods Codes
$SFICCNRF | 44 Record Not Found. The GAM Get FIRST,
requested record was not | (GRAN-Y) LAST,
found in the file. 1 DG, DGA, PLUS,
$GETD OP-FIRST DU,DUA, MINUS,
J/LAST issued, but the ‘1IR, IRA, KEY,
file is empty. SGETD IRU, IRUA KEYA,
OP-PLUS/MINUS KEYEA,
/RRN issued, but the RRN
record at that position in
the file is deleted.
$GETD OP-KEY
/KEYEA/KEYA issued,
but the requested key
does not exist in the file.

$SFICCNPR | 45 No Pending Record. For | GAM -Put
a nonshared file, the (UPDATE-Y), | UPDATE,
program has not read a CU, DU, DELETE
valid record before DUA,IRU,
issuing a $GETD IRUA,ISU,
OP-UPDATE/DELETE. |ISUA
For a shared file, the
operation immediately
preceding a SGETD
OP-UPDATE/DELETE
was not a valid read of a
record.

$SF1CCIRN | 48 Invalid Relative Record GAM Get PLUS,
Number (RRN). The (GRAN-Y MINUS,
requested RRN is not and RRN Put
within the file. SGETD ORDER- ARRN,
OP-PLUS/MINUS/RRN | RECORD), UPDATE
issued, but no record or (ARRN-Y
exists with that RRN. and
$PUTD OP-ARRN ORDER-
issued, but the RRN is RECORD)
beyond the extents of the | DG, DGA,
file. SPUTD DU, DUA,

| OP-UPDATE issued, DO, DOA

Figure E-3 (Part 3 of 6). Completion Condition Descriptions

E-26

Applicable Applicable
$DTFO Value | Completion Condition Access 1 Operation
Label (hex) Description Methods Codes
$F1CCIUA | 49 Invalid Data Record. GAM (with Put

The program is any UPDATE,
attempting to put a combination ARRN,
record with hex FF in of AEOD
the first byte into a UPDATE-Y,
delete-capable file. ARRN-Y,

SPUTD AEOD-Y)
OP-UPDATE/ARRN/ CU, DU,

AEOD issued, the record | DUA, DO,

to be written has hex FF | DOA, IO,

in the first byte, and the IA, IRU,

file is delete-capable. IRUA, ISU,

ISUA

$F1CCKER | 50 Update Key Error. The GAM Put
program is attempting to | (UPDATE-Y) | UPDATE
change a key in the CU, DU,
index for a file (parent DUA, IRU,
index if this is a multiple IRUA, ISU,
index file). $SPUTD ISUA
OP-UPDATE issued,
and the key in the record
to be written is different
from the key for that
record in the index for
that file (parent index, if
this is a multiple index
file).
$F1CCNDR | 53 No Deleted Record GAM Put ARRN
Found. $PUT (ARRN-Y),
OP-ARRN issued to a DU,DUA,
delete-capable file, but DO, DOA
the record at the RRN
location is not a deleted
record.
$SF1CCDUP | 60 Duplicate Key. The GAM (with Put AEOD,
$PUTD any ARRN,
OP-AEOD/ARRN combination UPDATE
JUPDATE being of
attempted will cause a UPDATE-Y,
duplicate key in the ARRN-Y,
index being used to AEOD-Y)
access the file, and that CU, DU,
index does not allow DUA, IA,
duplicate keys. If this is 10, IRU,
an AEOD and IRUA, ISU,
BYPASS-YES was ISA, ISUA
specified on the // FILE
. OCL statement, the add
will be allowed.

Figure E-3 (Part 4 of 6).

Completion Condition Descriptions

Appendix E.Disk Data Management Considerations

E-27

wage 0| JApplicable Applicable
$DTFO Value Completlon Condltlon . [Access =+ ..v | Operation

Label (hex) | Description - 2o oo f Methods Codes. . =

$F1CCDPO | 61 Duplicate Key in ... |'GAM (with - |Put AEOD,
Another Index. SPUTD :{ any J:ARRN,
OP-AEOD/ARRN combination . | UPDATE
/UPDATE being of
attempted which causes a UPDATE-Y,
duplicate key inan index * | ARRN-Y.
not being used to access ‘_,AEOD-Y)
the file, and that index CU, DU,
does not allow duplicate DUA, IA,
keys. 10, IRU,

IRUA, ISU,
ISA, ISUA

$SF1CCSEQ | 62 Key Out of Sequence. GAM Put AEOD
The program is adding a | (AEOD-Y),
key less than the IA, 10, ISA,
previous key that was ISUA
added, and an ordered
load ($DTFD
ORDLD-Y or $SDTFD
ACCESS-ISA/ISUA
specified) was requested
for this access.

$SF1CCEOX | 70 End of Extent. The GAM Put AEOD
program is issuing a (AEOD-Y),
$PUTD OP-AEOD to a CA, CO, IA,
file, the file is full, and 10, IRA,
either the EXTEND // IRUA, ISA,

FILE OCL statement ISUA
parameter was not
specified for the file, or
an extend was attempted
but could not be
completed.
SF1CCUAT |75 Undefined Access Type.
Currently never issued.

SF1CCRAL | 80 Record Already Locked. GAM (with All Get
The program is any operations
attempting to read a combination Put ARRN
record, or to add a of
record by a $SPUTD UPDATE-Y,

OP-ARRN, through a ARRN-Y,
DTF that has AEOD-Y),
LOCKCK-Y specified, CG, CU,
and that record is DG,DU,
already owned (read with | DUA, IR,

an update-capable access | IRU, IRUA,
method) by another IS, ISU, ISA,
DTF in the program. ISUA

Figure E-3 (Part 5 of 6).

E-28

Completion Condition Descriptions

Applicable Applicable

$DTFO Value | Completion Condition | Access Operation
Label (hex) Description Methods Codes
SF1CCNOP | 99 File Not Opened. The All except | All

program is attempting to | PSEUDO
access a file, and the
DTF for that file has not
been opened.

Figure E-3 (Part 6 of 6). Completion Condition Descriptions

Appendix E.Disk Data Management Considerations E-29

Closing the File

E-30

When you are finished processing records in a file, you should close (SCLOSE)
the file. Close performs the following operations:

e Writes to disk any data buffers that need to be written.

e Releases the main storage space allocated in open for buffers and data
management required control blocks.

® Resets the disk DTF to a preallocate state.
Once a DTF has been closed, it must be allocated (JALOC) and opened (SOPEN)

again before it can be used to access records in a file. For more information on
the $CLOS macroinstruction, see $CLOS (Prepare a Device or File for

‘Termination) in Chapter S.

