

4. Where does the Net Pay field end?

5. What is the right-most position for each message?

* * *
If you left 2 spaces between each constant, field and message,
your answers should be:

1 . 79
2. 95
3. 101
4. 103
5. 124, 117, 121 and 125

Earlier we identified line 6 as the place where we will describe
the report title. Suppose the title looks like this:

10/01/74 PAYROLL DEDUCTION EXCESSES PAGE 1

We want to center the title. Since the longest exception line
in the body goes to position 125, half of that gives us 63
(rounded up). The report title has 30 characters including 3
spaces between constants. So we simply subtract 15 (half of 30)
from 63 (the middle of the longest line) to find position 48
where we start filling in the first word of the title. Also,
include a 6-position date field (plus 2 slashes to separate it
into month, day and year) starting in position 11, the constant
PAGE in positions 111-11,4, and the page number field of 4
positions in 115-118. The page number field is to be zero
suppressed.

Fill in every part of the report title line Qn line £ of your
print chart.

* * *
The print chart is a worksheet for planning purposes. You can
add notes and other information for later reference as you wish.
Here's what we usually do.

1. Put the field name in parentheses under or near the
place where the field is positioned.

2. Add a note about spacing between heading and body lines.

3. Write the formulas used to do calculations if there
are any.

4. Add a note about the condition under which particular
messages ought to be printed.

5. Fill in the program name, date, programmer's name,
etc., in the spaces provided at the top of the print
chart.

263

Take a few minutes to identify each field on your print chart by
referencing the Input and Calculation sheets you have already
coded. Also remember that the system date field named UDATE and
the page numbering field named PAGE are special field names
reserved for RPG II use. If you wish, make notes about other facts
about this problem; for example, IIdouble space the body lines ll

•

* *
Before coding the exception report Output specifications, you
need to describe this output file on the File Description sheet.
Here's what you need to include:

1. a file name (in 7-14)

2. a file type (in 15)

3. a record length (in 24-27) for the 132-position print
records

4. an Overflow Indicator (in 33-34); choose anyone of
these: OA, OB, OC, 00, OE, OF, OG or OV

5. a device name (in 40-46)

Add this line of coding to your File Description sheet.

* * *
You should keep your print chart nearby as you need to refer to
it as you complete the output coding. First, describe the heading
line. It shall be printed on the first page or on overflow pages
of the report. Use the filename and the overflow indicator you
just specified on the F~le Description sheet. Include entries
to skip to line 06 before printing and space 3 (to get to line 9)
after printing it.

* * *
Next, specify each field and constant that is a part of the
heading line shown on your print chart. Include an entry for
IIEnd Position in Output Record ll (in 40-43) for each item. End
position refers to the right-hand end of a field or constant.
Also include appropriate edit codes for the date field and the
page number field.

* * *
Now compare your entries to those on the following page. Did
you include every kind of entry shown? Your filename and field
names must agree with the entries on your Input and Calculation
sheets.

264

F
'---

Line

[

~
E

.f
3 4 5 6 7

Filename

File Type

File Designation

End of File

Sequence

File Format

Block
Length

Record
Length

File Description Specification

Mode of Processing

Length of Key Field or
of Record Address Field

Record Address Type

Type of File
...J

Organization w
or Additional Area -g
Overflow Indicator 0

N -5
S ~ Key Field .~

~ g ~::~~~:n ~

Device
Symbolic
Device

Name of
Label Exit

Extent Exit
for DAM

Storage Index

Continuation Lines

Option Entry

File Addition/Unordered

Number of Tracks
for Cylinder Overflow

Number of Extents

Tape
Rewind

~
Condition

~ Ul-\!!!-

~
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4041 42 43 44 45 46 47 4B 49 50 51 52 53 54 55 56 57 56 59 60 61 62 63 64 65 66 67 66 B9 70 71 72 73 74

02 FE.XCEPS o 132 OF PRINTER
o 3

o 4

RPG OUTPUT SPECI FICATIONS

0 ~ Space Skip Output Indicators
Commas Zero Balances

No Sign CR - X = Remove
~ e~ Itl to Print Plus Sign

Jd 1
Field Name

Yes Yes 1 A J Y = Date
o- II -"" ~ ~

Yes No 2 B K Field Edit

Line Filename ~ ~ End No Yes 3 C L Z = Zero

~ ~ <Xl « Positon No No 4 0 M Suppress

~ I- '" ~
II in II:

I- 'ACO"D ~ 0 ;3 Output g Constant or Edit Word
j ;:; 0 0

o R « z z z 'AUTO
~

Record

'A~ro
a::

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 2122 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 9 40 41 42 43 44~~Q4B~50~~53546556~~5960~~63646556~66B9ro

o 1 01£ XC
o 2 0

o 3 0

o 4 0

0 5 0

o 6 0

o 7 0

o 8 0

o 9 0

RULE:

£PS H ~I~' 1 P
OR OF

UD ATE Y 18

" ' P IAI'1 RO
17 ' £ XC £5

11 If "p AG E. I

PA G£ l 1 18

When no entries are made for spacing
"OR" line, RPG II automatically uses
described in the line above it.

LL
SE 5 '

and
the

Suggestion:

Select edit
page number

codes rather
fields.

than edit words

VI£ J)U CT 10 fIJ'

skipping in an
same numbers

for date and

71 72 73 74

Code as much of a constant as is convenient in one line.

RULE: The
the

overflow indicator used
one assigned on the File

265

to condition
Description

output must
sheet.

be

You could have coded the report title as 3 separate constants in
which case your entries would be like this.

RPG OUTPUT SPECIFICATIONS

0 ~ Space Skip Output Indicators
Commas Zero Balances No Sign CR X = Remove

r---- ~~ Fd .. to Print Plus Sign

At 1
Field Name

Ves Ves I A J V = Date o!:!:
.1 Ves No 2 B K Field Edit

~~ ~ -Line Filename !~
End No Ves 3 C L Z = Zero

~g Positon No No 4 0 M Suppress
.... cl5

~ ~ in a: r,;:roo ~ ! 0 0 0 Output ::; Constant or Edit Word

~~ro
z z z "AUTO

~
Record iii

ii:

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 2324 2526 27 28 29 30 31 32 33 34 35 36 37 381:39 40 41 42 43 «~~~~~~~~~~~~D~WOO~~~MNND~OOro 71 72 73 74

0 I 0

0 2 0 ~'f ' P ~I'f iRO LL'
0 3 0 " 'V EID UC iTI DIN I

o 4 0 17 'E Xk: £s Sf S'
0 5 0

0 6 0

You should be sure that your coding is accurate before continuing.
If you are unsure of any entries, re-read the last few pages.

We are ready to concentrate on describing the printing of excep­
tion records. How many variations are there on your print chart?

* * *
I have 4 variations because of the different messages that are
to be included. Re-examine your calculation sheet and then note,
to the far right side on the print chart, which Resulting Indi­
cator you assigned for each situation that has a corresponding
message. My indicators are as follows:

Message

NO DEDUCTIONS TAKEN

INCLUDING D1

INCLUDING D1, D2

INCLUDING D1, D2, D3

Indicator ON

266

21

22

23

24

From this analysis I determine that lam to have an exception line
printed if indicator 21 is ON, or if indicator 22 is ON, or if
indicator 23 is ON, Qr if indicator 24 is ON. The note on-my
print chart says I need to double space body lines. Since we are
describing Exception output records, enter code letter E under
"Type ll in position 15. Complete this coding now.

* * *
Does your coding look like this? Did you remember the rule about
spacing entries?

RPG OUTPUT SPECIFICATIONS

o _ ~ Space Skip Output I ndicators I e=====~~v0> Commas zer~o B:rli~~ces No Sign CR - X = ~1~~~~gen
~ ~I--.--I.--.---+----.,.-----.------I Field Name [> Yes Yes A J Y = Date

o - I I r? Yes No B K Field Edit
~ ~ ~ Qj ,I. L No Yes C L Z = Zero
~ ~ ~ ~ And And a:: Positon No No D M Suppress

~ <l)" I ~ ~ in a:

o R 'ACo 0 ~ ~ ~ ~ ~ . AUTO ~ ~ ~~~~~~ i
~~~ I 

Line Filename 

Constant or Edit Word 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 3637 38 39 4041 42 43 44 45 46 47 48 49 5051 52 535455 56 57 58 59 60 61 626364 6566 67 68 69 70 71 72 73 74 

a 1 0 E Z. 21 
f-

a 2 0 OR 22 
a 3 0 OR 23 
a 4 0 OR 2'1 
a 5 0 

a 6 0 

At this time, specify each field or constant that is to be a part 
of the exception line for the first possible situation. Include: 

1. the field name 
2~ an End Position in Output Record 
3. the constant 

For convenience, I work from left to right on the print chart as 
I code. Use one coding line for each field or constant. 

* * * 
Double check your names for exact spellings. Re-examine all end 
positions on the chart. Make sure that each constant has a single 
quote mark ahead of it and following it. 

Next, specify edit codes wherever desired. 

* * * 
No edit code exists in RPG II to provide for inserting dashes 
for the Social Security number field, so what do we do? We will 
describe an IIEdit Word ll rather than an edit code for this field. 

You will recall that we added an extra space to the left of this 
field when we planned for its use on the print chart. Now weill 
make use of it to provide fo~ proper punctuation and zero 
suppression. 

267 



RULE: All leading (left-most) zeros are suppressed unless a 
zero or asterisk is specified in the edit word. 

RULE: Any zeros (in the data field) following the left-most zero 
or asterisk position (in the edit word) are treated as 
constants; that is, they will be printed. 

Suppose I used an edit word like this (~ stands for a blank space): 

and the Social Security number was 007290625, what would be 
printed according to the rules? What would happen if I used 
I~~O~_~~_~~~~I and 003037726? 

In the first example, the printed Social Security number would be 

007-29-0625 

In the second example, it would be 

3-03-7726 

Why not use the edit word 10~~_~~_~~~~1 for a number like 
084900265? I used a shorter edit word in this example and so 
the zero in the field on the left side will be suppressed rather 
than be printed. Here's what would print in this case. 

84-90-0265 

To sum up about this edit word: 

RULE: An extra space can be left in the edit word if the first 
character in the edit word is a zero. In this case, the 
field to be edited is not zero suppressed, but all other 
specified editing is performed. 

At this time, specify the correct edit word for your 9-position 
Social Security number field. 

* * * 
We need to add an entry to control "when" the message, NO 
DEDUCTIONS TAKEN, shall be printed. What is that entry? For 
my e x amp 1 e, i tis II w hen i n d i cat 0 r 21 i stu r ned 0 Nil. H ow can 
this be specified? 

RULE: The printing of a field or constant may be conditioned by 
specifying one or more indicators Qrr the same line on 
which that field or constant is specified. The entry is 
made in positions 23-31. 

Since my indicator for the message is 21, what should I specify? 
Enter 21 in positions 24-25 on the line where the constant is 
coded. 

268 



Re-examine your print chart. Which part of exception records 
needs to be conditioned as a field or constant for every possible 
record that shall be printed? 

Only the messages. At this time specify the constants for all 
of the messages and condition each one with the proper indicator. 

* * * 
Your entries for the messages should be similar to these. 
yours carefully. 

Check 

RPG OUTPUT SPECIFICATIONS 

0 -'" ~ Space Skip Output Indicators Zero Balances X = Remove 

e~ 
Commas 

to Print No Sign CR -- Field Name ~ill 
.... Plus Sign 

Jd 1 
Yes Yes I A J Y = Date 

0- I Yes No 2 B K Field Edit - .. ~ ~ 
Line Filename ~ ~ 

~~ 
End No Yes 3 C L Z = Zero 

~~ II: Positon No No 4 D M Suppress 

~ f- US 

j 
:G en in II: " 

"A'Do " .'-f-

~ 0 0 ~ 8 U Output ~ Constant or Edit Word E o R z z 'AUTO ~~ Record .f r;;:~ro 
a:: 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38P9 40 41 42 43 «~~O~~W~~~~~~~~~OO~~~MM~D~~M 

o I 0 21 12./1 ' NO 1)E. ])U K!7 10 NS TA kE N' 
o 2 0 2.2 11 7 .. IN CL UP I N~ 'P 1 ' 
o 3 0 23 12.1 

, 
IN CLU IN' ~ 11, 11>2 ' 

o 4 0 2. If 125 , 
J N CL UP , N~ DJ, D2 ) ])3' 

0 5 0 

What do you think the following entries would do? 

RPG OUTPUT SPECIFICATIONS 

0 LL Space Skip Output Indicators 
Commas 

Zero Balances No Sign CR X = Remove 

- ~ Itt\j v to Print Plus Sign 

~ 

Jd L 
Field Name 

Yes Yes I A J Y = Date .. " II Yes No 2 B K Field Edit 

Line Filename ~~~ End No Yes 3 C L Z = Zero 

.. III II: Positon No No 4 D M Suppress 

! US 
~ ~ ~ in II: 

j 
r;;:OO :il ~ 0 0 0 8 U Output ~ Constant or Edit Word 

';~'D 
« z z z 'AUTO ~~ Record a:: 

3 4 5 6 7 8 9 10 tl 12 13 14 15 16 17 18 1920 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 ~9 40 41 42 43 «~~O~~W~~~~~~~~~OO~~~MM~D~~M 

o I 0 21 121'1 
, NO DE VU CT 10 NS TA KE" 1'1 ' 

o 2 0 N21 11 7 , 
IN CL UI) INlG J) 1 ' 

o 3 0 23 121 \ ) P2.' 
o 4 0 211,( 125 .. D2, D3' ) 

0 5 0 

o 6 0 
~---

Looks to me like it will accomplish the same thing that we had 
in mind. This was a sneaky way to do the same thing, but it's 
not as easy to follow or invent. 

269 

71 72 73 74 

71 72 73 74 



Have you ever tried to solve a problem before anyone else knew 
it existed? Thatls what we are going to do next, hopefully. 

When you think of your program as, it will be running, you can 
predict that some undesirable events may occur. In our example, 
1et l s say that one record in which deductions 1, 2 and 3 were 
taken (but not deduction 4)is followed immediately by a iecord 
in which only deduction 1 can be taken. Because we used the 
GOTO operation, indicator 23 was not turned off before indicator 
21 was turned on for the next record. When such a- situation 
e xi s t s (2 0 r m 0 r ere s u 1 tin g ,i n d ; cat 0 r s are 0 nat the s a me time), 
it is possible that we get either: 

1. the wrong message, or 

2. a mixture of both messages 

There is the special operation called SETOF that may be used to 
prevent such an occurrence. It c~uses 1, 2 or 3 designated 
indicators to be turned off. Look at your Calculation sheet. 
Think through the steps you have coded. 

1. Will the test for Resulting Indicators occur for 
every record? 

2. If the answer is lIyes ll , the assigned indicator is 
automatically turned off before the operation is 
performed, and then t~test is done to see if that 
indicator should be turned on 'after the operation. 

3. If the answer is IInoll, the programmer should 
probably use the SETOF operation to make sure it 
is turned off before the operation is done. 

In Problem 4, the test for resulting indicator condition is 
made in 3 cases at steps bypassed by a GOTO operation. These 
hidden steps will not occur for every record. Therefore, I, 
the programmer, should set off indicators 22, 23 and 24 every 
time a new record is processed. I will place the 'SETOF 
instruction ahead of all other calculations so that 11m sure 
only 1 message will print for each exception record. Herels how. 

1. Enter SETOF in 28-32. 

2. Enter one, two or three indicators to be turned off 
in 54-55, 56-57 and 58-59. 

To set off more than 3 indicators, I need to specify a number of 
SETOF operations. 

Hint: Use SETOF only when needed. It takes space and time to 
perform its function. , 

270 



Oh, Oh. We1ve already used the first coding line on the Calcu­
lation sheet~ How can I specify the SETOF instruction so that 
it will be positioned correctly for compilation? 

Look at your Calculation sheet again. There should be 4 unused 
and unnumbered coding lines near the bottom of your sheet (the 
TAG statement is last). To use SETOF,' code it as I have directed 
on one of the unused lines and then enter a number in positions 
3-5 of that line to indicate where it really belongs in the 
sequence of calculation steps. The top line is preprinted as 
01~ in 3-5 which is like 010. So you can use 001 for your entry 
in 3-5 for the SETOF operation statement. Be sure to include the 
3 indicators you assigned for the last 3 test steps. 

* * * 
All coding is now completed. As we did in an earlier example, 
enter page numbers and the program name at the upper right of 
each page in your program. Call this program C5P4. The correct 
order of specifications for numbering is: 

1. File Description 

2. Input 

3. Calculation 

4. Output 

* * * 

271 



The reason for including this chapter was to simulate RPG II 
programming activity in the real world. You were exposed to 
four different types of data processing problems and asked to 
code solutions to them. live decided to repeat each problem 
statement here and ask that you review each statement along with 
your coded solutions. Take time to make sure that you understand 
why each entry on each line of each specification sheet is 
needed. You may wish to re-read certain parts of this text and 
the RPG II reference manual as you participate in this review. 

PROBLEM 1: C5Pl 

IIA file of BO-character disk records contains information about 
a certain company's accounts receivable. An 'Accounts Receivable 
Register ' is printed for management each month so that it may be 
determined how much money has not yet been collected from 
customers who purchased goods from the company.1I 

Directions: 

1. Use /COPY to include the Input File Description and Input 
records in your program. These entries are already cata­
loged under the name ARIN. 

2. Describe the necessary output file. 

3. Use *AUTO to describe the headings and body lines of the 
register. 

4. Refer to the sample report to code Output entries, and to 
the cataloged RPG II entries for the /COPY entry. 

272 



Sample Report Page 

ACCOUNTS RECEIVABLE REGISTER 

CUSTOMER CUSTOMER NAME STATE CITY INVOICE INVOICE INVOICE 
NUMBER NUMBER DATE AMOUNT 

1281 AMERICAN STEEL CO 36 49 11666 11/23/67 640.31 

1281 AMERICAN STEEL CO 36 49 12336 12/30/67 909.04 

2179 APALACHIN LUMBER CO 4 227 9852 9/15/67 469 .• 20 

2283 B J E SERVICE CORP 22 37 12332 12/29/67 1,474.78 

11905 CHALLIS ALMERS 47 77 10901 10/18/67 27.63 

29031 DENNIS MFG CO 6 63 11615 11/14/67 440.12 

-

---r-
17,524.23 * 

273 



Cataloged as ARIN 

F 
I---

Filename 

Line 

8. 
~ 
E 

.f 

File Type 

File Designation 

End of File 

Sequence 

File Format 

Block 
Length 

Record 
Length 

File Description Specification 

Mode of Processing 

Length of Key Field or 
of Record Address Field 

Record Address Type 

Type of File 
oJ 

Organization w 
or Additional Area ~ 

Overflow Indicator 0 
~ r--- g s :. Key Field .~ 

a: c Starting ~ < ~ Location W 

Device 
Symbolic 
Device 

K 

Name of 
Label Exit 

Extent Exit 
for DAM 

Storage Index 

Continuation Lines 

Option Entry 

File Addition/Unordered 

Number of Tracks 
for Cylinder Overflow 

Number of Extents 

Tape 
Rewind 

~ 
Condition 

~ Ul.~ 

~ 
3 4 5 6 7 8 9 1011 12131415 1617 181920 212223242526272829 30 31 323334 35 38 37 38 39 4041424344 45 464746 4950 515253 54 5556 57 58·59 60 616263 54 65 65 67 68 68 70 7172 73 74 

02 FACCTSRECIP 8_ J)I$K . 
o 3 

o 4 

RPG INPUT SPECI FICATIONS 

I 0 Record Identification Codes Field 
i3 Field Location 

Indicator.s - ~ 1 2 3 

i 
c. 0 

Line Filename 1'0 ~ Field Name ~~ 
0. § 0:; u.u. Zero 

Jl Position Position - ~ Position 1 j; From To .S ~ Plus Minus or f-
0 "E ~ e E ~ e ~ ~o 'fi :S Blank 

~ ~f--
. ., 

! o~~ o ~ ~ o~ ~6 o R 0 Z <..l <..l Z<..l<..l Z <..l 

'A'No 
3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 3233 34 35 36 37 38 39 40 4142 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 6364 6566 6758 69 70 71 7273 74 

0 1 IA cc TS R£ eNS ,,1 
0 2 I 8 2.'1 eN AM£ 
0 3 I 3~ 38 IN NO 
0 4 I .39 1f3 cu SNKJ 
o 5 I 411- 115 51 AITE 
o 6 I 'fl.' 118 CI TY 
0 7 I JI' 5q. 1- I I'Ip ~11£ 
o 8 I 7'ff 8¢ 21 HA /WI,. 

o 9 I 

1 0 I 

11 I 

274 



Problem l' Book Solution 

1 2 75 76 77 78 79 80 

File Description Specification page~B} i ~~~~;~f:at,on Iclslp ~ I I I 

F 
-

Filename 

Line 

File Type 

File Designation 

End of Fife 

Sequence 

File Format 

Block 
Length 

Record 
Length 

Mode of Processi 09 

Length of Key Field or 
of Record Address Field 

Record Address Type 

Type of File 
Organization 

or Additional Area 

...J 

W 

o 
Overflow Indicator U 

('.I -5 
S ~ Key ~ield .~ 
a:- 0 Starting k 
~ :::;. Location W 

Device 
Symbolic 
Device 

Name of 
Label Exit 

Extent Exit 
for DAM 

Storage Index 

Continuation lines 

Option Entry 

File Addition/Unordered 

Number of Tracks 
for Cyl i oder Overflow 

Number of Extents 

Tape 
Rewind 

~ 
Condition 

~ UI.~ 

~ 
3 4 5 6 7 8 9 1011 12 13 14 lis 16 17 1819 2021 222324752627 282930 31 323334 35 363738 3940414243444546 4748495051 52 53 54 55 56 57 58 59 6061 626364 65 66 67 68 69 70 71 72 7374 

o 2 F / COP Y F't) A~ , N 

03 FR£GISTE./iO 132 PRltlT£R 
o 4 

o 5 

o 6 

o 7 

o 8 

o 9 

I 0 

lL LL OL 69 89 L9 99 59 V9 C9 19 L9 09 65 89 LS 9S 55 >S C5 l5 LS OS 6v 8v Lv 9v 5v VI> CV lv Lv OV 6C 8C LC 9C 5C VC CC lC LC DC 6l 8l Ll 9l Sl vl Cl II Ll Ol 6L 8L LL 9L SL vL CL lL LI 01 6 8 L 9 5 v C l I 

RPG OUTPUT SPECIFICATIONS 
IBM International Business Machine Corporation 

Program 

Programmer Date 

12 757677787980 

Page ~ of ~ ~~::~:ation Ie Islp 111 1 I 

0 '" ~ Space Skip Output Indicators 
Commas 

Zero Balances 
No Sign CR - X = Remove 

:--- el Ili;j v to Print Plus Sign 

I 1 
Field Name 

Ves Ves I A J V = Date 
0- I] -"" ~ ~ Ves No 2 B K Field Edit 

Line Filename ~~ ~ ~ End No Ves 3 C L Z = Zero 
And a: Positon No No 4 0 M Suppress 

~ I- <l5 ~ ~ in a: 
I- r,;:oro 0 

~ 0 0 0 8u Output g Constant or Edit Word 

~ o R '" z z z 'AUTO ~~ Record 

r;"Nro ii:: 

3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 1920 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36 37 38139 40 41 42 43 «~~Q~~~~~~~~~U~WOO~~~~~~u~~m 71 12 73 74 

o I OR £G IS i£ RH *A uro 
o 2 0 'A c'r "u NTS ;RE Cf I V AS LE- I 

o 3 0 'R £G J S TE R ' 
o 4 0 J) Z ¢t *A UfO 
o 5 0 CU SNO 'C US TO ~E R' 
o 6 0 C 'N UM 8£ R' 
o 7 0 cltJ AM£ "'c US TO !ME. R NA 1"1 E' 
o 8 0 str AT£ '~ :fA l1 £' 
o 9 0 C I TV 'C IT y' 
I 0 0 IN NO \ I NV 01 ~£' 
I I 0 C " N UM 8£ R' 
I 2 0 IN PA TEV , IN va IC £' 
I 3 0 C \ 1)A TE.' 
1 4 0 I N AMi A \ , NV bl c£' 
I 5 0 C " A .MD UN "(' 

I 6 0 

I 7 0 

275 



PROBLEM 2: C5P2 

"A master file of subscriber records is stored as an indexed 
disk file. Each record is 85 characters long and includes a 
key field in positions 1-7. The records in this file are 
updated on a daily basis for two kinds of transactions: 
renewal of subscription and change of address. The changes 
are keyed in from the console as an interactive data entry 
fi1e." 

These are the programming requirements: 

1. Update the master file randomly using the chaining method. 

2. For renewals, change the expiration date. 

3. For changes of address, replace the street and city/state/ 
zip code fields. 

4. Include a list of keyed transactions. 

5. If no master record is found for a particular transaction, 
print a message to that effect. 

Master File 

Positions 

1- 7 

8-31 

32-55 

56-79 

80-85 

Transaction File 

Renewal 

Field 

Subscriber Number (key field) 

Subscriber Name 

Street Address 

City, State and Zip 

Expiration Date of Subscription 

Positions Field 

Code - letter R 

Subscriber Number 

Number of Years Renewed 

Change of Address 

1 

2- 8 

9-10 

1 

2- 8 

9-32 

33-56 

Code - letter C 

Subscriber Number 

New Street Address 

New City, State and Zip 

276 



Problem 2: 

F -
Filename 

line 

Book Solution Page 1 

File Type 

File DeSignation 

End of File 

Sequence 

File Format 

Block 

Length 
Record 
Length 

a: 
..J 

File Description Specification 

Mode of ProCl~ssulg 

Length of Key Field or 

of Record Address Field 

Record Address Type 

Type of File 

Organization w 

or Additional Area 0 

Overflow Indicator U 

~~ ~.~ 
~ a Starting ~ 
~ ::;;. location W 

Device 
Symbolic 
Device 

1 2 75 76 77 78 79 80 

page~j}4 ~~~~;:f:.t,on ICISlpl2.1 I I 

Name of 
Label Exit 

Extent Exit 
for DAM 

Storage Index 

Continuation lines 

OPtion Entry 

File Addition/Unordered 

Number of Tracks 
for Cylinder Overflow 

Number of Extents 

Tape 

~ 
Condition 

~ Ul.~ 

~ 
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

02 FSU~h'1AS UC 85R 7AI ~ISJ< 
03 FCUANGES I P '2'~ C/ONSOL e: 
04 F~/SI 0 1~~ PRINTE.R 
o 5 

o 8 

o 7 

o 8 

o 9 

1 0 

Z£ l£ O£ 69 89 £9 99 59 t9 £9 Z9 ,9 09 69 as £5 99 99 \7S £9 ZS L9 09 6*, 8P llr 9p Sl' "t £p Zl' Ll' OP 6£ 8£ Lt 9£ 9£ lr£ ££ Z£ L£ O£ 6l BZ LZ 9Z SZ *,Z £Z ZZ LZ OZ 6t 8' LL 9L 9L PL CL ZL LL OL 6 8 L 9 9 *' £ Z L 

RPG INPUT SPECIFICATIONS 
IBM International Business Machine Corporation 

12 757677787980 
Program 

Date Programmer 
page~Of!t ~~:;:f:alionICI5IPI21 I I 

I ~ 
Record Identification Codes Field 

Field Location 

~ 1 2 3 6 
Indicators - ~ c. 

.~ 
5 ~ i ~·o ~ B~ 

Line Filename ~ E £ Field Name ] .~ 'ii 

1 ! £" ::0 ~ 0; u..u: Zero 

.8~ Position - ~ Position - ~ Position ~~~ From To 
~ .~ ~ Plu. Minus or 

~ 5 'g 'E :: ~ ~ ~ e ~ ~~ 5~~ 
g 

j~ '" Blank 
OR' ~ ~f)6 2 8 ~ Z 0 ~ u 0 Z U 0 

"A'N'D 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 23 24 25 26 27 28293031 32 33 34 35 36 37 38 3940 4142 43 44 45 46 47 48 49 505t 52 53 54 55 56 57 58 5960 61 62 6364 6566 6768 69 70 71 72 73 74 

0 1 Ie u~ ~~ ES AA C?J1 1 CR 
0 2 I 1 1 CO 'f) E 
0 3 I Z 8f; Su 65 itlO 
0 4 I 1 1~ (Jy £.A RS 
o 5 I 88 ~ll 1 cc 
o 6 I 1 1 CO DIE 
0 7 I Z 8~ SU 85 NO 
o 8 I q 32 NI! WS~ 
o 9 I 313 5' N~ 'Nt:, TY 
1 0 IS ulB I/ttA$ CC r)3 
11 I SW- 8'0 ~£. xlv ~T£ 
1 2 I 

277 



Problem 2: Book Sol,ution, Pase 2 

RPG CALCULATION SPECIFICATIONS 

Graphic Cml Electro Numh., 

GX21·9otl3·2 UM/050· Printed in U.s.A. 
"No. of forms per ped maV vary sli;htIV. 

J'unchlOg 
'nstructlOn '~ ____________ ~I_D_.te ____________ ~. ______ ~p_un_ch_ rrrr I I H l

O 1 2 75 78 77 78 78 00 

--.I....-..l..--.L--.l..-.-___ P.ge~ot~ ~~~;~t:ltionIClsIPI'1l I I 

l!l. 
Line ?: 

E 

~ 
3 4 5 6 

0 1 C 

0 2 'i 

0 3 C 

Indicators 

o 
Z 

Factor 1 Operation 

Result Field 

Factor 2 

Name Len~'!h 

Resulting 
In(hCCitors 

ArlthmettC 

I Plus Mlflusl Zero 

~ _ Com~)arc 

~ ~:::u;(;a~t~: ;)~S 
r. High Low Equal 

Comments 

9 10 11 12 13 14 lb 161718 19 20 21 22 23 24 25 2G 77 2829 30 31 32 :.13 34 3~ 36 37 38 39 40 41 42 43 44 45 46 47 4849 5051 5354 55 56 57 58 59 60 61 62 6364 6566 676869 7071 n 13 74 

~ 1 S (/8 S N 0 C H t) 1 N 5 ~ ~l"! ~ ~ _Lt---t-' ! I I +j ++.+=-'f-O--' +-+-1f-+-+-t-+-+-t .. -+-l-+-"........j---'H-I-+-f--I 

111 N 11 EX DAT E. APT> V Ef-'-A;:...:.RF-lS'-+--lI-+-+-F£f::;:-IX)~1J,+,B.+,-I!l1+-J:t_+-It-t--iIH---l-++-+-++++++-+-+-+-'r+i-t---i-t-t-i 
~ll sua 5 NO C ~ It I l~ 5 liB MIA 5 ! Iii! 22 

, '.t- [ I: I I i 
H-++-H--+--I-"i'-+-+-HH-++-1-+--l

I
-++-+-+

I
-+-i

j
-t-+-t-t-t-+-·t-t

L
-,+-L :t.-Jr,-_-t-tt I i I: ! -tt-'-; +11-+-

1

H---l
1
-+-1[-+--l1-i--i

1

-i-
1 

-i;-+!I -il-i-: +-H-t-i -i, -+-1, -t 
0 4 C 

0 ~ 5 C 

RPG 
IBM Inte~nalion81 Business Machine Corporation 

Program 

Programmer Date 

10 ~ Space Skip Output Indicators 
i--- ~~ 

Jd L 0-

~~ ~ -Line Filename 
~~ l!l. t 

~ ~M 
f-- AOIo ~ ~ 0 0 0 ~ ~ 
~ 7~'D 

z z z 

3 4 5 6 7 B 9 10 11 12 13 1415 1617 's. 1920 2122 2324 2526 27 28 29 30 

o 1 0 5 Ivls milS P lil1 N 11 
o 2 0 

o 3 0 . ~ Illlil N212. 
o 4 0 

o 5 0 

o 6 ol IslT ~ l " . 
o 7 0 01(( ~~ 
o B 0 

o 9 0 

1 0 0 II) l' 
11 0 ~1 11 
1 2 0 lal2 
, 3 0 , 10~ 
1 4. 0 ~l2 2:i 
! 5 0 

1 61 0 i 

OUTPUT SPECI FICATIONS GX21-9090-2 U/. 05t. 
Printe:d in U.S.A. 

12 757677787980 

p·ge~k~ ~~:~:qtionIl15IPlzj I I 
! 

. I 

Commas Zero Balances No Sign CR X ... Remove 

It!1i 
v to Print Plus Sign 

Fiel. Name 
Yes Yes 1 A J Y ~ Date :1 Yes No 2 B K Field Edit 

End No Yes 3 C L Z ~ Zero 
Positon No No 4 0 M Suppress 

~ in a: ° 
8 Output ~ Constant or Edit Word 

<AUTO ,,, Record ~ ;Jl 

31 32 33 34 35 36 37 3B 9 40 41 42 43 «~~a~~oo~~a~~~~~~W~~~~~~~~ooro 71 72 73 " 

iEX DA TIE 
. 

85 

~E w5T 55 . 
NE we ,y. l' 
PtA UfO 

co ll>~ 'C OD ~' 
Isu 85 fi"~ 'S UB ~~ R I 8'£ R' 
YE. AI.~ ~ ''I f.A RS' 

'NO ttJA SI..,. £1 FO liN ~' 
WI" wsr 'S fR EE T' I" 

N£ we T Y' ' C , iV / ~11" A,T IE: ' 
. .-. '" 

'NO MA sl1 E:R IFO UN ~ , 

I I 

278 



PROBLEM 3: C5P3 

IICompute customer electric usage bills. Refer to this table of 
rates and then describe the necessary ca1cu1ations.1I 

Usage Rate 

1- 50 kwh $.05 each 

51-100 kwh $.04 each over the first 50, + $ 2.50 

101-300 kwh $.03 each over the first 100, + $ 4.50 

over 300 kwh $.025 each over the first 300, + $10.50 

Directions: 

1. Use /COPY for all coding except Calculations. Cataloged 
items are: 

ALLFILES for all File Descriptions 

INRECS for Input records and fields 

OUTRECS for Output records and fields 

2. Name the result field for calculated usage, USE 

3. Name the result field for calculated costs, BILL 

4. Input records include these fields: 

NEW, for the new period's meter reading 

LAST, for the last period's meter reading 

279 



Problem 3: 

F 
r---

Filename 

Line 

Book Solution, Page 1 

File Type 

File Designation 

End of File 

Sequence 

File Format 

Block 
Length 

Record 
Length 

File Description Specification 

Mode of Processing 

Length of Key Field or 
of Record Address Field 

Record Address Type 

Type of File ..J 
Organization w 
or Additional Area .g 
Overflow Indicator U 

~~ ~.~ 
~ a Starting ~ 
<l :::: Location W 

Device 
Symbolic 
Device 

Name of 
Label Exit 

Extent Exit 
for DAM 

Storage Index 

Continuation Lines 

Option Entry 

File Addition/Unordered 

Number of Tracks 
for Cylinder Overflow 

Number of Extents 

Tape 
Rewind 

~ 
Condition 

Z U';~ 

~ 
3 4 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 222324252627 28 29 30 31 323334 35 36 37 38 39 4041 4243444546 4748495051 52 5354 55 66 67 68 59 60 61 626364 66 66 67 66 69 70 71 72 7374 

02 F/COlpy F'1,4~~FIL!S 
o 3 

o 4 

RPG INPUT SPECIFICATIONS 
IBM International BUSlnp,<;s Machine CorporaTion 

Program 

Programmer Date 

I Record Identification Codes 
Field Location 

-
Line Filename 

From To 
,~~ :_i"o 
VI ~ Position ~ 0 ~ Position ~ e ~ Position 

o -;- ~ co ~ § ~ ~ S g 
AN'D 

1 2 75 76 77 78 79 80 

P.'IC~Of!t ~:~~:~f:at,onICI5IPI31 I I 

8 Field Name 

Field 
Indicators 

Zero 
Plus Minus or 

Blank 

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2!> 26 27 2829 ]0 31 3233 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 57 ~3 54 55 56 57 58 59 60 61 67 63 64 65 66 67 68 69 70 71 72 7374 

0 1 1/ CO P'I F1 I I Nt( £c S_H-- I -J--- ·t~c-- r·c-- -
I 0 2 I 

--f-~r- - ---
o 3 I 1 I _ L_C- _ ~.L-L- _'- _ L ___ • __ L. ___ -- -- _. __ L._.L-'- __ 

280 



Problem 3: Book Solution, Page 2 

RPG CALCULATION SPECIFICATIONS GX21-9093-2 UM/050· Printed in U_S.A. 
"No. of forms per pad may vary .lightly. 

1 2 75 76 71 78 79 80 
Program 

Date 
P'ge ~ of ~ ~~::~f:",on I ci 51 p 31 I I Programmer 

C Indicators Result Field 
Resulting 
Indicators 

~ 

At At 

Arithmetic 

Factor 2 
0 Plu, !Minu,! Zero 

Factor 1 Operation . ., 
Comments 

! 
.~ Compare 

line Name Length ':: 1 >2!1 <2!1-2 E 
& 0 ~ 

Lookup(Factor 2)is 

z z z 0 High Low Equal 
3 4 5 6 9 10 1112 13 14 1516 17 18 19 20 21 22 23 24 25 26 27 2829 3031 32 333435 36 37 38 39 40 41 42 4344454647 48 49 5051 52 5455 5657 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 1 C H~W SUB LA S:r USE 51(0 '2.tJ 
o 2 c 2.1~ 'NEW ADID 11' !~¢ ~; 8" ,~ 
o 3 C 2." BI(s SUS LA SIT USE'. 
o 4 C 2.1" 1.- All) ~'a 81G 
o 5 C l- A~ DU 5£ KI~'" ~(I 

1-
o 6 c USE CO ~P '~IA 3¢ 
o 7 C N~(6 USE ~u LT .(15 81 LL 52 
o 8 C Na" frO ITo E.NP 
o 9 c US£. CO ~p 1!¢¢ I/¢ 
1 0 C N'I~ US E SU8 5(6 OV !~ 51(IJ 
11 C Nq.~ OV £K 'mU ILIT .1¢1'f 81 LL 
1 2 C Nq.~ 81 LL AI> 1) 2. S~ 81 LL 
1 3 C 'ttl 11-" GO TO £N~ 
1 4 c USE. 'CO trlP 131'¢ 3~ 
1 5 c NSP' US E SU8 1 (Ji¢ OV ltK' 
1 6 c NI5~ OV E.R lftIu LIT • 11113 B 1 LL 
17 C WIs" 81 LL ADZ> Vf. sltIJ B/ LL 
1 8 C H~~ GO 10 fWP -1--
1 9 C ()SE 's ()f!. ~"t6 Ov Eli 
2 0 C 'OV ~R I(tfIJ LT . , 25 81 L.L 'II 
~;. c 81 LL ,41>D 11, .~, 81 L.L 

I-

2~ c EN1> TAfi 
C 

c 

RPG OUTPUT SPECI FICATIONS 
IBM International BUSiness Machine Corporation 

Programmer Date 

12 757677787980 

page~of!t ~~:;~:CalionICI51pI31 I I Program 

o 
r--

Line 

~ Space Skip Output Indicators ... Zero Balances X = Remove Commas No Sign CR 

e~ tJl 
to Print Plu. Sign 

At 1 
Field Name 

v'" Yes A J V = O.t. 
0- I -... 

j~ 
V'" No B K FI.ld Edit 

Filename i~ End No Yes C L Z = Z.ro 

> 1Il Pasitan No No 0 M Suppress 
f- Iil 

f ~ in 
AOro ~ ~ 0 ~ 0 Oulput § Constant or Edit Word 

o R <I: z z "AUTO ." Record CD 
"C Q:; 

A~D w 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 63 54 55 56 57 58 59 60 61 62 63 84 8& 86 67 86 69 70 71 72 73 7. 

01 o/COPY F1 Ol/rREeS 
o 2 0 

o 3 0 

o 4 0 

o 5 0 

o 6 0 

o 7 0 

281 



PROBLEM 4: C5P4 

"An indexed disk file of lOO-character records is to be copied 
for reference. Its key field is in positions 1-8. The new 
file will contain identical records, but is to be organized 
sequentially. Compute Net Pay using this formula. 

NET = GROSS - FIT - FICA - 01 - 02 - 03 - 04 

All deductions are to be taken from gross pay unless doing so 
causes the net pay amount to become zero or negative in value. 
If that happens, add back the last deduction, print an exception 
record on a special report, and bypass all further calculations 
for that record. Include messages on the exception report to 
indicate which, if any, deductions were actually taken." 

Directions: 

1. Do not use any Auto Report function. 

2. Prepare a print chart to represent heading and body lines 
of the exception record report. 

3. Include UDATE and PAGE fields on the heading line. 

11/22/74 PAYROLL DEDUCTION EXCESSES PAGE 

282 



Pr:oblem 4· .. 

F -----
Filename 

Line 

Book So l.~t ion, Page 1 

File Type 

File Designation 

End of File 

Sequence 

File. Format 

Block 

Length 
Record 
Length . ~ 

file Description Specification 

Mode of Protessi n9 

Length of Key Field or 
of Record Address Field 

Record Address Tw>e 

Type of File 

Organization 
..J 

W 

or Additional Area '& 
Overflow Indicator U 

N "---.§ 

~ ~ ~t:~t~~:ld ~ 
4!' :::: location W 

Device 
Symbolic 
Device 

1 2 15 16 II 18 19 80 

I.ilJl ~ P<U9"'" ~C pTATT! 
Pdyel!l!J!J

of ~ Ident.tlc;dtJOn L~l!::..t'li I I 

Name of 
Label Exit 

Extent Exit 
for DAM 

Storage Index 

Continuation Lines 

Option Entry 

File Addition/Unordered 

Number of Tracks 
for Cylinder Ov.:flow 

Number of Extents 

Tape 

~ 
Condition 

U1.~ 

~ 

~ 
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ~3 34 35 36 37 38 39 4041 42 4344 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 6' 62 6364 65 66 67 68 69. 70 11 72 13 14 

o 2 FPAYINDE't-IP 1(6~ SAl 1 ~ISJ( 
o 3 FpjAYSEQ 0 1C1C6 'DISK 
o 4 FEXCEPS 0 132 OF PRlINT't.R 
o 5 

o 6 1 

RPG INPUT SPECIFICATIONS 
IBM InternatIonal BUSiness Machme Corporation 

1 2 75 76 77 78 79 80 

Date 
Page ~ of ~ ~~;~;~f:ationl c lsi pl'f I I I 

Filename 

Record Identification Codes 

Position Position 

: 3 

Position 

Field Location 

J 
Field 
Indicators 

~ 
0 

0 .!!! 
0 

tield No.ne :2~ a: 
.~ ] .!!!4i u.u:: j Zero 

] e .E ~ Plus Minus or 

-£ :~ '0 Blank 
~ ~ ~6 

0; 
Q ;:;: 

From To 

9 10 11 12 13 14 15 16 17 t8 19 20 21 22 23 24 25 26 27 28 29 30 31 3233 34 35 3637 38 39 40 41 42 43 44 454647 48 49 50 51 52 53 54 55 56 57 58 596061 62 63 64 65 66 67 68 69 70 71 72 73 74 

a 1 IP~ Y J ND £ XAA 1)1 
o 2 I 1 'llCiJi,s RE ~b RP 
o 3 I 1 3" DE. PiT 
o 4 I ~ si(2J NU M8 £R 
o 5 

. 
<t 11 ~S 01" SEC I 

a 6 I 1~ 22 2.G RO ~S -
~7 o 7 I 23 2F IT 

a 8 I 2~ 3~ ~S ST AX 
o 9 I [;3 5" 2.~ £1> 1 
1 0 I l5rr ,~ 2~ f.D2 

" ". 
1 1 I '1 'I~ 2.D £1)3 
1 2 I ~5 ,~ ll~ E.'D1i . . -
1 3 I 

1 4 I 
1-

1 5 I 

1 6 I 
, ... 

1 7 I I I 

283 



Problem 4: Book Solution, Page 2 

RPG CALCULATION SPECIFICATIONS 
IBM International Business Machine Corporation 

Program 

Programmer Date 

C Indicators Result Field 
~ 

i-- o_ 
At At l!! ..Ja: =0 Factor 1 Operation Factor 2 gi" 

~!~ Name Length ~~ Line ... (50:- ~~ E ; Ul 

&' 8 ~- ~ ~ ~ ·0 -
Z Z 0::1: 

3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 3031 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5051 52 53 

o 1 C Gtl 0&5 $Ltle f I.T NEt 0"2. 
o :1 c IN E'T SUS 5S TAX HE'T 
o 3 C NET 5uls .tc D1 HI£1r 
o 4 c 11 N f'T AIt>ID De: D t Net[ 
o 5 C 11 E)(, C ph 
o 6 C 2.1 (it> TO 'Er-lD 

o 7 c IWET SuB DE J)Z ~flT 
o 8 c '-2 tJET ADE> DE' DL NET 
o 9 C 1.2- EX CoPl 
1 0 C 2.2 Ge 10 £~Io 
1.1 C ~ET .~u8 D£ 03 ~!IJ" 
1 2 c 12.3 ... e-rr iADV ID E 103 Nlf~ 
1 3 C ~S .f" CPT 
1 4 C 13 GO To 1 eNI> 
1 5 C t.JEIr StAt! iDE 1>4 tIlET 
1 6 c 24- r..IeiT IAIt: t Ipe D'" NET 
1 7 C 1.1 ... cY. Co P[ 
1 8 C e~ll) It" A6 
1 9 C 

2 0 C 

I.~ 1 C 
r SIE TOF 

C 

C 

C 

C 

GX21-9093-2 UM/050· Printed in U.s.A. 
·No. of forms per pad may vary slightly. 

12 757677787980 

Page ~ Of~ ~~~;~f:atlon 1 c 161 pl41 I I 
Resulting 
Indicators 

Arithmetic 

Plus IMinusl Zero Comments 
Compare 

1>211<211=2 
LookuplFactor 2lis 
High Low Equal 

54 55 sa 57 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

.2. f 21 

2.1. 2.2 

13 ].3 
) 

2+ Z1' 

Ll. z.3 z. 

II 'L OL 69 89 L9 99 99 L>9 £9 Z9 .9 09 69 99 L9 99 99 os £9 Z9 19 09 6. 8. L' 9. 9 ... £. Z. I. o. 6£ 8£ L£ 9£ 9£ lot ££ Z£ .£ O£ 6Z 9Z LZ 9Z 9Z 'Z £Z ZZ 'Z OZ 6. 8' LL 9' 9 ••• t. z. "0' 6 8 L 9 9 • t Z • 

284 



Problem 4: Book Solution, Page 3 

RPG OUTPUT 
IBM Intern.tion.1 BUliness Machine Corporation 

Program 

Programmer 

0 ~ Space Skip Output Indicators 

!--- ~~ I{i;l 

AL 1 
Field Name 

o~ I -.. ~ ~ 
Line Filename ;. ~ 

;i~ &>< 

! ~~ 
roD ~ 

II 

~ !; ;3 
1 i ~ ~ ~ 0 

*~~ 
<{ z "AUTO 

~ 
3 4 5 6 7 8 9 1011 12 13 1415 16 17 18 19 20 21 22 2324 2526 2728 29 30 31 32 33 34 35 36 37 36~ 

o 1 oP ~V SEQ D P1 
o 2 0 ~E CO 210 
o 3 °E ~C £~S , 5S/S<o f p 
o 4 0 02 O~ 

o 5 0 UD Air IS Y 
o 6 0 

o 7 0 

o 8 0 

o 9 0 'PiA 6re l 
1 0 0 E l 2 f 
11 0 ott zz 
1 2 0 011 z3 
1 3 0 02 z.+ 
1 4 0 Pf: pT Z 
1 5 0 INO I~I!» &'R,Z 
1 6 0 so e~ EC 
17 0 Qll c~S , 
1 8 0 J:. IT 1 
1 9 0 5S TA)l 1 
2 0 0 De t:l 1 1 

0 [)e 01 i 
0 O,E t>3 If 
0 IDE 1>4- t 
0 

0 NET I 

SPECI FICATIONS GX21-909D-2 U/M 050" 
Printed in U.S.A. 

12 757677787980 

Page ~ of.5 ~;~:~f:8tion I c I r; Ip I~ I I I 

Commas Zero Balances No Sign CR - X = Remove , 
to Print Plus Sign 

Ves Ves 1 A J V = Date 

Ves No 2 8 K Field Edit 
End No Ves 3 C L Z = Zero • 
Positon No No 4 0 M Suppress 

in 0: 
Output ::J Constant or Edit Word 
Record iii 

~ 

40 41 42 43 ~E~O~~50~~~~~WD~W50~~~~~~~~~ro 71 72 73 74 

f I¢ QI 

18 

'" 
~p lAY ~o ILL D£ I:>U OT IP '" ' 

17 ' ! tee £5 se$ 
, 

11 f 4 'p 1.-. " e' 
.Ir" 

, 
f~ 
ZI\ '0 - - I 

.5Z 
41¢ 
I+IB 
55 ,Z 
"'1 
1fJJ 
1115 'A cr VA L NET PAl{ I 5 ' 

f ~I-~ 
ZL IL OL 69 Il9 L9 99 98 toll £9 ~9 19 09 89 99 L9 99 99 1'9 £9 ~S IS 09 60 80 Lv 90 SO .. £0 ~o 10 00 6£ 8£ L£ 9£ 9£ >£ ££ ~£ 1£ O£ 6l ~ LZ 9~ 9~ o~ £~ Z~ I~ OZ 6' 81 LI 91 91 01 £1 ~I 'I 01 6 8 L 9 9 0 £ ~ I 

RPG OUTPUT SPECI FICATIONS GX21·9090·2 UlM 050-

IBM International Business Mach,ne Corporation 

12 757677787980 

Programmer Date page~Of_ ~~~;~f:.tionl Cl51pK I I I Program 

0 ... ~ Space Skip Output Indicators 
Commas Zero Balances No Sign CR X • Remove 

!--- ~~ It v to Print Plus Sign 

At L 
Field Name 

Ves Ves 1 A J V· Date 

~~ ~ ~ fu Ves No 2 B K Field Edit 
Line Filename ~~ No Ves 3 C L Z • Zero 

_. ~ ~ Positon No No 4 0 M Suppress 

~ >- en 
~ -8 in a:: 

>- A foO' ~ 
t 

0 0 8 Output g Constant or Edit Word E ~ 0 

*~D 
z z z "AUTO Record .f ~ Q: 

3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 1920 21 22 23 24 2526 27 28 29 30 31 32333435 3637 36 39 4041 4243 44 45 ~ 47 ~ 49 50 51 52 53 ~ 55 56 57 58 59 60 61 62 83 84 85 ~ 67 ~ 69 70 71 72 73 74 

0 1 0 l ( 1Z+ 
, 

ID~ ~I ~~ 1-1 ~K l~lN . ~I- --c- ,-i-- --I--- '"'0 De l.1' -r--
o 2 0 zz 111 

\ 

liN CL. ole I ~ c5 D1 
0 3 0 Z3 1 Z 1 , 

IN CL 011>1 ~b D 1 IDZ' --
o 4 0 21+ 12.5 ~ IN C L ulr: IN6 0' ID? -- p"l! 

, 

0 5 0 
- --

0 6 0 
,--- ---'---- ---~--- -.~- ... _ . .. _. 

285 



Chapter.5: §ummary 

This chapter was designed to provide practice in solving data 
processing problems that involve the printing of reports, 
updating disk file records, and the describing of complex 
series of calculations. One new consideration, the description 
of~exception output records was brought out i~ the fourth example. 

At this point in your studies you should be a~le to specify 
. solutions to problems of the types~presented in chapters 2,3, 

4 and 5. You would not be expected to do them from memory, 
rather, you would refer to the System/32 RPG II Language manual 
as needed. 

Here is the list of new coding entries you used in chapter 5. 

FILE DESCRIPTION 

No new entries. 

INPUT .. 

No new entt'fes. 

CALCULATION 

28 - 32 

54 - 59 

OUTPUT· 

15 

38 

39 

45 - 70 

Operation (EXCPT, SETOF) 

Resulting Indicat~rs (Minus, Zero; for subtract), 
(All three for SETOF) 

Type (E - exception output record) 

Edit Codes (Z) 

C for continuation line of an Auto Report constant 

Edit Word (0bbb-bb-bbbb for social security number) 

You've come a long w~y into RPG II programming and should know 
that the bulk of this course is behind you .. Here's a list of 
all the kinds of coding you've seen and done in just a short 
time. 

286 



1. File Description Sheet - describing files 

a. Input files - Console, Disk 

b. Output files - Printer, Disk 

c. Update disk files, including the addition of records. 

d. Input files designated as primary, secondary or chaining. 

e. End of file control. 

f. Block length and record length. 

g. Random processing of indexed file records on update. 

h. Page overflow indicator assignment for printer files. 

2. Input Sheet - describing input records 

a. Assigning Record Identifying Indicators 

b. Designated Record Identification Codes 

c. Identifying field locations. 

d. Designating fields as either numeric or alphameric. 

e. Assigning level 1 control for control breaks. 

f. Assigning M1 for matching fields 

3. Calculation Sheet - describing operations 

a. Use of indicators for either IIdetai1-time ll or IItota1-
time ll calculations. 

b. Using numeric literals as factors. 

c. Operations. 

1) ADD 

2) SUB 

3) MUL T 

4) DIV 

5) MVR 

6) Z-ADD 

7) Z-SUB 

287 



8) SQRT 

9) MOVE 

10) MOVEL 

11) COMP 

12) GOTO 

13 ) TAG 

14) CHAIN 

15 ) EXCPT 

16) SETOF 

d. Half adjust numeric result field values. 

e. Test result through Resulting Indicator assignment. 

4. Output Sheet - describing output records 

a. Heading (H), detail (D), total (T), and exception 
(E) types 

b. OR lines 

c. Adding records to an update file 

d. Spacing and skipping on report pages 

e. Output indicators: 1P, OF, 01,02, L1, MR and LR 

f. *AUTO us age 

g. Special fields: UDATE & PAGE 

h. Edit codes: 1, Y, Z 

i. Resetting a field value ("blank afterll) 

j. Edit words: 'Obbb-bb-bbbb ' 

k. Constants 

1. Auto report 

1) Field value accumulation code (A) 

2) Continuation column heading constants code (C) 

288 



5. Correspondence of entries from coding sheet to coding sheet. 

a. Filenames 

b. Field names 

c. Indicators assigned and used 

6. The generated program RPG II logic cycle. 

7. The Auto Report function /COPY as used to insert cataloged 
statements into new programs. 

Are you surprised at how many new things you·ve studied and 
learned? Keep in mind that RPG II is a descriptive language 
and when you concentrate first on understanding the problem 
requirements, the coding is relatively simple. 

There is no self test for this chapter. In the next chapter 
you witl need a few blank Extension specification sheets as we 
will be describing tables of data and the look-up operation, 
LOKUP. 

289 





Chapter 6: Tables and A~rays (1.5 to 3 hours) 

There are data processing problems in which tables of data are 
useful in the processing of data records. I'll uSe a somewhat 
different approach in introducing the topic of tables. I'll 
start by stating a problem and tben show you a coded solution. 
After that I'll tell you about the entries that deal with the 
table data. We will be referring to ~n RPG II specification 
form ca11~d the Extension specification sheet in addition to 
those with which you are already familiar. Here's the problem. 

Print a list of items as ordered by customers. The 
list is to look like the sample report. One set of 
table data contains 50 item number entries, one for 
each item that is for sale. A second set of table 
data contains 50 corresponding cost entries. ~ere is 
a partial list of tJb1e data from both of them. 

I!.!tl e of I terns 

12354 
22615 
74002 
33675 

Table of Costs 

2.50 
7.79 
9.85 

.25 

,-

Input records cont~1n the item number and the quantity 
sold. In order to print the report, it is necessary to 
look up the unit price for the item and then multiply 
this price by the quantity to find Oijt the amount of 
the sale. 

Rt:PORT 

SALES 

ITEM NUMBER QUANTITY UNIT PRICE SALE PRICE 

22615 100 7.79 779.00 

33675 50 .25 12.50 

12354 740 2.50 °j,SSO.DO 

When table data is used to solve a problem, we need to describe 
the table or tables being used and describe any ca1cu1ations 
and/or output associated with this data. Tables are described 
on an Extension specification sheet. A table lookup operation 
o{lOKUP) is used on the Calculation sheet to search one table ;n 
order to find a corresponding table value in the other. After 
a desired value is found, it may be used for additional calcula­
tions and/or output. 

291 



Coded Solution 

F 

Filename 

Line 

File Type 

File Designation 

End of File 

Sequence 

File Format 

File Description Specification 

Mode of Processing 

~:~::o;~ ~~~:~:I~~~d ~ 
Record Address Type ~ Name of 

Extent Exit 
for DAM 

File Addition/Unordered 

Number of Tracks 
lor Cylinder Overflow 

Number 01 Extenu 
T I F"I Devl·ce Symbolic Label Exit 
O:=n~zati~~ ~ Device ~ ~::nd 
or Additional Area ~ Storage Index ~ 

e ~ i Block Record ~ Overll~ g Condition 
~ !?: u; ~ 0 Key Field .~ Continuation Lines ~ U1.~ 
::> (,) - Length Length ~ a Starting ~ ..... 

g ~ w ~ ~ ~ < ::: Location W K Option Entry ~ ~ 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 29 30 31 323334 35 36 37 38.J11l.ia...t.L42 43 444546 4748495051 52 53 54 55 56 57 56 59 8061 626364 85 66 67 66 69 70 71 72 7374 

o 21 F~IRlple-IRlSI 1 I" t 4 1 :r. .J.-rt1 C ol~sTOtt!e-~ 

/ Extension Specifications '" 

From Filename 

I \ 

I ~- ~ 
To Filename I Table or ~:'rics ~f"rnber Lcnqlh j ~ ~~~~ ~;me ~;nglh .~ ~ 

Array Name Per Entries °Efnlry ..... - (Alternating Entry Q. ~ 
_ ...J E:J Format) ~ E ~ 

E Record Sequence of Ih(~ Chaining File 

Number of the Chaining Field 

Line Comments 

Record Per Tahle e: ra g a::: - e \ 

./~ -" ~ ~ & ~ ~ j 
3 4 5 6 7 8 9 1011 12 131415 161718 1920212223 24 26'27:7H ,)~' 32 3334353637393940 41 4?~~ 5 4G 47484950 51 ~2 5354 '15 5657585960616263646566676869707172 73 74 

it:+: -t-I JJit-t--LL~lH~Ll1~ ~::~ ;;~I~I~.1 J!~i I~ : iJll·l· rl-~-- -r-N·+-l-r-t 1111 +l-t-tt 
RPG INPUT SPECIFICATIO~S'\ 

Record Identification Codes 
Field Locatl n 

:_...J...J' ·8 g'. , ~ - p. ~ ~ 

i Z =_~'5 ~.g Field Name - ~u.~ 
0" -: - ~ ...Ji ~ Zero 

JJ .:: Q Position _ !i Position _ ~ Position ; t% a:: From To g'j CJI ~ Plus Minus or 

_1-_ ~.~ ~ ~o ~ ~ ~o ~ ~ ~o ~ ~ ~ ~ ~ e i .g Blank 
OR'-iQ ~ z uO 2UO z 00J,ci: ~ ~ ~6 ~ 
~~~ ~J 