Appendix F. Display Station Data Management Considerations

Following each DTF operation issued via SWSIO, a 2-byte return code is passed
back in the DTF at displacements $WSRTC-1 and SWSRTC. The return codes
possible after the various $WSIO operations are described here, except for
operations issued to the interactive communications feature. Return codes from
- the interactive communications feature are described in the Interactive
Communications Feature: Reference manual. All the return codes listed for an
operation are mutually exclusive.

Note: For a guide to work station data management concepts and considerations,
see the Concepts and Programmer’s Guide.

GET and ACI Return Codes

After a GET or ACI operation, the following return codes are possible at

$WSRTC:
Label Value Explanation
(hex)
$WSROK 00 Operation was successful.
SWSRACC 01 New requester.
Note: If the user program does ACI as the first
operation in order to accept program data, and
their input buffer is not large enough to accept all
of the program data, a return code of X’01’ is
returned. $WSOUTL will contain X'0000°.
SWSRSTP 02 Stop system was requested by system operator.
SWSRCTL 03 No data was returned — control information only.
$SWSRACR 11 ACI was rejected. No invites outstanding.
$SWSRNAV 24 Display station was released by display station
operator.
$WSRREL 28 GET was rejected. Display station previously

released by program.

Appendix F.Display Station Data Management Considerations =~ F-1

ACQ Return Codes

STI Return Codes

F-2

Label
$WSRIRJ

$WSPOST
$WSPPRE

Value
(hex)

34

60
80

Explanation

Input was rejected. Iﬁput buffer INLEN |

“parameter) is too small.

Postéd with uéer-deﬁned address. -

Permanent I/O error occurred at the display
station. In response to the error, the system -
operator selected option 2.

After an ACQ operation, the following return codes are possible at SWSRTC:

Label

$WSROK
$WSRQO

SWSRAFW

$SWSRAFN

Value
(hex)

00
08

18

38

Explanation

ACQ was successful.

ACQ was successful. Display station was already
allocated to the task.

- ACQ failed. Display station was allocated to a

non-NEP.

ACQ failed:

e Display station is not in standby mode.

e Display station is in command reject mode.

e A permanent I/O error occurred at the display
station.

e The display station is allocated to a NEP.

o The previous release operation for the display
station is still being processed.

After an STI operation, the following return codes are possible at SWSRTC:

Label

SWSROK
$WSRNAV

$WSRREL

SWSRSPF

Value
(hex)

00
24

28

44

Explanation

STI was successful.

Display station was released by display station
operator.

STI was ignored. Display station was previously
released by program.

STI failed. Display station operator entered data,
which should be read by a GET or ACI operation.

Label

$WSPRE

Value
(hex)

80

Explanation

Permanent I/O error occurred at the display
station. In response to the error, the system
operator selected option 2.

Return Codes for All Operations Except GET, ACI, ACQ, and STI

After any operation except GET, ACI, ACQ, and STI, the following return codes

are possible at SWSRTC:

Label

SWSROK
SWSRNAV

SWSRREL

$SWSRIRJ

$WSROFL
$WSPOGE

$SWSRPAL
SWSRGRF

SWSRGI

Value
(hex)

00
24

28
34

40
45

48
50

51

Explanation

Operation was successful.

Display station was released by display station
operator.

Operation was ignored. Display station previously
released by program.

Input was rejected. Input buffer INLEN
parameter) too small.

Requested terminal was offline.

Invalid ideographic data was found on a print
operation. :

Print operation was issued to the allocated printer.

On an output operation, a display station
ideographic character table full of ideographic
characters was detected. The user selected a .2
option.

On an output operation an invalid ideographic
character was found.The user selected a 2 option.

Appendix F.Display Station Data Management Considerations

F-3

Label

SWSRGU

SWSRPE

Value
(hex)

52

80

Explanation
On an output operation, one of the following
errors was detected:

e An undefined ideographic character was
found.

e The extended file of ideographic characters
has not been allocated.

e The extended file of ideographic characters
has not been restored.

The user selected a 2 option.
Permanent I/O error occurred at the display

station. In response to the error, the system
operator selected option 2.

Notes:

Appendix F.Display Station Data Management Considerations F-5

F-6

Glossary

#LIBRARY. The library, provided with the system,
that contains the System Support Program Product. See
system library.

abnormal termination. A system failure or operator
action that causes a job to end unsuccessfully.

access method. The way that records in files are
referred to by the system. The reference can be
consecutive (records are referred to one after another in
the order in which they appear in the file), or it can be
random (the individual records can be referred to in any
order).

address. A name, label, or number that identifies a
location in storage, a device in a network, or any other
data source.

address recall register (ARR). A register in the main
storage processor that is used for temporary storage of
an address to be used later by the program being run.

advanced program-to-program communications (APPC).
Communications support that allows System/36 to
communicate with other systems having the same
support. APPC is the way that System/36 puts the IBM
SNA LU-6.2 protocol into effect.

alarm. An audible signal at a display station or printer
that is used to get the operator’s attention.

allocate. To assign a resource, such as a disk file or a
diskette file, to perform a specific task.

alphabetic character. Any one of the letters A through
Z (uppercase and lowercase). Assembler extends the
alphabet to include the special characters #, $, and @.

alphameric. Consisting of letters, numbers, and often
other symbols, such as punctuation marks and
mathematical symbols.

alphanumeric. See alphameric.

alternative system console. A command display station
that can be designed as the system console.

American National Standard Code for Information
Interchange (ASCII). The code developed for
information interchange among data processing systems,
data communications systems, and associated
equipment. The ASCII character set consists of 7-bit
control characters and symbolic characters.

APPC. See advanced program-to-program
communications (APPC).

application. (1) A particular business task, such as
inventory control or accounts receivable. (2) A group
of related programs that apply to a particular business
area, such as the Inventory Control or the Accounts
Receivable application.

application program. A program used to perform an
application or part of an application.

ASCIL. See American National Standard Code for
Information Interchange (ASCII).

assembler. A program that converts assembler language
statements to an object program.

assembler instruction statement. A statement that
controls what the assembler does, rather than what the
user’s program does.

assembler language. A symbolic programming language
in which the set of instructions includes the instructions
of the machine and whose data structures correspond
directly to the storage and registers of the machine.

attribute. A characteristic.

autoanswer. In data communications, the ability of a
station to receive a call over a switched line without
operator action. Contrast with manual answer.
autocall. In data communications, the ability of a
station to place a call over a switched line without

operator action. Contrast with manual call.

autocall unit. A common carrier device that allows
System/36 to automatically call a remote location.