9 10 11 12 13 14 15 16 17 18:1j1oOiQ. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 ~ 51 52 53 54 55 56 57 58 59/0 61 62 63 64 65 66 67 66 69 70 71 72 73 74

Filename

I -
line

....

~
3 4 5 6 7 8

Field
Indicators

I R~ CALCULATION SPECIFICATJ~S I
C Indicators I ,/
~ i ~ At JJ Fact~r,,1 _ operation

~Ult Field
RjI'ulting

~dicalors

/Arithmelic

g I "'Ius Minusl Zero

§ ~ Compare
Factor 2 V Comments

~3~
line ~ g ffi I--r-.-+-.,......,r-++.-.......-l

~85~~ ~

- - / Name

J.~4142
Length ~ i 1 > 2 1 < 2 1 - 2

/ u - Lookup(Faclor 2hs

3 4 5 6 7 8 9 10 11 12 13 14 5 16 17 18 19 20 21 ~ ~ 24 25 26 27 !1a29:t:11..~ 2 ." 1/ .6!f~ liP 1'I'IIyh, ,LO: Equa ~~"'" 65 66 67 68 69 70 71 72 73 74

o 1 C -o 2 C ICTAeCST) ~ULT QTY ~~ 1\
o 3 C, ---- ~i--'i.-."" ,
o 4 C

r-~ __

\ RPG OUTPUT SPECIFICATIONS J j

0
~

Line

!
E

&
3 4 5 6 7 8

~ ~ Space Skip Output I ndicators Commas Zero Bal.anees No Sign CR _ ~(Re :
!:!! rt 11M:; V' to Pnnt P Sign
I::: ,f ~ Field Name 11m Yes Yes 1 I ~"'J y. ate
~ ~ ~ I I 'IXI Yes No 2 ~ K Field Edit
-.. I ~ And A~d EI End No Yes I 3/ C I V - Zero
~ ~ '" :(,. '" POSiton No No V4 0 ~ Suppress

.... ~ro~ ~ ~:5 :5:5 ~ ~ ~utPut ~~~nstant ditWord
o R \'" ~ z z Z • AUTO ,,< Record iii
~ Nrc "'- ~ in it

9 10 \1 12 13 14 15 16 17 18 19 'liP 21 22 \" 24 25 26 27 28 29 30 31 32 33 34 35 36 37 36 39 40 41 42 ~"'" 5 46 47 48 49 50 5161' 3 54 55 56 57 58 59 60 61 62 63 64 65 66 67 66 69 70 71 72 73 74

Filename

o 1 oL,ST " ,~~ .~UTO ~~~ ~~
o 1\ _ ')~ ~ - '-' --F~'+".=-t:.--fI'~'f-+--t-t-+-t-\+--,,+~-:;loL-"'F--e I--S+--,++-+-Ir--+--++-+-+---+-+--+-+--+-+-t-+-+--+-+-I--t---t-I o 2

o 3 o
o 4 o
o 6 o II QTY;"" 'QUANTI[rY'
06 II(TA!lCSiT> 'UNIT Pf,C£'

292

Explanation of the Solution

1. File Description - Two files are described. Orders are keyed
and ~ report is printed.

2. Ext~nsion - Two tables (TABITM and TABCST) are described.
Table names always start with TAB in RPG II. Included in
the description of tables is the IILength of Entryll and the
IINumber of Entries Per Tab1e ll •

For numeric table entries, include the number of IIDecima1
Positions".

NOTE: We will discuss other specifications used on the
Extension Specification sheet later on in this
chapter.

3. Input - The keyed record and its fields (ITEM' and QTY) are
described.

4. Calculation - Use an input field (ITEM') as Factor 1, specify
the table lookup operation (LOKUP), the table to be searched
(TABITM) as Factor 2, the table containing corresponding
unit prices (TABCST) as the Result Field, and assign an
unused indicator for the desired search condition.

In our example we are searching for an IIEqual ll condition, so
indicator 40 was assigned in positions 58, 59 (see the
headings for lookup above positions 54-59).

The second calculation (multiply unit price by number of
items) is to be done when a desired table entry is found,
so it is controlled by indicator 40. The cost value in the
corresponding table (TABCST) is multiplied by the quantity
(QTY) to determine the sales price (SALE) of the item we
keyed as input (ITEM#).

5. Output - Four fields are to be printed when the unit price
is found for the keyed item.

a. The indicators used to control the printing of the detail
line are 01 and 40 to be sure that a line is printed
when information about the keyed record (ITEM') is found
in the table (TABCST).

293

Problem System Flowchart

__ (Table data is loaded
,,'" with the job program

// in this example.)
/

I
(Orders) I

I
/

""
SYSTEM/32

PRINTER

(Sales)

294

There are data processing problems in which it is convenient to
store information in tables so that a desirable piece of data
such as a shipping cost can be found and applied during calcu­
lations. System/32 RPG II has the capability of using tables
of data. Here are some instances where it might be used.

1. When an item number is known, look up its
description.

2. When a length is known in inches, look up its
equivalent in centimeters.

3. When a temperature is given in degrees Fahrenheit,
find its equivalent in degrees Centigrade.

An array is a table of data that is used in special ways in
addition to being used as a table.

CHAPTER OBJECTIVES

When you·ve finished studying this chapter, you should be able
to describe tables and arrays, use them in calculations and
state the differences that exist between tables and arrays as
used in the System/32 RPG II language. This includes:

1. describing tables and arrays as to size, type of
content and name using the RPG II Extension sheet,

2. specifying the look-up operation on the Calculation
sheet, and

3. printing out the contents of an active table or
array at the end of a job.

To describe tables and arrays you will be making use of an
Extension specification sheet. So, in addition to this text,
you will need a few sheets of each of the following forms.

GX2l-909l

GX2l-9092

GX21-9094

GX21-9093

GX21-9090

Extension and Line Counter

Control and File Description

Input

Calculation

Output

You also need your System/32 RPG II Language reference manuai
SC21-7595.

A self test is included in this chapter.

295

Tables

A table is an arrangement of data items having like character­
istics. Each data item in a table is known in RPG II as a
table entry or element.

RULES:

1. Every table entry must be the same length.

2. Every table entry must be of the same type,
either all numeric or all alphameric.

3. Every entry in a numeric table must have the
same number of decimal positions.

Each table used in a program is defined on the Extension specifi­
cations sheet. Get a blank Extension sheet (E in column 6) so
we can define a few sample tables.

1. Specify a table name starting in position 27.

RULE: Every table name must start with TAB and may include
additional letters or numbers in any combination.

Which of the following are acceptable table names?

TAB123 TABX TAB/B

TA55 ABCDEF TAB 29

TAB

* * *
Acceptable table names are: TAB123, TABX, and TAB. Why are
the others not acceptable?

TAB/B has a special character. TA55 does not follow the rule,
IIstart with TAB". ABCDEF is wrong for the same reason. TAB 29
has a blank which is not a letter or a number.

2. Specify the "Length of Entry" in positions 40-42. If the
entry is a numeric field, include the number of decimal
positions in position 44.

3. Specify the "Number of Entries per Table or Array" in
positions 36-39.

4. Specify the IINumber of Entries per Record" in positions
33-35. For example, if each record containing table data
was 100 positions long and each entry in that table was 5
positions long, there would be 20 "entries per record".

296

Use your Extension sheet to define the following tables.

of Entries # of Entries
Length of Per Table Per

Name ~ Entr~ or Arra~ Record

TABXYZ numeric 3 16 16

TAB2 alphameric 20 25 4

TABe numeric 7 wi th 2 decimals 100 14

TAB19 numeric 15 with 9 decimals 10 6

* * *
Your entries should look like this.

Extension Specifications

E Record Sequence of the Chaining File
Number

I--- Number of the Chaining Field of Number
c _

Table or
Table or Entries of Length :~ ~ Array Name

Length
Comments Line

!
To Filename

Per Entries of o- of
Array Name "- " (Alternating Entry Record Per Table Entry ~ ~ ~ :l

~
From Filename or Array

Format)

~~~ ~ 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 4344 45 46 47 48 49 50 51 52 53 54 5556 ~56~OO~~~M~~~56~Mnnn~ 

0 1 E 17A soc Iv~ H, 1fD 3 , 
o 2 E 

o 3 E ITA Sl. If 25 12e1 
o 4 E 

o 5 E rtA 8~ 111 1'''- 1 12 
o 6 E 

o 7 E 1t1 811 " 1~ 15 'I 
o 8 E 

E 

E 

297 



Now describe a table that contains the names of the months of 
the year. Assume that all table entries will fit into one 
record. Make up your own table name. 

* * * 

If your coding is correct, you have TAB in positions 27-29. 
Positions 30-32 may be blank or have any letters or numbers 
(without a blank between them). Positions 34, 35 should 
contain a 12 and positions 38-39 should contain 12. The length 
of a table entry is always large enough to hold the longest word 
or phrase or the largest number to be stored in the table. 
Since the longest name is SEPTEMBER, your entry for positions 
40-42 should be 9 in position 42. 

The tables we have been describing up to this point are known 
as "compile-time tables". By this, I mean that the actual 
table data is included as a part of your RPG II source program. 
Suppose that you wrote a program that uses 2 compile-time tables. 
This is the order in which your coding would be keyed in or read 
in from disk for compilation. 

1. File Description specifications 

2. Extension specifications 

3. Input specifications 

4. Calculation specifications' 

5. Output specifications 

6. a special record containing **~ in 1-3 
(~ means blank) 

7. all of the actual table data records for the 
first table as defined on the Extension sheet 

8. a second special record (**~ in 1-3) 

9. actual table data records for the second table 
defined on the Extension sheet 

During the process of compilation, these tables are stored with 
the program for future use. 

What is one purpose of the Extension sheet? When are **~ 
records a part of the source program? The Extension sheet is 
used to describe every table used in a program. The **~ records 
are included in a source program whenever compile-time tables 
are required. 

298 



Well, how is it going? OK so far? Let's move on to a second 
kind of table known as a "pre-execution-time tab1e". 

Pre-execution-time tables are created some time before they 
are needed and they are stored on the disk as a file. A table 
of this type is also defined in the same manner on the Extension 
sheet, but we must include one more specification. We enter a 
filename in positions 11-18 known as the "From Fi1ename". When 
this is the case, a compiled object program is loaded to run a 
job followed immediately by all pre-execution-time tables defined 
as files for it, and then the job starts to run. 

RULE: When pre-execution-time tables are used in a program, 
each one must be described as an input table file on 
the File Description sheet and must include these 
entries. 

1. a T in position 16 (code for a .table file) 

2. ,an E in position 39 (code for !xtension entries 
needed) to alert the RPG II program compiler to 
tie together the File Description entry and the 
Extension entry having the same filename, when 
used in the object program. 

Note: This rule only applies to pre-execution-time tables. 

Describe a pre-execution-time table file having the following 
characteristics on a File Description sheet and an Extension 
sheet. 

1. The input table file has a record length of 54 
characters and is stored on disk. 

2. The tabJe entries are numeric, six positions 
long with no decimals. There are 9 entries 
in each record and a total of 100 entries in 
the table. 

Make up your own filename and table name. 

* * * 

299 



Check your coding against these entries. If you do not know 
why yours does not agree, re-read this ·section about "Pre­
execution-time" tables. 

File Description Specification 

F 
File Type Mode of Processing File Addition/Unordered 

File Designation Length of Key Field or Extent Exit Number of Track. 
~ - of Record Address Field for DAM for Cylinder Overflow 

End of File !!! 
Record Address Type z Name of Numbfr of Extenu Symbolic iil 

Filename Sequence Device Type of File 
..J 

File Format Organization iii 
Line or Additional Area ~ 

C 
~ '" 

Overflow Indicator (J 

!. ~t: Block r--6 
~ ~e ~ 

Record 
'" 6 Key Field .~ 

Length Length :::t-

~ ~~ w~~ :) 0::0 Starting ~ ~::: Location 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 2223 24 252627 28 29 30 31 32 3334 35 36 37 38 39 40 41 42 43 44 45 46 

01 21 F I W]rlq IsjLl1 liT II I I [sIll I I I II £~lllslkl I I 
01 3 1 F II I I I I I II I I I I I I I II I I I I I I 

Extension Specifications 

E Record Sequence of the Chaining File 

Number of the Chaining Field 

Line ! To Filename 
Table or 

Array Name 

Number 
of 
Entries 
Per 
Record 

Number 
of 
Entries 
Per Table 
or ArraV 

Length :€ ~ 
of cf -; 

~ 
From Filename 

Entry ~ ~ ~ 

~~l 

Label Exit 
Device ! Tape 

j Storage Index 
Rewind 

~ 
Condition 

Continuation Lines 
Ul-\!L-

:::l 
K Option Entry ~ 

47 48 49 50 51 52 53 54 55 58 57 68 59 60 61 62 63 64 65 66 67 6869 71 72 7374 

I I I I I I Llil 11111 I I I 
I II I I 11111 11111 ,-__ L I I 

Table or Length 
Array Name of Comments 
(Alternating Entry 
Formatl 

3 4 5 6 7 8 9 to II 12 t3 14 15 t6 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 64 55 58 57 58 59 6061 62 63 64 65 66 67 68 69 70 71 72 73 7. 

OlE I N.TABL TABMDT q 1_fJ ,_ 

Now that you have learned to describe either "compi1e-time" or 
"pre-execution-time" tables, let's consider how they are used 
in a program. 

In general, table look-up is this kind of activity. 

1. A "search" field value is compared against the 
first table entry. 

2. If the table entry is what is being searched for, 
the table value is made available for processing 
and output. 

3. If the first table entry is not what is being 
searched for, the program compares the search 
value against the next table value. Again, the 
question (in 2 above) is raised. 

4. If no acceptable table entry is found during the 
search and th~ entire table has been searched, the 
next step following the look-up operation is begun. 

300 



In order to describe the table look-up activity, you must: 

1. describe the tables to be used by making entries 
on the Extension sheet (and on the File Description 
sheet if needed), 

2. describe an input field (or a constant) that contains 
(6r is) the searching value, 

3. describe the LOKUP (table look-up) operation including: 

a. the "search" field or constant as Factor 1, 

b. LOKUP as the operation, 

c. the table to be searched as Factor 2, 

d. another table which contains corresponding 
values as the Result Field (optional), 

e. at least 1 Resulting Indicator (in positions 
54-59). 

Here is an example of table look-up as coded on a Calculation 
sheet. 

RPG CALCULATION SPECIFICATIONS 

Factor 1 Operation Factor 2 

Result Field 

Name Length 

C Indicators 
~ f----,.----r-----I 

r--- 3~ I I 
~ l2 And And 

~j~ 
Line ~ g ffi I---r-r-+--r-.-+-,.....,..-i 

~85-~ ~ ~ 
3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 2324 25 26 27 2829 3031 32 33343536 37 38 39 40 41 42 4344454647 48 49 5051 

01 c ~~D~ LOKUPTA8AAA ~A8B88 
o 2 C 

o 3 C 

o 4 C 

Resulting 

Indicators 

Arithmetic 

I Plus IMinusl Zero 
; Compare 

% 1>211 <211-2 
~ Lookup(Factor 21is 

:t High Low Equal 

Comments 

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

12 

This description means, "search the table named TABAAA for a 
value equal to (indicator 12 is in positions 58-59) the value 
found in the search field named CODE. When you find an equal, 
also locate a corresponding value in the table named TABBBB". 

301 



Try to code' these examples. 

1. Search a table named TABRAT f6r a value equal to 
the value in the search field named RATE. When 
an equal is found, also locate a corresponding 
value in a table named TABAMT. 

2. Search a table named TABTAX for a value equal 
to the value 175. 'When ,an.equa1 is found"also 
locate a corresponding value in TABSTX. 

* * * 
You needed to assign an indicator in positions 58-59 to test 
the look-up operation for an equal condition in both examples. 
Here are my solutions. Your indicator entry may be different, 
but the other entries must be the same as mine. 

RPG CALCULATION SPECIFICATIONS 

C Indicators Result Field 
ResultinQ 
Indicators 

I---
At At 

Arithmetic 

Factor 1 Operation Factor 2 Plu. IMinu.1 Zero Comments 
~ Compare 

Line I! Name Length 
1>21<21=2 

E 

~ 15 ~ 
Lookup(Factor 21i. 

.f z High Low Equal 
3 4 5 6 9 10 1112 13 14 15 16 1718 1920 21 22 2324 25 26 27 2829 3031 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5051 54 55 5657 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

o 1 c RA TE- La I<U PT AB RAT triA !RIA M" I~% 
o 2 C 

o 3 c 17,6 LO ('" IPT lAB TAlx ~IA 8S 1)( 16 
o 4 C 

o 5 C 

Normally, the reason for doing a table look-up operation is to 
use the value found in the corresponding table (the one in the 
Result Field) for additional calculations. If no search table 
entry (the Factor 2 table) satisfies the problem requirement, 
such as "search for an equal value", we may wish to bypass all 
further calculations, or even stop the computer run. One 
rea son for s top pin g i s t hat i f tab 1 e d a. t. a 0 r the sea r c h fie 1 d 
data or the constant is wrong, the operator should probably 
re-run the job after corrections have been made. Otherwise, if 
the job continues, all ouiput will be garbage. 

How would you bypass further calculations? How would you, as a 
programmer, stop the computer during a run? 

302 



You already know how to bypass calculation steps ~ simply include a 
GOTO operation. We haven't yet talked about how to stop the 
computer during a run. It is easy for system operators, they just 
press a stop key on the machine. The programmer uses a special 
"halt" indicator to do the same thing. Here is an example: 

RPG CALCULATION SPECIFICATIONS 

C Indicators Result Field 
Resulting 
Indicators 

I--- At At 
Arithmetic 

Factor 1 Operation Factor 2 Plus IMinusl Zero Comments 
! Name length 

Compare 

Line ~ 1>211 <211 =2 

~ o· 0 15 Lookup(Factor 2)is 

Z Z z High Low Equal 
3456 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 c FI NO L 011( U!p TA 81 rr~ IBIX ~9 
o 2 C :N~~ ... 

HI! ::J lell IN 
o 3 c N319 G alTO fIN) 
o 4 C 

o 5 C 

o 6 C 

o 7 C 

o 8 C 

o 9 c END tr IAI~ 
1 0 C 

1 1 C 

Consider what happens in this example when the entire table 
(TAB1) has been searched and no value equal to the value in 
FIND can be located. First, indicator 39 is not turned on. 
Second, we tell the computer to "set on" a special halt 
indicator, Hl. Third, we also direct the program to bypass 
all further calculations. 

RULE: When a halt indicator is turned on, processing 
continues for all remaining steps including output 
for that record, and then the computer stops. 

When did I include the GOTO instruction? Well then, what good 
is the Hl indicator when it turns on? 

Using the GOTO assures met·hat all further processing will be 
bypassed, but the machine-does not stop running! By including 
the SETON instruction and anyone of the halt indicators 
(Hl-H9), the machine will stop after all processing and output 
for that record has been completed. The operator then becomes 
aware of the fact that something has gone wrong in your 
program. You of course must provide a set of instructions 
to the operator for this situation so the job may either be 
completed with the error noted, or the job removed until the 
error can be corrected. 

303 



One more point. After the operator takes action including 
restarting the machine, the halt indicator is automatically 
turned off. 

RULE: The SETON operation "sets on" any an~ all indicators 
specified in positions 54-59. 

We have looked at examples in which the search took place for 
an lequa1" condition. Look at your Calculation sheet at the 
titles over positions 54-59. For which conditions can table 
look-up be tested? Which entry is the controlling specifica­
tion for a look-up operation? 

* * * 
The look-up activity may be tested for 3 conditions: High, Low 
and Equal. The controlling specification for this operation is 
the table named as Factor 2. Let1s examine the situation where 
it is useful to have an indicator assigned to High (in 54-55) 
or in Low (56-57). Suppose we were looking for this condition. 

Find a value in a table that is the first entry that 
is higher than the search field value. 

Obviously the entries in the table need to be in some sort of 
sequence or we cou1 d not fi nd a II hi gher" entry. A 1 so, the 
entries do not include every possible value. For example, 
let1s say we have a numeric table with these values. 

TABCUB 

001 
008 
027 
064 
125 
216 

Now, when the look-up is done and we are searching for a "high" 
condition, the program compares the value in the search field 
(assume it is 025) against the first table value. Is Factor 2 
(the first table value) high? No, because the first entry in 
the table is only 001. Now the program compares 025 against 
008, the second table -value. Is the table entry high? No, so 
it looks at the next table value. Is the table value high? 
Yes, 027 is high as compared to 025. What happens now? 

The table look-up operation is complete and the indicator assigned 
in positions 54-55 for a high condition turns on. What will 
happen the next time if the new search field value is 220? 

* * * 

304 



In this case, the indicator is not turned on because the table 
value is never higher than the search value. Will the indicator 
turn on if the search value is 2161 No, because the table value 
is not higher. 

Examine the following coding and then select a correct answer 
from the choices shown. 

RPG CALCULATION SPECIFICATIONS 

C Indicators Result Field 
Resulting 
Indicators 

~ 

At At 
Arithmetic 

Factor 1 Operation Factor 2 Plus IMinusl Zero 
Comments 

&: Length 
Compare 

Line ~ Name 1 >2/1 <211 =2 

~ 0 ~ 0 
Lookup(Factor 2lis 

z z High Low Equal 
3 4 5 6 9 10 1112 13 14 1516 17 18 19 20 21 22 23 24 25 26 27 2829 3031 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5051 54 55 5657 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 14 

o 1 C Sf IAR CIt1 bo IMlp ti' 117 111 
o 2 C If 11 le:o TO I1'A SS 
o 3 c It.:;E lAIR eM 1-0 IKIU lflT ~8 ~VB ~18 
o 4 C Is 
o 5 C I ( 
o 6 C IJ 
o 7 c tJ:IA 5S IT IA IG 
o 8 C 

o 9 C 

1 • Indicator 17 will never be turned on. 

2. If indicator 48 i s turned on, SEARCH is less than 
216. 

3. If indicator 17 is turned on, indicator 48 will 
also be turned on. 

* * * 
The correct choice is number 2. When examining table data and 
possible search field values, consider the use of a comparison 
to bypass the steps that follow. You might also wish to halt 
processing under certain conditions. 

RULE: If a table is to be searched for a IIhighli condition, 
table values must be in ascending sequence. 

RULE: If a table is to be searched for a IIlowli condition, 
table values must be in descending sequence. 

305 



Now look at an Extension sheet. An entry is made in position 
45 w hen eve r tab 1 e s are to be sea r c h ed fo rei the r a .. h i g h" 0 r a 
"1ow" condition~ Specify code A for ascending 'or code 0 for 
descending table values. 

RULE: At least one indicator must be assigned but no more than 
two indicators may be entered for a look-up operation. 

In RPG II coding, this provides for five acceptable combinations. 

1. High (54-55): search an ascending table until a 
value in it is hi~her than the search ~a1ue. 

2. Low (56-57): search a descending table until a 
value in it is lower than the search v~lue. 

3 • E qua 1 ( 5 8 - 5 9 ) : sea r c hat a b 1 e u n til a n: e qua 1 i s 
found. This table may be in any sequence or it 
can be randomly arranged. 

4. High (54-55) and Equal (58-59): search an 
ascending table until a value in it is either 
equal (tested first) or a high condition exists. 

5. Low (55-56) and Equal (58-59): search a descending 
table until ava1ue in .. it is either equal (tested 
first) or a low condition exists. 

RULE: When 2 conditions are to be tested, the same indicator 
!!lll be as signed to both p l,ace·s. 

The RPG II Reference Manual contains additional rules and examples 
you should read about at this time. Ignore information about 
arrays as you read because we will present the topic of arrays 
when you return to this text. 

* * * 

306 



You read ~bout eacb point we discussed here plus one significant 
addition. 

"Related tables can be described separately or in 
alternating format." 

What this means is that instead of describing two tables whose 
values are related by using two separate lines on an Extension 
sheet. one line is used to describe a combination table that 
alternatingly contains a value for one table followed by a 
value for the other table and so on. When the alternating 
format is used. fill in entries in positions 27·45 to describe 
the table values in the first part of each group and then 
specify a second taole name and information using positions 
46-57 for table values in the second part. Here is an example. 

As Two Related Tabl~s 

Record Sequence of the Chaining File 

Number of the Chaining Field 

To Filename 

From Filename 

Table or 
Array Name 

Extension Specifications 

Number 

of 

Entries 
Per 
Record 

Number 
of 
Entries 
Per Table 
or Array 

Lenath 0 0 

of ] ~ 
Entry ~ ~ ~ 

~~l 

Table or Length 
Array Name of Comments 
(Alternating Entry 
Format) 

3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38' 3S 4041 42434445 46 4148495051 5253 54 55 56 57 58 59 60 61 62 63 64 6566 6768 69 70 71 72 13 14 

OlE rTAls.1 '1 12 J. ~A 

• 4 E 

In Alternating Format 

E 
Number of the Ch(Jtnin~J Field 

Line 5. To Filename 

t-
From Filename 

E~tension Specifications 

Number 
of 

Table or Entries 

Array Name Per 
Record 

Number 
of 
Entries 
Per Table 

or Array 

Table or Length 

Array Name of 

(Alterna,ing efttrv cr 
Format) -' 

'" Q. 

Comments 

J 4 £, 6 7 H 9 10 11 1/1 13 14 15 1fi 17 18 19 20 21 n 73 24 25 26 27·28 29 3031 32 33 34 35 36 37 38 39 40 4. 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 61 66 67 68 69 70 71 72 73 74 

o 1 
r-- 1-- - - - -- - - f-,-- - -- - 1--'- -- f-C-!- - - !-r--- -- -+-+--+-++-+ ++-+--+--I---+-+-+-+-1r+-+-+-+---I-+---+-+--+---l~+-+-+--I-t-f-+--+--I-t-t-t-I 
o 2 E 

- -- --- - -- --- - -- --- - --- - - - -- --- - '--1-1- -!- - f- -+--I---+--lI---+-+--I--I--1f-+-+--f---+---l-+--+-+--+---l-+--+-+-+--I 
o 3 E 

,-- - --I-- -- r--- -- - r--- -
a 4 E 

1-- - ,- 1--- --+-+--1-+-+-1--+--1-- - ,----- --- -- - - - - - - r-- - f--- -- - f---- -+--If--+-J--+--. - --f- -+--J---f-+-+-+---I--+--+-+-+1--+ l---+--I--I--1-+---+-+--+---l----l 
o 5 E 

o 6 E 
- --- -

- - - -- - I- -- ,--- -

+_ _ __ ____ ~~§~_ H- _ ~ +_+-+1~---l'1",,+. ~ A rr ~ R Z 
o 7 E 

- -- f- f-f--- c__ - I- - -- -- - - - - -- f---- - --t--t--t---1I-+---t--t---t--+--+-'l---t- - r- ~- f- -- -- - -
o 8 E 

- --- --- 1-- - 1-- - -c-- - - -- - -t---l-I-1f-t--t---I- - --+-+--+-1!-+--+-+-H--+-t-++-!-+-~-++-+-t-t-t-+-+--t-t-t-++---t 

r--- t-+--+-t-+-+-+--t---i-t-t--+-+--+-i-t-t--+--t-i-t-t--+-t---t---1I--- r- - --+-+--+-f---+-+--t-+--+--+--+- f--+++--l-+--+-++-!-+-+-++-f-+--+-++-+-+-+-++-+--t 

307 



Since RPG II can use tables described either way, you need to 
know how your company wishes to arrange table data before 
creating table data values and then describe them as created 
in your problem solutions. 

To complete the presentation on Tables, I have included a 
coded solution to an example in which we wish to look up phone 
numbers ~nd then print a list of them. 

NAME Table NUMBER Table 

___ --A .... - __ , 

ABRAMS JOHN ....•........... 286-6424 

ACKERMAN GAIL ............. 289-2933 

ADAMS KEN .................. 938-7515 

ANDERSON THOMAS E ••.•••.•• 935-8381 

BABITT ROBERTA ...•......... 288-7587 

BARSNESS RICHARD ........... 938-3932 

WIK GAIL .................... 288-4663 

308 



USING TABLES 

F 
t---

Line 

3 4 5 

o 2 

o 3 

E 
t---

Filename 

~ 
~ 

] 

File Type 

File Designation 

End of File 

Sequence 

File Format 

Block 
Length 

Record 
Length 

File Description Specification 

Mode of Processing 

Length of Key Field or 
of Record Address Field 

Record Address Type 
Type of File 
Organization 

...J 
W 

or Additional Area ~ 

Overflow Indicator u 
~ ~g 

~ 0 Key Field .~ 

~ ~ Starting ~ 
<" ::: Location W 

Device 
Symbolic 
Device 

Name of 
Label Exit 

Extent Exit 
for DAM 

Storage Index 

Continuation Lines 

Option Entry 

File Addition/Unordered 

Number of Tracks 
for Cylinder Overflow 

Number of Extents 

Tape 
Rewind 

~ 
Condition 

~ Ul-~ 

~ 
6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 222324252627 28 29 30 31 323334 35 36 37 36 39 4041 4243444546 474849 5051 52 53 54 55 56 57 58 59 6061 626364 65 66 67 68 69 70 71 72 73 74 

FNAMES lip 
o .11~2 pl~1 NrrlEIR I I I 

Extension Specific~ 
Record Sequence of the Chaining File 

Number of the Chaining Field of Number 0 - Table I §~ I Zumber~ I'""'~~r-."'"-
To Filen e Table 10f ntroes of Length in ~ Array Nam ~Length S ~ '\ Comments 

Array Na Per Entroes of ,f i IAlternatl/lg f ,f -
Record Per Table Entry :i" Format) E :i .. S 

Line ! 
From Filename 

~ or Array _§~ ~~~ 
~ ~ Jl 1"1 ~ <15 

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23124 25 2 3 34 35 36 37 36 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 ~ 57 58 59 60 61 62 e31114 65 66 87 68 68 70 71 72 73 74 , 
\ 

\. j 
RPG INPUT SPECIFICATIONS 

~ Record Identification Codes Field Location 
-- Indicators 

~. 1 2 3 ~_~ 0 :"'a:~" ~ 
B ~·~o -g - -'8-'8 1 ~ 0 ~ i ~ Field Name ] iH "E Zero 

lr. - Position - ~ Position _ ~ Position _ ~ ~ a: From To Ii g' ~ ! Plus Minus or 
.15 g 'E ~ 0 1'1:1 5 a ~ 5 0 1'1:1 ~ :J E E :E 'c "'C Blank 

ror;r- ~ g ~ ~ § ~ ~ § ~ ~ § ~ ~ ~ ~ ~ i ~ l!l 
r;:;+N"to" 

9 10 11 12 13 14 15 16 17 18 ~ 21 22 23 24' 25 26 27 28 29 30 31 32 33 34 35 36 37 36 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 64 65 66 67 68 69 70 71 72 73 74 

Filename 

Field 

~ ~ 21 [MAIMIE) II 11 
I RPG CALCULATION SPECIFICATIONS ~ / / 

c Indicators Resul' ~ ¥u1.lA" 
~IU rJi6tors 

~ c 1/ ..,Arit~metjc 
Operation ~actor 2 .g .l:loo"ius IMlnusl Zero 

Name ' ~~ ! 1 > tl~7~e, " 2 

I ______ ~ 7" . ~ ~ Lookup(Factor 2)ls 

,,--...... J~ ~ ~ • ".- ~ ./ 0 :z: High Low Equal 
6 17 6 19 20 ~ 26 27 2829 30 31 32 33..34 ~ 3L3B. 39 40 41 42 ,,tL; '0 49 50 51 52 53 54 55 56 57'- 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

~ gii 
:::0 

~~~ 
Line f-"O a:-I--r---,.--f-,--,r-+-rl.-i

~§~'o 0 (5
u. U...J Z Z Z

3456789101112131415

Factor 1 Comments

o 1 c
o 2 c

RPG OUTPUT SPECIFICATIONS

f: ~ce Skip ~t I ndicators Commas Zero Balances No ign CR X " Remove

I L~ AL \L F,,1d N,me ; • .)V ~~~ tOit ; i ~ :: g~S::,t
! 4 !~~ 0 ~ ~ 5 ~::::: ...J No No eons ~t:r Edit :or: Suppre~

~~'o I ~~~ z Z Z:\ 'AUTO ~ ~ Record ~
9 10 11 12 13 14 15 16 17 " 19 20121'\i12 23 ~ ~ 26 i1.l.1oIIl 29 30 lIP 32 33 34 35 36 37 36 39 40 41 42 43 t 45 46 47 48 49 50 51 52 53 rJ 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0
t---

Line

!
E

.f
3 4 5 6 7 8

Filename

o 1 o L I ST til .t K"al 1,(d!Z~ ~ V V --
o 2 0 ... ,;1 "'r1" iNA ME ~3~ II --
o 3 0 I" A~PHO N 4101 1/"

".~ .-
~~ o 4 0 ~ --

o 5 0 r-. '"
,..r'

_. "- .

309

ARRAYS

Now for arrays.
true for arrays.

Many of the points just covered for tables are
Here is a list for quick review.

1. An array is a table. That is, an array is an arrangement
of data items having like characteristics.

2. Each array used in a program is described on the Extension
specifications sheet.

3. There are Icompi1e-time" arrays and "pre-execution-time"
arrays. Both are used and specified in the same manner
as are tables of these same two types.

4. A look-up operation (LOKUP) may be specified for calcu­
lations. There are five acceptable combinations for
testing the results of an array look-up: High, High and
Equal, Low, Low and Equal, or Equal only.

5. Related arrays can be described separately or in alter-
nating format.

That was easy. You might be raising the question, "Why do we
need to use arrays if they are just like tables? Why not just
use tab1es?". Well, there are differences we want to bring
out in this lesson so that you can determine in given data
processing problem situations whether you will want to use
tables or arrays. Here are some of those differences.

1. Only table names may begin with TAB. Array names can be
any other field name you wish to make up.

RULE: An array name refers to the entire array.

310

2. There is a special kind of array called an "execution-time"
array. In addition to describing this kind of array on an
Extension sheet, you also describe it as an input record

E -
Line

on an Input sheet. For example:

Record Sequence of the Chaining File

Number of the Chaining Field

To Filename

From Filename

Table or
Array Name

Extension Specifications

Number
of

Entries
Per
Record

Number
of
Entries
PerTable
or Array

Table or Length .§ 0
Array Name of .~ ~
(Alternating Entry cc ~ 8
Format) :J E ~

~~j

Comments

3 4 5 6 1 8 9 10 1112 13 14 15 16 11 18 19 20 21 22 23 24 25 26 21 28 29 30 31 32 33 34 35 36 31 38 39 40 41 42 43 44 45 46 41 48 49 50 51 52 53 54 55 56 51 58 59 60 81 82 83 64 85 66 81 68 69 10 11 72 13 14

OlE AI~AI'Y 18 1% 4
o 2 E

o 3 E

o 4 E

o 5 E

o 6 E

o 7 E

o 8 E

I
r---

Line Filename

RPG INPUT SPECIFICATIONS

Record Identification Codes

Position ~ e ~
(5 ~ ~
Z U U

Position _ ~
~ e ~
~f36

'ii
0;

Position ~ § J j i

Field Location

From To

Field Name

Field
Indicators

Zero
Plus Minus or

Blank

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 10 71 72 73 74

o 2 I

o 3 I
11 96 AIRArt

When this kind of array is described on the Extension sheet,
no entry is made in positions 33-35 (Number of Entries Per
Record) because the input field or fields will provide the
data later on. What we described above is essentially this.
First, we describe a storage space (Extension specification)
for an 8 entry array in which each entry will have 12
positions of numeric data including 4 decimal positions.
Second, we will fill the storage space of 96 positions
(8 X 12 = 96) with data as it is read in from an input
record during the job.

3. In addition to the use of LOKUP to perform a look-up
operation on either table or array data, we have the use
of 2 special operations to process array data.

311

C
I--

Line

345

o I C

o 2 C

o 3 C

o 4 C

C
~

!l.
Line ~

~
3 4 5 6

o I C

o 2 C

o 3 C

o 4 C

o 6 C

o 6 C

o 7 C

o 8 C

o 9 C

I 0 C

a. XFOOT (crossfoot) causes the value in each entry of
a numeric array to be added together and stored in
the Result Field.

RPG CALCULATION SPECIFICATIONS

~ '" _ I I ~ Arithmetic

:! g And Factor 1 Operation Factor 2 ,g :I: Plu. IMinu.1 Zero ! ~ And Name Le th ~ i Compare
00: ng ~il>21<21=2

~; ~ ~ ~ ~ ~ L:;UP~:to~:~~:

Comments

Indicators Result Field
Resulting
Indicators

7 8 9'0" 12 13 14 '5 161718 19 20 21 22 23242526 27 2829 3031 32 3334 35 3S 3738 39 40 41 42 43 44 45 46 47 48 49 5051 52 53 54 55 56 57 58 59 60 6' 62 B3 64 65 BB 67 BB 59 707' 72 73 74

)(F 00 TIAIA AI'! 5 UI~ 11414

b. MOVEA (move array) causes characters from the left­
most positions of Factor 2 to be moved to the left­
most positions of the Result Field. Using this
operation enables you to do one of three things:

0 z
9 '0

1. move data in one array to replace data in
another array, or

2. move part or all of the data in an array into
a field, or

3. move part or all of the data in a field into
an array.

RULE: Movement of data stops when the end of the shorter
length item (the array or the field) is reached.

RPG CALCULATION SPECIFICATIONS

Indicators Result Field Resulting
Indicators

Jd AL

Arithmetic

Factor 1 Operation Factor 2 Plu. IMinu.1 Zero Comments
Length

Compare
Name I >2T1 <:ill = 2

0 ~
Lookup(Factor 2)is

z High Low Equal
,,'2 '3 '4 '5 '6 '7 '8 '9 20 2' 22 23 24 25 26 27 28 29 30 3' 32 33 34 35 3S 37 38 39 40 41 42 43 44 45 46 47 48 49 505' 54 55 56 5~ 58 59 60 6' 62 63 '64 ,65 66 67 BB 69 70 7' 72 73 74

~Io '11f! IAIA Inl·1 lAIR RAz-

~O 'V E ~IA IlA ,~ F I EL tl>~ ~

"'0 VE AF , E LI1l7 ~IR 2.19

312

4. Although we didn't discuss editing of tables on
the Output sheet, a table entry is edited just as
a numeric field is edited.

An array entry may be edited in the same manner.
Specify an edit code in position 38 on Output and
the array entry will be edited as desired.

5. An array may be edited in its entirety! If you
enter an edit code in 38 and name the array, RPG II
will cause the array to be edited so that each
entry in the array will include the desired
punctuation and 2 spaces will be included to
separate each entry from the other when printed.

RULE: You must be sure to plan for enough space on the
print line to include all punctuation characters
as well as the 2 spaces between items.

Example:

ARRAYZ has 6 entries of 7 positions each with 2 decimals.
Let's say we will specify edit code 1 to include commas
and a decimal point, but no sign. How much space is
needed to print the entire array?

Well, each entry will include 7 positions of data plus
a comma and a decimal point plus 2 spaces for a total
of 11 print positions. It will look like this on your
plan:

liliXX,XXX.XX

Since there are six of these entries in the array, we
need 66 print positions on a line in order to print the
array.

NOTE: You may use an edit word instead of an edit code to
edit an entire array. In this case, your edit word
must include the two blank spaces to separate results.

6. As you recall, we describe entire tables and arrays on an
Extension sheet. Thereafter, we can search either a table
or an array to find a particular item using the LOKUP
operation.

RPG II provides a unique facility for the referencing
and use of particular array entries through the use of
a scheme known as "indexing". In this case we:

a. use an array name of 1,2 or 3 characters, and

b. include an lIindex" constant or field to refer to the
desired entry.

313

E -
Line

Example:

Record Sequence of the Chaining File

Number of the Chaining Field

From Filename

To Filename Table or
Array Name

Extension Specifications

Number

of
Entries
Per
Record

Number
of
Entries
Per Table

or Array

Length .2 e
of] ~
Entry :§ ~ ~

~~l

Table or Length
Array Name of Comments
(Alternating Entry a::
Format) ~

~

3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 2425 26 27 28 29 3031 32 3334 35 36 37 38 39 4041 42434445 46 474849 5051 52 53 54 55 56 57 58 596061 62 6364 6566 67 68 69 70 71 72 73 74

o 1 SL ..., 12
o 2 E

o 3 E

RPG CALCULATION SPECIFICATIONS

C Indicators Result Field
Resulting
Indicators

- At At
Arithmetic

Factor 1 Operation Factor 2
.g Plus IMinusl Zero Comments

~
'g Compare

line ~
Name Length ~ 1>211<211=2

E E
0 ~ 0 '~ LookuplFactor 2)is

.e z z 0 High Low Equal
3 4 5 6 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 3031 32 33 34 35 36 31 38 39 40 41 42 43 44 45 46 47 48 49 5051 52 5455 5657 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

0 1 C F' IE L. ~A ~DD lsL. 1')1 rrA 17Z
(l 2 c
0 3 c ~M SUB 51-1')4- ~EM 1'2
0 4 c
0 5 C

o 6 C

0 7 C

o B C

o 9 C

What is the name of the array? How big is each entry?
entries are there in the array?

* * *

How many

The array named SL contains 4 numeric entries, each being 6
positions long with 2 decimals.

Notice that the first calculation step describes the additions
of a field (FIELDA) to "something" (SL,l) to get a result (TA).
Also, the second calculation step describes the subtraction of
"something" (SL,4) from a field (XM) to get an answer called
REM. In each case, the "something" included the name of the
array followed by a comma and a constant number. Here is what
each step means.

314

SL,l refers to the use of data in the first entry in array SL
for the addition step. What do you think SL,4 means?

It means, refer to the use of data in the fourth entry in array
SL for the subtraction step.

What do these steps each mean?