Glossary G-1

base displacement addressing. In assembler language, an
addressing method that involves setting up a base
address from which other addresses can be calculated.

base number. The part of a self-check field from which
the check digit is calculated.

BASIC (beginner’s all-purpose symbelic instruction
code). A programming language designed for
interactive systems and originally developed at
Dartmouth College to encourage people to use
computers for simple problem-solving operations.

batch. Pertaining to activity involving little or no
operator action. Contrast with interactive.

batch BSC. The System Support Program Product
support that provides data communications with BSC
computers and devices via the RPG T specification or
the assembler $DTFB macroinstruction. :

binary. (1) Pertaining to a system of numbers to the
base two; the binary digits are 0 and 1. (2) Involving a
choice of two conditions, such as on-off or yes-no.

binary synchronous communications (BSC). A form of
communications line control that uses transmission
control characters to control the transfer of data over a
communications line. Compare with synchronous data
link control (SDLC).

bit. Either of the binary digits 0 or 1. See also byte.

block. (1) A group of records that is recorded or
processed as a unit. Same as physical record. (2) Ten
sectors (2560 bytes) of disk storage.

branch instruction. An instruction that changes the
sequence in which the instructions in a computer
program are performed. The sequence of instructions
continues at the address specified in the branch
instruction.

branching. Performing a statement other than the next
one in sequence.

BSC. See binary synchronous communications (BSC).

byte. The amount of storage required to represent one
character; a byte is 8 bits.

call. (1) To activate a program or procedure at its
entry point. Compare with load. (2) In data
communications, the action necessary in making a
connection between two stations on a switched line.

cancel. To end a task before it is completed.

character. A letter, digit, or other symbol.

character key. A keyboard key that allows the user to
enter the character shown on the key. Compare with
command keys and function key.

character string. A sequence of consecutive characters.

check. (1) An error condition. (2) To look for a
condition.

check digit. The rightmost digit of a self-check field
used to check the accuracy of the field.

close. To end the processing of a file.

COBOL (common business-oriented language). A
high-level programming language, similar to English,
that is used primarily for commercial data processing.

code. (1) Instructions for the computer. (2) To write
instructions for the computer. Same as program. (3) A
representation of a condition, such as an error code.

command. A request to perform an operation or a
procedure.

command display station. A display station from which
an operator can start and control jobs. A command
display station can become an alternative system
console, can be designated as a subconsole, and can also
be used as a data display station. See also alternative
system console, data display station, and subconsole.

command keys. The 12 keys on the top row of the
display station keyboard that are used with the Cmd key
(and optionally the Shift key) to request up to 24
different actions defined for program products and user
programs. Compare with character key and function
key.

command mode. A mode that allows a display station
operator to request or start jobs.

command text, command source or load member. The
command to be processed when an operator selects an
option on a menu.

comment. Words or statements in a program or
procedure that serve as documentation rather than as
instructions.

compilation time. The time during which a source
program is translated from a high-level language to a
machine language program.

compile. To translate a program written in a high-level
programming language into a machine language
program.

constant. A data item with a value that does not
change. Contrast with variable.

constant field. A field that is defined by a display
format to contain a value that does not change.

continuation line. A line of a source statement into
which characters are entered when the source statement
cannot be contained on the previous line or lines.

control command. A command used by an operator to
control the system or a work station. A control
command does not run a procedure and cannot be used
in a procedure.

control station. The primary or controlling computer
on a multipoint line. The control station controls the
sending and receiving of data.

cursor. A movable symbol (such as an underline) on a
display, usually used to indicate to the operator where
to type the next character.

data display station. A display station from which an
operator can only enter data. A data display station is
acquired and controlled by a program. Contrast with
command display station.

data file utility (DFU). The part of the Utilities
Program Product that is used to create, maintain,
display, and print disk files.

data item. A unit of information to be processed.

data type. A category that identifies the mathematical
qualities and internal representation of data.

decimal. Pertaining to a system of numbers to the base
ten; decimal digits range from 0 through 9.

default value. A value stored in the system that is used
when no other value is specified.

define-the-file (DTF). A control block containing
information that is passed between data management
routines and users of the data management routines.

delete. To remove.

DFU. See data file utility (DFU).

direct file. A disk file in which records are referenced
by the relative record number. Contrast with indexed
file and sequential file.

disk. A storage device made of one or more flat,

circular plates with magnetic surfaces on which
information can be stored.

display. (1) A visual presentation of information on a
display screen. (2) To show information on the display
screen.

display control specification. A record within the
display format specifications, it provides information
about the entire display format that, in general, is
unrelated to the specific fields being defined. Also
known as the S-specification.

display format. Data that defines (or describes) a
display.

display layout sheet. A form used to plan the location
of data on the display.

display screen. The part of the display station on which
information is displayed.

display station. A device that includes a keyboard from
which an operator can send information to the system
and a display screen on which an operator can see the
information sent or receive information from the
system.

display text source or load member. Describes the
information displayed on a menu.

DTF. See define-the-file (DTF).

edit. (1) To modify the form or format of data; for
example, to insert or remove characters such as for
dates or decimal points. (2) To check the accuracy of
information that has been entered, and to indicate if an
error is found.

embedded blanks. Blanks that are surrounded by any
other characters. :

enter. To type in information on a keyboard and press
the Enter key in order to send the information to the
computer.

extended binary-coded decimal interchange code
(EBCDIC). A set of 256 eight-bit characters.

field. One or more characters of related information
(such as a name or an amount).

file. A set of related records treated as a unit.

format. (1) A defined arrangement of such things as-
characters, fields, and lines, usually used for displays,
printouts, or files. (2) To arrange such things as
characters, fields, and lines.

FORTRAN (formula translation). A high-level

programming language used primarily for scientific,
engineering, and mathematical applications.

Glossary G-3

function key. A keyboard key that requests an action
but does not display or print a character. The cursor
movement and Help keys are examples of function keys.
Compare with command keys and character key.