RPG CALCULATION SPECIFICATIONS

C Indicators Result Field
Resulting
Indicators

f-----
At 1 Arithmetic

Factor 1 Operation Factor 2 Plus Minus Zero
Comments

~ Name Length
Compare

Line ~ 1>21<21=2
E

0 0 0 Lookup(Factor 2)is

.f Z z Z High Low Equal
3 4 5 6 9 10 1112 13 14 15 16 17 18 1920 21 22 232425 26 27 2829 3031 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5051 5455 5657 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

° 1 c 5L 1,,1 1M CA LT " 1)(

° 2 C

° 3 c SL I.ls LO K" PiT A85 rrA IB'~ 29
° 4 C

° 5 C ~O VE IAAR SL. 1 .. lt

° 6 C

RPG OUTPUT SPECI FICATIONS

o
I---

~ Space
"E

Skip Output Indicators Commas Zero Balances No Sign CR _ X = Remove
1====l=.;:;to;,;"P;,;;;rin,;"t =l===l===j~ Plus Sign

Field Name I'Cf1J,........, __ """T'"'"'"> v

I~
Positon

~~~~~~~-~--~ 

i~~ Jd Jd 
~ ., 

line Filename 

~ I ADO ~ ~ z ~ ~ 
~~D I 

"AUTD 

in a: 
Output -J ., 

ii: 
Record 

Yes 
Yes 
No 
No 

Yes 
No 
Yes 
No 

A J Y = Date 
a K Field Edit 
C L Z = Zero 
D M Suppress 

Constant or Edit Word 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 '68 69 70 71 72 73 74 

1-°+4
1 

--+O+-+--++-+_++-+-+-+--+-+-l-+-+-+++-++-+-+++-f-_ ~ 1.1 ') 1 1 f8 
° 2 ° 
° 3 ° 
° 4 ° 
° 5 0 

* * * 
Remember, the use of an index value and an array name references 
a particular entry in that array and treats it as though it were 
a field of data. How did you interpret each example? 

315 



1. Multiply the value in the first entry (SL,l) of array SL 
by6 to get X. 

2. Search the table named TAB5 for a value equal to the value 
in the third entry (SL,3) of array SL. If an equal is 
found, locate the corresponding value in TAB6. 

3. Move the characters in array AR in the left-most positions 
of the second entry (SL,2) of array SL. Stop the movement 
of data when either the second entry of SL is filled or when 
all characters in array AR have been moved. 

4. When producing output, include the first entry (SL,l) of 
array SL as a field using the edit code 1 to include commas. 
The right-most character shall be in output position 48~ 

We are not limited to using a constant as an index value. The 
following example shows the use of a field as the index. Take 
time to examine what is happening in this series of calculation 
steps. 

E 
I--

Line 

>-

~ 

Record Sequence of the Chaining File 

Number of the Chaining Field 

From Filename 

To Filename Table or 
Array Name 

Extension Specifications 

Number 
of 
Entries 
Per 
Record 

Number 
of 
Entries 
Per Table 

or Array 

Length 0 0 

of 1 ~ 
Entry ~ ~ ~ 

~~i 

Table or Lenuth § Ci 
Array Name of ~ ~ Comments 
(Alternating Entry a:: ~ ~ 
Format) :J E ~ 

~~j 
3 4 5 6 1 8 9 1011 12 13 14 15 16 17 18 192021 22 23 242526272829 3031 32 3334 3536373839 4041 4243444546 4748495051 5253 54 55 56 57 58596061 62 636465666768697071727374 

f-- -.... - - ._! - - ~ l" _ ... ____ _ OlE 
-. -- . _ .. 1-- .- .. _ c ___ 1-- _____ 1--1-- -1--- - -- .-- - ----1---
o 2 E 

- - . . - - ---I-- .+- . _ ... .. 1--. - - --.- -- -1--1--+-+-+++++-+-+-+--1 
o 3 E 

-'---- --L---I.-L' ---1-"_1----1 .. L. _. __ L'-. ___ L __ L. __ .. _._- .. - .. -.- __ L-~ __ .. ____ ,- ... _ _ .... _ .. ---

RPG CALCULATION SPECIFICATIONS 

C Indicators Result Field 
Resulting 

~ Indicators 

~ ~ At AL 
Arithmetic 

0 Plus Minusl Zero Factor 1 Operation Facttlr2 '" Comments 
8. ] '~ 

0 Compare 
Line >..J Name Length ~ 1>211<211=2 

§ ~ E 
0 0 ~ 

Lookup(Factor 2)is 

& 8 0 
Low Equal z z z High 

3 4 56 7 9 '0 1112 13 14 1516 17 18 19 20 21 22 23 24 25 26 27 2829 3031 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5051 52 5455 5657 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 c ~£ TOF 2~ 31~ 
0 2 C f- AD 1>1 Y .tl~ 
o 3 c RE T TA 0-

o 4 C AR. Y (.0 I'1P 1 21~ 
o 5 C 2~ GoO TO END 
o 6 C S SuS y TE 6T LI; alca! 
o 7 C 3~ GO TO Ie Nfl 

o 8 C Y ADD L' Y 
o 9 C 600 To If E T 
1 0 C EHTJ TA" 
1 1 C 

1 2 C 

316 



Here is what I hoped you found out when you examined the coding. 

1. The array AR has 5 entries each containing 1 numeric 
character. 

2. On the fourth calculation step, we refer to a particular 
entry of array AR. The particular entry is determined by 
the value in the index field Y. 

3. The first time through, Y is given the value 1 as a result 
of the Z-ADD operation. This means that we will use the 
first entry of array AR on the first try for the COMP step. 

4. The value of Y is incremented (increased) by 1 each time 
the loop is completed. When either the value in an entry 
of the array is 7 or the value of the index is 5, this 
activity is finished. 

What you have just examined is the coding used to scan the 
contents of a field, one position at a time. In order to do 
this, the field was described as a 5-entry array and then a 
loop was programmed to examine the first, the second, the 
third, the fourth and the fifth entry for a particular 
character. In our example the scan was being made for the 
presence of the character 7. 

Tables and arrays are alike by definition, but arrays can be 
processed in a variety of ways not available for processing 
table data. 

One more very important point about using tables and arrays. 

RULE: Entire tables and arrays can be written out under 
control of RPG II at the end of a job when the last 
record indicator (LR) is on. 

To specify that you want to write out a table or an array: 

1. describe an Output file on the File Description sheet to 
hold those tables and/or arrays, 

2. include the filename as an entry on the Extension sheet in 
positions 19-26 for every table and array to be written 
out. Positions 19-26 are titled liTo Fi1ename". 

3. describe a total-time output record (Type code T in 15) 
under control of the last record indicator (LR). Include 
the name of the array or array entries or table to be 
produced as output in positions 32-37 (Field Name). 

Take some time to read about arrays in the RPG II Reference 
Manual and read about the use of the operations LOKUP, XFOOT 
and MOVEA. When you are ready, return to this text. 

* * * 

317 



Chapter 6: Summary 

When table data is placed in storage, its contents may be 
searched so that corresponding information (in a second table) 
can be extracted and used to help solve a data processing problem. 

In System/32, table searching starts with the very first element 
and continues until the desired element is found, or until all 
elements have been examined yet none satisfy the search require­
ment as specified. 

Arrays may also be searched. In addition an array element may 
be identified directly through the use of an "indexing va1ue". 
Also, an entire array may be moved to another storage area 
(MOVEA), and the contents of every element in a numeric array 
may be added together in one operation (XFOOT). 

Now that you have completed chapter 6 you should be able to: 

1. describe tables and arrays, 

2. use them in calculations, and 

3. print out their contents at the end of a job. 

New coding entries encountered in this chapter include: 

FILE DESCRIPTION 

16 

39 

EXTE~NS I ON 

1 1 - 18 

19 - 26 

27 - 32 

33 - 35 

36 - 39 

40 - 42 

44 

45 

46 - 51 

52 - 54 

File Designation (T for table file) 

Extension Code (E) 

From Filename (pre-execution-time tables) 

To Filename (to write out table values at end of job) 

Table or Array Name 

Number of Entries Per Record 

Number of Entries Per Table or Array 

Length of Entry 

Decimal Position 

Sequence (Ascending) 

Table or Array Name (Alternatin~ Format) 

Length of Entry 

318 



INPUT 

No specific new entries, but execution-time arrays are described 
here as fields. 

CALCULATION 

18 - 27 Factor 1 (use of array names with an index) 

Operation (LOKUP, SETON, XFOOT, MOVEA) 28 - 32 

33 - 42 

54 - 59 

OUTPUT 

32 - 37 

Factor 2 (use of array names with an index) 

Resulting Indicators (Hl for SETON, all for look-up) 

Field Name (use of array names with an index) 

The following illustrations deal with the operations that may 
be used with table data (LOKUP) or array data (LOKUP, XFOOT, 
MOVEA). 

1. Lookup (LOKUP) 

,\1,1/ 
...... ' , 

Use a known value -: 271 :. 
-.... .... 

/ '" ,.,,--, 
I'\'~"" " 

to search a table or 
array having similar 
values 

, \ , , 
I , 

250 I 

( 260 j 

( 268 

BEDPOST 

HEADBOARD 

NIGHTSTAND 

(
'.: 

271 -;----~ MATTRESS 

\ 276 
" ,l 

' ..... _--"', 

and get a correspondingly 
located item from a second 
table or array 

to be used for either 
calculations or output. 

319 

MATTRESS 



2. Crossfoot (XFOOT) 

Add the value in each array 
element to find the total. 

1
0

1 1 I 0 I 0 I 6 I 4 I 2 I 0 I 1 I 

o + 1 + 0 + 0 + 6 + 4 + 2 + 0 + 1 = 14 

3. Move an array (MOVEA) 

a. Move the contents of an array to a field or to another 
array. 

SIX BOX TON NET FIG ARRAY 

SIX BOX TON NET FIG ARRAY 

b. Move the contents of a field to an array. 

FIELD 

ARRAY 

320 



These illustrations relate types of tables or arrays. 

1. Compile-time Tables or Arrays 

a. Load the program that includes 
the table or array, then 

b. start the job. 

2. Pre-execution-time Tables or Arrays 

a. Load the program that 

b. loads the table or array, then 

c. start the job. 

3. Execution-time Arrays 

a. Load the program to 

b. start the job, that 

c. reads array data as 
input records. 

SYSTEM/32 

b 

~~ 
SYSTEM/32 J b 

c 

SYSTEM/32 

321 





SELF TEST: Chapter 6 

Try to answer each question from memory. Use a piece of scratch 
paper to keep track of your answers so you can check them. 

1. What is the rule for naming tables? 

2. What is the rule for naming arrays? 

3. What does the operation LOKUP accomplish? 

4. Which 5 combinations of entries for Resulting Indicators 
are acceptable with the LOKUP operation on the Calculation 
sheet? 

5. How do I reference a particular entry of an array? 

6. In which case of editing output will RPG I I provide 
separator spaces for array entries? 

A. When an edit code is used. 

b. When an edit word is used. 

7. An index for an array may be either a(n) 
a(n) 

8. What is the difference between Icompi1e-time", "pre­
execution-time" and "execution-time" arrays? 

323 

or 



ANSWERS: Chapter 6 Self-Test 

1. A table name must begin with TAB. It can be from 3 to 6 
characters long. 

2. An array name must start with a letter. It can be from 1 
to 6 characters long. If it is to be used with an index, 
it can only be 1 to 3 characters long. 

The first 3 characters in an array name cannot be TAB. 

3. It initiates a search of table or array entries to find 
an acceptable "match" based upon the condition(s) tested 
by Resulting Indicators. When a search is successful, 
the particular entry of the table or array is stored for 
use in further calculations or output. 

4. High 
High and Equal 
Low 
Low and Equal 
Equal 

5. I use an index value to reference a particular array entry. 

6. Separator spaces are included when an edit code is used, 
choice "AII. 

7. An index for an array may be either a field or a literal. 

8. Compile-time arrays are entered with a source program and 
included with the resulting object program during com­
pilation. 

Pre-execution-time arrays are defined as input files and 
read in for use just after the program is loaded, but 
before other input is made available for processing. 

Execution-time arrays are defined as input records. They 
are read in as records when the program calls for input. 

If you wrote essentially what I did, count it as correct. 
Allowing 5 points for question #4 and 3 points for question #8, 
you should have scored at least 10 points. If you did not, you 
may wish to re-read this chapter. 

324 



************************************** 
* * 
* * * Since your reason for studying * 
* this course was to prepare for * 
* attendance in an IBM System/32 * 
* RPG II Workshop class, you have * 
* completed preparation for it. * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Chapters 7 and 8 contain infor­
mation that will be referenced 
in the workshop. 

These two chapters are not pre­
requisite to attendance in the 
workshop. but I know it will be 
of benefit to continue if you 
have the time. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* * 
************************************** 

325 





Chapter 7: Keyboard, KEY and SET (1 to 2 hours) 

When disk files are created, input records are keyed in from 
the console keyboard on the System/32. In the examples you 
studied up to now, we specified the device name CONSOLE when 
describing such input records. 

Another device name, KEYBORD, is acceptable for a special 
approach to keying input records. In both cases, the console 
keyboard and display screen function as one unit. Here1s a 
chart that alerts you to differences about which you will 
learn as you study this chapter. 

CONSOLE 

Input records are keyed 
at Inorma1" input time. 

When a complete record 
has been keyed in, it is 
processed. 

Field names as specified 
on the Input sheet become 
the prompts. 

Record length is calcu­
lated by adding the 
number specified as an 
input field "to" entry to 
the number of fields 
specified plus 1. 

To designate that all 
records in the input file 
have been keyed in, the 
operator presses the 
command key (CMD on the 
keyboard) followed by 
pressing the special 
character "/". 

RPG II completes all "1ast 
record" processing and 
ends the job. 

KEYBORD 

Input records are keyed when 
a KEY operation is encountered 
during calculations. 

One KEY operation is needed to 
enter each field of data. 

Prompts are specified as 
Factor 1 or included as a 
2-digit code number with the 
KEY operation. 

Record length is simply the 
length of the longest field 
to be keyed in. It cannot 
exceed 40 characters. 

To designate that all records 
in the file have been keyed 
in, the operator enters 
whatever number, letter or 
special character the programmer 
has directed on the program run 
sheet. 

RPG II completes whatever end­
of-job operations and output 
the programmer has specified. 
The programmer is responsible 
for turnin~ on the last record 
indicator (LR) if he wants 
RPG II to terminate his job. 

327 



Now that you have an inkling as to the differences, you need 
to know that another operation called SET may be used when 
KEYBORD is specified as the device name. This operation 
permits the operator to press one, two or three command keys, 
which the program checks and in turn sets on corresponding 
command key indicators. Prompts are included with the SET 
operation in the same manner as described for the KEY operation. 

CHAPTER OBJECTIVES 

After studying this chapter you should be able to use the 
operations KEY and SET in solving problems requiring keyed 
input data during calculations. For these problems you would 
specify the device name KEYBORD. 

A self test is included in this chapter. 

328 



Keyboard and KEY 

You have already learned to define and use interactive data entry 
input files. As you recall, the device name for this kind of 
file is CONSOLE. Also, the record length is computed as one 
more than the sum of the highest field end position and the 
number of input fields to be keyed. The block length must be 
at least two more than the record length. 

When you wish to (or need to) key in data during calculations 
rather than as input fields prior to the first calculations, you 
can defrne-a primary input file on the File Description sheet and 
specify the device name as KEYBORD. That spelling is funny 
looking, but it is correct. 

When you have defined a KEYBORD input file, RPG II provides 
the following: 

1. One field of data may be entered whenever a KEY 
operation is encountered on the Calculation sheet. 
Numeric fields may be 15 positions long with 
o - 9 decimal positions while in this case 
alphameric fields may be up to 40 positions. 

2. When the KEY operation is encountered, the program 
waits for the operator to key in one field of data. 

3. After that field is entered, the program becomes 
active and continues until another KEY instruction 
appears, or the job ends, or a halt occurs. 

When the data is keyed, it is automatically shown on the display 
screen. 

OK. Now here is what you have got to code when doing this kind 
of job. 

1. Specify an input, primary, KEYBORD file. 

2. Specify one KEY instruction for each field to be 
keyed into the system. 

3. Specify an indicator to identify the type of record 
being keyed. 

4. Turn on the last record indicator when the job is to 
be ended, that is, when all records to be keyed have 
been keyed. 

RULE: To describe a keyboard input file on the File Description 
sheet, enter KEYBORD as the device name and specify the 
length of the longest field to be keyed as its record 
length. 

329 



RULE: To describe the KEY operation on the Calculation sheet, 
enter KEY in 28-30; enter the name of the field that 
shall hold the keyed data as the Result Field; specify 
the field length and number of decimals if this field 
has not been defined elsewhere in the program. 

For convenience to the operator, specify a constant, as 
Factor 1. This constant will appear on the display 
screen on the line above the keyed data to prompt the 
operator. 

Here are some examples in which KEY is used. 

RPG CALCULATION SPECIFICATIONS 

C Indicators Result Field 
Resulting 

~ Indicators 

r-- ~ At At .! Arithmetic 

& ] 
Factor 1 Operation Factor 2 Plus Minusl Zero Comments '8 Compare 

line >- ...J Name Length ~ 1>211<211-2 .... "0 ~ 
E " LookuplFactor 2)is 
~ 8 0 0 0 2 z z z 0 High Low Equal 

3 4 56 7 910 1112 13 14 15 16 17 18 19 20 21 22 23242526 27 2829 3031 32 33 34 35 36 31 38 39 40 41 42 43 44 45 46 47 48 49 5051 52 5455 5657 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 C , I I<.EY LOC IlrI 
0 2 C 

0 3 C ,~ AT IE I KEY 
.... ~~ r~1\ C 

0 4 C 

0 5 C ' A IMT xx .Ix I K lely lAM :OU NT ~Il 
0 6 C 

0 7 C 

o 8 C 

What is the size of the field to be keyed in each example? What 
else will be shown on the display screen in each example? What 
is the longest constant you can describe in Factor 1? 

* * * 
The field lengths are: LOC is 17 alphameric positions; PRATE is 
4 numeric positions with 4 decimals; AMOUNT is 3 numeric posi­
tions with 1 decimal position. 

Since the first example has a 1-position blank entry in Factor 1, 
no prompt will show, only the 17 keyed characters. In the second 
example, we will show the prompt RATE above the keyed data. The 
third example will include the prompt AMT XX.X above the keyed 
data. Factor 1 may contain a constant of up to 8 positions. 

Assume that only these three KEY operations shown were included 
in one program. What record length entry should be specified 
for the KEYBORD file on the File Description sheet? Why? 

* * * 
If you remembered the rule, it is 17. The rule is, IIrecord length 
is equal to the length of the longest field to be keyed ll

• 

330 



Next, let us consider the use of keyboard input files from another 
point of view. The file is described on a File Description sheet 
and the particular fields to be keyed as input are described on 
the calculation sheet. No entries are made on the Input sheet 
for this kind of input file because every field to be keyed in 
is described on the Calculation sheet! Remember, the RPG II 
program will pause to let the system operator provide input fields 
as needed during calculations. 

Here is a brief summary of what we have learned about keyboard 
input files as described in RPG II. 

1. An input primary file is described on the File 
Description sheet. The device name must be KEYBORD. 

2. No Input sheet entries are made for this kind of 
Tnput file. 

3. Each fiel~ to be keyed must be described on the 
Calculation sheet as a Result Field, one field per 
KEY instruction. Since the keyed data will be 
displayed as it is keyed, a "promptll should be 
included as Factor 1. This prompt will also display 
during the keying activity. 

There is more. When we described input records on an input sheet 
for DISK or CONSOLE files we included the assignment of a Record 
Identifying Indicator in 19-20. For a KEYBORD file, we make no 
input sheet entries, so how can a programmer establish a similar 
indicator relationship to the records keyed in during calcula­
tions? 

* * 
There are a number of ways to do this. I hope you thought of the 
SETON operation as one obvious method. Another would be to 
compare the contents of a keyed field of let's say one position 
to a code character. If they are equal, turn on one indicator. 
If not, turn on a different one. You may have thought of other 
ways and could be correct. 

Why are we concerned about establishing an indi~ator like this? 
Well, when it is time to produce output records, we can assign 
the appropriate indicator to control specific lines of output 
or specific items within such a line. 

One more question. How will this programmer-assigned indicator 
be turned OFF? If you remember this you have a good memory. 
The programmer must make sure it is turned off. This can be 
done by: 

1. using a SETOF operation, or 

2. repeating the compare instructions the next time around. 

331 



Now for the last dilemma. The operator will continue to key in 
data records whenever the program calculations are interrupted 
by a KEY instruction. 

In normal jobs, the special "last record" in the disk file or 
the special keyed in "last record ll in a CONSOLE file causes 
the Last Record indicator (LR) to be turned on and the job 
terminates when all processing and output is produced. 

How can a similar action be accomplished with KEYBORD files? 
You guessed it - the programmer has to somehow make LR turn 
on. Here are some possibilities. 

1. Using the COMP operation, check for a special code that you 
can tell the operator to key in at the end; when it is 
keyed in, SETON the last record indicator. 

2. If you wanted the operator to key in only 25 records, use 
a counter and keep track of how many were keyed. When you 
get to 25, set on LR. 

Now that we have talked about KEYBORD files and the KEY instruc­
tion, examine the following example and mentally review all of 
the important points to see how the coding satisfies the rules. 

332 



KEYBORD and KEY 

F 
-

Filename 

Line 

3. 
~ 
E 
.f 

File Type 

File Designation 

End of File 

Sequence 

File Format 

Block 
Length 

Record 
Length 

File Description Specification 

Mode of Processing 

Length of Key Field or 
of Record Address Field 

Record Address Type 

Type of File 
..J 

Organization w 
or Additional Area ~ 

Overflow Indicator (.) 
N r---- § 

~ ~ Key Field .~ 
Ci:" C Starting ~ 
~ ::::. Location W 

Device 
Symbolic 
Device 

Name of 
Label Exit 

Extent Exit 
for DAM 

Storage Index 

Continuation lines 

Option Entry 

File Addition/Unordered 

Number of Tracks 
for Cylinder Overflow 

Number of Extents 

Tape 
Rewind 

~ 

~ 
Condition 

Ul.'!!!-

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 4344 45 46 47 48 49 50 51 52 53 54 55 56 57 68 59 60 61 62 63 64 65 66 67 68 89 70 71 72 73 74 

o 2 F V~ L U e S I P ICEY&OfC.D 
o 3 F I. I SiT o PRINTER. 
o 4 

o 5 

o 6 

RPG CALCULATION SPECIFICATIONS 

C Indicators Result Field 
Resulting 
Indicators 

~ 
I--- 0_ 

AL At ..Ja: =0 Factor 1 Operation 

Line 
~j~ 
I- (5 a:.~ 
E ::. U) 

~ ;g o S r:£'o 
u.. U...J Z 

3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 3031 32 

0 1 C \ C OD i' l(eY 
o 2 C CO DE Co Ifp 

o 3 c LR "0 TO 
o 4 C \ F I Ie ST' KE Y 
o 5 C \ 5 EC 0'" D' leEr 
o 6 C ' T HI R,/)' KEY 
o 7 c VA L.J A D1> 
o 8 c vA LU£ A plo 
o 9 c ST OP TAr:, 
1 0 C 

1 1 C 

1 2 C 

RPG 

o 
f----

line Filename 

u: Space Skip Output Indicators 

~l~-+--,--r---r-~.---~ 
~~i~ 1 1 > ~ OJ 

t- cii I "Aro[i 0 0 ZO 
o R CJ:t: z z 

i\fr,jro , I 

Arithmetic 

Factor 2 .g I Plus IMinusl Zero Comments 

Length ~ ~ Compare 
Name 1>211<211-2 fil:o' 

E « 
'13 - Lookup(Factor 2)is 

o I High Low Equal 
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 5253 5455 5657 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

Co r>E 
\ ~, 

ST oP 

VA Ll 
vIA L2. 

VA LJ 

VA L.Z vA LUE. 

viA L.3 vA LuE 

OUTPUT SPECIFICATIONS 

Field Name 1I

1{,ir--r-__ .... , 

IL] 
Positon 
in a: 
Output ...J 

'AUTO Record CJ 
it 

v 
Commas 

Yes 
Yes 
No 
No 

1 
0L 

4tl 
72. 

"1 
8z 

Zero Balances 
to Print 

Yes 
No 
Yes 
No 

tJ1 L.I(. 

No Sign CR 

A 
B 
C 
o 

_ X = Remove 
Plus Sign 

Y = Date 
K Field Edit 
L Z = Zero 
M Suppress 

Constant or Edit Word 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28293031 32 33 34 35 36 37 38 39 4041 4243 444546 4748 49 5051 52 53 54 55 56 57 58 59 60 61 626364 65666768 69 70 71 72 73 74 

o 1 OL I ST ~ 2- 191 I 
o 2 0 V~ L' J; 
o 3 0 VA 1.2- ~91 
o 4 0 VA 1..3 SS 
o 5 0 VA L.UE '8 
o 6 0 

o 7 0 

o 8 0 

333 



You should know just a bit more before we move to the next 
topic. I told you to include a constant as Factor 1 to provide 
a "prompt" on the screen. You are to use one of these as 
Factor 1 for a KEY operation. 

1. an alphameric constant of 1-8 characters, 

2. a numeric literal of 1-10 digits, 

3. a field of 1-40 characters; the contents of that 
field are the prompt, 

\ 

4. a table element (one entry), or 

5. an array element. 

RULE: Prompts cannot exceed 40 characters. 

SET 

This operation is frequently used in combination with a KEY 
operation. First, we will consider its use alone and then in 
combi·nation. 

One purpose of the SET operation is to designate which of the 16 
available command keys on the system keyboard may be pressed by the 
system operator during calculations. If the operator presses one 
of the designated command keys, its associated Command Key Indicator 
i stu r ned 0 n . The s e 1 6 i n d i cat 0 r s are KA, K B, K C, K D, KE, K F, KG, 
KH, KI, KJ, KK, KL, KM, KN, KP, KQ. For example, if the instruction 

RPG CALCULATION SPECIFICATIONS 

C Indicators Result Field 
~ Indicators 

r---- 3 Ci I .1 ~ Arithmetic 

:;;; S:' And And Factor 1 Operation Factor 2 .g I Plus IMinus Zero 

L,,'e ! ~ ; Name Length ~ j 1 > 2~~7~rel _ 2 

~ §~. a a a , '~ ~ Lookup(Factor 2)is 
u. u -' z z Z 0 I High Low Equal 

Comments 

Resulting 

3 4 5 G 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ~'4 :?~ ~1l.J 27 2829 3031 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 6566 67 68 69 70 71 72 73 74 

Ole \ I I SET II<A'I<S 
o 2 C 

a 3 C I r"- -f------ - f---r-- ----c-- ---- --c--- -+-+-+-+-1-+-+-+-+- - -- I-t-++-t--H-/--t-t-t--++-H-+-+--I-+-I--H-/--t-+-+-+-++++-+-+-+-+-+-I-I 
~ 4 _ c \ 

were encountered in a program, the operator may press command key 1 
which will cause the indicator KA to turn on. He may press command 
key 2 instead, in which case command key indicator KB will turn on. 
There are two more possibilities. 

Press command key 1 and press command key 2. 

Don't press either command key. 

334 



As you suspected, both KA and KB would be turned on in the first 
case. In the second case, neither would be turned on. How does 
the operator know what to do? You guessed it, the programmer 
must provide directions on a program run sheet so that the operator 
can press the correct key or combination of keys. 

Note the blank constant, indicated by quote marks in Factor 1 
(18-20). A SET operation in which command key indicators are 
included must have a Factor 1 entry or a user message number in 
31-32. This rule also applies to KEY. More about user messages 
later. 

Here is a more complete example. 

RPG CALCULATION SPECIFICATIONS 

C Indicators Result Field 
Resulting 
Ind'icators 

~ 

At AL 
Arithmetic 

Factor 1 Operation Factor 2 Plus(Minu-;r Zero 
Comments 

! 
Compare 

Line Name Length 1 >211 <211 =2 

~ 
Lookup{Factor 2)is 

z Z z High Low Equal 
3 4 56 910 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 3031 32 33 34 35 36 37 38 39 40 41 42 43 4445 4647 48 49 sO 51 5455 5657 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 C f' , , SET /(1.. A:H I<H 
0 2 C 10. C;O TO RT t 
0 3 C ~- AD D5" TA I..I.Y 
0 4 c kt4 60 TO RT2. 
0 5 c KN GO TO RT3 
0 6 C 'E Tofll H 1 
0 7 C 

o 8 C 

o 9 C 

How many command keys could the operator press when the SET 
operation is found? If none were pressed, what would happen? 
Which command key indicator controls the instruction to make 
the value of TALLY equal to 5? Which specific command keys are 
made available during this program segment? Suppose that the 
command key indicator KM was turned on the first time thru the 
program and the second time thru indicator 19 was off. Which 
instructions would be performed the second time through? 

* * * 
If indicator 19 is ON, the operator could press 1, 2 or 3 command 
keys. If none were pressed, two things would happen: first, 
TALLY would be set to a value of 5 and then halt indicator Hl 
would be turned on. No command key indicator controls the Z-ADD 
operation, but if KL is turned on, that step will be bypassed. 
The specific keys that control KL, KM and KN are numbers 12, 13 
and 14 respectively so these are the ones that are available 
during this program segment. 

335 



Since the setting of indicator 19 determines whether or not KL, KM 
and KN may be turned on, any command key indicator turned on the 
first time around remains on during the second time around. 

RULE: Command key indicators are turned on if the operator 
presses the corresponding command key. These indicators 
are turned off when a SET instruction that contains the 
same indicator is used or when the SETOF operation is 
used. 

If no additional programming steps are included for this example, 
we may have difficulty during test data runs. How could this 
problem be eliminated? If you suspect this segment of coding 
to be a problem area during a test data run how could you check 
it out? 

* * * 
The SET operation using only Factor 1 coding may be used to display 
a series of prompt lines. In this case, the program does not pause 
until another SET with command key indicators or a KEY operation 
is encountered. Remember that up to 6 lines of data may be 
displayed and that the KEY operation uses 2 lines: one for a 
prompt and one for data as it is keyed. 

The problem can be eliminated nicely by inserting this step 
between step 1 and 2. 

RPG CALCULATION SPECIFICATIONS 

C Indicators Result Field 
Resulting 

~i 
Indicators 

I--- o_ 
At 1 Arithmetic 

-'a: g I Plus Minusl Zero ~e Factor 1 Operation Factor 2 Comments 

~j~ Length ~ ~ Compare 
Name 1>2Tl<2Tl"2 Line ~ '0 c£ ~~ 

§ :o<n 

~ ~ 
Lookup{Factor 2)is 

Sa: " 0 0 
High Low Equal LL U...J Z Z Z 

3 4 5 6 7 8 9 10 1117 1314 1516 1718 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 434445464748 495051 5253 5455 5657 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 c Nt' 1 1 SIElr OF J I I I ! I I /(.'- kM #(/11 I I ! I 
I I I I 

-r---r--
I 1 1 1 11 -I 11 1 

0 2 C I 

0 3 C 
. , i 

i I i I '-tH- i! I ! j i it I I I ili i i ! I I 0 4 C ! ,L _Ui Ii,! Ii I -'--L~ _ 1--l---L-L.1~-,-- __ 1 . 

For operator convenience, you may specify a constant, a numeric 
literal, a field, a table element or an array element in Factor 1 
of the SET operation. What does this do? It causes the infor­
mation in Factor 1 to be displayed as a prompt to the operator 
just as it does when used in the KEY operation. 

336 

I 
1 

: 

I 



The SET operation provides for a special function when used in a 
program that has an interactive data entry (CONSOLE) input file. 
By specifying a larger than necessary record length entry on the 
File Description sheet for a CONSOLE file, we reserve a storage 
space called a IIbuffer ll into which more than one record can be 
keyed. This permits an operator to key a new record while the 
computer processes the prior one. 

If during processing it is determined that invalid data is in the 
buffer, you may wish to clear it out and have the operator re-key 
the correct data. To do this, specify the SET operation, the 
CONSOLE filename as Factor 2 and the word ERASE in 43-47. 

It looks like this. 

RPG CALCULATION SPECIFICATIONS 

C Indicators Result Field 
Resulting 

~ Indicators 

I--- ~ At AL 
Arithmetic 

~ ] 
Factor 1 Operation Factor 2 .g I Plus JMinusl Zero 

Comments 

Name Length ~ ~ Compare 

Line > -' 
<1i '-0 1>211<211=2 

] ) E « Lookup(Factor 2)is 
0 0 ~ ~ Z Z z High Low Equal 

3 4 56 7 9 .0 1112 1314 15 16 1718 19 20 21 22 23 24 25 26 27 2829 3031 32 33 34 35 36 37 38 39 40 41 42 434445464748 49 5051 5253 5455 5657 5859 60 61 62 63 64 65 66 67 68 69 70 71 n 73 74 

0 1 C 28 SET I l> EF ILE ER ~$E 
0 2 cti 
0 3 C. J F IN D I CiA ITOR 28 I S Ttl R/tl eD ON, AN 1111 VA LIP OIA TA 
0 4 C~ CO INO liT loilli EX I S T5. ER AslE TUE Co illS 10L E lav FF ER AR EA. 
0 5 C 

0 6 C 

Using KEY and SET 

On the IBM System/32 there is a provlslon for storing messages 
which can be used in programs to direct the operator to take 
action just as the prompts do when used in Factor 1. 

If your installation has provided for these lIuser messages ll
, you 

should become familiar with them so that when it is convenient 
to use one or more of them as prompts, you will know how to 
select the ones you need. Each user message is stored along 
with a 2-digit message identification code for all programmers 
to use. You may include the use of these messages as prompts by 
specifying the code digits in positions 31 and 32 along with 
either the KEY or SET operation. For instance: 

337 



c ~ 
~ ~ 

Line 
5 
g 
.3 
7 

0 1 C 

0 2 C 

0 3 C 

0 4 C 

0 5 C 

0 6 C 

0 7 C 

RPG CALCULATION SPECIFICATIONS 

Indicators Result Field 

Factor 1 Operation Factor 2 

Name Length 

~ ~ ~ 
9 10 11 12 13 14 15 161718 19 20 21 22 23 24 25 26 27 2829 3031 32 3334 35 36 37383940 41 42 4344454647 4849 5051 

AMoUNT 

5ETI2. 

Resulting 
Indicators 

Arithmetic 

Plus IMinusl Zero 

Compare 

1>2[1<211=2 
Lookup(Factor 2);5 

High Low Equal 

Comments 

54 55 56 57 ~ ; 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

In the first line, user message 30 becomes the prompt when an 
amount field is to be keyed into the system. After keying the 
amount, a test for zero balance is made. If the value of AMOUNT 
is zero, indicator 02 is turned on. 

In the second line user message 12 is the prompt and command keys 
1 and 4 may be pressed by the operator. If 1 is pressed, KA is 
turned on. If 4 is pressed, KD is turned on. 

RULE: If Factor 1 contains a prompt and positions 31-32 also 
include a user message identification code, the prompt 
in Factur 1 will be displayed and the code in 31-32 will 
be ignored. 

Both the SET and KEY operations interrupt the normal RPG II cycle. 
When KEY causes the interrupt, the operator is to key in data and 
then restart the system by pressing the ENTER key on the system 
keyboard. Likewise, when SET causes the interrupt, he is to 
press one or more command keys and then restart the system by 
pressing the ENTER key. When the ENTER key is pressed, calcu­
lations continue from the point of interruption. 

From this information, you can see that the ENTER key must be 
pressed following each KEY or SET operation. 

RPG II provides a special way of handling a pair of these instruc­
tions such that the operator can press one or more command keys 
and enter data before pressing the ENTER key. 

RULES: 

1. The SET operation must immediately precede the KEY 
operation. 

338 



2. Both operations must be conditioned by the same 
indicators, if any, in 7-17. If more than 1 
indicator is used, they must be in exactly the 
same order for each instruction. 

3. If a message identification code is specified in 
31-32, it must appear in both operations. 

Code this example. 

You are to make command keys 2 and 5 available. If 2 
is pressed, branch to a routine named TWO. If 5 is 
pressed, branch to routine FIVE. If both are pressed, 
branch to routine DUBL. Also, you need to have data 
keyed into a 7-position alphameric field called INFO 
before branching to any of the three routines. The 
prompt to the operator for this segment is found in 
user message number 45. 

* * * 
Your solution should be like this one. However, the order in 
which the last three steps appear is not significant. Did you 
include a SETOF instruction for KB and KE? Why or why not? 

* * * 

RPG CALCULATION SPECIFICATIONS 

C Indicators Result Field 
Resulting 
Indicators 

- At At 
Arithmetic 

Factor 1 Operation Factor 2 Plus Minusl Zero Comments 
8. Length 

Compare 

Line ~ Name 1>21<21=2 

~ 15 15 15 Lookup(Factor 21is 
z z z High Low Equal 

3 4 5 6 9 10 1112 13 14 15 16 17 18 19 20 21 22 2324 25 26 27 2829 3031 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5051 54 55 5557 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 C Sf: T+S k.a ICE 
0 2 C i'E ViS IN FO 7 
o 3 c "8 NICE 60 Tic Two 
o 4 c NI<8 ICE Go TO F I VE 
0 5 C Ke ICE Go TO Du 8L 

o 6 C 

0 7 C 

o 8 C 

I did not include a SETOF instruction because the SET instruction 
does not have any controlling indicators specified in 7-17. There­
fore, KB and KE are reset before that operation is done each time. 
Suppose that I did not include the entry in 12-14 for lines 3 and 
4, what would happen? 

If only KB or KE were on everything is OK. But if both KB and 
KE are pressed, the program would branch to routine TWO because 
KB is on when both are on. 

339 



RULE: The first conditioned instruction that is satisfied will 
be performed. If that instruction is a branch (GOTO). 
be sure that it is properly specified. 

Summary: KEYBORD. KEY and SET 

When the KEY operation is used. an input KEYBORD file is described 
and ~ input specifications are described for that input file. 

The KEY operation causes a running program to pause during the 
time when calculation steps are being processed. The system 
operator must respond to this pause by entering a field of data. 
or by pressing the IIENTERII key on the keyboard without keying a 
field of data (in this case the field defined to receive keyed 
data is set to zeros or blanks). 

Processing then continues until another pause by either encounter­
ing another KEY or SET operation. or until the calculation steps 
have all been completed. 

When command key indicators are specified. the SET operation also 
causes a running program to pause during calculations. The system 
operator responds either by selecting 1.2 or 3 command keys or 
by pressing the ENTER key on the keyboard. Processing then con­
tinues until another pause occurs or until all calculations are 
completed. 

The SET operation may be used to erase the buffer area reserved 
to hold input data from a CONSOLE file. 

When either KEY or SET is specified without a message identifi­
cation code (in 31. 32) a prompt must be entered as Factor 1 
(18-27). 

The KEY and SET operations may also be used in pairs. When such 
a pair is described. the SET operation must be first; both opera­
tions must be controlled by the same indicators. if any; and if 
a message identification code is used in positions 31-32 with an 
operation. it must be used in both. When a pair of these opera­
tions is encountered. the system pauses only once rather than 
twice. 

340 



Chapter 7: Summary 

The System/32 is a computer that makes use of keyed data in 
order to create and update files. In RPG II language we have 
the facility to describe keyed data entry in two ways: one, 
input-sheet-specified interactive data entry using the device 
name CONSOLE and input fields and two, ca1cu1ation-sheet­
specified interactive data entry using the device name KEYBORD 
and the operations KEY and SET. 

Now you should be able to specify the use of either method. To 
make the prompts meaningful, you need to specify meaningful 
field names for CONSOLE files and to specify meaningful entries 
as Factor 1 for KEYBORD files. 

New coding entries presented in chapter 7 include: 

FILE DESCRIPTION 

40 - 46 Device (KEYBORD) 

EXTENSION 

No new entries. 

INPUT 

No new entries. 

CALCULATION 

9 - 17 

28 - 32 

33 - 42 

54 - 59 

OUTPUT 

23 - 31 

Indicators (KA-KN, KP, KQ) 

Operation (KEY, SET) 

Factor 2 (ERASE - use with SET to erase a CONSOLE 
buffer area) 

Resulting Indicators (KA-KN, KP, KQ) 

Output Indicators (KA-KN, KP, KQ) 

341 





SELF TEST - Chapter 7 

Use a piece of scratch paper to record your answers and check 
them after you've finished. 

1. When KEYBORD is specified as the "Device Name", what 
operation is used to enter input data? 

2. In which operation may you include a "user/message 
identification code" to identify a desired operator 
prompt? 

3. What is the longest field of data that may be entered 
when KEYBORD is the device name? 

4. What must a programmer do in order to cause a job to end 
when keyboard data is used in a program? 

5. How many command key indicators are available for 
programmer use? 

343 



ANSWERS - Chapter 7 Self Test 

1. KEY 

2. (1 point) KEY or SET may be used 

3. 40 characters of alphameric data 

4. To end such a job, the programmer must include a test 
for a special end of job condition. Normally, he will 
assign LR as the indicator for this condition. 

5. 16 (KA-KN. KP, KQ) 

RATINGS 

5 Great 

4 Good 

344 



Chapter 8: Indicators, Comments, DEBUG and Subroutines (1 to 2 hours) 

All programs generated by RPG II are controlled by the setting 
of program switches known as lIindicators". As an RPG II 
programmer, it is your responsibility to assign appropriate 
indicators and use them at various points in order that the 
processing of all records is properly initiated, controlled 
and terminated. 

The topic of "indicators" is presented here in order to review 
their definition and usage as well as introduce a number of 
new ones to you. As you know, an indicator controls IIwhen ll 

activities in the generated program are to take place. You 
will be examining the use of indicators in relation to the 
various specifications sheets. 

An RPG II source program is a collection of descriptive statements 
on a variety of codin9 specifications sheets. Some entries such 
as Filename (REGISTER) and Field Name (ITEM) or Operation (ADD) 
are actual words that you and I use in everyday conversation. 
Other entries such as 11111 for input, 11132 11 for record length or 
IILRII for last record indicator are not. RPG II includes a 
facility to insert comments throughout a program in order to 
eliminate guesswork when looking at a program created in the 
past or by some other programmer. 

A special operation named DEBUG is a part of the RPG II language. 
It is used to help you locate program errors during test data 
runs so that corrections can be made prior to use of the program 
with real data. You can specify its use on any line on a 
Calculation sheet. When encountered, it temporarily stops the 
data run in order to print a list of all indicators that are 
ON at that time as well as the value stored in anyone field 
if desired. When this information has been recorded, the test 
run continues. Any number of DEBUG statements may be included 
in a program, but they are generally placed at strategic points 
such as before a GOTO or TAG operation. 

CHAPTER OBJECTIVES 

After finishing chapter 8 you should be able to state the purpose 
of an indicator, and in particular, describe when indicators 
lP (first page) and LR (last record) are set ON and OFF. You 
should also be able to specify the use of comments statements 
and the DEBUG operation, and you should be able to describe 
solutions in which RPG II subroutines are used. 

A self test is included in this chapter. 

345 



INDICATORS 

In an earlier chapter we learned about the "Generated RPG II 
Program Logic". We broke it down into three parts: Initiali­
zation, the steps used to start a job; the Main Program, those 
steps that deal with the reading, processing and producing of 
output records; and the Last Record step that deals with 
activity needed to terminate a job. 

Indicators are the controllers in every job. They determine 
"when" events are to occur in a program. They are usually 
turned on or off by a condition such as reading' a particular 
type of record, or as a result of performing a test. You can 
also turn certain indicators on by using the SETON operation 
or turn them off by using the SETOF operation. Other indicators 
provide for special functions and are controlled by RPG II. An 
example of this type is the first page indicator lP. 

RULE: An indicator must be "defined" before it can be used. 

By "defining" an indicator, I mean that I assign it to a 
particular condition in my program. You defined control level 
indicator Ll in an earlier chapter to one of the input record 
fields. When you made this assignment, we say you have "defined" 
indicator Ll. You could then use it to control when certain 
output records should be produced. ----

Examine a blank coding sheet of each type and note in which 
positions we can "define" an indicator. Also note in which 
positions we can make use of an indicator after it has been 
defined. 

* * * 

346 



I created a chart that identifies the places you might have found. 
If you didn't see all of these, re-examine the sheets so that you 
become familiar with them. 

Specification Sheet 

File Desc~iption 

Input 

Calculation 

Output 

Positions Where 
Indicators Assigned 

33-34 Overflow 

19-20 Record Identifying 

59-60 Control Level 

65-70 Field 

54-59 Resulting 

Indicators Used 

7- 8 Control Level 

9-17 Indicators 

23-31 Output 

In general then, indicators may be defined on File Description,' 
Input or Calculation sheet. Indicators already defined may be 
used on Calculation or Output sheets. 

There are a few more places on the sheets that you should be 
aware of because we can define and/or use indicators you do 
not know about as yet. First, look at positions 71-72 on the 
File Description sheet. The eight special purpose File Condition 
indicators (U1-U8) are used to control when an entire file is 
to be used for a job. Here is what I mean. ----

Let us say that in a certain application we normally include 
the printing of a report while doing a master file update 
with transaction records. At other times, we do not need to 
print that report even though the file update activity is to 
be done. 

For the one job then we want three files active: the master file 
to be updated; the activity file to provide the transactions 
with which to update; and the printer file. For the other job 
we want both the master file and the transaction file, but do 
not want to include the printer file. 

347 



If we know this in advance of describing the RPG II entries for 
both jobs, we can describe one program that uses a File Condition 
indicator. All you need to do is IIdefine ll the indicator on a 
File Description sheet for the printer file ~nd then include it 
as an indicator to control every calculation or output step that 
relates to the printed report. Naturally, you are the person 
who must tell the operator (on the run sheet) which File Condi­
tion indicator is to be turned on for which run. 

Here is another place to examine indicator entries. Look at an 
Input sheet, in positions 63-64. Indicators defined here provide 
for a Field-Record relationship. Here is what I mean by that. 

Suppose there are two record types in one input file that con­
tain four fields that are alike but only one of these record 
ty pes has a 5 t h fie 1 d use din the sam e pro g ram. WJL . .1I 0 u 1 d_.J1~ f tM 

~~i1Ir~~fQ:[~I~fte1~~:IT1 i ktJ~H~if~f:H~~Ji~~9l t~:i1~~~ a 

RPG INPUT SPECIFICATIONS 

I ~ Record Identification Codes Field Field Location 

I--- ~ 1 2 3 Indicators 

~ 
c. 

line Filename f5 ~ Field Name 

i 
~ei - !! 

0; Zero' 
Position Position Position 

J j i From To Plus Minus or 

] ~ e ~ ~ 0 Blank 
r-r--r- o ~ ~ o ~ ~ ~ § o R z u u z u u 

r;~ro 
3 4 5 6 7 8 9 10 " 12 13 14 15 1617 18 19 20 21222324 25 26 27 28 29 30 31 3233 34 35 36 37 38 39 40 4142 43 44 45 46 47 48 495051 52 53 54 55 56 57 58 5960 61 62 6364 65 66 6768 6970 71 72 73 74 

0 1 IF , L. D~ 7A AA 'fit , ell< 
0 2 I 1 q AA 
0 3 I tz liB 818 
0 4 I I' Z2. Ct-
0 5 I Z, oJ9 Of) 

o 6 I 518 f/J% I CI. 
0 7 I 1 9 AA 
o 8 I 11. 18 IB8 
0 9 I 19 1.2 ce 
1 0 I 29 3' ~" 
1 1 I .f." 5_ I A JIlT 
1 2 I 

348 



For programmer convenience in this kind of problem we may use 
an entry in the Field-Record Relation columns. We also specify 
the use of an 1I0R II condition, because the fields are present in 
type 01 or type 02. Here is how: 

I -
Line Filename 

RPG INPUT SPECIFICATIONS 

~ I--__ Rec-r-0rd_'d_en_tifi_cat_ion-,.Co_de_s -------l 

~ I--~~+--~~-~~ 
Field Location 

I ~ _ fa 
c8 ;, Q:E Position _ $ Position _ ~ 

.og-e ~e~ ~e~ 

'oR-~g~ ~~~ ~~~ 
f;:ND 

~ 
0; 

Position _ ~ ~ a:: From 
~ 0 ~ ~ ::J 
~§~~~ 

. ., 
To & 

~ 
.~ 

o 

Field Name 

Field 
Indicators 

~ a ! I---r---.-----i 

~ ~~ ; 
..J '" ~ 
~ ~:[ ~ 
8 ~ti J: 

Zero 
Plus Minus or 

Blank 

3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21 2223 24 25 26 27 2B 29 3031 32 33 34 35 363738 3940414243 44454647 48 495051 52 53 54 55 56 57 58 59 6061 62 636465 66 67 66 69 70 71 72 73 74 

o 1 IF I L l>A T~ ~A ~, 1 (I( 

o 2 I OR [;z. f CL 
o 3 I 1 If AA 
o 4 I I 1. 18 88 
o 5 I f if .2.% ce 
o 6 I l' 3' oil> 
o 7 I 14~ 59 IA ""r 91-
o 8 I 

The result? Less coding for you with the same results for the 
RPG II program! The key lies in having record types in one 
file that contain many identical fields and only a few that 
are different. 

NOTE: You may have more than one field related to its record 
type using these entries. 

Input Field Indicators, positions 65-70 provide a means for 
testing the status of an input field before it is used for 
calculations or output. What four conditions may be tested? 
Why would this be desirable? 

* * * 
A numeric input field may be tested for a zero value or to 
determine its sign. One reason for testing a numeric field for 
a zero value is that the division operation (DIV) cannot be 
performed if Factor 2 has a zero value. There are a number of 
cases where the use of negative values would cause errors in 
calculated answerss By testing the record's field as it is 
read in, we can either bypass (GOTO) calculations or make a 
change to the sign (Z-SUB) before performing the steps. 

The fourth condition applies to alphameric fields. We can 
determine whether or not an alphameric field is completely 
blank before using it, for example with a MOVE instruction. 
Sometimes you must be sure that it is blank, other times you 
must be sure that it is not blank. 

In addition to assigning unused indicators (from 01 to 99) in 
these Field Indicator positions, we may usea halt indicator 
(Hl-H9). Remember that halt indicators do not turn off nor does 
the system stop running the job until all processing and output 
for that record have been produced. 

349 



Suggestion: Assign only the indicators you need to do your job. 
Using additional indicator assignments uses com­
puter storage and run time to test for the condi­
tion, yet may not be of benefit to your program. 

Next, examine the Calculation sheet, position 7-8. We may have 
assigned up to 9 control level indicators on the Input sheet 
for use in controlling Ittota1-time" calculations. However, as 
you look at the title over these columns it includes L0 and LR. 

The L0 indicator (level zero) is never defined by the programmer. 
It is a special "total-time" indicator provided for your use by 
RPG II so that you may perform total-time calculations and 
produce total-time output records even though no control breaks 
occur. This indicator is turned on at the beginning of every 
program and remains on throughout the entire run. 

The LR indicator (last record) is also provided byRPG II and 
normally turns on at the end of a job, that is, when the special 
last input record is detected. You may specify LR as: 

1. a Record Identifying Indicator on the Input 
sheet (19-20) for identifying special end of 
jo.b records, 

2. a Resulting Indicator on the Calculation sheet 
(54-59) to identify a condition that shall 
terminate a job. 

T~ere is a chapter on Indicators in your RPG II reference manual. 
Take time to read it and then return to this text. 

* * * 
Now let's see how a programmer can get RPG II to help keep track 
of indicator assignment and usage. Here are two ways: 

1. include "comments" statements when needed to 
clarify assignment or usage, and 

2. insert the special operation DEBUG for use 
when running test data to check the accuracy 
of your program before it is released for 
general use in your company. 

A comments statem~nt may be inserted at any point on any coding 
sheet we h~ve used. These comments do not become a part of a 
program, they are merely notes for your reference (or someone 
else's) when reviewing the coded solution. All you do to code 
a comment statement is enter an asterisk in position 7 and then 
print your comment in the remaining spaces on that line. Here 
are some examples. 

350 



F 

File Description Specification 

r-File_TY:.:....pe ____ ~ Mode of Processing 

File Designation 

File Addition/Unordered 

Number of Tracks - End of File 

length of Key Field or 

of Record Address Field 

Extent Exit 
for DAM 10r Cylinder Overflow 

Record Address Type Symbolic 
Device 

Name of 
Label Exit 

NUmber of Extents 
Filename Sequence 

File Format 

Type of File ...J 

Organization w 
Device Tape 

Rewind 
line or Additional Area ~ 

Storage Index 
~ 

Condition ~ i Block 

~ ~ Length 

Record 

Length 
~ Ul-'FL-

OVerfl~g 

~ ~ ~t:~t~~:ld .~ Continuation Lines 

~ w ~ ~ 
a: 
-' ::t' :::;. Location W Option Entry ~ 

3 4 5 6 7 8 9 10 11 12 13 14 

02 F/!NPUT 
; 17 18 19 20 21 22 23 24 1; ~I~ 28 29 30 31 32 33 34 35 36 37 38 39 ; ~' ~ ;( 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ~I; 73 74 

04 F_ ff~E IS USED ON~Y ~~EN U6 IS O~. 
o 5 F I_ . 

JOSS BAli 4 8A7 

o 6 F 

RPG CALCULATION SPECIFICATIONS 
- . 

C Indicators Result Field 
Resulting 

~ Indicators 

- ~ At At 
Arithmetic 

0 Plus IMinusl Zero 

~ ] 
Factor 1 Operation Factor 2 ';; Comments 

il Compare 

line >-' Name Length ~ 1 >2U <2l1- 2 .... '0 E E E 
~ 0 " "g Lookup(Factor 2)is 

.E 8 z z 0 High Low Equal 
3 4 5 6 7 9 10 1112 13 14 15 16 1718 1920 21 22 2324 25 26 27 2829 30 31 32 33 34 35 36 37 38 39 40 41 42 4344454647 48 49 5051 52 5455 5657 5859 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 

0 1 C ~f A SU8 8 e r.; 1.; 
0 2 C* 
0 3 C~ I F .2.1; 13 ON D' V I S, oN I S IN VA L I D. 
0 4 C_ 

O 5 C ~1 ~ 2.\(Il 1M62. l>'" C ~O LD ~Z.U 
o 6 C 

0 7 C 

When an asterisk is all that appears, it simply acts as a line 
spacer for convenience in reading the comments. 

If a variety of indicators has been assigned and used in a 
large program with many calculations, it is sometimes difficult 
to keep track of their settings, especially when there are a lot 
of branching instructions (GOTO & TAG) included. 

The DEBUG operation may be used at any point on the Calculation 
sheet to provide for a printout of indicator settings. We use 
it during test runs to verify indicator settings where we 
suspect (or have found out during a previous test run) that 
improper coding exists. Since the computer can run at high 
speed, it is a very nice way to trace data through calculations 
as opposed to desk checking by hand. Here is an example in 
which DEBUG and comments have been specified. 

351 



File Description Specification 

F File Type Mode of Processing File Addition/Unordered 

File Designation Length of Key Field or 

of Record Address Field 

Extent Exit 
for DAM 

Number of Tracks 
for Cylinder Overflow 

End of File 
I---

Filename Sequence 

File Format 

Line 

o 
~ Block 

~ Length 

f2<: 
w « u. 

Record 

Length 

Record Address Type 

Type of File 
...J 

Organization UJ 
or Additional Area ~ 

Overflow Indicator U 

~ '----.2 
~ 0 Key Field ~ 

~ a Starting ~ 
~ ::;:. Location W 

Device 
Symbolic 
Device 

Name of 
Label Exit 

Storage Index 

Continuation Lines 

Option Entry 

Number of Extents 

Tape 
Rewind 

~ 
Condition 

~ Ul.~ 

3 4 5 7 8 9 1011 12 13 14 15 17 1819 2021 222324252627 28 2930 31 323334 35 36 37 3839 40414243444546 4748495051 52 5354 55 56 57 58 59 60 61 626364 65 66 67 68 69 70 71 72 73 74 

o 2 F L I SiT o :1132 
o 3 I 

o 4 I 

RPG CALCULATION SPECIFICATIONS 

C Indicators Result Field 
Resulting 

~i Indicators 

'---- ~ At AL 
Arithmetic 

Plus IMinusl Zero 
0; Factor 1 Operation Factor 2 Comments 

~j Length 
Compare 

line Name 1 > 211 < 211 = 2 I- "0 
E ;, Lookup(Factor 21is 
~ 8 0 

z 
0 

High Low Equal z z 
3 4 5 6 7 9 10 1112 13 14 1516 17 18 19 20 21 22 23 24 25 26 27 2829 3031 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5051 5455 56 57 58 59 60616263646566676869707172 n74 

o 1 C DE" 8U Ed .. 1ST 
o 2 CIfE 

o 3 C~ TE ST IN lIT I AI.. IN DI C~ ITOR SE TT , N 50S 
o 4 C~ 
o 5 c LD pp TAf!r 
o 6 C AX ~" I.. IT 8 AXe 61z 38 
o 7 c 38 A)(5 ~olD AX B ~; 
o 8 c 38 N"'~ 600 TO 1..0 OP 
o 9 c DE au lilt. 1ST 
1 0 CPf. 

11 C;1I fb 5T SE T1 I~ c;.S AF TER. 1..0 olp Co ~P LE TE:!2 
1 2 c311 
1 3 C 38 4191 GO To END 
1 4 C N31a t~ i- su Iss Ax B 
1 5 C E Nip 17 A& 
1 6 C 

Notice that the operation DEBUG must include the filename as 
Factor 2. This directs RPG II to write out to the specified 
file a list of all indicators that are on when the DEBUG 
operation is encountered during a test run. Every DEBUG 
statement in a program must refer to the same output file. 

Read about the DEBUG operation in the RPG II Reference Manual 
to answer these items. What else can be printed in addition 
to the indicators list? How does a programmer eliminate the 
use of these debug statements after the data test runs prove 
satisfactory and all necessary corrections have been made? 

* * * 

352 

/--



The debug operation must include an entry for Factor 2 to 
identify the output file needed to list indicators that are 
turned on at the time. If an alphameric literal is entered 
as Factor 1, that literal will identify the particular DEBUG 
statement when it prints. 

An alphameric literal is coded on the Calculation sheet exactly 
like a constant is coded on the Output sheet. 

1 • 

2. 

3. 

start with a single quote, 

code up to a identifying characters in any 
combination except a quote, 

end with a quote. 

NOTE: If a quote mark is desired as a part of a literal such 
as MIS, you must code 2 quote marks for that one and 
still start and end with another. It would look like 
this: 

If a field is specified as the Result Field, the contents of 
that field will also be printed. So, a DEBUG statement could 
look like this: 

RPG CALCULATION SPECIFICATIONS 

Result Field 
Resulting 

Indicators C Indicators 
~" I---.-----.----l 

~ 3 ~ I I ~ Arithmetic 

~ e And A~d Factor 1 Operation Factor 2 .g :t: Plus IMinusl Zero 
~ .5 ~ "§ ~ Compare 

Line ~ g ~ J---r-,-+-r...-+-...-M Name Length ~ % 1 > 211 < 21 , • 2 

u.0 8c a:...J" ZO 0 0 "2 ~ Lookup(Factor 2)is 
Z Z 0 :t: High Low Equal 

Comments 

~ ~ 5 ~ 7 8 9 10 11 12 13 14 15 16 17 ~ ; ; ~ 2~ 23 24 25 26 27 ~ : ; ~ I~ ~ ; ;; ; : ~ 40 41 42 ; ~I~I~ 47 48 49 5051 52 53 54 55 56 57 68 59 60 61 62 6364 6566 67 68 69 7071 72 73 74 

o 2 C 

o 3 C 

o 4 C 

As a result, the printed output would be identified by Fag and 
the contents of the field named RATE would also be printed along 
·with the list of indicators that are on at that time. 

To eliminate the use of the debug statements after a successful 
test run, the programmer does not change them. Instead there 
is a special entry on the "header" statement that takes care of 
the situation. Look at a File Description sheet. We have not 
examined the top form type (letter H in column 6) called the 
control or header specification. 

353 



Position 15 (DEBUG) is used to signify whether or not debugging 
is to be performed in the program. 

1. If the number 1 is coded in position 15, a 
program will be compiled such that all DEBUG 
statements on the Calculation sheet will be 
active when the compiled program is run. 

2. If position 15is blank when the program is 
compiled, all DEBUG statements on the 
Calculation sheet will automatically be 
treated as though they were comments 
statements and will not be active when the 
program is run. 

The discussion of indicators would not be complete if we did 
not mention their use in a program where Auto Report is included. 
Here are the rules: 

1. Define indicators as you do in standard RPG II 
statements, and 

2. use those indicators in the normal manner. 

. . .. OR .... 

1. Omit the Overflow Indicator in 33-34 on File 
Description and use *AUTO headings on Output. 

Auto Report will fill in an available overflow 
indicator for you. 

2. Define control level indicators to Input fie1~s 
in the normal manner and then enter on the Output 
sheet, position 39, a number from 1 to 9 to 
indicate for which level of total a particular 
value is to be calculated and printed. If a 
value is to be calculated and printed at last 
record time, enter the code R in 39. 

For example, if a iota1 for the field named AMTT is to 
be printed in a total line for a control break at 
level 2, I code a 2 for the field named AMTT on the 
Output sheet. 

The rule we pointed out earlier still applies. 

RULE: An indicator must be defined before it can be used. 

To summarize: 

1. Ani n d i c at 0 r con t r 0 1 s II W hen II a n eve n t 0 c cur sin 
a program. 

354 



2. Indicators may be defined on a File Description, 
Input or Calculation sheet. 

3. An indicator must be defined before it can be 
used. 

4. Some special purpose indicators are controlled 
by RPG II while others may be controlled by you 
by using SETON and SETOF operations. 

5. Control level indicators are associated with 
groups of records. 

6. When a control level indicator such as L4 is 
turned ON because of a control break, all 
control level indicators less than it are also 
turned on automatically. 

7. When a halt indicator turns on, processing and 
output for that record are completed before the 
computer stops running. 

8. The DEBUG statement provides a listing of all 
indicators that are turned on at the time the 
DEBUG is encountered (if compiled for activity). 
It is used to check programs during test runs 
and actually interrupts the normal RPG II logic 
cycle in order to print the listing at a specific 
time during calculation steps. Contents of a 
field may be printed. 

SUBROUTINES 

RPG II provides a special facility for handling subroutines. A 
subroutine is a set of calculation steps which may be performed 
following any other calculation. 

To describe an RPG II subroutine: 

1 • 

2. 

3. 

4. 

enter the letters SR in positions 7-8 2ll every 
line containing a subroutine step 

enter a unique name as Factor 1 and the operatinn 
code BEGSR (begin subroutine) as-rhe first entry 
in the series 

code the calculations to be performed in the 
subroutine in the order desired to solve that 
part of a program 

enter the operation code ENDSR (end subroutine) 
on the line following the last calculation. 

355 



I , 
l 
\ 

a. If a GOTO operation in the subroutine is 
used to bypass all remaining calculations 
in that subroutine, you may direct it to 
the ENDSR step by specifying a label as 
Factor 1 in the ENDSR step and using the 
same label as Factor 2 in the GOTO step. 

RULE: Each subroutine must have a unique name. 

RULE: Subroutines must appear last in the set of all 
calculations for a job. 

RULE: To use a subroutine during either detail-time or 
total-time calculations, specify the operation 
EXSR (execute subroutine) and the name of the 
desired subroutine as Factor-2. 

Here is how a program containing a subroutine runs. 

When an EXSR operation is encountered, the program branches to 
the designated subroutine, performs the calculations in it, and 
automatically returns to the main program to the next step to 
continue normal activity. 

Sample RPG II Subroutine 

RPG CALCULATION SPECIFICATIONS 

C Indicators Result Field 
Resulting 

~i Indicators 

r----- 0_ 

AL 1 Arithmetic 
-'a: g J: Plus_IMinusl Zero =0 Factor 1 Operation Factor 2 Comments 