GAM. See generalized access method (GAM).

generalized access method (GAM). A disk file access
method in assembler allowing random and consecutive
processing, update, delete, and add.

hex. See hexadecimal.

hexadecimal. Pertaining to a system of numbers to the
base sixteen; hexadecimal digits range from 0 (zero)
through 9 (nine) and A (ten) through F (fifteen).

host system. The primary or controlling computer in
the communications network. See also control station.

index. (1) A table containing the key value and location
of each record in an indexed file. (2) A computer
storage position or register, the contents of which
identify a particular element in a set of elements,

indexed file. A file in which the key and the position of
each record is recorded in a separate portion of the file
called an index. Contrast with direct file and sequential

file.

index key. The field within a record that identifies that
record in an indexed file.

indicator. An internal switch that communicates a -
condition between parts of a program or procedure.

informational message. A message that provides
information to the operator, but does not require a
response.

input. Data to be processed.

input/output (I/O). Pertaining to either input or output,
or both.

instruction. A statement that specifies an operation to
be performed by the computer and the locations in
storage of all data involved in that operation.

instruction address register (IAR). A register in the
main storage processor that contains the address of the
next instruction to be performed.

instruction fetch. The act of getting an instruction from
storage and loading it into the correct registers.

integer. A positive or negative whole number; that is,

an optional sign followed by a number that does not
contain a decimal point.

G-4

interactive. Pertaining to activity involving requests and
replies as, for example, between an operator and a

‘program or between two programs. Contrast with

batch.

Interactive Communications Feature (SSP-ICF). A
feature of the System Support Program Product that
allows a program to interactively communicate with
another program or system.

interchange record separator (IRS). Same as record
separator.

intermediate-text-block (ITB) character. In binary
synchronous communications, the transmission control
character used to indicate the end of a section of data to
be checked.

IRS (interchange record separator). Same as record
separator.

TTB. See intermediate-text-block character.
K-byte. 1024 bytes.

key mask. A string of numbers and alphabetic
characters that identify the function keys and command
keys that the operator can use to control program
operations.

left-adjust. To place or move an entry in a field so that
the leftmost character of the field is in the leftmost
position. Contrast with right-adjust.

library. (1) A named area on disk that can contain
programs and related information (not files). A library
consists of different sections, called library members.
(2) The set of publications for a system.

library member. A named collection of records or
statements in a library. The types of library members
are load member, procedure member, source member, and
subroutine member.

link-editing. To combine, by the overlay linkage editor,
a number of load members and/or subroutine members
into one program.

literal. A symbol or a quantity in a source program
that is itself data, rather than a reference to data.

load. To move data or programs into storage.
load member. A library member that contains

information in a form that the system can use directly,
such as a display format. Contrast with source member.

load module. A program in a form that can be loaded
into main storage and run. The load module is the
output of the overlay linkage editor.

local. Pertaining to a device, file, or system that is
accessed directly from your system, without the use of a
communications line. Contrast with remote.

machine instruction. An instruction of the machine
language that can be performed by the computer.

machine language. A language that can be used directly
by a computer without intermediate processing.

macro. See macro definition, macro instruction.
macro call. Synonym for macro instruction.

macro definition:. A set of statements that defines the
name of, format of, and conditions for generating a
sequence of assembler language statements from a single
source statement.

macroinstruction. A single instruction that represents a
set of instructions.

macro library. A library of macro definitions used
during macro expansion.

magnetic stripe reader. A device, attached to a display
station, that reads data from a magnetic stripe on a
badge before allowing an operator to sign on.

manual answer. In data communications, a line type
requiring operator actions to receive a call over a
switched line. Contrast with autoanswer.

manual call. In data communications, a line type
requiring operator actions to place a call over a
switched line. Contrast with autocall.

menu. A displayed list of items from which an operator
can make a selection.

message. Information sent to an operator or
programmer from a program. A message can be either
displayed or printed.

message identification. A field in the display or printout
of a message that directs the user to the description of
the message in a message guide or a reference manual.
In Assembler, this field consists of the alphabetic
characters ASM, followed by a dash, followed by the
message identification code.

message identification code (MIC). A four-digit number
that identifies a record in a message member. This
number can be part of the message identification.

message identifier. A field in the display or printout of
a message that directs the user to the description of the
message in a message guide or reference manual. This
field consists of up to four alphabetic characters,
followed by a dash, followed by the message
identification code.

message member. A library member that defines the
text of each message and its associated message
identification code.

MIC. See message identification code (MIC).

modulus 10/modulus 11 checking. Formulas used to
calculate the check digit for a self-check field.

noncontiguous. Not being in actual contact.

null character. The character hex 00, used to represent
the absence of a printed or displayed character.

numeric. Pertaining to any of the digits 0 through 9.

object module. A set of instructions in machine
language. The object module is produced by a compiler
from a subroutine or source program and can be input
to the overlay linkage editor.

object program. In COBOL, a set of instructions in
machine — runnable form. The object program is
produced by a compiler from a source program.

OCL. See operation control language (OCL).
open. To prepare a file for processing.

operand. (1) A quantity of data that is operated on, or
the address in a computer instruction of data to be
operated on. (2) In COBOL, the object of a verb or an
operator; that is, an operand is the data or equipment
governed or directed by a verb or operator.

operation. A defined action, such as adding or
comparing, performed on one or more data items.

operation code. A code used to represent the operations
of a computer.

operation control language (OCL). A language used to
identify a job and its processing requirements to the
System Support Program Product.

output. The result of processing data.

overlay. (1) To write over (and therefore destroy) an
existing file. (2) A program segment that is loaded into
main storage and replaces all or part of a previously
loaded program segment.

Glossary G-5

overlay linkage editor.. The part of the System Support
Program Product that combines object programs to
produce code that can be run and allows the user to
determine overlays for programs.

overlay region. A continuous area of main storage in
which segments can be loaded independently of other
regions. R o

override. (1) A parameter or value that replaces a
previous parameter or value. (2) To replace a
parameter or value.

parameter. A value supplied to a procedure or program
that either is used as input or controls the actions of the
procedure or program.

printout. Information from the computer that is
produced by a printer. ’

procedure. A set of related operation control language
statements (and, possibly, utility control statements and
procedure control expressions) that cause a specific
program or set of programs to be performed.

procedure member. A library member that contains the
statements (such as operation control language
statements) necessary to perform a program or set of
programs. '

program. (1) A sequence of instructions for a
computer. See source program and load module. - (2) To
write a sequence of instructions for a computer. Same
as code.

program product. A licensed program for which a fee is
charged.

prompt. A displayed request for information or -
operator action.

record. A collection of fields that is treated as a unit.

record separator. In binary synchronous
communications, a character used to indicate the end. of
one record and the beginning of another.

recovery procedure. (1) An action performed by the
operator when an error message appears on the display
screen.” Usually, this action permits the program to
continue or permits the operator to run the next job.
(2) The method of returning the system to the point
where a major system error occurred and running the
recent critical jobs again.

register. A storage area, in a computer, usually

intended for some special reason, capable of storing a
specified amount of data such as a bit or an address.