~~~ 
~

£ ~ Compare

Line I- '0 cr,'

~ -- - Length
~ ~ 1>211<211=2

E l; III - - - I'-... Lookup(Factor 2)is

& 85' o 0 0 ~~ High Low Equal
345 6 7 8 ~ 10 11 ,~ 13 14 ~1,.!'i1"F 18192021222324252627 2829 3031 32 33 34 35 36 37 38 39 40 41 42 434445464748 49 5051 5253 ~'-':;"""''''5859 60 61 62 63 64 6566 676869 7071 n 73 74

o 1 C i'oo. lt~"'" [N~~ i S lY.~ LA 5T USG sf) (.z1<6
o 2 C (1 19S~ rEi.)(5 RW' ~E Te 'K~ 1"'"

o 3 ,c;, io'" fo'" l- AD PU SE K~" 51~
0, 'c 1''''" If -- -15 C i'~ 10'''

I 0 6 C ;1' ~ --- ~- i
~i-" ~

.-f----

I o 7 C

o 8 £.-1- ,;.~ t. , !

01 C.9l1. ""'II~
.~ -- Me TE R) S E" sRD

'1 0 cSR NEw A DO f ISl16 "I!IS
\ l' cSIt I) Ble:, S 0113 LA ST USE

l' 2 C siR ~- AD l!21¢ I SIG
I,}

"C ~R. ~ (E ND siR!)
1 4 ." C

-I-"
~.,

1 5 "a. ~~
'-'- -

356

1. If indicator 20 is ON, the program is to execute the
subroutine named "METER IJ (EXSR). All subroutine steps
have SR in 7-8.

2. The first subroutine step includes the subroutine name
(METER) and the operation BEGSR (begin subroutine).

3. When the operationENDSR (end subroutine) is encountered,
the program is directed back to the calculation step
that follows the execute subroutine (EXSR) operation.

One subroutine may be referenced from any number of EXSR
steps in the· main program. In any event, the following
program steps are taken:

1. branch to the designated subroutine,

2. perform its calculations,

3. return to the next main program step.

When shou1~ a series of calculations be used as a subroutine?
You can use them any time you want, but a good time to use
one is whenever the same ca1tu1ation steps are performed at
at least two different points in the main program.

Take a few minutes to read about the use of RPG II subroutines
in the reference manual before you continue in this text.

* * *

357

Chapter 8: Summary

The proper use of RPG II indicators is key to your success as
an RPG II programmer. Do not hesitate to use the System/32,
RPG II Language reference manual to remind yourself of the
various indicators and their proper use.

To document the use of i ndi cators in your programs you s'houl d
consider the inclusion of comments statements when an indicator
is assigned, or to make a list of those used in the program by
category. Here's an example.

Line Filename

RPG INPUT SPECIFICATIONS

o Record Identification Codes

~

fo
Position ~ p ~

S N 2
II Z U U

Position ~ ~
~ 0 ~
'0 t:J 1 zUu

Field Location

To

Field Name

Field
Indicators

Zero
Plus Minus or

Blank

34 5 6 7 8 9 10 11 12 13 1415 1617 18 19 20 21222324 252fj ,}7 2879:W 31 32 3:~ .14353637J8 3:1 40 4142 4344454f)47 4841)5051 5253545551)5758 59 fjO G1G2 r,Jr,4 f)Sf,G fj76P' fig 70 71727374

0 1 I' I~DI(! AT o£S U5~~_ UII C6pi i T T TT I I ! 1-' - -- - f-- .. 1----

-L-L 1 [! ' I I 0 2 I1(I it 0 3 II1C PA(:'E OV E2 ~L[Q U P F! r:' +J r , i i
o 4 I.>J RE c'()IR III ID ENJ! r~~~ iNG I¢ f I i " I I I i I

Ii: oN! l~-~f-- zlz z3 ~~ I ! Ie---
-I

I , i o 5 CP-LCU LA Tl Ti~I 0 21 -~ f-i--
Ii T I- f-- -.

;-tl-~-J-
-~.

~ I I i
o 6 I

T --+- ,

SI I, fNr~ D I
-I---

i I I I 0 7 I~ Rf" I
, AS , P I !! I I i i

-1--;-
o 8 IIJ

I I i i ' i
i i I ;

I

o 9 I I

rt ' I I I T Ii. ~ I I I I c-r-- -
j :

-t--f--1- -+- -+ f- f- --+- i
1 0 I !

i i
II : L I: i!

11 I I I I I 11 I ,I :Ll'· 'LLl I •. _ L.L- _ '--" _ '- l_I---L

I would place these entries ahead of all other Input entries
for ease in locating the information when I need it.

358

Having completed chapter 8 you should be able to discuss the
purpose of various indicators and specify them to solve the
data processing problems. You may wish to add comments to
programs to document your coded solutions. Even though you
can specify the DEBUG operation, you won't appreciate its
full use until you run test data on the system for programs
you have written. You should also be able to specify the use
of RPG II subroutines and to recognize them in programs written
by other programmers.

New coding entries in chapter 8 include:

FILE DESCRIPTION

7 - 74

71 - 72

EXTENSION

7 - 74

INPUT

7 - 74

63 - 64

65 - 70

CALCULATION

7 - 74

7 - 8

28 - 32

OUTPUT

7 - 74

39

Comment statement (* in 7 followed by comment)

File Condition indicators (U1-U8)

Comment statement (* in 7)

Comment statement (* in 7)

Field Record Relation

Field Indicators

Comment statement (* in 7)

Control Level (L0, LR, SR)

Operation (DEBUG, EXSR, BEGSR, ENDSR)

Note: To make DEBUG active, a 1 must be
specified in column 15 of the
I con tro1" sheet (H in 6).

Comment statement (* in 7)

1-9, R for use with Auto Report totals

359

INDICATOR CHART

Specification Sheet Indicators Assigned Indicators Used

File Description 33-34 Overflow -- - --

71-72 File Condition

Extension ----- - ----

Input 19-20 Record Identifying 63-64 Field Record
Relation

59-60 Control Level

65-70 Field

Calculation 54-59 Resulting 7- 8 Control Level

9-17 Indicators

Output ----- 23-31 Output

360

SELF TEST - Chapter 8

Use a piece of scratch paper to record your answers. You should
try to answer these questions from memory. As an aid for
reference, you may refer to blank coding forms for this self test.

1. In your own words, what is the purpose of an indicator?

2. Match the letter of the indicator with its use. An
indicator may be used for more than one answer, and there
may be multiple correct choices for certain uses.

Uses

Controls headings on reports
except for first page

Used on Input to identify
each type of record

Associated with a group of
related records

Used to determine condition
during a compare operation

Specific use of an entire file.

Controls production of output
records

01-99

Ll-L9

Ul-U8

OA-OG,OV

Indicators

A. Control Level

B. Field

C . File Condition

D. Output

E. Overflow

F. Record Identifying

G. Resulting

3. Name two indicators that are "defined" by RPG II rather
than by the programmer.

4. What kind of field may be tested for a "Zero or Blank"
condition?

5. What is the rule for specifying a "comments" statement?

361

6. What is the purpose of the DEBUG operation?

7. When is DEBUG active?

8. Where does a programmer specify RPG II subroutine entries?

9. Name the three operation entries necessary for the use of
subroutines.

362

ANSWERS - Chapter 8 Self Test

You can score as many as 26 points on this test. If you scored
less than 19 points, you may wish to re-read this chapter.

1. An indicator controls "when" an event shall occur.

2. (14 points possible)

E

F

A

G

C

0

BIDIFIG

A

C

DIE

3. (2 points) Any two of these choices may be counted.

lP (first page)

L0 (level zero control)

LR (last record)

Hl-H9 (halts)

4. (2 points)

A numeric field may be tested for "zero".

An alphameric field may be tested for "blank".

5. To specify a comments statement, enter an asterisk in
column 7 of that statement.

363

6. DEBUG causes a display of every indicator that is "ON"
when the debug statement is encountered. Also, one field's
value may also be displayed at that time.

7. DEBUG is active if a code 1 was specified in column 15 of
the header control sheet (H in column 6) when the program
was compiled.

8. On a Calculation sheet.

9. (3 points)

EXSR to execute a subroutine

BEGSR to identify the first entry in a subroutine

ENDSR to identify the last entry in a subroutine

Rate Yourself

26

22-25

18-21

Fantastic!

Super

All Right

364

Chapter 9: Using the IBM System/32 RPG II Reference Manual

1. RPG II Philosophy

2. Creating Output Records

3. Processing Disk Files

4. Auto Report

5. Control Breaks

6. Indicators

7. Multifile Processing

8. Operation Codes

9. Tables and Arrays

10. RPG II Generated Program Logic

365

This chapter is designed to familiarize you with the contents of
the IBM System/32 RPG II Reference Manual so that you will be
able to use it as your primary source of coding information on
the job.

You should have your manual plus a copy of each of the different
kinds of RPG II specifications sheets listed.

Control and File Description

Extension and Line Counter

Input

Calculation

Output

Here is the approach you will follow in this chapter. First, I
will present a review of the topic as presented in another
chapter. Next, I will describe facilities of RPG II that are
related to the same topic but that have not yet been taught.
Third, I will direct you to use the RPG II manual to find answers
to questions about the topic, especially about these new
facilities.

* *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

When you complete a topic, you should be able to use the
facilities included in it. Take your time as you read, and
examine each example and illustration you come across. Do not
hesitate to re-read sections of the manual before continuing
with a new topic.

You are not expected to be able to use every facility to its
fullest as a result of reading about it, but you will know at
least:

1. wh a tit is

2. in general, what it does

3. where an example of its use is shown

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

A good way of studying this. chapter is to complete one topic,
take a break, study the next topic, take a break, and so on.

366

TOPIC: The RPG II Philosophy

An RPG II programmer describes files, records and fields to be used
for input, processing and output. The descriptive steps, called a
source program, are arranged for analysis and compilation by a
program called the RPG II compiler. After a source program has
been compiled and is ready to be run, it is known as an object
program.

All object programs generated from a set of RPG II descriptive
statements cause the computer to run in essentially the same
pattern which is:

1. Read a record.

2. Perform designated total-time (control group) calcula­
tions, if any.

3. Produce designated output for a control group, if any.

4. Perform designated detail-time (individual record)
calculations, if any.

5. Produce designated output for an individual record.

When I used the word IIdesignated ll in steps 2, 3, 4 and 5, I meant
do the step if the indicators assigned to the step are turned ON
(or OFF if so coded).

This 5-step list provides the basic RPG II object program philo­
sophy. As we continue the study of this chapter, you will want
to note how this basic philosophy can be modified through the use
of special operations such as CHAIN, KEY and SET.

Another part of the basic philosophy is that the control of every
step in a generated program is dependent upon the settings of
program switches known as indicators. Some indicators are
assigned and set by programmer instructions. Others are assigned
by the programmer's entries but are controlled by RPG II. A third
group of indicators are assigned and controlled by RPG II alone.
One key to the success of an RPG II programmer is knowing which
indicators fall into each category and then using each available
group to advantage.

A key to your success in programming in RPG II is to adopt a
similar approach. Code all of the input entries for one kind of
record before, coding any input entries for any other kind of
record. Also, code all calculations that process one kind of
record before coding calculations for another kind. And, code
all calculations for one control level group before coding
calculations for another group. As a result, you will be able
to trace what is happening more easily than if you have mixed
coding entries.

367

IBM System/32 RPG II includes a feature called Auto Report that
helps you describe printed reports. When possible make use of
Auto Report to minimize your coding efforts regarding the
alignment of report titles, column headings and columnar data
fields. Make use of its facility to accumulate control level
group totals and final totals without the need for calculation
specifications.

The RPG II language makes use of a variety of coding specification
forms. Each form is used for a particular reason and you already
know about most of them.

FORM

F File Description

E Extension

I Input

C Calculation

0 Output

PURPOSE

describe each type of file to be used
in a program

describe tables and arrays

describe each type of record and its
associated fields found in input files

describe each calculation in its
proper order

describe each type of record and its
associated fields and constants needed
to create output files

Both the File Description sheet and the Extension sheet have
space for other purposes. At this time, refer to the RPG II
reference manual to find answers to these questions.

1. What is the purpose of a control statement (H)
entry (above the File Descriptions)?

2. What is the purpose of the line counter (L) entry
(below the Extension)?

3. What is the sequence in which specifications
shall be arranged to make up an RPG II Source
Program?

4. The main program cycles have been described as
read a record, process it, produce 'its output and
repeat. The very first and very last program
cycles in a job are somewhat different. What are
these differences?

END OF TOPIC

368

TOPIC: Creating Output Records

Creating output records requires the description of at least one
output file. An output file may be created from a mixture of
input data, calculated results and constants. An output file
description includes the code name of the device used to contain
its records.

PRINTER is the name of a device used to hold printed records.
Each line of print is considered to be a record in that output
file. If a line of printing is produced for every input record
processed, the report is called a "detai1 printed" report or
11isting". If a line of printing is produced for every group
of input records processed, the report is called a "group printed"
report. The longest record in printer files is based upon the
length of the line that the particular printer is capable of
printing.

DISK is the name of a device used to store output records on the
surface of a disk. These records are recorded magnetically and
retained for future use until no longer needed. Disk output file
records are recorded sequentially in space set aside for them
when the job is started. Some disk files are stored along with
index information for use in future jobs. These files are called
indexed disk files and include a specification about the field
used as a source of the index information. This field is called
the key field. If "no key field is identified, no index is built
and the file is called a sequential disk file. Disk records may
be up to 4,096 characters long.

Key Point: Before a record is created as output, it must be
assembled in computer storage.

A 132-character print record requires 132 storage spaces. A
4,096-character disk record requires 4,096 storage spaces. You
may find that records of so great a length take up too much space
in the computer and are too long to be handled conveniently -
for example, to print a listing of 4,096-character records
would require about 32 print lines for each record!

A more convenient size might be 256 characters or 512 characters
per record.

The display screen may be used as an output device. Its records
are visual only, so they should not be produced unless they are
useful as temporary information to the operator.

369

Read about display screen output records and find answers to
these questions.

1. What device name is used to identify a display
screen output file?

2. What entries may be made for Record Length and
Block Length for such a file?

3. What effect do entries for spacing and skipping
(Output sheet) have on display screen records?

You have specified special words as field names in order to
include the system date (UDATE) and a page number (PAGE) as
output fields. Here is a list of all the special words that
are available for your use in any System/32 RPG II program.

Sl2ecial Word Purl20se

PAGE Provides automatic page numbering.

PAGEl Provides automatic page numbering.

PAGE2 Provides automatic page numbering.

UDATE Makes 6-position system date available.

UMONTH 2-position system date month.

UDAY 2-position system date day.

UYEAR 2-position system date year

*PLACE Permits repetition of fields specified
prior to it.

Read about these "specia1 words" used as field names and examine
illustrations of their use in the reference manual.

* * *

END OF TOPIC

370

TOPIC: Processing Disk Files

To update a disk file means to change the contents of one or more
fields in one or more records of that file. Update files must be
further described using input and output specifications~ The only
fields that need to be described for an update file are those
whose contents are to be changed.

One method used to update a file involves chaining. This method
includes identification of the update file (code U in 15) as a
chained file (code C in 16) on the File Description statement.
It also includes the use of the CHAIN operation on the Ca1cy1ation
sheet.

The examples we learned about earlier requested you to code
solutions in which records in either a sequential disk file or
an indexed disk file were to be updated randomly using the
chaining method.

While we are on the subject of updating disk files, it is appro­
priate that we consider the processing of data in any type of file.
Position 28 on the File Description sheet is called "Mode of
Processing ll

• Take some time to read about modes of processing
in the RPG II manual. Use the following questions to direct
your attention to various modes.

1. What mode of processing is identified by the
entry L? by the entry R?

2. If no entry is made in position 28, what will be
done in the generated program?

3. What is the difference between processing
sequentially and processing consecutively?

NOTE: Processing methods are related to file organization.
Welve used indexed files and sequential files in our
examples throughout this course. Refer to the RPG II
manual for items about position 32 on the File
Description sheet, "Type of File Organization".

4. How many different types of file organizations
are supported by the RPG II language?

5. Which type of file may be found on

a. disk?

b. pri nter?

c. display screen?

371

6. Which type of file may be processed

a. consecutively?

b. sequentially?

c. randomly?

RPG II can be used to perform a special activity - processing
records in an indexed file consecutively! Whenever an indexed
file has been created using an unordered load or records have
been added to it, it may be desirable to process the file as
its records are stored. To do so, simply describe the indexed
file as a sequential file by leaving positions 28-32 and 35-38
on the File Description sheet blank. The generated program
will treat these records as though they were in a sequential
file.

Disk files may be processed using the matching records technique.
When this is done, a "matching field" is identified on the Input
sheet for each record type to be processed in each file. Record
types without match fields may be included in files that are
processed using this technique. If so, no match field entry is
made for them. Record types without match fields are selected
for processing before those with match fields as they become
available for processing.

You should examine the examples of such processing in the RPG II
reference manual. Keep in mind that while records from two or
more files are "matched", only one record is processed at a
time by the generated program.

END OF TOPIC

372

TOPIC: Auto Report

Auto Report is a function of the RPG II language. It can be used
to reduce the time required to plan and code a variety of programs.
When Auto Report statements are included in an RPG II source
programs that source program is diagnostically checked during
an Auto Report "pre-compilation" run on the computer.