G-6

relative record number. A number that specifies the
location of a record in relation to the beginning of the
file. ~

remote. Pertaining to a system or device that is
connected to your system through a communications
line. Contrast with local.

restore. Return to an original value or image. For
example, to restore a library from diskette.

return code. In data communications, a value generated
by the system or subsystem that is returned to a
program to indicate the results of an operation issued by
that program.

right-adjust. To place or move an entry in a field so
that the rightmost character of the field is in the
rightmost position. Contrast with left-adjust.

RPG. A programming language specifically designed
for writing application programs that meet common
business data processing requirements.

RRN. See relative record number.

run. To cause a program, utility, or other machine
function to be performed.

screen design aid (SDA). The part of the Utilities
Program Product that helps the user design, create, and
maintain displays and menus. Additionally, SDA can
generate specifications for RPG and WSU work station
programs.

SDA. See screen design aid (SDA).
SDLC. See synchronous data link control (SDLC).

self-check field. A field, such as an account number,
consisting of a base number and a check digit.

sequential access. An access method in which records
are read from, written to, or removed from a file based
on the logical order of the records in the file.

sequential file. A file in which records occur in the
order in which they were entered. Contrast with direct
file and indexed file.

SEU. See source entry utility (SEU).

significant digit. Any digit of a number that follows the
leftmost digit which is not a zero and that is within the
accuracy allowed.

source entry utility (SEU). The part of the Utilities
Program Product used by the operator to enter and
update source and procedure members.

source member. A library member that contains
information in the form in which it was entered, such as
RPG specifications. Contrast with load member.

source program. A set of instructions that are written
in a programming language and that must be translated
to machine language before the program can be run.

special character. A character other than an alphabetic
or numeric character. For example; *, +, and % are
special characters.

special registers. In COBOL, compiler-generated data
items used to store information produced by specific
COBOL features (for example, the DEBUG-ITEM
special register).

split key. A key, for an indexed file, defined from more
than one field within each record.

SSP. See System Support Program Product (SSP).

SSP-ICF. See Interactive Communications Feature
(SSP-ICF).

statement. An instruction in a program or procedure.

storage index. A table in main storage that contains the
address of the lowest key on each track in the file index.

subconsole. A display station that controls a printer or
printers.

subroutine member. A library member that contains
information that must be combined with one or more
members before being run by the system.

synchronous data link control (SDLC). A form of
communications line control that uses commands to
control the transfer of data over a communications line.
Compare with binary synchronous communications

(BSC).

system library. The library, provided with the system,
that contains the System Support Program Product and
is named #LIBRARY.

System Support Program Product (SSP). A group of
licensed programs that manage the running of other
programs and the operation of associated devices, such
as the display station and printer. The SSP also
contains utility programs that perform common tasks,
such as copying information from diskette to disk.

terminal error. Any error that causes termination of the
current program.

transaction. (1) An item of business. The handling of
customer orders and customer billing are examples of
transactions. (2) In interactive communications, the
communication between the application program and a
specific item (usually another application program) at
the remote system.

TRANSACTION file. In COBOL, an input/output file
used to communicate with display stations and SSP-ICF
sessions.

truncate. To shorten a field or statement to a specified
length.

turnaround time. The time interval required to reverse
the direction of transmission over a communication line.

unique. The only one.

unprotected field. A displayed field for which operators
can enter, modify, or delete data.

Utilities Program Product. A program product that
contains the data file utility (DFU), the source entry
utility (SEU), the work station utility (WSU), and the
screen design aid (SDA).

utility contrel statement. A statement that gives a
utility program information about the way the program
is to perform or the output it is to produce.

utility program. A System Support Program Product
program that allows you to perform a common task,
such as copying information from diskette to disk.

variable. A name used to represent a data item whose
value can change while the program is running.
Contrast with constant.

work station. A device that lets people transmit
information to or receive information from a computer;
for example, a display station or printer.

work station data management. The part of the System
Support Program Product that enables a program to
present data on a display screen by providing a string of
data fields and a format name.

work station utility (WSU). The part of the Utilities
Program Product that helps you to write programs for
data entry, editing, and inquiry.

WSU. See work station utility (WSU).

Glossary G-7

Index

Special Characters

&SYSNDX 4-7
$SALOC — Allocate File or Device 5-4
SASMINPT file size parameter 1-5
$CLOS — Prepare a Device or File for Termination 5-6
$DTFB — Define the File for BSC 5-7
$DTFD — Define the File for Disk 5-13
$DTFO — Generate DTF Offsets 5-19
$SDTFP — Define the File for a Printer 5-20
$DTFW — Define the File for Display Station 5-23
$EOJ—End of Job 5-30
$FIND parameter list and displacement
generation —$FNDP 5-32
$FIND — Find a Directory Entry 5-31
$FNDP — Generate SFIND Parameter List and
Displacements 5-32
SGETB —Issue a Get Request 5-34
SGETD — Construct a Disk Get Interface 5-35
$INFO — Information Retrieval 5-39
SINV —Inverse Data Move 5-43
SLMSG parameter use chart 5-45
SLMSG — Generate a Parameter List for a Message
Displayed by 5-44
$L.OAD — Load or Fetch a Module 5-48
$LOG macroinstruction 5-49
$LOG — Generate the Linkage to the System Log 5-49
$SLOGD — Generate Displacements for System
Log 5-51
$SOPEN — Prepare a Device or File for Access 5-52
$PUTB —Issue a Put Request 5-53
$PUTD — Construct a Disk Put Interface 5-54
$PUTP — Construct a Printer Put Interface 5-57
SRIT — Return Interval Time 5-59
$SIT — Set Interval Timer 5-61
SSNAP — Snap Dump of Main Storage 5-63
$SORT — Construct a Loadable Sort Interface 5-65
$SOURCE file size parameter 1-5
$SRT — Generate a Loadable Sort Parameter List 5-66
$TOD —~ Return Time and Date 5-70
$TRAN — Generate an Interface to the Translate
Routine 5-71
$TRB — Generate Timer Request Block 5-72
$TRL — Generate a Translation Parameter List 5-73
$TRTB — Generate a Translation Table 5-74
SWIND — Generate Override Indicators for Display
Station 5-76
S$WORK file size parameter 1-5
SWORK?2 file size parameter 1-5
SWSEQ — Generate Labels for Display Station 5-76
$WSIO — Construct a Display Station Input/Output
Interface 5-77

A

A — Add to Register 2-18
absolute expression 2-11
access information — $SINFO 5-39
Add Logical Character— ALC 2-19
Add Logical Immediate - ALI 2-20
Add to Register— A 2-18
Add Zoned Decimal— AZ 2-21
addressing 2-14, 3-23
USING 3-23
AGO — Uncondition Branch Record 4-27
ATF — Conditional Branch 4-24
ALC-— Add Logical Character 2-19
ALI— Add Logical Immediate 2-20
Allocate File or Device—SALOC 5-4
alphabetic characters 1-15
alphameric value, macroinstruction 4-5
alter format of source program statements 3-15
alter location counter 3-17
ALTERCOM 5-96
alternative index and noncontiguous keys
program A-17
alternative index program A-17
ANOP — Assembly No Operation 4-30
appendices’ descriptions viii
architecture ix
arithmetic expression, macsoinstruction 4-8
arithmetic expressions 2-10
Arithmetic Global —GBLA 4-15
Arithmetic local —LCLA 4-17
arrangement of manual viii
ASCII table B-3
ASM procedure command 1-4
assembler coding form 1-15, C-1
assembler control statements 2-1
assembler files 1-7
assembler instruction formats D-1
assembler instruction statements 2-49
assembler language 1-1
assembler listing 1-9
assembler program control 3-8, 3-10, 3-11, 3-15, 3-21,
3-23
Drop Index Register as Base Register— DROP 3-8
End Assembly—END 3-10
Identify Entry-Point Symbol— ENTRY 3-11
Input Format Control —ICTL 3-15
Start Assembly—START 3-21
Use Index Register for Base Displacement 3-23
assembler program control-Identify External
Symbols —EXTRN 3-13
assembler program control statements 3-17
Set Location Counter —ORG 3-17
assembler program conventions 2-5
assembler rules - 2-5.

Index X-1

assembler work file size parameter 1-5
assembler work?2 file size parameter 1-5
Assembly No Operation— ANOP 4-30
attribute, macroinstruction 4-5
autocall 5-93

AZ— Add Zoned Decimal 2-21

base displacement addressing 2-15, 3-23
BC — Branch on Condition 2-22
BD — Branch Direct 2-24
before programming 2-1
beginning location 3-21
binary constants 2-9
Binary Global— GBLB 4-15
Binary Local—-LCLB 4-18
blank compression 5-94
expansion 5-94
blank truncation 5-93
Branch Direct—BD 2-24
Branch on Condition—BC 2-22
BSC 1-20, 5-96
environment 5-96
BSC Completion Code Table 5-12

C

change format of source program statements 3-15
changes xi

character constants 2-9

character expression, macroinstruction 4-3
Character Global —GBLC 4-16

Character Local—LCLC 4-18

character string, macroinstruction 4-3
characters 1-15

check source sequence 3-16

CLC — Compare Logical Characters 2-25
CLI—Compare Logical Immediate 2-26

coding a program 1-3

coding form 1-15, C-1

coding form entries 1-15

coding restrictions 5-88

comment 4-23

comment, coding form 1-16

communications 1-20)
communications area information —$INFO = 5-39
communications with other systems 1-21
Compare Logical Characters— CLC 2-25
Compare Logical Immediate—CLI 2-26
compression of blanks 5-94 '
concatenation, macroinstructions 4-9
Conditional Branch—AIF 4-24

constant 2-7

Construct a Disk Get Interface —$GETD 5-35

X-2

Construct a Disk Put Interface —$PUTD 5-54

Construct a Display Station Input/Output
Interface —$WSIO 5-77

Construct a Loadable Sort Interface —$SORT 5-65

Construct a Printer Put Interface —$PUTP ~ 5-57

continuation, prototype records 4-9

control assembler processor 3-1

Control Program Listing—PRINT 3-19

control statements 1-9, 2-1

control storage supervisor,extended 2-46

conventions 2-5

count function, macroinstruction 4-8

cross-reference list 1-13

D

data addressing 2-16

data communications support 1-20

data formats 5-95

DC -~ Define Constant 3-2

debugging information ix

decimal constants 2-7

decimal to hexadecimal table (0 to F) 2-8

Define Constant—DC 3-2

Define Storage—DS 3-7

define symbols and data 3-1

Define the File for a Printer—$DTFP 5-20

Define the File for BSC ~$DTFB 5-7

Define the File for Disk —$DTFD 5-13

Define the File for Display Station—$DTFW 5-23
definition control statement format 4-10
definition control statement header 4-13

definition control statements, macroinstructions 4-10
diagnostics, listing 1-12

direct addressing 2-14

disk files used by assembler 1-7

Drop Index Register as Base Register —DROP 3-8
DROP — Drop Index Register as Base Register 3-8
DS-Define Storage 3-7

dump storage — $SNAP 5-63

E

EBCDIC table B-1

ED - Edit 2-27

Edit—ED 2-27

EJECT —Start New Page 3-9
End Assembly—END 3-10
End of Job—8$EOJ 5-30
end, see MEND 4-34

end, see MEXIT 4-33
END — End Assembly 3-10
entering a program 1-3
ENTRY example 3-13

ENTRY - Identify Entry-Point Symbol 3-11
EQU — Equate Symbol 3-12
Equate Symbol—EQU 3-12
error field, listing 1-10
error message, sse MNOTE 4-31
ESL 1-9
example 1-1, 4-35, 4-36, 4-38
comment 4-38
IBM macroinstruction definition 4-35
machine language 1-1
use of sample macroinstruction 4-36
user macro definition 4-35
execution information 1-4
exit, see MEXIT 4-33
expansion of blanks 5-94
expression 2-5
expression rules 2-10
expressions 2-10
extended control storage supervisor 2-46
extended mnemonics 2-23
Branch on Condition 2-23
extended mnemonics/Jump on Condition 2-30
external symbol list (ESL) 1-9
EXTRN example 3-13
EXTRN — Identify External Symbols 3-13

fetch a module—$LOAD 5-48

files used by the assembler 1-7

Find a Directory Entry — $FIND 5-31
format 4-10

macroinstruction definition control statement 4-10

formats for instructions D-1

G

GBLA — Arithmetic Global 4-15
GBLB — Binary Global 4-15
GBLC — Character 'Global 4-16
general programming notes 2-17
Generate $FIND Parameter List and
Displacements —$FNDP 5-32
Generate a Loadable Sort Parameter List —$SRT 5-66
Generate a System Log Displayed Message Parameter
List—SLMSG 5-44
Generate a Translation Parameter List—$TRL 5-73
Generate a Translation Table—$TRTB 5-74
Generate an Interface to the Translate
Routine—$TRAN 5-71
Generate Displacements for System
Log—$LOGD 5-51
Generate DTF Offsets —$DTFO 5-19
Generate Labels for Display Station—$WSEQ 5-76
Generate Linkage to System Log—$LOG 5-49