If no terminating errors are founds the Auto Report statements
and the standard RPG II statements are merged into an RPG II
source program that is ready for RPG compilation. Following
successful compilation, the object program is ready for test
data runs.

As you recall, we learned about using two features of the Auto
Report function: *AUTO and /COPY. *AUTO provides for centered
report titles and data fields centered under column headings.
It also includes the facility to accumulate totals for selected
numeric fields.

/COPY provides for the inclusion of cataloged specifications into
a source program. Any RPG II specifications, including table data
and array data, and *AUTO entries can be cataloged for later
inclusion via the /COPY feature.

One more feature needs to be learned. It is the "option" speci­
fication. It is used to select available options such as:

1. catalog the generated source program,

2. suppress the printing of a report date and page
number on the report title line,

3. suppress the printing of asterisks next to
generated totals.

OPTION: Catalog the generated source program.

The reason for doing this is it provides a means for
examining and modifying the intermediate level source
program that is created by Auto Report prior to RPG
compilation. There are instances where it is more
convenient to modify the intermediate level steps, and
this feature provides the programmer the option of doing
this.

OPTION: Suppress the print of a report date and page
number on the report title line.

There are reports that are more useful if a report date
or page number appears elsewhere on the page. This
option permits the programmer to make that modification.

373

OPTION: Suppress the printing of asterisks next to
generated totals.

Again, it is not always desirable to identify certain totals
on a printed report. This option eliminates those identifi­
cation characters.

Each of these three options may be coded in a special,
1-line statement by following these rules:

RULE: If one or more options is desired in a program,
the "options specification" must be the first
statement in the program.

RULE: The options specification is coded in this manner:

POSITION

6

7-18

27

28

ENTRY

U Required

CF1,nnnnnnnn

Used when a sourcej.program is to be
cat a log e din the li bra r y. P 0 sit ion s
11-18 are used for the name under which
this source program is to be cataloged.

N

Used when date and page number are to
be suppressed. To retain these items,
leave position 27 blank.

N

Used when asteriks are to be suppressed.
To retain the asterisks, leave position
28 blank.

There are ni specific questions to be answered for this topic, but
I think you should take time to read about Auto Report and look at
the examples to reassure yourself that you can make use of this
facility in your programming activities. Many examples showing
the relationships between the coding and the report results are
included for quick reference.

END OF TOPIC

374

TOPIC: Control Breaks

RPG II programs read, process and produce output for one record
at a time. In certain problems, you need to include processing
and/or output for groups of records. These groups are known as
"control groups". Control groups always contain one category of
information that is identical for every record in the group.
Consider these situations:

1. A company hires individuals. Most are assigned
to work in a particular group such as a department;
the department name or number is identical for every
employee in the department. The department name or
number in employee records is identified as the
"control field".

2. A big example is evident when you group people
geographically, let's say for purposes of
recording population. A person is part of a
family. A family is part of a city, town, or
area. The city, town, or area is part of a
state. A statets part of a country, and so on.
If we recorded all this information about each
person in the United States, how many control
levels are included?

In example 2, we have four levels of control for purposes of
grouping: family, city (town or area), state and country.

These four levels of control are arranged in ascending level of
control in our example, that is, "family" is the lowest level,
"ci ty" is the .second 1 eve 1, "state" is the thi rd 1 eve 1 and
"country" is the highest level.

Whenever you solve a problem involving groups of records, you
need to do the following:

1. designate the field or fields in the input records
as "control fields" by coding the letter L in 59
followed by a number in 60 to designate its level
of control.

2. include the appropriate control level indicator
on all calculations for the group.

3. include the appropriate control level indicator
on all output for that group.

375

RULE: Calculations controlled by control level indicators are
called total-time calculations and occur in control
level order from lowest to highest.

RULE: Total-time output (T in 15) produced by control level
indicators occurs in control level order from lowest
to highest after total-time calculations are completed.

RULE: Header output (H in 15) produced by control level
indicators occurs after all total-time output is
produced and occurs in reverse order, from highest
to lowest.

Let's see if I can clarify that set of rules. Assume that we are
in the middle of a job and a level 3 control break occurs. Here
is what happens and the order in which it will happen normally.

1. Since a level 3 control break occurred, L3 is turned
on and L2 and L1 are turned on. Remember that rule. -- --

2. All total-time calculations controlled by L1 are done.

3. All total-time calculations controlled by L2 are done.

4. All total-time calculations controlled by L3 are done.

5. All total-time output controlled by L1 is done.

6. All total-time output controlled by L2 is done.

7. All total-time output controlled by L3 is done.

At this time, Ll, L2 and L3 remain turned ON.

That takes care of all group information for the old group. Now
we normally start working with the record from the new group that
caused the control break to occur.

1. All detail-time calculations for this first record are
done. These calculations ~ include a control level
indicator in 9-17!

2. All header output controlled by L3 i s done.

3. All header output controlled by L2 is done.

4. All header output controlled by Ll is done.

5 . All detail-time output for 1 record is done. This
output ~ be conditioned by control level indicators!

At this time indicators Ll, L2 and L3 are turned OFF.

376

You will want to read about control breaks and processing of
groups of records in the RPG II reference manual. Here are some
places to look for in the index and table of contents in that
manual.

Indicators

Control Field

RPG II Object Program Logic

LO and LR Indicators

Group Printing

Group Indication

Control Level

*

END OF TOPIC

* *

377

TOPIC: Indicators

An indicator is a program switch. In some cases RPG II turns them
ON and OFF. In other ca~es, the programs can do so. Here is a
list of available indicators for your use in programming. Remember
that the DEBUG operation when active prints a list of all indicators
turned ON at the time the DEBUG is encountered.

INDICATOR

01-99

H1-H9

1 P

OA-OG,OV

L1-L9

LO

LR

KA - K N , K P • K Q

Ul-U8

MR

NAME PURPOSE

---------- Use as needed by programmer

Halt Stop processing after output for
that record

First Page Provide header output prior to
first input record

Overflow Control page overflow output

Control Level Facilitate group processing

Level 0 Provide total-time activity when
needed

Last Record Conclude job

Command Key External operator control of run

External External file control for job

Match Record Control multifile processing

Whenever you need information about indicators, refer to an RPG II
reference manual, especially to the chart that summarizes their
usage.

* * *

END OF TOPIC

378

TOPIC: Multifile Processing

Multifile processing refers to jobs in which two or more input
files provide data. When used in RPG II, multifile processing
applies to programs that read records from a primary file (P in
16 on File Description) and· one or more secondary files (S in 16).

The most simple example of this is:

"Print a listing of the contents of these three files:
FILEAA, FILEBB and FILECC in that order."

To do this job, which file must be designated as the primary file?
How can we be sure that FILEBB will be processed before FILECC?

The primary file must be FILEAA. The second file to be described
must be FILEBB and FILECC must be last. Here is how that would
be coded assuming that they are all sequential disk files.

FFILEAA

FFILEBB

FFILECC

FLIST

IP

IS

IS

a

100

80

100

132

DISK

DISK

DISK

PRINTER

RULE: When two or more files are designated as secondary, they
will be processed in the order specified unless otherwise
controlled by the programmer.

RULE: A program may contain one and only one primary file.

That was easy. Now 1et 1 s look at multifile processing in which
records from one file are compared against records from another.
In RPG II this is called IImatch fie1ds" processing or "ma tching
records".

RULE: When records from two files have the same value in
their matching fields, the primary file record is
processed before the secondary file record.

RPG II will cause two records to be read before processing begins
so that matching can take place. After the primary file record
is processed, another primary file record is read and the matching
process is repeated.

379

In order to specify that matching records processing is to take
place, you need to make these entries for each file used.

FILE DESCRIPTION

Specify either A or D in 18 to indicate the sequence (ascending
or descending) in which records are stored on that file. All
input records from the file will be sequence checked.

INPUT

Specify Ml-M9 in 61-62 for the field(s) to be used for
matching. Assign these entries to the same fields in
both files.

CALCULATION

Use the matching records indicator (MR) to control the
processing of data. Normally, this indicator is used
in combination with a record identifying indicator to
restrict the processing to the proper record of the
available two that match (or don't match).

OUTPUT

Use the matching records indicator (MR) to control the
output as desired. Again, if necessary, include a
record identifying indicator to produce the proper
output record(s).

That should give you an idea of what can be done and how it is
coded. When you encounter a problem in which multifile processing
is to be used, refer to the RPG II reference manual for specific
rules and examples.

There is one more File Description entry that relates to multi­
file processing. This entry is in position 17, IIEnd of File ll .
Here's why it is important.

A program that performs multifile processing could reach the
end of one file before reaching the end of the others. This
program needs some indication of whether it is to continue
reading records from the other files or end the program.

Enter code II Ell in 17 if reaching the end of this input or
update file shall cause the job to end.

NOTE: If no entry is made in 17 for any file, the job ends
after all records in all files have been processed.

* * *

END OF TOPIC

380

TOPIC: Operation Codes

Operation codes direct the computer to do arithmetic operations,
perform tests, move data, branch to steps, and look up table
or array data. There are special codes that permit the normal
calculation sequence to be interrupted so that desired input or
output functions may be performed.

You have learned what each of the following codes is used for
and how each is to be specified. Examine this list to be sure
that you can recognize each item and are able to describe its
purpose.

ADD SUB MULT DIV MVR SQRT Z-ADD

Z-SUB MOVE MOVEL MOVEA GOTO TAG COMP

CHAIN EXCPT DEBUG KEY SET SETON SETOF

LOKUP XFOOT EXSR BEGSR ENDSR

There are other operations that are part of the RPG II Language.
The intent of this short lesson is to make you aware of each of
the remaining codes by discussing them in groups. After live
completed that presentation, you should read about the rules
for coding them properly and look at examples in the RPG II manual.
You are not expected to memorize the proper use and coding of all
codes, but you should be able to find and apply them when you need
them in solving problems.

GROUP: Moving Data and Testing Zones

The move operations provide a means of moving and re-arranging
data for your convenience in processing data records. RPG II
provides operations to:

1. move data from one,field to another,

2. move data from one array to another, and

3. move a part of a character in a field to
replace the same kind of part in another.

The third category of move instructions includes four operations
known as "move zone" operations. Their function is to move the
zone part of a single character. What is the zone part of a
character? Letls take a look.

Example: A numeric field in storage includes a digit and a sign
in the rightmost position. The sign may be either plus
or minus. The rightmost character in a numeric field
if printed without editing will show up as a letter or
as a special character. Look at these.

381

FIELD

+
1234

707

RIGHT-MOST
CHARACTER

+
4 or D

7 or P

PRINTED

123D

70P

If for any reason you need to manipulate the zone portion of a
numeric character with a sign, you can make use of a move zone
operation, because the sign is the zone portion of that rightmost
character! Rightmost is also called 1I1ow order ll position.

Since signed numbers are the equivalent of letters or even special
characters, you can agree also that if for any reason you need to
manipulate the zone portion of that character, you would use a
move zone operation. I said earlier that there are four move zone
operations. Here's the list.

MLLZO

MLHZO

MHLZO

MHHZO

Move the low order position zone of Factor 2 to the
low order position zone of the Result Field.

Move the low order position zone of Factor 2 to the
high order position (left-most) zone of the Result
Field.

Move the high order position zone of Factor 2 to the
low order position zone of the Result Field.

Move the high order position zone of Factor 2 to the
high order position zone of the Result Field.

RULE: When the zone is moved, Factor 2 is not changed. The
zone in the Result Field character is replaced.

There are certain restrictions to the use of these move zone
operations. Look at the rules and examples in the RPG II manual
to find out:

1. how are they coded,

2. what are the restrictions,

3. when are they useful.

* * *

382

A special operation, TESTZ (test zone) provides the facility to
test the zone of the left-most character in an alphameric Result
Field. One, two or three R~sulting Indicators are assigned to
this operation to determine the following:

1. If the zone portion of the character tested is the
same as a zone in the letters A-lor the &, the
indicator in 54-55 (+) will be turned on.

2. If the zone portion of the character tested is the
same as a zone in the letters J-R or the -, the
indicator in 56-57 (-) will be turned on.

3. If the zone portion of the character tested is the
same as a zone in all other letters and characters,
the indicator in 58-59 (0) will be turned on.

Remember that this operation tests the high order, left-most,
character in an alphameric Result Field to determine which type
of zone is present in that character.

To code this operation:

1. specify TESTZ in 28-32

2. specify an alphameric Result Field in 43-48

3. include 1, 2 or 3 Resulting Indicators in 54-59.

* * *

GROUP: Bit Operations

I have included three operations in this group. BITON, BITOF,
and TESTB. Unlike the operations we've studied so far, these
control the turning ON or OFF of a "bit".

Definition: A bit is a £inary digi!.

How does that tie in with what we know? Well, a bit represents
a part of a character in storage. Here is what I mean. The
computer is capable of storing and manipulating characters or
parts of characters, such as zones or bits. RPG II provides
operations to store and manipulate numbers, letters, special
characters, zone-portions of a character, and can establish a
bit-portion of a character. Look at this example.

In storage, the number 4 is a number made up of 8 bits arranged
like this: 11110100. Remember, I said a bit is a binary digit.

383

Binary digits are either 0 or 1 as the example shows. Look at
this list of other examples.

CHARACTER

1

BINARY EQUIVALENT

11110001

11000011

01011100

C

*
Now don't get excited. You are not supposed to remember these
codes. I just wanted you to realize that every storage position
can hold an 8-bit character.

* * *
Since there are eight bit-positions in one storage position and
RPG II provides two operations to turn bits on (meaning make them
a 1) and to turn bits off (meaning make them a 0), we now have
the facility to use a storage space as though it had ON/OFF
switches.

First, here is how to code the operations of BITON (turn on a bit)
and BITOF (turn off a bit).

1. To turn on from 1 to 8 bits in a single storage
position:

a. enter BITON in 28-32.

b. enter an alphameric constant or a l-position
field as Factor 2 to control which bit out
of the eight shall be turned on; bit positions
are numbered from 0 to 7 for the eight bits
(starting from the leftmost position).

c. enter a l-position alphameric field as the
result field to designate where bit
manipulations shall take place.

Examples: (Calculation specifications)

C BITON ' 01234567 I FEELD

c

C

BITON ' 25 1

BITON ' 0 1

RETO

SET 1

What do you think is accomplished by each of these instructions?

* * *

384

The first example means turn on all 8 bits in FEELD.

The second means turn on bits 2 and 5 in RETO.

The third means turn on bit 0 in SET.

RULE: A l-position field may be used as Factor 2. If so, bit
positions that are on in the field in Factor 2 will
cause the same bit positions in the Result Field to be
turned on.

Now for BITOF. As you suspected, the same rules apply but the
designated bit positions are turned OFF, that is, they will
contain zeros.

Well, so far all we1ve accomplished is that we know how to turn
bits ON and turn bits OFF in a l-position alphameric field. That
is like being able to turn on a light switch or turn it off. What
good is that?

Suppose I change the sentence to read:

That is like being able to turn on a program switch
or turn it off.

Aha! Now I can use this l-position alphameric field to store 8
program switches which I can use in combination with indicators
to establish, test and reset a set of conditions.

BITON will establish the conditions, BITOF will reset them, and the
third operation TESTB (test bit) will be useful in determining their
condition during a program. Look at this calculation sheet example:

c TESTB I 35 1 HOLD 1 445566

Bits 3 and 5 are compared against the corresponding bits in the
field named HOLD. Which indicator will be turned on, 44 or 55
or 66?

RULES: When the same bits are on in both Factor 2 and the
Result Field, the indicator in 58-59 (=) is turned
ON.

When the bits that are ON in either entry are OFF
in the other, the indicator in 54-55 (+) is turned
ON.

When there is a mixture, some that are on in one
are off in the other, the indicator in 56-57 (-)
is turned ON.

385

In effect then, the TESTB operation compares bit settings to
determine a condition.

RULE: At least one Resulting Indicator must be specified in
positions 54-59.

Take time to look at the RPG II manual for more examples in which
these operations BITON, BITOF and TESTB are used. You may find
them useful in future programming activity.

* * *
GROUP: Control of Input and Output

Normally, the generated RPG II program includes instructions
that read in data prior to being processed. Likewise, RPG II
provides instructions to write or print output records after
all calculations have been performed.

In some data processing problems it is necessary to read in one
or more records when needed during calculation steps. Also, it
is sometimes necessary to produce output records during calcula­
tion steps.

You have already studied about some operations that can alter
the normally generated RPG II calculations in order to perform
input or output functions. Do you remember them?

OPERATION

CHAIN

PURPOSE

read a disk file record

KEY

SET

read a keyed record

turn on an indicator corresponding to a keyed
entry

EXCPT

DEBUG

write out a record or display it on the screen

list the indicators presently turned ON; also,
list the contents of a specified field

There are three other operations that may be used to control
input or output functions during the calculation steps.

1. FORCE: Select the file during calculations from which
the next record is to be read when the normal
RPG II program logic calls for a record.

2. READ: Read a record immediately from a "demand" file
so that it can be processed during calculations
that follow.

386

Definition: A demand file is one that is either an input, update
or combined (special) file type.

All demand files (0 in 16 on the File Description sheet) except
those assigned to the KEYBORD device must be processed using the
READ operation.

3. SETLL: Set the lower limits of an indexed demand
fi 1e being processed.

Using this operation allows you to process an indexed file
sequentially by starting at a point other than its beginning.

The rules for coding these three operations are listed.

1. FORCE:

a. specify FORCE in 28-32

b. specify the filename of the file from which the
next record shall be read as Factor 2

2. READ:

a. specify READ in 28-31

b. specify the name of the demand file as Factor 2

c. specify an indicator in 58-59 to be turned on
at the end of file for the demand file; this
entry is optional

3. SETLL:

a. specify SETLL in 28-32

b. specify a field or literal that contains the value
of the lower limit as Factor 1; its length must
equal the key field length

c. specify the indexed filename as Factor 2

Before you include any of these operations in your programs, read
about them in more detail in the RPG II reference manual.

Key Point: RPG II generates input and output instructions
from your descriptive statements of the total
job. You may alter the normal pattern if you
have the need to, BUT be sure your job requires
it before you indiscriminately use these
operations.

* * *

387

GROUP: Branching to External Subroutines

This is the last group of operations to be covered. The two
entries, EXIT and RLABL, provide an RPG II programmer the
facility to link his program to one subroutine written in
another programming language called Assembler.

If such an external subroutine exists and is available for use,
here is how the RPG II programmer calls for it in his program.

1. specify EXIT in 28-32

2. specify the name of the external subroutine as Factor 2

When the EXIT operation is encountered, the RPG II program branches
to the Assembler sub~outine for processing. When the subroutine
is finished, branching again occurs back to the RPG II program.

The RLABL operation may be used so that the external subroutine
may reference a field, table, array or indicator in order to do
its processing. To use RLABL:

1. specify RLABL in 28-32 on the line immediately
following the EXIT operation

2. specify either a field name, a table name, an array
name or an indicator as the result field.

NOTE: If an indicator is to be entered, it must be entered as
IN in 43-44 followed by the specific indicator in 45-46.

If the situation arises when you may have access to an Assembler
subroutine, read about the EXIT and RLABL operations in the
RPG II manual.

* * *

END OF TOPIC

388

TOPIC: Tables and Arrays

A table is an arrangement of data items having like characteristics.
Sois an array. Table names must start with TAB. array names can
be any name except those beginning with TAB.

Tables and arrays may be searched. one entry at a time. using the
operation LOKUP. The search always begins at the first table or
array element and continues until the desired element is found or
the entire table or array has been searched. There are five
different Resulting Indicator entries that may be considered when
conducting a search.

1. Search until an equal is found. Elements may be
arranged in any order.

2. Search until an element is higher than the search
field. Elements must be in ascending order.

3. Search until an element is either equal to or
higher than the search field. Elements must be
in ascending order.

4. Search until an element is less than the search
field. Elements must be in descending order.

5. Search until an element is either equal to or
less than the search field. Elements must be
in descending order.

Two operations apply only to array processing. XFOOT may be used
to add the value in every element of a numeric array. MOVEA may
be used to move an array to another array; to move an array to a
field; or to move a field to an array.

Individual elements of an array may be used for processing or
output by including an "index" value or field when designating an
array name in that operation or output statement.

When two tables or arrays are loaded. they may be arranged in
"alternating format". If so. they must be described on the
Extension sheet on one line. Also. the table or array named
first must have its data appearing first in the set of alternating
data.

389

Read about tables and arrays in the RPG II reference manual if you
want to know more about them in regard to:

1. What is meant by a "compile-time" or a "pre -
execution-time" table or array?

2. What is an "execution-time" array?

3. How can the contents of a table or array be
modified?

4. How can I add entries to a short table?

* * *

END OF TOPIC

390

TOPIC: RPG II Generated Program Logic

The RPG II manual includes a description of this topic from two
points of view. First, for relatively simply jobs involving one
input file and second, for more complex jobs. Refer to both
sections of the manual to answer these questions.

SIMPLE

1. In what order do input, processing and output occur in
simple jobs in which at least one control level has
been defined and used?

2. When are indicators turned off?

3. In what w~y is the first program cycle different from
normal job cycles?

4. In what way is the last program cycle different from
normal job cycles?

COMPLEX

5. When are pre-execution-time tables loaded?

6. When are calculations controlled by LO performed,
during detail-time or total-time calculations?

7. Page overflow is controlled by one of the indicators
OA-OG or OV. When is overflow output produced? When
is the overflow indicator turned off?

Knowledge of the generated program logic will be helpful during
the debugging and testing of programs as well as during coding
activity. Refer to these sections frequently during the first
few test runs to become as familiar as you can with this logic.
RPG II is a descriptive and generative language. To make the
most of its features, you need to know the logic of programs
it generates from your descriptions.

END OF TOPIC

391

This chapter was written to provide some study in areas of the
RPG II language which were not covered in the first part of the
course. You can best learn to use RPG II by using it on the job.
The reference manual should be near you and you should use it to
advantage whenever you need it.

For those of you who will be describing data processing jobs that
involve telecommunications, get a copy of the separate manual,
"IBM System/32 RPG II Telecommunications Programming" form number
SC21-7597. This manual provides information on:

1. definitions of basi~ telecommunications terms,

2. descriptions of IBM System/32 telecommunications
capabilities, and

3. specifications rules for writing telecommunications
programs.

Telecommunications specifications are coded on a separate form
(Form Type T in column 6) which has the form number GX21-9ll6.
~hese statements are placed just ahead of Input specifications
when the source program is ready for compilation.

There is no self test for this chapter. Here's wishing you
success in your programming activities using the RPG II language.

392

TOPIC/SUBTOPIC INDEX

Creating Disk File Records
Creafe a Disk File - Indexed

BOOK Solution
Create art Indexed File & List Keyed Records

Book Solution
Create a Disk File - Sequential

Book Solution
Print Disk File Records - Indexed

Book Solution
Print Disk File Records Indexed, using Auto Report

Book Solution
Print Disk File Records - Sequential

Book Solution
Chapter Summary

Fundamentals of Programming
File Organization
File Processing
Programming
The IBM System/32 Computer

Indicators, Comments, DEBUG and Subroutines
Comments
DEBUG

Coded Example - DEBUG
Indicators
Subroutines

Coded Example - Subroutines
Chapter Summary
Indicator Chart

Introduction to RPG II
Coded Sample - EXMP01
Coded Sample - EXMP02
Chapter Summary

Keyboard, KEY and SET
Keyboard and KEY

Coded Example - Keyboard and KEY
SET
Using KEY and SET
Chapter Summary

Practice Problems
Accounts Receivable Register
Computing Electric Bills
Computing Payroll Deductions
Master Subscriber File Update
Book Solutions
Chapter Summary

RULE: Calculating Record Length for a CONSOLE File

393

87
1 21
130
143
145

88
104
1 31
136
1 37
142
106
120
146

1
1 7
28
45

3

345
350
351
352
346
355
356
358
360

69
73
81
85

327
329
333
334
337
341

221
225
233
247
230
272
286

82,98

TOPIC/SUBTOPIC INDEX

Processing and Maintaining Disk Files
Add Records to an Indexed File

Book Solution
Add Records to a Sequential File

Book Solution
Use "chaining" to Inquire - Indexed File

Book Solution
Use "chainingll to Update - Indexed File

Book Sol uti,O;ri
Use IIma~;~rlg records" to Update - Sequential Files

Book S~~ion
Chaptey:<7 Summary

Tables and Arrays
Arrays

Exe~ution-time arr~y
Operations - XFOOT, MOVEA
Indexing elements in an array

Tables
Compile-time tables
Pre-execution-time tables
Operation - LOKUP
Related Tables
Coded Example - using tables

Writing out Tables or Arrays at End of Job
Chapter Summary

Using /COPY, Operation Codes, Levell Control and
RPG II Generated Program Logic

Level 1 Control Breaks
Operation Codes

ADD, SUB, MULT, DIV, MVR, SQRT, Z-ADD, Z-SUB
MOVE, MOVEL
GOTO, TAG, CaMP

RPG II Generated Program Logic
/COPY
Chapter Summary

Using the IBM System/32 RPG II Reference Manual
Auto Report
Control Breaks
Creating Output Records
Indicators
Multifile Processing
Operation Codes
Processing Disk Files
RPG II Generated Program Logic
The RPG II Philosophy
Tables and Arrays

394

151
157
159
153
156
160
163
164
172
173
179
180

291
310
311
312
313
296
298
299
301
307
309 .
317
318

185
205
191
192
197
198
211
188

. 217

365
·373
375
369
378
379
381
371
391
367
389

----.... ~ -..-. .--', - .- -.-- ~---- -'~-_ .-a'~ ~: ... _ == =--=--= '.-;'= ®
. .

~':: '. ,-:,:.~} '\' " ' ' .,'~ " ' ,';.'~

Intf~rri;ational Business MacttfhEi"corporation
.', ,',.' .. "" ,

General Systerns DiVision'
~775D Glenridge 'o-rive N. E.
P.O. Box 2150'
Atlanta"Georg,i~ 3030.1
(U.S.A. only) .~' \ '.~{

'18M General Business GrQl]p/tnt~ljllC!iAon9J
,421 Bosto~t. ,'.) Jsl Road

'Port Ch.est~,-, New York 10S/~
(I nternation~:~ . . .",

" . A .•. .'