Generate Override Indicators for Display
Station —$§WIND 5-76

Generate Timer Request Block—$TRB 5-72
global set symbol, macroinstruction 4-7
global statement 4-15, 4-16

Arithmetic Global—GBLA 4-15

Binary Global—GBLB 4-15

Character Global—GBLC 4-16
global statements 4-15

H

header 4-13

macroinstruction definition 4-13
HEADERS 2-2
HEADERS statement 2-2
hexadecimal constants 2-8
hexadecimal to decimal table (0 to F) 2-8
how to 4-37

use macroinstructions 4-37

1]

IBM macroinstruction conventions 5-1
ICTL — Input Format Control 3-15
ID sequence 1-16
identification sequence, coding form 1-16
Identify Entry-Point Symbol — ENTRY 3-11
Identify External Symbols —EXTRN 3-13
identify linkage symbols 3-11
identify other program symbols 3-13.
indirect addressing 2-15, 2-16
information x
Information Retrieval -INFO 5-39
initial location counter value 3-21
initialize storage areas to constant type 3-2
initiating and terminating the transfer of data 5-91
initiating the transfer of data 5-91
Input Format Control —ICTL 3-15
input library parameter 1-5
Input Sequence Checking—ISEQ 3-16
Insert and Test Characters—ITC 2-28
instruction addressing 2-16
instruction formats D-1
Instruction set 2-18, 2-19, 2-20, 2-21, 2-22, 2-24, 2-25,
2-26, 2-27, 2-28, 2-29, 2-31, 2-32, 2-33, 2-34, 2-35,
2-36, 2-37, 2-38, 2-39, 2-40, 2-41, 2-42, 2-43, 2-44,
2-45, 2-46, 2-47, 2-48
.Add Logical Character —ALC 2-19
Add Logical Immediate— ALI 2-20
Add to Register—A 2-18
Add Zoned Decimal—AZ 2-21
Branch Direct—BD 2-24
Compare Logical Immediate—CLI 2-26
Edit—ED 2-27

Index X-3

Insert and Test Characters—ITC 2-28
Jump on Condition—JC 2-29
Load Address-LA 2-32
Load Register—L 2-31
Move Characters—-MVC 2-33
Move Hexadecimal Character-MVX 2-35
Move Logical Immediate —MVI 2-34
Set Bits Off Masked —SBF 2-37 .
Set Bits On Masked-SBN 2-38
Shift Right Character —SRC 2-41
Store Register —ST 2-42
Subtract from Register-S 2-36
Subtract Logical Characters—SLC 2-39
Subtract Logical Immediate—SLI 2-40
Subtract Zoned Decimal -SZ 2-43
supervisor call 2-48
Test Bits Off Masked 2-44
Test Bits On Masked-TBN 2-45
Transfer — XFER 2-46
Zero and Add Zoned-ZAZ 2-47
Instruction statement 3-2, 3-7, 3-12
Define Constant—DC 3-2
Define Storage— DS 3-7
Equate Symbol—EQU 3-12
instruction statements 2-49
introduction 1-1
Inverse Data Move —$INV 5-43
ISEQ — Input Sequence Checking 3-16
Issue a Get Request—$SGETB 5-34
Issue a Put Request —$PUTB 5-53
ITC —Insert and Test Characters 2-28

JC—Jump on Condition 2-29
Jump on Condition—JC 2-29

K

keying a program 1-3
keyword parameter 5-1

L —Load Register 2-31

LA-Load Address 2-32

label 4-11, 4-14
macroinstruction 4-11
prototype statement 4-14

label (name) storage 3-7

label, coding form 1-16

language, machine vs assembler 1-1

X-4

LCLA — Arithmetic local 4-17

LCLB~Binary Local 4-18

LCLC— Character Local 4-18

Line Feed —SPACE 3-20

linkage symbols, identification 3-11

linking 2-16

LIST,NOLIST parameter 1-6

listing control statements 3-9, 3-19, 3-20
Control Program Listing—PRINT 3-19
Line Feed —SPACE 3-20
Start New Page —EJECT 3-9

listing, assembler 1-9

load a module—$LOAD 5-48

Load Address-LA 2-32

Load or Fetch a Module —$LOAD 5-48

Load Register—L 2-31

local set symbol, macroinstruction 4-7

local statements 4-17, 4-18
Arithmetic local —LCLA 4-17
Binary Local—LCLB 4-18
Character Local —-LCLC 4-18

locate library members —$FIND 5-31

location counter 2-13

location counter, listing 1-10

Logical End — MEXIT 4-33

M

MAC/NOMAC parameter 1-5

machine instruction formats D-1

machine instructions 2-17

machine language 1-1

MACRO 4-10

macro library 1-4, 1-6, 4-1

macro merge source file size parameter 1-5

macroinstruction 4-3, 4-11, 4-13, 5-31, 5-32, 5-39, 5-48,

5-49, 5-51, 5-63
$FIND 5-31
$FNDP 5-32
$INFO 5-39
$LOAD 5-48
$LOG 5-49
$LOGD 5-51
SSNAP 5-63
coding conventions 4-3
definition control statement 4-13
label 4-11
operand 4-11

macroinstruction definition 4-1, 4-13, 4-14, 4-15

global statement 4-15

header 4-13

prototype 4-14
macroinstruction format 4-11
macroinstruction introduction 1-2
macroinstruction —$LMSG 5-44
magnetic character reader 1-23

‘manual arrangement viii

MEND — Physical End 4-34

message, sce MNOTE 4-31

Message — MNOTE 4-31

messages ix

MEXIT — Logical End 4-33

MNOTE — Message 4-31

more information x

Move Characters—MVC 2-33

Move Hexadecimal Character 2-35
Move Logical Immediate—MVI 2-34
move mode 5-92

MVC — Move Characters 2-33
MVI—Move Logical Immediate 2-34
MVX-Move Hexadecimal Character 2-35

N

name (label) storage 3-7

new line 3-20

new page 3-9

NO OP see ANOP 4-30
NOLIST,LIST parameter 1-6
noncontiguous keys program A-17
NOOBJ,OBJ parameter 1-6

notes on programming 2-17
NOXREF,XREF parameter 1-6

o

OBJ,NOOBJ parameter 1-6
object code listing 1-10
object code, listing 1-10
OLINK procedure 1-7
operand 4-11, 4-14
macroinstruction 4-11
prototype statement 4-14
operand, coding form 1-16
operation 4-14
prototype statement 4-14
operation, coding form 1-16
OPTIONS 2-3
OPTIONS statement 2-3
ORG —Set Location Counter 3-17
other manuals ix
other systems with BSC 1-21
output library name parameter 1-5

|

page heading, listing 1-12
page, new 3-9

parameters, ASM 1-4
phone list 5-97

Physical End—MEND 4-34

Prepare a Device or File for Access—$OPEN 5-52
Prepare a Device or File for Termination—$CLOS 5-6

preparing BSC DTFs for data transfer 5-90
prerequisite knowledge ix
print assembler listing 3-19
PRINT — Control Program Listing 3-19
problem determination 6-1-6-6
procedures 1-4
Program Control Statements 3-16
Input Sequence Checking—ISEQ 3-16
program linking 2-16
program listing 3-19
programming notes 2-17
programming rules 2-5
programming with BSC 1-20
prologue 1-9
prototype 4-14
macroinstruction definition 4-14

R

read file/transmit program A-2
receive program A-3
record formats 1-18
relative addressing 2-16
relocatable expressions 2-11
remarks, coding form 1-16
reserve storage 3-7
retrieve information —$INFO 5-39
return information — $INFO 5-39
Return Interval Time— $RIT 5-59
Return Time and Date—$TOD 5-70
rules 2-5, 4-3

macroinstruction coding 4-3
run information 1-4

S-Subtract from Register 2-36

SBF — Set Bits Off Masked 2-37
SBN-Set Bits On Masked 2-38

select display 1-3

self-defining terms 2-7

sequence symbol, macroinstruction 4-3
Set Aritmetic— SETA 4-27

Set Binary—SETB 4-28

Index

Set Bits Off Masked —SBF 2-37

Set Bits On Masked-SBN 2-38

Set Character —SETC 4-29

Set Interval Timer — $SIT 5-61

Set Location Counter —ORG 3-17

set storage boundaries 3-17

set symbol, macroinstruction 4-7

SETA — Set Arithmetic 4-27

SETB— Set Binary 4-28

SETC — Set Character 4-29

SEU 1-3

severity code, error 4-31

Shift Right Character —SRC 2-41

SLC - Subtract Logical Characters 2-39
SLI—Subtract Logical Immediate 2-40
Snap Dump of Main Storage — $SNAP 5-63
snap dump —$SNAP 5-63

source file size parameter 1-5

source member name parameter 1-5
source output comment 4-23

source program assembler statements 1-14
source program library 1-5

source program listing 1-10

source statement, listing 1-11

SPACE —Line Feed 3-20

special characters 1-15

specify storage boundaries 3-17
SRC — Shift Right Character 2-41

ST — Store Register 2-42

Start Assembly —START 3-21

start new line 3-20

Start New Page — EJECT 3-9

START — Start Assembly 3-21

starting address 2-5

statement number, listing 1-11
statements in the assembler source program 1-14
stop assembly (END) 3-10

storage supervisor, extended control 2-46
Store Register—ST 2-42

substring, macroinstruction 4-4

Subtract from Register-S 2-36

Subtract Logical Characters—SLC 2-39
Subtract Logical Immediate —SLI 2-40
Subtract Zoned Decimal —SZ 2-43
summary of changes xi

supervisor call instructions 2-48
supervisor, extended control storage 2-46
symbolic parameter, macroinstruction 4-6
symbols 2-6

symbols in another program, identification 3-13
system date/time program A-8

system log support 5-49

SZ — Subtract Zoned Decimal 2-43

X-6

T

TABDF — table definition 4-20
table definition— TABDF 4-20
table of IBM macroinstructions 5-2
TABLE —table 4-19
TBF-Test Bits Off Masked 2-44
TBN-Test Bits On Masked 2-45
term 2-5
terminate assembly (END) 3-10
terminate USING 3-8
terminating the transfer of data 5-91
terms 2-5, 2-6

symbolic 2-6
terms, self-defining 2-7
Test Bits Off Masked-TBF 2-44
Test Bits On Masked-TBN 2-45
TEXT —text 4-22
Transfer— XFER 2-46
transmit program A-2
transmit/receive program A-5
truncation of blanks 5-93

U

Unconditional Branch Record— AGO 4-27

understand this first ix

Use Index Register for Base Displacement
Addressing 3-23

user macro definition example 4-35

using EXTRN and ENTRY 3-13

using macroinstructions 4-37

using SEU 1-3

USING — Use Index Register for Base Displacement
Addressing 3-23

Vv

valid characters 1-15
value checking 4-26
variable symbol, macroinstruction 4-5

W

work station local data area information—$INFO 5-39
workstation and print program A-11

X Z

XFER — Transfer 2-46 Z-display 1-3
XREF,NOXREF parameter 1-6 ZAZ-Zero and Add Zoned 2-47
Zero and Add Zoned-ZAZ 2-47

Index X-7

X-8

1BM System/36:

Programming with Assemblier SC21-7908-3

READER’'S COMMENT FORM

Please use this form only to identify publication errors or to request changes in publications. Direct any
requests for additional publications, technical questions about IBM systems, changes in IBM programming support, and
so on, to your IBM representative or to your nearest IBM branch office. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding that IBM may use or
distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you.

D If your comment does not need a reply (for example, pointing out a typing error) check this box and do not
include your name and address below. If your comment is applicable, we will include it in the next revision

of the manual.

D If you would like a reply, check this box. Be sure to print your name and address below.

Page number(s): Comment(s):

Please contact your nearest IBM branch office to request
additional publications.

Name

Company or
Organization

Address

No postage necessary if mailed in the U.S.A. City State Zip Code

S§C21-7908-3

- Fold and tape

Please do not staple

- — — — — — G — — — — —— — - m—e - e i o— | — f—— —t ——— — o — o i tatos i o s e

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N. Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

IBM CORPORATION
Information Development
Department 532

Rochester, Minnesota, U.S.A. 55901

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

— — — — —— o— am— —— ———— o —— o Smmam e —— —— —— — wm—— m— wove o vem w— —— ov—— ——— o—— o— w——— — on— o—

Joufl

Fold and tape

Please do not staple

=
= =
-
®

International Business Machines Corporation

File Number
$36:21

Order Number
SC21-7908-3

Part Number
59X3987 :

Printed in U.S.A.

Programming with Assembler

Contents

1 Introduction to the IBM System/36 Assembler Language
2 Using IBM System/36 Assembler Programming Language
3 Using Assembler Instructions

4 Creating Macroinstructions

5 Macroinstruction Supplied by |BM

6 Assembler Problem Determination

Appendixes

Glossary

Index

SC21-7908-03

-

